Un1vers1ty

Qf Glasgow

Fulton, Rachael Louise (2010) Implementation, adaptation and
evaluation of statistical analysis techniques for next generation
sequencing data. MSc(R) thesis.

http://theses.gla.ac.uk/1718/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given.

Glasgow Theses Service
http://theses.gla.ac.uk/
theses@gla.ac.uk



http://theses.gla.ac.uk/1718/

. 5

ié University

e Qf (xlasgow

Implementation, Adaptation and Evaluation of Statistical

Analysis Techniques for Next Generation Sequencing Data

Rachael Fulton

A thesis submitted for the degree of

Master of Science

Department of Statistics

October 2009

©2009 Rachael Fulton



Abstract

Deep sequencing is a new high-throughput sequencing technology intended to lower the
cost of DNA sequencing further than what was previously thought possible using standard
methods. Analysis of sequencing data such as SAGE (serial analysis of gene expression)
and microarray data has been a popular area of research in recent years. The increasing
development of these different technologies and the variety of the data produced has
stressed the need for efficient analysis techniques.

Various methods for the analysis of sequencing data have been developed in recent
years: both SAGE data, which is discrete; and microarray data, which is continuous. These
include simple analysis techniques, hierarchical clustering techniques (both Bayesian and
Frequentist) and various methods for finding differential expression between groups of
samples. These methods range from simple comparison techniques to more complicated
computational methods, which attempt to isolate the more subtle dissimilarities in the
data.

Various analysis techniques are used in this thesis for the analysis of unpublished deep
sequencing data. This analysis was approached in three sections. The first was looking at
clustering techniques previously developed for SAGE data, Poisson C / Poisson L algorithm
and a Bayesian hierarchical clustering algorithm and evaluating and adapting these
techniques for use on the deep sequencing data. The second was looking at methods to
find differentially expressed tags in the dataset. These differentially expressed tags are of

interest, as it is believed that finding tags which are significantly up or down regulated



across groups of samples could potentially be useful in the treatment of certain diseases.
Finally due to the lack of published data, a simulation study was constructed using various
models to simulate the data and assess the techniques mentioned above on data with
pre-defined sample groupings and differentially expressed tags. The main goals of the
simulation study were the validation of the analysis techniques previously discussed and
estimation of false positive rates for this type of large, sparse dataset.

The Bayesian algorithm yielded surprising results, producing no hierarchy, suggesting no
evidence of clustering. However, promising results were obtained for the adapted Poisson
C / Poisson L algorithm applied using various models to fit the data and measures of
similarity. Further investigation is needed to confirm whether it is suitable for the
clustering of deep sequencing data in general, especially where the situation of three or

more groups of interest occurs.

From the results of the differential expression analysis it can be deduced that the over-
dispersed log linear method for the analysis of differential expression, particularly when
compared to simple test such as the 2-sample t-tests and the Wilcoxon signed rank test is
the most reliable. This deduction is made based upon the results of the overlapping with
other methods and the more reasonable number of differentially expressed tags
detected, in contrast to those detected using the adapted log ratio method. However
none of this can be confirmed, as no information was known about the tags in either

dataset.

The success of the Poisson C / Poisson L algorithm on both the Poisson and Truncated
Poisson simulated datasets suggests that the method of simulation is acceptable for the

assessment of clustering algorithms developed for use on sequencing data. However,



evaluation of the differential expression analysis performed on the simulated data
indicates that further work is needed on the method of simulation to increase its

reliability.

The algorithms presented can be adapted for use on any form of discrete data. From the
work done here, there is there is evidence that the adapted Poisson C / Poisson L

algorithm is a promising technique for the analysis of deep sequencing data.
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Chapter 1

Introduction

1.1 Introduction

Several methods of analysis for data produced by deep sequencing are presented,
evaluated and discussed in this thesis. Deep sequencing is a novel, high-throughput
sequencing technology intended to lower the cost of DNA sequencing further than what
was previously thought probable using standard methods. Analysis of sequencing data
such as SAGE (Serial Analysis of Gene Expression) and microarray data has been a popular
area of research in recent years. The increasing development of these different
technologies and the variety of the data produced has stressed the need for efficient

analysis techniques.

Various methods for the analysis of sequencing data have been developed in recent
years: many have been developed for both SAGE data, which is discrete; and microarray
data, which is continuous. These include simple analysis techniques, clustering
techniques (both Bayesian and Frequentist) and various methods for finding differential
expression between groups of samples. These methods range from simple comparison
techniques to more complicated computational methods, which attempt to isolate the

more subtle dissimilarities in the data.

In this thesis various analysis techniques for clustering and differential expression,

previously developed for the analysis of sequencing data will be evaluated and in some

14



cases adapted for the use on the data provided; next-generation sequencing data
produced by deep sequencing. In an attempt to predict false positives that may occur in
the data a simulation study was constructed and each of the analysis techniques tested

on the simulated dataset.

1.2 Background

1.2.1 What is DNA sequencing?

The basic structure of DNA is built up of a large collection of nucleotide bases A (adenine),
C (cytosine), G (guanine) and T (thymine) joined together (shown in Figure 1a). A fifth
base, called uracil (U), usually takes the place of thymine in RNA molecules. However
uracil is not usually found in DNA, occurring only as a breakdown product of cytosine.
DNA sequencing is a collective expression for the methods used to isolate the order of
these bases. This is important as it determines the genetic information that is contained
on a single strand of DNA i.e. the order of the nucleotide bases present in the DNA strand.
From this scientists can then determine which individual genes appear in this specific DNA
strand as each gene has a unique order of nucleotide bases. Molecules such as
microRNAs amd coding segments of DNA called exons also have a unique sequence of
these nucleotide bases which can be identified using DNA sequencing methods. The data
investigated in this thesis is microRNA sequencing data, below in Figure 1b, is a diagram
of an individual microRNA molecule, illustrating the individual sequence of nucleotide
bases. Mutations in these sequences can also be identified which may cause disease or

genetic disorders. [1]
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Figure 1a: An example of an double strand of DNA.  Figure 1b: An example of a miRNA molecule, which consists of
Each colour red, green yellow and blue representa  a specific sequence of nucleotide bases. Hundreds, sometimes
specific nucleotide base. thousands of these miRNAs can be obtained when DNA is

sequenced.

Hutchison [2] discusses the need for sequencing by highlighting the genetic nature of all
disease. ‘All disease has a genetic basis, whether in genes inherited by the affected
individual, environmentally induced genetic changes that produce a cancer, or the genes

of a pathogen and their interaction with those of the infected individual.’[2]

Gene sequencing is beginning to have a significant influence in medicine on the diagnosis
and treatment of diseases. ‘Genome sequences have provided potential targets for drug
therapy’ [3] as well as candidates for certain vaccines. The aim is to eventually provide
genotype based treatments which, potentially will be more effective than current
treatments. Metzker [4] discusses the various uses of gene sequencing in relation to
health and disease, with applications ranging from comparative genomics and evolution

to epidemiology and applied medicine.
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Although scientists had developed methods for protein sequencing, in order to sequence

DNA effectively many obstacles needed to be overcome [2]. These included:

Chemical properties of two or more individual DNA molecules being similar

between two or more different molecules.

* Compared to previously examined protein sequences, DNA sequences have a
much larger chain length.

* Due to the low number of nucleotide bases in DNA (four) this made sequencing

more difficult for DNA than for protein.

* No base specific DNA assays were known

Methods of DNA sequencing, such as the Sanger sequencing method[5], developed in the
late 1970’s, tried to overcome these problems. Initially they were not powerful enough to
isolate compete gene sequences. However the Sanger sequencing method (sequencing
by synthesis) has provided a basis for all DNA sequencing technology since its
development. This method, conducted in vivo (i.e conducted within a living organism),
employs DNA synthesis on a single stranded template while integrating chain terminators
at random (‘Chain termination is the process whereby the last amino acid is added to a
polypeptide, also known as stop codons. [6].”). This generates a variety of fragment sizes
corresponding to the locations of the terminators [7]. This method however is not ideal

as certain properties of DNA do not replicate well.

Using older methods, sequencing of an individual gene could take months and could
prove very costly. In the last decade many new methods have surfaced which have
revolutionised the way sequencing is carried out. These methods are high-throughput

and enable sequencing to be conducted in parallel making the sequencing process
17



significantly faster and much less costly. These methods are also performed in vitro (in
an artificial environment) which bypass the replication issues encountered when using

the In vivo Sanger method.

The most recently developed methods are known as deep sequencing which is achieved
using methods such as 454 sequencing and Solexa. Both of these methods adopt a
sequencing by synthesis approach. ‘Sequencing by synthesis involves extracting an
individual strand of the DNA to be sequenced and synthesising its complimentary strand
enzymatically’[8] The main advantage of deep sequencing other than the speed and cost
is that it allows small regions of DNA to be amplified vastly and mutations can then be
detected at much higher sensitivity levels than previous methods such as Sanger which
has massive implications in medical research[9]. Other methods such as single molecule
sequencing and sequencing by hybridisation and ligation exist but will not be discussed in
this thesis. Shown in Figure 1c is an outline of past and present sequencing technologies,

taken from a review by Hall [6].
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Figure 1c: A brief look at past and present sequencing technologies. The two of these techniques that are methods of

deep sequencing are highlighted in yellow.
1.2.2 Why do we need DNA sequencing?

Next generation sequencing can be used in many applications to reduce the cost of
sequencing and providing quicker means to approach vital biological discoveries. These
discoveries are leading to advancements in cancer, AIDS and many other areas of medical
research. One of the most publicised fields these technologies are currently used in is
personalised medicine. Companies such as Roche applied science use 454 sequencing for

human exome sequencing. [10]

‘Since exons are the most functionally relevant part of the gene, sequencing of these can
lead to the discovery of much of the functional variation responsible for major diseases
such as cancer and Alzheimer’s. This technology can also begin to shed light on why
certain diseases occur more frequently in specific populations or subset of

individuals.’[10]
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In this thesis the sequencing identification of microRNAs from DNA sequencing data will
be the topic of interest, as the data provided was microRNA-sequencing data from
various cancerous tissue samples. MicroRNAs (tags) are short RNA molecules 19-25
nucleotides in length [11] so a given tag can be represented by a sequence of nucleotide
bases. These tags play an important role in gene regulation. They act as a regulator of
gene expression by pairing to a section of one or more messenger RNAs (mRNAs). Many
studies have been carried out that suggest the importance of tags as analytical tools in

the study of conditions such as cancer and heart disease. [12][13][14]

Sequencing can be used to identify and classify microRNAs, which is a growing area of
research. This identification and classification is vital in the research of many viruses and
diseases as these microRNAs regulate numerous processes such as cell replication and cell
death. In various diseases these microRNAs can play a vital role in treatment
development, as specific microRNAs that are differentially expressed or have a high level
of expression in certain samples may regulate processes specific to a particular

disease.[15]

In order to study the effect that microRNAs have on gene regulation the expression level
of each tag in a sample needs to be found. Older sequencing methods, although useful for
detecting novel tags, were very slow and costly. Using sequencing methods such as 454
and Solexa, the speed is increased and the cost lowered. This then provides a clearer
perception of the tag itself. Using these methods of deep sequencing tags that express
low differences between samples can be detected and tag expression can then be

extensively profiled and any changes in expression can be clearly identified.[11]
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1.2.3 Other methods available

Other methods to study tag expression level previously used include microarray and SAGE
(Serial Analysis of Gene Expression). Microarray studies are conducted using competitive
hybridisation and are primarily used to identify differentially expressed tags between two
different groups or samples. This technology can prove to be very expensive, so the
experiments are performed with very few replicates. This can lead to false positives and
false negatives. However, using a larger sample size can increase the detection level of
expression in the analysis and can decrease the error. However this can waste resources
and time[16]. The data collected from a microarray experiment is continuous as it is a
measurement of florescence[17]. Microarray experiments are restricted to detect known

tags and only those that are printed on the array.

SAGE also known as serial analysis of gene expression can also be used to assess
expression levels of tags. SAGE is a sampling by sequencing method, which is single clone
sequencing using multiple transcripts and multiple tags. Each SAGE experiment
represents multiple transcripts.[18] Due to the sequencing nature of the experiment
SAGE can potentially detect lower levels of expression and can also detect novel tags. The
data produced by SAGE experiments is presented in the form of counts, this data can

provide information on all the tags in the given sample.[17]

The data provided by deep sequencing experiments is similar to SAGE in that it is in the
form of counts and can provide information on all the tags in the given sample. However
the data is considerably sparser than published SAGE datasets (i.e. a large number of zero
counts) and also the range of the data is much higher. Deep sequencing can also look into
much lower levels of expression than SAGE, providing deeper insight into the sample.

21



1.3 Aims and Objectives

The aims of this thesis are to explore various techniques previously adopted for the
analysis of sequencing data and in some cases adapt these techniques, in others evaluate

their performance for use in the analysis of next generation sequencing data.
This will be approached in three separate sections:

* Two clustering methods developed for the analysis of SAGE data have been
implemented on the data provided and assessed for use on this new type of data.
Adaptations to one of these algorithms will also be implemented and discussed.

* Using the results from the clustering algorithms mentioned above, various
methods of differential expression analysis were discussed and implemented on
the data provided.

* A simulation study is proposed and presented to evaluate each of the techniques

explored in the sections above.

1.4 Data

Several techniques for the analysis of next generation sequencing data are discussed in
this thesis. These were tested on deep sequencing data, and many of these methods can
potentially be adapted to any type of discrete data. The work presented here was carried
out by attempting to model the data using various probability distributions. These
include: the standard Poisson distribution traditionally used for count data, the Truncated
Poisson distribution used in an attempt to account for the high zero count nature of the
data and finally the negative binomial distribution, again used in an attempt to take into

account the high nature of the zero counts in the data.
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The computational biology research centre at the Memorial Sloan-Kettering Cancer
Centre (MSKCC) in New York provided two datasets. Each dataset consists of a number of
libraries. These libraries are tissue samples from cancerous and non-cancerous subjects.
Each library (also known as sample) contains an individual count for a given number of
microRNAs (also referred to as tags), which have appeared during sequencing.

The first is a large dataset consisting of 55 samples each sample containing a count of
over 500 tags. This count represents the number of times the sequence related to this
specific tag appears in the given sample. The information on which group (i.e. cancerous
and non cancerous) each sample belongs to was given a-priori in this dataset. The
information given stated that this dataset consisted of 3 groups (or clusters) of samples,
this information is used in Chapter 2 and Chapter 4 to assess the reliability of the
clustering algorithm. No information was given about the clustering of the tags in the
dataset for example it would be useful to know what tags are expected to appear

together in a sample when DNA is sequenced.

The second dataset is of similar format to the first but has over twice as many individual
tags (1186) and less than half the number of samples (26). The main difference of this
dataset is that no information about groupings was given a-priori so any analysis
performed on this dataset is speculative. It is not known whether these datasets were
produced using Solexa or 454 sequencing as no other information was given other than to
say it was produced using methods of deep sequencing. It is important to note that due to
the dataset being unpublished no information was given about tag grouping in either of
the two datasets so the results of the analysis presented in Chapter 5 cannot be

confirmed.
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Although in this thesis tags are referred to as different microRNAs, these tags could also

be genes, exons or pieces of DNA whose functional role has not been discovered yet. An

example of the data structure is given below. Each cell of the table represents the count

of the given tag in the given sample.

Table 1: An example of the outline of sequencing data.

Samplel Sample2 Sample3 Sample4d
Tagl 0 3456 65 9
Tag2 765 43 1002 8
Tag3 0 1 2 0
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Chapter 2

Literature and methods

In this chapter a brief explanation of various methods and models previously developed
for analysis of similar data types and found in literature will be given. Further

investigation and adaptation of these methods will be investigated later in this thesis.

Notation is consistent throughout-miRNAs are referred to as tags and libraries of miRNAs

are referred to as samples. The technical notation is denoted as follows:

e Samples range from?=1,...,T where 7' is the total number of samples in the
given dataset.
e Tags range from i=1L...,N, where N is the total number of individual tags in the

dataset.
¢ y.(?) denoted the observed count of fag I in sample 7.

* 0, denotes the total count of all tags in sample 7, and 0(i) denotes the total

count of fag i over all samples.

*  A(?) denotes the proportion of fdg i in sample 7.

° Aui(t)= )\','(t)gt-
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2.1 Different Models

Due to the count nature of this data many different models can be applied to it for
analysis. The three that were used in this thesis were Poisson, Truncated Poisson and the

Negative binomial.

2.1.1 Poisson

When looking at count data the Poisson distribution is a logical choice. If the data is

Poisson distributed it is assumed that the count of each tag i in each sample 7, y,(7)
follows Po(6,A.(1)). Where 0, denotes the total count of all tags in sample ¢, and A.(¢) is
the proportion of tag i in sample 7. The probability mass function for this distribution is
given by (1).

exp(-6,,(0))(6,4,(0))""”
yi()!

p(y(016,A,(1) = (1)

However, this distribution does not always take into account the nature of the large zero

counts in the data and other distributions need to be investigated.

2.1.2 Truncated Poisson

The truncated Poisson distribution is inherently Poisson in nature but with the desired
limit removed. In this case the zero-truncated Poisson will be the only truncation of
interest. This distribution is useful because by removing the zero counts the data can be

analysed differently.
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As for the Poisson, it is assumed each count y,(t) follows TrPo(6,A.(t)) where 6, and

A,(t) are the same as mentioned above. The probability mass function for this
distribution is given by (2).

exp(-6,,(0))(6,1,(0))""”

POADI0A0) === o)

(2)

However, due to the zero counts being removed, a way to estimate A.(7) needs to be

found. David et al [19] suggest using the truncated sample mean y(t) for each tag and

calculating )Au(t) using (3).
y(1) = A0)6,(1-"6,) (3)

Although it seems non-trivial to get an estimate for A, from this equation, methods such

as the Newton’s method of root finding can be employed here.

This method does not effectively take into account the nature of the data as it removes all
of the zero counts. Due to the large number of zero counts present in the data, it is a

distinct possibility that by removing these counts the analysis could be incorrect.

2.1.3 The Negative Binomial Distribution

The negative binomial distribution is often used to model biological count data as,
although it is an extension of the Poisson distribution, it takes into account that often the
observed variance can be much greater than the mean. Robinson et al [20] explore using
the Negative Binomial distribution to model SAGE data. Various methods for estimating

the dispersion parameter are also suggested.
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If it is assumed that a given tag i over all samples t=1,..,T, v, is Negative Binomially

distributed. Soy,(#) ~ NegBin(6(t)A.(t),¢)where ¢ is the estimated dispersion. The

probability mass function of the negative binomial is given by (4).

) ¢! yi(t)
Ty (0 + ¢7) 1 (6,1(0)"
(D10A(1) = ’
p(y,()16,A,(1)) r(¢‘])r(yi(t)+1)(1+Ht)Li(t)¢) (¢_] +9f)”i(t)) X

In most cases all tags would have a common dispersion, Robinson et al [20] suggest a
Pseudo-Likelihood (5) and Quasi-Likelihood (6) approach for dispersion estimation, which

can both be used to calculate both common and tag-specific dispersion estimates.

The pseudo likelihood (PL) method (5) estimates variance function parameters of the

GLM using a distribution free goodness of fit statistic.

» CO-0A0°
0,4

" t)(l + ¢PseudoLikétii(t)) ) ()

The quasi-likelihood (QL) method (6) estimates dispersion in a similar way to (5). This

method replaces the Pearson statistic with a deviance statistic.

(6)

~ A

61)\'1(1‘) + ¢_1QuasiLik

2T (1)1 Ayi(t) —(v. sz )1 yi(t)+¢_lQuasiLik P
;y,(l’) 0g|:0)\'(t)j| (y,(t)+¢ 0 )Og n

t

Both the pseudo and quasi likelihood equations above can be used to estimate a tag-
specific dispersion. Robinson et al [20] also introduce maximum likelihood and quantile

adjustment methods for dispersion estimation but they will not be studied here.
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2.2 Clustering

‘Clustering is the grouping of similar objects’ [21]. The aim of clustering analysis is to
allocate the objects of interest into mutually exclusive clusters. Cluster analysis can
provide valuable insight into patterns and important groupings in the data. Two methods
of clustering are explored and evaluated in this thesis. In this section methods previously

developed are explained and will be discussed further in Chapter 4.

2.2.1 Poisson C / Poisson L algorithm

2.2.1.1 Likelihood and Chi-Square distance measures

In order to effectively cluster any kind of data, an appropriate similarity measure has to
be chosen that takes into account the nature of the specific data. The Poisson C/ Poisson
L algorithm, proposed by Cai et al [22] is a K-means [21] based clustering algorithm. This
method was developed for SAGE data and introduces two new similarity measures -

likelihood and chi-square.

The assumption is made that the distribution of each individual tag in an individual
sample is Poisson. Let y,(#) be the count of tag i in sample ¢, theny.(¢) ~ Po(0(i)A.(1)).
where 0(i) is the expected sum of counts of tag i over all samples; and A.(¢) is the
proportion of tag i in sample . Number of samples considered is ¢=1,..,T. Using
0()A,(t), the count of each tag is redistributed according to the cluster profile

determined beforehand (A) but keeps the sum of counts across all samples constant. [22]

The joint Likelihood function for a cluster consisting of m tags is given by (7) where Y.

1

denotes the vector of the counts of tag i across all samples t=1,.T:
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(7)

m T . R yi (1)
LW 1Y) f (XY 12,001),..60m)) = ]_ﬂ_[eXp(_0(’))“"(;)()})?(’)’1!’(0)

The maximum likelihood estimates of each 6 and A can then be calculated using (8).

b=3, 0 A0=3 %0 )

Using this, a cluster centre A=(A(1),A(2),..,A(m)) can be calculated for all tags in the
cluster. The expected total count for tag i, 6(i) and the proportion of each tag i in
sample #, A.(#) can be estimated using (8).

Both the likelihood function (7) and the chi square statistic (9) are used to calculate the

similarity of an individual tag to a cluster centre.
T ~ A N2 /A A
S= EEM(”(” - A(t)e(z)) / ADOG) 9

The algorithm works based on a k-means principle, as follows:

1. The number of clusters K is selected a-priori.

2. é(i) is calculated (8) for each individual tag and each tag is randomly assigned to a
cluster.

3. Cluster centres )Jj are calculated from (8). Initialisation r =0.

4. Now each tag is individually assigned to the cluster, which minimises the chi-
square statistic (10) or to the cluster in which the individual likelihood of the tag
(11) is minimised depending on whether the method chosen is the chi square

statistic or the likelihood of the individual tag.
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Su=3 (vn-Rbw) /Réw (10)
L,, =~log f(Y,(t) | X6(i)) (11)

5. New cluster centres A' can then be calculated from (8) using the reassignment of
the tags.

6. This is repeated until the algorithm converges

2.2.1.2 New data transformations

Kim et al [23] propose an adaptation to the Poisson C/Poisson L algorithm by replacing
the likelihood and Chi-square as similarity measures with a new similarity measure

denoted ‘TransChisq.’

This data transformation [23] is a more robust alternative to the likelihood function and
chi square statistic, it is proposed. It is said to highlight the expression shape, and
consider the common differences of the original vectors of tag counts. Given the
expression profile of an individual tag, Y, = (y,(1),...,y,(T)) the transformed vector Z, is of

dimension T(T -1)/2, where the number of samples is ¢ =1,...,T, the components are in

the form of y,(t,) - y.(¢,), where (z,,t,) = (1,2),(2,3),....(T - 1,T).

If the Poisson model is used, as in the Poisson C / Poisson L algorithm the expected value

of the transformed data becomes (12) and variance of the data becomes (13).
E(yi(tl)_yi(tz))=()\'i(t1)_)\’i(t2))0(i) (12)

Var(y.(t,) - y,(t,)) = ()Li(tl) + )»l.(t2))6(i) (13)
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So, using these, the following statistic can now be used as a measure of similarity for a
cluster consisting of m tags:

S rans = EE((yi(tl) = y(t,) - E(y,(t)) - yi(t2)))2/var(yi(tl) - y,(1,)) (14)

i nt,

The maximum likelihood estimates )A»t and 6(i) can be calculated using (8) as in 2.2.1.1.
The algorithm is approached as is shown in 2.2.1.1, when step 5 is reached the distance
measure is replaced with (15) and the algorithm continues on to step 6 as in 2.2.1.1.

Sane i = (1) = ,(1)) = Eri() = y,(1,) Var(y, (1) - y,(1,)) (15)

hiy

Although the Poisson C/ Poisson L algorithm has been proven adequate for SAGE data
using the likelihood, Chi Square and the TransChiSquare similarity measures, it does not
appear to take into account the high dimensionality and the sparseness of the deep
sequencing datasets, as it does not cluster the samples in dataset 1 correctly. New
adaptations to this method need to be considered which will be discussed and

implemented in Chapter 4.

2.2.2 Bayesian Method

Berninger et al [24] suggested a Bayesian method, which can then be used for hierarchical
clustering. It was observed [24] that in frequency distributions of tag counts in two
individual samples, few tags were highly expressed occurring in copies of greater than
one hundred. The majority of tags occur in only a small number of copies with a high
number of tags with a zero count in each sample. Due to this style of frequency

distribution a great deal of sampling noise is observed. To account for this, Berninger et al
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[24] suggest a Bayesian probability framework as a similarity measure to identify

significant changes in tag expression between samples.

Denote the true, but unknown count of tag i in the first and second samples as p,(1) and
p,(2) respectively. The observed tag counts in each of the two samples are denoted as
v, (1) and y.(2) respectively, these can be considered multinomial samples from the
distributions {p,(1)} and{p,(2)}. If the true frequencies are known the probability of the

data is given by (16).

P({y Oy @} {pOHp@}) <[ [[ 20,7 (16)

Two models, model 7 and model §, are assumed for calculating the probability of the

observed counts{y,(I)}and{y,(2)}. Model 7 assumes that the true frequencies {p,(1)}
and {pi(2)} are unknown and independent of one another. To calculate the marginal
likelihood of this model L, a Dirichlet prior of the form (17) (x = 1,2) is assigned to the

unknown frequency distributions.

a-1

-

r

(17)

where N is the number of tags and « is the pseudo count of the Dirichlet prior which is

not tag specific and is set to 0.05. This is then integrated over all distributions where

1

Epi(l) = Epi(Z) =1. The integral can be performed analytically using (18).

B r(Na)’ [(y,()+a)0(y,2) + @)
' (6, + Na)[(6, + Na) H (a) (18)
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Model S assumes that the true counts of tag i in the two samples are equal, i.e.
p,(1) = p,(2)Vi again a prior of the form (17) is assigned to the frequency distributions.

The likelihood of this model is calculated analytically using (19)

I'(Na) HF(yi(l) +y,2)+a)

L. =
* T(6,+0,+Na) [(a)

(19)

i

‘The posterior probability for model § is then given by L, /(L, + L). From this probability

a measure to define the similarity between the expression profiles of two samples can be

defined below’. [24]
d=log((L, + L;)/Ly) (20)

The given similarity measure (20) can then be used for hierarchical clustering, in a k-
means method similar to the Poisson C / Poisson L algorithm in 2.2.1. This algorithm
shows a complex approach to clustering, which is computationally expensive. Different
priors can be used and clustering methods other than k- means can be adapted from this,

this will be investigated further later in this thesis.

2.3 Differential expression

Differential expression refers to finding which tags are significantly differently expressed
between two or more samples or groups of samples. A tag is flagged as differentially
expressed between two individual samples or two groups of samples if the selected
testing method gives a p-value of less than 0.05. In this section several existing methods

for finding differentially expressed tags are outlined and are reviewed in Chapter 5.

34



2.3.1 Statistical analysis of transcript profiles

Audic and Claverie [25] suggest a probability distribution that governs the occurrence of
the same tag appearing in two different samples. They state that ‘differentially expressed
genes can be detected from the variations in the counts of their cognate sequence tags.’
[25] It is proposed that this is a general result applicable to a wide variety of experimental

applications.

p(x) denotes the probability of observing x occurrences of a given tag in a sequence
sample where 6, denotes the sample size. For each tag representing a small percentage
of the sample and the sample size N =1000, p(x) closely follows a Po(u) distribution as

in (21).

e u* (21)
x!

p(x) =

If y occurrences of the same tag are observed in another sample of size 0,, what is the
probability of these y values? It is proposed that a solution can be constructed using x as
a maximum likelihood estimate of u and computing the probability of y occurrences
given a Poisson distribution of mean u=x (22).

e’ x’ (22)
y!

p(x) =

Equation (22) is not the correct formula is it does not take into account the fluctuations of
x around the unknown mean u. To do this, (22) needs to be integrated over all possible

values of u and becomes the integral (23). Equation (23) gives the probability of
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observing a count y of the tag of interest in the second sample, given that x tags were

observed in the first sample and x followed a Poisson distribution with mean y,.[25]

. (23)
piy 0= [ [ pd =wlop(yd, = uz)é(uz —%m)dulduz

1

where w, and u, are forced in the same ratio as the sample sizes, 6, and 6, , so

0
u, = gzlv‘] . The term p(d, = u, 1 x) is the probability that the true count of a given tag is
1

w, given that x occurrences of the same tag have been observed in a different sample.

The other term p(y|d, = u,) is the probability of y tags given a Poisson distribution of

-u y
e u

mean u,, so p(yld,=u,) = . The next step to simplifying (23) is completed by

applying Bayes theorem to p(d, = i, 1 x) and defining the prior distribution p(d, = i) by
attributing an equal a priori probability to all the y, values in the [0,00] range. This leads

ST
1

¢ K , applying these to (23) gives (24):

to p(yld, =u,)=

6,
1 (6, ~ -”l(“z) (24)
p(ylx) —x'—y'(a) fo duwe l‘q

This can then be evaluated to give (25).

(25)

0, g (x+y)!

p(y IX) = (;) 0 (x+y+1)
l Xy 1+ =2
0.

1

This, it is proposed, is a valid statistic for calculating the differential expression of a tag in

two samples. The main drawback of this particular method is that (25) cannot be
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generalised to find differentially expressed tags in two groups of samples rather than two
individual samples. It is suggested that pooling the data could be an option however; by
doing this much of the information on within sample variation is lost. The use of this
statistic given in (25) is restricted to only two samples, so it is very limited, more complex

methods will now be introduced.

2.3.2 Weighted t-statistic

Simple tests such as the two-sample t-test and chi-square statistic can be applied to the
proportions of the tags in each sample. However, these statistics do not provide a valid
solution (discussed further in Chapter 5). Baggerly et al [26] advocate the use of a
weighted t-statistic that incorporates both between sample and within sample variation

in the dataset.

They consider the case of modelling a specific tag across one cluster of samples where the
clusters are known a-priori. Let 8, denote the total tag counts of sample 7, A.(#) denote
the proportion of this particular tag and y,(f) denote the count for this tag in sample z.
For the first part of the model it is assumed that the proportions follow a Beta
distribution, Ai(t)~Beta(a,ﬁ). This is a standard distribution for proportions. This
distribution is not degenerate: it can have a positive variance. Only the first two
moments of the distributions are taken into account in these calculations in attempt to
invoke the central limit theorem and to get an approximately normal test statistic, and
also for computational simplicity. If the proportions follow a beta distribution the mean

and the variance are given by (26).
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EG(0) =—%— and Var(2,(1)) = ap (26)
a+p (a+B) (a+p+1)

The next part of the model states that; given the true proportion in a sample A.(t), the
corresponding count y.(#) will have a binomial distribution conditional on the proportion

asin (27).
yi(D) 1 A1) = Bi(6,,A,(1)) (27)

The unconditional mean and variance of ii(t)=yi(t)/6, can be calculated using the

tower property of conditional expectation, E(y,(?))=E(E(y,(t)|A(?))). This leads to

o« n_p O _ ap o’
EGim)=6,"5  and EGi(0)=6, 25 +6,6 l)[(a+/3)2(05+/3+1)+(OH/?))Z}.

The unconditional mean and variance are then given by (28):

E(A,(1) = yi—(t)) -—%_ and Var(A(t) = yi(t)) = op [

1 1 (28)
0, o+ 0, (a+B)a+p+1)

+_
a+f 0,

Denoted in the square bracket there are two components of the Var()A»i(t)) in (28), both

. . af 1 .
the within sample variation > —| and between sample variation
(a+B) (a+B+1)]6,
205/3 — | are calculated. Given the equations in (28) weights (w,) are now
(a+B) (a+pB+1)|ap

added to see how to combine the results from different samples which gives (29) and

(30).

EQw, (1) = aaT/aEWf - a‘:ﬁ (29)
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. wiap . >
Var(z W,Ai(t)) = E, (a+B)a+B+1) [OC +p ' 6_sz

Provided E(wl) =1 the combination has the correct mean. Weights need to be chosen

so as to minimise the between and within sample variation. Using the method of

Lagrange multipliers, the constraint on the sum of the weights is introduced, so

d 2 af 1 1
— , - = —|-u=0. Th
ow, [Var(EW’A’(t))+“(l EW’)] 2w (a+B)a+p+1)|a+p T, 7" ’ )
weights are then estimated by (31).
[ 11 ]’1 (31)
w, +—
a+p 0,

Given (31) the estimated proportion for the group (or cluster), ) can be written as (32):
A= (w,A(1) (32)

The variance of this proportion can then be given by:

L ) - (T w))Aey (33)
V(A) = > .
-y w2
An algorithm can be written to estimate « and [5 by manipulating the equations in (29)

which can then be used to approximate A and 9()1). To calculate the proportion and

variance for a given tag in one cluster the algorithm steps through as follows:

t

o

1. Calculate the initial weights for each tag using
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2. Calculate the proportion of the tag in the cluster from (32).

3. Calculate the variance of the tag in the cluster using (33).

4. Now f3 can be calculated by manipulating (29) to get (34).

Mi=2)-3(w)-v (34)

h- (1-2) =43 w) /o)

5. Inthe same way calculate & (35).

(35)

>

>

D>
I

6. New weights can be calculated from (31).
7. The algorithm returns to step 2 and continues until convergence, i.e. until
the weights calculated in the previous iteration are equal to those

calculated in the current iteration to 3 decimal places.

From the algorithm above an approximate value for A and 17(5») which can then be used

to calculate the t-statistic (36) and degrees of freedom (37), where }\LA and }\LB denote the

proportion of the tag of interest in cluster 1 and cluster 2 respectively.

(= ta= 36)
A+ B
A A 2
(Vy+V,) (37)
VA + B
0,-1 6,-1
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The p-values can then be calculated using the two statistics above using the pt()
command in R [37] the statistical computing language. A significance level of 0.05 or 0.01
can be chosen and if the p-value is below this then the tag can be defined as differentially

expressed.

Although an improvement upon the traditional t-test this test is not entirely robust. This

will be discussed later in Chapter 5.

2.3.3 Log ratio method

Stekel et al [27] derived a variation of the log ratio statistic for finding differentially
expressed tags. Consider the differential expression of tag i over all samples ¢t=1,..,T.
The total count of each sample ¢ is represented by 6, and the count of a given tag in a
given sample is denoted by y.(#). Two hypotheses relating to the frequency of tag i are
compared using a log ratio statistic. The null and alternative hypotheses for defining

differential expression of a given tag between two clusters are given by:

Ho (null): The tag is not differentially expressed, so the frequency of the gene is the

same in all samples.

H; (alternative): The tag is differentially expressed, so the frequency of the gene is

different in at least some of the samples.

It is assumed that each tag count y,(#) follows an approximately Poisson distribution with

mean A,(¢)6,. The maximum likelihood estimate for A is found using (7) and (8), similar

T
to finding the distance measure in 2.2.1.1. So A(¢) is given by E%w This is just the
t=1 1
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proportion of the tag of interest among all samples. The maximum likelihood of the

likelihood of the observed data under the null hypothesis is given by (38).

null T e_ii(m’(;&(t)et)yi(l) (38)
. =H’=l yi(®)!

Under the alternative hypothesis the frequency of the tag counts can be different in each
sample. Therefore, the count for each tag in each sample is approximately distributed as a
Poisson variable with mean y,(7). Thus the likelihood for the observed data under the

alternative hypothesis becomes (39):

r e’ (y,,,.)y” (39)

Lall _
! I L=1

yt,i!

Performing a generalised likelihood ratio test by taking the log of the ratio of the two

likelihoods compares the two hypotheses: log(L?”/L’,.’“”). This then leads to the test

statistic (40).

L (40)
, ;y,(t) Og(e,ai(t))

From (40) it can be decided whether or not to reject the null hypothesis and if differential
expression exists. This statistic can also be used to estimate false positive rates in the data
by generating random datasets that follow the null hypothesis, and performing the
analysis on these data. This gives a basis to which the original values in a given dataset

can be compared.
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2.3.4 Over-dispersed logistic regression model

Baggerly et al [17] suggest a method for detecting differentially expressed tags between
two groups or clusters by generalising using logistic regression with over-dispersion. This

is done by fitting the vector of proportions of each tag i in each sample ¢, denoted A, (f)

as a function of the given covariates (clusters) x,.

Now the interest shifts to the form of the relationship. If A.(7)=p,+ B,x,(t) + ¢ the
relationship is linear and fitted proportions can potentially be obtained outside of the
interval [0,1]. This then leads to fitting a transformed version of the A.(¢)'s being linear in
the covariates. A typical choice when proportions are concerned is the logistic
transformation, logit(A,(1)) =10g()ui(t)/[1—)»l.(t)]) =B, + Bx,(t)+ €. What is being done
here is fitting a straight line to a transformed version of the data; this is analogous to the

method of least squares.

An assumption typically made for least squares is that all of the observations are
weighted equally, as they are all known with equal precision. However, this is not the
case here as the variance of a proportion, V(A,(1)) = A,(1)(1- A,(1))/6,, depends both on
the proportion and the size of the sample from which the proportion was derived. When
the observations are known with different precision, the standard amendment is to fit a
weighted version of least squares. This minimises the weighted sum of the squared
differences between the observations and their fitted values, where the weights are
inversely proportional to the variance of each observation. A logistic curve using weighted
least squares is now fitted. The weights used are inversely proportional to these initial

estimators of 4, (y,(t)+0.5)/(6, +1). [17]
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The predicted values of the observations are obtained from this initial fit, which then
suggests new values for the variances and thus the new weights. The second step is to
refit the data with these new weights. This process is then repeated until convergence. In
the case where over-dispersion is observed; i.e. the sizes of the squared deviations are
larger than expected if the variances are of the form V(A,(1)) = Ai(t)(l— Ai(t))/Ht . Here
the data is said to be exhibiting over-dispersion relative to the postulated model. The
estimate of the scale of the over dispersion is then required. The case of the quasi-
likelihood is being dealt with here, where the variance is then of the form
V(A1) =0,1(t)(1- A(1)og, for op, >1. Using the quasi-likelihood model for over-
dispersion, the actual parameters of the best fitting model will not change. What changes,
is the presumed precision associated with these parameters; the variances are multiplied
by aéL, and significance tests need to be adjusted accordingly. To estimate aéL the
distribution of the sum of the squared weighted residuals is assumed to be chi-squared

with T - p degrees of freedom, where T is the number of samples and p is the number

of  terms being estimated. The initial estimate of aéL is given by (41). [17]

/(T - 1) (4)

‘Given an estimate for aéL the significances can be recomputed and the p-values

2
O'QL =

iT(&(z)— A (0) /V(i,-(z))

t=1

calculated. If the p-value is less than 0.05 then the tag is differentially expressed.” [17]

Although this method is said to work well for SAGE data [17], issues arise when it is used

to analyse deep sequencing data. The weights here are calculated considering only the
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sample size 0,. The R source code was available in [17] and used in the analysis presented

in Chapter 5.

2.3.5 Over-dispersed log-linear model

Lu et al [28] suggest an adaptation to the method of Baggerly et al [17] by introducing an
over-dispersed log-linear model approach to assessing differential expression of tags. This

model is closely linked to the model presented in 2.3.4.

To method to derive this model is based on the Gamma-Poisson hierarchical model
assumption [38][28]. It is assumed that an unobserved random variable « is distributed

according to (42):

a, = Gamma(oA,(1)6,,1/0) (42)

where 0>0, E(a,)=A/(1)0, andVar(a,) = ()»i(t)B,)ZG. Given the proportions A.(¢), the

response variable r, is assumed to follow the conditional distribution.
1, 1A, ~ Po(a,) (43)

Working through it is found that r, follows a negative binomial distribution i.e.

.1 1 . .
T, o~ NegBm(—,l—). The unconditional mean and variance of r, are then found to

mpe T 1

o +1
be E(r)= l;\i(z)e,o =410, and Var(r) = lx,(t)e,o% = A(06,(1+ A,(1)6,0).
O (o)

2 (10,0
As o approaches 0 the Var(r,) approaches a normal Poisson variance. The mean
u, = A(1)0, of r and the clusters (or covariates) x, are connected through a log-link

function (44).
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log(w,(1)) =log(A,(1)6,) = x,8 (44)

As in [17], the estimates of  are obtained by the iteratively re-weighted least squares
procedure, where the weights are 1/[1+ ,u,.(t)a]. In contrast to the method proposed in
[17], the weights calculated in this method depend on both A.(f) and 6,. The R source
code for this method was available from the additional material in [28], and used in the

analysis discussed in Chapter 5.

2.3.6 Poisson mixture model

Zuyderduyn [29] proposed a Poisson mixture model similar to the methods proposed in
[17] and [28] claiming it performs well as a method for assessing differential expression. It
is assumed that for the observed tag, i, the counts follow a conditional Poisson

distribution (45).
v,(t) |k ~ Poisson(u.(t,k) = A,(t,k)0,) (45)

where the component k =1,....K and A.(¢,k) is the actual expression for component k in
terms of the proportion of all expressed tags. The posterior probability that an observed

tag count belongs to a component k is given by (46):

(k1 y (1) = Ted QD (2.K) (45)

PPREICEONT )

where ¢ is the parameter vector containing the component means and mixing
coefficients (7,,....5m_,). f(y,(t)1w(2)) is the probability mass function for the Poisson

distribution. Maximum likelihood estimation is used to estimate the values of ¥; the
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expectation maximisation (EM) algorithm is then used to fit the model. The R source code

is supplied in [29] and applied in the analysis presented in Chapter 5.

2.4 Simulating the data

2.4.1 Simulation study

Lu et al [28] investigate how to simulate SAGE data. However, they do not go into much
detail about the process itself - this will be investigated more in Chapter 6. The data is
simulated from various distributions: Binomial, Beta-Binomial and negative Binomial.
Different tag proportions were selected and different values of dispersion were chosen
for both the Beta-Binomial and negative Binomial. Various methods of detecting
differential expression were tested on this generated data and false positive rates were

predicted.

2.4.2 Scale free networks

Khanin and Wit [30] discuss the use of the power-law distribution to assess the scale-free
nature of biological networks. The most interesting property of scale-free networks is
their indifference to changes in scale, i.e. the function f(x) remains unchanged upon
changing the scale of x. This property is often referred to as self-similarity. A network
can be called scale-free if the probability that any given node is connected with k other

nodes follows a power-law P(k) ~ k™", where vy is the power-law exponent.

This power-law exponent 7 is calculated using maximum likelihood to fit the power-law
distribution to the data and then a goodness of fit test is performed to determine if the

data is drawn from this Power-Law distribution.
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Khanin and Wit [30] provide a function in the additional material of the paper that
performs the test outlined above and calculates y. Another function also provided then
uses this y to simulate data from a Power-Law distribution. The scale-free nature of
deep-sequencing data is exploited here and the power-law function is used to simulate

the ‘true’ counts in the algorithm outlined in 6.2.
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Chapter 3

Preliminary Data Analysis

3.1 Looking at the data

Various analysis techniques exist for both continuous and count data obtained from
sequencing. Although useful, many of the techniques developed do not take into account
the large number of zero counts and the vast range of counts that appear in deep

sequencing data.

3.1.1 Dataset 1

3.1.1.1 Samples

In the first dataset (data 1), the clusters were known a-priori. Samples 1-23 were in the
first cluster, 24-33 the second and 34-55 the third. Due to the multidimensional nature of
the data, finding a way to look at the dataset as a whole proved difficult. Sammon
mapping is a form of multidimensional scaling using a distance or similarity matrix. It
creates distances between the points of interest in a lower-dimensional space (usually 2-
dimensional) as similar as possible to the between-point distances in the multi-
dimensional space. If there is correlation between the variables (original dimensions)
then points close together in the multi-dimensional space should appear close together

on the Sammon map. This technique is, however exploratory, it generally involves some
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distortion of relative distances between samples and so is not definitive evidence of

differences or similarities. [31]

A Sammon map of the samples was plotted using both Euclidean and Manhattan distance
measures; these measures have previously been used in the analysis of sequencing data
such as microarray data [32]. As the clusters were known in this dataset the information
shown in this map can give an indication as to whether or not the given clusters are
correct. Figure 2 and Figure 3 show a large overlap of the three clusters; clusters 1 and 2
seem more isolated from one another whereas cluster 3 overlaps both clusters 1 and 2.
This could be due to the fact that the cluster 3 is very similar to clusters 1 and 2. Looking
at Figure 2 and Figure 3, both show very similar results, however the Manhattan distance
measure seems to have identified the three clusters more distinctly. The majority of
samples in cluster 3 lie in between clusters 1 and 2 while samples 4, 29, 30, 31, 51 and 52

do not appear to belong to any cluster.
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Figure 2: Sammon plot of all samples in dataset 1. Each Figure 3: Sammon plot of all samples in dataset 1. Each

colour represents a different cluster. Euclidean distance  colour represents a different cluster. Manhattan distance
measure used. measure used.

In order to obtain more information each pair of clusters were mapped separately using

both Euclidean and Manhattan distance measures.

Sammon map of clusters 1 and 2, Euclidean distance Sammon map of clusters 1 and 2, Manhattan distance
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Figure 4: Sammon plot of samples in clusters 1 and 2, Figure 5: Sammon Plot of samples in clusters 1 and 2,

from dataset 1. Each colour represents a cluster. from dataset 1. Each colour represents a cluster.

Euclidean distance measure used. Manhattan distance measure used.

Looking at Figure 4 and Figure 5, it appears that using both Euclidean and Manhattan

distances as similarity measures, clusters 1 and 2 appear to be quite distinctly separated
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with outlying samples 4, 15, 22, 29, 30 and 31. It is interesting that when clustering the
samples in all of the clusters and clustering the samples in only clusters 1 and 2, sample
31 is an outlier and it appears to be distinctly different from the other samples. However,
due to no biological information being known about the data it is difficult to make any
conclusions as to why this may occur. The other outliers may occur because the distance
measures used were not adequately sensitive. Clustering methods using different

distance measures will be investigated further in Chapter 4.

In order to examine these outliers more closely scatter-plots of each of the outlying
samples were plotted in Figure 6 using the pairs() function in R [37]. In Figure 6, each
element of the plot shows two samples plotted against each other. These were plotted on
a logarithmic scale so as to get a clearer picture of the data, a count of one was added so

as to account for the zero counts in the data.
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Figure 6: Pairs plot of outlying samples observed in Figure 4 and Figure 5. Each colour represents a different cluster.

When plotting different samples against each other, samples from the same cluster
would be expected to group closely together, producing an almost diagonal line due to
the overlapping counts. Samples from different clusters would be expected to scatter
more widely. Looking at Figure 6 as expected samples 29, 30 and 31 from cluster 2 group
very close together however samples 4, 15 and 22 from cluster 1 give a more scattered
plot than expected. This anomaly could be due to the distance measure used. More
sensitive distance measures will be investigated in Chapter 4. Looking at the plots of
samples from different clusters, they are considerably more widely scattered than the

same cluster sample plots, as expected.

Figure 7 and Figure 8 below illustrate the similarity of cluster 3 to both clusters 1 and 2.
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from dataset 1. Each colour represents different (known) from dataset 1. Each colour represents different (known)

clusters. Distance measure used is Euclidean. clusters. Distance measure used is Euclidean.

Looking at Figure 7, cluster 1 appears not to cluster at all and cluster 3 clusters weakly.
Figure 8 illustrates the distinct similarity between clusters 2 and 3. Although there is
evidence of correct clustering of some of the samples in both clusters, there is a large
overlap of the two clusters. In any formal analysis this would be expected to provide no
useful information. The only obvious outliers when plotting the three clusters are samples
22 (in Figure 7), 31 and 52 (in Figure 8). These are plotted below in Figure 9, which
illustrates the similarity between the samples from clusters 1 and 2 (samples 22 and 31
respectively) to the sample from cluster 3 (sample 52). Looking at the scatter-plots, it is
evident from the wide spread of the data that the samples 22 and 31 are not similarly
distributed. However, looking at these samples plotted separately against sample 52
there is some evidence of similarity as the points group very closely together. This
enforces the conclusion that cluster 3 is very similar to both clusters 1 and 2. Further

analysis and investigation into this will be conducted in Chapter 4. Only Euclidean
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distance was presented here, as using Manhattan distance provided very similar results,

leading to the same conclusions.

4.2e5

Tag Counts

6.8e5

Tag Counts

Figure 9: Pairs plot of outlying samples observed in Figure 7 and Figure 8 each colour

represents a different cluster (as in Figure 7 and Figure 8).

Now the distribution of the samples has been investigated the next point of interest is
correlation of the samples. The first step to accomplish this was to create a frequency
matrix by dividing each element of the dataset by the sum of the column in which it was
contained. A correlation matrix was then constructed using R. The most and least
correlated samples were found and are plotted against each other in Figure 10 and Figure
11 below. It is expected that the two most correlated samples would be in the same
cluster and the two least correlated samples would be in the different clusters. Once the
correlation matrix was constructed, it was found that sample 7 and sample 18 were the

most correlated and samples 17 and 31 were the least correlated. This validates the
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assumption made above as the two most correlated samples are contained in cluster 1

and the two least are from two separate clusters.

s7 s17
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Figure 10: A pairs plot looking at the two most correlated  Figure 11: A pairs plot looking at the two least correlated
samples in dataset 1, both from cluster 1. samples in dataset 1. Sample 17 is from cluster 1 and

sample 31 is from cluster 2.

From the scatter plot in Figure 10 it is apparent that the two most correlated samples are
reasonably similar, as the data is not widely spread. In contrast, Figure 11 shows the two
least correlated samples. It is clear from the wide spread nature of the data that the two

least correlated samples are considerably different.

Figure 12 and Figure 13 show the frequency distribution of the tags in the most and least
correlated samples respectively. This was done to investigate whether there is any visual
difference in the distribution of tags in these samples. In order to get an informative look
at the data the graphs show only the tags that have a count of less than 100. This is due
to the fact that the range of the counts goes so high but the majority of the tags have a

count of less than 100.
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Figure 12: Frequency distribution of tag counts in the Figure 13: Frequency distribution of tag counts in the
two most correlated samples of dataset 1. two least correlated samples of dataset 1.

From Figure 12 it is evident that the frequency distribution of the two most correlated
samples are very similar. In Figure 13 there is slight evidence of a difference between the
two least correlated samples. However the differences between the two samples are not
large.

From both Figure 12 and Figure 13 that more than half of tags have a count of zero and
the those which don’t have a zero count, have a count of between zero and fifty. In order
to take a closer look at the distribution of tags in the most and least correlated samples,
plots of the frequency distribution with counts between one and fifty were constructed
and shown below. Looking at Figure 14 it is noticeable that the two most correlated
samples have a very similar frequency distribution as expected. However, looking at
Figure 15, although samples 17 and 31 are the least correlated there is slight evidence of
a difference in the frequency distribution of tags but this difference does not appear to be
large. Analysis of how tags are expressed between samples is investigated further in

Chapter 5.
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Figure 14: A closer look at the frequency distribution of Figure 15: A closer look at the frequency distribution of

tag counts in the two most correlated samples in dataset  tag counts of the two least correlated samples in dataset
1 (both from cluster 1). All counts between 1 and 50 are 1 (both from different clusters). All counts between 1

shown. and 50 are shown

3.1.1.2 Tags

As no a-priori information was given about tags and due to the large number of tags, a
Sammon map would be somewhat uninformative. Clustering of tags will be investigated
further in Chapter 4, using more sensitive distance measures and different clustering
methods.

As in 3.1.1.1, a correlation matrix was made to find the two most correlated tags. The
frequency distributions were plotted in Figure 16 and Figure 17 below. Figure 16 shows a
clear similarity between the two most correlated tags as would be expected. Looking at
Figure 17 an unmistakable difference can be observed between the two least correlated
tags. When investigating clustering of tags, tag 581 and tag 10 would be expected to be in
different clusters. To get a better idea of the distribution of the most and least correlated
tags over all samples, Figure 18 and Figure 19 were constructed to illustrate the count of

each of these tags in each sample.
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Figure 18: A plot of tag counts over all samples for the Figure 19: A plot of tag counts over all samples for the
two most correlated samples. two least correlated samples.

From Figure 18 the two most correlated tags, tag 13 and tag 246, give the impression of
being distributed identically, as expected. However tag 13 appears once, this count is
likely to be a false positive i.e. a count recorded as one that should have been zero. This

will be investigated further in the simulation study Chapter 6.
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It is important to study tags to investigate the differential expression of tags between
samples and to investigate false positive results in the data. Differential expression will be

investigated in Chapter 4 and false positives will be investigated in Chapter 7.

3.1.2 Dataset 2

3.1.2.1 Samples
In the second dataset (dataset 2) no information is given a-priori about the dataset. In an
attempt to loosely predict any clustering of the samples a Sammon map was constructed

using both Euclidean and Manhattan distance measures.
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Figure 20: Sammon map of samples in dataset 2 where Figure 21: Sammon map of samples in dataset 2 where

no clusters are known a-priori. Euclidean distance used.  no clusters are known a-priori. Manhattan distance used.

Looking at both Figure 20 and Figure 21, there is some weak grouping occurring, but this
is not conclusive enough to say there is any concrete evidence of clustering. Both
Euclidean and Manhattan distance measures may not be sensitive enough to detect the
clusters compared to other distance measures which will be investigated in Chapter 4. It
is evident from both plots that samples 1,21,23 and 24 are outliers. A pairs plot was
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constructed on a log scale plotting each of these outliers against each other to investigate

the relationships between the outliers.

Looking at the spread of the data in each of the plots in Figure 22, it can be inferred that
sample 1 is in a different cluster than samples 21,23 and 24. This inference is made on the
basis that the spread of the data when samples 21,23 and 24 are plotted against sample 1

is considerably wider than when samples 21,23 and 24 are plotted against each other.
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Figure 22: Pairs plot of outlying samples observed in Figure 20 and Figure 21, a different colour was used for each sample as

no clusters were known.

As was done for dataset 1, a correlation matrix of samples was constructed and the two
most correlated samples were found to be samples 16 and 22, while the two least

correlated samples were found to be samples 11 and 24. Although no information is
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known about the clustering in this dataset, it is predicted that samples 16 and 22 belong
to the same cluster and samples 11 and 24 different clusters. Figure 23 and Figure 24
illustrate the two most and least correlated samples plotted against each other on a

logarithmic scale.
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Figure 23: Pairs plot of the two most correlated samples Figure 24: Pairs plot of the two least correlated samples

in dataset 2. in dataset 2.

From Figure 23 it can be observed that the data is grouped reasonably close, as would be
expected of two very similar samples. In contrast, looking at Figure 24 the data is very
widely spread suggesting a difference between the two least correlated samples as would

be expected.

The frequency distribution of tag counts in both the two least and two most correlated
samples was plotted below. As in 3.1.1.1 a count of 100 was chosen as the cut-off due to
very few tags in each sample having a count greater than 100. Looking at Figure 25 and
Figure 26, there is no apparent difference between the frequency distribution of tag
counts in the two most and two least correlated samples. However, this could be due to

the high number of tags that have a zero count and the concentration of tags between
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the counts of 1 and 50. In order to make a better comparison of the samples the
frequency distribution of tag counts was plotted only for counts between 1 and 50 for

both the most and least correlated samples in Figure 27 and Figure 28.
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Figure 25: Frequency distribution of tag counts for the Figure 26: Frequency distribution of tag counts for the
two most correlated samples in dataset 2. two least correlated samples in dataset 2.
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Figure 27: A closer look at the two most correlated Figure 28: A closer look at the two least correlated
samples in dataset 2. All counts between 1 and 50 are samples in dataset 2. All counts between 1 and 50 are
shown. shown.

Looking at these plots, the similarity of samples 16 and 22 is evident as, in Figure 27,
there is very little deviation of the two in the frequency distribution of tag counts. There

is some evidence of difference between samples 11 and 24 as, in Figure 28, the frequency
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distribution of tag counts for each sample deviate from one another. Differential

expression of tags between clusters will be investigated further in Chapter 5.

3.1.2.2 Tags

As for dataset 1 no a-priori information was known about the grouping of tags. However,
in this dataset there is a considerably larger variety of tags — more than triple that in
dataset 1. Due to the abundance of tags and also the large number of tags that have low
levels of expression, a Sammon map would prove entirely uninformative for predicting
any patterns in the tag expression. This will be investigated further in Chapter 4 and

Chapter 5.

As above, a correlation matrix of tags was constructed and the two most and least
correlated tags were found to be tag 920 and 921 and tag 1551 and 1496 respectively.
Frequency distributions of sample counts for these tags were plotted. As expected the
frequency distribution of the sample counts for the most correlated tags are almost
identical, whereas for the two least correlated tags the frequency distributions vary

dramatically.
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Figure 29: Frequency distribution of sample counts for Figure 30: Frequency distribution of sample counts for
the most correlated tags in dataset 2. the least correlated tags in dataset 2.

To get a better idea of the distribution of these tags over all samples, the count of the
most and least correlated tags in each sample were plotted in Figure 31 and Figure 32. As
anticipated, the two most correlated tags are identically distributed across all samples.
For the two least correlated samples the counts of the tags are more scattered across all

of the samples.
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Figure 31: A plot of tag counts over all samples for the Figure 32: A plot of tag counts over all samples for the
two most correlated samples in dataset 2. two least correlated samples in dataset 2.

3.2 Subjective impressions

Although in dataset 1 the clusters were known a-priori, initial inspection of the data
suggests that cluster 3 is not drastically different from the other two. Different types of
algorithms and different, more sensitive distance measures can be used to further
separate the three clusters. It is likely that clustering of the data known to be in clusters 1
and 2 only will cluster distinctly into two clusters. However clustering of the entire
dataset or cluster 3 with either cluster 1 or 2 is expected to give incorrect results due to
the similarity of cluster 3 to the other two. It is probable that the expression profile of

cluster 3 is too similar to that of clusters 1 and 2 to separate distinctly.

In dataset 2 there is no clear indication of distinct clusters. However it is expected that
when using different clustering methods and distance measures, different clusters will be
identified. Only 2 clusters are anticipated in this dataset due to the low number of

samples. This was confirmed when applying the clustering algorithm discussed in Chapter
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4 to the dataset, if more than 2 clusters were entered into the algorithm the samples
repeatedly jumped from cluster to cluster and the algorithm did not converge. When the

algorithm was applied to the dataset with two clusters entered the algorithm converged.

When looking at tags in both datasets using standard distance measures, there do not
appear to be any distinct clusters. Using more sensitive distance measures and
techniques developed specifically for the clustering of sequencing data is expected to
distinguish distinct clusters of tags, which can then provide information on specific groups
of tags that occur more frequently in cancerous and non cancerous tissues. Although no
a-priori information was given about tags, various methods of identifying dissimilarities in
expression profiles should detect different levels of tag expression between samples and

between clusters of samples.

It is expected that samples from different clusters will have notably different expression
profiles i.e. different groups of tags will be differentially expressed in samples from
different clusters. Samples from the same cluster are expected to have more similar
expression profiles. More traditional significance tests such as the 2-sample t-test are not
sensitive enough to detect the levels of differential expression expected. Many
techniques have been developed to assess differential expression both between

individual samples and groups of samples. These will be evaluated in Chapter 4.
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Chapter 4

Clustering

4.1 Overview

In the data analysed in this thesis several different tissue samples have been sequenced
and the expression of the tags recorded. When data consists of several different samples,
the first point of interest is whether any of these samples can be grouped together in
homogeneous categories. These categories are a result of the differential expression of
individual tags between samples. In order to identify these, clustering has to be

performed.

Very few theories about clustering are concrete and definitive. The two most common

ideas of what constitutes a cluster are internal structure and external separation. [32]

There exist many different clustering techniques that can be used to cluster both samples
and tags to find patterns of interest in the data. In both cases clustering can be useful for

a variety of reasons.

The central goal of clustering samples is to identify significant changes in tag expression
between them. By dividing the samples into dissimilar groups of individuals (clusters), tag
expression can be related to a specific response [32]. For example, in the given datasets

ideally the tag expression in the cancerous tissue samples will be considerably different
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from the tag expression in the non-cancerous tissue samples and therefore would cluster

separately.

When looking at clustering of tags, the first point of interest is to reduce the quantity of
information acquired due to the large number of individual tags sequenced. Clustering of
the tags can make the vast quantity of information more controllable and also to
distinguish if tags that are known to be similar have similar expression profiles. [32]
Clustering tags with similar expression profiles can allow biologists to investigate the

function and relevance of the tags with different expression profiles. [22]

There are many clustering techniques available; the main features required from any
clustering technique are adaptability to different distance measures and the ability to
deal with the high-dimensional and sparse nature of the data [32]. The two methods of
clustering that will be explored in this thesis are ‘k-means clustering’ and ‘hierarchical

clustering’.

‘K-means clustering’ aims to cluster a given number of observations (could be samples or
tags) into the cluster with the closest mean. The method works by randomly assigning
observations to one of k clusters and repeatedly moving the observations to the cluster
with the closest mean until convergence. The main drawback to this method is that the
number of clusters, k, must be specified beforehand and doing this incorrectly can

produce the wrong results.

‘Hierarchical clustering’ works by linearly ordering observations that are being clustered.
The most common type of hierarchical clustering is agglomerative. This works by first

assigning each observation to a separate cluster and then, using a distance measure,
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assigning the observations that are closest together to the same cluster. The main benefit
of this method is that the number of clusters does not need to be pre-assigned and any

kind of distance measure can be used. [32]

The reliability of any clustering technique is almost exclusively dependant on the distance
(or similarity) measure chosen. The two most common distance measures used in any
type of clustering are Euclidean and Manhattan distances. These measures have
previously worked for the analysis of sequencing data following a normal distribution
provided by sequencing methods such as microarray analysis. [32] However, the data
provided by deep sequencing is count data due to the sampling nature of the sequencing
process. Due to the discrete nature of this count data, distance measures previously used
on microarray experiment analysis will not be suitable. Various distance measures have
been introduced for use in the analysis of SAGE data, similar in nature to deep sequencing
data. Measures developed for use in the cluster analysis of SAGE data are more
statistically valid for deep sequencing data than those developed for microarray data, as
they are more sensitive to the structure of the data. These measures were introduced in

Chapter 2 and will be evaluated later in this chapter.

The two clustering methods investigated in this thesis are those developed by Cai et al
[22] and Berninger et al [24]. These methods have been introduced and outlined in
Chapter 2. Adaptations made to the algorithms and evaluations of the techniques are
presented later in this chapter. Various different distance measures and models for the
data have been investigated and the analysis is presented later in this chapter. These

have all been introduced and outlined in Chapter 2.
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4.2 Adaptations

4.2.1 PoissonC / PoissonL algorithm

In the original clustering algorithm presented by Cai et al [22], the data was modelled
using a Poisson distribution and two distance measures, likelihood and chi square, were
assessed. While the paper proves the reliability of this technique for clustering of tags in
SAGE data, after translating the algorithm from the paper into R it was clear that in order
to be used for the data produced by deep sequencing some alterations were needed. The
aim was to create a function that could cluster into any given number of clusters using

various distributions to model the data and different distance measures.

Similar to that presented in 2.2.1 the algorithm works based on a k-means principle and is
outlined below. The algorithm is presented in terms of clustering of samples. However it
can just as easily be used for the clustering of tags. The simplest way to achieve this is to

transpose the input matrix so tags are columns and samples are rows.

1. The number of clusters K is selected a-priori.

2. A distribution is chosen to model the data. This distribution can be any of the
Poisson, Negative Binomial or the Zero-Truncated Poisson.

3. A distance measure is selected. This can be any of likelihood, chi-square or trans

chi-square.

A

4. 0

. is calculated (8) for each individual sample and each sample is randomly

assigned to a cluster.

5. Awhile loop is started and runs until convergence. Initialisation r = 0.
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6. Cluster centres A, are calculated; this is a vector of length the number of tags;
each element representing the value of A, for each tag over all samples in cluster
k. If the chosen distribution is Poisson or Negative Binomial A, is calculated using
(8). If the Zero-Truncated Poisson is used A, is calculated using Newton’s method

to solve (47) for A

(1) = M08, (1-€"78,) (47)

7. Afor-loop is initialised to run through each sample individually.

8. For each sample the chosen distance measure is calculated for each cluster k. If
the Poisson distribution has been chosen the chi-square and likelihood distance
measures are calculated by (48) and (49) respectively, where Iz“(yl.(t)) = 5\;(1‘)@“

denoting the expected value of a given tag i in a given sample ¢ in cluster k:

=33 (v~ EG,o) [E @ (48)
—0,7.())(6,2.() vi(0) (49)
L, =-log ZGXP( kyli()t()! K\ )

The method for calculating the trans chi-square distance measure has been

outlined in Chapter 2 and is calculated using (50):

S rans = EE((yi(tl) = y(t,)) - E(y,(t)) - yi(t2)))2/var(yi(tl) - y,(1,)) (50)

i 1ty
where:
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E(yj(t1)_yi(t2)) =()\'i(t1)_)\'i(t2))0; (51)

Var(yi(t1)_y,‘(tz))=()\',‘(t1)+ )\'i(tz))ez (52)

If the distribution chosen is Negative Binomial, the chi-square and trans chi square
distance measures are equivalent to that calculated for the Poisson. This is only
true for these two distributions, as the expected value of a random variable
following a Poisson distribution y.(¢) ~ Po(6,A,(¢)) is equivalent to that of a
random variable following a negative binomial y,(?) ~ NegBin(0,A.(t),$)
distribution i.e. E(y,(#)) = A,(i)0,. (53) is used to calculate the likelihood distance

measure for the Negative Binomial.

L =-lo 2 F(yi(t)+¢_l) . ¢! 6.1) Vi) (53)
S U OO (R0 A2 A0

where ¢ is the dispersion. There are various ways to estimate this: the ones
assessed here are outlined in 2.1.3.
If the Zero-Truncated Poisson is selected the Chi-Square and Trans Chi-Square

distances differ only due to the expected value being different, for the Zero-

Truncated Poisson E(yl.(t))=A;(i)@,/(l—e’m”"f). The Likelihood distance

measure is calculated using (54).

o Eexp(—axk(z‘))(axk(ﬁ)y"“’ (34)
S P (1-exp(~6,2,()))y,(1)!
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9. The sample is then assigned to the cluster to which the chosen distance measure
is minimised.

10. New cluster centres A, are then calculated each time a sample is reassigned.

11. Steps 8-10 are then repeated for all samples individually until end of for loop.

12. Steps 6-11 are repeated until the algorithm converges, i.e. the clusters calculated
in this iteration are equal to those calculated in the previous, and returns the
clusters. However there is a special case where there are one or two samples that
constantly jump between clusters preventing convergence. In this case, once 1000
iterations have passed, and if less than 5% of samples are constantly jumping
between clusters the algorithm removes these samples and identifies them as

outliers.

4.2.2 Bayesian algorithm

The method presented by Berninger et al [24] was developed for the clustering of small
RNA expression profiles and as such would appear to be perfect for the clustering of the

datasets provided.

Although no alterations were made to the algorithm [24], many problems were
encountered when translating the algorithm from the paper into R. The main issue
encountered was the calculation of the two likelihoods using equations (18) and (19).
Due to the high-count nature of the data the gamma functions in these equations could
not be calculated directly so the log of each of the equations was calculated to make the
computation possible. This proved mathematically awkward due to the abundance of
zero tags in the dataset, as once this had been done problems were encountered when

inserting the two logged likelihoods into the distance formula (20).
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Another problem encountered was when assigning the Dirichlet prior (17). It was not
made clear in the paper if the value of the pseudo count of the prior a was tag specific or
was a constant throughout. After consultation with one of the authors the value of o was

set at 0.05.

4.3 Results

4.3.1 PoissonC / PoissonL algorithm

4.3.1.1 Dataset 1

First the PoissonC / PoissonL algorithm was tested on datasetl using the various
distributions and distance measures to assess the algorithm’s reliability. The algorithm
was constructed in the R statistical computing language as a function in which the user
inputs the dataset, the required number of clusters K, the number of loops the algorithm

should run for (default=100), the desired distance measure and the distribution.

When the Negative Binomial distribution was used the dispersion parameter ¢ was
calculated using the pseudo likelihood and quasi-likelihood methods outlined in 2.1.3.
When testing the two methods it was found that, for these particular datasets, only the
pseudo-likelihood method worked in the algorithm. When solving equation (5) to
calculate the dispersion for each tag it was found that some of these values again did not
work in the clustering algorithm so a common dispersion for all tags was found by
calculating the dispersion for each tag and finding the mean of these values. This is all

calculated in the algorithm itself for ease of use.

75



The algorithm was first tested on the entire dataset in which the information given states
that there are three clusters. The results were recorded and collated below in Table 2. If
the information given a-priori about the clusters is correct samples 1-22, samples 23-33
and samples 34-55 should appear in distinct clusters separately with no overlap. The

algorithm was run three times for each condition and the same results were generated.

Table 2: Results from PoissonC / PoissonL clustering of the entire dataset 1. The dataset was clustered separately
using each distribution with each distance measure. Cluster 1 consists of 22 samples; cluster 2, 11 samples and

cluster 3, 22 samples.

Clusterl Cluster2 Cluster3

Distribution | #Correct | #Wrong #Correct #Wrong #Correct #Wrong
& Distance | samples samples samples samples samples samples
measure in cluster | clustered | incluster | clustered | incluster | clustered

alongside alongside alongside
Poisson
Likelihood 22 4 3 0 18 8
Chi-Square 22 5 3 0 17 8
Trans-Chi 21 3 5 0 19 7
Negative Binomial
Likelihood 17 2 3 0 20 13
Chi-Square 22 6 2 0 16 9
Trans-Chi 20 4 4 0 18 9
Zero-Truncated Poisson
Likelihood 22 5 3 0 17 8
Chi-Square 15 5 9 5 13 8
Trans-Chi 20 3 4 1 19 8

As expected, the results indicate that there is definite overlap between the three clusters.
The results presented in Table 2 are illustrated in Figure 33, Figure 34 and Figure 35
below, where each method has been shown with the samples from each different cluster
highlighted in a different colour. Looking at these figures the overlap between the three

clusters is evident which suggests that the clusters are very similar in nature.
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Applying the algorithm with all distributions and distance measures, the results show
that the samples did not cluster according to the pre-designated clusters using any of the
options available. From Table 2, it would appear that the trans chi-square distance
measure is the most effective in this case, particularly when used in conjunction with the

Poisson distribution.
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Figure 33: Bar chart showing the distribution of the Figure 34: Bar chart showing the distribution of the
samples using each distance measure for Poisson in the samples using each distance measure for Negative
clustering algorithm on all 3 clusters. Binomial in the clustering algorithm on all 3 clusters.
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Figure 35: Bar chart showing the distribution of the
samples using each distance measure for Zero
Truncated Poisson in the clustering algorithm on all 3

clusters.

Sammon plots are given in Figure 36, 37 and 38 which show an approximation of the
similarity between each samples in the dataset for each distribution using the Trans Chi
Square similarity measure. It is clear from the overlap of the samples in the three clusters
in these plots that there is a definite similarity between the samples in the three clusters.
It is a distinct possibility that, using any method of clustering, the samples in the three
clusters are too similar in nature to cluster distinctly. Another possibility is that the
information given about the samples in each cluster is wrong. This however is speculation

as no other information was given about the data.

78



2e-19  4e-19 6e-19

-2e-19 0e+00
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Figure 37: Sammon plot of all clusters. Distribution used

is Negative Binomial and distance measure used is Trans

Chi-Square

Figure 38: Sammon plot of all clusters. Distribution used is

Zero-Truncated Poisson and distance measure used is Trans

Chi-Square.

In order to obtain more information, each pair of clusters were investigated separately.

Looking at the results in Table 3 it is clear that there is a well-defined dissimilarity

between the samples contained in cluster 1 and those contained in cluster 2. Using all

distributions and all distance measures the clusters were identified correctly as was

expected from initial analysis of the data. These results suggest that the samples

contained in clusters 1 and 2 definitely come from two distinctly separate groups of
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individuals. Although no information has been given about the samples other than their
groups it is possible that the samples contained in clusters 1 and 2 are the results from
cancerous and non-cancerous tissue samples that have been sequenced and the

algorithm has clustered these correctly.

Table 3: Results from PoissonC / PoissonL clustering of samples contained in clusters 1 and 2. The samples were

clustered using each distribution with each distance measure. Cluster 1 contains 22 samples and cluster 2 contains 11

samples.
Clusterl Cluster2

Distribution | #Correct | #Wrong #Correct #Wrong
& Distance | samples samples samples samples
measure in cluster | clustered | incluster | clustered

alongside alongside
Poisson
Likelihood 22 0 11 0
Chi-Square 22 0 11 0
Trans-Chi 22 0 11 0

Negative Binomial

Likelihood 22 0 11 0
Chi-Square 22 0 11 0
Trans-Chi 22 0 11 0

Zero-Truncated Poisson

Likelihood 22 0 11 0
Chi-Square 22 0 11 0
Trans-Chi 22 0 11 0

A bar chart illustrating the results in Table 3 is displayed below along with a Sammon plot
investigating the clustering of the samples using total likelihood, Chi Square and Trans Chi

Square similarity measures and modelling the data with a Poisson distribution.
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Figure 39: Bar plot of clustering results for clusters 1

Figure 41: Sammon plot of clusters 1 and 2. Distribution
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Figure 42: Sammon plot of clusters 1 and 2. Distribution

used is Poisson and distance measure used is Trans Chi-

Square.

Figure 39 illustrates the effectiveness of the algorithm on the clustering of the samples in

these two clusters. It shows for each distribution using each distance measure the

number of samples assigned to the correct cluster, which in this case is all of the samples.
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Figure 39 illustrates the difference between each of the samples contained in clusters 1
and 2. Due to the fact that clusters 1 and 2 cluster perfectly for each available
distribution and distance measure, only Sammon plots of the Poisson distribution using

each of the similarity measures has been shown.

Looking at Figure 40 there is some evidence of clustering. However, the samples in cluster
2 seem to be widely spread. However, Figure 41 and Figure 42 show large overlap
between the two clusters. These plots have been made using total likelihood/ chi square/
trans chi square of each sample, which in itself does not seem sensitive enough for the
clustering. Clearly the method adopted in the algorithm of finding a cluster centre and
calculating the required similarity for each sample is sensitive enough to distinguish

between these clusters.

Clustering of samples contained in clusters 1 and 3 gave the results presented in Table 4.
These results indicate that whilst there is some indication of a similarity between the
samples contained in clusters 1 and 3, the algorithm is sensitive enough to detect these
and clusters the majority of the samples correctly. The most successful implementation of
the algorithm was modelling the data with the Zero-Truncated Poisson distribution using
the similarity measure Trans Chi-Square, illustrated in Figure 45. The results from
clustering of samples 1 and 3 indicate that the issue encountered when clustering the
entire dataset arises because clusters 2 and 3 are very similar. This is investigated further
below. These results are also shown in Figure 43, illustrating the slight overlap between

the two clusters more clearly.
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Table 4: Results from PoissonC / PoissonL clustering of samples contained in clusters 1 and 3. The samples were

clustered using each distribution with each distance measure. Cluster 1 consists of 22 samples and cluster 3 contains

22 samples.
Clusterl Cluster3
Distribution | #Correct | #Wrong #Correct #Wrong
& Distance | samples samples samples samples
measure in cluster | clustered | incluster | clustered
alongside alongside
Poisson
Likelihood 19 2 20 3
Chi-Square 20 3 19 2
Trans-Chi 20 3 19 2
Negative Binomial
Likelihood 10 0 22 12
Chi-Square 20 2 20 2
Trans-Chi 13 5 17 9
Zero-Truncated Poisson
Likelihood 20 1 21 2
Chi-Square 12 3 19 10
Trans-Chi 21 0 22 1
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Figure 43: Bar plot of clustering results for clusters 1
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Table 5 shows the results obtained when using the algorithm to cluster the samples
contained in clusters 2 and 3. The similarity between the samples in these two clusters is
evident when looking at these results. Clustering of these samples modelling the data
using the Negative Binomial distribution and using the likelihood as a similarity measure

seems to work notably better on this section of the data than any other method.

Table 5: Results from PoissonC / PoissonL clustering of samples contained in clusters 2 and 3. The samples were
clustered using each distribution with each distance measure. Cluster 2 consists of 11 samples and cluster 3 contains

22 samples.

Cluster2 Cluster3

Distribution | #Correct | #Wrong #Correct #Wrong

& Distance | samples samples samples samples

measure in cluster | clustered | incluster | clustered
alongside alongside

Poisson

Likelihood 3 0 22 8

Chi-Square 4 0 22 7

Trans-Chi 4 0 22 7

Negative Binomial

Likelihood 10 1 21 1
Chi-Square 4 0 22 7
Trans-Chi 4 0 22 7

Zero-Truncated Poisson

Likelihood 3 0 22 8
Chi-Square 5 6 16 6
Trans-Chi 4 0 22 7

These results are illustrated in Figure 44, showing the results using each distribution and
each distance measure of the samples assigned to each cluster. There is a very distinct
overlap between the two clusters, which would indicate that they are very similar in
nature. From the plot it can be seen that often more of the samples in cluster 2 are

assigned with the samples in cluster 3 than in a separate cluster.
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Figure 44: Bar plot of clustering results for clusters 2 and 3 using each

distribution and each distance measure.

Figure 45 is a Sammon plot showing the approximate similarity of each of the samples in
clusters 1 and 3, modelling the data using the Zero Truncated Poisson distribution and
using the Trans Chi-Square as a measure of similarity. From this plot there is evidence of
clustering but the two clusters overlap each other, which indicates that the samples from
each cluster would not cluster distinctly. As above, using most of the distance measures
for each distribution the algorithm seems to be more sensitive and identifies the majority
of the samples in the correct cluster. Figure 46 is a Sammon plot showing the
approximate similarity of each of the samples in clusters 2 and 3, modelling the data using
the Negative Binomial distribution and using the Likelihood as a measure of similarity.
There is a clear spread of data here, which would indicate that the samples contained in
clusters 2 and 3 will not cluster. The majority of the results in Table 5 support this
conclusion and therefore confirms the suggestion that clusters 2 and 3 are too similar in

nature, which has a detrimental effect when clustering the entire dataset.
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Figure 45: Sammon plot of clusters 1 and 3. Distribution  Figure 46: Sammon plot of clusters 2 and 3. Distribution
used is Zero Truncated Poisson and distance measure used is Negative Binomial and distance measure used is

used is Trans Chi-Square. Likelihood

When the interest is in clustering of tags, the issue then arises of how to display this
information as there can be hundreds or possibly thousands of individual tags sequenced.
What is of interest is if there are any specific group of tags that appear together when

using each of the clustering methods.

Due to no a-priori information being given about the clustering of tags, the algorithm was
simulated with various numbers of clusters as the input and from visual analysis of the
results it was decided that three clusters were appropriate. After the results were
recorded for each method in each distribution, a similarity matrix was constructed by
counting the number of tags in common with all of the clusters output from each method.
To show this in a more understandable manner a graphical display of this similarity matrix
was plotted using the image() command in R, shown in Figure 47. This plot illustrates the
elements of the matrix; where white illustrates elements that are exactly the same,
elements with a high similarity are shown by a light colour such as yellow, areas with low

similarity with darker colours like orange and red if there is no similarity.
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Figure 47 shows the similarity for each cluster produced by each method of clustering.
Looking at the plot is seems that there are several clusters that have tags in common but

does not provide much useful information.
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Figure 47: Graphical image of tag cluster similarities matrix.

In order to determine which tags cluster commonly using every method of clustering the
similarity matrix constructed above was converted into a distance matrix and hierarchical
clustering was performed in R to find out which of the clustering methods gave the most
similar results. The dendrogram is given below in Figure 48. As expected, the three output
clusters from each pair of inputs cluster together and it seems that the three Poisson
methods of clustering produce very similar results as they cluster quite distinctly
together, as do both the Negative Binomial and Zero-Truncated Poisson distributions

using each of the similarity measures.
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Figure 48: Dendrogram displaying the similarities of the results obtained from clustering of tags using each of the

methods available in the algorithm.

From these results the output was then analysed to find out if any tags cluster together
throughout using each of the available clustering options. It was found that only 40 tags
commonly cluster. It is likely that these 40 tags will be tags that will not be differentially
expressed between clusters of samples, due to the lack of information known about the
grouping of the tags, no biological inferences can be made or assumptions confirmed.
Due to the lack of analytical information obtained when clustering of the tags in dataset
1, the same analysis was not attempted for dataset 2, as no a-priori information was

known about that dataset.

4.3.1.2 Dataset 2

Due to the lack of information given about the grouping of samples in dataset 2 the
algorithm was run using each of the available distributions and similarity measures. These
results were then evaluated to assess which samples most frequently appear in each

cluster. As a result of the lower number of samples in this dataset (26 samples), it was
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assumed that only two clusters exist. This was confirmed by repeatedly running the
algorithm for both two and three clusters and when run for two the results were the

same each time.

Table 6: Results from PoissonC / PoissonL clustering of dataset 2. Each method was used and from this the most
optimal clusters were selected.

Distribution | Results given  for  samples | Results given for samples contained

& Distance | contained in Cluster 1 in Cluster 2

measure

used

Poisson

Likelihood 123467910112122232526 581213141516 171819 20 24
Chi-Square 1234671011222526 589121314151617 181920212324
Trans-Chi 1234678910112122232526 |512131415161718192024
Negative Binomial Distribution

Likelihood 12345691012131416222326 |7 8111517181920212425
Chi-Square 1348910112122232526 256712131415161718192024
Trans-Chi 1234671011222526 589121314151617 181920212324
Zero-Truncated Poisson Distribution

Likelihood 123567921222324 4810111213141516 171819 2025 26
Chi-Square 1 346 89101121222526 2571213141516 171819202324
Trans-Chi 12346781011222526 5121314151617 18 19 20 23 24

Table 7: The percentage of most common cluster in which each sample is contained, evaluated from Table 6

Sample | Cluster | % Sample Cluster %
Occurrence Occurrence

1 1 100% 14 2 89%
2 1 78% 15 2 100%
3 1 89% 16 2 89%
4 1 89% 17 2 100%
5 2 78% 18 2 100%
6 1 88% 19 2 100%
7 1 67% 20 2 100%
8 2 56% 21 1 67%
9 1 78% 22 1 100%
10 1 89% 23 1 56%
11 1 78% 24 2 89%
12 2 89% 25 1 78%
13 2 89% 26 1 89%

89




00

8

60
|

% appearance

40
|

2
|

S
o
= 1 5 10 15 20 25

Sample

% appears in C|1 ==
% appears in Cl2 =

Figure 49: Bar Chart displaying the percent occurrence of each sample in each cluster.

Assessing the results presented in Table 7 and Figure 49 gives the most optimal clusters

as:

1. 1,2,3,4,6,7,9,10,11,21,22,23,25,26

2. 5,8,12,13,14,15,16,17,18,19,20,24

where samples 7, 8 21 and 23 could be outliers. Looking at Table 6 the only method of
clustering that has given these results exactly is using the Poisson distribution to model
the data and using the likelihood as a similarity measure. Below is a Sammon plot of this,
in which there is some evidence of the clustering that the algorithm suggests but the two

clusters appear to be very similar.
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Figure 50: Sammon plot of optimal clusters in dataset 2.

Poisson and distance measure used is Likelihood.

4.3.2 Bayesian Algorithm

The Bayesian algorithm was used to construct a distance matrix for the samples in both
dataset 1 and dataset 2. This distance matrix was then put into the hierarchical clustering
function, hclust, in R. Dendrograms were then plotted to observe the clustering hierarchy.
Figure 51 shows the results from the clustering of datasetl and Figure 52 shows those
from dataset 2. As is clear from the two figures, no hierarchy has been established,
suggesting that the algorithm is not sensitive enough leading to the conclusion that the
clustering algorithm will not be successful on any data of this format. This could be due
to a variety of reasons such as the mathematics being interpreted wrongly when
translating from paper to code or the data is not suitable for the algorithm. These will be

discussed further in section 0.
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Figure 51: Dendrogram produced upon applying Bayesian algorithm to Dataset 1.

Figure 52: Dendrogram produced upon applying Bayesian algorithm to Dataset 2.
Looking at both of the dendrograms, what is interesting is that the outliers found in
Chapter 3 cluster together first and then each of the other samples follow in no particular
order. The Bayesian clustering analysis for dataset 1 shown in Figure 51 highlights the
outlying samples 29, 30 and 31 in a red circle. For dataset 2 the outliers are samples 21,

23 and 24 again highlighted in Figure 52 in a red circle.

Summary

The results presented above imply that the Poisson C / Poisson L algorithm is sensitive

enough to detect the dissimilarities and cluster samples distinctly in some cases.
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However, when the clustering of all three clusters was attempted on dataset 1 it
appeared that the overlap between the three clusters was too great and the algorithm
failed to separate them distinctly. This could be due to a variety of factors: the three
clusters may overlap and the differences between them may be too small for the
algorithm to detect, the information given about the grouping of the samples may have
been wrong or the algorithm may not be adequate for clustering of more than two
groups. When the three clusters were analysed pair-wise it became clear that there was a
large overlap, particularly between clusters 2 and 3, suggesting that the fault lies in the

information given about the grouping of samples.

Due to the lack of information given about the grouping in dataset 2, the results
presented cannot be confirmed or rejected. The algorithm was run in triplicate and

obtained the same, recorded results each time.

The Bayesian algorithm vyielded surprising results. It is assumed in the paper it was
proposed in [24] that this method of constructing a distance (or similarity) matrix is
adequate for all typed of small RNA cloning data. The problems encountered with this
algorithm could lie in the translation of this method from the paper into R. The
mathematics had to be translated into code and altered due to the large scale of the
datasets used in this analysis. It is also possible that this algorithm is just not suitable for
the analysis of next generation sequencing data. Compared to other sequencing datasets
such as SAGE, the data provided by MSKCC and analysed in this thesis has an extensively

larger scale and proportion of zero counts.
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Chapter 5

Differential Expression

5.1 Overview

One of the most important questions in the analysis of any type of sequencing data is
whether a given tag is differentially expressed. The goal of differential expression is to
‘find statistically significant associations of biological conditions or phenotypes with gene
expression.’[34] Differentially expressed miRNAs (or equally genes, proteins, exons etc.)
are detected from variations in the expression profiles of the tag associated with that

miRNA.

The interest in differential expression is in how the expression of different tags changes
between individual samples or groups of samples. Ideally the goal of this, particularly in
the analysis of cancer data, is to find groups of tags that are highly expressed in only the
cancerous tissue samples and other groups of tags that are highly expressed only in the
non-cancerous tissue samples. This can then lead to a long-term goal of discovering
certain miRNAs or groups of miRNAs (or genes, exons, proteins) that occur more
frequently in cancerous tissue, which in turn could lead to further development of
treatments. Another use for this is to detect if there are certain genetic traits that can

lead to early diagnosis of cancer (or any disease) in members of the same family.
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It has previously been shown that simple significance tests such as the 2-sample t-test
and Chi square test are often not sensitive enough to detect differential expression of
tags between samples. This could be due to the influence of sample size or the random
fluctuations that occur in the data [25][26]. Countless methods have been developed for
the detection of differentially expressed tags. Some of these are used to detect
differential expression of tags between two individual samples and some are used to
detect differential expression of tags between groups of samples. The problem with
using the methods developed to detect differential expression between individual
samples is that, while adequate at detecting between and within library variation for the
two individual samples, if the interest is in differential expression between groups of
samples (or clusters) the samples are just pooled and the analysis run on the two pooled
groups treating them as two individual samples. This pooling of the samples often results
in the information about the within library variation and between individual library

variation being lost.

In the analysis presented in this chapter various different methods developed for the
detection of differential expression will be evaluated for use on next generation
sequencing data. Firstly, simple significance tests such as the 2-sample t test and the
Wilcoxon signed rank test will be used to illustrate the need for different techniques that
can adapt more to the type of data being analysed. Next, various methods developed for
the analysis of SAGE data were translated from research papers into R code and tested.
These methods are a significance test developed by Audic and Claverie [25], a weighted t-
test [26], a model for the data using over-dispersed logistic regression[17], an adaptation

to [17] modelling the data using an over-dispersed log-linear approach[28], a log ratio
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method[27] and modelling the data using a Poisson mixture model [29]. All of these

methods are outlined in Chapter 2.

It is important to note that the grouping (or clusters) must be known beforehand, these
can found using the methods presented in Chapter 4 and the results from these methods
are used as input for the analysis presented in this chapter. However, more often than
not this information should be known a-priori as ideally samples of certain types of tissue
should cluster together (i.e. cancerous and non-cancerous). All of the methods assessed

in this chapter can only be used for the analysis of two clusters of samples.

5.2 Adaptations

Most of the algorithms used to assess differential expression were translated from each
of the research papers into code in R and used as presented in the given paper. Code was
provided for the over-dispersed logistic regression[17], the over-dispersed log linear [28]
and the Poisson mixture model [29] methods. Very few adaptations were made to these
algorithms mainly due to the lack of time. However, some changes were made to the
over-dispersed logistic regression and log ratio methods in an effort to make the methods

more suitable for the data.

5.2.1 Over-dispersed logistic regression method

When the original method was tested on the data the code failed every time on both
datasets. After contacting the author Keith A Baggerly it was suggested that this could be
due to ‘fake counts’ where the count of an individual tag in one of the clusters is zero for
all samples in the cluster. This causes the logistic regression to fail due to the proportions

being so small. Two scenarios were recommended by the author, the first was to adjust
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the data slightly by adding one count to each of the tags with an original count of zero
and adding a count of two to the library sizes to account for this. The second was to add
different weights into the logistic regression that take into account both library size and
the level of over-dispersion. The results are presented and discussed further later in this

chapter.

5.2.2 Log Ratio Method

The log ratio method presented in [27] does not take into account the specific groups or
clusters in the data so it is possible to use this when no information is known or assumed
about the grouping of the samples. However, in order to make a more sensitive measure
this was adapted slightly to take the separate clusters into account. The outline of the
algorithm used was the same as that presented in 2.3.3 but the alternative hypothesis

was changed to include two alternative hypotheses of the form:

H; (alternative): The tag is differentially expressed, so the frequency of the gene is

different in at least some of the samples in each cluster (55):

Lalt(k) _ Hm e-)»,-(t)ﬁ, ()bi(t)a, )y,-(t) (55)
| ¥i(0)!

where k=1,2 represents the cluster and m is the number of samples in the given cluster.
The two likelihoods are calculated for each tag, L‘l.‘”(l) and L‘;”(z) for clusters 1 and 2

respectively and the log ratio statistic is calculated using (56).

R=log([L" ) - L' )] /1" (56)
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From (56), the decision can be made whether or not to reject the null hypothesis and

hence, determine if a tag is or is not differentially expressed.

5.3 Results

Many previous methods developed for the identification of differential expression in the
analysis of sequencing data consider the comparison of only two samples. Methods such
as a normal approximation based on the z-test statistic (equivalent to the chi-squared test
[34]) and significance of gene expression profiles [25] have been reviewed previously by
Ruitjer et al [35]. It has been shown in this review that these methods work well in the
case of studying two individual samples. This is illustrated below for the most and least
correlated samples in dataset 1. It is evident from Table 8 that the two methods are

mostly in agreement when detecting the differentially expressed tags.

Table 8: Results from differential expression analysis comparing only two samples at a time. This was done for both

the most and the least correlated samples of dataset 1.

# Diff # Diff expressed tags # Diff
expressed detected using the expressed
tags detected | Significance of gene tags
using the expression profiles appearin
Z-statistic both
Most 219 249 200
correlated
Least 340 404 306
correlated

However, these methods do not adapt well to the analysis of two groups (or clusters) of
samples. As discussed by Baggerly et al [26][17] and Lu et al [28], previous methods for
the analysis of groups of samples have often relied on pooling the data in a specific group

into one individual sample. It is suggested [17][26][28] that this is due to between sample
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variability being lost within the group and, particularly in the case where the samples
within a group are not replicate sequences from the same source, a certain proportion of
within sample variability may also be lost. This is due to pooling of the data
overemphasising the significance of the results as the normal variation between the
results of different samples within a group is ignored. If they were adequate at detecting
differential expression between groups, significance tests such as the 2-sample t-test and
the normal approximation based z-test statistic mentioned above (which is equivalent to

the chi-squared test) ought to be in agreement when detecting for differential expression.

Shown below is a graph displaying how the 2-sample t and the Chi-Square test statistic
give contrasting results as to which tags are differentially expressed. These statistics were
calculated for the tags that have a high count (>40) across all samples contained in
clusters 1 and 2. It was found that 197 tags have a high count over all samples.

P1-P2
The t-statistic was calculated using —VZ' taken from the Baggerly paper [26], where
+

VV1

P1 and P2 are the proportions of that particular tag in cluster 1 and 2 respectively and V1
and V2 are the sample variances of cluster 1 and 2 respectively. The chi-squared statistic
was calculated for each of these tags using (57). Each element of (57) is explained in
Table 9. This equation and table were given in the analysis presented by Man et al [35].

The two statistics were calculated for these high-count tags and plotted in Figure 53.

2 _ N()’uyz,z - y1,2y2,1)2 (57)
N,N,N N,

X
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Table 9: Table explaining each element of the equation to calculate the chi-square test statistic, where N is the total

number of tags in the entire dataset.

Clusterl Cluster2 Total

tags

Count of Tagiin Vi Yio N,

dataset

All other tags in You Yoo N,

dataset

Total count of tag lin | NV N, N

given cluster

If the two methods concur with each other a U-shape would be observed in Figure 53

where certain tags were found equally extreme by both statistics. However this is not the

case. Looking at the graph, most of the tags being highlighted as significant by the chi-

square statistic are not significant according to the t-statistic.
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Figure 53: Plot of the chi-square statistic versus the t-statistic

While the 2-sample t-test does capture some of the between library variance it has an

inherent problem when analysing this type of data as it assumes a normal distribution to

the data and also applies equal weights to each of the samples. This would be somewhat
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acceptable in the case where the samples are replicate libraries from the same source.
However, the problem of largely differing sample sizes still exists and this is undesirable in
the case of the data analysed in this thesis as the proportions of each tag vary greatly

over the samples.

To try to account for the departures from the distributional assumptions of the 2-sample t
test, the Wilcoxon signed rank test was also applied to the datasets. However this test
also applies equal weights to the samples and does not take into account the within
sample variability. Various methods have been developed to account for these issues, as
explained in Chapter 2. Six of these methods were translated from the papers into code
for the R statistical language [37] and used on the given datasets. The main issue that
emerges when applying these to the given data is that there is no way to confirm the
results as no information is known about the tags themselves or the nature of their

grouping. This will be investigated in the simulation study presented in Chapter 6.

The clusters of samples were given a-priori in dataset 1, so the differential expression
analysis could potentially be done without using the results from the clustering analysis in
Chapter 4. Although there are three clusters present in this dataset all of the analysis
techniques only work for two groups of clusters, so the differential expression analysis of
clusters 1,2 and 3 was implemented on each pair of clusters separately. The number of
differentially expressed tags was then recorded and the overlap of the differentially
expressed tags detected using each testing method was found and recorded. Table 10
Table 11 and Table 12 contain the results of each pair of the differential expression

analysis of the three pairs of clusters in dataset 1.
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Table 10: Table of results from differential expression analysis of clusters 1 and 2 from dataset 1 using 9 different

methods. The diagonal is the count of differentially expressed tags found using each method. Every other element

represents the overlap of tags when using the two methods

D.E Simple | Wilcox | Weighted | Overdisp | Overdisp | Ratio | Ratio | Pois
method t t Log.reg Log.lin paper | adapt | mix
2-Sample | 108 97 27 0 102 44 30 71
t

Wilcox 97 179 59 0 133 58 92 96
Weighted | 27 59 110 0 84 42 83 52
t

Overdisp | 0 0 0 0 0 0 0 0
Log.reg

Overdisp | 102 133 84 0 226 85 88 122
Log.lin

Ratio 44 58 42 0 85 116 51 56
paper

Ratio 30 92 83 0 88 51 178 63
adapt

Pois 71 96 52 0 122 56 63 132
mix

Table 11: Table of results from differential expression analysis of clusters 1 and 3 in dataset 1 using 9 different

methods. The diagonal is the count of differentially expressed tags found using each method. Every other element

represents the overlap of tags when using the two methods

D.E Simple | Wilcox | Weighted | Overdisp | Overdisp | Ratio | Ratio | Pois
method t t Log.reg Log.lin paper | adapt | mix
2-Sample | 106 14 54 0 84 26 61 49

t

Wilcox 14 95 15 0 35 25 23 29
Weighted | 54 15 128 0 99 36 100 83

t

Overdisp | 0 0 0 0 0 0 0 0
Log.reg

Overdisp | 84 35 99 0 185 45 88 134
Log.lin

Ratio 26 25 36 0 45 76 35 32
paper

Ratio 61 23 100 0 88 35 239 51
adapt

Pois 49 29 83 0 134 32 51 150
mix
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Table 12: Table of results from differential expression analysis of clusters 2 and 3 in dataset 1 using 9 different
methods. The diagonal is the count of differentially expressed tags found using each method. Every other element

represents the overlap of tags when using the two methods

D.E Simple | Wilcox | Weighted | Overdisp | Overdisp | Ratio | Ratio | Pois
method t t Log.reg Log.lin paper | adapt | mix
2-Sample | 43 16 32 0 39 8 37 24
t

Wilcox 16 64 8 0 44 15 19 25
Weighted | 32 8 152 0 116 25 151 98
t

Overdisp | 0 0 0 0 0 0 0 0
Log.reg

Overdisp | 39 44 116 0 228 42 162 118
Log.lin

Ratio 8 15 25 0 42 79 50 51
paper

Ratio 37 19 151 0 162 50 412 120
adapt

Pois 24 25 98 0 146 51 120 135
mix

It is clear from all of the tables above that the over-dispersed logistic regression method
even after applying the adaptations was completely unsuccessful. This could be due to a
number of factors — particularly the large number of zero counts in the data and the high-
count range of the data. Looking at Table 10, Table 11 and Table 12 although no
information is known about the differential expression of the tags, it seems that the over-
dispersed log-linear method is the most promising as it has the highest overlap with all of
the other methods. It also appears that the adaptation of the log ratio method was
successful, as it seems to have given much better results than the method presented in
the paper. This is most likely due to the fact that it takes the grouping of the samples into

account.

The differential expression analysis was then performed on dataset 2. The optimal

clustering results obtained in Chapter 4 for this dataset were used, as no information was
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previously known about the grouping of the samples or the tags. The differential
expression analysis for dataset 2 is presented in Table 13. Again the over-dispersed log-
linear method seems to be promising, but the analysis using the adapted log ratio method
raises questions as it has detected a considerably larger number of differentially
expressed tags compared to all of the other methods. This dataset contains over 3 times
as many individual tags as dataset 1 so while the result that nearly half of the tags are

differentially expressed is not impossible, it seems unlikely as no other methods have

detected that large a number of differentially expressed tags.

Table 13: Table of results from differential expression analysis of the 2 clusters in dataset 2 using 9 different
methods. The diagonal is the count of differentially expressed tags found using each method. Every other element

represents the overlap of tags when using the two methods

D.E Simple | Wilcox | Weighted | Overdisp | Overdisp | Ratio | Ratio | Pois
method t t Log.reg Log.lin paper | adapt | mix
Simple 84 75 43 0 69 6 38 53
t

Wilcox 75 120 68 0 87 9 62 63
Weighted | 43 68 111 0 61 5 85 52
t

Overdisp | 0 0 0 0 0 0 0 0
Log.reg

Overdisp | 69 87 61 0 126 10 57 92
Log.lin

Ratio 6 9 5 0 10 16 2 8
paper

Ratio 38 62 85 0 57 2 847 35
adapt

Pois 53 63 52 0 92 8 35 103
mix

5.4 Summary

Due to the fact that no information is known about the grouping of the tags in either of

the datasets, no formal assumptions or biological inferences can be made about the
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differential expression analysis presented in this chapter. Many of the methods have
previously been assessed on other types of sequencing data as mentioned above.

However, in those cases information about the tags was known a-priori.

Looking at the results presented above it can be deduced that the over-dispersed log
linear method for the analysis of differential expression, particularly when compared to
simple tests such as the 2-sample t-test and the Wilcoxon signed rank test is the most
reliable. This deduction is made based upon the results of the overlapping with other
methods and the more reasonable number of differentially expressed tags detected, in
contrast to those detected using the adapted log ratio method. However, none of this can

be confirmed, as no information was known about the tags in either dataset.
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Chapter 6

Simulating the data

6.1 Overview

Due to the fact that no information is known about the tags in dataset 1 and dataset 2 the
validity of the differential analysis techniques cannot be assessed properly. Also the ‘true
counts’ of the tags are not known in these datasets as the counts given are produced
during the sequencing process. This makes it difficult to calculate the rate of false counts

(or false positives) that are likely to appear in the data.

In order to account for this, data can be simulated from selected true counts with the
desired conditions of differential expression set beforehand. The performance of the
clustering algorithm for samples and the differential expression analysis for tags can then
be analysed in detail and the rate of false positives (wrongly flagged differentially
expressed tags) and false negatives (differentially expressed tags that have not been

flagged) can be calculated.

In this chapter an algorithm is introduced to first simulate two vectors of true counts for
the tags (miRNAs) for two conditions - differentially expressed and non-differentially
expressed. The differential expression is set in designated tag numbers to make the

change in expression significant. This is implemented so as when the differential
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expression analysis is introduced the correct number of differentially expressed tags
identified can be recorded. From these true counts the libraries (or samples) are then
sampled from three different distributions: the Poisson, the Negative Binomial and the
Zero-Truncated Poisson using pre-designated library sizes. Five of these libraries are
simulated from the proportions of the non-differentially expressed true counts and five

from the differentially expressed true counts.

Once this data has been simulated, the tests performed in Chapter 4 and Chapter 5 will
be performed on the data and the results recorded in 6.3. The simulation algorithm is

described in 6.2 below.

6.2 Algorithm

To simulate the data in the fashion that is suggested here a matrix of the form that is to
be simulated is required. This is in order to calculate the power-law exponent y

introduced in Chapter 2. The algorithm to simulate the data works as follows:

1. Read in the dataset of the data to be simulated.

2. Remove all tags that have a count of zero across all samples.

3. Dispersion ¢ is calculated using the pseudo-likelihood method outlined in 2.1.3 for
the matrix. To be used when the data is simulated from the Negative Binomial
distribution.

4. The power-law exponent ¥ is calculated using the powerlaw() function provided

by Khanin and Wit [30].
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5. A designated number of tags are sampled; this is a list of tags which are to be
differentially expressed. In the case of this study, 200 tags were chosen. Create a
vector of these tag numbers (call this de.tags).

6. Now fold changes between 2 and 5 are sampled for each of these differentially
expressed tags. So what is obtained here is a vector (call this fc.values) the same
length as the vector created above.

The fold change of a gene or miRNA is the ratio of the gene expression in one
sample (or groups of samples) over another. Positive numbers indicate increases
in expression, whereas negative numbers indicate decreases in expression.

7. Now the ‘true’ counts are simulated using the power-law exponent y into the
rpowerlaw() function provided by Khanin and Wit. This returns a vector (call this
cell 1) of length the required number of tags, with a count for each tag
representing the ‘true’ count.

8. Cell 1is duplicated and this vector is named cell 2, now all of the tags in cell 2 that
are contained in the vector de.tags are altered to have a fold change of the values
in fc.values with the same increment. These tags that have had the fold change
altered are now differentially expressed.

9. Change cell 1 and cell 2 into proportions.

10. The library sizes are simulated from a uniform distribution, using the maximum
and minimum library sizes of the original dataset. In this case there will be 10
libraries.

11. The data is simulated from one of three distributions: the Poisson, Negative
Binomial and Zero Truncated Poisson. This is done using the proportions cell 1 and

cell 2 and the sampled library sizes. In this case five libraries were sampled using
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the proportions in cell 1 and 5 using the proportions in cell 2. The five libraries that
have been sampled from the proportions in cell 1 are in a separate cluster from
the 5 libraries that have been sampled from the proportions in cell 2.

12. The tags that have a count of zero across all samples must be removed. The list of
differentially expressed tags (de.tags) also has to be altered to account for this.

13. Clustering algorithms and differential expression analysis can now be tested on

this data to look for false positives and assess the viability of these algorithms.

6.3 Results

6.3.1 Clustering

Data was simulated using the algorithm described above from each of the three
distributions: Poisson, Negative Binomial and Zero-Truncated Poisson. Due to the way the
data was simulated, it proved difficult to test if the data followed a specific distribution.
This was due to the number of different distributions used in the simulation process. The
proportions were simulated from the Power-law distribution, the library sizes from the
Uniform distribution and the count of each tag in each sample from one of the designated

simulation distributions.

A repeated Wilcoxon signed-rank test was set up to assess the probability that each of the
tags in the particular dataset arose from the simulated distribution. This worked by
performing multiple Wilcoxon tests on the vector of counts of the particular tag across all
samples with 10000 numbers from the given distribution, with a mean equal to the mean
count of the tag. The mean, maximum, minimum and mean standard deviation of the p-
values were recorded and this was repeated for each individual tag in the simulated

dataset. Once this had been done for each tag the mean of each of these values across all
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tags was recorded and if the mean, maximum and minimum p-values are greater than the
significance level of 0.05 and the standard deviation was not large then the tags could be
said to come from the desired distribution. The results are displayed below in Table 14
and suggest that the tags in each of the simulated datasets follow the desired
distributions. Ideally the range of the p-values should be relatively close together, as it is

expected that each of the individual tags follow the mean of all counts of that specific tag.

Table 14: Repeated Wilcox test for assessing Simulated data, shows the mean, max, min and average standard
deviation of the p-values for each simulated dataset.

Mean Max Min Std Dev
Poisson 0.63 0.64 0.60 0.01
Neg Bin 0.5889 0.6192 0.559 0.019
Z Trunc Pois 0.39 0.40 0.385 0.00479

Due to the performance of the Bayesian clustering algorithm on datasets 1 and 2, only
the Poisson C / Poisson L algorithm was applied to each of the simulated datasets. The
results are presented below. Each of the simulated datasets was modelled using each

available distribution and distance measure in the algorithm and recorded below.

Assessing each of the algorithms on this dataset, samples 1 to 5 are expected to cluster
together as are samples 6 to 10, as these groups of samples have been simulated from
two separate vectors of true counts. Looking at Table 15 and Table 17 it is clear that the
Poisson and Zero-Truncated Poisson data has clustered perfectly as would be expected.
However Table 16 suggests that the Negative Binomial distribution is less trustworthy as
the clustering results vary notably from the expected results. The row of zeros observed

in Table 16 is due to the algorithm failing.
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Table 15: Clustering results for Poisson simulated data. It is expected that five samples, samples 1:5, will be
contained in cluster 1 and five samples, samples 6:10, in cluster 2.

Clusterl Cluster2

Distribution | #Correct | #Wrong #Correct #Wrong
& Distance | samples samples samples samples
measure in cluster | clustered | incluster | clustered

alongside alongside
Poisson
Likelihood 5 0 5 0
Chi-Square 5 0 5 0
Trans-Chi 5 0 5 0

Negative Binomial

Likelihood 5 0 5 0
Chi-Square 5 0 5 0
Trans-Chi 5 0 5 0

Zero-Truncated Poisson

Likelihood 5 0 5 0
Chi-Square 5 0 5 0
Trans-Chi 5 0 5 0

Table 16: Clustering results for Negative Binomial simulated data. It is expected that five samples, samples 1:5, will
be contained in cluster 1 and five samples, samples 6:10, in cluster 2.

Clusterl Cluster2

Distribution | #Correct | #Wrong #Correct #Wrong
& Distance | samples samples samples samples
measure in cluster | clustered | incluster | clustered

alongside alongside
Poisson
Likelihood 3 2 3 2
Chi-Square 3 2 3 2
Trans-Chi 3 2 3 2

Negative Binomial

Likelihood 4 1 4 1
Chi-Square 4 1 4 1
Trans-Chi 3 3 2 2

Zero-Truncated Poisson

Likelihood 0 0 0 0
Chi-Square 3 2 3 2
Trans-Chi 3 2 3 2
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Table 17: Clustering results for Zero-Truncated Poisson simulated data. It is expected that five samples, samples 1:5,

will be contained in cluster 1 and five samples, samples 6:10, in cluster 2.

Clusterl Cluster2

Distribution | #Correct | #Wrong #Correct #Wrong
& Distance | samples samples samples samples
measure in cluster | clustered | incluster | clustered

alongside alongside
Poisson
Likelihood 5 0 5 0
Chi-Square 5 0 5 0
Trans-Chi 5 0 5 0
Negative Binomial
Likelihood 5 0 5 0
Chi-Square 5 0 5 0
Trans-Chi 5 0 5 0
Zero-Truncated Poisson
Likelihood 5 0 5 0
Chi-Square 5 0 5 0
Trans-Chi 5 0 5 0

These results are illustrated graphically below in Figure 54 and Figure 55. Due to the fact
that both the Poisson and Zero-Truncated Poisson simulated data have the same results
these are both represented by Figure 54 and the Negative Binomial data simulation’s
deviation from the true clustering results is illustrated in Figure 55. This would suggest
that looking into the Negative Binomial distribution simulation for means of clustering
would be unwise. Figure 56 and Figure 57 show Sammon plots for both the Poisson and
Zero-Truncated Poisson simulated datasets using likelihood as a distance measure and
Poisson and Zero-Truncated Poisson distributions to model each of the datasets
respectively. Looking at the Sammon maps, Figure 56 shows some evidence of clustering,
however Figure 57 suggests that there is no clustering whatsoever, similar to the Sammon

mapping obtained in Chapter 4. It is possible the algorithm is more sensitive than the

approximation that the Sammon mapping harnesses.
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6.3.2 Differential expression

The next step of the simulation study was to assess the various methods of differential
expression and to calculate the number of false positives and false negatives produced
using each method. A false positive occurs when a tag has been flagged as differentially

expressed but is not one of the tags in which differential expression should occur, a false
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negative is a differentially expressed tag that has not been flagged. In the true counts,
200 tags were modified to exhibit differential expression. However, when the samples
were simulated from the true counts, some of these designated tags had a zero count
across all samples. In the Poisson simulated data 44/200 differentially expressed tags had
a count of zero across all samples so the number of differentially expressed tags in the
dataset was reduced to 156. In the Negative Binomial simulated dataset, 29/200 of these
tags were zero across all samples so the number of differentially expressed tags in the
dataset was reduced to 171. In the Zero-Truncated Poisson simulated dataset this

problem did not occur so all of the original 200 tags were differentially expressed.

Displayed below in Table 18, Table 19 and Table 20 are the results of each of the methods
of differential expression on each of the simulated datasets. The only method that was
not assessed was the over-dispersed logistic regression method suggested by Baggerly et
al [17], as it did not work for the given data or simulated data. In each table below, for the
given simulated dataset, the number of correctly flagged differentially expressed tags
using each differential expression analysis was recorded along with the false positives,
false negatives and the overlap with each of the other methods. The overlap recorded is
not that of the correct differentially expressed tags, but the overlap of all the tags flagged
as differentially expressed by each method. This is due to the fact that if there is a large
overlap between methods in tags that are not truly differentially expressed but are
flagged as such a large proportion of the time. The method of simulation itself may be the
problem. In the cell of the table where the overlap of a method is given with itself, what is

recorded here is the number of tags flagged as differentially expressed using this method.
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Table 18: Results of differential expression analysis testing 7 different methods on the Poisson simulated data.

Poisson Simple | Wilcox | Weighted | Overdisp | Ratio Ratio Poiss
Simulation |t t log lin Paper | Adapt | mix
156 d.e

tags
Flagged 2 11 0 87 27 90 64
correctly
False + 1 1 87 139 24 260 98
False - 154 145 156 69 129 66 92
Overlap 3 2 0 2 0 1 0
simple t
Overlap 2 12 0 10 4 8 6
Wilcox
Overlap 0 0 87 75 12 84 48
Weighted t
Overlap 2 10 75 226 51 200 63
Overdisp
log lin
Overlap 0 4 12 51 51 51 31
Ratio
Paper
Overlap 1 8 84 200 51 350 82
Ratio
adapt
Overlap 0 6 48 63 31 82 162
Poiss
mixture
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Table 19: Results of differential expression analysis testing 7 different methods on the Negative Binomial simulated
data.

Negative Simple | Wilcox | Weighted | Overdisp | Ratio Ratio Poiss
Binomial t t log lin Paper | Adapt | mix
Simulation
171 d.e
tags

Flagged 0 2 6 43 86 77 32
correctly
False + 0 10 9 58 153 200 45
False - 0 169 165 128 85 94 139
Overlap 0 0 0 0 0 0 0
simple t
Overlap 0 12 5 7 10 9 4
Wilcox
Overlap 0 5 15 6 7 15 3
Weighted t
Overlap 0 7 6 101 89 32 29
Overdisp
log lin
Overlap 0 10 7 89 239 123 61
Ratio
Paper
Overlap 0 9 15 32 123 277 24
Ratio
adapt
Overlap 0 4 3 29 61 24 77
Poiss
mixture
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Table 20: Results of differential expression analysis testing 7 different methods on the Zero-Truncated Poisson
simulated data.

Zero-Trunc | Simple | Wilcox | Weighted | Overdisp | Ratio Ratio Poiss
Pois t t log lin Paper | Adapt | mix
Simulation
200 d.e
tags
Flagged 0 36 0 107 35 151 78
correctly
False + 0 132 107 132 24 320 102
False - 0 164 200 93 165 49 122
Overlap 0 0 0 0 0 0 0
simple t
Overlap 0 168 90 151 38 162 79
Wilcox
Overlap 0 90 107 94 19 107 86
Weighted t
Overlap 0 151 94 239 19 107 86
Overdisp
log lin
Overlap 0 38 19 59 59 59 45
Ratio
Paper
Overlap 0 162 107 220 59 471 137
Ratio
adapt
Overlap 0 79 86 103 45 137 180
Poiss
mixture

Looking at the tables above it is clear that the differential expression techniques have
failed to distinguish between tags that are differentially expressed and tags that are not.
Looking at Table 19 it is clear that the simulation of the data using the Negative Binomial
distribution detects fewer differentially expressed tags. Adding to this the results of the
clustering, it is safe to assume that the Negative Binomial distribution is unreliable for this
type of data simulation. Looking now at Table 18 and Table 20 it is clear, as expected, that
the 2-sample t test and the Wilcoxon signed rank test are not sensitive enough to detect

differential expression in this data-type. In differential expression analysis of both the
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Poisson simulated dataset and the Negative Binomial simulated dataset the weighted t-
test has failed to flag any differentially expressed tags correctly. As a result only the over-
dispersed log linear [28], the log ratio method proposed by Stekel et al [27], the adapted
log ratio method described in 5.2.2 and the Poisson mixture model method [29] will be
looked at into any further detail on both the Poisson and Zero-Truncated Poisson
simulated datasets. The results are represented graphically below applying each of the
methods mentioned above to both the Poisson simulated dataset and the Zero-Truncated

Poisson simulated dataset.
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Figure 58: Bar plot outlining the results for over- Figure 59: Bar plot outlining the results for over-
dispersed log-linear differential expression analysis. dispersed log-linear differential expression analysis.

What is shown is the proportion of false positives, false =~ What is shown is the proportion of false positives, false
negatives and overlapping of the flagged tags in all the negatives and overlapping of the flagged tags in all the
methods in relation to the true counts. This is for the methods in relation to the true counts. This is for the

Poisson simulated dataset Zero-Truncated Poisson simulated dataset.

118



Flagged Flagged
correct ::::I;reect
m False = positives
positives = True
S = True ?_ .:elnnﬁed
identified = naegzﬁves
m False = Flagged
@ negatives @ e apped
°© = Flagged © 2R
tags
g © | overlapped o |
€ ° S o
o =
& g
o< S
o o o
N N
o o
= =
e Flagged True overlap overlap overlap ©  Flagged True overlap overlap overlap
tags d.etags Overdisp Ratio Poisson tags d.etags Overdisp Ratio Poisson
log-lin  adapt mix log-lin  adapt mix
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overlapping of the flagged tags in all the methods in overlapping of the flagged tags in all the methods in
relation to the true counts. This is for the Poisson relation to the true counts. This is for the Zero-
simulated dataset Truncated Poisson simulated dataset.
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Figure 62: Bar plot outlining the results for adapted log Figure 63: Bar plot outlining the results for adapted log

ratio differential expression analysis. What is shown is ratio differential expression analysis. What is shown is

the proportion of false positives, false negatives and the proportion of false positives, false negatives and
overlapping of the flagged tags in all the methods in overlapping of the flagged tags in all the methods in
relation to the true counts. This is for the Poisson relation to the true counts. This is for the Zero-
simulated dataset Truncated Poisson simulated dataset.
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Figure 64: Bar plot outlining the results for Poisson Figure 65: Bar plot outlining the results for Poisson
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overlapping of the flagged tags in all the methods in overlapping of the flagged tags in all the methods in
relation to the true counts. This is for the Poisson relation to the true counts. This is for the Zero-
simulated dataset Truncated Poisson simulated dataset.

Looking at the plots above, it is clear that the error lies in the setup of the simulation
study. When looking at the tags that have been flagged as differentially expressed, the
proportion of false positives is greater than the proportion of correctly flagged for all of
the methods on both datasets except when looking at the log ratio method (Figure 60 and
Figure 61). However, looking at Table 18 and Table 20 the log ratio method flags a very
low number of tags as differentially expressed in comparison to the other methods so this
could be the reason for these results. The method itself does not take into account the
grouping of the samples and these results would indicate that this method is an
unreliable means for assessing differential expression as it flags a low number of tags,

which suggests that the method is not adequately sensitive.

In all of the methods excluding the adapted log ratio method the proportion of false
negatives is greater than the proportion of true tags identified. Looking at Table 18 and
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Table 20 the adapted log ratio method has flagged a very large number of tags as
differentially expressed, which explains the resulting difference. The magnitude of the
differentially expressed tags flagged by the adapted log ratio method in both Table 18 and
Table 20 coupled with similar results obtained in Chapter 5 leads to the inference that this

method is an unreliable means for the analysis of differential expression.

After discounting the two log ratio methods, the interest lies in the over-dispersed log
linear and Poisson mixture model methods. Looking at Figure 58, Figure 59, Figure 64 and
Figure 65 the results show, for both datasets, that the proportion of false positives is
greater than that of the correctly flagged tags. This could be due to either the method of
analysis or the method of simulation. Looking at the results for the over-dispersed log
linear method, for both datasets (Figure 58 and Figure 59), the proportion of correctly
identified differentially expressed tags is greater than the proportion of false negatives.
This would suggest that this method is the most reliable for differential expression

analysis when compared to the other methods assessed.

6.4 Summary

Evaluation of the results above indicates that further work is needed on the method of
simulating the data to increase its reliability, particularly for the assessment of differential

expression methods. This will be discussed further in Chapter 7.

The assessment of the Poisson C / Poisson L algorithm on the simulated datasets yielded
promising results, apart from when it was used on the Negative Binomial dataset. This
suggests that the method of simulation is acceptable for the assessment of clustering

algorithms developed for use on sequencing data.
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From the results presented above coupled with those presented in Chapter 5, it is
possible to conclude that the over-dispersed log linear method for the analysis of
differential expression is the most reliable. However, due to the further investigation

needed into the method of simulation this cannot be confirmed.
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Chapter 7

Discussion and Conclusions

The use of clustering on sequencing datasets is one of the most common ways to identify
similarities for the grouping of both samples and tags. While not always entirely accurate,
it is @ method of unsupervised learning so it is ideal when no information is known about
the specific dataset. Two approaches to clustering - one based on k-means, incorporating
different models to fit the data and various distance measures to assess similarity, and

the other Bayesian hierarchical - have been presented and assessed in this thesis.

In dataset 1, due to the grouping of the samples being known a-priori, both of the
clustering algorithms were applied to the samples to assess the reliability of the two
algorithms. Looking at the results presented in Chapter 4 it is clear that the Poisson C /
Poisson L algorithm was successful when clustering the first two groups of samples
contained in this dataset. This would suggest that these particular groups are distinctly
different and, as identical results were obtained when running the algorithm repeatedly
for the same conditions with different random starting clusters, suggests consistency and

reliability when using the algorithm.

When this algorithm was applied to all of the samples in the dataset, as well as samples in
groups 1 and 3 and samples in groups 2 and 3 separately, the results diverged
considerably from the expected results. The algorithm was run repeatedly under each
condition and equivalent results were obtained. This, together with the results from the

exploratory analysis using Sammon plots, would suggest that due to the successful
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clustering of the samples in groups 1 and 2, group 3 appears to overlap the first two
groups and the algorithm is not adequately sensitive to detect this. This could be due to a
variety of reasons. For example, the samples in cluster 3 may belong to groups similar to
those in clusters 1 and 2 but were assigned to a separate group. However, in order to

investigate this further, more information would be needed about the dataset.

Applying the Bayesian algorithm to this dataset yielded unusual results as no hierarchy
was observed, suggesting no clustering is present in the samples. These results whilst
clearly wrong are interesting as the outliers observed in Chapter 3 cluster first and each of
the other samples follow after in no particular order. The unusual results obtained could
be due to an error in the translation of the mathematics from the paper into R. Another
possibility is that the algorithm, whilst suitable for certain types of small RNA cloning data
[24] is not suitably sensitive to detect differences between samples of the deep

sequencing data provided.

It is natural that in most cases the grouping of the samples is known a-priori. For
example, cancerous and non cancerous tissue samples, samples taken from patient A and
samples taken from patient B. However there are cases when this information is not

given, or where the interest lies in if specific samples do or do not cluster together.

This issue is raised when applying the clustering algorithms to the samples of dataset 2, as
no information was given about the grouping of the samples or tags a-priori. Cluster
analysis using the Poisson C / Poisson L algorithm was carried out using each available
condition and the results were compiled to find the most likely clusters (Chapter 4). The
algorithm was run repeatedly under different starting conditions for each set of

conditions and the same results were obtained each time for the given conditions. Whilst
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each condition yields different results, the percentage occurrence of an individual sample
appearing in the same cluster using different starting conditions is relatively high (Figure
49) and the robustness of the algorithm is illustrated by the fact that the same results are
obtained repeatedly. However, due to the lack of information known about the grouping
of the samples the results obtained cannot be confirmed. The Bayesian algorithm was
applied to this dataset and the same results were obtained as those for dataset 1
suggesting that the algorithm coded has been interpreted wrongly or is not suitable for

the dataset.

Clustering of the tags was attempted for dataset 1 (Chapter 4) and results recorded.
However, due to the lack of information given about the grouping of the tags in both
datasets this could not be confirmed and analysis of the tags in dataset 2 was not deemed
worthwhile. Due to the lack of information given about the tags it was not possible to see

if certain tags that appear together in dataset 1 appear together in dataset 2.

Ideally the clustering algorithms would be tested for both tags and samples of a dataset
with known (and distinct) groupings but due to the unpublished nature of this dataset,
this was not possible. What could have been done for the grouping of samples instead of
clustering was a classification analysis on dataset 1. This would have used the given
grouping of the samples of dataset 1 and examined their interrelationship setting a class
for each group (or cluster) that can then be used on datasets with no information of the
grouping to find the similar classes of samples. A problem with this however is that it is
specific to a certain type of data and the classes found for one will not be the same as
that for a different type of data. For example, cancer tissue sequencing data and AIDS

tissue sequencing data. Another option for further analysis would be to use the GAP [36]

125



statistic to estimate the number of clusters in the dataset. This could potentially be used

on both samples and tags.

Although some promising results were obtained for the Poisson C / Poisson L algorithm
further investigation is needed to confirm whether it is suitable for the clustering of deep
sequencing data in general, especially where the situation of three or more groups of
interest occurs. More distance measures and distributions could also be considered to
suit different data types. Classification using cross validation on either test and training
sets, published datasets or leave one out cross validation on the given dataset could have

been carried out.

In the case of the Bayesian algorithm further investigation is needed to determine why it
was not successful. The issue could be the large scale of the dataset and having to
account for this in the gamma functions adopted in the analysis. Another possibility is
that this algorithm is not sensitive enough for deep sequencing data. This could perhaps

be accounted for by using a different Dirichlet prior in the analysis.

Due to the limitations of the datasets given, clustering of the tags provided too much
information to handle easily without prior knowledge of the grouping of the tags. Further
work could be done on different methods for the clustering of tags, however more
information would be needed a-priori to assess the methods. Differential expression
analysis is a more informative way of finding out key tags that are significantly up or down

regulated across two groups (or clusters) of samples.

Once the grouping (or clusters) of the samples was calculated using the Poisson C /

Poisson L algorithm, various methods of differential expression analysis were performed
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on the data and the results recorded in Chapter 5. Due to the lack of information known
about the grouping of the tags in both datasets, inferences made from the results
obtained are subjective. It appears, upon examination of the results presented in Chapter
5, that routine tests of significance such as the two-sample t test and the Wilcoxon signed

rank test are not adequately sensitive to detect differential expression in the dataset.

Significance tests previously developed for the analysis of differential expression in other
types of sequencing data such as SAGE were researched and applied to the two datasets.
The over-dispersed logistic regression method taken from Baggerly et al [17] failed on
every analysis. After discussing this with one of the authors, Keith A Baggerly, adaptations
were made and tested but to no avail. After evaluating the results given in Table 10, Table
11, Table 12 and Table 13 it appears that the over-dispersed log linear method for
assessing differential expression is the most reliable. The adapted log ratio method while
detecting a large number of differentially expressed tags would appear to be overly
sensitive as in some cases it declares over 70% of the tags as differentially expressed
which is rather implausible biologically. These results cannot be confirmed due to the lack

of information known about the dataset.

In order to do any further work on differential expression methods more information
needs to be known about the data being analysed. If more information was known the
reliability of each of these methods could be assessed by calculating the correct number
of differentially expressed tags flagged and the number of false positives. Once these

methods were evaluated, the need for other methods or adaptations could be evaluated.

In an effort to do this a simulation study was proposed in Chapter 6, which aimed to

provide a stable framework for evaluation of both clustering and differential expression
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techniques with the tag and sample information pre-designated. While this simulated
data was sensitive enough to assess the Poisson C / Poisson L algorithm, it is clear that
further work is needed to make this simulation method more suitable for analysis of

differential expression.

It appears that the method of incorporating the differential expression needs further
work - perhaps the method of simulating the proportions using the Power-law
distribution is not adequately sensitive. Another possibility is that the methods for
assessing differential expression may not be sufficiently sensitive for such a large number

of individual tags.

The work presented here could be further extended with additional investigation into
methods of detecting differential expression, error rates and false positives in the
datasets. With fewer limitations to the dataset more robust conclusions could be drawn
about the algorithms that, in theory, could be adapted for use on any form discrete data.
However from the work done here, there is there is evidence that the adapted Poisson C /

Poisson L algorithm is a promising technique for the analysis of deep sequencing data.

While the emergence of deep sequencing techniques is relatively new and still somewhat
unexplored in terms of statistical analysis, it has the potential to become the most
prominent technique in the sequencing of DNA due to the large number of tags it can
identify. There is a need to develop appropriate analysis techniques for the analysis of
such large but sparse datasets. The work represented here provides a useful contribution

in this direction.
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