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TOPICS IN THE 

THEORY OF INVARIANT SUBSPACES 

by 

DEMETRIOS KOROS 

A dissertation submitted for the degree of Doctor 

of Philosophy in the University of Glasgow. 

SUMMARY 

This thesis is concerned with some questions which arise in 

the study of the invariant subspace problem. 

In Chapter One, which is not claimed as original work, we 

include the main results on the spectral theory of linear operators 

which will be required in the subsequent chapters. 

In Chapter Two, we prove that every analytic Toeplitz operator 

and every isometry on a general Hilbert space are reflexive operators. 

It is shown that an operator is reflexive if its restriction to every 

closed separable subspace is reflexive. This both simplifies and 

generalizes the work of Deddens. 

Chapter Three is devoted to the study of subnormal operators. 

It is shown that a large class of subnormal operators are reflexive 

in the first section. The remainder of this chapter is devoted to 

proving a generalization of a theorem of Naimark. It is shown how 

this result can be used in proving Bishop's theorem that the closure 

of the set of normal operators (on a separable Hilbert space) in the 

strong operator topology is the set of subnormal operiators. 



In Chapter Four we make a study of analytically compact 

operators. It is shown how a modified form of Ringrose's theory 

of superdiagonal forms (valid for a compact linear operator on a 

complex Banach space) holds in this more general situation. 

Chapter Five is devoted to the study of compact linear 

operators on a real Ban ach space. It is shown how the use of 

the Hilden-Lomonosov technique very considerably simplifies the 

theory initiated independently by Gillespie and Meyer-Nieberg. 

Finally, in Chapter Six it is shown that Ringrose's theory 

of superdiagonal forms can be extended to the case of a completely 

continuous operator on a locally convex Hausdorff topological 

vector space over the complex field. This satisfactorily rounds 

off the spectral theory of such operators initiated by Altman. 
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CHAPTER ONE 

Preliminary Concepts 

1. Let X be a set. 

if and only if: 

(i) SEM, 

(ii) AEM X\A E M, 

A family M of subsets of X is a a-algebra 

CO 

(iii) for any sequence {An} in M, U An6 M. 
n=1 

The class of all subsets of a given set forms a a-algebra. 

The intersection of a family of a-algebras is again a a-algebra. 

2. A topological space is an abstract set S, together with a 

class rS of subsets of S, whose members will be called the open sub- 

sets of S, which contains the void set $ and the whole set S, and 

which is closed under the operations of forming arbitrary unions 

and finite intersections. 

A subset of S will be called closed if its complement in S 

is open. 

3. Let S be a topological space. The intersection of all 

Q-algebras of subsets of S which contain the class rS of open sets, 

will itself be a a-algebra (1.1), which we will denote by ES' rS 

is called the Borel family of S, and the subsets of S which are in 

ES are called the Borel subsets of S. We shall mainly be concerned 

with the case S=t of the complex plane, in the topology induced 

by the metric 1.1. The Borel family of C is denoted by E. 

4. Let X be a Banach space. If A is a subset of X. we shall 
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use the notation clm A to denote the intersection of all closed sub- 

spaces of X which contain A. Clm A is called the closed linear sub- 

space generated by A. 

5. Let Y be a closed subspace of the complex Banach space X. 

Then Y is a (complex) Banach space under the norm of X. The 

annihilator Yý'of Y is the closed subspace of X' (dual of X) defined 

by: 

Y' _ {f e X* :f (y) =0 for all yin Y} . 

(See [l(] ). 

6. The class of all bounded linear operators mapping a Banach 

space X into itself will be denoted by L(X) (or B(X)). L(X) is an 

algebra. Three topologies will be introduced on this algebra: 

The uniform operator topology in L(X) is the topology induced 

by the norm, 

I ITH = suPI ITXI f, 
IIXII<1 

(xe X. TE L(X)) ; 

under this norm, L(X) is a Banach algebra. 

The strong operator topology in L(X) is the topology defined 

by taking as"a basic set of neighbourhoods of T6 L(X), the sets 

N(T; A; c) _ {RE L(X) :II (T-R)xl <c, x6 A}, 

where A is an arbitrary finite subset of X and c>0 is arbitrary. 

Thus a generalized sequence {Ta} converges to T in the strong 

operator topology if and only if {Tax} converges to Tx, for each 

x6 X. Under this topology L(X) is a locally convex, Hausdorff, 

(topological) linear space. 

The weak operator topology in L(X) is the topology defined by 

taking as a basic set of neighbourhoods 
" 

N(T; A, B; c) _ {RE L(X): I ((T-R)x, x*> I<E, xEEA, x'^E B}, 
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where A and B are arbitrary finite subsets of X and X* respectively 

and e>0 is arbitrary. Thus, a generalized sequence {Ta} converges 

to T in the weak operator topology if and only if { <T, ýxxf--ý> } 

converges to (Tx, x*) for each x6 X and each x %E X*. Under this top- 

ology, L(X) is a locally convex, Hausdorff, linear space. Between 

these topologies there exist the following inclusions: 

weak strong operator 

I operator operator 
C 

norm 

I topology topology topology 

7. Let X be a Banach space and let T ELM. The resolvent set 

p(T) of T is the set of complex numbers X for which XI-T is invertible 

in the Banach algebra L(X). The spectrum a(T) of T is defined to be 

T\p(T). The function p(T)) is called the resolvent 

of T. 

The following are proved in [Z2]. 

(1) Let Te LM. The resolvent set p(T) is open. Also, the 

function A} (AI-T)-1 is analytic in p(T). 

(2) Let TE L(X) . Then a(T) is compact and non-empty. 

(3) If for TaL(X), the spectral radius v(T) of T is defined 

by 
v(T) = sup{IXI : Xe a(T)I, 

then the spectral radius of T has the properties 

v(T) = limllTn111/n < JIT!!. 

n -; co 

(4) Let TE L(X) .T is said to be quasinilpotent if and only if 

liml! TnIfl" = 0. Then 
n+ 

(i) T is quasinilpotent if and only if V(T) = 0. 

(ii) T is quasinilpotent if and only if a(T) _ {0}. 

(5) Let TE L(X). There is an operator T* in L(X*`) called the 
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adjoint of T such that 

<TX, yi = (x, T*y) (x6 x, yE X*). 

The map T; T* is an isometric linear map of L(X) into 

L(X^) with the additional property 

(AB)' = B'A'^ (A, BE L(X)). 

The spectrum of V. is equal to the spectrum of T. More- 

over 
((XI-T)-1)ýý i1, E p(T)). 

(6) Let TEE L(X). Define 

aCT) {XE T: XI-T is not one-to-one}; 

Qo(T) _ {X T: XI-T is one-to-one, 

TIF-T)X =X but (XI-T)X ý X}; 

Qr(T) _ {XE T: XI-T is one-to-one but (AI-T)X ý X}; 

Qp(T), ac(T) and ar(T) are called respectively the point 

spectrum, the continuous spectrum and the residual spect- 

rum of T. Clearly ap(T), ac (T) and ar(T) are disjoint and 

cs(T) =a (T) UQc (T) Uar. (T). 

(7) Let TE L(X). Define 

aa(T) _ {XE C: there is a sequence {x 
n} 

in X with 

lixnll =1 and limll(XI-T)xnll = 01- 
n+ oo 

Qa (T) is called the approximate point spectrum of T. The 

following result summarizes the main properties of the anprox- 

imate point spectrum of TE L(X). 

(i) The set aa(T) is a closed non-empty subset of the 

spectrum of T. 

(ii) The boundary of a(T) is contained inaa(T). 

(iii) ap(T)C aa(T). 
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(iv) a (T) Ca (T) 

8. A Boolean algebra B is an abstract set in which two binary 

operations, v and A, are defined, satisfying the following four 

postulates: 

are commutative and associative operations. 

(ii) There exist zero and identity elements, 0 and e respectively, 

such that for each a F- B, 

aV0=a 

aAe=a. 

(iii) Two distributive laws hold: 

aV(b1/\b2) _ (avb1)A (aVb2) 

b/` (a1V a2) _ (bA a1)V (bl\a2), 

for each a, bl, b2 , al, a2 ,bEB. 

(iv) For each aEB, there is an element a'6 B such that 

aV a' = e, 

aA a' = 0. 

The above constitute a minimal set of axioms which define a 

Boolean algebra. They are symmetric in the operations V and A. 

An important example of a Boolean algebra is the class of all 

subsets of a fixed set. More precisely, let S be a fixed set, and 

let the binary operations be defined by 

T1 V T2 = Tl (f T2 , 

T1 A T2 = T1() T2 , 

for each TlýT2 C S. Let 

Tý = S\T 

for each TG S. In this Boolean algebra, the void set ý corresponds 

to the zero element 0 and the whole set S to the element e. Also we 

have: TV T' = S, , 
TA T' 
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We can see that the Borel family Ep of the complex plane forms 

a Boolean algebra under the operations V=U and A=n. 

9. Let E6 L(X) (X be a Banach space). E is called a projection 

if and only if E2 = E. If E is a projection there are closed sub- 

spaces X1 and X2 of X such that: 

(i) Xl is the range of E. 

(ii) X2 is the null-space of E, 

( iii) X = x1 0 X2. 

Conversely, let X1 and X2 be closed subspaces of X such that 

x= x® 0 x2. 

Then there is a projection E in L(X) whpse range is X1 and whose null- 

space is X2. Moreover E is uniquely determined by these conditions 

(see in 221 pp. 25 and for a full discussion in [I I]). 

We summarise some useful properties of commuting projections. 

Let El , E2 EL (X) 
, ElE2 = E2 E1, El = El, E2 = E2 . Then, 

(a) E1E2 = E2 if and only if E2XC E1X. 

(b) E= E1 + E2 - E1E2 is a projection with EX = clm(E1X U E2X). 

(c) E= E1E2 is a projection with EX = E1X (\ E2 X. 

(d) E= E1 - E2 is a projection, if and only if E1E2 = E2. 

(e) If E is a projection in LM, then E* is a projection in 

L(X), and 

E*X _ {x^E Xb: (x 
, x') = 0, xE (I-E)X}. 

The natural ordering, <, is defined on projections, by setting 

E1 < E2 to mean 
E1E2 = E2E1 = E1. 

This is equivalent, by (a), to E1X C E2X. The natural ordering 
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satisfies: 

(i) E1 < E1, 

(ii) if 'E <E and E<E then E<E 
l223,1 31 

(iii) if E1 < E2 and E2 < E1, then E1 = E2 . 

Two projections E1 and E2, such that E1E2 = E2El, will have a least 

upper bound, 

E1V E2 = E1 + E2 E1E2 

and a greatest lower bound 

E1A E2 = E1E2 

with respect to the natural order. 

10. A Boolean algebra B of projections on X (X is a Banach space) 

is a commutative subset of L(X) such that: 

(i) E2 =E (EEB); 

(ii) OE B; 

(iii) if EEB then I-E E B; 

(iv) if E, F6 B then 

EVF=E+F-EFGB, 

EAF= EFE B. 

A Boolean algebra B of projections on X is said to be bounded 

if there is a real number M such that JJEJJ <M (E G B)(see in [22J 

pp. 117). 

Now, let E be a a-algebra of subsets of an arbitrary set Q. 

Suppose that a mapping E(") from E into a Boolean algebra of projections 

on X satisfies the following conditions: 

(i) 

(ii) 

E(51) + E(d2) - E(S1)E(S2) = E(S1 U6 2) 
(6116 

2E Z); 

a 
E(S1)E(d2) = E(51(ß a2 ) (al, 6 

2E E) ; 

w 
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(iii) E(n\a) = I-EM (6 E); 
(iv) E(f2) = I; 

(v) there is M>0 such that IIE(d)JI < M, for all d in E; 

(vi) the scalar-valued set-function 
(E(" )x, x *T is countably 

additive on E, for each x in X and each x* EX-. 

The operator-valued set-function E(") is called a spectral 

measure. 

11. Let X be a Banach space. Let T 6. L(X). Then T is called a 

spectral operator if there is a spectral measure E(") defined on E 
P 

with values in L(X) such that: 

(i) E(") is countably additive on Ep in the strong operator 

topology, 

(ii) TE(T) = E(T)T (T E EP), 

(iii) v(TIE(T)X)G T (i E Zp). 

Observe that (i) means that the vector-valued measure E(")x is 

countably additive on Ep for each x in X. 

The Boolean algebra of projections formed by the values of the 

spectral measure will be referred to as a resolution of the identity 

of the spectral operator. 

12. THEOREM Let T be a spectral operator on X and let E(") be 

the resolution of the identity for T. Let AS LM and AT = TA. 

Then 

AE(T) = E(T)A (T E). 

(See [22] 
, Theorem 6.6 pp. 161). 

13. THEOREM Let T be a spectral operator on X. Then T has a 

unique resolution of the identity ([Z2] Theorem 6.7 pp. 162). 

14. Let K be the topological space formed by the set Q(T) (T E L(X), 
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X is a Banach space) in its relative topology with respect to the 

complex plane. Let C(K) be the algebra of continuous complex-valued 

functions on K, in the uniform norm, defined by 

If! I= suplf(a)I (fe C(K)). 

XE a(T) 

C(K) is a Banach algebra, and we have the following result: 

THEOREM Let fe C(K). The Riemann-Stieltjes integral f(J)E(dJ) fa(T) 

exists, and converges in the uniform operator topology 

([22] pp. 119-120). 

15. DEFINITION Let S be a spectral operator on X with resolution 

of the identity E(") such that 

S= XE(da). 

Q(S) 

Then S is called a scalar-type spectral operator ([22] pr. 129). 

16. Now, let X be a Banach space. Let TE L(X). We introduce 

the functional calculus for T( [2-] pp. 10,11). 

We denote by F(T) the family of all functions which are analytic 

on some neighbourhood of Q(T). (The neighbourhood need not be con- 

nected, and can depend on the particular function in F(T)). 

Let fE F(T), and let U be an open subset of C, whose boundary 

B consists of a finite number of rectifiable Jordan curves. We assume 

throughout that B is oriented so that 

A-u-1dA = 2ni fB (u e U) 

(a-u)-lda =0 (u ýUU B). fB 

a 
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Suppose that U? a(T) , and that UUB is contained in the domain 

of analyticity of f. Then the operator f(T) is defined by the 

equation 

f(T) 21ri 
f(a)(ýI-T)-lda. 

B 

The integral exists as a limit of Riemann sums in the norm of L(X). 

It follows from the analyticity of (XI-T) -1 on p(T), and from the 

Cauchy integral theorem, that f(T) depends only on the function f 

and not on the open set U chosen to define this operator. The above 

formula establishes a homomorphic map of F(T) into the algebra L(X), 

which maps 1 into I and A into T. 

THEOREM ([22j Theorem 1.19 pp. 11) 

Let T6 L(X). If f, g are in F(T) and a, bEC, then : 

(i) of+bgE F(T) and (af+bg)(T) = af(T)+bg(T); 

(ii) f"g GF(T) and (f"g)(T) = f(T)"g(T); 
co 

(iii) if f has power series expansion f(A) =E akak, valid in a 
k=o 

neighbourhood of Q(T), then f(T) =E akTk; 
k=o 

(iv) fE F(T%ý) and f(T*) _ (f(T)). 

17. A functional calculus for a much larger class of functions 

can be developed for a scalar type spectral operator S mapping a 

Banach space X into itself. In 

function fE C(K) we may define 

(1.14) we observed that for a 

f(s) f(a)E(da). 
ýa(s) 

This functional calculus preserves products: 

f(S)g(S) = f(X)g(A)E(dA) (f g6 C(K)). 

O(S) 
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([22] pp. 123,124). Moreover, we have 

suplf(a)l < 11 f(A)E(dA)II < 4M supJf(X)l 

AE ct(S) c1( S) aE u(S) 

where M is constant such that 

(r6 EP). IIE(T)II <M < 110 

(E(. ) is the spectral measure for S. ) 

(fi C(K)), 

18. Let X be a Banach space. The support of a spectral measure 

E("), whose values are projections in L(X), is the complement of the 

maximal open set on which the operator-valued set function is zero. 

THEOREM Let TE L(X) be spectral and let E(") be the resolution 

of the identity for T. Then the support of the spectral measure E(") 

is the spectrum a(T) of T([2Z] pp. 121,122). 

19. Let T GL(H) (H is a Hilbert space). Then T is said to be 

normal if TT' = T''T. T is said to be self-adj oint if T=T`. T is 

said to be unitary if TT* = T*T = I. 

THEOREM ([22] Theorem 7.18) 

Let T be a normal operator on H. Then T is a scalar-type 

spectral operator. The values of the resolution of the identity of 

T are self-adjoint projections. (A projection E GL(H) is orthogonal 

if and only if I (E II=1. E is self-adjoint if and only if E=E. 

From [22] Proposition 7.14 we have : 

For EE L(H), E2 =E and E#0, the following statements are 

equivalent: 

(i) E is self-adjoint, 

(ii) IIEI I= 1ý 
(iii) EH and (I-E)H are orthogonal subspaces. ) . 
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THEOREM ([2Z] pp. 183,184 Note 7.19) 

Let A be a normal operator acting on the Hilbert space H. Then 

the Hilbert space adjoint A* is given by the formula 

A=a E(dX), 

Q(A) 

where E(") is the resolution of the identity for A. 

20. The functional calculus for a normal operator S takes a 

special form (Lemma 7.14 of [22] pp. 181). 

We have 

IIf(s)II = sup If (A)I 

ALa(S) 

(f6 C(Q(S))). 

THEOREM ([22j pp. 181 Lemma 7.14) 

Let T be a normal operator on H. There is an isometric algebra 

isomorphism iU of C(a(T)) into a subalgebra of L(H) consisting of 

normal operators such that: 

(i) maps the polynomial p(A, a) into p(T, Tu), 

(ii) p(T) _ (e(f)» (f EC(Q(T))). 

(Note p(f) = f(T) ). 

21. Let T6 L(X) (X be a Banach space) and let Y be a closed 

subspace of X. Y is said to be invariant under T if and only if 

TY G Y. If this is the case we can define an operator TIY in L(Y) 

by 
(TIY)y = Ty (y6Y). 

TIY is called the restriction of-T to Y. 

It is an open question whether every bounded linear operator 

on a separable infinite-dimensional complex Banach space E has a 

proper closed invariant subspace; that is a closed invariant subspace 
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other than the trivial ones {0} and E. 

Results on relationships between the spectrum of an operator 

and the spectrum of its restriction to a closed invariant subspace 

are contained in E22] pp. 19-22. 

22. Let Y be a closed subspace of X. Introduce an equivalence 

relation on X by 

xl ti x2 xl - x2 E Y. 

The set of equivalence classes of elements of X corresponding to 

this equivalence relation is a complex vector space under the 

operations defined by 

[x11y + [x21y = [x1 + X21y 

a[x] ,= 
ýax]y (ae r). 

This vector space is called the quotient space of X modulo Y and 

is denoted by X/Y. Define 

[x]yl I= inf{ I Ix + yt I: yE Y}. 

This is indeed a norm on X/Y and moreover X/Y is a complex Banach 

space under this norm. The mapping 0 defined by 

Ax) _ ExIY 

is called the canonical mapping of X onto X/Y. 0 is continuous, 

linear and IIýII<1 (see [22]) 
. 

Let, now, TE L(X) and let Y be a closed subspace of X in- 

variant under T. The map 

T, [x] 
,= 

[Tx] 
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is well-defined. Moreover TY E L(X/Y), since it is the composition 

ýoT of two continuous linear maps, and IITYII < IITII. 

We will use the following propositions ([22] pp. 23,24 Pro- 

positions 1.33,1.34). 

PROPOSITION Let Y be a closed subspace of X. Then there is a 

linear isometry J1 of (X/Y)*`" onto YI which is given by 

<x9jlz> 
_ <[x] 

Y, z) 

for all z in (X/Y)* and all x in X. 

Let TEL(X) and let Y be a closed subspace of X invariant under 

T. The equation 

(Tx, 
z) = (x, T %z) (x X, z. X) 

shows that T *YL G Y1". In view of this and the above proposition we 

may and shall identify TY and TI Yl. 

PROPOSITION Let Y be a closed subspace of X. Then there is a 

linear isometry J2 of X% /Yj- onto Y which is given by 

(Y5J2 [Z]yl> 
- 

<Y Z> 

for all z in X': and all y in Y. 

Let Te L(X) and let Y be a closed subspace of X invariant under 

T. In view of the above proposition we may and shall identify (TIY):: 

and TYl . 

23. A subspace M of a vector space F is said to have finite 

codimension in F if and only if the quotient space F/M has finite 

dimension. If M has finite codimension the dimension of F/M is 

called the codimension of M in F and is denoted by codim "ý, 

The following lemma is in [22] pp. 82. 
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LEMMA ([2Z] Lemma 3.25) 

A subspace M of a vector space F has finite codimension n in 

F if and only if there exists an n-dimensional subspace N of F such 

that F=M Qt N. 

I 
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CHAPTER TWO 

Lattices of Invariant Subspaces of Analytic 

Toeplitz Operators and Isometries 

D Sarason in ['44] (see also [21] ) proved that every normal 

(and hence every unitary) operator, on a Hilbert space H, is re- 

flexive. 

In this chapter we shall show that this property holds for 

analytic Toeplitz operators and for isometries. 

1. Let A be a bounded linear operator on a Hilbert space H. We 

denote by LatA the set of all (closed) subspacesM of H such that 

AMC M. 

If F is any collection of subspaces of H, then AlgF is the 

collection of operators A6 B(H) such that FC LatA. 

Obviously the invariant subspaces of A1gF are invariant under 

sums and products of operators in AlgF and hence under the operator 

algebra generated by A1gF. Also, because a subspace is weakly 

closed, an invariant subspace of A1gF is invariant under every 

operator that lies in the closure of AlgF with respect to the weak 

operator topology. Then for any collection F of subspaces, AlgF 

is a weakly closed subalgebra of B(H) which contains I. If U is 

any subset of B(H), then UC Alg LatU. 

The algebra U C. B(H) is reflexive if U= Alg LatU; i. e., if 

whenever LatU C LatB, then BEU. 

We denote by CL 
A(or 

a*(I, A)) the smallest weakly closed algebra 

containing I and A (i. e., the closure in the weak operator topology 

of p(A) for all polynomials p ). a 
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AE B(H) is called reflexive if, for Ba bounded linear operator 

on H, LatA C LatB implies Be CL 
A. 

2. Analytic Toeplitz operators 

We can see from [26] that every analytic Toeplitz operator on 

H2 is reflexive; in particular the unilateral shift is reflexive. 

2.1. Let H2 denote the Hardy space of square-integrable functions 

on the unit circle r with negative Fourier coefficients zero. 

00 Given 46H where Hco = L00 (1 H2, the analytic Toeplitz operator 

Sc on H2 is defined by: 

Sf = ýf a. e on r (f E H2) . 

Denoting by A2 the algebra of all analytic Toeplitz operators 

on H2 , 
it is known that A2 = A2 where 

A2 = {TEB(H2) : ST = TS for all SGA2}. 

To prove this, let zG A2 for ýE H00 , then z1f = 4f a. e on r(f 6 H2) , 

and let Sq, be any operator on A2; we have 

(z*S)f = z, (S0f) = z, (ýf) _ ý(ýf) _ ý(*f) 

= SW) = S(zf) _ (Sz*)f, 

and A2CA2. The reverse inclusion is immediate from the following. 

If TG A2 7 then 

T4 = TS1 =S Tl = 4(Tl) _ (Tl)& = ST14, (cE Ham) 

and the arguments in [2q] pp. 272-273. It follows that A2, which 

clearly contains the identity operator, is a S-closed algebra of 

operators (S-closed for strong-closed). 

f 

a 

0 
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Our aim is to show that all S-closed subalgebras of A2 which 

contain I are reflexive. 

2.2. LEMMA Let fl, f2 , ... ,fn6 H2. Then there exists h6 H2 

such that If11 + If2l +... + IfnI < IhI a. e on r. 

PROOF Let Q be the orthogonal projection of the space L2(r, µ) 

of all square-integrable functions on r onto H2. Let If11 + If2l 

CO 
have Fourier series E cneint . Since Ifll + If21 is non negative 

n =-w 
and 

cn = fr keintdu ( If 
11 + If21 = k) 

it follows that 

c-n 

r 
ke-intdu) = keintdu = cn fr 

because k is real function. (See solution 26 pp. 199 from {z ]. ) 

2 
Let g=Q 11 + If2l) -ceH. Then from 

If11 + If2l =C+ 
00 

Ec ein9 + 
n 

n=1 

00 

-in8 Ece 
-n n=l 

00 00 
= co +E ceinA +E ce-CE 

n=1 n n=1 n 

we obtain 

Q(lf11 +I f2 I)= co +E cneinA 
n=1 

and since if 
1t 

I f2 I is real, we have 

I f1 +I f2 = co + 2Reg 

and so 
IQ(If1I + If2l)I = Ig + col > IRe(g + co)I 

_ . 15(If 
11 +I f2 l+ CO) 

> (If11 + If2l) a. e on r. 
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Thus we can take h= 2Q(l f1 1+1f21). 

2.3. THEOREM Let r be a S-closed subalgebra of A2 containing I. 

Then ý is reflexive. 

PROOF We have always Alg Lat ý. To prove the reverse 

inclusion we show first that TE Alg Lat h has the property T6 A2. 

Fix z in (C with Iz<1 and consider 

14 
Z 

N 

where f denotes the analytic extension of f to the interior of the 

unit disc. It is clear that II E. Lat ., because StýzC11z for 

SSE A2, eH"O ((Sf)(z) ý(z)f(z) = 0, [2] pp. 20, problem 34). 

Noting that 

f- f(z)1E ""z (fE H ), 

NNy 

because (f - f(z)1)(z) = f(z) - f(z) = 0, it follows that 

(Tf)(z) - f(z)(Tl)(z) LT(f - 
f(z)l)j (z) =0 

for f H2 . Hence 

J ti 
N "1/ V 

(Tf)(z) - f(z)(T1)(z) _ {Tf - f(z)(Tl)}(z) 

{T(f - f(z)1)}(z) =0 

and so 
VNNý. r N ti 

(TSf)(z) _ (ýf)(z)(Tl)(z) ý(z)f(z)(Tl)(z) 

am 2 (STf)(z) for 4H, f 6H, 

because 

(TSf)(z) (Tf)(z) _ (ýf)(z)(Tl)z 
NyN 

O(z)f(z)(Tl)(z) 

and 
(SýTf)(z) _ (4Tf)(z) _ ý(z)(Tf)(z) 

ý. vt 

_ ý(z)f(z)(T1)(z). 
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Hence TS, = SST (4 E H70), and so T 6AThus T=S, for some 

H, since A2 = A2 
, 

Let' fl, f2 , ... , fn H2 . Then from the lemma 2.2.2, there 

exists hE H2 such that If 
1I + 1f21 +... +I fn (<IhIa. e on r 

and from TE Alg Latg (i 
.e., if and only if given xe L2 (r , u) and 

£>0, there exists AE A2 with ITx - Axl<e) we have that there 

exists AeE such that 

ITh - Ahl<e. 

Let A= SýIH2, where 46 Hr. Then for i=1,2, ... ,n 

ITfi - Afil = I*fi - ýfij < 1ý - ýI'Ifi) 

<I ý-4) IhI_I Th -Ah 
l<s 

and it follows that TE Hence = Alg Lat 

reflexive. 

3. Isometries 

and so t. is 

3.1. Our task now is to show that, in view of the next theorem, 

the hypothesis that the Hilbert space H is separable, in the work 

of J. A. Deddens "every isometry is reflexive" 
[U+J, 

can be omitted. 

3.2. THEOREM Let H be a Hilbert space and AE B(H). The algebra 

a (I, A) (generated by I and A in the weak operator topology of 

B(H)) is reflexive, if for every closed separable subspace Y of H 

invariant under A, the algebra 
a (IIY, AIY) is reflexive. 

PROOF Suppose B leaves invariant LatA (that is LatA C LatB); 

we want to prove that BC (j (I 
, A) . It follows from [38] pp. 118 

Cor. 7.2 that it is sufficient to show that B is the strong limit of 

polynomials in A. 
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Let G= {T6 B(H) :I ITy 
r- 

Byr I I<E19 r=1,2, ..., n} be a 

strong (basic) neighbourhood of B. To show that B belongs to 

(, (I, A), it is enough to show that every strong neighbourhood of 

B contains p(A) for some polynomial p. Let 

Y= clm{Ay 
r: 

m n}. 

This is a closed separable subspace of H invariant under A. Since 

BY G Y, consider 

Gy = {TG B(Y) : ''Tyr- By rI 
[<c, r= 

Then from reflexivity of AIY it follows that there exists p(AIY)C, GY 

and so there exists p(A)E G. 

3.3. Let now V be an isometry on H (i. e. IjVxII _ jjxjj for 
00 

all xe H). Then there exist unique reducing subspaces M. flVH 

00 n=o 
and M+ =E 0+ Vn(H O VH) such that H=M. O+ M+ with U= VIM a 

n=o 
unitary operator and U+ = VIM+ a unilateral shift (see [Z+] pp. 16 

and ýq] pp. 274 solution 118). 

If we let E(") be the resolution of the identity of U, 

MS = {xE M()o :I JE(")xl 12 P( )} 

and 
Ma = {xEMco :1 JE(")xll2«u(")}, 

then M., = MS (J Ma with US = UIMS and Ua = UIMa being called the 

singular and absolutely continuous parts of U respectively. u(") 

denotes Lebesgue linear measure on the unit circle. 

THEOREM Every isometry V= U® E) Ua 0 U+ on a separable 

Hilbert space H is reflexive. 

Before we prove this result we need some lemmas, which are of 
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interest in their own right. 

3.4. LEMMA 

Lat(U® + Ua) = Lat(US) 0 Lat(Ua). 

PROOF We have always Lat(US) O+ Lat(Ua) C Lat(US Ot Ua)' 

We need to show that ME Lat (US 0 Ua ) implies that ME Lat (US ) (+ 

Lat(Ua) and for this it is enough to have M= PM M O+ PM M because: 
Sa 

PM M= MS E Lat (US) 
, PM M= Ma e Lat (Ua ) 

Sa 

USPM 
S 

(xs +xa)= USxS 6 MS C PM 
SM 

Ms = {xs + xa : xs E MS, xaC Ma}, 

Let PM = 
B, B 

Observe that PM G- B (MS 0 Ma) and so 

PM 1: 11 s12 AB 

21 S22 B% C 

where S.. PiPMP. and P. the projection on H. where H= Hl O+ H 

and PM eB (H) 
. It follows that 

S12 SSa 
MSPMPMa 

(PMaPMPMsýýSSa S21' 

But since ME Lat(U® + Ua), (US 0+ Ua)MCM and MCMS Ma 

S Let M=ý, ( 
S 

O+ 
a with C MS and 

ýý 
aC 

Ma; 

we have 

Prints = PM(MS 0 0) _ SIMS 

and so PM is invariant under MS and by [5] pp. 108 521= SaS = B'"' =0 

and B=0 (BB =0 iff B= 0). Then 

PM =AO C= Prl PýýPr. 
ýS 

OP PMP,, 
q 

aa 

and so M= PM M PM M. 
Sa 
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3.5. LEMMA 

(1u® OU 
vC UOaU U= (I,. ý)). asa 

PROOF See [iL ] pp.. 510 Lemma 2. 

3.6. COROLLARY 

Q 
u+ U+U 

aU OCýU G U+ SOaO+SaO' 

PROOF See [I14-] pp. 510 Corollary. 

3.7. LEMMA 

Ua 0U is reflexive. 

PROOF For the proof we can use Proposition 5 of [15] pp. 887 

but we must prove that there is a decomposition for Ua and U+ as 

in 5 of EIS] pp. 887. 

[A] Consider UaIMa. We have the following result. 

Let Ua be a unitary operator in the separable Hilbert space 

Ma = {xEMCo :1 JE(")xI I2«11(")}, 

where E(") is the resolution of the identity of Ua and u(") is 

Lebesgue linear measure on the unit circle. Then from [ZI] 

pp. 160 Theorem 2.7, we have 

Ma = M(x1) 0 M(x2) ®+ 
... 

0 M(xr) G 
... 9 

where xl, x2, ..., xr, ..., is a maximal family of non-zero vectors 

in Ma such that I IxrI I=1 (r = 1,2, ... 
j 

and M(xa)_LM(xb) if a$b. 

(This family is countable since Ma is separable. ) Also 

M(xr) = clm{E(T)xr :Te E} 

with E the a-algebra of Borel sets of the complex pläne. 
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However for xrEMa and pr (") a measure on E defined for 

every T in E by 

11 r(t) 
_ (E(T)xr, xr) 

there is an isometric isomorphism Ur from L2(pr) onto M(xr) such 

that 

Ur1E(T)Urf = XTf 

whenever f 'EL2(ur) and T6 E. Here, the measure ur has support the 

set a(UaIM(xr)) and is absolutely continuous with respect to 

Lebesgue linear measure on the unit circle. It follows that Ua is 

unitarily equivalent to 

E Ur on E L2(ur). 
rr 

[B] Consider now U+. We know that this is a direct sum of 
1 

(dim(VH) ) times the unilateral shift of multiplicity one. (See [2q] 

pp. 275, Solution 118. ) We know that the unilateral shift is 

multiplication by z on H2 and so U+ is a direct sum of a family of 

multiplications and so is a multiplication on H2. 

After [A] and [B] we can see that Ua ®+ Ut is Me Ot Me on 

L2(E) j H2, where E is a closed subset of the unit circle and 

(Mef)(ei6) = elef(ele) (0 <0< 21r) 

22 
for f in L(E) or H. We need to prove that Me Qt Me is reflexive 

and satisfies a certain boundedness condition. 

Suppose that Lat(Me +O Me) C LatB. Then B= Bl Q+ B2 with 

LatMe LatB2. Since the unilateral shift Me on H2 is reflexive, 

B2 E a, 
M. 

Hence B2 = M,, for some q in H'O. We consider the closed 
e' 
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subspaces of the form 

Mn = {(MenýIE, 4) :ce H2} 

invariant under M O+ M. For 4 in H2 
ee 

(M (D M )(M. nýIE, ý) =M M'n4JE M 
eeeee 

(M *n IE, )e Mn 

where ýl = eieý E H2. We conclude that 

B1Menc IE= Men4 IE 

for all ij, in H2 and n>0. (Note that if 4E H2 and ý6 Hco, then 

#e H2 Since - {Men4 JE: ý¬. H2, n>0} is dense in L2 (E), we have 

B1 = MAIE. Thus 

Bl O+ B2 =MIE O+ Mý ( Ham) . 

Hence Bl +Q B26 M+e Me and so Me +O Me is reflexive. ý 

Suppose that TC 
Me Q+ Me 

Then T=T1 +O T 
2, where T2 EM 

e 

on H2 and so T2 =M for some * in H"O. Now there is a sequence {pn} 

of polynomials with pn -* q. in the L2 norm such that MP = pn(Me) -* M 
n 

weakly; i. e. 

(f E H2 ) Mpn f= pnf +g 

or Mpn f= pn (Me) f= Mf (f CH 2 ). 

It follows that 

I IMPn II'I IPn I loo 
_I 

Ik I I,, 

(See [2ct] 
, Solution 33, p. 196. ) 
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Then pn(Me 6 M) } Tl 6 T2 in the weak operator topology; 

i. e. 

pn(Me (D Me) = pn(Me) Q+ pn(Me) ; Tl 0 T2. 

It follows that 

IPn(r4e 0 ? 4e)I I=1 IPnI I, 
c, 

< 141102 

and the boundedness condition is satisfied. 

3.8 THEOREM. Every isometry V= US 0 Ua 0 U+ on a Hilbert 

space H is reflexive. 

PROOF. Suppose Lat(V) C Lat(B), where V= US O+ Ua 0 U+. 

Then B= Bl Q+ B2 Q+ B3 with Lat(US) C Lat(B1) and Lat(Ua O+ U+) G 

Lat(B2 O+ B3). Hence B1E'U and B2 (+ B3 EUU Now US 
Sa+ 

is unitary, hence reflexive and Ua Q+ U+ is reflexive by Lemma 2.3.7. 

But by the Corollary 2.3.6 

ý r; 

W B® OB20B3US Oý 
u 

a+ 
U+ u S+ UaO + U+ V ýý 

Hence V is reflexive. 

a 
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CHAPTER THREE 

Subnormal Operators 

1. Spectral sets 

1. DEFINITION. Let X be a Banach space and TG- B(X). We shall 

say that the spectrum a(T) is a spectral set of order N if, for each 

rational function r, whose poles lie in p(T), we have 

Ilr(T)II < 11 Suplr(z)l. 
z e- Q(T) 

From [I$] pp. 143, Lemma 2, we have that : every normal operator 

AE. B(H) (H is a Hilbert space) has a(A) as a spectral set of order 1. 

2. DEFINITION. Let H1 be a Hilbert space and A16 B(H1) .A1 will 

be called subnormal if there exists a Hilbert space H22 H1 and a 

bounded normal operator AE B(H2), such that AH1 C H1 and AIH1 = Al. 

Again from [1$] pp. 147, Theorem 5.2.9 we have that: if A is 

a subnormal operator acting on a Hilbert space H, then a(A) is a 

spectral set of order 1. 

3. DEFINITION. Every operator TB(H) whose spectrum is a 

spectral set for T is called a von Neumann operator. 

We can see that every subnormal operator Ae B(H) is a von 

v 

Neumann operator (see [181 pp. 147), but the opposite does not hold; 

in fact, from the example in [(Q] pp. 671, 
. we have that the operator 

TY induced on the quotient space X/Y by the normal operator T does 

not always have the single-valued extension property (see [22] pp. 

141) and so is not a subnormal operator, but TY is a von Neumann 

operator. (We have T normal, TY C Y. so T'' is normal and T 'Y1 cY 
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so T'I Y1' subnormal. Then by [22] pp. 23 we have that T' (Y 1' is sub- 

normal so T-IY1 has its spectrum as a spectral set and so has also 

Ty (see [22] pp. 23,24)). 

2. Reflexivity of subnormal operators 

1. In [3k] the authors have answered the following question 

in the affirmative. 

Is every subnormal operator S on a separable Hilbert space H 

reflexive? 

2. The purpose now is to answer the following question: 

Let A be a normal operator on the separable Hilbert space H �, 
: l^, 3(A 

contained in r, a simple closed rectifiable contour. Let Y be a 

closed subspace of H, invariant under A (AY G Y). There are two 

possibilities: 

(i) a(AIY) G r, in which case AIY is a normal operator ([22] 

pp. 236 Proposition 12.21). 

(ii) Q(AIY) =ru I(r), where i(r) denotes the inside of r. 

We know that in the case (i) AI Y is reflexive. 

The question is: In the case (ii), where we have a subnormal 

operator AIY (but not normal), is the operator AJY reflexive? 

In view of Theorem 3 of [20] pp. 308 we have the following 

result. 

Let ý map I(r) conformally onto' {z : Izl < 1}. Then ý maps 

ruI (r) homeomorphically onto' {z :Iz(< 11 ([L . 3] pp. 273), and a 

Borel subset 6 of r has u(s) =0 if and only if m(s(s)) = 0, where 

u(") is Lebesgue linear measure on r and m(") is Lebesgue linear 

measure. on the unit circle. Let ý be the function inverse to 4. 
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Observe that 4, maps {z : Izi < 11 homeomorphically onto ru I(r). 

Define (as in Theorem 3 of [L°] pp. 308) 

U= ý(a)E(da). 

G(A) 

Then, from E 
, 
La] pp. 183 Note 7.19, we have that U is normal and 

([22] pp. 184 Theorem 7.20) hence is unitary because a(U) 9 

{z : Izl = 1}. The resolution of the identity F(. ) for U is given 

by 

F(A(T)) = E(i), 

T Borel subset of r ([22] pp. 124) and so 

VU) *(ý(a))E(dx ) 

Q(A) 

= XE(dX) =A 

v(A) 

with p6 C(a(U)) and analytic for {z : Iz I< 1}. Then, from E43] 

pp. 386 (Mergelyan's Theorem), we have that 

A= ý(U) = lim * (U) 
n -> 00 

with * 
n(z) sequence of polynomials in z with complex coefficients 

and Izl < 1. 

Hence, we have that A is the norm limit of a sequence of poly- 

nomials in I and U. 

From 

U= q(a)E(dt) _ ý(A) 

Q(A) 

and [ý-3] pp. 386 (Mergelyan's Theorem) again, we have 

U= ý(A) = lim 
n -* co 
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where 
n(z) 

is a sequence of polynomials in z with complex co- 

efficients, ýe C(cf(A)) and c analytic in I(r). 

Hence, U is the norm limit of a sequence of polynomials in I 

and A. 

Let now 
a 

(IjY, SJY) be the closed algebra of operators 

generated by Sly in the weak operator topology of B(Y). Then 

a (IIY, AJY) =O (IlY, UJY) 

because AIY is a norm limit of a sequence of polynomials in UIY and 

UJY is the norm limit of a sequence of polynomials in AIY. 

Since UIY is reflexive being an isometry, then AI Y is also 

reflexive. 

3. Generalized Spectral Measures and Naimark's Theorem 

1. DEFINITION. A positive operator valued measure (generalized 

spectral measure) F("), is defined as a set function from the 

a-algebra of the Borel sets of the complex plane, to the positive 
(and hence self-adjoint) operators on B(H), where H is a Hilbert 

space and B(H) the Banach algebra of all bounded linear operators 

on H, such that: 

(i) F(ý) = 0, F(s) =1 

(ii) F(T1 (J T2)= F(T1) + F(T2) for zl, z2 disjoint 

(iii) for each x E. H the set function (F(")x, x) is a measure on 

the a-algebra of the Borel sets of the complex plane 

(see [%] pp. 5,6,9). 

Now we come to the theorem of Naimark ([I] pp. 124). 

2. THEOREM. Let F(") be a generalized spectral measure for 

the Hilbert space H. Then there exists a Hilbert space H+ which 
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contains H as a subspace and there exists a spectral measure E(")+ 

for the space H+ such that 

F(")f = P+E(")+f 

for each fEH, where P+ is the operator of projection on H (see [II 

pp. 124). 

PROOF. Let 9 be the set of all pairs p of the form p= {T, f}, 

where t is an arbitrary Borel set of the complex plane (We know 

that if T(1 suppF(") _$ then F(T) = 0. ), and f is an arbitrary 

vector of H. On 
R 

we define a function c(pl, p2) such that : if 

pl = {T1, fl} and p2 = {T2, f2}, then 

(D(PVP2) = MFMT1n T2)fl, f2)" 

We show that the function ý(pl, p2) is positive-definite. 

(For this function, see Ei] pp. 122,123). 

Indeed 

4ý(pl, p2) _ (F(T1A T2)fl, f2) _ (f1, F' (T1(i T2)f2) 

= (f1, F(T111 T2)f2) = MFMT1(1 T2)f2, fl) 

_ i(pl, p2). 

and 4ý(p, p) > 0. (See [I ] pp. 130, Theorem). 

nn 
(1) E ý(pi, pk)EJk =E (F(Tin tk)fi, fk)EJk" 

ilk=1 i, k=1 

If Ti(i = 1,2, ..., n) are pairwise disjoint, then 

n_n 
(2) E (F(ti(i Tk)fl fk)Zitk =E (F(T1)fi, fi) k zi I2 > 0. 

i, k=1 i=1 a 
op 
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If, now, the 'ri(i = 1,2, ... n) are pairwise disjoint and the 

T1, T2 coincide, then the sums in the right member of (1) fall into 

two parts. One part, with indices from 3 to n, is of the form (2), 

and the other part, with indices 1 and 2, satisfies 

22 
=E (F(T1)Fi, fk)ýi k E (F(Ti(1 TOfi2fk)Eiý_ 

i, k=1 i, k=1 

22 
> 0. = (F(T1) E gift, EZkfk) 

i=1 k=1 

In fact 
n_ 
E (F(Ti() Tk)fi, fk)ik 

i, k=1 

= MFMT1 0 T1)fl, f1)EiTl + (F(rl/\ T 2)fl, f2)Ei 
2 

+ (F(T1() T3)fl, f3)El"T3 +... + (F(T1(1 Tn)fl, fn)Ei"F, 

+ MFti2r T1)f2, f1)E2" 
1+ 

MFMT2(A T2)f2, f2)E2.2 

+ MF(T2 (1 T3)f2, f3)E2 "3+... + MFMT2(1 Tn)f2, fn)E2 ": n 

t.. 

+ (FiznA 'r )f 
l, 

fl) 
n" 1+ 

MFMTnn T2)fn'f2)En*2 

+ (Firnt r3)fn, f3)gn"ý3 +... + (F(Tnn Tn)fn9fn)En' 
n 

The case with arbitrary Ti(i = 1,2, ..., n) can. be reduced, with the aid 

of additional partitions, to the cases already considered. 

Hence, if rl(1 T2 = ý, then 

(F(T1U T2)/A T3)f, g) _ (F((T1(\ T3)U (T2n T3))fig) 

_ (F(T1IA T3)f, g) + (F(T20 -r3)f, g). 



33 

Thus, 4(p1, p2) is a positive definite function on 
a. 

As in Ell pp. 122,123,9 can be embedded in a Hilbert space H+. 

We can consider p instead of, 
9 

, if p of( belongs toe (=elements 

of H+ which are subsets of 
&, ). 

We indicate the scalar product in the space H+ by the symbol 

( )+, and we have 

(pl, p2)+ = ýD (pl, P2)- 

We now consider elements of H+ of the form {C, f}. By means of the 

equation 

QCý013 

= (FT, f, g) _ (f, g) 

we can identify the pair' {(r, f} with the element f from H. The element 
nn 
E Ek{c, fk} of the space H+ is identified with the element EEkfk of 

k=1 k=1 

the space H. Thus, H can be considered as a subspace of H+. 

We now consider the following problem: find the projection of the 

element{T, f} of the space H+ on the subspace H. We denote the projection 

to be found by {C, g} (this is the form of the elements of H). 

For each h on H, 

, ({T, f} -" {C, g}, ' {C, h})+ = 0. 

If xE H and H is a subspace of H, then x= Px + (x - Px) with Pxl. x - Px, 

where P is the projection on M; 

or 
i{T, f}, I {T,, h})+ - ({t, g}, '{C, h})+ _ (F(t)f, h) - (g, h) 

_ (F(T)f - g, h) = 0, 

so that g= F(T)f 
a 
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i. e. 

(3) P+{t f} _ {C, F(T)f}. 

The theorem will be proved if it is established that the 

operator function E+( . Et(T)) , which is defined by 
T 

(4) ET{T' , f} 
{T (I T' , f) 

for each element of the form {T', f}E H+, is a spectral measure 

for the space H+, since (3) can be expressed in the form 

P+ETf = P+ET{t, f} = P+{T(1 C, f} 

= P+{T, f} _' {C, F(T)f} = F(t)f. 

In fact 

) T, f {(T n T) U (T (1 T) sf ,r} 
E'{T, f {(T 0T (1 

1T21212 

(E+ + E+ ý {T, f }_ E+I {T, f }+ E+1 {T, f } 
Tl T2 T1 T2 

_" {T1n T, f} +" {T2n T2 f }. 

We have identified' {C, F(T)f } of H+ with F(T)f of H for each fGH. 

It is evident that E+ is an additive operator function of T. 
T 

Furthermore the two equations 

(ET)2{T', f} = ET{T(1T', f} 

IT(\ TA T' f}= ET{T? 
2f 

} 

and 

(E{Tt 
9f 

}9 {Tt 1 
,g 

})- {TITt 
,f}, 

{T ttg 
T+ 

})+ 

= TA T, A T'')f, g) 
= (Fc T' (N TA T" )f, g) 

_ `{T', f Is E+{T''g}) 

I 
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where we have defined 

QT 
, f}, 

{T', g})+ _ WT, f}, {T', g}) _ (F(TO T')f, g), 

imply that E+ is a self-adjoint projection operator. 

we have 

E+ {T' f} {C ( r' , f} 
{T' 

, f} 
({T' 

, f}E H+) ; 

that is Ec = I. Furthermore 

ET 
n, 

{T' {T0TnTV 
,f T 

}, 

1212 

Further, 

ET ET {T' 
, 

f} = ET' {T2 A T' , 
f} ='{T1(ß T2 (A T jf }, 

121 

and so 

E+ _ E+ E+ 
T1(1 T2 T1 T2 

Finally , 

{Tt,. f}, ' {Ttt, g})+ , ({tJTnn Tt, f},, {Ttt, g}) 'n 
nn 

_ '({U(Tnn T' ), f}, {t'' 
ýg})+ 

n 

n 

_ (F(U(TnA -r' )n T" )f, g) 
n 

_ (E F(Tn() t' (, 'r")f 5g) 

Eý({Tnn Tº, f}, ' {Tº º, g}) 

n 

= E({Tn(1 T' ,f}, 
{T" 

, g})+ 
n 

E(ET' {T' 
, f}, 

' {T'' 
qg})+ 

nn 

for f}, {T rf g} in H+ and Tn a family of disjoint Borel sets of {t , 
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the complex plane. 

Since the family of all elements of the form {T' 
,f} is dense 

in H+, the extension to H+ by continuity of the operator ET 5 

defined by the formula (4) is a spectral measure for the space H+. 

4. A Property of Subnormal Operators 

Using Theorem 3.3.2. we have an important property of sub- 

normal operators on a separable Hilbert space H(see [A1]). 

1. PROPOSITION. The subnormal operators on a separable Hilbert 

space H are the closure of the normal operators in the strong 

operator topology. 

PROOF. Let T be a subnormal operator on H. Let T be the minimal 

normal extension on the extended Hilbert space H. We may assume 

that H is infinite dimensional since, otherwise, every subnormal 

operator on the finite dimensional Hilbert space H, is normal 

(see 291 pp. 101). We may assume that H has the same dimension as 

H ([30] pp. 53,54). For any finite dimensional subspace M of H, we 

may therefore find a unitary map U(isometric and onto) of H into H 

which takes each vector of MU T(N) onto itself. Then we can see 

-1- that U TU is a normal operator on H. 

In fact 

(U-1TU) (U-1TU)' = U-4W 'T 'U-1 ' 

= U-1TT' U-1 ' (1) 
1 

1ý - -1ý (U U)(U TU) =UTUU TU 

=U T'*TU (2) 
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From (1) and (2) and from the relations 

Uýý = U-1 

U= U_ (u-1) 

9 o. 
T"T ,=H 

(since T is normal), we have 

(U-1TU)(U-iTU)b _ (U-1TU)b(U-1TU). 

Further, we have that 

U-4U IM= TIM. 

In fact for mE M. 

U-1TU(m) = U-1T(U(m)) = U-1T(m) = U-1(T(m)) 

= U-1(T(m)) = T(m). 

The existence of such an operator for arbitrary M means that T is 

in the closure of the set of all normal operators on H in the 

strong operator topology on B(H). 

To prove the converse, let T6 Gl(the closure of the set of 

normal operators on H). We wish to show that T is subnormal. 

Let T= strong lim Na, where {Na: a F, Al is a net of normal 
aE A 

operators on H; that is, Tx = lim Nx (x6 H). 
a6 Aa 

Then Theorem 3.2 pp. 427 of [Q] holds for this special case, 

after the following observations: 

(A) If we denote the Hilbert space adjoint of T by T°, then by 

[1 1] 9.3 we have 

T° =J OT *0 J-1 , 

where the J is a one-to-one mapping of H" onto H with the properties: 
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x'' (x) _ (x, Jx > for all xCH, x''E H`; 

J(x+ y') = Jx + Jy' ; 

J(ax") =a Jx 

J Jcx.. _ y"') ýý=. ýx 

that is J is isometric. 

(B) We have T"E0(")"r = Eä("), where E°a(") are the Hilbert 

space adjoints of Eä("), for every Na (a E A) with resolution of the 

identity Ea (") , and T is the inverse of J. 

(C) 

(D) 

Also 

For each x, yE H, (x, y) _ (x, ry) and To _ r-1T" 
0t ([Q] pp. 420). 

Ea("), aEA, are self-adjoint projections in H and so closed. 

I IEa(. )xl l<1. J txll for xEH 

and 

IE°(-)xll < 1-llxll for xEH. 

(E) From Theorem 2.4 and its corollary in [q] pp. 423, we have 

for the bounded Borel set S, 

m(S) = E(S)x (x6 H). 

Hence Ilmll = IIE(")xll < 1"Jlxil, and so the set of T-measures m 

with IImll <1 is closed in the weak operator topology of Q. (See 

the definitions in Ea] 
.) 

In view of the above remarks (A), (B), (C), (D), (E), in the proof 

of Theorem 3.2 of [q] we have : 

(i) The existence of E(") with the property (3). 

(ii) For each xEH, E4 (" )x = E(" )x is a T` -measure for x and 

IIE'(")xll < 1"Ilxll. This proves (1). 
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(iii) The proof of (2) is in pp. 429 of [ci ]. 

(iv) (4) becomes clear from the above remarks (A), (B), (C), (D) 

and (E). 

Then with TG Gl, if E(") is the operator defined in Theorem 3.2 

of [ci], then E(") is a generalized spectral measure and satisfies 

(1), (2Y, (3) of Theorem 3.3 of [R] and from pp. 432 of [9] and 

pp. 433, we have that T has a normal extension and so T is a sub- 

normal operator. 

a 
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CHAPTER FOUR 

Analytically Compact Operators 

Suppose that T is a bounded linear operator on a complex 

Banach space X such that, for some f in (T) with f not identically 

zero, we have f(T) = K, where K is a compact operator and K$0. 

(See 1.1.16 for the definition of 
ý 

(T)). Such an operator T is 

termed analytically compact. 

The purpose of this chapter is to prove the existence of a 

simple nest of closed invariant subspaces for T. We shall discuss 

the relationship between the diagonal coefficients with respect to 

T and the eigenvalues of T. 

1. Analytically compact operators on a Banach space 

We will use the terminology in [2] 
, Chapters 1 and 2. 

Throughout, X is a non-zero complex Banach space. 

Let TEL(X) and let T be an open-and-closed subset of cv(T). 

There is a function f in 
J 

(T) which is identically one on t and 

which vanishes on the rest of a(T). We put E(T; T) = f(T). If 

the operator T is understood we may write E(T; T) simply as E(i). 

It is clear from Cauchy's theorem that E(T) depends only on T 

and not on the particular f in 
I (T) chosen to define it. E(T) 

is called the spectral projection corresponding to T. If the 

open-and-closed set T consists of the single point A, the symbol 

E(a) will be used instead of EU A}). It will be convenient also 

to use the symbol E(T) for any set T of complex numbers for which 

Aa(T) is an open-and-closed subset of a(T). In this case we put 

E(r) = E(TO Q(T)). 
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Thus E(z) =0 if TIjc(T) is void. The following result is well- 

known. We include a proof for completeness. See for example 

Theorem 19 in F231 p. 574. 

1. THEOREM. Let f (T) and let T be an open-and-closed 

subset of a (f (T) ). Then a(T)A f-1(r) is an open-and-closed sub- 

set of a (T) and 

E(T ; f(T)) = E(f-1(T ); T). 

PROOF. Let eT(p) =1 for u in a neighbourhood of r, and let 

eT(p) =0 for u in a neighbourhood of the rest of a(f(T)). Then 

eT(f(T)) = E(T; f(T)). 

If T' is the complement of T in a(f(T)), then the spectral mapping 

theorem shows that a(f(T)) = f(a(T)) and hence that Q(T) is the 

union of the disjoint sets f-1(r) and f-1(T' ). Since f is con- 

tinuous, these two sets are both open and closed in Q(T). It 

follows that 6= cr(T)(r f-1(r) is an open-and-closed subset of 

Q(T). If we define e6( x) =e 
T(f 

(A)) for all A in u(T) , then 

E(S; T) = e6(T) 

and by Theorem 1.21 of [22] p. 13 we obtain the desired conclusion 

E(T; f(T)) = E(ö; T) = E(f-1(T); T). 

For any set 6 for which E(6) is defined we define X6= EM X. 

Then TX, C. Xa and the restriction of T to XS will be denoted by T6. 

2. DEFINITION. A Point X0 E Q(T) is said to be an isolated 

point of a(T) if there is a neighbourhood U of X such that 
o 

Q(T) nu= {xo An isolated point X0 of a(T) is called a pole of 
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T if the resolvent of T has a pole at A0. By the order v(A0) of 

a pole X0 of T is meant the order of A0 as a pole of the resolvent 

of T. 

3. The purpose of this section is to review spectral theory 

in a finite-dimensional complex Banach space Y. Let Te L(Y). In 

this case a(T) is the set of complex numbers A such that AI-T is 

not one-to-one on Y, or equivalently a(T) is the set of eigenvalues 

of T. If the case of the zero-dimensional Banach space Y is 

excluded then a(T) is non-empty. 

Let XG Q(T). Then there exists an x0 j0 such that 

(T-X I)x0 = 0. The index v (X) of A is defined as the smallest non- 

negative integer v such that (XI-T)vx =0 for every vector x for 

which (XI-T) V+lx = 0. 

It follows that 0<v (X) < dim Y. To see this, define for 

each positive integer n the linear subspace 

Nn _' {x . 
(T-XI) nx = 0}. 

Then the index v (X) is the least integer v such that Nv+l = Ný N. 

Observe that 

Ný = NV(A) (n > v(a)). 

Since Y has finite dimension, there can be proper inclusion for 

at most a finite number of terms in the sequence 

N1 G N2 G N3 ..... 

and thus v(X) < dim Y for every A in Q(T). 

We now return to the situation in which X is a non-zero 

complex Banach space and TG L(X). We recall some fundamental 

results from [22] on poles of the resolvent of T and related topics. 
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4. PROPOSITION. Let TE L(X) and N(T) _' {x EX: Tx = 0}. Then 

(i) N(7n) G N(Tn+l); (n = 0,1,2, ... ) 

(ii) if N(Tk) = N(Tk+l) for some positive integer k then 

N(Tn) = N(Tk) (n > k). 

For a proof, see Proposition 1.43 in ý22ý 
. 

5. DEFINITION. Let TC L(X). Suppose that there is a positive 

integer n such that N(Tn) = N(Tn+l). The smallest such integer is 

called the ascent of T and is denoted by a (T). If no such integer 

exists we put a (T) _ co. 

6. PROPOSITION. Let TE L(X) and R(T) = TX. Then 

(i) R(Tn+l) C R(Tn) (n = 0,1,2, *so); 

(ii) if R(Tk) = R(Tk+l) for some positive integer k, then 

R(Tn) = R(Tk) (n > k). 

For a proof of this result, see Proposition 1.45 of E22] 
. 

7. DEFINITION. Let TE L(X). Suppose there is a positive 

integer n such that R(Tn) = R(Týn+l). The smallest such integer is 

called the descent of T and is denoted by S(T). If no such integer 

exists we put S(T) _ co. 

8. PROPOSITION. Let TE L(X). Suppose that a(T), S(T) are 

both finite and hence equal. Let a(T) = ö(T) = p. Then 

X= R(TP) Q+ N(TP). 

Moreover T1, the restriction of T to R(TP) is one-to-one and onto. 

For a proof of this result, see Proposition 1,51 in E22.. 

9. THEOREM. Let Te L(X). Let ao be a pole of the resolvent 
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of T of order m. Let z= a(T)<{X' 
0 

}. Then A0 is an eigenvalue. 

of T. The ascent and descent of X0I-T are both equal to m. Also 

E(X0)X = N((A0I-T)m), 

E('r)X = R((a0I-T)m). 

For a proof of this result, see Theorem 1.52 of [22j. 

10. THEOREM. Let TC L(X). If A is a pole of T of order v, 

then A has index v. Furthermore an isolated point A in the spectrum 

of T is a pole of order v if and only if the following two conditions 

hold: N 

(XI-T)"E(X; T) = 0, 

(AI-T) v-1E(X; T) # 0. 

The next result is crucial to the development of the theory 

of analytically compact operators. We give a proof for complete- 

ness. See Theorem 20 of [23] p. 524. 

11. THEOREM. Let TE L(X). Let d be an open-and-closed sub- 

set of a(T). Then a(T6) = S. If fGj (T) 
, then fGý (Ta ) and 

moreover f(T)6 = f(T6). 

A point A in 6 is a pole of T of order v if and only if it 

is a pole of TS of order v. 

PROOF. Suppose that aE d, but al a(T6). Then there exists a 

bounded linear operator A on the space XS such that 

(XI-T)Ax = A(XI-T)x =x (x E Xa). 

Let the function g be equal to zero for p in a neighbourhood of 6 

and equal to (X-u)-1 for p in a neighbourhood of the remaining 

points of Q(T). Then 
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g(T)(xI-T) _ (XI-T)g(T) = I-EM. 

If we define A1 on X by A1x = AE(S), then 

(XI-T)(A1+ g(T)) _ (A1+ g(T))(AI-T) = I. 

Consequently X6 p(T), contradicting aES. This shows that SC A(TS). 

Conversely, suppose that aý S. Then define h to be equal to 

(X-U)-1 for p in a neighbourhood of 6 not containing A, and to be 

identically zero in a neighbourhood of the remainder of Q(T). We 

have 

h(T)(XI-T) _ (XI-T)h(T) = E(S). 

Consequently, the restriction h(T) 6 of h(T) to XS satisfies 

h(T)6(AI= Ta) _ (XIS-TS)h(T)6 =1S, 

so that a Q(TS). This proves that a(TS) C S. and that the resol- 

vents of T and TS are related by R(X; T6) = R(X; T) 
6* 

Hence 

Q(TS) = S. 

Suppose now that fEý (T). Let U be a neighbourhood of ß(T) 

whose boundary B consists of a finite number of rectifiable Jordan 

contours, and such that UU B is included in the domain of analy- 

ticity of f. Then 

f(T) 
ý, f(X)R(X; T)da 

62iB 

f(a)R(7k; T) 
SdX 21r iB 

=1 f(a)R(A; T8)da = f(T6) . 21ri 

4B 

By Theorem 10, A is a pole. of order v for T if and drily if 
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(XI-T) vE(X) _ 0, (XI-T) v-1E(A) ý 0. 

Since X C- 6 we have E(A)E(S) = E(A) and thus 

(AI-T)mE(a) _ (XI6-T6)mE(X) (m = 1,2, ... 
). 

Hence X is a pole of T of order v if and only if it is a pole of 

TS of order v. This completes the proof of the theorem. 

Suppose now that T, in L(X), is analytically compact. It 

follows that there is a function f in 
3 

(T) and not identically 

zero and a compact operator K$0 on X such that f(T) = K. Our 

first theorem describes the structure of the spectrum of T. 

12. THEOREM. Let T. in L(X), be analytically compact. 

(i) Q(T) is countable and has only a finite number of cluster 

points, which form a subset of those points u such that 

f(u) = 0. Every point A in a(T) such that f(A) ý0 is 

an eigenvalue of T and moreover a pole of the resolvent 

of T. 

Let X6 Q(T) with f(X) $ 0, and let v(X) be the order 

of the pole at X. 

(ii) For each positive integer n, (XI-T) nX is closed. Also 

(XI-T) m+lX 
= (XI-T) mX (m > v(X)) 

and v(A) is the smallest positive integer with this property. 

(iii) For each positive integer n, NMI-T) n) is finite-dimen- 

sional. Also 

N((XI-T) m) = NMI-T) m+l) (m > v(X)) 

and v(X) is the smallest positive integer with this property. 

(iv) The spectral projection E(X) has a non-zero finite-dimensional 
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range given by 

E(a)X = NMI-T) V(X)). 

The null-space of E(X) is (XI-T)VWX. 

(v) If d(a) is the dimension of E(A)X then 1< v(X) < d(a). 

Note. The integers v(X) and d(X) are called respectively the 

index and the algebraic multiplicity of the eigenvalue A. 

PROOF OF THEOREM. Let uEC. We show first that there are at 

most a finite number of points z in a(T) such that f(z) = u. By 

hypothesis, f is analytic on some open set 2 that contains u(T) 

and so therefore is the function 

z -> 

The set of zeros of this function in Q is discrete; in other words 

each point of the set is isolated. For each point z in a(T) such 

that f(z) = p, there is an open disc Dz with centre z which contains 

no other such point. The set of zeros of f(z) -u in a(T) is cer- 

tainly bounded (because a(T) is) and is closed because it contains 

all its closure points. Hence this set is compact. The discs 

DZ cover this set and so, by the Borel covering theorem this set is 

finite. 

We now apply the spectral mapping theorem which yields 

Q(K) = Q(f(T)) = f(Q(T)), 

and we deduce that a(T) is countable and has at most a finite number 

of cluster points. These are of course a subset of {z E a(T) : 

f(z) = ö}. 

Let Xe a(T) with f(X) # 0. Then there is a point 11 in a(K) 
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with f(A) = u, and p#0, again by the spectral mapping theorem. 

Suppose that 

G =' {a, X1, ... ,X} 

is the set of solutions' in a(T) of the equation f(z) = p. By 

Theorem 4.1.1, 

E(G; T) = E({u}; K). 

By Theorem 2.21 of [2Z] 
, p. 53, E'({u}; K) and hence also E(G; T) 

has finite-dimensional range. Therefore each point z of G is a 

pole of the resolvent of TIE(G; T)X. Clearly, G is an open-and- 

closed subset of a(T) and so it follows from Theorem 4.1.11 that 

A is a pole of the resolvent of T. The remaining statements of 

the present theorem follow from Theorem 4.1.9. 

We now recall Lomonosov's theorem. 

13. THEOREM. Let Y be an infinite-dimensional complex Banach 

space. Let T#0 be a compact operator on Y. Then there is a 

proper closed subspace of Y invariant under 
a 

='{A E L(Y) : AT = TA}; 

i. e. T has a hyperinvariant subspace. 

For the neat proof of this result, due to Hilden and Lomonosov, 

see F221 p. 55. We use this result to prove an invariant subspace 

theorem for analytically compact operators. 

14. THEOREM. Let Y be a complex Banach space of dimension at 

least 2. Let T be an analytically compact operator on Y. There is 

a proper closed subspace of Y invariant under T. 

PROOF. If T=0 the result is trivially true. If Y is finite- 

dimensional, a(T) consists of a finite set of eigenvalues. Let X 

be one such. Then there is an x$0 satisfying Tx `- ax. Hence the 
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one-dimensional subspace generated by x is a proper closed in- 

variant subspace for T. Hence we may assume that T#0 and is 

infinite-dimensional. Since T is analytically compact, there 

is f in '(T) not identically zero and a non-zero compact operator 

K such that f(T) = K. Observe that 

TK = Tf(T) = f(T)T = KT. 

By Lomonosov's theorem, K has a hyperinvariant subspace and this 

is a proper closed subspace of Y invariant under T. The proof is 

complete. 

We now proceed to generalize Ringrose's theory of super- 

diagonal forms for compact operators to the class of analytically 

compact operators. 

A well-known theorem (see for example 
ý27], p. 144) asserts 

that every nxn matrix with complex entries may be reduced by 

unitary transformation to superdiagonal form. This result, together 

with some related theory concerning eigenvalues, may be re-formulated 

in the following way [27, p. 107, p. 144]. If T is a linear operator 

on an n-dimensional complex inner-product space X, then there exist 

subspaces L0, Ll, 9 .. 5 Ln of X such that 

L0C. L12 Ln 

(ii) Lm is m-dimensional; 

(iii) TLm G Lm (m = 0,1, ..., n); 

(iv) if we choose em E Lm Lm-1 (m = 1, ... , n) , then the eigen- 

values of T (counted according to their algebraic multiplicities) 

may be specified as those numbers al, ..., Xn such that 

Tem - amem 6 Lm-1 (m = 1, ... , n) ; 

(v) T is nilpotent if and only if TL' CL (m = 1, ... , n). m- m-1 
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It is therefore natural to consider such a nest {L 
m} of subspaces 

as defining a superdiagonal form for the operator T. 

We consider the extension of this concept of 'superdiagonal 

form' to an analytically compact operator on a non-zero complex 

Banach space. It is not in general possible in this case to form 

nests of invariant subspaces with the simple structure exhibited 

in the finite-dimensional case. To illustrate this point we refer 

to the compact operator K on the space L2[0,1] defined by the 

equation 
x 

(Kf)(x) = f(y)dy J0 (f E L2 ;0<x< 1). 

It was proved by Donoghue [17] that the only closed invariant sub- 

spaces for this operator are the subspaces Ec (0 <c< 1) defined by 

E _' {f 6 L2 : f(x) =0a. e. on (0, c)}. 

It follows that if L1 and L2 are distinct invariant subspaces, then 

either L1 C L2 or L2 C Ll, and the quotient space of the larger by 

the smaller is infinite-dimensional. The subspaces EC form a con- 

tinuous nest of invariant subspaces in a sense to be specified 

later in this chapter. 

Throughout the remainder of this section, T denotes an 

analytically compact operator on a non-zero complex Banach space X. 

The term subspace will be used to describe a closed linear subset 

of X. 

A family 
J 

of subspaces of X, which is totally ordered by the 

inclusion relation, will be termed a nest of subspaces. If in 

addition each subspace in 3 is invariant under T we shall describe 

ý 
as an invariant nest. A trivial example of an icvariant nest 

is the family consisting of the two subspaces {o} and X. Non-trivial 
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invariant nests may be constructed by means of Theorem 4.1.14. 

We shall use the symbol 
,C 

to denote the inclusion relation, 

and reserve C for proper inclusion. The norm closure of a subset 

S of X will be denoted by cl(S). Given a nest 
- 

of subspaces of 

X, and MEl, we define 

cl EU{ L: LCý, LC -MI] . 
If there is no L in 

I 
such that LGM, we define M= 101. It is 

clear that M_ is a subspace of X, and that it will be an invariant 

subspace if 
I 

is an invariant nest. Also MCM. It should be 

emphasized that the definition of M_ depends on the particular nest 

under consideration and not merely on the subspace M. We shall say 

that 
l' 

is continuous at M if M= M_. 

A nest 
ý 

will be termed sim le 

(i) if {0}G, 7 'xEý; 
(ii) if 

ýo 
is any subfamily of , then the subspaces 

n {L : LE 
o} 

and cl E) {L :LEo }] are in 
ý; 

(iii) if MST, then the quotient space M/M- is at most one- 

dimensional. 

We observe that condition (ii) implies that M-6 
ý 

whenever 

M Next, we establish the existence of a simple invariant 

nest for an analytically compact operator. 

15. THEOREM. Let T be an analytically compact operator on X. 

There exists a simple nest 
ý, 

each of whose members is a subspace 

invariant under T. 

PROOF. Let X1 denote the class of all invariant nests. Then 

ý(i is not empty since it contains the trivial nest consisting of 
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the subspaces {0}, X. The class iN i may be partially ordered by 

inclusion ; if J 15 
ý2i, 

we say that 
ý1<2 

if every 

subspace in the family 
.1 

is also a member of 2. It is easily 

seen that in this way, Ni is inductively ordered; for if 

N0 G jý(i and )V0 is totally ordered by the relation <, then 

o 
U{: } 

is the least upper bound of 
Xo in )N 

i. We may now deduce from 

Zorn's lemma the existence of at least one maximal nest of invariant 

subspaces. Let 7 be a maximal member of 
N 

i. We now establish that 

has properties (i) and (ii) of simple nests. 

Clearly' {0 }, XE since otherwise 
ý 

could be enlarged by the 

addition of these subspaces, contrary to the assumption that 
ý 

is 

maximal. Secondly, let 
0 

be a subfamily of 
ý, 

and consider 

Mo = /) {L :LEo} 

It is evident that M. is a closed subspace of X. Let M0 ". Since 

is totally ordered by inclusion we have either (a) ML (L Eýo), 

and MCM, or (b) LCM for some L in , and Mo G M. It follows 

that the family obtained by adding M0 to 
Y 

remains totally ordered 

by inclusion and is therefore a nest. Since 
ý 

is maximal we deduce 

that MG. A similar argument shows that 
0 

cl[U{L LEý} 
0 

is a member of 
ý. 

Hence properties (i) and (ii) of simple nests 

have been established. 

It remains to verify that, given any M in 
ý, 

the quotient 

space M/M_ is at most one-dimensional. Suppose that, for some M in 

this is not so. When x 6M we denote by Ex I the coset x+M. 
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Under the usual norm 11 JIM, defined by 

JI M1 1 
M= 

inf {! I X-Y It: yG M_ }, 

M/M_ is a complex Banach space. Since M and M are both invariant 

under T, we may define a linear operator TM on M/M_ by the equation 

TM[x] _ [Tx] (xc- M). 

We show next that the operator TM is analytically compact 

(as an operator on M/M_). By hypothesis, there is f in 
I (T) with 

f not identically zero and a non-zero compact operator K on X such 

that f(T) = K. Now, by Theorem 4.1.12, ß(T) is countable and so 

p(T) is connected. It follows from Theorem 1.29 of [22] p. 20 

that a (TIM) C Q(T). Moreover, by Lemma 1.28 of [22] p. 20, 

(XI-T)-1M (M (AEp(T)). 

Now, by definition, for some suitable family of contours BC p(T), 

we have 

f(T) =1 
2'r i 

and so it follows that KM G M. 

f(X)(, I-T)-lda 
fB 

Similarly, K leaves invariant any 

other subspace (M say) invariant under T. We may therefore define 

an operator K on M/M_ by 

Ký4 [x] [K x] (X 9 M). 

Using Theorem 1.29, Lemma 1.28, Theorem 1.36, Lemma 1.35 of [22], 

we deduce that a(Tr1) C Q(T) and so fG "- 
(TM). It follows that 

f (Trt) = KM and so TM is analytically compact. 

S-ince M/M has dimension greater than one, Theorem 4.1.14 
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implies the existence of a proper subspace Lr1 of M/M_ which is 

invariant under TM. If we now set 

L= {xEM : [xI ELM}1) 

then L is a subspace of X (being the inverse image under the con- 

tinuous linear map x -* [x] of the subspace LM) such that MrC LCM. 

We may now verify, by the method used at an earlier stage in the 

proof of this theorem, that LIY, but that the family 
Ii 

con- 

sisting of L and the members of 
3 is totally ordered by inclusion. 

Since Lr1 is invariant under TM, L is invariant under T. Thus 
ý1 

is an invariant nest, and is a proper enlargement of the maximal 

invariant nest 
ý. 

This gives a contradiction. Hence for each 

M in 
I, 

M/M is at most one-dimensional and so 
ý 

is a simple nest. 

This completes the proof of the theorem. 

Throughout the remainder of this section we shall use the 

symbols T and 
ý 

with the meanings attributed to them in the state- 

ment of Theorem 4.1.15. If M6ý, then either M= M- or M/M- has 

dimension one. In the latter case let zM6 M'-. M_. Then, since M 

is invariant under T, we have TzM E M. and hence TzM can be expressed 

(uniquely) in the form 

TzM = aMzM + yM, (1) 

where aM is a scalar and yME M_. It is easily verified that aM 

does not depend on the particular choice of zM. When M= M_, we 

do not define aM. In this way we associate with certain M in 
ýa 

scalar 5, which we call the diagonal coefficient of T at M. 
(In 

the 

finite-dimensional case the elements z, form a basis of X, and with 
1.1 

respect to this basis T has super-diagonal matrix with diagonal 

elements aýý. 
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Let aEt. We define the diagonal multiplicity of oC to be the 

number (possibly infinite) of distinct subspaces i1 in 
Y 

for which 

ail=a. 

Observe that a is a diagonal coefficient of T at M 1.1 if and 

I 

only if cr(Tr1) _ {aM }. Recall that it was shown in the course of 

proving the last theorem that was also a simple invariant nest 

for the compact operator K and moreover f(TM) = KM. By the spectral 

mapping theorem ar(KM) _' { f(aM) ). It therefore follows, since TM, KM 

are operators on a one-dimensional space, that we have the following 

result. 

16. PROPOSITION. am is a diagonal coefficient of T if and only 

if f(art) is a diagonal coefficient of K. 

Note. The condition M$ M_ excludes the possibility that 

f(ark) = 0. 

17. PROPOSITION. Let a6 C and f(a) ý 0. The diagonal multi- 

plicity of a is finite. 

PROOF. Let M be a subspace in 
ý 

such that a is the diagonal 

coefficient of T for M. Then by Proposition 4.1.16, f(a) is the 

diagonal coefficient of K for M. 

Corollary 2.27 of [2Z] p. 61. 

The result now follows from 

18. THEOREM. Let aEC and f(a) # 0. Then there is a subspace 

M in 
I 

such that a is the diagonal coefficient of T for M if and 

only if a is an eigenvalue for T. 

PROOF. Suppose that such an M exists. In order to prove that 

a is an eigenvalue of T. it is sufficient to prove that a is an 

eigenvalue of TIM. Observe that. M 4 M_. We show next that the 
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operator TIM is analytically compact. Recall that fa 
ý (T), f is 

not identically zero, and there is a non-zero compact operator K 

on X such that f(T) = K. Now, by Theorem 4.1.12, a(T) is countable 

and p(T) is connected.. It follows from Theorem 1.29 of L221 
9 p. 20 

that ct(TJM) G Q(T). Moreover, by Lemma 1.28 of [22] p. 20, 

MGM (x 6, p(T)). 

Now, by definition, for some suitable family of contours BG p(T) , 

we have 

K= f(T) =1 27r i 
f(a)(aI-T)-lda 

fB 

and so it follows that KM G M. Since a(T I M) C Q(T) ,fG J (TIM) 

and so KIM = f(TIM). Hence TIM is analytically compact. From 

equation (1) it follows that the range of the operator (T-aI)IM 

is contained in M_ and is therefore not the whole space M. It 

follows that Xe a(TIM) and, by Theorem 4.1.12, A is an eigenvalue 

of TIM. 

Conversely, if A is an eigenvalue of T, then by the spectral 

mapping theorem f(X) is an eigenvalue of K. By Lemma 2.29 of [22] 

p. 62, there is M in 
I 

such that Mf M_ and f(X) is the diagonal 

coefficient of K for M. It now follows from Proposition 4.1.16 

that A is the diagonal coefficient of T for M and the proof of 

the theorem is complete. 

Our next task is to establish the equality of the algebraic 

multiplicity and the diagonal multiplicity of a point A in a(T) 

for which f(X) # 0. This will be effected in two stages. 

a 
v 
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19. PROPOSITION. Let A 6a(T) and f(X) + 0. Let d denote the 

diagonal multiplicity and m the algebraic multiplicity of the eigen- 

value A of T. Then d<m. 

PROOF. Let v be the index of A relative to T. Then 

(a) v is the least integer such that (T-XI) v+lx =0 only if 

(T-XI)vx =0 (x E X) ; 

(b) v is the least integer such that 

(T-XI)v+lX = (T-XI) vX; 

(c) the null space of the operator (T-XI)' has dimension m. 

Let S be the bounded linear operator defined by 

S- PI = (T-XI) V, 

where p= -(-a) Then p is an eibenvalue of S which has index 

unity and algebraic multiplicity m. Since S is a polynomial in T, 

each subspace I1I in 
ý 

is invariant under S. We may therefore con- 

sider the diagonal coefficients of S with respect to the nest 
I. 

Let ME 
I 

and let aM, aý, denote the diagonal coefficients 

at M of T, S respectively, where we have assumed that 1"1 f M_. We have 

Tz. 
J = aIIz11 + yýý, 

where yý1L ri We deduce from this equation that 

(T-XI)zM _ (arS-A)zl, 
ý + yli. 

It easily follows that, for n=1,2, ..., we have 

(T-XI)nz11 - (aM-A)nzM + Y(n) 2 

where y(n) cM. In particular, by taking n=v, we obtain 
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Sz11 = pz1 + (aft-X)vzM + y(V) 

Thus am =p+ (c -X)", We deduce that vlt =p if and only if aM = A. 

Hence the diagonal multiplicity of p relative to S is d. It is now 

sufficient to prove the present proposition under the additional 

hypothesis that Xhas index unity relative to T, since in the general 

case we may reduce to this situation by replacing T, X by S, p 

respectively. 

Suppose therefore that A has index unity relative to T and 

let N be the null-space of the operator T-AI. Given xEN, define 

M= M(x) {L :LExE L}. 

By considering 
ý 

as a simple nest of invariant subspaces for the 

compact operator f(T), we deduce from Lemma 2.29 of [2-2] p. 62 

that M6ý5M# M_ and A= aM. (Observe that by hypothesis 

Clearly x6 M\M_. 

To complete the proof of the present proposition, we show 

conversely that, if M6 
ý 

and aM = X, then M=M (x) for some non- 

zero x in N. For this purpose, let TM denote the restriction of 

T to M, and let WM, NM be the range and null-space (respectively) 

of the operator TM-xIrl. It was shown in the course of proving 

Theorem 4.1.18 that TM is analytically compact. It is immediate 

from the definition of index in terms of null-spaces that A has 

index unity relative to TM. It follows from Theorem 4.1.12 that 

WM ® NM = M. 

Since, as in the proof of Theorem 4.1.18, WM G M_, it follows that 

NM meets M'M_. If xe NM (1 (M\M_) , it is easily verified that 

xaN, xf0 and M(x) = M. 
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Let Ml G M2 G ... C Md be the distinct members of the nest 

T at which T has diagonal coefficient X. We may choose non-zero 

vectors x1, .5 xd EN such that M. = M(xi) (i = 1, ... 5 d). For 

each i=1, ..., d, xi is not a linear combination of xl, . "", xi-1 

for this would imply that xi aM (xi_l) G M_ (xi) 
, which is not so. 

Hence xl, ..., xd are linearly independent elements of N, and since 

dim N=m we obtain m>d. This completes the proof. 

20. PROPOSITION. Let AE Q(T) and f (a) # 0. Let d(X) denote 

the diagonal multiplicity and m(a) the algebraic multiplicity of 

the eigenvalue A of T. Then d(A) = m(a). 

PROOF. Let i ={X1, ... ,n} be the set of points in e(T) such 

that 

f( r) = f(a) (r = 1, ... , n). 

Then 
n 
E m(Ar) = dim E(r; T)X 

r=l 

= dim E(f(a); f(T))X 

by Theorem 4.1.1. However, if d denotes the diagonal multiplicity 

of f(a) with respect to f(T), then, by Proposition 4.1.16, 

n 
E d(ar) = d. 

r=1 

By Lemma 2.31 of [22j p. 62, 

d= dim E(f(A); f(T))X. 

Hence 
nn 
E m(A )=E d(X ) 

r=1 
r 

r=1 
r 

and, using the preceding result that m(Xr) > d(Xr) (r = 1, ..., n), we 
a 

obtain the desired conclusion. 



60 

We conclude this section by stating as a theorem the results 

that we have established. 

20. THEOREM. Let T be an analytically compact operator on X 

and let f(T) be compact, where fEI (T). Let X6 C with f(A) $ 0. 

Then 

(i) A is an eigenvalue of T if and only if it is a diagonal 

coefficient of T; 

(ii) the diagonal multiplicity of A is equal to its algebraic 

multiplicity as an eigenvalue of T. 

2. Analytically compact operators on Hilbert space 

Henceforward we shall confine our attention to the case in 

which, in place of a general Banach space X, we have a Hilbert space 

H. The following theorem corresponds, in the finite-dimensional 

case, to the assertion that a square matrix is normal if and only 

if every unitarily equivalent super-diagonal form is in fact 

diagonal. 

1. THEOREM. Let T be an analytically compact operator acting 

on a complex Hilbert space H and let 
ý 

be a simple invariant nest 

associated with T. Let 

_ {M : ME ,M$ M_} 1 

and let am (M E1) be the diagonal coefficients of T. Also, when 

MEý1. let zM be an element of M which has unit norm and is 

orthogonal to M_. Then T is normal if and only if 

(i) zM is an eigenvector of T (M E 
1); 
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(ii) if xE H and 
<x, 

zM> =0 (M E1 
1), then Tx = 0. 

Note. If M61, then M- has codimension one in M. Hence 

the vector zM is determined up to a scalar factor of absolute value 

one. Clearly, zMC "I'M '0 

PROOF OF THEOREM. To prove the sufficiency of the stated con- 

ditions, we note first that the elements zM (M Eý 1) 
form an 

orthonormal system in H. For let L, M be distinct members of 
7 

1. 

Since 
ý 

is totally ordered by inclusion, we may suppose that LGM 

and hence that LGM. Now zLELG M_, while zM is orthogonal to 

M_. Hence <ZL, 
zM> = 0, and since zM has unit norm for each M in 

it follows that these elements form an orthonormal system. 

Hence, every vector x in H may be expressed in the form 

X=E 
<X, 

ZM> zM +Y 
MEl 

where y is orthogonal to each zM. If conditions (i) and (ii) of 

the theorem are satisfied, and scalars aM are chosen so that 

TzM = QMzM (M 6ý 
1), then 

Tx =E QM<X, zM'> zM (xFH). 
meý1 

It follows at once that T is a normal operator. 

Suppose conversely that T is a normal operator, and that X is 

a non-zero diagonal coefficient with diagonal multiplicity d. 

Define 

_/ . 
2 

{M ME1, aM _ p}, 

so that 
ýG, 

and contains exactly d members. Let M M. 2122 
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and write TM for the restriction of T to M. We denote by N, NM the 

null-spaces of the operators T-XI, TM-XIM (respectively) and by 

W, WM, the ranges of these operators. As an eigenvalue, A has index 

one relative to T. (See for example Theorem 11.14 of [22-1 p. 219. 

It follows that A has index one relative to TM. If we use the 

symbol 
J. to denote orthogonal complement in H, and ® for topological 

direct sum, we have 

N=W1', 

M=WM'+Q NM, 

M= WM ̀Q+ (MrWM ). 

We justify these three equations as follows. 

from the Corollary to Theorem 1 of 14-7] p. 254. 

(1) 

(2) 

(3) 

The first follows 

To prove the second 

observe that it was shown in the course of proving Theorem 4.1.18 

that TM is analytically compact and so the desired conclusion 

follows from Theorem 4.1.12. The third equation follows from an 

elementrary result on Hilbert space. Now 

NM = MAN =M (1 W1" GM 11 WM (4) 

From (2), (3), (4) we deduce that 

NM =MAWI . 

Now, as in the proof of Theorem 4.1.18, we have WM C. M. Thus 

zM Em 
,n 

WM = NM G N. 

Hence zM is an eigenvector of T, corresponding to the eigenvalue X. 

This proves condition (i). 

Furthermore, the d vectors zM (M E 
2) 

form an orthonormal 
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system in 11, and dim IT = d, by Theorem 4.1.20. Hence these vectors 

form a basis of U. We deduce that the family zI1 (16i) is a com- 

plete set of eigenvectors of T. Property (ii) now follows from 

Theorem 5 of [L1+7]p. 443, or strictly speaking a generalization of 

it; namely, the spectral theorem for a normal operator. 

3. Simple resolutions of the identity in Hilbert space 

In the context of Hilbert space, the theory developed in the 

first section of this chapter may be strengthened by use of the 

fact that, given any closed subspace 14 of H, there is orthogonal 

projection from H onto M. 

Let H be a complex Hilbert space. By a simple resolution of 

the identity in H. we shall mean a family' {Ex: 0<A< 1} of 

orthogonal projections in H such that 

(i) E0 = 0, E1 = I; 

(ii) EAEU = E11 Ex = 

(iii) if 0<u<1 and x6H, then Ex -- Ex as A-u+0, convergence 

being in the norm topology of H; 

(iv) the projection Ex - EX- has rank at most one. 

Here, E 
X- 

denotes the strong limit of E as p -* A-0; the existence 

of this limit follows from (ii) and the fact that the projections 

being orthogonal are uniformly bounded in norm. (See for example 

Theorem 6.4 of [2Z] p. 159. ) 

1. THEOREM. Let {Ex} be a simple resolution of the identity 

in a complex Hilbert-space H, and let J' be the family consisting of 

the subspaces Ex(H), Ex_(H) (0 <X< 1). Then T is a simple nest. 
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Furthermore, the relations 

E (H) 

establish a one-to-one correspondence between the sets {u : uE [0,1] 
, 

E$E} and' {TI iI E ,7, T1 $ TI_}. 
uu 

PROOF. It is apparent that J is a nest. We shall now show 

that J is a maximal nest. Let M be a subspace of H, and suppose 

that the family obtained by adding M to 
Y 

remains totally ordered 

by inclusion. Denote by L ,L_, respectively, the ranges of the 

projections E)L, EX_, and define 

ü= inf{a :aC, CO 
j lj 9M C- LXi, 

It is clear that uE0,11 , and that MG Lx(X > u) , Lx GM (x < u) . 

Thus, by virtue of property (iii) for simple resolutions of the 

identity, 

m c, 
n. 

L=L; 
a>u Xu 

also Lü_ = cl 
U. LJ G M. 

Hence L'' CMG L'-. Now L' has codimension at most one in L. It 
u- --u u- u 

follows that M is one of the subspaces LL and hence that MG <T . 

This shows that 
ý 

is maximal and therefore by Lemma 2.24 of [2Z] p. 58, 

I 
is a simple nest. 

Suppose now that MEý and that M$ M_. By reasoning as above, 

we may prove the existence of a number u in 0,11 such that MG Lu, 

but L; k G M(X < u). Thus L. G M_(X < u), and 

L= c1 
Uu LX] G M. 

ý 

We deduce that L' CMGNC. L . Since L has coaimension at most 
u- --u u- 

0 
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one in Lu5 it follows that L 
u- 

= iii_, Lu = M. This proves the 

existence of a number u with the required properties. 

We now have to show that u is uniquely determined by these 

conditions. 

such number. 

Suppose that this is not so, and that v is another 

We may assume that u<v. Then M=L=L, and 
uV 

N- =L=L; and since LG Lv-, we have Ii C M- and hence M=M, 
u- v- u--- 

contrary to hypothesis. 

Finally, let uF, [0,1], and suppose that Eu $ E. Set M= L. 

Then the subspaces L in 
J 

such that LGM are exactly L 
X(x 

< u) and 

Lu 
-(X 

< u). Since M- is, by definition, the closed linear hull of 

this family of subspaces, we have M_ =L 
V- 

This completes the 
- 

proof of the theorem. 

In the circumstances described in the above theorem, we shall 

say that 
I 

is the simple nest associated with the simple resolution 

of the identity {Eý}. 

2. THEOREM. Let H be a complex separable Hilbert space, and 

let 
ý 

be a simple nest of subspaces of H. Then there exists a 

simple resolution of the identity {E} in H, whose associated simple 

nest is 
ý. 

PROOF. Let xl, x2, ... be a complete orthonormal system in H. 

Given any subspace M in , we define 

00 
f(M) =E 2-n I lPMxn I, 

n=1 

where PM is the orthogonal projection from H onto M. 

first the following three properties of f. 

(i) 0< f(M) <1 (M EI). 

(ii) f((0)) = 0, f(H) = 1. a 

We require 

(iii) LGM if and only if f(L) < f(M) 

L=M if and only if f(L) = f(M) (L, M E ). 
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To see (i) observe that we have 

Co Co 

0< f(M) <E 2-n ln 11 =E 2-n = 1. 
n=1 n=1 

(ii) is obvious. Now suppose that LCM. Then IIPLXII < IIPMxII 

(x E H), with equality only if 

PLxn= PMxn (n = 1,2, ... ) 
. 

However, the latter condition would imply that PL = PM (since linear 

combinations of xl, x2, ... are dense in H) and hence that L=M, 

contrary to hypothesis. Thus f(L) < f(M) and (iii) is established. 

Next, we establish the following property concerning sequences 

of subspaces in ,T. 

Let Mn EJ (n = 1,2, ... 
) and let 0<u<1. Suppose that 

the sequence' {f (Mn) } is monotonic and converges to v. Then there 

is a subspace M in 
ý 

such that f(M) = u. Furthermore, PM } PM 
n 

in the strong operator topology. 

For the proof we shall suppose that f(Mn) increases to V. 

The proof when f(Mn) decreases to u is similar. Since 

f(Mn) < f( n+l), we can deduce from property (iii) of f that 

Mn C Mn+l' We define M= cl [(J Mn]. Then PM -ý PM in the strong 
n 

operator topology. (See for example Theorem 6.4 of [22-] p. 159. ) 

Since 
I 

is a simple nest, MEý. Finally we have 

00 

f(M) =E2 
jIIPMx. JI 

j =j 

00 

= lim F. 23II PM xj ýI 

n -}co j =1 n 

1imf(M) =u. 
n" n+ 
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The double limit operation may be justified by uniform convergence 

considerations. 

Observe that the set A _. {f(M) :M} is a closed subset 

of the interval [0,1] 
. 

Having established these auxiliary results, we now return to 

the proof of the theorem. When X F- A, there is a unique M= MX in 

such that f(M) _ X. We define 

Ex = PM (XE A). (1) 

If (a, ß) is a complementary interval of A, we set 

Ex = Ea (a <X< ß). 

From property (iii) of f, we deduce that 

Ev(H) =u {M MET , f(M) < A} (0 <a< 1). (2) 

We shall now verify that the family {Ex: 0<A< 1} of orthogonal 

projections satisfies conditions (i), ..., 
(iv) for simple reso- 

lutions of the identity. 

(i) Wehave0=f((0))EA, 1=f(H)EA. Thus 

Eo = P(0) 0' E1 = pH = I. 

(ii) It is sufficient to prove that Ex(H) C Eu(H) when A<u. 

This follows at once from (2). 

(iii) The required result is apparent when p4A, since in this 

case Ex is constant on some open interval containing V. 

We may therefore assume that pEA. 

Suppose that an decreases to V. Define 

un = sup{X : XE A, A< An}, 
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Then 11 
n6 

A, Ex 
n= 

Eu 
n 

and un decreases to u. It is immediate 

from what has already been established and the definition of Ex 

(see (1)) that Eun -} EV in the strong operator topology. Hence 

E; k - Eu in this topology. 
n 

(iv) Let 0<A<1, and set M= Ex(H). Every subspace L in 
.4 

such that LCM is of the form L= Eu (H) for some u in A with 

u<A. Hence 

M_=c1[U{L : LG1, LCM}] 

C cl U Eu(H)] 

= Ex-(H). 

Thus M- CE J1- 
(H) CEa (H) = M. Since 

ý 
is a simple nest, M- has co- 

dimension at most one in M. Thus the projection E)-EX- has rank at 

most unity. 

We have now shown that the family' {E} is a simple resolution 

of the identity in H. Let 
ý1 

be the associated simple nest. If 

MEj, and f(M) = A, we have M= Ex(H)6 c 1. 
Since the nest 

I 
is 

simple and therefore, by Lemma 2.24 of [2Z] 
, p. 58, maximal, it 

follows that '_Y1. This completes the proof of the theorem. 

Note. Examples can easily be constructed to show that the con- 

clusions of the theorem may fail if the hypothesis of separability 

is removed. 

3. PROPOSITION. Let H be an infinite-dimensional Hilbert space. 

Then there exists a simple resolution of the identity{EX} in H such 

that E- = EX_ (0 <x< 1). 

The space. H can be expressed as the direct sum of a family PROOF. 
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of pairwise orthogonal subspaces, each of countably infinite 

dimension, and is therefore unitarily equivalent to a space of the 

form 

H0 L2(0,1), 
aEA 

where A is some index set. It is therefore sufficient to consider 

the case in which H=H 
0 

The elements of Ho are families (fa )a6 
A such that fa E L2(0,1) 

(a E A) and 

E1 1I12 < ý. 
aEA 

When 0<A<1 and (f )EH, define 
--a0 

Eý(fa) 

where eX is the characteristic function of the interval [0, x] . It 

is easily verified that Ex is an orthogonal projection in Ho, and 

that the family {Ex} has the required properties. 

DEFINITION. Let T be an analytically compact operator on a 

complex Hilbert space H. We shall say that a simple resolution of 

the identity {Ex} in H reduces T if 

< 1). TEx = ExTEx (0 <x 

This condition implies that TEý_ = EX_TEX_(0 <X< 1). Thus T is 

reduced by'{Ex} if and only if T leaves invariant every subspace 

in the simple nest associated withr{EX}. 

4. THEOREM. Let T be an analytically compact operator acting 

on a complex separable Hilbert space H. Then there exists a simple 

resolution of the identity {EX} in H which reduces T. 
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PROOF. Let 
ý 

be a simple nest of subspaces of H, each of whose 

members is invariant under T. Then Theorem 4.3.2 asserts the existence 

of a simple resolution of the identity {EX} in H, whose associated 

simple nest is Since J is an invariant nest, {E } reduces T. 

In the case of a compact linear operator on a general Hilbert 

space, not necessarily separable, the last theorem remains true. 

5. THEOREM. Let T be a compact linear operator acting on a 

complex Hilbert space H. Then there exists a simple resolution of 

the identity {Ex} in H which reduces T. 

PROOF. If H is separable, the result follows from the preceding 

theorem. If H is not separable, we can find a separable subspace H1 

such that, if H2 = Hi , then THl G Hl, TH2 =' {O}. (See, for example, 

[3R] p. 206, where it is shorn that the space generated by the eigen- 

vectors corresponding to the non-zero eigenvalues has the properties 

of Hl. ) Let T1 denote the restriction of T to Hl. Since ýI1 is 

separable we can find a simple resolution of the identity'{E(,, l)} in 

H1 which reduces T1. Let{E(2)} be any resolution of the identity 

in H2 which satisfies the conclusions of Proposition 4.3.3. If we 

now define 

Eý = Eý1)P1 + Eý2)P2, 

where Pi denotes the orthogonal projection from H onto H. (i = 1,2), 

then it is easily verified that{E is a simple resolution of the 

identity which reduces T. This completes the proof of the theorem. 

Let T be an analytically compact operator acting in a complex 

separable Hilbert space H, and let {Ex} be a simple resolution of 

the identity which reduces T. Define 
a 

J =' {A :AE [0,1] 
, EX $ EX_}. (1) 
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When AEJ, the projection EA-EA- has rank unity. We can therefore 

choose a vector zA in H such that 

(2) IIzXII = 1, (x e J). 

The element zx is determined to within a scalar factor of absolute 

value one. We note that zx is orthogonal to the range of the pro- 

jection EX_. Since zx GE x 
(H), we have TzxC Ex(H), and 

Tzx = ExTzx _ (Ex-Ex-)Tzx + Ex-Tzx. 

Hence 
Tzx =axzx+ EX_Tzx (aE J), (3) 

where aA is a scalar. When A ýJ, 
we define aIx = 0. We shall call 

ax the diagonal coefficient of T at A (with respect to the resolution 

of the identity {EXI). 

Let 
ý 

be the simple nest associated with the resolution of the 

identity JE 
A 

1. Let XEJ and let M denote Ex (H). Then MG", and 

from Theorem 4.3.1 it follows that M- = Ex-(H) G M. Furthermore, 

zx E M\M-, and by using equation (3) we obtain Tz. -axzIx EM Thus, 

the diagonal coefficient of T at M in 
I 

is ax. We may now deduce 

from Theorem 4.3.1 that the non-zero diagonal coefficients of T with 

respect to the simple resolution of the identity' {Ex} and their 

diagonal multiplicities are the same as those with respect to the 

simple nest 
I. 

(It is however possible that zero shall be a 

diagonal coefficient with respect to'{EX}, but not with respect 

to 
ý 

.) It follows that, for analytically compact operators acting 

in separable Hilbert spaces, there is a complete analogue of the 

theory developed earlier in this chapter in which simple nests are 

replaced by simple resolutions of the identity. We confine attention 

to a statement of the analogue of theorem 4.2.1 without giving detailed 

proofs. 
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6. THEOREM. Let T be an analytically compact operator on a 

complex separable Hilbert space H, and let {Ex} be a simple 

resolution of the identity which reduces T. Define 

D= 
. 
{a ýo, i as t o}, 

where ax denotes the diagonal coefficient of T at A. Suppose 

further that, when AED, zx satisfies equation (2) in the intro- 

duction to this section. Then T is a normal operator if and only 

if 

(i) zx is an eigenvector of T (X E D); 

(ii) if x6 H and (x, zý) =0 (XED), then Tx = 0. 

7. COROLLARY. The operator T is normal if and only if 

Tx =E aÄ<x, Z Zx (x E H). 
X9D 

This conclusion remains valid if we replace D by the set J defined 

in equation (1) in the introduction to this section. 

PROOF. The vectors zx (X O D) form an orthonormal system in H. 

It is easily verified that conditions (i) and (ii) of the last 

theorem are satisfied if and only if there exist scalars aX(X6 D) 

such that 

Tx = 
XE Da 

(x, zýzý (x E H). 

Direct calcualtion then gives ax = ax. The only effect of replacing 

D by J is the possible introduction into the summation representing 

Tx of a number of zero items. 

This chapter represents a considerable generalization of 

Ringrose's theory of superdiagonal forms. We conclude with an 

example of an analytically compact operator which is not compact. 
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8. EXAi. IPLE. Let H be a separable infinite-dimensional Hilbert 

space with orthonorrnal basis {en} where n is a positive integer. 

Define T. in L(H), by 

en+l (n even ) 

Te 
n 

n en+l (n odd) 

Then the sequence' {e2} is bounded but the sequence{Te2n} 

possesses no convergent subsequence. Clearly T is not compact. 

However T2 is compact since it is the norm limit of a sequence 

of finite-rank operators. 

a 
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CHAPTER FIVE 

Compact operators on a real Banach space 

Gillespie [25] and Meyer-Nieberg E3 J independently obtained 

an invariant subspace theorem for compact operators on a real 

Banach space. The purpose of this chapter is to show that the 

Hilden-Lom onosov technique referred to in the last chapter can 

be used to considerably simplify their work. 

The spectral theory of compact linear operators on a real 

Banach space seems to be well known, although it does not appear 

explicitly in the literature. In view of this we outline a 

possible development of this theory. 

1. The complexification of a real Banach space 

Throughout this section, let X be a real Banach space. We 

denote by X the complexification of X. This, by definition, is 

the set of formal sums x+iy, where x and y run through the set X. 

Let x, y, xl, yl, x2, y26 X and a, ß GR. Vie define equality, 

addition, scalar multiplication, and norm on X by: 

(i) xl+iyl = x2+iy2 if and only if xl = x2 and y1= y2 ; 

(ii) (xl+iy1) + (x2+iy2) _ (x1+x2) + i(yl+y2); 

(iii) (a+iß)(x+iy) _ (ax-ßy) + i(ßx+ay); 

(iv) x+iy = sup 
[I! cosOx - (sino)yfl+ll(sinO)x+(cos0)yl1]. 

eE R 

With these definitions X becomes a complex Danach space and 

we have 

Ixl I+I lIII IX+iyl I v/2-(I Ixi I+I Iyl I) `X, YE X). 
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Let M be a subspace of X. We define the conjugate space t: 'ý`" 

of M as follows: 

M'. '-, _{x-iy : x6X, yEX, x+iyEM}. 

This is also a subspace. 

We say that I'1 is self-conjugate if M=I! - '. Clearly, if N is 

any subspace, then N fl N is self-conjugate and if, in addition, N 

is finite-dimensional, then N+ N' is self conjugate. 

Let M be a self-conjugate subspace of X. We define 

ReM =' {x 6X: 'x+i0 EM}. 

This is also a subspace of X. The importance of this definition is 

that M is the complexification of ReM and so 

dimR ReM = dimTM. 

Let TG L(X). We define on X the complexification T of T by 

T(x+iy) = Tx+iTy (x, y 6 X). 

Clearly, T6 L(X) and 

I ITII < Y'1 ITI 12IIT11" 

We note the following: for AEC and ma positive integer, we 

have that (T-aI)mX is the conjugate of (T-XI)mX and ker(T-3I)m is 

the conjugate of ker(T-AI)m. (Here ker denotes the null-space of 

the operator. ) 

2. Finite-dimensional spaces 

In this section the terms 'operator' and 'subspace' are used 

in a purely algebraic sense. 
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The following result may be found in [27] 
, p. 106. 

1. THEOREM. Let E be a complex vector space of dimension 

n< co and let T be an operator on E. Then there exist subspaces 

Mo5Ml9 ..., Mn of E with: 

(i)'{o} = MocMlc M2 C. ... CM =E; 

(ii) dimM 
r=r 

(r = 0,1, ... , n) ; 

(iii) TMr C, Mr (r = 0,1, ... , n). 

We need a corresponding result for real vector spaces. The 

following result seems to be well known although it does not appear 

explicitly in the literature. We shall therefore outline a proof 

of it. 

2. THEOREM. Let E be a real vector space of dimension n < 

and let S be an operator on E. Then there exist an integer m and 

subspaces N0, Nl, ..., Nm of E with: 

(i) ý'n<m<n; 

(ii) ' {0} = N0G N1 C N2 C ... C Nm = E; 

(iii) 1< dimNrtl dimNr <2 for r m-1; 

(iv) SNr G Nr m) . (r = 0,1,660 2 

PROOF. Let E, S denote the complexifications of E, S respectively. 

Since dim CE = n, it follows from the preceding theorem that there 

are subspaces Mo9M15 ..., Mn of 
i 

with the following properties: 

(i) ' {0} = Mo G Ml C M2 C 

(ii) dimMr =r 

(iii) SMr C Mr 

040 

GMn=E; 

n); (r = 0,1, .... 
" (r = 0,1, ... , n). 
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Consider the self-conjugate subspaces: 

Mo + Mö , Ml + Ml 5 M2 + M2 ,,,,, Mn+ Mn 

Obviously they form a chain and 

Mo +MJ=ÜO1 Mn + Mn = E. 

A dimension argument gives 

0< dim(Mr+l + Mr+l) - dim (Mr + Mr) < 2, 

for r=0,1, ..., n-1. Also 

S(M + Mib) CM+ M', w(r = 0,1, ... , n). rr-rr 

Thus if we let m be the number of distinct members in the chain and 

let N0, N,, ..., Nm be the real parts of the distinct members, retaining 

the same order, then these subspaces have the required properties. 

The following simple example shows that a complete analogue of 

Theorem 5.2.1. for the case of finite-dimensional real spaces cannot 

be obtained. 

3. EXAMPLE. Define T on R2 by 

T(x, y) _ (-y, x) ((x, y)E R2). 

Clearly T is linear. Also T has no proper closed invariant sub- 

space. To see this, observe that geometrically T is rotation through 

an angle 7. 

3. Compact operators 

The following result enables us to deduce results on compact 

operators on a real Banach space from those on compact operators on 
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a complex Banach space. 

1. LEMMA. The complexification of a compact operator on a 

real Banach space is also a compact operator. 

PROOF. This is straightforward and is omitted. 

2. THEOREM. Let S be a compact operator on a real Banach space 

X and let X, S denote the complexifications of X, S respectively. Let 

71 E Q( MOI 
. Then there exist subspaces M and N of X with the 

following properties: 

(i) M is of finite codimension in X and N is finite-dimensional, 

(ii) MON=X; 

(iii) SM CM and SN CN; 

(iv) A 40 (SIM), Tc a0(SIM), where M is the complexification of 

M, and where ao(SIM) = v(SIM)\{0}. 

PROOF. The reader is referred to Theorem 2.21 of [22] p. 53 for 

a description of the spectrum of a compact operator on a complex 

Banach space. Suppose that m is the index of the eigenvalue X of 

S. Define 

M= Re 
[(9- 

XI)'Xn (s-aI)mX] 

and 
N= Re[ker(S-XI) m+ ker(S-TI) m] 

. 

It is not difficult to check that M and N have the required properties. 

The Hilden-Lomonosov argument yields the following result in the 

case of a compact operator on a real Banach space. 

3. THEOREM. Let Y be an infinite-dimensional real Banach space. 

Let T#0 be a compact quasinilpotent operator on Y. Then there is 
,, 

a proper closed subspace of Y invariant underlk ='{A E L(Y) : AT = TA}; 
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i. e. T has a hyperinvariant subspace. 

PROOF. Suppose that the theorem is false. Then for each x#0 

Ux={Ax : AELL} 

is dense in Y; that is {ý x} = Y. We may choose a ball 

B={xGY: 1Ix-x011 <81 
such that 0( TB and TB is compact. Hence if yL TB , there is Ay in 

and an open neighbourhood NY of y with AYNYC. B. Therefore by 

... of(,, such compactness there exists a finite subset Ay1 Ay 
k 

that for each y in TB some Ay maps y into B. For brevity, write 
r 

Ay =Ar. For each positive integer n we may find suitable indices 
r 

il, ..., in such that 

n 
Tr A. Tnxo = A. TAI T ... A. Tx06 B. 

M=l 
lm 12n 

Now, if M= max{ I IAP II: 1<p< k} < °°, then 

n 

7r AiTnx0I1 ttTnHH HHxHH" 
M=l m 

Since T is quasinilpotent, Ml I Tn ýI1 /n ITOillI /n 
-} 0 as n -} (n and so 

we obtain 

n 1 
r Ai Tnxo II ýn 

-} 0 as n 
M=l m 

Since 0t TB then also 0ýB and so for some p>0 we have 

n 
PnA. Tnxo 

m=1 m 

n 
plan < II n A. Tnx II, i2) 

io 
M=l m 
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Since lim p1/n = 1, (1) and (2) give a contradiction. This proves 
n -* co 

the theorem. 

4. THEOREM. Let X be a real Banach space of dimension greater 

than or equal to three, "and let S be a compact operator on X. Then 

S has a proper closed invariant subspace. 

PROOF. Again we refer the reader to Theorem 2.2.1 of [22-j p. 53 

for a description of the spectrum of a compact operator on a complex 

Banach space. If X is finite-dimensional, the required result 

follows from Theorem 5.2.2. Now suppose that Y is infinite-dimen- 

sional. There are four possibilities; observe that S must satisfy 

exactly one of the following: 

(i) ker S$ {0}; 

(ii) S has no eigenvalues; 

(iii) ker S= {0}, a (S) is finite and non-empty; 

(iv) ker S= {0}, Q0(S) is an infinite set. 

(Here we have used a0 (S) to denote a(SM0}. ) 

He consider these four possibilities separately. 

(i) Suppose that x, y 6X are such that x+iy E ker S, where not 

both x and y are zero. Let F =' {ax+ßy : a, ßE RI. Then F $' {01 

and F is a proper closed subspace of X invariant under S. 

(ii) If S has no eigenvalues, then S is quasinilpotent. We recall 

from Section 5.1 the following relationships between S and S: 

(a) Sn (sn) (n 

(b) I ISI I< vH HSI I< 21 ISI I" 

It follows that 

H HSnH H< vl Is"I I< 21 lSnH H, 
and so S is also quasinilpotent. The desired conclusion in this 
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case now follows at once from the last theorem. 

(iii) Let a (S) (Xl 
.. ", 

an }. It follows from Theorem 5.3.2 

that for each i with 1<i<n we can find a closed subspace M. 
i 

of 

X invariant under S such that A. . Q06M .1), 
T. 

1ý 
a0 (S ý I1. ) and M1, is 

1 
n 

of finite codimension in X. Let M= (\ M. and observe that 
n __ 

i=1 1 
M=n Mi. Then M is infinite-dimensional and S1111 has no eigen- 

i=1 
values. The desired conclusion now follows by applying the result 

of case (ii) to S IT% 

(iv) Let' {dn+ißn}00 be an infinite sequence of distinct eigen- 
n=l 

values of S, where ann FS R for each positive integer n. By 

Theorem 2.2.1 of ý22J p. 53, 

a -}0, -0 asn -}oo. nn 

For each positive integer n, define 

Kn = ]; er[-(c an+ißn )1 

and 

In {x EX: there exists y in X such that x+iy 6 Kn }. 

Clearly i1 = Re [K +K ] and iI is a non-zero finite-dimensional 
nnnn 

invariant subspace of S. 

This completes the proof of the theorem. 

0 
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CHAPTER SIX 

Superdiagonal forms for completely continuous linear operators on a 

locally convex Hausdorff topological vector space over T 

Altman E2] showed that Riesz-Schauder theory remained valid 

for a completely continuous linear operator on a locally convex 

Hausdorff topological vector space over the complex field. In a 

later paper E3] 
, he proved an analogue of the Aronszajn-Smith 

result; specifically he showed that such a completely continuous 

operator possessed a proper closed invariant subspace. The purpose 

of this chapter is to show that Ringrose's theory of superdiagonal 

forms for compact linear operators [1-0] can be generalized to the 

case of such a completely continuous operator. 

1. Locally convex Hausdorff topological vector spaces 

1. DEFINITION. A Hausdorff topological vector space X is said 

to be a locally convex space if there is a basis of neighbourhoods 

in X consisting of convex sets. 

Throughout this chapter, X is a fixed locally convex Hausdorff 

topological vector space over the complex field and X {0}. 

2. DEFINITION. A non-negative function x -* p(x) on X is called 

a seminorm if it satisfies the following conditions: p$0 and 

(i) p is subadditive; that is 

p(x+y) < p(x) + p(y) (x, y 6 X); 

(ii) p is positively homogeneous of degree 1; that is 

p(ax) _ Fxtp(x) (xEX, x, e); 



83 

(iii) p(0) = 0. 

Note. Property (iii) in fact follows from Property (ii). 

3. DEFINITION. A seminorm on a vector space X is called a norm 

if 
x ex, p(x) =0x=0. 

4. DEFINITION. A family P of continuous seminorms on X will 

be called a basis of continuous seminorms on X if to any continuous 

seminorm p on X there is a seminorm g belonging to P and a constant 

C>0 such that 

p(x) < cg(x) (x ex). 

Such a basis of continuous seminorms on X certainly exists. Through- 

out this chapter P will denote a fixed basis of continuous seminorms 

on X. We shall use the following three basic facts about the con- 

cepts defined above without further comment. 

(A) P determines the topology of X. 

(B) A linear functional f on X is continuous if and only if 

there is a continuous seminorm p on X such that 

lf(x) I< p(x) (x e X). 

(C) A closed linear subspace of X is a locally convex Hausdorff 

topological vector space under the topology induced by X. 

The following results lie much deeper. 

5. PROPOSITION. Let Y be a proper closed subspace of X and let 

p be a continuous seminorm on X. There exist x in X such that 

p(x) =1 and 
Y} inf{p(x-y) : yE > 

-1 
PROOF. Consider the linear space X/p (0), which we denote by W. 

-mai \ 
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Let x, y e, X. Observe that 

p(x) < p(y) + p(x-y), 

p(y) p(x) + p(y-x), 

and so p(x) = p(y) if and only if p(x-y) = 0. It follows that if 

[x] is the equivalence class of X/p-l(0) containing x, then 

11 [X] 11= P(x) (X E X) 
defines a norm on W. It is clear that H= Y/p-l(0) is a closed 

linear subspace of W. By the Hahn-Banach theorem, there is an f 

in W such that ff0 and f (u) =0 (u E H). We may assume without 

loss of generality that 1 If! I = 1. Hence there is w in W such that 

I wI =1 and I f(w) I> 15. Then, if u6H we have 

I<If(W)l=lf(W-u)lIIfll IIw-ult=Ilw-uil" 

If we let x be any vector in the equivalence class w, then p(x) _ 

IIwI !=1 and 
inff p(x-y) : y6 Y} >. 

The proof is complete. 

6. PROPOSITION. Let Y be a proper closed subspace of X and let 

xE X\Y. Then there is a continuous linear functional f on X such 

that f(x) =1 and 
f(y) =0 (y 6 Y). 

PROOF. This result is also a consequence of the Hahn-Banach 

theorem. It can be deduced immediately from Corollary 2 of [ Z], 

p. 30. 

Next we discuss quotient spaces of X. 
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7. THEOREM. Let M be a closed linear subspace of X. Let ý be 

the canonical mapping of X onto X/M. Then the following facts are 

true. 

(i) The topology of-the quotient topological vector space X/M 

is locally convex. 

(ii) If P is a basis of continuous seminorms on X, we denote by 

PM the family of seminorms on X/M consisting of the seminorms 

ýxý 
-} p( [xý) = inf{p (y) :ye, [x] }. 

Then PM is a basis of continuous seminorms on X/M. 

(iii) ý is a continuous mapping of X onto X/M. 

For a proof of this result the reader is referred to Proposition 

7.9 of ["] 
, p. 65. Whenever, in this chapter, a quotient space is 

introduced it will be assumed that it has been topologised in the 

manner specified above. 

For proofs of all results described in this section and many 

more besides the reader is referred to the books [z] and [-L]. 

2. Completely continuous linear operators 

1. DEFINITION. A linear operator T having its domain and range 

in X is said to be completely continuous if there exists a neighbour- 

hood U of 0 such that the image T(U) is precompact in the sense that 

every infinite subset has a cluster point; equivalently the closure 

of T(U) is compact. 

2. PROPOSITION. Let Y be a closed subspace of X. Let T be a 

completely continuous linear operator on Y with TY G Y. Then the 

restriction of T to Y is a completely continuous linear operator on Y. 
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PROOF. This follows immediately from the definition. 

3. PROPOSITION. Let Y be a closed subspace of X. 

completely continuous linear operator on X with TY C Y. 

operator TY defined on the quotient space X/Y by 

T, [x] = [Tx] (XE X) 

is a completely continuous operator. 

Let Tbe a 

Then the 

PROOF. By definition, there is a neighbourhood U of 0 such that 

the image T(U) is precompact. Let 4 be the canonical mapping of X 

onto X/Y. Then 4(U) is a neighbourhood of the zero element in X/Y 

and, moreover, TYý(U) _ 4(TU). By [t-z] 
, p. 49, the continuous 

image of a precompact space is precompact. It follows that Ty is 

completely continuous. 

We now describe Altman's generalization of Riesz-Schauder 

theory [Z]. For an alternative presentation, see Chapter VIII of 

11+2] . 
4. THEOREM. Let T be a completely continuous linear operator 

on X. and let A be a non-zero complex number. There are two 

possibilities: 

(a) AI-T is a homeomorphism of X onto itself; 

(b) A is an eigenvalue of T. 

The set of points which satisfy (b) is countable and it has no 

cluster point except possibly zero. Let A be a non-zero eigenvalue 

of T. Then there is a positive integer v(X) with the following 

properties. 

(i) For each positive integer n, (XI-T)nX is closed. Also 

pI 
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(XI_T)m+iX _ (XI_T)mX (m ? V(A)) 

and v(X) is the smallest positive integer with this property. 

(ii) For each positive integer n, N((XI-T)n) is finite- 

dimensional. Also 

N((XI-T)m) = NMI-T)m+l) (m > v(A)) 

and v(a) is the smallest positive integer with this property. 

(iii) (AI-T)mX' O+ N((AI-T)m) =X (m > v(X)). 

(iv) If d(A) is the dimension of the null-space of (AI-T)'0 
, 

then 
1< v(X) < d(a). 

Note. The integers v(X) and d(X) are called respectively the 

index and the algebraic multiplicity of the eigenvalue A. 

We now state Altman's generalization of the theorem of 

Aronszajn and Smith proved in [3] 
. 

5. THEOREM. Let T be a completely continuous linear operator 

on X. Then there is a proper closed subspace Y of X invariant under 

T, provided only that X has dimension at least two. 

3. Superdiagonal forms for completely continuous linear operators 

Throughout the remainder of this chapter, T denotes a com- 

pletely continuous linear operator on X. The term subspace will 

be used to describe a closed linear subspace of X. 

A family, 
4 

of subspaces of X, which is totally ordered by the 

inclusion relation, will be termed a nest of subspaces. If in 

addition each subspace in ý is invariant under T we shall describe 

as an invariant nest. A trivial example of an invariant nest is 
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the family consisting of the two subspaces {0}, X. Non-trivial 

invariant nests may be constructed using Altman's result, Theorem 

6.2.5. 

We shall use the symbol Cl to denote the inclusion relation 

and reserve G for strict inclusion. The strong closure of a sub- 

set S of X will be denoted by cl(S). Given a nest 
ý 

of subspaces 

of X and MEý we define 

M_ = clý{L L ýý , LGM}]. 

If there is no L in 
ý 

such that Lr -M. we define M =' {01. It is 

clear that M_ is a subspace of X, and that it will be an invariant 

subspace if T is an invariant nest. Also MCM. It should be 

emphasized that the definition of M depends on the particular nest 

under consideration, and not merely on the subspace M. We shall 

say that 
ý 

is continuous at M if M= M-. 

A nest 
ý 

will be termed sim le if 

(i) {O}6 ,XE; 

(ii) if 
ý0 is any sub-family of -ý , then the subspaces 

fl{r 
: LýJ 

o}, cl[U{L : LE 
0 

}] 

are in 
ý; 

(iii) if M6, then the quotient space M/M- is at most one- 

dimensional. 

We note that condition (ii) implies that MGý whenever MLý0 

The class 
IL 

of all nests of subspaces of X may be partially 
rý M 

ordered by inclusion : if 2, we say that 1<2 
if 

every subspace in the family is also a member of 2. 
It is 

easily seen that, in this way, 
IL 

is inductively ordered; for if 

f, 
and 

11 
0 

is totally ordered by the relation. <, then 
o- 
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30= U{7: ýýllo, 
is the least upper bound of i7,0 inTL . We may now deduce from Zorn's 

lemma the existence of at least one maximal nest of subspaces. 

1. THEOREM. Let 
' 

be a nest of subspaces of X. Then 
ý 

is 
u 

maximal if and only if ,f is simple. 

PROOF. Suppose that is maximal. Then in the first place it is 

apparent that' {0}, XE, since otherwise , could be enlarged by the 

addition of these subspaces, contrary to the assumption that 
ý 

is 

maximal. Secondly, let 
0 

be a sub-family of 
ý 

and consider 

MO=n{L: LEo}. 

It is evident that M0 is a closed subspace of X. Let MEj. Since 

is totally ordered by inclusion we have either (a) MGL (L Eý 
o), 

and MG Mo, or (b) L C- M for some L in 
o, and MoG M. It follows 

that the family obtained by adding M0 to remains totally ordered 

by inclusion and is therefore a nest. Since l is maximal we deduce 

that Mo Eý. A similar argument shows that 

cl [U {L : L60}] 

is a member of 
ý. 

Hence properties (i) and (ii) of simple nests 

have been established. 

Finally we have to show that, if M6J, then the quotient 

space M/M_ is at most one-dimensional. Suppose that, for some M in 

this is not the case. Then we may find a subspace L of X such 

that MGLGM. Given any subspace N in J we have either 

(a) MGN, and LGN, or (b) NCM and 

NG c1 [U {K C3: KCM = M_ G L. 

It follows that L . and that the family obtained by adding L 'to 
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d is a nest. This contradicts the assumption that is maximal. 

Hence M/M- is at most one-dimensional, for every M in , and so J is 

a simple nest. 

Suppose conversely that 
J 

is a simple nest, but that 
dis 

not 
Al 

maximal. Then we may choose a subspace L of X such that L ý-/' 
and 

the family obtained by adding L to T remains totally ordered by 

inclusion. We shall obtain a contradiction. Let 

M {N :NLC N}, (1) 

M'= cl[U{N : NGJ , NGL}]. (2) 

By virtue of property (ii) of simple nests we have M, M'G 
7, 

and it 

is clear that M' CLGM. Since Lýý we in fact have 

M'c LGM. (3) 

We shall now show that M' =M . It is apparent that M' GM . Suppose 

now that NEý and NG M. It follows from (1) that L N. Hence 

NCL, and by (2), NC M'. Since M- is the smallest subspace con- 

taining all such N. we have M_ C M'. Hence M_ = M'. We may now 

deduce from (3) that the quotient space M/M has dimension greater 

than unity, contrary to hypothesis. This is the required contradiction, 

and the proof of the theorem is complete. 

2. THEOREM. Let T be a completely continuous linear operator on 

X. Then there exists a simple nest 
ý, 

each of whose members is a 

subspace invariant under T. 

PROOF. Let f (, i denote the class of all invariant nests. Then lý i 

is not empty since it contains the trivial nest consisting of the 

X. The class AIL may be partially ordered by inclusion, 
subspaces'{ 01, 

and an argument based on Zorn's lemma proves the existence of at least 

ti 
one maximal element. Let be a maximal member of 

IL.. By the type 
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ti. 

of reasoning used in proving Theorem 1, we may show that I) has pro- 

perties (i) and (ii) of simple nests. 

It remains to verify that, given any M in 
7 

the quotient 

space M/M- is at most one-dimensional. Suppose that, for some M 
M 

in -ý , this is not the case. When xGM we denote by [x] the coset 

x+M. It follows from results stated earlier that M/M is a 

locally convex Hausdorff topological vector space. Since M and M 

are invariant under T. we may define a linear operator TM from 

M/M_ into itself by the equation 

TMýxý _ [Tx] (xE M). 

It follows from Propositions 6.2.2 and 6.2.3 that TM is a completely 

continuous linear operator. Since M/M_ has dimension exceeding one, 

Theorem 6.2.5 of Altman implies the existence of a proper subspace 

Lm of ICI/M_ which is invariant under TN. If we now set 

L =" {x: xC t-i , 
[x] E r} 

then L is a subspace of X, being the inverse image under the contin- 

uous linear map x} [x] of the subspace LM, such that M_ GLCM. 

We may now verify, by the method used at the corresponding stage in 

the proof of Theorem 1, that L, but that the family 
1 coi'- 

sisting of L and the members of J is totally ordered by inclusion. 

Since L 
11 

is invariant under TM, L is invariant under T. Thus 
11 

is an invariant nest, and is a proper enlargement of the maximal 
11 

invariant nest I. This gives a contradiction. Thus M/M is at 
M 

most one-dimensional for every M in i1, and is a simple nest. 

Throughout the remainder of this section we shall use the 

symbols T, d with the meanings attributed to them in the statement 

of Theorem 2. If ME7, then either M= M_ or M/M has dimension 

one. In the latter case' let zý1 M\M_. Then since M is invariant 
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under T we have Tz116 M, and hence Tz11 can be expressed uniquely 

in the form 

TzM aMzP + yid (4) 

where all is a scalar and yr1e, M_. It is easily verified that aM does 

not depend on the particular choice of zM. When M= M_ we define 

aM = 0. In this way we associate with each M in ,:, 
t a scalar am which 

we shall call the diagonal coefficient 'of T at M. (In the finite- 

dimensional case the elements zM form a basis of X, and with respect 

to this basis T has superdiagonal matrix with diagonal elements aM. ) 

Let a be a scalar. We define the diagonal multiplicity of a 

to be the number (possibly infinite) of distinct subspaces M in 

for which aM = a. 

3. LEMMA. Let c>0 be given, and let 
o 

be the family con-1-1 

sisting of those subspaces M in J for which JaMI > e. Then 
o 

has only a finite number of members. 

PROOF. Suppose that 
0 

has infinitely many members. We shall 

use the symbols zM, yM as in equation (4). Also, we may assume that 

the elements zM in M\M_ have been chosen in such a way that there 

is a continuous seminorm p in P such that p(zM) =1 (M E, "0) and 

p(zM + y) > (y M_), (5) 

equation (5) being valid for all M in 
o. 

Here we are using 

Proposition 6.1.5. Now suppose that L, M are distinct members of 
ý0 

Then either L C- M or MGL. We may assume that LCM and hence that 

LC M_. It follows that zL e M_ and hence that TzLG M. Thus 

TzL- TzM = aMzM + (yM- TzL) 

= aMi2M+ Y), 
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where yG M_. From (5) we deduce that 

p(TzM- TzL) _ laMlp(zM+ y) 

>c (L, MGJo: L# M). 

It follows that the infinite family { TzM :MET0} contains no cluster 

point. Observe that, since p is continuous, ' {x&X : p(x) < 1} is a 

neighbourhood of 0 and, moreover 

{zM :MG 
o} 

L {x EX P(x) < 21. 

This contradicts the assumption that T is a completely continuous 

linear operator. 

If. COROLLARY. Every non-zero scalar has finite diagonal multi- 

plicity. 

PROOF. If at0, we may choose c so that 0<c< Jai. The 

preceding lemma then implies that a has finite diagonal multiplicity. 

^? 
5. LEMMA. Let Mej and 6>0 be given. Then there exists a 

subspace L in J' such that LGM and for every p in P 

5L( ýTxl) < Sp(x) (x e M_), 

where [yJ denotes the coset y+L (y 6 X) and 

pL( [x] )= inf{p(y) :yE rx1 }. 

REMARK. The interest of this lemma lies in the case in which 

p. 1 M-. When M f M_, the result is trivial since we may take L= ý"T_ . 

PROOF OF LEMMA. Suppose that the lemma is false, and denote by 

11-1 the class of all L in 
J 

such that LGM. Since we are going to 

o 

vary L, we shall not use the notation [y] for cosets*, but throughout 
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the proof will write y' + L. It follows that there is Lo in ,1, p in 

P and x in Lo such that p(x) =1 and 

pL (Tx + Lo) > S. 
0 

`'' 
Let M1= {L ,LG Lo }. If LE1, the set 

SL = {x :x 6I'7_, PL (Tx + L) >6 and p(x) = 1} 

is not empty because SL G SN if NGL. It is apparent that the 

family' { SL :LG 
ý'O } forms a filter base on the set U defined by 

u =" (x6 x: P(x) = i}. 

Hence the family {T(SL) :LG forms a filter base on the com- 

pact set cl(T(U)). It follows that there is a point x0 common to 

the strong closures of the sets T(SL) (L Ej 1). Since pL(y' + L) >6 

and p(y) =1 (y E T(SL)), we have 

1) 
(6) PL (x0 '+ L) >8 (L ' 

It follows immediately that 

pL(x0 '+ L) >6 (L G7 
0). 

(7) 

Furthermore we have SL G i7_ , T( SO G M_, and hence 

xo E r1_ = c1 [Ü{L :L610 }] 
. 

Thus for some L in 
ý 

o, 
we may choose an element y in L such that 

p(xo - y) < S. This contradicts (7), and the lemma is proved. 

6. LEMMA. Let p be a non-zero eigenvalue of T, and xa corres- 

ponding eigenvector. Let 

tS =n{L LET , x6L}. S 
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Then ML1 and p= atg " 

PROOF. The property (ii) of simple nests immediately implies 

that 1.1 C. In proving that p= a14 we shall consider separately 

the two cases in which respectively M= M_, and M$M. 

(a) Suppose that M= M_. Choose 6 so that 

o<a<21p1ý 
and let L be chosen to satisfy the conclusions of Lemma 6.3.5. 

Since LCM and LGý, it is an immediate consequence of the defi- 

nition of M that xýL. We may choose y in M in such a way that 

y-x EL, (9) 

p(y) <2 pL( [y] )= 2p-L( [x] ), (10) 

for some p in P. Since L is invariant under T, we deduce from (9) 

that Ty - Tx E L, and that 

Ty - py = Tx - px + (Ty - Tx - py + px ) 

= Ty - Tx -p (y-x) E L. 

Hence [Ty] =pM, and 

pL (ETyI) =p pL C ýyý ) 

>1 pp(y) 

> Sp(y). 

Here we have used (10) and (8). Since yEM= M_, this contradicts 

the assumption that L satisfies the conclusions of Lenrna 6.3.5. 

Hence case (a) cannot occur. 

(b) We may now suppose that M# M_. Then x 6M, but x. m_ 

(since M is, by definition, the smallest member of which contains x). 
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Let zM 6 Mý\M_, and let yM in M_ be chosen so that TzM = aMzM +y MO 

We may set x= ßzM + y, where y GM- and ß#0. Then 

0= Tx - px = T(ßzM + y) - p(ßzM + y) 

= ß(amzM + yM) + Ty -P (ßzM + y) 

= ß(aM- p)zM + ßyM + Ty - py. 

Now, y, yM and Ty, since M- is invariant under T, are all elements 

of M-, but zMc M-. Hence $(a 
M- p) = 0, and since ß#0, it follows 

that am = p. 

The preceding lemma asserts that a non-zero eigenvalue of T 

is a diagonal coefficient of T. We now have a result in the opposite 

direction. 

7. LEMMA. Let M E. 
ý 

and suppose that am $ 0. Then am is an 

eigenvalue of T. 

PROOF. It is sufficient to show that am is an eigenvalue of the 

operator TM obtained by restricting T to the space M. Since aM #0 

we have M# M_. Now TM is a completely continuous linear operator 

from M into itself by Proposition 6.2.2, and it is easily verified 

by means of equation (4) that the range of the operator TM- aMIM 

is contained in M, and is therefore not the whole space M. It 

follows at once from Theorem 6.2.4 that aM is an eigenvalue of TM, 

and hence of T. 

8. LEMMA. Let p be a non-zero eigenvalue of T. Then the 

diagonal multiplicity of p is equal to its algebraic multiplicity 

as an eigenvalue of T. 

PROOF. Let d denote the diagonal multiplicity, 'm the algebraic 
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multiplicity, and v the index of p relative to T. Then 

(a) v is the least integer such that (T-pI)v+lx =0 only if 

(T-pI)"x =0 (x E X) ; 

(b) v is the least integer such that 

(T_pI)v+lx _ (T_pI)VX; 

(c) the null-space of the operator (T-pI)" has dimension m. 

Let S be the completely continuous linear operator defined 

by 

S-AI = 

where X_ -(-p)''. Then A is an eigenvalue of S which has index unity 

and algebraic multiplicity m. Since S is a polynomial in T, each 

subspace M in 
4 

is invariant under S. We may therefore consider the 

diagonal coefficients of S with respect to the nest J. 

Let ME4 and let aýi, a,,, denote the diagonal coefficients at M 

of T, S respectively. If M= M_, we have aM =o=0. If M4 M_, 1.1 

then with the usual notation we may deduce from equation (4) that 

(T-pI)zm - (aM-p)zM + yrs. 

It easily follows that 5 for n=1,2, ..., we have 

(T-pI )nzM = (ctM-p )nzM t y(n) 

where y(n)E M_" In particular, by taking n=v, we obtain 

SzM = AZM + (aM-P zM + 
. y(V) 0 

Thus QM =A+ (aM-p)'J" We deduce that aM =X if and only if am = p. 

Hence the diagonal multiplicity of A relative to S is d. It is now 

sufficient to prove the lemma under the additional hypothesis that p 
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has index unity relative to T, since in the general case we may 

reduce to this situation by replacing T, p by S, A respectively. 

Suppose therefore that p has index unity relative to T, and 

let N be the null-space of the operator T-p I. Given x6N, define 

M(x) =n {L :LE, x L}. 

From Lemma 6.3.6 and its proof we deduce that M(x) E ,7, 

x EM(x)`M_(x) and aM(x) = p(xEN, x$ 0). The remainder of the 

proof is divided into three stages. 

First, we show conversely that, if MEJ and art = p, then 

M= M(x) for some non-zero x in N. For this purpose, let TM denote 

the restriction of T to M, and let WM, NM be the range and null-space 

respectively of the operator TM-pIM. Then, by Proposition 6.2.2, 

TM is a completely continuous linear operator on M. and it is 

immediate from the definition of index in terms of null-spaces that 

p has index unity relative to T14. Hence, by Theorem 6.2.4, 

WMF Q+ NM=M. 

Since, as in the proof of Lemma 6.3.7, WM G M_, it follows that NM 

meets M\M_. If xE NM ii (M\M_), it is easily verified that xEN, 

x$0 and M(x) = M. 

Secondly, let Ml G M2 C ... C Md be the distinct members of 

the nest 
ý 

at which T has diagonal coefficient p. We may choose 

non-zero vectors x1, ... 5 xd E 11 such that M. = M(xi) (i = 1, ***5 d). 

For each i=1, ..., d, xi is not a linear combination of 

xl ,,,, 9x i-1 
; for this would imply that x. Gi(x. e 

_1) 
G M_ (xi) 

, which 

is not so. Hence xl, .. ", xd are linearly independent elements of 

N, and since dim N=m we have m>d. 
a 
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Thirdly, suppose that m>d. By Proposition 6.1.6, we can 

find linear functionals continuous on X, such that ýi(xi) # 0, but 

4i(x) =0 (x E M_(xi) ). Then if xE1.7(xi) and fi(x) = 0, we have 

xEM (xi). Now since dim N>d, we may choose a non-zero vector x 

in N such that (x) =d (i = 1, ... , d). Then aM(x) and 

therefore M(x) = M(xi) for some i. Thus xE M(xi), fi(x) = 0, and 

we have xG M_ (x1) = M_(x). However, this is impossible. Hence 

m<d. Since the reverse inequality has already been established 

we have m=d, and the lemma is proved. 

We now state a theorem which summarizes the principal results 

obtained in the preceding lemmas. 

9. THEOREM. Let T be a completely continuous linear operator 

on a locally convex Hausdorff topological vector space over the com- 

plex field and let 
I 

be a simple nest of subspaces of X, each of 

which is invariant under T. Then 

(i) a non-zero scalar p is an eigenvalue of T if and only if 

it is a diagonal coefficient of T; 

(ii) the diagonal multiplicity of p is equal to its algebraic 

multiplicity as an eigenvalue of T; 

(iii) the operator T has no non-zero eigenvalues if and only if 

^1 
aM =0 (M E) or equivalently if and only if TM G M_ (M E ). 

PROOF. The only statement not already proved is (iii). From 

(i), it follows that T has no non-zero eigenvalue if and only if 

aM=0 (MSý). 

10. COROLLARY. If there is a continuous simple nest of subspaces 

of X, each of which is invariant under T, then T has no non-zero 

eigenvalue. 

PROOF. ' This follows from part (iii) of the preceding theorem. 
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