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Summary 

The major part of the work presented in this thesis is an investigation of the strut and 

tie method for designing 2-D in-plane, reinforced concrete structures. Two important 

issues relating to this method are addressed. Firstly, the issue of visualising an 

appropriate strut and tie model is dealt with. In many situations it may be difficult to 

visualise an appropriate model for a given structural system. Here, a convenient 

method of visualising strut and tie models is presented. Using elastic finite element 

analysis, low stressed parts of a structure are removed in a step by step process until 

the main stress paths, which represent the ties and struts, are defined. 

The second important issue to be addressed is that of serviceability of the designed 

structure because the strut and tie model naturally represents a great departure from 

the elastic stress distribution. Since the strut-tie model is used to design for the 

ultimate load situation, it is necessary to assess the suitability of the same model in 

relation to serviceability characteristics of the resulting design. It is important that 

ductility of the structure should be maintained at ultimate loads while avoiding 

excessive deflections and cracking at service loads. A wide variety of structures were 

designed, and to assess the performance of each design, non-linear finite element 

analysis was used. Verification of some of the numerical results was carried out 

through physical testing in the laboratory which also allowed the serviceability 
behaviour of the structures to be assessed.. The test program comprised of three corbel 
joints and two frame corner joints. 

It was concluded that design from the strut and tie method can produce adequate 

performance both at service and ultimate loads. In terms of ultimate load prediction, 
the strut-tie method can produce results of comparable accuracy to non-linear finite 

element analysis 

As an interesting extension to the work here, the same visualisation process is also 

applied to the direct design of reinforced concrete slabs and the resulting designs are 

tested numerically using non-linear finite element analysis. 
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It was found that application of the visualisation process to the direct design of slabs 

can result in increases of steel provision, over that which results from the initial elastic 

pattern. However, in areas where the steel can be orientated along the direction of the 

principal moment paths, a reduction in steel provision can occur. Where a pre- 
determined steel layout is envisaged, the visualisation process can prove useful by 

directing the load paths accordingly. 
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Notation 

A, Area of steel 
Aý,, Area of steel in x-direction 
A, y Area of steel in y-direction 
B Shear retention factor at cracking strain of concrete 
[B] Strain matrix 
C19 C2 Tension stiffening coefficients 
C Strut 
[D] Elasticity matrix 
[D] Instantaneous elasticity matrix 
[D,, ] Rigidity inplane matrix for cracked concrete 
E Young's Modulus 
E, Young's Modulus of concrete 
Ei Instantaneous Young's Modulus of concrete 
Er, Young's Modulus of steel 
fc Effective compressive strength of concrete 
fc1f Cylinder compressive strength of concrete 
fcc Intermediate yield surface strength of concrete 
fcd Design compressive strength of concrete 
fc, Cube compressive strength of concrete 
ft Tensile strength of concrete 
fy Tensile strength of steel 
(F) Nodal forces vector in Cartesian coords 
IF) Nodal forces vector in local coord system, (n, t) 
G Shear modulus 
H Strain hardening parameter for steel 
[K] Stiffness matrix 
M Bending Moment 
MIP M2 Principal Moments 
Md Design Moment 
MP Plastic Moment 
M11 MY9 My Applied Moments at in point in Cartesian coords 
Mn, Mt, Mnt Applied Moments at a point in local coord system (n, t) 
M, *, M y Design Moments in x and y directions 
Mu Ultimate Moment 
n,,, ny, n, Applied inplane forces in Cartesian coords 
N Total number of nodal points 
Ni Shape function associated with node I. 
P Applied load 
Pcr First cracking load 
Pd Design load 
PU Ultimate load 
q Intensity of uniformly distributed load 
rr Rejection Ratio 
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I/R Curvature 
I/Ry Curvature at yield 
(R) Residual force vector 
T Tie 
TC Concrete Tie 
T, Steel Tie 
[T] Transformation matrix 
U, V, W Displacements at a point in x, y, z coords 
uO, vO, WO Displacements at a point in the reference plane of a plate 
x, y, z Cartesian coord system 
Zi Distance from the reference plane to the centre of the ith layer 

Design compressive strength factor 
Shear retention factor 
Material factor 

7XZq YYZ Shear strain components in Cartesian coords 
(8) Nodal displacement vector in Cartesian coords 
Ecr Cracking strain of concrete 
co Strain at peak stress of concrete 
EX, Cy, 7Xy Strain components in Cartesian coords. 
ex Yield strain of steel 

Variation Of a evm from c; maxvM in a structure 
0 Angle of the principal plane 
Ocr Angle of crack with respect to x-axis 
OXI OY Rotations about x and y axes respectively 
On, Ot Rotations about n and t axes respectively 
V Poisson's ratio 
4,71 Local, (natural) coord system 
pxý PY Steel ratios in x and y directions 

Stress at a point 
Stress vector 

(; I s 02 Principal stresses 
aP Peak stress 
On Normal Stress 
a Oct Octahedral stress 
ax, GY9 (FXY Stress components in Cartesian coords. 
CFe vM Average von Mises stress in an element 
G max 

vM Maximum von Mises stress in structure 
Toct Octahedral shear stress 
TXY, TXzf orxz The shear stresses in xy, xz, yz planes respectively 

Reinforcement bar diameter 
oxg OY Transverse shear rotations about xz and yz planes respectively 
15 Convergence Tolerance 
(0 Degree of transverse reinforcement 
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Chapter I Introduction 

Chapter 1 

Introduction 

The strut and tie method presents a rational and consistent approach to the design of 

all parts in a reinforced concrete structure. With this approach, the load carrying 

mechanism of the structure is represented by approximating the *compressive stress 
fields as struts, and tensile stress fields as ties. The stress in the struts and ties should 

not exceed the allowable compressive strength of the concrete or yield strength of the 

steel respectively. 

In the design of structures by this method there are two important issues to be 

addressed. The first issue is that of the visualisation of an appropriate strut-tie model 
for a given structural system. In many structures there may be various load paths 

available and hence no unique strut-tie model exists. The second issue is that of 

validity of chosen models in relation to the serviceability and ultimate load 

characteristics of the resulting structure. It is important that the ductility of the 

structure should be maintained by ensuring that crushing of concrete prior to yielding 

of steel is avoided at design loads. Since the strut and tie method involves a re- 
distribution of the stresses from the elastic pattern, it is necessary to determine the 

extent to which that re-distribution can be allowed for, while preserving the required 

performance from the structure. Details of strut-tie model theory are given in the next 

chapter. 

The purpose of the work carried out here, is to address the two issues described above. 

In this work, visualisation of strut-tie models was carried out using elastic finite 

element analysis in combination with a procedure adapted from optimisation 
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Chapter I Introduction 

techniques. The visualisation process is the subject of chapter 4. This process was also 

applied to the direct design of reinforced concrete slabs. Direct design theory is also 
discussed in chapter 4. The effect of using the redistributed stress fields which result 
from visualisation, on the slab performance at service and ultimate loads was assessed 

using an in-house non-linear finite element program. A full description of the finite 

element method and the material model used for analysis is given in chapters 3 and 5 

respectively. The applicability of the visualisation process to direct design of slabs 

and the performance achieved is discussed in chapter 6 

Using the visualisation process, strut-tie models were developed for a number of 

structures. The test series presented here consisted of deep beams, corbel joints and 

comer joints. Analysis of these structures was carried out using the same finite 

element program as described above. In addition, three corbel joints and two frame 

comer joints from the series were physically tested in the laboratory. Details of the 

test-series and results are given in chapters 7 and 8. 

In this thesis, all references are listed in alphabetic order at the end. All figures are 

numbered according to the section in which they were first referenced. 
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Chapter 2 The Strut & Tie Method 

Chapter 2 

The Strut & Tie Method 

2.1 Introduction 
In the design of structural concrete, considerable effort has been spent on developing 

safe and efficient design procedures. There exists, however a difference in the level of 

accuracy employed in the design of each part of the structure, i. e. certain parts are 

designed from sound theoretical principles while other parts are designed from rules 

of thumb and past experience. Examples of this occur in the design of a column with a 

corbel joint. In this case, the column would be designed from bending theory, while 

the corbel may be designed from empirical formulae. Similarly, in the design of frame 

comer joints, the adjoining members of the frame are designed using bending theory, 

and the comer itself is treated empirically. All parts of the structure are of equal 

importance since their integrated behaviour will control the overall performance of the 

whole structure. It is therefore necessary to develop a consistent and unified approach 

to the design of members. The strut and tie method provides such a consistent method. 

Strut and tie models are discrete representations of the actual stress fields which result 
from a given applied load and support conditions in a structure. The models represent 
the load carrying mechanism of a member by representing the flow of internal forces 

within a structure through struts (representing compressive stresses) and ties 
(representing tensile stresses). 
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Chapter 2 The Strut & Tie Method 

2.2 Background 

The precedent for the strut and tie model can be found in the early investigations of 
Ritter (1899) and Morsch (1909). In their work a truss analogy was applied to a 
cracked reinforced concrete beam (fig 2.2). The truss analogy assumes that the 

concrete is incapable of carrying tensile forces and hence the beam is made up of a 
number of concrete struts which are separated by diagonal cracks. The struts on 
interaction with the stirrups and longitudinal reinforcement form a plane truss with the 
following components: 

e top and bottom reinforcement together with the concrete acting as top and bottom 

chords. 

o stirrups acting as vertical tensile web members. 

* concrete struts acting as diagonal compression web members. 

Although aware of the possibility of varying angle inclination for the diagonals, 

Morsch proposed the use of a 45-degree truss in order to simplify design. Many 

national codes have incorporated design methods based on this model e. g. BS 8110, 

Eurocode 2, however, only certain parts of the structure are dealt with. The truss 

analogy was later modified by Leonhardt (1965) by taking into account the thickness 

of the web on the internal distribution of forces. In this work, it was found that the 
diagonal shear cracks could be inclined over a range of 30'45' depending on the web 
thickness. The application of ultimate strength considerations to the truss model and 
the formulation of a scientific basis through plasticity theory of reinforced concrete 
was carried out by Thurliman et al. (1975), Muller (1976) and Marti (1985). This 

work furnished a logical design procedure but was limited to certain specific cases 
such as a deep beam. The strut and tie method has since been used for the analysis and 
design of deep beams and is adopted by national codes such as the Canadian Code, 

see Kong et al. (1977,1978,1990), Rogowsky & MacGregor (1§86,1988), Cook and 
Mitchell (1988), Tan et al. (1997,1998). Similarly the strut-tie method has been used 
for the design and analysis of pile caps, see Adebar et. al (1990,1996), Siao (1993), 
Huang et al. (1998). The use of generalised strut tie models, able to be applied to all 
parts of the structure was proposed by Schlaich et al. (1987,1991). In this work the 
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Chapter 2 The Strut & Tie Method 

elastic stress paths of the structure which have been realised through finite element 

analysis, are used to create the strut-tie model. 

The visualisation of an appropriate strut and tie model is a significant problem. 
Development of the model is an iterative procedure and there is often no unique 

model associated with a given structure. Alshegir and Ramirez (1992a) developed a 

means of constructing the strut and tie models by means of elastic finite elements and 

an interactive computer graphics package. With this method the user is able to 

superimpose the strut or tie member over the elastic principal stress plot in order to 

develop the model. The model when completed, is automatically discretised and 

analysed as a truss in order to obtain the member forces for design. Examples of the 

application of this procedure were presented by Alshegir and Remirez (1992b) for the 

case of a pre-tensioned deep beam, and by Yun et al. (1994) with a corbel joint. This 

method is similar to that of Schlaich et al. in that the model is derived from the elastic 

principal stress pattern. The advantage of this method is that it makes for ease of 

computation since the model is automatically discretised and analysed and allows the 

model to be adjusted easily if members are found to be inadequate. However, one 
disadvantage of the system is that in many cases the main stress paths are not clear 

and hence any number of strut-tie models may result. In the system used in this thesis, 

the main stress paths are identified automatically, which then helps to identify a 

unique strut-tie model solution. 

The procedure developed by Alshegir and Ramirez (1992a), was further extended by 

Yun (1997,2000), by carrying out non-linear analysis of the plain concrete structure, 

and using the resulting principle stress flows to generate the strut and tie model. 
Hence, in this case, the strut-tie model is derived from a redistributed stress field. This 

may in some cases allow for ease of identification of main stress paths. However, by 

deviating from the elastic pattern, it must be ensured that the resulting strut-tie model 
does not exceed the ductility capacity of the structure. 
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Chapter 2 The Sftut & Tie Methcd 

2.3 " Strut-Tie Terminology 

2.3.1 Structure's B and D regions 
Due to the presence of concentrated loads and changes in geometry, the stress and 

strain distributions within a structure are not always uniform. Schlaich et al (1988) 

proposed that the structure be categorised into one of two regions B or D depending 

on the strain distribution present. The respective B and D regions of a typical 

cantilever beam are shown in figure 2.3.1 (a) 

A 'B-region' is an area of the structure where the strain distribution is linear and stress 
distribution is smooth or undisturbed as can be seen from figure 2.3.1 (a). The term 'B' 

stands for Bernoulli since in these regions Bernoulli hypothesis of plane sections 

remaining plane is assumed valid. In an uncracked section, the internal forces and 

stresses can be calculated from moment, shear and axial forces using well defined 

formulae from bending theory. In a cracked section, the truss model can be applied to 

derive the internal stresses. 

Where the strain distribution in a structure becomes non-linear, the region is described 

as a 'D-region'. The term 'D' stands for discontinuity or disturbance in this case. Such 

a disturbance of stress distribution can occur at concentrated loads, comers, bends 

and openings. Some typical D-regions of a structure are shown in figure 2.3.1(b). 

Because the strain distribution is significantly non-linear in these regions, Bernoulli 

hypothesis is no longer valid. The design of D-regions has in the past been based upon 

rules of thumb and past experience. It is proposed to implement the strut and tie 

method in these regions as a means of rational design. Using the strut and tie model, 

approach, the first stage of design would be to divide the structure up into its 

corresponding B and D regions. The truss model for the B-regions can be readily 

applied and only the strut and tie models for the D-regions need to be developed 
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Chapter 2 The Strut & Tie Method 

2.3.2 Identification of D-regions 

The identification of D-regions within the structure is relatively straightforward when 

examining the stress plot of a structure. At the D-region, the flow of the stresses 

becomes disturbed, the direction of stress flow will change rapidly and the stresses 

become non-uniform. The extent of a D-region boundary can be defined through 

application of the Saint Venant principle (see ref. 102). This states that the stress 

distribution at a point far removed from the point of load application will depend 

purely on the resultant force and not upon the actual distribution of forces. As a means 

of illustrating this procedure the column shown in figure 2.3.2(a) was analysed using 

elastic finite elements. The figure details the elastic principal stress plot. It can be 

clearly seen that the stresses around the concentrated load are high and have a steep 

gradient. The stresses gradually spread out moving away from the load point until a 

uniform state of stress is reached i. e. a B-region. The boundary between the B and D 

region can be assumed to lie at a distance h from the applied load, where h is equal to 

the width b of the column. The stress plots at sections 1-4 in the column illustrate the 

stress variation in each region. At sections 2 and 4, the stress is non-uniform, reaching 

a peak close to the point of load application. At sections I and 3, which are removed 

from the point of load application, the stress is uniform. 
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Chapter 2 The Strut & Tie Method 
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h -4 

Ea h2 
h 

&h 

t--h2 h, 

hl- 

i) Geometrical Discontinuities 

hl 

2xh 

IIIIIII1I11 

t 

-h- 

T- 

f 

ii) Statical and/or Geometrical Discontinuities 

fig. 2.3. I (b) Typical D-regions 

9 

,;:! 7" 



Chapici 2 'Flic Strul &, I ic Method 

2 @0.3b 

-b 
D-region 

CFY 
I (a-) 1 

.3 
I'll 

B-region 

-5b 
43 

O. 8b 

compression El 
tension m 

a) Elastic Principal Stresses 

(distance along section) /b 

5 

Section 1-1 
0 

Section 2-2 
u 

-l 

-2 

b) Vertical Stresses at 1 &2 

c) Horizontal Stresses at 3&4 

fig. 2.3.2 Identification of D-regions 

10 



Chapter 2 The Strut & Tie Method 

2.3.3 General Principles of Strut and Tie model 
Consider the deep beam shown in figure 2.3.3(a). The beam is discretised into a mesh 

of many elements and the elastic principal stress diagram is shown in fig. 2.3.3(b). 

One of the elements is shown in (a), is orientated along its principal stress direction 

which is also the main direction of force flow. Since the tensile stresses at this 

location are known, the amount and corresponding orientation of reinforcing steel can 

be provided for. Similarly, the compressive stress at this point can be checked as to 

whether it is within the compressive strength limits of the concrete. 

The design of a whole structure by this element by element method would be too 

tedious, time consuming, and could lead to difficulties in reinforcement detailing. In 

the strut and tie approach, the stress fields along these paths are replaced by a: system 

of struts and ties joined at nodes. The internal stresses acting on the strut and tie 

model can be found from the overall analysis of the structure using equilibrium 
between the applied loads and inner forces. From the data, the struts, ties and nodal 

regions can be designed using appropriate procedures. 

The strut and tie method dictates that the structure is designed according to the lower 

bound theory of plasticity. In the case of concrete, only limited plastic deformation is 

permitted and the strut and tie model have to be chosen in such a way that the 
deformation capacity is not exceeded at any point before the assumed state of stress is 

reached in the rest of the structure. Thus a ductility requirement is imposed, which in 

the case of highly stressed regions of the structure, is fulfilled by adapting the struts 
and ties of the model to the direction of the main force flow resulting from elastic 
analysis. In the case of a normally or lightly stressed region, the strut/tie directions 

can deviate from the elastic pattern, by a limited amount, without exceeding the 

structure's ductility. As a result of this adaptability, it is possible to arrange the ties 

and hence reinforcement according to practical detailing considerations. In this 

process it is assumed that the designed structure can adapt itself to the assumed state 
of internal structural system, without excess demand on the ductility of the cross 
section. 
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2.4 Dimensioning Struts, Ties and Nodes 

2.4.1 General Procedure 
Figures 2.4.1 a-c show some common stress fields occurring in structures and the 

resulting strut and tie model. The resulting stress fields were derived from elastic 

finite element analysis. Each of these strut-tie models can be analysed from statics 

and the resulting struts, ties and nodes can be dimensioned. The process of 

dimensioning involves sizing the individual struts and ties for the forces they carry but 

also ensuring the load transfer between these members by checking the nodal zones. 

Because nodal zones concentrate the flow of forces, choice of node detail will affect 

the strength of the struts bearing on to them and the ties anchored in them. For this 

reason it may be necessary to check whether a chosen strut-tie model is still valid after 

detailing. 

2.4.2 Strut and Tie Types 

The types of strut and ties to be dimensioned can be generally categorised as one of 

the following: 

1. Q: concrete struts in compression 
2. Tc: concrete ties in tension without reinforcement 

3. T,: ties in tension with reinforcement 

T, can be considered as one dimensional elements between two nodes. The Cc and Tc 

are two-, or three- dimensional stress fields which tend to spread in between adjacent 

nodes. The spreading as illustrated by the bulging of the struts in fig. 2.4.1(b) can 

result in transverse tensile and compressive stresses. The effect of these transverse 

tensile stresses must be accounted for by adapting the failure criterion of the strut (i. e. 

reduction of design compressive strength) , or by adapting the strut-tie model (i. e. 

introduction of additional ties) 

Some of the commonly occurring compression stress fields can be defined as one of 

three configurations: 

I 
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1. The fan shaped stress field: this is an idealised stress field with negligible 

curvature and where transverse stresses are not developed (fig 2.4.2(a)) 

2. The bottle shaped stress field: in this type the bulging stress trajectories develop 

considerable transverse stresses. Such transverse stresses will initiate cracking and 

substantially reduce the compressive strength of the strut. Therefore, such areas 

need to be reinforced to take account of this. (fig 2.4.2(b)) 

3. The prismatic or parallel stress field: is the limit case of both a--O and b/a--I, (fig 

2.4.2(c)). 

2.4.3 Node Types 
Nodes are the regions of the model where the strut and ties meet. They are a 

simplified idealisation of reality. The introduction of a node implies an abrupt change 
in the direction of forces. In the actual reinforced concrete structure this deviation will 

take place over a specific length and width. The nodal types which occur in strut-tie 

models can be categorised as either smeared or singular. Examples of each of these 

node categories are shown in figures 2.4.1 (a-c). 

At a nodal region where one of the struts or ties represents a concentrated stress field, 

the deviation of forces will tend to be locally concentrated. In this case, the resulting 

node is referred to as a singular node. Conversely, where wide compressive stress 
fields meet with other compressive stress fields or tensile ties, the deviation of forces 

will be spread or be smeared over a particular area. These type of nodes are referred to 

as smeared nodes. Within these two types of categories, there are in practice, four 

types of nodes which can be formed depending on the combination of adjoining struts 
(C) and ties (T): 

1. CCC-node: nodes where the intersection of three compressive stress fields or 

struts occurs. Examples of this type of node are illustrated in figure 2.4.1(b). A 

schematic view of the stress fields in these nodes is given in figure 2.4.3(a). 

14 
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2. CCT-node: occurring when a tensile stress field meets two or more compressive 

stress fields. Details of these nodes are illustrated in figure 2.4.3(b) and an 

indication of tie force anchorage and bond are given. These types of nodes occur 

frequently in common structures, such as at the supports of a simply supported 

deep beam. 

3. C77 node: compressive stress fields meeting two or more tensile stress fields. 

These type. of nodes will often occur in geometrical discontinuities such as comer 

joints. A CCT node is formed in a comer joint under a closing moment, where the 

diagonal strut meets the horizontal and vertical tie. 

4. TYT node: occurring when three or more tensile stress fields meet. This can occur 

at the inner junction of a corner joint under an opening moment. (fig2.4.3(d)) 

2.4.4 Dimensioning of Ties 

2.4.4.1 Reinforcement Ties 
Reinforcement is normally provided to carry the tensile forces since the tensile 

strength of concrete is deemed to be negligible. Thus the required reinforcement for 

the tie can be calculated from: 

(A,, ) (I /y) (f y) 'a T. 

where T, is the tie force, A, is the cross sectional area of the reinforcing steel, fy is the 

yield stress of the steel and y is a material factor. 

2.4.4.2 Concrete Ties 

For the case of uncracked tensile stress fields, the concrete tensile strength can be 

taken account of in the design. By consistently following the flow of forces within the 

structure to generate the strut-tie model, it may often be found that equilibrium can 

only be satisfied through the consideration of ties in areas where for practical reasons, 

reinforcement cannot be provided and hence concrete tensile strength must be utilised. 

Schlaich et al (1987) proposed some guidelines and an empirical formula based on the 

experimental work of Reinke (1986), for the use of concrete tensile strength. The 

tensile strength of concrete should only be used to achieve equilibrium in areas where 

no progressive failure is anticipated. Thus, restraint forces and micro-cracks have to 
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be taken into account whether the concrete is loaded or unloaded, cracked or 

uncracked. Redistribution of stresses in a structure which avoids progressive cracking 

is assumed to take place under the condition that at any point in a cracked failure zone 

of area Ak 
, 

the remaining increased tensile stresses do not exceed the tensile 

strength ft (fig 2.4.4.2a). As an initial proposal, the following formula was suggested 

by Schlaich et al. (1987): 
2 AA, = 4d g and ý! A,: t/ 10 

where A, t is the area of the tension zone and dg is the diameter of the largest 

aggregate. In practice, it is desirable not to rely on the tensile strength of concrete in 

the design as the only means of carrying tensile force. 

2.4.5 Dimensioning of Struts 

The dimensioning of the struts is more complicated than for ties since the state of 
stress present within the strut member can be multi-axial. Depending on the existing 
state of stress within the strut, the attainable compressive strength or effective stress 
f, within the concrete will vary. For the case of bi-axial compression-tension, the 

compressive strength of the concrete will decrease as the tensile stresses increase. For 

the case of bi-axial compression-compression, the compressive strength will increase 

as the stresses increase. 

Investigations on the effective strength of concrete struts have been carried out by 

many researchers such as Nielsen et al. (1978), Vecchio and Collins (1982). At a basic 

level, the effective strength of a concrete strut is defined as some fraction of the 

concrete cylinder compressive strength f, ' i. e. 

fc = ((X)(fc') 
where (x is a factor taking into account the effect of the given stress state. Based on 
test results, empirical equations for the effective stress levels of concrete struts have 
been derived. The following empirical equation was proposed by Nielsen et. al (1978) 
for the effective stress of concrete struts in beam webs: 

fc = 
(0.7 

- Tf CC,, 
')f 

C, 

20 



Chapter 2 The Strut & Tie Method 

This formula was limited to cases where f, ' < 60 MPa. Ramirez and Breen (1983), 

proposed a value of 2.82(f, )/4(f, ) as an estimate of the maximum diagonal 

compression stress for beams and beam type regions. Marti (1985) proposed an 

average effective stress level of 0.6 (f, ') for all types of struts -and nodes. Bergmeister 

et al. (199 1) proposed an equation for effective stress levels of concrete struts which is 

applicable for 20< f, <80 MPa: 

fe = (0.5 + 1.25/4f, ')fc' 

For comparison, the equations described above are shown for a range of cylinder 

strengths in figure 2.4.5(a). It can be seen, that a large difference in values is obtained. 

All the equations described so far, do not take into account the individual stress-state 

characteristics of a given strut. They simply serve as an empirical upper limit for 

design strength. Depending on the choice of equation, a wide range of concrete 

strengths would be required in design. In the work by Schlaich et al. (1987) and 

MacGregor (1988), strut types were categorised according to geometry and stress 

state. Applicable effective stress levels were suggested for each strut category. A 

summary of these categories is given in table 2.4.5. These values were based on 

experimental work. Further work by Alshegir (1992), determined the effective stress 

levels of concrete struts from the analysis of experimental results from four 

continuous deep beams, subjected to two point loads, three pre-stressed deep beams 

subjected to high shear stresses and four simply supported beams with varying stirrup 

reinforcement. The resulting formulae are also shown in table 2.4.5. 

As a means of quantifying the qualitative descriptions of the strut condition, the 

tensile stress ratio (al / f. ') corresponding to the compressive strength reduction is 

also given in table 2.4.5. The ratio was derived from the bi-axial failure envelop of 

Kupfer et al (1969). In general, the proposals are consistent with one another and are 

conservative. It can be seen from the table that the smallest reduction in compressive 

strength is 5%. Using the description of the strut condition corresponding to this 

reduction, it would be assumed that the strut is in a state of uni-axial or bi-axial stress. 

Le al: 5.0.0. From the bi-axial envelop of Kupfer et al. a corresponding tensile stress 

ratio of 2% is associated with this reduction in strength. For the most seriously 
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cracked strut, a 75% reduction in compressive strength is proposed and this 

corresponds with a tensile stress ratio of 9.5%. 

Effective Concrete St t Condition Proposed by 
stress 
level Kupfer et. al. 

(1969) 
0.85 f,: ' Undisturbed and uniaxial state of compressive Schlaich et al. 5% 

stress such as in a prismatic strut. (1987) 
0.68 Tensile strains and or reinforcement perpendicular Schlaich et al. 7.5% 

to the axis of the strut that may cause cracking (1987) 
parallel to the strut with normal crack width. 

0.5 1 f, ' Tensile strains causing skew cracks and/or Schlaich et al. 8.5% 

reinforcement at skew angles to the strut's axis. (1987) 
0.34 f, ' For skew cracks with extraordinary crack width. Schlaich et al. 9% 

Skew cracks would be expected if modelling of the (1987) 

struts departs significantly from the elastic flow of 
internal stresses. 

0.50 Isolated compression struts in deep beams or D- MacGregor 8.5; 7o 

regions (1988) 
0.25 f, ' Severely cracked webs of slender beams with strut MacGregor 9.5% 

angle of 30' (1988) 
0.45 f, ' Severely cracked webs of slender beams with strut MacGregor 8.7% 

angle of 45' (1988) 
0.85 f, ' Moderately confined diagonal struts going directly Alshegir 5% 

from point load to support with shear span-depth (1992) 

ratio less than 2.0. 
0.75 f, ' Struts fom-dng arch mechanism Alshegir 6.5% 

(1992) 
0.50 fe' Arch members in pre-stressed beams and fan Alshegir 8.5% 

compression members. 
0.95 f, ' Undisturbed and highly stressed compression struts Alshegir 2% 

(1992 
Table 2.4.5 Effective Stress Levels in Concrete Struts 

Yun and Ramirez (1996) proposed a method of determining the effective stress of 

concrete struts from the principal stress ratios. These ratios are determined from finite 

element analysis by averaging the principal stress ratios present within each element 

of a finite element mesh. Experimental work on two-dimensional concrete under bi- 

axial states of stress was carried out by Kupfer et al. (1969), and the relationship 
between effective stress and principal stress ratio derived from this work is detailed in 

figure 2.4.5(b). Once the principal stress ratios have been found, the effective stress is 

derived from interpolation of figure 2.4.5(b). The use of figure 2.4.5(b) is limited to 

struts inclined up to ±10' from the principal compressive stress flows, after which 
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account must be made of the inclination. In cases where the strut angle deviates 

outside this limit, then the value obtained from figure 2.4.5(a) is multiplied by cos 0, 

where 0 is the deviation angle between the strut and the compressive stress flow. 

Depending on the level of confinement provided by reinforcement, anchorage or 
bearing plates, the effective stress level is increased from 5-20%. This method is 

advantageous since the use of finite element analysis, makes it is easy to determine the 

stress-state characteristics of an individual strut. Using the bi-axial yield criterion 
described, it is then straightforward to assign the appropriate effective stress for 

design. 

For the particular case of dimensioning the bottle shaped compression stress field, 

Schlaich et al. (1987) proposed the diagram shown in figure 2.4.5(b), based on the 

experimental work of Reinke (1986). This case occurs when compressive forces are 
introduced to concrete which is unreinforced in the transverse direction. The 

spreading of the forces in the transverse direction causes biaxial or triaxial 

compression under the point of load application and transverse tensions further away 
from the load. The stress field is characterised by the width of the anchor plate a, the 

maximum width b available for the stress field in the structure, and the distance I of 
the anchor plate to where the stresses become more uniform, i. e. the D-region ends. 
The chart shows the permissible ratio of applied pressure (pa) to the concrete design 

compressive strength (fcd) (for an undisturbed uni-axial compression field). The plot 
for compression fields without transverse reinforcement (shown as the bold line) is 

based on elastic analysis with a concrete tensile strength ft = fc'/15. 

The chart also takes into account the effect of transverse reinforcement. The amount 

of transverse reinforcement co, is measured as 
())--: asfsy/t fcd 

where a., is the area of steel and f. y is the yield stress of the steel. 

23 



Chapter 2 The Strut & Tie Method 

40 

35 

30 

.2 is tn 

25 

U 

0 

20 

is 

0 Nielsen et. al (1978) 

--D- Ramirez et. al (1983) 
6 Marti (1985) 

--0- Bergmelster (1991) 

10 ii 
10 15 20 25 30 35 40 45 so 55 60 

cylinder strength fc' 

fig. 2.4.5(a) Empirical Formulae for Effective Stress fc in Concrete Struts 

upper limit ....................................................................................... 

0.9 

0.8 

0.7 

. j7 0.6 
Z: 

0.5 

0.4 

0.3 

0.2 

lower limit 
0.1 ........................... 

0iiiiii 
0 10 20 30 40 so 60 70 80 

-(ollo2) 

fig. 2.4.5(b) Effective Stress f. in the Strut, Yun & Ramirez (1996) 

24 



Chapter 2 The Strut & Tie Method 

0) 
- --blaxiat compression failure 

n bottle neck 

-crodaad. but with 
trunsverse reinfOltMent 
(daypew) in the 
belly region 

-uncracked. ptain conaPle 

ItnemEnt 

b) a-r 

b 

4+- 
P,, 0 

fig. 2.4.5(c) Dimensioning of Bottle-shaped Compression Fields, Schlaich et al (1987) 

a) Chart showing safe bearing pressure P,,, with regard to cracking and crushing of plain unreinforced 
concrete stress fields, yielding of transverse reinforcement and biaxial compression failure in the bottle 

neck region, b) geometry of stress field, c) model and reinforcement layout of stress field with 
transverse reinforcement Co. 

Is 

a) Original nodal region intersected by 
5 one-dimensional stress fields 

fig. 2.4.6 Determination of nodal zone shape, Schlaich et A (1990) 

25 

b)New nodal stress field 



Chapter 2 The Strut & Tie Method 

2.4.6 Dimensioning of Nodes ý 
In the strut and tie method of design, the bearing capacity of the nodal zones are of 

paramount importance. Since the size of nodal zone formed by the intersection of 

incoming stress fields can be smaller than that of the existing boundaries of the struts 

and ties, there is a greater potential for crushing and or cracking in the nodal zone. 

Thus safe nodal zone design is necessary for the safety of the whole structure. The 

strength of concrete in nodal regions is dependent upon a number of factors relating to 

the stress conditions present. There are three main conditions occurring which will 

affect concrete stress in the nodal zone: 

9 level of confinement provided by reactions, compression struts, anchorage plates 
for pre-stressing, bearing plates, reinforcement from adjoining members and hoop 

reinforcement 

9 strain discontinuities present within the nodal zone such as when ties are anchored 
in or across a compressed nodal zone 

a splitting stresses occurring from anchorage of reinforcing bars in or directly 

behind a nodal zone. 

As for the concrete struts, various formulae defining the design stress limits for nodal 

regions have been proposed. In the case of singular nodes, which are bottlenecks of 

the stresses, Schlaich et al. (1987) suggested as a general rule, that the entire D-region 

would be safe if the pressure under the most heavily loaded bearing or anchor plate 

was less than 0.6 fcd- In this case, fcd is the concrete design strength defined as a 

fraction of the concrete cylinder strength,, y, is a material factor: 

fcdý (0.85 fc")/(yc) 

This assumption was based on the fact that all significant tensile forces were carried 
by the reinforcement and that sufficient development lengths for the reinforcement 

were achieved. The 1984 Canadian Code limits the concrete compressive stresses in 

nodal zones to 0.850(f,, ') in nodal zones bounded by compression struts or bearing 

areas, 0.750(f, ') in nodal zones anchoring only one tension tie and 0.60(f, ') in nodal 

zones anchoring tension ties in more than one direction, where 0 is a safety factor. 
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These formulae are based on experimental work and are similar to those described in 

the previous section. 

A procedure for evaluating the stresses in CCC nodes with equal or unequal stress 

fields using Mohr's circle technique was developed by Marti (1985). In this technique, 

the tie forces are converted to compressive forces acting behind the nodal zone by 

anchoring the tie using end plates. Marti proposed that the nodal zones could be 

stressed up to 0.6fc' along with the concrete struts. This idealisation is close to reality 

since the anchorage of the tensile reinforcement will tend to generate compressive 

force behind the nodal zone as shown previously in figure 2.4.3(b). 

Schlaich et al (1987) and MacGregor (1988) proposed values of effective stress levels 

in nodal zones, taking into account the state of stress; a summary of these is presented 

in table 2.4.6. A general procedure for checking the nodal stresses based on geometry 

was proposed by Schlaich and Anagnostou (1990). In this work, the geometry of the 

nodes is only limited by the existing boundary of the incoming members and not by 

the area formed by the intersection of the stress fields reaching the node. In contrast to 

a real truss, the nodal geometry of an idealised strut-tie model is not limited. The 

node is surrounded by concrete whose compressive strength may be exploited. The 

stress fields consists of several triangular and rectangular areas which are separated 

by lines of stress discontinuity. The stress state in each of the fields is either uniform 

or hydrostatic, as in figure 2.4.3(a). The introduction of transition stress fields allows 

nodal zones for stress fields of different intensities to be formed (see fig 2.4.6a). 

The effect of confinement upon the nodal zone effective stresses was studied by 

Bergmeister et al. (1991). He proposed effective stress equations for nodes confined 
by spiral reinforcement, square confined nodes with or without longitudinal 

reinforcement, unconfined nodes with bearing plates and triaxially confined nodes. A 

summary of these formulae is presented in table 2.4.6. More recently, Adebar and 
Zhou (1993), carried out experimental work on the compressive strength of struts 

confined by plain concrete. Concrete cylinders of varying diameters and heights were 
loaded over a constant bearing area. The travel time of an ultrasonic pulse was used to 
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indicate the level of cracking. It was found that the level of cracking depended on the 

amount of confinement provided by the plain concrete and the height/width ratio of 

the concrete strut. From this work and analytical studies, they proposed some 

equations for bearing strength. The maximum bearing stress when designing D- 

regions without sufficient reinforcement is limited to 

f c: ý 0.6fc'(1+20cp) 

where 
0.33 ( (A2/A 1) 

112_ 1) :51 .0 

p=0.33(h/b-l):! ý 1.0 

The ratio h/b is the height/width or aspect ratio of the strut and should not be taken as 

less than one. The parameter (x accounts for the level of confinement and the 

parameter P accounts for the geometry of the compression stress field. A, and A2 

represent the load area and the supporting surface area respectively. A lower limit of 

0.6fc' for the bearing stress was suggested for areas where there is no confinement and 

an upper limit of 1.8f,, ' was suggested. Again, these proposals are similar to those 

described earlier in the section and given in table 2.4.6. Similarly, the corresponding 

tensile stress ratios from Kupfer et al. (1969) are presented. The proposed values are 

consistent and conservative. The following section provides a generalised procedure 
for the design of singular and smeared nodes. 

2.4.6.1 Singular nodes 
In singular nodes the deviation of forces is often made more abruptly than in smeared 

nodes. These nodes mainly originate from single loads or support reactions, from 

concentrated forces introduced by the reinforcement through anchor plates, bond, or 

radial pressure inside bent bars such as loops. In addition to these, geometrical 

discontinuities such as re-entrant comers will cause stress concentrations which are 

represented by a singular node. 
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Effective stress level Node Type Proposed by a, / f" 

Kupfer et. al. 
(1969) 

0.85 fc' Compression-compression- Schlaich et al. 5% 
compression (1 87) 

0.68 fe' Nodes where reinforcement is Schlaich et al. 7.5% 
anchored in or crossing the (1987) 
node 

0.85 fý' Nodes bounded by MacGregor 5% 
compressive struts and (1988) 
bearing areas 

0.65 f, ' Nodes anchoring one tension MacGregor 7.5% 
tie (1988) 

0.5 fc' Nodes anchoring tension ties MacGregor 8.5% 
in more than one direction (1988) 

0.8 fe, Unconfined nodes without Bergmeister et al. 6% 
bearing plates (1991) 

fe': 5 27.6 MPa 
(0.9-0.25 f, '/69) fc' Unconfined nodes without Bergmeister et al. - 

bearing plates (1991) 
27.6: 5 f, ': 569 MPa 

0.65 fr' Unconfined nodes without Bergmeister et al. 7.5% 
f,, ' '? - 69 MPa bearing plates (1991) 

k fc"(A/Abf'5+ Confined nodes Bergmeister et al. - 
a(Ac _S/d)2 , om/AbAdl 

(1991) 

k fc"(A/Ab )0*5 Unconfined nodes with Bergmeister et al. 
bearing pl es (1991) 

2.5 f, ' Triaxially confined nodes Bergmeister et al. 
(1991) 

Note: 

A= area of confined concrete, Ab = area of bearing plate, Ac.,, = area of confined strut, 
flat = lateral pressure = HyAý(ds) for f, "< 48.3 MPa ; 2fyAJ(ds) for fc' > 48.3, 
s= pitch or spacing of confinement reinforcement, d= diameter of confined core, 
cc = parameter (4.0 for spiral confinement, 2.0 for square closed hoop confinement anchored with 
longitudinal reinforcement, 1.0 for square closed hoop confinement without longitudinal 
reinforcement anchorage) 
k=0.5 + 1.25/4f, 

Table 2.4.6 Effective stress levels in nodal zones 

In general, equilibrium in singular nodes is achieved by the balance of forces in the 
interior of the node through direct concrete compressive stresses. In the ideal 

situation, tie anchorage is, provided by an anchorage plate which transfers the load 

from behind the node thus causing compression in the node (fig. 2.4.3. b(i)). Bond is 

essentially load transfer via concrete compressive stresses which are supported by the 
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ribs of the steel bar (fig 2.4.3. b(ii)/(iii)) and by radial pressure in bent bars (fig. 

2.4.3. b(iv)). The dimensioning of a singular node involves three main steps: 

e Adapting the geometry of the node with the applied forces: In the case of CCC- 

nodes the borderline of the node can be assumed. to be perpendicular to the 

resultant of the stress field and the state of stress within the interior of the node to 

be plane hydrostatic. (fig 2.4.3. a(i)). In this case the resulting geometrical relation 

al: a2: a3 -. 2 CI: C2: C3 can be used to dimension the length of the support or the width 

of an anchor plate. 

e Checking the concrete stresses are within the associated limit: This condition is 

automatically satisfied for the entire nodal region if the stresses along the 

borderlines of the node do not exceed those limits and if the reinforcement 

anchorage if sufficient. In the case of CCT nodes (fig 2.4.6.1) with bonded 

reinforcement, it is sufficient to check the concrete stresses a, and a2 in the 

adjacent compression struts. In most cases it is clear from the geometry of the 

node which of the pressures out the two struts is the controlling pressure and 
hence it is necessary to analyse only one. Figure 2.4.6.1 shows a number of multi- 
layered and singly reinforced CCT nodes and the dimensioning limits proposed by 

Schlaich et al (1987). 

e Provision of adequate anchorage for ties in the nodal zone: For anchor plates, this 

involves a check on the bending strength of the anchor plate and the welded 

connection with the tie. In this case, a tie having a smooth surface where it crosses 

the node is better than good bond quality because strain compatibility within the 

bar will tend to crack the concrete within the node. In the case of directly 

anchored reinforcing bars, hoop or loop anchorages are preferable. For straight bar 

anchorages, the design engineer must ensure that anchorage is located within and 

behind the node as shown in fig 2.4.3. b(i-ii). Anchorage begins where the 

transverse compression stress trajectories of the struts meet the bar and are 

deviated; in order to catch the outermost fibres of the deviated compression field , 
the bar must extend through to the opposite end of the nodal region. 
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2.4.6.2 Smeared nodes 
It is non-nal for D-regions to contain both singular and smeared nodes. In most cases 

the singular nodal region is most critical and a check on concrete stresses within the 

smeared node is unnecessary since the applied stress levels are less than in the 

singular node. In addition, the geometry of the smeared node may be of a similar 

magnitude to that of the singular node. This gives rise to the rule of thumb proposed 

by Schlaich et al; that the structure is safe, if the stress under the most heavily loaded 

bearing plate is less than 0.6fcd- 
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Chapter 3 

The Finite Element Method 

3.1 Introduction 
Since the work presented in this thesis involves finite element analysis, it is necessary 
to introduce some of the relevant theory and a description of the program used here. 

The finite element method provides good approximate solutions to problems where a 

closed form or exact solution is impractical. In a structural continuum the actual 

number of degrees of freedom is infinite. An approximate solution can be found by 

dividing the continuum into a series of elements with a finite number of degrees of 
freedom, this process is known as discretisation. The resulting array of elements is 

referred to as thefinite element mesh. In essence an approximate solution is achieved 
by assuming that the behaviour of the continuum can be represented by a finite 

number of unknowns. 

The method has applications in many different fields, with each application coming 

under one of three headings: 
V- 

Equilibrium Problems: here the system does not vary with time e. g. stress analysis 

of linear elastic systems, electrostatics, steady state thermal conduction etc. 

o Eigenvalue Problems: here critical values of certain parameters must be obtained 

e. g. stability of structures, vibration problems, frequency calculations etc. 
e Propagation Problems: involves time dependent behaviour e. g. hydrodynamics 

and dynamic transient analysis of elastic continua. 

34 



Chapter 3 The Finite Element Method 

The finite element method will accommodate the inclusion of non-linear 

characteristics which invariably adds to the complexity of the problem. Finite element 

stress analysis can be carried out using three basic approaches: 

" The displacement method: here the displacements are chosen as the initial 

unknowns and the stresses are determined from the calculated displacement field 

" The equilibrium method: here the stresses are the initial unknowns and the 

displacements are calculated from the resulting stresses. 

o The third is the hybrid or mixed method in which the displacements and the 

stresses are employed simultaneously as variables. 

The displacement method is the most commonly used due to its ease of 
implementation in programs. This method was implemented in the program used in 

this work. 

3.2 General Theory 
In structural applications, the governing equilibrium equations are obtained by 

minimising the total potential energy 7c of the system. 

7C =1 
L[O]TC 

dV- L[S]Tp. dV _ 
fS[B]T 

q. dS 
2 

where: 

a stress vector 

e strain vector 

8 displacements at any point 

p= body of forces per unit volume 

q= applied surface tractions 

V= volume of the structure, S= loaded surface area 

(3.1) 

The above equation is known as the functional. On the right hand side of the 

functional the first, second and third terms represent respectively; internal strain 

energy, work contributions of body forces and work contributions from surface loads 
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In the finite element displacement method, the displacement is assumed to have 

unknown values only at nodal points, so that the variation within any element is 

described in terms of nodal values by means of interpolation functions or shape 

functions i. e. 

8=N 6' (3.2) 

where N is the set of shape functions and W is the vector of nodal displacements of the 

element. The strains within the element are expressed in terms of the nodal 

displacements via the strain-displacement relationship: 

F, = BY (3.3) 

where B is the strain matrix which is composed of derivatives of the shape functions. 

Likewise the stresses are related to the strains via the elasticity matrix D: 

a=De (3.4) 

The total potential energy of the continuum is the sum of the energy contributions 

from each individual element (provided that the chosen shape functions are so as to 

cause no singularities in the integrands of the functional). i. e. 

7r = Dre 

e 

(3.5) 

where ire represents the total potential energy of element e which on use of the 

functional can be written 

7re =I, jT [B]TDBSe. dV-j [3e]T [N]Tp. dV_ Js. WIT [NIT q. dS) (3.6) 
(2 

JV 

. 
13e 

ve 

where V, is the element volume and , Se the loaded element surface area. 

Differentiation of the above equation with respect to the nodal displacements W for 

the element results in : 

3ne 
= 

(jv 
([B]T DB)8e. dV - Jv [N]T P. dV -js. [N]T q. dS) =K e5e - F' (3.7) 

a8e 

where 

Fe =j V. 
[N]Tp. dV + Js. [N] T q. dS (3.8) 
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are the equivalent nodal forces for the element, and 

KC=L 
0 

[B]T DBAV (3.9) 

is termed the element stiffness matrix. The summation of the terms in equations 3.8 

and 3.9 over all the elements when equated to zero results in a system of equilibrium 

equations for the complete continuum. These equations can be solved by a standard 

technique such as Gaussian elimination in order to obtain the nodal displacements. 

From this the element stresses can be obtained using the aforementioned relationships. 

The following is a summary of the basic steps involved in the solution of equilibrium 

problems by the finite element method: 

e Creation of a finite element mesh i. e. discretisation. 

* Evaluation of the element stiffness and load vector. 

* Assembly of the element stiffness and load vector in to an overall stiffiness matrLx 

and load vector. 

9 Solution of the resulting linear simultaneous equations for the unknown nodal 

variables. 

9 Evaluation of the element stresses. 

3.2.1 Isoparametric Elements 

For the purpose of this study, eight node isoparametric elements were used in all the 

finite element analysis. An isoparametric element may be defined as an element 

whereby the same interpolation function is used to describe the displacement variation 

within the element as well as the element geometry. 

The element coordinates and the displacements are defined by functions expressed in 

terms of the natural coordinates of the element. The natural coordinate system is a 

local system which is defined by the element geometry and is independent of the 

element orientation in the global system. This system is normally arranged such that 
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the natural coords have a unit magnitude at the element comers i. e. ±1 (see fig 3.2a). 

The main advantages of isoparametric elements are as follows: 

e Improved accuracy over simple elements 

e hTiproved computational efficiency by simultaneous definition of element 

geometry and displacement definition 

* Can facilitate the use of curved elements when modelling curved boundaries. 

3.2.2 Shape functions 

The interpolation or shape function Ni has the fundamental property of having a value 
equal to unity at node i and zero at all other nodes. Shape functions define the 

variation of a given variable e. g. length, displacement etc., through the element in 

terms of the values of that variable at the nodes of the element. As a result of this, 

shape functions are related to the number of nodes in an element and hence the 

element type. Shape functions in the form of polynomials are usually chosen due to 
their relative ease of mathematical manipulation, in particular when it comes to 
integration and differentiation. 

The degree of polynomial chosen is dependent upon the number of nodes in the 

element and the degrees of freedom associated with the element. The following 

formulae represent the shape functions for eight node isoparametric elements 

expressed in terms of the natural coords (4, ij): 

comer nodes: 

Ni =I (I + ýti)(l + lilliAti + lilli - 1) (3.10) 
4 

midside nodes: 

Ni =I 4i (I + 44i )(I - 71 2)+j 11 i+ TlTli 42) 
22 
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These shape functions are part of the serendipity family (Zienkiewicz 1977) and are 

shown graphically in fig 3.2(b). By definition, the displacements at any point inside 

the element 8 can be expressed in terms of these shape functions: 

8 
8(4, il) = jNj(4, Tj)5j 

i=l 
(3.12) 

where Ni is the shape function of node i and 8i is the vector of nodal displacements at 

node i. 

8 
u=jNj(4,7j)uj 

i=l 
8 

v=jNj(4,1j)vj 
i=l 

(3.13) 

Where u and v are the displacements parallel to the global x and y axes respectively. 

Likewise, the position of a point within the element in global coordinates can be 

defined as: 
8 

x=jNj(ý, 1j)xj 

8 

y=jNj(ý, 1j)yj, 
i=l 

3.3 The Layer approach 
In the case of flexural deformation, a layered approach is used to take account of the 

variation of material property through the thickness of an element. In this system the 

plate thickness is either divided up into a finite number of layers parallel to the middle 

plane of the plate (see fig 3.3(a)) or numerical integration points are applied through 

the thickness. 

This scheme has been used successfully in the past by many research workers. 

Johnarry (1979), Hago and Bhatt (1986), employed the system using rectangular 

elements with five degrees of freedom (u, V, W, OX, Oy). Later, EI-Hafez (1986) and 

40 



Chapter 3 The Finite Element Method 

Bensalem (1993) used an eight node isotropic element with five degrees of freedom 

and this formed the basis for the current model adopted in this work. 

3.3.1 Assumptions 
In the model, each layer is assumed to be in a state of plane stress with a linear strain 

variation through the depth based on small deflection theory. The layers are allowed to 

resist transverse shear stresses (fig 3.3(b)). Variation of stress through the thickness of 

the layer is ignored. Since each layer can be of a different material, in reinforced 

concrete each constituent material can be assigned a different layer. Perfect bond 

between all the layers is normally assumed. The main assumptions for the case of 

plate bending are as follows: 

* Displacements are small compared with the dimensions of the plate 

* The stress nonnal to the plate is negligible 

* The normal to the reference surface deformation remains straight but not 
necessarily normal to the reference surface after deformation (see fig 3.3(c)) 

3.3.2 Displacement Representation 
From the above assumptions, the displacements (u, v, w) at any point within the 

structure coords (x, y, z) can be expressed as: 

u( U() (X, y) - 20. (X, y) 
') 

v -- vo(Xty)-ZOY(X, y) 
w ý, w 0 (X, y) i 

(3.15) 

where uo, vo, wo are the displacements at the plate reference surface in the x, y, z 
directions respectively. Ox and Oy are the rotations of the normal in the xz and xy 

planes respectively. In this case z is the distance from the reference surface to the mid- 
plane of the layer under consideration. Determination of the rotations is as follows: 
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I DW(X, Y) +ý,, (X, Y) ox ax 
0 Yl 

DW(X, Y) +ýY(X, Y) Dy 

where ý,, and Oy are the shear deformations (see fig 3.3(c)) 

3.3.3 Strain Displacement Relationship 

(3.16) 

Since the nodal displacements are now defined in terms of the shape functions, the 

strain within the element can be expressed in terms of the displacement derivatives. In 

two dimensional analysis based on Mindlin plate bending and plane stress 

assumptions, the strain displacement relationship may be written as: 

Ex DNi l 

0: 0- Z 
DNi Ui 

ax 7x 

y 0 
LN 

: 
0ý 0- 

äNi 
Z Vi 

Dy Dy 

DNi DNi DNi DNi 
YXY 

äx ax Dy ax 
..... 
YXZ 

......... 
0 

............. 
0 

............ DNi 
c ax 

............. 
-CNi 

............ 
0 

...... 
0 xi 

Tyz 

i 

0 

L 

0: 
DNi 

c 
Dy 

0 -CNi yi 

(3.17) 

where c,,, ey and y,, y are the in-plane strain components, 'Y,, and Yy, are the transverse 

shear components. The distance from the reference plane to the layer centre is denoted 

by Z (see fig. 3.3(b)). C is the strain coefficient which is dependent upon the shape of 

the cross section and is assumed to be equal to 1.0. The strain displacement 

relationship can be expressed in the simple form previously shown 

[Bi I [8i 
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where [BI] is a 5x5 matrix which contains Cartesian derivatives of the shape functions 

the formation of which are described next. 

3.3.4 Cartesian Shape Function Derivatives 

As mentioned previously, the shape functions Ni are expressed in terms of the local 

natural coordinate system (k, il) of the element, it is therefore necessary to transform 

in to global coordinates to obtain the strain matrix [B]. Using the chain rule the 

derivatives of the shape functions are expressed as: 

DNj DNj Dx DNj Dy 
D4 ax aý Dy aý 

DNj DNj ax aNi 
(3.18) 

Dy 

0 -ýj + ax Zý, ay O--, q 

and in matrix from: 

DNi' -ax DY DNi' DNi' 
ax ax 

(3.19) 
DNj ax ay DNj DNj 
-ýl 

.a 
DTI OTl ay 

J 
Dy 

DNi' DNi' 

ax D4 
11 

DNj DNj 
(3.20) 

Dy ch 

where [J] is the Jacobian matrix defined as: 

ax Dy 

ax Dy 

L Oaq Ohl i 
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Since an isoparametric formulation is being implemented, i. e. where x=Z Ni xi and 

y=I Ni yj , then: 

ax 8 DNj 
74 )i=-: 

i ýýx 
DX 8 DNj 

=Y , Xi 
O)TI i=l d-li 

(3.22) 

Dy 
=8 

DNj 
T4 54 Yi 

Dy 
=8 

DNj 
jý I Yi 

i=l arl 

Thus [J] can be expressed in terms of the nodal coords xi and yj by the following 

DNj 
Xi 

DNj 
Yi Tý 5ý 

(3.23) [J]=' 
DNj DNI i=l -X. Yi 

The inverse of the Jacobian matrix is defined as: 

aý h- - 
-- 

- Dy Dy- 
ax äx 

- 
i dii aý 

(3.24) aý h det J ax ax 
Dy Dyj an aýI 

3.3.5 Stress-Strain Relationship 
From the theory of elasticity the stress strain relationship for each layer can be written 

as: 

x 
CTY 

Icil =- Txy -=[ DI fel 
ZU 

LTYZ 

where D is the elasticity matrix given by: 
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v 

v 0 0 

E 0 0 I-V 
_V2 2 

........... ............. ...... 
0 0 0 0 

2(1.2) 
0 0 0 0 I-V 

2(1.2) 

(3.25) 

In the above, E and v represent Young's modulus and Poisson's ratio's respectively. 

The values in the top left portion refer to plane stresses. In the bottom right portion, 

the values refer to transverse shear stresses, the 1.2 factor is the shear deformation 

shape factor. 

A reinforcing steel layer is assumed to be smeared into a thin layer of steel equivalent 
to its total area. This smeared layer of steel is assumed to have unidirectional stiffness 

corresponding to direction in which the actual bars lie. In this case the [D] matrix is 

given by 

100 
[D] = E., 000 

-0 
0 0. 

(3.26) 

In cases where the steel is positioned at an angle counter clockwise from the x-axis, 
the local modulus matrix is transformed to the global Cartesian axis. 

3.3.6 Element Stiffness Matrix & Force Vector 
The information to evaluate the element stiffness matrix for elastic material behaviour 

has been given. As defined previously, evaluation of [K] is carried out from the 
following equation: 

n 
]T [K] ff [B [D] [B] dx dy ti 
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Where ti is the thickness of the ith layer, n is the total number of layers, [B] is the 

strain matrix and [D] is the material constitutive matrix depending on the material 

type (steel/concrete etc. ) and the state of stress (elastic, cracked, plastic etc.. ). The 

constitutive material matrix will be discussed in the next chapter. Evaluation of the 

above equation is carried out using numerical integration and Gaussian integration 

rules are used to integrate over the element area as follows. 

nII 
]T [K] ff [B [DIB] det [J] dý dil t (3.27) 

and numerically written as: 

nmm 
[K] = 

Yal: YaWjWk[B]T [D][B] det [J] ti (3.28) 
i=l j=l k=l 

where rn is the number of Gauss points in each direction, n is the number of layers, wj 

and Wk are the weight coefficients corresponding to the specified Gauss point with 
local coords (4, 

The equivalent load vector at the nodes due to the effect of uniformly distributed 

element surface loads is defined as: 

[F] f [N]T (q) ds (3.29) 
s 

or in numerical fonn: 

mm 
IF) ý-- 1: 1: W jW k [N]T (q) det [J] (3.30) 

j=l i=l 
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3.3.7 Numerical Integration 

In numerical integration, the exact integral is replaced by evaluating the integrand at 

various sampling points and then taking a weighted summation of these values. For 

this work, Gauss Legendre quadrature values was employed due to its relative ease of 
implementation and high accuracy. In this method an n-point rule integrates any 

polynomial of degree x 2n-1 
, or less, exactly. 

In general, the one-dimensional Gaussian Quadrature formula takes the form: 

+1 m ff (4)d4 wif (4j) (3.31) 

where 4i is the coordinate of the ith integration point, wi is the weighting factor and m 

is the total number of integration points. For the case of double integration i. e. over 2 

dimensions the following form is taken: 

+1+1 +1 m fff (4, il) d4dil j lwif(4i, il) d7l 

+1 m j lwigi(il) dil 
I 

li=l I 

mm 
YYWiwjg(TIj) 

i=l j=l 

mm 
IIwiw 

jf (4i, TO 
i=l j=l 

where wi, wj are the ith and jth weighting factors and 4i iIj are the coordinates of the 

ith integration point. The fact that limits of integration (-I / +1) coincide with the local 

natural coordinate system on the element boundaries makes them particularly 

applicable to isoparametric elements. The symmetrical positions of Gauss points 4i 

and the corresponding weighting factors wi for m=1-4 are given in table 3.3.7 
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3.4 Non-linear Solution Techniques 

In a non-linear problem the relationship between the force vector and the 
displacement vector is no longer linear. As in the case of plastic material behaviour 

the current displacements may depend on the displacements at earlier stages. 

In finite element analysis, the displacement vector is calculated such that a state of 

equilibrium is achieved between the external and internal forces. Unlike linear 

analysis, the solution vector in a non-linear analysis cannot be found right away. In 

non-linear analysis, the loading of the structure is divided into a series of increments. 

In order to achieve equilibrium at the end of each increment, an iterative solution 

algorithm is employed. A purely incremental method could lead to inaccuracies unless 

very small increments are used. In an iterative method the occurring errors within the 
increment are successively reduced. Hence, most solutions in non-linear analysis are 
based upon the incremental-iterative method. The general procedure in this method 
involves adapting the total displacement increment Au by iterative increments 8u until 

equilibrium is reached within a pre-defined tolerance. The incremental displacements 

at iteration i+1 are calculated from 

, AU i+i =, äu, + 8ui+i (3.32) 

There a number of iteration procedures which calculate 8u in different ways. The 

iterative increments are calculated via the stiffness matrix K which represents a 
linearized form of the relation between the force vector and the displacement vector. 
The stiffness matrix can change for every ith iteration. Hence the iterative increments 

can be found by the following: 

8ui = Ki -1 Ri (3.33) 

where Ri is the residual force vector at the beginning of the ith iteration. One of the 

most common iterative methods is the Newton-Raphson method. Within the method 
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itself there are two variations, the second of which is known is the Modified Newton 

Raphson method. 

3.4.1 Standard Newton-Raphson 
In general the stiffness matrix Ki represents the tangential stiffness of the structure: 

Ki = 
DR 
DAU (3.34) 

In the normal Newton-Raphson iteration, the stiffness relation shown above is 

evaluated every iteration. Therefore the prediction of the iterative increments (eq. 3.33) 

is based on the last-known or predicted situation, regardless of whether a state of 

equilibrium is achieved. Since the normal Ne, ýton-Raphson method yields a quadratic 

convergence characteristic, only a few iterations are needed for convergence. The 

main disadvantage of this method is that the stiffness matrix has to be set up at every 
iteration. Second to this, if the linear equations are solved through a direct solver, the 

matrix will have to be decomposed at every iteration as well, see fig. 3.4.1. If the 
initial prediction is far from the final solution, the method will fail due to divergence. 

3.4.2 Modifled Newton-Raphson 

In this method the stiffness matrix is only evaluated at the start of each increment 

which means the prediction is always based upon converged equilibrium state. In 

general the modified Newton-Raphson technique converges to equilibrium slower 

than the standard method. The advantage of this method is that for every iteration only 

the prediction of the incremental displacements and the internal force vector has to be 

calculated, it is not necessary to set up a new stiffness matrix, see fig. 3.4.2. 

In comparison with the standard method the Modified Newton-Raphson iteration 

sometimes provide convergence in problems where the standard method has failed to 

converge. 

51 



Chapter 3 The Finite Element Method 

3.4.3 Incremental procedures 
In the previous section the iteration techniques used in non-linear analysis were 
discussed. This section deals with the incremental techniques employed in the 

incremental-iterative method. The two most common techniques are load and 
displacement control: 

9 Load control: as described in the previous section, the external load is increased 

at the start of each increment by increasing the external force vector feg. 

9 Displacement control: the external load is applied in the form of prescribed 

displacements d. 

As can be seen from figure 3.4.3 the unloading branch of the load-displacement curve 

can be obtained when using displacement control. In real cases however it may be 

necessary to obtain the unloading branch of the load/displacement curve which results 

from a given design load. The Arc-length or Riks method can be used to obtain the 

required results in this case, (Crisfield 1991). 

3.4.4 Convergence criteria 
In the numerical process the equilibrium conditions are unlikely to be satisfied exactly 

and hence criteria to determine convergence have to be defined. The convergence 

criterion will monitor the out-of balance residual forces until a desired level of 

accuracy has been achieved. Convergence criterion can be based on the out-of balance 

force norms, the displacements or the internal strain energy. The method adopted for 

the present work is based upon the out-of balance force norms. It is difficult and 

expensive to check the decay of each residual force for each degree of freedom and 
hence force norms are used to achieve an overall evaluation of convergence. 

The criterion assumes convergence when the following condition is met: 

ARi* 

Fi* 
(3.35) 
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where: 

ARj = 
JjRj F(Ri) 

= norm of the residuals 
(Ri) = residual force vector at ith iteration 

F, = 
V(Fi)T JFj I= norm of the total applied loads 

I Fj )= total applied load vector 
15 = specified convergence tolerance 

In the interest of accuracy it is desirable to set as fine a tolerance as possible, however 

this has to be balanced with the need to reduce computation time i. e. a finer the 

tolerance usually requires a higher number of iterations. The required number of 

iterations will often increase as more non-linear phenomena (e. g. concrete cracking, 

concrete crushing, steel yielding etc. ) are encountered . These discontinuities in the 

material laws result in high residuals having to be distributed which may result in 

further discontinuities in other parts of the structure. 
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Chapter 4 

Model Visualisation & Direct Design 

4.1 Introduction 
This chapter details the visualisation process used in the formation of strut-tie models 
in this work. The method is also applied to slabs and is used in conjunction with direct 

design procedure to derive reinforcement layouts. The results of this work are given in 

subsequent chapters. Details of the direct design method are presented here. 

4.2 The Visualisation Process 

As a means of automatically defining the major stress paths and hence strut-tie model, 

an evolutionary procedure is proposed. This method, is adapted from the structural 

optimisation work first presented by Me & Steven (1993), (1994). The general 
process leads to isolation of the main stress paths within the structure and hence aid in 

the identification of suitable strut-tie models for a given load case. 

4.2.1 Theory 
The process begins with an elastic analysis of the original structure. It is often found 

that parts of the structure are lowly stressed and can be removed without affecting the 

overall strength. In the finite element mesh, a low stressed element can be removed by 

assigning a negligible stiffness, hence it is not necessary to redefine the mesh. As a 

criterion for element removal, the average vonMises stress present within the element, 

(Yevm, is compared to the maximum vonMises Stress present in the structure, Omax vM. 

If aevm is less than a certain percentage of amaxvm , 
known as the rejection ratio (rr), 

i. e. if aevM < rr (OmaxVM), it is removed 
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The von Mises stress was chosen as for this purpose because it is a measure of all the 

stresses present, and was calculated from the following: 

ae VM = V(C; 
x2 + (; Y 

2-( ; xay +3Txy2), where ((Yx, (Yy,, rxy) are the Cartesian stresses. 

Each time an element is removed, the finite element analysis is carried out using the 

same value of rr until a steady state is reached, Le no more elements are removed. 

When this stage is reached, rr can be increased. This process is repeated until one of 

the following criteria is met: 

" the main stress paths become clear 

" rr becomes too great, typically a maximum value of 35% is used for rr. Any 

elements remaining after this point are not considered to be lowly stressed 

* the structure becomes unstable 
Once the main stress paths have been isolated, the strut-tie models are generated by 

placing strut or tie members along the centre lines of the main stress fields. It is 

necessary to exercise some degree of design experience when generating the model in 

terms of the stability of the resulting truss, and in terms of the practical constraints on 

reinforcement layouts. The object of the visualisation process is to obtain a set of 

stress distributions along clearly defined paths which are in equilibrium with the 

external loads. 

4.2.2 Examples 

Three examples of the visualisation process are shown. The first, shown in figure 

4.2(a) is a simply supported deep beam having a span/depth ratio, (1/d), of 1.67, with a 

vertical load at the centre. The second, shown in figure 4.2(b), is the same beam 

cantilevered with a vertical load at the free end. The third, is similar to the second 

example but with a smaller span/depth ratio of 1.0. In each case, a clearly defined 

stress path is formed at a rr value of between 20-25%. The second and third case 
illustrate the effect of span-depth ratio on the load path behaviour. Strut-tie models 

resulting from the visualisation process are illustrated in figure 4.2.3(d). In the case of 

the deep beam, the resulting strut-tie model is statically determinate since the diagonal 

part ABCD is acting as a rigid block and hence a mechanism is not formed. The 

reason for the incorporation of the ties in the diagonal truss is to take account of the 

transverse tensile stresses which can be clearly seen from the stress plot 4.2(a). 

57 



Chapter 4 Model Visualisation & Direct Design 

\'I'/ #+ 

A' Jr w jioý s 

IV xA e jo / // \ -*, -4k, -k ý& 8, 0*0 .0. 

X or fII iT 

a %wA * !. ýf )r iI II '-t le. 
% "ý x% *% 0 io, 'it 

--- - - - jr -%,, ,x., % 7.1, o, f q, 1 0, i it -w W 4 'di 0 01t 

% 90a ** p rov e, 
ia% 1% %%% ft .o a- 

qb % v 

1-19 

lb p dr O IF 

------ - -- - t 

e 1ý .-o ý.: ., ý, ý. % 

-2 
a lb 4 4a #4ý t. .. 0: 0a a 40 ., .*6 

0 vi e0 
40 0 

i) rr=O 

compression 
tension 

ii) rr= 10% 

iii) rr=25% 

fig. 4.2(a) Deep Beam (1/d=1.67): Principal Stresses During Stages of Visualisation 

58 

tf, 



Chapter 4 Model Visualisation & Direct Design 
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fig. 4.2(b) Cantilever, (1/d=1.67): Principal Stresses During Stages of Visualisation 
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In the case of the deep cantilevers, the strut-tie members are not always aligned 

exactly along the main stress paths. This is due to the fact that the stresses around the 

nodal zones are smeared. 

4.2.3 Application to Slabs 
In some cases, such as in simply supported slabs, the areas of low stress may occur 

around the supports. In this case, the visualisation process would result in instability 

since the elements along the supported edges are assigned negligible stiffness. For this 

reason, it is sometimes necessary to stipulate prior to visualisation, which elements 

must not be removed. Using this method, it is also possible for the designer to direct 

the stress paths according to a pre-determined pattern. This may be desirable in order 

to achieve practical reinforcement layouts. 

4.3 Direct Design of Slabs 
The direct design method combines analysis and design into a single operation. It is a 

computer orientated method enabling the structure to be designed with the minimum 

of designer intervention. 

In this method the basic requirements of classical plasticity i. e. equilibrium, yield 
condition, mechanism and ductility demand are theoretically satisfied. 

9 Equilibrium condition: Any stress disiribution in equilibrium I 'with the applied 
loads can be used for design. In the proposed method the stress fields are obtained 
using FE analysis of the unreinforced concrete structure with the uncracked 

properties of the concrete so that the equilibrium condition is satisfied. 

o Yield condition: The required steel for the structure is determined directly from the 

yield criteria. Therefore, the resistance provided by concrete and steel is equal to 

or greater than the applied stresses. 

* Mechanism condition: The resistance at each point in the structure is matched as 
closely as possible to the applied stresses. This means that at ultimate load, all 

points in the structure attain their ultimate strength with a minimum redistribution 

of the stresses, thus converting the structure into a mechanism 
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9 Ductility demand: In classical plastic theory the material is assumed to possess 

unlimited ductility. This means that any part of the structure that yields early in the 
loading history, will continue to deform without any reduction in strength. This 

requirement is avoided when the difference between the yield load and ultimate 
load are made as small as possible. As a result of this, the early yielded points can 
deform at constant stress before reaching the descending branch of the material 

stress-stain curve. In the direct design method this condition is satisfied 

automatically since theoretically all parts of the structure yield simultaneously. 

The first method for the provision of reinforcement for slabs according to elastic 
theory was proposed by Hillerborg (1953). This method was re-examined by Wood 

(1968) who established simple rules and equations for the optimum steel in slab 

elements subject to a moment field (M,,, My , my) without membrane forces. 

Woods' equations for orthogonal steel in the top and bottom face of the slab were 

extended by Armer (1968) to cover skew reinforcement. 

4.3.1 Assumptions 

The main assumptions in the direct design approach are summarised as follows; 

* The reinforcing bars are only able to carry uni-axial stresses in their original 
directions, i. e. dowel action and bending of the bars is ignored 

e The bars are elastic-perfectly plastic with yield stress f, in tension and f, ' in 

compression, see figure 4.3.1 (a) 

o The bars are taken as an area per unit width rather than individual bars , because 

the bar spacing is small compared with the overall dimensions of the slab. 

9 The tensile strength of the concrete is ignored. 

e The concrete is perfectly plastic, satisfying the square yield criterion shown in 
figure 4.3.1 (b) 

9 Instability or bond failure of the bars is assumed not to occur and is avoided by 

proper choice of section and reinforcement. 
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fig4.3. I (a) Assumed Reinforcement Steel Stress-strain Response 

Compressi 

fig. 4.3.1 (b) Square Yield Criterion For Concrete 
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4.3.2 Yield criteria for reinforced concrete slabs 
Consider an element of a slab subjected to bending and torsion moments as shown in 

figure 4.3.2(a). The flexural strength provided by the slab is M,, * and My* in the x and 

y directions respectively (fig 4.3.2(b)). The yield criterion is a mathematical 

relationship between the applied set of stresses and the strength of the material. Hence 

the yield criteria for the slab element can be written as: 

F(M.,, My 
q 

My 
9 

Mx*, My*) = 0.0 (4.1) 

Now consider as shown in figure 4.3.2(c), at any point in the slab element a line with 

a normal n and a tangent t. The normal applied moment Mn must not exceed the value 

of the moment of resistance generated by the slab in that direction. 

Taking the normal to the yield line at an angle 0 to the x-axis, the equilibrium of the 

element in figure 4.3.2(c), results in the following: 

Mn 
-"-: 

MxCOS 20+M 
ysin 

20 
- 2M,, ysin0cosO (4.2) 

Mt = M,, sin'O + Mycos2O + 2M., ysin0cosO (4.3) 

M. 
t = (Mx - My)sin0cosO + Mxy(COS20 

- sin 
20) (4.4) 

Resolving the resistance moments of the x and y bars, fig 4.3.2(d), and ignoring 

torsion, the resisting normal moment at the yield line can be expressed as the 
following: 

M,, *cos'O + My*sin2O (4.5) 

where the value of M. * must always be greater than Mn from equation 4.2, i. e. 

M, * - M, ý: 0.0 
Substituting equations 4.2 and 4.5 into 4.6 leads to: 

(4.6) 
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4.3.2 Yield criteria for reinforced concrete slabs 
Consider an element of a slab subjected to bending and torsion moments as shown in 

figure 4.3.2(a). The flexural strength provided by the slab is M,, * and My* in the x and 

y directions respectively (fig 4.3.2(b)). The yield criterion is a mathematical 

relationship between the applied set of stresses and the strength of the material. Hence 

the yield criteria for the slab element can be written as: 

F(M, My 
I 

My 
9 

M,, *, My*) = 0.0 (4.1) 

Now consider as shown in figure 4.3.2(c), at any point in the slab element a line with 

a normal n and a tangent t. The normal applied moment M,, must not exceed the value 

of the moment of resistance generated by the slab in that direction. 

Taking the normal to the yield line at an angle 0 to the x-axis, the equilibrium of the 

element in figure 4.3.2(c), results in the following: 

Mn MxCOS 20 + Mysin 20 
- 2M,, ysin0cosO (4.2) 

Mt Msin 20+M 
YCOS 

2() 
+ 2Mxysin0cosO (4.3) 

Mnt = (Mx - My)sin0cosO + Mxy(cos2O 
- sin 

2()) (4.4) 

Resolving the resistance moments of the x and y bars, fig 4.3.2(d), and ignoring 

torsion, the resisting normal moment at the yield line can be expressed as the 
following: 

M,, *cos'O + My*sin 2o (4.5) 

where the value of M,, * must always be greater than Mn from equation 4.2, i. e. 

M. * - M, ý: 0.0 
Substituting equations 4.2 and 4.5 into 4.6 leads to: 

(4.6) 
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(Mx* _ MX)COS2() + (M 
y*- 

My)sin 2E) 
+ 2Mxysin0cosO ý: 0.0 (4.7) 

The above equation can be written in simplified from by taking: 

A=M,, * - M,, (4.8) 

B=My*-M y (4.9) 

c= MXY (4.10) 

A cos 20+B sin 20+ 2cos0sinO ýt 0.0 (4.11) 

Dividing by COS2 0 equation 4.11 becomes: 

F(O) =A +Btan 20 + 2CtanO ý: 0.0 

For optimum steel, the excess strength must be a minimum hence: 

dF(O) - 
dtanO =0 (4.13) 

d2F(O) 
>0 (4.14) 

dtanýO 

dF(O) c 
-- BtanO+C= O=> tan 0 =-- (4.15) 

d tanTO 
=B 

d'F(O) 
>0 => M*>M 

d tan 
2o yy 

Substituting equation 4.15 in equation 4.11 results in: 

A+B(-C) 2+ 2C(- 
c 

)=O (4.17) 
BB 
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or AB _ C2 =0 (4.18) 

Replacing A, B and C by their values in equation 4.18 gives: 

- (Ml* - MX) (W -m Y) + mxy 2=0,, (4.19) 

The above equation is the yield criterion for reinforced concrete slabs known as the 
Wood criterion. This is the yield criterion for positive steel (i. e. bottom steel). For 

negative (i. e. top steel) a similar procedure is adopted to give: 

- (M, *, + mx) (my* I- my) + mxy 2=o (4.20) 

Experimental work by a number of researchers such as Cardenas and Sozen (1973), 

Jain and Kennedy (1974) have confirmed the validity of the yield criterion for 

orthogonal steel. In the work by Hago and Bhatt (1986), elastic stress fields in 

conjunction with the Wood-Armer criterion was used for the design of orthogonally 

reinforced slabs. The method was found to be a highly practical procedure leading to 

lower bound solutions to slab design. Bensalem (1993) continued this work with the 

direct design of slabs using the non-linear stress-field. It was found that in many cases, 
design from the non-linear field helped to reduce steel congestion by 'smoothing' out 

the peak moments occurring at concentrated loads or supports. 
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4.3.3 Design equations 
The following design equations can be derived from the yield criterion described 

above 

i)Positive Moment Field (bottom steel) 
m2 

mx*=. xy + M, 
my *-M 

y 

(4.21) 

The total amount of bottom steel providing resistance Mx* and My* is represented by 

the following equation: 
m2 

M, *+m 
y 

"y +M,, +M 
y my 

-M y 

(4.22) 

d(Mx *+My*) 
Which implies for minimum steel: dM 

Y*=0, 
hence My* = My + M, , or 

since in equation 4.16, My* > My, this reduces to: 

MY*= MY +1ml (4.23) 

Substitution of equation 4.23 into equation 4.19 results in : 

M,, *= M, +lmyl (4.24) 

ii)Negative Moment Field (top steel) 
The same procedure as above is applied to the negative yield criterion (eq. 4.20) to 

obtain the following: 

mx *t =M X -Imxyl (4.25) 

MY *t =M y -Imxyl (4.26) 
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iii)Mixed Moment Field 

From equations 4.21 and 4.22, if My* <- 0.0, is considered to be equal to zero and 

from the yield equation (4.19), the following is obtained: 

mx *=Mx+ 
MY 

(4.27) 

similarly if M, * <- 0.0, from equation (4.19): 

MY My+m xy, (4.28) 
mx 

The same procedure as above can be applied to the negative moment fields to obtain: 

Mm+ 
MxY2 

xx M- (4.29) 
y 

My =MY + 
mx 

(4.30) 

4.3.4 Procedure for Placing of Reinforcement 
Given a stress field (M,, My , M, y) at any point in a slab , the reinforcement in the x 

and y directions can be placed according to the following: 

i)Bottom Steel 

Design moments M, *and My* are calculated frorn equations 4.24 and 4.23 

If M, *and My* are negative, then no bottom reinforcement is needed 

If M, *and My* are positive, then the calculated values are adopted as the 

resistance moments 

* If M, * < 0.0, then set M, * = 0.0 and calculate My* from equation 4.28 

e If My* < 0.0, then set My* = 0.0 and calculate M, * from equation 4.27 
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fijop Steel 

" Design moments M, *' and My*t are calculated from equations 4.25 and 4.26 

" If M, *' and MY*' are positive, then no top reinforcement is needed 

" If M, *' and MY*' are negative, then the calculated values are adopted as the 

resistance moments 

* If M, *'> 0.0, then set M, *'= 0.0 and calculate My*'from equation 4.30. 

* If My*'> 0.0, then set My*= 0.0 and calculate M, *' from equation 4.29. 

A schernatic representation of the design equations for bottom steel is given in figure 
4.3.4(a). 

4.3.5 Multiple Load Cases 

The rules outlined so far only deal with a slab subject to a moment field resulting from 

a single load case. In practice, slabs such as in the case of bridge decks, can be 

subject to multiple load cases. For this situation, reinforcement is provided to 

accommodate the moment triad resulting from multiple load cases; (M, i, Myi 
, 

M, yi) 
i=l, n, where n is the number of loading cases. Here a rnethod for provision of 

reinforcement in multiple load case situations is presented. The procedure was used by 

Kernp (197 1) and was also applied to skew reinforcement. 

e For each load case i( i=I, n), the moments (M, i, Myj 
, M, yi) are calculated . 

The 

corresponding resistance moments M, *i and My*i are found using the procedure 

outlined earlier. 

9 At each point the maximum value of Mx*j and My*i can be found. Once the 

maximum values are obtained i. e. Wma, and My*max 
, they can be used for 

design. The resulting design would be safe, but not necessarily econornic. Hence 

an optirnisation procedure must be adopted 

0 The next step is to assume that in the x-direction, M, *,,,,, is provided for, but in 

the y-direction My*i is provided for to satisfy the corresponding yield condition in 

each case. The maximum value of all these My*i is found, let it be My*plll,, Ix . 
Using 

Mx*11, Ix in conjunction with My*pllllx 
,a safe design is produced. 
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e Using the same procedure as above, a corresponding value Of Wpm can be 

found for My*inax. Clearly, the optimal design would result from a set of design 

moments where (M, * + My*) is the smallest. 

Further optirnisation of the design can be carried out by using a simple search 

technique to examine the feasible design region as shown in figure 4.3.5. For each 

load case, design moments at the grid points is examined in order to determine if it is 

a better minimurn. If the search is positive, a check is made to ensure yield conditions 

are not violated. If the yield condition is violated, then the design moment is rejected. 

If not, then a check is made to see where on the grid the best minimum value of (M, * 

+My*) is obtained. 

4.4 Inplane Application 

In 1964, Nielsen first proposed a yield criterion for a section with known orthogonal 

reinforcement, which can carry tension or compression, and placed symmetrically 

with respect to the section's middle surface. Equations were derived to determine 

orthogonal tension reinforcement to resist a given inplane force triad. In 1984, Nielsen 

considered the case of skew tension reinforcement. His work assumes that the 

concrete has sufficient compression strength without the need for compression 

reinforcement. When the compression strength of the concrete is reached, the section 
thickness must be increased. In 1976, Clark proposed a series of equations for 

proportioning skew or orthogonal tension and/or compression reinforcement to resist a 
triad of inplane forces. A number of researchers have used these equations to design 

deep beams. Khaskhell ( 1989) used these equations to derive reinforcement layouts 

for deep beams frorn the elastic stress pattern. Bensalem (1993) used the non-elastic 

stress patterns to derive reinforcement layouts for deep beams. 
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4.4.1 Yield Criteria 

The principal stresses in a concrete element are defined by a, and CY2 see fig. 4.4.1 (a) 

with the major principal stress at an angle 0 to the x -axis. The area of reinforcement 

per unit length in the x and y directions is denoted by A,, and Ay, with their associated 

stresses being f,, and fy respectively. From the equilibrium of the reinforced concrete 

element, see fig. 4.4.1(b), having a thickness of t and being acted upon by inplane 

normal and shear forces per unit length (n,,, ny, n,, y), the following equations for 

orthogonal reinforcement can be derived: 

nx = Axfx + alt cos 
2 0+02tsin 20 

ny = Ayfy + (y, tsin2 0+ (y2t COS2 0 

nxy =-ajtcos0sinO+G2tCOSOsinO 

setting: 

nx nn Axfx Ayfy 
xyY, 'rxy = -ly- and axy 

ttttt 

(4.31) 

(4.32) 

(4.33) 

where cT,,, cry, r., y are, the normal and shear stresses, and cF., *, c; y* are the resistant 

stresses provided by the steel reinforcement in the x and y directions respectively. 
Equations 4.31 to 4.33 can be written as: 

Ox = (71 Cos 
20 +'92 sin 

20 +(; x 
* (4.34) 

ay = a, sin 
20+ 

(Y2 COS2 0+ (y y* (4.35) 

'rxy = ((Y2 - al)cos0sinO (4.36) 

If tensile steel is to be provided, then (y, = 0.0, and equations 4.34-4.36 become: 

(yx (Y2 sin 2 0+(y 
x (4.37) 

(yy (Y2 COS 20+ (y y (4.38) 
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IrXY = (02)cos0sinO (4.39) 

hence: 

ax * -Crx = (72 sin 2o 

(T * -(T -2 (72 COS 
2o 

yy' 

Irxy = 02) cos 0 sin 0 

Eliminating'92 and 0 from the above equations leads to: 

(ax * -(; x)(Gy 
* -cr Y) - "XY 2 =0.0 (4.40) 

Equation 4.40 is the yield criterion derived by Nielsen (1964) for a section having 

known orthogonal isotropic or orthotropic reinforcement carrying tension forces and 

placed symmetrically with respect to the mid-surface of the section. From this 

criterion, equations for four different cases of reinforcement design were proposed. As 

already stated, this criterion assumes that concrete strength is not violated. Clark 

(1976) extended this criterion for the provision of compressive reinforcement. The 

four cases outlined by Nielsen, were extended to nine. Table 4.4.1(a) shows the 

possible combinations of reinforcement (in the table p is the reinforcement ratio and ot 
is the angle of the reinforcement from the x axis when skew reinforcement is 

considered). From this table, it can be seen that all cases can be solved by direct 

solution except cases I and 4 where minimisation of the total reinforcement in both 

directions of the member is necessary. The principal stress al is considered equal to 

zero when tension reinforcement is required and 02'equal to the concrete compressive 

strength fc when compressive reinforcement is required. Derivation of the design 

equations is now described in the following section. 
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fig. 4.4. I (a) Principal Concrete Stresses and Reinforcement Directions 
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fig. 4.4. I (b) Sign Convention for Inplane Normal & Shear Forces per unit length 
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Case Reinforcement Description Known Values Method of Solution 

I Both tension fx = f. = fs, al =0 Minimisation of (p,, + py) 

2 No x 
a tension 

f. = f" P" = 0, cr, =0 Direct solution 

3 No (x 
x tension 

f" = fs, P. = 0, a, =0 Direct solution 

4 Both compression fx = fa = fs's 02 = fcu Minimisation of (p,, + py) 

5 No x 
ot compression 

fa= fs'q Px Os a2 fcu Direct solution 

6 No ot 
x compression 

fx = fs't P. 09 G2 fcu Direct solution 

7 x tension 
cc compression 

fx = fsq f= fs2 
9 (; 1 = 09 (; 2 = fcu Direct solution 

8 x compression 
a tension 

fx = ftl 
P 

f= fst C; I= OP 02 = fcu Direct solution 

9 No reinforcement Px= P. =O Direct solution 

Table 4.4.1(a) Possible combinations of reinforcement 

4.4.2 Design Equation Derivation 

4.4.2.1 Cases where tension steel is to be provided 

* Case I: a., * and ay* >0 
2 

From equation 4.40, a CY +- xy 
yy (Gx * -Cyx) 

The total provided steel in the x-direction is minimum when 
d 

(ax *+GY 0, 
daX 

Thus: 
d 

(yx * +(Yy + 
Txy 2 rXY2 

-=0 d(YX *I (ax * -(y 01 ((Y 
x* -(; x)2 

. -. S ince ax*> (y x9ax*=0x+I, the steel ratio in the x-direction is: 

P" = lffjox +jTxy I) similarly in the y-direction: py = 1/fs(ay + ITXYI), 

where f., is the yield strength of the steel. 
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o Case 2: a., * =0 and ay* >0 

L2 CXY2 xy From equation 4.40, (; y (T y--, thus px = 0, and py =I/f, ((Yy - 
Ox ax 

o Case 3: a,, * >0 and (yy* =0 

,r2 
Similar to case 2, here py =0, and p., = I/ fr. (ax - OY 

4.4.2.2 Cases where compression steel is needed 
For this situation, the minor principal stress in the concrete reaches ultimate strength, 
i. e. cr = -fe ,,, and a, < 0.0. Equations 4.34-4.36 can be written as 2 

ax = Gl COS 20-f, 20+ Cyx 
,,, 

sin (4.41) 

ay = a, sin 20_f 
cu COS2 0+ (T y (4.42) 

Txy = (-fcu - a, ) cos 0 sin 0 (4.43) 

thus: 

ax+fc =Glcos 
20+f 

cu COS2 0+(; 
x ,U 

(4.44) 

oy + fcu = a, sin 20+f,, 
u sin 2+ (y y (4.45) 

Txy = (-fcu - cos 0 sin 0 (4.46) 

and: 

ox +fcu -(TX* =(a, +fcu) Cos 
2o 

ay + fcu - ay *= (a, + fcu) sin 2o 

Txy =-(fc,, +al)cos0sinO 

-(c; + fcu - OX *)(a + fc -a *) + TXY2 = 0.0 
xyy (4.47) 

For the following sections, a., f = cy., + fc and (Yyf = c; y + 
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o Case 4: a,, * <0 and ay* <0 

From equation 4.47, ay +0 yf -T 
XY 

*) (Gxf - (Yx 

provided steel is minimum when: 
d 

(Gx *+Cry 0, 
dcTX * 

Thus: I- 
IT xy 

*) 
T=O, 

((Y 
xf - (7 x 

. -. Since ax *< (T xf ) ax *= (7 xf - 
1r 

xy 
I, the steel ratio in the x-direction is: 

px =I/ fs'(axf -Irxy 
I) 

, similarly in the y-direction : py =I/ fs'(cryf -lTxyl) 

9 Case 5: (Y., * =0 and (; y* <0 

2 
From equation 4.47, (y y (T yf - 

xy 
. thus: 

Gxf 

px = 0, and py =I/ fs'((; 
Yf - 

CXY2 

(Y xf 

lo Case 6: cr., * <0 and cry* =0 

similar to case 5, py = 0, and p., =I/f., '(a,, f 
Ir 

) 
Oyf 

4.4.2.3 Mixed Cases: 

where a,, * and ay* are of different signs: 

9 Case 7: a., * >0 and (YY* 

0 

a, =0 and a, = fr, thus equations 4.34-4.36 become: 

ax = fr 
20+ (y - .u 

sin X*=[fcu/2.0](I` cos20)+aX* (4.48) 
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y= 
fcu Cos 20+0 

y*=[fcu 
/2.01(1+cos20)+ aY (4.49) 

,,, 
sin 0 cos 0= [f,,, / 2.0] sin 20 , Txy = f, 

2, r 2 
1/2 

From equation 4.44, cos 20 = [I - 
C. 

Eliminating 0 from equations 4.48 and 4.49 gives: 

ax *= cyx - (f,,, / 2.0)(1 - 0) 

ay *= (Ty - (fcu / 2.0)(1 + P) 

The steel ratios are: 

p,, =I/f, [c;,, - (fc,, / 2) (1 - P)l 

py =I/ fs'[ay - (fc,, / 2)(1 + P)l 

o Case 8: a,, * <0 and ay* >0 

Similar to case 7; 

px =1/ fs'[ax - (fcu / 2)(1 + 

py =I/ fs[ay - (fcu / 2)(1 - 0)] 

9 Case 9: No steel required, px = py =0 

4.4.3 Boundary Curves 

(4.50) 

Given the stresses (a.,, (3y, Tyx) at any point, it is necessary to find out which design 

equations are to be used. The boundary between each case surface on a horizontal axis 

of ( cr, /Irxyl ) and vertical axes of ( a,, /Irxyl ), can be constructed to define the required 

case, see figure 4.4.3. In figure 4.4.3, the circled numbers represent the cases. The 
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boundary curves were derived by equating the design equations for two cases. The 

following describes the derivation of the curve separating cases I and 2: 

PxI =-- Px2 =: ý (Fx ý -ITXYI => 
CrX 

= -1.0 ITXYI 

The same equation can be derived by equating the expressions for steel ratios in the y- 

direction. 

Pyl = Py2 =: > (Ty + jTxy I 
=CF Y-- 

XY 
2 

=> 
(TX 

= -1.0 
CFX IrXYI 

This is the equation of a straight line and is shown as line number 8 in figure 4.4.3. 

Table 4.4.3 shows the boundary equations for the intersections between each case. 

Gx 
ITXYI 

3 

5 

fig. 4.4.3 Boundary Curves for Orthogonal Reinforcement, f,,, = -41T. yl 
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Curve Equation Curve Equation 

cr 

Ir 
y. = +*0 I 
xyl 

7 
r )2 -1/2) 

CY x1 fcU fcU 
IlrXyl =2 Jc 

xy 
I Jr 

xy 
1, -4 

2 -1/2) 
Cry I fU fc 

-4 F'r--Y1 =2 FITXY I+ 

(Fr 

xUy 
I 

llx 
llrxyl 

3 

cy Y 

9 

G xf 
(Y Yf 
-=1 IT 

x 
I IT 

x 
I 

y y 

4 

Gy fcu 
+ Fr 

x 
_Y1 Fr -XY 1 

10 
x 

1TxY FT -XY I 

5 
CY y fcu 

- 
fcU 

-4 

1/2) 

11 

CY f 
+1 ITXYI ITXYI 

y12 
Ic 

xy 
I lrxyl 

cr Y 2 -1/2) 

6 
llrxyi --00 

12 
ax fcu 

+ 
fcU 

-4 IT 
xy 

12 IT 
xy 

I oixy, 

Table 4.4.3: Boundary Curve Equations for Orthogonal Reinforcement 
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Chapter 5 

Material Behaviour & Numerical Modelling 

5.1 Introduction 
In the analysis of reinforced concrete structures, the development of an adequate 

model for the mechanical behaviour of concrete presents the most difficult challenge. 
In order to model the complete response of concrete and steel, a number of non-linear 

effects have to be considered. The most important of these effects are: 

" tensile cracking 

" yielding of the steel 

" non-linear material behaviour 

" crushing of the concrete 

aggregate interlock 

bond between concrete and reinforcement 

dowel action of reinforcing bars 

The fundamental requirement is to develop a set of constitutive laws which adequately 
describe the multidimensional stress-strain relationships within the reinforced 

concrete. These constitutive laws are mathematical expressions which approximate 

the constituent material behaviour. These laws are based upon experimental data. The 

complexity of concrete behaviour involving some of the phenomenon outlined above, 
has led to difficulty in being able to fully develop accurate constitutive models. There 

is at present no universally accepted constitutive law which fully describes concrete 
behaviour in combined stress conditions (Buyukozturk et. al (1985)). However, much 
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work on this problem has been carried out over the years in the development of 

material models for cracked and uncracked concrete and subsequently several 

numerical models exist, (Chen 1982). 

5.2 Concrete Constituent Behaviour 

Concrete being a brittle material, there exists within the results of concrete tests, a 

marked statistical scatter. Figures 5.2(a-b) shows examples of this for Young's 

modulus and the stress-strain behaviour of concrete in tension. Variation in one of 
three test variables can account for this scatter, namely: 

9 materials tested 

9 test method used 

9 loading systems 

The presence of this scatter suggests that a perfect match between analytical and 

experimental data is neither possible nor necessary. The following sections describe 

the behaviour of concrete and steel as well as detailing the model adopted for the 

numerical analysis of plate bending and inplane problems in this study. 

5.2.1 Uni-axial Compression 

Uni-axial compressive strength is the most widely used variable for assessing concrete 

quality. In the UK, the uniaxial cube strength f,,, is determined by testing 150mm. 

cube strengths after say 28 days. In the U. S, the uniaxial cylinder strengthf, "is derived 

from testing 152005 mm. cylinders. The cylinder strength is usually around 70-90% 

of the cube strength. This difference can be attributed to the friction forces which are 

generated between the contact face of the cube specimen and the testing machine 

platens. Such forces result in the formation of a multi-axial stress state and result in 

an increase in the cube compressive strength. These multi-axial effects are reduced in 

the cylinder specimens due to the increased width to height ratio of the specimens. 

The study of concrete under uniaxial compression provides a good premise from 

which to detail its behaviour under more complex stress states. 
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fig. 5.2(a) Young's modulus E, vs. cylinder compressive strength f, ', 
(w= concrete unit weight, ACI-Committee-363 1984) 
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fig. 5.2(b) Test data for cracked concrete in tension, 

(fc, = principal tensile stress, fr= stress at cracking, Vecchio & Collins 1996) 
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The typical stress-strain relationship for concrete under multi-axial compression is 

illustrated in figure 5.2.1(a). From the experimental results, the following basic 

observations can be made: 

9 up until 30% of its maximum compressive strength f, ', concrete stress-strain 

relationship is roughly linear 

at stresses above 30% f, ' ,a gradual increase in deformation is observed up to 

0.75-0.9f, "t bending more sharply on approach to peak strength f, ' 

after reaching peak strength, the stress-strain curve has a descending branch until 

crushing failure occurs at the ultimate strain (ema,, ). This strain is normally in the 

range of around 0.003 to 0.004 

Figure 5.2.1 (b) details the variation of uniaxial compressive stress-strain behaviour for 

concrete of varying compressive strength. From the figure, it can be seen that the 

initial modulus of elasticity is dependent upon the specific compressive strength of the 

concrete. It is observed that concrete behaves in an increasingly linear fashion up to 

peak strength the greater the compressive strength. All peak stress points occur at 

around 0.002 strain. A decrease in the ductile nature of unloading is observed in the 

descending branch of the stress-strain plot as the compressive strength is increased. 

Numerous formulae derived from standard mathematical functions or from curve 

fitting techniques have been proposed to approximate the uni-axial compressive 

stress-strain response; Saenz (1964), Mansur et al. (1995), Almusallam (1995). A 

review of the various proposed formulae is can be found in Popovics (1970). 

Examples of various numerical uni-axial compression models are presented in figs 

5.2.1 (c-e). From this work the following observations can be stated: 

41 The maximum compressive strain differs from one model to the next 

9 The presence of compression softening can be accounted for. 

e There is no unique model for the uni-axial compressive stress-strain response that 

has been agreed by the majority of researchers. 
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fig 5.2.1 (a) Uni-axial compressive stress-strain response of concrete (Chen 1982) 
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fig. 5.2.1 (b) Compressive stress-strain curves for concrete with different f, ' 
(Chen 1982) 
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5.2.2 Uni-axial tension 

The tensile strength of concrete is Very low, usually around 0.1 The main reason 
for this low strength results from the heterogeneous nature of the concrete itself. From 

the outset, concrete contains many micro-cracks at the mortar-aggregate interface, 

which on application of tensile force will propagate and expand. The effective tensile 
strength of concretefi, is difficult to evaluate despite its importance in determining the 
behaviour of a structure. Tensile strength is the' most important parameter in 

determining the cracking behaviour and development of constitutive'models. Three 

testing methods; direct, flexural and indirect are used to derive the tensile strength of 

concrete specimens. The indirect test, namely the cylinder splitting test, is most 

commonly used in evaluating ft. In this test, the concrete cylinder is laid horizontally 

between the loading platens of the testing machine and compressed until it splits 

vertically along the diametrical plane. 

The stress-strain relationship for a number of different concrete specimens tested in 

uni-axial tension is shown in figure 5.2.1(a). In general, the response is almost linear 

up to a high percentage of the tensile strengthft. 

5.2.3 Bi-axial Stress 

The constitutive behaviour of concrete under bi-axial loading differs form that of uni- 

axial loading. Many people have researched the behaviour of concrete under bi-axial 

load including with reference to the effect on strength, micro-cracking, and 
deformational characteristics. 

The biaxial failure envelop obtained form experimental work of Kupfer et. al (1969) is 

shown in figure 5.2.3(a). It can be seen that the maximum compressive strength 
increases with the level of bi-axial compression. A maximum compressive strength 
increase of roughly' 16% f, " is observed under conditions of equal bi-axial 

compression, and an increase of around 25% f, ' is achieved with a stress ratio of 

(Tj/a2 = 0.5. An increased initial stiffness in bi-axial compression is also observed 

which may be due to Poisson's effect, i. e. a reduction in lateral tensile strain, see 
figure 5.2.3(b). 
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In the case of bi-axial tension ,a tensile strength similar to uni-axial tension is 

achieved. The stress-strain curves for bi-axial and uni-axial compression are similar. 

For the tension-compression case (fig. 5.2.3(c)), the compressive strength decreases 

almost linearly as the tensile stress increases. 

5.2.4 Compression Softening 

As shown in the uni-axial compression curves, once the peak stress is reached, the 

concrete begins to unload while the strain increases. The term strain softening is used 

to describe the response of a material where the slope of the stress-strain curve 
becomes negative. There exists considerable variation in the experimentally obtained 

unloading branch of the stress-strain curve. Compression softening behaviour of 

concrete is dependent upon the boundary conditions and the size of the specimen, see 
(Van Mier (1984), Vonk (1992)). Post crushing behaviour of the concrete has a 
definite effect on the failure mode of the structure. Work carried out by Kent & Park 

(1971), has shown that the level of confinement plays an important role in post 

crushing behaviour. As expected, the greater the level of confinement, the more 
ductile the post crushing response, (Issa & Tobaa (1994)). As shown in figs. 5.2.1. (c- 

e), various models for the descending portion of the stress-strain curve have been 

proposed. Meyer and Bathe (1982), suggested a straight line approximation with a 
free parameter to account for confinement of steel was sufficient for most analysis. A 

concrete post-crushing residual strength of 10-40% of f, has been proposed by many 

researchers. 

5.3 Cracking of Concrete 

The low tensile strength of concrete will result in early cracking of members in a 

tension zone at low load levels before the steel starts yielding. Cracking is therefore, 

one of the most important non-linear phenomena displayed by concrete. Three main 

approaches to cracking have been developed in finite element analysis; discrete 

cracking models, smeared cracking models, and fracture mechanics models. Each of 

the three methods will be briefly described in the following: 
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fig 5.2.3(a) Bi-axial strength envelope of concrete (Kupfer et al. 1969) 
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fig 5.2.3(b) Concrete bi-axial behaviour: compression -compression 
(Kupfer et al. 1969) 

93 



Chapter 5 Material Behaviour & Numerical Modellin. - 

"I 

12 

E 2'E 3 10 

E3 09- 

Q8 - 

00 - 
6; / 6ý EJAE3 / El 

- -- +6; 
--- 11 -ý OL6 

1 0,052 --k 
-1/ 0.103 

1t OL5 
'92 

---- -1 / 0204 -- E OL 
- 
4- - Ei- 

ý3 ---; - --t - -'5cm(21n) 03 - -f 20 
N (79in) 

-1.0 -05 0 -05 -10 -15 -20 mmim (()Winhn) 

tensile strain Compressive stratri 

fig 5.2.3(c) Concrete bi-axial behaviour: tension-cornpression (Kupfer et al. 1969) 

5pp 
295 kpicmz 4 200 psi) pp 

010 -- E, 
C3 

008 

--- 
'1 

1 +6ý 

6', 162 +6ý CN Ow 
1/0 

1/1 -ý20 5 cm(20in) 
1/Q55 (79 In) 

Cl-C2, C3 

-QO4 -002 0 +002 CID4 006 008 alo OL12 m-kno 
comprvssive strain tensite strain 

fig 5.2.3(d) Concrete bi-axial behaviour: tension-tension (Kupfer et al. 1969) 

94 



Chapter 5 Material Behaviour & Numerical Mcdelling 

5.3.1 Discrete Crack Model 

The discrete crack model was introduced by Ngo and Scordelis in 1967 and was the 

first model used to represent cracking in finite elements. In this method, the crack is 

modelled by disconnecting the nodes of adjoining elements along the length of the 

crack (fig 5.3.1). The main problem with this method lies in the redefining of the 

element mesh continually after cracking. This process is not very efficient in the finite 

element method which requires a narrow band width in the structural stiffness matrix. 
Additionally, the crack topology, though not known in advance, is dictated by the 

mesh size and element topology Le the crack must propagate along element edges. 
As a result of these problems, the discrete crack model has found limited use in finite 

element analysis. 

5.3.2 Smeared Crack Model 

A practical smeared crack model was first introduced by Rashid in 1968. Further 

enhancements to this model were made by Suidan & Schnobrich (1973) and Phillips 

& Zienkiewicz (1976). In this model, the concrete is idealised as a continuum, 
isotropic prior to cracking. On cracking, it is possible to describe its behaviour from 

the stress-strain relationship. Once the concrete has cracked, the stress-strain 

relationship of the element is changed from isotropic to orthotropic. This method is 

computationally convenient since the topology of the element remains unchanged, 

When this approach was first introduced, an orthogonal crack system was employed. 
In this approach, after initial cracking, subsequent cracks were only allowed to form 

orthogonal to the existing crack. This fixed direction approach, meant that the crack 
direction was governed by the direction of the first principal stress to exceed ft (fig 

5.3.2b). The second crack occurs when the stress parallel to the first crack becomes 

greater than ft (fig 5.3.2c). The fixed crack approach has been implemented in many 
finite element codes and is the model implemented in this work 

In reality, it is possible for the post cracking principal strains to deviate from the crack 

orientation due to the presence of shear strain on a cracked plane. The principal post 
cracking tensile stress may reach peak on a plane other than the initial crack plane. 
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The subsequent development of the rotating crack model allowed the co-rotation of 

the crack with the principal strain axes. 

5.3.3 Fracture Mechanics Model 

Fracture mechanics theory has been applied successfully in the past to cracking 

problems involving metals, ceramics and rocks. Some research has been carried out 

on the applicability of fracture mechanics theory to reinforced concrete; Bazant & 

Cedolin (1980). It was concluded by Chen(1982), that the use of fracture mechanics in 

reinforced concrete is still questionable. 

The smeared crack approach was adopted for the present study. The simplicity of this 

approach has made it a popular choice with many analysts. The smeared crack 

approach provides a good approximation of the load-displacement relationship but is 

unable in many cases to realistically model exact crack patterns. In cases where this is 

desired, a fracture mechanics based model is more suitable. 

5.4 Present Concrete Model 

Recent research into the applicability of various concrete models has found that the 

level of complexity of the model is not necessarily linked to the level of accuracy. It 

has been found that simple models can be just as effective, or ineffective as more 

complex models, Collins & Vecchio (1985). The model used in this work although 

simple, is capable of adequately predicting the non-linear behaviour of reinforced 

concrete structures. It has been adapted from models successfully used by Bensalem 

(1993) and Abdel Kader (1993) to account for compression softening and non- 

orthogonal steel. 

5.4.1 Yield Criterion 
The yield criterion defines the combination of stresses which will initiate plastic flow 

at any point. With regards to the definition of an ideal failure criterion which modeled 
the exact behaviour of concrete under all conditions, Chen (1982) concluded that such 

a criterion would be so complex as to make its use in numerical analysis impractical. 
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or 

figs 5.3.2 (a-c) Smeared Crack Model 
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The bi-axial yield criterion used in this work is based upon the experimental work of 

Kupfer et al (1969). The yield surfaces for concrete under bi-axial stress are shown in 

figure (5.4.1). The octahedral shear stress, linearised in terms of the octahedral normal 

stress is used to fit these yield surfaces in the following form: 

=+b cy,,,, 

where the octahedral shear stress T,,,, is defined as : 

Toct 7- -\F2 ((T 
x2 +(Y y2+3, T xy 

2) 1/2 (5.2) 
3 

and octahedral normal stress (5,,, t as : 

ax +0 
Cy Oct =-3 (5.3) 

The following describes the derivation of constants a and b where. f. " is the uni-axial 

cornpression strength, is the equivalent strength under bi-axial compression 

previously stated as 1.16 and m is the ratio of uni-axial tension to compression 

strength (ft1f. "). 

5.4.1.1 Compression- Compression Yielding 

a) For uni-axial compression: (7, =-f. ", (5y = Txy = 0.0, 

'roct = 
52 

ý 
f',, ' and at = -f ,,, thus on substitution into equation (5.1) 

33 

=a- (5.4) 
33 

b) For bi-axial compression: cy, = cyy T, y = 0.0, 
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, TOCt = 1.16 -5 
. 
f. ' and (Toct = -1.16 

2f" 
, after substitution into equation (5.1) 

33 

1.16 a- LI 6(ýbf, 
) 

(5.5) 
33 

Solving for a and b, the bi-axial compression yield equation is given by: 

Toct cyoct 

ý 0.1714- 0.4143 ::::::: 0.0 (5.6) 
J'C' fe, 

5.4.1.2 Tension- Compression 

In this case (7, (Ty 111f. following the same procedure leads to: 

Oct -F2 (I - m) CF Oct 2 r2- m 
-+. =0.0 (5.7) 
ft (I + M) 3 (1 + m) 

5.4.1.3 Tension-Tension 

For biaxial tension the following simple circular yield criterion is implemented: 

2 
CY2 

- 1.0 = 0.0 (5.8) 
A 

where cy, and cy, are the principal stresses. 
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fig 5.4.1 Yield Surfaces of Concrete under Bi-axial Stress (Chen 1982) 

101 



Chapter 5 Material Behaviour& Numerical Modelling 

5.5 Concrete Non-linear Behaviour 

5.5.1 Compressive Stress-Strain Relationship 

For the modelling of rion-linear stress-strain behaviour of concrete in the principal 

stress direction, the equation describing concrete in the elastic stage ((5=DF-) first 

proposed by Seanz (1964) and modified for bi-axial behaviour by Liu et al (1972) is 

applied. This equation is defined as: 

(T =-A+ 
BEcE 

C2) 
(5.9) 

(I - v(x)(I + CE +D- 

where (x is the principal stress ratio v is Poisson's ratio. A, B, C and D are 

parameters dependent upon the shape of the stress-strain curve and are calculated as 

follows: 

I. At initial loading F, = 0.0, (T = 0.0 

da Ec 
and (T = 0.0 

d F- (I - V(X) 

2. On reaching the peak stress ap at strain F-p, the slope of the stress strain curve 

becomes zero. Therefore at: 
dcy 
-=0.0 and (y = ap 
dc 

From the four conditions described above, the unknown parameters A, B, C and D of 

equation 5.9 can be evaluated. Solving for these constants leads to the following 

equation: 

G -- 
Ec F- 

e 1EE 
(1 - V(X) 1+(' 

1- va E, 9p F- p 

where 
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E, is the initial modulus of elasticity of concrete for uni-axial loading 

E, is the secant modulus of elasticity at the peak stress ((Yp /ep) 

(T and c are the stress and strain in biaxial load 

This equation is used to model the stress-strain relationship for concrete under biaxial 

cornpression up to peak strain at which point the equation ceases to become valid due 

to softening. 

Early changes in the stiffness of the concrete are accounted for by incrementally 

linearizing equation 5.10 during loading. This process is carried out by assuming 

intermediate surfaces shown in figure 5.4.1 similar to those proposed by Bell and 

Elms (1971) and Chen (1982). The first loading surface corresponds to the initial 
discontinuity in the stress-strain diagram. Subsequent loading surfaces are assumed to 

have the shape of the limiting yield surface. The intermediate surfaces are 

represented by equation 5.1 but with an intermediate concrete strength rep acing I 

the ultimate strength. /, ". Tile following equation was proposed by Johnarry (1979): 

J'(. 
ll =fCo -A+E, j, 1 Ei 

wheref, = intermediate compressive strengthj,, = 0.5f. ", f= tensile strength, E, = 

concrete elastic modulus, Ej = instantaneous elastic modulus. The instantaneous 

elastic modulus is calculated up to peak strain F-P using equation 5.11. For strains 

above this value the following expression is used until the assumed crushing strain of 
0.0035 is reached: 

f, '/t i 

If the principal cornpressive strain exceeds 0.0035 or if the failure criteria is violated, 

then concrete is assurned to be crushed. 
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5.5.2 Tensile Behaviour 

The tensile behaviour of concrete, most notably cracking, accounts for the main 

source of non-linearity in concrete structures. The present concrete model is able to 

generate the main features of concrete in tension; cracking in one or two directions, 

shear transfer to account for aggregate interlock and tension stiffening. 

5.5.2.1 Single Cracking 

If the yield equations 5.7 or 5.8 in tension-tension or tension-cornpression, are 

violated then the material is said to be cracked. The direction of the cracked is taken 

as normal to the major principal tensile stress direction. The stiffness perpendicular to 

the crack is assumed equal to zero when tension stiffening is neglected. The material 

parallel to the crack is still able to carry stress. In addition some shear force is 

transmitted along the rough surfaces of the crack. The material stiffness matrix of the 

concrete in the local coordinate system is given below: 

Ec 00 

000 

00 PG_ 

The shear modulus G is reduced (0 !! ý P ! ý, 1) to account for aggregate interlock. The 

Poisson effect is neglected since it is assumed that there is no interaction between the 

two principal directions once the concrete has cracked. The following describes the 

process of defining the crack direction: 

a: The principal stresses are calculated according to the following: 

x+y (T x_ Cy y2 
1,2 22 xy 

b. The principal angle 0, with respect to the x-axis from: 
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tan 20 
2, r xy 

CY x- (Y y 

c. Since -45 !ý0:,: -ý 45, it may lead to confusion about the major principal direction. It 

is necessary to calculate the normal stress Gn associated with angle 0 from the 

following 

(y n --ý (T x COS 
2 0+(y 

y sin 
20+2, 

r xy sin 0 COO 

d. It is then necessary to compare the values of (71 and (T-, with the normal stress c5,1 

calculated from the above equation. 

0 cy,, = cyl, then (71 is at 0 and hence the crack angle is inclined 0+ 90' to the x- 

axis 

if cy, = cy-), then (71 is at 0+ 90' and hence the crack angle is inclined 0 to the x- 

axis. 

5.5.2.2 Double Cracking 

Subsequent cracking and changes in crack orientation are due to the presence of shear 

retention and tension stiffening. These subsequent or secondary cracks in reality may 

not be orthogonal to the original crack direction since aggregate interlock implies that 

the primary crack direction does not coincide with the principal direction. Vecchio 

and Collins (1982), found from experiments on shear panels, that changes in crack 

orientation do take place, especially in unequally reinforced panels. 

In the case of previously uncracked concrete, a double crack will occur when both 

principal stresses exceed the tensile strength fi . The material stiffness matrix in local 

coordinates for this case is given as: 

000 

000 (5.17) 

_O 
0 ßG_ 

When tension stiffening is considered in the analysis, then the first two diagonal terms 

of the above matrix may be updated accordingly. The material stiffness matrix [D'],, 
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is expressed in terms of the local coordinates (x', y'), it is therefore necessary to carry 

out a transformation into global coordinates via the transformation matrix [TI: 

[T] T [D'],, [T] (5.18) 

c2s2 cs 

and [T] S2 C2 -CS (5.19) 

-2CS 2CS -S 
2c2 

where C= cosO, S= sinO 

5.5.2.3 Tension Stiffening 

Cracking in a reinforced concrete member usually occurs at discrete sections. Oil 

cracking, the concrete tensile strength at the crack reduces to zero. However, the 

uncracked concrete between the cracks is still able to carry tension and thus contribute 

to stiffness. This phenomenon is known as tension stiffening JUT 5.5.2.3a). Modelling 

of tension stiffening is important for the prediction of a structure's load-defori-nation 

characteristics in the post cracking stage. 

Numerically, there are two ways in which to model the tension stiffening effect. The 

first method is to modify the tensile stress-strain curve for concrete. The second 

method involves modifying the stress-strain curve for steel. The first method is the 

most popular and was introduced by Scanlon and Murray (1974). In this model, a 

strain softening branch is added to the stress-strain curve after the cracking strain has 

been exceeded. In experiments on the tensile strength of plain concrete, the presence 

of a softening branch of the stress strain curve has been confirmed, Reinhardt (1985), 

Gopalaratnam and Shah (1985). Thus, the inclusion of this tension softening 
behaviour in the model is closer to reality. 

Experiments by Clark and Speirs (1979) on one-way spanning slabs with different 

steel ratios have shown that the effect of tension stiffening decreases with increasing 
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steel strains and steel ratios. They suggested that tension stiffening could be ignored if 

the steel ratio exceeds 1.5% or the steel strains exceed 0.00 16. 

For the model used in this study, the tension stiffening regime shown in fig 5.5.2.3(b) 

was adopted. Tension stiffening was modelled as a linear softening in the post 

cracking regime. 

when Ei < F-cr then (5 == EiFi 

if Ccr! ýCi:! ý-C2F,, then a= Cl ft 
(C2F- 

cr - F- i)] 
[ 

Ecr (C2 - 1) 

if C2F-j > C2F-,, then G=O 

where cy and F-i are the local stresses and strains orthogonal to the crack, the cracking 

strain F-cr -.,: f, /Ec , andft is the tensile strength of the concrete. The value of coefficients 

CI and C2 can vary between the following range: 0.5 !ýCI!! ý 1.0 and 10.0 ! ý- C2 

20.0 

5.5.2.4 Shear Retention 

In a cracked structure, shear can be transmitted along the cracked interface by one of 

two mechanisms. The first mechanism, aggregate interlock, results from the uneven 

fracture surface and works in combination with friction to provide resistance along the 

fracture plane (fig. 5.5.2.4(a)). The second, dowel action of the bars, is caused by 

reinforcement crossing the crack (fig. 5.5.2.4(b)). The resistance provided by these 

effects can be quite significant in structures under high direct shear, where the strength 

may be dictated by behaviour along a single dominant plane or fracture zone. Both 

these mechanisms are governed by the width of the crack, i. e. as crack width 

increases, shear resistance decreases. Aggregate interlock has been found 

experimentally to provide more shear resistance than dowel action, Millar & Jonson 

(1985). It is not possible to implement directly the above mentioned mechanisms 

when using the smeared crack approach. For this purpose, the reduction in shear 

modulus across 
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the crack is defined by the shear retention factor P. A number of researchers have 

proposed shear retention factors to account for the gradual decrease in shear resistance 

as the crack width increases. Cedolin and Deipoli (1972) introduced a variable factor 

which reduced linearly with a fictitious strain normal to the crack. A similar model 

was proposed by Al Mahaidi (1979) using a hyperbolic decrease in the shear stiffness 

(fig. 5.5.2.4(c)). This model was implemented in the current work, with P defined as 

follows. 

B 
(5.20) 

(F- f/ F-cr ) 

where F-f is the fictitious strain normal to the crack defined as below: 

cf= F- , sin 
2 Ocr +Ey Cos 

2 Ocr +yy sin Ocr Cosocr 

F, is the critical cracking strain = ft/Ec, F-x, F-y and yy are the inplane strains and 0, is 

the angle of the crack to the x-axis, 0 !ýB<1. 

5.6 Modelling of Reinforcement 

The modelling of steel bar behaviour is less complicated than that of concrete since its C, 

behaviour is largely uni-axial due to the one-dimensional nature of reinforcing 

elements. The stress-strain characteristics of typical reinforcing bars are shown in 

fig. 5.6(a). The steel exhibits initial elastic behaviour, followed by a yield plateau in 

which further straining occurs without significant stress increase. After this point, 

some strain hardening takes place in which some stress increase is observed with 

stram. Finally, softening occurs as the nominal stress drops with continued straining 

until fracture occurs. A simple bi-finear representation is sufficient to model the 

elasto-plastic behaviour of the steel. and this can be modified to take account of strain 

hardening (fig 5.6(b)). 

In the elastic regime, the incremental stress-strain relationship is: 

A(T = ESAc 
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On reaching the yield stress fy, the incremental stress relationship becomes: 

Acy = E, (l - E, / (E, + H))Ac 

where H is the hardening parameter and Es is the Young's modulus of the steel. There 

are three main types of models used for reinforcing steel; smeared, embedded and 

discrete model (figs 5.6(c-e)) 

5.6.1 Smeared Model 

Here the reinforcements are assumed to be spread in a steel layer over the concrete 

element. Hence, this model is widely used in structures where there is a large number 

of closely spaced bars such as in plate and shell structures. This model was first 

devised by Wegmuller (1974) and further adapted by Cope & Rao (1977). In this 

model, the structure is divided in to layers and the stress-strain relationship for each 
layer is defined as: 

Jul = [D, '] Ic) (5.22) 

where [D, '] is the material matrix for steel. The behaviour of the steel layer is 

described in the local coordinate direction of the reinforcement and hence the bars can 

be orientated at any angle to the global axes (x, y). The constitutive relationship can 

then be transformed from local to global axes 

5.6.2 Discrete Model 

Here, a one dimensional bar element, representing the reinforcing bar, is 

superimposed on the parent concrete element by assuming that the bar is pin 

connected (two degrees of freedom) at nodal points. This model was first introduced 

by Ngo and Scordelis (1967). In addition to this, beam elements can be used in place 

of the bars to accommodate axial forces, shear forces and bending moments. Such 

idealisation may be necessary in structures where very large bars are used and hence 

bending becomes a significant effect. 
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In this method, it is possible to model the steel-concrete interaction by means of 

linkage elements which can account for bond slip. This model also allows the bar 

stiffness and strains to be calculated exactly on the bar position. The main 

disadvantage of this approach is that the mesh geometry is restricted by the 

reinforcement positions i. e. bar elements must pass through element nodes and hence 

rnesh sizes can often become large which in turn results in greater computation tirne. 

To overcome this problem, El-Mezaini and Citipitoglu (199 1) developed a technique 

which allows the discrete reinforcement to be modelled independent of the rnesh 

, geometry. In this method, the desired concrete mesh is set up independent of any 71 
reinforcement. Then, the edge nodes of the concrete elements are moved to the points 

of intersection of the reinforcing bars. This system can cause distortion of the concrete 

element and a correction technique is necessary to avoid this. In addition, this model 
does not account for non-linear behaviour such as cracking and dowel action. 

5.6.3 Embedded Model 

The embedded model was developed to overcome the mesh dependency problems of 

the discrete model. This method was first developed by Phillips & Zienkiewicz 

(1976). Bars are treated as special line elements which are positioned or ernbedded 

within the concrete elernent boundaries (fig. 5.6(e)). In its original formulation, the bar 

had to be aligned to one of the local iso-parametric axes and hence the method was 

only applicable to orthogonal reinforcement. Full compatibility between the steel and 

the concrete is assumed. The line of the bar is defined using the same shape functions 

as the main concrete element and because of compatibility, the displacements of the 

bar are obtainable form the displacement field of the embedding concrete element. 
The stiffness contribution of the bar is assumed to be only in the longitudinal 

direction. 

Further development of the embedded method was carried out by Ranibaran ( 199 1) to 

allow for inclined bars. Elwi & Hrudley (1989) and Phillips and Wu (1990) developed 

a rnethod for embedded curved reinforcement. The main advantage of this method is 

that there are no limitations to representing the reinforcement layouts. In addition, the 
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stiffness contribution of each bar element can be evaluated independently. The 

formulation for inclined reinforcement proposed by Ranjbaran (1991) was 

implemented in this work and is described by the following 

5.6.3.1 Embedded Element Geometry 

At a typical point P in the reinforcement (fig 5.6. (e)), the strain in the concrete with 

respect to the global X-Y axes is as follows: 

xx Y xy/2 
Y xy/2 yy 

(5.23) 

The strain component of the reinforcement in its local x'-y' coords, i. e. along or 

perpendicular to its length, is obtained from the simple transformation described 

previously: 

F-'= Rr-R T (5.24) 

where R is the matrix of direction cosines denoted by: 

mi 
Ml 

where 1 and in are the direction cosines, and F-,, y = (, yy/2). Expansion of equation 

(5.24) leads to: 

I 2E 
xx 

2+ 
III 111, F- I- +211mle, +M]F-, 

y 
lil2F,, +('IMI +'I' I)F-, y I- yy 

12F 
-xY, 

+ M2E + (1, rn, + Ion, )F,, 
y 

+ m, mc yy 2+ 21, m, c xy 2- "y 

In the reinforcing bar, only longitudinal strain is considered, hence only the following 

equation is required: 
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2 
F xx'- 

IIF-xx +21, mlexy +m, F-yy (5.25) 

The stain displacement relationship for the element is expressed as follows: 

aU n [aN, u 

Vi xx=: äx- Lax 0] 

aU nu 
C yy O, 

aNi 
ay vi ay i=11 

I 

i 
aV 

+ 
aU 

=: 
1n [aN, 

, 
aN, 1 U, 

E xy -1 2 ax ay 2 j=I ay ax Vi 
(5.26) 

in which N, is the shape function of the element at node i and n is the number of nodes 

in the concrete element. Substituting the above into equation (5.25) leads to 

n U, n 

Exx'= B' B [B'l U' 
uvI 

I 
vi i=l vi 

where 

, 
aNi aNi 

Bu =1 I- ax +IIMI ay 

aNi 2 aNi 
Bv = 1, ml ax + ml ay 

(5.27) 

With the strain matrix of the reinforcement [B'l obtained, it's stiffness contribution to 

the element is defined as: 

Kr iT 
ij=f,,, B DBj. dQ 
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fB iT DBj AQ fB iT DBj AQ 
u. il , (5.28) iT iT BVDBj AQ B DBj AQ J, 
21 u 

ful 
vv 

The equivalent nodal forces can be evaluated from 

f, 
2 

B iT ar, dü (5.29) 

The element of volume (or in this case length) is evaluated in terms of the 

dimensionless natural coordinates ý, ij of the parent element. Dimensionless 

coordinate r defines the position along the reinforcement in the parent element where 

(-I <r< I) . The direction cosines can now be expressed in terms of r: 

ax-axar lax 
m 

ay 
- 

ay ar I ay 
(5.30) 

ax, ar ax' C ar ' ax, ar ax' C ar 

ax 2+ ay 2 
froM 12 + M2 where C= 

[( 

ar 
( 

ar 
)II 

Substituting (5.30) into (5.27) leads to : 

aN' 
B'u = (Cl 

ax + C', 
ay 

)/Cl 

aN' aN' 2 B'v = (C2 
ax 

+C3 
ay 

VC (5.31) 

where 

ax 2 ax ay 2 
C, =, C2 = 

)(ay) 
C3 = 

( 

ar 

)( 

ar ar 

( 

ar 

The Jacobian of transformation can then be evaluated from: 

jrl = 
ýdx 

=C (5.32) drý 
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noting that the relevant partial derivatives can be found from; 

ax ax aý ax all aý all 
--+-- =iII-+j 21 - ar aý ar ail ar ar ar 

ay 

- 

ay aý 
+ay 

a7l 
= J12 

aý+j22 aq 
(5.33) 

ar aý ar aTI ar ar ar 

and hence: 

ir (1 2 +j2 
2 

+2(JIIJ,,, +JI'IJ22) + (j 21 +j2 2)(an 

21 1/2 

11 12 )(L 
--22 

(5.34) 
ar 

( 

a-r ar 

) 
ar 

) 

where the constants J 11, J 12 etc. are the elements of the Jacobian rnatrix as defined by: 

ax ay 
IIj 12 aý aý 

j 21 j 22 
ax ay 

aTl aTI 

(5.35) 

Since it is assumed that the reinforcements are distributed through the thickness of the 

element, the element volume can be calculated from: 

dKI, =A dl =A stljrldr 
Sr 

(5.36) 

where A, is the cross sectional area of the reinforcement, t is the thickness of the 

parent element, and S, is the spacing of the reinforcements through the element. All 

the equations defined are evaluated in terms of the concrete or master element 

coordinates. It is hence necessary to define the relationship between r, ý and Th i, 17. S 

relationship is expressed as follows: 

[TI 

0 [M] I 
Tl* 

(5.37) 
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where (ý*) and ITI*) are the nodal coords on the reinforcement in the parent element 

and M is a single variable interpolation function, defined as the Lagrangian 

polynomial: 

mi - 
(r-rj) ... (r ri-I )(r ri, l ) ... (r r,, ) (5.38) 

(ri - r, ) ... (ri - ri-I )(ri - ri+l ) ... (ri - r,, 

Hence for a straight reinforcing element, equation (5.36) may be written as: 

I 
r(ýh - 

ýa +I (ýb + ýa 
22 (5.39) 
I 

r(Tlb - 'la + (11 b+ Tla 
22 

and 

aý I 
= -(ýb - ýa 

ar 2 (5.40) 
all I 
ar =2 

(Ilb 
- 11a 

in which 17, ) and (ýh, 11b) are the end point coordinates of the reinforcement in the 

parent element (fig 5.6(e)). All of the necessary calculations can now be made to 

evaluate the stiffness contribution of the reinforcement to the concrete element. The 

calculation process can be summarised as follows: 

0A gauss point coordinate rg on the reinforcing element is selected and 

corresponding values of ý, il, aý/ar, aTI/ar are calculated from eqns 5.38-5.40. 

These values are evaluated once in the pre-processing stage and stored. 

0 For the current values of ý,, 11g, evaluation of J, ax/ar, and ay/dr is carried out 

from equations (5.35) and (5.33) 
IJ'I, [B r, and ffir are calculated from equations (5.34), (5.31) and (5.36) 

respectively. 
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Kij and Fr are calculated form equations (5.28) and (5.29) respectively. 

e These are then added to the corresponding values of the concrete element. 

5.7 Applications of Numerical Model 

In this section the performance of the current numerical model is assessed through 

comparison with experimental results on various types of structures. It is important to 

test the accuracy of the model in predicting the behaviour of in-plane and plate 

bending structures which will be used throughout this work. A series of structures 

involving different modes of failure was chosen. The main areas assessed were load- 

deformation response, cracking behaviour, steel yielding, ultimate load and mode of 

failure. 

A convergence force tolerance of 4% was set for the analysis and the maximum 

number of iterations was set at 50 and 75 for plate bending and plane stress analysis 

respectively. A combined algorithm was employed whereby the stiffness matrix is 

updated every 2nd, 5th, 10 etc. iterations until convergence or collapse is reached. An 

increase in the maximum amount of iterations in plane stress structures is a result of 

the slow rate of redistribution of residual stresses in plane stress structures 

accompanied by lower deformations compared with slabs. In addition to this, small 

load increments were applied only to highly non-linear phases while larger increments 

may require more iterations. It was shown by Abdel-Hafez ( 1986) that the effect of 

increment size on the resulting solution is not significant. 

5.7.1 Simply Supported Slab tested by Hago 

This slab (model number 3) was chosen from a series of tests carried out by Hago 

(1982) and was used to asses the effect of mesh size, tension stiffening and shear 

retention in the numerical model. Details of the slab dimensions and reinforcement 
layouts are given in figures 5.7.1(a-c). The slab was simply supported on four sides 

and was 100 nirn thick. A design load of 210 kN was applied as four point loads as 

shown in figure 5.7.1 (a). Material properties are outlined below: 
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Concrete Properties Steel Properties 

E, =21500 N/mm 2 E, =214000 N/mm 2 
-, T-- 

f,,, =44.2 N/mm 
2 fy=460 N/mm 

f, =3.4 N/mm 2 

Table 5.7.1: Hago's Slab n. 3 

For numerical analysis, a symmetrical quarter of the slab was analysed. Firstly, the 

slab was analysed using four different mesh sizes; 2x2,4x4,6x6 and W elements. 

For comparison the load-displacement curves obtained experimentally and 

nurnerically are displayed in figure 5.7.1(d). It can be seen that a more ductile 

response occurred as the number of elements in the mesh increased. The minirnum 

2x2 element mesh was used purely for comparison. In reality, differences in 

reinforcement layouts may dictate a minimum density of mesh for adequate 

representation. A mesh of 4A elements was able to model the response to sufficient 

accuracy at a reasonable cost. As the mesh density increased, the computation time 

increased substantially e. g the analysis with the W element niesh was four times 

slower than with 4x4 elements. 

Generally in flexural failure of slabs, cracking is initiated at around 20-30% of the 

ultimate load P, For the numerical analysis, a load increment of 20% of the design 

load P, j was used in the first increment, subsequent increments of 0.05 P, j were 

applied. The largest amount of iterations (26) were recorded during the 3rd increment 

where the onset of cracking took place. The numerical load-displacernent response 
for each mesh size was less stiff during cracking than in the experimental model. The 

inclusion of tension stiffening into the model would help to increase the numerical 

stiffness during this stage. The next parametric study focused on the effect of tension 

stiffening using the model shown in fig. 5.5.2.3(b), whilst varying the C2 parameter 

which dictates the descending branch of the tensile stress-strain curve. From figure 

5.7.1 (e), it can be seen that the presence of tension stiffening in the model improves 

the load-deflection response at the service load level. 
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The ultimate load achieved numerically although very close to the experimental, 

increases slightly with the value of C2. 

In order to study the effect of shear transfer in the numerical model, analysis was 

carried out using four different values of shear retention factor (B=0.0,0.4,0.7 and 

1.0). These values correspond to the transition from smooth to very rough concrete 

crack interfaces. The load-displacement curves resulting from each of these models 

are shown in figure 5.7.1(f). When shear retention is ignored, the numerical ultimate 

load is reduced by around 10%. When the shear retention factor B ranges from 0.4 to 

1.0, no significant change in ultimate load or load-displacement characteristics is 

observed. The steel-strains of the bottom reinforcement at the centre of the slab are 

shown in fig. 5.71(g). The numerical results shown were obtained using tension 

stiffening at C2=10 and shear retention factor B=0.4. An adequate correlation with the 

experimental result is obtained. The numerical crack pattern of the slab (C2=10.0, 

B=0.4), is shown compared with the experimental in figures 5.7.1 (h-i). 
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5.7.2 Corner Supported Slab tested by McNeice 

This model tested by McNeice (1967) comprised of a square (914.4014A44.45mm) 

slab supported on four comers. The slab was reinforced with an orthotropic mesh of 

0.85% reinforcing steel and was tested under a single point load at its centre. Details 

of the model are given in figures 5.7.2(a-b). The material properties are given in the 

table below; 

Concrete Properties Steel Properties 

Ec = 28600 N/mm 2 Eý = 200000 N/mmý 

fcu = 37.92 Ntmrnný fy = 345 N/mm 2 

ft = 2.75 N/mmý 

v -- 0.5 
II 

vame baa: mciNeice biab 

A symmetrical quarter of the slab was analysed using a 4A element mesh with 10 

layers through the thickness. In order to simulate a column support, three nodes were 

pinned at the comers of the slab; the comer node itself and the two nodes on each 

adjacent edge. For comparison, the model was analysed with and with out tension 

stiffening (CI=0.5, C2=10.0, B=0.4). The load-displacement curves obtained 

experimentally and numerically are detailed in figures 5.7.2(d-e). A satisfactory 

correlation is achieved between the experimental and numerical results with tension 

stiffening. Up to around 80% of the ultimate load, the model with tension stiffening is 

around 10% stiffer than without. Almost the same ultimate load is achieved with and 

without tension stiffening in the numerical model which was around 16 kN or 12% 

greater than the experimental load. 
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5.7.3 Slabs tested by Taylor et al. 
The following models were chosen from a series of slabs tested by Taylor et al. (1966). 

The original test program consisted of 10 two-way span, simply supported slabs with 

varying degrees and arrangements of reinforcement. Only bottom reinforcement was 

provided in each slab. All slabs were 1982.5 mm. square and were simply supported 

along each edge to give a spans of 1830mm. For the present analysis, slabs S 1, S2, S6 

and S8 were chosen. Details of the reinforcement layouts for each of these slabs are 

given in figures 5.7.3(a-d) and the material properties are given below in table (5.7.3). 

Slab Thickness (mm) Concrete Properties Steel Properties 

S1 50.8 fcu = 35.0 N/mM2 fy = 486.1 N/mm2 

S2 50.8 fcu = 36.3 N/mm 2 fy = 486.1 N/mm 

S6 50.8 fcu=35.3N/mm2 fy=497. ON/mm2 

S8 44.45 7- fcu = 37.9 N/mm 

I 

m2 FY 
= 486.1 N/mm 

Table 5.7.3: Taylor's Slabs 

All reinforcement comprised of 5 mm diameter bars. These slabs were chosen to 

assess the performance of the program at modelling differing layouts and orientation 

of reinforcement. 

During testing, loads were applied by small hydraulic jacks placed at 16 uniformly 

spaced positions. A mesh size of 4x4 elements was chosen to model each slab. 
Tension stiffening with CI=0.5 and C2=10.0 was utilised in the analysis, and shear 

retention factor B=0.4. The load-displacement relationship for each slab is displayed 

in figures 5.7.3(e-h). It can be seen that a good agreement between experimental and 

numerical models was achieved. 
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5.7.4 Deep Beams tested by Khaskheli 

Four, two-span, continuous deep beams were chosen from the experimental program 

carried out by Khaskheli (1989). The experimental work was mainly aimed at 
determining the ultimate load and serviceability performance of deep beams designed 

using the direct design method. Since these beams had varying reinforcement layouts 

and span-depth ratios, they provided a good basis on which to assess the applicability 

of the current numerical model in predicting the behaviour of deep beams at service 

and ultimate loads. 

The first three beams in the series had the same span-depth ratios of 1.07 while beam 

TGRAS4 had an increased value of 1.6 1. Both TGRAS I and TGRAS2 had the same 

amount of main reinforcement. Beam TGRAS I had a greater amount of shear 

reinforcement than TGRAS2 and hence the failure mode would be expected to be 

more ductile. The shear reinforcement in TGRAS3 was the same as that for TGRAS2 

but with TGRAS3 having a greater amount of main reinforcement. Details of the 

material properties and design load for each beam are given in table 5.7.4. The 

reinforcement layouts and dimensions are given in figures 5.7.4 (a-d). For numerical 

analysis, a symmetrical half of each beam was discretised using an 80 element mesh. 

Concrete Properties TGRAS1 TGRAS2 TGRAS3 TGRAS4 

E. (N/mm 2) 19300 23200 20800 19200 

f,,, (N/mm2) 63.0 61.0' 61.0 52.0 

ft (N/mM2) 3.2 3.7 3.4 2.6 

Span/Depth Ratio 1.07 1.07 1.07 1.61 

Shear-Span/Depth Ratio 0.42 0.42 0.42 
J 

0.69 

Design Load Pd(kN) 810 810 1100 - 810 

Steel Properties 

6mm 0 bars, fy=513 N/mm 2, Es=199000 N/mm2 

8mm 0 bars, fy=520 N/rnrný, Es=195000 N/mm2 

i anie . 5.7.4: Irroperties of Khaskheli's Beams 

134 



Chapter 5 Material Behaviour & Numerical Modelling 

In the case of TGRAS 1, during the experiment, initial cracking occurred at the bottom 

of the beam at mid-span at 0.3 Pd- In the numerical analysis, cracking was first 

encountered at 0.4 Pd around the same area as in the experiment. Yielding of the main 

longitudinal steel was recorded experimentally at the mid-span at 1.3Pd. Numerical 

yielding of the main steel was recorded in this area at around I -OPd- In the experiment, 

no yielding of the vertical stirrups was observed and this was also true for the 

numerical analysis. The experimental and numerical result for TGRAS I are given in 

figures 5.7.4(e-f). From the load-displacement curve, the onset of significant cracking 

can be seen in the numerical result at around 1.05 Pd- Such a phenomenon is 

characterised by the sudden loss of stiffness. The numerical crack patterns at P=I. OPd 

and 1.05Pd (fig 5.7.4g-h) confirm the extensive spread of cracking in the shear span 

during this short load increment. This event corresponds with the opening of inclined 

shear cracks in the shear span of the beam during the experiment at a load level of 

LIP& Good correlation between the experimental and numerical crack pattern can 

be seen from fig. 5.7.4(i). The ultimate load obtained from the numerical analysis was 

around 91 % of that obtained experimentally. 

The effect of the shear retention factor on the numerical behaviour was also 
investigated for this beam. Figure 5.7.4(k) displays the load-displacement response 

obtained using values of B=0.1,0.4,0.7 and 1.0. When B=0.1, a low ultimate load, 

equal to the load where shear cracks opened in the original analysis, is obtained. This 

suggests that the cracks opening at 1.05Pd were caused by high shear stresses. A more 

accurate response was obtained using the higher values of B. However, no significant 

differences could be seen from the response at B=0.4,0.7, or 1.0. 

Due to the reduction in shear reinforcement, the load-displacement behaviour of 
beams TGRAS2 and TGRAS3 is less ductile (figs 5.7.4(1-m)). Experimentally, 

TGRAS2 achieved a smaller ultimate load (I 216kN) than TGRAS 1. For TGRAS2 the 

load at which inclined cracks opened in the shear span was around 0.925 Pd which 

was lower than that for TGRAS 1. The numerical failure of the beam was reached at 
1.375 Pd which corresponded well with experimental failure load of around 1.43 Pd- 

The onset of inclined cracks in the shear span of beam TGRAS3 occurred at around 
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0.8Pd. A numerical ultimate load of 1.275Pd was achieved which again corresponded 

well with the experimental ultimate load of 1.36Pd- 

Since the span-depth ratio of beam TGRAS4 was much higher than that of the other 

beams, less brittle load-displacement response was anticipated. In the experiment, 

initial cracking occurred around the lower soffit of the beam at mid span. The first 

crack was recorded in this area at 0.12Pd while numerically, the first cracks appeared 

in the same area at around 0.3Pd. This difference is due to the fact that the initial 

increment in the numerical analysis was 0.3Pd. Further increases in load were 

accompanied by propagation of this crack towards the loading point. In the 

experiment cracking at the top of the beam above the internal support was initiated at 

0.65Pd and this was recorded numerically at 0.7Pd. The sudden appearance of 

diagonal cracking in the shear spans of the beam was, as for the previous models, 

observed numerically between 0.7 and 0.75Pd (figs 5.7.4(p-q)). The same 

phenomenon was observed experimentally at around 1.05Pd. Beam TGRAS4 failed 

experimentally in shear. It is clear however, that greater ductile response was attained 

from the load-displacement and load-strain plots (figs 5.7.4(n-o)). Significant 

yielding of the main steel at the mid-span was observed in the numerical model (up to 

8 times yield strain), however the strain gauge in the experiment failed once the strain 

surpassed 3.5 times yield strain. As in the previous beams, no yielding of the vertical 

reinforcement occurred experimentally or numerically. The numerical failure of the 

beam was reached at 1.15Pd which corresponded reasonably with the experimental 
failure at around 1.34Pd- 
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5.7.5 Corbel Tested by Niedenhoff 

In this example the analysis of a one-sided corbel is carried out. The experimental 

testing of one-sided corbels has been relatively scarce compared to two sided corbels 
(e. g. Kriz & Raths 1965). This is perhaps due to greater practical difficulties 

associated with testing the one-sided corbel resulting from the nature of its eccentric 
loading. The example chosen for this analysis was part of a series of tests carried out 

by Niedenhoff (1963). The original aim of these experiments was to obtain an 
indication of the stress distribution in these types of structures. A total of 12 corbels 

were tested in the program and model M2/132 was chosen for the present numerical 

analysis. Numerical analysis of M2/B2 has also been carried out previously by van 

Mier (1987) and Prasad et. al (1993). The results obtained by the present analysis are 

also compared with those obtained by the above. Details of the geometry, boundary 

conditions and reinforcing layout are presented in figure 5.7.5(a). The material 

properties are shown below in table (5.7.5): 

Concrete Properties Steel Properties 

E,: = 27000 N/mm 2 Es= 2 10000 N/mm2 

ft = 2.42 N/mm 2 fy = 350 N/mm2 (70) 

fcu = 22.6 N/mm 2 fy = 282 N/mm2 (120) 

P=0.2 fy = 300 N/mm 2 (140) 

v=0.2 v=0.25 

Table (5.7.5) Niedenhoff Corbel 

As shown from the structural system (fig 5.7.5(b)), only the corbel was loaded. 

Horizontal reactions were induced as a result of this loading system. During the test, 

the load was applied in increments of 50 kN. In the original test, no displacements 

were recorded. A photo-elastic analysis was used to determine the principal stress 
flows and was compared with the crack pattern and behaviour of the corbel. It was 
found that the resultant of the principal compressive stress flows followed a diagonal 

path from the loading point to the lower inner comer of the corbel. The occurrence of 

tensile stresses perpendicular to this diagonal were also observed. Very little stress 
developed in the lower outside comer of the corbel. 
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The first crack (numberl in figure 5.7.5(h) occurred at the second load step 

(P=IOOkN). This crack then developed into a vertical crack at a load level of l50kN. 

At P=300kN, crack number I was fully developed and due to changes in the load path, 

crack number 2 occurred. During this time, cracking appeared in the column in 

addition to further cracking in the corbel. Failure of the corbel occurred at a load level 

of 585 kN when the main reinforcement began to yield and crack number I widened. 

Also at this stage, the compression zone at the lower column-corbel junction began to 

crush (crack number 3). 

Figure 5.7.5(c) compares the load displacement relationship obtained from the present 

analysis with that obtained by van Mier (1987) and Prasad et al. (1993). In the case of 

the model used in van Mier's analysis, concrete was assumed to be elasto-plastic in 

compression and Mohr-Coulomb criterion was employed. In addition, a smeared crack 

model was implemented. It can be seen that that a reasonable agreement between 

each of the models was achieved. Numerical failure in the present analysis occurred at 

485 kN which is around 83% of the experimental load. As a result of the geometry of 

the corbel, compressive stress concentrations occurred around the lower column 

corbel junction. Figures 5.7.5(d-e) show the concrete stresses in the corbel obtained 

from the present analysis. Observation of the concrete stresses at the lower column- 

corbel junction illustrates that crushing occurred at this point. In the experiment, 

crushing occurred at this same point towards the failure load. It can be seen from fig 

5.7.5(f) that yielding of the main - steel in the corbel occurred at the upper 

column/corbel junction. This. phenomenon was also recorded in the experiment. 
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g) 

Jr )c 

h) 

figs. 5.7.5(g-h) Niedenhoff Corbel M2/B2: 
Comparison between experimental and numerical crack pattern 
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5.7.6 Frame Tested by Stroband & Kolpa 

This model was part of an investigation by Storband & Kolpa (1983) studying in 

particular the behaviour of beam-column connections in portal frames. Likewise, a 

numerical study of this structure was carried out in order to test the numerical model's 

adequacy in predicting beam-column connection behaviour. Previous numerical 

analysis of this model was carried out by van Mier (1987) and Ranjbaran (1991). 

Work carried out by a number of researchers e. g Swann (1970), has shown that 

contrary to common assumption, the strength of the comer joints in portal frame 

structures is often less than that of the connecting members. The present model, frame 

A7, was tested under a negative or closing moment. Moment in the comer was 

generated through application of point loads in the middle thirds of the beam. The 

overall dimensions of frame A7 together with reinforcement details are given in fig 

5.7.6(a). Material properties are presented in the table below: 

Concrete Properties Steel Properties 

Ec, = 28000 N/mný E. =2 10000 N/mm 2 

fcu = 26 N/mm2 fy = 450 N/mm 2 

ft = 2.1 N/mm2 v=0.2 

v=0.2 

1 

Table 5.7.6: Stroband & Kolpa Frame 

For numerical analysis, a symmetrical half of the fame was modelled. At the comer of 

the frame where stress concentration occurs, the mesh was refined, elsewhere in the 

columns and beams a coarser mesh was adopted. The curved reinforcement in the 

comer was modelled by dividing the arc into three equal lengths joined by successive 

bars, each turning 30' in order to give an approximate radius. Van Mier (1987) 

analysed this model using an increased value of f,,, (37.5 N/mm2) for the elements 
directly surrounding the inner comer of the frame. It was believed that a three- 
dimensional stress state would develop at the inner comer and hence a larger 

compressive strength in this region would result. For the present analysis, this was 

ignored since, although tri-axial stress may occur in very wide frames such as 
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retaining walls, tanks etc, the frame was only 70 mm. thick and hence the generation of 

tri-axial stresses was believed to be negligible. 

In the present analysis the frame was analysed using displacement control (chapter 4) 

which allowed unloading part of the load-displacement relationship to be obtained. 

The experimental load-displacement curve together with those obtained numerically 

in the present analysis and by van Mier are shown in fig 5.7.6(b). It can be seen that a 

good agreement between the experimental and the numerical response was achieved. 

During the analysis, first cracking was observed at a total load Pt=4kN. A significant 

increase in cracking was observed as Pt increased from 16-18 kN. This cracking 

caused redistribution of the stresses in the comer. The principal stress plots (fig 

5.7.6(f-g)) during this stage show that increased compressive stresses form along the 

diagonal from the inner to outer edge. In the experiment, tensile stresses 

perpendicular to the reinforcement at the bend cause splitting. Significant compressive 

stress concentration can be observed in the inner comer at the beam column junction 

from the stress plots. The concrete stresses around this point are shown in figure 

5.7.6(c). The stresses were calculated at the Gauss points (gp), with each gp numbered 

clockwise from the bottom. It can be seen that crushing of the concrete at the inner 

comer, in a state of bi-axial stress, occurs at a load level of 26kN. This event is 

accompanied by yielding of the steel in the outer face of the column near the comer at 

a load of 28kN (fig 5.7.6(e)). All these events were preceded by yielding of the main 

tension steel at mid-span at a load level of 24kN (fig 5.7.6(d)). 
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5.8 Conclusions 
From the work carried out so far, it can be seen that present numerical model is 

suitable for the analysis of plate bending and plane stress structures. In the examples 

discussed, a good level of accuracy in the prediction of behaviour at service and 

ultimate loads was obtained. 

In the case of plate bending problems, it was found that a minimum 4x4 element mesh 

provided the necessary accuracy when modelling symmetrical quarters. It was also 

found that tension stiffening in the case of slabs improved the predictions of 

behaviour at service loads. However at loads approaching ultimate, the predictions are 

often stiffer. For the subsequent numerical analysis, a value of 0.5 and 10.0 was 

adopted for constants CI and C2 respectively. 

The shear retention factor B had little influence on slabs and other flexural structures. 

However, in the case of shear transfer members such as deep beams and corbels, low 

values of B, <0.1, will result in under-prediction of ultimate load. For subsequent 

analysis, a value of 0.4 was adopted for B. 
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Chapter 6 

Slab Design 

6.1 Introduction 

The main objective of the work in this chapter was to assess the applicability of the 

visualisation process in deriving suitable reinforcement layouts for various types of 

slabs. The suitability of the reinforcing layouts is assessed in terms of the 

serviceability behaviour and ductility demand of the slab. 

This chapter details the design and numerical analysis of 7 different types of slabs. 
Two slabs were simply supported, one was simply supported with a central column 

support, the fourth type was supported on four comers and the last type was simply 

supported on adjacent comers with a column support at the opposite corner. Details of 

the geometry and support conditions are given in table 6.1 (a). Loading arrangements, 
design load Pd and material properties are given later. The thickness of each slab was 

chosen in compliance with the limiting span-depth ratios stipulated in BS81 10 Part 1. 

The direct design approach, described in chapter 3, was used to derive the 

reinforcement layouts. For slabs SMI-5, a design derived from the required numerical 

steel areas at (rr--O) and using the mesh evolved at the subsequent (rr) was made. The 

effect of using the evolved mesh on the, reinforcement layout was investigated. The 

performance of the two designs was assessed and compared in numerical analysis. 
Since direct design for the slabs from the evolved mesh involves a redistribution of 

the stresses from the elastic pattem,, it was necessary to compare the two designs and 
determine the effect of this re-distribution on service behaviour. The ultimate load 

behaviour was assessed together with service deflections and steel strains. The mid- 
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span service deflection limit was taken as span/250 (BS 8110). As a means of further 

assessing serviceability characteristics, yield strain of the steel was recorded. In order 

to avoid large cracking strains, a minimum load of 0.7 Pd should be reached before 

yielding of the main steel occurs. A minimum steel ratio of 0.13% as stipulated in 

BS81 10 was also adopted. In the resulting steel layouts, anchorage lengths were 

ignored. 

Slab Model Schematic Support conditions Dimensions 
(mm) 

SMI 
L 

Square simply supported 2140 x 2140 x 100 

N 
SM2 Rectangular simply 3140 x 2140 x 100 

supported 

N Square simply supported 2140 x 2140 x 100 
SM3 E3 + 

77777- 
central column 

Square simply supported 2l4Ox2l4OxlOO 
SM4 on adjacent sides + 

column support at 
-77-p opposite comer 

SM5,6 &7 0,1% 910 x 910 x 45 
Square supported on 

four comers 

fable 6.1(a): Slab Details 

6.2 Effect of Mesh Size on Visualisation 

Since the direct design of the reinforcement is dependent upon the stress distribution, 
it was necessary to assess the effect of using different mesh sizes upon the stress 
distribution and direct design process. To facilitate this study, three slabs with very 
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different moment distributions were chosen from the program; SM 1, SM3 and SM5. It 

is necessary that the mesh density is fine enough to detail adequately the stress 

variation within the slab, however as the mesh density increases, the computational 

time increases. 

The visualisation process was carried out on each slab using a symmetrical quarter 

discretised into a mesh of R5,70 and lOxlO elements. The ultimate rejection ratio 
for each mesh size was compared along with the corresponding numerical steel 

volumes. The results from the comparative study are given in table 6.2. The principal 

moments, plotted for illustration in vector form, for each mesh size are detailed in 

figures 6.2.2-6.2.4. In the principal moment plots, black lines indicate negative 

moments, while grey lines represent positive moments. 

Slab SMI SM3 SM5 
simply supported simply supported supported on four 

+ central column comers 
Mesh size 5X5 70 IOXIO 5x5 70 IOXIO 5x5 70 IOXIO 

Rejection ratio 40% 40% 30% 30% 30% 30% 15% 12% 10% 
(rr) 
% area 16% 24% 12% 48% 53% 66% 48% 57% 70% 
'removed' 
Vol. of steel 1148 1151 1112 473.7 481.1 431.8 50.2 53.5 75.9 

3 
calculated cm I 1- 1 1 1 1 1 1 

11 

Table 6.2 Effect of Mesh Size 

Firstly, it can'be observed that the rejection ratio needed to achieve a certain % area 

&removal' is different for each slab. When comparing slabs SMI and SM5, for any 

chosen mesh size, the ultimate rejection ratio decreases while the percentage area 

removed increases. This is due to the fact that the stresses are much more evenly 
distributed throughout the simply supported slab than in the slab supported on four 

comers. The average VonMises stress for each element of the 70 mesh is shown in 

figure 6.2.1 for each slab type at rr--O. As a measure of the spread of stresses within 

the slab, the parameter ý is calculated. This parameter is a measure of how the average 

vonMises stress in an element, IUVMe, differs from the maximum vonMises stress, 

avm. ýý, considering all the elements, (N), in the slab. 
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The following equation defines ý: 

N-1 

The closer ý tends to zero, the less the variation in average vonMises stress from the 

maximum. The average vonMises stress for each element resulting from a 7x7 

element mesh are detailed in fig. 6.2.1. The values of ý were equal to 0.48,0.65 and 

0.70 for slabs SMI, SM3 and SM5 respectively using a 7x7 mesh, at rr--O. Hence it 

would be expected that given its greater number of lowly stressed elements, a clearly 

evolved state would be reached at the lowest ff for Slab SM5. From this, it is clear 

that the visualisation process is only applicable in structures where there is a relatively 

wide spread of stresses. Values of ý subsequent to visualisation were calculated as 

0.40,0.54 and 0.70 for slabs SMI, SM3 and SM5 respectively. In the first two slabs 

the stresses become more evenly distributed, while in the third no change is observed. 

The lack of change in ý for the third slab may be attributed to the fact that while the 

variation in moments becomes less in the majority of the slab, a significant rise in the 

maximum moment at the comer support occurs, hence preserving the variation co- 

efficient. 

For each slab, the effect of increased mesh density in most cases is to increase the 

percentage area removed. This is due to the fact that the spread of average elemental 

vonMises stresses over the mesh are wider than for a rough mesh. The form of the 

evolved mesh for each mesh size was similar. The resulting numerical steel areas for 

each mesh size was similar. For this study, a symmetrical quarter of 70 elements was 
used for each mode. 

162 



Chapter 6 Slah Design 

ý0, 

a) Slab SM 1 
(ý=0.48) 

b) Slab SM3 
(ý=0.65) 

c) Slab SM5 
((=0.70) 

fig(6.2.1) Average vonMises stress (70 elements), at rr=O 
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i) (i-i- = 0) 

fig. 6.2.2(a) Slab SM 1: Principal Moments (70 niesh) 
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fig. 6.2.2(b) Slab SM I Principal moments, 5x5 niesh, (rr = 40%) 

fig. 6.2.2(c) Slab SM I Principal moments, I Ox 10 niesh, (rr=30%) 
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fig. 6.2.3(a): Slab SM3, principal moments, 70 mesh 
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fig. 6.2.3(b): Slab SM3,5x5 mesh, (rr = 30%) 

fig. 6.2.3(c): Slab SM3, I Ox 10 inesh, (rr = 30%) 
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........... 

fig. 6.2.4(b) Slab SM5, principal moments, 5x5 mesh, (rr= 151/(, ) 
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fig. 6.2.4(c) Slab SM5, principal moments, I Ox 10 mesh, (rr= 10%) 
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6.3 Model Design and Performance 

6.3.1 Slab SM1 

Loading Arrangement Design Parameters 

Pd = 210 kN 
635 

concrete: 
Ec = 20.75 kN/mm2 870 
fcu = 51.3 N/mm2 
ft = 4.3 N/mm2 

635 steel: 
fy = 480 N/mm 2 
E. = 200 kN/mm2 

635 870 635 

As referred to in section 6.2, the relatively even distribution of moments throughout 

this slab means that only a small portion of the slab (24% of original area) has an 

average von Mises stress low enough to be assigned negligible stiffness. The low 

stressed areas of this slab comprise the areas towards the centre of the supporting 

edges, (fig. 6.2.2a). The numerical steel areas are shown for a symmetrical quarter of 

the slab in figure 6.3.1(a), where As,, bottom, refers to bottom steel in the x-direction, 

and Asxtop, refers to top steel in the x-direction.. An overall increase of 8% in the 

numerical steel for the evolved mesh was recorded. Resulting reinforcement layouts 

are shown in figure 6.3.1 (b). 

The numerical and provided steel areas over the 70 mesh are also shown for 

comparison in figure 6.3.1 (b). In order to provide a practical steel layout, a greater 

area of steel than theoretically required was necessary. For the models at rr--O and 

rr=40%, a 25% and 20% increase in steel respectively was required. The steel layout 

using the evolved mesh differed from the initial layout in that minimum bottom steel 

was provided in the 'removed' areas while an increase in bottom steel was provided 
around the load point. 
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Steel Volumes 
(CM) 

(rr--O) (rr=40%) Total (40%) 
Total (0) 

1 

A. 

bottom 

A. 

top 

Total A. 

bottom 

A. 

top 

Total 

NurneriCal 618.3 122.7 741 605.0 190.9 795.9 1.08 
I 

Provided 
L- 

799.6 I 1 190.8 1990.4 1 749.2 1 241.4 990.6 1. 
I 

In the numerical analysis of each model, a total of 30 increments was used, with an 

initial increment Of O-lPd in the elastic stage, then 0.05Pd during cracking and O, OlPd 

towards ultimate load. The load-displacement relationship obtained from numerical 

analysis for each model is displayed in figure 6.3.1(c). The mode of failure for each 

model is clearly ductile. It can be seen that the behaviour of each model is very 

similar, both attain an ultimate load of 1.2Pd. The service deflection limit at mid-span 

was reached at around 0.65Pd for both slabs. Yielding of the steel occurred first in the 

bottom steel at mid-span at a load of around I Md. (fig. 6.3. I (d)). Further significant 

yielding in this area occurred, reaching 6 times the yield strain at ultimate load. 

Similar yielding occurred in the bottom steel around the load point. Yielding of the 

top steel, around the comer occurred at a load level of around 1.2Pd (fig. 6.3. I (e)). 

The sectional behaviour as represented by the moment-curvature relationship is 

detailed at the centre and near the load point in figures 6.3.1(f-g). The moment- 

curvature relationship is expressed in terms of the ultimate moment of the section M,,, 

and the yield curvature, I/Ry. Values for M,, and I/Ry were obtained from the 

numerical analysis of a one-way strip with equal reinforcement layers to that of the 

section being investigated. In this case, M, and 1/Ry at the load point were measured 

as 28kNnVm and 0.0001mm7l respectively. At the centre of the slab, M,, and I/Ry 

were l8kNm/m and 0.0001mm7l respectively. These values were the same for both 

designs since the same amount of steel was used for each case in these areas. It can be 

seen that the moment is still being sustained beyond the ultimate load at these points, 
indicating a ductile response. In addition, it is clear that no softening occurs. For both 

designs, as expected, the moment curvature-relationships are similar. 
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ýI , Ll 

0 

i) As, bottom (i-r=O) 

ii) A,, bottorn (rr=40%) 

iii) A,, top (rr=O) 

iv) A,, top (rr=40%) 

fig 6.3.1 (a) Slab SM 1: Symmetrical Quarter, Numerical Steel Areas (nim 2) 
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150crs 

75crs 

150crs 

75 

i) A, at bottom (rr--O) 

150crs 

75 

ii) A, at top (rr--o) 

I. - 

fig. 6.3.1(b) Slab SMI: Steel Layout, all sizes in mm, all bars 8mm diameter 
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150crs 

75crs 

150crs 

75 

iii)A, at bottom (rr--40%) 

150crs 

75 

iv) A. at top (rr--40%) 

fig. 6.3. I (b) Slab SM I Steel Layout, all sizes in mm, all bars 8mm, diameter 
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9.97 23.23 37.19 49.98 55.18 51.22 45.58 
(50.3) (50.3) (50.3) (50.3) (50.3) (50.3) (50.3) 

16.86 28.26 40.24 56.6 63.87 53.65 43.69 
(50.3) (50.3) (50.3) (50.3) (50.3) (50.3) (50.3) 

24.89 34.42 45.34 65.43 73.67 49.87 38.09 
(50.3) (50.3) (50.3) (100.6) (100.6) (50.3) (50.3) 

33.90 42.49 53.76 73.77 62.18 40.82 31.17 
(50.3) (50.3) (50.3) (100.6) (100.6) (50.3) (50.3) 

41.64 48.52 55.79 60.51 50.11 33.79 24.98 
(50.3) (50.3) (50.3) (50.3) (50.3) (50.3) (50.3) 

45.89 49.18 50.65 47.75 38.45 26.79 17.82 
(50.3) (50.3) (50.3) (50.3) (50.3) (50.3) (50.3) 

46.78 46.08 42.66 35.98 26.67 16.93 8.64 
(50.3) (50.3) (50.3) (50.3) (50.3) (50.3) (50.3) 

(v) A,,, at bottom (rr--O) 8mm bars 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

5.10 0.00 0.00 0.00 0.00 0.00 0.00 
(0.00) (0.00) (0-00) (0.00) (0.00) (0-00) (0.00) 

14.38 2.96 0.00 0.00 0.00 0.00 0.00 
(50.3) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

25.06 14.32 2.63 0.00 0.00 0.00 0.00 
(50.3) (50.3) (0.00) (0.00) (0-00) (0.00) (0.00) 

34.47 25.40 12.90 0.00 0.00 0.00 0.00 
(50.3) (50.3) (50.3) (0.00) (0.00) (0.00) (0.00) 

41.04 33.81 23.22 10.09 1.83 0.00 0.00 
(50.3) (50.3) (50.3) (0.00) (0.00) (0.00) (0.00) 

45.06 40.71 33.38 23.65 13.60 5.4i- 7 0.00 
(50.3) (50.3) (50.3) (50.3) (50.3) (0.00) (0.00) 

I 
(vi) A.,,, at top (rr--O) 8mm bars 

fig. 6.3.1(b) Slab SMI: Numerical & (Provided) Steel Areas in mrn2 
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0.00 0.00 0.00 19.24 39.43 43.15 42.83 
(19.5) (19.5) (19.5) (50.3) (50.3) (50.3) (50.3) 

0.00 0.00 0.00 57.53 52.89 45.10 43.03 
(19.5) (19.5) (19.5) (50.3) (50.3) (50.3) (50.3) 

42.55 57.03 74.58 80.42 64.69 51.13 46.80 
(50.3) (50.3) (100.6) (100.6) (100.6) (50.3) (50.3) 

51.79 61.35 67.29 69.68 59.00 72.91 57.87 
(50.3) (50.3) (100.6) (100.6) (100.6) (100.6) (100.6) 

56.34 62.79 65.71 59.88 34.03 0.00 0.00 
(50.3) (50.3) (50.3) (50.3) (50.3) (19.5) (19.5) 

59.64 62.44 61.92 55.21 35.47 0.00 0.00 
(50.3) (50.3) (50.3) (50.3) (50.3) (19.5) (19.5) 

60.44 59.65 56.17 49.92 36.69 0.00 0.00 
(50.3) (50.3) (50.3) (50.3) (50.3) (19.5) (19.5) 

(vii) As,, at bottom (ff=40%) 8mm bars 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

(0.00) (0.00) (0.00) '(0.00) (0-00) (0.00) (0.00) 

25.87 6.23 0.00 0.00 0.00 0.00 0.00 
(50.3) (0.00) (0.00) (0-00) (0.00) (0.00) (0.00) 

39.07 21.60 3.12 0.00 0.00 0.00 0.00 
(50.3) (50.3) (0.00) (0.00) (0-00) (0.00) (0.00) 

47.58 35.51 20.32 5.63 2.23 0.00 0.00 
(50.3) (50.3) (50.3) (0.00) (0.00) (0.00) (0.00) 

54.35 46.50 36.51 28.18 22.23 0.00 0.00 
(50.3) (50.3) (50.3) (50.3) (50.3) (0.00) (0.00) 

58.65 54.36 48.02 41.69 33.39 0.00 0.00 
(50.3) (50.3) (50.3) (50.3) (50.3) (0.00) (0-00) 

(viii) Asx at top (rr=40%) 8mm bars 

fig. 6.3. I (b) Slab SM I: Numerical & (Provided) Steel Areas in mm2 
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0- 0.4 

0.2 
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10 (rr=O) 
--D-(rr=40%)l 

0 10 20 30 40 so 60 70 80 90 100 

central displacement (mm) 

fig. 6.3.1(c) Slab SMI Load-displacement relationship 
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1.2 

m1 

0.8 

.00.6 

0.4 

0.2 

0 

1 --4-- (rr- 0) 
--C3-(rr-40%) 
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strain/yield strain 

fig. 6.3. I (d) Slab SM I Bottom Steel Strains at centre 
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c 

0.8 

2 0.6 
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fig. 6.3. I (e) Slab SM I Top Steel Strains at comer 
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1.2 1 

1 

0.8 

0.6 

0.4 

0.2 

--D- (rr--40%) 

0 
0 0.5 1 1.6 2 2.5 3 3.5 4 4.5 5 

Ry/Ft 

fig. 6.3. I (f) Slab SM I Principal Moment-curvature relationship near Load-point 

1.2 

1 

0.8 

0.6 

0.4 

0.2 I --*- (rr-0) 
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fig. 6.3.1(g) Slab SMI Principal Moment near load point vs. Load 
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1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 (rr--O) 
--Cl- (rr--40%) 

0 0.5 1 1.5 2 2.5 3 3.5 4 

RY/R 

fig. 6.3. I (h) Slab SM I: Principal Moment-Curvature relationship at centre 

0.9-- 

O. B. - 
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0.3-- 
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(rr--O) 

0.1 1-. I -U- (rr--40%) 
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applied load/design load 

fig. 6.3. I (i) Slab SM I: Principal Moment at centre vs. Load 
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6.3.2 Slab SM2 

Loading Arrangement Design Parameters 

V//Z Pd = 210 kN 

1070 concrete: 
Ec = 20.75 kN/mm2 
fc, = 51.3 N/mm2 
ft = 4.3 N/mM2 

1070 steel: 
fy = 480 N/mrrý 

, 
P/77777777777777777ý Es = 200 kN/mM2 

1570 1570 
11 

The principal moment pattern of this slab (fig 6.3.2a), although similar to that of SM I, 

is less evenly distributed due to the position of the concentrated load at the centre. In 

common with slab SMI, the lowest stressed areas of slab occurred around the centre 

of the support edges. The evolved path occurring after rr--30% is shown in figure 

6.3.2(a). From the numerical steel areas (fig. 6.3.2b), the peak areas occurring at the 

centre and supporting comer of the slab can be seen to be smoothed in the evolved 

model. As with slab SMI, an increase of 3% and 14% in numerical and provided steel 

areas respectively was observed from rr--O to rr--30%. 

Steel Volumes 
(Cm 3) 

(rr=O) (rr--30%) Total (30 %) 
Total (0) 

1 

A. 

bottom 

A. 

top 

Total A. 

bottom 

A. 

top 

Total 

Numerical 1265.9 
1 

297.6 1563.5 
1 

1151.6 
1 

460.7 
11 

1612.3 1.03 

ed 1395.3 1 391.2 1 1786.5 1 1505.7 1 523.2 12028.9 1.14 

Resulting reinforcement layouts are given in figure 6.3.2(c). For comparison, the 

numerical and provided steel areas in the x direction over the mesh are also shown in 

figure's 6.3.2(c). The main difference in the provided steel areas occurs at the 

6removed' areas where minimum steel is placed, and the top comers, where more 
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steel is provided than for rr--O. Increases in the bottom steel around the comers can be 

observed from fig(6.3.2c(i)). 

In the numerical analysis, a total of 20 increments were used. Initial increments of 

OAPd. were used in the elastic stage, subsequent increments of 0.05Pd were used. until 

ultimate load. From the load-displacement relationship (fig 6.3.2d), it can be observed 

that both des. igns perform in a similar manner. The design at rr--O, is slightly stiffer 

and achieves an ultimate load of l. lPd compared to 1.05Pd at rr=30%. The service 
deflection limit at mid-span for both slabs was reached at around 0.7Pd. In both 

designs yielding of the bottom steel first occurred at a load of 0.7Pd. close to the 

centre (fig. 6.3.2e). Yielding of the top steel did not occur. 

At the centre of the slab, M,, and I/Ry were calculated as 58kNm/m and 0.0001mnf I 

respectively, for each design. The moment-curvature relationship for the section at the 

centre of the slab shows that both designs behaved similarly. (fig. 6.3.2g). In each 

case, the ultimate moment was not reached until after the design load Pd was 

achieved. 
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(1) i-r=O 

(ii) rr=30% 

fig. 6.3.2(a) Slab SM2, principal moments 
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(N 

0 

cc, 

ul 

lý 
rý 

r-_ý 

ii) A,, bottom (ri-30%) 

iii) A,, top (n-=O) 

iv) A,, top (ri-301k) 

fig. 6.3.2(b) Slab SM2, Symmetrical Quarter, Numerical Steel Areas (mm 2) 

A,, bottom (n, =O) 
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40crs 

75crs 

75 

(i) A, at bottom (rr=O) 

I 50crs 

75 

(ii) A, at top (rr=O) 

. 1. ---- 

fig. 6.3.2(c) Slab SM2: Steel layout, all sizes in min, all bars 8nim diameter 
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40crs 

75crs 

iii) A, at bottom (rr=30%) 

I 50crs 

75crs 

iv) A, at top (rr=30%) 

fig. 6.3.2(c) Slab SM2: Steel layout, all sizes in mm, all bars 8mm diameter 
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10.49 11.36 13.43 17.56 24.89 36.91 57.94 97.27 149.77 252.24 
(50.3) (50.3) (50.3) (50.3) (50.3) (50.3) (100.6) (100.6) (150.9) (251.5) 

30.16 31.45 34.19 39.24 47.72 61.29 80.85 110.29 146.40 167.34 
(50.3) (50.3) (50.3) (50.3) (50.3) (100.6) (100.6) (100.6) (150.9) (150.9) 

46.63 48.05 50.78 55.41 62.55 72.69 86.08 100.52 110.84 105.62 
(50.3) (50.3) (50.3) (50.3) (50.3) (100.6) (100.6) (100.6) (100.6) (100.6) 

58.18 59.29 61.20 64.09 67.91 72.38 76.48 79.29 74.51 62.10 
(50.3) (50.3) (50.3) (50.3) (100.6) (100.6) (100.6) (100.6) (100.6) (100.6) 

63.96 64.43 65.10 65.71 65.75 64.47 60.85 53.68 42.06 26.01 

(50.3) (50-3) (50.3) (50.3) (50.3) (50.3) (50.3) (50.3) (50.3) (50.3) 

(v) A, at bottom (rr=O) 8rnrn bars 

9.33 5.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
«). ()(» (0.00) (0.00) goo) «). ()(» «). ()(» «). ()(» «). ()(» «). ()(» «). ()(» 

29.62 28.37 22.38 13.27 4.88 0.00 0.00 0.00 0.00 0.00 
(50.3) (50.3) (50.3) (50.3) (0.00) «). ()(» «). ()(» «). ()(» «). ()(» «). ()(» 

45.93 45.36 44.21 40.63 31.78 17.66 3.25 0.00 0.00 0.00 
(50.3) (50.3) (50.3) (50.3) (50.3) (50.3) «). ()(» «). ()(» «). ()(» «). ()(» 

--577-5-7 57.04 55.98 53.58 48.79 40.31 26.90 8.49 0.00 0.00 
(50.3) (50.3) (50.3) (50.3) (50.3) (50.3) (50.3) (0.00) «). ()(» «), ()(» 

63.71 63.55 63.10 61.77 58.74 52.99 43.53 29.82 13.06 0.00 
(50.3) (50.3) (50.3) (50.3) (50.3) (50.3) (50.3) (50.3) (50.3) (0.00) 

(vi) A, at top (rr=O) 8mrn bars 

fig. 6.3.2(c) Slab SM2: Numerical & (Provided) Steel Areas in mni 2 
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0.00 0.00 0.00 9.14 31.70 24.89 41.07 87.86 159.01 277.10 
(25.2) (25.2) (25.2) (25.2) (25.2) (25.2) (50.3) (50.3) (251.5) (251.5) 

0.00 0.00 0.00 0.00 0.00 21.61 36.34 62.65 185.12 206.57 
(25.2) (25.2) (25.2) (25.2) (25.2) (25.2) (50.3) (50.3) (201.2) (201.2) 

73.15 73.39 73.00 71.71 68.56 60.32 59.97 49.07 0.00 91.09 
(100.6) (100.6) (100.6) (100.6) (100.6) (100.6) (100.6) (100.6) (100.6) (100.6) 

93.57 83.36 83.07 83.38 84.39 86.62 85.06 67.89 0.00 0.00 
(100.6) (100.6) (100.6) (100.6) (100.6) (100.6) (100.6) (100.6) (25.2) (25.2) 

86.43 86.65 87.29 88.33 89.65 89.87 89.27 72.05 0,00 0.00 
(100.6) (100.6) (100.6) (100.6) (100.6) (100.6) (100.6) (100.6) (25.2) (25.2) 

(vil) A, at bottom (n-=30%) Snini bars 

0.00 0.00 0.00 5.51 8.61 3.99 0.00 0.00 0.00 0,00 
«). ()(» (O. oo) «). 0(» (0. ()(» «). ()(» «). ()(» «). ()(» «). ()(» «). ()(» «). ()(» 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
«). ()(» «). 0(» (O. oo) «). ()(» «). ()(» «). ()(» «). ()(» «). ()(» (0.00) «). ()(» 

72.12 69.79 65.21 56.38 38.32 20.70 11.65 11.33 0.00 0.00 
(50.3) (50.3) (50.3) (50.3) (50.3) (50.3) (50.3) (50.3) «). ()(» «). ()(» 

83.49 82.93 81.53 78.76 74.10 67.54 66.31 53.30 0.00 0,00 
(100.6) (100.6) (100.6) (100.6) (100.6) (100.6) (100.6) (100.6) (0.00) «). ()(» 

86.53 86.89 87.31 87.39 86.26 84.21 81.76 69.38 0,00 0.00 
(100.6) (100.6) (100.6) (100.6) (100.6) (100.6) (100.6) (100.6) (0.00) (0.00) 

(viii) A,, at top (rr=30%) 8mrn bars 

fig. 6.3.2(c) Slab SM2: Numerical & (Provided) Steel Areas in ninil 
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1.2 
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0.8 

0.6 

a 0.4 

0.2 ( -0 
30 

0 10 20 30 40 50 60 70 80 90 

central displacement (mm) 

fig. 6.3.2(d) Slab SM2: Load-displacernent relationship 

1.2 
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0 0.8 
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rL 0.4 
CL 
m 

0234567 
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fig. 6.3.2(e) Slab SM2: Bottom Steel Strains at centre 
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0.6 
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0 
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fig. 6.3.2(f) Stab SM2: Top Steel Strains at corner 
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0.4 
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fig. 6.3.2(g) Slab SM2: Principal Mornent-curvature relationship at centi-c 
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0.4 
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fig. 6.3.2(h) Slab SM2: Principal Moments at centre vs. Load 
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6.3.3 Slab SM3 

Loading Arrangement Design Parameters 

Pj = 210 kN 
635 

concrete: 
E, = 22.5 kN/nim 870 2 f, ý = 58.8 N/mm 
1', = 3.1 Mimi 

635 steel: 
fy 560 N/mm 2 
E, 200 Mmm" 

635 870 635 

The evolved pattern for this slab follows a clearly defined load path, from corner to 

corner crossing the column support in the centre. The stress concentration along this 

load path leads to the 'removal' of a high % area at a comparable rejection ratio to the 

previous slabs. 

Steel olumes (rr=O) (rr=30%) Total(30% 

(Cm I) Total(O) 

A, 

bottom 

As 

top 

Total A, 

bottom 

A, 

top 

Total 

Numerical 319.6 107 426.6 261.3 220.4 481.7 1.1 

Provid d 450.2 220.4 670.6 446.1 294.4 740.5 1.1 

From the numerical steel areas, fig. 6.3.3(a), it can be seen that the amount of bottom 

steel at the load point and along the load path increases substantially for the design at 

rr=30%. Further increases in the required top steel at the central column support can 

be seen from fig. 6.3.3a(i-ii). The resulting steel layout is shown in figure 6.3.3(b). The 

provided steel in these areas for the design at rr=30% was double that of the model at 

rr=O (see fig. 6.3.3(b)). The amount of total steel provided for the design at rr=30% 

was increased by 10%. 
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Because of the significant increase of provided steel in the critical areas, Le along the 

diagonal, for the design at rr=30%, it can be expected that the ultimate load of this 

design would be greater. This assumption is confirmed by the numerical analysis. The 

second model achieved an ultimate load of 1.31? d compared with an ultimate of 1.1 Pd 

for the design at rr=O. In addition, the load-displacement response of the second model 

was also stiffer. The significant increase from design load to ultimate load for the 

model at rr=30% may in part be due to the fact that in order to make a practical steel 

layout, 35% increase from the total theoretical steel was required. The service 

deflection limit at the mid-span of each quarter was reached at 0.7Pj and 0.85P, j for 

the designs at rr=O and rr=30% respectively. Yielding of the bottom steel first 

occurred at the load point at levels of 0.71? d and 0.85P, j for the models at 1-1-0 and 

rr=30% respectively. 

For the section at the load point, the values of M, and I/Ry were calculated as 

18kNm/m and 0.00008mm- I respectively, in the design at rr=o. For the second 

design, at rr=30%, values of M,, and I/Ry were calculated as 22kNrn/rn and 

0.00008mm- 1 respectively. The increase in ultimate moment at rr=30%, is due to the 

increase in provided steel at this point. Inspection of the mornent-applied load 

relationship at the load point shows that eventual softening occurred in the rr=30% 

design at an ultimate load of 1.2Pd, (fig. 6.3.3f-g). A similar increase in M,, was 

observed in the section at the corner due to the provision of more top steel at rr=30%., 

In this case, M,, was 27kNm/m at rr=O, and 42kNm/m at rr=30%. 
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10 

0 

�p 

ýz 

ii) A,, bottom (rr=30%) 

iii) A,,, top (rr=O) 

iv) A,, top (rr=30%) 

fig. 6.3.3(a) Slab SM3, Symmetrical Quarter, Numerical Steel Areas (MM2) 
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75crs 

150crs 

i) A, at bottom (rr--O) 

50crs 

75 

I- -. 

300crs 

75 
1 

ii) A, at top (ff=O) 

fig. 6.3.3(b) Slab SM3: Steel Layout, all sizes in mm, all bars 6mm, diameter 
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I- 

300crs 

37.5crs 

300 crs 

75crs 

iii) A, at bottom (rr--30%) 

37.5 ers 

-Z- 
75 1 

150 crs 

75 

iv) A, at top (rr--30%) 

fig. 6.3.3(b) Slab SM3: Steel Layout, all sizes in mm, all bars 6mm. diameters 
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7.79 23.18 37.95 43.83 31.74 4.14 0.00 
(28.3) (28.3) (56.6) (56.6) (56.6) (14.2) (14.2) 

7.10 22.81 42.27 58.53 40.38 6.71 0.00 
(28.3) (28.3) (56.6) (56.6) (56.6) (14.2) (14.2) 

7.38 17.16 34.43 68.31 49.21 8.58 0.00 
(28.3) (28.3) (56.6) (56.6) (56.6) (14.2) (14.2) 

13.06 19.93 29.80 52.47 54.59 14.06 0.00 
(28.3) (28.3) (28.3) (56.6) (56.6) (14.2) (14.2) 

19.24 25.28 32.05 35.45 31.20 14.78 0.00 
(28.3) (28.3) (28.3) (28.3) (28.3) (14.2) (14.2) 

22.79 25.71 26.97 23.13 14.99 9.05 0.00 
(28.3) (28.3) (28.3), (28.3) (28.3) (14.2) (14.2) 

23.44 22.81 19.74 13.75 6.23 3.19 0.00 
(28.3) (28.3) (28.3) (28.3) (28.3) (14.2) (14.2) 

(v) A,,, at bottom (rr--O) 6mm bars 

0.00 0.00 5.32 14.24 26.28 51.20 86.51 
(0.00) (0-00) (0.00) (0.00) (28.3) (56.6) (84.9) 

0.00 0.00 0.00 2.72 6.50 16.78 15.43 
(0.00) (0.00) (0.00) (0.00) (0.00) (28.3) (28.3) 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 
(0.00) (0.00) (0-00). (0-00) (0-00) (0.00) (0.00) 

4.86 0.00 0.00 0.00 0.00 0.00 0.00 
(0.00) (0-00) (0.00) (0.00) (0-00) (0.00) (0.00) 

12.52 4.73 0.00 0.00 0.00 0.00 0.00 
(14.2) (0.00) (0-00) (0.00) (0.00) (0.00) (0.00) 

18.66 13.24 6.28 0.00 0.00 0.00 0.00 
(14.2) (14.2) (0-00) (0-00) (0.00) (0.00) (0.00) 

22.06 18.73 13.24 5.70 0.00 0.00 0.00 
(28.3) (28.3) (28.3) (28.3) (0.00) (0.00) (0.00) 

A.,,, at top (iL-0) 6mm bars 

fig. 6.3.3(b) Slab SM3: Numerical & (Provided) Steel Areas in mm2 
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0.000 0.000 0.000 0.000 2.277 0.000 0.000 
(14.2) (14.2) (14.2) (14.2) (14.2) (14.2) (14.2) 

0.000 0.000 0.000 33.215 21.579 0.000 0.000 
(14.2) (14.2) (14.2) (28.3) (28.3) (14.2) (14.2) 

0.000 0.000 0.000 100.151 63.849 4.147 0.000 
(14.2) (14.2) (113.1) (113.1) (113.1) (14.2) (14.2) 

0.000 0.000 71.844 124.362 122.283 22.669 0.000 
(14.2) (14.2) (113.1) (113.1) (113.1) (14.2) (14.2) 

0.000 12.387 40.030 67.130 0.000 0.000 0.000 
(14.2) (14.2) (56.6) (56.6) (14.2) (14.2) (14.2) 

55.834 23.169 6.372 0.000 0.000 0.000 0.000 
(56.6) (56.6) (14.2) (14.2) (14.2) (14.2) (14.2) 

56.396 43.444 0.000 0.000 0.000 0.000 0.000 
(56.6) (56.6) (14.2) (14.2) (14.2) (14.2) (14.2) 

(vii) A.,,, at bottom (ff=30%) 6mm bars 

0.000 0.000 0.000 0.000 4.922 46.914 152.496 
(0.000) (0.000) (0.000) (0-000) (0.000) (150.9) (150.9) 

0.000 0.000 0.000 2.675 4.624 51.292 111.046 
(0.000) (0.000) (0.000) (0.000) (0.000) (150.9) (150.9) 

0.000 0.000 0.000 0.000 0.000 36.606 85.961 
(0.000) (0.000) (0-000) (0-000) (0-000) (100.6) (100.6) 

0.000 0.000 0.000 0.000 1.883 7.241 0.000 
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

0.000 3.460 0.000 0.000 0.000 0.000 0.000 
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

55.524 37.761 12.157 0.000 0.000 0.000 0.000 
(56.6) (56.6) (0.000), (0.000) (0.000) (0.000) (0.000) 

58.099 61.632 0.000 0.000 0.000 0.000 0.000 
(56.6) (56.6) (14.2) (14.2) (14.2) (14.2) (14.2) 

(viii) A,,, at top (rr--30%) 6mm bars 

fig. 6.3. I (b) Slab SM3: Numerical & (Provided) Steel Areas in mm. 2 
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fig. 6.3.3(g) Slab SM3: Principal Moments at load point vs. Load 
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6.3.4 Slab SM4 

Loading Arrangement Design Parameters 

Pd ý-- 110 kN 

713.3 
concrete: 
Ec = 20.75 kN/mm2 

713.3 fcu = 51.3 N/mm2 
ft = 3.0 N/mm2 

713.3 steel: 
= 480 N/mm 2 f y 

E. = 200 kN/mm2 

713.3 713.3 713.3 

The maximum stresses in this slab were concentrated along the main diagonal at 

column support. These stresses then spread out more evenly approaching the comer of 

the simply supported edges. A low rejection ratio of 12% resulted in a high percentage 

area 'removal'. The principal moments are shown at each stage in figure 6.3.4(a) 

S Steel Volumes 
(CM) 

'V 

cl 

teel steel , (rr=O) (rr=12%) Total(12%) 
Total(O) 

L 

A. 

bottom 

A. 

top 

Total A. 

bottom 

A. 

top 

Total 

Numencal 3356.2 470.4 3826.6 3625.9 1093.4 4719.3 1.23 

rovide PP rovided 3953.6 I 1 633.8 14587.4 1 5297.8 1264.5 6562.3 1.43 

From figure 6.3.4(b), it can be seen that some of the peak moments around the comer 

and load points were 'smoothed' out by the time rr--12% is reached. A 23% increase 

in the total numerical steel areas from rr--O to rr--12% is observed. The main increases 

in numerical steel occurred around this main load path and in particular, the top steel 

at the column support increased by 100%. Resulting reinforcement layouts are shown 
in figure 6.3.4(c). The numerical and provided steel areas over the slab are also shown 
for comparison in figures 6.3.4(c). 

200 



Chapter 6 Slab Design 

The load-displacement response (fig. 6.3.4d) shows that an ultimate load of 1.2Pd and 

1.31? d was achieved at rr_-O and rr--12% respectively. It can also be seen that the 

behaviour of the model designed at rr--O was stiffer up until around the ultimate. After 

this point, the first model is more ductile as can be seen from the significant increase 

in displacement. Both models failed in a ductile manner. The service deflection limit 

at the centre of the slab was reached at a load level of 0.75Pd and 0.7Pd at rr--O and 

rr-_12% respectively. Yielding of the bottom steel first occurred at the centre of the 

slab at a load level of 1.2Pd for both models, (fig. 6.3.4e) Yielding of the top steel was 

initiated at I -I Pd in the first model and at I -I Pd in the second model, (fig 6.3.4f). 

For the section at the centre of the slab, values of M,, and I/Ry were calculated as 

l7kNm/m and 0.00005mm", at u-0. For the second design , at rr--12%, the values of 

M,, and I/Ry for the same section were 2lkNm/m and 0.00005mm" respectively. 

From the moment curvature relationship at the centre, figures 6.3.4(g-h), it can be 

seen that the increase in bottom steel provided at this point for the second model has 

led to a higher moment being sustained but with a much smaller curvature. Hence the 

design at rr--O, is more ductile in this area. 

Although the overall behaviour of both designs was ductile, the increase in steel in 

some zones at rr--12% may lead to a localised loss in ductility. This can be observed 
from the moment-curvature plot at the centre section. Additionally, in this case, 
increase in required steel creates a more complicated steel layout, and may lead to 

congestion. 
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(i) rr=O 

(ii) rr=12% 

fig. 6.3.4(a) Stab SM4, principal moments 
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fig. 6.3.4(b) Stab SM4: Numerical Steel Areas (mm 2) 
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fig. 6.3.4(c) Slab SM4: Steel layout, all sizes in nim, all bars 8mm diameter 
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fig. 6.3.4(c) Slab SM4: Steel Layout, all sizes in mm, all bars ginni diameter 
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24.70 50.99 75.55 93.24 99.63 94.44 80.07 1 56.05 17.33 0.00 
(50.3) (50.3) (100.6) (100.6) (100.6) (100.6) (100.6) (50.3) (50.3) (50.3) 
25.89 52.36 79.07 98.67 102.93 94.16 79.10 58.55 35.16 15.52 

(50.3) (50.3) (100.6) (100.6) (100.6) (100.6) (100.6) (50.3) (50.3) (50.3) 
20.78 46.96 77.51 105.88 107.68 91.44 75.50 56.10 35.10 18.93 

(50.3) (50.3) (100.6) (100.6) (100.6) (100.6) (100.6) (50.3) (50.3) (50.3) 
12 , 93 34.42 64.52 113.03 115.28 93.15 74.13 52.46 34.01 20.95 

(50.3) (50.3) (50.3) (100.6) (100.6) (100.6) (100.6) (50.3) (50.3) (50.3) 
22 , 05 38.10 58.16 94.65 119.54 103.71 78.52 48.52 30.08 18.81 

(50.3) (50.3) (50.3) (100.6) (100.6) (100.6) (100.6) (50.3) (50.3) (50.3) 
35.59 50.28 66.28 79.90 87.82 109.24 94.76 47.24 28.82 17.49 

(50.3) (50.3) (50.3) 
- 

(100.6) (100.6) (100.6) (100.6) (50.3) (50.3) (50.3) 
46.79 58.04 68.05 73.45 73.69 95.79 85.74 49.28 29.43 17.05 

(50.3) (50.3) (50.3) (100.6) (100.6) (100.6) (100.6) (50.3) (50.3) (50.3) 
54.49 61.79 66.81 68.84 68.00 62.70 56.02 43.17 28.35 10.37 

(50.3) (50.3) (50.3) (50.3) (50.3) (50.3) (50.3) (50.3) (50.3) (50.3) 
59.72 61.94 62.45 60.00 54.11 42.26 30.90 29.42 23.04 14.64 

(50.3) (50.3) (50.3) (50.3) (50.3) (50.3) (50.3) (50.3) (50.3) (50.3) 
59.73 58.81 54.88 47.76 37.28 23.51 11 , 79 ý 1543 16.43 12.59 

(50.3) (50.3) (50.3) (50.3) (50.3) (50.3) (50.3) (50.3) (50.3) 
(v) A, at bottom (rr=O) 8nini hars 

2.47 0,00 0.00 0.00 0.00 0.00 0.00 0.00 13.09 140.7 
(0.00) «). ()(» «). ()(» «). 00) «). 0(» «). ()(» «). ()(» (0.00) (50.3) (150.9) 

3.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 12.24 19.11 
«). ()(» «). ()0) (0.00) «). ()0) «). ()(» «). ()(» «). ()(» «). ()(» (50.3) (50.3) 

0.00 0.00 0.00 0.00 0.00 0,00 0.00 0.00 0.00 9.9-1 
(0.00) (0.00) «). 00) (0.00) (0.00) 

O. (JO o). o0 f- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
«). ()0) « «). ()(» «). 00) (0.00) «). 0(»- «). ()(» «). ()(» «), ()(» «). ()(» «). ()(» 

6.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
«). ()(» (O. oo) 

. 
«). ()0) «). ()0) «). ()0) «). ()(» «). ()(» «). ()(» «). ()(» «). ()(» 

20.86 5- 12 ý 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
(50.3) «). ()0) (0.00) «). ()(» «). ()0) 

. 
«). ()(» «). ()(» (0.00) «). ()(» «). ()(» 

34.33 19.27 3.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
(50.3) (50.3) (0.00) (0.00) «). 00) «). ()(» «). ()(» «). ()(» «). ()(» «). ()(» 
45.06 32.92 17.45 2.85 0.00 0.00 0.00 0.00 0.00 0.00 

(50.3) (50.3) (50.3) (0.00) «). 0(» «). 00) «). ()(» (0.00) «). ()(» «). ()(» 
52.86 44.13 32.27 17.39 3.21 0.00 0.00 0.00 0.00 3.26 

(50.3) (50.3) (_O. 3) (50.3) «). ()0) (0-00) (0.00) «). ()(» «). ()(» (0.00) 
57.75 52.78 44.69 33.40 1 19.22 1 5.65 0.00 3.95 9.89 9.54 
(50.3) (50.3) (50.3) 

- 
(5 03 (50.3) (50.3) 

. 
(50. 

. 
(50.3) 

. 
(50.3) 

(vi) A,, at top (rr=O) 8mm bars 

2 fig. 6.3.4(c) Slab SM4: Numerical & (Provided) Steel Areas in mrn 
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0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 0.00 0.00 0.00 
(25.2) (25.2) (25.2) (25.2) (25.2) (25.2) (25.2) (25.2) (25.2) (25.2) 

0.00 0.00 0.00 61.52 47.09 0.00 0.00 91.38 41.71 10.23 
(25.2) (25.2) (25.2) (100.6) (100.6) (100.6) (100.6) (100.6) (100.6) (25.2) 

0.00 0.00 69.30 118.57 130.51 191.95 220.06 190.48 100.01 0.00 

(25.2) , (25.2) (201.2) (201.2) , (201.2) (201.2) (201.2) (201.2) (201.2) (25.2) 
0.00 0,00 73.42 144.68 155.81 156.67 158.60 160.71 0.00 0.00 

(25.2) (25.2) (150.9) (150.9) (150.9) (150.9) (150.9) (150.9) (25.2) (25.2) 
0.00 0.00 108.42 127.46 156.38 145,88 123.45 74.25 0.00 0.00 

(25.2) (25.2) (150.9) (150.9) (150.9) (150.9) (150.9) (150.9) (25.2) (25.2) 
111.44 161.20 107.67 87,85 110.16 138.80 114.03 41.49 3.64 0.00 

(150.9) (150.9) (150.9) (150.9) (150.9) (150.9) (150.9) (150.9) (25.2) (25.2) 
108.29 120.06 98.39 66.74 58.39 100.29 121.18 74.43 34.09 0.00 

(100.6) (100.6) (100.6) (100.6) (100.6) (100.6) (100.6) (100.6) (25.2) (25.2) 
101.72 104.95 91.76 65.73 21.14 80.04 108.77 65.59 0.00 0.00 

(100.6) (100.6) (100.6) (100.6) (100.6) 
- 

(100.6) (100.6) 000.6) (25.2) (215.2) 
100.27 100 

- 
69 92.64 77.79 60.41 0.00 0.00 0.00 0.00 0.00 

(100.6) (100.6) (100.6) (100.6) (100.6) (25.2) (25.2) (25.2) (25.2) (25.2) 
100.39 9896 

" 
95.17 92.56 87.93 0.00 0.00 0.00 0.00 0.00 

(100.6) . 
6) ( 100 (100.6) 

. 
(100.6) 

. 
(100.6) (25.2) 

. 
(25.2) 

. 
(25.2) (25.2) (25.2) 

(vii) A,, at bottom (rr= 12%) gnim bars 
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0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.15 10.97 25.98 
«). ()(» «). ()0) «). ()(» «). ()(» (0.00) «). ()(» «). ()(» «). ()(» «). ()(» (50.3) 

0.00 0.00 4.93 0.00 0.00 0.00 6.66 20.68 3.99 0.00 
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«). ()(» «). ()(» 
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«). ()(» (O. oo) «). ()(» «). ()(» «). ()(» «). ()(» «). ()(» «). ()(» «). ()(» (0.00) 
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76.19 29.91 5.22 0.00 0.00 0.00 0.00 4.75 6.78 0.00 
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83.57 59 

- 
64 39.89 1 21.40 16.49 22.75 1 0. ()() 4.88 0.00 0.00 
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ý 
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fig. 6.3.4(c) Slab SM4: Numerical & (Provided) Steel Areas in mm 2 
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6.3.5 Slab SM5 

Loading Arrangement Design Parameters 

Pd = 50 kN 

455 concrete: 
Ec = 19 kN/mm2 
fcu = 37.9 N/mm2 
ft = 3.0 N/mm2 

455 steel: 
fy = 345 N/mm2 

I17. Es = 180 kN/mm 2 

455 455 

This slab was centrally loaded and pin-supported at its four comers. Since this slab 
has the most pronounced and direct load path of all those considered, it resulted in the 

greatest % area removal (58%), at the lowest rejection ratio (127o) of all the slabs 
designed. 

Steel Volumes 
(CM) 

(rr--O) (rr--12%) Total(12%) 
Total(O) 

A. 

bottom 

A. 

top 

Total A. 

bottom 

A. 

top 

Total 

Numerical 48.2 5.4 53.6 44.6 18.2 62.8 1.2 

Provided 69.1 8.4 77.5 83.9 18.4 102.3 1.3 

In terms of the numerical steel, a decrease of 8% in bottom steel is obtained at 

rr--12%, while an increase of 330% is observed for top steel at rr--12%. Although a 

total decrease in bottom steel is observed, this is due to large % area removal. In the 

area around the main load path, much larger quantities of steel, an increase of around 
50%, are required than at rr--O, (fig. 6.3.5a). This is clearly observed in fig(6.3.5a(ii)). 

The resulting reinforcement layout and the element by element steel areas are 
displayed in figure 6.3.5(b). 
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The numerical load-displacement response of each model is shown in figure 6.3.5(c). 

An ultimate load of 1.1 and 1.35Pd was achieved for the designs at rr--O and rr--12% 

respectively. The larger increase in the ultimate load of the second model is due to the 

fact that in order to obtain a practical layout, the total provided bottom steel was in 

excess of the numerical provided steel. The stiffness of both models was relatively 

similar up until Pd. Both models fail in a ductile manner. The service deflection limit 

at mid-span was reached at 0.65Pd and 0.7Pd for design one and two respectively. 

Yielding of the bottom steel first occurred at the centre of the slab in design one at 

UP& and at 1.2Pd in design two, (fig. 6.3.5c). The difference in these loads is caused 

by the large increase in provided bottom steel and numerical steel in the second 

design. Yielding of the top steel first occurred in both slabs at the comer support at 

O-8Pd (fig. 6.3.5d). 

For the section at the centre of the slab, M,, and I/Ry were calculated as 5.2kNm/m 

and 0.0002mm" respectively, at rr--O. In the second design, at the same section, of Mu 

and I/Ry were 8.5kNm/m and 0.0002mirf 1 respectively. From the moment curvature 

relationship at the centre of the slab, figure 6.3.5(f), it can be seen that the second 

design, due to its large increase in steel area at this point, is sustaining a larger 

moment and is slightly less ductile than the first design. Softening is initiated at this 

section in the second design at around 1.35Pd. (fig. 6.3.5g). For the section at the 

comer support, Mu and I/Ry were 6kNm/m and 0.0002mm-1 respectively, at rr=O. In 

the second design at this area, M,, and I/Ry were 8.5kNm/m and 0.0002mm-1 

respectively. 
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fig. 6.3.5(b) Slab SM5: Steel Layout, all sizes in mm, all bars 6mm diameter 
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0.000 1.476 3.411 6.112 9.733 15.182 25.174 
(3.8) (3.8) (3.8) (14.2) (14.2) (28.3) (28.3) 

0.000 1.611 3.728 6.862 10.984 16.028 20.362 
(3.8) (3.8) (3.8) (14.2) (14.2) (28.3) (28.3) 

0.705 1.825 3.835 7.101 10.980 14.760 16.691 
(3.8) (3.8) (3.8) (14.2) (14.2) (14.2) (14.2) 

0.798 2.028 4.066 6.903 10.362 13.252 14.559 
(3.8) (3.8) (3.8) (14.2) (14.2) (14.2) (14.2) 

0.000 1.623 4.385 7.080 9.787 12.185 13.358 
(3.8) (3.8) (3.8) (14.2) (14.2) (14.2) (14.2) 

0.894 0.854 4.159 7.444 9.884 11.757 12.804 
(3.8) (3.8) (3.8) (14.2) (14.2) (14.2) (14.2) 

0.000 0.000 3.504 7.461 10.116 11.888 12.755 
(3.8) (3.8) (3.8) (14.2) (14.2) (14.2) (14.2) 

(v) A.,,, at bottom (rr=O) 6mrn bars 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

3.491 0.758 0.000 0.000 0.000 0.000 0.000 
(3.8) (3.8) 

I 
(0.00) (0.00) (0.00) (0.00) (0.00) 

33.127 4.167 0.000 0.000 0.000 0.000 0.000 
(28.3) (28.3) (0.00) (0.00) (0.00) (0.00) (0.00) 

(vi) A. at top (rr--O) 6mm bars 

fig. 6.3.5(b) Slab SM5: Numerical & (Provided) Steel Areas in mm, 2 
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0.000 0.000 0.000 0.000 7.371 18.464 32.024 
(3.8) (3.8) (3.8) (3.8) (42.4) (42.4) (42.4) 

0.000 0.000 0.000 0.000 22.907 27.200 30.795 
(3.8) (3.8) (3.8) (3.8) (42.4) (42.4) (42.4) 

0.000 0.000 0.000 23.394 36.038 43.952 35.811 
(3.8) (3.8) (3.8) (42.4) (42.4) (42.4) (42.4) 

0.000 0.000 9.310 19.025 23.042 0.000 0.000 
(3.8) (3.8) (28.3) (28.3) (28.3) (3.8) (3.8) 

0.000 0.000 2.929 8.101 0.000 0.000 0.000 
(3.8) (3.8) (3.8) (3.8) (3.8) (3.8) (3.8) 

1.576 0.000 0.000 0.000 0.000 0.000 0.000 
(3.8) (3.8) (3.8) (3.8) (3.8) (3.8) (3.8) 

0.962 0.659 0.000 0.000 0.000 0.000 0.000 
(3.8) (3.8) (3.8) (3.8) (3.8) (3.8) (3.8) 

(vii) A,,,, at bottom (rr=12%) 6mm bars 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

0.000 4.137 0.000 0.000 0.000 0.000 0.000 
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

15.030 11.760 5.165 0.000 0.000 0.000 0.000 
(14.2) (14.2) (0.000) (0.000) (0.000) (0.000) (0.000) 

86.860 17.026 0.000 0.000 0.000 0.000 0.000 
(84.8) (84.8) (0-000) (0.000) (0.000) (0.000) (0.000) 

r ... (Vill x at top (rr--12%) 6mm bars 

fig. 6.3.5(b) Slab SM5: Numerical & (Provided) Steel Areas in mm2 
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1.6 

1.4 

1.2 

. LM 

0.4 

0.2 

0 

I --*-- (rr-0) 
-0-(rr-1 2%) 

0 10 Is 20 25 30 

central displacement (mm) 

fig. 6.3.5(c) Slab SM5: Load-displacement relationship 
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1.2 

35 

0 
c Im a 0.8 
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0.00 0.50 1.00 1.50 2.00 2.50 3.00 
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fig. 6.3.5(d) Slab SM5: Bottom Steel Strains at centre 
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fig. 6.3.5(e) Slab SM5: Top Steel Strains near comer 
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1.2 

1 

0.8 

0.6 

0.4 

0.2 

1.2 

I 

0.8 

0.6 

0.4 

0.2 

0 (rr--O) 
-0-- (rr= 12%) 

0 0- 11iI 
01234567 

RY/R 

fig. 6.3.5(f) Slab SM5: Principal Moment-curvature relationship at centre 

8 

(rr--O) 
(rr= 12%) 

0 Li 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 

applied load/design load 

fig. 6.3.5(g) Slab SM5: Principal Moment at centre vs. Load 
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1.2- 

0.8-- 

0.6-- 

0.4-- 

0.2- (rr=O) 
(rr=l 2%) 

0 
02468 10 12 14 16 

Ry/R 

fig. 6.3.5(h) Slab SM5: Moment-curvature relationship at comer support 

1.2 11 

I 

0.8 

0.6 

0.4 

0.2 

n 

0 (rr=O) 
--D- (rr=l 2%)l 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 

applied load/design load 

fig. 6.3.5(i) Slab SM5: Moments at corner support 
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6.3.6 Slab SM6 

For all the designs so far, only steel orthogonal to the slab edges has been considered. 

In some cases, this may not be the most efficient orientation for the steel layout. In 

slab SM5, the maximum principal moments are orientated along the main diagonal at 

roughly 45' to the x-axis (fig. 6.2.4). In view of this fact, slab SM5 was redesigned by 

providing orthogonal steel transformed 45' from the horizontal. 

Steel Volumes 
(CM) 

(rr--O) (rr=12%) Total(12%) 
Total(O) 

A. 

bottom 

A. 

top 

Total A, 

bottom 

A. 

top 

Total 

Numerical 48.2 5.4 53.6 41.4 12.2 53.6 1.0 

Provided 69.1 8.4 77.5 64.1 15.6 179.7 1.03 

In this case, the numerical steel areas at rr--O and 12% are equal, which is in contrasts 

with slab SM5 where a'20% increase was observed at rr--12%. The resulting 

reinforcement layout is shown in figure 6.3.6(a). The numerical load-displacement 

relationship is shown in figure 6.3.6(b). An ultimate load of l-IPd was obtained for 

this design. The service deflection limit was reached at around 0.7Pd- Yielding of the 

bottom steel first occurred at the centre of the slab at a load level of O, 9Pd- Yielding 

of the top steel at the comer support began at the same load level, (fig. 6.3.6c-d). 

Inspection of the moment curvature relationship at the comer support shows that 

softening occurs just after 1.05Pd, (fig. 6.3.6e-f). This is due to the fact that once 

yielding of the top steel commences prior to this softening, unlike slab SM5 where 

equal steel is provided in x and y directions, redistribution of stress is more difficult 

since much less steel is provided orthogonal to the main steel. At the centre of the 

slab, the moment is sustained beyond the design load and softening is not present, 
(fig. 6.3.6g-h). 
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32.5crs 

195crs 

32.5crs 

(i) A, at bottom (ff--12%) 

65crs 

22crs 

(ii) A, at top (rr--12%) 

fig. 6.3.6(a) Slab SM6: Steel Layout, all sizes in mm, all bars 6mm. diameter 
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0.00 0.00 0.00 0.00 35.76 30.70 31.70 
(3.76) (3.76) (3.76) (3.76) (42.41) (42.41) (42.41) 

0.00 0.00 0.00 0.00 43.95 30.11 30.71 
(3.76) (3.76) (3.76) (3.76) (42.41) (42.41) (42.41) 

0.00 0.00 0.00 24.77 37.03 43.95 35.77 
(3.76) (3.76) (3.76) (28.27) (42.41) (42.41) (42.41) 

0.00 0.00 9.45 19.52 24.77 0.00 0.00 
(3.76) (3.76) (14.14) (28.27) (28.27) (3.76) (3.76) 

0.00 0.00 3.32 9.45 0.00 0.00 0.00 
(3.76) (3.76) (3.76) (14.14) (3.76) (3.76) (3.76) 

1.15 0.00 0.00 0.00 0.00 0.00 0.00 
(3.76) (3.76) (3.76) (3.76) (3.76) (3.76) (3.76) 

0.00 1.15 0.00 0.00 0.00 0.00 0.00 
(3.76) (3.76) (3.76) (3.76) (3.76) (3.76) (3.76) 

(iii) A,,, at bottom (rr--12%) 6mm bars 

0.00 0.00 0.00 0.00 29.94 28.67 34.30 
(3.76) (3.76) (3.76) (3.76) (28.27) (28.27) (28.27) 

0 0.00 0.00 0.00 18.27 18.64 28.68 
(3.76) (3.76) (3.76) (3.76) (28.27) (28.27) (28.27) 

0.00 0.00 0.00 1.83 4.49 18.27 29.95 
(3.76) (3.76) (3.76) (3.76) (3.76) (28.27) (28.27) 

0.00 0.00 0.89 1.23 1.83 0.00 0.00 
(3.76) (3.76) (3.76) (3.76) (3.76) (3.76) (3.76) 

0.00 0.00 0.00 0.89 0.00 0.00 0.00 
(3.76) (3.76) (3.76) (3.76) (3.76) (3.76) (3.76) 

2.43 0.00 0.00 0.00 0.00 0.00 0.00 
(3.76) (3.76) (3.76) (3.76) (3.76) (3.76) (3.76) 

0.79 2.43 0.00 0.00 0.00 0.00 0.00 
(3.76) (3.76) (3.76) (3.76) (3.76) (3.76) (3.76) 

(iv) A, y at bottom (rr--12%) 6mm bars 

fig. 6.3.6(a) Slab SM6: Numerical & (Provided) Steel Areas *2 in mm 
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0.00 0.00 0.00 0.00 0.00 0.00 0.00 
(0.00) (0.00) (0., 00) (0-00) (0-00) (0.00) (0.00) 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 
(0.00) (0.00) (0-00) (0-00) (0.00) (0-00) (0.00) 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 
(0.00) (0.00) (0-00) (0.00) (0.00) (0.00) (0.00) 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 
(0.00) (0.00) (0.00) (0.00) (0-00) (0.00) (0.00) 

0.00 5.18 0.00 0.00 0.00 0.00 0.00 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

19.60 12.05 5.17 0.00 0.00 0.00 0.00 
(28.27) (28.27) (0.00) (0.00) (0.00) (0.00) (0.00) 

104.50 19.59 0.00 0.00 0.00 0.00 0.00 
(113.08) (28.27) (0.00) (0-00) (0.00) (0.00) (0.00) 

(v) A,,, at top (rr--12%) 6mm bars 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 
(0.00) (0.00) (0-00) (0-00) (0.00) (0.00) (0-00) 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 
(0.00) (0-00) (0.00) (0.00) (0-00) (0.00) (0.00) 

0.00 0.68 0.00 0.00 0.00 0.00 0.00 
(0.00) (0.00) (0.00) (0-00) (0-00) (0.00) (0.00) 

3.67 0.94 0.68 0.00 0.00 0.00 0.00 
(14.14) (0-00) (0.00) (0.00) (0-00) (0-00) (0.00) 

11.81 3.67 0.00 0.00 0.00 0.00 0.00 
(14.14) (14.14) (0.00) (0-00) (0-00) (0.00) (0.00) 

(vi) A, y at top (rr--12%) 6mm bars 

fig. 6.3.6(a) Slab SM6: Numerical & (Provided) Steel Areas in mmý 
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1.2 

1 

0.8 

0.6 

0.4 

0.2 

0 

1 ý20/6 

0 10 20 30 40 so 
central displacern ant (rn rn) 

fig. 6.3.6(b) Slab SM6: Load-displacement at centre 
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I 

.! 2) 

0.6 

0.4 
CL 
40 

1.2 
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I -*-rýýr--12% 
0.2 
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fig. 6.3.6(c) Slab SM6 bottom steel strains at centre 
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fig. 6.3.6(d) Slab SM6: Top steel strains at comer support 
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1 -- 

0.9 

0.8 

0.7-- 

0.6-- 

0.5 

0.4 

0.3-- 

0.2-- 

0.1 - 

0.00 

1.00 

0.90 

0.80 

0.70 

0.60 

0.50 

0.40 

0.30 

0.20 

0.10 

0.00 

I* rr--l 2% 1 

1.00 2.00 3.00 4.00 5.00 

Ry/R 

fig. 6.3.6(e) Slab SM6: Principal moments near comer 

6.00 

I-0- Ea, =-: I n, =ý 
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fig. 6.3.6(f) Slab SM6: Principal moments at comer vs. Load 
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fig. 6.3.6(g) Slab SM6: Principal Moments at centre 

1 
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fig. 6.3.6(h) Slab SM6: Principal moments at centre vs. Load 
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6.4 Adapting Load Path for Design 

In some cases, the designer may wish to direct the main load paths in the slab in order 

to make a more practical layout. This is especially applicable in the case illustrated in 

Slab SM5 at rr--30%, where the nature of the evolved mesh led to a large increase in 

provided steel from numerical. Given a pre-determined load path, the designer can 

stipulate the elements not to be 'removed' from the mesh and hence generate the 

required steel from the custornised load path. In the case of slab SM7, using a layout 

of steel which is orthogonal to the slab edges, a system of beams crossing the centre 

of the slab and spanning onto supporting beams around the edges was envisaged. The 

resulting principal moment plots for this are shown in figure (6.4.1 a). 

Steel Volumes 
(CM) 

Steel (rr--O) (rr--15%) Total(15%) 
Total(O) 

[ 

A. 

bottom 

A. 

top 

Total A. 

bottom 

A. 

top 

Total 

Numerical 48.2 5.4 53.6 46.3 15.9 62.2 1.1 

PrOvi( PrOvi( Provided 69.1 8.4 77.5 66.7 17.2 839 1.1 

Numerical areas for a quarter of the slab are shown in figure (6.4.1b). Comparisons of 

numerical and provided steel areas over the mesh are detailed in figures (6.4.1c). 

Observation of the total steel volumes shows that a similar amount of steel was 

required at rr--O and at rr--15%. 

The numerical analysis of this slab resulted in an ultimate load of around I -I Pd. The 

mid-span service deflection limit was reached at around 0.65Pd, (fig6.4. I d). Yielding 

of the bottom steel occurred near the centre at a load of 0.8Pd. No yielding was 

observed in the top steel. From inspection of the moment curvature relationship at the 

centre, it can be seen that the moment is being sustained beyond the design load, 

(fig. 6.4. lf-g). 

227 



Chapter 6 Slab Design 

(i) rr= 10% 

(il) rr=15% 

fig. 6.4. I (a) Slab SM7, principal moments 
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C 

30 

0 

ci 

i) A,, bottom (rr=O) 

ii) A,, bottom (rr= 15%) 

iii) A,, top (rr=O) 

i v) A,, top (rr= 15 %) 

fig. 6.4. I (b) Slab SM7, Symmetrical Quarter, Numerical Steel Areas (rnm 2) 
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4---. --- 

22crs 

120 

I 30crs 

32.5 

65 

65 

22crs 

22crs 65 65 

i) A, at top (rr= 15 %) 

fig. 6.4. I (c) Slab SM7, Steel layout, All sizes in mrn, all bars 6mm diameter 
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0.00 3.89 11.08 21.16 34.05 57.21 49.88 
(3.76) (3.76) (28.27) (28.27) (28.27) (56.54) (56.54) 

3.78 0.00 0.00 0.00 0.00 0.00 22.25 
(3.76) (3.76) (3.76) (3.76) (3.76) (14.14) (14.14) 

5.64 0.00 0.00 0.00 0.00 0.00 3.09 
(3.76) (3.76) (3.76) (3.76) (3.76) (3.76) (3.76) 

5.55 0.00 0.00 0.00 0.00 0.00 1.42 
(3.76) (3.76) (3.76) (3.76) (3.76) (3.76) (3.76) 

4.93 0.00 0.00 0.00 0.00 0.00 3.11 
(3.76) (3.76) (3.76) (3.76) (3.76) (3.76) (3.76) 

2.13 0.00 0.00 0.00 0.00 0.00 15.58 
(3.76) (3.76) (3.76) (3.76) (3.76) (14.14) (14.14) 

0.00 0.00 4.19 14.96 26.53 37.91 27.68 
(3.76) (3.76) 

1 
(14.14) 

1 
(28.27) 

1 
(28.27) 

1 
(28.27) 

1 
(28.27) 

(iii) A,,, at bottom (rr--15%) 6 mm bars 

3.17 3.96 0.00 0.00 0.00 0.00 0.00 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

1.50 0.00 0.00 0.00 0.00 0.00 0.00 
(0.00) (0.00) (0.00) (0.00) (0-00) (0.00) (0.00) 

1.53 0.00 0.00 0.00 0.00 0.00 0.00 
(0.00) (0.00) (0-00) (0-00) (0.00) (0.00) (0.00) 

3.77 0.00 0.00 0.00 0.00 0.00 0.00 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

5.79 0.00 0.00 0.00 0.00 0.00 0.00 
(0.00) (0.00) (0.00) (0.00) (0.00) (0-00) (0.00) 

7.5-5 0.00 0.00 0.00 0.00 0.00 0.00 
(28.27) (0-00) (0.00) (0.00) (0.00) (0.00) (0.00) 

70.54 17.05 7.11 0.00 0.00 0.00 0.00 
(84.81) (28.27) 

I 
(0.00) 

I 
(0.00) 

I 
(0.00) (0.00) (0.00) 

I 
(iv) A,,, at top (rr--15%) 6mm bars 

fig. 6.4.1(c) Slab SM7: Numerical & (Provided) Steel Areas in MM2 
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0.4 

0 

0.2 
16 rr- 15 

0 20 40 60 80 

central displacement (mm) 

fig. 6.4. I (d) Slab SM7: Load-displacement relationship 
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fig. 6.4. I (e) Slab SM7: bottom steel strains at centre 
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1 -- 
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0.7 

0.6 

0.5 
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0.2 

0.1 

0 
0 

IR y/R 

fig. 6.4. I (f) Slab SM7: Principal Moment-curvature relationship at centre 

1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

I 
--*- rr- 15- 

E/6 ] 

0 0.2 0.4 0.6 0.8 1 1.2 

applied load/design load 

fig. 6.4.1(g) Slab SM7: Principal Moment at centre vs. design load 
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6.5 Conclusions 

Through the visualisation process, a deviation from the original elastic pattern of 

stresses is created in the slab, i. e., a redistribution of stresses occurs. It is important 

that this redistribution is not accompanied by a loss of ductility in the resulting slab 
design. The results from all the slabs tested in the series are presented in table 6.5.1. 

All slab designs were able to attain the design load readily. In most cases, an overall 
increase in the area of steel resulting from the evolved mesh over that resulting from 

the mesh at rr--O was observed. An increase in the provided steel areas from the 

numerical steel areas was often necessary in order to generate a practical steel layout 

and to fulfil minimum steel requirements. This increase was particularly pronounced 
in slabs where the visualisation process resulted in a large % area 'removal' such as 

slabs SM3 and SM5. Orientation of the steel to coincide with the main direction of 

principal moments results in a more efficient volume of steel as in the case of SM6. 

Increasing provided steel areas leads to in most cases, a greater ultimate load from the 

designs at rr--O. 

All the designs resulting from the evolved mesh maintain ductility. In all cases the 

slabs failed in a ductile manner. However, as observed in some cases, increases in 

steel areas may cause a loss of ductility in localised areas. The occurrence of 

compression softening in the concrete was evident in some cases but this was at loads 

in excess Of I -I Pd and as a result of yielding of steel in that region. 

When considering the serviceability of the slabs resulting from the evolved meshes, an 

adequate performance was achieved. However, in some slabs, such as SM3 and SM4, 

the steel layouts derived from the evolved mesh were often more complicated and 

could lead to congestion of steel in localised areas. For this reason, it may concluded 

that it is not desirable to use the visualisation process in every case. 

The greatest potential advantage of this design process comes from being able to 

control the visualisation process according to a pre-determined path. This allows the 

designer to take account of experience and practical considerations, in order to 

generate practical steel layouts. 
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As shown in slab SM7, this creates an efficient reinforcement pattern and is able to 

accommodate re-distribution of stresses while maintaining ductility. 

Property SMI SM2 SM3 

(rr) 0 40% 0 30% 0 MKI( 

% area 'removed' - 24% - 24 c1c - 

I Numerical steel 
volume 

(CM) 
754 807 1588.9 1638.5 425 481 

I Provided steel 
volume (cm 

3) 
980.9 990.7 1815.8 2061.7 564,8 740.5 

PJPII 1.2 1.2 1.0 1.05 1.1 1.3 

Service deflection 
limit (span/250) 

0,65P, j 0.65 P, j 0.7 P, j 0.71),, 0.7 P, j P', 

a)First yielding of 
bottom steel 

1 
-0 

Pd 1.0 P', 0.7 Pj 0.7 P, j 0.6 P, j 0.7 P,, 

Location of a) Centre centre Centre centre load 
point 

10; 1(1 
point 

b)First yielding of 
top steel 

1.2 Pj 

I 

1.2 P, j 0.61),, 

I 
0.8 P, I 

Ecation ofýbý ýrýi)f 
11 o rt su ort 

cso=rner of 
ort s I. su ort 

L i-ý 
C)r1jer of corner of' 
support 

-, 
()ril,, 

I 
table 6.5.1: Summary of results from test progrant 

Property SM4 SM5 SM6 SM7 

(rr) 0 12% 0 1 121/, 151/, 

% area 'removed' - 38% 571/ 571/( 511/( 

I Numerical steel 
volume (cm3) 

2730 4719 53.5 0 ý. 8 53.6 62.1 

I Provided steel 
volume (cm3) 

4587.4 6562.4 77.4 102.3 79.7 83.9 

P,, /P,, 1.3 1.1 1.35 11 1.1 

Service deflection 
jimit (span/250) 

0.75 P(I 0.7 Pj 0.65 P, j 0.7 P, j 

a)First yielding of 
bottom steel 

1.2 Pj 1.2 P, j 0.8 P', 1 5 P', 0.81"d 

Location of a) centre centre centre centre Centre Centre 

b)First yielding of 
to stee 

1-1 Pd 1.0 P', 0-8 Pd (). 8 P', 0.911"1 

Location of b) column 
support 

Column 
SLI2201-t 

corner 
support 

-cor ner 
support 

- corner 
, st port 

- 

tame 0. -'n. I (conta): Nummary ol results from test progrant 
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Chapter 7 

Experimental Program 

7.1 Introduction 

Five structures designed using the strut-tie method were tested physically in the 

laboratory. Two double sided corbels, one single sided corbel and two comer joints 

were tested, see table 7.1. The design of these structures and results from numerical 

and physical tests are detailed in the next chapter. This chapter describes the materials 

and instrumentation used in the physical models as well as the method of testing. 

7.2 Preparation of Models 

7.2.1 Formwork 

The same formwork was used for each of the three Corbels made. For each design, the 

formwork was easily adapted in order to accommodate changes in geometry. Since the 

two comer joints were of identical geometry, only one mould was needed here. The 

main body of the formwork comprised of 20mm, thick plywood panels. For stability 

and strength, 50x5Omm thick timber battens were fixed at regular intervals along the 

length of the mould. Prior to casting of the model, the walls of the mould were coated 

with oil in order to prevent the concrete from sticking 

7.2.2 Concrete 

For all the specimens tested, Rapid Hardening Portland Cement was used to give the 

required 7-day cube strength fu. A maximum aggregate size of 10mm was used. The 

casting of each model took place in a number of batches and was properly compacted 

through vibration. 
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Model Schematic 

Pd Pd 

50.1 

Corbel C2A 300 

350 
thickness=250 

200 250 200 

Pd Pd 

50 

10 50 

1 

Corbel C3A '0 150 

350 
thickness=250 

200 
: Ip 

250 
, 
200,1 

L't 

350 0 
Pd 

150 
150 

1 

Corbel C4A 

350 
thickness=150 

250 200 

750 
1 

Corner Joints 
-; r 11, 

FJIA & FJ2B 150T 
750 

ýL 
J_ 

_ý 
150 thickness=150 

Table 7.1: Details of Experimental Program, all sizes in mm. 
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In addition to the main specimen, four IOOxIOOxIOOmm cubes and four MOW= 

cylinders were cast. These control specimens were cured with the main specimen 

under polythene for 24 hours. After this period, half the control specimens were 

placed under water in the curing tank, while the rest remained with the main specimen 

under hessian. The cubes were used to determine the cube strength and the cylinders 

were used to determine the tensile strength and modulus of elasticity. The concrete 

tensile strength ft was calculated using the cylinder splitting test from the following: 

ft = 
2P 

7cDL 

where L--cylinder length (300mm), D=cylinder diameter (150mm), and P is the 

ultimate load. The results from each control specimen were averaged to give the 

experimental values presented in the next chapter. 

7.2.3 Reinforcing Steel 

Throughout the test series, high yield deformed bars were used from the same batches 

of ý8mrn, ý10 and 012 bars. The yield stress of the bars from each batch was 

measured using the Tinius Olsen Universal Testing Machine fitted with an S-type 

electronic extensiometer. The yield stress of the bars was taken as the stress at which a 
line starting from 0.2% strain, parallel to the initial slope of the curve, intersects the 

stress-strain curve, see figure 7.2.3. 

7.2.4 Strain Gauges 

During the experiments, strains in the bars were measured using 6mm electrical 

resistance strain gauges. The gauges were fixed to the steel bars at predetermined 

points in order to record the strain history. Before fixing the gauges, the surface of the 
bars at the appropriate area was prepared first by filing and then smoothing with sand 

paper. Care was taken during this process to avoid removing a significant area of the 
bar which could cause weakening. The smoothed surface was then treated with M- 

prep conditioner and M-prep neutralizer in order to remove any dirt and grease in 

order to achieve a perfect bond with the steel. The gauge was then fixed to the bar 
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using adhesive and checked for operational readiness using a voltmeter In order to 

provide protection from moisture and damage during fabrication and casting, an epoxy 

resin coating was applied to the gauge and terminal areas. At each required position, 

two gauges, each diametrically opposite one another, were fixed. The measured strain 

at each position was taken as the average between the gauge pairing. 

600 

500 

400 
04 

E 

300 

U) 

200 

100 

0 

I 

/ 0 0.002 0.004, ý 0.006 0.008 0.01 
strain (mm/mm) 

fig. 7.2.3 Stress-Strain Relationship for ý12rnm bar 

7.3 Experimental Procedure 

When the specimen was fully cured, it was painted white to assist in identification of 
cracks during testing. Each specimen was manoeuvred into it's respective testing rig 
by crane. All the strain gauges and load cells were connected to a 3530 Orion data 
logger for automatic recording. Each connection was checked prior to testing. Strain 

gauges were checked and defective ones disconnected. At each load increment, the 

results were stored to disc for later processing. The specimen was illuminated using a 
powerful light source in order to ease identification of cracks. The crack widths were 
measured at each load increment using a micro-crack reader. The crack development 

was traced with an ink marker at each load increment. This procedure was repeated at 
each increment until the ultimate load was achieved. Details of the test rig for each 
model are now described. 
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7.3.1 Double Sided Corbels, 

Experimental tests have been conducted in the past on double sided corbels, see Kriz 

& Raths (1965), Somerville (1974), Mattock et al. (1976). In these tests, the corbels 

were orientated upside-down, supported at the corbel ends, and the load was applied 

to the column end. This was the method of testing used in this work, see figures 

7.3.1(a-b). The loading was applied using a 100OOkN Losenhausen Universal Testing 

Machine. In order to ensure even distribution of the load, each side of the corbel was 

supported by steel bearing plates on rollers. At the supports, 500 kN load cells were 

placed to measure the reactions. Details of the steel layouts and strain gauge positions 

are given in the next chapter. 

7.3.2 Single Sided Corbel 

Testing of a single sided corbel presents more difficulties than double sided corbels 
because the ends of the corbel have to be prevented from rotating due to the 

eccentricity of the load. In this program, corbel C4A was tested in the Tinius Olsen 

Universal Testing Machine. The test set-up is shown in figure 7.3.2(a). The testing 

method was such as to prevent the ends of the column from rotation by providing a 

steel tie at the top and a steel block at the bottom. The model was tested using 10kN 

increments. The loading head of the Tinius Olsen Machine was fixed and a hydraulic 

jack and 500kN load cell were placed between the head and the corbel. 

7.3.3 Corner Joints 
Comer joint MA was designed for a closing moment and FJ2B was designed for an 

opening moment. Both joints were of identical geometry. Details of the test set-up for 

each joint are given in figures 7.3.3(a-d). The vertical leg of each comer was fixed to 

the lab floor via a 30mm diameter steel rod as shown in the figure. For FJIA, the 

closing moment was generated in the comer via the hydraulic jack at the end of the 

horizontal. The moment was then calculated as the product of the load and the lever 

arm distance to the centre of the vertical. For FJ2B, the opening moment was 

generated in the corbel by jacking upwards against the horizontal as shown in figure 

7.3.3(c). In order to monitor rotation at the base of the comers, displacement 

transducers were used. In both cases, negligible rotations were observed during 

testing. 
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2P 
1'ýýTop loadliq-, Platcli ()I 

Losenhausen Machinc 

bottom platen of 
Losenhausen Machine, 
fixed in horizontal and 
vertical directions 

75x25Ox25mm 
steel base plates 

on rollers 

50 C OkN Load ell! N 
Pl I1 

fig. 7.3. I (a) Testing Method for Corbels C2A and C3 A 

241 

fig. 7.3. I (b) Corbel C3A: Experimental Set-up 
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fig. 7.3.2(a) Corbel C4A: Testing Method 

It' 

hloA It) picvctil 
ý, Iiding 

242 

fig. 7.3.2(b) Corbel C4A: Experimental Set-up 
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9 -E i bolted to tab floor 

1080 

625 50 

IOOXIOOXIO 
hollow sections hydraulic. jack 

& load cell --., k 

-10111111 steel 
rod 

41 <1 bolted to lab floor III] 11511 

fixed to lah floor 
i) Plan view i) Section A-A 

fig-7.3.3(a) Comer Joint FJ I A: Testing Method, al I sizes in nini 
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fig. 7.3.3(b) Corner HIA: Expei-miental Set-up 
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1080 

bolted to lab floor 

IOOXIOOXIO 
hollow sections 

A 

i bolted to lab floor 

i) Plan view 

625 50 

50x 150 steel hearing 
plate on roller \ 

loadcell 

hYdraulic jack 

i) Section A-A 

fig. 7.3.3(c) Corner FJ2B: Testing Method, all sizes in mIll. 

Zý 

ýI 't, /I im 

fig. 7.3.3(d) Corner FJ2B: Experimental Set-Lip 
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Chapter 8 

Strut and Tie Design 

8.1 Introduction 

This chapter details the design by strut and tie models of a number oftypical D-region 

type structures. The main objective of this work is to assess (lie SUItabIlIty Ofthe Strut- 

tie method in achieving the required performance from a designed Sti-LICtUrC. 

The visualisation process described previously is used to generate tile Outline 01' tile 

strut-tie models. The test series comprises of six designs, I deep beam, 3 corbels and 2 

frame corner joints. All of these designs were assessed through non-linear analysis. in 

addition to this, the corbels and corner joints were physically tested in tile laboratory. 

Details of the experimental set-up were given in chapter 7. 

As in the case of slabs, the service and ultimate load characteristics of- the Sti-LICIIII-CS, 

were investigated. It is important that the structures resulting from the strut-tie desjgn 

possess a ductile response at ultimate load. This Is achieved by ensuring that crushing 

of the concrete prior to yielding of the main steel is avoided at the design loads. In the 

case of deep beams and corbels, serviceability displacements are not a serious Issue 

since the very low span-depth ratios of these structures results it, very sniall 

deflections. However during the experimental test series, the ina oi- crack widths were 

rnomtored and compared with the maximum service crack width limit of' 0.3nini 

stipulated by BS81 10. In all designs, adequacy of anchorage and 1)()11(1 ()1, (11C 

reinforcement was checked according to BS81 10. 
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8.2 Deep Beam BI 

This model was a typical simply supported deep beam with an effective span-depth 

ratio of 1.7. Dimensions and material properties are given in the table below, where 

Pd, f,,,, ft, E,, E, and fy are the design load, uni-axial cube crushing strength of 

concrete, uni-axial tensile strength of concrete, elastic modulus of concrete, elastic 

modulus of steel and yield strength of steel respectively. 

Schematic Design Material Properti 
P, 1=250kN 

concrete: 
2 F,,, =35N/m I,, 

500 1', =3. ON/mm 2 

E, =21.5kN/mm 
steel: T 

=460N/mm 2 1' y 2 Es=200kN/m III 
525 525 

thickiiess= I 00nim 

The initial elastic principal stresses and resulting strut-tie model are given in figure 

8.2(a). From figure 8.2a(ii), the main load paths in the structure can be clearly seen its 

the diagonal compression strut running from the load point to tile support, all(I tile 

horizontal tension tie at the bottom. The presence of transverse tensile stress along the 

length of the strut can also be observed. These transverse tensile stresses havc it 

detrimental effect on the strength of the strut and are accounted for in tile j-c.,,,, jltjjjg 

strut-tie model (fig8.2a(iii)) by introducing ties along the strut at the third points. 

Using this model, the member stresses were evaluated and the resulting reinforccinent 

was calculated. A summary of the analysis is given in table below. For diniens, (), 11jig 

of struts and nodal zones, the cube crushing strength t',,, was used as (lie design 

strength fcl. In practice, material factors would be applied to fC,,. Similarly, no matchal 

factors were applied to the yield strength of the steel. The tensile strength ()f tile 

concrete was ignored. 
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Member Force (kN) A. required A, provided No. of Bars A, provided 
(MM2) (MM2) A, required 

1 125 271.74 314.16 4(010) 1.15 
4 53.52 133.73 157.08 2(010) 1.17 
7 53.07 133.73 157.08 2(010) 1.17 

Nodal zones are the critical areas of the model and stresses must be checked to ensure 

that capacity under the given state of stress is not exceeded. Figure 8.2(b) gives details 

of the nodal zone dimensions. At node 6, (see fig 8.2a), where the load is applied, 

concrete is in bi-axial compression, the capacity of concrete in this zone must not 

exceed In reality, as mentioned in chapter 5, the concrete strength under bi- 

axial compression can increase to around 1.16 f,,,, Kupfer et al. (1969). The stress at 

this zone is equal to 12.5 N/mm2 (Pd / bearing plate dimensions) and is hence safe. At 

node 1, where the diagonal strut, horizontal tie and vertical reaction meet the strength 

of the node is reduced due to the presence of the tie, in this case the stresses must not 

exceed 0.75fc,, = 26.25 N/mm, 2. Since the stress in this node is the same as node 6, the 

node is safe. A schematic representation of nodes I and 6 is given in figure 8.2(g). 

The designed reinforcement layout is given in figure 8.2(c). 

The results of the non-linear analysis are shown in figures 8.2(d-h). From the 

numerical load-displacement relationship figure 8.2(d), it can be seen that the 

structure attains an ultimate load of 1.32Pd. In addition to this, a certain amount of 

ductility is observed before eventual collapse. If yielding of the steel is assumed to 

govern failure, then the strut and tie model would predict an ultimate load of 1.15Pd. 

since 15% extra steel was used for the main tie. 

As shown in figure 8.2(c), yielding of the main steel occurred at the mid-span at 

1.25Pd, which is close to the load predicted by the strut-tie model for the onset of 

yielding. Once yielding of the main steel began, crushing of the concrete at node I 

was initiated at I. Rd. The concrete in this zone is in a state of bi-axial tension- 

compression, hence an ultimate stress of 0.8f,, is reached. The strut-tie idealisation of 

this node suggested that at LOPd, a stress of 12.5N/mm2, OAPd. would be reached, see 

fig 8.2(g). From the finite element analysis, it was observed that a higher stress was 

reached due to the stress concentrations which occur around the edge of the bearing 
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plates. However, as can be seen from the stress plots in figures 8.2(i-j), the stresses 

along the diagonal were much more similar to those predicted by the strut-tie model. 

Details of the Gauss point positions at which the numerical stresses were obtained are 

given in figure 8.2(h) 

In this example, a more detailed analysis of nodal zone I was carried out. Using the 

displacements from the original analysis, a displacement controlled analysis using a 

refined mesh was implemented. Details of the principal stresses and stress states are 

given in figures 8.2(i-j). It can be seen form the principal stress plot that the largest 

compressive stresses are concentrated along the outer edge of the bearing plate. 
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1) (1-1-0) 

compre " 

ii) (rl) 

F0 ol 
40 El 

000, 
n5 

... III) Strut & Tic Modcl 
5 (x=26.56" 

18.44" 

n, tic 

fig. 8.2(a) Bearn B 1: Elastic Stress Patterns and Strut Tie modcl 
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fig. 8.2(b) Beam B 1: Dimensioning of Nodal Zones 
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«o i 19 
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to a 0.6 

0.4 

0.2 

0 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 

central displacement (mm) 

fig. 8.2(d) Beam B 1: Load vs Central Displacement 
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fig. 8.2(e) Beam B 1: Main Steel Strains 
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fig. 8.2(f) Beam B 1: Web Steel Strains 
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(5= 1 1AN/rum 2 \1551.6ninri 
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4F 
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fig. 8.2(g) Beam B 1: Stresses in Nodes I and 6 
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fig. 8.2(i) Beam B 1: Numerical Compressive Stresses 
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fig. 8.2(k) Beam BI Nodal Zone 1, Principal Stresses at Lilt"Ilate load 
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fig. 8.2(i) Beam BI Nodal Zone 1, Principal Stresses at ultinijite load 
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8.3 Corbel C2A 

This model was a symmetrical two sided square corbel. Both numerical and physical 

testing of C2A was carried out. The dimensions and material properties are presente(I 

in the table below. 

S-c h: ýem at ic : Schematic Material Properties 
(Design) 

Material Properties 
(Experimental) 

Pd Pd P, 1=350kN 
5; ( 0) 

concrete: concrete: 
0 

[[ r 

f,,, =50N/mi-n 2 I'C, ý=49.8N/mm2 3(0)(0 f, =3. ON/i-n 111 2 I't=3. I N/mm 2 

II 

1112 E, =21.5kN/m '"1.61AN/mm2 F, =- 
steel: steel: 35 () fy=50ON/nim 2 1', =504N/mm" (0 12) 

! f- 12 E, =200kN/mn E, =201.6kN/mIII-' 
250 200 200 1 t' =509N/mm 2 (08) 1( 9: AI( r thickness=250mm 

y 
Es=214.5kN/mm 2 

8.3.1 Strut-Tie Model and Design 

The elastic principal stress fields and resulting strut-tie niodel arc pi-cwnted In hgUrC 

8.3(a). The strut-tie model which results from Visual isat loll, consists of' a horizontal 

tie and a diagonal strut, and is similar to that first by proposed by Niedenhoff ( 190 1) 

and later developed by Hagberg (1983). The critical areas with rcgard to concrete 

stresses are at the load point, node I and in the strut Itself. f1cre tile stresses must 

less than or equal to 0.75fcd because of the presence of the tic. ']'he geometry of' the 

diagonal strut can be determined fi-om the geornetry of' the baseplate. In tills case, tile 

stress in the strut is equal tO Pd/[(W. COS 2p)t], where vi, is the width ol'the bcýlrillg pjýjtc, 

P is the angle of the diagonal strut to the vertical, t is the thickticss of the strut. III tills 

case, w is 75mm, P is 30' and t is 250mm, which leads to a maxinium stre.,, s ()t, 
2 

24.9N/m _ 0.75f,,,. At node 2, where the diagonal strut Meek IIIC COILIIIIII, a state M 

of bi-axial compression is created and hence the stresses in this node IIILISt not CXCcc(j 

If,,,. The column is designed to carry load in excess of 5 times the corhel loadim, 

Hence it is not necessary to check concrete capacity in nodal zone 2 clue to the level ()t- 

reinforcement provided. 
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As can be seen from the elastic stress plot, the tensile stresses are spread over a certain 
depth at the top of the corbel. It is therefore sensible from a serviceability point of 

view to distribute the steel over a certain depth. In the provision of reinforcement for 

the tie forces, the steel will be made up of the main bars and lower reinforcement 
distributed throughout the top half of the corbel. Each of these contribute to the 

overall tensile strength. Both the primary and secondary reinforcement contribute to 

tensile strength by each carrying a proportion of the tie force. As a means of 

empirically deriving the corresponding proportion of the tie force for primary and 

secondary reinforcement, the following procedure is adopted. 

The resultant of the main steel acts at the top of the corbel and the resultant of the 

lower reinforcement acts at the end of the top third of the corbel, as suggested by 

Hagberg, see figure 8.3(b). This results in the following design equation derived from 

the statics of the truss: 

Pd = tanp, 
+ 

tanP2 

Where Ady and Ady are the tensile force capacity of the primary and secondary 

reinforcements, P, and P2 are 30' and 40' respectively. For the main steel, 3ý12 bars 

were used and 2ý8 bars in the form of stirrups were provided as the lower 

reinforcement. This leads to a theoretical ultimate load of 353.73kN > 350 kN, Pd. 

the reinforcement layout in the designed structure is shown in figure 8.3(d). 

Pd 

A,, fy 

ýJy 411 

F, 1717 

0-2-"; ý* 
Fc2 

jo 

fig. 8.3(b) Dimensioning of Ties 
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8.3.2 Numerical and Physical Testing 

During testing, the load was applied in 25kN increments. The experimental ultimate 

total load of the corbel was recorded as 827kN, (1.18Pd) which compared well with 

the numerical ultimate total load of SORN, (1.15Pd). As with all subsequent 

numerical analysis, the experimental material strengths were used. The first cracks 

occurred at URN, (0.18Pd) in the upper corbel, at the tie-column junction, see 
fig. 8.3(e). The largest of these initial cracks was 0.05mm wide. These cracks 

gradually propagated up towards the column. At a load of 375kN, (0.53 Pd), new 

cracks formed around the bearing plate, running upwards diagonally toward the centre 

of the column. The largest of these cracks was 0.15mm wide. The service crack limit 

width of 0.3mm was first reached in the cracks around the tie-column junction at a 

load of MOM (0-78 Pd). 

The steel strains obtained from the gauges are plotted together with the corresponding 

numerical values see fig. 8.3(g-i). Failure in the corbel was initiated by yielding of the 

main steel at 770kN, (I. IPd). The lower reinforcement in the tension zone also began 

to yield at this point, fig. 8.3(i). A good agreement was achieved with the numerical 

and experimental steel strains. Subsequent straining of the main tension steel led to 

widening of the diagonal cracks, as can be seen from the Demec readings in figure 

8.3(f). Figures 8.30-k) show the crack patterns at ultimate load. 

The idealised stress distribution in nodal zone 1 is represented in figure 8.3(n) and the 

numerical compressive stresses are shown for the areas of highest compression in 

figure 8.3(o-p). As in the strut-tie model, the effective strength of the concrete is 

nowhere exceeded. The greatest compressive stress, 0.95fu, 
, occurred at the diagonal 

strut-column junction at ultimate load. This was due to the stress concentration 

brought about by the sharp change in geometry, i. e. right angle comer. In practice, it is 

common for the lower corbel edge to approach the column at an angle. This has the 

effect of reducing the stress concentration at the column corbel junction and was 

utilised in subsequent corbel designs C3A and C4A. Along the diagonal strut, the 

numerical compressive stresses are no greater than 0.55fu, which is similar to the strut 
2 

tie model prediction of 0.5fcu, 24.9N/mm 
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fig. 8.3(e) Corbel C2A Main Crack Patterns 
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8.3.3 Comparison of Strut-Tie Design with Direct Design 

As outlined in chapter 3, the direct design procedure can be applied to inplane 

situations. Equations for proportioning orthogonal and/or skew reinforcement to resist 

inplane forces were first proposed by Clark (1976). Using these equations, many 

researchers have investigated the direct design of deep beams and other members. 

Khaskheli (1989) used elastic stress fields for direct design, while Bensalem (1993) 

carried out design of deep beams using non-elastic stress fields. Bensalern concluded 

that the use of elastic stress fields was sufficient for the design of deep beams. 

In this section, the direct design of corbel C2A from the elastic stress pattern, (Le 

rr=O) is carried out. The procedure described in chapter 3 was used to derive tile 

reinforcernent layout. The performance of the design was then assessed in 

comparison to the strut-tie design. 

The required steel areas resulting from the direct design procedure are presented in 

figure 8.3(q). For comparison, the numerical and provided steel areas are shown in 

figure 8.3(r). As expected, the greatest quantity of steel occurs at the area of highest 

tensile stress, i. e. the upper corbel-column junction. The quantity of required 

horizontal steel in the tension zone of the corbel is similar to that provided in the strut- 

tie design, see fig. 8.3(s). It can be seen that in the case of horizontal steel, the direct 

design method results in a 10% increase in provided steel from the strut-tie design. 

Secondly, direct design also results in the provision of some vertical steel. 

The results from the numerical test are shown in figures 8.3(t-v). Figure 8.3(t) shows 

that as a result of the increase in provided steel, the direct design corbel attains a 

higher ultimate load of 1.25Pd. Yielding of the main steel takes place at the upper 

column-corbel junction at 1.2PI. The lower horizontal reinforcement in the tension 

zone approached yield at the ultimate load. No yielding of the vertical reinforcement 

was observed. In general the behaviour of the direct design corbel was similar to that 

of the strut-tie design corbel since the quantities of main tension steel were similar. 

265 



Chapter 8 Strut & Tie Design 

0 

rD 

0 

0 

r )n 
considered 

y 

LX 
i) A,, (rr=O) 

n) A, 
y (ri-=O) 

fig. 8.3(q) Corbel C2A: Numerical Steel Areas Resulting from Direct Design, (11IM2) 

266 



Chapter 9 Strut & Tie Design 

313 240 191 110 50.2 
(339.3) (339.3) (339.3) (339.3) (339.3) 

128 145 154 96.2 21.6 
(157.1) (157.1) (157.1) (157.1) (157.1) 

80 100 106 75.7 14.7 
(100.5) (100.5) (100.5) (100.5) (100.5) 

32.5 46.7 48.4 43.6 13.4 
(100.5) (100.5) (100.5) (100.5) (100.5) 

1.23 0.98 0.47 3.36 3.14 
(0.0) (0.0) (0.0) «w) «w) 

(i) A, (rr=O) 

193.5 91.1 59.8 1.9 1.1 
(157.1) (100.5) (100.5) (0.0) 

114.4 133.5 69.7 0 
(157.1) (100.5) (100.5) (0.0) 

59.9 102 73.9 7.9 0 
(157.1) (100.5) (100.5) (0-0) (0.0) 

21.9 82.2 78.45 26.5 0.2 
(157.1) (100.5) (100.5) (0.0) (0.0) 

26.4 38.4 33.8 16.2 2.71 
(0.0) (0.0) (0.0) (0.0) (0.0) 

(ii) A, y (rr=O) 

region 
considered 

fig. 8.3(r) Corbel C2A Numerical and (Provided) Steel Areas (MM2) 

267 



chaptel 8 TIC I)CýIvll 

50 

300 

35C 

60 
crs 

1. 

3012 

2010 

208 

208 

F- 
014 1-1 10 

125 200 250 

i) elevation ii) side elevation 

fig. 8.3(s) Corbel C2A, Direct Design: Steel LayOLIt 

1.2 

0 

0.8 

-2 0.6 
m T 
'a 
CL 
m 0.4 

0.2 

C 

* direct design 

--D- strut-tie design 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

displacement (mm) 

fig. 8.3(t) Corbel C2A: Comparison of Direct Design and Strut-Tie Design 

268 

40crs 



Chaplei 8 Sll [I( &, *1 Ic 

1.4 

1.2 

"a 1 
tu 0 

cn *ui 0.8 
CD 13 
m 

-2 0.6 

12. 
m 0.4 

0.2 

0 

0 numericalý 
I 

0 0.5 1 1.5 

strain/yield strain 

fig. 8.3(u) Corbel C2A, Direct Design: Main Steel Strains 

2 

1.4 

1.2 

'a 1 
m 0 
r_ 
cn 
U; 0.8 
(D 
'0 

0.6 
2) 
'a 
0. 
10 0.4 

0.2 
0 

numerical 

04 
0.2 0.4 0.6 0.8 

strain/yield strain 

fig. 8.3(v) Corbel C2A, Direct Design: Lower Steel 

1 

Lii 

269 



Chapter 8 Strut & Tic Design 

8.4 Corbel C3A 

Like C2A, this corbel was double sided and symmetrical. The same, thickness, width 

and depth of corbel was used as for C2A. The lower half of this corbel was angled in 

order to reduce the stress concentrations at the corbel-column junction, which 

occurred in the previous model C2A. Geometric and material properties are given in 

the table below. 

Schematic Material Properties 
(Design) 

Material Properties 
(Experimental) 

P', Pd P, 1=250kN 

50 
L concrete: concrete: 

150 f,,, =35N/mm 2 f,,, =37. ONhi1 M2 

150 fi=ION/im-n 1) fi=33Nhimi" 
2 E, =21.5kNhm-n E, = I 9.95kN/inin2 

steel: steel: 350 2 fy=50ONhnin 2 I' =508Nhiun (010) 
E, =200kNh-nin 2 y 

E, =210.35kNhn 1112 
200 

k 
250 

1,200,1 1 I'y=509Nhimi 2( 08 
19 4 r -I- -I- 

12- 

thickiiess=250iiim E, =214.5kN/iii 1112 

8.4.1 Strut-Tie Model and Design 

Since the corbel height, depth and thickness of the model are similar to that of C2A, 

the same strut and tie model can be used. Once again, the stresses in the nodal zones 

are checked. Using the same bearing plates as for C2A, the maximum stress in the 
22 

diagonal strut is calculated as 17.8 N/mm , which is less than 0.75f,,,, (26.25N/mrn 

Using the equation described previously, the reinforcement arrangement was 

calculated as 3010mm bars main reinforcement and 406mm bars as lower 

reinforcement. Since no high yield 6mm bars were available during Fabrication, 

408mm bars were used as the auxiliary reinforcement. With the new reinforcement 

layout, the calculated maximum load, assuming yielding of the steel governs failure, is 

325kN, ( 1.3Pd). Details of the reinforcement layout are given in figures 8.4(a-b). 
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8.4.2 Numerical and Physical Testing 

The corbel was tested in the same manner as C2A, with the load being applied in 

25kN increments. The experimental ultimate total load was recorded as 710kN, 

(1.42Pd) and the numerical ultimate load was 650kN, (13P, I). The first cracks 

occurred at 0.2Pd, around the upper corbel-column junction. The largest of these 

cracks was measured as 0.05mm. On subsequent loading, these cracks continued to 

propagate downwards into the column, see fig. 8.4(c). Cracking in the diagonal strut 

region did not occur until 0.7Pd. The largest of these cracks was 0.1 illin wide, see 

fig. 8.4(d). Further cracking in the diagonal strut region was observed on successive 

increments. The service crack limit width of 0.3rnrn was reached at I 
-OPd, in cracks lit 

the upper column-corbel junction. Failure of the corbel was initiated by yielding ofthe 

main steel at the upper column-corbel junction. The numerical and experimental steel 

strains show a good comparison and are shown in figures 8.4(e-g). Tills yielding led to 

significant widening of the cracks both at this point and in the diagonal strut, as call be 

seen frorn the Dernec readings, fig. 8.4(h). The corbel at ultimate load is shown in 

figure 8.4(i). 

The idealised stresses in node I are shown in figure 8.40). It can be seen that the 

applied stresses in this zone are all less than 0.55 fc, The numerical concrete stresses 

are displayed in figures 8.4(m-n) and show that at ultimate load, crushing of tile 

concrete was initiated at the lower diagonal strut. This crushing was present in tile 

experiment but did not happen until the steel had yielded and ultimate load was 

attained. It can be seen that closer to the column, the stresses in the diagonal are 

greater than those envisaged by the strut-tie model. This is due to the fact that as the 

strut approaches the column, a bottle neck effect occurs. However, it can also be 

observed that the level of stress concentration around the colurnn-corbel J1.11101011 IS 

reduced to about 0.8fc,,, in comparison to I. Ifc,, reached in C2A. The compressive 

stresses along the upper part of the diagonal strut are of a similar magnitude to those 

predicted by the strut-tie model, fig. 8.4(n). As in beam BI, a more detailed finite 

elernent analysis of this nodal region was carried out using a displacement control 

analysis. The results of this are displayed in figures 8.4(o-p). The funnelling of the 

compressive stresses can clearly be seen from the principal stress plot. 
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fig. 8.4(c) Corbel C3A: Initial Crack Pattern (0.4PI) 
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8.5 Corbel C4A 

C4A was a one-sided corbel with the same width and depth as C2A and C3A. The 

thickness of C4A was less than the other corbels and hence was designed for a lower 

load. The geometric details and material properties are given in the table below. 

Schematic Material Properties 
(Design) 

Material Properties 
(E xperimental) 

Pd=200kN 

350 
Pd 

concrete: concrete: 
f,, =50N/nu-n 2 f,,, =49.6N/n-u-n 2 

150,, f, =3. ON/min 2 1', =33N/aun 2 

150 E, =21.5kNh-nni') E, =2 1.77kN/nun 
steel: steel: 

350 fy=50ON/mm 2 
=508N/nini 

2 (01()) f 
E, =200kN/nii-n 2 y 

E, =210.35kN/nun 2 

1,250jý00j =509N/ni 1112 (0g) f 
F, 

thickness= I 50nini y 
Es=214.5kN/unni 2 

8.5.1 Design 

Using the same strut-tie model as for C2A and C3A, the maximurn stress ill 111C 

diagonal strut was calculated as 23.7N/mm 2, which Is less, thall the Pernilucd 

maximum of 0.75f,,,, (37.5 N/rnM2) .A reinforcement layout of' 2xOlO min bars as 

main steel and 4x06 rnm bars as lower steel gave a maximum load of 203kN. As *in 

the case with corbel C3A, only 08mm high yield bars were available, and these were 

used in the actual structure in place of 6mrn bars. Using this increased value of steel, 

the theoretical ultimate load was 255kN, (l. 3P, j). The reinforcement layout is shown 

in figures 8.5(a-b) 

8.5.2 Numerical and Physical Testing 

The model was tested using lOkN increments. A total experimental load of 240kN, 

(1.2P, I) was achieved. In the numerical model, an ultimate load of 250kN, (l. 25Pj), 

was achieved. During the experiment, the first cracks, its with C2A and C3A, 

appeared at the upper column-corbel junction at the point of highest tension, at 0.2P, I, 
see fig. 8.5(c). The largest of these cracks was measured as 0.05nini. On further 

loading, these cracks propagated downwards towards the column. At 0.7P, I, a diagonal 
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crack appeared in the compressive zone inside the column, see figure 8.5(d). A crack 

along the main diagonal strut, running from the baseplate along the line of the 

diagonal strut occurred at 0.8Pd. see fig. 8.5(e). This crack was 0.1mill wide. 
Subsequent loading led to further propagation and widening of the rnam diagonal 

crack and the service limit width of 0.3mrn was reached at a load of 1.15P, I. 

The experimental steel strains are shown in figures 8.5(g-i). A relatively good 

agreement with the numerical strains is observed. In both the numerical and physical 

model, the main steel began to yield just prior to the ultimate load. Both lower bars 

were close to yield at this point, reaching around 95'Y(, yield strain. This yielding led to 

opening tip or the main diagonal crack and led to crushing of the concrete around tile 

column-corbel junction, see figure 8.5(l). The Deinec readings across (lie diagonal 

track confirm this trend, see figures 8.5(l). 

No crushing of the concrete was observed nuincrically, or during tile experiment. Thc 

numerical compressive stresses are shown in figures 9.5(ni-n). It can be observed that 

the largest stress occurred in the sarne area as C3A, its was of tile order of 0.7f,, 

Elsewhere, the stresses along the diagonal did not cxceed tile theoretical maximum of' 

0.5fc,,, see figure 8.5(m). Figure 8.5(n) shows that the stress along tile diagonal at 

point C suddenly increases frorn 0.15fc,, to 0.3fc, ý at around 0.8P, I. This Sudden 

increase is due to cracking taking place in this region at the same load level. 
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8.5(1') Corbel ('4A at Ultimate load (1.213,1) fi g 
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fig. 8.5(i) Corbel C4A: Lower Stirrup reinforcement 
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8.6 Corner Joint FJIA 

In the test series, two designs for a corner joint of a typical frame structure were made. 

FJ IA described here, was designed for a closing moment as shown in figure 8.6(a). 

Previous experiments have shown that current design procedures in corner joints are 

often inadequate with joints unable to attain the design moments, M, I. This problern is 

even more pronounced in the case of opening moments; Swann( 1969), Mayfield et. al 

(1971), Nillson et. al (1976), Jackson (1995), Abdul-Wahab et al (1999). Details ot 

the corner geometry and design and experimental material properties are given below. 

Schematic Material Properties 
(Design) 

Material Properties 
(Experimental) 

750 M, 1=12kNin 

concrete: 
40Nh f 

concrete: 
2 ' nm ,,, = c,, =38.9Nhmii I 

150T f, =3. ONh-ni-n 2 f, =12N/nun 2 
750 E, =21.5N/iii 1 112 E, =21.76kN/niiii 2 

steel: steel: ýj 
150 fv=50ON/inin l'y=504N/imn 2 (012) 

E, =200kN/nun 2 E, =201.6kN/imn 2 

G=509N/inin 2 (08) 
tlilckness=150nmi E, =214.5kNhimi 2 

8.6.1 Strut-Tie Model and Design 

The results of the elastic analysis and corresponding strut-tie model are given in fig 

8.6(a). Since a cover of 15nim will be used in the designed structure, the effective 

depth is 120mm. This results in an application of lOOkN horizontal loads to the strut- 

tie model as shown in fig8.6a(iii) to create the design moment of 12kNrn. The tic 

forces and resulting reinforcement provisions are given in the table below. 

Member Force (kN) A, required A, provided No. of Bars A, provided 
(MM2) (mm') A, required 

1 100 200 226 2012 1.1 
5 103.1 206.2 226 2012 1.1 
6 103.2 206.2 226 2012 1.1 
9 100 200 226 2012 1.1 
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At the inner corner of the structure, i. e. node 2, the concrete is in a state of bi-axial 

compression and hence the stress is limited to Llf,, The depth of struts 2 and 8 is 

equivalent to the depth of the compressive stress block of reinforced member in 

bending, in this case 30mm. This value was calculated from simple bending theory. 

The critical area in this model is the TCT node 3. Here the tie forces cause 

compression along the inner circumference of the reinforcement. 

From the geometry of the bar, the effective width of the strut at this point is equal to 

50rnm. Due to the presence of the two ties, the concrete stress in this zone must be 

less than 0.6f,,,. From the strut-tie model, the force in this strut is equal to 107kN, 

which results in a stress of 14.3N/i-nm 2<0.6f,,,. A schematic of this node is shown *111 

figure 8.60). The design reinforcement layout is given in figure 8.6(b). Where tile 

vertical leg of the corner was fixed to the floor, reinforcement in the form of' a spiral 

was provided for extra strength. 
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fig. 8.6(a) Corner Joint FJ I A, Elastic stresses and Strut-tie mode 
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8.6.2 Numerical and Physical Testing 

Details of the experimental set-up are given in chapter 7. As seen from fig. 7.3.3(a), a 

closing moment was generated in the corner via the hydraulic Jack at the end of the 

horizontal. The moment was calculated as the load times the lever arm to the centre of 

the vertical, in this case 625mm. Strain gauges were placed at the points maximurn 

tension in the main reinforcement. 

During the experiment, the load was applied in RN increments until failure occurred. 

The experimental ultimate load was recorded as 20.7kN, which corresponds to a 

moment of 12.96kNi-n, 0 
-08Md). The numerical ultimate moment was recorded its 

14.5kNi-n, (1.2 Md). In the experiment, the first cracks occurred at a load of 4kN, 

(02MA around the tension face of the vertical and horizontal, fig. 8.6(c). The largest 

of these initial cracks was measured as 0.02mm. Under increasing moment, the cracks 

widened and propagated toward the centre of the members. New cracks appeared in 

the corner at the seventh increment, (0.73M, j), along the direction of the main tension 

reinforcement. These cracks correspond to increased strain in the steel at these points, 

fig. 8.6(d). The largest crack, at the beam column junction, reached the service crack 

limit width of 0.3mm at a load of l6kN, (0.8 Mj). At the ultimate moment, the main 

horizontal and vertical steel yielded, and this was accompanied by widening of tile 

cracks around the tension zone, fig. 8.6(e-f). The numerical and experimental steel 

strains presented in figs. 8.6(g-h) show a reasonable correlation. 

The numerical compressive stresses show that stress concentrations occurred in tile 

inner corner, which as previously stated is under bi-axial compression, fig. 8.6(k). The 

limit stress of 1. If,,, was not reached at this point. Similarly, as predicted in the strut- 

tie model, the hrnit stress of 0.6f,,, was not reached in the diagonal strut, fig. 8.6(i) 
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fig. 8.6(c) Corner FJ IA (0.3Md) 

fig. 8.6(d) Corner FJ IA (0.73M, I) 



Chapter 8 Stl ul & Tic I 

I 

293 

fig. 8.6(e) Corner FJ IA at ultinialc (1.08M, I) 

I'lg. 8.6(f) Corner FJ IA at Ultimate (1.08M, I) 
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8.7 Corner FJ2B 

As previously stated, this model was the second of two typical frame corner joints 

designed. FJ2B was designed for the opening moment which has been proved by a 

number of researchers to be the worst scenario with regard to achieving ultimate load. 

In practice, corners subject to opening moments occur in retaining walls under active 

earth pressure, water storage tanks under hydrostatic pressure etc. The material 

properties etc. are given below in the table below 

Schematic Material Properties 
(Design) 

Material Properties 
(Experimental) 

750 M, I= I 2kNi-n 

concrete: 
f 40N/ - 

concrete: 
2 ' h- ,,, = nu n n 111 1 

,,, =41.3N 
150T f, =3. ON/i-nM2 f', =3.5N/iw-n 2 

750 E, =21.5kN/nim 2 E, =23.73kN/nini 2 

steel: steel: 
150 

Lý 
f, =50ONh-nni =504N/nini 2 (012) f 

Ik- 2 E, =20UN/nun 
y 

2 E, =201.6kN/ni III 
X-) fy=509N/n-u-n 2 (08) 

thickness= I 50nu-n Es=214.5kN/nini 2 

8.7.1 Strut-Tie Model and Design 

The sarne strut and tie model can be used in the design for the opening nlonlent with 

the reversal of the member force directions, so that struts now become ties and vice 

versa, see figure 8.7(a). The tie forces and provided steel are shown the table below. 

Figure 8.7(b) shows the designed reinforcement layout. 

Member Force (kN) A, required A, provided No. of Bars A, provided 
(MM2) (MM2) A, required 

2 100 200 226 2012 1.1 
3 0 
4 106.4 200 201.1 408 H) 
7 0 
8 100 200 226 2012 1.1 

297 



Chapter 8 Strut & Tie Design 

() 

I MkN 

I OMN 

-imp 

I WkN 

I OOkN 

i) Strut-tie Model 

ii) Dimensioning 

fig. 8.7(a) Corner FJ2B Strut-Tie Model 

298 

ý <- 0.7 5 t,,, 



Chaptei 8 StILIt &'. TIC DC-Sll) 

750 

7 (cil 100 c rs 

08 stirrLIPS 

st ra In 
0 ýILI LYC 

750 5 (a-' 
100 

12 
(a' 

I 100 

12) 

A 

108) 
150 

2(012) 

06 50mm spiral 
150 

section A-A 

Cover oil stirrups 15111111 

150 St I H-LIPS 0 

section C-C 
+ 

fig-8.7b(l) Corner FJ2B Reinforcement Detills 

299 

I Io. ', ý. ihý I I) Corl IcI PC III force I] IC II 



Chapter 8 Strul & Tie Design 

8.7.2 Numerical and Physical Testing 

In the experiment, the load was applied in increments of RN. The ultimate mornent In 

the experiment was recorded as 12.48kNm, (1.04MA and the numerical ultimate 

moment was recorded as 12.6kNm, (I. 05Mj). The first cracks appeared at a load of 

4kN, (0.2M, j), occurring around the tension face of the inner corner, see fig. 8.7(d). 

The largest of these cracks was measured as 0.05mm. As the moment increased, the 

cracks propagated toward the centre of the members. The widest crack, at the inner 

corner, reached the service Ili-nit width of 0.3mm on the seventh increment, (0.73M, j), 

see fig. 8.7(e). As the main tension steel approached yield, widening of the existing 

cracks was accompanied by further cracking in a diagonal along the outer face of the 

corner known as the dead zone. Yielding of the main vertical steel occurred at around 

0.9M, l in the inner corner. At ultirnate load, the largest crack at the inner corner was 

measured as 0.6rnm, see figures 8.7(f-g). The experimental and numerical steel strains 

are shown in figures 8.7(h-j). 

As envisaged in the design, crushing of concrete in the compression zone did not 

occur. This is due firstly to the fact that the calculated design stress levels were within 

those permitted, and secondly due to the additional contribution to strength from tile 

additional steel in the compressive zone. The numerical cornpressive stresses in the 

corner are shown in figures 8.7(1-m). It can be seen that the largest compressive stress 

in the concrete is around 0.32fcu. The sudden increases in stress observed at points C, 

F and E correspond to the formation of cracks oil the tension side of the beam and 

column, close to the inner corner. 
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8.8 Conclusions 

The results from the physical models are summarised in the table below, where As, is 

the total area of tension steel. 

Model C2A C3A C4A FJIA FJ211 

P/Pd 1.18 1.42 1.20 1.08 1.04 

Astprovided 
A st required 

1.0 1.3 1.3 1.1 1.1 

Load at first fielding of 
ma n steel 

I-I Pd 1.3Pd 1.2P, j 1.1 Ri (). gpl 

Load at f rst reaching 
service crack limit 

0.78Pd I. OPj 1.15Pj (). 8p', 0.7P,, 

Table 8.8(a) Summary of Experimental Program 

As shown in the table above, every model was able to achieve its design load. In all C, 
the models tested, failure was initiated by yielding of the main steel. It can be seen 
from the table that the main reason for extra strength in the model is clUe to the 

increase in provided steel. A comparison of the ultimate load predictions obtained by 

the strut-tie models, assuming that steel yielding governs failure, finite elements and 

experimental ultimate loads is presented in table 8.8(b). In each case, the strut-tie 

model provided a good prediction of the ultimate load behaviour of the structure, 

comparable with that of the finite element model. 

Model BI C2A C3A C4A F. IlA F. 1211 

_P,, 
(strut-tie) 1.15 1 1.3 1.3 1.1 1.1 

P,, (finite element) 1.32 1.15 1.3 1.25 1.2 1.05 
P,, (experimental) - 1 1.18 1.42 1.2 1.08 1.04 

Table 8.8(b) Comparison of ultimate loads 

For every model, the nodal zone capacities were assessed according to the given state 

of stress. The stresses in the struts and nodes resulting form the design load were 

checked to be within the permitted levels. During the physical testing, no concrete 

crushing was observed until after yielding and hence ultimate loading had occurred. 
From this it may be concluded that the factors used in the design process were 
adequate. 
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It was also shown that the strut and tie method as a design tool, can produce designs 

with comparable performance to the direct design procedure. The advantage that the 

strut-tie method has over the direct design method is that it allows the designer to gain 

an insight into the load carrying behaviour of the structure. It would be possible to use 

the direct design procedure in combination with the visualisation process for plane 

stress applications as was done for slabs in chapter 6. However, sorne difficulties in 

this application may arise due to the fact that the steel must be orientated to the 

principal stress directions in each element. 
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Chapter 9 

Conclusions 

9.1 Summary 

The main stress paths in a structure were Isolated using an eVOILItionary procedure, 

termed as visualisation. Using these stress paths, strut and tie models were developed 

and reinforcement layouts designed accordingly. These stress fields, were also used 
for the direct design of reinforced concrete slabs. All the designed structures were 

tested numerically using non-linear finite elements, and a number of structures were 

tested physically in the laboratory. 

9.2 Slab Design 

Design using the visualisation process results in satisfactory behaviour both at 

service and ultimate loads 

The rnethod does not always result in a practical reinforcement layout and it is 

often found that a greater quantity of steel than the numerical amount is required 
for practical considerations. This increase in provided steel often leads to higher 

ultimate loads being achieved. 

0 The visualisation process is not always applicable in stabs where the stresses are 

evenly distributed, such as in a 2-way simply supported slab sub ject to it uniformly 
distributed load. It is necessary for there to be a good spread of initial elastic 

stresses before visualisation can be effective. 
The degree of mesh refinement does not have on effect upon the direction of the 

evolved stress paths. However, it is necessary to use a rnesh fine enough to model 

the stress variation adequately. 
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0 In areas where a reinforcement layout is anticipated by the designer, e. g. in 

situations dictated by practical considerations, the visualisation process can be 

very useful. 

9.3 Strut and Tie Design 

* The visualisation process is useful in developing strut-tie models. Tile re- 

distribution of stress caused by the evolutionary process is similar to the re- 

distribution taking place in the actual reinforced concrete structure. 

0 Design from strut and tie models can produce satisfactory behaviour both at 

ultimate and service loads. 

0 As a design tool, the strut and tie method can produce designs comparable to the 

direct design method. In addition, the strut and tie method helps the designer to 

understand the load carrying mechanism of the structure whereas the direct design 

rnethod may often be treated as a 'black box' type systern. 

0 As an analytical tool, strut and tie models can lead to ultimate load predictions 

with comparable accuracy to non-linear finite elements. 

0 Nodal areas are the critical areas in the structure and the strut strength used for 

design must take into account the stress state of the node. Sometimes, compressive 

stresses in the nodal areas are not evenly spread over the width of' tile node, but 

concentrated at a localised point. This may lead to compressive stresses in excess 

of the design strength. 

9.4 Suggestions for Further Work 

0 All the structures designed in this work were subjected to a single load case. The 

method can be extended to multiple load cases. In this scenario, it may be 

necessary to use more refined meshes in anticipation of more complicated stress 

paths. Similarly more complex structures could be examined. 

0 The use of designer intervention in the stress path evolution should be further 

developed both in slab design and in strut-tie model development. 

Further investigation in nodal zone behaviour is necessary. In particular the nature 
of compressive stress concentrations such as the funnelling effect observed In the 

corbels. 
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