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Abstract 

UV-B is a natural component of the sunlight spectrum.  As a result of the potentially 

harmful effects of this radiation, plants have evolved a highly effective suit of protective 

and repair mechanisms.  However, the signalling pathways that control such responses are 

not yet well known.  For example while the photoreceptors responsible for red and blue 

light responses are well characterised, no such UV-B photoreceptor has yet been identified.  

Despite this particularly large gap in our knowledge, previous work identified the first UV-

B specific signalling component which, unlike the more general stress-associated pathways 

often seen at high doses, specifically regulates expression of genes in response to even 

very low fluence rates of UV-B.  This protein, UV-RESISTANCE LOCUS 8 (UVR8) 

regulates the induction of a number of photoprotective genes mostly via the transcription 

factors ELONGATED HYPOCOTYL 5 (HY5) and HY5 HOMOLOGUE (HYH).  The end 

result of this pathway is the production of photoprotective compounds such as the 

flavonoids which enhance a plants ability to withstand UV-B stress.  Thus UVR8 promotes 

plant fitness under these conditions. 

While we know that UVR8 binds to chromatin in the promoter region of HY5 and 

that it accumulates in the nucleus under UV-B, many other questions about this particular 

protein remain unanswered.  For example, we do not yet know if UVR8-mediated UV-B 

signalling involves other factors which interact with UVR8 nor do we understand the 

mechanism by which UVR8 localisation is mediated.  In addition, although we are aware 

of the importance of UVR8 in UV-B acclimation, it is unclear what roles might be played 

by other genes and proteins acting independently of this pathway.  Therefore, the aims of 

this study were to investigate low fluence UV-B pathways that may act independently of 

UVR8 and to further examine the UVR8 protein itself both in terms of its interactions with 

other proteins and also in the role of the N-terminal region in regulation of its localisation.   

To achieve the first of these aims, RNA samples derived from plants treated with 

low fluence UV-B were submitted for microarray analysis.  It was initially determined that 

the total number of genes induced was roughly equal in both low fluence treated samples 

and also to that found in the previous microarray performed by Brown et al. (2005) at a 

comparatively higher fluence.  Thus, as only 72 genes have currently been linked to 

UVR8, there do appear to be many low-fluence UV-B induced pathways besides that 

regulated by UVR8.  Several genes were analysed further using RT-PCR and qPCR 

methods in order to confirm their independence from the UVR8 signalling pathway 

components as well as assess their dependence on other hypothesised UV-B sensory 
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mechanisms.  It was found that while some genes did seem to be expressed independently 

of known photoreceptors, DNA damage signals as well as UVR8, HY5, HYH and COP1; 

one gene was expressed in a COP1-dependent but UVR8 independent manner.  It therefore 

appears that at least four classes of genes are induced by UV-B; low fluence 

UVR8/HY5/HYH independent COP1 dependent, low fluence UVR8/HY5/HYH/COP1 

dependent, low fluence UVR8/HY5/HYH/COP1 independent and finally high fluence non-

specific signalling. 

The second portion of this thesis examined the structure and function of UVR8 in 

greater detail. To assist in this analysis, the BLAST sequence homology tool was used to 

probe both the Arabidopsis genome and available green plant sequences.  It was found that 

23 UVR8-like sequences exist in Arabidopsis but none of these appear to have similar N or 

C-terminal sequences to UVR8.  As these two regions have previously been shown to be of 

vital importance in UVR8 function (Kaiserli and Jenkins, 2008; Kaiserli unpublished data) 

it is unlikely that any are acting in a redundant fashion to UVR8.  A number of similar 

proteins to UVR8 can be found in other plant species.  These potential homologues 

however fall into two categories based on their closer similarity with either UVR8 or its 

close homologue in humans REGULATOR OF CHROMATIN CONDENSATION 1 

(RCC1).  The wide variety of plant species that did show UVR8-like proteins suggests that 

this particular means of UV-B acclimation may have arisen relatively early with the 

colonisation of land plants. Interestingly, many of these likely homologues had a conserved 

N terminal.   

The N-terminal of UVR8 has previously been show to have a role in UV-B 

dependent nuclear accumulation (Kaiserli and Jenkins, 2008).  This was examined further 

in Chapter 4 through the generation of a number of deletion and addition constructs in both 

a stable Arabidopsis uvr8-1 background as well as transiently in tobacco.  From analysis of 

localisation of these constructs via confocal microscopy it was determined that the first 12 

amino acids are sufficient but not necessary for nuclear accumulation, while the first 20 

appear to be both necessary and sufficient. Indeed, it was shown that the initial 32 amino 

acids also confer constitutive localisation of a GFP tag in the nucleus regardless of light 

condition and despite the presence of a nuclear exclusion signal (NES).  It therefore 

appears that this region, which shows strong conservation with UVR8-like proteins in 

other plant species, is of vital importance to the nuclear accumulation seen under UV-B. 

Finally, in Chapter 5, the possibility that UVR8 may be acting as part of a complex 

was explored.  This involved use of size exclusion chromatography to provide approximate 

sizes of the UVR8 protein complex.  It was found that native UVR8 appears to exist in a 
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complex of about 70-90 kDa in size.  This suggests that at least one other protein interacts 

stably with UVR8.  Other fusion constructs were also analysed in this way, however the 

results were more difficult to interpret due the apparent artificial dimerisation of the GFP 

tag.  

In summary, the work presented here has shown that although UVR8 dependent 

pathways are predominant, a variety of low fluence UV-B induced genes and pathways 

may exist.  Homology searches and mutational analyses suggest that the N-terminal region 

of UVR8 plays a critical role in its function and localisation.  Finally, size exclusion 

chromatography suggests that UVR8 forms a complex in vivo with as yet uncharacterised 

partner proteins. 

In total these results provide further insight into the mechanisms UVR8 action and 

highlight new avenues for both UVR8 dependent and independent UV-B signalling. 
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CHAPTER 1 INTRODUCTION 

 

1.1 Introduction 

The natural world can be a very hostile place in which to live.  All organisms are subjected 

to a number of environmental stresses that can fluctuate on a seasonal, daily or even hourly 

basis.  As a result, numerous morphological and biochemical adaptations have evolved 

across all species that promote survival in such conditions.  However, a clear divide is 

apparent between plant and animal groups in their primary responses to stressful stimuli.  

Animals would seem to have the advantage over plants as they are mobile and thus can 

alter behaviour in order to escape unfavourable conditions.  For example the problem 

posed by a hot day can be addressed by simply retreating into the shade.  Plants on the 

other hand are sessile organisms and so have no means of escape.  Instead they have had to 

develop a larger suite of mechanisms in order to neutralize the effects of stressful 

conditions and repair the inevitable damage.  Consequently, through the process of 

acclimation, they can adapt to their environment to ensure maximal survival and 

reproduction.  In high temperatures for example, some plant species make alterations in the 

position of their leaves (e.g. in paraheliotropic plants) to minimize exposure to the sun or 

produce heat shock proteins to preserve the integrity of essential protein molecules  (Taiz 

and Zeiger 1998; Feder and Hofmann 1999).  

In addition to immobility, plants have one further restriction that animals do not.  

The vast majority of plant species are autotrophs and hence rely on sunlight to provide the 

energy required to drive photosynthesis.  Therefore, good access to sunlight is crucial for 

survival.  However, sunlight has a hidden danger within its spectrum which can pose a 

problem for plants, namely UV radiation (see Figure 1.5).  UV radiation is composed of 

wavelengths that are shorter than those of the visible part of the spectrum.  Consequently, 

UV has a greater inherent energy and so is a potential agent of damage not only to plants 

but also many other organisms.  The exact effects of such exposure to UV are wide 

ranging, extending from catalysis of DNA repair to severe damage of biomolecules.  The 

precise nature of these effects is highly dependent on the wavelength of the radiation. The 

shorter wavelengths (and thus high energies) of UV-C radiation (100-280 nm) means that 

it has the ability to cause severe damage to multiple cellular components.  Fortunately for 

both animals and plants however, all UV-C radiation is absorbed in the stratospheric ozone 

layer and so never reaches the Earth’s surface.  UV-A on the other hand consists of longer, 

less energetic wavelengths that can pass through the ozone layer, but this form of radiation 
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is not a threat to living systems.  Indeed the reverse could be said to be true as UV-A is 

implicated in some plant  DNA repair pathways used to correct damage induced by other 

UV qualities (Tuteja et al. 2001). 

UV-B lies at the centre of the UV spectrum and shares characteristics with both 

UV-A and UV-C.  Similarly to UV-A, some longer wavelength UV-B is able to pass 

through the ozone layer and reach the biosphere.  However, like UV-C, these waves are 

more energetic and so have the capacity to cause damage (albeit to a lesser degree than 

UV-C).  As a result UV-B can be considered as one of the many abiotic stresses which 

have an impact on plant life.  The precise effects of this radiation have become an area of 

increased interest since the discovery in the 1980’s that the ozone layer appeared to be 

thinning (Rozema et al. 2005).  A reduced ozone layer means a reduced capacity to filter 

out UV-B, hence an increased amount reaching the Earth’s surface (McKenzie et al. 2003).  

It is therefore apparent that we need to determine what mechanisms plants already have in 

place to cope with UV-B radiation and how they may respond under increasing ambient 

levels.  The fact that plants rarely show signs of ‘sunburn’ highlights that they must already 

have efficient mechanisms in place to combat the damaging effect of UV-B.  Nonetheless, 

evidence from areas in Southern Patagonia show that in Gunnera magellanica, increased 

levels of DNA damage can be closely linked to the passage of an ‘ozone hole’ over this 

area (Rousseaux et al. 2001).  Therefore, by studying the physiological and biochemical 

changes that occur in plants that allow them to acclimate to this stress will help us to 

determine the possible effects on natural species should UV-B levels rise. 

Although the effects of UV-B would seem to be an important area of study and 

despite extensive research, our current knowledge of the exact mechanisms of perception 

and signal transduction are incomplete.  Therefore, the purpose of this study is to further 

examine the various signalling components that appear to have a role in UV-B responses in 

plants and, in particular, to investigate the role of the key protein UV-RESISTANCE 

LOCUS 8 (UVR8) in this environmental response. 

 

1.2 The damaging effects of UV-B/High dose responses 

 

1.2.1  DNA damage 

Macromolecules such as proteins, lipids and DNA are prone to damage through absorption 

of UV-B or via the ROS generated by this stressor.  In the case of DNA, direct absorption 

of UV-B radiation results in phototransformations, the most common of which are the 
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formation of cyclobutane-pyrimidine dimers (CPDs) and pyrimidine (6,4)-pyrimidinone 

photoproducts (6-4PPs).  These lesions impair the action of DNA interacting enzymes and 

can halt transcription (Britt 2004).  Therefore in order to neutralize this damage plants 

initiate a number of repair mechanisms including photoreactivation, nuclear excision repair 

and homologous recombination (Ries et al. 2000; Waterworth et al. 2002; Kimura 2004).  

The later two of these mechanisms are more general repair mechanisms which can occur 

under both light and dark conditions.  The more frequent means of repair, 

photoreactivation, however is mediated through DNA photolyases.  These enzymes are 

responsible for the specific recognition and direct repair of either CPDs or 6-4PPs  (Britt 

2004).  This is mediated through binding to the damaged bases before absorption of energy 

from a blue or UV-A light source.  This then initiates electron transfer and breaks the 

cylcobutane ring (Sancar 1994).  As a result, DNA integrity is restored and normal 

transcription can resume. 

CPDs and 6-4 photoproducts have strikingly different structures and so are repaired 

by different types of photolyases.  CPDs account for the majority (approximately 75%) of 

the pyrimidine dimers formed through absorption of UV-B (Britt 2004). While both types 

of pyrimidine dimers have the ability to block transcription, it seems the more common 

lesions, CPDs, have the most detrimental effect on plant systems. Jiang et al. (1997) 

showed that the CPD deficient photolyase mutant uvr2 exhibits a greater inhibition of root 

growth under UV-B conditions than the corresponding 6-4PP photolyase mutant (uvr3).  

Furthermore, an increase in homologous recombination was seen in plants lacking the CPD 

photolyase.  This alternative mechanism of DNA repair allows the plant to compensate for 

the reduced capacity to mend these dimers through photoreactivation. 

Another difference between these enzymes occurs in their differential expression 

patterns.  CPD photolyases are induced by both white light and UV-B whereas levels of the 

6-4PP photolyase remain relatively constant.  Interestingly however, in the presence of 

continuous white light, high levels of the CPD photolyase are not maintained and instead 

the protein is degraded.  It would therefore seem that appropriate regulation of this enzyme 

requires light-dark cycling  (Waterworth et al. 2002; Britt 2004). 

In addition to photolyases, plants share another set of mechanisms for DNA repair 

that are shared with other eukaryotes.  Two protein kinases, ataxia telangiectasia-mutated 

(ATM) and ataxia telangiectasia-mutated and Rad3-related (ATR) are also implicated in 

DNA repair mechanisms via the regulation of cell cycle progression (Sancar et al. 2004; 

Culligan et al. 2006).  Through recognition of damaged DNA, the cell cycle is temporarily 

arrested allowing time for the damage to be repaired (Sancar et al. 2004).  ATM recognises 
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DNA double strand breaks and appears to have a more minor role in repair of DNA 

damage as mutants do not appear to be hypersensitive to UV-B radiation.  Null ATR 

mutants on the other hand so seem to exhibit UV-B sensitivity, under such conditions they 

show increased root growth retardation in comparison to wild type plants (Culligan et al. 

2004).  The role of this kinase involves perception of single stranded DNA and situations 

where the replication fork has been blocked.  Such single stranded DNA can occur when 

NER and homologous recombination repair mechanisms are in action while the formation 

of pyrimidine dimers by UV-B is one major source of such replication blocks (Culligan et 

al. 2004).  This explains why mutants that are unable to recognise such blocks and regulate 

cell cycle progression in response are more sensitive to UV-B. 

Therefore, while it can be seen that DNA damage could cause a significant problem 

to a plant cell, efficient mechanisms are already in place in order to fix breaks and 

inappropriate bonds.  Indeed, in this respect plants are better adapted to exposure to UV-B 

radiation than mammals, as it appears that the latter have lost their photolyase enzymes and 

instead rely upon NER to repair UV-B induced damage (Cleaver 2001). 

 

1.2.2  Ribosomes and transcription 

In addition to damage to DNA which can inhibit transcription and replication processes, 

UV-B can also damage the translational machinery in plants.  Exposure to this radiation 

can damage ribosomes by encouraging the formation of cross-links between ribosomal 

proteins and RNA  (Casati and Walbot 2004).  This can directly affect new protein 

synthesis thereby having a significant negative impact on plants.  In maize at least, these 

negative effects appear to be ameliorated by the removal of damaged ribosomes and an 

increase in the synthesis of ribosomal proteins (Casati and Walbot 2004). 

 

1.2.3  Generation of ROS/oxidative stress 

Reactive oxygen species (ROS) are produced in UV-B irradiated plants through a number 

of different mechanisms.  These include non-specific UV absorption, disrupted electron 

transfer in chloroplasts and production by enzymes including NADPH oxidase (Allan and 

Fluhr 1997; Hideg et al. 2002; Stratmann 2003).  ROS in themselves can act as agents of 

damage as they have the capacity to react with molecules such as water and release free 

radicals as well as directly oxidize cellular components thereby compounding the 

damaging effect of exposure to UV-B.  Therefore, a plant subjected to UV-B will produce 

antioxidants and antioxidant enzymes such as superoxide dismutase (SOD) in order to mop 
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up these free-radicals thereby preventing any further damage to molecules such as DNA 

(Stratmann 2003). 

 

1.2.4  Photosynthesis 

Most plants are strongly dependent on light, it drives photosynthesis and thus the synthesis 

of carbohydrates.  The machinery involved in this process is therefore of vital importance, 

however it is also extremely sensitive to damage.  UV-B is well known to degrade the two 

protein subunits, D1 and D2, at the core of PSII and has also been shown to decrease 

Rubisco, carotenoid and chlorophyll levels in some maize accessions  (Jansen et al. 1998; 

Correia et al. 1999).   

 

1.2.5  Whole plant effects 

When considering the wider impacts of UV-B radiation it can be seen that some of these 

damaging effects may cumulatively cause changes in the overall biomass or yield.  This is 

an especially important consideration as this can have a large impact on the productivity of 

crop species.  For example, in maize it was shown that supplemental UV-B radiation could 

cause decreases of up to 30 %.  Significant reductions were also seen for both the dry 

weight and the leaf area, thus showing that in addition to reproductive effect, this treatment 

has detrimental effects on vegetative aspects of the plant  (Correia et al. 1998).  This, 

similarly to the situation with the effects on photosynthesis, was ecotype dependent with 

some varieties showing increased tolerance to this stress stimulus.  Interestingly, another 

study which showed decreases in biomass in Arabidopsis in response to UV-B also showed 

ecotype differences (Kalbina and Strid 2006).  These differences could be explained by 

variations in the levels of UV-B seen in the locations from which these ecotypes are 

derived.  Work by Casati et al. 2006 showed that maize varieties which naturally grow at 

higher altitudes (and thus exposed to increased levels of UV-B) show lower levels of 

expression of genes associated with UV-B responses than their lower altitude counterparts.  

 

1.3  Signalling responses to high doses of UV-B 

In a broad sense, plant responses to UV-B can be split into two groups, non-specific 

responses that are also stimulated by other abiotic or biotic stimuli and include stress 

responses to high doses (above ambient UV-B levels), and the specific photomorphogenic 

responses to lower fluence rates (Frohnmeyer 2003; Brown and Jenkins 2008; Jenkins 
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2009).  In the following sections the signalling pathways that mediate responses to high 

and low (i.e. damaging and non-damaging) fluences of UV-B will be discussed.  For an 

overview of these, see Figure 1.1.  

 

1.3.1  High dose signalling 

Firstly, high doses of UV-B are potentially a considerable problem to plants.  Many 

cellular components such as DNA, proteins, membranes and photosynthesis machinery 

absorb UV-B readily.  This can cause severe disruption of the cellular environment and can 

ultimately lead to necrosis.  As a result, in plants we see an induction of more general 

stress responses designed to repair the inevitable damage caused.  For example, in a study 

performed by Brown and Jenkins (2008), UV-B induced gene expression in Arabidopsis 

was initiated by distinct pathways operating at different fluence rates and a study involving 

maize similarly showed that some genes require different threshold doses of UV-B (Casati 

and Walbot 2004).  The first of these different pathways in Arabidopsis was stimulated by 

low fluences of UV-B and mediated by UVR8/HY5/HYH (see Section 1.5 below).  

Secondly at higher fluence rates (> 1 "mol m
-2

 s
-1

) a suite of genes are induced that are not 

dependent on these factors and whose functions are associated with other stressful stimuli.  

For example the WRKY30 transcription factor (At5g24110) is induced under these 

conditions and has previously also been associated with response to ROS and wounding 

(Taki et al. 2005; Brown and Jenkins 2008; Scarpeci et al. 2008). A study examining UV-

B responses in Nicotiana longiflora also found an up-regulation of a WRKY transcription 

factor that is similarly induced in response to feeding by Manduca sexta larvae (Izaguirre 

et al. 2003).  The WRKY transcription factors, especially those belonging to the sub-group 

III which includes WRKY30, seem to have a role in pathogen responses (Eulgem et al. 

2000).  While this particular gene was not induced by salicylic acid (SA), strong induction 

in expression was seen upon exposure to a number of different pathogens (Kalde et al. 

2003).  Thus it seems that this particular transcription factor may be induced by a diverse 

range of stimuli and has a role in response to both biotic and abiotic stresses. 

 

1.3.2  Cross-talk with other stress pathways  

In fact, it seems that as a result of UV-B stress, plants initiate a number of signalling 

cascades, many of which share components with other stress related transduction 

pathways.  For example, there is considerable overlap with responses to pathogen attack or 

wounding.  In this case, genes such as the PATHOGENESIS RELATED (PR) genes, 
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proteinase inhibitor genes and the defensin gene PDF1.2 are all induced by high levels of 

UV radiation (Mackerness et al. 1999; Frohnmeyer 2003).  In addition, UV-B stimulates 

the production of compounds associated with signal transduction in plants subjected to 

pathogen attack.  That is, high levels of UV-B result in increased levels of salicylic acid 

(SA), ethylene and jasmonic acid (JA)  (Mackerness et al. 1999; Mackerness et al. 2001).  

Furthermore, in Arabidopsis mutants that are insensitive to the hormones ethylene and JA 

(etr-1 and jar1), in response to UV-B show reduced PR1 expression in the former and both 

PR1 and PDF1.2 expression in the case of the latter mutant.  These are obviously 

important processes in plant responses to UV-B stress as both hormone mutants also 

exhibited increased sensitivity to UV-B compared to the wild-type control (Mackerness et 

al. 1999).  

The increase in expression of genes associated with pathogen/wounding responses 

may not be attributable solely to the increased levels of signalling compounds such as JA.  

ROS in addition to causing damage to cellular components can also themselves act as 

signalling molecules.  For example the up-regulation of PR-1 under high UV-B is 

regulated by H2O2, whereas PDF1.2 is up-regulated by O2
- 
(Mackerness et al. 2001). 

Interestingly, CHALCONE SYNTHASE (CHS), one of the genes induced by low 

fluences of UV-B is not regulated by ROS, thus adding weight to the hypothesis that there 

are at least two distinct low and high fluence signalling pathways (Mackerness et al. 2001).  

Indeed it has been shown that exposure to UV-B can confer increased resistance to 

herbivory as well as cross tolerance to other stresses such as drought and cold (Gitz and 

Liu-Gitz 2003; Izaguirre et al. 2003; Stratmann 2003; Chalker-Scott and Scott 2004; 

Izaguirre et al. 2007).  In tomato, it was found that responses elicited by UV-B strongly 

overlapped with those attributable to the signalling peptide systemin, usually associated 

with wounding responses.  It was therefore suggested that the UV-B signal may be co-

opting the receptors associated with perception of wounding in order to transmit the signal 

that the plant is experiencing stress and to induce or inhibit relevant genes  (Stratmann 

2003).  For example, one group of genes that showed similar down-regulation in a 

microarray study examining the overlap between simulated herbivory and UV-B, included 

photosynthetic genes such as rubisco and Lhcb (Izaguirre et al. 2003).  As mentioned 

above, photosynthesis is a highly UV-B sensitive process and therefore it is evident that 

co-opting a defence pathway that results in the down-regulation of this process may have 

beneficial effects.  Another study showed that a down-regulation in the Lhcb gene can be 

reversed with the application of ascorbate, a compound with the ability to remove ROS 
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(Surplus et al. 1998).  This therefore again demonstrates the involvement in these radicals 

in UV-B responses. 

 

1.4 Photomorphogenic responses 

1.4.1  Low fluence UV-B responses 

The majority of the above responses mainly apply to the upper levels of ambient UV-B and 

above.  Therefore it is the way in which plants respond to levels that are more common in 

natural environments (around 3.5 µmol m
-2

s
-1

 and lower) that are of particular interest.  

Although non-specific UV-B signalling pathways operate to some extend at normal 

ambient levels of UV-B, a UV-B specific pathway is also initiated.  The end results of the 

specific pathway(s) include proteins and other components that allow plants to adapt to 

current UV-B conditions and also protect against any future higher doses.  That is, here, 

UV-B is acting as an informational signal rather than just a source of damage. 

Interestingly, these responses can be seen at very low levels of UV-B and in 

response to very short UV-B treatments.  For example, a fluence rate of just 0.1 "mol m
-2  

s
-1

 is sufficient to suppress hypocotyl growth, a key morphological change seen after UV-B 

irradiation  (Kim et al. 1998; Boccalandro et al. 2001).  In addition, millisecond pulses 

have been shown to induce the transcription of the gene encoding CHALCONE 

SYNTHASE (CHS), a key enzyme in the flavonoid biosynthesis pathway (Frohnmeyer et 

al. 1999).  These results indicate that responses to low doses of UV-B are highly specific.  

Consequently, exposing plants to low intensity UV-B allows us to dissect and trace the 

specific pathways involved.  This can be achieved through both physiological studies such 

as addition of inhibitory compounds, and also through genetic means such as mutagenesis 

studies.  In particular it seems that UV-B specific responses rely heavily upon 

transcriptional chances and thus studies using gene expression are very useful in dissecting 

the potentially numerous pathways involved. 

However, it is worth bearing in mind that low and high level UV-B responses are 

not completely distinct so that at certain fluence rates an overlap may exist with both 

systems being utilized.  Although we have an estimation of where this overlap between the 

two processes occurs (around the 1 µmol m
-2 

s
-1 

mark), the exact limits have not yet been 

determined (Brown and Jenkins 2008).  Indeed, this may be an impossible task as the 

threshold values are likely to vary considerably depending on a plant’s genotype, 

environment, age and whether it has been previously exposed to UV-B radiation.  While 

we can make generalisations and state that high doses of UV-B elicit responses that are 
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primarily concerned with repairing the resulting damage and that low doses induce the 

photoprotective responses designed to acclimate the plant and prevent damage, it is likely 

that in the natural environment plants use a combination of these.  Unlike in many 

experimental conditions, the natural environment fluctuates considerably and thus plants 

will be exposed to an ever changing dose of UV-B  (Caldwell et al. 2003). 

 

1.4.2 Morphological effects 

Similarly to other light qualities, exposure to low doses of UV-B has an affect on the 

morphology of a plant.  These changes mainly occur at low fluences whereas higher doses 

generally produce symptoms of cellular damage (Kim et al. 1998).  For this reason the low 

level responses to UV-B are sometimes referred to as the photomorphogenic responses.  

When exposed to UV-B numerous morphological adaptations are seen which are an 

attempt to minimize exposure to radiation similar to that seen in high levels of white light 

(Kim et al. 1998); for example, leaf curling, increased leaf thickness, reduced leaf size and 

inhibition of root, hypocotyl and stem growth (Kim et al. 1998; Jansen 2002; Wargent et 

al. 2009).  Also, on a slightly smaller scale, it has been observed that ambient levels of 

UV-B cause a decrease in  both ad and abaxial cell size (Wargent et al. 2009).  As plant 

hormones have a vital role in the morphology of a plant, it is no surprise that such 

phytohormones have been implicated in morphological responses to UV-B.  Interestingly 

is has been suggested that UV-B screening flavonols may be implicated in these 

morphologies through alteration of polar auxin transportation (Jansen 2002; Kliebenstein 

2004).  That is, in the tt4 mutant (a CHS null mutant) plants exhibit a two-fold increase in 

auxin transport levels.  This is accompanied by changes in morphology that are usually 

associated with altered auxin levels such as a reduction in plant height and an increase in 

axiliary branching  (Brown et al. 2001).  However this result is difficult to reconcile with 

the observation that UV-B treated plants, with high flavonoid levels, have a similar 

phenotype at the tt4 mutant, which lacks flavonoids. 

 

1.4.3 Flavonoids and other screening compounds  

Many studies have shown that UV-B induces the production of various secondary 

metabolites.  For example, one of the first responses is the induction of pathways which 

lead to the production of flavonoids and other phenolics.  These compounds accumulate in 

the epidermis and act as a sunscreen, absorbing the potentially harmful UV radiation 

without affecting the passage of the visible wavelengths needed for photosynthesis.   In 
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addition to this, flavonoids also have the ability to scavenge the free radicals produced by 

UV radiation (Landry et al. 1995). If these pathways are disrupted through mutation, then 

an enhanced sensitivity to UV-B results.  For example, it has been shown that mutants 

deficient in flavonoids or sinapate esters exhibit an increased occurrence of UV-B induced 

oxidative damage to proteins and membranes (Landry et al. 1995).  Furthermore, chalcone 

isomerase (chi) mutants have a reduced biomass and chs mutants accumulate increased 

concentrations of DNA dimers (Li et al. 1993; Mazza et al. 2000).  Therefore it can be 

seen that both flavonoids and sinapate esters have vital functions in the protection of plants 

from UV-B stress.  A summary of the biosynthetic pathway that gives rise to these 

compounds is shown in Figure 1.2 

In literature on the effects of UV-B on plants, CHS appears fairly regularly.  This 

enzyme is one of the key elements in UV-B responses as it is the first committed step in 

the flavonoid biosynthesis pathway.  It has proved to be a useful tool in both 

pharmacological and genetic tests.  One of the reasons for this is the multiple factors, 

including other light qualities besides UV-B, which can influence its expression.   

Blue/UV-A exposure for example can lead to the induction of CHS expression, primarily 

through Cryptochrome 1 (cry1), but also to a lesser extent through Cryptochrome 2 (cry2).  

This effect can further be increased through pre-illumination with either red or far red 

wavelengths mediated through redundantly acting Phytochrome A (phyA) and 

Phytochrome B (phyB) (Wade et al. 2001).  In addition, through co-action between phyB 

and cry1, this signal can be further amplified.  If we incorporate UV-B into this model it 

can be seen that contrary to the case in blue light, phyB actually acts as an inhibitor of the 

UV-B mediated induction of CHS expression while supplementary illumination with blue 

or UV-A can act synergistically with UV-B to result in an increased induction of CHS.  

This latter effect is independent of cry1, cry2, phyA and phyB. A summary of this complex 

interaction is shown in Figure 1.3  (Fuglevand et al. 1996; Wade et al. 2001).  

This network of regulation allows us to dissect components that are UV-B specific 

from those that are not.  For example, if CHS induction is lost in a mutant when exposed to 

UV-B, but is retained under cry mediated conditions, we can conclude that the mutated 

gene encodes a UV-B specific element.  Indeed this was the approached used by Brown 

and co-workers (2005) and enabled the discovery of the first UV-B specific signalling 

component, UV-RESISTANCE LOCUS 8 (UVR8).   
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1.5  UV-B specific signalling and UVR8 

Despite the interest in this subject area, our knowledge of UV-B specific responses is still 

somewhat limited especially in comparison to that for other light signalling pathways.  

This is partly due to the complications of separating out more general stress responses from 

photomorphogenic ones. Nevertheless, some progress has been made with the 

identification of UVR8.  Interestingly, in the screen performed by Brown et al. (2005) 

using a CHS promoter::Luciferase reporter line which identified several alleles of the uvr8 

mutation, no other mutant gene was discovered.  Although this would suggest that the UV-

B specific pathway is composed of relatively few components, functional redundancy may 

have masked additional mutants. 

 

1.5.1 UV-RESISTANCE LOCUS 8 

It was only within the last five years that an early UV-B signalling component was 

identified; the UVR8 protein.  Mutant uvr8 plants were first identified in a screen for UV-

B hypersensitivity, and were shown have a reduced accumulation of flavonoids and an 

increase in the expression of PR1 and PR5 genes (normally associated with stress) under 

low level UV-B conditions (Kliebenstein et al. 2002).  Further analysis showed that the 

role of this protein was in a UV-B specific pathway.  It was demonstrated that uvr8 mutant 

plants retain normal induction of CHS under UV-A/blue light in adult plants, and under 

far-red in seedlings but lack UV-B induction (Brown et al. 2005).  Furthermore, CHS 

induction by other abiotic stimuli such as low temperature and elevated sucrose 

concentration was unaffected in the uvr8 mutant. Thus, it can be seen in this mutant that 

only the signalling pathway associated with UV-B is affected.  This was a key discovery as 

it identified the first gene involved exclusively in UV-B responses.  Indeed its vital 

importance in the UV-B signalling pathway is evident when sensitivity assays are 

performed.  Mutant plants, unlike wild types, are severely damaged when exposed to 

ambient UV-B and cannot survive in sunlight (Brown et al. 2005).  It has also more 

recently been shown that mutants in this gene do show an altered morphology (i.e. a true 

photomorphogenic response) with respect to hypocotyl length when compared to wild type 

plants.  Exposure to UV-B wavelengths normally elicits a suppression in hypocotyl growth 

in seedlings, however this response is absent in the uvr8 mutant (Favory et al. 2009).  This 

demonstrates that UVR8 has the ability to alter the structure of a plant very early on in its 

development in response to this form of radiation.  In addition, mature uvr8 plants have 

smaller leaves as a result of altered epidermal cell size (Wargent et al. 2009). 
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As well as a number of different mutant alleles of UVR8, several over-expressing 

lines have been generated (Favory et al. 2009).  In line with results seen for UVR8 loss of 

function mutants, these exhibit enhanced HY5 and CHS expression as well as enhanced 

levels of anthocyanins under UV-B conditions.  In addition, young overexpressing plants 

that had been allowed to acclimate to low UV-B conditions showed increased tolerance to 

UV-B stress compared to their wild type or uvr8 mutant counterparts.  Interestingly, when 

over-expressing UVR8 lines were grown in conditions which simulated sun (and hence 

natural UV-B levels), adult plants showed a dwarfed and dark green phenotype (Favory et 

al. 2009).  It is possible that the over-accumulation of flavonoids may have affected the 

auxin distribution thus giving rise to a dwarfed phenotype.  However, we might expect that 

in this case, in line with results for a mutant exhibiting lower levels of flavonoids with a 

dwarfed phenotype, we would expect to see larger plants relative to the wild type (Brown 

et al. 2001).  Thus although it is not yet clear what factors may be causing this phenotype 

in overexpressing lines it seems that these plants have features that may explain their 

increased tolerance to UV-B, that is a reduced surface area for exposure to UV-B and 

perhaps increased chlorophyll content or wax accumulation (not tested) in order to combat 

and reduce the damaging effects on photosynthetic machinery. 

 

1.5.2  UVR8 and chromatin 

As of yet, the function of UVR8 has not been fully resolved.  However our knowledge of 

this important factor is fast accumulating and it should not be long before the complete 

picture is produced.  Initially chromatin immunoprecipitation (ChIP) studies demonstrated 

that the protein binds to chromatin at specific regions and interacts with histones.  One 

such region of interaction includes the promoter of HY5, a bZIP transcription factor up-

regulated by UV-B (Brown et al. 2005). In addition, UVR8 has been shown to interact 

with chromatin immediately around the HY5 gene.  ChIP assays performed by Cloix and 

Jenkins (2008) demonstrated that while association of UVR8 could be found within the 

coding region as well as the 5’ and 3’ non-coding regions proximal to the gene, no 

association could be found at positions 5 kb up or downstream.  It thus appears there may 

be a close link between UVR8 and some of the genes that it regulates.  However, this does 

not appear to be universal for all UVR8 dependent genes, no association could be found for 

HYH which is closely related to HY5 and is also regulated by UVR8 (Cloix and Jenkins 

2008).  Interestingly, the association of UVR8 with chromatin does not appear to be 

restricted to more up-stream UV-B signalling components such as HY5, an interaction was 
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also seen for CRYD, a gene that is itself regulated by HY5.  An association was tested for 

CHS, but here again no association was seen. 

Additional work by Cloix and Jenkins (2008) also showed that this association with 

chromatin occurs via histones and more specifically preferentially via interaction with 

H2B.  Histones themselves are known to undergo a number of modifications such as 

acetylation, methylation and so forth that are associated with changes in trnscription.  

While no consistent pattern of acetylation or methylation was found in the Cloix and 

Jenkins study, it is a likely possibility that such modifications and variants have a role in 

UVR8 mediated UV-B signalling.  It is possible that UVR8 may recognise certain variants 

or that it itself causes the modifications of histones, thereby regulating expression.  It is 

interesting to note that the association of UVR8 with chromatin is not UV-B dependent.  

UVR8 can be found on the promoter region of HY5 even when plants have never been 

exposed to UV radiation (Brown et al. 2005; Cloix and Jenkins 2008).  It therefore seems 

that the activation of this protein requires an additional signal derived directly or indirectly 

from UV-B. 

The association between UVR8 and chromatin is a characteristic shared with a 

homologous protein found in humans, RCC1 (REGULATOR OF CHROMATIN 

CONDENSATION) (Kliebenstein et al. 2002). Due to their similarities in sequence UVR8 

is therefore predicted to adopt a similar seven-bladed propeller structure to RCC1 (Renault 

et al. 1998; Moore 2001; Brown et al. 2005).  However despite this similar structure, it 

appears that the two proteins do not have shared functions as UVR8 does not exhibit the 

Ran/guanine nucleotide exchange activity characteristic of RCC1 (Moore 2001; Brown et 

al. 2005).  It thus appears that UVR8 is unlikely to have similar roles to RCC1 in 

regulation of the cell cycle and nucleocytoplasmic transport.  Interestingly, no true 

homologue of RCC1 protein, which is found in both mammals and yeast, has been found 

in plants.  As this factor is necessary for cellular growth in both these groups it is likely 

that a homologue also exists in plants but as yet it remains elusive (Moore 2001). 

 

1.5.3  UVR8 localisation 

The presence of UVR8 bound to chromatin even under minus UV-B conditions would 

suggest a nuclear localisation.  Studies using GFP however have demonstrated that under 

white light conditions although UVR8 detectable in the nucleus, UVR8 is mainly 

cytoplasmically localised.  Upon UV-B exposure a strong nuclear accumulation is seen 

(Brown et al. 2005; Kaiserli and Jenkins 2007).  This accumulation is specifically in 

response to wavelengths in the UV-B portion of the spectrum as red and UV-A light both 
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failed to elicit the same response.  This appears to be yet another facet of the UV-B 

specificity of this protein (Kaiserli and Jenkins 2007).  Finally, it was demonstrated that 

this change in localisation occurs at even very low fluence rates of UV-B (0.1 "mol m
-2

 s
-1

) 

and after very short durations of treatment (10 mins), thereby supporting evidence for a 

role of UVR8 in non-damaging photomorphogenic responses to UV-B. 

The work performed by Kaiserli and Jenkins (2007) was extended to test the effect 

of nuclear exclusion and localisation signals (NES and NLS) on the localisation of UVR8.  

These signals, derived from mammalian PK1 and the SV40 virus respectively have 

previously been shown to restrict phytochrome B to the cytoplasm and nucleus 

respectively (Matsushita et al. 2003).  Results from these fusion studies showed that the 

NES tagged version was indeed excluded from the nucleus but under UV-B radiation was 

still able to accumulate in the nucleus thereby demonstrating the strength of the UV-B 

dependent accumulation. The addition of an NES tag to GFP-UVR8 therefore gives a more 

clear-cut mechanism to test the localisation of the protein. NLS tagged UVR8, although 

constitutively in the nucleus, still requires UV-B for activation. This observation 

complements the result obtained by Cloix and Jenkins (2008) where chromatin bound 

UVR8 still requires UV for activation.  It thus appears that we are still missing a vital step 

in the action of UVR8 linking its histone associated presence in the nucleus with its 

subsequent activation.  It is possible that the activation requires the influence of some other 

UV-B responsive element although it is interesting to note that such an element has not 

been detected in previous UV-B mutant screens (Kliebenstein et al. 2002; Brown et al. 

2005). 

In the Kaiserli and Jenkins study, the 23 most N-terminal amino acids were also 

removed from the construct and its ability to accumulate in the nucleus assessed.  It was 

found that this construct showed a reduced ability to accumulate in the nucleus thus 

suggesting the presence of some nuclear accumulation signal within this region.  When 

RCC1 and UVR8 sequences are aligned, there exists relatively little conservation in this 

region.  Additionally, while RCC1 possesses a bipartate NLS, no such equivalent can be 

found in the corresponding UVR8 sequence.  Hence, these results suggest the existence of 

some novel nuclear accumulation signal in the N-terminal region that enhances nuclear 

localisation after UV-B exposure. 

 

1.5.4  N and C-terminal regions of UVR8 

When UVR8 and RCC1 sequences are compared, in addition to the dissimilarity in the N-

terminal regions, there is a 27 amino acid insertion towards the C-terminus of the UVR8 
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sequence relative to RCC1.  This region was deleted by Kaiserli and Jenkins (unpublished 

data) and it was found, similarly to the N-terminal region, to be essential for normal UVR8 

function.  Unlike the N-terminal region however, it did not affect the localisation of a 

NES-GFP-!CUVR8 construct.  Thus UVR8 possesses two characteristic regions that both 

confer functionality, albeit in yet unknown mechanisms, to the protein.  This loss in 

functionality is not as a result of a loss in chromatin binding as ChIP assays demonstrated 

that this feature is retained in both deletion constructs.  Therefore, the importance of the N-

terminal may be associated with its localisation, but the role of the C-terminal insertion 

region remains entirely elusive. 

 

1.5.5  UVR8 regulated genes 

Through microarray analysis, it has been determined that UVR8 is able to regulate around 

72 genes in response to UV-B, a relatively small component of the >500 genes induced by 

UV-B in the study by Brown et al. (2005). Nevertheless, this group of genes includes a 

number that encode factors that are vital in the acclimation of plants to this kind of stress.  

For example CHS, as mentioned above is a vital enzyme in the production of the UV-B 

screening compounds.  Moreover, UVR8 regulates the expression of several other enzymes 

that act further downstream in this process, flavonol synthase (FLS), flavone 3-

hydroxylase (F3H) and chalcone isomerase (CHI) (Debeaujon et al. 2001).  In addition, the 

photolyase PHR1, responsible for repair of CPDs, the predominant form of UV-B induced 

DNA damage, is also under the regulation of UVR8 in UV-B conditions  (Britt 2004).  It is 

therefore clear why any plant lacking induction of such genes, as seen in uvr8, would be 

highly sensitive to UV-B radiation. 

Another key element in the UV-B signalling process is the HY5 transcription factor 

(ELONGATED HYPOCOTYL5).  This bZIP transcription factor was previously known to 

have a role in seedling photomorphogenesis but it has since been revealed to have an 

additional role in UV-B mediated responses through the generation of transgenic HY5 

promoter::Luc plants (Ulm et al. 2004).  These plants were shown to luminesce strongly 

after UV-B illumination.  This role of HY5 in UV-B responses was further supported 

through microarray studies performed by Brown et al. (2005).  The results obtained 

showed firstly that HY5 transcripts in UV-B treated uvr8 plants were absent thereby 

supporting the results of chromatin immunoprecipitation assays which conclude that HY5 

is a downstream effector of the UVR8 pathway.  Secondly, around half of the genes 

regulated by UVR8 also appear to be regulated by HY5.  This includes the genes encoding 

components of the flavonoid biosynthesis pathway and the PHR1 photolyase.  Thus, hy5 
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mutants were observed to be highly sensitive to UV-B radiation similarly to uvr8 mutants, 

hence demonstrating that this protein too is a vital component of the UV-B response 

pathway. 

From the Brown et al. (2005) study it was concluded that at least two UV-B 

specific pathways existed, one that was dependent on both UVR8 and HY5 and one that 

seemingly only required UVR8.  However, subsequent work by Brown and co-workers 

(2007) demonstrated that HY5 still has a role in regulating the remaining half of the UVR8 

regulated genes.  In this study gene expression in the hy5 mutant as well as a hy5 hyh 

double mutant was assessed.  HYH (HY5 HOMOLOGUE) appears as a UVR8-regulated 

gene in the initial microarray study and it bears strong similarity to the HY5 transcription 

factor (49 % identical at the protein level) (Holm et al. 2002).  It was shown that several of 

the genes initially thought to be UVR8-dependent HY5-independent showed loss of UV-B 

induction in the hy5 hyh double mutant.  It thus appears that these two transcription factors 

act redundantly to regulate a subset of the UVR8-dependent genes (Brown and Jenkins 

2008).  While the hy5 hyh double mutant has yet to be submitted for microarray analysis to 

determine exactly which genes are dependent on this system, it seems that the remaining 

half of the UVR8-dependent genes are regulated in a HY5/HYH redundant mechanism.  

Consequently, it seems that of these two transcription factors, HY5 has the more major role 

in UVR8-mediated responses but that HYH has a limited capacity to compensate for some 

of these in the absence of functional HY5.  When the sensitivity of the hyh mutant was 

tested, it could be seen that it exhibited very little sensitivity to UV-B exposure with plants 

resembling those of wild type rather than the strongly affected uvr8, hy5 and hy5 hyh5 

mutants (Brown and Jenkins 2008).  For a summary of the UVR8 pathway see Figure 1.4. 

In conclusion, the current hypothesis for UVR8 action is that while present in the 

nucleus and associated with chromatin under minus UV-B conditions, in a manner akin to 

a “ready state”, exposure to UV-B causes a strong accumulation in the nucleus.  This same 

radiation is some yet unknown way activates UVR8, possibly by the incorporation of other 

factors into a complex, thus facilitating transcription of the genes in the region of 

chromatin to which it is bound.  This initiation of transcription may be via an increased 

availability of these UV-B responsive genes to transcription factors, thus allowing a rapid 

increase in expression.  While some attempts have been made to find proteins that interact 

with UVR8, only one candidate, CONSTITUTIVELY PHOTOMORPHOGENIC 1 

(COP1) has been found so far (Oravecz et al. 2006; Favory et al. 2009). 
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1.5.6 COP1 

COP1, an E3 ubiquitin ligase, has a well characterized role in the repression of 

photomorphogenesis in dark grown seedlings.  By targeting the destruction of positive 

regulators of the light grown phenotype such as HY5, COP1 prevents the suppression of 

hypocotyl growth and greening of the seedling.  Therefore mutations in the COP1 gene can 

result in dark-grown plants adopting a light-grown phenotype as opposed the characteristic 

etiolated phenotype.  In the case of UV-B responses however, the situation appears to be 

reversed with COP1 taking on a positive rather than negative role in photomorphogenesis.  

For example, the expression of HY5 under UV-B actually requires the presence of 

functional COP1 in addition to UVR8, thus this ligase is now acting as a positive regulator 

of HY5.  Interestingly a positive role for COP1 in gene induction appears to be true for a 

large number of UVR8-regulated genes.  Roughly half of the genes found to be dependent 

on HY5 for UV-B induction were also shown to require COP1.  It therefore appears that 

the UVR8, HY5 and COP1 pathways may be intimately connected, although it is not yet 

fully clear just how these components interact to give rise to UV-B responses.   

Interestingly however, it does appear that there is a direct interaction between the 

UVR8 and COP1 proteins that is UV-B dependent (Favory et al. 2009).  The two proteins 

can be co-immunoprecipitated and were shown to colocalize in the nucleus.  It is therefore 

possible that this UV-B dependent association may act as the activating step required for 

the activation of a subset of the UVR8-dependent genes.  If this is the case, then it would 

appear that in this situation COP1 is not utilising its E3 ubiquitin ligase function and is 

acting in some as yet unknown mechanism.  In support of this, it does seem that different 

parts of the protein may be responsible for different responses.  The cop
eid6

 mutant allele 

for example while still is hypersensitive to white light, is unlike cop1-4 in that it exhibits 

an increased tolerance for UV-B with retained levels of CHS and HY5 expression (Dieterle 

et al. 2003; Oravecz et al. 2006).  The mutation in the cop
eid6

 allele, which results in the 

conversion of a conserved histidine residue to a tyrosine, causes a disruption in the RING-

finger motif of the protein.  It would therefore appear that while this motif, which confers 

ligase activity, is of vital importance for white light responses it is not necessary in the 

downstream processes of UV-B signalling. 

It has been suggested that COP1 may be acting to remove some negative regulator 

of UVR8-mediated transcription specifically under UV-B conditions (Favory et al. 2009).  

That is, the action of UV-B, perhaps via a UV-B photoreceptor, causes a rapid interaction 

between UVR8 and COP1 that subsequently removes the hypothesised inhibitor.  This then 
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allows the activation of the UVR8 protein already bound to chromatin, thereby initiating 

transcription of its associated genes.   

While it is evident that COP1 has a role in UV-B responses, it is interesting to take 

into consideration some additional observations from these studies.  Firstly, while it 

appears that YFP-tagged COP1 also accumulates in the nucleus under UV-B (in contrast to 

its exclusion from the nucleus after white light exposure) this process occurs more slowly 

than that seen for GFP-UVR8 (Favory et al. 2009).  As the expression of some UV-B 

responsive genes can occur very rapidly, it is difficult to reconcile these two 

characteristics.  That is, if the initiation of transcription requires the COP1 mediated 

removal of a negative regulator, it is difficult to explain why translocation of COP1 is slow 

while initiation of transcription is rapid. 

Secondly, while the cop1-4 mutant does exhibit some UV-B sensitivity, the effects 

are not as extreme as seen for either uvr8 or hy5  (Oravecz et al. 2006; Brown and Jenkins 

2008).  It therefore seems that similarly to HYH, this protein may have a more minor role 

in the responses of plants to UV-B.  However, the reduced sensitivity seen may be as a 

result of an increased level of flavonoids present in cop1-4 plants that are grown under 

white light (Oravecz et al. 2006).  It therefore may be that these screening compounds are 

effectively reducing the dose that the plant experiences, thus preventing the same degree of 

damage seen in hy5 or uvr8 mutants. 

Finally, it should be noted that it can be difficult to interpret results derived from 

use of the cop1-4 mutant as this is not a null mutant.  Such null mutants do not exist as 

COP1 is essential for plant survival and thus complete loss results in seedling lethality 

(Mcnellis et al. 1994).  Therefore, while in this allele the protein is truncated so that the 

WD40 repeat domain (the site of interaction with other proteins such as HY5) has been 

lost, the N-terminal region including the RING finger (required for ligase activity) and the 

coiled-coil (dimerisation) domains remain (Yi and Deng 2005). 

 

1.6 UVR8-independent pathways 

In summary, work on the UV-B response in plants has shown that several separate 

signalling pathways exist.  Firstly, one that is mainly associated with high fluences of UV-

B and thus results in the induction of genes associated with general stress responses.  

Secondly there is a major class of low fluence UVR8 dependent genes which can be 

subdivided into those also dependent on COP1, HY5, HY5/HYH or a combination of the 

above.  However, a microarray study performed by Brown and colleagues (2005) showed 
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that >500 genes are induced in response to UV-B and it seems unlikely that all of those 

that cannot be linked to the UVR8 pathway are associated with more general stress 

responses.  It is more likely that a number of further low fluence UV-B responsive 

pathways exist that have roles (albeit more minor in comparison to UVR8) in responses to 

these wavelengths of radiation. 

To date, only one example of a gene that belongs to this class exists.  ANAC13 

encodes a transcription factor so named for its NAC domain (which is itself named from 

the NAM, ATAF1/2 and CUC2 family members).  This large group of transcription 

factors, >100 members in Arabidopsis, is plant specific with diverse roles in development 

as well as defence against biotic and abiotic stresses (Olsen et al. 2005). The characteristic 

N-terminal NAC domain consists of a DNA binding domain, while the highly diverse C-

terminal region contains a transcriptional activation domain (Ooka et al. 2003). X-ray 

crystallography studies on ANAC1 has shown that instead of the classical conformation of 

helix-turn-helix motif, NAC domains adopt a novel transcription factor fold which consists 

of a twisted beta-sheet surrounded by a few helical elements (Ernst et al. 2004).  However, 

despite the emerging important role of this large family of plant transcription factors in 

developmental and environmental responses our knowledge concerning this group is yet 

limited. 

The role of ANAC13 in UV-B responses was first identified by Safrany et al 

(2008).  In a combination of studies using the promoter fused to the LUC gene and through 

PCR analysis they determined that ANAC13 is induced by UV-B in a manner independent 

of both COP1 and UVR8. In addition they found this gene, similarly to CHS, to also be up-

regulated by red-light.  However, with closer examination of the promoter region it was 

found that these two responses could be separated out.  While the red light response 

requires the promoter region between -1457 and -195 bp, UV-B responsiveness is only lost 

with deletion of bases between -146 and -110.  This latter region was therefore examined 

more closely and it was found that elements similar to ACE
CHS

 (ACGT-containing 

element) and MRE
CHS

 (MYB responsive element) are present.  In CHS these elements 

confer white and UV-B responsiveness  (Hartmann et al. 1998).  However, it was also 

determined that the UV-B responsiveness seen was not solely attributable to these 

elements.  An exchange of the -110 to +24 bp region (downstream of the two elements 

termed ACE
ANAC13

 and MRE
ANAC13

) for a minimal CaMV35S promoter severely 

compromised induction under UV-B.  Through this, a novel responsive element which is 

both necessary and sufficient for UV-B induction was identified and named UVBox
ANAC13

.  

Interestingly this new element confers responsiveness specifically to shorter wavelength 
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UV-B and is not induced by longer wavelengths nor other stress stimuli such as cold.  This 

element was also found to be enriched in a number of other late UV-B responsive genes, 

thus suggesting a whole new pathway of UV-B regulation. 

Although the identification of this new UV-responsive element provides an 

interesting new insight into UVR8-independent UV-B signalling, so far no downstream 

targets nor any upstream factors controlling ANAC13 up-regulation have been found.  

However, the identification of the UV
ANAC13

 box provides a stepping-stone to discovery of 

its upstream regulator. 

 

1.7  Other signalling mechanisms 

Finally, it seems that calcium signalling as well as protein kinases and phosphatases may 

be involved in UV-B signalling.  Christie and Jenkins (1996) demonstrated that antagonists 

of calcium and calmodulin inhibit UV-B induction of CHS expression.  In addition, 

millisecond pulses of UV-B result in a rise in cytosolic calcium in parsley cell culture 

(Frohnmeyer et al. 1999).  However, artificial increases in cytosolic calcium alone are 

unable to generate an increase in CHS expression (Christie and Jenkins 1996).  Therefore, 

it is possible that the UV-B induced rise in calcium is not cytosolic and instead occurs in 

another cellular location. 

Additional pharmacological studies showed that inhibitors of protein kinases and 

phosphatases also result in a loss in UV-B mediated CHS expression (Christie and Jenkins 

1996).  This is an interesting observation, as receptor tyrosine kinases and receptor-

directed tyrosine phosphatases (PTPs) have been implicated in perception of UV-B in 

animal cells (Gro" et al. 1999).  In this case, it has been proposed that UV exposure leads 

to ligand-independent activation of receptor tyrosine kinases via the inhibition of PTPs.  

However, the exact roles which protein kinases and phosphatases play in the signal 

transduction of UV-B is not yet clear. 

 

1.8 Known light signalling pathways 

Recent work has lead to many advancements in our knowledge of UV-B signalling 

downstream of perception, but one significant gap yet remains, perception itself.  To date 

no UV-B specific photoreceptor has been identified unlike for red and blue light pathways 

which have well characterised perception mechanisms.  The perception of light signals is 

of vital importance as it leads to the optimisation of plant form to the specific environment 
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in which it finds itself.  As a result, a number of different plant photoreceptors have 

evolved which have the ability to detect the quality, quantity and duration of light stimuli 

(see Figure 1.5 For a summary).  It is likely that if such a UV-B photoreceptor exists, it 

will share features with those developed for responses to other wavelengths of the 

electromagnetic spectrum.  Therefore this next section will summarise the photoreception 

and signalling responses to red and blue light stimuli before a discussion on the possible 

mechanisms of UV-B perception.   

 

1.8.1 Cryptochromes 

This family of blue light photoreceptors consists of two primary members.  Cry1 and cry2 

are mediators of various plant photomorphogenic responses to blue light including 

regulation of flowering time, stomatal opening, hypocoytl extension and cotyledon 

expansion (Spalding and Folta 2005; Li and Yang 2007).  The inhibition of hypocotyl 

extension under blue light conditions is regulated by both cryptochromes but with different 

fluence rate dependency for each.  Cry1 mediates the high fluence aspect and cry2 the low 

fluence (Ahmad and Cashmore 1993; Lin et al. 1998). 

As is the case for the other plant photoreceptors mentioned below, perception of the 

light signal (in this case blue or UV-A) is mediated through chromophores associated with 

the light sensing domain of the protein.  Cryptochrome proteins include two of these 

chromophores, flavin adenine dinucleotide (FAD) and pterin, at the N-terminal region of 

their sequence.  The FAD chromophore alone is sufficient to absorb blue light wavelengths 

and it has been hypothesised that the pterin is present to act as an antenna complex, thereby 

increasing the range of wavelengths that can be sensed by these proteins (Hoang et al. 

2008). 

Upon exposure to blue light cry1 and cry2 become autophosphorylated, a process 

which seems to require homodimerization (Shalitin et al. 2002; Shalitin et al. 2003; Sang 

et al. 2005).  The downstream signalling of cryptochromes then involves a direct 

interaction of their C-terminal domain with COP1 (Yang et al. 2001).  This prevents 

COP1, a negative regulator of photomorphogenesis, interacting with and subsequently 

targeting to the proteosome factors such as HY5 (Yang et al. 2001).  This allows the up-

regulation of various light-regulated responses. 

In addition to their role in photomorphogenesis, cryptochromes have also been 

implicated in the circadian clock.  Both cry1 and cry2 mutants exhibit altered circadian 

rhythms and are thus implicated in the input pathway of the molecular clock mechanisms 

(Somers et al. 1998).  In addition to their role in regulating blue-light input to the clock, it 
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seems that cry1 is also implicated in red-light inputs via its interaction with phyA (Devlin 

and Kay 2000).  Indeed it seems that in mammals cryptochromes may have been co-opted 

into the circadian system and form a vital component of the central oscillator (Harmer et 

al. 2001). 

Cryptochromes are nuclear localised proteins.  Cry2 appears to remain 

constitutively nuclear regardless of the light conditions.  Cry1 on the other hand appears to 

be exported to the cytoplasm under blue light (Lin and Shalitin 2003). 

A third cryptochrome, cry3 sometimes referred to as CRYD due to its similarity to 

synechocystis CRY DASH (for Drosophila–Arabidopsis-Synechocystis–Human), is also 

found in Arabidopsis.  However, this example lacks the C-terminal domain seen in cry1 

and cry2 and as such more closely resembles bacterial DNA photolyases (Kleine et al. 

2003).  Indeed, it seems that unlike cry 1 and cry2, cry3 has retained the ability to act as a 

photolyase and has been shown to repair CPDs in ssDNA   (Selby and Sancar 2006).  Also 

unlike the other two cryptochromes, cry3 is localised in the chloroplasts and mitochondria 

(Kleine et al. 2003).  Therefore, despite their similar names, cry3 can be thought of as 

entirely separate from the cryptochrome photoreceptors. 

 

1.8.2 Phototropins 

Phototropins are a second group of plant photoreceptors that mediate responses in the blue 

and UV-A portion of the spectrum.  Similarly to the cryptochromes, there are two members 

named phot1 and phot2.  The phot proteins consist of an N-terminal region which includes 

two LOV (light oxygen or voltage sensing) domains.  Each of these LOV domains 

incorporates a blue/UV-A light absorbing flavin mononucleotide (FMN).  At the C-

terminal end of the protein lies a serine/threonine kinase responsible for the 

autophosphorylation of the protein. 

Phototropin mediated signal transduction occurs through the initial absorption of 

the light signal by the FMN chromophore.  This results in the formation of a covalent 

adduct with a conserved cysteine residue of the LOV domain (Christie 2007). This 

ultimately leads to a conformational change in the protein, mediated via the J#-helix, 

which in turn releases repression of the C-terminal serine/threonine kinase (Jones et al. 

2007).  Subsequently the phot autophosphorylates and in the case of phot1 results in the 

internalization of the photoreceptor from the plasma membrane, where it resides in minus 

blue light conditions, to the cytoplasm (Sakamoto and Briggs 2002; Kaiserli et al. 2009).  

Phot2 meanwhile has been shown to translocate from the plasma membrane to the golgi 

apparatus in response to blue light (Kong et al. 2006).  However, the exact purpose of this 
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phototropin autophosphorylation and the downstream targets of the phototropins have yet 

to be determined. 

The phototropin family were named for their defining photomorphogenic 

characteristic, namely the growth of the hypocotyl towards a blue light source (Christie et 

al. 1999).  This response is mediated by both phototropins, however the two phototropins 

differ in their fluence responsiveness for this trait with phot1 regulating low fluence and 

phot2 high fluence responsiveness (Sakai et al. 2001).  These two photoreceptors also have 

overlapping roles in chloroplast accumulation in response to low light conditions, 

cotyledon/leaf expansion, leaf movement and stomatal opening (Christie 2007).  Separate 

roles nonetheless exist for chloroplast avoidance in high light conditions, which is 

regulated primarily by phot2, and both hypocotyl inhibition in the dark and mRNA 

stability for which phot1 is responsible (Christie 2007). 

In addition to the separation of roles of the two phototropins, different functions 

can also be assigned to the two light sensing LOV domains of phot1.  While LOV2, the 

more efficient light sensor seems to act to repress kinase activity in the dark, a role for the 

LOV1 domain remains more elusive.  Experiments where the domains were exchanged 

showed that LOV1 cannot replace LOV2 as a repressor of kinase activity and additionally 

has a relatively poor light sensing efficiency (Kaiserli et al. 2009).  However it has 

subsequently been revealed that LOV1 appears to have an essential role the arrest of 

chloroplast accumulation under high light intensities (Kaiserli et al. 2009). 

 

1.8.3 Phytochromes 

The phytochrome family of photoreceptors is somewhat larger than that for phototropins or 

cryptochromes, and consists of five members named phyA – phyE in Arabidopsis (Clack et 

al. 1994).  Similarly to the phototropins and cryptochromes, different family members are 

responsible for different fluence rate responses, with phyA mediating very low fluence and 

high far-red (FR) irradiation responses.  Phys B-E on the other hand regulate low fluence 

and high red (R) irradiance responses (Quail 2002).   

Phytochrome proteins consist of a N-terminal photosensory domain which binds 

the chromophore phytochromobilin, and a C-terminal region which possesses several 

domains with functions in dimerisation, localisation and potentially also in downstream 

signalling (Jiao et al. 2007).  When these photoreceptors are irradiated with red light, they 

undergo a conformational change which results in the formation of a physiologically active 

form known as PFR.  Upon subsequent FR illumination, phytochrome phyB-E revert back 

to the inactive R light absorbing form known as PR.  PhyA, unlike the other phytochromes 
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is not photostable and thus undergoes rapid degradation when in the PFR form (Kevei et al. 

2007). 

Phytochrome subcellular localisation occurs mostly in the cytoplasm in the dark, 

with treatment with various fluences of light resulting in nuclear import (Kircher et al. 

2002).  Interestingly, both phyA and phyB have been shown to accumulate in ‘speckles’ 

within the nucleus, termed nuclear bodies (Yamaguchi et al. 1999; Kircher et al. 2002).  

While this is a well-known phenomenon, it is not clear what the purpose of these bodies 

may be and their role in downstream signalling events.  COP1 was shown to colocalise 

with phyA in these nuclear bodies (Seo et al. 2004).  As COP1 has been shown to have a 

role in the degradation of this protein, it is possible that these nuclear bodies may be 

involved in the desensitization mechanism of this photoreceptor (Seo et al. 2004). 

One of the key photomorphogenic responses regulated by the phytochrome family 

of photoreceptors includes the shade avoidance response and the R:FR photoreversibility 

of phytochromes makes them particularly amenable to such a role.  Plants growing under 

other vegetation experience a drop in the R:FR ratio of light as the photosynthetic 

machinery of the leaves above preferentially absorb R light while leaving the FR portions 

of the spectrum unaffected.  This results in an enrichment in the FR portion of the 

spectrum under a vegetation canopy and it is by detecting such changes in spectral qualities 

that the phytochromes, and thus the plant, can sense the current light conditions and initiate 

the appropriate responses.  The shade avoidance response is characterised by such changes 

in morphology as a rapid elongation in stems and leaves.  This has the effect of increasing 

the chances that a plant may escape from the leaf canopy and emerge into more favourable 

light conditions (Franklin et al. 2005). This particular role for phytochromes in 

photomorphogenesis appears to be mainly associated with phyB which acts to inhibit the 

development of the shade avoidance response in plants under high R:FR ratios (Franklin et 

al. 2005). 

 

1.8.4 A UV-B Photoreceptor? 

Despite our considerable knowledge of the perception and downstream signalling events 

associated with blue/UV-A and red far-red light stimuli, there remain a number of holes in 

our understanding of UV-B responses.  One such example of a gap in our comprehension 

concerns the perception of the UV-B signal.  At first glance, the known photoreceptors 

would appear to be good candidates for these proteins because, similarly to the vast 

majority of proteins in general, they are able to absorb wavelengths in the UV-B region of 
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the spectrum.  However, previous mutant studies have been able to eliminate their 

involvement.  For example it has been shown that in phyA, phyB and cry1, cry2 double 

mutants UV-B induction of several genes is unaltered (Boccalandro et al. 2001; Wade et 

al. 2001; Brosche and Strid 2003; Brown and Jenkins 2008).  It would therefore seem that 

we are looking for a novel photoreceptor or family of photoreceptors. 

One possible explanation for the inability to identify a UV-B specific receptor, is 

that no such protein actually exists.  Instead it is possible that UV-B is perceived through 

some other mechanism.  A prime candidate for this would be via DNA damage.  It has 

already been shown that DNA readily absorbs radiation in the UV-B range which in turn 

results in the formation of dimers between neighbouring pyrimidine nucleotides (Jiang et 

al. 1997; Britt 1999).  Thus, DNA damage could be seen to be the first step in UV 

perception that triggers the subsequent signalling cascade.  However, evidence exists 

which seems to refute this for currently known UV-B responsive pathways.  Wade et al. 

(2001) exposed plants to UV-B in conjunction with supplemental wavelengths in either the 

blue or UV-A range.  Photolyases, the enzymes responsible for repair of UV-B induced 

lesions, are activated by both blue light and UV-A.  Consequently, under the above 

conditions we might expect to see enhanced repair, thus reduced damage, a potentially 

reduced signal and as a result a reduced expression of UV-B induced genes such as CHS.  

The reverse however appears to be true so that increased expression of genes such as CHS 

are seen.  That is, blue light and UV-A act synergistically to enhance CHS expression.  

This result suggests that we can rule out DNA damage as the mechanism of 

photoreception.  Conversely, it is possible that it is the repair mechanisms instead that are 

responsible for initiation of the signal thus explaining why an increase in CHS expression 

was seen under photoreactivating conditions.  However, this theory has yet to be tested, 

although it should be noted that mutants in DNA photolyases retain UV-B induction of 

CHS expression (Brown and Jenkins, unpublished data). 

Action spectra have been used in the past to link peaks in responses with the 

absorption of candidate photoreceptor complexes, for example in the case of phototropins 

(Christie et al. 1999).  Several action spectra for UV-B responses have been performed, 

however these have given different values for the peak of response.  For example two 

studies examining stomatal opening in bean and HY5 activation in Arabidopsis both cite 

values of 280 nm, while a third examining the induction of the PHR promoter in cucumber 

gives a peak of 300 nm (Eisinger et al. 2000; Ioki et al. 2008; Brown et al. 2009).  Action 

spectra experiments can be particularly problematic for the UV-B region because many 

proteins, DNA as well at the photoprotective pigments such as flavonoids absorb in this 
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region.  This therefore adds a layer of complexity when trying to perform such 

experiments.  The Brown et al. (2009) study attempted to address one of these issues by 

conducting additional experiments in mutants lacking either sinapate esters or flavonoids.  

This resulted in very similar values to that found in wild type plants, thus providing 

supporting evidence that in the case of HY5 induction, the peak in response is indeed at 

280 nm. 

One interesting possibility is that UVR8 itself may act as the UV-B photoreceptor.  

The protein has a relatively large number of tryptophans, more than in RCC1, which 

absorb UV-B wavelengths well (Brown et al. 2009).  In addition, no other mutant alleles 

other than those for UVR8 were identified in mutant screens for UV-B responsiveness  

(Kliebenstein et al. 2002; Brown et al. 2005).  This however could be due to a level of 

redundancy, thereby preventing the discovery of the photoreceptors with overlapping 

functions. 

In mammalian UV-B perception it seems that there may be a role for cytosolic 

tryptophans as a chromophore.  In this system, UV-B absorption by tryptophan results in 

the formation of 6-formylindolo[3,2-b]carbazole (FICZ) which acts as a ligand for the 

arylhydrocarbon receptor (AhR) (Fritsche et al. 2007).  The subsequent translocation of the 

AhR receptor into the nucleus results in the initiation of UV-B downstream signalling 

(Fritsche et al. 2007).  It is possible that a similar mechanism may exist in plants, although 

initial experiments suggest otherwise.  (Brown and Jenkins, unpublished data).  

The UV-B photoreceptor or UV-B sensing components in plants therefore remain 

elusive.  It may be that different UV-B response pathways are regulated by different 

photosensory mechanisms.  For the well defined UVR8 pathways however, it seems that 

we can exclude a role for known photoreceptors as well as DNA damage whereas the role 

of DNA repair or the theory that UVR8 itself may be the photoreceptor have yet to be fully 

tested. 

 

1.9  Conclusions 

UV-B is not only an agent of damage, it also acts as an important informational signal 

which regulates many aspects of plant metabolism and development.  Indeed the effects of 

this ‘stress’ are wide reaching in that exposure to UV-B has been shown to enhance a 

plant’s resistance to herbivores (Izaguirre et al. 2003; Paul and Gwynn-Jones 2003; 

Izaguirre et al. 2007), a phenomenon which may occur through the accumulation of 

secondary metabolites of which are distasteful to many herbivores. 
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When applying laboratory research to natural ecosystems, we have to consider that 

the effects of UV-B are generally milder in field conditions.  A further complication in 

applying findings to the current and possible future UV-B climate lies in the fact that UV-

B levels are rarely constant.  A wide variety of factors including cloud cover, canopy 

thickness and seasonal variations can all alter the dose of UV-B experienced by a plant  

(Paul and Gwynn-Jones 2003). 

One final consideration when examining the literature on UV-B responses in plants 

is that experimental conditions and methods used can vary widely between different 

laboratories.  For example different groups use different model species e.g. Arabidopsis, 

tobacco, maize and others.  In addition, even within a species diverse ecotypes are used.  In 

Arabidopsis for instance it has already been demonstrated that different ecotypes have 

different responses.  C24, Wassilewskija and Columbia-0 ecotypes all exhibited 

differences in the expression of the PR-5 protein (Kalbina and Strid 2006).  Also, the 

Wassilewskija ecotype of Arabidopsis which is deficient in phyD, appears to have reduced 

expression of HY5 and CHS in response to UV-B (Brown and Jenkins unpublished data). 

In conclusion, although UV-B studies have progressed a long way in the past 

couple of decades, there are still considerable gaps in our knowledge.  For example, 

identification of the photoreceptor/photosensory system would greatly enhance our 

understanding of the full perception/transduction/response cascade.  Nevertheless, we can 

conclude that separate low fluence informational and high fluence stress related signalling 

systems do exist in plants.  While high levels of UV-B obviously have a detrimental effect 

on plants, we now realize that low levels can allow a plant to adapt to its environment and 

so actually promote survival.  Recent advances, particularly in the area of UVR8-mediated 

responses have furthered our knowledge of these specific photomorphogenic responses.  

However, it is still not clear what other pathways may be involved nor the exact 

mechanism of action of UVR8. 

 

1.10  Aims of this study 

While the downstream changes in gene expression arising from the action of UVR8 are 

becoming increasingly defined, we still have very little knowledge of other pathways that 

may act in such low fluence UV-B conditions.  One of the first aims of this study therefore 

was to investigate and try to identify components of these other pathways.  Samples treated 

with lower fluences of UV-B than used in the Brown et al. (2005) study were therefore 

submitted for microarray analysis so that candidate genes could be identified.  A subset of 
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genes were then examined more closely using RT-PCR methods for dependence upon 

UVR8, HY5, HYH, COP1 as well as the major classes of known photoreceptors.  

Furthermore, the possibility that these genes may be induced as a result of DNA 

damage/repair was explored in addition to an assessment of their expression profiles under 

extended periods of UV-B treatment using qPCR. 

Next attention was turned to the UVR8 protein itself.  The sequences of proteins 

similar to UVR8 in Arabidopsis as well as other plant species were examined to assess 

their similarity.  The C and particularly the N-terminal regions were focused on as these 

have previously been shown to be essential for UVR8 function (Kaiserli and Jenkins 

2007).  The role of the N-terminal region of UVR8 in localisation was then further tested 

using a number of deletion and addition constructs expressed stably in Arabidopsis or 

transiently in tobacco. 

Finally, the possibility that UVR8 may be acting as part of a complex was explored.  

To address this, protein extracts from plants expressing a number of different UVR8 

constructs were applied to a size exclusion chromatography column.  From these 

experiments the approximate sizes of the complex could be obtained.  The use of 

constructs targeted to different compartments as well as treatments in both plus and minus 

UV-B conditions allowed the determination of these factors on the overall size of the 

complex.  Use of the cop1-4 mutant and the previously described !23N  UVR8 construct 

enabled the role of COP1 and of the N-terminal UVR8 sequences in formation of the 

UVR8 complex to be assessed. 

In summary, a key aim of this study is to further understand the mechanism of 

UVR8 action through examination of its nuclear accumulation under UV-B and the 

presence of interacting partners.  Through this work it was hoped to gain further insight 

into UVR8 action as a whole.  Finally, while UVR8 is an important component of plant 

responses to UV-B, it is not the sole mechanism of acclimation to this factor.  Therefore, 

work was undertaken to identify other potential UV-B specific signalling pathways.  
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Figure 1.1  Signaling pathways elicited by UV-B radiation. Modified from Jenkins 

(2009) and Brosche and Strid (2003). A summary of both the high and low fluence UV-B 

induced pathways in plants with examples of genes whose expression is induced by these 

mechanisms. Example genes are as follows, EARLY LIGHT INDUCED PROTEIN1 

(ELIP1), Chalcone synthase (CHS), Arabidopsis NAC transcription factor 13 (ANAC13),   

PLANT DEFENSIN1-2 (PDF1-2) and PATHOGENESIS RELATED 1 (PR1). 

29 



Phenylalanine 

Cinnamate 

4-Coumarate 

4-Coumaroyl-CoA 

Naringenin chalcone 

Naringenin (flavone) 

Dihydrokaemperol (3-
OH-flavone) 

Kaempferol (flavonol) 

Sinapic acid esters and 
related phenolics 

Chalcone 

Aurone 

Isoflavanone 

Flavone 

Anthocyanin 

PAL 

CHS 

CHI 

F3H 

FLS 

DFR 

Figure 1.2  Pathway for Phenylalanine-derived secondary product biosynthesis in 

plants.  Modified from Li et al.  (1993) and Merhtens et al. (2005).  A simplified pathway of 

some UV-B absorbing pigments showing key enzymes in blue.  Phenylalanine ammonia-

lyase (PAL) catalyses the first step in the synthesis of the secondary aromatic compounds 

which ultimately leads to the formation of sinapic esters and flavonoids.  Chalcone synthase 

(CHS) is the first committed step in the flavonoid biosynthesis pathway.  Chalcone 

isomerase (CHI) catalyses the reaction which produces isoflavones, flavones and 

anthocyanin. flavanone 3-hydroxylase  (F3H) and  flavonol synthase (FLS) catalyse further 

steps towards the production of kaempferol. Dihydroflavonol 4-reductase (DFR) meanwhile 

catalyses the first step of anthocyanin formation. 
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Figure 1.3. Model showing the network of photoreceptors regulating CHS 

expression. Blue/UV-A exposure induces CHS expression, primarily through cry1, but 

also to a lesser extent through cry2.  Expression can be further increase with pre-

illumination with red/far red light mediated through either phyA or phyB, or 

alternatively via co-action between phyB and cry1.  While PhyB can inhibit UV-B 

mediated induction of CHS expression,  supplementary illumination with blue/UV-A 

light synergistically enhances it in a cryptochrome and phytochrome independent 

fashion.  Diagram modified from Wade et al.  (2001) 
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Figure 1.4  Downstream signalling of UVR8 and COP1 in UV-B.  After activation by 

UV-B, possible via a UV-B photoreceptor (denoted by a ?), chromatin bound UVR8 

induces the expression of genes such as HY5.  HY5 and HYH transcription factors then in 

turn up-regulate other UV-B responsive genes.  The expression of a total of 35 genes are 

dependent on function HY5 while three are known to rely on a HY5/HYH redundant 

mechanism.  It is hypothesised that the remaining 37 UVR8-regulated genes are also 

under the control of the HY5/HYH mechanism although this has yet to be determined. 
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Figure 1.5  The electromagnetic spectrum of sunlight and the photoreceptors that 

mediate plant photomorphogenic responses.  The major classes of known 

photoreceptors are shown below the portions of the spectrum at which they absorb 

maximally.  The hypothesised UV-B and green ligh photoreceptors are also shown.  ! = 

wavelength. 

UV-B 

photo-

receptor? 

Green 

photo-

receptor? 

33 



34 

 

 

CHAPTER 2 MATERIALS AND METHODS 

 

2.1 Materials 

 

2.1.1 Chemicals 

The chemicals used in the following experimental procedures were obtained from VWR 

International Ltd. (Poole, UK), Thermo Fisher Scientific UK Ltd. (IL, USA) and Sigma-

Aldrich Inc. (St. Louis, USA) unless otherwise stated. 

 

2.1.2 Enzymes 

Enzymes used in DNA restriction, ligation, synthesis and DNA/RNA modification were 

purchased from Promega (Wisconsin, USA), New England Biolabs (Hitchin, UK) and 

Ambion Inc (Huntingdon, UK).  

 

2.1.3 Primers 

RT-PCR primers were custom made by either VH Bio Ltd. (Gateshead, UK) or Invitrogen 

(Paisley, UK) and purified using Reverse Phase Cartridge (RPC).  All qPCR primers were 

obtained from VH Bio and were Reverse Phase High Performance Liquid Chromatography 

(HPLC) purified. 

 

2.1.4 Antibiotics 

Antibiotics were obtained from Sigma-Aldrich and were dissolved in distilled water.  In 

the case of kanamycin a working concentration of 50 µg ml
-1

 was used for Escherichia coli 

(E. coli), while for plants a concentration of 75 µg ml
-1

 was utilised. For gentamycin a 

working concentration of 30 µg ml
-1

 was used. 

 

2.1.5 Antibodies 

Anti-GFP antibodies were obtained from Clontech (California, USA).  Both the N-terminal 

(MAEDMAADEVTAPP) and C-terminal (VPDETGLTDGSSKGN) anti-UVR8 antibodies 
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were custom made by Sigma-Aldrich.  Secondary anti-rabbit (for use with UVR8 

antibodies) and anti-mouse (for use with anti-GFP) antibodies conjugated to Horseradish 

Peroxidase (HRP) were obtained from Promega.  All antibodies were used at a 

concentration of 1:5000. 

 

2.1.6  Vectors 

pEZR(K)L-C was sourced from Dr. Gert-Jan de Boer and was used to add a GFP tag to 

UVR8 constructs.   pCR
®

2.1 vector was used in conjunction with One Shot® TOP10 cells 

for the purpose of PCR product cloning and was obtained from Invitrogen. 

 

 

2.1.7 Bacterial strains 

E. coli strains TOP10
®

 (Invitrogen) and XL-1 Blue (Stratagene, CA, USA) were 

chemically transformed and used for sub-cloning, expression and amplification.  To 

generate stable transgenic lines and for transient expression in tobacco, Agrobacterium 

tumefaciens strain GV3101 was used. 

 

2.1.8 Other Reagents 

All reagents used in this study for protein electrophoresis and quantification purposes were 

purchased from Bio-Rad Laboratories (Hercules, California, USA) unless otherwise stated. 

 

2.2 Preparation of media and solutions 

 

2.2.1 Measurement of pH 

The pH of media and solutions was measured using a glass electrode connected to a 

Jenway 3320 pH meter (Jenway, Felsted, Essex). 

 

2.2.2 Autoclave sterilisation 

Equipment and solutions were sterilised using a benchtop autoclave (Prestige Medical, 

Model 220140). 
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2.2.3 Filter sterilisation 

Heat sensitive solutions, those of small volume and those used in Size Exclusion 

Chromatography (see section 2.10) were sterilised by filtration through a 0.2 µM pore 

diameter Nalgene® filter (Thermo Fisher Scientific Inc.). 

 

2.3 Arabidopsis plant material 

 

2.3.1 Seed stocks 

Wild-type A. thaliana cv Landsberg erecta, Col-3 and Ws-2 seeds were obtained from The 

European Arabidopsis Stock Centre (NASC, Nottingham, UK).  The hy5-1 mutant in the 

L. er ecotype was also acquired from the NASC.  Additional mutants in a L. er background 

include the cry1 cry2 mutant generated by Wade et al. (2001), uvr8-1 mutant from Prof. D. 

Kliebenstein (U.C. Davis, USA) and the phyA-1 phyB-1 mutant from Prof. Garry Whitelam 

(University of Leicester, UK). Dr. Roman Ulm provided the cop1-4 mutant while hy5-

ks50, hyh and hy5-ks50 hyh mutants (all in Ws) were supplied by Prof. Xing Wang Deng 

(Yale University, USA).  Dr. John Christie (University of Glasgow, UK) provided the 

phot1-5 phot2-1 mutant and Dr. Enrique Lopez-Juez (Royal Holloway, University of 

London, UK) the hy1-100 (both Col).  GFP-UVR8, NES-GFP-UVR8, NLS-GFP-UVR8 

and !N-UVR8 seed (all in a uvr8-1 background) were generated in the Jenkins lab by Dr 

Eirini Kaiserli (Kaiserli et al., 2007).  Dr. R. Sablowski (John Innes Centre, Norwich, UK) 

provided  35SproGFP (L er.) seeds. 

 

2.3.2  Growth of plants on compost 

Plant pots were filled with compost (John Innes No.2 compost) and generous volumes of 

insecticide solution (0.15 g l
-1

 Intercept® (Scotts UK, Bramford, Ipswich)) added until soil 

was soaked through.  Arabidopsis seeds were then sown onto the surface and covered with 

cling film, before transferral to 4 ºC in the dark for a stratification period of 2-4 days to 

ensure optimal germination.  After this time, plants were moved to growth cabinets at 21 º 

C and with either low fluence rate (20 ± 5 µmol m
-2 

s
-1

) or high fluence rate (100 ± 10 

µmol m
-2

 s
-1

) continuous white light according to experimental requirements.  Cling film 

was removed after approximately one week of growth and if necessary, seedlings were 

thinned out to prevent overcrowding.  In order to prevent a thrip infestation, plants were 

sprayed twice per week with the insecticide Conserve® (Fargo Ltd., Littlehampton, West 
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Sussex).  Three week old plants were used for RT-PCR while protein extractions were 

performed on 12-21 day old seedlings.  

 

2.3.3 Surface sterilisation of seed 

A bleach solution of 50 % (v/v) sodium hypochlorite, 0.2 % (v/v Tween-20) was prepared 

fresh and 1 ml added to a small amount of Arabidopsis seeds.  Tubes were shaken 

vigorously and left for five minutes. After this period, the bleach solution was drawn off 

and discarded.  Seeds were then washed three times in 1 ml sterile distilled water before 

resuspension in approximately 0.5 ml sterile distilled water.  

 

2.3.4 Growth on agar plates 

After surface sterilisation, plants were grown on 0.8 % agar plates containing 2.15 g l
-1

 

Murashige and Skoog salts with the pH adjusted to 5.7.  For those plants that had been 

transformed, seeds were sown onto plates with the addition of 75 µg ml
-1

 kanamycin.  In 

most cases, sterile filter paper discs were placed on the surface of the plates and individual 

seeds dotted on top.  However, where large numbers of seeds were to be put onto plates, 

seeds were first mixed with a few millilitres of MS mixture (while still liquid and 

approximately body temperature) before being poured onto the plate and swirled to ensure 

good separation. 

 

2.3.5 Harvesting of plant tissue 

Where tissue was subsequently used for RNA extraction, leaves were removed from 

several plants, packaged into aluminium foil and immediately plunged into liquid nitrogen.  

Samples were then stored at -80 ºC.  In the case of protein extraction, whole seedlings were 

directly transferred to an ice-cold pestle and mortar and extracted as described in section 

2.8.1. 

 

2.4 UV-B and other light treatments 

 

2.4.1 Light fluence rate measurements 

The fluence rate of white light (photosynthetically active radiation) in the plant growth 

chambers was measured using a quantum sensor that registers wavelengths ranging from 
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400 to 700 nm attached to a Skye RS232 meter (Skye Instruments, Powys, UK). To 

measure fluence rates of UV-B (280-315 nm) a SKU 430 sensor fitted to a RS 232 meter 

was used.  Where more detailed measurements of light quality were required, a Macam 

Spectroradiometer Model SR9910 (Macam Photometrics Ltd., Livingstone, Scotland) with 

the capability of recording wavelengths between 240-800 nm was used. 

 

2.4.2 Light sources 

All light treatments in this study were conducted in growth chambers at 21 ±  1 °C.  For 

white light treatments warm white fluorescent tubes L36W/30 (Osram, Munich, Germany) 

were used.  UV-B was provided by Q-Panel UV-B 313 tubes (Q-Panel Co., USA).  In 

order to eliminate the UV-C component emitted from this source, tubes were covered with 

one layer of cellulose acetate (Catalogue No. FLM400110/2925, West Design Products, 

Nathan Way, London).  This filter was changed after 24 hours of use to prevent UV-C 

leaking through due to filter degradation.  Where UV-B minus treatments were conducted, 

the same UV-B tubes were covered with a ‘Clear 130’ mylar filter (Lee Filters, Andover) 

instead of cellulose acetate.  This filter cuts out UV-B wavelengths as well as UV-C. To 

achieve lower fluence rates of UV-B, tubes were wrapped in sections of thin black card.  

Dark treatments were conducted in the growth chamber without any light sources turned 

on.   

 

2.5 DNA and RNA methods 

 

2.5.1 Extraction of RNA from plant tissue 

Approximately 0.4 g of plant tissue was hand ground in liquid nitrogen using a mortar and 

pestle until a fine powder was obtained.  Powder was then transferred to a pre-cooled 

Eppendorf tube.  Total RNA was subsequently extracted using the RNeasy® Plant Mini 

Kit (Qiagen, Crawley, UK) according to the manufacturer’s instructions.  Buffer RLT 

(containing 10 µl $-Mercaptoethanol per 1 ml buffer) was used in this study.  Purified 

RNA was eluted from the RNeasy spin column with 30 "l RNase free water.  Samples 

were stored at -80 ºC. 
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2.5.2 Quantification of DNA and RNA concentrations 

To determine the concentration of extracted RNA and of DNA plasmids, 2 µl of the sample 

was diluted in 2 ml of RNase free dH2O and mixed well.  An equivalent volume of RNase 

free dH2O was used to blank the spectrophotometer (Bio-Rad SmartSpec 3000).  A reading 

of the absorbance of the DNA/RNA solution at 260 nm (OD260) was recorded.  The 

concentration of the sample was then determined by taking an OD260 of 1 to be equivalent 

to 50 µg ml
-1

 for DNA and 40 µg ml
-1

 for RNA.  (Sambrook and Russell, 3
rd

 Edition). 

 

2.5.3 DNase treatment of RNA 

In order to remove any DNA present prior to analysis using PCR methods, a DNAse 

treatment (DNA-free, Ambion) was performed on all samples.  Approximately 5 µg of 

RNA (as determined using spectroscopy as described in 2.5.3) was incubated with 2 units 

of DNAse I, 1 x DNAse I buffer and sterile water up to a total volume of 35.5 µl at 37 °C 

for 30 mins.  An additional 2 units of DNAse I were then added to the samples before a 

further incubation of 30 mins at 37 °C.  DNAse inactivation reagent was then added to the 

samples and left for 2 mins at room temperature with occasional flicking of tubes to ensure 

the reagent was well suspended.  Samples were then spun down at 13 000 rpm in an 

Eppendorf 5415D centrifuge for 1.5 mins to pellet inactivation reagent.  To ensure the 

DNAse treatment had been effective, a 35 cycle PCR reaction using ACTIN2 primers was 

performed on 2.5 µl of each sample as well as a negative (sterile water) and positive 

(genomic DNA) control.  If no PCR product was detectable, then samples were carried 

onto cDNA synthesis.  If however DNA was still present, then DNAse treatment was 

repeated until no DNA could be detected. 

 

2.5.4 Synthesis of cDNA 

0.24 µM oligo dT (dTTP15) was added to 10 µl of DNAsed RNA and incubated at 72 °C 

for 10 mins.  Samples were then allowed to cool on ice while a master mix of 1 x AMV 

Reverse Transcriptase Reaction Buffer (Promega), 1 mM of each dNTP (VHBio), 24 units 

RNase inhibitor (Promega), 1 mM dithiothreitol, 10 units AMV Reverse Transcriptase 

(Promega) and RNAse free water up to a volume of 25 µl was made up and added to the 

sample.  The sample was then incubated at 48 °C for 45 mins then 95 °C for a further 5 

mins to inactivate the enzyme.  The resulting cDNA samples were then stored at -20° C.  
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2.5.5 Microarray 

Three independent RNA samples extracted as described in section 2.5.1 were submitted to 

the Sir Henry Wellcome Functional Genomics Facility (SHWFGF, University of 

Glasgow).  RNA quality was checked using an Aligent RNA BioAnalyzer 2100 (Austin, 

TX).  The samples were then reverse transcribed and biotinylated cRNA hybridised to 

Affymetrix Arabidopsis ATH1 GeneChips (High Wycombe, UK) as per manufacturers 

protocols.  Subsequent washes and staining were performed using a Fluidics Station 400 

(Affymetrix) according to manufacturer’s instructions.  The chips were scanned on the 

GeneArray Scanner 2500 (Affymetrix) and analysed by the SHWFGF using FUNALYSE 

version 2.0 (University of Glasgow, UK).  Analysis involved normalization using Robust 

Multi Chip Average (Irizarry, 2003) and differentially expressed genes were determined 

using the Rank Products method (Breitling, 2004). 

 

2.6 Semi-quantitative Polymerase Chain Reaction techniques 

 

2.6.1 RT-PCR primers 

All primers were designed using the Primer3 software 

(http://fokker.wi.mit.edu/primer3/input.htm).  For each gene, at least two sets of primers 

were designed and then tested to determine which pair showed the best expression. To 

ensure accurate comparison of quantities of mRNA, each set of primers were tested using a 

range of different PCR cycle numbers.  This allowed a point to chose where expression 

was readily detectable but was still in the exponential phase of amplification. 

 

2.6.2 PCR conditions 

To ensure that the total amounts of cDNA were equal for each reaction, initial PCRs were 

performed using 1 µl of sample cDNA and ACTIN2 loading control primers.  The volumes 

of cDNA used were then adjusted until bands of roughly equal intensity were seen on an 

agarose gel.  To the appropriate volume of cDNA, a master mix was added consisting of 1 

x PCR Buffer (New England Biolabs), 0.2 mM dNTPs, 0.5 µM of each primer, 0.625 Units 

of Taq DNA Polymerase (New England Biolabs) and RNase free water to a final volume 

of 25 µl.  Tubes were gently mixed and put into a MJ Research DNA Engine PTC-200 

Peltier Thermal Cycler (Genetic Research Instrumentation, Essex, UK).  The basic PCR 

cycle used was (step 1) an incubation for 2 min 30 s at 95 °C, (Step 2) a further 45 s at 95 
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°C, (step 3) incubation at 55-59 °C for 1 min, (step 4) elongation at 72 °C for 1 min and a 

final step of a further elongation at 72 °C for 5 min (step 5).  Steps 2-4 were repeated 24-28 

times depending on the primers used (see Table 2.1). 

 

2.6.3 Amplification of plasmid DNA 

When PCR products were to be used in subsequent cloning experiments, Pfu DNA 

polymerase (Promega) was used to ensure high fidelity. Approximately 500 ng of DNA 

was used as a template.  To this a master mix of 1.25 units Pfu DNA polymerase, 0.2 mM 

dNTPs, 0.6 µM of each primer and RNase free water to a total volume of 50 µl was added. 

The basic PCR cycle used was (step 1) an initial incubation for 5 min at 95 °C, (step 2) a 

further 45 s at 95 °C, (step 3) incubation at 55-59 °C for 30 s, (step 4), elongation at 72 °C 

for 2 min per 1000 bases of template, and a final elongation step at 72 °C for 5 min (step 

5).  Steps 2-4 were repeated 25 times. 

 

2.6.4  Colony PCR 

25 µl of master mix (as described in section 2.6.3) was added to each thin-walled PCR 

tube.  Using a sterile pipette tip, one colony of transformed E. coli was picked from a 

selective LB-agar plate and placed in the PCR tube.  The mix was then pipetted up and 

down a couple of times to release the bacteria into the liquid.  This tip was then removed 

from the PCR mix and re-streaked onto a fresh selective plate.  PCR reaction was then 

performed as described in section 2.6.3. 

 

2.6.5 Electrophoresis of PCR products 

The appropriate amount of agarose (1-2 % w/v) was added to TAE (40 mM Tris-acetate, 1 

mM EDTA) or TBE (44 mM Tris-borate, 1mM EDTA) buffer and heated until all granules 

had dissolved.  The liquid gel was then allowed to cool slightly (until about hand hot) 

before addition of  0.2 µg ml
-1

 ethidium bromide.  Samples were resuspended in loading 

buffer (0.25 % (w/v) bromophenol blue, 0.25 % (w/v) xylene cyanol FF, 30 % (w/v) 

glycerol) before loading into the wells of the gel.  The gel was submerged in an appropriate 

volume of TAE/TBE and run at 70-90 mA.  Gels were visualized using a Bio-Rad Gel-Doc 

2000 and the Quantity One program (Bio-Rad Laboratories). 
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2.6.6 Extraction of PCR products from agarose gel 

DNA samples were run on an ethidium bromide stained 1-2 % agarose gel.  Bands of the 

correct size were visualized and excised from the gel under a UV-illuminator.  DNA was 

then extracted using the QIAquick® Gel Extraction Kit (Qiagen) according to the 

manufacturer’s instructions.  DNA was eluted off the column using 30 µl RNase free 

water. 

 

2.7 Real-Time Quantitative-PCR techniques 

 

2.7.1 qPCR primers  

Similarly to section 2.6.1 qPCR primers were designed using Primer3 and obtained from 

VH Bio Ltd. but in this instance were purified using HPLC.  Primers were designed to 

overlap an exon-exon junction so that cDNA could be differentiated from any 

contaminating genomic DNA using size. 

 

2.7.2 Generation of standards for qPCR 

qPCR primers were used to amplify up fragments of the gene of interest using RT-PCR.  

The resultant PCR products were then cloned into the TOPO® vector pCR®2.1-TOPO® 

using the TOPO TA Cloning®Kits according to the manufacturer’s instructions.  Colonies 

were screened using colony PCR (see section 2.6.4) and the plasmid extracted using the 

Qiagen Miniprep kit (Qiagen) according to the manufacturer’s instructions (see section 

2.6.6).  The concentration of the final elutate was determined using a Unicam UV 500 

spectrophotometer  (Thermo Spectronic, WI, USA).  The plasmids were then diluted down 

to the appropriate concentrations to act as standards for qPCR reactions. 

 

2.7.3 qPCR reaction 

In order to minimise any potential contamination of samples, preparation of all 

components and master mix was performed under a flow hood.  In addition, all plastics and 

DEPC-treated water (Ambion) were treated with UV prior to use.  First a master mix was 

prepared of 1x SYBR Green Master Mix (Stratagene), 0.2 "M of each primer and DEPC-

treated water to a volume of 23 µl and added to each thin walled PCR tube.  To this, 2 "l of 

diluted (1 in 3) cDNA or plasmid standard was added.  Optically clear caps were applied to 
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the tubes and care was taken to ensure no liquid contained any bubbles. Samples were then 

loaded into the MX4000 qPCR machine (Stratagene) and run according to the 

manufacturer’s instructions. For the primers used in this study, an annealing temperature of 

either 59 or 60 °C was used (see table 2.3). To obtain values of expression, the cycle 

numbers generated for the standards of each primer set were used to generate a standard 

curve.  From this, amounts of cDNA for each of the samples were determined.  The 

expression of each gene was normalised against the concentration of ACTIN2 transcripts in 

each sample. 

 

2.8 DNA cloning 

 

2.8.1 Isolation of plasmid DNA 

A Qiagen® Plasmid Mini kit was used to extract plasmid DNA.  One colony containing 

the plasmid of interest was picked and placed in 5 ml LB medium plus the appropriate 

antibiotic.  The culture was left to grow overnight at 37 °C with shaking.  The culture was 

then spun at 6,000 g for 15 mins to pellet cells.  Lysis of the cells and subsequent 

purification of the plasmid was then performed as per manufacturer’s instructions.  The 

plasmid was eluted off of the column with 50 µl sterile distilled water.  The concentration 

of the plasmid was determined and was then stored at -20 °C.  

 

2.8.2 Digestion 

Approximately 1 µg of DNA was digested using the appropriate restriction enzymes and 

buffers at concentrations specified in the manufacturers instructions.  Reactions were 

incubated for two hours at 37 °C.  Products were then run on a 1 % agarose gel to ensure 

digestion had been successful.  Bands of the appropriate size were then excised and 

purified using the QIAquick® Gel Extraction Kit (Qiagen) according to the manufacturer’s 

instructions. 

 

2.8.3 Ligation 

Approximately 200 ng of vector/insert was incubated with 1x ligation buffer, 1U T4 DNA 

ligase (Promega) and sterile water up to a total volume of 10 µl.  The reaction was left to 
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proceed overnight at 4 °C or for three hours at room temperature.  Ten µl of this ligation 

was then used to transform XL1-Blue cells as per manufacturers instructions. 

 

2.8.4 Transformation of E. coli cells. 

XL1-Blue (Stratagene) and TOP10® (Invitrogen) cells were chemically transformed as per 

manufacturer’s instructions. 

 

2.9 Protein methods 

 

2.9.1  Protein extraction from Arabidopsis seedlings 

12-21 day old seedlings were hand ground in Micro-Extraction buffer (20 mM HEPES pH 

7.8, 450 mM NaCl, 50 mM NaF, 0.2 mM EDTA, 25 % (v/v) glycerol, 0.5 mM PMSF, 1 

mM DTT and 1 tablet of protease inhibitor mix (Roche Applied Science, Mannheim, 

Germany) per 10 ml of Micro-Extraction buffer) using a mortar and pestle on ice.  Samples 

were then subjected to three freeze-thaw treatments (30 s on dry ice (or until sample fully 

frozen) followed by 30 s at 37 °C (or until sample fully thawed)).  They were then spun 

down at 10 000 g for 10 mins at 4 °C to pull down most of the cellular debris.  The 

supernatant was removed and transferred to a fresh tube.  

 

2.9.2 Quantification of protein concentrations 

To determine the concentrations of the protein samples obtained, the Bradford Assay was 

used.  Bradford assay solution (Bio-Rad) was diluted five-fold with distilled water and 

passed through a filter to remove any particulates.   1 µl of protein sample was put into a 

cuvette, 999 µl of diluted Bradford solution added and the solution mixed well.  The 

spectrophotometer was set to read at an absorbance of 550 nm and was blanked using 1 ml 

diluted Bradford solution.  The absorbance of the samples was recorded and compared to a 

standard curve generated using a serial dilution of BSA standards of known concentration 

(1, 2, 3, 4, 6, 8 and 10 µg µl
-1

). 

 

2.9.3  SDS-polyacrylamide gel electrophoresis 

Five µl of 4x protein loading buffer (250 mM Tris-HCl pH 6.8, 2 % (w/v) SDS, 20 % (v/v) 

$-mercaptoethanol, 40 % (v/v) glycerol, 0.5 % (w/v) bromophenol blue) was added to 

equal amounts of protein sample and the volume made up to 25 µl using Micro-extraction 
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buffer.  Samples were then heated to 95 °C for 5 mins before being loaded onto a SDS-

PAGE gel consisting of a top layer of 4 % polyacrylamide stacking gel (4 % (w/v) 

acrylamide, 132 mM Tris-HCl pH 6.8, 0.1 % (w/v) SDS, 0.05 % (w/v) APS, 0.15 % (v/v) 

TEMED ) and a bottom layer of 10 % polyacrylamide separating gel (10 % (w/v) 

acrylamide, 0.38 M Tris-HCl pH 8.8, 0.1 % (w/v) SDS, 0.05 % (w/v) APS, 0.07 % (v/v) 

TEMED).  Gels were run for approximately 45-50 mins (depending on separation 

required) at 200 V in a running buffer consisting of 25 mM Tris- HCl pH 8.5, 190 mM 

glycine and 1 % (w/v) SDS.  To estimate the molecular weights of the proteins of interest, 

a pre-stained protein marker (New England Biolabs) was run alongside the samples. 

 

2.9.4 Western Blotting 

Proteins were transferred from SDS-PAGE gels onto nitrocellulose membranes at 100 V in 

transfer buffer (25 mM Tris-HCl pH8.5, 190 mM glycine, 20 % w/v methanol).  

Membranes were then stained in a solution of Ponceau (0.1 % (w/v) Ponceau S, 1 % (v/v) 

acetic acid) to reveal bands of Rubisco and thus determine if equal loading of protein 

samples had been achieved.   To remove this stain, membranes were washed briefly in 

TBS (25 mM Tris-HCl pH 8, 150 mM sodium chloride, 2.7 mM potassium chloride) 

before being blocked for an hour in a milk solution (8 % w/v dried milk powder dissolved 

in 1 x TBS-T (25 mM Tris-HCl pH 8, 150 mM sodium chloride, 2.7 mM potassium 

chloride, 0.1 % (v/v) Triton X-100)).    

 

2.9.5 Immunolabelling 

Membranes were then incubated with primary antibody diluted in 8 % milk solution (see 

Table 2.3 for antibodies and concentrations used in this study) either for an hour at room 

temperature or overnight at 4 °C.  They were then washed twice in TBS-TT (25 mM Tris-

HCl pH 8, 150 mM sodium chloride, 2.7 mM potassium chloride, 0.2 % (v/v) Triton X-

100, 0.05 % (v/v) Tween-20) for 5 mins, followed by an additional 5 min wash is TBS.  

Secondary antibodies (anti-rabbit or anti-mouse, Promega) conjugated to HRP were again 

diluted down in an 8 % milk solution and poured onto the membranes.  These were left to 

incubate for an hour or more at room temperature.  Five wash steps in TBS-TT for five 

minutes were then performed.   
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2.9.6 Immunodetection 

To visualize protein bands, the ECL Plus™ Western Blotting Detection Reagents 

(Amersham) were used according to the manufacturer’s instructions.  After incubation in 

the detection reagents, membranes were carefully drained to remove excess liquid and 

placed between two sheets of clear plastic to prevent drying.  This was placed in an X-ray 

cassette and secured using tape.  Under safe light conditions, a sheet of X-ray film (Kodak) 

was placed over the membranes and the lid closed.  Initially, film was left for 10 seconds 

before being developed using a X-OMAT developer.  However, this time was adjusted for 

subsequent films according to the exposure seen on the first. 

 

2.10 Size exclusion chromatography 

 

2.10.1 Dialysis of protein samples 

Prior to loading on the agarose column, protein samples were first dialysed to exchange the 

microextraction buffer in which they were extracted (see section 2.7.1) for the phosphate 

buffer (0.05 M sodium phosphate, 0.15 M sodium chloride, pH 7.2) used to equilibrate the 

column.  Before being loaded into the cassette, protein samples were first microfuged 

again (at 10,000 g for 10 mins at 4 °C) to bring down any remaining cell debris.  

Approximately 0.5 ml of the supernatant was then loaded into the chamber of a Slide-a-

lyzer 10K MWCO dialysis cassette (Thermo Fisher Scientific Inc.) using a syringe 

according to the manufacturers instructions.  Cassettes were then suspended from 

polystyrene buoys and placed in beakers containing 500x cassette volume of phosphate 

buffer.  The beaker and contents were then left overnight at 4 °C on a magnetic stirrer to 

ensure continuous gentle movement.  The next morning, samples were removed from the 

cassettes and put on ice until ready to use. 

 

2.10.2 Size exclusion chromatography 

Approximately 600-800 µg total dialysed protein was loaded onto a Superose™ 6 HR 

10/30 column (GE Healthcare, Buckinghamshire, UK) which was connected to a BioCAD 

700E Workstation (Applied Biosystems, CA, USA) after the column had been equilibrated 

with phosphate buffer (0.05 M phosphate pH 7.2, 0.15 M NaCl).  Elution was performed at 

a flow rate of 0.3 ml/min at room temperature. A void volume of 5 ml was allowed to pass 

through the column before 80 fractions of 300 µl each were collected using a FC-203B 
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fraction collector (Gilson, WI, USA).  In order to calculate approximated sizes of eluted 

proteins/protein complexes, the column was calibrated using a high molecular weight 

standard kit (GE Healthcare). 

 

2.10.3 Concentration of fractions 

As protein samples were eluted off in relatively large volumes (300 µl), they were 

concentrated prior to loading onto SDS-PAGE gel using StrataClean™ resin (Stratagene).  

To each fraction, 3 µl of StrataClean™ resin was added.  Fractions were then vortexed 

vigorously for 1 min before centrifugation at 2,000 g for 1 min.  The supernatant was 

carefully removed and discarded.  5 µl protein loading buffer (see Section 2.7.3) and 10 µl 

phosphate buffer was added to each sample before being loaded onto 10 % SDS gel and 

run as described in Section 2.7.3. 

 

2.11 Generation of stable transgenic lines 

 

2.11.1  N-terminal deletion constructs 

A series of N-terminal deletion constructs were generated to study the sub-cellular 

localisation and functionality of UVR8.  Such deletions were made using the 

UVR8pro:NES-GFP-UVR8 construct in the pEZR(K)L-C vector described in Kaiserli and 

Jenkins (2007). Primers were designed to amplify UVR8 minus the relevant N-terminal 

amino acids as well as incorporate an EcoR1 restriction site at the 5’ end of the UVR8 

sequence (see table 2.3).  These N-terminal primers were used in combination with a C-

terminal primer which incorporates a SalI restriction site at the end of the UVR8 sequence 

in order to amplify fragments of UVR8 from a cDNA template.  The original full length 

fragment of the UVR8pro:NES-GFP-UVR8 vector was digested at the EcoR1 and SalI 

sites (see section 2.8.2).  This was then replaced with one of the amplified the N-terminal 

deletion fragments.   

 

2.11.2 N-terminal addition constructs 

A series of constructs whereby portions of the N-terminal of UVR8 were fused to NES-

GFP was generated.  A primer with a HindIII site at the 5’ end and specific to the N-

terminal part of the NES was used in combination with primers with a Sal1 site and 
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specific to the various portions of the N-terminal of UVR8 (see Table 2.4).  These were 

then used to amplify fragments from the UVR8pro:NES-GFP-UVR8 construct in the 

pEZR(K)L-C vector described in Kaiserli and Jenkins (2007).  The UVR8pro:NES-GFP-

UVR8 vector was then digested (see Section 2.8.2) at the HindIII and Sal1 sites to remove 

NES-GFP-UVR8.  The amplified fragments were then ligated (see Section 2.8.3) in its 

place. 

 

2.11.3  NES-GFP construct 

A construct was generated which consisted of a NES fused to GFP alone under the UVR8 

promoter.  The UVR8pro:NES-GFP-UVR8 construct was digested  (see Section 2.8.2) 

with EcoR1/Sal1 to remove the UVR8 sequence.  The DNA Polymerase I Large (Klenow) 

Fragment (Promega) was used to blunt the ends of the fragment according to 

manufacturer’s instructions.  The vector was then re-ligated (see section 2.8.3). 

 

2.11.4 Transformation of Agrobacterium tumefaciens 

One µl of relevant plasmid was added to 50 µl of Agrobacterium tumefaciens cells (strain 

GV3101) on ice and gently mixed.  This was transferred to a chilled electroporation 

cuvette and briefly pulsed with 2.5 kV using a MicroPulserTM Electroporator (BioRad).  1 

ml of ice-cold LB medium was immediately added.  This was then transferred to a 15 ml 

Falcon® tube along with the pipette tip and allowed to recover at 28 °C with shaking for at 

least 3 hours.  To ensure colonies with good separation were obtained, a serial dilution 

down to 1/1000 of the Agrobacterium suspension was performed.  Fifty µl of these 

dilutions was then plated out onto LB agar plates containing 30 µg ml
-1

 gentamycin and 50 

µg ml
-1

 kanamycin.  Plates were left at 28 °C for two days and colonies tested using colony 

PCR with the appropriate primers.   

 

2.11.5 Transformation using the floral dip method 

All constructs were transformed into the uvr8-1 background.  Plants were grown under 

high white light conditions until each bolt had several sets of flowers on.  Transformed 

Agrobacterium were grown from a single colony in 500 ml LB medium containing 30 µg 

ml
-1

 gentamycin and 50 µg ml
-1

 kanamycin at 28 °C until culture reached an optical density 

of 2.0.  The culture was then spun at 2,000 g for 10 mins to pellet the cells.  These were 

then resuspended in 1 l of infiltration medium (2.2 g l
-1

 Murashige and Skoog salts, 50 g l
-1
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sucrose, 0.5 g l
-1

  MES, 0.044 µM benzylaminopurine and 200 µl g l
-1

 Silwet L-77). This 

was poured into a shallow container.  Plants were turned upside down and aerial parts were 

submerged in the medium for 1 min.  Plants were then placed in autoclave bags to maintain 

a humid environment and returned to high fluence rate white light conditions.  The bags 

were removed after 2 days and plants were once again dipped in the Agrobacterium 

medium as described above.  Plants were then left to set seed.  This protocol was modified 

from Clough and Bent (1998). 

 

2.11.6 Selection of T1, T2 and T3 generations 

Transgenic seeds were grown on plates as described in Section 2.3.4.  A few of the 

seedlings that had grown successfully on the plates were checked for expression of the 

construct using confocal microscopy (see Section 2.12).  Approximately 30-40 T1 

seedlings were transferred to individual pots of soil and allowed to set seeds.  These were 

then grown under continuous high fluence rate white light conditions until they set seeds. 

T2 lines were checked for 3:1 segregation and subsequently for expression of GFP.  

Roughly 5 lines were then carried on.  One T3 lines that showed 100 % resistance to 

kanamycin were then tested for localization and complementation.  As there were 

problems finding lines with suitable levels of expression for analysis, a second T2 line was 

also checked for localization and complementation. 

 

2.11.7 Transient expression in Nicotiana benthamiana 

Agrobacteria were freshly transformed as described in Section 2.10.2.  One colony was 

picked and added to 10 ml LB medium plus 30 µg ml
-1

 gentamycin and 50 µg ml
-1

 

kanamycin.  The culture was left to grow at 28 °C with shaking overnight.  Cells were then 

spun down at 4,000 rpm in a centrifuge for 5 mins and the pellet resuspended in 10 ml of 

sterile 10 mM MgCl2.  The OD600 of this culture was measured and then diluted down in 

the appropriate volume of sterile 10 mM MgCl2 until an OD600 of 0.2 was achieved.  

Acetosyringone (dissolved in DMSO) was added to the culture to a final concentration of 

200 µM.  The culture was then left at room temperature for a minimum of 2 hours.  Small 

incisions were made on the underside of the leaf of a 4-6 week old Nicotiana benthamiana 

plant.  A syringe was filled with the Agrobacterium solution and placed over these 

incisions.  Pressure was gently applied using the fingertips on the upper-side of the leaf and 

the plunger carefully plunged thereby filling the intercellular space of the leaf with the 
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solution.  Plants were left for five days to allow expression of the constructs.  Leaf tissue 

was then taken and examined by confocal microscopy as described in Section 2.12.1. 

 

2.12 Confocal microscopy 

 

2.12.1 Localisation studies in Arabidopsis 

12-14 day-old Arabidopsis plants or sections of tobacco leaf were infiltrated with water 

before being mounted on glass slides.  A confocal laser scanning microscope (Zeiss LSM 

510) with an argon laser set to 488 nm was used to excite GFP fluorescence.  In order to 

prevent any overlap with chloroplast autoflourescence, GFP emission was recorded 

between 505-530 nm.  For detection of nuclei, plants were instead infiltrated with 50 "g 

ml
-1

 of 4’, 6’-Diamidino-2-phenylindole (DAPI) (Molecular Probes) and left for 15 mins in 

the dark before being mounted on slides.  To visualise DAPI fluorescence, a UV laser set 

to 395 nm was used.  All images were taken using the 40 x objective lens.  In the case of 

Arabidopsis stable transgenic lines, 25 images were taken from at least 6 plants and the 

experiment was repeated three times.  For transient expression, at least three separate 

tobacco plants were transformed on separate occasions and images were subsequently 

taken from two or more leaves.  A minimum of 70 images in total were analysed.  In each 

case, the number of nuclei exhibiting DAPI fluorescence and the number showing GFP 

fluorescence were compared to give a ratio of GFP/DAPI.  

 

2.13 Computational techniques 

 

2.13.1 Identification of UVR8-like proteins 

UVR8 protein sequence was inputted into the BLASTP algorithm available at 

http://blast.ncbi.nlm.nih.gov/Blast.  In the case of the UVR8-like sequences in Arabidopsis, 

the organism was set to Arabidopsis thaliana (taxid:3702).  23 UVR8-like sequences were 

found and retrieved for further analysis.  To find potential UVR8 homologues in other 

plant species, the organism was set to Plants (taxid:3193).  365 Blast hits were returned 

and the top scoring sequence for each species listed was retrieved.  The sequence for 

Chlamydomonas reindhardtii was found by setting the organism to Chlorophyta 

(taxid:3041) and the sequence for human RCC1 was retrieved from the Entrez database 
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(http://www.ncbi.nlm.nih.gov/sites/entrez).  Sequences for Physcomitrella patens were 

kindly provided by Dr Andrew Cuming (University of Leeds, UK). 

 

2.13.2 Protein alignment 

Protein sequences were aligned using the ClustalX program (version 2.0, 

www.clustal.org).  Phylogenic trees were constructed using the Bootstrap N-J Tree option 

with 1000 bootstrap trials.  Trees were viewed using TreeView X software 

(http://darwin.zoology.gla.ac.uk/~rpage/treeviewx/). 

 

2.13.3 Microarray comparison 

Venn diagrams were constructed using GeneVenn software 

(http://mcbc.usm.edu/genevenn/genevenn.htm).  Microarray comparisons across studies 

were performed by incorporating all data into a FileMaker Pro 10® (Filemaker Inc., CA, 

USA) database.  Data was then exported to Excel® (Microsoft, USA) and sorted according 

to frequency of occurrence for each gene. 
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Table 2.1  Oligonucleotide primers used in RT-PCR experiments 

Name Sequence of Primer Pair Amplified 

Fragment 

size 

Locus No. 

cycles 

ACTIN2 5’-CTTACAATTTCCCGCTCTGC-3’ 

5’-GTTGGGATGAACCAGAAGGA-3’ 

500bp 3g18780 24 

 

ANAC013 5’-AGCTCGTTGTTTCGGCTAGT-3’ 

5’-TCAGGAGACCAGAACCATCC-3’ 

294bp 1g32870 26* 

At2g41730 5’-GTCACCAAGGCATCGTAAGG-3’ 

5’-ACTTGATAGCTGGCGACACG-3’ 

198bp 2g41730 26* 

At3g12830 5’-CTAATCCGTCGTCTCTCTCG-3’ 

5’-ACTCCTTTTTGCTCGTAACC-3’ 

278bp 3g12830 30 

ATBFRUCT1 5’-CCAGCTATCTTCCCATCTGC-3’ 

5’-AGGTTCACCAAACGAAGACG-3’ 

477bp 3g13790 30 

CHS 5’-ATCTTTGAGATGGTGTCTGC-3’ 

5’-CGTCTAGTATGAAGAGAACG-3’ 

337bp 5g13930 26 

DNAJ 5’-TCGTCGGAGAGTTTCTAGCC-3’ 

5’-AAGCGTCGAGTCGTAAATCG-3’ 

205bp 3g13310 26* 

ELIP1 5’-GTAGCTTCCCTAACCTCAAG-3’ 

5’-GAATCCAACCATCGCTAAAC-3’ 

239bp 3g22840 24 

HY5 5’-AGCATCTGGTTCTCGTTCTG-3’ 

5’-GCTGCAAGCTCTTTACCATC-3’ 

404bp 5g11260 28 

HSP23.5M 5’-GCGGAAATGAAGAATGGTGT-3’ 

5’-AAGTCAAAATCCCGAACACA-3’ 

219bp 5g51440 26 

GSTU28 5’-ACGAGACGTGGACTGATGCT-3’ 

5’-CGAGTGCGTAGAACCAACTGT-3’ 

285bp 1g53680 26 

MATE4g 5’-CATGAATATCAACGGCTTGG-3’ 

5’-CAGCCACACCAGAAACAACC-3’ 

305bp 4g25640 28 

MYB4 5’-TGGAACACGCATATACGAAG-3’ 

5’-GGAAGACTGATTCTGAGCTC-3’ 

299bp 5g26660 28 

RPK 5’-ACAATGCGTTTCTCTTCCACA-3’ 

5’-GCGAGTTGAATGTTGATGGAT-3’ 

396bp 3g22060 26 

UVR3 5’-ACCTGGCGAAGTACTAGTTC-3’ 

5’-CTCAAGAGATGGTACTTCTG-3’ 

340bp 3g15620 32 

WRKY 5’-TGCACACCAGTTTGGATCAG-3’ 

5’-CAGCGTTCTATCAACACCAG-3’ 

256bp 5g24110 26 

 

*  For these primer sets, an annealing temperature of 57 °C was used instead of 55 

°C to ensure that clear sharp bands were seen on an agarose gel. 
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Table 2.2 Oligonucleotide primers used in Q-PCR experiments. 

Name Sequence of Primer Pair 

Amplified 

Fragment 

size 

Origin 

ACTIN2 
5’-ACTAAAACGCAAAACGAAAGCGGTT-3’ 

5’-CTAAGCTCTCAAGATCAAAGGCTTA-3’ 
211 

Love et al. 

2005 

CHS 
5’-CTACTTCCGCATCACCAACA-3’ 

5’-TTAGGGACTTCGACCACCAC-3’ 
195 

Designed 

using Primer3 

ELIP1 
5’-GTGAGATGCATGGCTGAGG-3’ 

5’-ACGAATCCAACCATCGCTAA-3’ 
203 

Designed 

using Primer3 

HY5 
5’-GGCTGAAGAGGTTGTTGAGG-3’ 

5’-CAGCATTAGAACCACCACCA-3’ 
222 

Designed 

using Primer3 

WRKY 
5’-TCCGATCAAGAACCACTTGTC-3’ 

5’-TGGCTTCACATCCTTGAGACT-3’ 
211 

Designed 

using Primer3 

FAH1 
5’-ATGATGGGGATGTTGTCGAT-3’ 

5’-ACTCCGTTAAGGCCCACTCT-3’ 
201 

Designed 

using Primer3 

PHYB 
5’-AGCAAATGGCTGATGGATTC-3’ 

5’-CCGTTCTGATTCTCGGATGT-3’ 
200 

Designed 

using Primer3 

SPA1 
5’-GCCCTTGGTGTTCTTCTGTT-3’ 

5’-CTGAATCATCCTCGCATATCA-3’ 
223 

Designed 

using Primer3 

ANAC13 
5’-AAGAAAGATCCGTCGGAAAAA-3’ 

5’-CCAATAGCCACGTTCAGTAGC-3’ 
187 

Kasajima et 

al. 2007 

2g41730 
5’-GTCACCAAGGCATCGTAAGG-3’ 

5’-TCCGGTGGTATTTGAATGGT-3’ 
146 

Kasajima et 

al. 2007 
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Table 2.3 Oligonucleotide primers used to generate UVR8 N-terminal deletion 

constructs 

 

Construct Primer sequence Tm 

UVR8PRO:NES-GFP-

%12NUVR8 
5’-TAGAATTCCCTCCTCGTAAGGTTCTTATC-3’ 62 

UVR8PRO:NES-GFP-

%20NUVR8 
5’-TAGAATTCTCCGCTGGTGCTAGCCACT-3’ 62 

UVR8PRO:NES-GFP-

%33NUVR8 
5’-TAGAATTCGACATTGTTTGTTCTTGGGGTC-3’ 64 

C-terminal 5’-TAGTCGACTCAAATTCGTACACGCTTGACA-3’ 62 
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Table 2.4 Oligonucleotide primers used to generate UVR8 N-terminal constructs 

 

Construct Primer sequence Tm 

N-terminal 5’-AAAAGCTTATGCTTCAGAACGA-3’ 60 

UVR8PRO:NES-GFP-

+12NUVR8 
5’-TAGTCGACAGCCGTAACTTCGTCGGCA-3’ 60 

UVR8PRO:NES-GFP-

+20NUVR8 
5’-TAGTCGACGATGATAAGAACCTTACGAGG-3’ 60 

UVR8PRO:NES-GFP-

+32NUVR8 
5’-TAGTCGACAGAGAGAAGAGCGACGGAG-3’ 60 
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. 

CHAPTER 3 UVR8-INDEPENDENT SIGNALLING IN ARABIDOPSIS 

 

3.1 Introduction 

Previous experiments have demonstrated the vital role that UVR8 plays in UV-B response 

pathways in Arabidopsis; the uvr8 mutant is unable to survive in sunlight (Brown et al. 

2005).  This however does not exclude the possibility that other important response 

pathways exist that act independently of this protein and its associated pathway.  Indeed 

prior microarray studies performed by Brown and co-workers (2005) showed that a large 

number of genes, many of which appear to be UVR8 independent, exhibit a significant 

increase in expression under ambient levels of UV-B.  The UVR8 pathway functions at 

low fluence rates of UV-B and is the only UV-B-specific response pathway identified to 

date.  It is currently unknown whether additional low fluence UV-B specific pathways 

exist.  Therefore the purpose of this study was to determine if such UVR8-independent 

UV-B specific pathways do indeed exist and if so, to further characterise them.  To achieve 

this end, two main approaches were used.  Firstly microarray analyses were employed to 

define more clearly a list of candidate genes.  Subsequently, the expression of these genes 

was assessed in a number of mutant backgrounds using both RT-PCR and qPCR methods.  

The findings of this chapter demonstrate that a small number of genes exist which are 

induced under low fluence rates of UV-B, mostly in a manner that is independent of UVR8 

as well as HY5/HYH, COP1 and known photoreceptors.   Furthermore, these genes do not 

appear to be induced by DNA damage, are induced at very low fluences and show 

evidence of unique expression profiles. 

 

3.2 Results 

3.2.1 Very low fluences of UV-B induce expression of many genes 

A previous microarray study performed by Brown and co-workers (2005) illustrated that a 

large number of genes in Arabidopsis are induced after illumination with UV-B (639 genes 

at a false discovery rate (FDR) of 5 %).  Of these 639 genes, the expression of only 72 

were lost in the uvr8 mutant leaving 567 genes that are regulated by unknown mechanisms 

under UV-B.  Hence, it seems that many other UV-B response pathways must exist.  

However, when looking at these results, we must take into consideration the fact that 

treatments were performed at a comparatively high fluence rate of 3 "mol m
-2

 s
-1

.  This 
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level of UV-B radiation has since been shown to trigger induction of several non-specific 

stress-related genes (Brown and Jenkins 2008).  It may thus be supposed that a significant 

portion of these 567 UVR8-independent genes are induced as part of a generalised stress 

response and not specifically in response to the UV-B stimulus.  Consequently, in order to 

identify only those genes that are UV-B specific, two further microarrays were performed 

using methods as described by Brown et al. (2005) at lower fluence rates of 0.3 and 1 "mol 

m
-2

 s
-1

 UV-B.  Arabidopsis plants were grown for three weeks under a low fluence rate of 

continuous white light (LWL, 20 "mol m
-2

 s
-1

) before treatment with four hours of UV-B 

at the fluence rates stated above.  Control plants were taken directly from the growth rooms 

with LWL conditions.  Leaf tissue was harvested post-treatment, RNA extracted from three 

independent sets of plants and submitted for microarray analysis.  Lists of induced genes 

were compared using software available at http://mcbc.usm.edu/genevenn/genevenn.htm.  

Dependence on UVR8/HY5 was determined using the previous results (utilising uvr8 and 

hy5 mutants) obtained by Brown et al. (2005).  Venn diagrams depicting the level of 

overlap between microarrays are shown Figure 3.1.   

It was expected that treatment with low fluence rates of UV-B would induce fewer 

genes than higher fluence rates because, arguably, fewer stress induced genes should be 

expressed.  However, contrary to expectations, the total number of genes that were induced 

by these treatments was not reduced compared with the previously performed microarray.  

572 and 549 genes were up-regulated at a FDR of 5 % for 0.3 and 1 "mol m
-2

 s
-1

 

microarrays respectively.  Similar relationships (in terms of total number of genes induced) 

also held true when increasingly stringent FDRs of 2 % and 1 % were applied.   

When considering the lists of genes produced from each microarray, it can be seen 

that a good degree of overlap exists (see Figure 3.1).  As might be expected, 3 and 1 "mol 

m
-2

 s
-1 

and 1 and 0.3 "mol m
-2

 s
-1

 show greater degrees of overlap with each other than do 

0.3 and 3 "mol m
-2

 s
-1

.  Nevertheless, a proportion of these genes (between 9.2 and 53.3 % 

of the total number induced) do seem to be specific to each fluence rate experiment, 

thereby suggesting a reasonable amount of “noise” may exist in the data.   

Turning now to the UVR8/HY5 pathway, the results shown here are similar to 

those found in the earlier Brown study.  For example, previously only 72 genes out of the 

total 639 could be attributed to the UVR8-regulated pathway.  In the case of two lower 

fluence rate microarrays, the majority of these were also detected (64 and 61 for 0.3 and 1 

"mol m
-2

 s
-1

 respectively).  Similarly, approximately half the UVR8-dependent genes were 

those that have been shown to be regulated by HY5 alone (it is likely that the remaining 

half are regulated in a HY5/HYH redundant mechanism although this has yet to be 
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thoroughly tested).  Interestingly, when looking at increased stringency (i.e. a FDR of 1 % 

compared to 5 %), UVR8-regulated genes show a greater representation at lower fluence 

rates than at 3 "mol m
-2

 s
-1

.  For example, when a more stringent cut-off point of 1 % FDR 

is selected, the two lower fluence treatments still retain most of the UVR8-dependent genes 

(49 and 55 genes for 0.3 and 1 "mol m
-2

 s
-1

 respectively).   For the higher fluence 

treatment however, the number drops from 72 genes for 5 % to only 15 for 1 %.  

It would therefore appear that a large number of genes are indeed induced 

specifically under the conditions tested here and that “stress” genes may have only 

accounted for a small proportion of those up-regulated in the Brown study.  Furthermore, 

the fact that UVR8-regulated genes only account for a small proportion of the total up-

regulated genes even at low fluences of UV-B suggests that at least one UVR8-

independent UV-B specific signalling pathway exists. 

 

3.2.2 Gene expression changes at a FDR of 5 % cannot be detected using qPCR  

As it was planned to follow up interesting genes from the microarray results using PCR 

techniques, an appropriate significance cut-off point for selection of these genes was 

required.  In several previous studies, a significance cut-off of 5 % was used (Ulm et al. 

2004; Brown et al. 2005; Oravecz et al. 2006).  Therefore to determine if this is indeed a 

relevant choice, expression of well-known genes that appeared around this mark across all 

three microarrays was assessed (see Figure 3.2 A).  This includes genes encoding 

phytochrome B, SPA1 (a phytochrome interacting protein) and FAH1 (an enzyme involved 

in the synthesis of flavonoids).  Primers for these genes were designed and qPCR used to 

assess transcript levels in the same RNA samples that were submitted for microarray 

analysis.   

Of the three genes tested, none showed a strong increase in expression when 

exposed to either fluence rate of UV-B (see Figure 3.2 B).  Consequently it seems that 

either our methods were not sensitive enough to detect the same changes that are apparent 

in the microarray data for this level of expression change or that a 5 % FDR cut-off is 

insufficiently stringent to identify true differentially expressed genes.   

It was therefore decided that a more stringent FDR might be more appropriate.  

Accordingly, the microarray gene lists were searched for well-known UV-B induced 

genes.  Two such examples included those that encode phenylalanine ammonia-lyase 

(PAL1) and cinnamate 4-hydroxylase (C4H), enzymes involved in the biosynthesis of 

flavonoids which absorb UV-B radiation and prevent its transmission to lower tissues.   It 

has been previously demonstrated using either RT-PCR or mRNA hybridization methods 
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that their transcript levels are increased in response to a UV-B stimulus (Li et al. 1993; 

Long and Jenkins 1998; Jin et al. 2000).  The FDR values of these genes were then 

determined from the microarray data.  In the case of the two lower frequency microarrays, 

these genes appeared with FDRs between 1 and 2 % (PAL: 1.26 % for 0.3 "mol m
-2

 s
-1

, 

1.08 % for 1 "mol m
-2

 s
-1

.  C4H: 1.79 % 0.3 "mol m
-2

 s
-1

, 1.17 % "mol m
-2

 s
-1

).  We were 

therefore confident that we would be able to detect transcriptional changes of other un-

tested genes of similar FDRs using RT-PCR also.  This was indeed found to be true when 

such genes were later tested (see Figure 3.8).  Therefore, for future analysis, only genes 

that appeared with a FDR of 2 % or less were considered. 

 

3.2.3 A 2 % FDR  cut-off point produces a list of 74 genes common to all three fluence 

rates  

A comparison between all three microarrays led to the conclusion that those genes that 

appeared at a FDR of 2 % or less and were common to all three microarrays would yield 

the most interesting results.  This conferred a list of 74 genes with an apparently wide 

variety of functions.  Of these, 23 are known to be regulated by UVR8 (half of which i.e. 

11 are also dependent on functional HY5).  Thus the remaining 51 genes are apparently up-

regulated specifically in response to UV-B acting in as yet unknown pathways.  These 

genes were subsequently grouped by presumed function using the TAIR web resource 

(www.arabidopsis.org).  The final list is shown in Figure 3.4.  

There are a number of genes with potentially interesting functions included in this 

list.  For example the NAC transcription factor (from Petunia NAM and Arabidopsis 

ATAF1, ATAF2, and CUC2) ANAC13 (Arabidopsis NAC domain containing protein 13) 

was recently shown to be up-regulated by UV-B stimuli and contains a novel UV-B 

responsive element in its promoter (Safrany et al. 2008).  A second transcription factor 

belongs to the plant specific WRKY superfamily (named after the first four amino acids in 

its sequence).  Other members of this family have been shown to have roles in responses to 

both biotic and abiotic stimuli (Eulgem et al. 2000).  Similarly to the WRKYs, heat shock 

proteins (HSPs) have also been shown to increase in expression under environmental 

stimuli and one member, HSP23.5M, is represented here (Feder and Hofmann 1999).  

Unsurprisingly, several genes are associated with metabolic changes similarly to 

UVR8-regulated genes.  For example, there are a number of enzymes including members 

of the UDP-glucosyl transferase family, one of which (3g21560) has been previously 

shown to have a role in flavonoid biosynthesis and be upregulated in response to UV-B 
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(Meißner et al. 2008).  While the exact functions of other UDP-glucosyl transferases have 

yet to be fully elucidated, their roles could also be essential to the UV-B response. 

The expression of several of these potentially interesting genes as well as several 

others (highlighted in red in Figure 3.4) is examined in Section 3.2.6 onwards. 

 

3.2.4 UV-B Down-regulated genes 

Identification of up-regulated genes can lead to new insights into the responses of plants to 

various stimuli.  This however is only part of the story.  While some genes are induced and 

some remain unchanged, a whole suit of others may be down-regulated.  When considering 

potentially stressful conditions, it is logical that some cellular reactions etc. are turned off 

until such time as the ‘danger’ has passed or has been ameliorated.  Consequently, in 

addition to the list of the up-regulated genes, the microarray study performed using low 

fluence rates of UV-B (as described in Section 3.2.1) also generated a list of genes that are 

down-regulated in response to these conditions.  As before these were compared with those 

results obtained from the 3 "mol m
-2

 s 
-1

 microarray to assess the level of overlap as can be 

seen in the Venn diagrams of Figure 3.4 A. 

In Figure 3.4 B it can be seen that fewer genes are down-regulated in response to 

UV-B than are up-regulated although the difference is not great.  In addition the total 

number of genes down-regulated at each cut-off point remains fairly constant across the 

three fluence rates, similar to the situation for up-regulated genes.  Therefore changing the 

fluence rate does not have an apparent effect on the number of genes down-regulated. 

As with the up-regulated gene lists, a list was generated which included all genes 

that are down-regulated at a FDR of 2 % or less across all three studies.  Potential 

functions were assigned and the resulting list is shown in Figure 3.4 B.  Again the genes 

show a wide variety of functions.  Interestingly however, unlike those up-regulated by UV-

B several of these have potential roles in cell wall architecture, cell structure and plant 

growth.  For example the list includes genes that are responsive to hormones (auxin-

responsive (2g21210) and gibberellin-responsive (1g74670)), microtubule organisation 

(kinesin motor protein-related (3g50240)), cell wall components ((xyloglucan 

endotransglucosylase/hydrolase (4g37800) and arabinogalactan protein (1g55330)), 

enzymes with potential roles in lipid metabolism/catabolism (fatty acid elongase, putative 

(2g15090) and GDSL-motif lipase/hydrolase family protein (1g29660)), an enzyme 

involved in cutin biosynthesis and protochlorophyllide oxidoreductase A (PORA) which is 

involved in chlorophyll biosynthesis (5g54190).   

It has previously been shown that plants alter their morphology in response to UV-
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B such as the inhibition in hypocotyl (Favory et al. 2009) and so it would seem that genes 

associated with changes in plant architecture would show changes in expression levels.  

Although the functions and regulation of these down-regulated genes will not be pursued 

in this study, it is important to remember that environmental responses involve both the 

promotion and inhibition of some processes. 

 

3.2.5 Analysis of microarray data from other UV-B studies 

Microarrays and the study of transcriptome changes are extremely useful tools in the 

analysis of responses to a number of stressful and informational stimuli in a multitude of 

organisms.  It is therefore unsurprising that several studies have used these methods to 

examine UV-B responses in plants.  The results of these contain a wealth of information 

and have each produced lists of potentially interesting genes.  However, no recent analyses 

have been performed which compare the data from these studies.  As a result, it was 

decided to do just this and conduct a general comparison of the up-regulated gene lists 

generated by various microarray experiments performed using material from UV-B treated 

Arabidopsis.  Published gene lists from Ulm et al. (2004), Oravecz et al. (2008), Kilian et 

al. (2007), Hectors et al. (2007) and Brown et al. (2005) were obtained and input into the 

FileMaker database program.  This allowed a spread sheet to be generated which displayed 

the number of times a gene was found across all datasets.  Finally, as a variety of 

microarrays under different conditions were used in each study, the data was collated for 

each study.  From this the number of times a gene appeared in at least one of the 

microarrays (i.e. the “count”) within a study could be determined. The top scoring genes 

are shown in Figure 3.5.   

Intriguingly, no one gene appeared in all microarray studies and only seven genes 

were common to five out of the six studies thus suggesting that UV-B responses might not 

be as conserved as we might expect.  It should be noted that this lack in universally 

induced genes is not due to the effect of one particular study.  The absence of expression of 

genes seems to be relatively evenly spread across all studies and therefore not due to one 

study skewing the results.  Nevertheless, these top scoring seven genes do include many 

that have previously been shown to have major roles in UV-B responses.  For example, 

both ELIP genes are included as well as SigE, all of which are UVR8-dependent genes.  

The remaining four genes however, a transducin family protein / WD-40 repeat family 

protein (5g52250), a UDP-glucoronosyl/UDP-glucosyl transferase family protein 

(4g15480), a GCN5-related N-acetyltransferase family protein (2g32020) and a receptor 

protein kinase-like (3g22060), have no defined role as yet in UV-B responses.  The 



62 

expression of the last of these will be covered in following sections.  However as the final 

three of these genes are strongly shared across microarray studies (and are only absent for 

the Hectors et al. 2007 study) this flags them as potentially interesting candidates for future 

studies. 

Knowing the vital role that HY5 has in UV-B responses and its apparent strong up-

regulation shown in this study, it is perhaps surprising that it is not universally up-

regulated in UV-B microarrays.  Nevertheless, it does appear in two thirds of the studies 

along with two other transcription factors, ANAC13 and 3g01970 (from the WRKY 

superfamily). 

One final gene, 2g41730 is notable due to its extremely strong up-regulation in 

response to UV-B shown in this study (for fold change data see Appendix 1) and that 

performed by Brown et al. (2005).  However, besides these microarrays, induction of this 

gene was only seen in one of the four other studies.  Therefore if this unknown protein 

does have a role in UV-B responses, it may be highly specific to the treatment conditions. 

The vast majority of genes (2802 out of a total of 3517) were unique to each study.  

This low degree of overlap is most likely a reflection of the wide range of conditions used; 

ecotype, plant ages, tissues, fluence rates, and wavelengths all differed across these 

experiments.  Hence, this demonstrates the need for careful consideration of the treatment 

conditions used when undertaking such a study.  These results could suggest that UV-B 

responses may be modified highly dependent on such factors such as those listed above.  

Alternatively, it may be that there is a large amount of noise inherent in the data.  Indeed, 

by looking at the sheer number of genes that are counted as UV-B up-regulated across 

these studies, 3517 total, it would be surprising to find such a vast variety in responses to 

this one stressor. 

Thus in conclusion, while a few interesting candidate genes can be identified using 

this approach, comparisons across studies are firstly limited due the variation in 

experimental methods and also due to the additive error which can potentially cloud the 

underlying pathways. 

 

3.2.6  Expression profiles of UV-B specific genes 

One technique that can be employed to elucidate regulatory pathways is to look for gene 

co-expression patterns.  It was therefore decided to examine the expression of several UV-

B induced genes in plants exposed to differing durations of UV-B radiation treatment.  

Accordingly it could then be seen whether genes regulated by the same transcription 
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factors had similar expression profiles, if these differed from the expression profiles of the 

transcription factors themselves and so forth.   

It has been previously shown that CHS and ELIP1 are both regulated by HY5 

(Brown et al. 2005).  Therefore the expression of these three genes, along with WRKY30 (a 

gene that seems to be involved in stress pathways (Brown and Jenkins 2008)), were 

examined first.  Three week old white light grown plants were treated with 3 "mol m
-2

 s
-1

 

UV-B for times ranging between 0 hrs (white light control) and 15 hours.  Gene expression 

was analysed using qPCR and normalised against ACT2 transcript levels.  Plots of gene 

expression are shown in Figure 3.6A. 

As expected, expression of HY5 showed an earlier increase than any of the other 

genes tested.  Furthermore, this increase was very rapid, reaching 40 % of its maximum in 

only 30 minutes, and nearly 100 % in an hour.  After this initial rapid peak, expression 

dropped swiftly and plataued at approximately 60 % from 6 hours onwards.   

Again, as one might expect, those genes that are known to be regulated by the same 

factors, namely CHS and ELIP1 (by both HY5 and UVR8), show remarkably similar 

expression profiles.  Both show a slow (in comparison to HY5) increase in expression 

before reaching a peak at around 4 hours.  This is followed by a slow reduction to about 60 

% of maximal induction.  Nevertheless, the two gene profiles are not identical; ELIP1 

seems to exhibit a second increase in expression at the tail end of the expression profile.   

Transcripts of the transcription factor WRKY30 initially accumulate and peak 

similarly to both CHS and ELIP1, but then shows a dramatic, rapid decrease in expression.  

Finally, after 12 hours expression appears to plateau at a much lower level of around 20 % 

of maximum. 

Two UVR8 independent UV-B up-regulated genes listed in Figure 3.2 were also 

tested over a timecourse to determine if they followed any patterns similar to the other 

genes examined in Figure 3.6A.  Results of these timecourses are shown in Figure 3.6B.  

ANAC13, like HY5 and WRKY30, is a transcription factor.  However unlike HY5, 

ANAC13 does not show an initial rapid increase in expression, instead exhibiting a more 

gradual one akin to that of CHS and ELIP1.  Furthermore this increase remains relatively 

slow, with a peak in expression not being reached until approximately 9-12 hours.   

Finally At2g41730, a protein of unknown function, was also chosen for analysis as 

it shows very large increases in expression under UV-B (fold change values of 17.08, 

119.77 and 318.97 for 0.3, 1 and 3 "mol m
-2

 s
-1

 respectively).  No information currently 

exists concerning the function of this protein nor does it have any recognisable domains.  
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Therefore it is of interest to see where its profile fits in compared to other UV-B induced 

genes.  Results are shown in Figure 3.6C. 

2g41730 again shows an initial increase in expression similar to that of CHS and 

ELIP1, but does not peak until the later point of 6 hours.  Its expression then decreases to 

roughly 50 % although this decrease is not as rapid as that seen for WRKY30.   

The results here demonstrate that UV-B induced genes show very similar initial 

increases in expression with the exception of HY5.  After the first couple of hours the 

expression profiles of genes regulated by different factors appear to be quite divergent, 

while for those that share regulatory factors, profiles remain comparable.  Therefore it 

seems possible that this type of analysis could be used to help untangle the regulatory 

pathways induced by UV-B exposure. 

 

3.2.7  RT-PCR and qPCR timecourses give similar results. 

The same samples used in qPCR expression analysis were also examined using semi-

quantitative RT-PCR to assess the similarity between these methods.  In the case of RT-

PCR, values for gene expression were obtained by measuring the intensity of bands run on 

an ethidium bromide containing gel using Gel Doc software.  As for qPCR, values for the 

genes of interest were normalised against those for ACT2 bands.  This was performed for 

three samples and plotted on the same graph as the data for relevant qPCR experiments.  

The results of these are shown in Figure 3.7. 

For all four of the genes tested, there was a reasonable degree of overlap between 

the two methods.  While the RT-PCR data are not truly quantitative, it seems that under 

these conditions they are representative.  Therefore, as RT-PCR seemed representative and 

at the very least showed similar differences in maximum to basal expression, it was 

decided that this method would be sufficient to analyse the expression of genes of interest 

in different backgrounds in future experiments. 

 

3.2.8 UVR8 independent genes that show an increase in expression specifically under 

low fluences of UV-B exist  

In addition to the previously mentioned genes, ANAC13 and 2g41730, several other genes 

that fell into the UVR8-independent UV-B induced category were selected for further 

investigation.  Both HSP23.5M (At5g51440) and a DnaJ protein (At3g13310) were chosen 

as they potentially act as molecular chaperones during stressful conditions where protein 

folding may be affected.  The list also included a gene for a receptor protein kinase like 
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protein (RPK-L At3g22060), which is a candidate for signalling component as it contains a 

domain (DUF26) found in serine/threonine protein kinases.   This RPK-L gene also 

showed up-regulation in five out of the six microarray studies compared in Figure 3.4.  

Finally a Multi Antimicrobial Extrusion (MATE, At4g25640) protein that functions as an 

antiporter was also selected. 

In previous experiments performed by the Jenkins group, low fluence rate white 

light conditions (in which the plants were grown) were used as a control (Brown et al. 

2005; Kaiserli and Jenkins 2007; Cloix and Jenkins 2008).  That is, one control plant was 

left in these conditions while the others were transferred to a separate treatment room fitted 

with UV-B bulbs.  In addition, UV-B treatments were normally conducted using these UV-

B emitting tubes alone, without supplementary white light (the UV-B tubes themselves 

give off very little PAR).  As a consequence, to ensure these experimental conditions were 

appropriate, a number of different light combinations were tested on wild type and uvr8-1 

plants to determine whether changing light conditions had an effect on expression patterns.   

Samples were obtained from plants taken directly from the white light growth conditions 

as well as after the standard 4 hour 1 "mol m
-2

 s
-1

 UV-B treatment.  In addition to the 

above, plants were placed under UV-B lamps with supplementary white light, under tubes 

covered with a filter to remove UV-B wavelengths and finally plants were transferred to 

the treatment rooms for four hours in the dark.  RT-PCRs were then run on these samples 

to look at the expression levels of the potential UV-B induced, UVR8-independent genes.  

Representative results are shown in Figure 3.8.   

Interestingly, transferral of plants from the white light growth room to the treatment 

room is sufficient to induce expression of a number of the supposed UV-B induced genes 

independent of any light treatment.  DnaJ and the MATE gene chosen both are induced 

under both minus UV-B and dark conditions suggesting that the conditions in the room 

alone are affecting gene expression.  It is also of interest to note that the receptor like 

kinase mRNA shares this trend in the wild type plant, but appears to follow a more 

expected pattern (e.g. like that of CHS in wild type) in the uvr8 mutant. 

However, ANAC13, 2g41730 and HSP23.5M all show expression patterns similar 

to that of CHS – it is only where plants have been exposed to UV-B that we see an increase 

in expression levels.  As a result, it would seem that for these genes at least we can be 

confident that they are both UV-B specific and UVR8-independent. 

Consequently, for the purpose of this study, only those genes that were confirmed 

to be UV-B specific were taken on for further analysis. 
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3.2.9 UVR8 independent genes are induced by very low fluence rates of UV-B 

One of the defining features of the UVR8-dependent pathway has been the fact it operates 

even under very low fluence rates of UV-B (as low as 0.1 "mol m
-2

 s
-1

, Brown and Jenkins 

2008).  Furthermore, in the Brown study, genes that were identified as UVR8-independent 

did not show induction at fluence rates below 1 "mol m
-2

 s
-1

.  Therefore to demonstrate 

that low fluence UV-B pathways that act independently of UVR8 do indeed exist, the 

expression of ANAC13, At2g41730, HSP23.5M and RPK-L were analysed.  RT-PCR 

results are shown in Figure 3.10.   

For all genes tested, it seems that they are induced at sufficient levels under low 

fluence rates of UV-B to be detectable using RT-PCR.  For most cases, the results are 

comparable with results for CHS.  HSP23.5M is the exception to this, it seems to be 

expressed from 0.2 "mol m
-2

 s
-1

 onwards.   

 

3.2.10 Induction of UVR8-independent genes mostly occurs independently of HY5 

and HYH 

UVR8, HY5 and HYH all seem to have an important and intimately connected role within 

the same UV-B responsive pathway; half the genes regulated by UVR8 are also regulated 

by HY5 alone and the remaining half seemingly via a HY5/HYH redundant mechanism 

(Brown and Jenkins 2008).  We cannot however exclude the possibility that individual 

components such as HY5 and HYH have roles in other pathways.  Section 3.2.9 

demonstrates that ANAC13 and other genes act independently from UVR8 but they may 

still require HY5 and/or HYH.   

Therefore, expression of these genes was tested in single mutants as well as the hy5 

hyh double mutant.  In almost all cases, induction under UV-B is retained in the mutants.  

The exception to this is again HSP23.5M which seems to have slightly reduced expression 

in the hy5 hyh double mutant relative to wild type and single mutants. 

It is also interesting to note that while expression of these genes has been shown for 

low fluences (see Section 3.2.9), there is a greater difference in expression of these genes 

between 0.3 and 1 "mol m
-2

 s
-1

 than seen for CHS.  That is, bands at 0.3 "mol m
-2

 s
-1

 are 

less evident when viewed next to 1 "mol m
-2

 s
-1

. 

In summary, it seems that we can rule out the involvement of either HY5 or HYH 

in the UV-B induction of ANAC13 ad At2g41730. 
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3.2.11 Induction of UVR8 independent genes mostly occurs independently of COP1 

CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), a protein involved in the 

negative regulation of photomorphogenesis, has also been shown to have a positive role in 

UV-B signalling (Oravecz et al. 2006).  In contrast to conditions under white light alone, 

COP1 under UV-B acts as a positive regulator of HY5 and hence UV-B signalling and acts 

with UVR8 (Favory et al. 2009). Consequently, the same set of genes was tested in the 

cop1-4 mutant to determine if expression is retained, reduced or lost.   

As can be seen in Figure 3.11, ANAC13, 2g41730, and RPK-L all do retain 

expression in the cop 1-4 mutant.  HSP23.5M however, does not.  Thus it seems this latter 

gene may be tied into a pathway involving COP1, HY5 and HYH.  As, to date, COP1, 

HY5 and HYH are the only know regulatory components in the UVR8 pathway, it can be 

concluded that the expression of at least two genes exist entirely outside of this pathway. 

 

3.2.12 Induction of UVR8 independent genes is not dependent on known 

photoreceptors 

While the photoreceptors responsible for the perception of red/far red and blue/UV-A 

wavelengths have been well defined, the hypothesised UV-B photoreceptor remains 

elusive.  There have been numerous theories on how the UV-B signal is perceived, none of 

which have been proven.  One such theory is that there is no UV-B specific photoreceptor 

and that the plant detects UV-B via known photoreceptors.  This has been disproved in the 

case UVR8-dependent genes (Brown and Jenkins 2007), however it cannot yet be excluded 

for those UVR8-independent genes.  As a result, it was decided to examine the expression 

of ANAC13, HSP23.5M, 2g41730 and RPK-L in mutants that lack some of the major 

classes of photoreceptors.  These mutants included cry1 cry2 which lacks both 

cryptochromes, phot1 phot2 which lacks both phototropins, phyA phyB which is deficient 

in the main two phytochromes, and finally hy1-100 which is unable to make the 

chromophore that is incorporated in the phytochrome photoreceptor (it should be noted that 

hy1-100 is somewhat “leaky”). 

Similarly to previous experiments, expression of the genes was analysed using RT-

PCR, the results of which can be seen in Figure 3.13.  All genes tested retain normal 

induction in response to UV-B in all mutants.  Therefore it would seem that the majority of 

UV-B responses are not triggered via known photoreceptors. 
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3.2.13 Role of DNA damage in expression of 2g41730 and ANAC13 

It has also been suggested that a single protein/family of proteins may not be responsible 

for UV-B perception but that instead other macromolecules may absorb UV-B radiation 

and pass on the signal.  DNA for example shows a strong absorption at around 280 nm, as 

do many proteins.  Such absorption of UV-B may result in DNA damage in the form of 

pyrimidine (6-4) pyrimidone photoproducts (6-4 PP) and cyclobutane pyrimidine dimers 

(CPDs).  It has thus been suggested that such damage is the primary signal which initiates 

UV-B signalling cascades.  To test this possibility it was therefore decided to assess 

transcript levels of both ANAC13 and 2g41730 in mutants that are deficient in DNA repair 

mechanisms and as a result accumulate more dimers after UV-B exposure.  The uvr2 

mutant is deficient in the photolyase that repairs CPDs and thus is incapable of repairing 

the predominate form of UV-B induced DNA damage.  Although 6-4PP dimers form a 

lower percentage of the dimers induced by UV-B, the uvr1 uvr3 mutant which is deficient 

in the repair of these in both light and dark conditions was also tested (Nakajima et al. 

1998).  As it is possible that under these conditions we would see an increase in expression 

(unlike in previous mutant analyses described here where a reduction or loss of expression 

was expected), qPCR was used to give quantitative results. 

Mutant and wild type plants were grown in 20 "mol m
-2

 s
-1

 white light and were 

either immediately sampled, treated with UV-B alone, UV-B plus white light or left in the 

dark.  A UV-B plus supplemental white light treatment was included as both photolyases 

require light (specifically blue/UV-A) to repair UV-B induced lesions. 

No genes that show a direct induction in response to this form of DNA damage 

have yet been described in Arabidopsis.  However, in Phaseolus vulgaris an increase in 

expression of the gene encoding the "-1,3-glucanase enzyme was found (Kucera et al. 

2003).  Consequently the equivalent of this enzyme in Arabidopsis was found using KEGG 

(EC 3.2.1.39) and the TAIR websites.  Primers were designed for this gene, known as 

BETA-1,3-GLUCANASE 2 (BGL2), and also tested under the same conditions to see if an 

increase in expression in mutants relative to wild type plants was found.  This would thus 

act as a positive control for the experiment. 

The results in Figure 3.13 show that for ANAC13 and 2g41730, mutants and wild 

type have similar levels of expression under all conditions tested.  There may be a slight 

increase in the uvr2 mutant under LWL + UV-B conditions as opposed to LWL alone, 

however the difference is not particularly striking. 

CHS, as expected, had higher levels under LWL + UV-B compared to UB alone, 

but levels between mutants and Wt were roughly equivalent.  Interestingly, there seems to 
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be a greater variability in expression levels when LWL is introduced into the treatment 

conditions. 

For BGL2, levels appear to be reduced in uvr2 when light is absent, contrary to 

predictions.  The levels in wild type and uvr1 uvr3 seem roughly equivalent and even 

across all treatment conditions.  Therefore either the conditions tested here did not produce 

sufficient DNA damage to induce expression of BGL2 or alternatively, BGL2 in 

Arabidopsis is not induced in response to this stimulus. 

Therefore it seems likely that DNA damage repair is not responsible for ANAC13 

and 2g41730 expression under UV-B.  However, as this experiment lacks a positive 

control further tests would be needed to provide additional supporting evidence. 

 

3.3 Discussion 

The aim of this chapter was to investigate transcriptional changes that occur under UV-B 

radiation in Arabidopsis.  The results of the experiments show that many genes are induced 

under even very low fluences of UV-B.  However, it is yet unclear just what proportion of 

these genes might have arisen as false positives.  Nevertheless, several genes are induced 

under UV-B and are seemingly not under the regulation of any previously known or 

hypothesised UV-B response and perception components. 

 

3.3.1  Expression of genes in response to a UV-B treatment 

Numerous studies have used gene expression to examine the effects of UV-B exposure on 

plants such as Arabidopsis (Christie and Jenkins 1996; Ulm et al. 2004; Brown et al. 

2005).  Indeed the original studies which identified the uvr8-1 mutant identified that one 

feature of the mutant’s inability to respond effectively to UV-B was its lack of CHS 

expression.  Brown et al. (2005) furthered this work to show that loss in CHS expression is 

only specific to the UV-B stimulus while induction due to cold etc is retained.  While these 

studies demonstrated the vital role that UVR8 plays in UV-B mediated responses, it does 

not limit all UV-B responses to the control of UVR8.  One of the primary purposes of this 

study was therefore to determine whether such UVR8-independent responses existed and if 

so, to identify some of the components. 

One piece of evidence which hinted at the possibility of other UV-B responsive 

components was the existence of a large number of genes that showed a significant 

increase in expression under UV-B even in the uvr8-1 mutant.  This situation however was 

complicated by the ambiguous treatment conditions of 3 "mol m
-2

 s
-1

 UV-B which had the 
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potential to act as a stressor to the plant rather than purely a mild stimulus.  Additional 

microarray studies at lower fluence rates were therefore initiated to address this question.  

These also showed large numbers of induced genes thus indicating that general stress 

response pathways could not explain all of the changes in gene expression observed. 

However, further work using RT-PCR to examine the response of several selected genes 

(hypothesised to be UVR8-independent, low fluence rate induced) showed that transferral 

of plants to the treatment chambers without a UV-B source resulted in the up-regulation of 

a proportion of the genes tested.  Three conclusions can be drawn from this part of the 

study.  Firstly, the often-used control treatment of using plants taken directly from the 

growth conditions is not the optimal choice.  While it seems sufficient for those UV-B 

responsive genes that have been well studied such as HY5 and CHS, investigation into 

potential new candidate genes requires a stricter approach.  Here a true mock treatment 

should be used whereby control plants are transferred to the treatment chamber where the 

UV-B emitting fluorescent tubes have been covered in a mylar filter.  This cuts out all the 

radiation in the UV-B portion of the electromagnetic spectrum while leaving all other 

conditions constant.   

This leads into the second conclusion from this study, namely that there is some 

factor present in the treatment chambers (and presumably absent within the growth 

chambers) that can give rise to significant changes in gene expression.  This could be due 

to increased airflow, larger fluctuations in temperature or even the relatively low levels of 

light available to the plants when only UV-B tubes are present (an average of 4 "mol m
-2

 s
-

1
 PAR for a UV-B treatment of 3 "mol m

-2
 s

-1
, 2 for 1 and 0.8 for 0.3 "mol m

-2
 s

-1
).  Thus, 

an ideal experimental setup would involve growing the plants in the very same chambers 

where the UV-B treatment is to take place. 

The final conclusion to be drawn is that despite the apparent problems inherent in 

the current experimental setup, some true low fluence rate UV-B induced, UVR8-

independent genes do exist.  Therefore other pathways associated with the specific 

stimulus of UV-B must also exist and have some role in the overall adjustment of the plant 

to UV-B conditions.  The rest of this study therefore worked to further characterise this 

new class of genes. 

 

3.3.2  Low fluence rate UV-B UVR8-independent gene expression 

The existence of such genes having been confirmed, studies using a variety of available 

mutants was initiated in order to better characterise the low fluence rate UV-B UVR8-

independent signalling pathway.  Initial work showed that several genes retained 
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expression specifically in response to UV-B in the uvr8-1 mutant.  However, further work 

on the UVR8-mediated responses had shown the involvement of the transcription factors 

HY5 and HYH and also, in a more ambiguous role, COP1.  For example, it has been 

shown that half of all UVR8-regulated genes are also under control of HY5 (Brown et al. 

2005).  Furthermore, it seems that the remaining half may be regulated in a HYH/HY5 

redundant fashion (Brown and Jenkins 2008).  It therefore seems that all UVR8-mediated 

responses are funnelled through these two vital transcription factors, indeed hy5 hyh 

mutant plants show an extreme sensitivity to UV-B exposure (Brown and Jenkins 2007).  

In addition to a role in UV-B responses, HY5 is also a well-known component of other 

light responses.  This wide-ranging role suggests that HY5 may also be able to act in UV-B 

responses in a way that is independent of UVR8.  However, the work presented here 

largely supports a role for HY5 and HYH under UV-B that is entirely dependent on UVR8.  

Work by Brown et al. (2005) has shown that UVR8 binds to chromatin in the region of the 

HY5 promoter.  It therefore seems possible that for a role in UV-B responses, the promoter 

region of HY5 (and possibly also HYH) depends on ‘activation’ in some as yet cryptic 

manner by UVR8.  As UVR8 is present at the HY5 promoter prior to UV-B exposure, it 

seems activation occurs at the level of chromatin.  The way in which the transcription of 

HY5 is activated by UV-B through UVR8 has, to date, not been resolved.  Nevertheless, it 

seems that we can reject the theory of a UVR8-independent HY5-dependent pathway.  

Thus, this leaves three major classes of genes that are initiated by UV-B: those stimulated 

by pathways that are not specific to UV-B (when levels exceed 1-3 "mol m
-2

 s
-1

 UV-B), 

UVR8/HY5/HYH dependent and UVR8/HY5/HYH independent. 

Increasingly, evidence suggests a role for COP1 in UV-B mediated responses.  

Work by Ulm and co-workers has shown that induction of some genes is lost in the cop1-4 

mutant, that COP1 acts to positively regulate HY5 expression under UV-B (where as under 

white light it acts in the opposite manner) and that it seemingly interacts with the UVR8 

protein  (Oravecz et al. 2006; Favory et al. 2009).  The exact way in which this protein 

links in with the UVR8/HY5/HYH pathway has not yet been fully elucidated.  By testing 

those UVR8-independent genes, we can determine whether COP1 may have a broad role 

that covers all UV-B responses and not just those attributable to the partially characterised 

UVR8 pathway.  The results of this study show that at least one gene, HSP23.5M may be 

partially dependent on functional COP1 and HY5/HYH as it shows reduced induction 

under UV-B in both the cop1-4 and hy5 hyh mutant.  However, the methods used here, RT-

PCR, are not truly quantitative.  Therefore, this should be repeated using qPCR in order to 

resolve this more clearly.  It should be noted, that as no cop1 null mutants exist (due to 
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problems with lethality) the mutant allele used, cop1-4 is somewhat leaky.  It is therefore 

possible that we do not see a complete loss in HSP23.5M expression due to the presence of 

some residual levels of COP1. 

It is interesting to note that according to Safrany et al. (2008), ANAC13 expression 

is partially dependent on cop1-4.  This does not seem to be particularly clear from their 

PCR results, however there but is a small difference when you compare relative 

luminescence of a ProANAC13:LUC construct.  This suggests that COP1 may be having a 

more subtle effect on gene expression that is not readily detectable using RT-PCR 

methods.  Therefore, it again seems that more fine-scale methods need to be employed in 

order to gain a higher resolution of the pathways and interactions between components that 

occur upon UV-B exposure. 

 

3.3.3  Selection of candidate genes 

Comparisons across both low fluence rate (0.3 and 1 "mol m
-2

 s
-1

) microarrays as well as 

with data obtained from Brown et al. (2005) produced long lists of UV-B induced genes.  

Current technology however precludes the characterisation of so many genes 

simultaneously.  Therefore a common approach is to select a number of candidate genes as 

representatives of the group as a whole.  Clearly, in such a large mass of data it could be all 

too easy to lose any interesting genes amongst the general noise.  Thus, in order to 

maximise the chances of success (i.e. find genes with interesting and relevant expression 

patterns) a number of filtering approaches were used.  Initially, the data sets were 

compared in order to assess the level of overlap.  Any genes that did not appear in common 

to all three fluence rate treatments were excluded.  Subsequently, stricter significance cut-

offs were used once it was demonstrated that qPCR methods failed to detect differences in 

genes that were deemed differentially expressed according to the microarray data.  The 

result of these analyses was a list of 72 candidates, a significant cut-down from the original 

>500 candidates. 

The potential functions of these genes were then determined through use of the 

TAIR resource.  This allowed a final step whereby candidates could be selected on a priori 

knowledge on which may be the more informative.  For example, there are apparent holes 

in our knowledge of the signalling mechanisms by which the UV-B ‘message’ is 

transmitted.  Thus, investigating one of the transcription factors (ANAC13) and a potential 

kinase signalling component (RPK-L) may result in the filling-in of such holes. 

Selection processes using personal assessment of which may prove most 

‘interesting’ obviously has inherent problems.  We might for example be introducing a 
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huge human bias into the investigation.  Nevertheless, initial investigations using these 

methods can lead to interesting paths, sometimes in opposition to preconceived 

expectations.  Fortunately, technology is fast developing new higher throughput 

techniques.  Where once it took a decade to sequence a genome, it is now possible (albeit 

at some expense) to do so in a matter of days.  Therefore, the ideal situation in which all of 

the 72 candidate genes (and possibly more) are assessed simultaneously may not be that far 

in the future.  

 

3.3.4  Separating out gene pathways through timecourse analysis 

While several groups have used microarray analysis to gain further insight into the 

mechanisms of UV-B signalling, from the results described in Section 3.2.4 it seems that 

there is very little overlap between the resulting gene lists.  This reflects the great degree in 

variability in the ecotypes, tissues, treatment strength and treatment duration used by these 

groups.  Thus, in turn, there may be many different levels, tissue specific, age specific and 

even ecotype specific responses.  This would perhaps seem surprising considering the 

importance of this abiotic response.  With the move from an aqueous environment, which 

provides sheltering from the more harmful UV-B rays, to a terrestrial one plants 

necessarily had to develop protective measures.  We can therefore infer that the acquisition 

of UV-B tolerance occurred early in the evolution of land plants.  Thus it is somewhat 

difficult to explain the apparent variety in gene responses across studies.  However, this 

study has already highlighted the importance of selecting appropriate controls.  

Consequently, this diversity may in fact reflect a diversity in ‘false positives’ and general 

noise inherent in each experimental procedure.  Despite this apparent problem, at the very 

least this comparison method should highlight more clearly those genes which are vital in 

the UV-B response as these are more likely to be those shared across the experiments. 

An alternative solution for pulling out the most interesting UV-B responsive genes 

may involve the use of timecourses.  Work in this study showed that there appear to be 

different classes of expression profile depending on how a gene is regulated.  For example 

the transcription factor HY5 gene shows a characteristic early peak in expression while 

ELIP1 and CHS (both regulated by HY5) show very similar profiles to each other.  This 

could therefore act as a basis for separating out genes according to their expression profile.  

Indeed this method is already used, particularly by groups working on the circadian clock.  

If samples were taken at a variety of different time points and submitted for analysis by 

microarray, it may then be possible using one of many available statistical packages to 

separate out, and group these UV-B responsive genes.  This could subsequently be of 
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invaluable use in untangling the apparent multiple pathways associated with UV-B stimuli.  

The choice of which time points to use is an important one.  Data from the timecourses of 

CHS, HY5, ELIP1 and WRKY were analysed in order to assess which of these time points 

may be the most informative and separate out the different profiles.  The resulting 

selections and the equations used to derive them are included in Appendix I. 

 

3.3.5  Down-regulated genes under UV-B 

In general, the focus of this chapter has been on those genes that show an up-regulation in 

response to UV-B.  The other side of the coin however is those genes that show a down 

regulation.  As important as it is to initiate protective measures in response to indications 

of stress, it can be of equal importance to down-regulate processes that might suffer the 

most under these conditions or put a halt on growth to reallocate resources.  In the case of 

UV-B, it can be seen that altering growth in order to minimise UV-B absorption would be 

advantageous.  Accordingly, the low fluence rate microarrays show an abundance of genes 

down-regulated with hormone associations as well as apparent functions in growth and 

development. 

 

3.3.6 Final conclusions and future experiments 

In conclusion, work described in this chapter has shown that 1) current treatment 

conditions can cause the up-regulation of several (possibly many) genes, 2) low fluence 

rate UV-B UVR8/HY5/HYH-independent genes exist, 3) that a subset of these genes may 

be dependent on functional COP1 4) timecourse expression profiles could potentially be 

used as a criterion for separation of genes into groups and 5) many genes which are down-

regulated under low fluence UV-B are associated with plant growth/cell structure.  While 

these conclusions may have filled in some of gaps in knowledge concerning plant 

responses to low fluence UV-B, a great deal of work remains to be done.  Some potentially 

interesting avenues to pursue that have arisen as a result of work presented here are 

discussed below. 

One way in which more useful data could be drawn from the microarray performed 

would be to submit for analysis one further set of controls.  In this case it would be for 

plants that had been transferred to the treatment chamber where the UV-B tube had been 

covered in a mylar filter (which cuts out all UV-B wavelengths).  This would be the true 

‘mock’ treatments and would hopefully allow us to dissect out those genes induced purely 

in response to factors associated with placement in the treatment chambers.  As discussed 
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above, the ideal situation would still be to repeat the experiments whereby the plants were 

grown in the treatment conditions from the very beginning.  Nevertheless, inclusion of this 

control should enable elimination of at least some of the false positives seen. 

While microarrays and PCR methods have proved extremely useful in the study of 

this area, with the rise of next generation sequencing methods such as mRNA-Seq 

sequencing it will soon be possible to amass and analyse much larger datasets 

(www.illumina.com).  By collecting samples at different timepoints we could then analyse 

the transcriptome under each of these conditions more completely.  This may help built a 

more robust picture of the changes in gene expression that occur.  This method also has the 

advantage that it has a greater power to detect relatively rare transcripts.  Some members of 

the MYB grouping for example have been shown to be involved in UV-B responses.  They 

are however largely undetectable using the ATH chips. 

Currently, the lengths of sequences that are read using this method are relatively 

short (~70 bp at the time of writing), but this number is continuing to increase with further 

optimisation of reagents and the machinery involved.  It will eventually become possible to 

sequence much longer lengths, thus allowing identification of splice variants and the 

separation of close homologues. 

In summary, analysis of gene expression in one of the primary areas while will 

benefit from new technologies, higher throughput methods and bioinformatic approaches 

that are becoming more prevalent.  With the proper application of these methods we can 

hopefully build upon the knowledge gained here and fill some of the gaps both large and 

small in the network of low fluence UV-B response pathways. 

 



Figure 3.1  Venn diagrams depicting the overlap in gene expression between different 

fluence rates of UV-B.  Three week old Arabidopsis plants grown in a low fluence rate of 

white light (20 !mol m-2 s-1) were treated with either four hours of 0.3, 1 or 3 !mol m-2 s-1 

UV-B or were left in low white light as a control.  The numbers of genes which showed an 

increase in expression level were calculated for each of the three significance cut-off points 

(False Discovery Rate (FDR)).  Gene lists were then compared to those published by 

Brown et al. (2005) to determine overlap and dependence on either UVR8 or HY5.  

Numbers in orange circle denote those obtained in the Brown et al. (2005) 3 !mol m-2 s-1 

UV-B microarray, those in blue and green are those determined in this study to be induced 

by 1 and 0.3 !mol m-2 s-1 UV-B respectively. 
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Figure 3.2.  No increase in expression in response to UV-B can be detected for genes 

that appear at around the 5 % FDR cut-off mark in UV-B microarrays.  A  FAH1, SPA1 

and PHYB were selected for analysis as they all appear at approximately the 5 % FDR cut-

off mark in both the 0.3 and 1 !mol m-2 s-1 UV-B microarrays.  B  qPCR was performed on 

the same samples as were submitted for microarray analysis. No significant increases in 

expression in response to UV-B were seen for any of the genes.  White bars correspond to 

minus UV-B conditions, pale grey to 0.3 !mol m-2 s-1 and dark grey to 1 !mol m-2 s-1 UV-B.  

Error bars represent standard error for the three replicates. 
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UVR8 Regulated gene 

     0.3        1 

Metabolism and energy      Rpscore   FDR   Fcrma        RPscore FDR Fcrma 

At5g13930 chalcone synthase (CHS) 5.99 0 34.81 8.98 0 42.71 

At3g51240 naringenin 3-dioxygenase / flavanone 3-hydroxylase (F3H) 6.2 0 32.21 9.1 0 41.91 

At1g78600 zinc finger (B-box type) family protein 26.58 0 12.84 25.56 0.05 21.67 

At5g56090 cytochrome oxidase assembly family protein 45.69 0 9.8 41.74 0.03 16.26 

At4g15480 UDP-glucoronosyl/UDP-glucosyl transferase family protein 34.3 0 11.42 20.55 0.06 25.95 

At5g08640 flavonol synthase 1 (FLS1) 58.15 0 8.48 87.36 0.12 10.28 

At3g27380 
succinate dehydrogenase, iron-sulphur subunit, mitochondrial 

(SDH2-1) 90.46 0.09 6.8 101.32 0.19 9.47 

At5g17050 UDP-glucoronosyl/UDP-glucosyl transferase family protein 95.81 0.11 6.64 118.86 0.19 8.68 

Stress 

At3g22840 
chlorophyll A-B binding family protein / early light-induced 

protein (ELIP) 1.42 0 79.44 2.36 0 102.65 

At4g14690 
chlorophyll A-B binding family protein / early light-induced 

protein, putative 1.59 0 86.03 1.96 0 114.02 

At4g31870 glutathione peroxidase, putative 3.82 0 50.1 5.2 0 61.1 

Transcription factors 

At5g11260 bZIP protein HY5 (HY5) 27.14 0 13.09 72.79 0.11 11.45 

At5g24850 cryptochrome dash (CRYD) 29.36 0 12.81 88.06 0.12 10.22 

At5g24120 RNA polymerase sigma subunit SigE (sigE) 32.98 0 12.07 49.74 0.05 14.62 

At3g57020 strictosidine synthase family protein 141.21 0.35 5.48 216.7 0.58 5.82 

At3g17610 
bZIP transcription factor family protein / HY5-like protein 

(HYH) 145.43 0.36 5.31 150.87 0.33 7.29 

Transport 

At5g02270 ABC transporter family protein 8.14 0 26.03 10.62 0 40.04 

At5g44110 ABC transporter family protein 12.21 0 20.83 15.99 0 32.01 

At4g01660 ABC1 family protein 90.67 0.09 6.59 100.14 0.2 9.49 

Unknown 

At5g52250 transducin family protein / WD-40 repeat family protein 55.69 0 8.59 70.87 0.11 11.65 

At1g79270 expressed protein (ECT8) 112.53 0.17 6.08 163.65 0.34 6.86 

At3g17800 expressed protein 186.49 0.6 4.57 264.54 0.88 4.97 
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Figure 3.3.  74 genes that are induced by low fluence rates of UV-B.  List shows all genes 

that are induced in all three microarrays at a cutoff point of 2 % FDR. RPscore is a measure 

of differential expression FCrma gives the fold change in expression.  Those genes 

highlighted in red were taken on for further study. 
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UVR8 independent genes 

0.3 1 

     Rpscore   FDR   Fcrma        RPscore FDR Fcrma 

At3g21560 UDP-glucosyltransferase, putative 6.67 0 29.44 10.53 0 42.45 

At3g04000 short-chain dehydrogenase/reductase (SDR) family protein 15.92 0 18.33 34.71 0.03 18.99 

At1g05680 UDP-glucoronosyl/UDP-glucosyl transferase family protein 16.3 0 18.54 9.95 0 40.95 

At2g36750 UDP-glucoronosyl/UDP-glucosyl transferase family protein 19.56 0 15.41 11.82 0 37.38 

At5g22300 nitrilase 4 (NIT4) /// nitrilase 4 (NIT4) 20.49 0 15.3 19.94 0.06 25.54 

At5g53970 aminotransferase, putative 25.81 0 13.78 58.97 0.08 13.2 

At5g39050 transferase family protein 30.55 0 12.76 23.52 0.05 24.35 

At2g36790 UDP-glucoronosyl/UDP-glucosyl transferase family protein 32.41 0 12.57 23.55 0.05 24.34 

At2g25450 2-oxoglutarate-dependent dioxygenase, putative 32.98 0 11.7 32.49 0.04 18.52 

At5g43450 2-oxoglutarate-dependent dioxygenase, putative 43.22 0 10.1 43.14 0.03 15.84 

At3g57520 alkaline alpha galactosidase, putative 49.18 0 9.43 137.22 0.25 7.73 

At1g72680 cinnamyl-alcohol dehydrogenase, putative 50.12 0 9.42 56.42 0.09 13.86 

At2g29490 glutathione S-transferase, putative ATGSTU1 66.19 0.03 8.02 64.63 0.11 12.53 

At2g43820 UDP-glucoronosyl/UDP-glucosyl transferase family protein 70.52 0.03 8.02 88.7 0.11 10.29 

At2g29460 glutathione S-transferase, putative ATGSTU4 94.77 0.11 6.58 30.85 0.04 19.57 

At1g17170 glutathione S-transferase, putative ATGSTU24 95.38 0.11 6.78 5.04 0 72.49 

At1g05560 UDP-glucose transferase (UGT75B2) 110.88 0.17 6.26 97.98 0.19 9.64 

At4g34135 UDP-glucoronosyl/UDP-glucosyl transferase family protein 144.03 0.36 5.44 95.5 0.14 9.89 

At4g15550 

UDP-glucose:indole-3-acetate beta-D-glucosyltransferase 

(IAGLU) 157.65 0.45 5.28 199.75 0.49 6.24 

At2g30140 UDP-glucoronosyl/UDP-glucosyl transferase family protein 161.42 0.45 5.09 93.5 0.15 10.16 

At5g07440 glutamate dehydrogenase 2 (GDH2) 200.78 0.71 4.45 167.98 0.35 6.86 

At1g32940 subtilase family protein 203.01 0.73 4.41 38.03 0.03 17.18 

At3g54420 class IV chitinase (CHIV) 246.8 1.04 3.95 13.57 0 31.57 

At1g50380 prolyl oligopeptidase family protein 265.96 1.16 3.85 284.44 1 4.82 

At2g43620 chitinase, putative 267.98 1.17 3.79 136.92 0.24 7.62 

At3g22370 alternative oxidase 1a, mitochondrial (AOX1A) 287.88 1.24 3.76 151.66 0.34 7.29 

At4g22530 embryo-abundant protein-related 293.3 1.28 3.67 45.51 0.03 15.8 

At1g09500 cinnamyl-alcohol dehydrogenase family / CAD family 295.87 1.29 3.63 68.27 0.11 12.02 

At4g20860 FAD-binding domain-containing protein 302.88 1.3 3.64 121.57 0.2 8.46 

At2g37760 aldo/keto reductase family protein 330.68 1.52 3.51 250.98 0.79 5.28 

At1g22400 UDP-glucoronosyl/UDP-glucosyl transferase family protein 359.91 1.85 3.27 57.35 0.08 13.26 

Signalling 

At3g22060 receptor protein kinase-related 64 0.02 8.15 60.7 0.08 13.11 

Stress 

At3g13310 DNAJ heat shock N-terminal domain-containing protein 8.14 0 26.86 29.4 0.04 20.92 

At3g50970 

dehydrin xero2 (XERO2) / low-temperature-induced protein 

LTI30 (LTI30) 37.86 0 11.33 47.04 0.03 14 

At5g51440 

23.5 kDa mitochondrial small heat shock protein (HSP23.5-

M) 326.29 1.47 3.54 10.93 0 36.07 

Transcription factors 

At3g01970 WRKY family transcription factor 41.75 0 10.42 68.66 0.11 11.86 

At1g32870 no apical meristem (NAM) family protein 73.15 0.03 7.59 38.84 0.03 16.67 

Transport 

At4g25640 MATE efflux family protein 22.51 0 14.76 41.4 0.03 16.33 

At3g21690 MATE efflux family protein 88.95 0.08 6.87 102.84 0.18 9.42 

At1g79410 transporter-related 171.4 0.49 5.01 94.72 0.14 9.68 

At4g01870 tolB protein-related 199.28 0.7 4.55 176.49 0.38 6.59 

At1g61800 glucose-6-phosphate/phosphate translocator, putative 290.14 1.26 3.64 47.66 0.02 14.35 

Unknown 

At2g41730 expressed protein 16.88 0 17.08 2.05 0 119.77 

At1g10140 expressed protein 20.12 0 15.25 59.86 0.08 12.74 

At5g13360 auxin-responsive GH3 family protein 35.14 0 12 54.32 0.09 14.84 

At1g68620 expressed protein 53.57 0 9.13 38.72 0.03 16.91 

At2g31945 expressed protein 113.32 0.17 5.97 39.85 0.03 16.55 

At2g36630 expressed protein 119.74 0.21 5.87 192.8 0.44 6.21 

At1g21550 calcium-binding protein, putative 154.22 0.44 5.07 93.07 0.14 9.76 

At5g54100 band 7 family protein 202.69 0.73 4.4 66.55 0.1 12.47 

At5g42150 expressed protein 226.68 0.95 4.17 86.45 0.12 10.29 

At1g63840 zinc finger (C3HC4-type RING finger) family protein 237.55 1.03 4.05 196.28 0.45 6.07 



   0.3    1 

Rpscore FDR Fcrma RPscore FDR Fcrma 

Cell associated 

At1g55330 arabinogalactan-protein (AGP21) 335.29 1.57 -3.36 214.43 0.71 -4.41 

Hormone responsive 

At2g21210 auxin-responsive protein, putative 76.86 0.07 -7.45 122.99 0.27 -6.64 

At1g74670 gibberellin-responsive protein, putative 173.19 0.46 -4.68 77.35 0.19 -7.63 

Metabolism and energy 

At5g23020 2-isopropylmalate synthase 2 (IMS2) 236.69 0.86 -4.06 187.78 0.55 -4.74 

At4g03050 2-oxoglutarate-dependent dioxygenase, putative (AOP3) 39.63 0.04 -9.28 43.04 0.03 -9.85 

At5g44020 acid phosphatase class B family protein 199.48 0.61 -4.28 52.17 0.13 -8.51 

At1g04040 acid phosphatase class B family protein 41.25 0.03 -9.59 50.39 0.11 -9.22 

At3g02020 aspartate kinase, lysine-sensitive, putative 341.17 1.64 -3.17 195.19 0.59 -4.53 

At2g15090 fatty acid elongase, putative 33.59 0 -9.62 24.05 0 -12.63 

At1g29660 GDSL-motif lipase/hydrolase family protein 24.5 0 -10.64 29.42 0 -10.82 

At1g26560 glycosyl hydrolase family 1 protein 295.56 1.31 -3.36 267.03 1.17 -3.74 

At5g03760 glycosyl transferase family 2 protein 178.61 0.47 -4.22 182.67 0.51 -4.52 

At1g03310 isoamylase, putative / starch debranching enzyme, putative 267.73 1.08 -3.56 288.1 1.32 -3.64 

At3g14210 myrosinase-associated protein, putative 93.66 0.11 -6 138.8 0.36 -5.25 

At5g63180 pectate lyase family protein 319.68 1.49 -3.31 200.72 0.63 -4.44 

At3g07010 pectate lyase family protein 251.81 0.97 -3.85 263.38 1.15 -3.96 

At3g18000 phosphoethanolamine N-methyltransferase 1/PEAMT 1 (NMT1) 317.4 1.48 -3.31 347.82 1.95 -3.34 

At4g00400 phospholipid/glycerol acyltransferase family protein 377.87 1.99 -2.98 310.09 1.59 -3.5 

At5g54190 NADPH-protochlorophyllide oxidoreductase A (PORA) 108.47 0.11 -5.42 84.77 0.19 -6.61 

At4g30020 subtilase family protein 221.49 0.74 -3.92 293.87 1.39 -3.64 

At4g37800 xyloglucan:xyloglucosyl/endo-xyloglucan transferase, putative 117.14 0.14 -5.57 199.53 0.62 -4.46 

Signalling 

At3g25500 formin homology 2 domain-containing protein 366.77 1.93 -3.02 354.58 1.99 -3.28 

At3g19850 phototropic-responsive NPH3 family protein 211.33 0.68 -4 67.21 0.16 -7.49 

At1g54820 protein kinase family protein 177.44 0.48 -4.22 150.19 0.44 -4.93 

At1g51940 

protein kinase family/peptidoglycan-binding LysM domain-containing 

protein 327.2 1.54 -3.35 127.92 0.32 -5.72 

At3g05490 rapid alkalinization factor (RALF) family protein 153.82 0.38 -5.09 104.51 0.21 -6.57 

Stress 

At3g12610 DNA-damage-repair/toleration protein, putative (DRT100) 147.18 0.34 -4.88 114.87 0.25 -5.85 

At4g30660 Hydrophobic/low temperature and salt responsive protein, putative 219.78 0.73 -4.39 209.94 0.69 -4.63 

Transcription factors 

At2g34620 mitochondrial transcription termination factor-relate /mTERF-related 369.15 1.92 -2.98 77.08 0.17 -7 

At5g08330 TCP family transcription factor, putative 176.15 0.48 -4.6 23.42 0 -12.79 

Transport 

At3g50240 kinesin motor protein-related 343.38 1.65 -3.2 143.43 0.38 -5.3 

At3g10520 non-symbiotic hemoglobin 2 (HB2) (GLB2) 116.78 0.14 -5.69 178.64 0.5 -4.71 

At1g55260 protease inhibitor/seed storage/lipid transfer protein (LTP) family protein 134.42 0.26 -4.95 71.75 0.17 -7.12 

Unknown 

At1g13650 expressed protein 121.14 0.21 -5.28 170.64 0.48 -4.88 

At5g03120 expressed protein 164.69 0.39 -4.85 168.83 0.49 -5.17 

At2g30930 expressed protein 182.29 0.49 -4.51 64.59 0.15 -8.19 

At5g11070 expressed protein 331.18 1.55 -3.37 55.44 0.12 -8.86 

At1g49500 expressed protein 60.47 0.02 -8.37 109.35 0.24 -6.8 

At3g60320 expressed protein 317.74 1.48 -3.26 127.4 0.31 -5.47 

At2g34510 expressed protein 79.19 0.07 -6.83 48.75 0.11 -9.08 

At2g42320 nucleolar protein gar2-related 363.96 1.92 -3.13 342.38 1.92 -3.46 

Figure 3.4  Genes that are down-regulated by low fluence rates of UV-B.  Three week old 

Arabidopsis plants grown in a low fluence rate of white light (20 !mol m-2 s-1) were treated with 

either four hours of 0.3, 1 or 3 !mol m-2 s-1 UV-B or were left in low white light as a control. A 

Venn diagrams depicting the overlap in gene repression between different fluence rates of UV-

B.  The numbers of genes which showed an decrease in expression level were calculated for 

each of the three significance cut-off points (False Discovery Rate (FDR)).  B List shows genes 

that are down-regulated in all three microarrays at a cutoff point of 2 % FDR. RPscore is a 

measure of differential expression FCrma gives the fold change in expression.  
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A 

Brown Headland  Ulm Hectors Kilian Safrany Count 

Gene Title 3uE 1uE 0.3uE 1hr  6hr Low Mid  .25hr   .5hr   1hr 3hr 6hr 24hr 1hr 6hr 96hr 

AT4G14690 

chlorophyll A-B binding family 

protein / early light-induced protein, 

putative 

Y Y Y N N N Y N Y Y Y N N Y Y Y 5 

AT3G22840 

chlorophyll A-B binding family 

protein / early light-induced protein 

(ELIP) 

Y Y Y N N N Y N Y Y N N N Y Y Y 5 

AT5G52250 
transducin family protein / WD-40 

repeat family protein 
Y Y Y N Y N N N Y Y N N N Y Y Y 5 

AT4G15480 
UDP-glucoronosyl/UDP-glucosyl 

transferase family protein 
Y Y Y N Y N N N N Y Y N N Y Y N 5 

AT2G32020 
GCN5-related N-acetyltransferase 

(GNAT) family protein 
Y Y N N Y N N N Y Y Y N N N N Y 5 

AT5G24120 
RNA polymerase sigma subunit SigE 

(sigE) / sigma-like factor (SIG5) 
Y Y Y N Y N N N N Y N N N Y Y N 5 

AT3G22060 receptor protein kinase-related Y Y Y N Y N Y N N N N N N N Y N 5 

AT3G51240 
naringenin 3-dioxygenase / flavanone 3-

hydroxylase (F3H) 
Y Y Y N N N N N N Y Y N N Y Y Y 4 

AT3G52740 expressed protein Y Y Y N N N N N Y Y N N N Y Y Y 4 

AT5G17050 
UDP-glucoronosyl/UDP-glucosyl 

transferase family protein 
Y Y Y N N N N N Y Y N N N Y Y Y 4 

AT3G21560 UDP-glucosyltransferase, putative Y Y Y N N N Y N N N N N N Y Y Y 4 

AT3G54420 class IV chitinase (CHIV) Y Y Y N Y N N N N N N N N Y Y Y 4 

AT4G01660 ABC1 family protein Y Y Y N Y N N N N N N N N Y Y Y 4 

AT4G37150 esterase, putative N Y Y N Y N N N N N Y N N Y Y Y 4 

AT5G08640 flavonol synthase 1 (FLS1) Y Y Y N N N Y N N N N N N Y Y Y 4 

AT1G05560 UDP-glucose transferase (UGT75B2) Y Y Y Y Y N N N N N N N N N N Y 4 

AT1G32870 
no apical meristem (NAM) family 

protein 
Y Y Y N N N N N N N Y N N Y Y N 4 

AT1G32940 subtilase family protein Y Y Y N N N N N N N Y Y N N N Y 4 

AT1G68620 expressed protein Y Y Y N Y N N N N N N N N Y N Y 4 

AT1G78600 zinc finger (B-box type) family protein Y Y Y N Y N N N N N N N N Y Y N 4 

AT2G17270 
mitochondrial substrate carrier family 

protein 
N Y Y N Y N N N N Y N N N Y Y N 4 

AT4G25640 MATE efflux family protein Y Y Y N N N N N N Y N N N Y Y N 4 

AT4G37290 expressed protein Y Y N N Y N N N Y Y Y N N N N N 4 

AT5G02270 ABC transporter family protein Y Y Y N N N N N N Y N N N Y Y N 4 

AT5G11260 bZIP protein HY5 (HY5) Y Y Y N N N N N N Y N N N Y Y N 4 

AT5G44110 ABC transporter family protein Y Y Y N N N N N N Y N N N Y Y N 4 

AT1G05680 
UDP-glucoronosyl/UDP-glucosyl 

transferase family protein 
Y Y Y N N N N N N N Y N N N N Y 4 

AT1G32350 alternative oxidase, putative Y Y N Y Y N N N N N Y N N N N N 4 

AT1G72680 
cinnamyl-alcohol dehydrogenase, 

putative 
Y Y Y N Y Y N N N N N N N N N N 4 

AT2G04050 MATE efflux family protein Y Y N N Y N N N N N Y Y N N N N 4 

AT2G04070 MATE efflux family protein Y Y N N Y N N N N N Y Y N N N N 4 

AT2G21640 expressed protein Y Y N N N N N N N N Y Y N N N Y 4 

AT2G22880 VQ motif-containing protein  Y N N N Y N N Y Y N N N N Y N N 4 

AT2G29460 glutathione S-transferase, putative Y Y Y N Y N N N N N N N N N Y N 4 

AT2G31945 expressed protein Y Y Y N N N N N Y N N N N N Y N 4 

AT2G32030 
GCN5-related N-acetyltransferase 

(GNAT) family protein 
Y Y N N Y N N Y Y N N N N N N N 4 

AT2G37970 SOUL heme-binding family protein Y N N N Y N N N N Y N N N Y Y N 4 

AT2G38465 expressed protein N N N Y Y Y N N N N Y N N N Y N 4 

AT3G01970 WRKY family transcription factor Y Y Y N Y N N N N N N N N N Y N 4 

AT3G17800 expressed protein Y Y Y N Y N N N N N N N N Y N N 4 

AT3G27380 
succinate dehydrogenase, iron-sulphur 

subunit, mitochondrial (SDH2-1) 
Y Y Y N Y N N N N N N N N N Y N 4 

AT3G56710 sigA-binding protein Y Y N N Y N N N Y Y N N N N N N 4 

AT4G15550 
UDP-glucose:indole-3-acetate beta-D-

glucosyltransferase (IAGLU) 
Y Y Y N Y N N N N N N N N Y N N 4 

AT4G28460 hypothetical protein Y Y N N Y N N N Y Y N N N N N N 4 

AT5G24110 WRKY family transcription factor Y Y N N Y N N N Y Y N N N N N N 4 

AT5G53970 aminotransferase, putative Y Y Y N Y N N N N N N N N Y N N 4 

AT1G08050 
zinc finger (C3HC4-type RING finger) 

family protein 
Y Y N N Y N N N N Y N N N N N N 4 

AT1G10170 NF-X1 type zinc finger family protein Y Y N N Y N N N N N Y N N N N N 4 

AT1G71530 protein kinase family protein Y Y N N Y N N N N N Y N N N N N 4 

AT1G75040 pathogenesis-related protein 5 (PR-5) Y Y N N N Y N N N N N N N Y N N 4 

AT1G78410 VQ motif-containing protein Y Y N N Y N N N Y N N N N N N N 4 

AT2G04040 MATE efflux family protein Y Y N N N N N N N N Y N N N N Y 4 

AT2G15480 
UDP-glucoronosyl/UDP-glucosyl 

transferase family protein 
Y Y N N Y N N N N N N N N N N Y 4 

AT2G23270 expressed protein Y Y N N Y N N N N N Y N N N N N 4 

AT3G15352 
cytochrome c oxidase copper 

chaperone-related 
Y Y N N Y N N N N N N N N N Y N 4 

AT3G25250 protein kinase family protein Y Y N N Y N N N Y N N N N N N N 4 

AT3G49160 pyruvate kinase family protein Y Y N N Y N N N N N N N N N Y N 4 

AT3G50930 AAA-type ATPase family protein Y Y N N Y N N N N Y N N N N N N 4 

AT3G60420 expressed protein Y Y N N Y N N N N Y N N N N N N 4 

AT3G62150 
multidrug resistant (MDR) ABC 

transporter, putative 
Y Y N N Y N N N N N N N N N N Y 4 

AT4G11370 
zinc finger (C3HC4-type RING finger) 

family protein 
Y Y N N Y Y N N N N N N N N N N 4 

AT4G22980 expressed protein Y Y N N Y N N N N Y N N N N N N 4 

AT4G38540 monooxygenase, putative (MO2) Y Y N N Y Y N N N N N N N N N N 4 

AT5G40690 expressed protein Y Y N N Y N N N N N Y N N N N N 4 

AT5G62480 glutathione S-transferase, putative Y Y N N Y N N N N N Y N N N N N 4 
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Figure 3.5  Overlap of genes between different microarray studies.  Lists of genes up-

regulated under UV-B treatment were collated and assessed for overlap.  A  Those genes 

most commonly up-regulated by UV-B treatment i.e. occur in at least 4 out of the 6 

microarray studies.  Studies: Brown et al. (2005), microarray data shown in Fig 3.1 

(Headland), Ulm et al. (2004), Hectors et al. (2007), Kilian et al. (2007) and Safrany et al. 

(2008).  Fluence rates of UV-B shown for Brown and Headland in !mol m-2 s-1 (!E).  B  

Summary of the number of genes that appear across gene lists.   

Count No. genes 

6 0 

5 7 

4 58 

3 167 

2 483 

1 2802 

Total 3517 

B 

82 



A

B 

C 

Figure 3.6  Timecourse of expression of UV-B induced genes.  Three week old wild type 

plants were grown under 20 !mol m-2 s-1 white light and treated with 3 !mol-2 s-1 UV-B for 

the times shown above before tissue was harvested and RNA extracted.  Values for relative 

expression (adjusted to ACT2 transcript levels) were determined using qPCR.    Graphs 

show changes in gene expression over time.  Y-axis depicts percentage of maximal 

expression and x-axis gives the length of treatment.  Bars represent standard error, n=6.  

HY5, CHS and WRKY30 profiles used as reference for ELIP1(A), ANAC13 (B) and 2g41730 

(C) levels respectively.  
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Figure 3.7  Comparison between RT-PCR and qPCR timecourses.  Three of the samples 

analysed by qPCR in figure 3.6 were also analysed with RT-PCR. Gene expression values 

were normalised to control ACT2 transcripts.  Q-PCR profiles shown in red, RT-PCR shown 

in blue.  Bars represent standard error, n=3. 
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Figure 3.8  Expression of genes under different light conditions.  Three week old wild 

type or uvr8-1 plants were grown in a low fluence rate of fluorescent white light (20 !mol 

m-2 s-1) were either given no further treatment (L) or treated for four hours under 1 !mol m-2 

s-1 UV-B (+U), UV-B tubes wrapped in –UV-B filter (-U), 1 !mol m-2 s-1 UV-B with 

supplemental 20 !mol m-2 s-1 white light (UL) or transferred to darkness for four hours (D). 

Transcript levels were assayed using RT-PCR and compared with control ACT2 transcripts.  

For PCR conditions used refer to Table 2.1.   
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GSTU28 
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Figure 3.9  Expression of genes under very low fluence rates of UV-B.  Three week old 

wild type plants were grown in a low fluence rate of white light (20 !mol m-2 s-1) were 

treated for either four hours of 0.1, 0.2, 0.3, or 0.5 !mol m-2 s-1 UV-B or were left in low 

white light as a control. Transcript levels were assayed using RT-PCR and compared with 

control ACT2 transcripts. For PCR conditions used refer to Table 2.1.  
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Figure 3.10  Expression of genes in wild type and in mutant backgrounds deficient in 

UV-B signalling components. Three week old wild type or mutant plants were grown in a 

low fluence rate of fluorecent white light (20 !mol m-2 s-1) were either given no further 

treatment (L) or treated for four hours with 0.3 !mol m-2 s-1 UV-B (0.3) 1 !mol m-2 s-1 UV-

B (1), or transferred to darkness for four hours (D). Transcript levels were assayed using 

RT-PCR and compared with control ACT2 transcripts. For PCR conditions used refer to 

Table 2.1.  

hy5 Wt hyh hy5 hyh 

L   D  0.3 1 L   D  0.3 1 L   D  0.3 1 L   D  0.3 1 L   D  0.3 1 
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Figure 3.11  Expression of genes in wild type and in mutant backgrounds deficient in 

COP1. Three week old wild type or cop1-4 mutant plants were grown in a low fluence 

rate of fluorescent white light (20 !mol m-2 s-1) and either given no further treatment (L) or 

treated for four hours with 0.3 !mol m-2 s-1 UV-B (0.3), 1 !mol m-2 s-1 UV-B (1) or 

transferred to darkness for four hours (D). Transcript levels were assayed using RT-PCR 

and compared with control ACT2 transcripts. For PCR conditions used refer to Table 2.1.  
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Figure 3.12  Expression of genes in wild type and in mutant backgrounds deficient in 

photoreceptors.  Wild type and mutant plants were grown for three weeks (except for 

phyA phyB and hy1-100 mutants which were grown for four weeks) in a low fluence rate 

of fluorescent white light (20 !mol m-2 s-1) and were either given no further treatment (L) 

or treated for four hours with 0.3 !mol m-2 s-1 UV-B (0.3) 1 !mol m-2 s-1 UV-B (1), or 

transferred to darkness for four hours (D). Transcript levels were assayed using RT-PCR 

and compared with control ACT2 transcripts. For PCR conditions used refer to Table 2.1.     
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Figure. 3.13  DNA damage signaling does not appear to have a role in expression of 

ANAC13 and 2g41730 under UV-B.  Expression of low fluence rate UV-B induced genes 

in DNA repair mutants. Plants were grown in a low fluence rate of fluorescent white light 

(20 !mol m-2 s-1) and either given no further treatment (L) or treated for four hour with 1 

!mol m-2 s-1 UV-B (UB), UV-B supplemented with 20 !mol m-2 s-1 white light (LWL+UB) 

or transferred to darkness for four hours (Dk).  Expression levels of each gene were first 

normalised to ACT2 levels before fold change was calculated compared to control minus 

UV-B levels.  White bars represent Wt, pale grey bars uvr2 and dark grey uvr1 uvr3.  Error 

bars depict standard error, n=3.   
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CHAPTER 4 UVR8-LIKE PROTEINS AND ROLE OF THE N-

TERMINAL IN UVR8 LOCALISATION 

 

4.1 Introduction 

Although the known function of UVR8, namely chromatin binding, occurs in the nucleus a 

GFP tagged version of the protein has been shown to be mainly localised in the cytoplasm 

under minus UV-B conditions (Kaiserli and Jenkins 2007).  Upon exposure to UV-B 

however, the same protein rapidly accumulates in the nucleus.  Previous work has 

demonstrated that the N-terminal tail of UVR8 may be responsible for this ‘accumulation’, 

as deletion of the first 23 amino acids impairs the nuclear accumulation.  The exact reasons 

and the mechanisms for this apparent change in localisation have yet to be determined.  

The purpose of this chapter is to further investigate this phenomenon and to further pin 

down the region of the UVR8 protein that is responsible.  To this end a number of 

constructs were generated which either removed parts of the N-terminal or added segments 

of the same region to a GFP tag.  In order to indentify possible interesting regions, the 

sequences of UVR8-like proteins in Arabidopsis and its homologues in other plant species 

are examined. 

From the work presented here it can be deduced that the N-terminal region does 

indeed have an important role in the protein’s localisation with different segments having 

different effects.  Specifically the first 12 amino acids are sufficient for nuclear 

accumulation while the first 20 are necessary.  Finally the first 32 residues can result in the 

nuclear localisation of NES-GFP irrespective of light treatment. 

 

4.2 Results 

4.2.1 UVR8-like proteins in Arabidopsis thaliana 

The severity of the mutant phenotype of uvr8 under ambient levels of UV-B as well as a 

failure to identify any other UV-B-specific regulatory genes in a mutant screen implies that 

UVR8 is not acting in a redundant fashion with another element.  Nonetheless there are a 

number of proteins in Arabidopsis that show strong similarity to UVR8 and it is therefore 

interesting to see if any of these UVR8-like proteins share some of the same features. 
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A BLAST search was performed using UVR8 as the query sequence and 

Arabidopsis thaliana as the search organism.  This resulted in a list of 23 proteins that 

showed significant sequence alignment to UVR8.  Protein names and ATG numbers are 

shown in Figure 4.1.  As of yet the UVR8-like proteins have not been subject to much 

investigation.  Therefore most do not have recognised names or have been assigned 

functions.  Nonetheless, the great advantage of working in a model species with a complete 

genome sequence allows us to examine protein sequences and determine if there are any 

shared motifs with our protein of interest. 

UVR8 itself has been shown to be closely related to the human REGULATOR OF 

CHROMATIN CONDENSATION1 (RCC1) protein (Kliebenstein et al. 2002).  Through 

comparison with other RCC1 proteins in hamsters, Drosophila and yeast, 41 conserved 

residues were identified which reside in the RCC1 repeat regions.  Furthermore Renault et 

al. (1998) suggest that these have a structural role in maintaining the seven bladed 

propeller structure of the protein.  UVR8 also possesses RCC1 repeat regions and retains 

31 of these 41 conserved structural residues.  Consequently it has been shown to have a 

similar structure to RCC1 (Kaiserli PhD thesis, 2008). Therefore it is of interest to see 

whether any of the UVR8-like proteins have similar numbers of conserved residues and 

hence likely also have a similar structure to both RCC1 and UVR8.   

The 23 UVR8-like proteins along with UVR8 and RCC1 were first aligned to each 

other using ClustalX software.  Using the residues listed in Renault et al (1998) as 

reference, the numbers of structurally important residues that are conserved for each of the 

UVR8-like proteins were calculated.  The values obtained are shown in Figure 4.1. 

While some of these proteins do retain similar number of residues to UVR8 (e.g. 

At3g53830 (31) and At3g55580 (30)), others have relatively few (e.g. At3g03790 (16)).  

Generally, it can be seen that the values cover a wide spectrum.  Therefore it would seem 

that there may be a number of variations on the structural theme and this may be correlated 

with a diversity of functions.  

The UVR8-like sequences were also compared with RCC1 to see whether there 

was a good degree of conservation in residues essential for Ran binding/GEF activity.  

Overall it seemed that relatively few of these were actually conserved (data not shown).  

Out of 23 of the residues deemed necessary for Ran Binding/GEF activity, the maximum 

number conserved was five for 5g42140, less even than UVR8 which has eight (Kaiserli 

PhD thesis, 2008).  Three UVR8-likes had none of the residues in common. 

In particular nine of the UVR8-like sequences seem to be particularly closely 

related.  Not only do they show a strong degree of sequence similarity, they also share 
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several ‘insertions’ at either the beginning or end of certain blade sequences (for the full 

alignment of UVR8-like sequences see Appendix III).  These include insertions at the 

beginning of blade 3, and ends of blades 5 and 7, with each of these being roughly 50 

amino acids long.  Furthermore, again the sequences of these insertions are remarkably 

similar between the proteins.  Finally, the aforementioned proteins have a C-terminal tail 

that extends roughly 200-400 residues longer than that of both UVR8 and RCC1.  In total, 

these sequence similarities and shared insertions suggest that these proteins fall into a 

group.  In addition this implies that they may have similar and perhaps even redundant 

functions distinct from that of UVR8. 

Therefore, although it seems that some of the residues considered important for 

structure and Ran binding/GEF activity are not conserved in many of the UVR8-like 

proteins, it is interesting to determine whether they share similar regions to those that are 

vital for UVR8 functionality. 

 

4.2.2 N- and C-terminal regions of the UVR8-like proteins 

Besides from the structurally important amino acids there are a number of other regions 

that are important for UVR8 function.  Work performed by Kaiserli and Jenkins (2007) has 

shown that regions within the extreme N and C-termini of UVR8 have important functions.  

The N-terminus seems to have a role in protein localisation while a region within the C-

terminal tail has an unknown but nevertheless essential role in protein function. 

Concentrating first on the N-terminal, if we look at the corresponding region in 

RCC1, a bipartite Nuclear Localisation Signal (NLS) can be found.  While there are no 

similar regions in UVR8, deletion of the first 23 amino acids of UVR8 results in impaired 

nuclear accumulation in response to UV-B (Kaiserli and Jenkins 2007).  This is in contrast 

to the full length GFP tagged version which shows near complete localisation of the GFP 

signal in nuclei post-UV-B illumination. 

Figure 4.2 A shows part of the ClustalX alignment of the UVR8-like proteins 

around the N-terminal region of UVR8 (for the full alignment see Appendix III).  None of 

the UVR8-like proteins seem to show similarity to UVR8 in this region, the sequences in 

fact are quite diverse.  Most of the N-terminal tails prior to the start of the predicted 

structurally important sequence are a maximum of 90 residues long.  However At4g14370 

appears to have a large extension – its N-terminal sequence is 998 residues longer than that 

of UVR8.  This may indicate a specialised function for this particular UVR8-like protein.  

Indeed, TAIR describes this protein as a disease resistance protein unlike the other UVR8-

likes which are mostly described by their similarity to RCC1 or UVR8. 
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At the C-terminal, UVR8 contains a 27 amino acid insertion that bares no similarity 

to any portion of the RCC1 sequence.  Like the N-terminal deletion, removal of this region 

results in a non-functional protein.  Neither are able to rescue CHS and HY5 expression in 

response to UV-B.  The deletion protein however is still able to bind to chromatin.  

Therefore this region appears to be key although its function remains elusive. 

None of the UVR8-like proteins show similarity to UVR8 in the C-terminal region 

regions.  The 27 amino acids of the C-terminal insertion alone was also aligned to all of the 

UVR8-like sequences to determine if any similar regions could be found in other parts of 

the sequences.  None however showed any similarity.  Therefore it seems that this region 

within UVR8 may be associated with an unique function in UVR8. 

It is interesting to note that the first nine UVR8-like proteins again show 

remarkable similarity to each other in both the N and C terminal regions.  Furthermore, nor 

are these regions similar to that of RCC1 (data not shown).  This supports the hypothesis 

that the shared sequences of this grouping may indicate shared functions.   

In summary, as no UVR8-like protein shows significant similarity in both the N 

and C-terminal regions it is unlikely that any of these would have similar roles to UVR8 in 

UV-B responses.  It would be interesting however to test null mutants for each of these 23 

UVR8-like genes under a variety of biotic and abiotic stresses to evaluate whether they 

may have important roles in other stress-acclimation responses. 

 

4.2.3  UVR8 homologues in other plant species 

With advancing technology, more and more genome sequences from plants are becoming 

available.  It is therefore possible to search more comprehensively for potential 

homologues in other model species.  Given the apparently vital role UVR8 plays in the 

response of Arabidopsis thaliana to low levels of UV-B, it is to be expected that some 

form of this protein may be present in other plant species.  Consequently it was decided to 

perform additional BLAST searches with the search narrowed to Viridiplantae (green 

plants).  This resulted in a long list of similar sequences (over 100) in a wide variety of 

species with some species having multiple UVR8-like sequences.  Several of these species 

were selected for further analysis.  For those with multiple UVR8-like sequences only the 

closest to UVR8 was obtained.  In addition two sequences from Physcomitrella patens 

which were kindly provided by Dr Andrew Cuming (Leeds) were also included.  Finally, 

as collaborative work with a group in China was being conducted, two potential UVR8-

like sequences from rice (Oryza sativa) were obtained and analysed along with other 

selected sequences. 
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With this large number of sequences in hand, a ClustalX alignment was performed.  

A distance tree was then generated using neighbour joining methods and is shown in 

Figure 4.3. 

When looking at the distance tree generated there appear to be a split into different 

portions.  First looking at the bottom portion of the tree, the grouping is as we might 

expect.  The Arabidopsis sequence is most closely related to that of its fellow brassica field 

mustard (Brassica rapa).  Three other eudicots are grouped together and are close to the 

brassica grouping.  Next the two rice and one maize sequence form a monocot grouping.  

The two physcomitrella sequences meanwhile seem to be more closely related to each 

other than to any other species.  It is therefore unclear which is the likeliest true UVR8 

homologue for this group. 

The upper part of the tree appears to have a pattern which mirrors that of the lower 

part with a similar monocot/dicot grouping.  There is however one exception to this, the 

sequence for Chlamydomonas is nested within the eudicots.  One might expect that the 

single representatives of the gymnosperms, chlorophyta and especially the animal RCC1 

sequence would form outgroups separate from the rest of the tree.  Most surprisingly, this 

is not the case for RCC1 which can be found nested within various plant species.  Instead 

pine (Picea sitchensis), the only gymnosperm representative, takes this position, its 

sequence is seemingly more divergent. 

It would therefore seem that it is relatively simple to identify potential homologues 

of UVR8 in other species.  However, in order to help determine whether these may indeed 

be acting in the same manner as Arabidopsis UVR8 we need to look more closely at their 

sequences.  For example, do they have similar regions at the extreme termini.  In 

particular, as the focus of this chapter is on the localisation of UVR8, do these potential 

homologues have similar N-terminal regions to UVR8.  If so, then this would firstly help 

identify which regions are most highly conserved and therefore have an important role in 

regulating protein localisation.  Secondly, we could also be more confident that these 

proteins that we have found might be true UVR8 homologues and thus the UV-B response 

in alternate species may be investigated further.  It would be particularly interesting if the 

UVR8s for other species were able to compliment the uvr8-1 phenotype. 

 

4.2.4  Conserved regions in the N-terminal of UVR8 

In order to answer the questions posed by the results from the previous section a ClustalX 

alignment was performed for the proteins which comprised the lower part of the distance 

tree.  This included representatives from the main plant groups; eudicots, monocots, 
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gymnosperms and bryophytes.  Figure 4.4 A shows the alignment around the N-terminal 

regions of the proteins. 

When comparing these N-terminal sequences, it can be seen that there is a good 

degree of conservation, certainly far more than seen in the comparison of the 23 UVR8-

like proteins in Arabidopsis.  Moreover it is evident there is an area of strong conservation 

between amino acids 20-33.   This is interesting as previous work by Kaiserli and Jenkins 

(2007) showed that the first 23 amino acids at the N-terminus of UVR8 are essential for 

protein functionality.  Furthermore, a fusion protein consisting of this N-terminal deletion 

fused to GFP showed impaired accumulation under UV-B in comparison the full-length 

version.  As these amino acids are highly conserved across a variety of plant species it 

suggests that this impaired nuclear accumulation in the deletion plants may be explained 

by the loss of some of these conserved residues.  It is thus likely that a motif responsible 

for protein localisation resides in or around this region.  Consequently, it would be 

interesting to examine whether the loss of all 33 amino acids would result in a complete 

removal of nuclear accumulation.  This therefore could give a potential model on which to 

propose a mechanism for the nuclear accumulation of UVR8 when exposed to UV-B. 

Furthermore, by again referring to the sequence alignment we can see that there is a 

reasonable amount of similarity in sequences between residues 12-20, but that prior to 

residue 12, the regions show very little conservation.  Therefore, this seems to delineate 

three regions that may have varying effects on the localisation and function of UVR8; the 

first 12 residues, residues up to number 20, and all residues (33) prior to the start of the 

predicted structurally important sequence.  This latter region was defined as finishing at 

point 33 as comparisons between RCC1 and UVR8 sequences determined that the blade 

structure in UVR8 is likely to start at position 34.  Thus, in order to pin down more 

accurately the region/s responsible for nuclear accumulation of UVR8 under UV-B as well 

as its functionality, a series of deletion constructs were generated.  These included both a 

GFP tag so that protein location could be detected and also a Nuclear Exclusion Signal 

(NES) derived from mammalian PKI protein (Matsushita et al. 2003).  NES peptides were 

added as this results in almost complete nuclear exclusion under minus UV-B conditions as 

opposed to a higher proportion without (Kaiserli and Jenkins, 2007).  This allows a more 

clearly defined difference between minus UV-B and plus UV-B conditions, thereby 

allowing an ease of determination whether the localisation of UVR8 has been affected.  

Schematics of the constructs generated are shown in Figure 4.4A 

To make these constructs primers were generated to amplify the sequence of UVR8 

from the point desired until the end.  This was then ligated into the vectors previously 
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generated by Kaiserli and Jenkins (2007) containing a NES fused to GFP driven under the 

native UVR8 promoter.  Hereafter the various constructs will be referred to as !12N, 

!20N and !33N.   

All three constructs were then transformed into uvr8-1 plants as described in 

Chapter 3.  However, due to inability to find Arabidopsis lines with detectable expression 

for the !33N, this construct was instead transiently expressed in tobacco as described in 

Sections 4.2.8 and 4.2.9. 

 

4.2.5  Protein expression in deletion constructs 

uvr8-1 plants were transformed with the deletion constructs described in Section 4.2.4 

using the floral dip method (modified protocol from Clough and Bent, 1998) and T3 lines 

selected as described in Chapter 3.   Due to the nature of Agrobacterium mediated 

transformation, the expression levels of constructs can be variable.  In order to conduct 

further experiments, lines need to be selected which show expression levels as close as 

possible to that of native levels.   

Although a large number of T3 lines were screened for each of the deletion 

constructs, when protein levels were analysed using Western blotting methods, nearly all 

showed barely detectable or undetectable levels.  As the previously studied 23 amino acid 

deletion (!23N) showed good levels of expression (Kaiserli and Jenkins 2007), it is 

unlikely that this problem was due to the deletion of amino acids from UVR8 impacting on 

expression.  It is more likely that this was simply a problem of transgene locations and 

possible post-transcriptional silencing.  Further screening on an even larger scale may 

remedy this and reveal better lines. 

Consequently, for both !12N and !20N, only one T3 line each was found that had 

reasonable levels of expression at both the protein level and when examined under the 

microscope for GFP fluorescence.  Figure 4.5 shows western blots of proteins extracted 

from !12N line 4.3 and !20N line 8.3. 

!12N line 4.3 seems to have protein levels comparable to native UVR8.  Therefore 

as such we can expect that changes in the behaviour of this protein are due to changes in its 

sequence and not artefacts due to inappropriate levels of expression. 

!20N however has a reduced protein level but is still detectable in 20 "g total 

protein extract.  Unfortunately, this was the maximally expressing line of all that were 

tested.  Therefore due to time constraints this was the line selected for further analysis.  

Ideally, at least three lines would be selected and tested for each construct.  This eliminates 

the possibility that the effects seen are due to the positional insertion.  Thus to help add 
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weight to the experiments using these deletions, for each, one additional T2 line which 

showed reasonable GFP fluorescence under the microscope was also tested to determine if 

results were replicable.  Functionality and localisation of these constructs is described in 

the following sections. 

 

4.2.6  !12N is functional and accumulates in the nucleus under UV-B 

As the deletion constructs were transformed into a uvr8-1 background, functionality of the 

construct could be determined by examining expression of UVR8-regulated genes under 

UV-B.  Two such genes are CHS and HY5 which both show a strong induction under even 

very low levels of UV-B.  Therefore transformed plants, along with uvr8-1 and wild type 

controls, were grown in low fluence rate white light (20 "mol m
-2

 s
-1

) for three weeks.  

Plants were then exposed to 1 "mol m
-2

 s
-1

 UV-B or left in low white light conditions for 

four hours.  RNA was extracted and RT-PCRs performed using ACTIN2, CHS and HY5 

primers.  The results of this can be seen in Figure 4.6A. 

In !12N plants it does seem that CHS and HY5 expression is rescued.  Interestingly 

though the levels of expression under UV-B for both genes appear to be lower than that for 

wild type plants.  This is somewhat surprising considering that the levels of protein 

expression of the !12N construct appear to be roughly equivalent to those of native UVR8 

(see Figure 4.5).  However, neither western blotting nor RT-PCR are truly quantitative so 

this may account for the discrepancy.   

One further observation that can be made from Figure 4.6 A is that the levels of 

CHS expression under white light in the !12N construct seem to be higher than for wild-

type.  Furthermore, this also seems to be the case for the !20N construct (as can be seen in 

Figure 4.7 A).  As this is not apparent in the uvr8-1 mutant it would suggest that the 

addition of the construct might subtly affect the reaction of the plants to low white light 

conditions. 

While the functionality of this construct does not seem to be impaired the 

possibility remained that its localisation may have been altered.  Therefore, !12N plants 

were examined under a confocal microscope in order to test this.  Plants were either taken 

directly from low white light conditions where they had been grown for 12-14 days or 

were treated with 2 hours of 3 "mol m
-2

 s
-1

 of UV-B.  This UV-B treatment had been 

previously shown to be sufficient to induce a strong nuclear accumulation in NES-GFP-

UVR8 plants (Kaiserli and Jenkins 2007).  In order to facilitate the identification of nuclei, 

plants were infiltrated with DAPI stain and incubated for 15 minutes prior to mounting and 
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examination under the microscope.  For each treatment 25 images were taken.  The 

numbers of nuclei exhibiting GFP fluorescence and/or DAPI staining were counted.  

Subsequently, from this count data, the percentages of co-localisation of GFP and DAPI 

could be calculated.  The experiment was repeated a total of three times and the graph in 

Figure 4.6 C shows the averaged results from these repeats.  A t-test was performed on the 

data and the p-value is shown in the figure legend.  Figure 4.6 B shows images that are 

representative of the three experiments.   

Similarly to the full length NES-GFP-UVR8 fusion protein, !12N shows almost 

complete nuclear exclusion under low white light conditions.  The GFP signal is localised 

in the cytoplasm and can be clearly seen in the perinuclear region.  When plants are 

exposed to UV-B there is a shift in localisation, here large numbers of nuclei exhibit GFP 

fluorescence (73.1 %).  Indeed, the t-test shows that the differences in co-localisation 

between the two treatments are highly significant with a p-value of just 0.0003. 

The experiment was also repeated with T2 plants (line 1) and very similar results 

were found with co-localisation under low white light and UV-B being 1 % and 80.8 % 

respectively (data not shown).  As these results correlate strongly with those found for 

NES tagged full-length UVR8, it would seem that the loss of the first 12 amino acids of 

UVR8 do not adversely affect either its function or its ability to accumulate in the nucleus 

under UV-B.   

 

4.2.7  !20N is non-functional and does not accumulate in the nucleus under UV-B 

To understand the role of the first 20 amino acids of UVR8, the !20N construct was tested 

for functionality using RT-PCR similarly to !12N.  From the results in Figure 4.7 A it can 

be seen that unlike in !12N plants, the !20N construct is unable to rescue the UV-B 

response phenotype in an uvr8-1 background.  No detectable expression can be seen in 

response to UV-B for either CHS or HY5.  This result is similar to that found for the !23N 

deletion tested by Kaiserli and Jenkins (2007).  It would thus appear that the removal of 

eight further amino acids downstream of residue number 12 in UVR8 results in a loss of 

functionality.  Therefore it is in this region that the start of a region essential for the correct 

function of UVR8 lies.  This is despite the fact that this N-terminal tail it is 1) supposedly 

unnecessary for the seven-bladed propeller structure of the protein and 2) not required for 

chromatin binding (Kaiserli and Jenkins 2007). 

Once again, to expand the study and look at subcellular localisation of the fusion 

protein, !20N plants were tested via confocal microscopy.   The methods used were as 

described in Section 4.2.6.  Representative images and graph depicting the average 
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percentages of co-localisation across the three experiments are shown in Figures 4.7 B and 

C. 

Under low fluence rate white light conditions, we again see very little GFP signal 

in the nuclei while it is evident in the region surrounding the nuclei as well as the 

cytoplasm bordering the cell.  This however also holds true in plants that have been treated 

with UV-B.  The images of the two treatments have similar appearances and the levels of 

co-locations are roughly equal.  This is supported by the t-test results which yield a p-value 

of 0.3, thus indicating there is no significant difference in protein localisation between 

conditions with and without UV-B. 

The experiment was also repeated with T2 plants (line 28) with similar results.  The 

differences between the two treatments however were more pronounced with values for 

low white light and UV-B being 0.5 and 20.8 % respectively.  While this seems to indicate 

some movement into the nucleus, the value of 20.8 % is much lower than for the full-

length version.  It would therefore appear that removal of the first 20 amino acid either 

completely or severely impairs nuclear accumulation under UV-B. 

  

 

4.2.8  Transient expression in tobacco as a means to assess UVR8 accumulation 

As mentioned above, no !33N T3 lines could be found that expressed to a sufficient level.  

Taking into account the results from the !20N study, it seemed likely that a loss of a 

further 33 amino acids from the N-terminus of UVR8 would have a similar effect - namely 

a loss in functionality.  It was therefore decided that in this case, transient expression in 

tobacco would be sufficient to demonstrate whether the protein indeed showed a severe 

impairment in nuclear accumulation or not.  However, as this method had not been used 

before to assess to the localisation of an NES tagged version of UVR8 it was decided to 

test the system using the NES-GFP-UVR8 construct generated by Kaiserli and Jenkins 

(2007).  Tobacco leaves were infiltrated with a suspension of Agrobacterium cells carrying 

the pEZR vector with NES-GFP-UVR8 driven by the native promoter.  Plants were left for 

5 days to allow the infection to take hold before being sampled directly or after a 2 hour 

treatment with 3 ± 1 "mol m
-2

 s
-1

 UV-B.  Similar to experiments using Arabidopsis, 

sections of leaf were stained with DAPI before mounting on glass slides.  Over 70 images 

were taken across three separate experiments for each treatment.  Representative images of 

this are shown in Figure 4.8 A while Figure 4.8 B shows the average percentage co-

localisation of DAPI and GFP for each treatment.  Unlike for experiments using 

Arabidopsis, it was decided to combine data across all three experiments.  This was due to 
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the fact that uptake of the construct is not uniform across the leaf tissue, instead good 

expression often appears in small patches.  As a result, the total number of images 

generated per experiment varied depending on the efficiency of the transfection.  

Furthermore, as the cells of tobacco leaves are larger, fewer cells can be covered in the one 

screen, in most cases only 3 or 4 nuclei could be seen at any one time.  Therefore, the total 

numbers of nuclei counted were generally lower than that for the stable transformation 

experiments.  Consequently, the data from a minimum of 70 images across the experiments 

was combined before analysis. 

Nonetheless, the larger cells of tobacco and the infiltration method used do have 

their advantages.  Firstly we can get a finer look at the localisation of the signal.  For 

example, it could be seen that when the signal was present in the nucleus, it appeared to be 

excluded from the nucleolus.  Also, the variability in signal strength across the leaf meant 

that small regions with very good expression could be found.  This facilitated the 

assessment of the signal localisation, it was therefore easier to call whether the GFP co-

localised with DAPI fluorescence. 

Looking at the results from the NES-GFP-UVR8 experiment shown in Figure 4.8 it 

can be seen that they closely parallel that for stably transformed Arabidopsis as seen in 

Kaiserli and Jenkins (2007).  As expected we see strong nuclear exclusion under white 

light conditions and a high degree of signal co-localisation after UV-B exposure.  In 

particular, the average values for this experiment are very close to those for !12N where is 

was determined that the protein behaves similarly to the full length version (1.2 %/74.7 % 

and 3.9 %/73.1 % for NES-GFP-UVR8 and !12N respectively in LWL/UB).  Therefore it 

was determined that this would likely be a very useful tool to examine the location of 

various UVR8 constructs rapidly and effectively. 

 

4.2.9  !33N does not accumulate in the nucleus under UV-B 

As using the NES system in transiently expressed Tobacco was deemed effective, the 

localisation of !33N was assessed using the same methods as described in the previous 

section.  The results of this are presented in Figure 4.9.  

As for !20N, the percentage co-localisation under low white light and UV-B for 

!33N appear to be equal.  This is reflected in the p-value of 0.9 showing virtually no 

difference between the values.  Thus, as expected, !33N does not accumulate in the 

nucleus more strongly under UV-B.  Loss of these amino acids results in abolition of 

nuclear accumulation. 
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Interestingly however, the percentage co-localisation under low white light and 

UV-B appear to be higher for !33N than for the full-length protein in low white light, ~20 

% and 1.2 % respectively.  By removing some residues from the N-terminus, we see more 

of the fusion protein ‘leaking’ into the nucleus under white light conditions.    In addition, 

looking back at the results for the previous deletion constructs, we see a gradual increase in 

the percentage co-localisation in white light with levels for NES-GFP-UVR8, !12N, !20N 

and !33N being 1.2 %, 3.9 %, 7.7 % and 22.5 % respectively.  This suggests that there 

may be some feature of the whole UVR8 protein that enhances nuclear exclusion under 

low white light conditions.  This may simply be the size of the protein, its conformation or 

alternatively through some specific means coded in the amino acid sequence. 

 

4.2.10  UVR8 N-terminal addition constructs 

The previous series of experiments showed that deletion of several regions in the N-

terminal of UVR8 results in the loss of nuclear accumulation of the protein under UV-B.  

Furthermore it seems that at least the first 20 amino acids of the UVR8 sequence are 

necessary for nuclear accumulation under UV-B.  It is therefore interesting to examine 

whether these same regions are sufficient for nuclear accumulation under UV-B.  It was 

thus decided to generate such constructs with NES tagged GFP fused to short pieces of the 

N-terminal sequence.  Firstly however, the localisation of NES-GFP alone was to be tested 

to ensure that it behaved as we would predict.  That is it should be present in the cytoplasm 

under both white light and UV-B conditions due to the strong NES signal.  Without any 

UVR8 sequence present, we would expect there to be no UV-B response unless other 

factors were at work that were not yet known. 

Figure 4.10 shows a schematic of the constructs that were generated and then tested 

for sufficiency in the transient tobacco expression system.  As work by Kaiserli and 

Jenkins (2007) had shown that deletion of a 27 amino acid region in the C-terminal tail 

also resulted in non-functionality, it seemed highly unlikely that short N-terminal regions 

would, by themselves, confer functionality.  Consequently, the transient expression in 

tobacco system was chosen so that localisation could be determined rapidly with relative 

ease. 

The N-terminal sections to be tested included the same regions that had been 

deleted in the experiments described above.  Firstly the UVR8PRO::NES-GFP construct was 

generated by digesting the UVR8PRO::NES-GFP-UVR8 plasmid at EcoR1 and Sal1 sites, 

thereby removing the UVR8 fragment.  The overhang ends were then filled in using 

Klenow and the plasmid blunt ligated.  UVR8PRO::NES-GFP12NUVR8, UVR8PRO::NES-
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GFP20NUVR8 and UVR8PRO::NES-GFP32NUVR8 constructs were generated first by 

amplification of the desired regions (from the NES onwards) using primers which also 

added a HindIII site to the 5’ end and SalI to the 3’.  Then the UVR8PRO::NES-GFP-

UVR8 plasmid was digested with HindIII/SalI to remove the whole NES-GFP-UVR8 

sequence and replaced with the small amplified fragments.   

From here forwards the addition constructs will be referred to as NES-GFP, +12N, 

+20N and +32N.  It should be noted that here the first 32 amino acids are used in contrast 

to previous experiments where 33 were used.  This was subsequently decided that because 

it was unclear in alignments whether the 33
rd

 residue, a glycine, may constitute one of the 

important structural residues.  As the !20N and !23N both show a loss in functionality, is 

unlikely that the loss of this residue in the !33N would have any further detrimental 

effects.  However, as a precaution it was decided that from this point onwards 32 residues 

may be a more appropriate choice. 

Having successfully prepared these constructs, they were subsequently tested for 

localisation as described in the following sections. 

 

4.2.11  NES tagged GFP remains in the cytoplasm under both white light and UV-B 

Figure 4.11 shows representative images and percentage localisation of the NES-GFP 

construct in tobacco using the transient system.  As expected, the NES-GFP protein is 

mainly localised in the cytoplasm under both white light and also UV-B conditions.  

Interestingly, here it seems that the protein actually shows a stronger nuclear exclusion 

under UV-B than for white light (15.6 % and 34.7 %) respectively.  The seemingly high 

levels under white light are perhaps to be expected considering previous results.  Indeed 

they seem to fit the pattern of increasingly short NES and GFP tagged fusions exhibiting a 

greater degree of nuclear co-localisation in white light than longer fusion proteins.  

Consequently, it would seem that the levels under UV-B are unexpectedly low.  

Furthermore, the differences between the two treatments are very significant with a p-value 

of 0.0007.  Thus, although it is possible that this is an artefact occurring in just this 

particular experiment, it is more likely that there is a biologically relevant reason behind 

this.  Perhaps a UV-B treatment affects the physiology of the cell and nuclear trafficking in 

general in a way that we do not yet understand.  For example, it may be the case that post 

UV-B treatment, nuclear import is decreased and/or nuclear export is increased.  Further 

experiments using both this protein as well as NES-GFP fused to other proteins (unrelated 

to UV-B responses) are needed to clarify this issue. 
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Nevertheless, if there is some factor reducing the nuclear accumulation of the NES-

GFP protein under UV-B and addition of sections of UVR8 are able to overcome this, then 

this demonstrates the strength of the cryptic nuclear accumulation signal within the N-

terminal region of UVR8. 

 

4.2.12  +12N accumulates in the nucleus under UV-B  

Work using deletion constructs has shown that removal of the first 12 amino acids in the 

sequence of UVR8 had no effect on the nuclear accumulation of the protein.  We might 

therefore expect that addition of these same residues to the NES-GFP construct likewise 

would have no effect.  By examining the results shown if Figure 4.12, this however does 

not seem to be the case.  +12N transformed plants show similar levels of GFP signal in the 

nucleus under low white light to NES-GFP plants.  When exposed to UV-B though, the 

levels of co-localisation in the +12N plants increase to 79.4 %, close to values seen for the 

full length UVR8 construct.  Thus, although the loss of the 12 most N-terminal amino 

acids of UVR8 does not impact on its nuclear accumulation, addition of the very same 

residues is sufficient to cause a UV-B induced nuclear accumulation of NES-GFP.  

Consequently it seems that in this portion of the UVR8 sequence a UV-B responsive 

localisation signal lies.  Alternatively this region could act as the site for interaction with 

another yet unknown protein which regulates the localisation of the resulting complex.  

However, as this region does not appear to be necessary for either localisation or function, 

then the remaining N-terminal region must be able to compensate for any losses in the first 

residues perhaps in a redundant fashion. 

 

4.2.13  +20N accumulates in the nucleus under UV-B 

As it had already been determined that loss of the 20 most N-terminal amino acids of 

UVR8 resulted in a loss in nuclear accumulation in response to UV-B, and taking into 

account the results for the +12N construct, it was expected that the +20N construct would 

also accumulate in response to UV-B.   As Figure 4.13 shows, this does indeed seem to be 

the case.  However, while the differences between the two treatments remain significant (p 

= 0.004), the accumulation under UV-B is not as great as in the previous case.  +20N, 

unlike +12N, does not reach a level of approximately 80 % after UV-B exposure, instead 

only achieving 54.7 % co-localisation.   

It is not clear why this particular construct does not show a nuclear accumulation 

that is as strong as +12N.  Further repeat experiments, those involving stably transformed 
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Arabidopsis lines or generation of additional plus constructs may help to resolve this.  

Nonetheless, we can conclude that the first 20 amino acids are both necessary and 

sufficient for nuclear accumulation specifically in response to a UV-B treatment. 

 

4.2.14 +32N is constitutively in the nucleus 

Again, in line with the previous addition constructs, it was expected that +32N would show 

similar patterns of localisation.  However, as shown in Figure 4.14 it can be seen that 

plants that have not been exposed to UV-B exhibit similar high levels of co-localisation to 

those that had been irradiated.  When comparing mean a p-value of 0.5157 is obtained 

thereby demonstrating that the differences between the two treatments are not significant.  

It would thus seem that by including 12 more amino acids of the UVR8 sequence on top of 

the +20N construct allows the protein to overcome its NES signal and localise in the 

nucleus irrespective of the light treatment.  That is, by adding further amino acids onto the 

construct we have lost the UV-B responsiveness that it seemingly provided by inclusion of 

the first 12 residues alone.   

In conclusion it seems that within the first 12 amino acids of UVR8 a UV-B 

responsive NAS exists that appears to be acting redundantly with a second found in the 

upstream 8 residues.  In the first 20 residues, meanwhile a necessary and sufficient UV-B 

responsive NAS element is present.  Finally, within the region between residues 20-32 lies 

a strong NAS which is insensitive to light treatment.  

 

4.2.15 +32N in a uvr8-1 background exists primarily in the nucleus irrespective of 

light treatment 

The previous result, that addition of the first 32 amino acids of UVR8 onto a NES-GFP tag 

resulted in constitutive nuclear localisation was a surprising one.  It was therefore decided 

that this would be an interesting avenue to pursue.  Although it seems highly unlikely that 

the first few 32 amino acids alone would be functional, the NES-GFP-32NUVR8 construct 

was transformed into a uvr8-1 background in Arabidopsis.  We could therefore determine 

whether the localisation in both systems was the same.  This would lend weight to both the 

conclusions from the previous section and also that the two methods were analogous.   

Due to time constraints, it was not possible to carry the lines through to 

homozygosity.  Therefore T1 plants that exhibited kanamycin resistance were examined 

under the microscope in order to assess patterns of localisation.  At least six plants were 
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examined and 20 or more images taken per experiment.  The experiment was repeated 3 

times and the results shown in Figure 4.15 are averaged across the three experiments. 

It can be seen that the patterns of co-localisation in Arabidopsis do seem to closely 

mirror those for Tobacco.  Therefore it does indeed seem that the first 32 amino acids of 

UVR8 are able to confer constitutive nuclear accumulation irrespective of light treatment 

and despite the presence of a NES tag. 

It should be noted however that although the patterns between the two systems are 

consistent, the absolute levels of co-localisation in the Arabidopsis plants are lower than 

that for their tobacco counterparts.  This may result from lower expression levels in the T1 

generation making it harder to detect nuclei with GFP fluorescence.  It is likely that with 

subsequent generations the signal would improve thus enabling clearer determination of 

localisation..  However, the observation that in the two systems (tobacco and Arabidopsis) 

the results for this construct are highly comparable with similarly sized error bars is 

encouraging and confirms the transient system to be an appropriate one for initial 

investigations into protein localisation 

 

 

4.3 Discussion 

Previous work on the UVR8 protein had already shown that it binds to chromatin in the 

promoter region of UV-B induced genes, accumulates in the nucleus under UV-B and has 

very little Ran GEF activity unlike its close homologue, human RCC1 (Kliebenstein et al. 

2002; Brown et al. 2005; Cloix and Jenkins 2008).  Furthermore, we know that regions in 

the N and C-terminal of the protein are essential to its function.  However, we do not yet 

fully understand the roles of these two regions nor do we have a clear mechanism for how 

UVR8 acts.  Work in this chapter therefore attempted to shed further light onto these issues 

by first examining potential homologues both within Arabidopsis and also between 

different plant species.  Subsequently, focus was turned to the N-terminal region of the 

protein in order to more clearly define its role in UVR8 localisation and functionality.  It 

has been shown here that a number of UVR8-like proteins exist in Arabidopsis, none of 

which appear to share the unique N and C-terminal regions found in UVR8.  The protein 

itself does appear to have homologues in a wide range of plant species from different 

groups.  Finally, the accumulation behaviour of a GFP tagged protein is strongly dependent 

on which portions of the N-terminal are either added onto or deleted from the UVR8 

protein.  While the latter result can be somewhat confusing due to the complex range of 
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phenotypes we see, it nevertheless highlights the importance of this region in the 

appropriate localisation of UVR8. 

 

4.3.1  UVR8-like genes in Arabidopsis 

A simple BLAST search using UVR8 as a query sequence reveals 23 similar proteins in 

Arabidopsis.  As none of these had well described functions, their sequences were analysed 

in order to determine whether any were particularly closely related to UVR8 and as such 

might share similar functions.  It was immediately apparent that there is a great deal of 

variation in these UVR8-like proteins.  For example in the degree of structural 

conservation (in terms of conserved residues that maintain the blade structure) seems to be 

somewhat reduced compared to UVR8.  However, when we consider that the yeast 

(Sacchromyces cerevisiae) homologue to RCC1 is also missing about 10 of these structural 

residues, it is possible that there is some degree of flexibility in the overall structure. 

Further differences between UVR8 and similar proteins in Arabidopsis include a 

lack in regions similar to those found to be of key importance in UVR8.  In addition to 

comparisons using the ClustalX software, the N-terminal 32 amino acids and the 27 

residues found towards the C-terminal were also submitted for analysis using the BLAST 

alignment tool.  This failed to find any homologous regions in any other proteins in the 

Arabidopsis proteome.  It therefore seems that these regions are indeed unique to UVR8 

and provides further evidence that it is these regions which may confer the UV-B specific 

functions of this protein. 

As it seems that none of the UVR8-like proteins are likely to have a redundant 

function to UVR8, we can consider what roles they may actually have.  For example, when 

performing the ClustalX analyses, it was clear that nine seemed to show marked similarity 

in sequence.  Furthermore, these same proteins also had several insertions compared to 

UVR8.  Interestingly, all of these occurred in regions predicted to be between blades.  Thus 

it may be that the overall 7-bladed structure is indeed retained in these proteins, suggesting 

that this structure may have an important role in their overall function.   

It should be noted that the apparent failure to identify other proteins that are likely 

to act in a redundant fashion to UVR8 is perhaps to be expected.  Early mutant screens 

performed by the Jenkins group which identified several uvr8 alleles only produced 

mutations in this gene and no other.  This evidence highlights the vital role which UVR8 

plays in UV-B responses.  Nonetheless, work in the previous chapter has shown that other 

UV-B induced genes exist which are independent of the identified UVR8 pathway.  The 

regulatory mechanisms behind these however have yet to be determined.  Therefore it is 
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still possible that one/several of these UVR8-like proteins may be involved in this separate 

UV-B responsive pathway(s). 

In summary, it seems that further investigation into the N and C-terminal regions of 

UVR8 may be key in the determination of its exact mode of action and hold the key to its 

function. 

 

4.3.2 UVR8 homologues in other plant species 

It can be hypothesised that UVR8 may have arisen relatively early in land plant evolution 

with the colonisation of land and hence the loss of the filtering properties of water, plants 

may have needed to rapidly evolve mechanisms to survive UV-B stress.  This would have 

had to include the up-regulation in pathways that would lead to increased repair 

mechanisms and ultimately the production of compounds or structures that would have the 

ability to reflect or absorb this potentially harmful radiation.  It would seem that UVR8 

would fulfil the role of a molecule which, upon ‘activation’ by UV-B, could trigger 

downstream signalling resulting in such protection and curative measures.  In addition, it 

would be of clear advantage to plants to respond to low, as of yet undamaging, levels of 

UV-B and trigger acclimation responses in order to offset any potentially harmful 

subsequent stresses.  A role which again in Arabidopsis seems to be fulfilled by UVR8. 

Consequently, it is no great step to theorise that if UVR8 is indeed such a vital 

component of UV-B responsiveness, homologues should exist across a large range of plant 

groups, possibly stretching back to the chlorophytes.  Therefore a search for potential 

homologues in species with completed or partially completed genome sequences was 

undertaken.  It was found that a number of possible homologues could indeed be found in a 

wide range of species some of which bear remarkable similarity to the Arabidopsis UVR8 

sequence and have been annotated as likely homologues.  When these protein sequences 

were assembled into a distance tree two large clades appear.  The upper clade as depicted 

in Figure 4.3 includes Human RCC1.  As of yet, no homologue of RCC1 has been found in 

plants which shares its Ran GEF activity.  It is possible that those proteins in the upper 

clade are actually such examples of functional homologues to RCC1.  In turn, we can 

suppose that those proteins found in the lower clade along with Arabidopsis UVR8 are true 

UVR8 homologues.  Consequently, this sharp split into two clades may be explained by 

the presence of two distinct types of proteins.  As some of these genome sequences are not 

yet complete and fully annotated, and due to the close similarity in the protein sequences, 

this may have resulted in proteins that are more closely related to UVR8 or to RCC1.  
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Once these proteomes are completed further searches can be performed in order to test this 

theory. 

Taking into consideration the structure of this tree, it was decided to focus only on 

those sequences which made up the lower clade.  Both N and C-terminal sequences were 

analysed in order to assess similarity to UVR8.  As none of the UVR8-likes identified 

seemed to posses either region (which have been shown to have an essential role in UVR8 

function) this would seem to be good criteria to identify potential UVR8 homologues.  

BLAST searches were therefore also performed using just these N or C-terminal regions 

(see Appendix 2).  Interestingly, for those species in the upper clade, no similarities could 

be found for either region in these proteins.  For the lower clade there was a more diverse 

mix.  Unsurprisingly, those species (i.e. the dicots) which are shown to be very close to the 

Arabidopsis UVR8 sequence have very significant values of similarity in both regions.  

Outside of the dicots however, we have a split between the two regions.  For the C-

terminal region, most of the potential homologues had relatively strong significance 

values.  However, there is seemingly greater diversity in the N-terminal region.  For 

example, proteins from Picea sitchensis, one of the rice sequences and both Physcomitrella 

patens sequences have values >0.05.  Despite this, when N-terminal sequences were 

aligned using ClustalX (see Figure 4.4) it is clear that at least between residues 20-33 there 

is a very strong degree of similarity.  It therefore would seem that it is these residues which 

are most strongly conserved and hence likely to be responsible for the essential function of 

the N-terminal.  It was on this basis that N-terminal deletions were constructed as 

discussed below and in Sections 4.2.4-15. 

When the N-terminal regions of those species in the upper clade are examined, it is 

interesting to note that almost all have no apparent similarity to Arabidopsis UVR8 when 

they are aligned.  The one exception to this is for Chlamydomonas reinhardtii which, 

similar to the lower clade sequences, shows a strong similarity in residues 20-33 (data not 

shown).  However, this is not true for the C-terminal region.  Even when the sequences for 

Chlamydomonas and Arabidopsis are aligned, no region that corresponds to the 27 amino 

acid segment in the C-terminal can be found.  This apparent natural split makes the 

Chlamydomonas protein a potential subject of interest as it could potentially both untangle 

the functions of the two essential regions in, and also give clues as to the evolution of the 

UVR8 protein. 

The close relationship between the N and C-terminal sequences in the lower clade 

species does suggest that UVR8 homologues have the potential to be readily found in other 

species.  Furthermore, their apparent presence in a wide variety of groups including mosses 
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and gymnosperms suggests a relatively ancient origin.  However, as it is not clear whether 

the protein sequence from Chlamydomonas is indeed an UVR8 homologue we cannot yet 

determine how far back the origin of UVR8 can be traced to.  

 

4.3.3 The role of the N-terminal of UVR8 in protein localisation 

The results described in Sections 4.2.5-15 suggest that different parts of the N-terminal 

region may be responsible for different effects.  In summary, loss of the first 12 amino 

acids has no effect on protein localisation while loss of 20-33 prohibits nuclear 

accumulation after UV-B.  Addition of the first 12 or 20 amino acids to a GFP tag causes a 

UV-B induced nuclear accumulation while addition of 32 amino acids gives rise to a 

constitutive nuclear localisation. 

Considering first the results using 12 amino acids of UVR8, it is somewhat 

confusing as to why the removal or addition of these residues results in such contrary 

localisation patterns.  That is, if removal of this region seemingly has no effect, then we 

might not expect that addition of the same region to have similar effects to the full length 

protein.  Therefore, we can conclude that this region is sufficient but not necessary for UV-

B induced nuclear accumulation.  This can also be considered contrary to expectations as 

the first 12 amino acids show little conservation between various UVR8 like sequences in 

other plant species (see Figure 4.4).  Furthermore, that such a short region of protein is 

sufficient to confer UV-B responsiveness is also something of a surprise. 

Perhaps this region forms part of a binding site for an interacting protein.  Deletion 

of this segment may not be sufficient to abolish binding thus allowing normal localisation 

patterns.  When only this region is used, it may provide sufficient anchorage for an 

interacting partner, which may be involved in UV-B sensing, to bind thereby promoting 

nuclear accumulation under these conditions.  Alternatively, it may be that there are 

redundant signals within the N-terminal sequence that are important in nuclear 

accumulation.  Thus, removal of one of these in the first 12 residues may not be sufficient 

to affect localisation due to the remaining signal within the next 20.  This may explain why 

the removal of all the N-terminal of UVR8 is required for definitive loss in nuclear 

accumulation under UV-B. 

Results from the microscopy studies described here suggest that removal of the first 

20 amino acids of UVR8 gives rise to a complete loss in nuclear accumulation of UVR8 

post UV-B treatment.  It would hence seem that within this region lies a motif necessary 

for mediating UV-B induced nuclear accumulation.  Initially it may seem that this result 

may be at odds with that found by Kaiserli and Jenkins (2007) whereby removal of 23 N-
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terminal amino acids resulted in reduced nuclear accumulation.  This study however did 

not use a NES tag and therefore had higher levels (about 50 % colocalisation) of protein in 

the nucleus under white light.  Upon UV-B exposure, this rose to approximately 60 % 

colocalisation of GFP and DAPI signals.  It can thus be seen that the differences between 

the two light treatments in the !23 study (~10% increase with UV-B) are not large.  

Therefore both this result and the !20 data shown here are consistent with the hypothesis 

that this N-terminal region is necessary for UV-B induced nuclear accumulation.   

As the !23 deletion construct is still localised to the nucleus under white light as 

levels similar to that of GFP-tagged full-length UVR8, it would thus appear that the loss of 

this region does not completely abolish nuclear localisation.  Instead it would seem that the 

strong nuclear accumulation (at the expense of cytoplasmic UVR8 levels) in response to a 

UV-B stimulus has been lost.  It has yet to be conclusively determined whether the nuclear 

accumulation of UVR8 seen under UV-B is as a result of increased nuclear import or 

decreased nuclear export.  Therefore this ~20 amino acid N-terminal of UVR8 is 

apparently necessary for either enhanced nuclear import or for increased nuclear retention 

under UV-B conditions depending upon which of these processes is the underlying cause 

of changes in UVR8 distribution in the cell. 

Finally, while either 12 or 20 amino acids seem to be sufficient to cause UV-B 

induced nuclear accumulation, 32 gives rise to constitutive nuclear localisation under 

minus as well as plus UV-B conditions.  Therefore, by addition of a further 12 residues we 

lose UV-B responsiveness and retain an ability to accumulate in the nucleus.  Interestingly, 

this is despite the presence of an NES tag which ordinarily strongly promotes export of 

proteins into the cytoplasm.  This suggests two possibilities.  Firstly that the overall effect 

of this 32 amino acid region is a strong NAS which is insensitive to light treatment.  

Alternatively, that within these extra amino acids (i.e. on top of the first 20) lies a cryptic 

NLS.  As the first 12-20 amino acids alone are sufficient to cause UV-B responsive nuclear 

accumulation, it is not clear why a NLS would be needed.  Nor is it clear why increasing 

the length of the fragment would result in such a strong NAS that is no longer responsive 

to the UV-B stimulus.  Perhaps, the addition of these extra amino acids in isolation from 

the rest of the UVR8 protein gives rise to inappropriate binding that causes the apparent 

mis-localisation under minus UV-B conditions.  

Nevertheless, it is obvious that no concrete conclusions can be drawn until such 

time that additional experiments, which dissect this N-terminal region further, are 

performed. 
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It should be noted that the exact mechanisms behind this nuclear ‘accumulation’ are 

not yet clear.  Two distinct possibilities exist which can explain the phenomenon seen.  

Firstly, the UVR8 protein could be actively imported into the nucleus after a UV-B 

treatment.  Alternatively, it may be that it is the rates of nuclear export which are altered.  

In this latter scenario, under minus UV-B conditions, UVR8 is continually exported from 

the nucleus so that the bulk of the protein remains in the cytoplasm.  After a UV-B pulse, 

the export process of this particular protein may be blocked so that larger concentrations 

accumulate.  Preliminary work by Eirini Kaiserli (unpublished data) using Leptomycin B, 

an inhibitor of nuclear export, favours the latter explanation.  Addition of this inhibitor 

resulted in nuclear accumulation of the NES construct in the absence of UV-B. 

If it is indeed the active export of UVR8 that is altered under different light 

conditions, then this suggests that the initial N-terminal amino acids are essential for the 

retention of the UVR8 protein.  This is consistent with the observation that solely the 32 N-

terminal amino acids of UVR8 bound to a GFP tag are constitutively within the nucleus.  It 

would appear that within this short sequence lies a nuclear retention signal (also known as 

a nuclear localisation signal) that is insensitive to light conditions. 

The work presented in this chapter has promoted our understanding of the role of 

the N-terminal region in the localisation of UVR8.  The picture however is far from 

complete and while the experiments described here form a good foundation, additional 

work is needed so that the seemingly various effects of different parts of this region can be 

tied down more thoroughly.  

 

4.3.4  Future experiments 

While work described in this Chapter has shown that sequences similar to UVR8 exist in 

both Arabidopsis and a variety of species, and in addition to further pinning down the 

important residues within the N-terminal, it has also revealed areas which would benefit 

from additional investigation.  This next section will suggest experiments which may help 

to build a more complete picture of UVR8 action and the role of proteins similar to UVR8. 

A number of sequences were identified in Arabidopsis that show similarity to 

UVR8.  As of yet, none of these have concrete functions.  A number of experiments could 

be performed which would provide an insight into their functions.  For example, ChIP 

assays could be performed in order to determine whether, similarly to RCC1 and UVR8, 

these proteins also have the ability to bind to chromatin.  It is possible that while having a 

role independent from UV-B, they may be involved in response to other abiotic or even 
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biotic stimuli.  Further analysis into their expression patterns, localisation as well as 

response of knock-out mutants under a variety of conditions could help clarify this. 

Turning next to the potential UVR8 homologues in other plant species, it would be 

interesting to see whether whole proteins and also N or C-terminal segments are able to 

rescue the null mutant or deletion constructs respectively.  As there seems to be strong 

conservation in the N-terminal region even between Arabidopsis and Chlamydomonas, 

there is a good possibility of functional complementation but it would still be interesting to 

see whether any of the amino acids substitutions that have take place have subtle effects on 

the protein localisation and its ability to accumulate under UV-B.  Furthermore, if these 

identified proteins are indeed true UVR8 homologues, they should have the ability to 

rescue the UV-B hypersensitivity phenotype of uvr8-1.  Therefore transformation with full 

length versions of the protein also would be of interest.  In the case of rice and 

Physcomitrella this may help resolve which of the two very similar proteins are the true 

homologues or even if they are redundant copies. 

In order to confirm that it is the presence of specific UV-B responsive components 

in UVR8 that are responsible for its accumulation under UV-B, one final control 

experiment should be performed.  While is was shown that UVR8 promoter driven GFP is 

unable to accumulate in the nucleus, it should also be determined whether this is also true 

for a cytoplasmically localised protein of a similar size to UVR8.  It is possible that the 

accumulation of UVR8 under UV-B that we see is not a specific effect but a general 

reduction in nuclear export due to this particular treatment.  By GFP tagging an alternate 

protein, this should resolve the issue and allow us to suggest whether UV-B responsiveness 

is an inherent feature of UVR8. 

While, unlike RCC1 which contains a bipartite NLS, no recognisable NLSs could 

be detected in the N-terminal region of UVR8 (Kaiserli, 2008), this does not exclude the 

possibility that a novel as yet unidentified NLS is present.  It would therefore be interesting 

to take the 12 amino acid segment which lies between residues 20-32 and determine 

whether this is sufficient to act as an NLS.  Not only could this segment be fused to GFP to 

assess its localisation, it could also be tagged to NES-GFP to determine whether it is 

indeed strong enough to overcome the export signal. 

Finally, it is somewhat ambiguous whether G33 is one of structural importance, 

therefore when the plus constructs were generated +32N was chosen instead of taking the 

first 33 residues.  Consequently the deletion study using !33N should be repeated to 

ensure that loss in nuclear accumulation is not dues to a compromised structure.  Evidence 

that plus constructs are sufficient for nuclear accumulation/localisation would suggest that 
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loss of the first 32 amino acids would still result in severely compromised nuclear 

accumulation.  In addition, as the !20 construct was non-functional this in total suggests 

that the results for !32N are unlikely to differ greatly from that seen for !33N. 

 

 

 



Figure 4.1 23 UVR8-like proteins in Arabidopsis thaliana.  Table shows UVR8/RCC1 

related genes in Arabidopsis thaliana.  Protein sequence for UVR8 was submitted to NCBI 

BLAST and 23 similar sequences were returned.  Sequences were aligned and scored for 

the number of conserved structural residues in RCC1 as determined by Renault et al. 

(1998).  

Gene Description 
No. conserved 

structural 

residues 

RCC1 REGULATOR OF CHROMOSOME CONDENSATION1 41 

UVR8 UV RESISTANCE LOCUS8 31 

At5g12350 Ran GTPase binding / chromatin binding / zinc ion binding 21 

At5g19420 Ran GTPase binding / chromatin binding / zinc ion binding 26 

At5g42140 zinc finger protein, putative / regulator of chromosome condensation (RCC1) family protein 26 

At1g76950 PRAF1 25 

At1g69710 zinc finger protein, putative / regulator of chromosome condensation (RCC1) family protein 23 

At3g47660 regulator of chromosome condensation (RCC1) family protein 19 

At3g23270 regulator of chromosome condensation (RCC1) family protein 17 

At4g14370 disease resistance protein (TIR-NBS-LRR class), putative 18 

At1g65920 regulator of chromosome condensation (RCC1) family protein / zinc finger protein-related 19 

At3g53830 regulator of chromosome condensation (RCC1) family protein / UVB-resistance protein-related 31 

At3g55580 regulator of chromosome condensation (RCC1) family protein; 30 

At3g02510 regulator of chromosome condensation (RCC1) family protein 28 

At5g16040 regulator of chromosome condensation (RCC1) family protein 28 

At1g27060 regulator of chromosome condensation (RCC1) family protein 26 

At5g08710 regulator of chromosome condensation (RCC1) family protein / UVB-resistance protein-related 27 

At5g48330 regulator of chromosome condensation (RCC1) family protein 26 

At5g11580 UVB-resistance protein-related / regulator of chromosome condensation (RCC1) family protein 22 

At5g60870 regulator of chromosome condensation (RCC1) family protein; 19 

At3g26100 regulator of chromosome condensation (RCC1) family protein 29 

At3g15430 regulator of chromosome condensation (RCC1) family protein 25 

At3g02300 regulator of chromosome condensation (RCC1) family protein 25 

At3g03790 ankyrin repeat family protein / regulator of chromosome condensation (RCC1) family protein 16 

At1g19880 regulator of chromosome condensation (RCC1) family protein 24 
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Figure 4.2 Multiple sequence alignment of UVR8 and 23 UVR8-like proteins in 

Arabidopsis thaliana.  Protein sequences were aligned in ClustalX.  A  Section of the 

alignment showing the conservation around N-terminal regions of the proteins.  At4g14370 

extends approximately 980 amino acids prior to the start of the UVR8 sequence. B  Section of 

the alignment showing the degree of conservation around the C-terminal end of UVR8.  C-

terminal insertion (relative to RCC1) shown in red box.   
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Figure 4.3  Phylogenetic tree showing the predicted evolutionary relationships between 

UVR8 in Arabidopsis and similar proteins in other species. A  Distance tree showing the 

similarity between the UVR8 and potential homologues in other species. ! = eudicots, " = 

monocots, # = gymnosperms, $ = bryophytes, ! = chlorophyta, " = animal.  B  Depiction 

of the relationships of the branches shown in the brackets in A.   
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UVR8 eGFP NES UVR8:: 

UVR8 eGFP NES UVR8:: 

MAEDMAADEVTA 

UVR8 eGFP NES UVR8:: 

MAEDMAADEVTAPPRKVLII 

UVR8 eGFP NES UVR8:: 

MAEDMAADEVTAPPRKVLIISAGASHSVALLSG 

Figure 4.4  N-terminal UVR8 constructs.  A  Alignment of Arabidopsis UVR8 and similar 

proteins from other plant species.  B  N-terminal deletions generated with GFP tag and a 

nuclear exclusion signal (NES).  Deleted amino acids are shown below the red triangles.!
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Figure 4.5  Expression levels of constructs  in planta.  Western blots showing the protein 

levels of !12N (line 4.3) and !20N (line 8.3) in comparison to Wt and GFP-UVR8 levels.  

Plants were grown for three weeks in 20 µmol m-2 s-1 white light.  20 µg total protein extract 

loaded for each lane.  UVR8 was detected using a specific antibody raised against a C-

terminal region of the protein.  Asterisk marks the unknown upper band sometime seen in 

Wt samples."
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Figure 4.6  NES-GFP-!12NUVR8 rescues the phenotype of uvr8-1 and accumulates in the 

nucleus in response to UV-B in Arabidopsis. Three week old Arabidopsis plants grown in a low 

fluence rate of white light (20 !mol m-2 s-1) were treated with either four hours of 1 !mol m-2 s-1 

UV-B (UB) or were left in low white light as a control (LWL).  A  RT-PCR  showing  that 

expression of CHS and HY5 upon UV-B exposure is rescued.  "12N plants (UVR8PRO::NES-

GFP-!12NUVR8) were from T3 line 4.3; similar  results  also  seen  in  the  T2  line  1  (data not 

shown) .  B  Confocal images of leaf tissue taken from plants expressing UVR8PRO::NES-GFP-

!12NUVR8.  DAPI was used to stain nuclei.  Scale bar represents 20 µm  C  Graph depicts the 

percentage of nuclei that show co-localisation of DAPI stain as well as GFP fluorescence in 20 

µmol m-2 s-1 white light (LWL) and 2 hours 3 µmol m-2 s-1 UV-B (UB). Above results show data 

obtained from T3 line  4.3  averaged over  three  experiments,  bars  show standard error.   p  = 

0.0003.  Similar results were also found for the T2 line 1 (data not shown). "
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Figure 4.7  NES-GFP-!20NUVR8 is unable to rescue the phenotype of uvr8-1 plants and is 

localised mainly in the cytoplasm in both low white light and UV-B in Arabidopsis. Three 

week old Arabidopsis plants grown in a low fluence rate of white light (20 !mol m-2 s-1) were 

treated with either four hours of 1 !mol m-2 s-1 UV-B (UB) or were left in low white light as a 

control (LWL). A  RT-PCR showing that expression of CHS and HY5 upon UV-B exposure is 

not  rescued.   "20N (UVR8PRO::NES-GFP-!20NUVR8) results shown for T3 line 8.3; similar 

result also seen for T2 line 28 (data not shown). B  Confocal images of leaf tissue taken from 

plants expressing UVR8PRO::NES-GFP-!20NUVR8.  DAPI was used to stain nuclei. Scale bar 

represents 20 µm.   C  Graph depicts the percentage of nuclei that show co-localisation of DAPI 

stain as well as GFP fluorescence in 20 µmol m-2 s-1 white light (LWL) and 2 hours 3 µmol m-2 

s-1  UV-B  (UB).  Above  results  show  data  obtained  from  T3  line  8.3  averaged  over  three 

experiments, bars show standard error.  p = 0.3.  Similar results were also found for T2 line 28 

(data not shown). "
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Figure 4.8  NES-GFP-UVR8 is localised in the cytoplasm under low fluence rate white 

light but accumulates in the nucleus under UV-B in tobacco. A  Confocal images of leaf 

tissue  taken  from  tobacco  plants  (Nicotiana  benthamiana)  transiently  expressing 

UVR8PRO::NES-GFP-UVR8 construct.  DAPI was used to stain nuclei. Scale bar represents 

20 µM  B  Graph depicts the percentage of nuclei that show co-localisation of DAPI stain as 

well as GFP fluorescence in 20 µmol m-2 s-1 white light (LWL) and 2 hours 3 ± 1 µmol m-2 

s-1 UV-B (UB).  Graph depicts results from a minimum of 70 images, bars show standard 

error.  p < 2.2x10-16.    !
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Figure 4.9  NES-GFP-!33N is localised in the cytoplasm under both low white light 

and  UV-B in  tobacco.   A   Confocal  images  of  leaf  tissue  taken  from tobacco  plants 

(Nicotiana  benthamiana)   transiently  expressing  UVR8PRO::NES-GFP-!33N  construct.  

DAPI was used to stain nuclei. Scale bar represents 20 µm.  B  Graph depicts the percentage 

of nuclei that show co-localisation of DAPI stain as well as GFP fluorescence in 20 µmol 

m-2 s-1 white light (LWL) and 2 hours 3 ± 1 µmol m-2 s-1 UV-B (UB).  Graph depicts results 

from a minimum of 70 images, bars show standard error.  p = 0.9.  "
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eGFP NES UVR8:: 

eGFP NES UVR8:: MAEDMAADEVTA 

eGFP NES UVR8:: MAEDMAADEVTAPPRKVLI

I 

eGFP NES UVR8:: MAEDMAADEVTAPPRKVLIISAGASHSVALLS 

Figure 4.10  N-terminal UVR8 constructs.   Constructs generated with either the GFP tag 

and NES signal only, or with the addition of portions of the N-terminal region of UVR8.!
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Figure 4.11  NES-GFP is mainly localised in the cytoplasm under both low fluence rate 

white light and UV-B in tobacco.  A  Confocal images of leaf tissue taken from tobacco  

(Nicotiana  benthamiana)  plants  transiently  expressing  UVR8PRO::NES-GFP  construct.  

DAPI was used to stain nuclei. Scale bar represents 20 µM.  B  Graph depicts the percentage 

of nuclei that show co-localisation of DAPI stain as well as GFP fluorescence in 20 µmol 

m-2 s-1 white light (LWL) and 2 hours 3 ± 1 µmol m-2 s-1 UV-B (UB).  Graph depicts results 

from a minimum of 70 images, bars show standard error.  p = 0.0007.  !
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Figure 4.12  NES-GFP-12NUVR8 is localised mainly in the cytoplasm in low fluence 

rate white light and accumulates in the nucleus in response to UV-B in tobacco.  A  

Confocal  images  of  leaf  tissue  taken  from  tobacco  plants  (Nicotiana  benthamiana) 

transiently expressing the UVR8PRO::NES-GFP-12NUVR8 construct.   DAPI was used to 

stain nuclei. Scale bar represents 20 µM.  B  Graph depicts the percentage of nuclei that 

show co-localisation of DAPI stain as well as GFP fluorescence in 20 µmol m-2 s-1 white 

light (LWL) and 2 hours 3 ± 1 µmol m-2 s-1 UV-B (UB).  Graph depicts results from a 

minimum of 70 images, bars show standard error.  p = 4.7 x 10-14.   !
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Figure  4.13   NES-GFP-20NUVR8  is  localised  mainly  in  the  cytoplasm  under  low 

fluence rate white light and in the nucleus under UV-B in tobacco.  A  Confocal images 

of  leaf  tissue  taken  from  tobacco  plants  transiently  expressing  the  UVR8PRO::NES-

GFP-20NUVR8 construct.  DAPI was used to stain nuclei. Scale bar represents 20 µM.  B  

Graph depicts the percentage of nuclei that show co-localisation of DAPI stain as well as 

GFP fluorescence in 20 µmol m-2 s-1 white light (LWL) and 2 hours 3 ± 1 µmol m-2 s-1 UV-B 

(UB).  Graph depicts results from a minimum of 70 images bars show standard error. p = 

0.004.  !
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Figure 4.14  NES-GFP-32NUVR8 is localised in the  nucleus under both low fluence 

rate white light and UV-B in tobacco.  A   Confocal images of leaf tissue taken from 

tobacco  plants  (Nicotiana  benthamiana)  transiently  expressing  the  UVR8PRO::NES-

GFP-32NUVR8 construct.  DAPI was used to stain nuclei.  Scale bar represents 20 µM.   B  

Graph depicts the percentage of nuclei that show co-localisation of DAPI stain as well as 

GFP fluorescence in 20 µmol m-2 s-1 white light (LWL) and 2 hours 3 ± 1 µmol m-2 s-1 UV-B 

(UB).  Graph depicts results from a minimum of 70 images, bars show standard error.  p = 

0.5. !
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Figure 4.15  NES-GFP-32NUVR8 is mainly localised in the nucleus under both low 

fluence rate white light and UV-B in Arabidopsis.  A  Confocal images of leaf tissue taken 

from stably transformed T1 Arabidopsis plants expressing the UVR8PRO::NES-GFP-+32N 

construct.  DAPI was used to stain nuclei. Scale bar represents 20 µM.  B  Graph depicts the 

percentage of nuclei that show co-localisation of DAPI stain as well as GFP fluorescence in 

20 µmol m-2 s-1 white light (LWL) and 2 hours 3 UV-B (UB).  Bars show standard error.  

Results averaged over three experiments.  p = 0.5.  !
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CHAPTER 5 THE UVR8 COMPLEX 

 

5.1 Introduction 

In many situations, cellular proteins do not work in isolation but instead as part of a 

complex either through binding to additional monomers or via interaction with one or more 

other proteins.  It is therefore a very real possibility that the UVR8 protein may also be 

acting as part of complex.  This complex, for example, may be necessary for the nuclear 

accumulation/cytoplasmic retention under different light conditions, for recruitment of 

transcription factors at promoter sites or a number of other processes.  Indeed the discovery 

of interacting partners could give rise to vital insights into the function of this protein and 

its mechanisms of action.  Currently several techniques exist which can identify such 

interactions, for example mass spectrometry and yeast-two hybrid assays.  Both of these 

methods have been utilised by members of the Jenkins lab to identify proteins interacting 

with UVR8, but without a great deal of success.  For the former, obtaining sufficient 

protein amounts proved difficult while for the latter, no candidates were identified.  As a 

consequence, this chapter describes further attempts to identify potential UVR8-interacting 

proteins.  First, efforts to boost protein concentration levels for use with mass spectrometry 

are described.  Secondly, an alternative method, Size Exclusion Chromatography (SEC), 

was used and the results obtained are detailed. 

While the first of these approaches proved unfruitful, results from SEC experiments 

show that UVR8 does indeed appear to exist as part of a complex that is of a constant size 

under different light conditions. Furthermore, the size of this complex alters 

disproportionally with the addition of a GFP tag and shows a dramatic reduction in size 

with the deletion of the first 23 N-terminal amino acids. 

 

5.2 Results 

5.2.1  Extraction of proteins from pea, cabbage and cauliflower tissue 

As previous attempts to analyse the UVR8 protein using mass spectrometry had failed, 

partly due to low protein concentration, it was decided to turn to other plant tissues that 

may be processed in bulk.  These had the potential to yield much larger amounts of the 

protein to submit for analysis.  Pea was selected as there were already plants being grown 

for use within the department.  It is also suitable as this species has been used in many 
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previous biochemical studies and produces a relatively large amount of leaf tissue (in 

comparison to Arabidopsis) per plant.  In addition to pea tissue, cabbage leaves and 

cauliflower florets were also both analysed.  As members of the Brassicacea family these 

species are relatively close to Arabidopsis thus increasing the chance of detection using the 

Arabidopsis UVR8 antibodies.  A further advantage to using the latter two species is that 

tissues selected for extraction contain relatively little rubisco.  This protein is highly 

abundant in photosynthetically active tissues.  Its size (in monomer form) is quite close to 

that of UVR8 and thus the sheer abundance of this protein can complicate protein analysis.  

Hence using rubisco-poor tissues should decrease the noise in samples.  This is especially 

true of cauliflower floret samples which have extremely low levels of rubisco (relative to 

green leafy tissue).  It should be noted that previous work (Kaiserli PhD thesis, 2008) has 

shown that the UVR8 protein is present in almost all tissues including flowers.  We can 

therefore expect that reasonable amounts should be present in cauliflower florets. 

For each of the three species described above, 1g of tissue was harvested and 

protein extracted using standard Arabidopsis protein extraction methods (see Section 

2.9.1).  Ten, 20 and 40 "g total protein extract were loaded onto 10 % SDS gels along with 

20 "g extract from wild type Arabidopsis as a positive control.  A variety of protein 

concentrations (as determined by Bradford assay) were used to ensure that clear bands 

were detected for each plant species (i.e. not too feint or strong).  Protein blots were 

performed and probed with N and C-terminal UVR8 antibodies as described in Section 

2.9.4.  Both antibodies were tested to try to maximise identification of UVR8 homologues 

in these species.  As we do not have sequences for UVR8-homologues in these plants it 

was uncertain if the antibodies would bind appropriately.  The experiment was repeated 

three times and representative blots are shown in Figure 5.1.   

In most examples presented here, no bands were detected for either antibody 

whether of a size similar to that of Arabidopsis UVR8 or not.  The exception to this was 

for C-terminal antibody probed pea blots.  These showed evidence of bands, albeit much 

higher and more faint than for Arabidopsis.  It is therefore apparent that the sequences of 

UVR8 homologues in these species are not sufficiently similar to be detected using 

antibodies generated specifically for Arabidopsis UVR8.  Consequently, in vitro pull-down 

methods using immobilised UVR8 antibodies (in order to enrich samples for the UVR8 

protein and its potential interactors) would also be unsuccessful. 

It would therefore seem that this strategy is not an appropriate one to search for 

potential interacting proteins unless a new antibody is produced, and other avenues should 

be pursued. 
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5.2.2 UVR8 protein extraction and stability 

Once the previous results had been taken into consideration, it was reasoned that use of 

other plant species to extract UVR8 would not be suitable for analysis via mass 

spectrometry.  It was therefore decided to return to Arabidopsis and try an alternate method 

for protein analysis, namely Size Exclusion Chromatography (SEC).  This technique 

involves the separation of proteins and protein complexes according to size by passage 

through a Superose™ column.  In summary the process involves loading a protein sample 

onto the top of the column and collection of the resulting fractions.  The columns have 

been designed so that there is a strong relationship between the elution volume of a protein 

and the size of the complex it exists in (if any).  Before these experiments were performed, 

as this was a new technique, it was decided to first optimise the process of protein 

extraction so that the greatest concentration of UVR8 could be obtained.  In addition, it 

was necessary to ensure that this protein would remain stable throughout the fractionation 

process. 

To address the first of these questions, the extraction buffer commonly used in the 

Jenkins lab was tested against a SDS buffer to see whether the former was really extracting 

the maximum amounts of UVR8 protein possible.  It was hypothesised that an alternative 

buffer which contained SDS, in addition to a boiling treatment, might further break up 

cellular membranes and thus release more UVR8 into solution.  First, protein was extracted 

using the standard microextract buffer as described in Section 2.9.1.  Next a second sample 

of leaf tissue was ground in a 2 % SDS buffer and boiled for 5 mins.  Both of these protein 

samples were then tested for total protein concentration using the Bradford Assay.  20 "g 

total protein extract for each was loaded onto a 10 % SDS gel and a standard western blot 

performed.  Membranes were probed with the C-terminal UVR8 antibody.  This was 

repeated three times to ensure consistent results. 

The results presented in Figure 5.2 A show that, contrary to predictions, 

microextraction buffer out-performs the SDS buffer in terms of UVR8 protein levels.  

Therefore, not only does the former procedure seem to release reasonable amounts of 

UVR8 protein but also appears to be a generally better method of extraction than a stronger 

SDS buffer.  Consequently it was decided to continue to use this buffer in all subsequent 

protein extractions. 

Although an appropriate buffer had been selected, it was still a possibility that the 

disruption of cellular membranes is not as thorough as possible.  Furthermore, UVR8 binds 

strongly to chromatin.  It is thus possible that this binding may prevent full solubilisation 
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and movement of UVR8 into native protein gels and also the Superose™ column.  In order 

to determine whether this may indeed be the case, a protein sample extract was subjected 

to a brief sonication to break up the chromatin and cell membranes, thereby potentially 

releasing yet more UVR8.  This sonicated sample, along with an untreated one, were again 

run on a protein gel, a blot performed and probed with a UVR8 specific antibody.   

As can be seen from the blots in Figure 5.2 B, the relative protein concentrations of 

samples pre and post-sonication are roughly equal.  It is therefore unlikely that the 

chromatin binding properties of UVR8 are limiting its availability in protein gels.  

Therefore, inclusion of a sonication step in the protein extraction process was deemed 

unnecessary. 

While the microextraction buffer has many advantages and was found to extract 

good amounts of UVR8, it was established during initial runs through the Superose™ 

column that it gave rise to build-up in pressure and a slow running column.  This is most 

likely due to the relatively high concentration of glycerol in this buffer.  Generally for this 

type of column a phosphate buffer is recommended.  Therefore it was decided to test the 

stability of the UVR8 protein in this alternate buffer solution.  As the microextraction 

buffer proved the most efficient for extraction, the decision was made to continue to 

extract using this method but then subsequently exchange buffers using dialysis.  This 

process involves loading protein samples into Slide-a-lyzer dialysis cassettes which are 

then suspended in the desired phosphate buffer solution overnight at 4 ºC with gentle 

stirring.  While previous handling of the UVR8 protein had found it to be stable at 4 ºC for 

periods of approximately 24 hours, it is possible that the protein would not be as stable in 

this particular buffer.  In addition, after this dialysis, protein samples would be run on the 

column for several hours at room temperature, potentially also resulting in degradation.  

Thus, to investigate this, an experiment was performed whereby samples were incubated at 

a variety of different temperatures.  This included samples taken directly after dialysis as 

well as after 6 hours at standard room temperature and also at 27 ºC (on a particularly hot 

few days over the summer).  These samples were then run on protein gels and blots 

performed to determine whether any degradation had occurred. 

Figure 5.2 C shows that the bands pre and post dialysis, as well as across all 

incubation temperatures, are sharp and show no signs of the blurring indicative of protein 

degradation.  It therefore seems that neither dialysis of the protein at 4 ºC nor running the 

column at room temperature will adversely affect the stability of the UVR8 protein itself. 

Interestingly however, it appears that a difference in the band patterns arises in 

dialysed samples.  Occasionally when blots are probed with the UVR8 antibody two other 
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bands can be seen; one appears as a band just above/below that of UVR8 and sometimes a 

much larger upper band can be seen at roughly the 80 kDa mark.  Until this time, neither 

were consistently produced nor any particular treatment or condition identified which 

reliably gives rise to this phenomenon.  It should be noted that a similar pattern was 

observed when this experiment was repeated.  It would therefore appear that either the 

dialysis process or the incubation overnight at 4 ºC might cause this.   

Nevertheless, it appeared that preparation of protein samples was optimised to the 

best of our knowledge.  Therefore the next stages in the preparation of the experiment were 

undertaken.  Focus was turned to producing a standard curve for the column so that protein 

complex sizes could be determined.  

 

5.2.3  Generation of standard curves for Size Exclusion Chromatography 

In order to calculate protein/protein complex sizes, a series of standards first has to be run 

on the column so that a standard curve can be generated.  Each of the protein standards 

(ovalbumin, conalbumon, aldolase and ferretin) and the column were prepared as per 

manufacturers instructions.  Each of the standards was then run separately on the column.  

A chromatogram is thus produced for each protein, the peak of which can be used to read 

off the elution volume for that particular sample.  This elution volume in combination with 

the void volume and column volume, can be used to calculate a value for Ka (for equation 

see Figure 5.3).  This was then plotted for each of the standards against the log of their 

respective molecular weights (logMr).  A line of best fit was drawn thus giving the 

equation (y = -0.010x + 0.085) as can be seen in Figure 5.3.   By using these equations in 

reverse the sizes of unknown samples can be inferred.   

To determine whether this system worked effectively, sizes were calculated for a 

protein of known size, rubisco (approximately 540 kDa).  For preliminary experiments, 

blots were stained for presence of protein by ponceau staining.  Similar to the method used 

for UVR8 whereby membranes are probed with antibody, this reveals which fractions have 

high levels of the protein of interest.  In the case of rubisco, bands resulting from a 

ponceau stain can be easily identified and are often used as evidence for equal loading.  

Therefore, which fraction shows the greatest amount of rubisco (i.e. thickest band) can be 

identified.  For example, in the representative blot shown in Figure 5.3 B, it can be seen 

that the peak fraction is number 26.  With the knowledge that each fraction contains 300 

"l, we can determine the elution volume and hence approximate complex size.  In this 

example this gave a value of ~500 kDa for rubisco, quite close to the reported size of 

approximately 540 kDa. 



135 

This process was repeated for the 60 kDa aspecific band which appears when 

samples are probed using the anti-GFP antibody.  The resulting banding pattern implied a 

size of about 50 kDa for this protein.  This suggests that the protein responsible for the 

bands seen on such blots exists as a monomer. 

While both these values are somewhat smaller than we might expect, they are 

nevertheless quite close.  To get this close to the apparent size of the protein is 

encouraging.  It does however highlight the fact that this technique has comparatively less 

power in detecting small difference in size. 

It should be noted that bands here (particularly for rubisco stains) are particularly 

large as a total of ~600-800 "g total protein extract was loaded onto the column.  Such 

large protein amounts are needed to reduce the effects due to dilution in the 24 ml column. 

Consequently as it appeared that this method did indeed seem to detect different 

protein sizes with reasonable accuracy over a wide range of sizes, it was decided to 

continue and test a number of mutants and transgenic lines available within the Jenkins 

group. 

 

5.2.4  UVR8 protein levels across mutants and transgenic lines to be studied. 

Prior to performing the size exclusion experiments, it was decided to run protein blots to 

determine comparative protein expression levels in transgenic lines expressing each of the 

constructs.  In particular, work on some of the constructs had shown decreasing protein 

levels in comparison to the original T3 lines described by Kaiserli and Jenkins (2007).  If 

appropriate bands could be detected to reasonable levels, this should mean that sufficient 

complex would be present to detect using SEC methods.  

For each construct to be tested protein was extracted either directly from white light 

grown 3 week-old seedlings or after a 4 hour treatment with 1 "mol m
-2

 s
-1

 UV-B.  20 "g 

total protein extract from these plants was then run on 10 % SDS gels, western blots 

performed and membranes probed with either the C-terminal or GFP antibody.  Wild type 

or GFP samples were included in each run for comparison.  Representative blots of these 

can be seen in Figure 5.4. 

Firstly wild type, the GFP-UVR8 and the NLS or NES tagged versions of UVR8 

were tested.  As can be seen in Figure 5.4 the expression levels vary considerably.  

Relative to wild type levels, there is a greater concentration of GFP-UVR8, in line with 

results shown by Kaiserli (2008).  The same blot however shows a low concentration of 

NLS and very little NES at all.  Initial work with the original NLS and NES lines had 

shown higher levels of expression (Kaiserli PhD thesis, 2008).  However, later generations 
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of these plants are currently being used in the lab and it would seem that expression levels 

have been reduced perhaps due to silencing effect.  Nevertheless, as much larger total 

protein amounts were to be loaded onto the column (600-800 "g), it was decided that there 

would be sufficient levels to detect in the fractions when loaded onto a protein gel. 

Next !23N samples were run alongside GFP-UVR8.  In Figure 5.4 B it can be seen 

that levels appear to be roughly equal to that of GFP-UVR8.  On this particular gel, 

samples were run for longer than usual.  The result of this is the appearance of two bands 

of very close size.  Similarly to the large upper band, the cause of this double band remains 

elusive and unpredictable.  While it is not entirely clear which of these, or alternatively 

both, are UVR8, they appear to have roughly even levels both within a sample and across 

all samples shown here. 

Finally Figure 5.4 C shows sample extracted from wild type tissue and from the 

cop1-4 mutant.  Here, as we would expect, the protein levels of UVR8 are not altered by 

the loss of functional COP1.  Interestingly, these samples show the large upper band only 

in the wild type samples.  The meaning behind this is not clear and warrants further 

investigation. 

In summary, it seemed that all constructs would produce sufficient UVR8 levels for 

analysis using SEC and therefore detailed investigation into the sizes of this potential 

complex was initiated. 

 

5.2.5  UVR8 exists in a 70-90 kDa complex size in wild type tissue 

When Western blotting is performed on protein samples extracted form uvr8-1 tissue and 

probed with either UVR8 antibody (C or N-terminal), no bands can be seen.  However, to 

be certain that the methods used here in combination with the huge increase in the amount 

of protein analysed do not alter this fact, it was decided first to look at resulting fractions 

when samples collected from uvr8-1 plants are loaded onto the column.  uvr8-1 plants 

were grown for three weeks in low fluence rate white light conditions (20 "mol m
-2

 s
-1

) 

and tissue harvested.  Protein was extracted and sample dialysed as detailed above and in 

Chapter 3.  Approximately 600-800 "g total protein extract was loaded onto the column 

and 80 fractions of 300 "l were collected.  As these fractions were of a relatively large 

volume they were first concentrated using StrataClear™ resin prior to loading onto a 10 % 

SDS protein gel.  A western blot was performed and the membrane probed with the C-

terminal UVR8 antibody.  In Figure 5.5 A a broad range of fractions are shown in order to 

determine whether any bands can be seen.   
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As for previous studies, this UVR8 Ct terminal antibody (generally the more 

sensitive of the two UVR8 antibodies) does not detect any UVR8 protein in this sample.  

We are therefore confident that bands in these, and subsequent samples only arise as a 

result of UVR8 presence. 

The next questions to address were whether native UVR8 exists in a complex and if 

so, whether the complex size would differ between plus and minus UV-B conditions.  

Therefore, wild type plants were grown for three weeks in low fluence rate white light.  

Half of these where then harvested for protein extraction directly, while the second half 

were first exposed to a 4 hour 1 "mol m
-2

 s
-1

 UV-B treatment.  The SEC process was then 

performed as described above.  For each treatment the procedure was repeated three times, 

the approximate complex sizes calculated which were then averaged to give the values 

show in Figure 5.5.  Only the blots of select fractions (19-44) are shown here as 

preliminary experiments had shown that bands were only present in this range of samples. 

On first examining the blots shown in Figure 5.5, it can be seen that the band 

pattern under UV-B and low white light are very similar.  The peak fraction for each 

appears between number 31-32.  Calculations from this and for the two other repeat 

experiments gave average protein sizes of approximately 90 and 70 kDa for white light and 

UV-B respectively.  This is noticeably larger than the size of a UVR8 monomer (42 kDa).  

It thus seems that UVR8 may indeed be interacting with a protein or proteins with a 

size/cumulative size of 50 and 30 kDa respectively.  The size difference between the two 

light treatments however is not large; therefore taking into account the relatively low 

resolution of the column, we cannot exclude the possibility that these two complexes are 

indeed the same size.  Consequently, we cannot yet determine whether the complex 

components are the same or different (but of a similar size) under both or either light 

treatments.  An interesting possibility, derived from the fact that the interacting protein 

appears to be roughly the same size as UVR8, is that UVR8 is naturally present as a dimer.   

Looking at the blots again, it can be seen that the input lanes are quite faint.  This 

shows that the fractions contain relatively large concentrations of the UVR8 protein.  This 

is to be expected considering that 800 "g total protein extract was loaded onto the column 

and is spread over relatively few fractions.  It is therefore possible that this method could 

be a means of enriching for UVR8 in samples to submit for mass spectrometry.   

In summary, these results show that UVR8 exists in a complex.  Consequently, it is 

of interest to try to investigate this further by use of different transgenics or mutants 

available to determine whether any of these show an alteration in protein size. 
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5.2.6  Addition of a GFP tag to UVR8 causes a large increase in complex size 

The result from the previous section suggested the possibility that UVR8 might be present 

as a dimer.  In order to test this theory as well as to assess the effect that the addition of a 

GFP tag would have (if any), it was decided to repeat the experiment using samples from 

GFP-UVR8 transformed plants.  If the complex is a dimer of UVR8, then the resulting 

complex size from GFP-UVR8 samples should be approximately 144 kDa (42 kDa UVR8 

plus the 30 kDa GFP tag gives rise to about a 72 kDa monomer).  Alternatively, if UVR8 is 

interacting with something other than itself, the resulting complex should equate to roughly 

100-120 kDa. 

Before testing the GFP-UVR8 construct however, it was decided to determine the 

banding pattern resulting from use of the GFP antibody.  Similarly to that described in the 

previous section, uvr8-1 samples were run on the column and then probed with the GFP 

antibody.  As expected, as can be seen in Figure 5.6A, the only bands present were the 60 

kDa non-specific bands seen in all blots probed using this antibody.  Therefore it looked as 

if this antibody could be used in subsequent experiments using GFP-tagged versions of 

proteins. 

Subsequently, protein extracts from untreated and UV-B treated GFP-UVR8 plants 

were run on the column and analysed as described in previous sections.  Figure 5.6 B 

shows the representative blots and the average (n = 3) calculated sizes for these samples. 

Contrary to either prediction, protein blots from these samples showed a large shift 

towards fractions containing much larger proteins and protein complexes; the resulting 

average complex size from these is about 300 kDa and thus much larger than that 

attributable to formation of a dimer.  It therefore seems that, by the addition of the GFP 

tag, we have introduced other elements to the complex.  This therefore raises a number of 

possible explanations.  One such possibility is that other unknown proteins are interacting 

with GFP and thereby artificially increasing the size of the overall complex. 

It is however interesting to note that now the complex seemingly has a size that is 

roughly equivalent to a tetramer of GFP-UVR8.  The reason for this may lie in the 

properties of the GFP protein itself.  Previous literature has reported that GFP has a 

tendency to form dimers/multimers (Yang et al. 1996).  The multimerization of GFP may 

therefore block UVR8 interacting with any other proteins.  Alternatively, it may be that 

UVR8 naturally dimerizes, but the presence of the GFP tag causes and additional binding 

between GFP modules therefore resulting in a tetramer.   

Whatever the underlying truth behind these observations is, we can conclude that 

the addition of a GFP tag to UVR8 is having a large impact on the size of the complex.  As 
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all of the variations in UVR8 generated so far (i.e. addition of localisation signals and 

deletions) also have GFP tags, then this may cloud the results.  Nevertheless, we can still 

glean some vital information on the effects of changing the properties of UVR8 even with 

this complication.  For example, if any of the alterations results in a large change in this 

complex, then we can conclude that UVR8 is still exerting an effect on some of the 

components.  Further studies using some of these constructs were therefore initiated, the 

results of which are described below.  

 

5.2.7  GFP-UVR8 complex size shows differences across cellular compartments 

Under minus UV-B conditions UVR8 is present mainly in the cytoplasm and but is also 

present to a low degree in the nucleus.  After UV-B there is a strong accumulation in the 

nucleus and relative decrease in cytoplasmic presence.  Localisation and light treatment are 

therefore tightly linked and thus this might be true for the complex i.e. that there are 

different complex sizes according to the different compartments.  However, the spread of 

both native and GFP tagged UVR8 across these compartments under both light conditions 

may be impacting on our ability to separate out the complexes according to treatment.  We 

therefore decided to look at the localisation of the proteins when they are entirely restricted 

to different compartments.  This can be achieved using the NLS and NES tagged versions 

of the proteins described in the previous results chapter.  Under low white light conditions 

these tags restrict the protein to the nucleus and cytoplasm respectively.  Therefore protein 

extracts from both untreated and UV-B treated NLS and NES plants were run on the 

column as described in previous sections.  Representative blots and average complex sizes 

(n = 3 for NLS; n = 2 for NES samples) are shown in Figure 5.7. 

For samples derived from NLS tagged plants, we again see an average complex 

size of about 300 kDa for both light conditions.  We can therefore conclude that the 

complex size for nuclear localised UVR8 (when tagged to GFP) is roughly 300 kDa and 

also that it is unchanged by UV-B treatment.  Thus, in this case it seems that either the 

complex remains unchanged by UV-B treatment or that the components exchanged after 

treatment are of equivalent size to those before treatment.  However, the potential 

complications introduced by the presence of the GFP tag prevent firm conclusions from 

being drawn. 

For NES samples under white light conditions, we see a similar banding pattern to 

NLS tagged samples while the average complex size is calculated to be approximately 340 

kDa.  It thus does seems that the complex within the cytoplasm may slightly larger than 

that in the nucleus (by about 50-60 kDa).  This may suggest different components to the 
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complex with different compartments however as the difference is not very large and as 

there are issues with resolution in this method, this precludes concrete conclusions from 

being drawn. 

As GFP-UVR8 protein tagged with the NES moves strongly into the nucleus, we 

would expect to see a similar average complex size to that found for NLS plants.  Here 

however, this does not appear to be the case; the calculated complex is roughly 100 kDa 

larger than we would expect.  The most likely reason for this lies in problems encountered 

with this particular set of samples.  Firstly, as there were only two replicates for NES 

samples due to problems with adequate expression, it is possible that an outlying value is 

artificially increasing the average value.  In addition, the comparatively fainter bands from 

these samples increased the difficulty in identifying the peak fractions, thereby skewing the 

data.  It seems that additional repeats, preferably using lines that show increased levels of 

expression, are needed to clarify this issue. 

Despite these difficulties, the results so far show that the complex sizes under UV-

B conditions and when UVR8 is restricted to the nucleus are consistently smaller (albeit 

only slightly so) than that for untreated and cytoplasmic samples. 

 

5.2.8  Deletion of 23 N-terminal amino acids of UVR8 results in a reduction in 

complex size 

Work covered in the previous chapter had shown that loss of the N-terminal region of 

UVR8 results in the loss in function of the protein.  Furthermore, the protein shows 

reduced or complete loss of nuclear accumulation depending on which amino acids are 

removed.  The reasons for this loss in functionality are not yet known.  One possibility is 

that this loss in function and impaired nuclear accumulation direct results from the loss of a 

protein binding region.  Therefore, to test this theory it was decided to run one of these 

deletion constructs on the column and assess the complex size.  As the deletion constructs 

generated here showed very low protein levels, it was decided to use the !23N construct 

generated by Kaiserli and Jenkins (2007).  Plants were grown and protein extracted as 

described in the previous sections.  Resulting blots and average complex sizes (n = 3) are 

shown in Figure 5.8. 

The complex size calculations for this construct gave values of about 160-170 kDa 

under both low white light and under UV-B.  It is immediately apparent that the loss of 

only a few amino acids of UVR8 has resulted in a huge reduction in the average complex 

size.  The size of the complex has halved in comparison to those values for GFP-UVR8 

samples.  Interestingly, this complex now appears to be the size expected for a GFP-UVR8 
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dimer as discussed in Section 5.2.5.  Therefore, if the hypothesis that the complex may be a 

tetramer is true, we seem to have lost two units of the complex.  The loss of the first 23 

amino acids may have blocked a UVR8-UVR8 dimerization, leaving only that attributable 

to the GFP.  

This result does seem to negate the hypothesis that it is GFP alone that is causing 

an artificial multimerization or recruiting other unknown proteins.  It appears that UVR8 is 

still having an effect on the overall complex size and a seemingly important one.  

Furthermore, it seems that both the UV-B and non UV-B complex are dependent on these 

key amino acids. 

It is interesting to note that the UV-B treated !23N samples have and extended 

‘tail’ of bands in the protein blot.  This may suggest that more that one complex is present 

with so that the second smaller complex causes the bands to extend into fractions 35-39.  

However, as Western blotting methods are not truly quantitative and exposure time of 

films to the blots can strongly influence band strength, this would need to be tested further 

in order to confirm presence of multiple complexes. 

In conclusion, it seems that in addition to a vital role in UVR8’s function and 

localisation, the N-terminal amino acids are potentially important in the formation of an 

appropriate complex.  However, again due to the presence of the GFP tag, we cannot yet 

be certain that the loss of these amino acids is affecting complex formation.  Nevertheless, 

this result offers a potential insight into the role of these N-terminal residues in the 

function of the protein.   

 

5.2.9  UVR8 complex size changes in the cop1-4 mutant under low white light 

Recent work by Ulm and co-workers has suggested that UVR8 might be interacting with 

COP1 (Favory et al. 2009).  COP1 monomers are 76 kDa in size, therefore the expected 

complex size for an interaction with one COP1 monomer would be in the region of 115 

kDa.  Hence, it does not seem that the data presented here supports this.  Nevertheless, it 

was decided to examine the complex size of UVR8 in the cop1-4 mutant to determine 

whether there is in fact a change in the complex size.  Plants were grown, treated and SEC 

was performed as described in the preceding sections.  Resulting blots and average 

complex sizes (n = 2) are shown in Figure 5.9. 

The calculated sizes of the complex give values of 125 and 70 kDa for untreated 

and UV-B treated samples respectively.  While the value of 70 kDa for UV-B is consistent 

with previous values for wild type plants, that for low white light seems to be larger than 

expected.  This result suggests that COP1 may indeed be having an effect on the UVR8 
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complex under white light conditions.  However, instead of a decrease in average complex 

size, we see an increase.  One possibility is that COP1 has a role in preventing the 

formation of this larger complex under minus UV-B conditions.  We do however have to 

take into account that the cop1-4 mutant is not a null mutant.  Complete loss in functional 

COP1 results in lethality and thus all mutant alleles are somewhat leaky.  Although the 

cop1-4 is a relatively strong mutant, some protein will remain and it is thus hard to assess 

what impact these residual protein levels may have. 

 

5.3 Discussion 

The aim of the work described in this chapter was to determine whether UVR8 acted in a 

complex.  Mass spectrometry has previously been attempted by the Jenkins lab to identify 

proteins associated with UVR8, but with little success.  As attempts to extract and identify 

UVR8-like proteins in other plant species were unsuccessful concentration was instead 

turned to SEC.  Use of this method did indeed answer the question of whether UVR8 

existed in a complex and furthermore showed that the complex size decreased with the 

removal of the N-terminal.  However, due to the relatively low resolution of the method 

and the added complication of the presence of the GFP tag, questions as to compartment 

specificity and the effect of light could not be answered as clearly.  Finally, the results 

using cop1-4 seem to be contrary to our expectations based on data from Favory et al. 

(2009).  Therefore, while SEC has answered our initial question and given a tantalising 

glimpse into the UVR8 complex, it is clear that this groundwork will need to built upon in 

order to fully resolve the UVR8 complex and its components. 

 

5.3.1  Optimisation of UVR8 protein extraction 

When considering the peptide used to generate the N-terminal antibody, namely the first 14 

amino acids of the UVR8 sequence, it is perhaps unsurprising that no bands were seen 

using protein extracts from other plant species.  This region covered the least conserved 

region of the N-terminal as can be seen in Figure 4.4.  Even the relatively closely related 

Brassica rapa shows little conservation in this region with Arabidopsis UVR8.  It would 

therefore seem that this particular antibody is too specific for the Arabidopsis sequence and 

thus cannot bind to any proteins in other plant species. 

The C-terminal antibody however was raised against a peptide found in the 27 

amino acid region found by Kaiserli and Jenkins (2007) to be essential for UVR8 function 

and, as discussed in Chapter 4, is seemingly conserved across potential UVR8 homologues 
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in other plant species.  We might therefore expect that this antibody is more likely to 

produce bands on a western blot.  Indeed, when examining Figure 5.1 the clearest bands 

seem to arise when the C-terminal antibody was used.  Interestingly however, these did not 

appear for the more closely related Brassicas, but for the pea extracts instead.  Intriguingly, 

a faint band of a roughly equivalent size is also seen for the N-terminal antibody blot, thus 

raising the possibility that both antibodies are detecting the same protein. 

Of all the samples and antibodies, C-terminal pea yielded the best results.  

However, even these bands are quite feint compared to that of Arabidopsis indicating that 

either the potential homologue in pea is found at lower concentrations or that the antibody 

isn’t binding as efficiently.  It would therefore seem that this approach, that is using tissue 

from other plants to bulk up the amounts of UVR8 extracted, is not a feasible one unless an 

antibody that cross-reacts widely can be produced.  Consequently, continued use to the 

well-characterised model species Arabidopsis seems to be the best method in the short 

term to further investigate the protein-based mechanisms of UV-B signalling. 

It was therefore decided to undertake a series of experiments using SEC.  To ensure 

that as much protein was extracted as possible, various aspects of the protein purification 

process were assessed.  It was shown that the extraction buffer previously used by the 

Jenkins group worked the best and that overall protein concentrations could not be 

improved by the addition of a sonication step.  It therefore seems that the relatively low 

concentration of UVR8 in samples previously submitted for mass spec analysis was not the 

result of ineffectual protein extraction.  For Arabidopsis leaf tissue at the very least, this 

method does indeed seem to be the optimal one.  As these experiments were only 

performed using this particular tissue, we cannot extend this to all plant species or even to 

other tissue types.  It is therefore possible that the failure to identify strong bands in the 

protein extractions shown in Figure 5.1 may be due to the lack of optimisation to other 

sample sources.  Nevertheless, the relatively strong rubisco bands seen in the ponceau 

stained membranes of pea would suggest that the extraction of soluble proteins could not 

have been too adversely affected. 

Figure 5.2 also showed that the UVR8 protein appears to be stable overnight at 4 ºC 

and after additional incubations of several hours at room temperature.  While we can 

conclude that the protein itself is resistant to degradation in different buffers and at 

different temperatures, we cannot exclude the possibility that the protein complex itself is 

either disrupted or that artificial aggregations occur.  Indeed it is interesting to note that the 

large non-specific band that sometimes appears on UVR8 blots is present strongly in those 

samples that had been subjected to dialysis overnight at 4 ºC.  While this phenomenon was 
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not pursued here, it would be of interest to determine whether it is the incubation, 

phosphate buffer or dialysis process itself that causes an enrichment of this band.   

It is also of interest to note that the increased enrichment in the upper band is not 

accompanied by a decrease in the UVR8 band.  Due to the semi-quantitative nature of 

Western blots, it is difficult to say this with a great degree of certainty.  However, as equal 

amounts of total protein extract were loaded onto the gel and taking into account the 

evenness of the rubisco bands, it is unlikely that the total amounts of protein present are 

significantly different. 

It is of course by no means certain that this upper band does contain some 

proportion of UVR8.  As the N-terminal antibody performs with greater efficiency than the 

C-terminal antibody, it is the former that is used most often.  Comparatively fewer blots 

are probed with the C-terminal antibody.  However, by looking at the samples from 

Arabidopsis in Figure 5.1, we can see that faint bands of roughly equivalent size can be 

found around the 83 kDa marker.  This suggests that two antibodies raised to two distinct 

regions may be producing the same banding pattern and hence binding to the same protein.  

Although this evidence is somewhat circumstantial, it does hint that some UVR8-specific 

process results in the presence of an upper band in some blots.  In addition, this blot (and 

some others presented in this thesis) shows that this upper band is present in multiple blots, 

even those where the protein has not been incubated overnight at 4 ºC or had its buffer 

exchanged via dialysis.  We can therefore conclude that although this process seems to 

strongly enrich this band, it is not entirely responsible for its formation. 

One final observation on this upper band is that in the blots shown in Figure 5.4 A 

and C, this upper band shows a reduced intensity in UV-B treated samples.  Again, 

Western blotting techniques prohibit accurate quantification so we are unable to draw 

concrete conclusions.  Nevertheless, this implies that there may be a UV-B responsive 

component to this phenomenon. 

 

5.3.2  Effects of GFP on UVR8 complex size 

The results presented in Figure 5.6 show that UVR8 does indeed exist in a complex.  It was 

hoped that by looking at the elution volume of a GFP tagged construct, the difference in 

size between this and that of native UVR8 would determine whether UVR8 was forming a 

dimer or interacting with a similarly sized protein.  Contrary to expectations, it was found 

that the GFP construct was considerably larger than native UVR8.  So large in fact that it 

now equated to a tetramer of GFP-UVR8.  It is therefore clear that the GFP tag is having a 

large impact on the overall size of the complex and is seemingly recruiting other elements 
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into the complex size.  This immediately raises the question of whether this may be 

affecting the function of UVR8.  As the introduction of the GFP-UVR8 construct into the 

uvr8-1 background rescues functionality, it would appear that the function could not be too 

adversely affected.  It is possible that this aggregation does not occur in vivo and that it is 

some component of the extraction process or the dialysis that results in this effect.   

Furthermore it is known that GFP can dimerize (Yang et al. 1996).  This could 

explain the effect seen here.   Thus, the presence of the GFP may be causing a 

tetramerisation thereby blocking the native UVR8 interactions.  If this is the case, it 

suggests that the formation of a complex is not essential for function otherwise we would 

expect that GFP-UVR8 could not rescue uvr8-1 which again is not the case.  Alternatively, 

and possibly more attractively, the GFP could be causing an additional dimerisation on top 

of that due to the presence of UVR8 alone.  That is, if UVR8 was interacting with protein 

X and that the GFP tag was dimerising, we would see an overall complex size that is 

smaller than that seen i.e. ~220 kDa rather than closer to ~280. 

One potential means to clarify this issue would be to overexpress GFP alongside 

GFP-UVR8 to disrupt the formation of multimers of UVR8.  Alternatively, if it seems that 

the complex is formed in vitro, free GFP could be added to the sample prior to loading on 

the Sepharose® column.  The fractions could then be probed with the UVR8 antibody and 

hopefully if GFP is in excess only a GFP-UVR8/GFP complex would be seen. 

Obviously and ideally, all of the above experiments would be repeated using the 

same constructs but with the removal of the GFP tag.  This should give a better resolution 

and hopefully confirm the above results.  While GFP has been an extremely useful tool in 

molecular biology, particularly in the field of microscopy, it is evident that it is not without 

its flaws.  As the protein sequence is further modified and with the arrival of new tags such 

as iLOV, these flaws may be reduced or eliminated (Chapman et al. 2008). 

 

5.3.3  The UVR8 complex 

Despite the apparent problems associated with working with GFP-tagged constructs we 

can draw several conclusions from work using the SEC method.  Firstly, that native UVR8 

does indeed exist in a complex (and a relatively strong one capable of withstanding 12 

hours or more at 4 ºC plus 4 hours more at room temperature).  This complex seems to be 

slightly smaller post UV-B treatment and this may be associated with a change in 

localisation.  That is NLS tagged protein given rise to a slightly smaller average complex 

size than cytoplasmic which correlated with the localisation of the protein under UV-B and 

white light respectively. Second, deletion of the N-terminal 23 amino acids causes a huge 
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reduction in protein size.  Third, loss in functional COP1 gives rise to a larger calculated 

complex size but only under low white light conditions. 

With the exception of NES and !23N samples, the calculated complex size of UV-

B treated samples seems to be slightly smaller than for those in LWL.  In general, this 

correlated with the differences in compartments.  That is, both NLS samples are smaller 

than for NES under low white light where the compartments are the nucleus and cytoplasm 

respectively.  Therefore UVR8 seems to exist in a smaller complex whenever localised in 

the nucleus (i.e. where the majority of the protein is localised after UV-B exposure) and 

larger when in the cytoplasm (i.e. where the majority of the protein is localised under 

minus UV-B conditions).  However, under this premise, we would expect NES UV-B 

samples to be of equivalent size to NLS.  This does not seem to be the case here; the 

sample in question is actually ~100kDa larger when exposed to UV-B (and therefore 

mainly in the nucleus).  As this apparent complex is so much larger this may indicate that 

either this is an unrepresentative result and therefore requires additional repeats or 

alternatively that there are other mechanisms at play in this particular case.  Due to the 

extremely low protein expression of this construct, the former of these hypotheses seems to 

be the more likely.  As the bands are comparatively fainter than seen for other constructs it 

is increasingly more difficult to identify the peak fraction.  This introduces additional error 

and thereby can give rise to less accurate results.  It would therefore seem that these 

experiments should be repeated, ideally using a transgenic line which shows increased 

levels of the construct. 

Nevertheless, it does seem that there are subtle differences in average complex 

sizes between the different compartments.  As the average complex size appears to be 

strongly similar in both NLS samples, this suggests that it is the localisation that is 

responsible for the complex composition and not the light treatment.  If the complex size 

were responsive to UV-B, then we might expect to see a shift towards a smaller complex 

size in the NLS minus UV-B samples.  As this appears not to be the case, we can infer that 

it is localisation that is having the larger effect on the UVR8 complex.  It may be that the 

components of the complex are in fact responsible for UVR8’s localisation; one may lead 

to retention in the nucleus while the other encourages restriction to the cytoplasm. 

As the differences in average complex size between the compartments are not 

large, and due to the relatively low resolution of SEC, it could be that these differences in 

size are coincidental.  For example identification of different fractions as the peak can lead 

to large differences in the calculated complex size.  Perhaps then these differences, 

especially those for the larger fractions as the range of sizes that each fraction represents 
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increases with complex size, are too subtle to separate confidently.  Working under this 

hypothesis, the size of the complex in fact does not differ across light conditions in native 

UVR8, GFP-UVR8 or NLS samples.  In this case, we can return to the theory that the 

UVR8 protein may be dimerizing.  Although this second hypothesis seems to fit with data 

for the 23!N samples better, we cannot link different complexes with different light 

conditions and compartments.  One of the weaknesses of this technique is that brief 

transient complexes cannot be detected.   That is, UVR8 may exist mostly as a dimer, 

except under a change in conditions, e.g. after UV-B, when a transient complex enhances 

UVR8 accumulation in the nucleus or blocks its export.  Of course, the situation might be 

that the localisation of the UVR8 complex is regulated by means that are not dependent on 

a direct protein-protein interaction with UVR8.  For example the nuclear pores may 

undergo a change post-UV-B that significantly reduces the export of all proteins including 

UVR8 from the nucleus. 

So far it would seem that the two main hypotheses for the composition of the 

UVR8 complex, i.e. a UVR8 dimer or UVR8 plus unknown components, would seem to 

have equal merit.  If however we include the results from the cop1-4 samples, the latter of 

these becomes the more likely.  While samples from cop1-4 plants that had been exposed 

to UV-B showed a calculated complex similar to that of native UVR8, samples under 

minus UV-B conditions show a fraction pattern shifted towards a larger size complex. 

Thus, while the nuclear complex has remained unchanged, a loss in functional COP1 has 

resulted in an apparent increase in the size of un-exposed complex.  It is not immediately 

clear why loss of COP1 might lead to formation of a larger complex size.  Indeed, more 

recent work has shown that COP1 and UVR8 interact so we might expect a decrease in 

size in the cop1-4 mutant rather than the contrary.  One possibility is that COP1 degrades 

some protein or proteins bound to UVR8 under minus UV-B conditions thereby allowing 

an alternative protein to bind in its place.  Thus when COP1 is removed, the larger protein 

or proteins are able to preferentially bind to UVR8.   

The results presented here interestingly seem to be the very opposite of those 

presented by Favory et al. (2009).  These authors show that the interaction between UVR8 

and COP1 is UV-B dependent.  We would therefore expect a complex size of ~115 kDa 

after UV-B.  This however is not seen in the wild type samples and the closest calculated 

complex size to this occurring in the cop1-4 mutant under low white light.  Consequently, 

it seems that while both UVR8 and COP1 are known to have important roles in UV-B 

responses, the exact way in which these proteins interact and their immediate downstream 
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effects are still elusive.  No doubt further work on both of these proteins will help clarify 

and crystallise the networks involved. 

 

5.3.4  The role of the N-terminal region in the UVR8 complex 

Work presented in the previous chapter has already demonstrated the important role that 

the N-terminal of UVR8 plays in its function and localisation.  Calculations of complex 

size in the !23N construct shown in Figure 5.8 show that this small region also appears to 

have a vital role in correct complex assembly.  Unfortunately, due to the presence of the 

confounding GFP tag, we cannot have an accurate representation of the complex size when 

this region is absent.  Nevertheless, loss of this region results in a halving of the complex 

size relative to GFP-UVR8.  We can thus hypothesise that the key to this region may be the 

existence of a binding site whereby the interacting partners (be it an unidentified protein or 

a second UVR8 molecule) can attach to UVR8.  These interacting partners may in turn 

regulate the localisation of the complex causing it to accumulate in the nucleus upon 

exposure to UV-B.  Furthermore, it has been shown that this localisation is necessary but 

not sufficient for UVR8 function thus implying an additional functional role for the N-

terminal.  This also could be as a result of the appropriate binding of interacting proteins.  

Thus, it may be that either or both of these effects are the result of interacting proteins.  If 

it is possible to more accurately record the complex sizes of the various constructs under 

different light conditions it may be possible to start separating out these effects.  It may be 

the case that the nuclear accumulation is dependent on one form of the complex while the 

addition, removal or exchange of components regulates the activity. 

Before taking these conclusions too far however, we have to consider the 

possibility that by removal of this N-terminal region we have in some way interrupted the 

GFP dimerisation.  Again this issue is one that may be remedied by repeating the 

experiment in the absence of a GFP tag. 

 

5.3.5 Future experiments 

Aside from the aforementioned repeats with the removal of the GFP tag, there are a 

number of other experiments that would both complement and enhance the results 

described here.  For example, returning again to the N-terminal, it would be interesting to 

apply the plus constructs described in the previous chapter to the column.  If the loss of the 

N-terminal 23 amino acids results in an apparent large reduction in the complex size, then 

accordingly by use of the addition constructs we would expect to again see complexes 
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larger that the size of the GFP construct alone.  Furthermore, this may help clarify the 

situation regarding the roles of the first 12, 20 and 32 amino acids.  If there is sufficient 

sequence in the first 12 residues for binding with interactors (thus allowing nuclear 

accumulation under UV-B) then this should be apparent from the complex size.  While 

these experiments determine that the N-terminal region is necessary for complex 

formation, we have not yet determined whether it is sufficient.  Use of the plus 

constructions should allow us to resolve this. 

As the N-terminal appears to be an important region for complex formation, the 

pull-down experiments published by Favory et al. (2009) should be repeated using the N-

terminal constructs.  If the main complex binding site is lost with the N-terminal, then it 

should no longer be possible to pull-down !23N-UVR8 with COP1.  

For example, if it is solely the N-terminal region that is necessary for complex 

formation, then application of samples from !C plants should yield similar results to GFP-

UVR8.  If there is again a reduction in complex size, then this would lead us to the 

conclusion that multiple regions are necessary and also that protein interactions may be 

tied to the functions of both regions.  If there is no apparent change in size, it would seem 

that the vital, if elusive, function of the C-terminal is independent of any protein 

interactions. 

The results obtained from use of the cop1-4 mutant seem to contradict the results 

obtained by Favory et al. (2009).  Additional SEC experiments may help clarify the issue.  

Firstly, the blots obtained from use of wild type tissue on the column could be probed with 

a COP1 antibody to see whether the pattern of bands is similar.  In particular if, as stated 

by Favory et al, the COP1-UVR8 interaction is UV-B dependent, then we would expect the 

patterns seen from using either antibody to be similar only in UV-B treated samples.   

An alternate use for the SEC method would be to use it to concentrate samples for 

mass spectrometry.  However, the fraction size, 300 "l, that the protein elutes in is quite 

large and UVR8 is spread over many fractions.  Here, the large fraction size problem is 

overcome by use of Strataclear
TM

 resin which binds to proteins allowing them to be spun 

down and resuspended in a smaller volume.  This works well when loading buffer is added 

and the sample can be loaded directly on a gel.  For the more sensitive mass spectrometry 

analysis however, this could cause a huge problem.  If the proteins could be washed from 

the resin, then this would seem like an attractive method.  In addition to concentration of 

the sample, this fractionation method should have removed the majority of the rubisco 

protein (which elutes from the column much earlier).  This should dramatically reduce 

noise in the readings and improve the data acquired. 
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Finally, in order to obtain more accurate values for the complex size smaller 

fractions could be taken so that the elution volume could be determined with greater 

precision.  Alternatively, columns with better separation in the 40-400 kDa size range 

could also be used. For example, while the Sepharose 6HR 30/100 column has a separation 

range of 50-50,000 kDa, a Superdex 75 column has a range of 30-700 kDa (also available 

from GE Healthcare). 
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Figure 5.1  UVR8 is not detectable in pea (Pisum sativum), cabbage (Brassica oleracea cv 

Capitata) or cauliflower (Brassica oleracea cv Botrytis) tissue. Leaf tissue was extracted in 

micro-extraction buffer and run on a 10 % SDS-Page gel.  Proteins were transferred to 

nitrocellulose membrane and stained with ponceau.  Membranes were then probed with N-

terminal or C-terminal anti-UVR8 antibody.  No protein of the predicted size was detected.  

Protein extracted from Arabidopsis thaliana (A. th) was used as a control. Rubisco large subunit 

(rbcL) shown as a loading control.  
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Figure 5.2. Optimisation of UVR8 protein extraction and assessment of its stability 

under different temperatures.  Leaf tissue from three week old Arabidopsis seedlings was 

used for all experiments and protein extracted as described.  All blots were probed with the 

C-terminal UVR8 antibody.  A  microextraction buffer is more efficient means of extracting 

UVR8 protein than a 2 % SDS buffer.  Western blot showing UVR8 protein levels after 

extraction using microextraction buffer (!E) or a 2 % SDS buffer with a subsequent boiling 

treatment for 5 mins (SDS).  B  Sonication of protein extracts does not improve UVR8 

yield.  Protein was extracted using microextraction buffer then either directly spun down 

(Pre) or given three short pulses of sonication before centrifugation (Post).  C UVR8 protein 

is stable at room temperature.  Western blot showing whole cell extract prior to dialysis (U), 

extract post-dialysis (D), dialysed extract that had been left at 4 ºC, 21 ºC or 27 ºC for four 

hours. Rubisco large subunit (rbcL) shown as a loading control. Asterisk denotes the 

unknown upper band sometimes seen in Wt samples.  
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Figure 5.3 Calibration curve for Size Exclusion Chromotography column.  A  Ferretin, 

aldolase, conalbumin and ovalbumin protein standards were run on Superose® 6 hr column 

and fractions collected.  Ka (where Ve = volume at which protein eluted, V0 = void volume 

and VC = column volume) was plotted against the log of the molecular weight of the protein 

standard.  A standard curve was generated and an equation to describe this line was 

produced.  This equation was subsequently used to determine the approximate molecular 

weights of the UVR8 complexes.  B  Calculations on fractions showing rubisco large 

subunit (rbcL) and a 60 kDa non- specific band (as seen when using the GFP antibody) 

result in good estimates of protein sizes.  Numbers to the right of figure indicate calculated 

size of protein/complex.  Blots was probed with a GFP antibody.  
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Figure 5.4  Western Blots showing the relative protein amounts in the constructs used 

for SEC.  All plants were grown for three weeks in 20 !mol m-2 s-1 white light.  Protein was 

extracted from leaves of untreated (LWL) and UV-B treated (UB, 4 hrs 1 µmol m-2 s-1) 

plants.  In all blots, 20 !g total protein extract was loaded onto 10 % SDS gels and were 

probed with the C-terminal UVR8 antibody.  Rubisco large subunit (rbcL) shown as a 

loading control.  Asterisk denotes the unknown upper band sometimes seen in Wt samples.  
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Figure 5.5  UVR8 exists in a complex whose size is unaffected by UV-B treatment. A  

Wild type plants were grown for three weeks in 20 !mol m-2 s-1 white light.  Whole cell 

extract from leaves of untreated (LWL) and UV-B treated (UB, 4 hrs 1 µmol m-2 s-1) plants 

was run on a Superose® 6 hr column and fractions collected.  Fractions 19 to 44 were  run 

on a 10 % SDS-acrylamide gel and transferred to nitrocellulose membrane.  Membranes 

were tested for presence of UVR8 by probing using anti-UVR8 antibody. Fraction numbers 

are shown above the blots, I = Input (20 µg total protein).  Approximate sizes of complexes 

were determined using the calibration curve generated from standard samples (see Figure 

5.3).  B No bands could be detected in any fractions taken from samples extracted from 

uvr8-1 plants and probed with the C-terminal UVR8 antibody. 
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Figure 5.6 GFP-tagged UVR8 exists in a much larger complex size than wild type UVR8. 

Plants were grown for three weeks in 20 !mol m-2 s-1 white light.  Whole cell extract from 

leaves of untreated (LWL) and UV-B treated (UB, 4 hrs 1 µmol m-2 s-1) plants was run on a 

Superose® 6 hr column and fractions collected.  Fractions were then run on a 10 % SDS-

acrylamide gel and transferred to nitrocellulose membrane.  Membranes were tested for 

presence of UVR8 by probing using anti-GFP antibody.  A  Only the ~60 kDa non-specific 

band could be detected in any fractions taken from samples extracted from uvr8-1 plants and 

probed using the GFP Monoclonal antibody. B  Blot showing fractions 19 to 44 from GFP-

UVR8 samples.  Fraction numbers are shown above the blots, I = Input (20 µg total protein).  

Approximate sizes of complexes were determined using the calibration curve generated from 

standard samples (see Figure 5.3).  
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Figure 5.7  The effects of addition of NLS or NES tag to distribution of GFP-UVR8 in 

SEC fractions. NLS-GFP-UVR8 and NES-GFP-UVR8 plants were grown for three weeks 

in 20 !mol m-2 s-1 white light.  Whole cell extract from leaves of untreated (LWL) and UV-

B treated (UB, 4 hrs 1 µmol m-2 s-1) plants were run on a Superose® 6 hr column and 

fractions collected.  Fractions 19 to 44 were  run on a 10 % SDS-acrylamide gel and 

transferred to nitrocellulose membrane.  Membranes were tested for presence of UVR8 by 

probing using anti-GFP antibody. Fraction numbers are shown above the blots, I = Input (20 

µg total protein).  Approximate sizes of complexes were determined using the calibration 

curve generated from standard samples (see Figure 5.3).  
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Figure 5.8  The effect of deletion of portions of the N-terminal of UVR8 on the 

distribution of UVR8 in SEC fractions. GFP-!23NUVR8 plants were grown for three 

weeks in 20 "mol m-2 s-1 white light.  Whole cell extract from leaves of untreated (LWL) 

and UV-B treated (UB, 4 hrs 1 µmol m-2 s-1) plants was run on a Superose® 6 hr column and 

fractions collected.  Fractions 19 to 44 were  run on a 10 % SDS-acrylamide gel and 

transferred to nitrocellulose membrane.  Membranes were tested for presence of UVR8 by 

probing using anti-GFP antibody. Fraction numbers are shown above the blots, I = Input (20 

µg total protein).  Approximate sizes of complexes were determined using the calibration 

curve generated from standard samples (see Figure 5.3). 
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Figure 5.9  Loss of functional COP1 results in an apparent change in complex size in 

vivo only under white light conditions. cop1-4 plants were grown for three weeks in 20 

!mol m-2 s-1 white light.  Whole cell extract from leaves of untreated (LWL) and UV-B 

treated (UB, 4 hrs 1 µmol m-2 s-1) plants mutant plants was run on a Superose® 6 hr column 

and fractions collected.  Fractions 19 to 44 were  run on a 10 % SDS-acrylamide gel and 

transferred to nitrocellulose membrane.  Membranes were tested for presence of UVR8 by 

probing using  the anti-UVR8 antibody. Fraction numbers are shown above the blots, I = 

Input (20 µg total protein).  Approximate sizes of complexes were determined using the 

calibration curve generated from standard samples (see Figure 5.3). 
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CHAPTER 6 FINAL DISCUSSION 

6.1 Introduction 

With the transition from an aqueous habitat to a terrestrial one, early land plants had to 

acquire tolerance to one more stress in addition to the myriad that they were already 

accustomed too, namely exposure to increased levels of UV-B.  This radiation, which is 

mostly filtered out by a short column of water, has the potential to act as a major factor of 

damage to cellular components (Rozema et al. 2002; Frohnmeyer 2003; Tedetti and 

Sempéré 2006).  Therefore, plants have evolved a series of responses in order to attenuate 

this stressor and cope with some of the inevitable damage.  While the receptor responsible 

for perceiving this stimulus remains elusive, the first UV-B specific component was 

recently identified.  UVR8 is known to have a vital role in the up-regulation of two 

transcription factors, HY5 and HYH, which in turn up-regulate a whole suit of protective 

genes (Brown et al. 2005; Brown and Jenkins 2007).  The exact mechanisms by which 

UVR8 causes the up-regulation of these transcription factors is as yet still unknown.  

Nevertheless progress is being made in solving this mystery and we have already identified 

a number of defining characteristics for this vital protein.  UVR8 is mainly localised in the 

cytoplasm in the absence of UV-B, but upon exposure both GFP-tagged and native UVR8 

strongly accumulate in the nucleus (Kaiserli and Jenkins, 2007).  UVR8 has the ability to 

bind to chromatin, but lacks the Ran-GEF activity seen in the related protein, human 

RCC1.  Specifically, UVR8 has been found to be enriched in the chromatin regions around 

the promoter of HY5, suggesting a potential means by which it may facilitate the up-

regulation of this gene (Brown et al. 2005).  Finally, it has been shown that two regions at 

the termini of the protein are essential for its function: a 27 amino acid insertion (relative to 

RCC1) at the C-terminus and part of the N-terminal, the loss of which has the effect of 

impaired nuclear accumulation (Kaiserli et al. 2007). 

The aim of this study was to answer a number of questions surrounding UV-B 

responses in Arabidopsis.  The first of these was whether other response pathways that are 

induced by non-damaging, low fluence rate UV-B but are not dependent on UVR8 exist.  

Secondly, to expand the search for proteins similar to UVR8 in both Arabidopsis and also 

in other plant species to determine whether any homologues might be identified.  Thirdly, 

to further investigate the role of the N-terminal region in the localisation of UVR8.  

Finally, we wanted to answer the question of whether UVR8 was acting alone or if it 

instead acted as part of a complex or complexes. 
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While many questions do still remain, the work presented here has shown that other 

UVR8-independent pathways exist but that we have to take care when performing 

microarrays as the existence of a number of false positive results can severely hinder the 

identification of candidate genes.  BLAST searches identified a number of UVR8-like 

proteins in Arabidopsis, none of which seem to possess the N or C-terminal regions 

deemed necessary for function, as well as several candidate homologues in other plant 

species.  Construction of a phylogenetic tree showed that these candidates may be roughly 

split into two groups, one that bears more similarity to human RCC1 and one that appears 

closer to UVR8.  Closer examination of the N-terminal region showed that removal of 

different regions and the addition of these same regions to a GFP tag resulted in a variety 

of different localisation phenotypes.  The most striking of these was that the first 32-33 

amino acids are both necessary and sufficient to cause nuclear accumulation which, in the 

case of the latter, is not dependent on a UV-B stimulus.  Finally, it seems that UVR8 does 

indeed exist in a complex, although the exact sizes and changes due to treatment or 

localisation are not fully clear due to the confusing presence of the GFP tag.  Despite this it 

appears that the N-terminal may, in addition to having a role in localisation, be necessary 

for complex formation. 

In this next chapter, these results and their implications will be discussed further 

and the advances in our knowledge of UV-B responses outlined. 

 

6.2  UV-B transcriptional studies 

Examination of transcriptional differences has been one tool that has been widely used in 

the analysis of UV-B responses, as changes in gene expression appear to be one of the 

major means by which plants moderate their responses to this stimulus (Casati and Walbot 

2003; Ulm et al. 2004; Brown et al. 2005; Hectors 2007; Kilian et al. 2007; Brown and 

Jenkins 2008; Safrany et al. 2008).  However, it can be difficult to untangle these 

transcriptional changes as huge numbers of genes are involved, for example >500 in this 

study and that performed by Brown et al. (2005).  When all genes which show induction 

under UV-B across a variety of studies are grouped, this gives >3000 genes to consider 

(see Figure 3.5).  Application of threshold limits and identification of commonality both 

within and between studies can help to initially narrow down this search.  In this study for 

example, microarray data was validated using the methods that were to be used in 

subsequent analysis.  That is, several genes were checked using qPCR and RT-PCR 

methods to ensure that differential expression could still be detected.  As the RNA samples 
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used for these confirmation studies were the very same samples that were submitted for 

microarray analysis, we can then define clear thresholds (such as an appropriate False 

Discovery Rate) to use when cutting down these gene lists into a more manageable size.  

Once such filtering methods have been used, candidate genes with potentially interesting 

functions can be selected for initial analysis.  However, with current technology for 

generating large sequencing data sets, the potential exists to generate even more data thus 

potentially exacerbating the problem of handling such quantities of information (Mortazavi 

et al. 2008).  This may include information on groups of genes that are expressed at levels 

not normally detectable using microarray chips.  One example of this, in the case of UV-B 

signalling, is the MYB family of transcription factors.  While these have been shown to be 

involved in UV-B responses  (Jin et al. 2000; Zhao et al. 2007; Cloix and Jenkins 2008), 

they have yet to appear in any microarray data sets generated by the Jenkins group.  Thus 

there exists the potential for whole new groups of genes to investigate.  Even so, with the 

advent of new technology, new bioinformatic tools to process these data sets will follow 

shortly thereby opening up novel ways by which this information can be mined. 

Returning to the microarray datasets produced in this study, one of the issues we 

wanted to examine was the classification of low fluence and high fluence responses.  

Currently the line between low and high fluence is not clear and it is not even clear if such 

a definitive line exists.  Previous experiments performed by the Jenkins group had used 

plants which had never been subjected to UV-B exposure before treatment with a 3 "mol 

m
-2

 s
-1

 fluence rate of this radiation.  There was the worry that this, although only 75 % of 

the dose plants can receive in daylight (Jenkins 2009), might be a significant stressor to the 

plant.  Indeed a later Brown and Jenkins study (2008) showed that at a fluence rate of 

approximately 3 "mol m
-2

 s
-1

, genes associated with stress are expressed.  It was for this 

reason we decided to investigate lower fluence rate treatments to determine whether a 

significant portion of the genes up-regulated in the first microarray were due to more 

generalised stress responses and not specific UV-B responses.  The results presented here 

showed that contrary to predictions that lower fluence treatments would reduce the number 

of more general stress-response genes induced and thus reduced the total number of genes 

induced, that there was not a significant drop in the total number of genes that are induced.  

It therefore appears that regardless of the fluence rate used, similar numbers of genes show 

significant increases in expression. 

Despite these similar numbers however, when the gene lists are examined it can be 

seen that differences between the three datasets are present. Interestingly, of the three 

genes identified by Brown and Jenkins (2008) to be induced as part of a general stress-
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response, two (WRKY30 (5g24110) and FAD oxidored (1g2630)) also appear in the 1 !mol 

m
-2

 s
-1

 microarray but not the 0.3 !mol m
-2

 s
-1

.  This would seem to suggest that at a 

fluence rate of 1 !mol m
-2

 s
-1

 for four hours that this treatment might still be inducing more 

general stress responses in non-acclimated plants.  Nevertheless, the final member of this 

general stress response group, UDP gtfp (1g05680), does show a significant induction in 

the 0.3 !mol m
-2

 s
-1

 microarray.  Thus, it may be that although this latter treatment is too 

low to cause significant damage to the plant, that due to a lack of prior exposure, it is still 

sufficient to induce expression of genes classed as general stress responses. 

Another study has attempted to characterise genes on the basis of severity of 

treatment (Brosche and Strid 2003).  Of the highest category neither of the example genes 

(PR-1 (2g14610) and PDF1.2 (5g44420)) appeared in any of the microarrays compared in 

Figure 3.5.  One gene classed as an intermediate induced gene however, PR-5 (1g75030) 

was similarly to WRKY30 and FAD oxidored seen in both the 3 and 1, but not the 0.3 !mol 

m
-2

 s
-1

 microarrays.  This does seem to support the evidence that the 0.3 !mol m
-2

 s
-1

 

fluence rate treatment removes the majority of genes previously classed as more general 

stress responses and as such is the most appropriate treatment level for this length of 

exposure. 

An alternative explanation to the observation of pathogenesis-related genes such as 

PR-1 and PR-5 showing induction in low fluence rate microarrays  lies in the observation 

that UV-B can induce tolerance to other abiotic and biotic stresses such as drought (Gitz 

and Liu-Gitz 2003), cold (Chalker-Scott and Scott 2004) or insect herbivory (Izaguirre et 

al. 2003).  It could therefore be the case that a certain degree of cross-tolerance is built into 

the low fluence UV-B responses.  That is, exposure to low levels of UV-B actually 

enhances the plants overall fitness and ability to withstand the stresses found in the natural 

environment. 

Another consideration we have to make is that the conditions in which we grow and 

treat plants are very artificial; amount and duration of light as well as temperature, 

humidity and other factors are usually kept unnaturally constant.  This can be helpful when 

examining the effects of stresses as is allows us to reduce the variation in a population of 

plants due to fluctuations in these parameters.  We do however have to consider that in the 

natural environment, huge fluctuations in these effects will indeed take place.  UV-B 

fluence rate for example can be altered by altitude, cloud cover, overhead vegetation and 

many other factors (McKenzie et al. 2003; Paul and Gwynn-Jones 2003).  Thus, the ways 

in which a plant is able to acclimatise to biotic and abiotic stresses will be correspondingly 

complex.  While some studies have endeavoured to asses the degree of overlap in several 
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stimuli in their experiments (Kilian et al. 2007) it is clear that to gain a more complete 

picture of plant environmental responses, we will need to incorporate many factors into our 

model. 

It is also interesting to note that experiments performed here and elsewhere often 

use highly inbred plant lines.  This has the advantage of reducing the genetic diversity in 

the population, again conferring the advantage that we can focus on variation due to the 

treatment.  However, a recent study looking into plant responses to red light via the 

phytochromes, examined natural variation in the phyB photoreceptor (Filiault et al. 2008).  

This is also an interesting approach for investigation of UV-B responses.  For example, 

from work shown in Chapter 4, it can be seen that while there are regions of strong 

conservation in the UVR8 protein sequence between plant species, it does not apply to the 

whole sequence.  It would therefore be interesting to examine further both these 

differences between species and also within Arabidopsis thaliana.  There are a wide range 

of ecotypes available for this species which in turn come from a wide range of different 

habitats.  These different ecotypes could be examined in their tolerance to UV-B to see if 

this can be linked to polymorphisms in UVR8, ANAC13 or other UV-B response 

components.  Indeed, similar studies using maize ware undertaken by both Casati et al. 

(2006) and Correia et al. (1999).  The former of these showed that maize accessions 

derived from higher altitudes (and thus exposed to greater natural levels of UV-B) have an 

increase in transcripts associated with chromatin remodelling.  This in turn has been linked 

with UV-B responses; for example, UVR8 has been shown to associate with histones and 

that upon UV-B exposure in Arabidopsis there is an increased association of some UV-B 

responsive gene promoters with diacetlylated H3 (K9/K14) (Brown et al. 2005; Cloix and 

Jenkins 2008).  The second of these studies showed variations in maize accessions in 

carotenoid content and differing reductions in photosynthetically associated components 

when exposed to UV-B.  

Another study which has used Arabidopsis ecotypes showed that C4 exhibits 

greater oxidative stress and Ws a lower biomass after UV-B exposure when they are 

compared to Col-0 (Kalbina and Strid 2006).  These differences may in turn help to explain 

the variation seen in transcriptome changes across the microarray studies compared in 

Figure 3.5.  For example, Brown et al. (2005), Headland and Hectors, et al. (2007) studies 

used Ler, Ulm, et al. (2004) and Safrany, et al (2008) studies used Ws, while Kilian, et al 

(2007) used Col-0.  This, in addition to the different growth conditions, growth media and 

treatment length could cause a great variation in the UV-B transcriptome.  As mentioned 

above however, by comparing these studies, we have a method for flagging interesting 
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candidate genes.  That is, those genes that are common across these microarrays, regardless 

of the wide variety of experimental procedures may be those with highly important 

functions.  Although no genes do appear across all six of the studies compared here, there 

are a number that are shared across four of five of them.  Of this group of seven common 

genes, two belong to the EARLY LIGHT INDUCED (ELIP) family.  Currently, there is 

somewhat conflicting evidence for the roles of the ELIP proteins in plants.  Hutin et al. 

(2003) reported that the chaos mutant, which is unable to rapidly accumulate ELIP 

proteins, is more sensitive to photooxidative stress under high light or chilling.  This in 

combination with localisation of ELIPs in the thylakoids and their hypothesised 

chlorophyll binding properties would suggest a photoprotective role.  However, Rossini et 

al. (2006) report that a elip1 elip2 double mutant does not show increased photoinhibition 

or photooxidative stress relative to wild type.  Therefore, while the exact role and function 

of these proteins remains elusive, it seems that they do have an important role in UV-B 

responses.  From the results of these studies and the observation that genes for these 

proteins show strong up-regulation in the majority of UV-B microarrays, we would predict 

that both chaos and elip1 elip2 plants may have a reduced sensitivity to UV-B.  It would be 

interesting to compare the phenotypes of these mutants to that of uvr8 and hy5 mutants to 

determine whether they show similar hypersensitivity.  

One other chloroplast-associated gene was also shown to have strong up-regulation 

in the majority of the studies compared.  SigE/Sig5 is involved in the regulation of plastid 

genes (Yao et al. 2003).  Again this highlights that one of the key responses to UV-B may 

be to modify photosynthetic processes in order to prevent or repair damage that may occur 

to these extremely photosensitive components. 

Of the remaining four genes common to most of the microarray studies, one is 

annotated as a receptor-like protein kinase (RPK-L).  Receptor like protein kinases (RPKs) 

are a large family (>400) in Arabidopsis that are usually made up of an extracellular 

domain, a transmembrane domain and an intracellular domain in which lies the kinase part 

of the protein (Tichtinsky et al. 2003; Afzal et al. 2008).  A good example of this family is 

the brassinosteroid receptor (BRASSINOSTEROID INSENSITIVE 1(BRI1)) which also 

has a hypothesised role in UV-B signalling (Savenstrand et al. 2004; Li 2005).  Mutants 

defective in this gene were shown to have reduced induction of CHS under UV-B 

conditions (Savenstrand et al. 2004).  Little is known however about the gene in question 

here, RKP-L.  It has a domain of unknown function (DUF26) and interestingly lacks the 

kinase domain.  To date it has been annotated as having a role in ABA responses and has 

been suggested to be subject to rapid evolution  (Barrier et al. 2003; Xin et al. 2005; 
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Casasoli et al. 2008).  Generally, this group of receptor like kinases have not yet been well 

studied and it is unclear what role (given the absence of a kinase domain) that they may 

have in signalling cascades. 

Interestingly, the same study that linked RPK-L to ABA responses (Xin et al. 2005) 

also identified GCN5-related N-acetyltransferase (GNAT) family protein (2g32020) as 

being responsive to this hormone.  This gene is included in the group of seven which are 

common to five of the six UV-B studies compared (see Figure 3.5).  ABA is known to 

have a role in response to abiotic stresses such as salt and drought stress (Seki et al. 2007).  

It is possible that this versatile hormone may have an additional role in plant responses to 

UV-B.   

Similarly to RPK-L, 2g32020 is UVR8/HY5/HYH independent, which combined 

with their association with ABA responses suggests they may be implicated in the same 

pathway.  Interestingly, these two genes are the only ones of the seven that are seemingly 

independent of the UVR8 pathway.   

The remaining two genes in this grouping both seem to be part of the UVR8 

signalling pathway.  Currently there is very little information, apart from its dependence on 

UVR8 and HY5, on the transducin / WD-40 repeat family protein (5g52250) (Brown and 

Jenkins 2007). The UDP-glucoronosyl/UDP-glucosyl transferase family protein 

(UGT84A1 (4g15480)),  on the other hand is hypothesised to have a role in accumulation 

of sinapate esters (UV-B screening compounds) and is dependent on UVR8 but not HY5 

(Brown et al. 2005; Meißner et al. 2008).  It is possible that this gene may belong to the 

HYH/HY5 redundant class described by Brown and Jenkins (2008).  

 

 

6.3  UVR8-independent UV-B responsive genes 

Early work into UV-B responses often studied the expression CHS as this gene was known 

to be one of the best responders to UV-B. (Li et al. 1993; Christie and Jenkins 1996; Long 

and Jenkins 1998).  For this reason it was used in the Brown et al. (2005) study to show 

that uvr8 mutants were specifically impaired in their UV-B responses.  From such work we 

now have a clearer picture of how this occurs.  UVR8 acts upstream of two transcription 

factors HY5 and HYH.  Half of UVR8 dependent genes are also dependent on functional 

HY5, and evidence suggests the remaining half may be regulated in a HY5/HYH 

redundant mechanism (Brown et al. 2005; Brown and Jenkins 2008).  In this study, the 
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same tools were used to examine the UVR8-independent pathway, that is examination of 

gene expression under different light conditions in a variety of different mutants. 

Interestingly, initial work showed that several genes hypothesised from the 

microarray data to be low fluence induced UVR8-independent showed increases in 

expression in minus UV-B conditions.  Thus, some condition other than UV-B treatment 

within the chamber is sufficient to induce significant levels of gene expression.  Of the 

small subset of genes that were further analysed by PCR methods here, a third were shown 

to be clear false positives (MATE and DnaJ) while another gene was somewhat more 

ambiguous (RPK-L).  This suggests a significant proportion of the ~500 genes induced by 

UV-B in the Brown study as well as those presented here may also be false positives. This 

perhaps goes someway to explaining the sheer numbers of genes that are apparently 

induced by low levels of UV-B.  One way in which these apparent false positives could be 

eliminated would be to perform an additional microarray in true minus UV-B conditions.  

Those genes that showed induction (presumably including MATE and DnaJ) in these 

conditions could then be identified and removed from the list of UV-B induced genes. 

Despite this apparent problem, four genes were identified which were seemingly 

truly UV-B responsive.  The more ambiguous gene, RPK-L (3g22060) seems to have 

variable results; in Figure 3.8 it appears to have more pronounced expression in the 

absence of UVR8 but this pattern is not continued in Figure 3.10.  It is therefore difficult to 

interpret results from this gene especially seeing as there seem to be issues with some up-

regulation in minus UV-B conditions.  If the conditions in the treatment chamber are in 

some way affecting the levels of hormones such as ABA, this could explain the increased 

expression of this gene.  Interestingly, the situation in which UV-B specific induction is 

seen most clearly occurs in the Ws ecotype as well as mutants in the Ws background (See 

Figure 3.10).  It could therefore be that there are ecotypic differences in the expression of 

this gene.  Nevertheless, its presence in the majority of the microarray studies compared in 

Figure 3.5 suggests that while the exact circumstances around its expression are 

ambiguous, there is good evidence that its UV-B induction is not an artefact. 

While expression of RPK-L seems to be clearly HY5/HYH independent, this 

appears not to be the case for HSP23.5M.  This gene was not identified in the Brown et al 

(2005) study as one which either UVR8 or HY5 dependent.  Expression however in the 

hy5 hyh mutant seems to be somewhat reduced in comparison to the other genes examined, 

but is retained as normal in the uvr8-1 mutant.  In addition, this was the only gene to show 

a reduction in expression in the cop1-4 mutant.  From these results we can infer that a 

separate UV-B response pathway involving these three components but not UVR8 exists.  
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It is possible that this pathway may only be acting at relatively higher fluence rates; unlike 

for the other genes examined, HSP23.5M expression is not clearly induced at fluences up 

to 0.5 "mol m
-2

 s
-1

.  In conclusion these results suggest another whole class of UV-B 

responsive genes may exist; mid-high fluence rate induced UVR8-independent, that are 

dependent on functional COP1 as well as the presence of either HY5 or HYH. 

Heat-shock proteins (HSPs) are present in all cells and are used to ensure 

appropriate folding as well as to restrict unfolding of proteins in a variety of different stress 

conditions (Feder and Hofmann 1999).  While this particular small heat-shock protein has 

an unknown function, there is evidence of a role for these molecular chaperones in 

ameliorating UV-B stress.  In cyanobacteria, it has been shown that mutation of a small 

heat-shock protein confers increased resistance to UV-B.  This is thought to occur through 

enhanced repair to the PSII (Balogi et al. 2008).  This HSP23.5M is predicted to be 

localised in the mitochondria rather than the chloroplasts (Waters 2008).  Nevertheless, 

HSPs have an important role in protection from UV-B stress as well at the well 

characterised protection from heat stress for which they are named. 

In addition to the results for HSP23.5M and RPK-L, work presented here has also 

conclusively shown that true low-fluence UVR8/HY5/HYH independent genes do exist.  

Two such examples are ANAC13 and 2g41730.  2g41730 encodes a small (119 amino 

acid) protein of unknown function and with no recognisable domains.  A BLAST search 

using the protein sequence only brings back similar sequences (of which very few) in 

plants so it would seem that this may be a plant specific component.  The feature that 

tagged this transcript as being of interest was its very high levels of induction in both the 

microarrays presented here as well as that in the Brown et al (2005) study.  This can also 

be seen when looking at the fold change values of the timecourse data (see Appendix I).  

As there is so little data on this gene, we are not able to infer what role it may be having in 

UV-B responses.  Nevertheless, it warrants further investigation and may be a 

representative of an entirely new family of proteins. 

In contrast to 2g41730, much more information is known about the transcription 

factor ANAC13.  Data presented here seems to support recent work that has been looking 

at ANAC13 more closely.  Safrany et al. (2008) also demonstrated that ANAC13 

expression is UV-B responsive and independent of both COP1 and UVR8.  In addition, 

they identified a novel UV responsive element in the promoter region of this gene, termed 

UVBox
ANAC13

 which is necessary and sufficient for UV-B induction.   

ANAC13 comes from a very large family of transcription factors that are specific 

to plants and which are named for their NAC (NAM, ATAF1,2, CUC2) domain (Ooka et 
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al. 2003; Olsen et al. 2005). This conserved NAC domain resides at the N-terminal and 

includes a DNA binding domain, while the highly diverse C-terminal possesses a 

transcriptional activation domain (Ooka et al. 2003). This family has a diverse range of 

roles in development as well as both abiotic and biotic stresses.  So far no downstream 

targets nor any upstream factors controlling ANAC13 up-regulation have been found.  

Interestingly, it is also up-regulated by red light, thereby suggesting a possible diversity of 

roles in light signalling.  It should be noted however that this red-light induction uses a 

separate domain in its promoter (Safrany et al. 2008). 

For those genes shown to be UVR8-dependent, has been shown that their UV-B 

induction occurs independently of known photoreceptors (Brown and Jenkins 2007).  This 

seems also to be true for the UVR8-independent genes shown here as none exhibited 

reduced expression under UV-B in any of the photoreceptor mutants examined (see Figure 

3.12).  It has been suggested in past that DNA damage could in fact be acting as an initial 

signal in UV-B reception.  For example, in bean UV-B induced expression of $-1,3-

glucanase ($Glu) is reversed by exposure to blue light that would activate DNA 

photolyase, suggesting its expression is induced by DNA damage (Kucera et al. 2003).  

Work presented in Figure 3.13 attempted to test whether this may also be true for UVR8 

independent genes.  It was found that levels of ANAC13 and 2g41730 expression were 

relatively equal in wild type plants in both the absence and presence of supplemental light 

concurrent with UV-B treatment.  As the predominant form of UV-B induced DNA 

damage, the formation cylcopyrimidine dimers (CPDs) is repaired in the presence of blue 

light, we might expect that fewer dimers (as they are rapidly repaired) would result in 

reduced expression of the genes under consideration if presence of this damage were 

indeed the initiating signal in this cascade.  This apparent separation of gene induction 

from DNA damage is also supported by the result that no large change in expression 

occurred in mutants that are unable to repair UV-B induced lesions.  However, as the 

results from the positive control were not clear we cannot be entirely confident that the 

conditions used were sufficient to actually induce dimer formation.  In spite of this, the 

conditions used were sufficient to see large increases in the expression of the genes of 

interest.  Thus even if the treatment was too mild to induce DNA damage, changes in 

expression are seen thereby implying that these effects are not linked.  Consequently it 

seems unlikely that this mechanism of UV-B perception is responsible for the up-

regulation of either ANAC13 or 2g41730. 

In summary, it seems that in addition to the low fluence UVR8/HY5/HYH 

dependent and high-fluence UVR8-independent pathways as described by Brown and 
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Jenkins (2008), two additional pathways exist.  Firstly a low fluence 

UVR8/HY5/HYH/COP1 independent pathway seems to regulate expression of ANAC13, 

2g41730 and a receptor-like kinase gene (3g22060).  Secondly a mid fluence UVR8-

independent COP1/HY5/HYH dependent pathway regulates expression of the HSP23.5M 

gene.  Neither of these pathways is dependent on functional blue or red-light 

photoreceptors nor is the former dependent on UV-B induced damage to initiate the 

signalling cascade.  It is likely that more genes will be identified as part of these groups 

and that the groupings themselves will become further sub-divided once the regulatory 

mechanisms of each are more clearly defined. 

 

6.3  UVR8-like proteins 

Considering that UV-B would have been a relatively novel abiotic stress to plants as they 

colonised land, it might be expected that the roots of this response in plants are ancient.  If 

UVR8 is one of the major players in the UV-B response, it is possible that this too is 

relatively ancient, thus suggesting the existence of homologues in a wide variety of 

terrestrially adapted plants.  Homologues do indeed seem to be present in a wide range of 

plant species.  However, on the basis of a phylogenetic tree (see Figure 4.3) they group 

into either ones that appear closer to RCC1 or ones closer to UVR8.  This is also reflected 

in the presence or absence of N and C-terminal regions similar to those found in UVR8.  

Besides this split, the two parts of the groups each have predictable associations.  That is, 

the eudicots form a cluster as do monocots and so forth.   

At the time of writing, for these various plants species we only have complete 

genome sequences for Arabidopsis and Oryza sativa ssp japonica.  No doubt this will 

rapidly change with maize, potato and tomato genomes well on the way to being fully 

sequenced and annotated.  Of the species compared in Figure 4.3 there is a mix of genomes 

listed as being in progress, under assembly or for which there is no known concerted effort 

to sequence.  It is therefore a very real possibility that we may be missing the true UVR8 

homologue in several cases.  Indeed if the number of UVR8-like proteins found in 

Arabidopsis is considered, the sequences compared may in fact include homologues of 

some of these UVR8-likes.  Nevertheless, the development of new sequencing 

technologies should rapidly increase the rate at which any organism’s genome sequence is 

determined therefore providing greater knowledge concerning potential homologues of this 

protein.   
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Similarity with RCC1 itself can be a confounding factor, especially seeing as no 

true RCC1 homologue has been found in Arabidopsis yet.  Although none of the UVR8-

like sequences in Arabidopsis shown here show strong conservation in the residues 

predicted to be vital for Ran binding or GEF activity, such activity should be tested in 

order to rule out the possibility that the RCC1-homologue is residing within this group 

(Kaiserli PhD thesis, 2009).  Indeed, currently, many of these proteins are only annotated 

according to their similarity to RCC1. 

Only one member of the UVR8-like group in Arabidopsis has been functionally 

annotated. PRAF1 (named for PH, RCC1 and FYVE) has phospholipid binding properties 

in vitro and is thus predicted to be membrane localised.  The PRAF1 transcript itself 

meanwhile is a target for CaMV derived siRNA suggesting a role in pathogen defence 

(Moissard and Voinnet 2006).  Interestingly, work on this protein has shown that the 

isolated RCC1-like region of the protein has the ability to catalyze guanine nucleotide 

exchange on a subset of the Rab proteins (Jensen et al. 2001).  Thus, although it did not 

show significant similarity in the hypothesised functional residues for GEF activity, 

PRAF1 nonetheless exhibits some of this activity.  It is possible that these important 

residues did not align correctly when the original comparison was performed.  

Alternatively, it seems that the lack in similarity does not prohibited Ran GEF activity.  

While UVR8 has been shown to lack significant Ran-GEF activity, this provides further 

grounds for testing the other UVR8 homologues in order to determine whether they share 

this feature with PRAF1. 

While the functions of these UVR8-like proteins are yet to be determined, it does 

seem that they are unlikely to be functional homologues to UVR8 itself.  None of the 

proteins examined possess regions similar to the N and C-terminal regions shown to be 

vital for UVR8 function.  Furthermore, the evidence that uvr8-1 mutants show extreme 

UV-B sensitivity combined with an inability to find other vital UV-B protective genes in a 

mutant screen, suggests that if they do indeed have a role in UV-B responses, it is a more 

minor one and as such are not acting in a redundant fashion with UVR8 (Brown et al. 

2005). 

 

6.4  The UVR8 complex 

Many proteins act as part of a complex, be it through interactions with one or several other 

different components or by the incorporation of several monomers to form a multimer.  

The addition or removal of complex components can have an impact on the activity or 
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localisation of the protein in question.  Therefore, one of the important areas of 

investigation into a newly identified protein is to determine whether it is acting alone.  This 

can give a valuable insight into its function, for example by linking it with a well 

characterised pathway.  For these reasons, with the identification of UVR8 as the first 

known UV-B specific element, searches were undertaken in order to identify any potential 

interacting partners.  As both mass spectrometry and yeast-two-hybrid (discussed below) 

approaches proved problematic, it was decided to turn to SEC as an alternative means of 

complex identification. 

This study has shown that UVR8 does indeed exist in a complex.  This having been 

determined, opens up a new avenues for investigation; for example, giving rise to 

questions such as how this complex changes under different light conditions and whether it 

is necessary for protein function.  Work presented here also demonstrated that the size of 

this complex can be reduced with the removal of the first 23 amino acids and a change in 

the size distribution of UVR8 protein altered with the removal of functional COP1.  

However, the question of whether this complex size differs in low fluence rate white light 

versus UV-B conditions and cytoplasm versus nucleus is not so clear-cut.  Problems 

associated with the presence of a GFP tag as well as column resolution prevent clear 

determination.  Despite these pitfalls, which should be easily remedied by using constructs 

without the GFP tag and a narrower resolution column respectively, we now have a better 

groundwork on which to base our hypotheses on UVR8 mechanism.  The role of the N-

terminal amino acids will be discussed more in the following section, while below 

conclusions stemming from work with the other constructs and the problems encountered 

will be covered. 

One such difficulty that was encountered early on in this study was the observation 

that when a GFP tag was present in a construct, this hugely inflated the size of the 

complex.  More specifically, in the experiments presented here the complex size doubled.  

GFP is commonly known to dimerize and it would thus seem that the presence of this tag 

resulted in a UVR8 complex dimer.  GFP has been an extremely useful tool in molecular 

and microscopic analyses but it is not without its limitation.  For example, it exhibits pH 

sensitivity, undergoes photobleaching when exposed to continuous irradiation and is 

relatively large with a size of ~30 kDa (White and Stelzer 1999; Shaner et al. 2007).  

Recent work by Chapman and colleagues (2008) has shown that a modified version of the 

LOV2 (light, oxygen or voltage sensing) domain of PHOTOTROPIN 2 (PHOT2), termed 

iLOV, can act as a fluorescent protein tag.  This has the advantage that it is smaller (~10 

kDa), stable over a large pH range,  photoreversible and does not dimerize.  Therefore, use 
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of iLOV as a tag would allow use of the construct in localisation studies without having a 

negative impact on use in SEC experiments. 

One of the main down-falls of using western blotting to look at fractions from SEC 

is that it is not truly quantitative.  This can make it difficult to judge which fraction appears 

to have the peak concentration of the protein of interest.  Also, if there is a mix of complex 

sizes, for example there is an equilibrium between two forms, then if the difference in size 

is not extreme, separate fraction peaks will be difficult to identify and the blot will appear 

extended.  However, as band intensity is dependent on the exposure time of the film to the 

chemiluminescent substance (as well as several other factors), then this can alter the range 

of bands seen.  In the experiments performed in this study, several films were exposed for 

varying durations of time in order to attempt to combat this problem.  Nevertheless, the 

risk remains that the non-quantitative nature of this experiment may be masking interesting 

results.  This difference in spread of protein bands can be seen in Figure 5.8.  The blot for 

UV-B treated !23N samples seems more extended than that for the untreated sample.  It 

thus may be in this case that more than one complex exists, but this is difficult to determine 

with certainty using this method. 

Another difficulty with this method is that it is not sensitive enough to detect small 

modifications in the protein such as phosphorylation or ubiquitination.  While no current 

work has tested whether ubiquitination may have a role in UVR8 function, previous work 

using Arabidopsis cell culture has shown that both phosphorylation and de-

phosphorylation are necessary for inductions of CHS under UV-B (Christie and Jenkins 

1996).  While this might imply that modification of the UVR8 protein might be necessary, 

subsequent analysis performed by Kaiserli showed that protein phosphatase inhibitors were 

neither able to remove the double band sometimes seen on protein gels, nor did they affect 

the nuclear accumulation of NES-GFP-UVR8 under UV-B conditions (Kaiserli PhD thesis, 

2008).  Thus it seems unlikely that phosphorlyation plays a role in UVR8 accumulation 

under UV-B, although it remains possible that downstream events may be affected by this 

form of post-translational modification. 

A yeast-two-hybrid approach had been previously utilised by the Jenkins group in 

order to identify potential UVR8 interacting proteins.  Despite screening two different 

libraries, no potential interacting partners were identified.  Subsequently, several candidate 

interacting partners were tested using a direct approach.  Again, no interaction was found 

for UVR8 with either HY5 or for any of the other candidates (Kaiserli PhD thesis, 2008).  

This included tests using COP1 which appears contrary to work performed by Favory et al. 

(2009).  However, the Favory study showed that the COP1-UVR8 interaction is UV-B 
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dependent possibly explaining why Kaiserli and co-workers found no interaction.  The 

work presented here though is nevertheless still at odds with that published by Favory and 

co-workers.  No reduction in size of the complex was seen in the cop1-4 mutant under UV-

B and instead an increase was seen for untreated samples (see Figure 5.9).  While the 

former result suggests that in this study at least, we were unable to detect this interaction, 

the reason behind the latter observation is more difficult to interpret.  Therefore in 

conclusion, while it is clear that COP1 and UVR8 are both acting in UV-B responses, the 

precise way in which their associated dependent responses link together and the nature of 

the UVR8-COP1 complex is yet to be determined. 

 

6.5  Role of the N-terminal of UVR8 in its function, localisation and 

complex formation 

The UVR8 protein is known to have significant sequence similarity to human RCC1 with 

the exception of two regions at the termini (Kliebenstein et al. 2002; Brown et al. 2005; 

Kaiserli and Jenkins 2007).  Within the C-terminus resides a 27 amino acids insert in 

UVR8 relative to RCC1 that has been shown to be essential for UVR8 function although 

the exact nature of the function of this region has yet to be determined (Kaiserli and 

Jenkins 2007).  At the N-terminal, where RCC1 has a bi-partate NLS, no equivalent could 

be found in UVR8.  Instead, particularly between residues 20-32 lies a region that is 

strongly conserved in proteins from other plant species bearing similarity to Arabidopsis 

UVR8 (see Figure 4.3).  When a portion of this region was deleted (up to residue 23), a 

strong reduction in the nuclear accumulation of the protein was seen (Kaiserli and Jenkins, 

2007).  This suggests that the functional importance of this region may be tied to the 

protein localisation.  Consequently, an extension of this work was performed here where 

12, 20 and 33/32 amino acids were removed from UVR8 as well as added on to a GFP tag.  

The results of the localisation studies described here demonstrated a clear link between this 

region and appropriate localisation. The first 12 residues are not necessary for either 

appropriate localisation or function, but are sufficient for UV-B induced nuclear 

accumulation.  The first 20 meanwhile are both necessary and sufficient for the same UV-

B induced nuclear localisation.  In line with work by Kaiserli and Jenkins using the !23N 

construct, these same residues are also necessary for UVR8 function.  Finally, the 33 N-

terminal amino acids are clearly necessary for UV-B induced nuclear accumulation while 

the first 32 confer constitutive nuclear accumulation of GFP under both plus and minus 

UV-B conditions. 
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If we incorporate the results from SEC experiments, we can potentially link 

localisation with complex formation as the !23N construct, in addition to mis-localisation, 

appears to have a strongly reduced complex size relative to full length GFP-UVR8.  

However, it would seem that the story may be quite complex.  For example if complex 

formation is necessary for nuclear accumulation, then we would expect the !23N construct 

to completely lose nuclear accumulation under UV-B.  Nevertheless, the increase in 

nuclear accumulation seen for the !23N construct is only a difference of ~10 % relative to 

white light levels.  Thus is seems only residual levels of nuclear accumulation are seen and 

the first 20-23 amino acids of UVR8 can be considered to have a major role in protein 

localisation.  However, it has yet to be tested whether the apparent dual roles for this 

region in localisation and complex formation are in fact linked.   

A second interesting observation is that while +12N and +20N retain UV-B 

mediated nuclear accumulation, +32N is nuclear localised.  This suggests first, that some 

signal spread across the first 20 amino acids is able to cause cytoplasmic retention under 

minus UV-B conditions and second, that some feature of residues 21-32 is able to 

overcome this retention signal.  While this latter region has no obvious NLS signal, it may 

be acting as such and is strong enough to overcome the NES signals adjoined to the most 

N-terminal portion of the sequence.  However, as the full length version, NES-GFP-UVR8 

regains cytoplasmic localisation under minus UV-B, it would appear that this NLS signal is 

masked in some way the remainder of the sequence is present.  Under this hypothesis, the 

!20 an !23 constructs may show impaired nuclear accumulation due to the loss in signals 

present in the 1-20/23 amino acid region, but are still able to accumulate slowly due to a 

few remaining signals upstream of this region. 

It would therefore appear that in addition to some cytoplasmic retention signals 

within the first 20 amino acids region, there also lies a segment essential for complex 

formation.  Also, as the !23N construct is able to accumulate (albeit to a very small 

degree) under UV-B but is not able to rescue to the uvr8-1 phenotype, this implies the loss 

in functionality of this protein may be more closely linked with the reduction in complex 

size than the protein localisation.  If these two effects (complex formation and 

functionality) are linked, it would be especially interesting to determine what the 

interacting partner is as it would appear that appropriate binding may be essential for 

protein function, perhaps even involved in the activation of the UVR8 and the subsequent 

initiation of gene expression after UV-B.  Under this assumption, if this interacting partner 

were to be knocked out, then we would expect a lack of induction of the UVR8-mediated 

pathway and its downstream effects.  As mentioned previously, mutant screens previously 
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performed by the Jenkins group to indentify essential UV-B components resulted in the 

identification of four mutant alleles of UVR8, but no other genes were flagged.  It is 

possible that this unknown interacting partner is essential for other aspects of a plant’s 

normal cellular processes so that severe mutations in this gene result in lethality.  This may 

explain its absence in the mutant screen.  Alternatively, as the complex size of native 

UVR8 appears to be ~70-90 kDa, roughly double the size of UVR8 (43 kDa), then it may 

be that UVR8 is acting as a dimer.  Under this theory, the nature if the interaction would 

have to be dependent on direct UVR8-UVR8 contact as the presumed artificial 

dimerization seen in !23N is not sufficient to restore function (Kaiserli and Jenkins 2007).  

This theory may help explain why the relatively short 12 amino acid N-terminal region of 

UVR8 fused to GFP is able in the tobacco system to retain UV-B induced nuclear 

accumulation.  That is, the +12N construct could be interacting with the UVR8 homologue 

in tobacco (NtUVR8) thus conferring a normal localisation phenotype.  The full length 

NtUVR8 interactor may ensure cytoplasmic localisation under minus and nuclear 

accumulation under plus UV-B conditions.  However, this could only hold true if the 

hypothesised NLS region in the 20-32 amino acid region is a strong signal.  When the 

+32N construct was examined in the transient tobacco system (with the presence of a 

UVR8 homologue) and also in T1 uvr8-1 transformed seedlings (lacking any functional 

UVR8), very similar results were seen.  Therefore, if +32N in tobacco is interacting with 

NtUVR8 then the NLS signal exposed on +32N must be strong enough to overcome any 

effects of binding to NtUVR8 otherwise we would expect to see different results in the two 

systems. 

While the work performed as part of this study has revealed several interesting 

aspects of the UVR8 protein, especially in the region of the N-terminal, there is significant 

scope for further work building on the conclusions drawn here.  With this additional work 

(some suggestions for which are included in Section 6.7) we can hope to fully resolve the 

roles of the different regions of UVR8, understand its mechanisms of action and how this 

is associated with both complex formation and localisation. 

 

6.6  Conclusions 

The list below is a summary of the major conclusion that can be drawn form this study. 

a. A large number of genes are induced under low fluence rate UV-B. 

b. However, a significant proportion of these may be false positives. 
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c. There is relatively little overlap between microarray studies performed by other 

groups.  This most likely reflects the differences in experimental procedures. 

d. A group of low fluence rate UV-B induced genes that are not dependent on 

functional UVR8, HY5 or HYH do exist.  Nor are these genes dependent on known 

photoreceptors or are induced by DNA damage. 

e. Genes that form parts of different pathways exhibit different expression profiles 

under UV-B treatment. 

f. 23 proteins that show similarity to UVR8 exist in Arabidopsis.  None of these 

however possess recognisable N or C-terminal domains associated with UVR8 

functionality. 

g. A number of proteins exist in other plant species which can be split into groups 

based on greater similarity to either UVR8 or human RCC1. 

h. The first 12 amino acids of UVR8 are not necessary but are sufficient for UV-B 

induced nuclear accumulation.  They are not necessary for UVR8 function. 

i. Meanwhile the first 20 appear to be both necessary and sufficient for UV-B 

induced nuclear accumulation.  They are also necessary for UVR8 function. 

j. The initial 33 residues are necessary for nuclear accumulation and the first 32 are 

sufficient to cause constitutive nuclear localisation of GFP. 

k. Native UVR8 exists in a complex ~70-90 kDa in size. 

l. The presence of a GFP tag appears to cause artificial dimerization of the complex. 

m. Loss of the 23 most N-terminal residues results in a reduction in complex size. 

n. Removal of functional COP1 leads to an increased complex size in minus UV-B 

conditions. 

 

Despite the progress made in this study, our knowledge of UV-B responses in 

plants includes a number of gaps.  Some further work which should be initiated in order to 

fill these is outlined below. 

 

6.7  Future work 

Work performed as part of this study has revealed several new aspects of UV-B responses 

in Arabidopsis thaliana.  Research into the UVR8-independent UV-B induced 

transcriptome changes was undertaken which showed the existence of UVR8/HY5/HYH 

independent pathways and identified interesting candidate genes for further study.  In 

addition, we now have additional information into the role of the N-terminal of UVR8 as 
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well as evidence that the protein exists as part of a complex.  Nevertheless, our picture of 

UV-B responses is far from complete, especially when compared to those of other light 

qualities. 

Work presented here as well as that performed by Safrany et al. (2008) has shown 

that UV-B mediated UVR8-independent pathways do indeed exist.  While the role that 

UVR8 plays in UV-B responses is obviously of vital importance, it is nonetheless 

interesting to investigate these other pathways further and determine why the induction of 

these genes is  seen under UV-B.  The huge number of genes induced under these 

conditions makes it difficult to know where best to focus.  Perhaps the expression profiling 

suggested here would help crystalise the different sets of components involved and 

possibly untangle the many pathways. In addition, a mutant screen approach similar to that 

which identified UVR8 as a UV-B specific component could be utilised to find crucial up-

stream signalling components (Brown et al. 2005).  In this case, instead of using a 

ProCHS:LUC construct, the promoter region could be replaced with that for ANAC13 or 

one of the other UVR8-independent genes.  This may lead to the identification of novel 

components and possibly even a UV-B photoreceptor. 

While it appears that COP1 is involved in both UVR8 dependent and independent 

UV-B responses, it is still unclear the exact way in which these pathways intermix (Favory 

et al. 2009).  Recent work has found that COP1 acts differently under UV-B compared to 

its role as a negative regulator of photomorphogenesis; in the latter case it acts as a 

repressor of HY5 activity whereas in the former it appears to promote expression (Favory 

et al. 2009)).  This therefore appears to be a key area for further work, especially with the 

observation that UVR8 interacts with COP1 under UV-B (Favory et al. 2009).  It is 

important to understand how UV-B promotes interaction between UVR8 and COP1 and 

how this interaction leads to the regulation of transcription. 

For the purposes of this work, only those genes that were common to microarrays 

at the three fluence levels were considered in order to maximise the likelihood of pursuing 

genuine UV-B responsive genes.  However, it could also be interesting to look at only 

those genes that appear in 0.3 and 1 "mol m
-2

 s
-1

 fluence rate microarrays.  This grouping 

could include genes that are specific to low fluence and get shut off at high.  UVR8 

responses have been shown to persist at higher more damaging UV-B levels (Brown and 

Jenkins 2008) but this does not necessarily exclude the possibility that a low fluence 

pathway exists. 

The collective evidence from all the microarrays examined here seems to suggest 

that many UV-B signalling pathways may exist involving a multitude of different genes.  
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One way in which to untangle these may be to perform timecourse studies such as that 

shown in Figure 3.6.  From these results it would seem that CHS and ELIP1 share very 

similar expression profiles, while the transcription factor that regulates them both, HY5, 

shows a drastically different pattern of expression.  Furthermore, a second transcription 

factor ANAC13, the stress-related WRKY30 and 2g41730 all show different profiles from 

each other as well as to the UVR8 dependent components.  Thus, this situation could be 

taken advantage of.  Submission of samples taken from different time-points for 

microarray would allow the construction of a large number of expression profiles.  These 

in turn could be compared and, using mathematical modelling, grouped according to 

similarity.  Similar approaches have already been used in circadian clock studies  

(Covington et al. 2008; James et al. 2008) and in yeast to untangle transcriptional networks 

(Qian et al. 2003; Kudlicki et al. 2007).  This approach was considered for this study.  To 

that end, a number of calculations were made using the timecourse data in Figure 3.6 as a 

basis, in order to determine the best time-points to use for such a study.  That is, which 

timepoints would give the maximal possible difference between the various profiles, thus 

ensuring more accurate allocation into groups.  These calculations can be found in 

Appendix I along with suggestions for timepoints for a future experiment.   

 If we next turn to the UVR8 protein itself, one hypothesis is that UVR8 may 

be dimerizing.  One way in which to test this theory is to use the directed yeast-two-hybrid 

approach used before with UVR8 as both the bait and prey.  Alternatively, both native and 

tagged versions could be expressed in the same plant and analysed by SEC.  This would 

allow us to determine if a range in complex sizes is seen which would correspond to the 

three types of complex formed (untagged homodimers, tagged homodimers and 

heterodimers of tagged and untagged monomers). 

Work here has further supported the observation that the N-terminal region of 

UVR8 is of key importance in the appropriate localisation of the protein as well as its 

interaction with an as yet unidentified protein partner.  However, the roles of sub-sections 

of this region are not yet fully clear.  Thus to resolve some of the issues mentioned above, 

it would seem that we need to cut down the N-terminal further.  For example, tag a 

fluorescent protein (e.g. iLOV so that the same plants could be used in microscopy and 

SEC) with just the 20-32 amino acid region to see if this still confers constitutive nuclear 

localisation of whether the N-terminal as a whole is needed.  A series of experiments with 

each separate region or in different combinations may help to separate out the three 

components seen.  That is 1) UV-B responsive nuclear accumulation 2) constitutive 
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nuclear localisation 3) complex formation.  We could subsequently link these in turn to 

protein functionality in order to determine the exact role of this important region.  

Further study of the N-terminal region may also lead to further insights into the 

exact mechanisms by which UVR8 localisation occurs.  Evidence from work performed by 

Eirini Kaiserli (unpublished data) suggests that it is UVR8 export from the nucleus that is 

being controlled; treatment with a nuclear export inhibitor leptomycin B results in a strong 

nuclear accumulation of NES-GFP-UVR8.  This inhibitor acts by binding to the 

recognition site of Exportin 1, thus preventing it from associating with other proteins 

(Fukuda et al. 1997).  It would therefore seem that Exportin 1 may be involved in the 

localisation phenotype of UVR8 under UV-B conditions.  Nevertheless, more work is 

required in order to determine the exact means by which UVR8 moves to or is excluded 

from cellular compartments. 

Finally, while the N-terminal region of UVR8 appears to be vital in protein 

localisation and complex formation, it is not yet clear whether these two effects are linked 

or are separate features.  Further investigation into the components of the UVR8 complex 

is required.  It is possible that once these interacting partners have been confirmed, they 

may prove to have roles in protein localisation or the ability to activate UVR8 once the 

UV-B signal has been perceived. That is, nuclear localisation and presence of UVR8 on the 

promoter region of HY5 are not sufficient to induce the UVR8-mediated UV-B pathway 

(Kaiserli and Jenkins 2007).  Some other, yet unknown event has to occur before 

transcription is initiated and this may turn out to be attributable to the interacting partners 

of UVR8.  Thus knowledge of the exact components of the UVR8 complex under various 

conditions may give the required insight needed to determine the exact mechanisms of 

UVR8’s sub-cellular localisation and activity. 

 

 



APPENDIX IA 

UV-B TIMECOURSES  

Figure 7.1  Timecourse of fold change values of UV-B induced genes.  Three week old 

wild type plants were grown under 20-25 !mol m-2 s-1 white light and treated with 3 !mol-2 

s-1 UV-B for the times shown above before tissue was harvested and RNA extracted.  Values 

for relative expression (adjusted to ACT2 transcript levels) were determined using qPCR.    

Graphs show changes in gene expression over time.  Y-axis depicts fold change in 

expression and x-axis gives the length of treatment.  Bars represent standard error, n=6.  
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Using the data generated by qPCR analysis described in Section 3.2.6 a series of equations 

were drawn up in order to determine the optimal time-points for a microarray analysis using 

three timepoints. .  The genes considered included HY5, ELIP1, CHS and WRKY. 

In order to obtain the best separation of different expression profile, timepoints should reflect 

the maximum difference between each of the genes  To calculate the difference between 

genes ‘i’ and ‘j’ over three time points t1, t2 and t3, where g!i (t1) equals the mean gene 

expression of gene ‘i’ at timepoint 1. 

! ij = !g"i (t1) – g"j (t1) !2 + !g"i (t2) – g"j (t2) !2 + !g"i (t3) – g"j (t3) !2  

To determine the total difference between all four genes where !ij equals the difference 

between genes ‘i’ and ‘j’ at timepoints 1, 2 and 3. 

# !ijkl = !ij + !ik + !il + !jk + !jl+ !kl   

To determine the variance for gene ‘i’ at timepoint 1 where gei (t1 r1) equals the gene 

expression of gene ‘i’ at timepoint 1 in replicate 1. 

var (i) = !gei (t1 r1) – g"i (t1) !2 + !gei (t1 r2) – g"i (t1) !2 + !gei (t1 r3) – g"i (t1) !2 + 

!gei (t1 r4) – g"i (t1) !2 + !gei (t1 r5) – g"i (t1) !2 + !gei (t1 r6) – g"i (t1) !2 x 1/6 

To calculate the score for each combination of three time points 

SCORE (t1, t2, t3) = Sum of the difference between genes ‘i’ ‘j’ ‘k’ and ‘l’ for (t1, t2, t3) 

       Sum of the variance for genes ‘i’ ‘j’ ‘k’ and ‘l’ for (t1, t2, t3) 

   # !ijkl 

   # varijkl 

The score was calculated for each of the 84 possible combinations of three timepoints (from 

original qPCR analysis which looked at expression levels for nine timepoints). 

To determine which timepoints would be the best to use for subsequent microarrays, the 

combination of three timepoints which yeilded the highest score (i.e. the timepoints which 

show the greatest difference between genes, but the smallest variance within genes) was 

selected. 

APPENDIX IB 

TIMEPOINT SELECTION  
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Code t1 t2 t3 dCH dCE dCW dHE dHW dEW d all varC varH varE varW var all SCORE 

S5 0  0.5 9 0.007 0.077 0.006 0.131 0.000 0.125 0.346 0.003 0.000 0.012 0.000 0.015 22.867 

S23 0 6 9 0.013 0.192 0.006 0.304 0.003 0.253 0.771 0.006 0.000 0.027 0.001 0.034 22.781 

S44 0.5 6 9 0.013 0.192 0.006 0.304 0.004 0.253 0.771 0.006 0.000 0.027 0.001 0.034 22.772 

S11 0 1 9 0.008 0.077 0.006 0.131 0.001 0.125 0.349 0.003 0.000 0.012 0.000 0.015 22.700 

S59 1 6 9 0.013 0.192 0.006 0.304 0.005 0.254 0.774 0.006 0.000 0.027 0.001 0.034 22.698 

S32 0.5 1 9 0.008 0.077 0.006 0.131 0.001 0.126 0.349 0.003 0.000 0.012 0.000 0.015 22.683 

S4 0 0.5 6 0.006 0.115 0.000 0.172 0.003 0.128 0.426 0.003 0.000 0.015 0.001 0.019 22.417 

S10 0 1 6 0.006 0.115 0.001 0.172 0.004 0.129 0.428 0.003 0.000 0.015 0.001 0.019 22.289 

S31 0.5 1 6 0.006 0.115 0.001 0.173 0.005 0.129 0.428 0.003 0.000 0.015 0.001 0.019 22.275 

Table 7.1  Results from score calculations.  Table shows the resulting values from the 

equations described above.  T1, t2 and t3 = timepoints (in hours). d = difference, C = CHS, 

H = HY5, E= ELIP1 and W = WRKY so dCH = difference between expression of CHS and 

HY5. 
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APPENDIX II 

ALIGNMENT OF UVR8-LIKE PROTEINS IN ARABIDOPSIS 

Figure 7.2  The following pages show the full multiple sequence alignment of UVR8 

with the 23 UVR8-like proteins in Arabidopsis thaliana.  Protein sequences were aligned 

in ClustalX as described in Chapter 2.13.2. 
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Value 

Protein Species Whole UVR8 

C-terminal 

only N-terminal only 

ref|NP_201191.1|  UVR8 (UVB-RESISTANCE 8); chromatin binding /... Arabidopsis thaliana 0 3E-17 6E-11 

gb|AAD43920.1|AF130441_1  UVB-resistance protein UVR8 [Arabido... Arabidopsis thaliana 0 3E-17 7E-11 

ref|XP_002274569.1|  PREDICTED: hypothetical protein [Vitis vi... Vitis vinifera 0 0.0000003 0.0003 

ref|XP_002309939.1|  predicted protein [Populus trichocarpa] >... Populus trichocarpa 0 0.0000002 0.001 

ref|XP_002522929.1|  uvb-resistance protein uvr8, putative [Ri... Ricinus communis 0 0.000000002 0.00001 

emb|CAN67581.1|  hypothetical protein [Vitis vinifera] Vitis vinifera 0 0.0000003 0.004 

ref|XP_002446509.1|  hypothetical protein SORBIDRAFT_06g017130... Sorghum bicolor 0 0.00004 0.056 

gb|ACU19352.1|  unknown [Glycine max] Glycene max 0 0.006 0.003 

ref|NP_001141147.1|  hypothetical protein LOC100273233 [Zea ma... Zea mays 0 0.00004 0.057 

ref|NP_001052849.1|  Os04g0435700 [Oryza sativa (japonica cult... Oryza sativa 0 0.00004 0.22 

ref|NP_001047115.1|  Os02g0554100 [Oryza sativa (japonica cult... Oryza sativa 0 0.00004 0.033 

gb|EEC73389.1|  hypothetical protein OsI_07634 [Oryza sativa I... Oryza sativa 0 0.00004 0.032 

gb|EEE57180.1|  hypothetical protein OsJ_07117 [Oryza sativa J... Oryza sativa 0 0.00004 0.028 

XP_001702277.1 hypothetical protein CHLREDRAFT_122886 []  

Chlamydomonas 

reinhardtii 0 #N/A #N/A 

ref|XP_001778783.1|  predicted protein [Physcomitrella patens ... Physcomitrella patens 2.00E-170 0.000001 0.079 

ref|XP_001757031.1|  predicted protein [Physcomitrella patens ... Physcomitrella patens 5.00E-168 0.000001 0.051 

gb|ACG32833.1|  HECT domain and RCC1-like domain-containing pr... Zea mays 2.00E-151 #N/A 0.038 

gb|ABV89648.1|  UVB-resistance 8 [Brassica rapa] Brassica rapa 7.00E-148 1E-11 0.0000006 

emb|CAD41017.1|  OSJNBb0086G13.15 [Oryza sativa (japonica cult... Oryza sativa 2.00E-96 #N/A 0.52 

gb|ACN35037.1|  unknown [Zea mays] Zea mays 4.00E-87 0.00004 #N/A 

gb|ABR17254.1|  unknown [Picea sitchensis] Picea sitchensis 2.00E-73 0.0000001 0.63 

ref|XP_001777928.1|  predicted protein [Physcomitrella patens ... 1.00E-55 #N/A #N/A 

ref|XP_002273073.1|  PREDICTED: hypothetical protein [Vitis vi... 3.00E-50 #N/A #N/A 

ref|NP_568268.3|  Ran GTPase binding / chromatin binding / zin... 3.00E-49 #N/A #N/A 

emb|CAC42896.1|  putative protein [Arabidopsis thaliana] 3.00E-49 #N/A #N/A 

ref|XP_002527043.1|  Ran GTPase binding protein, putative [Ric... 3.00E-49 #N/A #N/A 

ref|NP_197443.3|  Ran GTPase binding / chromatin binding / zin... 4.00E-49 #N/A #N/A 

gb|EEE63569.1|  hypothetical protein OsJ_18386 [Oryza sativa J... 5.00E-49 #N/A #N/A 

gb|AAT77332.1|  unknown prtein [Oryza sativa Japonica Group] 6.00E-49 #N/A #N/A 

ref|NP_001055416.1|  Os05g0384800 [Oryza sativa (japonica cult... 6.00E-49 #N/A #N/A 

gb|ABO93003.1|  putative regulator of chromosome condensation ... 8.00E-49 #N/A #N/A 

gb|AAU93591.2|  Zinc finger protein, putative [Solanum demissum] Solanum demissum 1.00E-48 #N/A #N/A 

gb|EEC79138.1|  hypothetical protein OsI_19792 [Oryza sativa I... 1.00E-48 #N/A #N/A 

ref|XP_002459109.1|  hypothetical protein SORBIDRAFT_03g046020... 3.00E-48 #N/A #N/A 

ref|XP_002297742.1|  predicted protein [Populus trichocarpa] >... 9.00E-48 #N/A #N/A 

ref|XP_002273996.1|  PREDICTED: hypothetical protein [Vitis vi... 1.00E-47 #N/A #N/A 

ref|XP_002513064.1|  Ran GTPase binding protein, putative [Ric... 2.00E-47 #N/A #N/A 

ref|NP_199029.1|  zinc finger protein, putative / regulator of... 2.00E-47 #N/A #N/A 

dbj|BAF07333.2|  Os01g0952300 [Oryza sativa Japonica Group] 6.00E-47 #N/A #N/A 

ref|XP_002313993.1|  predicted protein [Populus trichocarpa] >... 7.00E-47 #N/A #N/A 

ref|NP_001045419.1|  Os01g0952300 [Oryza sativa (japonica cult... 8.00E-47 #N/A #N/A 

gb|EEC72175.1|  hypothetical protein OsI_05225 [Oryza sativa I... 8.00E-47 #N/A #N/A 

dbj|BAD87854.1|  putative ZR1 protein [Oryza sativa Japonica G... 8.00E-47 #N/A #N/A 

gb|EEE56014.1|  hypothetical protein OsJ_04782 [Oryza sativa J... 8.00E-47 #N/A #N/A 

emb|CAO16844.1|  unnamed protein product [Vitis vinifera] 8.00E-47 #N/A #N/A 

ref|XP_002279847.1|  PREDICTED: hypothetical protein isoform 1... 9.00E-47 #N/A #N/A 

ref|XP_002279913.1|  PREDICTED: hypothetical protein isoform 2... 9.00E-47 #N/A #N/A 

ref|XP_002522401.1|  Ran GTPase binding protein, putative [Ric... 2.00E-46 #N/A #N/A 

ref|XP_002298476.1|  predicted protein [Populus trichocarpa] >... 2.00E-46 #N/A #N/A 

gb|AAM61698.1|  UVB-resistance protein-like [Arabidopsis thali... 3.00E-46 #N/A #N/A 

ref|XP_002304793.1|  predicted protein [Populus trichocarpa] >... 3.00E-46 #N/A #N/A 

ref|XP_002516745.1|  Ran GTPase binding protein, putative [Ric... 3.00E-46 #N/A #N/A 

ref|NP_197108.1|  regulator of chromosome condensation (RCC1) ... 4.00E-46 #N/A #N/A 

gb|EEC83614.1|  hypothetical protein OsI_29322 [Oryza sativa I... 5.00E-46 #N/A #N/A 

ref|XP_002511559.1|  Ran GTPase binding protein, putative [Ric... 6.00E-46 #N/A #N/A 

ref|NP_001140994.1|  hypothetical protein LOC100273073 [Zea ma... 7.00E-46 #N/A #N/A 

emb|CAO42840.1|  unnamed protein product [Vitis vinifera] 7.00E-46 #N/A #N/A 

ref|XP_002283479.1|  PREDICTED: hypothetical protein [Vitis vi... 1.00E-45 #N/A #N/A 

ref|XP_002311672.1|  predicted protein [Populus trichocarpa] >... 1.00E-45 #N/A #N/A 

ref|NP_001061858.1|  Os08g0430700 [Oryza sativa (japonica cult... 1.00E-45 #N/A #N/A 

ref|NP_001045490.1|  Os01g0964800 [Oryza sativa (japonica cult... 1.00E-45 #N/A #N/A 

dbj|BAF07404.2|  Os01g0964800 [Oryza sativa Japonica Group] 1.00E-45 #N/A #N/A 

ref|XP_002329325.1|  predicted protein [Populus trichocarpa] >... 1.00E-45 #N/A #N/A 

ref|XP_001770494.1|  predicted protein [Physcomitrella patens ... 2.00E-45 #N/A #N/A 

ref|NP_001141854.1|  hypothetical protein LOC100273996 [Zea ma... 2.00E-45 #N/A #N/A 

ref|XP_001770491.1|  predicted protein [Physcomitrella patens ... 2.00E-45 #N/A #N/A 

gb|EEC72223.1|  hypothetical protein OsI_05329 [Oryza sativa I... 3.00E-45 #N/A #N/A 

ref|NP_186900.3|  regulator of chromosome condensation (RCC1) ... 7.00E-45 #N/A #N/A 

ref|XP_002456994.1|  hypothetical protein SORBIDRAFT_03g046900... 8.00E-45 #N/A #N/A 

ref|XP_002327568.1|  predicted protein [Populus trichocarpa] >... 8.00E-45 #N/A #N/A 

ref|XP_002300931.1|  predicted protein [Populus trichocarpa] >... 1.00E-44 #N/A #N/A 

ref|XP_002526126.1|  Ran GTPase binding protein, putative [Ric... 2.00E-44 #N/A #N/A 

ref|XP_001761845.1|  predicted protein [Physcomitrella patens ... 4.00E-44 #N/A #N/A 

gb|ABD96878.1|  hypothetical protein [Cleome spinosa] Cleome spinosa 6.00E-44 #N/A #N/A 
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Value 

gb|AAL58903.1|AF462811_1  At1g76950/F22K20_5 [Arabidopsis thal... 6.00E-44 #N/A #N/A 

ref|NP_565144.1|  PRAF1; Ran GTPase binding / chromatin bindin... 6.00E-44 #N/A #N/A 

gb|AAC00618.1|  Unknown protein, contains regulator of chromos... 8.00E-44 #N/A #N/A 

ref|XP_002307065.1|  predicted protein [Populus trichocarpa] >... 1.00E-43 #N/A #N/A 

gb|AAW78912.1|  putative chromosome condensation factor [Triti... Triticum turgidum 2.00E-43 #N/A #N/A 

ref|XP_002450904.1|  hypothetical protein SORBIDRAFT_05g020900... 2.00E-43 #N/A #N/A 

ref|NP_001154232.1|  zinc ion binding [Arabidopsis thaliana] 2.00E-43 #N/A #N/A 

gb|AAK84081.1|AF326781_2  putative chromosome condensation fac... Triticum monococcum 2.00E-43 #N/A #N/A 

ref|XP_002440421.1|  hypothetical protein SORBIDRAFT_09g000710... 2.00E-43 #N/A #N/A 

gb|AAW78916.1|  putative chromosome condensation factor [Triti... Triticum aestivum 2.00E-43 #N/A #N/A 

ref|XP_002454466.1|  hypothetical protein SORBIDRAFT_04g031600... 2.00E-43 #N/A #N/A 

gb|EEE55253.1|  hypothetical protein OsJ_03147 [Oryza sativa J... 4.00E-43 #N/A #N/A 

dbj|BAF16334.2|  Os05g0106700 [Oryza sativa Japonica Group] 4.00E-43 #N/A #N/A 

ref|NP_001043984.1|  Os01g0700200 [Oryza sativa (japonica cult... 5.00E-43 #N/A #N/A 

gb|EEE62040.1|  hypothetical protein OsJ_16822 [Oryza sativa J... 6.00E-43 #N/A #N/A 

dbj|BAD07566.1|  putative ZR1 protein [Oryza sativa Japonica G... 6.00E-43 #N/A #N/A 

gb|EEE57593.1|  hypothetical protein OsJ_07959 [Oryza sativa J... 7.00E-43 #N/A #N/A 

gb|EAY96235.1|  hypothetical protein OsI_18130 [Oryza sativa I... 7.00E-43 #N/A #N/A 

ref|NP_001054420.1|  Os05g0106700 [Oryza sativa (japonica cult... 8.00E-43 #N/A #N/A 

gb|EEC71342.1|  hypothetical protein OsI_03406 [Oryza sativa I... 9.00E-43 #N/A #N/A 

gb|EEC73799.1|  hypothetical protein OsI_08500 [Oryza sativa I... 2.00E-42 #N/A #N/A 

emb|CAO65111.1|  unnamed protein product [Vitis vinifera] 3.00E-42 #N/A #N/A 

gb|EEC81974.1|  hypothetical protein OsI_25886 [Oryza sativa I... 3.00E-42 #N/A #N/A 

ref|XP_002448811.1|  hypothetical protein SORBIDRAFT_06g033680... 3.00E-42 #N/A #N/A 

ref|NP_680156.2|  regulator of chromosome condensation (RCC1) ... 3.00E-42 #N/A #N/A 

ref|XP_002264093.1|  PREDICTED: hypothetical protein [Vitis vi... 3.00E-42 #N/A #N/A 

ref|NP_001059575.1|  Os07g0459400 [Oryza sativa (japonica cult... 4.00E-42 #N/A #N/A 

Protein Species Whole UVR8 

C-terminal 

only N-terminal only 

Table 7.2  BLAST search results for UVR8 homologues in green plant species.  Table 

shows proteins found to be most similar to Arabidopsis UVR8.  Whole UVR8 denotes search 

using the full length sequence.  C or N-terminal only shows results from search (adjusted to 

short sequences) for the 27 amino acid insertion and 32 amino acid region found at each 

terminus respectively. 
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Kav =   (Ve – V0)  

           (Vc – V0) 

10(Kav – 0.085) /-0.010 = Mr (i.e. the size of the protein or protein complex) 

APPENDIX IV 

SEC COLUMN MOLECULAR WEIGHT CALCULATIONS 

From calibration curve shown in Figure 5.3 and using equation of a straight line (y = mx + 

c) we know: 

Kav = -0.01 ! LogMr -0.085 

From running the column we can determine the gel phase distribution coefficient (Kav) 

using the following equation: 

Where:  V0 = void volume (~5 ml),  

 VC = column volume (240 ml).   

 Ve = (number of fractions ! volume of fraction (0.3 ml)) + V0 

Therefore: 
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