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Summary 
 

The renin angiotensin system is often manipulated clinically for the treatment of 

hypertension and heart failure. This pathway is of major clinical importance and it 

thus a major target for therapy. The incidence of cardiovascular diseases continues to 

increase worldwide, highlighting the need for new therapies to treat these conditions. 

Gene therapy for the treatment of cardiovascular diseases is currently being 

developed. Gene therapy is by definition the treatment or prevention of disease by 

means of gene transfer. The efficiency of gene transfer will determine how successful 

the gene therapy application will be. Before the full potential of gene therapy can be 

reached, many limitations common to all methods of gene delivery must be overcome. 

The current lack of suitable vectors capable of transducing cells of the vasculature or 

of the myocardium is a major rate-limiting step, but may be overcome by increasing 

the specificity of gene therapy vectors. This may be achieved through the isolation of 

new viral serotypes that can be developed into vectors, or the creation of new vectors 

by the alteration of the tropism of existing ones.  

 

This thesis aimed to assess the effect of ACE2 overexpression in vivo on heart 

function and blood pressure. In order to achieve cardiac gene transfer, we first had to 

identify an efficient cardiac gene delivery vector. This was approached by the 

application of two main techniques; (1) the use of phage-display identified peptides to 

retarget viral vectors and (2) the comparison and optimisation of rAAV6 and rAAV9 

mediated gene delivery to myocardium in vivo in a rat disease model.  

 

The initial aim of the project was to produce viral vectors that are highly efficient and 

selective at transducing cells of the cardiovascular system. Novel targeting ligands, 

incorporated into the capsid protein of viral vectors may help to achieve site-specific 

gene delivery. Candidate heart targeting peptides identified through phage display, in 

which the heart vasculature was probed for heart-specific endothelial markers, were 

evaluated. Four potential candidates were identified as CRPPR, CSGMARTKC, 

CRSTRANPC and CPKTRRVPC. All four showed an increase in ability to home to 

the heart when compared to insertless phage. Once shown to be selective for the heart 

tissues, these peptides were used to modify Ad5, Ad19p and AAV2 vectors to assess 

if they increased the selectivity of these vectors to endothelial cells of the vasculature. 



 xix

Phage-display derived targeting peptides proved disappointing in the context of viral 

vector retargeting, with the tropism of peptide-modified vectors remaining 

unchanged. 

 

Alternative viral vectors have been developed in recent years for cardiovascular gene 

therapy as a result of the poor uptake of existing vectors. RAAV6 vectors have been 

shown to display a powerful natural tropism for skeletal and cardiac muscle. One of 

the most recently identified AAV serotypes is AAV9, which has also been shown to 

display cardiac tropic characteristics achieving high cardiac transduction rates 

following systemic injection. Thus we aimed to identify an efficient cardiac gene 

delivery vector by comparison and optimisation of AAV6 and AAV9-mediated gene 

delivery to myocardium in vivo in SHRSPs. Whilst rAAV6 and rAAV9 vector-

mediated gene transfer were both found to be high in heart, rAAV6 vectors were 

found to exhibit the most favourable profile for cardiac gene delivery.  

 

The incorporation of a transcription-regulating element that limits transgene 

expression to the muscle of interest would reduce transgene expression in non-target 

cells. Thus rAAV6 vectors were tested under the control of a cardiac-specific 

promoter to achieve both selective targeting of myocardial cells and selective 

transgene expression in these cells. The promoter chosen was myosin light chain 2v 

(MLC-2v), which is abundant in skeletal and cardiac muscles and is the ventricular 

form of myosin light chain. This promoter has not previously been characterised in 

rAAV6 vectors. However, disappointingly, we found that systemic injection of AAV6 

under the control of the MLC2v promoter led to the uptake, but to no expression of 

the transgene in the heart. 

 

Gene therapy vectors have been developed with the ultimate aim of efficiently and 

selectively inducing appropriate transgene expression for a clinically beneficial 

outcome. Therefore, we aimed to assess the effect of ACE2 overexpression in vivo on 

heart function and blood pressure. Overexpression was achieved through the 

exploitation of the cardiac delivery profile of rAAV6 vectors. We demonstrated that 

sustained (11 week) rAAV6-mediated ACE2 overexpression in the SHRSP exerts 

detrimental effects on cardiac structure and function whilst increasing basal NO 



 xx

bioavailability, suggesting both positive and negative effects of overt ACE2 

overexpression in vivo. 

 

Through the comparsion of gene delivery vectors through different genetic 

approaches, this thesis identified a suitable candidate vector for targeted gene delivery 

to the myocardium of the SHRSP. This vector, rAAV6 was used in an appropriate 

disase model to define the effects of overexpression of ACE2, an important 

pharmacological target. The findings of this have immense cardiac pharmacological 

importance. 
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Introduction 

 

1.1 Gene Therapy 

Advancement in the understanding of molecular therapeutics has allowed the 

development of novel treatments to prevent and treat many diseases. Gene therapy is 

one of these novel strategies and involves the delivery of genes into a host’s cells to 

express a therapeutic gene and ultimately achieve beneficial effects. The science 

behind gene therapy was first shown possible in 1977 when the thymidine kinase 

(TK) gene was transferred into TK- L mammalian cells (Wigler, Silverstein et al. 

1977). The genetic deficiency of these cells was corrected by the transfer of a single 

copy of a functional copy of the TK gene (Anderson, Killos et al. 1980). In vivo 

expression in a mouse was soon obtained using the retroviral vector N2 expressing 

the NeoR marker gene (Eglitis, Kantoff et al. 1985), which was then used to tag 

tumour infiltrating lymphocytes in the first human clinical trial in skin cancer patients 

(Rosenberg, Aebersold et al. 1990).  

 

Originally conceived for the treatment of inherited monogenic disorders such as 

Duchenne’s muscular dystrophy and haemophilia where gene replacement should 

restore a normal phenotype, gene therapy approaches can now be applied to the 

treatment of more complex acquired diseases including cardiovascular diseases and 

cancers. A variety of approaches have been developed to enable this, including the 

replacement or correction of missing or functionally impaired genes, the addition of a 

new function to a cell and the inhibition of proteins with undesirable effects. Gene 

therapy has enormous potential to provide novel treatments in areas which are 

currently lacking in suitable therapies. However, before the full potential of gene 

therapy can be reached, many limitations common to all methods of gene delivery 

must be overcome. The efficiency and selectivity of gene transfer will determine how 

successful the gene therapy application will be. This can be considered a major rate-

limiting step. In all cases, a ‘vector’ must be used to carry the therapeutic or 

corrective genetic sequence in order to efficiently deliver it to the patient’s target cells 

or tissue in such a way that the gene can be expressed at a beneficial level and for a 

suitable duration. Difficulties in achieving sustained gene expression in the target 
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tissue or cell has resulted in limited clinical benefits from gene therapy to date. The 

success of gene therapy is restricted by the relative lack of suitable vectors and will 

depend on the ability of researchers to address a number of still unsolved problems. 

This can be approached by either the isolation of new viral serotypes that can be 

developed into vectors or the creation of new vectors by the modification of existing 

ones.  

 

1.2 Current Status of Gene Therapy 

Developments in the field of gene therapy have been rapid. Since 1990, over 1300 

clinical trials have been approved worldwide (www.advisorybodies.doh.gov.uk) with 

11.5% of these being conducted in the UK (www.wiley.co.uk/genmed/clinical). The 

majority of clinical trials are for the treatment of cancers (66.5%), with the second 

biggest field in gene therapy being for the treatment of cardiovascular diseases (9.1%) 

(Figure 1.1). Viral vectors remain the current vectors of choice. In 1990, the first 

clinical trial of human gene therapy to correct the genetic disorder adenosine 

deaminase (ADA) deficiency in two children was initiated (Blaese, Culver et al. 

1995). Retroviral-mediated transfer of the ADA gene into T-cells led to the 

normalisation of immune responses, both cellular and humoral, and demonstrated for 

the first time the enormous clinical potential of gene therapy. 

 

In 2006, the success of a clinical trial to treat patients with progressive metastatic 

melanoma was reported (Morgan, Dudley et al. 2006). Retrovirus vectors encoding a 

T-cell receptor were used to genetically engineer peripheral blood lymphocytes ex 

vivo. These transduced cells were then re-infused into the patients. Tumour 

recognition abilities were conferred onto the autologous lymphocytes and caused the 

destruction of tumour cells in vivo. All 15 patients tolerated the engraftment of 

lymphocytes for at least 2 months post-infusion. 2 patients were found to have 

maintained a high level of genetically modified cells at 1 year post-infusion and both 

these patients displayed regression of metastatic melanoma lesions, as assessed by 

standard criteria. This trial is an example of successfully bringing treatment from the 

laboratory to the clinic. 
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Figure 1.1 Gene therapy clinical trials. 

Disease targets for gene therapy presented as a proportion of ongoing clinical trials. 

Data taken from www.wiley.co.uk/wileychi/genmed/clinical 

 

Additional positive results can be seen in the recent phase I clinical trial of 12 patients 

to check the safety and tolerability of an AAV2 vector for use in the treatment of 

Parkinson’s disease (Kaplitt, Feigin et al. 2007). The AAV2 vector used in the trial 

expresses the glutamic acid decarboxylase (GAD) gene and has generated some 

encouraging results (Kaplitt, Feigin et al. 2007). The vector was injected into one side 

of the brain and delivered to the subthalmic nucleus, where it expresses GAD, which 

in turn catalyses the synthesis of the inhibitory neurotransmitter gamma-aminobutyric 

acid (GABA). The neurotransmitter acts to reduce the activity of neurons in the 

subthalmic nucleus, which are found to be increased in Parkinson’s disease patients. 

At one year follow up, all 12 patients were found to demonstrate an average clinical 

improvement of 25%, as rated by the Unified Parkinson’s Disease Rating Scale 

(UPDRS). Importantly, no adverse effects or substantial toxicity were reported.  

 

In 1999 however, the field of gene therapy suffered a major setback with the first gene 

therapy related fatality attributed to an inflammatory reaction to an adenovirus vector 
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(Hollon 2000; Raper, Chirmule et al. 2003). This was the death of an 18 year old 

patient who received treatment for the liver disorder ornithine transcarboxylase 

deficiency (OTCD), an X-linked defect of the urea cycle in which nitrogen 

metabolism is affected, leading to a spectrum of neurological symptoms including 

seizures and mental retardation. He was administered a high dose of an E1, E4-

deleted recombinant adenoviral vector and died 4 days later from multiple organ 

failure. 17 other subjects were recruited onto this trial, with this patient being the 

second to receive the highest dose (Raper, Yudkoff et al. 2002). In the other patients, 

clinical reactions to the administered vector were mild and transient, with none 

reporting the systemic inflammatory response experienced by Gelsinger. Several rules 

of conduct were found to have been broken by the lead researchers however, 

including the failure to report the death of monkeys given similar treatments, in the 

informed consent discussion, failure to immediately report severe side effects in two 

other patients and the inclusion of Gelsinger into the clinical trial with high ammonia 

levels (www.fda.gov). 

 

In 2007, a 36 year old woman died during a phase I/II safety trial for the treatment of 

rheumatoid arthritis (Kaiser 2007). AAV vectors expressing a tumour necrosis factor 

α (TNFα) inhibitor were injected directly into the knee joint of the patient. After, the 

second injection, the woman developed an illness which resulted in her death 22 days 

later. The trial was immediately stopped, although the role of gene therapy in her 

death remains unclear. It is thought that she died as a result of a fungus (Histoplasma 

capsulatum) infection. Because she was also found to be positive for herpes simplex 

virus (HSV), it was reasoned that it was possible that HSV proteins had allowed for 

the replication of the AAV virus, which resulted in a weakening of her immune 

system. However, the recombinant DNA advisory committee (RAC) found very low 

levels of AAV vectors in non-target tissues, making the possibility of AAV playing a 

role in her death highly unlikely. Another possibility is that the gene encoded by the 

AAV vectors interacted with the drugs that she was taking for the treatment of her 

arthritis. Since the trial began in 2005, 127 subjects have been recruited onto the trial, 

with this case being the only reported adverse effect. Questions have been raised as to 

her involvement in the clinical trial. Her disease was not classified as life-threatening 

and it would seem that she was not well informed as to the potential clinical outcomes 

of a phase I/II safety trial. And so the role gene therapy played in her death remains 
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ambiguous, leading to further investigation of AAV vector safety (Kaiser 2007) and 

highlighting the importance of good trial design.  

 

These failures can be offset with the positive results obtained from more successful 

trials. Despite these promising clinical trials however, no gene therapy vector has yet 

been licensed in the UK as a viable treatment. However, several phase III clinical 

trials for cancer gene therapies (pancreatic, prostate and renal) have commenced and 

so the goal of gene therapy as a therapeutic treatment is within sight. 

 

In the UK there exists a gene therapy advisory committee (GTAC) to approve clinical 

trials of gene therapy products. This committee considers the potential benefits and 

risks of proposed clinical gene therapy trials, which must reach strict ethical criteria to 

be approved. Such advisory boards exist to limit the potential dangers associated with 

gene therapy as a clinical application. 

 

1.3 Justification for gene therapy for cardiovascul ar disease 

Cardiovascular diseases (CVD) remain the leading cause of mortality and morbidity 

in both men and women in the western population. The main forms of CVD are 

coronary heart disease (CHD) and stroke, but the term includes any diseases that 

involve the cardiovascular system. An estimated 2.6 million people have CVD in the 

UK, accounting for over 216,000 deaths in the UK in 2004. More than one in three 

people (37%) die from CVD (www.bhf.org.uk). Heart failure can be defined as a 

condition which leads to the heart being unable to meet the systemic demands for 

blood flow throughout the body. It can be as a result of any structural or functional 

disorder that impairs cardiac capabilities, and can be induced by a wide range of 

common diseases including hypertension, valvular insufficiencies and myocardial 

infarctions. The prognosis from heart failure is poor. A 50% death toll within 5 years 

is estimated for patients with mild to moderate heart failure, and 50% within 2 years 

for those with severe heart failure (Hobbs 2004). Cardiac hypertrophy is one of the 

heart’s first responses to an abnormal increase in stress. During this remodelling 

process, cardiac myocytes will increase in length and width in order to thicken the 

wall of the heart to normalise ventricular wall tension. Hypertrophy can occur in 

either the right or the left ventricle, with left ventricular hypertrophy (LVH) having 
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the highest occurrence. Although hypertrophy can initially be considered a 

compensatory mechanism to myocardial stress, in the long-term this process can 

become pathological and thus predispose an individual to heart failure. The ventricle 

can become stiff leading to impaired filling and diastolic dysfunction.    

 

Available pharmacological treatments for CVD and heart failure include prescription 

drugs, such as diuretics, lipid-lowering and antihypertensive therapies. Statins 

(otherwise known as 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG coA) 

reductase inhibitors), are a class of hypolipidemic agents used to lower low density 

lipoprotein (LDL) cholesterol levels. Statins have also been shown to have pleiotropic 

effects and have demonstrated anti-inflammatory (Liao 2002) and cardioprotective 

abilities (Schafer, Fraccarollo et al. 2005), as well as an association in the 

improvement of diastolic dysfunction (Fukuta, Sane et al. 2005). As such, the use of 

statins in reducing the incidence of major cardiac events in coronary artery disease is 

well established (Shanes, Minadeo et al. 2007). However, the use of statin therapy for 

patients with congestive heart failure remains controversial. Lower serum levels of 

cholesterol has been shown in some studies to be associated with a worse clinical 

prognosis (Rauchhaus, Clark et al. 2003). Antiplatelet agents (predominantly aspirin) 

are another class of drug used in the primary or secondary prevention of thrombotic 

cerebrovascular or cardiovascular disease. They interfere with platelet aggregation 

helping to prevent the formation of blood clots, and as such have been shown in 

randomised trials to reduce the risk of myocardial infarction, stroke and transient 

ischemic attack (TIA) (Grundy, Cleeman et al. 2004). Activation of platelet 

aggregation via pathways not blocked by antiplatelet agents can occur. Antiplatelet 

drugs are also often associated with hemorrhagic side effects, although the benefits 

are considered to outweigh the risks for most patients whose 10 year risk is ≤ 10% 

(Grundy, Brewer et al. 2004).  

 

Coronary revascularisation operations may be required as CVD progresses and 

worsens. Coronary artery bypass surgery (CABG) grafts a blood vessel from the 

chest, leg or arm to the aorta and attaches it to the coronary artery at a place beyond 

the existing blockage so as to bypass a narrowed or blocked coronary artery. It is one 

of the most frequently performed surgeries with approximately 30,000 operations per 

annum being carried out in the UK (www.heartstats.org). CABG can improve the 
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previously restricted blood flow to the heart and with the ultimate goal of reducing the 

risk of future heart attacks. A randomised trial to compare surgically and medically 

treated patients with systolic dysfunction and ischemic heart disease showed that 

CABG-treated patients had a significantly lower mortality for up to 10 years 

(O'Connor, Velazquez et al. 2002). Vein graft failure is a significant clinical problem 

with 15-30% of all vein grafts failing within one year of surgery and 50% being fully 

occluded after 10 years (Mehta, Izzat et al. 1997; Tsui and Dashwood 2002). Thus 

several patients will require repeat surgeries or further reintervention in the future. 

 

Percutaneous coronary interventions (PCI) encompass many non-surgical procedures, 

including balloon catheter angioplasty and stent placement, for the treatment of 

patients with coronary narrowing. Over 70,000 PCIs are carried out each year in the 

UK (www.heartstats.org). The main purpose of a PCI is to re-establish blood flow to 

the heart by diminution of the impeding blockage. During balloon catheter 

angioplasty, a cardiac catheter with a balloon around it is inserted into the narrow area 

of the coronary artery where it is inflated. This expansion presses obstructing plaques 

against the wall of the artery, augmenting the blood flow through the artery.  

Angioplasty may be followed by the intravascular implantation of a metal stent to 

prevent constriction of the artery. Stents are thrombogenic, requiring the use of anti-

coagulants, and are also associated with higher risks of complications and a longer 

hospital stay than angioplasty alone. Coronary restenosis is another major problem 

that is associated with both PCI and vein grafting. Restenosis occurs in 30-50% of all 

angioplasty interventions and in 10-30% of patients receiving an intravascular stent 

(Weintraub 2007). Drug-eluting stents which are saturated with drugs that prevent 

vascular smooth muscle migration and proliferation have been shown to reduce 

restenosis after PCIs (Degertekin, Regar et al. 2003; Fajadet, Morice et al. 2005). 

However, there is a higher risk of late stent thrombosis and myocardial infarction in 

patients receiving drug-eluting stents in comparison to metal stents (Jensen, Maeng et 

al. 2007). These risks must be considered against the improved clinical outcomes to 

conclude whether the risk outweigh the benefits. 

 

Despite advances and improvements in treatments, the incidence of CVD continues to 

increase worldwide. Additionally, many patients are not candidates for these 

traditional treatments and thus there is a requirement for new therapies to treat 
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conditions such as atherosclerosis, hypertension, vein graft failure and post-

angioplasty restenosis. Gene therapy for the treatment of CVD is currently being 

optimised and evaluated.  

 

1.4 Therapeutic genes for cardiovascular diseases 

The end point of any vector development study is to express a gene that will exert a 

therapeutic effect, and recent advances in genomics and proteomics may help to 

achieve this. With the identification of genes involved in CVD and the assignment of 

function to genes, the potential to translate this information and identify potentially 

therapeutic genes is high. There are many potential genes to be studied which may 

have therapeutic benefit. Genes to be studied include those implicated in CVD. For 

the treatment of heart failure, genes such as the sarco-endoplasmic reticulum calcium 

ATPase pump (SERCA2a) may be targeted, whilst for the treatment of hypertension 

components of the RAS may be investigated. For the induction of therapeutic 

angiogenesis, angiogenic factors such as vascular endothelial growth factor (VEGF) 

and fibroblast growth factor (FGF) may be manipulated.  

 

One of the most common groups of genes studied for use in cardiovascular gene 

therapy is the group of genes encoding growth factors, including VEGF and FGF. 

VEGF production is induced in response to a number of stimuli, such as hypoxia. Its 

activity can result in a revascularisation process, known as therapeutic angiogenesis 

(Josko, Gwozdz et al. 2000; Lee, Rentz et al. 2003), through the induction of 

endothelial cell proliferation. Being an angiogenic factor, and thus having the ability 

to induce the formation of new blood vessels from the existing vascular bed, makes 

VEGF an ideal gene to overexpress in the context of ischemic vascular disease. Direct 

injection of human VEGF cDNA into the muscles of patients with ischemic limbs 

lead to increased blood flow to the limbs, and to subsequent healing of ulcers and 

cessation of associated pain (Baumgartner, Pieczek et al. 1998; Shyu, Chang et al. 

2003). However, some experiments have demonstrated that unregulated 

overexpression of pro-inflammatory and vascular permeabiliser VEGF can lead to 

detrimental effects, including hypotension and arthritis, and so an element of 

transcriptional control needs to be included. AAV vectors expressing the VEGF 
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transgene under the control of hypoxia response elements (HRE), induced gene 

expression in ischemic mouse hearts in vivo (Su, Arakawa-Hoyt et al. 2002). 

 

The absence of heme oxygenase (HO)-1 has been implicated in the exacerbation of 

atherosclerosis, demonstrated by accelerated and more advanced atherosclerotic 

lesion formation in HO-1 deficient mice (Yet, Layne et al. 2003). Retroviral-mediated 

overexpression of HO-1 in the spontaneously hypertensive rat resulted in the 

attenuation of hypertension (Sabaawy, Zhang et al. 2001), whilst adenoviral-mediated 

HO-1 gene transfer prevented the development of atherosclerosis in apolipoprotein E 

(apoE) deficient mice (Juan, Lee et al. 2001). Adenoviral mediated HO-1 

overexpression has also been shown to attenuate the remodelling response to 

experimental vascular injury (Tulis, Durante et al. 2001). The many advantageous 

effects of this gene make it an important novel target in the treatment of vascular 

disease. 

 

The potential of gene therapy in the treatment of hypertension, a relatively poorly 

understood condition, has also been explored. Nitric oxide (NO) has been shown to 

play an important role in vascular smooth muscle relaxation, to dilate the vessel and 

increase blood flow. It has also been shown to act on cardiac muscle to decrease heart 

rate and contractility and is synthesised by nitric oxide synthase (NOS). Many 

vascular diseases are influenced by a reduction in NO bioavailability. Gene therapy 

approaches aim to increase NO bioavailability to improve vascular function. Direct 

injection of a plasmid carrying the human endothelial NO synthase (eNOS) fused to 

the CMV promoter significantly reduced systemic blood pressure in the 

spontaneously hypertensive rat (SHR) and was sustained for 5-6 weeks (Lin, Chao et 

al. 1997). In vitro, adenoviral-mediated expression of eNOS and iNOS had 

antiproliferative and antiangiogenic effects on porcine coronary artery smooth muscle 

cells (PCSMCs) (Sato, Nair et al. 2000), rat vascular smooth muscle cells (Kibbe, Li 

et al. 2000), human coronary artery smooth muscle cells (HCSMC) and on human 

umbilical vein endothelial cells (HUVEC) (Cooney, Hynes et al. 2006). NOS is just 

one of the many genes that have beneficial effects on endothelial function and on 

blood pressure. Other vasodilatory promoting genes include atrial natriuretic peptide 

(ANP), human kallikrien (HK) and bradykinin, and are being investigated for their 

role in the treatment of cardiovascular diseases. 
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1.5 Requirements of a gene delivery vector 

A multitude of vector systems, both viral and non- viral, have been assessed as tools 

for delivery of genes into cells, all requiring a therapeutic gene product coupled with 

an efficient vector for successful transgene expression. It is unlikely that a generic 

vector would be suitable for use in all circumstances; gene expression is required in 

different target tissues for varying lengths of time for different conditions. All vectors 

will share inherent properties, allowing them to be selective and efficient at 

transducing their target cell or tissue. The safety profile of a vector is important and so 

much focus has been applied to developing vectors with low toxicity (Huang, Liu et 

al. 2007). To avoid eliciting host immune responses, a lack of immunogenicity is 

desirable and would also allow the re-administration of a vector if required. The 

induction of immune response is particularly a limiting factor for adenovirus vectors 

based on serotype 5 (Ad5), which have been shown to target dendritic cells and some 

monocytes mediated by a putative heparin-sensitive receptor recognized by a distinct 

segment of the Ad5 fiber, the shaft (Cheng, Gall et al. 2007). The removal of 

virulence genes in viral vectors may help to limit host defences (Morral, O'Neal et al. 

1999; Barcia, Jimenez-Dalmaroni et al. 2007). Vectors capable of sustained transgene 

expression would avert the problems of vector re-administration; however some gene 

therapy application may only require transient transgene expression. Vector 

production must also be scalable resulting in high vector concentrations. To date, no 

one vector possesses all of these qualities, although many steps are being made to 

overcome these hurdles.  

 

The different types of vectors being researched can broadly be divided into two 

categories, non-viral and viral vectors. The development of viral vectors seems more 

promising than that of non-viral vectors, as in general, non-viral vectors are very 

inefficient (Nishikawa and Huang 2001). Non-viral vectors have no mechanism with 

which to cross cell membranes or traffic the injected DNA into the nucleus of the host 

cell (Lechardeur, Sohn et al. 1999; Johnson-Saliba and Jans 2001). As a result of 

many viruses naturally replicating in the nucleus of their host, they have evolved 

highly specialised mechanisms to allow efficient nuclear translocation (Whittaker, 

Kann et al. 2000). Thus viral vectors will mediate higher levels of transgene 

expression. Nonetheless, higher efficiency comes at the price of a higher safety risk 
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than non viral vectors. Another important property to be considered is the vector’s 

capacity for transgene insertion. In viral vectors this is determined by the amount of 

genome that can be removed whilst preserving vector infectivity, whilst non-viral 

vectors generally have a large capacity for transgenes. Each vector system has its own 

advantages and disadvantages, depending on its intended use. 

 

For cardiovascular gene therapy, work has focused on the development of vectors 

with the ability to transduce either the cells of the vasculature (endothelial and smooth 

muscle cells) or of the myocardium. To increase specificity of vascular gene therapy 

vectors, methods of tropism alteration and incorporation of cell-specific promoters 

can be applied (Wickham 2000; Reynolds, Nicklin et al. 2001; Barnett, Tillman et al. 

2002). There is a need to modify native virus tropism to improve efficiency of 

transduction of vascular cells particularly in vivo. 

 

1.6 Ex vivo and in vivo gene delivery for CVD 

Genes are delivered either through viral vectors, a non-viral vector or through direct 

delivery of naked DNA. These approaches are based on two major concepts; ex vivo 

and in vivo delivery. In ex vivo cell based gene therapy, autologous cells or tissue are 

harvested from a patient and incubated with the vector carrying the desired 

therapeutic gene. The genetically modified cells or tissue is then re-introduction into 

the patient. Re-introduced cells or tissue will express the transgene and usually at high 

levels. Due to the lack of effective pharmacological interventions, this method is 

being developed for gene therapy of vein graft failure during coronary artery bypass 

surgery (CABG). CABG surgery is performed on patients with significant 

atherosclerotic narrowing and blockages of the arteries; these arteries are bypassed by 

the grafting of arteries or veins from other parts of the body. CABG allows for the 

incubation of the graft vessel with a gene therapy vector prior to coronary grafting. 

Late vein graft failure is a common clinical problem (Campeau, Enjalbert et al. 1983; 

Davies and Hagen 1994) and occurs due to neointima formation and accelerated 

atherosclerosis; a process in which a role for matrix-degrading matrix 

metalloproteinases (MMPs) and neuronal nitric oxide synthase (nNOS), amongst 

others, has been implicated. Tissue inhibitor of metalloproteinase-3 (TIMP-3) has 

been shown to inhibit MMP activity and promote apoptosis thus inhibiting 
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progression of neointima formation associated with late vein graft failure (George, 

Lloyd et al. 2000). Adenovirus overexpressing TIMP-3 has been used in a pig model 

during bypass surgery, in which the autologous saphenous vein was interpositioned 

into the carotid artery, and was shown to significantly inhibit neointima formation in 

comparison with uninfected and control virus vein. Similarly, adenovirus mediated 

overexpression of nNOS was shown to induce beneficial effects on vein graft 

remodelling and improved endothelial function (West, Qian et al. 2001), 

demonstrating the potential of this technique. Transgene expression in non-target 

tissue is limited by this ex vivo method as well as unwanted immune responses by the 

removal of excess virus.  

 

Another approach for ex vivo gene delivery has been in the treatment of familial 

hypercholesterolemia (FH), in which patients have a deficiency of low density 

lipoprotein receptors (LDLRs). For this approach, autologous hepatocytes were 

harvested and transduced with recombinant retroviruses expressing LDLR. The 

hepatocytes are genetically corrected ex vivo before being transplanted back into the 

patient. This technique has been validated in rabbit models of FH (Chowdhury, 

Grossman et al. 1991) and in patients (Grossman, Rader et al. 1995), both showing 

persistent and significantly reduced levels of LDL cholesterol. However, ex vivo 

approaches are limited to largely invasive surgical procedures and to tissues and cells 

that can easily be removed from the body and then re-implanted. Thus its clinical 

applications are severely limited. In vivo gene delivery may be able to help overcome 

this limitation, although it faces many challenges of its own.  

 

For in vivo gene delivery the vector is either administered directly into diseased tissue 

within a patient (local delivery), or is systemically delivered and thus targeted to the 

site of action by the vector. Success lies in the ability of the delivery vector to 

transduce cells and utilise the host cells' machinery to produce the desirable transgene 

product. The route of administration has a major influence on the ability of the vector 

to transduce various cells and tissues. Local delivery may be used in the absence of 

suitable systemically deliverable vectors, where the direct injection of vector will 

ensure efficient transduction of target cells unattainable by systemic administration. 

Local in vivo delivery methods can either be through direct injection into the tissue of 

interest, or can utilise catheter-mediated gene transfer techniques (Sasano, Kikuchi et 
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al. 2007) or perfusion during cardiopulmonary bypass (Bridges, Burkman et al. 

2002). Local delivery, either through catheters, direct injection or surgical procedures 

can avoid the need for the delivery vector to cross the endothelial barriers and will 

result in high levels of the vector in the target tissue (Schwarz, Speakman et al. 2000). 

Intramyocardial injection of rAAV2 vectors was used to achieve beneficial 

therapeutic effects in rat ischemia/reperfusion models and demonstrated highly 

selective transduction of myocardial tissue (Melo, Agrawal et al. 2002). Infusion-

perfusion catheters have been used in the context of prevention of restenosis after 

coronary angioplasty. In this case, either adenovirus expressing human vascular 

endothelial growth factor 165 (hVEGF165) or plasmid-liposome complexes containing 

the hVEGF165 gene were delivered directly into the artery. However, in both groups 

there was no significant change in lumen diameter or in clinical restenosis rate 

compared to the control group (Hedman, Hartikainen et al. 2003). A surgical 

technique to improve the efficiency of gene delivery involves treating the heart with 

permeability agents in vivo. This involves simultaneously clamping all vessels 

to/from the heart and then the continuous retrograde perfusion of the heart through a 

catheter positioned in the aortic root (O'Donnell and Lewandowski 2005). This 

technique also allows for a washout phase to eliminate any excess virus, which 

ultimately will reduce the infection of peripheral tissues. Local delivery of vectors 

can result in leakage of transgene expression into other non-target tissues (Ikeda, Gu 

et al. 2002; Champion, Georgakopoulos et al. 2003). 

 

Systemic delivery makes use of the bloodstream to deliver therapeutic genes and is 

used extensively for liver gene transfer. It is the ultimate goal for many gene therapy 

applications as it is, in concept, a simple and non-invasive route for delivering 

therapeutic genes. Many cells and tissues remain inaccessible to local administration. 

However, the challenge with this approach is that the body has evolved many highly 

specific techniques to remove foreign particles and pathogens from the bloodstream. 

Existing vectors for systemic gene transfer remain ineffective at delivering genes to 

the vasculature and to the myocardium, as a result of liver sequestering after vector 

administration. Sequestration in the liver is a major limitation of Ad vectors, which to 

date are mainly based on serotype 5 (Huard, Lochmuller et al. 1995; Mizuguchi, 

Koizumi et al. 2002). Ad5 virus is known to interact in vitro with CAR, however, it 

was soon discovered that ablating CAR binding alone did not change the hepatic 
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tropism of these vectors in vivo (Alemany and Curiel 2001; Nicol, Graham et al. 

2004), and suggests the use of alternate receptor pathways in vivo by Ad5 vectors. 

This hepatic tropism limits the use of systemic routes of delivery to gene therapy for 

liver disorders or for the delivery of soluble factors. Advances in vector technology 

and development are helping to overcome this major barrier. Some AAV serotypes 

have been recently been shown to efficiently cross the blood vessel barrier and as 

such can be intravenously injected (Blankinship, Gregorevic et al. 2004; Pacak, Mah 

et al. 2006). The major limitation of the use of these vectors is that other non-cardiac 

organs may also be targeted. Transductional and transcriptional targeting strategies 

can be used to improve transgene expression and cell specificity. This is discussed in 

detail later (section 1.9). 

 

1.7 Non-Viral Vectors 

Non-viral vectors account for approximately 25% of the clinical trials currently in 

operation (www.wiley.co.uk/genmed/clinical). The simplest form of the vector is 

naked plasmid DNA encoding for the gene of interest and can be directly injected into 

the target tissue. Non-viral vector gene delivery is however highly inefficient with 

levels of transduction being significantly less than those achieved by viral vector gene 

delivery. Strategies to improve the delivery of this vector can be categorised into two 

general groups; (1) the association of the DNA with other molecules, and (2) the 

application of physical energy to aid cell entry through the cell membrane (Table 1.1). 

The major problems of non-viral vector delivery include the interactions of the vector-

DNA complex with blood plasma proteins and non-target cells, and entrapment within 

endosomes from which the vector must escape. Once inside the target cell, the 

challenge of resisting non-specific cytoplasmic degradation and passage through the 

final physical barrier of the nuclear envelope into the nucleus must be faced (Johnson-

Saliba and Jans 2001). Additionally, plasmid DNA that reaches the nucleus remains 

extrachromasomal and so is not usually replicated and is thus lost during break-down 

of the nuclear envelope at mitosis (Niidome and Huang 2002). Consequently, recent 

studies have focused on the development of specially designed vectors which have 

reduced affinity for intracellular proteins and cellular surfaces (Ogris, Brunner et al. 

1999; Kursa, Walker et al. 2003) and on mimicking the properties of viruses that will 

allow the non-viral vector to be maintained and replicate in the nucleus of target cells.  



 15 

Method of gene transfer 

 

Advantages Disadvantages 

Physical  Hydrodynamic injection 

 

Potent gene transfer in internal organs Gene transfer mostly restricted to the liver 

 

 

Bioballistic (gene gun) Large capacity for DNA (>20 kb) 

High transfection efficiency 

Shallow penetration of DNA into the tissue 

Short duration of gene transfer 

Dependent on cell line used 

 

 

Ultrasound Low invasiveness 

Non-toxic 

Relatively short duration of gene expression 

Chemical Liposomes 

 

Large capacity for DNA (>20 kb) 

Lack of immunogenicity 

Broad tropism 

Low transfer efficiency in comparison to viral vectors 

Poor efficiency in transduction of non-dividing cells 

 

 

Polycation DNA complexes 

 

 

Safe in vivo 

High transduction efficiency in vitro 

Instability 

Cleared rapidly from blood stream 

Non-specific interactions with other proteins 

 

 

Peptide DNA complexes 

 

Low toxicity 

Low immunogenicity 

Conjugation reactions may reduce biological 

activities of the proteins and peptides 

 
Table 1.1 Characteristics of non-viral gene delivery techniques.



 16 

As plasmids contain no proteins to interact with cellular receptors, physical methods 

of gene delivery can be applied to bring the vector into closer proximity with the cell 

membrane or to temporarily disrupt the cell membrane making it permeable to the 

DNA, thus allowing access into the cell. Potentially, the use of non-viral vectors 

offers several advantages over the use of viral vectors including ease of mass-

production, low theoretical risk of insertional mutagenesis, lessened immunogenicity, 

and a lower risk of unwanted transgene expression in tissues other than those targeted. 

However, the clinical applications of non-viral vectors remain impeded by their low 

efficiency of transfection and transient way of expression of the introduced genes. 

Producing sustained gene expression and potentiating the efficiency of delivery 

remains a goal of non-viral gene therapy applications.  

 

1.8 Viral Vectors 

Viruses are pathogenic agents and the etiological causes of disease. Viruses infect 

cells and take over host cellular machinery to preferentially express their own viral 

genes. They have evolved highly specialised mechanisms to enable them to insert 

their genomes into target cells, making viruses an ideal candidate to deliver 

therapeutic genes to mammalian cells. In a direct comparison of gene transfer vectors 

for myocardial gene transfer, recombinant (E1-/E3-) adenovirus, recombinant adeno-

associated virus and recombinant (ICP27-) herpes simplex virus all exhibited robust 

transgene expression, whilst uncomplexed and complexed naked DNA displayed very 

limited expression (Wright, Wightman et al. 2001). The efficiency of viral vectors can 

be attributed to the viral proteins that engage with cell surface receptors and in the 

trafficking of the genome to the nucleus (Roelvink, Mi Lee et al. 1999; Ding, Zhang 

et al. 2005). However, low level expression of viral genes can often evoke an adaptive 

immune response, and as such the host would destroy the virus and any therapeutic 

DNA it was carrying (McConnell and Imperiale 2004). Ad vectors in particular evoke 

strong immune responses and upon administration can activate an innate immune 

response mediated by the viral particle itself (McConnell and Imperiale 2004). This 

type of immune response is not specific and is aimed at clearing the body of foreign 

particles, being the first line of defence. After liver gene transfer, rapid clearance of 

the vector by cellular elements of the innate immune response involves Kupffer cells 

(Worgall, Wolff et al. 1997), the activation of the classical arm of the complement 



 17 

pathway (Cichon, Boeckh-Herwig et al. 2001) and an inflammatory response. This 

ultimately results in the induction of the adaptive cellular response which activates 

cytotoxic T lymphocytes (Muruve 2004). B cells are then activated during the 

humoral response, which can result in the production of neutralising antibodies and so 

eliminate the option of vector re-administration. By removing genes necessary for 

viral replication to provide space in which to insert foreign genes of interest, viruses 

can be manipulated to express these foreign genes in any cells that the virus 

transduces. This would also help to minimise host immune responses. These 

recombinant vectors are thus replication deficient, and in order to produce such 

vectors, the replication genes must be provided in trans, either integrated into the 

genome of the packaging cell line or on a plasmid. 

 

In principle, any virus can be used as a vector. DNA viruses were the first to be 

developed for such purposes, due to the ease of genetic manipulation of the viral 

genome or the use of homologous recombination to insert a gene of interest into the 

vector. The discovery of reverse transcriptase provided the means to produce 

complementary DNA (cDNA) from mRNA, which in turn allowed cDNA cloning 

and hence the use of RNA viruses as vectors. There are five main classes of clinically 

applicable viral vectors being studied for cardiovascular applications; retroviruses, 

lentiviruses, herpes simplex viruses (HSV), adenoviruses (Ad) and adeno-associated 

viruses (AAV), a summary of which can be seen in Table 1.2. These five vector 

classes can be further subcategorised according to whether the vector genome 

integrates into the host chromosome or exists extra-chromosomally (Thomas, 

Ehrhardt et al. 2003). Integrating vectors are associated with an increased risk of 

oncogenesis (Hacein-Bey-Abina, von Kalle et al. 2003), although careful engineering 

can be applied to minimise these risks. For example, the engineering of vectors that 

integrate into a predetermined site could allow long-term transgene expression whilst 

preventing the detrimental effects through inappropriate integration (Kay, Glorioso et 

al. 2001). Since each vector system has its own unique set of properties, one vector 

may be preferential above another in a particular setting and will determine its range 

of uses in gene therapy. 
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Vector 

 

Ability to 

Integrate 

Transgene 

Capacity 

Tropism Immune 

Response 

Activation 

Longevity of 

transgene 

expression 

Reference 

Retrovirus 

 

Yes 9 kb Dividing cells only Minimal Yes (Kay, Glorioso et 

al. 2001) 

Lentivirus Yes 9 kb Dividing and non-dividing 

cells. Ideal for endothelial 

cells. 

Minimal Yes 

 

(Zennou, Petit et al. 

2000; Dishart, 

Denby et al. 2003) 

Herpes Simplex 

Virus-1 

No 25 kb Dividing and non-dividing 

cells. Natural tropism for 

neuronal cells. 

Minimal Yes (Latchman 2001) 

Adenovirus (Ad) 

 

No 36 kb Dividing and non-dividing 

cells. 

Yes Transient (McConnell and 

Imperiale 2004) 

Adeno-associated 

Virus (AAV) 

Yes 4.6 kb Dividing and non-dividing 

cells. 

Minimal Up to 1.5 years (Hermonat, Quirk 

et al. 1997; Xiao, 

Chirmule et al. 

1999) 

 

Table 1.2 Characteristics of viral vectors for use in gene therapy.
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1.8.1 Retrovirus 

Retroviruses were the first viral vectors to be used in human gene therapy (Nabel, 

Plautz et al. 1990) and approximately 25% of the world’s gene therapy clinical trials 

use retroviruses as their platform vector (www.wiley.co.uk/genmed/clinical). 

Retroviruses can be further subdivided into oncoretroviruses, lentiviruses and 

spumaviruses, all of which are being developed for gene therapy applications to 

varying extents. Retroviruses are small enveloped RNA viruses, which replicate via 

an integrated DNA intermediate by the actions of the enzyme reverse transcriptase. 

The viral genome is approximately 10 kb, comprising of at least three genes: gag 

(group specific antigens), pol (reverse transcriptase) and env (the viral envelope 

protein). These viral genes are flanked by long terminal repeats (LTRs) which are 

required for integration into the host genome and control viral gene expression. The 

genome also contains a packaging sequence that allows it to be distinguished from 

other RNA in the host cell (Verma and Somia 1997). 

 

Retroviral vectors have all their viral genes removed and replaced with the transgene 

of interest, and thus rendering them replication-incompetent (Young, Searle et al. 

2006). Not only does this help to prevent the initiation of an immune response against 

viral gene products, the removal of viral genes also functions to improve the safety of 

these vectors as it will significantly reduce the possibility of recombination with wild 

type retroviruses (Dull, Zufferey et al. 1998). Despite their wide use as gene delivery 

vectors, the small genome of retroviruses allows for only 9 kb of foreign sequence to 

be inserted. Production of high-titre preparations required for gene therapy 

applications is problematic. Retroviruses are associated with low efficiency gene 

transfer owing to their inability to deliver genes to non-dividing cells (Miller, Adam et 

al. 1990). Their need to infect replicating cells could be advantageous in the targeting 

of rapidly replicating cells for use in cancer therapy. However, their utility as gene 

delivery vectors, in particularly for vascular applications is severely limited as they 

are not able to infect normal vascular cells, as vascular endothelial and smooth muscle 

cells have low mitotic rates (Gordon, Reidy et al. 1990). These inefficiencies have led 

to the development of lentiviral vectors which are capable of infecting both dividing 

and non-dividing quiescent cells (Lewis, Hensel et al. 1992; Tsui, Kelly et al. 2002; 

Dishart, Denby et al. 2003). 
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The genome of retroviruses is capable of integration into the host's genome through 

the actions of the virally encoded integrase enzyme, and will subsequently replicate as 

part of the cell's DNA, leading to the potential for long-term expression of a 

transgene. However, this integration is not site-specific and subsequently this vector 

has many safety concerns associated with it. Whilst genome integration is not site-

specific, it has been shown to take place recurrently in gene rich areas, particularly 

near the start of transcriptional units (Wu, Li et al. 2003). Random insertion of an 

LTR sequence adjacent to a cellular proto-oncogene can lead to inappropriate 

expression of a protein involved in cellular regulation. Random insertional 

mutagenesis could also disrupt a tumour suppressor gene potentially leading to 

dysregulation and a malignancy. The safety concerns associated with the use of 

retroviral vectors has been demonstrated in X-linked severe combined 

immunodeficiency (X-SCID) human gene therapy trials. In 2000, a clinical trial 

carried out in France to treat children with X-SCID, illustrated the oncogenic potential 

of retroviral vectors (Cavazzana-Calvo, Hacein-Bey et al. 2000). This study was 

based on the use of complementary DNA containing a defective gamma Moloney 

retrovirus-derived vector and ex vivo transfer of the c gene into CD34+ cells. After 

10 months the therapy was found to provide sustained full correction of disease 

phenotype demonstrating the unique potential of gene therapy. However, by 2003, 

two out of the ten patients had developed a serious adverse complication consisting of 

uncontrolled leukaemia-like clonal lymphocyte proliferation (Hacein-Bey-Abina, von 

Kalle et al. 2003), with a third case of leukaemia-like illness being reported in 2005 

(Couzin and Kaiser 2005). Two of the three patients were found to have retrovirus 

integration within or within close proximity to the LMO2 proto-oncogene promoter, 

which is associated with childhood leukaemia. This integration resulted in the 

inappropriate upregulation of the proto-oncogene and proved fatal in one of the 

patients (Hacein-Bey-Abina, Von Kalle et al. 2003).  However, the beneficial 

outcomes in the remaining patients are not to be overlooked. To date, 17 out of 20 

patients in both the Paris and London clinical trials have had their immune system 

restored and has remained functional for over 7 years (Cavazzana-Calvo and Fischer 

2007).  
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1.8.2 Lentivirus 

Lentiviruses are a subclass of retroviruses that are often used in gene therapy. In 

particularly, they are being studied and developed for the treatment of 

neurodegenerative disorders due to their ability to efficiently transduce cells of the 

nervous system (Mitrophanous, Yoon et al. 1999) (Wong, Azzouz et al. 2004). The 

lentiviruses used are usually derived from human immunodeficiency virus-1 (HIV-1) 

and so raise many clinical safety concerns. HIV can integrate into a potentially pro-

oncogenic site or result in germline alteration. In order to address this issue and to 

improve the biosafety of these vectors, significant modification to the HIV-1 genome 

can be made (Kim, Mitrophanous et al. 1998). Deletion of accessory genes tat, vif, 

vpr, vpu and nef led to the production of minimal vectors that contain only genes 

necessary for replication and packaging, thus minimising deleterious effects (Kim, 

Mitrophanous et al. 1998). Development of non-human lentiviral based systems, 

including simian (Fischer-Lougheed, Tarantal et al. 2007), feline (Browning, Schmidt 

et al. 2001; Lin, Noel et al. 2004) and bovine immunodeficiency viruses (Takahashi, 

Luo et al. 2002; Molina, Ye et al. 2004), has also been given attention in order to 

increase the safety profile of these vectors. However, potentially, this could give rise 

to new mutant strains of viruses capable of infecting and being transmitted between 

both human and animals.  

 

Lentiviruses have more complex genomes than other retroviruses, containing an 

additional 6 proteins. Lentiviruses have a relatively large packaging capacity of up to 

8 kb and an ability to infect a wide range of cells. They are also minimally 

immunogenic having been shown to sustain gene expression for several months 

(Zhang, La Russa et al. 2002) without detectable pathology (Naldini, Blomer et al. 

1996; Azzouz, Ralph et al. 2004; Abordo-Adesida, Follenzi et al. 2005). Gene transfer 

through lentiviruses is relatively stable as the transgene integrates into the host 

genome and is copied along with the host genome every time the cell divides. One of 

the most appealing features of these vectors is that unlike other retroviruses, 

lentiviruses can infect non-dividing cells, being able to enter the nucleus without 

mitosis (Uchida, Sutton et al. 1998; Zennou, Petit et al. 2000). This ability makes 

these vectors ideal for targeting cell types for which previous gene therapy methods 

could not be used. For example they are ideal for targeting the endothelium, which is 
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largely comprised of non-dividing cells. Lentivirus transduction of both primary 

human saphenous vein endothelial cells and smooth muscle cells was shown to be 

efficient and without toxicity (Dishart, Denby et al. 2003), but there are relatively few 

studies to date. Lentivirus-based vectors have been also been shown to be successful 

at transducing adult cardiomyocytes of a transplanted heart (Zhao, Pettigrew et al. 

2002), and the hearts of SHR in a study of cardiac physiology (Diez-Freire, Vazquez 

et al. 2006). 

 

Recently, a new generation of lentiviral vectors have been engineered and has 

enormous potential. These are in the form of non-integrating lentiviral vectors which 

can be considered much safer than the previous vectors. By introducing mutations 

into highly conserved acidic residues in the viral integrase gene, catalytic site or 

chromosome binding site, vectors can be rendered integration defective without 

interrupting viral DNA synthesis or accumulation in the nucleus (Leavitt, Robles et al. 

1996; Engelman 1999; Apolonia, Waddington et al. 2007). Efficient sustained 

transgene expression in vivo is attainable with non-integrating lentiviral vectors as has 

been demonstrated in muscle (Apolonia, Waddington et al. 2007) and in rat ocular 

and brain tissue at levels high enough to improve retinal degeneration in an 

appropriate disease model (Yanez-Munoz, Balaggan et al. 2006). 

 

1.8.3 Herpes simplex virus (HSV) 

HSV type 1 is an enveloped double-stranded DNA virus containing an icosahedral-

shaped capsid surrounded by a layer of proteins referred to as tegument. It has a 

relatively large genome of 150 kb, which facilitates large foreign DNA inserts of up 

to 30-40 kb (Latchman 2001).  HSV is able to infect a broad range of cell types 

including non-dividing cells. Natural viral infection can take the form of a cycle of 

lytic replication or can enter a latent state in which the viral genome persists without 

the expression of any viral proteins, possibly for the life of the host. Latently infected 

neurons function normally and do not illicit an immune response (Jacobs, Breakefield 

et al. 1999). HSV-1 has many key features making it a highly desirable vector for 

gene delivery. Firstly, it has a large transgene capacity which is provided by deletion 

of genes superfluous for viral replication with as much as 30kb of the HSV genome 

being available for deletion. However, because its genome does not integrate, HSV 
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vectors are unlikely to be suitable for the treatment of conditions requiring long-term 

gene expression. Due to its natural tropism for neuronal cells it has become a 

promising vector for the treatment of neurological disorders such as Parkinson’s 

disease (Burton, Glorioso et al. 2003) and cisplatin neuropathy (Chattopadhyay, Goss 

et al. 2004). HSV vectors have also emerged as promising vectors in cancer therapies 

in the form of replication-selective oncolytic vectors (Kirn, Martuza et al. 2001; Liu, 

Robinson et al. 2003; Han, Assenberg et al. 2007). These vectors fail to replicate 

efficiently in healthy cells and will replicate in cancer cells only, destroying them 

through oncolysis. 

 

1.8.4 Adenovirus 

Adenoviruses are non enveloped dsDNA viruses with an icosahedral capsid consisting 

of 3 main structural proteins, hexon, fiber and penton base and several minor capsid 

proteins. Their genomes range in size from 26-45kb. Adenoviruses were first isolated 

from tonsils and adenoid tissue (Rowe, Huebner et al. 1953) and are infectious human 

viruses, which often cause mild infection of the gastrointestinal and upper respiratory 

tract, and can also cause ophthalmological and neurological manifestations. Most 

adenoviral infections are self limiting being efficiently counteracted by the host’s 

immune system. Deletion of the virulence genes during vector production may help to 

reduce the pathogenesis of these viruses. 

 

Adenoviral vectors, most commonly adenovirus serotype 5 (Ad5) and serotype 2 

(Ad2), are a popular choice in gene therapy and such status has lead to much data 

becoming widely available. As such, adenovirus is a well characterised virus that can 

be easily genetically altered and grown to high titres. They have a high capacity for 

the insertion of foreign DNA allowing up to 36 kb (helper-dependent Ads) to be 

accommodated. They were initially deemed promising vectors for cardiovascular gene 

therapy applications as they were shown to transduce human vascular cells in vitro 

(Lemarchand, Jaffe et al. 1992) and in vivo (Lemarchand, Jones et al. 1993; French, 

Mazur et al. 1994). Adenoviral vectors exhibit a tropism for many human cells and 

can infect quiescent as well as dividing cells (Berkner 1988). This is an important 

characteristic as it is known that vascular endothelial and smooth muscle cells have 

low mitotic rates, even in diseased states (Gordon, Reidy et al. 1990). They are 
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considered relatively safe vectors as adenovirus replicates episomally thus reducing 

the risk of random integration into the host genome, which can potentially result in 

the disruption of tumour suppressor genes or in the activation of proto-oncogenes, 

both of which can result in oncogenesis. However, because Ad vectors are non-

integrating, it means that their genomes are lost in proliferating cells, and so transgene 

expression will be transient, although this may be advantageous in certain clinical 

applications. Transient gene expression coupled with hepatic tropism is a major 

limiting factor for adenoviral vectors and has lead to their use in niche areas such as 

vein grafting, where gene transfer can be carried out ex vivo (George, Lloyd et al. 

2000; Turunen, Puhakka et al. 2006). 

 

The major inadequacy of adenoviral vectors is their lack of ability to efficiently 

“hide” from the host immune system. Many individuals will produce neutralizing 

antibody and memory T-cells directed at Ad proteins after exposure to the vectors. 

This is a result of the expression of viral genes, which trigger a cascade of humoral 

and innate immune responses (Muruve 2004). This is a significant problem as gene 

expression is consequently short-lived  (Wen, Schneider et al. 2000) and re-

administration of the vector is less effective (Yang, Li et al. 1995). In view of this, 

current studies focus on strategies to eliminate host immune responses, which will 

allow persistent transgene expression (Schiedner, Morral et al. 1998; Morral, O'Neal 

et al. 1999), and also on engineering vectors with increased transduction of 

cardiovascular cells. This can be achieved in several ways, one of which involves the 

abolition of the natural tropism of the virus and subsequently endowing it with a new 

tropism for the target cell type (Dmitriev, Krasnykh et al. 1998; Biermann, Volpers et 

al. 2001; Haviv, Blackwell et al. 2002).  

 

1.8.4.1 Ad Vector Development 

In order to reduce the immunogenicity of Ad vectors and to create genome space for 

the insertion of new genetic material, Ad has been altered in several ways to remove 

unnecessary parts of the genome (Figure 1.2). Expression of adenovirus proteins 

occurs in phases – early and late. The adenovirus genome contains five early 

transcription units (E1A, E1B, E2, E3, E4), two early delayed (intermediate) 

transcription units and five late units (L1–L5), and encodes over 70 gene products 

(Mizuguchi, Kay et al. 2001). The genome is flanked by inverted terminal repeats  
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E1 L1 L2 L3 L4 E3 L5
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Dependent Transgene

 
 
 
Figure 1.2. Ad5 vector development. 

Adenovirus 5 genome and maps of 1st, 2nd and 3rd generation adenoviral vectors showing regions of the genome deleted to facilitate transgene 

insertion. (Adapted from (Alba, Bosch et al. 2005) 
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(ITRs) of 100-140 bp in size that serve as replication origins. Early genes (E1A and 

E1B) are involved in gene expression regulation and activation of them leads to the 

expression of viral late genes (involved in the expression of structural proteins) and 

ultimately in the production of infectious viral particles. The foreign gene can be 

inserted into the region occupied by either E1 or E3 genes with one or both being 

deleted in the vector construct. In the first generation Ad vector, the E1 (E1A and 

E1B) gene is replaced by the gene of interest and the resultant defective virus is 

propagated in cell lines, such as 293 cells (Graham, Smiley et al. 1977), that provide 

the early gene products in trans. The progeny virus cannot replicate in normal cells 

and upon introduction into the host, they will infect cells and express the foreign gene 

but no progeny virus will be produced. As the E3 region of the genome is dispensable 

in viral replication, many first generation vectors will also have all or part of the E3 

region deleted. Despite these deletions, first generation vectors still express wild-type 

late viral genes at low levels and triggers a cytotoxic T lymphocyte (CTL) immune 

response (Yang, Nunes et al. 1994) ultimately resulting in a short duration of 

transgene expression. 

 

Second generation Ad vectors also have the E2 and/or E4 regions deleted from their 

genomes in addition to the E1±E3 deletion. However, local delivery of second 

generation vectors were not found to reduce inflammation of humoral immune 

response to adenovirus in rabbit models in comparison to first generation vectors, and 

most disappointingly did not increase longevity of transgene expression (Wen, 

Schneider et al. 2000). 

 

Third generation vectors, called helper-virus dependent or gutless vectors, have 

essential regions of the viral genome (L1, L2, VA and TP) deleted and rely on the 

provision of essential viral functions from a helper virus. The gutless adenovirus only 

keeps the two ITRs and the packaging signal from the wild-type adenovirus required 

for DNA replication and packaging (Mitani, Graham et al. 1995; Kochanek, Clemens 

et al. 1996; Parks, Chen et al. 1996; Ng, Beauchamp et al. 2001). By deleting most of 

the viral genome it is possible to accommodate up to 37 kb of insert DNA into 

defective adenoviral vectors. In vivo studies have shown substantially longer 

transgene expression with helper-dependent vectors (Schiedner, Morral et al. 1998; 

Morral, O'Neal et al. 1999) sustained up to a year in 2 baboons. However, an innate 
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immune response is still activated against these adenoviral vectors (Muruve 2004). 

Recently, however, Barcia et al demonstrated that helper-dependent Ad vectors 

mediated sustained transgene expression for up to one year in the brains of mice pre-

immunised against adenovirus (Barcia, Jimenez-Dalmaroni et al. 2007). This 

highlights the potential of these vectors in the treatment of chronic diseases, as the 

immune system was unable to inhibit transgene expression. 

 

1.8.4.2 Vector capsid engineering 

There are more than 50 different serotypes of human adenovirus, classified into six 

sub-groups (A-F) based on biochemical and immunological properties. These viruses 

can infect different cell types through the utilisation of different primary cellular 

receptors and thus have a wide tissue tropism range. Most adenoviruses, except 

subgroup B and the short fiber of subgroup F use the coxsackie virus and adenovirus 

receptor (CAR) (Bergelson, Cunningham et al. 1997; Tomko, Xu et al. 1997). Ad5, 

which belongs to subgroup C, is the most extensively studied of all the serotypes. The 

two-step mechanism of Ad5 infection is well characterised, making it possible to re-

engineer it to alter its tropism. Ad5 virus is known to interact in vitro with CAR by 

means of the knob domain of the capsid fiber, bringing the capsid into close proximity 

with integrins. After attachment, the RGD motif in the penton base at the N-terminus 

of the fiber interacts with co-receptors αvβ3/ αvβ5 integrins (Wickham, Mathias et al. 

1993). Adenovirus is then internalised by receptor-mediated endocytosis and released 

by endosomal acidification in fiber-free form to the cytosol before trafficking to the 

nucleus. Ad5 can transduce endothelial cells (Lemarchand, Jaffe et al. 1992), coronary 

arteries (French, Mazur et al. 1994), the heart (Palomeque, Chemaly et al. 2007) and 

at lower efficiency vascular smooth muscle cells (SMC) (Ohno, Gordon et al. 1994). 

This is reflective of the distribution of CAR expression, with high CAR expression 

leading to high transduction efficiency. Indeed, after systemic injection in the rat and 

mouse models, Ad5 virions preferentially accumulate in the liver and spleen (Huard, 

Lochmuller et al. 1995; Koeberl, Alexander et al. 1997). This highlights the need to 

substantially alter Ad5 tropism to retarget it to alternative sites, for example the brain, 

kidney and heart vasculature, unless local delivery is possible. 
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Genetic strategies to alter the tropism of adenoviruses can either focus on 

pseudotyping the Ad5 fiber with that of another serotype, or on ablating receptor 

binding. Native hepatic tropism can be altered by mutating the virus in areas integral 

to cellular receptor binding. The identification of the residues in the knob involved in 

CAR  binding (Kirby, Davison et al. 1999) has allowed the production of detargeted 

Ad5 by mutation of these residues (Jakubczak, Rollence et al. 2001). As proof of 

concept, a mutated putative heparin binding domain reduces Ad liver accumulation 

15-fold, whilst combining this mutation with one that ablates CAR binding reduces 

liver accumulation 100-fold (Huang, Sexton et al. 2003). Thus mutation of the fiber of 

Ad can lead to the ablation of transduction of non-endothelial cells. 

 

1.8.4.3 Adenoviral retargeting by pseudotyping 

The adenovirus fiber protein mediates primary binding of adenovirus to its receptor, 

and so one approach of vector retargeting is the use of chimeric vectors that 

incorporate the entire fiber or part of the fiber from a different serotype in place of its 

own. This could potentially ablate the virus’s natural tropism by removal of both the 

CAR- and heparan sulphate proteoglycan (HSPG)-binding sites and bestow a new 

tropism upon the vector. Several adenovirus serotypes have been shown to have 

increased transduction of specific tissues. Proof of concept of chimeric vectors was 

first shown in 1996 with the production of a functional adenoviral vector in which the 

fiber was composed of the tail and shaft domains of adenovirus serotype 5 and the 

knob domain of serotype 3 (Krasnykh, Mikheeva et al. 1996). Alterations in 

adenoviral tropism were achieved through primary binding via the Ad3 receptor with 

subsequent internalisation steps achieved via domains of the penton base of Ad5. 

 

Following systemic Ad delivery, Ad5 vectors pseudotyped with serotype 37 and 19p 

fibers have been shown to lack a native hepatic tropism (Denby, Work et al. 2004) 

and as such can be considered suitable platform vectors for retargeting. In comparison 

to non-modified Ad5 vectors, Ad19p and Ad37 pseudotyped vectors lacked tropism 

for mouse, rat, and human hepatocytes in vitro and demonstrated greatly reduced 

transduction of liver after systemic injection into rats (Denby, Work et al. 2004). 

Further genetic modifications can allow the development of targeted and thus more 

efficient vectors. Isolated targeting peptides can be genetically incorporated into the 

HI loop of the fiber of Ad19p between amino acids 331 and 332 (Figure 1.3). Kidney 
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Figure 1.3 Crystal structures of Ad5 and Ad19p fiber heads

HI Loop Ad19p Ad5 

Showing HI loop for insertion of targeting peptides into the Ad 5 and Ad19p capsid. Ad5 crystal structure provided by Vijay 

Reddy, Scripps Research Institute. Ad19p structure modified from (Burmeister, Guilligay et al. 2004). 
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targeting peptides HTTHREP and HITSLLS, which were identified through in vivo 

phage display, were incorporated into Ad19p-pseudotyped vectors. These peptide-

modified vectors were shown in vitro and in vivo, after systemic administration, to 

display a significant increase in selective renal targeting with higher levels of 

transduction than the unmodified Ad19p vectors (Denby, Work et al. 2007). 

 

1.8.4.4 Non-genetic targeting 

A simple way of altering vector tropism without the need to genetically modify the 

vector genome or capsid is the coating of the viral particle with a bispecific antibody. 

One domain of the bispecific molecule binds to the virus capsid whilst the other 

domain binds to a novel receptor thus acting as a molecular bridge. This concept has 

been used in vitro to enhance Ad-mediated transduction of human umbilical vascular 

endothelial cells (Nettelbeck, Miller et al. 2001), and in vivo to redirect Ad vectors to 

a new cellular receptor after systemic delivery (Printz, Gonzalez et al. 2000; 

Reynolds, Zinn et al. 2000). Although the addition of a protein adapter enhances the 

affinity of Ad vectors for their targets, it also increases the difficulty of crossing the 

barrier from laboratory to clinic as there are more components to be considered and 

reproduced without batch variation. 

  

1.8.4.5 Retargeting detargeted vectors by ligand in sertion 

Modification of the fiber knob is an appealing option to surmount the restrictions of 

the CAR binding dependent nature of adenovirus infection. The insertion of targeting 

peptides into the fiber gene of Ad5 can provide new tropism to detargeted vectors. 

The exposed HI loop (Figure 1.3) has been identified as a preferred insertion site for 

peptides (Dmitriev, Krasnykh et al. 1998; Krasnykh, Dmitriev et al. 1998) and this 

occurs without detriment to virion assembly or fiber trimerisation. A restriction site 

has been incorporated into the HI loop sequence of the fiber gene of the detargeted 

vector AdKO1 (Nicklin, Von Seggern et al. 2001). Into this restriction site peptides 

can be inserted for exposure on the outside of the virion. As the fiber is present at a 

frequency of 36 copies per virion, the vector can display the targeting peptide a 

maximum of 36 times. Foreign peptides have also been successfully incorporated in 

the hypervariable region 5 surface loop of the hexon of Ad vectors (Vigne, Mahfouz 

et al. 1999). In this region, peptides can be displayed at a copy number of 720. 

However, in a direct comparison of peptide modified fiber and hexon vectors, hexon-
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mediated targeting failed to change the tropism of the vectors (Campos and Barry 

2006). 

 

Recent work has shown the application of the phage display technology to identify 

sequences with desired biological properties, and subsequently introduced these 

sequences in the re-targeting site of the vector (Engelstadter, Bobkova et al. 2000; 

Grifman, Trepel et al. 2001; Nicklin, Buening et al. 2001). One potential disadvantage 

of these small targeting peptides is their often weak binding affinity for their targets. 

 

The concept of phage display of exogenous peptides was first conceived in 1985, and 

is simply the display of peptides or proteins on the surface of bacteriophage. A 

foreign gene fragment was inserted into the gene encoding one of the coat proteins 

(minor capsid protein pIII gene) of filamentous M13 phage creating a fusion protein. 

The fusion protein was found to be incorporated into the virion, retaining infectivity 

and displaying the foreign amino acids on the fully immunologically accessible phage 

surface (Smith 1985). The technology of phage display has since been developed and 

is now used in a wide range of applications including the rapid isolation and 

identification of novel peptides with the ability to bind to defined targets molecules in 

vitro or in vivo (Johnsson and Ge 1999). For use in cardiovascular applications, phage 

display could potentially identify ligands which are specific for the vasculature. In 

other techniques, the choice of ligand to be inserted relies on knowledge of peptides 

and their affinity for a target receptor. Phage display allows identification of cell-

selective peptides without prior knowledge of the target receptor. Peptide libraries are 

a heterogeneous mixture of phage clones constructed from phage into which random 

oligonucleotides have been inserted, facilitating the high diversity of phage libraries 

which can contain more than a billion different peptide sequences (Scott and Smith 

1990). This allows the fast screening of an enormous number of peptide sequences. 

Highly efficient and selective peptides for diverse cell types can be isolated by 

affinity screening the phage library against immobilized proteins of interest in a 

process called biopanning. Successive rounds of biopanning enrich the pool of phage 

with clones that specifically bind the target.  

 

Targeting peptides can be identified through in vitro and in vivo techniques. The 

distinct disadvantage of using in vitro biopanning is that the question remains as to 
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whether the ligands isolated in vitro will display the same specificity in vivo. In vivo 

phage display offers many advantages over in vitro biopanning. It can overcome the 

problems of cells losing their tissue-specific nature when removed from an organ. 

Phage libraries can be directly introduced into live animals, in order to select for 

peptide sequences which confer the ability to home to selected tissues. However, 

targeting peptides identified in animal models may not always be applicable and 

achieve the same targeting or level of targeting in humans, as they have been shown 

to have a higher level of complexity. In 2002, the first in vivo screening of a peptide 

library in a patient was carried out (Arap, Kolonin et al. 2002). Isolated motifs from 

tissue biopsies showed high similarity to ligands for cell-surface proteins of the 

human vasculature. This method has since been used in stage IV cancer patients to 

identify tumour-targeting ligands (Krag, Shukla et al. 2006). Phage libraries were 

administered intravenously and tumours were subsequently excised 30 minutes later, 

and tumour homing phage recovered. This study displays how this method can be 

directly applicable in a clinical setting. A variation on this approach is the 

performance of biopanning on animals bearing human tissue xenografts (George, Lee 

et al. 2003). This also allows the isolation of peptides that are relevant to the human 

vasculature. 

 

1.8.5 Adeno-associated virus (AAV) 

AAV vectors have developed rapidly over the past decade and have become 

promising vectors for several genres of gene therapy. Due to their unique properties 

and broad tissue tropisms, rAAV vectors have been investigated for a wide range of 

applications including haemophilia (Kay, Manno et al. 2000; Jiang, Couto et al. 

2006), cystic fibrosis (Wagner, Messner et al. 1999; Moss, Rodman et al. 2004), 

Duchenne’s muscular dystrophy (Gregorevic, Blankinship et al. 2004; Wang, Kuhr et 

al. 2007) and rheumatoid arthritis (Goater, Muller et al. 2000). The AAV2 genome 

was the first serotype to be cloned into bacterial plasmids in 1982 (Samulski, Berns et 

al. 1982), and since then AAV vectors have maintained their position as strong 

candidates for gene therapy. As a result of poor uptake of Ad into vascular cells and 

the efficient performance of rAAV in other disease models, rAAV vectors have been 

developed for cardiovascular gene delivery. The potential of these vectors in 

cardiovascular gene therapy was first shown through rAAV-mediated expression of 
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the cytoprotective gene HO-1 in rat myocardium (Melo, Agrawal et al. 2002). The 

safety and efficiency of these vectors was further proven through rAAV-mediated 

myocardial gene transfer in mice. Transgene expression was observed one year post-

infusion with no significant inflammatory response or adverse affects on LV systolic 

function, as assessed by echocardiography (Woo, Zhang et al. 2005). AAV vectors are 

thus minimally pathogenic and also possess the ability to mediate long-term transgene 

expression through stable integration targeted to a specific locus in the host genome. 

In a study by Xiao et al (Xiao, Li et al. 1996), the introduction of recombinant AAV 

vectors expressing the lacZ gene into the muscles of immunocompetent mice resulted 

in persistent gene expression for more than 1.5 years (Xiao, Li et al. 1996). Thus 

AAV vectors could prove useful in clinical situations where prolonged expression of 

the transgene expression is required. Stable transgene expression is a prerequisite for 

vectors to treat inherited disorders and would be desirable in the treatment of many 

acquired cardiovascular diseases which progressively worsen overtime. However, the 

progress of AAV vectors has been hampered by their poor transduction of a range of 

target tissues. 

 

Long-term transgene expression is facilitated by the fact that recombinant AAV 

vectors evoke little innate immune response with only transient infiltration of 

neutrophils and chemokines (Zaiss, Liu et al. 2002). Immune response against the 

virus appears to be restricted to the generation of antibodies specific for the viral 

capsid protein (Bessis, GarciaCozar et al. 2004). AAV transfer into muscle fibers in 

vivo was found to activate no cellular or humoral response to transgenic products 

(Jooss, Yang et al. 1998). This is in stark contrast to similar experiments with 

adenoviral vectors in which a T-cell mediated response to transgenic and viral 

products were found after intramuscular injection, and led to the loss of transgene 

expression and destruction of muscle fibers (Yang, Su et al. 1996). Further 

investigation revealed that unlike Ad vectors, AAV vectors were inefficient 

transducers of antigen presenting cells (APCs) such as macrophages and dendritic 

cells, which are believed to be necessary in the production of cellular immune 

responses (Jooss, Yang et al. 1998). And so AAV vectors may be capable of evading 

the immune system, making them ideal gene therapy candidates. However, recently 

the duration of transgene expression in the liver mediated by rAAV2 vectors was 

found to be limited to 8 weeks (Manno, Pierce et al. 2006). Upon further 
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investigation, it was suggested that transduced hepatocytes were destroyed by the 

activation of T-cells against the capsid of rAAV2 (Manno, Pierce et al. 2006; 

Vandenberghe, Wang et al. 2006). Direct comparison of T-cell responses activated 

against the capsids of rAAV serotypes 2, 7 and 8 revealed little evidence of T-cell 

activation against rAAV7 and 8 and postulated a potential role for heparin binding in 

directing immune response against the capsid proteins (Vandenberghe, Wang et al. 

2006). Thus utilisation of alternative serotypes that do not use HSPG as their receptor 

for cell entry may help to avoid this limitation. 

 

In AAV vectors, the viral DNA, except the ITRs, has been eliminated making room 

for foreign DNA to be inserted. This adds a safety feature that will reduce any host 

immune response directed at viral gene expression and also eliminate the possibility 

of the generation of replication competent pseudo wild type AAV. Gene transfer 

vectors based on AAV serotype 2 have been extensively researched and these are the 

most characterised and predominantly used of the AAV vectors. Other serotypes that 

have recently been identified are presently under investigation and demonstrate a vast 

potential for cardiovascular gene therapy. Importantly, no serotype is the causative 

agent of any human pathology providing these vectors with a good safety profile. 

 

One important safety concern with AAV vectors to be considered is the potential for 

AAV-mediated germ-line transmission. Intramyocardial injection of AAV vectors 

expressing lacZ into Sprague–Dawley rats resulted in the detection of lacZ expression 

and β-galactosidase activity in the testes at 6 months post-infusion (Pachori, Melo et 

al. 2004). In a similar study, Arruda et al found that whilst vector DNA could be 

detected in the gonad of rat, mouse, rabbit and dog, no AAV vector sequences could 

be detected in the semen (Arruda, Fields et al. 2001). 

 

Another major safety concern lies amongst reports of high incidences of hepatic 

carcinomas after rAAV vector infusion into mice (Donsante, Vogler et al. 2001). 

Hepatocellular carcinomas that developed in these mice were subsequently found to 

contain AAV vector proviruses at a specific chromosomal locus (Donsante, Miller et 

al. 2007), implicating insertional mutagenesis by AAV vectors as a causative factor. 

These findings raise questions of rAAV vector safety.  
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1.8.5.1 AAV biology 

 Adeno-associated viruses (AAV) are small 4.7-kb linear single-stranded DNA non-

enveloped viruses. Their genomes are organised in similar ways, being extremely 

simple in composition and containing only two large open reading frames (ORFs) 

flanked by ITRs of approximately 145 bp (Figure 1.4). The ITRs are cis-acting 

elements that form a hairpin secondary structure that is required for viral genome 

replication and packaging. The two ORFs encode 2 genes, rep (replication) and cap 

(capsid), which are respectively involved in gene expression regulation and structure. 

Four multifunctional rep isoforms with molecular masses of 78, 68, 52, and 40 kDa 

are encoded by the 5’ ORF and are transcribed from two different promoters. The rep 

proteins are involved in specific DNA-binding, helicase and site-specific 

endonuclease and modulation of transcription of viral genome promoters. The 3’ ORF 

encodes 3 capsid proteins (VP1, VP2 & VP3) through alternate splicing of the cap 

gene, and are expressed at a molar ratio of 1:1:18 (Opie, Warrington et al. 2003). A 

novel and weak transcription initiation start codon (ACG) is used for VP2, resulting in 

reduced translation of the protein (Becerra, Koczot et al. 1988). All 3 proteins use the 

same stop codon, and so VP2 and VP3 are essentially successive amino-terminal 

truncated forms of VP1. The three proteins interact together to form a capsid with 

icosahedral symmetry. VP1 protein carries a phospholipase A2 (PLA2) motif, thought 

to be involved in initiation of early gene expression and in nuclear translocation – 

mutations in this area of the gene result in virions with reduced infectivity (Girod, 

Wobus et al. 2002). VP2 is of unknown function and is non-essential in virion 

production (Warrington, Gorbatyuk et al. 2004). The third viral protein (VP3) 

contains areas of the capsid that are important in cell-receptor binding. When used as 

gene delivery vectors, the rep & cap genes, which make up 96% of the genome, are 

replaced by the transgene. Recombinant vectors are produced by supplying these 

deleted genes in trans. The resultant vectors are structurally simple and less likely to 

evoke a host immune response. The small size of the AAV virion is responsible for 

the limited DNA packaging capacity and is a major disadvantage of AAV vectors. 

Transgenes can be packaged as long as they are not significantly larger (119% 

maximum capacity) or smaller than the wild-type genome (Hermonat, Quirk et al. 

1997). Outwith these limits, resultant vectors are severely defective for producing 

infectious virions. One method to overcome this limitation is the trans-splicing of 

larger genes between two independent AAV vectors that will be co-administered to 
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Figure 1.4 Genome organisation of AAV. 
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the same target tissue (Yan, Zhang et al. 2000). This technique utilises the ability of 

AAV genomes to combine, although results in lower transgene expression as a result 

of the complexity of the system. However, further development may help to increase 

the utility of AAV vectors allowing them to appeal to a wider range of applications. 

 

1.8.5.2 AAV replication  

AAVs belong to the Parvoviridae family and are ascribed the genus Dependovirus, so 

called as they are helper-dependent viruses with a bi-phasic life cycle. They cannot 

replicate autonomously, instead requiring co-infection with an unrelated virus, such as 

Ad or HSV, in order to complete its life cycle. In the absence of co-infection, AAV 

can undergo latent infection as an episome or may integrate its viral DNA into the 

host genome (Cheung, Hoggan et al. 1980) in human chromosome 19 by site- specific 

recombination directed by the viral rep function (Kotin, Menninger et al. 1991). It is 

important to note that recombinant AAV vectors lack the integration function as their 

viral rep genes have been removed. AAV genomes can be excised from the host 

genome in the presence of helper factors and can lead to a productive infection cycle 

(Berns, Pinkerton et al. 1975). AAV is attractive for gene therapy applications as a 

gene of interest can persist in the host cell genome for long periods.  

 

Advances in AAV vector production have eliminated the need for helper adenovirus 

infection (Xiao, Li et al. 1998). Instead, to be packaged into functional vectors, 

genomes must be provided with all rep, cap and helper functions in trans on 

exogenous plasmids (Grimm, Kern et al. 1998; Xiao, Li et al. 1998). The production 

of recombinant vectors takes advantage of the ability of viral genes to accomplish 

their role in the replication of viral DNA and in the packaging of mature virions even 

when provided to the host cell in trans on exogenous plasmids. Minimum regions in 

helper adenovirus that mediate replication of AAV vector are E1, E2A, E4 and VA 

(Matsushita, Elliger et al. 1998). The 293T cell line, of human kidney embryonic 

cells, encodes the E1 region of the Ad5 genome. Thus when a plasmid that encodes 

the E2A, E4 and VA regions (Ad-helper plasmid) together with a plasmid that 

encodes the genome of the AAV vector (vector plasmid) and a plasmid with the rep 

and cap genes are transfected into 293T cells, AAV vector is produced as efficiently 

as when infection by wild type Ad is used (Grimm, Kern et al. 1998; Grimm and 

Kleinschmidt 1999). This is a triple transfection protocol, but has been refined into a 
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two plasmid co-transfection protocol and produces high titre recombinant AAV 

vectors (Grimm, Kay et al. 2003). It also eliminates the feasible potential of helper 

virus contamination. 

 

Much is still to be learned about the cellular mechanisms controlling AAV infection. 

There are several common stages for replication of all AAV vectors that must be 

carried out for successful transgene expression. The first step in infection is the 

attachment of the vector to the cell surface receptor, and in the case of AAV vectors 

will require the use of co-receptors to assist in internalisation. The virus must then be 

internalised into the cell by the process of receptor-mediated endocytosis from 

clathrin-coated pits. During this procedure, the cell membrane folds in on itself and 

eventually results in the formation of cytoplasmic vesicles in which the virus is 

temporarily contained. The vector is subsequently trafficked from early endosomes to 

late endosomal compartments (Douar, Poulard et al. 2001). It must then escape the 

endosome to be released into the cytosol, where nuclear translocation must then take 

place. Endosomal processing is thought to be an essential step for AAVs, exemplified 

by the fact that AAV2 directly injected into the cytosol fails to reach the nucleus 

(Ding, Zhang et al. 2005). It is not clear where in the cytosol the virus is released, but 

the co-localisation of fluorescein isothiocyanate (FITC)-labelled transferrin and Cy3-

AAV  within intracellular vesicles near the nucleus is suggestive of a release site at or 

near the nuclear membrane pores (Sanlioglu, Benson et al. 2000). After release from 

the endosome, that may occur by the weak acidification of the vesicle, AAV rapidly 

trafficks to the nucleus and accumulates in the perinuclear region (Bartlett, Wilcher et 

al. 2000). Trafficking to the nucleus may involve the use of functional microtubules 

and microfilaments, as visualised by the use of Cy3-labeled rAAV (Sanlioglu, Benson 

et al. 2000). For AAVs, the process of nuclear translocation was initially thought to 

occur through the virus slowly penetrating the nuclear pore complex (NPC) into the 

nucleus, with the majority of the virus remaining in perinuclear compartments 

(Bartlett, Wilcher et al. 2000). However, entry into the nucleus has since been shown 

to occur independently of the NPC through the use of agents that block NPC function 

(Hansen, Qing et al. 2001). It is unknown whether viral uncoating to release the 

genome occurs within or outwith the nucleus. However, capsid proteins (Bartlett, 

Wilcher et al. 2000; Sanlioglu, Benson et al. 2000) and the necessary machinery for 

virion uncoating (Hansen, Qing et al. 2001) have been identified within the nucleus, 
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suggesting that nuclear virion uncoating may be a reality, although direct evidence is 

lacking.  It is known that the single-stranded DNA genome is converted to double-

stranded DNA within the nucleus and is then the template for transcription. Genome 

conversion is also a rate-limiting step that is enhanced by helper-virus co-infection 

(Ferrari, Samulski et al. 1996). It is after entry into the host cell nucleus that the virus 

can either establish a lytic or lysogenic life cycle and it is the presence or absence of 

helper virus that will determine this. The efficiency of all these steps of replication 

will determine the overall efficiency of the vector. 

 

1.8.5.3 AAV serotypes and receptors 

To date, over 100 AAV genetic variants have been isolated (Gao, Vandenberghe et al. 

2004). Eleven known serotypes of AAV have been identified, all displaying a variety 

of tissue tropisms and receptor-binding characteristics (Table 1.3) and sharing 

different levels of sequence homology. It is thought that many more serotypes and 

isolates are yet to be identified as they are believed to be widely dispersed throughout 

multiple tissues of non-human primate species (Gao, Alvira et al. 2002; Gao, 

Vandenberghe et al. 2004). AAV1 – 4 and 6 were originally isolated as contaminants 

of adenovirus stocks. Although isolated from a simian adenovirus type 15 (SV15) 

stock, AAV1 is considered to be of unknown origin. AAV2 and 3 were later isolated 

from human infants and AAV4 was later isolated from a culture of rhesus monkey 

kidney cells. AAV5 was isolated from a human penile condylomatous lesion (Bantel-

Schaal and zur Hausen 1984), and is one of the most divergent of the AAV serotypes 

(Chiorini, Afione et al. 1999). AAV6 is thought to have arisen from homologous 

recombination between AAV1 and AAV2 (Xiao, Chirmule et al. 1999). AAV7  and 

AAV8 were both isolated from rhesus monkey by PCR techniques (Gao, Alvira et al. 

2002; Gao, Vandenberghe et al. 2004), whilst AAV9 was isolated from human tissues 

by similar methods. AAV10 and 11 were identified in the tissues of non-human 

primate cynomolgus monkey and are capable of  infecting both human and monkey 

cells (Mori, Wang et al. 2004). The sequence identities among the different serotypes 

are high with a general homology in nucleotide sequence of approximately 80%. The 

greatest divergence in sequence can be observed in the capsid proteins, especially in 

regions thought to lie on the utmost exterior of the virion (Gao, Alvira et al. 2003). 

This may account for the differing natural tropisms of these viruses. The pattern of 

transgene expression has been demonstrated to be affected by the serotype of AAV 
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Serotype 

 

Tropism 

 

Receptor 

 
AAV1 

 

Skeletal muscle (Hauck and Xiao 2003) 

cardiac tissue (Palomeque, Chemaly et al. 

2007) 

α2-3 linked or α2-6 linked sialic 

acid 

AAV2 

 

Broad tropism – muscle, brain, retina, liver, 

lung.  

 

HSPG, αVβ5 integrin, fibroblast 

or hepatocyte growth factor 

receptors, 37/67-kDa laminin 

receptor 

AAV3 

 

Cochlear inner hair cells (Liu, Okada et al. 

2005) 

 

heparin, heparan sulphate, and 

FGFR-1, 37/67-kDa laminin 

receptor 

AAV4 

 

Ependymal cells (Davidson, Stein et al. 2000) 

 

α2-3 O-linked sialic acid 

AAV5 

 

Neurons (Alisky, Hughes et al. 2000), 

dendritic cells (Xin, Mizukami et al. 2006) 

PDGFR, α2-3 N-linked sialic 

acid 

AAV6 

 

Skeletal muscle, cardiac tissue (Blankinship, 

Gregorevic et al. 2004) 

 

α2-3 linked or α2-6 linked sialic 

acid 

AAV7 

 

Skeletal muscle (Gao, Alvira et al. 2002) 

 

Unknown 

AAV8 

 

Liver (Gao, Alvira et al. 2002) 

 

37/67-kDa laminin receptor 

AAV9 

 

Liver, skeletal muscle, cardiac tissue (Pacak, 

Mah et al. 2006) 

 

37/67-kDa laminin receptor 

AAV10 

 

Liver, heart, skeletal muscle, lung, kidney, 

uterus (Mori, Wang et al. 2004) 

 

Unknown 

AAV11 

 

Muscle, kidney, spleen, lung, heart, stomach 

(Mori, Wang et al. 2004) 

Unknown 

 
Table 1.3 AAV serotypes and their varying tropisms and receptors. 
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(Rabinowitz, Rolling et al. 2002), which may be due, in part, to viral receptor 

distribution, as receptor binding is the primary step in viral infection. The 

discrepancies in tissue tropisms between serotypes are likely as a result of different 

mechanisms of uptake into a target T-cell. In order to comprehend the differences in 

transduction efficiencies of the different serotypes, it is important to understand the 

full mechanism of the initial AAV binding and infection steps. 

 

It is known that AAV2 has a wide host range and utilises HSPG as an attachment 

receptor (Summerford and Samulski 1998), and at least three different co-receptors 

including αvβ5 integrin (Summerford, Bartlett et al. 1999), and the fibroblast or 

hepatocyte growth factor receptors (Qing, Mah et al. 1999). The structure of AAV2 

has now been determined to 3-Å resolution by X-ray crystallography (Xie, Bu et al. 

2002), and support the results of insertional mutagenesis studies that identified 

residues that mediate binding of AAV2 to HSPG. AAV3 has been shown to bind to 

heparin, heparan sulphate, and FGFR-1, making its array of receptors similar to those 

of AAV2 (Blackburn, Steadman et al. 2006). Competition assays identified that 

closely related serotypes AAV1 and AAV6 use either α2-3 linked or α2-6 linked 

sialic acid as primary receptors when transducing numerous cell types (Wu, Miller et 

al. 2006). Platelet derived growth factor receptor (PDGFR) has been identified as a 

co-receptor for AAV5, with the in vivo tropism of AAV5 correlating with the 

distribution of PDGFR (Di Pasquale, Davidson et al. 2003). AAV5 also requires α2-3 

sialic acid for binding and transduction (Walters, Yi et al. 2001). AAV4 shares the 

requirement of AAV5 for sialic acid, however the difference between these two 

vectors lies in linkage specificity; AAV4 requires O-linked sialic acid, whereas AAV5 

requires N-linked sialic acid, offering an explanation for the difference in tropisms 

(Kaludov, Brown et al. 2001). A 2-yeast hybrid screen with subsequent functional 

studies revealed the 37/67-kDa laminin receptor (LamR) as important in binding and 

transduction of AAV8 (Akache, Grimm et al. 2006). It was also shown to be 

important in the binding of AAV2, -3 and -9. AAV10 and -11 have not yet been fully 

characterised. 

 

Until recently, most gene therapy applications have employed rAAV2 based vectors. 

However, AAV2 vectors have been disappointing in the area of cardiovascular gene 

therapy demonstrating inefficiency in transduction of both myocardial cells and 
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endothelial cells. Their broad tropism also limits their use for systemic administration. 

Direct comparison of Ad5 and AAV2 for transduction of vascular cells has revealed 

the poor tropism of AAV2 for endothelial cells (Dishart, Denby et al. 2003). This 

difference in tropism between vectors can be attributed to vector size and the 

availability of co-receptors for each vector on endothelial and smooth muscle cells. 

Although no AAV serotype appears more efficient than AAV2 in transduction of the 

vascular endothelium, other endothelial cells have been transduced by alternate 

serotypes. AAV6 based vectors demonstrated a higher transduction efficiency of 

airway epithelia than AAV2 (Halbert, Allen et al. 2001), illustrating the potential of 

exploiting naturally occurring serotypes. The preferential transduction of AAV6 over 

AAV2 was facilitated by these two serotypes binding to different receptors. 

Membrane-associated HSPG has been identified as the viral receptor for AAV2 

(Summerford and Samulski 1998) and marked deposits of HSPGs has been identified 

in the extracellular matrix of endothelial cells (Pajusola, Gruchala et al. 2002). 

Therefore, the matrix-associated receptors may be competing for virus binding and 

consequently reducing transduction of endothelial cells and could offer a potential 

explanation for the low infectivity of endothelial cells by AAV2. It was found that 

heparin does not inhibit AAV6 as it does AAV2, and in a transduction assay, the two 

viruses did not compete with one another suggesting different receptors for these 

serotypes (Halbert, Allen et al. 2001). Additionally, the transduction of vascular 

endothelial cells has been shown to be inefficient with AAV2 vectors resulting in 

virion degradation by the proteasome during the trafficking process (Nicklin, Von 

Seggern et al. 2001).  

 

Thus alternate serotypes with naturally occurring differences in tropism can be 

exploited as potential gene therapy vectors to see if they offer an enhanced tropism for 

cardiovascular tissues. AAV serotypes 1 and 6 have shown preferential transduction 

of the skeletal musculature. 

 

1.8.5.4 AAV transcapsidation  

Recombinant AAV vectors are based on the AAV2 genome onto which the capsid 

proteins from a different serotype have been pseudotyped. Capsid proteins from most 

serotypes have been successfully cross-packaged with ITRs from AAV2. 

Pseudotyping is considered a safer alternative than evaluating native wild type 
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serotypes as much information for AAV2 has already been generated.  Several studies 

have been carried out to compare the transduction efficiencies of the ever increasing 

array of alternate serotype AAV vectors. In a study by Du et al (Du, Kido et al. 2004), 

the capacity of AAV serotypes 1-5 for in vitro myocardial transduction was tested 

(Du, Kido et al. 2004). This study demonstrated both the differing capacities of the 

alternative serotypes, and identified AAV1 as having the highest enhanced ability to 

transduce adult human cardiomyocytes. In another study that compared the efficiency 

of recombinant vectors of eight different serotypes in transducing rat myocardium in 

vivo, AAV1, 6 and 8 demonstrated the highest efficiency in transducing rat hearts in 

vivo (Palomeque, Chemaly et al. 2007). It is difficult to compare between AAV 

serotype studies as no standard for titering AAV has been set up, and different routes 

of administration and different aged animals have been used. However, general trends 

can be observed, demonstrating that AAV serotypes 1, 6, 8 and 9 show higher levels 

of cardiac transduction than other serotypes.  

 

Another advantage of new AAV vector serotypes could be the evasion of host 

humoral immune responses directed against AAV2. The prevalence of existing 

neutralising antibodies due to prior exposure amongst the human population 

(approximately 80% of the population) may render them immune to the vector and 

contribute to the limited gene transfer abilities of AAV2. In a study by Chirmule et al, 

virtually all patients studied were found to have Ig to AAV2, although only 32% of 

the cohort was found to possess virus neutralising antibodies (Chirmule, Propert et al. 

1999). The effect of this on transgene expression is still to be established. It has been 

established that the presence of neutralising antibodies to wild type AAV2 did not 

inhibit or interfere with rAAV5-mediated transduction of the brain in rats; it did 

however prevent AAV2 mediated transduction (Peden, Burger et al. 2004). 

 

1.8.5.5 Retargeting AAV vectors 

Although several serotypes of AAV have been identified, there are still several cell 

types that remain non-permissive to AAV infection. Retargeting vectors may help to 

encompass these non-permissive cells into AAVs vast repertoire, and may help to 

improve the efficiency of transduction of cells already permissive to infection. 

Retargeting of AAV vectors has mainly been applied to AAV2 vectors, and has been 

achieved in vitro through two main strategies. These are (1) the use of bi-functional 
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antibodies (Bartlett, Kleinschmidt et al. 1999) and (2) the genetic modification of the 

capsid through the insertion of targeting peptides (Wu, Xiao et al. 2000). Vector 

binding can be enhanced by the use of bi-specific antibodies. During this process, one 

arm of the antibody will bind to the surface of the cell of interest, and the other arm to 

the AAV capsid structure. Bartlett et al (Bartlett, Kleinschmidt et al. 1999) achieved 

AAV2 mediated transduction of non-permissive human megakaryocytic cells through 

the interaction of a bispecific F (ab)2 antibody with both the cell surface receptor 

αIIbβ3, and the viral capsid. This ultimately facilitated the binding and internalisation 

of the vector via an alternative receptor and represents the potential to improve the 

binding and transduction profile of AAV2. This technique has also been used to 

redirect AAV binding by insertion of an immunoglobulin binding domain in order to 

couple it to various antibodies to mediate altered receptor binding (Ried, Girod et al. 

2002). However, this technique relies on a very stable interaction between the 

antibody and the vector. 

 

The AAV capsid protein is important in the initial stages of viral infection as it is the 

element that will primarily interact with the cell surface receptor. The capsid protein 

essentially determines the tissue tropisms of the virus through its selective 

interactions. Short peptide sequences can be cloned into the capsid gene with the aim 

of changing or expanding the vector tropism and can even be used to disrupt the 

native tropism. Targeting peptides may be derived from phage-display as previously 

described. To be successful, the peptide insertion should have minimal effects on 

subsequent vector assembly, packaging and infectivity. Several suitable sites for 

insertion of targeting peptides into the AAV2 capsid have been identified and 

evaluated for tolerance to insertions and mutations; peptides may be inserted at the 

optimal position of 587 in the AAV2 capsid in order to be displayed on the surface of 

the virion (Girod, Ried et al. 1999; Wu, Xiao et al. 2000). This insertion site was 

identified before the crystal structure of AAV2 was known and so sequence alignment 

studies of AAV2 VP1 protein with homologous protein of canine parvovirus (CPV) 

(for which the crystal structure was known) and other related parvoviruses were 

carried out. Based on these alignments, 6 putative surface exposed capsid sites were 

identified that were highly variable amongst the parvoviruses and were also found to 

tolerate a 14-amino-acid targeting peptide insertion, leading to successful virion 

packaging (Girod, Ried et al. 1999). Out of the six sites in the AAV2 capsid protein -
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residues 261, 381, 447, 534, 573 and 587, residue 587 was identified as the optimal 

site for insertion (Girod, Ried et al. 1999). 

 

Genetic incorporation of peptides into the AAV capsid has been used to enhance 

transduction of human endothelial cells (Nicklin, Buening et al. 2001) and to alter 

tropism toward cells expressing the CD13 receptor (Grifman, Trepel et al. 2001) and 

human luteinizing receptor (LH-R) (Shi, Arnold et al. 2001).  

 

A variant of this technique is the use of AAV libraries, which is similar in concept to 

the use of phage libraries. In this approach, a random peptide is inserted into the 

AAV2 capsid sequence in a position that allows it to be displayed on the surface of 

the virion and at the same time ablating HSPG binding. Each viral particle in the 

library will display a different peptide. Chimeric capsid AAV libraries can then be 

screened to identify vectors that exclusively transduce a particular target cell or tissue 

type. This technique was first developed by Müller et al (Muller, Kaul et al. 2003), 

who used the AAV library to identify vectors that could transduce human coronary 

artery endothelial cells more readily than non-endothelial control cells. This approach 

was used by others to identify AAV vectors containing peptides that efficiently 

transduce acute myeloid leukaemia cell lines (Perabo, Buning et al. 2003), a cell type 

that no other vectors have been found to efficiently transduce. AAV libraries allow 

the selection of vectors with targeting peptides that have been identified whilst 

already in the AAV2 capsid. This eliminates the possibility of the targeting peptide 

loosing its specificity when incorporated into the vector. 

 

1.9 Transcriptional Control   

Vector targeting can now be achieved at the level of transgene regulation. The 

incorporation of tissue-specific promoters into a vector addresses both vector 

efficiency problems and safety concerns. Tissue specific promoters allow 

transcriptional control, in addition to that of selective transduction by the vector. They 

allow greater tissue specificity and control of gene expression in non-target tissue, 

although they will not prevent the uptake of the vector into non-target tissues. This 

minimizes the risk associated with the transfer of potentially dangerous genes into 

other tissues and also increases the concentration of the therapeutic gene product 
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delivered to the target tissue, maximizing the effect of the therapy and requiring lower 

doses of the vector. The most commonly used promoters in viral gene therapy are 

derived from cytomegalovirus (CMV) and Rous sarcoma virus (RSV). As these are 

constitutively active and unregulated in a broad range of cell types, these promoters 

are not considered optimal for tissue-specific transgene expression. High-level gene 

expression in all cell types transduced could have serious clinical implications. Viral 

promoters are generally more studied and widely used than human promoters but have 

the distinct disadvantage of being silenced by an immune response, particularly by the  

cytokines interferon-gamma (IFN-γ) and tumour necrosis factor-alpha (TNF-α) (Qin, 

Ding et al. 1997).  

 

A range of cellular promoters have been developed for a wide range of specific 

tissues. In many instances these tissue-specific promoters suffer from a lack of 

activity, specificity or both. Nevertheless, transcriptional targeting of HSV-1 vectors 

was achieved by the insertion of albumin enhancer/promoter-infected-cell polypeptide 

4 (ICP4) transgene into the TK gene of mutant HSV-1 d120, deleted for both copies 

of the ICP4 gene. Expression only occurred in albumin expressing cells, which are 

uniquely in the liver (Miyatake et al 1997). Endothelial cell (EC)-specific promoters 

have been investigated for use in vascular gene therapy. EC promoters, fms-like 

tyrosine kinase-1 (FLT-1) and intercellular adhesion molecule-2 (ICAM-2), have been 

shown to drive transgene expression from adenoviral vectors at levels comparable to 

the CMV promoter in vitro in endothelial cells (Nicklin, Reynolds et al. 2001). In 

vivo, leaky transgene expression was detectable from the ICAM-2 promoter but not 

from the FLT-1 promoter, demonstrating the potential of this promoter for use in gene 

therapy applications. 

 

Cardiac promoters regulate the expression of myocardial proteins. Myosin heavy 

chain (MHC) and myosin light chain 2v (MLC-2v) have both been explored as 

cardiac-specific promoters to transcriptionally target gene expression to the heart. α-

MHC is a myocyte-specific promoter and has been used to achieve cardiac-specific 

expression of the reporter gene luciferase after direct injection into the left ventricular 

cavity of mice (Champion, Georgakopoulos et al. 2003). This promoter was shown to 

work in both Ad and AAV vectors. MLC-2v is a major component of cardiac and 

striated skeletal muscles and is the ventricular form of myosin light chain. It is 
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important during embryogenesis in the development of the heart and alterations in 

expression result in cardiac defects. MLC-2v is thus highly specific for heart and the 

MLC-2v promoter can be used to mediate cardiac-specific transgene expression, and 

is the best characterized promoter for this purpose (Small and Krieg 2004). A series of 

MLC-2v fusion genes were constructed and transfected into primary neonatal rat 

myocardial cells and a non-myocardial cell line (CV-l), demonstrating that 250 bp of 

the MLC-2 5” flanking region was sufficient to confer cardiac specific expression 

(Henderson, Spencer et al. 1989). A fusion of 1.5 kb of the MLC-2v promoter and the 

CMV immediate early enhancer demonstrated a 50-fold increase in myocardial 

transgene expression levels in mice in comparison to the same vectors under the 

control of the CMV promoter alone (Muller, Leuchs et al. 2006). During in vitro 

experiments in cardiomyocytes (H9C2), an MLC2v promoter inserted into an AAV 

vector drove gene expression at levels comparable to CMV promoter. Two versions 

of the MLC2v promoter (1.7 kb and 281 bp versions) were then packaged into rAAV2 

vectors. After intravenous injection into neonatal rat and mouse, promoter mediated 

cardiac-specific reported gene expression was detected from both forms of the 

promoter (Phillips, Tang et al. 2002). A 250bp fragment of the MLC-2v promoter 

inserted into Ad vectors significantly reduced expression levels in vivo in the liver, 

lung and kidney in comparison to Ad vectors under the control of the CMV promoter 

(Boecker, Bernecker et al. 2004). 

 

The combination of a cardiac-specific promoter and the use of a target viral vector 

may lead to the production of a vector that is capable of switching on therapeutic 

genes in the myocardium. 

 

Another method of achieving target cell transcriptional control is with the use of 

microRNAs (miRNAs). These have recently been utilised as a way of preventing the 

immune system from rejecting newly delivered genes. MicroRNAs (miRNAs) are 

small non-coding RNA molecules that function to downregulate gene expression. A 

new gene transfer system that exploits the endogenous miRNA machinery for 

transgene regulation was used to investigate the efficiency of miRNAs in turning off 

transgene expression in non-target tissues and cells. Mice were challenged with 

lentivirus encoding target sequences of endogenous miRNAs (Brown, Venneri et al. 

2006). Expression profiles differed significantly from vector biodistribution as 
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determined by Q-PCR. The target sequences were effectively suppressed in 

haematopoietic lineages, but maintained in non-haematopoietic cells. Prevention of 

expression in haematopoietic cells was greater than that achieved with the hepatocyte-

specific albumin promoter. In this system, the incorporation of miRNA regulation into 

a vector was shown to provide a level of control over transgene expression, showing 

the potential of microRNAs on gene regulation (Brown, Venneri et al. 2006). 

 

1.10 Renin Angiotensin System 

The renin angiotensin system (RAS) was first recognised in 1898 with the discovery 

of renin by Tigerstedt and Bergman (Tigerstedt and Bergman 1898). It has been 

studied for more than a century, yet continually new discoveries are being made 

regarding the importance of the RAS in the pathophysiology of cardiovascular and 

renal disease. In the last few years, new peptides, receptors and enzymes have been 

found, additional functions have been assigned to existing components of the RAS 

and alternative pathways of angiotensin (Ang) II generation have been found. Recent 

studies have added to the knowledge of the ever expanding RAS in both normal and 

diseased states. It is now known that there are two RAS systems; the classic 

systemically acting system and a more recently identified and highly complex tissue-

localized system. Classically, the RAS can be described as an endocrine system that is 

a central regulator of cardiovascular, renal and adrenal physiology and haemastasis. It 

is a circulating co-ordinated hormonal cascade that is activated by a loss in blood 

volume or in response to a change in arterial pressure. Many of the components of the 

RAS have opposing functions helping to serve the main aim of the RAS in 

maintaining a strict homeostatic balance. This pathway is of major clinical 

importance. Overactivity of the RAS is associated with the pathophysiology of 

hypertension and progression of heart failure, and it thus a major target for therapy. 

Inhibition of components of the RAS, such as angiotensin converting enzyme (ACE), 

has been shown to markedly decrease blood pressure in hypertensives and exert 

beneficial effects on cardiac function and survival in cardiovascular and renal disease 

patients. Accordingly, knockout mice of components of the RAS, including ACE 

(Krege, John et al. 1995), renin (Yanai, Saito et al. 2000) and angiotensin receptor 1a 

homologue (AT1A) (Oliverio, Best et al. 1997) have been generated and all display 

hypotensive tendencies with decreased blood pressure and compromised kidney 
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function compared to controls, indicating that these are key peptides in the control of 

this system. ACE inhibitors are used to treat hypertension worldwide, showing the 

enormous potential in modulating and controlling this system.  

 

At the beginning of this coordinated cascade lies angiotensinogen, which is a 

circulating precursor protein produced by the liver (Figure 1.5). It provides the 

majority of systemic circulating angiotensin peptides, although it is also present in 

other tissues including the heart, vasculature, kidneys and adipose tissue (Carey and 

Siragy 2003). Angiotensinogen plays a role in human blood pressure and overactivity 

of the gene is associated with the development of hypertension (Menard, el Amrani et 

al. 1991; Jeunemaitre, Soubrier et al. 1992). Delivery of rAAV vectors expressing the 

angiotensinogen antisense gene led to a delayed onset of hypertension and to the 

significant attenuation of hypertension in adulthood in the SHR (Kimura, Mohuczy et 

al. 2001).   

 

In response to volume and renal perfusion pressure changes detected by the 

juxtaglomerular apparatus as the blood enters the kidneys, the glycoprotein enzyme 

renin is secreted by the juxtaglomerular cells at the renal afferent arterioles. Renin 

cleaves the Leu-Val peptide bond at the N-terminus of angiotensinogen thus creating 

the decapeptide angiotensin I (Ang I). The cascade continues with physiologically 

inactive Ang I then being catalyzed to biologically active octapeptide angiotensin II 

(Ang II) by the cleavage of a dipeptide at the C-terminus (His-Leu) by endothelium-

bound angiotensin converting enzyme (ACE) (Skeggs, Kahn et al. 1956). ACE is a 

glycoprotein that possesses two active carboxy-terminal sites and is also responsible 

for metabolising the vasodilator bradykinin (Yang, Erdos et al. 1970). It therefore 

increases the levels of the potent vasoconstrictor Ang II whilst limiting the presence 

of vasodilators. Angiotensin II is cleaved further by a variety of enzymes to produce 

the bioactive angiotensin fragments angiotensin III (Ang 2–8), angiotensin IV (Ang 

3–8) and angiotensin-(1–7).  
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Figure 1.5 Overview of the renin angiotensin system. 

Depiction of the RAS pathway, demonstrating how the peptide components interact 

with one another. AT1, angiotensin type 1 receptor; AT2, angiotensin type 2 receptor. 
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1.10.1 Cardiac RAS 

The traditional concept of the RAS has had to be expanded to incorporate the 

increasing clinical and experimental evidence that strongly supports the existence of a 

local functioning cardiac RAS. It has been shown in recent years that many RAS 

components are present in different tissues, including the brain, kidney, heart and the 

vasculature, that could not be explained by the endocrine system (Paul, Poyan Mehr et 

al. 2006). Also, it was reasoned that a local RAS must exist due to the fact that 

inhibitors of the components of the RAS have beneficial effects beyond those on 

blood pressure. Thus it is accepted that the RAS is not just an endocrine system, but 

also an autocrine/paracrine system. Every component of the RAS has been identified 

in cardiac and vascular myocytes and fibroblasts. Generation of Ang I and Ang II is 

not restricted to the systemic circulation; production also takes place in the 

vasculature and other tissues. 

 

1.10.2 Angiotensin II (Ang II) 

Ang II is the principal physiological effector molecule in this pathway and exerts a 

plethora of effects throughout the body, being a potent vasoconstrictor. Its role in 

cardiovascular disease is well documented and its actions can result in cardiovascular 

damage. Ang II has a very short half life and is degraded within seconds into 

fragments, mainly des-aspartyl-Ang III (Ang III), Ang 1–7, and Ang IV. Ang II is 

transported to peripheral tissues and its actions are mediated through two G-protein-

coupled receptors, angiotensin type 1 (AT1) and angiotensin type 2 (AT2) receptors 

(de Gasparo, Catt et al. 2000; Boehm and Nabel 2002). Ang II mediates the majority 

of its cardiac, renal and adrenal function by the activation the AT1 receptor. The role 

of the AT2 receptor is less well defined; evidence suggests that it generally opposes 

effects mediated by the AT1 receptor through activating vasodilatory and anti-

proliferative effects (Dinh, Frauman et al. 2001; Duke, Evans et al. 2005). Stimulation 

of the AT2 receptor results in the activation of number of vasodilatory peptides, 

including bradykinin, NO and guanosine cyclic 3’, 5’ monophosphate (cGMP). The 

AT2 receptor is expressed at lower levels in cardiovascular tissues than the AT1 

receptor, offering an explanation for the preference of Ang II for the AT1 receptor. 

Gene transfer techniques have been exploited to investigate the role of the AT2 

receptor in the RAS. AT2 receptor expressing lentivirus vectors (Metcalfe, 
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Huentelman et al. 2004) and Ad-directed AT2 receptor overexpression (D'Amore, 

Black et al. 2005) have been utilised, with both approaches showing conflicting 

results. Whilst the lentivirus overexpression study demonstrated a preventative role 

for the AT2 receptor in cardiac hypertrophy (Metcalfe, Huentelman et al. 2004), Ad-

mediated AT2 receptor overexpression resulted in cardiomyocyte hypertrophy 

(D'Amore, Black et al. 2005). 

 

The deleterious effects on the cardiovascular system associated with Ang II including 

vasoconstriction and the promotion of cellular growth are mediated by the AT1 

receptor (Unger, Culman et al. 1998; Perazella and Setaro 2003). The effects of this 

include the modulation of blood pressure through vasoconstriction and sodium 

retention. These effects have been shown to be prevented by rAAV-mediated delivery 

of antisense AT1 receptor gene, in which the development of hypertension (Phillips 

1997), renal injury and cardiac remodelling was shown to be inhibited (Li, Yan et al. 

2007). Ang II acts on the vascular smooth muscle cells in the walls of arterioles 

causing them to constrict and forcing the blood to be pumped harder through this 

narrowed space thus increasing blood pressure. Furthermore, Ang II can also 

indirectly regulate blood pressure by stimulating the adrenal cortex to produce and 

release the hormone aldosterone from the zona glomerulosa. Aldosterone enhances 

sodium conservation by the kidneys and gastrointestinal tract, which in turn induces 

import of chloride ions and most importantly water. It also encourages the loss of 

potassium and magnesium and can also stimulate thirst. As more water is retained in 

the blood, there is a higher circulating volume, resulting in pressure being maintained. 

So the RAS has a two-fold effect at raising and maintaining a high blood pressure.    

 

Ang II is more than just a vasoconstrictor and has been shown to have a role in the 

activation of angiogenic and fibrotic cytokines, as well as in the promotion of 

macrophage recruitment and infiltration. It also causes ventricular hypertrophy and 

remodelling of the cardiac wall. Whilst hypertrophy is initially adaptive, progression 

of hypertrophy is eventually maladaptive and leads to heart failure. Thus it is vital that 

levels of Ang II in the circulation are well regulated. 

 

Inhibition of components of the RAS has proven undoubtedly beneficially therapeutic 

in the management of a number of diseases, including hypertension and heart failure, 
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highlighting that overactivity of the RAS is associated with disease. ACE inhibitors 

(ACEi) and Ang II receptor blockers (ARBs) are effective drugs for the treatment of 

cardiovascular diseases and their associated pathophysiologies, probably as a result of 

blocking the vasoconstrictor, hypertrophic and pro-inflammatory actions of 

angiotensin II. Interestingly, after AT1 receptor blockade and ACE inhibition, it was 

found that levels of ACE2 and Ang 1-7 were increased, demonstrating that these 

peptides may contribute to the beneficial effects or RAS blockade (Chappell, Pirro et 

al. 1998; Iyer, Ferrario et al. 1998; Igase, Strawn et al. 2005).  

 

1.10.3 Angiotensin 1-7 (Ang 1-7) 

Ang 1-7 can be produced though several pathways. It can be synthesised directly from 

Ang I by endopeptidase NEP (neutral endopeptidase) (Yamamoto, Chappell et al. 

1992) and prolylendopeptidase (PEP) (Welches, Santos et al. 1991). Alternatively, it 

can be indirectly produced from Ang I through cleavage by ACE2 into an Ang 1-9 

intermediate (Donoghue, Hsieh et al. 2000). This intermediate can then be further 

degraded into Ang 1-7 by the actions of ACE. Ang 1-7 can also be produced both 

directly and indirectly from Ang II. ACE2 hydrolyses Ang II with high efficiency to 

produce Ang 1-7, displaying a 400-fold higher catalytic efficiency with Ang II as a 

substrate than with Ang I (Vickers, Hales et al. 2002). Finally, Ang 1-7 can be formed 

from Ang II by PEP and prolylcarboxypeptidase (PCP).  

 

The G-protein coupled receptor mas has been identified as the receptor for Ang 1-7 

(Santos, Simoes e Silva et al. 2003). Ang 1-7, acting though the mas receptor, is seen 

to produce effects that are opposite to those described for Ang II (Ferrario, Chappell 

et al. 1997). Levels of Ang 1-7 are increased in failing human heart ventricles, 

indicating that it may play a cardioprotective role in heart failure (Zisman, Keller et 

al. 2003). This is supported by the finding that Ang 1-7 reduced the incidence of 

arrhythmias after induced myocardial injury in isolated rat hearts (Ferreira, Santos et 

al. 2001). Ang 1-7 has additionally been shown to induce diuresis, to enhance the 

vasodilatory actions of bradykinin (Paula, Lima et al. 1995; Fernandes, Fortes et al. 

2001) and to exert antiproliferative actions (Strawn, Ferrario et al. 1999). All these 

actions point to a role for Ang 1-7 in the counterregulatory arm within the RAS. 
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1.10.4 Angiotensin converting enzyme 2 (ACE2) 

ACE2 is a member of the M2 zinc metalloproteinase family and a recently identified 

homologue of ACE with their catalytic domains sharing a 42% amino acid identity 

(Soubrier, Alhenc-Gelas et al. 1988; Ehlers and Riordan 1991; Tipnis, Hooper et al. 

2000). Both ACE and ACE2 are highly expressed in vascular endothelial cells, 

however ACE2 expression is thought to be tissue specific and  restricted to the heart, 

kidney and testis (Donoghue, Hsieh et al. 2000; Tipnis, Hooper et al. 2000). However, 

recent work has revealed ACE2 is abundantly present in humans in the epithelia of the 

lung and small intestine, thought to be associated with possible routes of entry for the 

severe acute respiratory syndrome-associated coronavirus (SARS-CoV), as ACE2 has 

been identified as the functional receptor for SARS-CoV (Hamming, Timens et al. 

2004). Unlike ACE, ACE2 functions as a carboxypeptidase rather than a dipeptidyl 

carboxypeptidase (Donoghue, Hsieh et al. 2000) and is thought to counterbalance the 

vasopressor effects of ACE (Vickers, Hales et al. 2002).  This transmembrane protein 

has been found to be insensitive to ACE inhibitors such as captopril and lisinopril in 

vitro (Tipnis, Hooper et al. 2000), showing that ACE2 has a distinct substrate and 

inhibitor specificity from ACE. 

 

ACE2 has been proposed as a critical component of the RAS, thought to elicit 

cardioprotective effects by balancing the plethora of negative effects that Ang II 

exerts on the cardiovascular system (Ferrario, Chappell et al. 1997; Ferrario 1998). 

ACE2’s role in the RAS is thought to lie in the inhibition of Ang II production, 

through two differing pathways. ACE2 primarily hydrolyses Ang II and less 

efficiently Ang I, (Tipnis, Hooper et al. 2000) resulting in Ang 1-9 and Ang 1-7 

production. Ang 1-9, which itself is of unknown function, is further hydrolysed to 

Ang 1-7 by the actions of ACE (Donoghue, Hsieh et al. 2000). Ang 1-7 has been 

shown to have vasodilatory effects and it has been suggested that it acts through the 

G-coupled protein receptor mas. Thus, ACE2 may play a pivotal role in the RAS by 

reducing concentrations of the pro-fibrotic, pro-proliferative vasoconstrictor Ang II 

and raising levels of the anti-fibrotic, anti-proliferative vasodilatory peptide Ang 1-7 

(Ferrario, Chappell et al. 1997; Ferrario 1998) As such, manipulation of ACE2 

expression and function has potential utility in the treatment of cardiovascular disease. 

However, the role of ACE2 in the RAS remains ambiguous, with studies into its 
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interactions generating conflicting results. In two ACE2 knockout mice studies, one 

showed that these mice had severe cardiac contractility defects (Crackower, Sarao et 

al. 2002), whilst the other study found no effects on cardiac dimensions (Gurley, 

Allred et al. 2006). One possible reason for these discrpencies could lie in the genetic 

backround of these mice. In studies to investigate ACE2 overexpression, ACE2 

transgenic mice were found to display a high incidence of sudden death (Donoghue, 

Wakimoto et al. 2003), whilst lentivirus-mediated ACE2 overexpression provided 

cardioprotective effects (Diez-Freire, Vazquez et al. 2006). And so the role of ACE2 

is complex and remains ambiguous.  

 

ACE2 also metabolises, with high specificity, a range of biologically active peptides 

other than peptide mediators of the RAS. The hydrolytic activity of ACE2 was tested 

against a panel of 126 biological peptides. Of these, 11 were found to be hydrolysed 

by ACE2 and with high affinity for 3 of the peptides (Vickers, Hales et al. 2002). Ang 

II, apelin-13 and dynorphin A 1-13 were hydrolysed with highest affinity. ACE2 is 

known to also hydrolyse Ang I, des-Arg9-bradykinin, neurotensin 1-13, kinetensin 

(Donoghue, Hsieh et al. 2000), β-Casomorphin, Neocasomorphin and Apelin-36 

amongst others (Vickers, Hales et al. 2002). Apelin-13 and -36 have both been shown 

to exert cardioprotective effects in vivo. In rodent models of myocardial ischemia-

reperfusion (I/R) injury, apelin-13 and apelin-36 reduced infarct size by 43% and 33% 

respectively demonstrating cardioprotective activities (Simpkin, Yellon et al. 2007). 

Not much is known about the role of neocasomorphin or β-Casomorphin, yet 

derivatives of the latter have been implicated in vasorelaxation (Fujita, Suganuma et 

al. 1996). The hydrolysis of these peptides by ACE2 in vivo remains to be established, 

but may prove to be relevant and play a vital role in both the regulation of the RAS 

and in the pathophysiology of disease.  
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1.11 Aims of Thesis 

The principle aim of this thesis was to assess the effect of ACE2 overexpression in 

vivo on heart function and blood pressure in relevant disease model, the stroke prone 

spontaneously hypertensive rat (SHRSP). In order to achieve cardiac overexpression 

of ACE2 we first had to identify a suitable gene delivery vector. This was achieved 

through the following techniques: 

 

 
 

• The evaluation both in vitro and in vivo of candidate heart targeting peptides 

identified through phage display in which the heart vasculature was probed for 

heart-specific endothelial markers.  

 

• The peptides were used to modify Ad5, Ad19p and AAV2 vectors to assess if 

they increased the selectivity of these vectors to endothelial cells of the 

vasculature. 

 

• Comparison and optimisation of rAAV6 and rAAV9 vector-mediated gene 

delivery to the myocardium in vivo in SHRSP. 

 

• Incorporation of cardiac-specific promoter MLC-2v into rAAV6 vectors to 

assess transcriptional regulation. 

 

• Evaluation of ACE2 overexpression using rAAV6. 
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Materials and Methods 
  

2.1. Chemicals 

All chemicals unless otherwise stated were obtained from Sigma Chemical Company 

(Poole, UK) and were of the highest grade obtainable. All oligonucleotides were 

obtained from MWG-Biotech (Edersberg, Germany). 

 

2.2. Cell Culture 

All tissue culture work was performed using a biological safety class II vertical 

laminar flow cabinet in sterile conditions. Cell lines were maintained in the 

appropriate cell culture media (Table 2.1) and incubated at 37°C in a 5% CO2 

atmosphere.  

 

2.2.1. Maintenance of established cell lines 

Cells were grown as a monolayer and media was replenished every 3 days. Cells were 

routinely passaged at approximately 80% confluence to prevent overgrowth and loss 

of surface contact. To passage, cells were washed twice in phosphate buffered saline 

(PBS) (Biowhittaker, Berkshire, UK) and incubated in a minimal volume of trypsin-

EDTA at 37ºC, 5% CO2 (Gibco, Invitrogen, Paisley, UK) for approximately 5 

minutes, until the majority of cells had detached. The action of trypsin-EDTA was 

blocked by the addition of an equal volume of media containing serum. Cells were 

harvested by centrifugation at 480 × g and resuspended in fresh media for passaging 

or plating. For plating cells were counted in a haemocytometer to enable them to be 

seeded at the required density.  

 

2.2.2. Cryo-preservation and resuscitation of cell lines 

Cells were harvested as described in section 2.2.1 and re-suspended at a density of 

approximately 1-2×106 cells/ml in complete cell culture media supplemented with 
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10% (v/v) dimethyl sulphoxide (DMSO). Cell suspensions were aliquoted into sterile 

2 ml  
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Cell type Description Cell culture medium used 

HCAEC  
Primary human coronary artery 

endothelial cells 

Endothelial cell growth medium (PromoCell, Heidelberg, Germany) supplemented with 1% (v/v) penicillin and 

100 µg/ml streptomycin (both Gibco, Paisley, UK). 

293T  
Transformed human embryonic 

kidney cell line 

Minimum Essential Media (MEM) (BioWhittaker, UK) supplemented with 10% (v/v) FCS, 1% (v/v) 

penicillin, 100 µg/ml streptomycin and 2 mM L-glutamine (Gibco, Paisley, UK) 

Cos7  
African green monkey SV40 

transformed kidney fibroblasts 

MEM supplemented with 10% (v/v) FCS, 1% (v/v) penicillin, 100 µg/ml streptomycin and 2 mM L-glutamine 

HeLa  Human cervical carcinoma cell line MEM supplemented with 10% (v/v) FCS, 1% (v/v) penicillin, 100 µg/ml streptomycin and 2 mM L-glutamine 

L6  Rat skeletal muscle myoblasts MEM supplemented with 10% (v/v) FCS, 1% (v/v) penicillin, 100 µg/ml streptomycin and 2 mM L-glutamine 

HT1080  

Human fibrosarcoma cells Dulbecco’s minimum essential media (DMEM) with glutamax-1, 4500mg/L glucose, 10% (v/v) FCS, 1% (v/v) 

penicillin, 100 µg/ml streptomycin and 4 mM L-glutamine, 1.5 mM xanthine, 0.016mM mycophenolic acid and 

50x HT supplement (all Gibco, Paisley, UK). 

HepG2  
Human hepatocellular carcinoma cell 

line 

MEM supplemented with 10% (v/v) FCS, 1% (v/v) penicillin, 100 µg/ml streptomycin and 2 mM L-glutamine 

RGE  Rat glomerular endothelial cell line MEM supplemented with 10% (v/v) FCS, 1% (v/v) penicillin, 100 µg/ml streptomycin and 2 mM L-glutamine 

H9C2  Rat heart myoblasts MEM supplemented with 10% (v/v) FCS, 1% (v/v) penicillin, 100 µg/ml streptomycin and 2 mM L-glutamine 

633  

Derived from A549 cells. Inducibly 

express Ad5 E1A and constitutively 

express the Ad5 fiber protein 

DMEM with glutamax-1, 4500mg/L glucose, 10% (v/v) FCS, 1% (v/v) penicillin, 100 µg/ml streptomycin and 

2 mM L-glutamine, 200 µg/ml hygromycin B, 300 µg/ml zeocin and 200 µg/ml neomycin sulphate (all Gibco, 

Paisley, UK). 

 

Table 2.1 Media used to culture cells used in this study.  
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cryo-preservation vials and cooled at a constant -1°C/minute to -80°C using 

isopropanol. Vials were then stored indefinitely in liquid nitrogen. Cryo-preserved 

cells were resuscitated by thawing at 37°C and then transferring them drop by drop to 

a T-25 flask containing 5ml of pre-warmed cell culture media and incubated overnight 

at 37°C. The following day they were placed in fresh media. 

 

2.3. Animal Models 

All animals were housed under controlled environmental conditions. Temperature was 

maintained at ambient temperature with 12 h light/dark cycles. Rats were fed standard 

rat chow (rat and mouse No.1 maintenance diet, Special Diet Services) and water 

provided ad libitum.   

 

Work with experimental animals was in accordance with the Animals Scientific 

Procedures Act 1986 under the project license held by Professor A.F. Dominiczak, 

License Number 60/2874. Inbred colonies of stroke-prone spontaneously hypertensive 

(SHRSP) and Wistar Kyoto (WKY) strains were maintained “in-house” by brother, 

sister mating and routine in lab microsatellite screening was used to confirm 

homozygosity of all loci within a random group from each strain. WKY rats for the 

phage studies were obtained from Harlan, Oxfordshire, UK. 

 

2.4. Phage methods 

All phage experiments were carried out using the T7Select415-1b phage display 

system (Novagen, EMD Biosciences, Darmstadt, Germany), which use the T7 capsid 

protein to display peptides on the surface of the phage, and can display in high copy 

numbers (415 per phage). All candidate peptide-phage and a non-recombinant control 

phage (with no peptide insertion) were obtained as a kind gift from Professor E. 

Ruoslahti, Burnham Institute, USA. Candidate peptides (Table 2.2) had been isolated 

by 3 rounds of selection on ex vivo murine heart cells, followed by 3 rounds of 

selection in vivo (Zhang, Hoffman et al. 2005). All phage amplification and titering 

was performed using E.coli strain BL21 (Novagen, EMD Biosciences, Darmstadt, 

Germany). 
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2.4.1. Amplification of phage  

Phage were amplified using the liquid lysate amplification protocol as described in the 

Novagen T7 select system manual. Briefly, a single BL21 colony was picked from a 

freshly streaked plate and amplified overnight in 25 ml M9LB (1.25 ml 20× M9 salts, 

0.5 ml 20% glucose, 25 µl 1M MgSO4, 25 ml LB), in an orbital shaker at 37°C and 

180 rpm. Five ml of overnight culture was added to 500 ml LB in a 2 L flask, and 

incubated for approximately 3 hours at 37°C in an orbital shaker at 180 rpm. The 

absorbance at 600 nm was read at intervals and the culture was grown until OD600 0.5-

1.0. Separately, 100 µl phage was added to 25 ml of culture and grown until lysis had 

occurred. This was then added to the 500 ml culture and was incubated with shaking 

at 37°C for between 1-3 hours, until cell lysis occurred. This was determined visually 

when the solution appeared clear but contained long thin strands and was also 

confirmed by a decrease in the OD600. Ten percent (v/v) 5 M NaCl was added to the 

culture, which was then centrifuged at 8000 × g for 10 minutes to remove cell debris. 

The supernatant was transferred to a sterile bottle for Polyethylene glycol (PEG-8000) 

precipitation.      

 

2.4.2. Purification of phage                                                               

1/6 volume of 50% (v/v) PEG-8000 was added to the supernatant and thoroughly 

mixed before incubating at 4°C overnight. The supernatant was then centrifuged at 

3185 × g for 30 minutes at 4°C. The pellet was resuspended in 2 ml TBS and 

transferred to microcentrifuge tubes. To the phage, 1/6 volume of 20% PEG-

8000/2.5M NaCl was added and then left overnight at 4°C, then centrifuged for 30 

minutes at 12600 × g and 4°C. The pellet was resuspended in 1 ml TBS and left on ice 

for 1 hour before centrifugation for 10 minutes at 12600 x g and 4°C. The pellet was 

then resuspended in 1 ml 0.02% sodium azide and left at room temperature for 20 

minutes before a further centrifugation of 10 minutes at 12600 × g and 4°C. 

Supernatants were then pooled and stored. For short-term storage, phage were kept at 

4°C. For longer term storage 10% (v/v) sterile 80% (v/v) glycerol was added to the 

phage, which was stored at -80°C. 
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2.4.3. Quantification of phage by plaque assay (tit ering)     

A single BL21 colony was picked from a freshly streaked plate and amplified 

overnight in 25 ml LB, supplemented with 5 ml M9 salts (20 g/L NH4Cl, 60 g/L 

KH2PO4, 120 g/L NaH2PO4.7H2O), 2 ml 20% (v/v) glucose, 0.1 ml 1 M MgSO4, in an 

orbital shaker at 37°C and 180 rpm. LB plates were pre-warmed in a 37°C incubator. 

Serial dilutions of phage were made in LB. Agar top (10 g/L bactotryptone, 5 g/L 

yeast extract, 1 g/L MgCl.6H20, 7 g/L agarose) was melted and 3 ml aliquots were 

made and placed in a 50°C waterbath. 250 µl of BL21 culture was added to 100 µl of 

each dilution of phage. This was then added to an aliquot of agar top and poured onto 

an LB plate. Once set, plates were inverted and placed in a 37°C incubator for 3 hours 

or at room temperature overnight. The following day, the number of plaques present 

at each dilution was counted and used to calculate an average titre for the phage stock 

using the formula: 

 

Phage titre (pfu)/ml) = Number of plaques × dilution factor × 10 

 

2.4.4. Sequencing of phage peptides 

Individual plaques were picked from the agar using a glass pipette. Each plaque was 

placed in 250 µl BL21 liquid culture grown overnight (as for phage amplification). 

This was incubated in an orbital shaker at 37°C with shaking at 180 rpm for 

approximately 3 hours, until bacterial lysis occurred. Five µl of the lysate was used as 

a template for PCR of the peptide insertion region of the 10B gene using the primers 

T7 Super Up (5’-AGCGGACCAGATTATCGCTA-3’) and T7 down (5’-

AACCCCTCAAGACCCGTTTA-3’). Each PCR contained 200 µM each dNTP 

(Promega, Southampton, UK.), 1.25 U Taq DNA polymerase (Promega, 

Southampton, UK.) and 0.125 µM each primer in 2.5 mM MgCl2, 50 mM KCl, 10 

mM Tris-HCl (pH 9.0) and 0.1% Triton X-100. The reactions were subjected to 40 

cycles of denaturing at 94°C for 1 minute, annealing at 52°C for 1 minute and 

extension at 72°C for 1 minute. PCR products were analysed by agarose gel 

electrophoresis. PCR products were cleaned using AmpPure (Agencourt Bioscience 

Corporation, MA, USA) as per manufacturer’s instructions. Purified PCR products 

were resuspended in 40 µl water and 10 µl used in the sequencing reaction. 
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Sequencing reactions contained 3.2 pmoles primer, 0.5 µl v3.1 Ready Reaction mix 

(Applied Biosystems, MA, USA), 4 µl v3.1 sequencing buffer (Applied Biosystems, 

MA, USA) in a 20 µl reaction. The cycle conditions were denaturing at 96°C for 50 

seconds, annealing at 50°C for 20 seconds and extension at 60°C for 3 minutes, for 25 

cycles. Sequencing products were cleaned using CleanSEQ (Agencourt Bioscience 

Corporation, MA, USA) as per manufacturer’s instructions. Results were analysed on 

the ABI 3730 automated sequencer using SeqScape v2.0. 

 

2.4.5. In vitro biopanning  

A 6-well plate was placed at 4ºC for 10 minutes prior to two PBS washes. 1 ml of 

biopanning media (DMEM supplemented with 1% (w/v) BSA) was added to each 

well, along with 1 ×109 pfu of relevant phage. The plate was then incubated for 1 hour 

at 4ºC and then washed 5 times in PBS with 1% (w/v) BSA, for 5 minutes per wash. 1 

ml 0.2 M glycine (pH 2.2) was added to the wells and then left on ice for 10 minutes 

before the addition of 200 µl 1M Tris. This solution was removed, discarded and 

replaced with 1 ml Tris/EDTA. Cell were then scraped and left to lyse for 1 hour on 

ice. After centrifugation at 10,000 × g for 2 minutes, the supernatant was kept for 

titration. 

 

2.4.6. In vivo phage work  

In vivo phage work was performed in male 12 week old Harlan WKY rats. Rats were 

anesthetised by halothane (4%). All animals received 5 ×1010 pfu phage via femoral 

vein injection which was left to circulate for 15 minutes. Blood samples were taken by 

cardiac puncture before rats were perfused through the heart with heparinised saline, 

and organs were removed and stored on ice before snap freezing. 

 

2.4.6.1. Extraction of phage from tissues 

Phage were extracted from approximately 250 mg of tissue. Tissues were placed in a 

fast RNA green biopulveriser lysis matrix tube (Qbiogene, CA, USA) containing 500 

µl ice cold DMEM-PI (DMEM supplemented with 1% (w/v) BSA, 1 mM PMSF, 1 

µg/ml leupeptin, 2 µg/ml aprotinin). The tissues were homogenised in a Fastprep 

system (Qbiogene) by performing six 45 second runs at a speed of 5.5. Samples were 
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placed on ice every two runs to prevent overheating. The homogenate was removed 

and an additional 500 µl DMEM-PI was added to the tube. An additional 2 runs were 

performed, and then the buffer was pooled with the first aliquot. A further 2 runs were 

performed with another 500 µl buffer. To each homogenate 100 µl 1% non-ident P40 

(NP40) was added and incubated on ice for 5 minutes. This was followed by the 

addition of 30 µl 1% sodium azide, which acts as a preservative to help prevent the 

growth of bacteria. Samples were stored at 4°C for up to 5 days before titering was 

performed.  

 

2.5. Lipofectamine Transfection 

LipofectamineTM 2000 (Invitrogen) is a proprietary cationic lipid formulation that 

allows the transfection of nucleic acids into eukaryotic cells for the expression of 

protein. 

 

Cells were seeded at an optimised density of 3 × 105 cells/well (6-well plate) and left 

for 18 hours. This was to achieve an optimum confluence of 85-90%. A DNA (µg) to 

Lipofectamine™ 2000 (µl) ratio of 1:1 was normally used, but was optimised for each 

cell line. 250 µl of pre-warmed Opti-MEM® I Reduced Serum Medium (Invitrogen, 

UK) was added to an eppendorf tube and 3 µl of LipofectamineTM 2000 added to this. 

To a further 250 µl of Opti-MEM® I was added 3 µg of DNA in an eppendorf tube. 

The contents of the DNA tube were then combined with the lipofectamine tube and 

mixed well by tapping. After 20 minute incubation at room temperature, the 

complexes were added one drop at a time to the cells, whose medium had meanwhile 

been replaced with 1 ml Opti-MEM® I Reduced Serum Medium. Cells were 

incubated for 6 hours at 37°C and then 2 ml serum-containing medium added to the 

well. Overnight incubation was followed by fresh medium being added to the wells 

and then left for a further 24 hours.  

 

2.6. Caesium chloride preparation of DNA 

After overnight growth of culture and centrifugation, the resultant bacterial pellet was 

lysed with 25 ml ice-cold lysis solution (0.025 M tris pH 8, 0.01 M EDTA, 0.05 M 

glucose) for 30 minutes at 4ºC. The lysate was cleared with 50 ml room temperature 
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alkaline SDS (0.2M NaOH, 2.5 ml 20% w/v SDS) for 5 minutes at 4ºC. 30 ml 

potassium acetate solution (3M potassium acetate, 3.45 ml glacial acetic acid) was 

added to precipitate chromosomal DNA and left at 4ºC for 15 minutes. Centrifugation 

was performed at 9794 × g, for 10 minutes at 4ºC and the supernatant decanted 

through a double layer of gauze into a fresh sterile bug pot containing 60 ml 

isopropanol. Care was taken to avoid contamination with the precipitate. The bug pot 

was placed at -20 ºC for 1 hour before centrifugation at 9794 × g for 10 minutes at 

4ºC to pellet plasmid DNA. The supernatant was discarded and the pellet resuspended 

in 4 ml of 1 × TE (pH 8). The plasmid DNA solution was added to a Falcon tube 

containing 5g CsCl and 300 µl ethidium bromide (10 mg/ml stock) and placed on a 

roller mixer for 15 minutes. The tube was centrifuged at 1985 × g for 10 minutes at 

room temperature. The supernatant was removed and the refractive index determined 

using a refractometer and adjusted to 1.396-1.398 using either saturated CsCl or 

topping up solution (5g CsCl, 4 ml 1× TE, 300 µl EtBr). The solution was placed in 

13.5 ml ultracentrifuge tubes and tube lids heat sealed. Tubes were centrifuged at 

308426 × g at 16 ºC, for 18 hours using an optima™ L-80 XP ultracentrifuge 

(Beckman Coulter, UK). Supercoiled plasmid DNA was carefully removed by 

piercing the tube. To remove the EtBr, an equal volume of isopropanol was added and 

mixed gently. After settling, the upper organic layer was discarded and the original 

volume made up using 1 × TE. A further 5 isopropanol washes were carried out. The 

plasmid solution was dialysed in a collodion bag (Sartorius AG, Germany) against 5 L 

of 1 × TE at 4 ºC overnight. 

 

2.7. Production of adenoviruses 

2.7.1. Production of recombinant Ad5 

High titre stocks of recombinant Ad5 were produced by large-scale amplification of a 

plaque pure stock of Ad5 in 293 cells. Low passage 293 cells were grown to 80% 

confluence then infected with a multiplicity of infection (MOI) of approximately 1 

plaque forming unit (pfu)/cell. The media was changed every 3 days until the 

cytopathic effect of the Ad caused the cells to detach from the flask. Cells were then 

fed by adding 10 ml media to each flask until the majority of cells had detached. Cells 

were harvested by centrifugation at 850 ×g for 10 minutes at room temperature. The 
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pellet was resuspended in 10 ml of PBS and an equal volume of ArkloneP 

(trichlorotrifluoroethane). The tube was inverted for 10 seconds then gently shaken 

for 5 seconds so the solutions were mixed without vigorous shaking (as this results in 

detachment of the Ad fiber from the capsid). The mixing was repeated. The 

suspension was centrifuged at 850 × g for 15 minutes at room temperature. The upper 

aqueous layer containing the virus was removed. An additional 10 ml of PBS was 

added to the remaining solvent layers and the process was repeated. The aqueous 

layers were pooled and stored at –80°C until purified on a CsCl gradient.  

 

2.7.2. Production of fiber gene deleted Ad with the  lac Z transgene 

(Ad5.lacZ. ∆F) 

633 cells were maintained in selective media (Table 2.1) until they were expanded 

into 20 × T-150 flasks, where they were cultured in MEM supplemented with 10% 

(v/v) foetal calf serum (FCS), 100 IU/ml penicillin, 100 µg/ml streptomycin and 2 

mM L-glutamine. Twenty-four hours before cells were infected 0.3 µM 

dexamethasone was added to the media. Cells were infected with fiber gene deleted 

Ad5 (MOI 2000 virus particles (vp) /cell) when they were approximately 80% 

confluent. When the cytopathic effect had caused the majority of cells to detach, the 

cells were harvested by centrifugation at 850 × g for 10 minutes at room temperature. 

The pellet was resuspended in 10 ml of PBS. Virus was released from cells by three 

rapid freeze/thaw cycles and cellular debris was removed by centrifugation at 850 × g 

for 15 minutes at room temperature. The supernatant was stored at -80°C until it was 

purified on a CsCl gradient. 

 

2.7.3. Cloning of peptides into Ad5 and Ad5/Ad19p f iber genes 

Oligonucleotides (Table 2.2) were obtained from MWG-Biotech (Edersberg, 

Germany). Overlapping oligonucleotides encoding the peptides flanked by the BspE1 

restriction site were used for cloning peptides into the Ad5KO1 vector. These 

overlaps were not required for Ad19p fiber as blunt ligation was used. Oligos were 

annealed by mixing 1 µM  of each oligo in 100 µl reaction and heating to 98°C for 10 

minutes, then cooling to 50ºC over 1 hour.  
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Virus Plasmid Peptide Sequence of oligo encoding the vascular targeting peptide 
Ad Control 
(AdCTL) 

pDV111 
(Nicklin et 
al,. 2001c) 

None None 

5’–CCGGATGCCGTCCGCCTCGGG–3’ CRPPR 
3’–TACGGCAGGCGGAGCCCGGCC–5’   

5’–CCGGATGCGGTCGGAAGTCGAAGACGGTTTGCG–3’ CGRKSKTVC 
 

3’–TACGCCAGCCTTCAGCTTCTGCCAAACGCGGCC–5’ 

5’–CCGGATGCGCGCGTCCTGCTCGTG–3’ CARPAR 
 

3’–TACGCGCGCAGGACGAGCACGGCC–5’ 

5’–CCGGATGCCCTAAGCGTCCGCGGG–3’ CPKRPR 
 

3’–TACGGGATTCGCAGGCGCCCGGCC–5’ 

5’–CCGGATGCCGAAACTCGTGGAAGCCTAATTGCG–3’ CRNSWKPNC 
 

3’–TACGGCTTTGAGCACCTTCGGATTAACGCGGCC–5’  

5’–CCGGATGCCGTAGTACTCGTGCTAATCCTTGCG–3’ CRSTRANPC 
 

3’–TACGGCATCATGAGCACGATTCGGAACGCGGCC–5’ 

5’–CCGGATGCCGTAGTACTCGTGCTAATCCTTGCG–3’ CPKTRRVPC 
 

3’–TACGGGATTCTGCGCAGCTCAAGGAACGCGGCC–5’  

5’–CCGGATGCTCTGGTATGGCTCGTACTAAGTGCG–3’ 

AdKO1 pDV137 
(Nicklin et 
al,. 2001c) 

CSGMARTKC 
 

3’–TACGAGACCATACCGAGCATGATTCACGCGGCC–5’ 

5’–TGCCGTAGTACTCGTGCTAATCCTTGC–3’ CRSTRANPC 
 

3’–ACGGCATCATGAGCACGATTAGGAACG–5’ 

5’–TGCTCTGGTATGGCTCGTACTAAGTGC–3’  CSGMARTKC 

3’–ACGAGACCATACCGAGCATGATTCACG –5’  

5’–TGCCCTAAGACGCGTCGAGTTCCTTGC–3’  CPKTRRVPC 

3’–ACGGGATTCTGCGCAGCTCAAGGAAGC–5’ 

5’–GTGCCGTCCGCCTCGG–3’    CRPPR 

3’–CACGGCAGGCGGCGCC–5’ 

5’–GGATCGTCGTGCCGTCCGCCTCGGGGATCGTCG–3’ CRPPR-mod 

3’–CCTAGCAGCACGGCAGGCGGAGCCCCTAGCAGC             

5’TGCCGTCCGCCTCGGGGAGGAGGATCGTGCCGTCCGCCT

CGGGGAGGAGGATCGTGCCGTCCGCCTCGG–3’ 

Ad5/19p pDV145 
mod 
(Denby et 
al., 2007) 

3CRPPR 

3’ACGGCAGGCGGAGCCCCTCCTCCTAGCACGGCAGGCGG

AGCCCCTCCTCCTAGCACGGCAGGCGGAGCC’–5’ 

 

Table 2.2 Plasmids used to produce Ad vectors and the sequences of oligos encoding 

the vascular targeting peptides.  
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Fifty µg of each plasmid (pDV147, pDV111 or pDV137) was digested overnight at 

37°C with 5 U/µl enzyme Eco47III (Promega, Southampton, UK) or 10 U/µl BspE1 

(New England BioLabs, Hitchin, UK) in a 100µl reaction using enzyme buffer D or 

buffer 3 respectively. 

 

Dephosphorylation of 2.5 µg of digested plasmid was performed using 5 U shrimp 

alkaline phosphatase (SAP) (Promega, Southampton, UK) by incubation at 37°C for 

15 minutes. SAP was inactivated by incubation at 65°C for 15 minutes. 

Dephosphorylated plasmid and oligo duplexes were ligated using Quick T4 ligase 

(New England BioLabs, Hitchin, UK). Twenty ng vector, 1 µM annealed oligo, 1 µl 

ligase and 10 µl of the supplied buffer were mixed in a total volume of 20 µl and 

incubated at room temperature for 5 minutes. Ligated plasmids were then transformed 

into JM109 competent E. coli (Promega, Southampton, UK) using a standard heat 

shock protocol. Briefly, 10 µl of the ligation reaction was incubated with 50 µl 

competent cells on ice for 30 minutes. The reaction was placed in a 42°C water bath 

for 30 seconds and then placed back on ice for 2 minutes. To the tube was added 950 

µl of SOC media (20 g/L bactotryptone, 5 g/L yeast extract, 10 mM NaCl, 2.5 mM 

KCl, 20 mM glucose), which was then placed in an orbital shaker for 1 hour at 37°C 

with 180 rpm shaking. One hundred µl of culture was plated onto LB agar plates (10 

g/L bactotryptone, 5 g/L bactoyeast extract, 5 g/L NaCl, 15 g/L agar, pH 7.5) 

supplemented with 100 µg/ml ampicillin and incubated overnight at 37°C. 

 

Several colonies were picked from each plate and amplified overnight in 5ml LB. 

Plasmid DNA was isolated using the Qiagen plasmid mini preparation kit (QIAGEN 

Ltd., Crawley, UK) as per manufacturer’s instructions. Restriction digestion of 

individual clones was performed to determine which plasmids contained a single copy 

of the inserted oligonucleotide duplex. Clones were sequenced to confirm they 

contained a single copy of the insertion in the correct orientation. Sequencing 

reactions contained 250 ng plasmid DNA, 3.2 pmoles primer 5 (primer for Ad5/19p 

plasmids 5’-TCTTTGATTGTGGTCGCAGG-3’, primer for the AdKO1 plasmids 5’-

CACTTGAGTTGTGTCTCCTCCACC-3’), 1 µl v3.1 Ready Reaction mix (Applied 

Biosystems, MA, USA), 4 µl v3.1 sequencing buffer (Applied Biosystems, MA, 

USA) in a 20 µl reaction. The cycle conditions were denaturing at 96°C for 45 



 69 

seconds, annealing at 50°C for 25 seconds and extension at 60°C for 4 minutes, for 25 

cycles. Sequencing products were cleaned using CleanSEQ (Agencourt Bioscience 

Corporation, MA, USA) as per manufacturer’s instructions. Results were analysed on 

the ABI 3730 automated sequencer and using SeqScape v2.0. 

 

Large scale plasmid DNA preparations of correctly sequenced plasmids were then 

carried out using the Qiagen Plasmid Maxi Preparation Kit (Qiagen Ltd, Crawley, 

UK) following the manufacturer’s instructions. Briefly, a 200 ml culture was grown 

overnight in a 2 litre flask in an orbital shaker at 180 rpm and 37°C. Bacteria were 

harvested by centrifugation at 8000 × g for 10 minutes at 4°C. The cells were lysed by 

alkaline lysis and centrifuged at 20000 × g for 30 minutes at 4°C to remove cell 

debris. The supernatant was removed and centrifugation repeated for 15 minutes. The 

supernatant was applied to a QIAGEN tip to bind the DNA. A medium salt wash (1.0 

M NaCl, 50 mM MOPS, pH 7, 15% v/v isopropanol) was used to remove RNA, 

proteins and low molecular weight impurities   DNA was eluted in a high salt buffer 

(1.25 M NaCl, 50 mM Tris.HCl, pH 8.5, 15% v/v isopropanol). Isopropanol 

precipitation was used to purify and concentrate the DNA. The plasmid was 

resuspended in TE buffer (pH 8.0, 10 mM Tris.Cl, pH 8.5) and stored at -20°C. 

Glycerol stocks of positive colonies were produced by mixing 150 µl sterile glycerol 

with 850 µl of culture and stored at -80°C. 

 

2.7.3.1. Production of fiber-modified and pseudotyp ed Ads 

Peptide modified viruses were produced using the previously developed 

transfection/infection protocol where the modified fiber gene is expressed from a 

plasmid (Von Seggern, Kehler et al. 1998; Jakubczak, Rollence et al. 2001; Nicklin, 

Von Seggern et al. 2001). All the plasmids express the Ad fiber gene from the CMV 

IE promoter. 

 

Ad vectors with genetically modified fibers were produced in 293T cells that express 

the adenovirus E1A gene, which is essential for virus replication. Ten × 10 cm2 tissue 

culture Petri dishes (Nunc, Wiesbaden, Germany) of 70% confluent 293T cells 

(maintained in MEM supplemented with 10% (v/v) FCS, 100 IU/ml penicillin, 100 

µg/ml streptomycin and 2 mM L-glutamine) were transfected with plasmid expressing 
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the modified fiber gene using a calcium chloride differential pH method. Briefly cells 

were washed twice in PBS, and then placed in 4.5 ml DMEM supplemented with 10% 

(v/v) FCS, 25 mM HEPES pH 7.9. A solution containing 960 µl media (DMEM 

supplemented with 25 mM HEPES pH 7.1), 48 µl 1M CaCl2, and 21 µg plasmid DNA 

per plate was made up. This was added slowly while the plate was gently rocked. As a 

positive control, one plate was transfected with plasmid pMV10 which expresses the 

lacZ gene. Following overnight incubation at 37°C the cells were washed in PBS then 

placed in 10 ml of the standard cell culture media. The transfection efficiency was 

assessed using the pMV10 transfected plate. If 70-80% of cells were positive then 

cells were infected with 2000 vp/cell Ad5.lacZ.∆F (an E1, E3 and fiber gene deleted 

first generation adenovirus). When the cytopathic effect had caused the majority of 

cells to detach, the cells were harvested by centrifugation at 850 × g for 10 minutes at 

room temperature. The pellet was resuspended in 10 ml of PBS. Cells were lysed by 

three freeze/thaw cycles. The suspension was centrifuged at 850 × g for 15 minutes at 

room temperature. The supernatant was stored at -80°C until purified on a CsCl 

gradient. 

 

2.7.4. Adenovirus purification using CsCl density g radient 

centrifugation 

To purify and concentrate crude Ad stocks, centrifugation on CsCl density gradients 

was used. Fourteen ml cellulose-nitrate ultra-clear centrifuge tubes (Beckman Coulter 

Ltd, Buckinghamshire, UK) were sterilised with 70% ethanol and then washed with 

sterile water. A CsCl gradient was produced by sequentially layering 2 ml of CsCl 

with a density of 1.45 g/cm3, 3 ml of CsCl with a density of 1.32 g/cm3 and 2 ml 40% 

glycerol. The crude Ad supernatant was overlayed and the tube filled with PBS.  The 

tube was then loaded into a Sorvall Discovery 90 rotor container, placed in the rotor 

(RPS4OT-859) and centrifuged at 90,000 x g for 1.5 hours at room temperature with 

maximum acceleration and free deceleration. Following centrifugation a band 

containing complete virus can be seen. This was removed by piercing the tube below 

the virus band with a 22 GA needle and drawing off the band in the minimum volume 

without disrupting the other bands.  
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Extracted virus was transferred to a Slide-A-Lyzer Dialysis Cassette (MW cut of 

10,000) (Perbio Science UK Ltd., Northumberland, UK) for dialysis. The virus was 

dialysed against 2 L of 0.01 M Tris pH 8 / 0.001 M EDTA for approximately 2 hours 

then buffer was replaced and the dialysis repeated overnight. The buffer was changed 

and supplemented with 10% (v/v) glycerol and dialysis was continued for a further 2 

hours. The virus was carefully removed from the cassette, aliquoted and stored at -

80oC. 

 

2.7.5. Determining Ad virus particle titres 

Particle titre of fiber modified Ad vectors is calculated based on the protein content of 

the virus stock using the Micro BCA (bicinchoninic acid) assay kit (Pierce, Rockford, 

IL, USA). Briefly, 8 bovine serum albumin (BSA) standards ranging from 200 µg/ml 

to 0.5 µg/ml were prepared and 150 µl of each was pipetted in duplicate into a 96 well 

plate. 1, 3 and 5 µl of virus made up to 150 µl in PBS were also used in duplicate. 

One hundred and fifty µl of BCA working reagent was added to each well then 

incubated at 37°C for 2 h. The absorbance at 570 nm was measured using a Wallac 

Victor2 plate reader (Wallac, Turku, Finland). Background absorbance was subtracted 

from the samples and standards and the amount of protein present in each virus was 

then calculated from the standard curve. The virus particle titre was then calculated 

using the established formula: 1 µg protein = 1 ×109 viral particles (Von Seggern, 

Kehler et al. 1998).  

 

2.7.6. Western blotting 

Before using a new virus stock it was important to confirm that the virus capsids had 

the fiber protein incorporated. To achieve this SDS-PAGE (sodium dodecyl sulfate 

polyacrylamide gel electrophoresis) and western blotting were performed using the 

monoclonal anti-fiber antibody 4D2 (Neomarkers Fremont, CA, USA).  

 

To detect fiber monomers, reducing conditions and a 12% polyacrylamide gel 

(containing 40% (v/v) polyacrylamide (30%), 11.25 mM Tris pH 8.8, 0.1% (v/v) 

SDS, 300 µl ammonium persulphate (APS) and 30 µl TEMED) were used. To detect 
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fiber trimer, non-reducing conditions and a 7.5% gel (containing 25% (v/v) 

polyacrylamide (30%), 11.25 mM Tris pH 8.8, 0.1% (v/v) SDS 300 µl APS and 30 µl 

TEMED) were used. A 4% stacking gel containing 13.3% (v/v) polyacrylamide 

(30%), 3.75 mM Tris pH 6.8, 0.1% SDS 300 µl APS and 30 µl TEMED) was used 

with each gel.  

 

Twenty µg (8x1010 vp) were mixed with an equal volume of reducing loading dye 

(125 mM Tris pH 6.8, 4% (v/v) SDS, 10% (v/v) glycerol, 0.006% (v/v) bromophenol 

blue, 2% (v/v) β-mercaptoethanol) or non-reducing loading dye  (125 mM Tris pH 

6.8, 4% (v/v) SDS, 10% (v/v) glycerol, 0.006% (v/v) bromophenol blue). For reduced 

conditions virus was heated to 95°C for 5 minutes before the gel was loaded. Samples 

were electrophoresed at 200 V in running buffer (0.025 M Tris-HCl, 0.2 M glycine, 

0.001 M SDS) for approximately 3 hours.  

 

Proteins were transferred onto Hybond-P membrane (Amersham Bioscience UK 

Limited, Buckingham, UK) overnight at 30 V in transfer buffer (0.025 M Tris, 0.2 M 

glycine, 20% (v/v) methanol, 0.01% (v/v) SDS). The membranes were then blocked 

in TBS-T (150 mM NaCl, 50 mM Tris, 0.1% (v/v) Tween-20) + 10 % (w/v) fat-free 

milk powder (blocking buffer) for 2 hours with shaking. The membrane was 

incubated for 1 hour at 37°C with the anti-fiber antibody diluted to 1:500 in blocking 

buffer. The membrane was washed twice in blocking buffer at room temperature for 5 

minute. The secondary antibody, rabbit anti-mouse horseradish peroxidase (HRP) 

(Neomarkers Fremont, CA, USA) was diluted 1:1000 in blocking buffer and 

incubated with the membrane at room temperature for 1 hour. The membrane was 

then washed four times in blocking buffer for 15 minutes at room temperature. An 

additional three washes of 5 minutes in TBS-T were performed. Proteins were 

visualised using the ECL detection system (Amersham Biosciences UK Limited, 

Buckinghamshire, UK) as per manufacturer’s instructions. Films were exposed for 

varying lengths of time, ranging from 10 seconds to overnight. 
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2.8. In vitro infections 

 

2.8.1. In vitro infection with adenovirus  

Cells were seeded in 96-well plates at a seeding density of 1 × 104 cells/well and 

incubated overnight at 37°C to produce 70-80% confluence. Viruses were diluted to 

the desired concentration in PBS. Wells were infected with the required multiplicity 

of infection (MOI) of virus and incubated for 3 hours at 37°C. Cells were washed in 

PBS then placed in fresh media and incubated at 37°C for 48 hours before transgene 

expression was measured.  

 

2.8.2. In vitro infections with AAV 

Cells were seeded in 96-well plates and incubated overnight at 37°C to produce 70-

80% confluence. Viruses were diluted to the desired concentration in PBS. Wells 

were infected in triplicate with the required MOI of virus and incubated for 24 hours 

at 37°C. Cells were washed in PBS then placed in fresh media and incubated for a 

further 72 hours at 37 °C. 

 

2.9. In vivo virus biodistribution 

Male 11 week old WKY were administered a single bolus intravenous injection of an 

adenovirus construct at 3×1011 vp/rat under general anaesthesia (2% isoflurane, 

vol/vol). Animals were sacrificed 5 days post infusion. 

 

2.9.1. DNA extractions 

DNA was isolated from tissue samples using the QIAamp DNA Mini Kit (Qiagen, 

CA, USA) as per manufacturer’s instructions. Briefly, approximately 25 mg tissue (10 

mg for spleen) was placed in 200 µl SDS-containing lysis buffer with proteinase K 

and incubated overnight at 56oC. A further 200 µl of buffer was added to the samples 

that were then heated to 70oC for 10 minutes. For blood samples, 200 µl of blood was 

mixed with 200 µl of buffer and incubated at 56oC for 10 minutes. The same protocol 

was then followed for both sample types. Ethanol (200 µl) was added to the samples, 
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mixed and then loaded onto a QIAamp Spin Column. Samples were centrifuged for 1 

minute at 6000 x g to adsorb the DNA onto the silica-gel membrane of the spin 

column. The spin column was washed with buffers AW1 and AW2 and then DNA 

was eluted in 100 µl deionised water by centrifugation at 6000 x g for 1 minute. The 

concentration of DNA in each sample was measured using the ND1000 

Spectrophotometer (Nanodrop, DE, USA). 

 

2.9.2. Quantitative Real Time PCR                                                                                            

Real-time PCR (RT-PCR) was used to quantify the number of virus genome particles 

in tissue extracts. This procedure of quantitative measurement is based on detection of 

a fluorescent signal produced proportionally during amplification of a PCR product. 

The amount of fluorescence released during the amplification cycle is proportional to 

the amount of product generated in each cycle and can be measured directly. 

Acquisition of data occurs when PCR amplification is still in the exponential phase. 

The SYBR Green detection system (Applied Biosystems) was used to carry out the 

RT-PCR on the TaqmanTM machine. SyBr Green PCR core reagents kit (Applied 

Bioscience, UK) with 200 nM lacZ specific primers, forward (5’ ATC TGA CCA 

CCA GCG AAA TGG 3’) and reverse (5’ CAT CAG CAG GTG TAT CTG CCG 3’) 

were used to amplify lacZ DNA. The following conditions were used: denaturation- 

95oC for 10 mins; amplification- 95oC for 15 sec; annealing- 60oC for 1 minute (50 

cycles); dissociation - 95oC for 15 sec; 60oC for 15 sec and 95oC for 15 sec.  

 

A lacZ quantification standard curve was produced from serial dilutions of each virus 

preparation. Total DNA (100 ng) was used in each reaction and all samples and 

standards were analysed in duplicate using TaqMan data analysis software. 

 

2.10. Histology 

Tissues were excised and immediately fixed by either 10% formalin or x-gal fix (0.1 

M phosphate buffer supplemented with 5mM EGTA and 2mM MgCl2) overnight and 

then transferred to PBS. Tissues were then paraffin embedded and single tissue 

sections with 6 µm thickness mounted onto a sialanised glass slide. Slides were baked 

at 65°C for 3 hours, then at 40°C overnight.  
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2.10.1. Coating slides in aminoalkylsilanes 

Blank glass slides were placed in a solution of 2% 3-aminopropyltriethoxysaline 

(APES) in dry acetone for 30 seconds. They were then rinsed once in acetone for 10 

seconds, and then rinsed twice in deionised water for 5 minutes before being dried at 

42°C overnight. 

 

2.10.2. Immunohistochemistry 

Paraffin was removed from the sections by 2 x 7 minute washes in Histoclear (Fisher 

Scientific, Leicestershire, UK). Sections were rehydrated by passing through an 

alcohol gradient of 100%, 95%, 70% ethanol for 7 minutes each. Slides were then 

washed in deionised water for 5 minutes. Endogenous peroxidase activity was 

quenched by incubating slides for 30 minutes in 0.3% (v/v) methanol-hydrogen 

peroxide at room temperature. The slides were then washed twice in water for 5 

minutes. Antigen unmasking if required was carried out (section 2.4.2.1). IHC was 

performed using Vectastain ABC rabbit IgG kit or universal IgG kit (Vector 

Laboratories, Peterborough, UK). Briefly, sections were placed in blocking solution 

(goat or horse serum) and incubated for 1 hour at room temperature in a humidified 

chamber to prevent sections from drying out. The primary antibody and the negative 

control antibody were diluted in blocking solution (For dilutions see table 2.3). 

Antibodies were incubated on the sections overnight at room temperature in a 

humidified tray. Slides were washed 3 times in PBS, for 5 minutes each. The 

secondary antibody biotinylated goat anti-rabbit IgG or biotinylated horse anti-

mouse/rabbit IgG (Vector Laboratories, Peterborough, UK) was diluted to 0.01mg/ml 

in blocking solution and incubated on the slides for 30 minutes at room temperature. 

Slides were washed in PBS 3 times, for 5 minutes each. The avidin and biotinylated 

horseradish peroxidase complex (ABC) (Vector Laboratories, Peterborough, UK) was 

then incubated on the slides for 30 minutes at room temperature. This was followed 

by 3 further 5 minute washes in PBS. Slides were then incubated for 5 minutes in 

DAB chromogen solution (3,3’ diaminobenzidine, hydrogen peroxide, and nickel 

solution diluted in water) (Vector Laboratories, Peterborough, UK). Slides were 

washed in water for 5 minutes then nuclei were counter-stained by incubation in 

haematoxylin for 30 seconds. Slides were washed for 5 minutes in running water. 
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Sections were dehydrated by incubation in 70% ethanol, 95% ethanol, 100% ethanol 

then Histoclear for 7 minutes each. Sections were mounted using Histomount 

(National Diagnostics, Georgia, USA). Nuclei of β−gal positive cells appeared dark 

blue/purple.  

 

 

 

Antibody Animal 
raised in 

Source Clone Number Concentration 
used at 

Mouse IgG Mouse Dako, 
Denmark 

N/A Equivalent to 
primary antibody  

Rabbit IgG Rabbit Dako, 
Denmark 

N/A Equivalent to 
primary antibody 

Goat-anti 
rabbit HRP 

Goat Dako, 
Denmark 

N/A 0.1 µg/ml 

Mouse-anti 
rabbit HRP 

Mouse Dako, 
Denmark 

MR12/53 0.1 µg/ml 

ACE2 Rabbit Santa Cruz, 
CA, USA 

H-175 20 µg/ml 

β-
galactosidase 

Rabbit MP 
Biomedicals 

 0.36 µg/ml 

CRIP-II Chicken Genway 
Biotech Inc 

aa1-208 1 µg/ml 

MPC-II Rabbit Made by collaborator 1 µg/ml 
BC-10 Rabbit Made by collaborator 1 µg/ml 
T7 Rabbit Chemicon T7(masmtggqqmg) 0.02 mg/ml 
RECA-1 Mouse Abd Serotec HIS52 1 µg/ml 
Ab-4 Rabbit Neomarkers 

Fremont 
4D2 0.4 µg/ml 

 

Table 2.3 Antibodies used in experimental procedures 
 
 

 

2.10.2.1. Antigen retrieval 

Formalin fixation forms protein cross-links that mask the antigenic sites in tissue 

specimens. Antigen retrieval methods are designed to break these protein cross-links, 

and therefore unmask antigens. Two methods were used; sodium citrate buffer and 

trypsin. Briefly, sodium citrate buffer (10 mM Sodium Citrate, 0.05% Tween 20, pH 

6.0) was heated in microwave until temperature reached 95-100°C. Slides were 

immersed in the buffer and incubated for 15 minutes. Slides were then washed twice 
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in deionised water and the immunohistochemical protocol followed from the blocking 

step.  

 

For trypsin retrieval methods, sections were covered with trypsin working solution 

(0.1% trypsin, 0.1% CaCl2, pH 7.8) and incubated for 10 minutes at 37°C. Sections 

were then washed in PBS and then blocking carried out. 

 

2.10.3. Haematoxylin and Eosin Staining � 

After the removal of paraffin and rehydration of slides as described in section 2.10.2, 

sections were stained in haematoxylin for 2 minutes. Slides were then washed in 

running tap water for 5 minutes then placed in eosin for 2 minutes, before a further 5 

minute wash in running water. Slides were dehydrated then mounted in Histomount. 

Nuclei appeared blue/purple whereas cytoplasm was stained pink. 

 

2.10.4. Picrosirius Red Staining 

After the removal of paraffin and rehydration of slides (as described in section 

2.10.2), sections were incubated for 90 minutes at room temperature under dark 

conditions in sirius red F3B  (0.1% (w/v) sirius red F3B in saturated picric acid). 

Slides were then washed twice for 3 minutes in 0.01 N HCl followed by two 3 minute 

washes in deionised water. Slides were dehydrated then mounted in Histomount 

before being viewed under linear polarised light. Collagen was stained various shades 

of red. 

 

2.10.5. Masson’s Trichrome Staining 

Slides were deparaffinised through alcohol gradient to deionised water and then 

incubated in Bouin’s solution at room temperature overnight. Slides were washed 

under tap water until the yellow colour had been removed. Sections were stained for 5 

minutes in Weigert’s Iron Haematoxylin solution (Weigert’s Iron Haematoxylin 

solution was prepared by mixing equal parts of Solution A (1% Haematoxylin in 

ethanol) and Solution B (ferric chloride 1.2% (w/v) and Hydrochloric acid, 1% (v/v)). 

Slides were then washed in running tap water for 5 minutes before being stained in 
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Biebrich Scarlet-Acid Fucshin (Biebrich scarlet, 0.9% (w/v), acid fuchsin 0.1% (w/v), 

in acetic acid, 1.0% (v/v)) for 5 minutes and then rinsed in deionised water. Slides 

were placed in Working Phosphotungstic/Phosphomolybdic Acid Solution (1 volume 

of Phosphotungstic Acid 10% (v/v), 1 volume Phosphomolybdic Acid 10% (v/v) with 

2 volumes of deionised water) for 5 minutes and then in Aniline Blue Solution 

(Aniline blue, 2.4% (w/v) and acetic acid, 2% (v/v)) for 5 minutes. Sections were 

washed in Acetic Acid, 1% (v/v), for 2 minutes before being dehydrated through 

alcohol, cleared in histoclear then mounted. Cell nuclei appeared black, cytoplasm 

and muscle fibers appeared red and collagen stained blue.  

2.11. Immunocytochemistry 

Cells were fixed on coverslips in 4% paraformaldehyde at room temperature for 15 

minutes. After three 5 minute washes in PBS, cells were permeabilised in 0.1% Triton 

for 15 minutes then washed a further 3 times in PBS. Cells were then incubated with 

the primary antibody (1 µg/ml diluted in PBS and 20% (v/v) serum of animal in 

which antibody was raised) for 30 minutes. Cells were then washed three times in 

PBS before being incubated with the secondary FITC labelled antibody (1 µg/ml 

diluted in PBS and 20% (v/v) serum) for 30 minutes. After three 5 minute PBS 

washes, the back of the coverslip was washed in water and the coverslip mounted onto 

a glass slide using Vectashield (Vector Laboratories, Peterborough, UK) (containing 

propidium iodide) and set with nail polish.  

 

2.12. Visualisation of ββββ-galactosidase ( ββββ-gal) expression in 

infected cells 

Following infection, cells were washed in PBS then fixed in 50 µl 2% 

paraformaldehyde by incubation on ice for 20 minutes. Cells were then washed in 

PBS and 100 µl X-gal (5-bromo-4-chloro-3-indolyl-b-D-galactopyranoside) stain (77 

mM Na2HPO4, 23 mM NaH2PO4, 1.3 mM MgCl2, 3 mM K4Fe(CN)6, 0.05% (v/v) 20 

mg/ml X-gal dissolved in dimethyl formamide) was added to each well and incubated 

overnight at 37°C. Cells were washed in PBS and placed in fresh PBS. 
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2.12.1. Detection of β-gal expression in tissues  

For tissue and whole limb staining, tissues were fixed in 2% paraformaldehyde before 

incubation in X-gal stain. 

 

2.12.2. Quantification of β-gal expression in cell and tissue lysates 

Unless otherwise stated, to quantify β-gal expression the Tropix Galacto-Light Plus 

system (Applied Biosystems, MA, USA) was used. This assay could not be used to 

quantify β-gal expression from rat tissues as rat blood inhibits this assay for unknown 

reasons. For rat tissues, the CPRG assay was used (section 2.12.2.1). 

 

 Briefly, infected cells were washed in PBS then lysed in 80 µl of Lysis Solution 

(0.2% (v/v) Triton X-100 in PBS). Twenty µl of each sample was transferred to a 

white 96-well plate. Standard curves of recombinant β-galactosidase protein ranging 

from 0-20 ng and 0-20 pg were produced in duplicate. Galacton Plus 

chemiluminescent substrate was diluted 1:100 in reaction buffer (100 mM sodium 

phosphate pH 8, 1 mM MgCl2). Seventy µl was then added to each well and incubated 

for 1 hour at room temperature. One hundred µl of light emission accelerator was 

added to each well. Luminescence was measured using a Wallac Victor2 plate reader 

(Wallac, Turku, Finland). β-galactosidase activity was then normalised to protein 

content of samples to give relative light units per mg protein (RLU/mg protein). 

 

2.12.2.1. Quantification of β-gal expression by CPRG assay 

The chlorophenol red β-d-galactopyranoside (CPRG) assay is a quantitative assay to 

detect differences in β-gal expression. This assay is based on the ability of β-

galactosidase to catalyse the hydrolysis of β-galactosides, including lactose and the 

galactoside analog CPRG. β-Galactosidase converts the yellow-orange CPRG 

substrate into galactose and the chromophore chlorophenol red, yielding a dark red 

solution. The amount of substrate converted can easily be detected. 

 

First the tissues were ground using a mortar and pestle on an ethanol and dry ice bath. 

Lysis buffer was added to the samples to a concentration of 2 ml/g homogenate and 

samples were then freeze/thawed three times. They were then further diluted 1:1 in 
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Doc buffer (10 mM tris, 0.5g/100ml deoxycholate, pH 8.4) and centrifuged for 40 

minutes at 16000 × g at 4ºC. The supernatant was kept as the working samples and 25 

µl of sample was added to the well of a clear 96-well plate. 100 µl CPRG substrate 

solution was then added to each well, before incubating the plate at room temperature 

until the red colour developed (10 minutes - 4 hours). Luminescence was measured 

using a Wallac Victor2 plate reader (Wallac, Turku, Finland). β-galactosidase activity 

was then normalised to β-gal MU / mg protein.  

 

2.13. Determination of protein concentration in cel l and tissue 

lysates 

The amount of protein in cell lysates was determined using the BCA assay kit (Pierce, 

Rockford, USA) as per manufacturer’s instructions. A standard curve was generated 

using dilutions of BSA ranging from 2000 µg/ml to 25 µg/ml. 200 µl of BCA working 

reagent was added to 25 µl of cell lysate or standard, in duplicate in a 96 well plate. 

The plate was incubated at 37°C for 30 minutes. The absorbance was measured at 570 

nm on the Wallac Victor2 plate reader (Wallac, Turku, Finland).  

 

2.14. AAV methods 

 

2.14.1. Production of rAAV2 vectors  

All rAAV2 vectors were produced, purified and titered by Dr. H. Buening (University 

of Cologne, Germany) using a previously described method (Nicklin, Buening et al. 

2001; Perabo, Buning et al. 2003). 

 

2.14.2. Production of rAAV6 in the laboratory for i n vitro studies 

rAAV6 is made from the plasmids pDGM6 and the expression cassette pAAV lacZ. 

pDGM6 is the packaging/helper plasmid including the serotype 6 reading frame. It 

provides genes E2A, E4 and VA, which when transfected into E1A-expressing 293T 

cells, allows the replication of AAV in trans.  The cells were transfected with a total 

of 21 µg DNA per transfection plate, in a ratio of 3:1 of each plasmid (15.75 µg helper 
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plasmid pDGM6 and 5.25 µg AAV lacZ plasmid), according to the method previously 

described for the production of fiber-modified and pseudotyped Ads (section 2.5.3.2). 

Lysates were then freeze-thawed 3 times before being centrifuged at 10,000 × g for 10 

minutes to remove tissue debris. The supernatant was overlayed onto a sucrose 

gradient consisting of 2.4 ml of a solution of 40% sucrose plus 0.01% BSA in TBS. 

Crude viral particles were pelleted by centrifugation at 100,000 × g for 16 hours at 

4°C. The pellets were then combined in 5 ml DNase Buffer. 1000 units of DNase I 

(Promega) were added and the samples incubated for 1 hour at 37°C. Two hundred 

and fifty µl 0.5M EDTA was then added before centrifugation at 10,000 × g for 2 

minutes. Supernatant was removed and kept at 4°C overnight. 

 

A HiTrap™ heparin HP column (Amersham Biosciences) was then equilibrated with 

DNase buffer, by means of a peristaltic pump. The virus was then bound to the 

column then washed with Ringer’s solution. A further wash of Ringer’s solution/0.5% 

N-lauryol-sarcosine was applied to the column before the virus was eluted in 200 mM 

NaCl Ringer’s solution and again in 400 mM NaCl Ringer’s solution. 

 

Elutions were titered by carrying out a micro-BCA assay. Serial dilutions of rAAV2 

(of a known titre) were used to construct a standard curve. Micro-BCA values from 

serial dilutions of rAAV6 were compared against the standard curve. 

 

2.14.3. Production of rAAV6 vectors for in vivo stu dies 

rAAV6 vectors were produced by Dr J Allen and Dr P Gregorevic through 

collaboration with the Chamberlain laboratory (University of Washington, Seattle, 

USA). A titre of 1.2 ×1013 vp was obtained, which was determined by Southern blot. 

Briefly an oligo probe derived from a common sequence, in this case the 

polyadenylation tail of the CMV promoter, is hybridized to southern blots containing 

dilutions of the vector preparation and plasmid standards to determine the genome 

titre of the preps. Vector genome content was also confirmed in house by quantitative 

real time PCR using primers to the lacZ gene. 
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2.14.4. Cloning of murine ACE2 into rAAV6 vector an d production 

of virus  

To clone the ACE2 AAV shuttle plasmid, pTYF-EF1a_IRES-eGFP containing the 

ACE2 cDNA (a kind gift from Dr M Raizada, Department of Physiology and 

Functional Genomics, University of Florida, USA) was digested using NheI and SalI 

restriction sites, and cloned into the XbaI and SalI sites in pAAV-MCS (Stratagene, 

CA, USA). pAAV-MCS-ACE2 was then packaged into AAV6 vectors (Gregorevic, 

Blankinship et al. 2004) (rAAV6:CMVlacZ, rAAV6:hPLAP and rAAV6:ACE2) by 

Dr J Allen and Dr P Gregorevic through collaboration with the Chamberlain 

laboratory (University of Washington, Seattle, USA) as previously described 

(Gregorevic, Blankinship et al. 2004). 

 

2.14.5. Production of rAAV9 

Pseudotype-9 rAAV (rAAV9:CMVlacZ) was purchased from University of 

Pennsylvania Vector Laboratories. The vectors were purified by two cycles of 

caesium chloride gradient centrifugation and titres were determined by a quantitative 

dot-blot assay. 

 

2.14.6. ACE2 activity assay 

To confirm that pAAV-ACE2 overexpressed functional ACE2, it was tested in vitro. 

ACE2 activity in Cos7 and HeLa cells following pAAV-ACE2 lipofectamine 

transfection was determined using an assay based on the use of Fluorogenic Peptide 

Substrate VI (FPS VI) (R&D Systems, Minneapolis, USA). ACE2 cleaves an amide 

bond between the fluorescent group and the quencher group (Pro and Lys), resulting 

in an increase in fluorescence in the presence of ACE2 activity at excitation and 

emission spectra of 320 and 405 nm, respectively. Briefly, protein was isolated from 

transfected cells using lysis buffer (75 mM Tris pH 7.5, 1 M NaCl, and 0.5 µM ZnCl2) 

and the protein content determined by BCA. Samples were normalised to an arbitrary 

quantity and made up to 50 µl. To the samples the following was added; 100 µM FPS 

VI, 10 µM ACE inhibitor captopril and reaction buffer (1 M NaCl, 75 mM Tris and 

0.5 mM ZnCl, pH 7.5) in a final volume of 100 µl.  
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To determine specific ACE2 activity, the experiment was also carried out in the 

presence of 100 µM ACE2 inhibitor DX600 (Phoenix Pharmaceuticals, Inc, 

California, USA). Fluorescence was monitored every 50 seconds for 2500 seconds 

using a spectrophotometer (Spectramax, Molecular Devices). 

 

2.14.7. RNA extractions 

RNA was extracted from the cells using an RNeasy midi kit (Qiagen). Briefly, 

samples were lysed and then homogenized in the presence of a highly denaturing 

guanidine isothiocyanate (GITC) containing buffer, which immediately inactivates 

RNases to ensure isolation of intact RNA. Ethanol is added to the lysate to provide 

ideal binding conditions. The lysate is then loaded onto the RNeasy silica-gel 

membrane. RNA binds, and all contaminants are efficiently washed away. Pure, 

concentrated RNA is eluted in water. The procedure provides enrichment for mRNA 

since most RNAs <200 nucleotides (such as 5.8S rRNA, 5S rRNA, and tRNAs) are 

selectively excluded.  

 

2.14.7.1. DNase treatment of RNA 

DNase digestion is required for RNA applications that are sensitive to very small 

amounts of DNA (e.g. RT-PCR analysis). This was carried out on RNA samples using 

TURBO DNA-free™ (Ambion, Texas, USA). To a 40 µl RNA sample was added 0.1 

volumes 10x TURBO DNase Buffer and 1 µl TURBO DNase (2 U/µl). After 20 

minutes incubation at 37°C, 0.1 volume DNase inactivation reagent was added and 

mixed for 2 minutes at room temperature. The sample is then centrifuged at 10,000 × 

g for 90 seconds and supernatant kept as DNA free sample. 

   

2.14.7.2. cDNA synthesis 

One µg of RNA was used to synthesise cDNA using a QPCR cDNA synthesis kit 

(Stratagene, CA, USA) as per manufacturer’s instructions. Briefly, RNA samples 

were mixed with 10 µl of first strand master mix (2×), 3 µl of oligo (dT) primer and 1 

µl of AffinityScript RT/ RNase Block enzyme mixture in a final volume of 20 µl. The 

reaction was incubated at 25 ºC for 5 minutes to allow primer annealing, then at 42ºC 

for 15 minutes to allow cDNA synthesis. The reaction was finally incubated at 95ºC 

for 5 minutes to terminate the cDNA synthesis reaction. 
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2.14.8. In vivo infusion of rAAV6 

Male 6 week old SHRSP were administered a single intravenous injection of 

increasing doses of rAAV6:CMVlacZ (2×1011, 1.5×1012 and 3×1012 vp/rat) in the 

presence or absence of recombinant human VEGF-165 (20 µg/100 g body weight) or 

rAAV9:CMV lacZ or rAAV6:MLC2v at identical doses under general anaesthesia 

(2% isoflurane, vol/vol). Animals were sacrificed 2 weeks or at 12 weeks post 

infusion. Male 8 week old animals were infused with 3×1012 vp rAAV6:hPLAP or 

rAAV6:ACE2. Control animals were infused with 200 µl PBS and enalapril was 

supplied in the drinking water at 0.1 mg/ml. 

2.15 Systolic blood pressure measurements 

Systolic blood pressure monitoring was carried out weekly by non-invasive 

computerised tail cuff, which is based on the plethysmographic method (Davidson, 

Schork et al. 1995). A pneumatic pressure sensor was attached to the tail distal to a 

pneumatic pressure cuff, both under the control of a Programmed Electro-

Sphygmomanometer. Systolic blood pressure values from each animal were 

determined by averaging a minimum of six separate indirect pressure measurements. 

 

2.16 Echocardiography 

Transthoracic echocardiography was carried out by Dr K Gilday and Mrs E Beattie at 

the University of Glasgow. Briefly, it was performed using an Acuson Sequoia c512 

ultrasound system with a 15-MHz linear array transducer. Non-invasive acquisitions 

of 2-D guided M-mode images at a depth of 2 mm were recorded at the tip of 

papillary muscles. Rats were anesthetized with 1.5% isoflurane in O2 and placed in the 

left lateral decubitus position on a heated pad. Three-lead electrocardiogram (ECG) 

was obtained using sub-dermal electrodes adapted with fine needles and secured on 

the front limbs and the right hind limb. The thickness of the posterior and anterior 

walls of the LV chamber and the LV chamber diameter during systole and diastole 

were measured in a short axis view using the leading edge-to-leading edge 

convention. All parameters were measured over at least three consecutive cardiac 

cycles. Pulse-wave and colour Doppler were used to measure the velocity of blood 
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through the mitral valve and to qualitatively examine the valve for evidence of mitral 

regurgitation from the apical four-chamber. The sample volume was placed at the tip 

of the mitral leaflets and adjusted to the position at which velocity was maximal; the 

sample volume was set at 2.5 mm. All Doppler spectra were recorded for 5-10 cardiac 

cycles at a sweep speed of 150 mm/s. 

 

2.16.1 Formulae used in echocardiography assessment s 

Ejection fraction was defined as follows: EF = [(LVEDV - LVESV)/LVESD × 100], 

where LVEDV is left ventricular end diastolic volume and LVESV is left ventricular 

end systolic volume. Fractional Shortening was derived from: FS = [(LVEDD - 

LVESD) / LVEDD × 100], where LVEDD is left ventricular end diastolic diameter 

and LVESD is left ventricular end systolic diameter. Cardiac output was derived 

from: CO = [(ESV - EDV) × HR], where HR is heart rate. Change in interventricular 

septal wall thickness (ISWT) was measured using the formula [(AWTs-

AWTd)/AWTs × 100], where AWT is anterior wall thickness, s is systole and d is 

diastole. 

. 

2.17 Small vessel myography 

Myography experiments were carried out by Mrs A. Spiers at the University of 

Glasgow. Briefly, basal NO bioavailability was determined in vascular rings from 

small mesenteric arteries which were cleaned of connective tissue and fat and divided 

into 3-mm rings. Isolated rings were placed in a small vessel four-channel myograph. 

Each ring was mounted on two parallel stainless steel wires of 40 µm diameter, one of 

which was connected to a micrometer, the other fixed to a force transducer in wire 

myograph organ baths maintained at 37ºC, containing 5ml Krebs buffer (composed 

of, in mM, 130 NaCl, 4.7 KCl, 1.6 CaCl2, 1.17 MgSO4, 1.18 KH2PO4, 14.9 NaHCO3, 

5.5 glucose; continuously bubbled with 95% O2/5% CO2) for isometric tension 

recording. The resting tension of the rings was set using the normalisation procedure 

previously described (Mulvany and Halpern 1977). Briefly, each ring was subjected to 

stepwise radial stretching by adjustment of the micrometer. At each step the effective 

transmural pressure was calculated using the LaPlace equation. This process was 

continued until the ring was stretched to an internal circumference equivalent to a 
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transmural pressure of 100 mmHg. The micrometer was then adjusted to set the 

internal circumference of the ring to 90% of this length (a value termed “0.9L100”), a 

setting that is optimal for force generation. The rings were then washed with fresh 

Kreb’s solution, prior to the commencement of the experimental protocol. Basal NO 

bioavailability was calculated using the difference between responses to contractile 

agonists in the presence and absence of the NOS inhibitor, NG-nitroarginine methyl 

ester (L-NAME), and expressed as area under the curve across the full concentration–

response range for the contractile agonist. The augmentation of the contractile 

response in the presence of L-NAME is an index of the degree of basal NO activity in 

the vessel.  

 

2.18 Statistical analysis        

All in vitro experiments were carried out in triplicate on three independent occasions. 

Results shown are representative and values are mean ± standard error of the mean 

(SEM). Student’s unpaired t-test or ANOVA was used to analyse the results, which 

were considered significant when p<0.05 after Bonferonni corrections. 

 

2.18.1 In vivo statistical analysis 

Comparisons were made using one way or two way ANOVA. Statistical analysis was 

performed in Prism version 4.0 (Graph Pad Software, San Diego, CA, USA). For all 

tests, P<0.05 is considered statistically significant after Bonferroni corrections or 

Tukey’s post analysis. The results represent mean values and SEM of the data. For 

vascular function, EC50 was analysed using the student’s t test. 
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3.1 Introduction 

 
We aimed to assess the effects of sustained overexpression of ACE2 in the 

vasculature. In general terms, the treatment of cardiovascular disease would greatly 

benefit from the generation of reagents that specifically localise to defined vascular 

beds including the heart. Targeted gene delivery would increase the efficacy of gene 

transfer vectors, whilst limiting vector induced side effects. By exploiting the 

molecular diversity of the endothelium, peptides that bind to specific receptors that 

are expressed on the surface of blood vessels can be identified that will allow cell-

specific targeting, either of gene delivery systems (Biermann, Volpers et al. 2001; 

Nicklin, Von Seggern et al. 2001) or of bioactive peptides (Ellerby, Arap et al. 1999). 

These unique receptors may be expressed in an organ specific or disease specific 

manner, allowing the identification of highly specific ligands that home to these 

molecular targets. This complex molecular address system can be manipulated to 

develop systemically administrable therapies. Peptide discovery may be mediated 

through the use of either phage (Pasqualini and Ruoslahti 1996; Zhang, Hoffman et al. 

2005) or AAV2 libraries (Michelfelder, Lee et al. 2007).  

 

Bacteriophage T7 is a commercially available obligate lytic phage that infects enteric 

bacteria and more specifically Escherichia coli. It is appealing for use in display 

technologies as it is robust and fast growing phage. Kits are now available that allow 

the creation of novel T7 phage libraries from T7select® vectors, or pre-made libraries 

can also be supplied. T7 phage display allows the efficient cloning and display of 

targeting peptides as C-terminal fusions to the 10B major capsid protein. Peptides are 

displayed on the surface of the virion, fully accessible for interaction with other 

ligands. High, mid, or low copy number of peptide are displayed per phage, 

depending on the T7 vector system used and the size of insertion. 

 

Random peptide phage libraries have been used to recover targeting peptides through 

in vitro or in vivo approaches. Pasqualini and Rouslahti were the first group to 

demonstrate the utility of phage display peptide libraries in organ targeting in vivo in 

mice (Pasqualini and Ruoslahti 1996). Phage recovered from the brain and kidney 

blood vessels were repeatedly recovered, amplified and intravenously infused into 

mice to ultimately enrich the population of phage targeting these organs. Brain and 
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kidney localising phage were identified that had increased selectivity for these tissues. 

This approach has been used to identify ligands that bind to tissue-specific 

vasculature. Targeting peptides that home to the vasculature of a specific organ have 

been identified for lung, pancreas, skin (Rajotte, Arap et al. 1998), skeletal and 

cardiac muscle (Samoylova and Smith 1999) and even diseased regions of 

atherosclerotic blood vessels in low density lipoprotein receptor knockout mice 

(Houston, Goodman et al. 2001). In 2005, phage that selectively home to the murine 

heart vasculature were identified through a combination of ex vivo and in vivo phage 

display techniques (Zhang, Hoffman et al. 2005). Three rounds of ex vivo biopanning 

on murine myocardial cells was succeeded by three rounds of in vivo biopanning in 

mice and resulted in the identification of heart targeting peptides. Target receptors for 

some of these targeting peptides were also identified and were found to be 

preferentially expressed in heart blood vessels and in the endocardium (Zhang, 

Hoffman et al. 2005). Phage expressing the heart targeting proteins were found to 

have a homing selectivity of 20- to >300-fold greater than insertless phage. 

 

As viral vectors are limited by their natural tropisms, the modification of these vectors 

can greatly aid their subsequent transduction profile. Phage display-derived peptides 

have previously been used to retarget adenoviral vectors to ovarian cancer cells 

(Dmitriev, Krasnykh et al. 1998), renal cell carcinoma cells (Haviv, Blackwell et al. 

2002) and primary vascular smooth muscle cells as well as primary human endothelial 

cells (Biermann, Volpers et al. 2001), through the insertion of the RGD peptide into 

the HI loop of the fiber of the vector. AAV2 vectors have also been modified by 

targeting peptides, with success being found in vivo shown by reduced vector 

accumulation in the liver and selective transgene expression of endothelial cells in the 

vena cava (White, Nicklin et al. 2004). Lung and brain targeting peptides inserted into 

the capsid of AAV2 vectors were shown to target to the vascular beds of the specific 

organs after systemic injection in rats (Work, Buening et al. 2006). Heart-homing 

peptides can potentially be used to retarget viral vectors for use in cardiovascular gene 

therapy. This method may allow the efficacy and selectivity of viral vectors to be 

improved. 

 

Here I aimed to increase the efficiency of vector targeting to the vasculature through 

viral vector tropism modification via phage display-derived peptides.  
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3.2 Results 

 

3.2.1 Targeting peptides 

Candidate peptides, isolated by three rounds of selection on ex vivo heart cells, 

followed by three rounds of selection in vivo, were supplied through collaboration 

with E. Rouslahti (Zhang, Hoffman et al. 2005). T7 phage displaying the selected 

peptides (Table 3.1), were grown to high titres and purified. Before use, the phage 

were sequenced to check the sequence of the inserts (Table 3.1). A dose-response 

study was then carried out in vivo in which 4 different doses (5×109, 1×1010, 5×1010 

and 1×1011 pfu) were compared between the non-recombinant phage and a 

recombinant targeting phage chosen at random (CGRSKTVC) in WKY strain rats 

(Figure 3.1). As there is a large, rapid and non-specific uptake of phage by the liver 

following systemic injection, we aimed to saturate non-specific binding in the liver 

(Figure 3.1B) and in the heart. By comparing phage recovered per gram of heart 

tissues, normalised to input dose, an optimal dose of 5×1010 pfu was decided upon 

from which to base further experiments. This was the dose that allowed for maximum 

recovery of specific-binding phage from the heart (Figure 3.1A). 

 

All six phage were then tested in vivo. Phage recovery showed that three of the 

peptides can be seen to selectively target the heart in comparison to the non-

recombinant phage and the other major organs (Figure 3.2 and Table 3.2). These three 

potential candidates were identified as CRPPR, CSGMARTKC and CRSTRANPC. 

All three demonstrated an increase in ability to home to the heart, when compared to 

insertless phage (Figure 3.2 and Figure 3.3). CRSTRANPC showed the highest 

selectivity with a 2000-fold higher specificity than the insertless phage. CRPPR has 

450 fold and CSGMARTKC 85 fold higher homing to the heart compared to the non-

recombinant phage. CPKTRRVPC was also shown to target the heart in comparison 

to non-recombinant phage, with a 13 fold higher homing ability. However, this 

targeting was not limited to the heart and CPKTRRVPC also showed increased 

transduction in the lung. Because of the heart targeting potential, further work was 

carried out with this phage. Phage displaying the CGRSKTVC and CPKRPR peptides 

were discarded at this point as they were not seen to be selective at heart targeting, 

instead targeting the lung and spleen respectively (Figure 3.2). 
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CGRSKTVC 

 

5’ TGCGGTCGGAAGTCGAAGACGGTTTGC 3’ 

CRPPR 

 

5’ TGCCGTCCGCCTCGG 3’ 

CPKTRRVPC 

 

5’ TGCCCTAAGACGCGTCGAGTTCCTTGC 3’ 

CRSTRANPC 

 

5’ TGCCGTAGTACTCGTGCTAATCCTTGC 3’ 

CSGMARTKC 

 

5’ TGCTCTGGTATGGCTCGTACTAAGTGC 3’ 

CPKRPR 

 

5’ TGCCCTAAGCGTCCGCGG 3’ 

 

 

 

Table 3.1 Heart targeting peptides. 

Selective heart targeting peptide sequences isolated through successive rounds of ex vivo and in vivo phage biopanning (Zhang, Hoffman et al. 

2005).
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Figure 3.1. Dose-response study. 

Four different increasing doses (5 × 109, 1 × 1010, 5 × 1010 or 1 × 1011 pfu)   of 

CGRSKTVC or insertless phage were infused into 12 week old WKY rats. Phage 

were recovered from (A) heart and (B) liver and analysed as PFU/g tissue/ input 

(n=1/dose). 
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Figure 3.2. Cardiac targeting capacity of selected phage. 

Recovery of phage from WKY infused with 5x1010 pfu of indicated phage. The 

cardiac endothelial homing peptides were displayed in T7 phage and intravenously 

injected into rats. Data are presented as a fold change in comparison to the 

nonrecombinant phage in the major organs (n=3/group). *p<0.05 for heart vs. liver, 

spleen, brain, kidney and lung by one way  ANOVA and Bonferonni’s post hoc 

analysis.  
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Figure 3.3. Phage recovery from heart. 

Recovery of phage from the hearts of WKY infused with 5x1010 pfu of indicated phage (n=3/group). Data are presented as mean recovery 

(PFU)/ mg tissue ± SEM. *p<0.05 as compared to insertless by unpaired two-tailed t test. 
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Immunohistochemical analysis confirmed the targeting of the four selected peptides to 

the hearts of these rats (Figure 3.4). Whilst histology revealed that CSGMARTKC 

was found to primarily target the vascular endothelial cells, T7 phage displaying the 

peptides CPKTRRVPC, CRPPR and CRSTRANPC were also found throughout the 

myocardium, suggesting that the latter three peptides are not endothelial specific in 

the WKY heart (Figure 3.4). 

 

3.2.2 Evaluation of targeting phage in vitro 

The putative endothelial molecules (receptors) that the targeting peptides bind to were 

isolated by Zhang et al (Zhang, Hoffman et al. 2005). C-terminal 92 amino acids of 

heart LIM protein (cystein rich protein - CRIP-II) was identified as the receptor for 

CRPPR, bladder cancer-associated protein (human) homologue (BC-10) for 

CPKTRRVPC and CSGMARTKC, and an unnamed protein product similar to 

integral membrane protein CII-3 (MPCII-3) was suggested as the receptor for  

CRSTRANPC. To assess the expression of the receptors in vivo in the WKY rat heart, 

immunohistochemical staining was carried out on sections of heart with antibodies 

against the three receptors (Figure 3.5). Selective staining was observed from CRIP-II 

and BC-10 receptors but not from the MPCII-3 receptor. Thus the expression of 

CRIP-II and BC-10 in the WKY heart was confirmed, but the expression of MPCII-3 

could not be determined. Western blot analysis was then carried out following 

transfection of plasmids expressing these putative receptors into COS cells to confirm 

their expression (Figure 3.6). Only CRIP-II expression was detected by this method. 

In a second attempt to confirm expression of the receptors from each plasmid, 

immunocytochemistry was carried out, which again confirmed expression of the 

CRIP-II receptor, but not of BC-10 or MPCII-3 (Figure 3.7). Thus the functionality of 

two of the plasmids expressing the putative receptors BC-10 and MPCII-3 could not 

be ascertained. Consequently, further work with the receptors was not carried out. 

 

3.2.3 Peptide-modified Ad19p vectors 

The selected heart targeting peptides (CRPPR, CRSTRANPC, CSGMARTKC and 

CPKTRRVPC) were inserted into the HI loop of the Ad19p fiber. The Ad19p vector 

was chosen for insertion of the targeting peptides as these vectors have previously  
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Figure 3.4. Histological analysis of T7 phage. 

Histological analysis of vascular targeting with an anti-T7 antibody was carried out on 

sections of heart from animals in all 4 groups at termination, 15 minutes post-infusion 

(n=3/group). Scale bar = 50 µm, magnification × 20 or scale bar = 100 µm, 

magnification × 40. Black arrows = endothelial cells. 
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Figure 3.5. Expression of the receptors in WKY heart. 

Immunohistochemistry with an anti-CRIP-II, anti-BC-10 or anti-MPCII-3 antibody was carried out on heart sections from WKY rat. Scale bar = 

30 µm, magnification × 20. 
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Figure 3.6. Expression of candidate phage receptors. 

Cells were transfected with the plasmids expressing each putative receptor fused to a 

HIS tag. Following 48 hours lipofectamine-mediated transfection, cells were 

harvested and lysed. Expression of the three receptors BC-10, CRIP-II, MPCII-3 was 

tested by western immunoblotting with an anti-HIS tag antibody and detected on a 

12% gel under reducing conditions.  
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Figure 3.7. Analysis of function of receptor expressing plasmids. 

Plasmids expressing the receptors CRIP-II, BC-10 and MPCII-3 were transfected into 

HeLa cells and immunocytochemistry carried out 48 hours later in permeabilised 

conditions. Scale bar = 50 µm, magnification = × 4 or magnification = × 10.  
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been shown to lack tropism for mouse, rat, and human hepatocytes in vitro and have 

demonstrated greatly reduced transduction of liver after systemic injection into rats 

(Denby, Work et al. 2004). Two modified versions of the CRPPR peptide were also 

inserted into this loop in the Ad19p capsid. The peptides, GSSCRPPRGSS (CRPPR-

mod) and CRPPRGGGSCRPPRGGGSCRPPR (3-CRPPR), were created by the 

insertion of spacers with the sequence GGG to generate peptides that might protrude 

further from the capsid of the vectors, thus allowing enhanced binding. To see if 

Ad19p tropism had been modified by the insertion of these targeting peptides, they 

were first tested in vitro. Infection of human coronary artery endothelial cells with the 

peptide-modified vectors revealed no increased transduction of control Ad19p (no 

peptide) (Figure 3.8). Levels of transduction were not increased above control 

uninfected wells and were not enhanced above those of unmodified Ad19p vectors, 

which showed the highest transduction of all the vectors tested (Figure 3.8). 

 

In vivo testing of the seven vectors revealed unmodified Ad19p displayed the highest 

heart uptake, as shown by Q-PCR (Figure 3.9). Q-PCR confirmed the lack of native 

hepatic tropism of the Ad19p vectors. However, it also confirmed that no modified 

heart targeting tropism had been bestowed upon these vectors with the insertion of the 

selected peptides (Figure 3.9). Immunohistochemistry showed evidence of staining in 

the hearts of CSGMARTKC, CPKTRRVPC, CRSTRANPC and to a lesser extent 

CRPPR peptide-modified Ad19p vector infused rats. High levels of staining were 

observed in the hearts of unmodified Ad19p vector infused rats. Thus 

immunohisotchemistry confirmed that no specific staining was observed in the hearts 

of the peptide-modified vector infused animals that was not either present in the PBS 

infused hearts, or greater than that seen for the unmodified Ad19p vector (Figure 

3.10). 

 

3.2.4 Retargeting AdKO1 

To test the ability of the phage-display derived targeting peptides to retarget 

alternative viral vectors, the selected candidates were inserted into the HI loop of the 

AdKO1 vector, which is CAR-binding ablated. These vectors were then tested in vitro 

for their ability to transduce human coronary artery endothelial cells. AdKO1 CRPPR,  
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Figure 3.8. In vitro Ad19p transduction. 

Ad19p peptide modified vectors were tested in vitro in HUCAEC (n=3/group). *p<0.05 as compared to control as determined by one way 

ANOVA and Bonferonni post test. β-gal expression quantified by Tropix Galacto-Light Plus assay. 
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Figure 3.9. Ad19p peptide modified vectors in vivo. 

3 × 1011 vp were infused into 12 week old male WKY rats (n=4/group). 5 days post-infusion organs were removed and DNA extracted. Q-PCR 

was carried out to quantify relative vector genome numbers. * p<0.05 as compared to Ad19p mod by 2 way ANOVA and Bonferonni’s post hoc 

analysis. N=4/group. 
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Figure 3.10 Histological analysis of Ad19p mediated lacz expression in the heart. 

Immunohistochemical anaylsis with an anti-β galactosidase antibody was carried out on sections of heart from the Ad19p vector infused animals 

at termination (n=4/group). Scale bar = 50 µm, magnification × 20. 



 104 

AdKO1 CRSTRANPC and AdKO1 CPKTRRVPC all demonstrated increased 

transduction of the cells in comparison to control uninfected cells (Figure 3.11). 

However, AdKO1 CSGMARTKC showed no increase in transduction of the 

endothelial cells. These results suggest that this configuration is useful but cannot be 

assessed in vivo as the AdKO1 vector is known to be sequestered by the liver, despite 

its CAR-binding ablation (Mizuguchi, Koizumi et al. 2002; Rittner, Schreiber et al. 

2007). However, it has very recently been discovered that CAR is not important in 

binding in vivo and it is the interaction of the hexon with blood coagulation factors 

that are involved (Waddington, McVey et al. 2008). This discovery would allow for 

the development of methods to test these vectors in vivo. 

 

3.2.5 Peptide-modified rAAV2 vectors 

Once the peptides had been cloned into the capsid of the rAAV2 vector, the vectors 

were tested in vitro (Figures 3.12 and 3.13). Only three of the peptides could 

successfully be packaged into rAAV2 vectors; these were CRPPR, CPKTRRVPC and 

CSGMARTKC. Insertion of targeting peptides into the HSPG binding site in the 

rAAV2 capsid has been shown to reduce the hepatic tropism of the vectors (White, 

Nicklin et al. 2004; Work, Buening et al. 2006). To assess whether the natural hepatic 

tropism of rAAV2 vectors had been altered, HepG2 cells were infected with the 

peptide-modified vectors (Figure 3.12). As expected, rAAV2-wild type showed high 

levels of transduction of the hepatocytes. In contrast, the other three peptide-modified 

vectors showed no hepatic transduction (Figure 3.12). Next, human coronary artery 

endothelial cells were transduced with the peptide-modified vectors to determine their 

transduction efficiency of vascular endothelial cells (Figure 3.13). RAAV2 CRPPR 

showed low levels of transduction in HUCAECs when used at a dose of 10,000 

genomic particles/cell. Disappointingly, the other three vectors, wild type rAAV2, 

rAAV2 CPKTRRVPC and rAAV2 CSGMARTKC demonstrated no transduction of 

the vascular endothelial cells, indicating that peptide-modification of rAAV2 with 

each individual peptide did not enhance tropism for HUCAEC (Figure 3.13). The low 

titre of these vectors did not allow for them to be tested in vivo. 
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Figure 3.11. Retargeting of AdKO1 peptide modified vectors. 

The four heart targeting peptides were cloned into the HI loop of AdKO1. Vectors were tested in vitro in human coronary artery endothelial cells 

(HUCAEC) (n=3/group). *p<0.05 AdKO1 CRSTRANPC and AdKO1 CPKTRRVPC vs. uninfected by one way ANOVA and Bonferonni 

posttest. β-gal expression quantified by Tropix Galacto-Light Plus assay. 
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Figure 3.12. rAAV2 infection of HepG2 cells.      

HepG2 cells were infected with rAAV2 vectors at 10,000 particles/cell (n=6). Transduction ability of the vectors was observed 72 hours later by 

EGFP transgene expression and propidium iodide counterstaining. Scale bar = 50 µm, magnification × 10.                                     



 107 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 3.13 rAAV2 infection of human coronary artery endothelial cells.   

HCAEC were infected with rAAV2 vectors at 10,000 particles/cell (n=6). Transduction ability of the vectors was observed 72 hours later by 

EGFP transgene expression and propidium iodide counterstaining. Scale bar = 50 µm, magnification = × 20.                                     



 108 

 

3.3 Discussion 

 
We demonstrate that heart targeting peptides isolated from a random phage-display 

library show increased selectivity for the heart in comparison to non-recombinant 

phage when intravenously infused into WKY rats. The heart specificities of the phage 

were up to 2000-fold higher than that of non-recombinant phage. Originally isolated 

through a combination of ex vivo biopanning of murine endothelial cells and in vivo 

biopanning in mice, four out of the six peptide’s homing abilities were shown to be 

conserved cross-species.  

 

The identification of the cognate receptors for these four targeting peptides not only 

aids the assembly of a ligand-receptor vascular map (Sergeeva, Kolonin et al. 2006), 

but also allows for the possibility of efficiently targeting therapeutic compounds to 

specific receptors on vascular endothelial cells (Balestrieri and Napoli 2007). It also 

allows the possibility of identifying other targeting peptides that display higher 

affinities to the identified vascular endothelial markers. However, in contrast to the 

studies by Zhang et al (Zhang, Hoffman et al. 2005), which confirmed high levels of 

expression of all three putative receptors in the hearts of mice, we could only localise 

two out of three receptors to the heart, with no detection of MPCII-3 expression being 

found in the heart of WKY rats by immunohistochemical analysis. The discrepancy in 

receptor expression may be due to a species difference between WKY rats and mice 

in expression of the vascular target MPCII-3. However, the corresponding peptide, 

CRSTRANPC, was shown to have the highest fold change in heart targeting 

capacities of all the phage tested, and so it is unlikely that its receptor is not expressed 

in the WKY rat heart. It remains to be shown whether this peptide binds to the same 

receptor in the rat as is does in the murine model.  

 

The utility of bioactive peptides is not limited to the targeting of viral vectors. 

Targeting peptides can also be used to enhance tissue specific uptake of genes or 

drugs. Heart targeting peptides could be used to carry pharmacologically active 

compounds for improved targeted therapy. Peptides specifically targeting tumour 

neovasculature have been linked to liposomes carrying the chemotherapy drug 
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doxorubicin and have been shown to enhance the efficacy of the drug (Lee, Lin et al. 

2007). Similar approaches could be applied to drugs for the treatment of 

cardiovascular diseases. Potentially, targeting peptides could be used for the delivery 

of cytoprotective drugs to the heart (McGuire, Samli et al. 2004) to prevent damage to 

the heart muscle that is associated with the treatments of non-cardiovascular disease, 

such as radiation and chemotherapy (Goethals, De Winter et al. 2002).  The heart 

targeting peptides also have utility in the linking to other peptides, which could 

include antisense oligonucleotides and inhibitory peptides, such as novel oxidase 

homologues (NAD(P)H) inhibitors (Cifuentes and Pagano 2006). Targeting peptides 

have been studied in the context of the treatment of obesity. White adipose tissue 

vasculature targeting peptides linked to a proapoptotic peptide were shown to ablate 

white adipose tissue, leading to a potential targeted therapeutic for the treatment of 

obesity (Kolonin, Saha et al. 2004). 

  

The identification of heart targeted peptides ultimately allows the potential for the 

generation of novel retargeted gene delivery vectors. However, we found that the 

phage-display derived cardiac targeting peptides proved disappointing in the context 

of viral vector retargeting. Ad19p vectors have a naturally reduced hepatic tropism in 

comparison to other Ad vectors (Denby, Work et al. 2004; Denby, Work et al. 2007). 

Therefore it was proposed that these vectors would provide the ideal context in which 

to study the isolated phage peptides. After engineering of the Ad19p fiber to 

accommodate the four heart targeting peptides, we found that there was no selective 

targeting, either to endothelial cells in vitro or to the heart after intravenous in vivo 

infusion. Intravenous injection of Ads has previously been reported to be hampered 

by a number of complex interactions with the blood (Shayakhmetov, Gaggar et al. 

2005; Lyons, Onion et al. 2006; Parker, Waddington et al. 2006; Baker, McVey et al. 

2007). However, as we found no convincing evidence of enhanced transduction of 

vascular endothelial cells in vitro, it is unlikely that this is the only reason for poor 

vascular transduction in vivo. The incorporation of the targeting peptides into the HI 

loop on the Ad19p fiber may have led to hampered production of virus by hindering 

virus packaging and assembly or could also have been detrimental to fiber 

trimerisation. However, targeting with 7-mer peptides has been shown to be efficient 

for renal gene delivery (Denby, Work et al. 2007). T7 phage display promotes the 

selection of stable ligands through the display of active conformations of the peptides 
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through the use of constrained configurations (Falciani, Lozzi et al. 2005). Despite 

this fact, binding properties of these selective peptides may have been changed 

through the incorporation into the viral envelope. It is also important to consider that 

these vascular targeting peptides were selected for their cell binding abilities and not 

for their abilities to aid vector cell entry or subsequent steps needed for genome 

nuclear translocation or transcription. They were also selected from a prokaryotic 

environment.  

 

Despite the promising targeting in vitro results from the peptide-modified AdKO1 

vectors, they have not be tested in vivo since recent studies have demonstrated that the 

biodistribution and transduction profiles of CAR binding-ablated AdKO1 is not 

significantly altered when tested in vivo (Alemany and Curiel 2001; Mizuguchi, 

Koizumi et al. 2002; Rittner, Schreiber et al. 2007). Recently, it has been shown that 

blood coagulation factors, predominantly factor X, enhance hepatocyte transduction 

by binding directly to the adenovirus capsid, bridging the virus to HSPG receptors, 

expressed abundantly in the liver and providing a CAR-independent means of cell 

transduction (Parker, Waddington et al. 2006; Waddington, Parker et al. 2007). The 

use of warfarin to globally down-regulate vitamin K dependent coagulation zymogens 

ablated liver uptake of CAR binding-ablated Ad5 (Parker, Waddington et al. 2006) 

and CAR binding Ad5 (Waddington, Parker et al. 2007). The utilisation of this 

technique to knock-out coagulation factors and significantly reduce liver uptake of the 

peptide-modified AdKO1 vectors would allow for their retargeting abilities to be 

tested in vivo. 

 

The genetic insertion of targeting ligands into the capsid of rAAV2 vectors is a 

commonly applied approach to genetically retarget the vectors. However, often the 

insertion of a peptide can result in a reduction in yield of viral particles, through 

defects in genome encapsidation which inevitably leads to poor transduction 

efficiency (Douar, Poulard et al. 2003). The low titre of the rAAV2 vectors that were 

obtained would suggest similar results in our study. 

 

In summary, these applied approaches did not lead to the identification of an efficient 

method for the delivery of potentially therapeutic genes to the vasculature. The 

cardiac vasculature targeting peptides isolated by T7 phage display did not retarget 
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the viral vectors tested. Because of their homing abilities when displayed as peptides, 

they may be useful as targeting peptides in combination with, for example drugs, to 

provide enhanced therapeutically beneficial properties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 112 

 

 

 

 

 

 

Chapter 4 

 

 

 

 

 

Characterisation of rAAV6 and rAAV9 vector-mediated  

transduction of the myocardium in vivo in the SHRSP  
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4.1 Introduction 

 

A major challenge to overcome in cardiac gene therapy is the limited availability of 

vectors that provide efficient delivery via a minimally invasive route of 

administration. Recently, adeno-associated viruses (AAV) have emerged as 

promising vectors for cardiac gene transfer (Du, Kido et al. 2004; Wang, Zhu et al. 

2005; Palomeque, Chemaly et al. 2007). To date eleven serotypes of AAV have been 

identified. However, the most characterised of these vectors, AAV2, has 

demonstrated poor tropism for many cells, including endothelial cells, and tends to 

transduce non-vascular tissue more readily than it does vascular tissue (Nicklin, 

Buening et al. 2001; Dishart, Denby et al. 2003). This disappointment in the 

performance of rAAV2 vectors in basic science and clinical trials has directed the 

focus of intense research efforts to the identification and development of novel 

serotypes. Exploitation of alternative AAV isolates with differing tissue tropisms 

could overcome this limitation faced by conventional AAV2 vectors.  

 

Among the AAV serotypes tested so far, certain serotypes including AAV6, -8 and -9 

have displayed powerful tropism for skeletal and cardiac muscle (Kawamoto, Shi et 

al. 2005; Wang, Zhu et al. 2005; Inagaki, Fuess et al. 2006; Pacak, Mah et al. 2006), 

achieving high cardiac transduction rates following local and systemic injection 

(Wang, Zhu et al. 2005; Inagaki, Fuess et al. 2006; Pacak, Mah et al. 2006). AAV6 

has evolved through recombination between AAV1 and AAV2 and differs in only six 

amino acids in the capsid region from AAV1 (Gao, Vandenberghe et al. 2004). 

Intravenous delivery of recombinant AAV vectors pseudotyped with serotype 6 

capsid proteins (rAAV6) leads to transduction of the skeletal musculature at levels 

>500-fold higher than rAAV2 vectors in mice (Blankinship, Gregorevic et al. 2004). 

Moreover, extensive transgene expression was observed throughout the entire skeletal 

musculature when mice were intravascularly administered rAAV6 in combination 

with vascular endothelial growth factor (VEGF) (Gregorevic, Blankinship et al. 

2004). High level expression was dependent on co-administration with VEGF for 

vector administered at lower dose levels of 2 × 1011 vp/mice. Importantly, there was 

high levels of transduction of the cardiomyocyte population in mice receiving rAAV6 

vectors in combination with acute vascular permeabilisation with VEGF (Gregorevic, 
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Blankinship et al. 2004). In a subsequent study with direct comparison to rAAV2 

vectors, rAAV6 vectors were shown to transduce a 10-fold larger volume of the 

myocardium and achieve a 5-fold greater transgene activity after local myocardial 

delivery in mice (Kawamoto, Shi et al. 2005). The same study also demonstrated the 

capacity of rAAV6 vectors to mediate early onset transgene expression in comparison 

to rAAV2 vectors when the β-actin based hybrid promoter was used to accelerate the 

time to gene expression (Kawamoto, Shi et al. 2005). Recently, rAAV6 vectors have 

also been used to achieve high levels of transgene expression in rat hearts up to 24 

weeks after local gene delivery (Palomeque, Chemaly et al. 2007). 

 

One of the most recently identified AAV serotypes is AAV9, and has been shown to 

have similar properties to AAV8 being predominantly found in the liver and bone 

marrow and differing by 14.3% in capsid amino acid sequence (Gao, Vandenberghe et 

al. 2004). In a recent study, pseudotyped rAAV9 vector-mediated liver transduction 

was shown to correct haemophilia A in mice and dogs (Sarkar, Mucci et al. 2006), 

demonstrating the pre-clinical potential of alternative naturally occurring AAV 

vectors. Vectors based on AAV9 have also been shown to transduce murine 

myocardium at 5 to 10-fold higher levels than AAV8-pseudotyped vectors, resulting 

in over 80% cardiomyocyte transduction following tail vein injection with as low as 1 

× 1011 particles per mouse (Inagaki, Fuess et al. 2006). In a direct comparison with 

rAAV1 vectors, rAAV9 vectors produce higher levels of transgene expression in mice 

and nonhuman primates (Pacak, Mah et al. 2006). The vector biodistribution profile 

of rAAV9 was not affected by age of the animals, displaying a similar preference for 

cardiac tissue over skeletal muscle in both neonates and adult mice. Transgene 

expression levels from rAAV9 vector increases overtime for at least 56 days post-

injection in mice (Pacak, Mah et al. 2006). Stable transgene expression with rAAV9 

vectors has been detected for at least 9 months (Limberis and Wilson 2006), 

illustrating the utility of this vector for the treatment of pathologies, such as 

cardiovascular disease, where long-term transgene expression is required. 

Furthermore, is has been shown that rAAV9 can be re-administered, despite the 

presence of neutralising antibodies without limiting effects on transgene expression 

levels (Limberis and Wilson 2006).  
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No studies to date have compared the capacity of rAAV6 and -9 to achieve cardiac 

transduction following intravenous injection into rats. We used stroke-prone 

spontaneously hypertensive rats (SHRSP), an established model of cardiovascular 

disease with genetically bred predisposition to hypertension and stroke sensitivity 

(Okamoto, Yamori et al. 1974). The colony of SHRSP was obtained by the selective 

breeding of a substrain of SHR which had been found to display a high incidence of 

spontaneous cerebrovascular disease. Moreover, SHRSP develop concentric left 

ventricular hypertrophy (LVH) in response to blood pressure elevation (Ohtaka 1980) 

that is evident at 12 weeks of age (Davidson, Schork et al. 1995) and also display 

endothelial dysfunction (McIntyre, Hamilton et al. 1997; Kerr, Brosnan et al. 1999). It 

is considered a relevant pathogenetic model for research into human disease as the 

SHRSP and humans share many pathophysiological similarities, such as local factors 

for stroke, (Yamori, Horie et al. 1976), and consistent with humans, male SHRSP 

maintain a higher blood pressure than females. Here, we document the cardiac gene 

delivery profiles of AAV6 and -9 in SHRSP. 

 

Although rAAV6 efficiently transduces the myocardium in mice, it also targets all 

striated muscle. An immunological reaction can sometimes be observed after foreign 

gene transfer to skeletal muscles as a result of expression of the transgene in non-

muscle antigen-presenting cells, (Hauser, Robinson et al. 2000; Hartigan-O'Connor, 

Kirk et al. 2001).  The incorporation of a transcription-regulating element that limits 

transgene expression to the myocardium would reduce transgene expression in both 

skeletal muscle and non-muscular cells. Inclusion of a cardiac specific promoter may 

further improve the selectivity of this vector. The MLC-2v promoter is one of the 

most well characterised cardiac specific promoters (Small and Krieg 2004). It has 

been shown to drive AAV2 vector-mediated transgene expression at levels 

comparable to that of the CMV promoter (Phillips, Tang et al. 2002). This promoter 

has yet to be characterised in rAAV6 vectors. 

 

Here we aim to characterise an efficient cardiac gene delivery vector and to introduce 

an element of transcriptional control to improve the efficiency of the chosen vector. 
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4.2 Results 
 

4.2.1 Production of rAAV6 vectors 

The transfection of pAAVlacZ and pDGM6 into 293T cells (encoding the E1 region 

of the Ad5 genome) produced rAAV6 vectors. pAAVlacZ harbours a β-galactosidase 

expression cassette flanked by ITR’s, whilst the pDGM6 plasmid is the packaging and 

helper plasmid that also contains the serotype 6 capsid reading frame (i.e. contains 

AAV2 rep genes, AAV6 cap genes and Ad5 E2, E4 and VA genes). These two 

plasmids were used to make a small scale prep of rAAV6 with which to test in vitro. 

A microBCA assay detected the presence of rAAV6 and allowed the titering of 

rAAV6 in comparison to the protein levels of known titre rAAV2 vectors. This assay 

confirmed the production of rAAV6 vectors, albeit it at low levels, with a mean titre 

of 2.4 × 1010 gp/ml. 

 

4.2.2 In vitro testing of rAAV6 

Most studies have utilised rAAV6 vectors in vivo as a result of the inefficient 

transduction of cells in vitro. Therefore, the ability of rAAV6 vectors to transduce a 

variety of cell lines was tested by infecting cells with different doses of rAAV6. L6, 

H9C2, HeLa and HT1080 cell lines were infected with 5000, 10000 or 20000 gp/cell. 

Ad5 wild type was added to aid single stranded DNA conversion to double stranded 

DNA to enhance transgene expression and was added at a multiplicity of infection 

(MOI) appropriate for the cell line (L6 = MOI 5, HeLa = MOI 0.1, H9C2 = MOI 5, 

HT1080 = MOI 1). rAAV6 vectors showed no transduction of any cell line, in 

comparison to control uninfected cells (Figure 4.1A). Adenovirus co-infection did not 

greatly increase transduction of any of the cell lines, contrary to what would be 

expected (Figure 4.1A). Infection of HepG2 cells to compare rAAV6 vectors made in 

the laboratory and rAAV6 vectors made by collaborators with rAAV2 vectors showed 

that both batches of rAAV6 vectors were inefficient transducers, especially in 

comparison to rAAV2 (Figure 4.1B). Thus no optimal cell line could be found that 

would allow efficient transduction. This confirmed that rAAV6 vectors are poor at in 

vitro transduction, even cells of skeletal and cardiac origin. 
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Figure 4.1 In vitro transfections with rAAV6. 

(A) Transduction of L6, H9C2, HeLa and HT1080 cell lines by rAAV6 vectors. Cells 

were infected with rAAV6 at MOI 5000, 10000 and 20000 gp/cell. Ad5 wild type 

virus was added at MOI appropriate for the cell line (n=6/group). (B) Transduction of 

HepG2 cells by rAAV6 made in the laboratory and rAAV6 from collaborators in 

comparison with rAAV2 (n=6/group). * p<0.01 as compared to uninfected by one 

way ANOVA and Bonferroni posttest. β-gal expression quantified by Tropix Galacto-

Light Plus assay.  
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4.2.3 Binding and transduction of rAAV6 

Because of the poor in vitro transduction profile of rAAV6 vectors, we investigated 

the binding (Figure 4.2A) and transduction (Figure 4.2B) properties of rAAV6 in 

comparison to rAAV2 vectors in HepG2 cells. rAAV6 vectors demonstrated very 

poor binding and transduction of HepG2 cells, in comparison to rAAV2 vectors. 

Because rAAV6 vectors had previously been used effectively in vivo (Blankinship, 

Gregorevic et al. 2004; Gregorevic, Blankinship et al. 2004), we proceeded to in vivo 

studies. 

 

4.2.4 rAAV6 and rAAV9 biodistribution and transduct ion profiles in 

SHRSP following intravascular delivery 

We first determined the capacity of rAAV6 and -9 vectors to transduce the SHRSP 

heart following a single bolus injection into the femoral vein. To determine the 

efficiency of in vivo gene transfer in rats mediated by rAAV6 and -9 vectors, male 6- 

week old SHRSP were administered a single intravenous injection of increasing doses 

of rAAV6:CMV lacZ (2×1011, 1.5×1012 and 3×1012 vp/rat) in the presence or absence 

of recombinant human VEGF-165 (20 µg/100g body weight) or rAAV9:CMVlacZ at 

identical doses. VEGF co-administration with rAAV9 was not included in the study 

as preliminary results had revealed rAAV6 was capable of myocardial transduction in 

the absence of VEGF and so was considered unecessary and undesirable for a gene 

delivery vector.Both rAAV6 and rAAV9 mediated high level gene transfer in hearts, 

which was dose-dependent (Figure 4.3). Transgene expression in the SHRSP for 

rAAV6 was not modified by VEGF co-administration (Figure 4.3). Staining for 

transgene expression showed higher expression levels in the heart following rAAV6 

transduction compared to rAAV9, although both vectors were relatively efficient 

(Figure 4.4). As expected (Gregorevic, Blankinship et al. 2004; Pacak, Mah et al. 

2006) in non-cardiac muscle beds (skeletal), both rAAV6 and -9 vectors achieved 

high levels of gene delivery (Figure 4.5 and Figure 4.6). High levels of transgene 

expression were seen in the diaphragm of the rAAV9 transduced animals, which was 

absent in the rAAV6 transduced group. Similar vector biodistribution by X-gal 

staining was observed for both vectors in liver, lung and kidney (Figure 4.5 and 

Figure 4.6). 
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Figure 4.2. Binding and transduction profiles of rAAV2 and rAAV 6. 

HepG2 cells were infected with 10,000 gp/cell rAAV2 or rAAV6 vectors and 

compared for (A) binding and (B) transduction efficiencies (n=3/group). *p<0.001 

rAAV2 vs. rAAV6 and uninfected by one way ANOVA and Bonferonni posttest. β-

gal expression quantified by Tropix Galacto-Light Plus assay.  
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Figure 4.3. Transduction of cardiac tissue by rAAV6 and rAAV9. 

SHRSP were infused with 3 different doses of rAAV6:lacZ or rAAV9:lacZ (1×1011 

vp, 1×1012 vp or 3×1012 vp). Transverse slices of heart tissue were fixed and stained 

for β-galactosidase expression en face 14 days post-delivery of either rAAV6, rAAV6 

+ VEGF or rAAV9. n=1/group. 
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Figure 4.4. Detection of rAAV6 and rAAV9 vector-mediated transgene expression. 

Immunofluorescence detection of β-galactosidase expression with nuclear counterstain DAPI, in sections of heart from rAAV6 and rAAV9-

transduced animals and a PBS infused control animal and non-immune IgG control (n=1/group). Scale bar = 50 µm.  
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Figure 4.5. rAAV6:CMV lacZ transduction profile in non-cardiac tissue. 

rAAV6:CMV lacZ vectors (3x1012 vp/rat) were infused into 6 week old SHRSP rats (n=1). Tissues were stained for β-galactosidase after 14 

days. Scale bar = 50 µm, magnification × 20. 
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Figure 4.6. rAAV9:CMV lacZ transduction profile in non-cardiac tissue. 

rAAV9:CMV lacZ vectors (3x1012 vp/rat) were infused into 6 week old SHRSP rats (n=1). Tissues were stained for β-galactosidase after 14 

days. Scale bar = 50 µm, magnification  × 20. 
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Biodistribution studies to quantify vector genomes by TaqMan™ Q-PCR revealed 

marked differences in vector genome accumulation. In particular, accumulation of 

rAAV9-packaged genomes in the heart (Figure 4.7) was approximately 10-fold lower 

(at the highest dose) despite comparable genome levels in skeletal muscle (Figure 

4.8A) The CPRG assay confirmed the comparable levels of transgene expression in 

the skeletal muscles (Figure 4.8B). Furthermore, biodistribution of rAAV9-packaged 

genomes to kidney was far higher than rAAV6, although immunohistochemical 

analysis revealed no obvious transgene expression (Figure 4.9). 

 

Taken together, we concluded that rAAV6 exhibited a more favourable profile for 

cardiac gene delivery than rAAV9, and represents a useful tool for studying the 

molecular mechanisms of cardiac disease. 

 

4.2.5 Cloning of cardiac-specific promoter into AAV 6 vector 

To clone the MLC-2v AAV shuttle plasmid (Figure 4.10), 5 µg pMV10 containing a 

lacZ and corresponding poly-A tail was digested with 2.5 µl of XbaI and 2.5 µl 

HinDIII. The released lacZ and poly-A tail (4.5 kb) were then gel purified and cloned 

into pCMV6-XL4 (Stratagene, CA, USA). The short version of the MLC-2v promoter 

(280 bp) was amplified by PCR using primers with flanking XbaI sites (MLC2v 

forward 5’CCCTCTAGATTAGACAATGGCAGGACCCA3’ and MLC2v reverse 

5’CCCTCTAGAAATTCAAGGAGCCTGCTGGC3’). PCR was performed using 

standard conditions, with the exception of a 2 minute extension time and an optimised 

annealing temperature of 65ºC. The gel purified PCR product was then cloned into the 

XbaI sites in pCMV6-XL4. This construct (4.7 kb) was then cut out of pCMV6- XL4 

using NotI restriction sites and cloned into the corresponding sites in pAAV-MCS 

(Stratagene, CA, USA). The completed construct could then be tested. 

 

4.2.6 Characterisation of pAAV-MCS-MLC2v 

The MLC2v promoter (Phillips, Tang et al. 2002) was cloned into the shuttle plasmid 

pAAV-MCS to allow packaging into rAAV6 vectors. Expression of the lacZ gene in 

various cell lines was carried out to test the function and specificity of the construct.  
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Figure 4.7. Transduction of tissues by rAAV6 and rAAV9. 

SHRSP were infused with 3 different doses of rAAV6:CMVlacZ or rAAV9:CMVlacZ (1×1011 vp, 1×1012 vp or 3×1012 vp). Total DNA was 

extracted from heart and kidney and Q-PCR performed using lacZ primers. Data are plotted as mean quantity of viral particles in each tissue 

analysed. The three bars for each tissue with each virus represent the three different doses (left = lowest dose, right = highest dose). ND = not 

detectable. N=1/group. 
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Figure 4.8. Transduction of tissues by rAAV6 and rAAV9. 

SHRSP were infused with 3 different doses of rAAV6:CMVlacZ or 

rAAV9:CMV lacZ (1×1011 vp, 1×1012 vp or 3×1012 vp). Total DNA was extracted 

from tibialis anterior and triceps brachii and (A) Q-PCR and (B) CPRG assay was 

carried out to quantify β-gal expression. The three bars for each tissue with each virus 

represent the three different doses (left = lowest dose, right = highest dose). ND = not 

detectable. N=1/group. 
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Figure 4.9.  rAAV9:CMV lacz expression in the kidney. 

Histological analysis with an anti-β galactosidase antibody was carried out on sections 

of kidney from the rAAV9:CMVlacZ infused animals at termination. Scale bar = 30 

µm, magnification × 20, n=1/group. 
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Figure 4.10.  Cloning of Cardiac Specific promoter into rAAV6 vectors. 

xbaIxbaI

MLC-SHORT PROMOTER

xbaIxbaI

MLC-SHORT PROMOTER

The lacZ gene and poly-A tail was released from the pMV10 vector 

on XbaI and HinDIII sites. This fragment was then cloned into 

pCMV6-XL4. The MLC2v promoter was amplified by PCR (300 

bp product) with flanking XbaI sites and was cloned into the XbaI

sites of PCMV-XL4. This construct was then excised from 

PCMV6-XL4 using NotI restriction sites and cloned into the 

corresponding sites in the pAAV-MCS vector.
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No β-galactosidase activity from pAAV-MCS-MLC2v was detected in ARL6, 

NRK52E, L6 or A10 cell lines (Figure 4.11). β-galactosidase activity was observed in 

H9C2 cells. A low level of β-galactosidase activity was observed in RGE cells. 

Quantification of β-galactosidase expression confirmed expression of control plasmid 

pMV10 in all cell lines tested, but not of pAAV-MCS-MLC2v (Figure 4.12). 

Expression from this plasmid was only detectable in H9C2 cells (Figure 4.12). Due to 

time restraints, RGE, NRK52E and A10 cell lines were not tested. 

 

We next determined if the MLC2v promoter was active in the liver in vivo. 

Hydrodynamic injection of pAAV-MCS-MLC2v into the tail vein of mice confirmed 

that in vivo transgene expression from this promoter was not active in the liver (Figure 

4.13A). No X-gal staining was observed in the livers of mice injected with pAAV-

MCS-MLC2v, whilst high levels of staining were observed in mice injected with 

control plasmid pMV10 (Figure 4.13A). Quantification by β-galactosidase ELISA 

confirmed the lack of β-galactosidase activity in the livers of the mice 

hydrodynamically infused with pAAV-MCS-MLC2v (Figure 4.13B). 

 

4.2.7 Transcriptional regulation in vivo 

Our next aim was to assess the efficiency of the cardiac promoter in the SHRSP in 

vivo. We therefore injected male rats with increasing doses of rAAV6:MLC2v vectors 

at 6 weeks of age (2×1011, 1.5×1012 and 3×1012 vp/rat). Unfortunately, X-gal staining 

revealed no β-galactosidase activity in any organ at either 2 or 12 weeks post-

infusion, although quantification of vector genomes by Taqman™ confirmed presence 

of the vector in vivo (Figure 4.14). A dose-dependent response was observed in the 

heart, tibialis anterior and triceps brachii. High levels of vector accumulation in the 

kidney at 12 weeks post-infusion can also be observed. When compared to 

rAAV6:CMV lacZ, levels of vector genomes present in the tissues were generally less 

with rAAV6:MLC2v lacZ (Figure 4.15). In all tissues, there was an approximate 2-

fold difference in vector genome accumulation. This promoter was therefore not 

studied further.  
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Figure 4.11. β-gal staining of cells transfected with plasmid under control of cardiac promoter. 

Cells were transfected using lipofectamine with either no DNA, control plasmid pMV10 or pAAV-MCS-MLC2v (n=3/group). Forty eight hours 

later, cells were stained with X-gal stain to analyse β-galactosidase expression amongst the different cell types. Scale bar = 100 µm, 

magnification × 10. 
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Figure 4.12. Quantification of β-gal expression mediated by pAAV-MCS-MLC2v. 

Cells were transfected using lipofectamine with either no DNA, control plasmid pMV10 or pAAV-MCS-MLC2v (n=3/group). Forty eight hours 

later, cells were assayed to quantify β-galactosidase expression amongst the different cell types. *p<0.01 H9C2 pAAV-MCS-MLC2v vs. ARL-6 

and L6 pAAV-MCS-MLC2v by two way ANOVA and Bonferonni posttest. 
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Figure 4.13. Liver transduction following hydrodynamic delivery of plasmids.  

Control plasmid pMV10 or rAAV6:MLC2v was hydrodynamically injected into the 

tail vein of mice (n=2/group). (A) Representative X-gal staining of liver sections and 

(B) Quantification of β-gal expression by Tropix Galacto-Light Plus assay.  
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Figure 4.14. Biodistribution profile of rAAV6:MLC2v lacZ. 

RAAV6:MLC2vlacZ vectors at three different doses (2 × 1011, 1.5 × 1012 and 3 × 1012 vp/rat) were infused into 6 week old SHRSP rats 

(n=1/group). DNA was extracted from the tissues and Q-PCR performed. 
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Figure 4.15. Comparison of transduction of tissues by rAAV6 and rAAV6:MLC2v lacZ. 

SHRSP were infused with 3 different doses of rAAV6:CMVlacZ or rAAV6:MLC2vlacZ (1×1011 vp, 1×1012 vp or 3×1012 vp). Total DNA was 

extracted from heart, kidney, tibialis anterior and triceps brachii and Q-PCR was performed. The three bars for each tissue with each virus 

represent the three different doses (left = lowest dose, right = highest dose). N=1/group. 
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4.3 Discussion 

 

Efficient myocardial transduction via the intravasculature has proven challenging in 

the field of gene therapy. We demonstrate that intravenous administration of rAAV6 

and rAAV9 vectors can be used to efficiently deliver and express genes in the heart of 

a rat disease model. As such, this strategy represents a useful tool to integrate and 

potentially treat a vast number of cardiovascular diseases. Transduction efficiency is 

determined by administered dose of vector, with an observed increased intensity of 

staining in the hearts of these animals as the dose increased. Furthermore, both these 

vector systems were not associated with any direct toxicity, with no observable 

immunological responses at 3 months post-infusion. In this study we report that gene 

expression is maintained for 3 months. We did not assess longer time points. Other 

studies have reported long term gene expression from rAAV vectors (Herzog, Yang et 

al. 1999; Riviere, Danos et al. 2006; Stieger, Le Meur et al. 2006) demonstrating the 

longevity of this approach, particularly useful for the treatment of chronic disease. 

RAAV6 vector-mediated transduction was not found to be dependent on vascular 

permeabilisation with VEGF, contrary to that previously reported in a mouse model 

(Gregorevic, Blankinship et al. 2004). RAAV6 vectors were found to mediate higher 

levels of transduction of the myocardium than rAAV9 vectors at all doses tested. The 

use of rAAV6 over rAAV9 vectors is thus advantageous as higher doses of rAAV9 

would have to be used to reach the same levels of myocardial transduction as rAAV6.  

 

The production of rAAV vectors has proven notoriously difficult, labour intensive and 

a limiting factor in the utility of these vectors. High titre stocks of rAAV were 

unattainable by the initial methods applied in our laboratory. Methods developed by 

others have allowed increased production of high titre and high purity rAAV stocks, 

with minimal contamination with adenoviral proteins (Halbert, Allen et al. 2001) 

(Blankinship, Gregorevic et al. 2004). These methods were employed to achieve high 

titre stocks with which to complete in vivo experiments. In vitro characterisation and 

comparison of the two rAAV vectors could not be carried out as no suitable cell line 

could be found that could be transduced by rAAV6 vectors. No previous studies have 

carried out in vitro characterisation of rAAV9 vectors. Thus all optimisation and 
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characterisation of rAAV6 and rAAV9 was carried out in vivo in a relevant disease 

model, the SHRSP. 

 

There is a 17.2% amino acid difference between the capsids of clade A (includes 

AAV1 and AAV6) and clade F (AAV9) adeno-associated viruses (Gao, 

Vandenberghe et al. 2004). These differences in the area of the virion responsible for 

receptor binding may offer an explanation for the discrepancies in tropism between 

the two vectors. Single amino acid changes have previously been reported to account 

for the difference in liver transduction between AAV1 and AAV6 (Wu, Asokan et al. 

2006). Whilst there is still a lot to discover regarding the receptors for these vectors, it 

is known that AAV6 uses α2-3 linked or α2-6 linked sialic acid (Wu, Miller et al. 

2006), whilst AAV9 uses the 37/67-kDa laminin receptor (Akache, Grimm et al. 

2006). Different distribution of these two receptors is likely associated with the 

differing biodistribution of these two vectors. It was previously reported that direct 

injection of rAAV6 vectors into the thoracic cavity of mice lead to high levels of 

transduction of the diaphragm (Blankinship, Gregorevic et al. 2004). Although not a 

direct comparison with this study, we found no transduction of the diaphragm after 

intravenous delivery of rAAV6 vectors. Interestingly, intravenous delivery of rAAV9 

vectors resulted in high transgene expression levels throughout the diaphragm. Thus, 

the driving forces for transduction are different for each virus. 

 

In the present study, rAAV9 vector genomes were also found at high levels in the 

kidney by quantitative PCR. However, further examination by immunohistochemical 

techniques revealed no detectable renal transgene expression. This could either be as a 

result of an inability of the rAAV9 vector to achieve transduction, or as a result of the 

phenomenon of the CMV promoter, which has been noted to be silenced in several 

organs (Loser, Jennings et al. 1998; Gregorevic, Blankinship et al. 2004). However, 

high β-galactosidase enzyme levels have previously been detected in the kidney 

following administration of rAAV9 vectors (Pacak, Mah et al. 2006; Bostick, Ghosh 

et al. 2007), and the CMV promoter has been shown to be transcriptionally active 

following the delivery of other gene transfer vectors (Wang, Li et al. 2004; Pacak, 

Mah et al. 2006). Several approaches could be taken to establish the cause of this. 

Assays to determine the methylation status of the CMV promoter would establish 

whether the promoter had been shut down (Brooks, Harkins et al. 2004). RT-PCR on 
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RNA extracted from the organ of interest could be performed to investigate whether 

there was a transgene translational block. Capsid labelling could also be carried out to 

determine if nuclear trafficking was defective and if there was a problem with capsid 

uncoating. 

 

The limitation of the AAV vector system with respect to intravenous delivery to 

muscle is the lack of cell selectivity of non-muscle promoters. Cardiac myocyte-

restricted gene transfer is highly desirable, and necessary as it already is in clinical 

trials. The short version of the MLC2v cardiac promoter was easily packaged into the 

limited packaging capacity of the AAV vector. It was shown to drive a reporter gene 

specifically in cardiomyocytes in vitro. In a previous study, rAAV2 vectors driven by 

the MLC2v promoter were shown to be taken up by many organs but only expressed 

in the heart (Phillips, Tang et al. 2002). However, in contrast to this study, we found 

that intravenous injection of rAAV6 vectors under the control of the MLC2v promoter 

led to uptake in the heart, but to no transgene expression. The lack of activity of this 

promoter in vivo is surprising, as it was previously reported to be akin to the activity 

of CMV promoters (Phillips, Tang et al. 2002). The presence of relatively high vector 

genome copy numbers in the heart and the fact that CMV driven transgene expression 

was high, demonstrates that the problem lies not in the transduction efficiency of the 

vector, but in the activity of the promoter. In this case, the activity of the CMV 

promoter remains superior to that of the MLC2v promoter. Comparison of a range of 

cardiac-specific cassettes is required to find one suitable that is functional in vivo 

when packaged into rAAV6 vectors. Recently, rAAV6 vectors under the control of a 

CMV-enhanced 1.5 kb MLC2v promoter were found to mediate cardiac-specific 

transgene expression in a porcine model (Raake, Hinkel et al. 2007). Not only does 

this highlight the potential of transcriptionally regulated rAAV6 vectors, it also 

demonstrates that rAAV6 is effective in larger animal models and is not species-

dependent.  

 

Furthermore, rAAV6 vector-mediated transgene expression under the control of a 

cardiac-selective enhancer/promoter element has been shown to drive chronic 

transgene expression in a rat heart failure model (Pleger, Most et al. 2007). A 324-bp 

fragment containing the α-cardiac actin myocyte-enhancer factor-2 (MEF2) domain 

was cloned in place of the CMV promoter to drive expression of the S100A1 gene, 
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which expresses a Ca2+-sensing protein that plays a vital role in cardiac contractile 

function. Robust expression of S100A1 was achieved that was localised to the heart 

and led to the functional recovery of the failing rat heart (Pleger, Most et al. 2007). 

This demonstrates the potential of rAAV6 vectors to drive stable cardiac-specific 

transgene expression after intravenous delivery, which will enhance the development 

of cardiac gene therapies. 

 

In conclusion, rAAV6 and rAAV9 vectors were both found to possess cardiotropic 

properties and as such, both will have implications in cardiovascular gene therapy. In 

a direct comparison of the two vectors, rAAV6 demonstrated a more favourable 

cardiac delivery profile than rAAV9. These results allow for the optimal choice of 

vector for use in future studies, and for future efficient clinical applications. 
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RAAV6-mediated overexpression of angiotensin 

converting enzyme 2 (ACE2) in the myocardium of 

Stroke Prone Spontaneously Hypertensive Rats 
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5.1 Introduction 

In addition to its role in cardiovascular and renal homeostasis, overactivity of the RAS 

is implicated in the pathophysiology of hypertension and in the progression of heart 

failure (Zaman, Oparil et al. 2002). Inhibition of the RAS is now used as major target 

in the treatment of hypertension and a plethora of other cardiovascular diseases. 

Angiotensin-converting enzyme (ACE) inhibitors and angiotensin II (Ang II) type 1 

(AT1) receptor blockers are common treatments for the alleviation of high blood 

pressure in hypertensive patients (Stergiou and Skeva 2004). Exploration of other 

arms of the RAS could potentially identify and develop more specific and potentially 

long lasting therapeutic targets.  

 

In 2000, a new component of the RAS was identified. Angiotensin converting enzyme 

2 (ACE2) was isolated from a human heart failure ventricle cDNA library and was 

found to be capable of hydrolyzing circulating peptides (Donoghue, Hsieh et al. 2000; 

Tipnis, Hooper et al. 2000). ACE2 is known to promote Ang II degradation, and to a 

lesser extent Ang I degradation (Tipnis, Hooper et al. 2000), which results in the 

production of Ang 1-9 and Ang 1-7. Because Ang II is known to have potent 

vasoconstrictor functions, its degradation could result in relaxation of the blood 

vessels. This could occur through two main mechanisms; (1) the reduction in 

circulating levels of the vasoconstrictor Ang II and (2) the increase in circulating 

levels of the vasodilator Ang 1-7. Ang II has been shown to activate NAD(P)H 

oxidases in cultured vascular smooth muscle cells and vascular endothelial cells, 

resulting in the production of reactive oxygen species, particularly superoxide 

(Griendling, Minieri et al. 1994; Zhang, Schmeisser et al. 1999). Superoxide can react 

with NO to inactivate it, thus inhibiting its vasodilatory effects. Ang 1-7 has been 

shown to stimulate eNOS activation with a resultant increased NO release (Heitsch, 

Brovkovych et al. 2001), which causes endothelial-dependent vasodilation and an 

improvement in endothelial function (Faria-Silva, Duarte et al. 2005). 

 

There are currently opposing hypotheses regarding the pathophysiology of ACE2 in 

vivo. ACE2 may play a pivotal role in the RAS by reducing concentrations of the pro-

fibrotic, pro-proliferative vasoconstrictor Ang II and raising levels of the anti-fibrotic, 

anti-proliferative vasodilatory peptide Ang 1-7 (Ferrario, Chappell et al. 1997; 



 141 

Ferrario 1998). As such, manipulation of ACE2 activity has potential utility in the 

treatment of cardiovascular disease, although previous studies have been conflicting. 

In particular, generation of ACE2 knockout mice has been reported to lead to severe 

contractile dysfunction and induction of hypoxia-induced genes (Crackower, Sarao et 

al. 2002) or, in complete contrast, to no observed effects on cardiac dimension or 

function (Gurley, Allred et al. 2006). The reason for these discrepancies remains 

unclear. In a direct assessment of genetic overexpression of ACE2, lentiviral-

mediated localised overexpression of ACE2 in the hearts of spontaneously 

hypertensive rats (SHR) attenuated high blood pressure and perivascular fibrosis, 

reduced left ventricular wall thickness and increased left ventricular end systolic 

diameters (Diez-Freire, Vazquez et al. 2006). Again, in contrast, transgenic 

overexpression of ACE2 in the myocardium of mice resulted in mild interstitial 

fibrosis and conduction disturbances leading to ventricular fibrillation with arrest and 

sudden death (Donoghue, Wakimoto et al. 2003). Taken together, these findings 

suggest that the role of ACE2 in vivo is complex and may be context-dependent. It is 

therefore important to define the effect of ACE2 overexpression in the long term in 

animals predisposed to cardiovascular disease. SHRSP is a relevant model to define 

the effect of ACE2 overexpression and we set out to define its effects on development 

of LVH. 

 

Here, the cardiac delivery profile of rAAV6 vectors (characterised in chapter 4) was 

exploited to overexpress ACE2 in the myocardium of SHRSP. Effects on cardiac 

structure and function as well as on systemic blood pressure and peripheral 

endothelial function were quantified. 
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5.2 Results 

 

5.2.1 Characterisation of AAV6-ACE2 

We first confirmed the functionality of the AAV6-ACE2 plasmid using cos cells in 

vitro. Expression of ACE2 was confirmed by Taqman™ Q-RTPCR performed on 

cDNA, derived from control and pAAV6-ACE2 transfected cells (Figure 5.1A). 

Representative Taqman traces demonstrate the expression of ACE2 (Figure 5.1B). 

Overexpression of ACE2 was further observed by detection of a band of the 

appropriate size (90 kDa) by western blot analysis following transfection of pAAV6-

MCS-ACE2 into COS cells (Figure 5.1C). ACE2 function was evaluated using a 

fluorescence activity assay, which is based on the interaction of ACE2 with 

fluorogenic substrate VI. This fluorogenic substrate contains a hydrolysable group 

that can be hydrolysed, resulting in the cleavage of the peptide bond between the 

fluorophore and the quencher to produce an increase in fluorescence that can easily be 

detected. The ACE inhibitor captopril was used to abolish any influence of ACE. In 

the presence of the selective ACE2 inhibitor DX600, ACE2-specific enzymatic 

activity was abolished (Figure 5.2). Thus, transfection of pAAV-MCS-ACE2 resulted 

in efficient ACE2 production and functional activity of the enzyme. 

 

5.2.2 Effect of ACE2 overexpression on in vivo card iac function 

Our principle aim was to document the effect of ACE2 overexpression on cardiac 

function over the long term and during the establishment of hypertension and LVH in 

the SHRSP, evident from 12 weeks of age (Davidson, Schork et al. 1995). We 

therefore injected male rats with rAAV6:ACE2 vectors and controls at 8 weeks of age 

and monitored cardiac function by ECHO and BP by tailcuff over the following 11 

weeks (Figure 5.3). Left ventricular M-mode ECHO demonstrated a change in LV 

diameter and reduction in wall thickness over time with reduced systolic function in 

the rAAV6:ACE2 vector-infused animals, compared to Enalapril-treated and PBS and 

rAAV6:hPLAP vector-infused rats (Figure 5.4). B-mode images confirmed a reduced 

systolic function in rAAV6:ACE2 treated animals compared to the control groups 

(Figure 5.5). M-mode images were used to define wall thicknesses and internal 

diameters at systole and diastole. Rats treated with rAAV6:ACE2 exhibited a
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Figure 5.1. Confirmation of expression of ACE2. 

Cells were transfected with pAAV-ACE2. 48 hours after lipofectamine transfection, 

cells were harvested and lysed. (A) RNA extracted from the cells was converted to 

cDNA and Taqman carried out to detect ACE2. Control samples including dH2O, no 

reverse transcriptase and a control plasmid expressing a different protein were 

included. (B) Representative Taqman traces. (C) Cell lysates were subjected to 

western immunoblotting and detected with an anti-ACE2 antibody on a 12% gel 

under reducing conditions.  
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Figure 5.2. Confirmation of functional activity of ACE2. 

ACE2 activity was measured in the presence of captopril and DX600, confirming that 

pAAV-ACE2 produces functional ACE2.  
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Figure 5.3. Overview of experimental protocol. 

BP BP BP BP BP BP BP BP BP BP BP
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Groups :

•PBS

•rAAV6:ACE2

•rAAV6:hPLAP

•Enalapril

(N=6/group)

SHRSP were infused with 3 × 1012 vp/animal at week 0 (8 weeks of age). Blood pressure was 

measured weekly by tail cuff plethsymography. Blood samples were taken every second week 

and echocardioagraphy was carried out pre-infusion and at weeks 4, 8 and 11 post-infusion. At 

termination tissues were harvested for additional analysis.
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Figure 5.4. M-mode echocardiography. 

Representative traces of M-mode echocardiography at pre-infusion, 4 weeks, 8 weeks 

and 11 weeks post-infusion in the 4 experimental groups – (A) PBS, (B) 

rAAV6:hPLAP, (C) rAAV6:ACE2 and (D) Enalapril treated animals.  
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Figure 5.5. B-mode echocardiography. 

Representative traces of B-mode echocardiography at 11 weeks post-infusion in the 4 experimental groups – (A) rAAV6:hPLAP, (B) PBS, (C) 

rAAV6:ACE2 and (D) Enalapril treatment. Images are taken at end systole. Red arrow = papillary muscles; yellow circle = outline of left 

ventricle. N=6/group. 
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significant (28%) reduction in ejection fraction, compared to controls (Table 5.1 and 

Figure 5.6). Fractional shortening was also significantly reduced compared to all 

controls (Appendix 1 and Figure 5.7). As expected, cardiac output increased with age 

and body mass in control SHRSP (Appendix and Figure 5.8). However, no change in 

cardiac output occurred in rAAV6:ACE2-infused rats (Figure 5.8). Furthermore, 

systolic blood pressure/end systolic volume ratio (SBP: ESV) demonstrated that the 

rAAV6:ACE2-infused SHRSP showed decreased left ventricular performance (Figure 

5.9).  

 

Interventricular septal wall thickness decreased by 14% in the rAAV6:ACE2 group. 

There was minimal effect on wall thickness in the Enalapril, rAAV6:hPLAP and PBS 

groups (Figure 5.10). LV mass index did not significantly differ between groups 

(Appendix 1). Pulse-wave and colour Doppler were used to measure the velocity of 

blood through the mitral valve and to qualitatively examine the valve for evidence of 

mitral regurgitation from the apical four-chamber. Colour doppler indicated that the 

blood flow through the heart of the rAAV6:ACE2 infused animals was more turbulent 

than in the Enalapril treated animals (Figure 5.11). This suggested a mitral valve 

insufficiency at systole resulting in a backflow of blood through the valves. In 

conclusion, ECHO studies revealed that ACE2 overexpression leads to a significant 

reduction in cardiac function compared to control groups.  

 

5.2.3 Effect on blood pressure and basal NO bioavai lability 

A previous study has indicated a potentially beneficial effect of ACE2 overexpression 

on blood pressure (Diez-Freire, Vazquez et al. 2006). We therefore analysed blood 

pressure weekly by tail cuff. Since any blood pressure effect may also be due to 

potential hydrolysis of Ang II by ACE2, we also quantified endothelial function in 

peripheral resistance vessels (mesentery) by wire myography. Enalapril treatment was 

included as a positive control for BP measurements. PBS and rAAV6:hPLAP control 

animals show an equivalent increase in BP over time, characteristic of SHRSP (Figure 

5.12). This rise in systolic BP was significantly attenuated by enalapril and by ACE2 

overexpression (p<0.001). The effects of ACE2 overexpression were especially 

evident at later time points following injection (Figure 5.12). Myography 

demonstrated increased basal nitric oxide (NO) in the vessels from animals that had
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Figure 5.6. Assessment of ejection fraction. 

Echocardiography was carried out pre-infusion and at 11 weeks post-infusion on rAAV6:hPLAP, PBS, rAAV6:ACE2 and Enalapril treated 

animals. % change in ejection fraction was calculated. *p<0.05 for rAAV6:ACE2 vs. PBS, Enalapril and rAAV6:ACE2 by one way ANOVA 

and Tukey’s post test. N=3/group. 
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Figure 5.7. Assessment of fractional shortening. 

Echocardiography was carried out pre-infusion and at 11 weeks post-infusion on rAAV6:hPLAP, PBS, rAAV6:ACE2 and Enalapril treated 

animals. Change in % fractional shortening was calculated. *p<0.05 for rAAV6:ACE2 vs. PBS, Enalapril and rAAV6:ACE2 by one way 

ANOVA and Tukey’s post test. N=3/group. 
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Figure 5.8. Assessment of cardiac output. 

Echocardiography was carried out pre-infusion and at 11 weeks post-infusion on rAAV6:hPLAP, PBS, rAAV6:ACE2 and Enalapril treated 

animals. % Change in cardiac output was calculated. *p<0.05 for rAAV6:ACE2 vs. PBS, Enalapril and rAAV6:ACE2 by one way ANOVA and 

Tukey’s post test. N=3/group. 
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Figure 5.9.Assessment of systolic blood pressure/ end systolic volume ratio. 

Echocardiography was carried out pre-infusion and at 11 weeks post-infusion on rAAV6:hPLAP, PBS, rAAV6:ACE2 and Enalapril treated 

animals. Change % in systolic blood pressure/ end systolic volume ratio was calculated. *p<0.05 for rAAV6:ACE2 vs. PBS, Enalapril and 

rAAV6:ACE2 by one way ANOVA and Tukey’s post test. N=3/group. 
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Figure 5.10. Assessment of interventricular septal wall thickness. 

Echocardiography was carried out pre-infusion and at 11 weeks post-infusion on rAAV6:hPLAP, PBS, rAAV6:ACE2 and Enalapril treated 

animals. % change in interventricular septal wall thickness was calculated. *p<0.05 for rAAV6:ACE2 vs. PBS, Enalapril and rAAV6:ACE2 by 

one way ANOVA and Tukey’s post test. N=3/group. 
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Figure 5.11. Evaluation of blood flow. 

Colour doppler sonography carried out 11 weeks post-infusion on (A) rAAV6:ACE2 infused and (B) Enalapril treated animals. 4 chamber view 

of the heart showing left venticle (yellow arrow), right ventricle (white arrow), left atria (yellow arrow head), right atria (white arrow head) and 

mitral valve (green arrow). Colours are representative of blood flow direction; blue represents blood flow away from the transducer and red 

represents blood flow towards the transducer. A mix of colour (yellow/orange) indicates a mixed direction of blood flow, seen at the mitral valve 

level in systole is recognised as mitral valve regurgitation. N=1/group. 
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Figure 5.12. Effect of overexpression of ACE2 on systolic blood pressure. 

Animals were infused with either rAAV6:hPLAP, rAAV6:ACE2, PBS or treated with Enalapril (n=6/group). Systolic blood pressure was 

measured weekly by tail cuff. Data are presented as mean ± SE. * p<0.001 rAAV6:ACE2 and Enalapril vs. PBS and rAAV6:hPLAP, as 

determined by two way ANOVA analysis and Bonferroni test.  

*p<0.001

0 1 2 3 4 5 6 7 8 9 10 11
100

125

150

175

200

225

250

PBS

rAAV6:hPLAP

rAAV6:ACE2

ENALAPRIL

Time (weeks)

S
ys

to
lic

 B
lo

o
d
 P

re
ss

u
re

 (
m

m
H

g
)

*
**

**

*p<0.001

0 1 2 3 4 5 6 7 8 9 10 11
100

125

150

175

200

225

250

PBS

rAAV6:hPLAP

rAAV6:ACE2

ENALAPRIL

Time (weeks)

S
ys

to
lic

 B
lo

o
d
 P

re
ss

u
re

 (
m

m
H

g
)

*
**

**



 156 

received rAAV6:ACE2 compared to the rAAV6:hPLAP group, as determined by the 

area under the curve of concentration-response curves to contractile agonists in the 

presence and absence of L-NAME (Figure 5.13). Thus, whilst ACE2 had a severe 

effect on cardiac function, overexpression also resulted in improved peripheral 

endothelial function. 

 

5.2.4 Histological evaluation of cardiac structure 

We first confirmed sustained overexpression of ACE2 in rAAV6:ACE2 injected rats 

at 11 weeks post-injection (Figure 5.14A). Clear evidence of cardiac dysregulation in 

rAAV6:ACE2 transduced hearts can be seen with irregular myocyte shape and cell 

infiltration (Figure 5.14A & 5.14B). The effect of ACE2 on cardiac fibrosis was 

assessed by picrosirius red (Figure 5.15A) and Masson’s trichrome stain (Figure 

5.15B). Severe myocardial interstitial fibrosis was only observed in the rAAV6:ACE2 

transduced SHRSP (Figure 5.15). 

 

5.2.5 Histological evaluation of other tissues 

The kidney and skeletal muscle were examined to assess any effects of ACE2 

overexpression in non-target areas. No abnormal kidney structure was observed 

(Figure 5.16A), and no signs of renal fibrosis were found (Figure 5.16B). We also 

confirmed that overexpression of ACE2 was not present in the kidney of 

rAAV6:ACE2 injected rats (Figure 5.16C). To check that the effects of ACE2 

overexpression were limited to the heart, muscle tissue was examined for structure 

(Figure 5.17A) and fibrosis (Figure 4.17B). This confirmed that the negative effects of 

ACE2 overexpression were not seen in either non-targeted areas, such as the kidney, 

nor in other muscle beds which are known to be transduced by rAAV6 vectors. 
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Figure 5.13 Effect of overexpression of ACE2 on basal NO bioavailability.  

Small vessel myography was carried out on mesenteric arteries from rAAV6:ACE2 and rAAV6:hPLAP infused animals at termination 

(n=4/group). Basal NO bioavailability was determined as the magnitude of augmentation of contractile responses in presence of NOS inhibitor, 

L-NAME (1 × 10-4M). *P<0.05 at EC50 by students t test. 
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Figure 5.14. Histological analysis of cardiac structure. 

Histological analysis was carried out on sections of heart from animals in all 4 groups at termination (n=4/group). (A) Immunohistochemistry 

with an anti-ACE2 antibody. Scale bar = 100 µm, magnification × 40. (B) H&E staining in all groups. Scale bar = 30 µm, magnification × 20.  
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Figure 5.15. Assessment of cardiac fibrosis. 

Heart sections from rAAV6:ACE2, rAAV6:hPLAP, PBS and Enalapril treated animals were analysed for fibrosis and collagen content 

(n=4/group). (A) Picrosirius red staining. Scale bar = 100 µm, magnification × 25. (B) Masson’s trichrome staining. Scale bar = 100 µm, 

magnification × 40. 
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Figure 5.16. Histological analysis of kidney structure. 

Histological analysis was carried out on sections of kidneys from animals in all 4 groups at 

termination (n=4). (A) H&E staining in all groups. Scale bar = 30 µm, magnification × 20  (B) 

Masson’s trichrome staining. Scale bar = 100 µm, magnification × 10. (C) 

Immunohistochemistry with an anti-ACE2 antibody. Scale bar = 30 µm, magnification × 20.  
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Figure 5.17. Histological assessment of muscle. 

Muscle sections from rAAV6:ACE2, rAAV6:AP, PBS and Enalapril treated animals were analysed for fibrosis. (A) H&E staining in all groups. 

Scale bar = 100 µm, magnification x 40. (B) Masson’s trichrome staining. Scale bar = 30 µm, magnification x 20.  
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5.3 Discussion 

 

ACE2 has been proposed as a critical component of the RAS, acting in opposition to 

ACE by hydrolysis of Ang II. In the present study, we demonstrated that sustained (11 

week) rAAV6-mediated ACE2 overexpression in the SHRSP exerts detrimental 

effects on cardiac structure and function whilst increasing basal NO bioavailability, 

suggesting both positive and negative effects of overt ACE2 overexpression in vivo. 

Myocardial changes were characterised by morphological adaptations including 

severe myocardial interstitial and perivascular fibrosis, an increase in collagen content 

and abnormal myocardial organisation. We also demonstrate, for the first time, that 

intravenous administration of rAAV6 vectors can be used to efficiently deliver and 

express genes in the heart of a rat cardiovascular disease model. Importantly, rAAV6 

expressing the reporter gene hPLAP was found to have no deleterious effects on 

cardiac structure, function or any significant effect on BP – potentially important 

findings for clinical trials using rAAV6 vectors.  

 

At present, the role of ACE2 in the RAS remains ambiguous. Previous ACE2 

intervention studies either in mice (Donoghue, Hsieh et al. 2000; Crackower, Sarao et 

al. 2002; Gurley, Allred et al. 2006), or rats (Diez-Freire, Vazquez et al. 2006), have 

shown conflicting results. Crackower et al (Crackower, Sarao et al. 2002) proposed 

ACE2 as an essential regulator of heart function through work with ACE2 knockout 

mice. The loss of ACE2 resulted in severe cardiac contractility defects and also an 

increase in Ang II levels, indicating that ACE2 controls levels of Ang II in vivo 

(Crackower, Sarao et al. 2002). The same study revealed ACE2 as a strong candidate 

gene linked to a hypertensive quantitative trait locus on the X chromosome. In a 

separate study, ACE2 gene transfer resulted in significant attenuation of high BP and 

cardiac fibrosis in the SHR (Diez-Freire, Vazquez et al. 2006). However, Donoghue et 

al (Donoghue, Wakimoto et al. 2003) showed that transgenic mice with increased 

cardiac ACE2 expression displayed high incidence of sudden death, showing that the 

role of ACE2 is more complex than originally thought. 

 

Ang II is well documented in playing a role in hypertension and LVH. Studies in 

ACE2-deficient mice (Gurley, Allred et al. 2006) found that these mice showed an 
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increase in systolic blood pressure and elevated plasma levels of Ang II, indicating 

that ACE2 is a key pathway for the metabolism of Ang II.  

 

The blood pressure data in this present study correlates with that published in another 

study using lentiviral overexpression of ACE2 following intracardiac injection (Diez-

Freire, Vazquez et al. 2006). However, it is unclear as to whether this occurs via the 

same mechanism. In the lentiviral study (Diez-Freire, Vazquez et al. 2006), 

expression of ACE2 after intracardiac injection was also shown to occur in the kidney 

through systemic leakage of the vector, whilst the biodistribution patterns of our 

vector shows no evidence of substantial expression in the kidney. We also confirmed 

by immunohistochemical techniques that there was no overexpression of ACE2 in the 

kidneys. Therefore attenuation of high blood pressure in the SHR study (Diez-Freire, 

Vazquez et al. 2006) could be due to beneficial effects of ACE2 acting directly to 

metabolise Ang II into Ang 1-7 in the kidney. The high blood pressure attenuation in 

the present study could be explained by a beneficial effect of ACE2 acting on the 

peripheral circulation, as the expression of ACE2 in our study is not limited to the 

myocardium. Accordingly, here we have demonstrated greater basal NO 

bioavailability in the mesenteric arteries in rAAV6:ACE2 infused animals at 3 months 

post gene delivery than in rAAV6:hPLAP controls, suggesting that ACE2 

overexpression directly improves endothelial function. SHRSP have been shown to 

have reduced NO bioavailability in comparison to the WKY reference strain 

(McIntyre, Hamilton et al. 1997). ACE2 overexpression may have a beneficial 

peripheral action and detrimental effects in the myocardium. Indeed evidence of  a 

tissue-localized RAS is well established (Campbell 1987; Paul, Wagner et al. 1993) 

including a cardiac RAS (Dzau 1988),  with every component of the RAS having been 

identified in cardiac and vascular myocytes and fibroblasts. Although the 

improvement in endothelial function may have reduced systolic blood pressure, the 

severe cardiac dysfunction and fibrosis may have lowered blood pressure as a result of 

the development of diastolic and systolic abnormalities generating cardiac 

decompensation. 

 

In the study most akin to that described here, local delivery of a lentiviral vector 

overexpressing ACE2 into the heart resulted in transduction levels of >50% in some 

areas of the myocardium but to <5% in other areas (Diez-Freire, Vazquez et al. 2006). 
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Whilst the lentivirus study reported reduced blood pressure and beneficial effects on 

cardiac fibrosis, it is plausible that ACE2 expression levels were not as high as in the 

present study. Thus lower ACE2 levels may produce cardioprotective effects whilst 

avoiding the induction of the detrimental effects on the heart. The hearts of the 

rAAV6:ACE2 treated animals in the present study showed a reduction in ejection 

fraction and fractional shortening, a decrease in interventricular wall thickness, a 

decrease in SBP: LV ratio and no increase in cardiac output overtime along with 

histological evidence of heart failure. All these are consistent with severe cardiac 

dysfunction progressing towards heart failure. This is in agreement with the transgenic 

mouse study, which also found that overexpression of ACE2 resulted in profound 

cardiac dysfunction and mild cardiac fibrosis (Donoghue, Wakimoto et al. 2003). 

Cardiac fibrosis is a marker of cardiac failure and contributes to ventricular wall 

stiffness, impairing cardiac relaxation so that the ventricles do not fill properly thus 

resulting in abnormal diastolic function (Doering, Jalil et al. 1988; Jalil, Doering et al. 

1989; Brilla, Janicki et al. 1991). The pathogenesis of heart failure inevitably proceeds 

to dilated cardiomyopathy, in which heart chambers become markedly enlarged and 

contractile function deteriorates. In early stages, cardiac enlargement is an adaptive 

process to help the heart maintain cardiac output. Past a certain point, however, the 

heart overcompensates for declining systolic performance, and dilation becomes a 

pathologic process. Dilation in the present study along with decreased wall thickness 

would account for the lack of change in LVMI in the ACE2 transduced SHRSP. The 

mechanisms behind this are poorly understood, although recently a causal relationship 

between myocyte death and cardiomyopathy has been established (Wencker, Chandra 

et al. 2003). Wall thinning is consistent with loss of myocytes, which in heart failure 

is known to be associated with fibrosis and apoptosis. 

 

It is plausible that although Ang II has deleterious effects, it may have a necessary 

function in a signalling pathway to enable the heart to proceed through adaptive 

remodelling and progressing to failure. For example, ERK1/2 activation is stimulated 

by Ang II and in experimental models, blocking ERK1/2 activation rendered the heart 

more susceptible to failure, suggesting that ERK1/2 had a role in protecting the heart 

from cell death and failure (Purcell, Wilkins et al. 2007).  
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Additionally, increased ACE2 overexpression without corresponding ACE 

upregulation could shift the balance from the production of Ang 1-7 into Ang 1-9, as 

ACE is required to convert Ang 1-9 into Ang 1-7. As yet, a role for Ang 1-9 remains 

unidentified and so further study into the function of Ang 1-9 could clarify whether it 

is having any deleterious effect on cardiac function. To ascertain if Ang 1-9 has any 

activity, stimulation of cardaic cells with Ang II to induce hypetrophy could be 

carried out in the presence of Ang 1-9 peptide and an ACE inhibitor. The ACE 

inhibitor would ensure that any blocking of hypertophic effects were as a result of the 

activity of Ang 1-9 and not as a result of the converted product, Ang 1-7. 

 

It is also important to consider the role of ACE2 in hydrolysing several other peptides, 

most notably apelin-13 (Vickers, Hales et al. 2002). Apelins have been implicated as 

regulators of cardiovascular function (Lee, Cheng et al. 2000) and have been shown to 

exert cardioprotective effects through the activation of pathways that are associated 

with myocardial preservation (Simpkin, Yellon et al. 2007). Apelin has been shown to 

cause vasodilatation, reduced ventricular preload and afterload, and increased cardiac 

contractility (Japp and Newby 2008). Thus the hydrolysation of apelins-13 may prove 

to be physiologically relevant. To test whether the apelins played a role in the 

pathophysiology of our model, an assay to measure the levels of apelin present in the 

hearts of our animals at termination could be carried out. The downregulation of 

apelins may have had adverse effects on our model. 

 

In conclusion, the data in this chapter demonstrates the development of severe cardiac 

abnormalities associated with sustained ACE2 overexpression in vivo. Further work 

should address the extent to which these effects are correlated to the ACE2 expression 

levels to determine if beneficial effects can be obtained with reduced expression 

levels, or if the increased expression of ACE2 at any level is deleterious for cardiac 

morphology and function. 
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This thesis has focused on the development and use of viral vectors that are targeted 

to the heart, in order to achieve efficient cardiac overexpression of ACE2. As the 

renin angiotensin system is pivotal in the control of sodium balance, volume 

homeostasis and therefore long-term blood pressure, it is targeted clinically to treat 

hypertension and heart failure. Overactivity of the RAS plays a fundamental role in 

the pathophysiology of hypertension and progression of heart failure (Zaman, Oparil 

et al. 2002). However, this pathway can be manipulated and blocked at several levels. 

In hypertension, the reduction of blood pressure leads to a sequence of events that 

ultimately results in a reduced ventricular afterload and preload, a reduction in blood 

volume and even in the inhibition and reversal of cardiac and vascular hypertrophy. 

This highlights that the RAS is an important pathway to be targeted in achieving 

therapeutically beneficial outcomes. The relatively recent discovery of new enzymes, 

such as ACE2, has brought into question the current classical view of the RAS. 

Currently, the role of ACE2 in the RAS remains ambiguous. It is undetermined as to 

whether ACE2 contributes to the regulation of cardiac structure and function and 

whether, through its actions to metabolize Ang II, it has a role in the regulation of 

blood pressure by attenuation of the hypertensive actions of Ang II. This added level 

of complexity to the RAS has provided a novel opportunity to modulate ACE2 

expression. 

 

A major hurdle in the development of cardiovascular gene therapy is the limited 

availability of vectors that are tissue or cell selective and that can be delivered 

intravenously. Another issue to be addressed is the need for long-term transgene 

expression, depending on the application. Non-viral vectors tend to be limited by their 

low transfection efficiencies and transient gene expression. Viral vectors are more 

promising vectors as they can mediate higher levels of transgene expression and are 

being developed to be more selective for their target organ or cell type. Strategies to 

improve targeting and reduce immunogenicity have been applied to adenovirus and 

adeno-associated viral vectors, which is very applicable to cardiovascular gene 

therapy. The discovery of new serotypes of AAV that have a natural tropism for 

muscle, including cardiac muscle, has greatly aided the development of non-invasive 

cardiac gene delivery. This thesis investigated the use of targeted viral vectors and of 

the development of novel vectors, with the aim of producing a viral vector that is 

highly efficient and selective at transducing cells of the cardiovascular system. The 
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primary focuses were on myocyte targeting with rAAV6 vectors and vascular 

endothelial cell targeting by vector engineering strategies. Whilst the initial results 

from the heart targeting peptides were encouraging, these peptides were unable to 

succesfully retarget the vectors that they were tested in. Finding a suitable vector for 

these peptides may not be possible or could prove to be time consuming. In light of 

this, rAAV6 represents a far more useful vector for future developments, provided 

that an efficient element of transcriptional regulation can be accomodated. 

 

For targeting the cardiac vasculature, I evaluated, both in vitro and in vivo, candidate 

heart targeting peptides identified through phage display in which the heart 

vasculature was probed for heart-specific endothelial markers. Limitations of phage 

display for the isolation of targeting peptides potentially include high non-specific 

binding of phage and lower levels of phage available to interact with the target, as 

much phage will be taken up by the liver and spleen immediately proceeding 

intravascular injection (Balestrieri and Napoli 2007). However, despite these 

challenges, four potential vascular targeting candidates were identified as CRPPR, 

CSGMARTKC, CRSTRANPC and CPKTRRVPC. All four showed an increase in 

ability to home to the heart when compared to insertless phage. Once shown to be 

selective for the heart tissues, these four peptides were used to modify Ad5, Ad19p 

and AAV2 vectors to assess if they increased the selectivity of these vectors to 

endothelial cells of the vasculature. Whilst AdKO1 peptide-modified vectors were 

promising in vitro, phage-display derived targeting peptides generally proved 

disappointing in the context of Ad19p and AAV2 retargeting, with the tropism of 

peptide modified vectors remaining unchanged. It is important to note that the high 

specificity of these peptides for the heart can be exploited not only for viral vector 

retargeting, but potentially also for the conjugation of therapeutic agents to the 

peptides. Most work in this area so far has focused on the delivery of cancer therapies 

(Ellerby, Arap et al. 1999), but this application could be translated to the delivery of 

cardiovascular therapies. 

 

Sequestration in the liver is a major limitation of Ad vectors (Huard, Lochmuller et al. 

1995). To enable Ad vectors to mediate transduction of alternative organs, the 

abolition of binding to CAR and the incorporation of targeting peptides into the capsid 

of the vector were proposed to re-route the vector. CAR-binding ablated vectors were 
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generated after the discovery of the key sites on the vectors that mediate binding 

(Roelvink, Mi Lee et al. 1999). However, it was soon discovered that ablating CAR 

binding alone did not change the hepatic tropism of these vectors in vivo, despite 

promising results in vitro (Alemany and Curiel 2001; Mizuguchi, Koizumi et al. 2002; 

Smith, Idamakanti et al. 2003), suggesting the use of alternate receptor pathways in 

vivo by Ad5 vectors. Ad5 vectors harbouring mutations in both CAR and HSPG 

binding regions have demonstrated reduced hepatic tropism in vivo (Smith, 

Idamakanti et al. 2003; Nicol, Graham et al. 2004). Regardless of this fact, the 

incorporation of targeting peptides into the capsid of these vectors did not lead to the 

transduction of the target tissue (Kritz, Nicol et al. 2007). Triple mutant Ad vectors 

that are ablated of CAR, integrin and HSPG binding have been generated, and 

mediate lower levels of liver transduction than unmodified vectors (Koizumi, 

Mizuguchi et al. 2003; Koizumi, Kawabata et al. 2006). Whilst AdKO1 vectors may 

not be effective in vivo, they are useful in vitro tools to assess the targeting capacity of 

the selected peptides in the context of a viral vector (Mizuguchi, Koizumi et al. 2002). 

Clearly, the four identified peptides are highly selective, and have demonstrated that 

they can be incorporated into viral vectors with successful retargeting. With the 

selection of an appropriate vector, the incorporation of these peptides could result in 

the generation of highly selective vectors, but this remains to be tested. 

 

It has recently been documented that blood coagulation factors, especially factor X, 

play a major role in targeting Ad5 vectors to hepatocytes in vivo (Shayakhmetov, 

Gaggar et al. 2005; Parker, Waddington et al. 2006), suggesting that coagulation 

factors in the blood would need to be eliminated for efficient retargeting of vectors 

based on this serotype. It has been shown that factor X binds directly to the 

adenovirus, resulting in high levels of liver transduction mediated through HSPGs 

(Parker, Waddington et al. 2006; Waddington, Parker et al. 2007). Recently, it has 

been discovered that interaction between the virus and factor X is not mediated 

through the fiber protein as originally suggested (Shayakhmetov, Gaggar et al. 2005), 

but is instead mediated through the hexon protein (Waddington, McVey et al. 2008). 

This finding has major implications on both vector infectivity biology and on vector 

design. By disrupting the interaction between factor X and Ad5 hexon using a snake-

venom derived factor X blocking protein (X-bp), liver transduction was significantly 

reduced in mice and rats (Waddington, McVey et al. 2008). Pre-treatment with X-bp 
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used in combination with our peptide-modified AdKO1 vectors may allow for the 

efficient retargeting of these vectors. 

 

Alternative serotypes of Ad vectors that differ in their fibers are being explored as 

potential gene delivery vectors to identify those with reduced coagulation factor 

binding (Denby, Work et al. 2004). When pseudotyped onto Ad5 vectors, the fiber of 

serotype 19p was shown to mediate greatly reduced liver tropism in vivo and to 

display a reduced capacity for the binding of blood coagulation factors (Denby, Work 

et al. 2004). However, despite the great potential of Ad19p vectors, the insertion of 

heart targeting peptides into the HI loop on the fiber did not retarget the vectors 

accordingly. A reduced liver tropism was maintained however, confirming the natural 

lack of hepatic tropism previously reported (Denby, Work et al. 2004). The screening 

of a panel of vectors, including alternative virus types may lead to the identification of 

a suitable platform vector into which targeting peptides can be inserted. 

 

AAV vectors have emerged as promising alternative vectors to adenoviral vectors for 

cardiovascular gene therapy, as a result of their inability to mediate sustained 

transgene expression in non-dividing cells. However, AAV2 exhibits poor tropism for 

human vascular endothelial cells  (Nicklin, Buening et al. 2001) and so the 

development of rAAV2 vectors requires either retargeting, or the use of alternate 

serotypes. Recently, it has been shown that rAAV1 and rAAV5 vectors are more 

efficient than rAAV2 vectors at transducing endothelial cells in vitro and in vivo when 

used at low titres (Sen, Conroy et al. 2007). However, previous studies have 

demonstrated that AAV serotypes -2 through -8 are all poor transducers of vascular 

cells (Dishart, Denby et al. 2003; Denby, Nicklin et al. 2005), and our present data 

with rAAV6 and rAAV9 vectors would agree with these findings. Genetic 

engineering of rAAV2 vectors through the insertion of a targeting peptide has 

previously been shown to be a viable retargeting technique, with  rAAV2 vectors 

being retargeted to the human luteinizing hormone receptor (Shi, Arnold et al. 2001), 

the vasculature the lung and brain in vivo (Work, Buening et al. 2006) and to 

atherosclerotic lesions (White, Buening et al. 2007). This study characterised AAV2 

based vectors containing the heart targeting peptides CPKTRRVPC, CRPPR and 

CSGMARTKC and found no evidence of retargeting. The net charge of the peptides 

is thought to be important in determining whether HSPG binding will be ablated by 
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the insertion of the peptide into the HSPG binding site (Opie, Warrington et al. 2003; 

Perabo, Goldnau et al. 2006). Positively charged peptides are thought to maintain the 

HSPG binding abilities of the vectors (Perabo, Goldnau et al. 2006). As the net charge 

of all three peptides is positive, this could explain the lack of retargeting observed 

from the peptide-modified vectors, although the hepatic cell line HepG2 remained 

untransduced, suggesting a contributory rather than a causative role. Potentially the 

insertion of these peptides into the rAAV2 capsid has resulted in impaired 

intracellular trafficking of AAV to the nucleus. 

 

Whilst alternate AAV serotypes may not have improved endothelial transduction 

(Denby, Nicklin et al. 2005), they have been shown to efficiently target other organs, 

including the myocardium, liver and brain (Wang, Zhu et al. 2005; Inagaki, Fuess et 

al. 2006; Pacak, Mah et al. 2006). In particular, recombinant vectors derived using the 

capsid genes of AAV serotypes including AAV6, -8 and -9 have demonstrated 

powerful tropism for skeletal and cardiac muscle (Kawamoto, Shi et al. 2005; Wang, 

Zhu et al. 2005; Inagaki, Fuess et al. 2006; Pacak, Mah et al. 2006), achieving high 

cardiac transduction rates following systemic injection (Wang, Zhu et al. 2005; 

Inagaki, Fuess et al. 2006; Pacak, Mah et al. 2006). In a direct comparison of AAV 

serotypes 1-8, direct injection into the myocardial wall lead to high levels of 

myocardial transduction mediated by AAV-1, -6 and -8 (Palomeque, Chemaly et al. 

2007). Prior studies have shown the efficiency of both rAAV6 (Blankinship, 

Gregorevic et al. 2004; Gregorevic, Blankinship et al. 2004) and rAAV9 (Inagaki, 

Fuess et al. 2006; Pacak, Mah et al. 2006) vectors in achieving myocardial gene 

transfer. It is difficult to compare the serotypes across studies; route of administration, 

virus dose administered, ages of animals and use of vascular permeablising agents 

have differed between studies. We demonstrate that intravenous administration of 

rAAV6 and rAAV9 vectors can be used to efficiently deliver and express genes in the 

heart of SHRSP, a relevant rodent CVD model. Furthermore, we show that rAAV6 

vectors posses a more favourable cardiac gene delivery profile and as such are used 

for the ultimate aim of this thesis – to overexpress ACE2 in the myocardium of the 

SHRSP. The low numbers of animals used in the comparsion of these two vectors is a 

limitation of this study, but was necessary due to a lack of virus which has a laborious 

production method. The repetition of these results cannot be assured; however, the 

dose dependent results that were seen from both vectors demonstrate that these 
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vectors behave as expected in the SHRSP. RAAV6 vectors are a useful tool to study 

the molecular mechanisms of cardiovascular disease, and have recently been approved 

for use in patient clinical trials. RAAV6 vectors expressing sarco-endoplasmic 

reticulum calcium ATPase pump (SERCA2a), driven by the CMV promoter, have 

been approved for a human clinical trial to patients in chronic heart failure in the UK 

(www.clinicaltrials.gov) and USA (www.wiley.co.uk/genetherapy). SERCA2a plays a 

fundamental role in lowering cytoplasmic calcium levels during relaxation and the 

observed decline in contractile function in failing hearts is often associated with 

lowered protein levels of SERCA2a (Del Monte, Dalal et al. 2004). This vector has 

been developed to improve systolic and diastolic function of the failing ventricle 

through restoration of SERCA2a levels, as it has been shown that levels of SERCA2a 

are reduced in the failing ventricle (Pleger, Most et al. 2007). 

 

Wide spread dissemination of vectors following intravenous administration raises the 

issue of potential transduction of non-target tissues. To increase specificity of the 

vector, an element of transcriptional control was incorporated into rAAV6 vectors. 

This approach has been successful in achieving muscle specific transgene expression 

(Sun, Zhang et al. 2005; Salva, Himeda et al. 2007), and has been used to develop 

tissue-specific regulatory cassettes that mediate high levels of transgene expression in 

both skeletal and cardiac muscle (Salva, Himeda et al. 2007). Despite being shown to 

successfully drive myocardial specific expression from rAAV2 vectors (Phillips, Tang 

et al. 2002), the incorporation of the rat cardiac-specific promoter MLC2v into our 

rAAV6 vectors was unsuccessful in vivo. The activity of the MLC2v promoter was 

clearly not strong enough to induce the expression of reporter gene lacZ following 

intravenous administration, despite evidence of efficiency and selectivity in vitro. 

This does not rule out the possibility of achieving transcriptional control with rAAV6 

vectors however. To increase the strength of the promoter, a CMV element could be 

fused to the MLC2v promoter, as has recently been demonstrated with the longer 1.5 

kb version of the promoter (Muller, Leuchs et al. 2006; Raake, Hinkel et al. 2007). 

Alternative cardiac-specific enhancer/promoter elements could be investigated further 

to identify one that successfully drives myocardial specific transgene expression. The 

α-cardiac actin enhancer/elongation factor 1α (EF1α) promoter has recently been used 

to drive cardiac-specific expression of the transgene S100A1 from rAAV6 vectors 
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(Pleger, Most et al. 2007). It is important that the regulatory element is small enough 

so as to maximise the capacity available for the insertion of the transgene. 

 

We have used cardiac gene delivery, mediated by recombinant AAV6 vectors, to 

examine the physiological role of ACE2 in vivo in established cardiovascular disease 

model, the SHRSP, which is a model of genetic hypertension with susceptibility to 

concentric left ventricular hypertrophy (LVH). Previous studies into the actions of 

ACE2 have generated conflicting results (Crackower, Sarao et al. 2002; Donoghue, 

Wakimoto et al. 2003; Diez-Freire, Vazquez et al. 2006; Gurley, Allred et al. 2006). 

Because ACE2 is known to hydrolyse Ang I and Ang II (Tipnis, Hooper et al. 2000), 

it was considered that ACE2 may play a pivotal role in the RAS by reducing 

concentrations of the pro-fibrotic, pro-proliferative vasoconstrictor Ang II and raising 

levels of the anti-fibrotic, anti-proliferative vasodilatory peptide Ang 1-7. Ang 1-7 has 

been found to exert beneficial effects on CVD models (Santos, Ferreira et al. 2004; 

Benter, Yousif et al. 2007), establishing a potentially cardioprotective role for this 

circulating peptide. Thus ACE2 would be deemed as a negative regulator of the RAS. 

However, our findings are contrary to the expected hypothesis that ACE2 could 

function to improve cardiac function in hypertensive animals. We found that sustained 

and high-level ACE2 overexpression exerts detrimental effects on cardiac structure as 

characterised by severe myocardial interstitial fibrosis and abnormal myocardial 

organisation. Severe cardiac dysfunction was characterised by a marked and 

significant reduction in ejection fraction and fractional shortening. We also found that 

basal NO bioavailability was increased, suggesting both positive and negative effects 

of ACE2 overexpression in vivo.  

 

Clearly there are limitations with our approach to the assessment of overexpression of 

ACE2. One of the most interesting aspects of this work is that in a study that was very 

similar in design to our own, differing in choice of vector and in delivery method, 

very different results were attained (Diez-Freire, Vazquez et al. 2006). Potentially 

there is a dose-dependent response occurring, as suggested by Donoghue et al 

(Donoghue, Wakimoto et al. 2003), who found that higher ACE2 expressing 

transgenic mice had a higher severity of symptoms including a higher incidence of 

death than the lower expressing line (Donoghue, Wakimoto et al. 2003). Thus in the 

study by Diez-Freire et al (Diez-Freire, Vazquez et al. 2006), the lentiviral vector 



 174 

potentially expressed ACE2 at low enough levels to display cardioprotective effects 

whilst avoiding the induction of the detrimental effects on the heart (Diez-Freire, 

Vazquez et al. 2006). Further investigation into the dosing effects of ACE2 could 

establish such a correlation, enhance our knowledge of the RAS and enable the 

development of improved therapeutic strategies. 

 

It is also important to consider that ACE2 functions as a multifunctional enzyme. In 

particularly, it has been shown that ACE2 efficiently cleaves apelin (Vickers, Hales et 

al. 2002). There is increasing evidence that apelins play crucial roles in the 

maintenance of cardiac function (Berry, Pirolli et al. 2004). In myocardial I/R models, 

apelin administered at pharmacological doses produced cardioprotective effects as 

evidenced by reduced infarct sizes (Simpkin, Yellon et al. 2007). Aged apelin 

knockout mice were found to develop impaired cardiac contractility, systolic 

dysfunction and progressive heart failure (Kuba, Zhang et al. 2007). Through the 

cleavage of apelins, it would appear that ACE2 may be able to potentially knock out 

crucial cardioprotective functions of other systems other than the RAS.  

 

No studies to date have identified a mechanistic pathway of the interactions of ACE2. 

It is unclear as to exactly which peptides ACE2 interacts with to mediate its effects in 

vivo. It also remains ambiguous as to whether ACE2 is acting locally or systemically. 

Based on the findings of this study, we have performed global gene expression 

profiling to examine potential pathways that are perturbed upon the onset of the 

actions of ACE2 (assessed at 4 weeks post-infusion). Illumina gene expression 

analysis revealed the upregulation of several fibrosis-associated genes including 

collagen type III alpha 1 (COL3A1), fibronectin 1 (FN1) and lysyl oxidase (LOX). 

Furthermore, genes including apelin, myosin heavy chain 11 (MYH11) and GATA 

binding protein 6 (GATA6) genes were downregulated (unpublished data). Thus gene 

expression analysis revealed activation of a pro-fibrotic phenotype at the 

transcriptional level. Further investigation of these pathways is required to fully 

understand the mechanistic basis of these findings. 
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Appendix 1 Echocardiography findings 
 

 
EF, ejection fraction; FS, fractional shortening; CO, cardiac output; LVMI, left ventricular mass index; RWT, relative wall thickness; IVSWT, 

interventricular septal wall thickness; SBP:ESV, ratio of systolic blood pressure to end systolic volume; HR, heart rate.*p<0.05 rAAV6:ACE2 

vs. PBS, Enalapril and rAAV6:hPLAP.

Group 

 

Weeks Post-

infusion 

%EF %FS CO (ml/min) LVMI 

(mg/g) 

RWT % IVSWT SBP:ESV HR (b/min) 

PBS 0 88.0 ± 1.5 53.0 ± 2.3 168.6 ± 1.6 2.48 ± 0.1 0.54 ± 0.02 45.0 ± 1.9 2314 ± 433 405.8 ± 1.9 

 11  81.3 ± 1.1 50.8 ± 4.1 234.5 ± 18.5 2.96 ± 0.1 0.60 ± 0.01 44.3 ± 3.1 3600 ± 382 375.7 ± 4.0 

rAAV6:hPLAP 0  84.5 ± 1.3 49.0 ± 1.7 183.5 ± 7.8 2.51 ± 0.1 0.55 ± 0.02 41.5 ± 3.5 1965 ± 126 428.9 ± 19.9 

 11  82.3 ± 1.3 51.3 ± 2.5 233.2 ± 17.8 2.86 ± 0.1 0.60 ± 0.03 43.3 ± 3.5 2842 ± 458 377.2 ± 7.5 

rAAV6:ACE2 0 89.0 ± 1.7 55.0 ± 3.2 225.6 ± 2.2 2.84 ± 0.3 0.49 ± 0.01 48.7 ± 1.8 2277 ± 341 393.4 ± 2.6 

 11 62.0 ± 2.7* 34.3 ± 4.9* 204.9 ± 17.6* 2.62 ± 0.2 0.49 ± 0.01 33.7 ± 4.4* 582   ± 57* 372.2 ± 9.2 

Enalapril 0 84.3 ± 1.3 51.5 ± 0.3 179.1 ± 6.7 2.37 ± 0.1 0.52 ± 0.02 47.5 ± 1.9 2343  ± 159 385 ± 8.7 

 11 80.5 ± 2.1 56.0 ± 1.5 231.3 ±  10.1 2.31 ± 0.1 0.57  ± 0.01 42.25 ± 1.3 3003 ± 257 411 ± 4.0 
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Peptide 
 

Tissue Recovery (PFU)/ mg tissue 

Liver 1.0 × 105  ± 2.3 × 103 
Spleen 3.2 × 104  ± 7.4 × 103 
Brain 41 ± 8 
Kidney 60 ± 20 
Lung 2.3 × 102  ± 44 

INSERTLESS 

Heart 3.4 ± 0.8 
Liver 8.2 × 105  ± 2.0× 105 
Spleen 2.7 × 105  ± 8.1× 104 
Brain 4.2 × 102  ± 2.7× 102 
Kidney 7.9 × 102  ± 1.2 × 102 
Lung 3.2 × 103  ± 6.8 × 102 

CRPPR 

Heart 1.5 × 103  ± 6.1 × 102 
Liver 2.3 × 105  ± 1.0 × 105 
Spleen 3.0 × 104  ± 9.5 × 103 
Brain 23 ± 4 
Kidney 16 ± 2 
Lung 3.3 × 103  ± 1.4 × 103 

CPKTRRVPC 

Heart 43 ± 9 
Liver 1.5 × 106  ± 3.0 × 105 
Spleen 2.1 × 106  ± 2.2 × 105 
Brain 8.0 × 102  ± 2.9 × 102 
Kidney 3.7 × 103  ± 5.0 × 102 
Lung 1.2 × 104  ± 6.1 × 103 

CRSTRANPC 

Heart 7.4 × 103  ± 1.0 × 103 
Liver 8.3 × 104  ± 2.2 × 104 
Spleen 4.1 × 104  ± 1.0 × 104 
Brain 37 ± 15 
Kidney 2.1 × 102  ± 21 
Lung 1.2 × 102 ± 76 

CSGMARTKC 

Heart 2.8 × 102  ± 83 
Liver 4.0 × 105  ± 5.3 × 104 
Spleen 7.6 × 105  ± 3.8 × 105 
Brain 97 ± 48 
Kidney 83 ± 81 
Lung 1.8 × 103  ± 1.5 × 103 

CPKRPR 

Heart 29 ± 14 
Liver 6.3 × 105 ± 1.7 × 105 
Spleen 1.3 × 106  ± 3.9 × 105 
Brain 1.7 × 102  ± 99 
Kidney 1.4 × 103  ± 7.2 × 102 
Lung 2.3 × 104  ± 1.6 × 104 

CGRSKTVC 

Heart 81 ± 7.6 
 

Appendix 2 Phage recovery data. 

Phage recovery data shown as mean recovery (PFU)/ mg tissue ± SEM (n=3/group).  


