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Abstract

The Laser Interferometer Space Antenna (LISA) will detect the gravita-

tional wave emissions from a vast number of astrophysical sources, but

extracting useful information about individual sources or source types is

an extremely challenging prospect; the large number of parameters gov-

erning the behaviour of some sources make exhaustively searching this

parameter space computationally expensive.

We investigate the potential of an alternative approach, with a focus

on detecting the presence of particular inspiraling binary source signals

within a timeseries of gravitational wave data, and quickly providing

estimates of their coalescence times. Specifically, we use Principal Com-

ponent Analysis (PCA) to identify redundancy within the parameter

space of Extreme Mass Ratio Inspiral (EMRI) sources and construct a

new, smaller parameter space containing only relevant signal informa-

tion. We then create a simple search method based on how gravitational

wave signals project into this new parameter space.

Test cases indicate that a small number of principal components span a

space occupied by the majority of EMRI spectrograms, but non-EMRI

signals (including noise) do not inhabit this space. A PCA-based search

method is capable of indicating the presence of gravitational waves from

EMRI sources within a new test spectrogram.

The results of our PCA-based searches show that the method could be

used to provide initial estimates of EMRI coalescence times quickly, to

be used as initial data for a more thorough search.
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Waveform time Time with respect to the beginning of a searchable waveform.

R2 1−R, used to reveal structure in residual measurements when R ≈ 1.

R The residual; the difference in power between a spectrogram and its recon-

struction using a set of eigenspectrograms, expressed as a fraction of the

power contained by the original spectrogram.

WPN The Weight Power of a test spectrogram in a searchable waveform containing

only noise, but no EMRI signals.

WPS The Weight Power of a test spectrogram in a searchable waveform.

eigenspace The space spanned by an eigenspectrogram basis set.

eigenspectrogram An eigenvector of the covariance matrix whose columns define

spectrograms generated from parameters in the problem space. Eigenspec-

trograms are normalised and are therefore a basis vector for the eigenspace,

but otherwise can be used interchangably with principal component.

Parameter space In the context of this thesis, the parameter space is the space

spanned by the parameter values of EMRI analytic kludge waveforms. The

EMRI signals generated from points within this parameter space are further

manipulated, and the space they span is referred to as the problem space.

Principal component A vector accounting for as much variance in a data set as

possible. Sets of principal components are orthogonal, and can reduce the

dimensionality of the problem space.
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Chapter 1

Introduction

We are on the verge of transforming our understanding of the universe by directly

observing gravitational waves. While the observations of astrophysical sources in

electromagnetic spectrograms have produced a vast wealth of scientific discoveries,

the gravitational wave spectrum stands separate from (but complimentary to) these.

Thus, detection of the gravitational waves allows us to search a realm of source

properties that are otherwise imperceptible; an exhilarating prospect, but one replete

with its own quirks and difficulties. This Chapter provides a brief introduction to

gravitational waves; the principles of detection, likely sources and some current data

analysis techniques.

1.1 Introduction to gravitational waves

Einstein’s theory of general relativity revolutionised the way in which physicists

thought about the nature of spacetime. The theory revised the Newtonian concept

of gravity, describing it in terms of the geometry of space-time curved by the presence

of massive compact objects. Further, changes to an object’s gravitational field can

generate ‘ripples’ in the background curvature that propagate from their source-

gravitational waves.

The ‘wave’ nature of gravitational radiation is a consequence of small pertur-

bations to the local spacetime metric (the underlying geometry of the spacetime)

in the linearised Einstein Equations, a weak-field approximation of a more general

relation between the matter and energy distribution and the curvature of spacetime

known as the Einstein Equations. The solution to the linearised equations is most
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simply expressed as plane waves with a propagation speed equal to that of the speed

of light.

To determine the luminosity and amplitude of gravitational waves from a system

of masses, we calculate the traceless quadrupole moment tensor of that system. The

Einstein equations are too difficult to solve analytically for a general case of a system

of gravitating masses, but in a multipole expansion representing the distribution of

mass-energy in the system the mass quadrupole is the leading order that can have a

nonzero time derivative. The mass monopole, representing the total mass-energy in

the system does not change over time, nor does the dipole representing the centre

of mass of the system. The contributions of higher-order multipoles are present as

well, but are much smaller. If we ignore them, we are left with the quadrupole

approximation, the lowest-order method for expressing the amplitude of radiated

gravitational waves.

The classic illustration of the effects of gravitational waves is the deformation of

particles arranged in a ring. Gravitational waves propagating perpendicular to the

plane of the ring will alter the proper distance between particles and the centre of the

ring (as shown in Fig. 1.1). In contrast to electromagnetic waves with polarisation

states rotated 90◦ with respect to each other, gravitational wave polarisations are

rotated only 45◦. These two polarisation are labelled plus (+) and cross (×), and

the gravitational strains (a dimensionless measure of the magnitude of the spacetime

perturbation in terms of the proper distance between particles) are denoted h+ and

h×.

It is difficult to provide an estimate for the ‘typical’ strain produced from astro-

physical sources because there is no typical source of emission, although Schutz (1)

provides a quick estimate of 10−20 produced by a binary system of two solar-mass

stars 5 kpc from Earth. However, in the quadrupole approximation for the gravi-

tational radiation the strain of the waves is inversely proportional to the distance

from the source, so more distant sources will produce even smaller strains.

Thus far there has been no direct observation of these gravitational waves made

by measuring the change in proper distance between particles, but general relativity

has enjoyed considerable success; amongst other triumphs, it was able to predict

the precession of Mercury’s orbit, and the orbital decay of the Hulse-Taylor binary

pulsar (2). Therefore, there is extremely strong motivation to determine just how

viable the the theory is as a description of our universe.
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Figure 1.1: The effect of gravitational waves on a ring of particles. The upper row

shows the distortion cause by a + polarised gravitational wave propagating perpen-

dicular to the plane of the ring, and the lower row a × polarised wave propagating

in the same direction.

1.1.1 Gravitational wave sources

There are a number of possible sources of gravitational wave emission, but until

direct observations are made we cannot be certain how insightful our predictions

are. In particular, some of our uncertainty about the event rate of certain sources of

emission and the spatial density of sources are a result of relying on electromagnetic

observations; such observations may not be useful in estimating these values, since

we may have sources emitting gravitational radiation that we cannot detect electro-

magnetically. Nevertheless, expected sources generally fall within a few categories.

1.1.1.1 Burst sources

Core-collapse supernovae, leading to the formation of black holes and neutron stars,

will result in a burst of gravitational waves that accompanies this violent explosion

(3). Uncertainty regarding the collapse process (and how non-spherical this will be)

and the precise form of the emission prevent accurate predictions of the waveform

produced in this type of event, but rough estimates do suggest that current ground-

based detectors could be fairly confident of detecting these sources (4),.

Additionally, binary systems of compact astrophysical objects (neutron stars or

black holes) will radiate energy as gravitational waves, reducing the distance between
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the binary components. The evolution of these systems will cause the emitted

gravitational waves to increase in frequency as time goes on, referred to as a chirp;

the observation of the Hulse-Taylor binary orbit evolution and the degree to which

it matches the changes predicted by general relativity as a result of gravitational

radiation leaves little doubt that this is the responsible mechanism(5). Eventually,

the two objects will merge and the remaining object will ringdown, producing yet

more gravitational waves.

Each of these periods of evolution is worthy of study in its own right, but of

particular significance is the prediction that the disruption of neutron stars by black

hole companions is one of the possible sources of gamma-ray bursts, suggesting

that coincident searches could be made for these objects in two different regimes,

cementing the collaborative relationship between the gravitational wave research

community and that of other astrophysical research.

1.1.1.2 Periodic sources

There will be no gravitational waves emitted from objects that are perfectly sym-

metric around their rotation axis due to the quadrupolar nature of the radiation;

some kind of asymmetry is necessary. The typical detectable source of this kind

is a rotating neutron star deformed by ‘bumps’, producing an asymmetrical distri-

bution of its mass and hence gravitational wave emission (3). These bumps may

be produced by distortions in the solid crust of the star or the result of magnetic

pressure (the magnetic field and the rotation axis may be misaligned), but whatever

the mechanism supportable deformations are likely to be small.

Current efforts in this area include observations of the Crab pulsar (PSR B0531+21)

in the Crab Nebula. The LIGO gravitational wave observatories have failed to de-

tect gravitational waves from this neutron star pulsar, placing an upper limit on

contribution, through the the mechanism of gravitational radiation, to the loss of

kinetic energy that would cause the observed spindown rate of the pulsar (6).

1.1.1.3 Stochastic sources

Large numbers of unresolved discrete gravitational wave sources will produce a

stochastic background of gravitational radiation (3). Additionally, backgrounds will

be produced by processes in the early universe such as the Big Bang and inflation,

and detecting these sources would allow us to probe the fundamental nature of the
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universe in the early stages of its development (where energies were beyond any-

thing we could hope to recreate in a laboratory), and would subsequently allow us

a greater understanding of the cosmological make up of the universe.

1.1.1.4 Man-made sources

A man-made source of gravitational waves is an attractive concept, providing a

test-bed for detectors before considering astrophysical sources. While any detection

would be an extremely exciting, a examination of the simple setup described by

Sathyaprakash and Schutz (3) shows that the signals produced by artificial means

would be far too weak to detect. Even if we were to propose a similar project on

a more ambitious scale (a centrifuge generator consisting of two equal-mass blocks

joined by a stiff rod with total mass of 2 × 104 kg rotating at 100 Hz around the

the middle point of the rod, say), the resulting gravitational wave strain is still

h ≈ 1×10−33/r, where r is the distance from the generator (at least one wavelength

away to distinguish the wave from near field fluctuation). To say nothing of the

difficulty in creating such a wave source, the resulting strain amplitudes remain

many orders of magnitude below even the most optimistic estimates for detector

sensitivities, forcing us to abandon the notion of artificial gravitational wave sources.

Generating detectable strain lies firmly in the astrophysical realm.

1.2 Detecting gravitational waves

Gravitational waves signals are extremely weak, making their detection very chal-

lenging. Precision measurement is key; detectors must be incredibly sensitive lest

gravitational wave signals drown in unwanted noise.

1.2.1 Bar detectors

The first gravitational wave detectors, pioneered by Joseph Weber in the 1960s (7),

were resonant mass, or bar, detectors. A typical detector of this type is a large

aluminium cylinder with a narrow resonant frequency, deviations from which can

be caused by passing gravitational wave bursts exerting tidal strains on the bars.

Nevertheless, noise (in particular, thermal noise) greatly exceeds the amplitude of

vibrations caused by the burst, requiring coincident detections from two or more

cylinders to make reliable claims of gravitational wave detections. Unfortunately,
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Figure 1.2: A simple Michelson interferometer. Passing gravitational waves will

cause the laser arm lengths to change allowing direct detections to be made via the

phase shifts in the recombined light.

despite some early candidates, and a great deal of work to resolve the problems

inherent in bar detectors, no compelling evidence exists of a significant event. At

this time bar detectors have fallen out of favour because of their narrow bandwidths

and insufficient sensitivity, and only two groups continue to work with these devices

((W..b)1,(W..p),(8),(9)), although they continue to collaborate with other research

efforts ((10)).

1.2.2 Interferometers as gravitational wave detectors

Although bar detectors could achieve useful sensitivities within narrow bandwidths,

the desire for wide-band detectors (to help observe different or frequency-changing

sources) prompted several groups to explore the potential of laser interferometers.

The basic concept can be easily illustrated by a simple Michelson interferometer (see

Fig. 1.2), although an effective construction is much more involved ((11) provides

an excellent introduction).

1Due to their rather temporary nature, web-based references have been included in a separate
‘Webliography’ after the References section at the end of the thesis, and were correct at the time
of printing. Webliography entries have the prefix ‘W..’ or ‘X..’.
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Passing gravitational waves will distort the proper distances between freely-

floating particles. In an interferometry setup, laser light is passed through a beam

splitter, bounced off suspended mirrors, and recombined. If a + polarised gravita-

tional wave of amplitude h propagates out of the page, the proper distance in the

arms of the interferometer will be reach a maximum of L+ h/2 and a minimum of

L− h/2. The fractional change in the arm length is then

4L
L

=
h

2
. (1.1)

The interference pattern in the recombined light, caused by the unequal arm

lengths allows the fractional change to be measured and by extension the amplitude

of the gravitational wave. Frequency information is gleaned from the time varying

displacement of the mirrors.

The phase shifts in the light returning to the beam splitter are small, so current

interferometers use Fabry-Perot cavities in the arms (12): two partially-reflecting

mirrors that allows light incident on the input mirror to resonate, producing larger

phase shifts and increasing the laser power in the optical system.

Noise in interferometric detectors

Because the gravitational waves will only produce a small displacement, noise threat-

ens to obscure measurements from the interferometer. Each type of noise may be

classified as technical (that is, relating to the instrument itself or the surrounding

enviroment) or fundamental (imposed by theoretical limitations to measurements),

and the following section examines some of the main sources. An example noise

profile is presented by Fig. 1.3.

Seismic and vibrational noise is produced by vibrations in the external environ-

ment, and is prevalent at frequencies below a few Hertz (3). Nevertheless, by housing

the instrument in vacuum and suspending the mirrors on sophisticated pendulums,

the interferometer can be largely isolated from this noise. Ground-based detectors

are also vulnerable to low frequency gravity gradient noise from changes to the local

gravitational field. Although this noise falls sharply at higher frequencies (dropping

below contributions from other sources), it cannot be screened from the instrument

and can only be avoided by placing the interferometer in space (see 1.2.3).

At higher frequencies (12), thermal noise affects components of the detector such

as the mirror, coatings and suspension systems. Typically the interferometers do
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not operate near the resonant frequencies of the components (systems tend to oscil-

late at larger amplitudes near their natural frequency of vibration, a few Hertz for

pendulum suspension systems), but careful consideration must be given to choosing

materials that confine thermal vibrations to small bandwidth around their resonant

frequencies, leaving measurement frequencies as free as possible (desirable mate-

rials have a high quality factor Q). Furthermore, components can absorb small

amounts of power from the laser causing heating that will change their refractive

properties, and time-dependent variations in these changes can occur at measure-

ment frequencies- the behaviour of the components must be carefully characterised

to determine the amount of laser power available for use in the detector.

In contrast, increased laser power will decrease the error caused by random

variations in light intensity known as shot noise. This Poisson process produces

an improvement in the error as
√
N for mean number of N photons at the output,

but the desired levels of laser power are only achieved by power-recycling, being

beyond the output of available continuous lasers. Furthermore, the position sensing

accuracy achieved by increasing the laser power is at the cost of displacements caused

by transferring more momentum to the mirrors which can obscure gravitational wave

effects. Essentially, one is in conflict with the Heisenberg uncertainty principle, but

there are techniques for ‘squeezing’ the output signal to improve sensitivity beyond

the standard quantum limit (the level of noise caused by quantum fluctuations of

the laser beam’s electric field) (13).

Current interferometers

The Laser Interferometric Gravitational Wave Observatory (LIGO) and Virgo

gravitational wave observatories are the two largest gravitational wave interferome-

try projects. The US-based LIGO (W..j) has three detectors at two sites: a single

detector in Livingston, LA with 4km arm lengths (designated L1), and two detec-

tors at Hanford, WA with 4km and 2km arm lengths (H1 and H2 respectively). The

French/Italian collaboration Virgo detector ((W..v),(14)) is a 3km facility at Cascina

near Pisa. After ‘engineering runs’ designed to debug systems, LIGO began data

collection on the first ‘Science Run’ (S1) with all three interferometers, achieving

its design sensitivity in March 2005 after several more Science Runs (X..b). Virgo,

having finished commissioning in 2007, joined the last part of the fifth Science Run

(S5), taking data coincidentally with LIGO (the status of each facility is explored

in (15) and (16)).
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Figure 1.3: Sensitivity curves of ground-based interferometer gravitational waves

detectors ((W..w),(W..k)). The designations of the detectors are given below in the

main text.
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In addition to these large detectors, smaller interferometers are contributing

to the global network of gravitational wave observatories. The British/German

GEO600 detector (W..f) (a 600m interferometer located near Hanover, Germany),

cooperates with LIGO as part of the LIGO Scientific Collaboration 1 and has been

a test bed for next-generation technologies due to be incorporated into LIGO in a

future upgrade, Advanced LIGO. The 300m Japanese TAMA300 (W..s) has also

undergone data taking sessions (17) (and was in fact the first large scale interferom-

eter to make successful continuous measurements), and the small Australian Inter-

national Gravitational Observatory interferometer (W..c) as part of the Australian

International Gravitational Research Centre (AIGRC) (W..d).

The benefits of a global search goes beyond the opportunity to test different

approaches and technologies within the general framework of an interferometer. A

single detector is not able to measure both independent polarisations of a passing

gravitational wave, receiving a combination depending on the orientation of the

detector and the location of the source. Therefore, if we wish to recover the polari-

sation information and locate the source accurately we need multiple, well-separated

detectors making coincident measurements. Collaborative efforts are a fundamental

part of gravitational wave research.

Future ground-based detectors

The majority of work on future ground-based detectors at this point is to incorpo-

rate technological advances into existing detectors. The plan to create Advanced

LIGO by including technology from GEO600 is already underway, with initial LIGO

operations due to conclude in 2010 and the upgraded detectors to be operational by

2015. New test masses, more laser power and new suspension systems are expected

to increase Advanced LIGO’s limiting sensitivity by a factor of ten compared to the

initial LIGO instruments (there is an enhanced readout upgrade planned before the

major new installations, for use with S6 in 2009).

Similarly, Virgo has begun a two-stage upgrade: Virgo+, that began in May 2008,

will improve electronics, increase laser power and install new payloads. The following

upgrade to Advanced Virgo, with the goal of increasing the detector sensitivity by

an order of magnitude across the detection band can begin sometime after 2010.

1While it pools data and analyses it jointly with the LSC, Virgo is not a member of the
collaboration.
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Additionally, there are benefits to be gained from new facilities, such as the

Large-scale Cryogenic Gravitational wave Telescope (LCGT)(W..i) in Japan with

3km arm lengths, or the Australian Interferometric Gravitational Observatory (AIGO)

proposed by the Australian Consortium for Interferometric Gravitational Astronomy

(see (18) for a preliminary design and discussion). As well as allowing construction

of facilities using the knowledge gained from previous efforts, new sites can help

to triangulate gravitational wave sources and provide more statistical confidence in

coincident events (19). Nevertheless, while new detectors may be highly desirable,

they require considerable amounts of funding for their construction.

1.2.3 The LISA mission

The inescapable limits of gravity gradient noise and baseline size for ground-based

detectors can be avoided by a spaced-based interferometer, and the Laser Interfer-

ometer Space Antenna (LISA) is a proposed mission jointly supported by NASA and

ESA. The goal of the LISA mission is to detect gravitational waves at low frequencies

(10−4 − 10−1 Hz) inaccessible to existing detectors, providing data for the research

of gravitational radiation, astrophysics and fundamental physics, complimenting the

existing detector network rather than supplanting it.

The current design for LISA is a triplet of spacecraft housing freely-floating

test masses. Each spacecraft is positioned at the vertex of an equilateral triangle

formation, passing laser light between each other to create three Michelson-type

interferometers that are separate although not fully independent (see Fig. 1.4). In

this manner, LISA acts as an gravitational observatory rather than simply a detector,

and should be able to provide source location information as well as direct detections

of gravitational waves. The test masses are shielded from external disturbances (such

as radiation pressure), and are seperated by approximately 5×109 m, with the centre

of the formation trailing the Earth’s orbit by 20◦.

The engineering requirements of the spacecraft are extremely demanding; not

only must the interferometers be capable of detecting the minute changes to the

test mass separations, the spacecraft must survive in space for a long period of

time. There will be no opportunity to repair LISA once in orbit either, and the

component spacecraft must survive the launch process intact. Additionally, LISA
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Figure 1.4: Orbital configuration of LISA and its annual orbit. Image courtesy of

NASA (X..d).

must cope with the divergence of the laser beams over their vast separations, and

other considerations such as the movement of the individual spacecraft as they orbit.

Furthermore, fluctuations in the six laser signals from the optical benches pro-

duce Laser Noise that can obscure gravitational wave sources. This can be reduced

using Time Delay Interferometry (time shifting and combining individual optical

bench measurements)(20), but a full solution for the required combinations taking

into account the final orbital configuration of LISA is not yet available (W..e)

A great deal of effort has already gone into the conceptual and physical work re-

quired to create LISA, with a technology-demonstration mission called LISA Pathfinder

(X..c) due to launch in 2011. The ultimate fate and launch date of the full LISA

mission is much more difficult to estimate however, due to scale and unique chal-

lenges of the project, but at the time of writing the estimated schedule expects the

earliest launch date to be 2020.

1.2.4 Gravitational wave data analysis

Not only are there intimidating technical challenges in creating instruments sensitive

enough to detect gravitational waves, thoughtful data analysis is required to extract

signals from the detector output.

Crucially, the large number of gravitational wave sources expected to be visible

to interferometers and long periods of continuous data-taking means searches must
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be performed in a large parameter space over a wide range of frequencies (thanks to

the broadband nature of the detector). Not only is this computationally intensive,

but sensitivity is enhanced by robust understanding of the expected waveforms for

use in the search algorithms. Furthermore, the polarized nature of the gravitational

radiation requires a network of detectors (discussed previously) so these algorithms

must be capable of manipulating data from multiple detectors to aid in coincident

analysis and event detection. Gravitational waves therefore present a rather atyp-

ical situation compared with the requirements of more conventional detection of

astrophysical sources using electromagnetic radiation.

Development and discussion of data analysis techniques can be found in the

annual Gravitational Wave Data Analysis Workshop (GWDAW) meetings, which

provide a forum for interested parties to refine or revise their strategies. Recently,

the GW Notes newsletter (W..g) has been launched in an attempt to collect efforts

from a number of communities studying gravitation, including data analysis efforts.

The following section details some key concepts in gravitational wave signal data

analysis, and the problems hindering their successful implementation.

1.2.4.1 Matched filtering techniques

Simply put, matched filtering is the correlation of known waveforms (known in this

context as templates or filters) with detector output in an attempt to detect the

signal in the data, which may be buried in noise (3). A common technique in

the telecommunication industry, matched filtering sets itself the task of finding the

‘optimal’ template; the waveform that will produce the highest signal-to-noise ratio

(SNR). The technique as applied to the field of gravitational waves is most easily

explained by first establishing a firm mathematical framework.

The scalar product of two functions x(t) and y(t) is defined as

〈x, y〉 ≡ 2

∫ ∞
0

x̃(f)ỹ∗(f) + x̃∗(f)ỹ(f)

Sn(f)
df, (1.2)

(3)

where x̃(f) denotes the Fourier transform of the function x(t), defined as

x̃ =

∫ ∞
−∞

x(t)e2πiftdt, (1.3)
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x̃∗(f) is the complex conjugate of x̃(f)and Sn(f) is the one-sided PSD of the

noise in the detector (the power per unit frequency in the interval between 0 Hz and

the bandwidth of the detector) The noise is assumed here to be stationary, although

this may not be true.

In the context of gravitational waves, our function x(t) will be a time series

containing a signal h(t) with an arrival time ta and noise n(t) thus taking the form

x(t) = h(t− ta) + n(t), while y(t) is a template. The correlation of the two is

corr.(τ) =

∫ ∞
−∞

x(t)y(t+ τ)dt, (1.4)

alternatively,

corr.(τ) =

∫ ∞
−∞

x̃(f)ỹ∗(f)e−2πifτdf, (1.5)

where τ is the lag of the filter function behind the detector output. It is then

possible to determine the SNR by calculating the mean value of the correlation

(denoted corr.), and the variance (corr.− corr.), given as

S ≡ corr.(τ) =

∫ ∞
−∞

h̃(f)ỹ∗(f)e−2πif(τ−ta)df, (1.6)

and

N2 ≡ corr.− corr. =

∫ ∞
−∞

Sn(f)|ỹ(f)|2df, (1.7)

respectively. The mean value takes this appearance because the mean value of the

noise is zero, so the mean value for the signal with noise should be the signal. The

SNR ρ is defined as ρ2 = S2/N2, which can be expressed in terms of the scalar

product already defined:

ρ2 =
〈he−2πif(τ−ta), Sn(y)〉√
〈Sn(y), Sn(y)〉

, (1.8)

and it is possible to calculate the optimal SNR, ρopt = 〈h, h〉1/2.

1.2.4.2 Template bank generation

On the surface, application of matched filtering seems straightforward; a bank of

templates could be generated covering the parameter space inhabited by the gravita-

tional wave signals and determine the optimal filter, which will match the shape and
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parameters of the signal. Although it is not possible to be certain that the signal is

present in the data, it is possible to assign confidence levels to the results of a search,

and generate estimates of the source parameters. In practice the parameter space to

be searched is high-dimensional (see 3.2 for one such example), making grid-based

template banks computationally intractable to create or to evaluate without being

extremely coarse. Nevertheless, an effective search will require enough templates to

ensure that adjacent templates are not too mismatched.

Given a template with signal parameters λ (normalised such that 〈h, h〉 = 1)

and following (21), one can define the match between it and another template with

slightly offset parameters λ+4λ as

M(λ, λ+4λ) = 〈h(λ), h(λ+4λ)〉. (1.9)

The match is at its maximum value when 4λ = 0, and the power expansion around

this point produces

M(λ, λ+4λ) ≈ 1 +
1

2
(

∂2M

∂4λi∂4λj
)4λk=0∂4λi∂4λj, (1.10)

defining a metric as

gij = −1

2
(

∂2M

∂4λi∂4λj
)4λk=0. (1.11)

This intuitively suggests the property of mismatch between the two templates, the

square of the proper distance between them

1−M = gij∂4λi∂4λj. (1.12)

Traditional template banks construction addresses the notion of completeness :

the requirement that any point in the parameter space is no further from its closest

template than a chosen mismatch value, necessitating a compromise between the

speed of a search and the number of templates required. An efficient, complete

template bank will contain the smallest number of templates required to completely

cover the parameter space.

However, setting the mismatch to be less than some desired value -m say- requires

that the point in parameter space lies within the high-dimensional sphere of radius
√
m centered on the template λ. Unfortunately, the inevitable overlap between
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spheres at high dimensions raises the issue of the covering thickness Θ, where in a

n-dimensional space

Θ =
volume of an N− dimensional sphere

volume of the fundamental region
, (1.13)

the fundamental region being the volume of the lattice defined by the centre of N-

dimensional spheres for the parameter space (see (22)). This provides a convenient

measure of the quality of the template bank being used: for a given mismatch we

want the thickness as close to unity as possible, and with the minimum number of

templates.

For two-dimensional Euclidean spaces, a hexagonal lattice is used, while at higher

dimensions a hyper cubic or A∗n lattice may be applied. More recently, ‘random tem-

plate banks’ have been tested (23), where the criterion is the probability that a point

in parameter space is covered by a template, rather than trying to achieve complete

covering. In high-dimensional parameter spaces, this can reduce the number of

required templates.

Nevertheless, the number of templates Nt can be given by

Nt =
1

m

Γ(n/2 + 1)

πn/2

∫
V

√
det(gij)dV, (1.14)

where V is the parameter space being searched. Nt will be large for small mismatches

over large parameter spaces ((21) provides an estimate to template requirements in

searching for inspiraling binaries as a measure of computational power). Further-

more, lattice template placement is usually done under the assumption that the

parameter space metric is flat, an assumption that may not be true. Without an un-

expected leap in computational capabilities, it seems unlikely that a straightforward

search using matched filtering is a wise strategy for gravitational wave detection.

1.2.4.3 Bayesian inference

Ruling out an exhaustive search through the parameter space necessitates a more

sophisticated approach to the problem. Bayesian inference is an intriguing frame-

work in which to establish such an approach, providing a straightforward measure

of the probability that a hypothesis is true. In order to demonstrate its applicability

to gravitational wave data analysis, some simple definitions must be provided (for

a more thorough grounding, the reader is referred to (24) and (25)).
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Bayesian inference operates by considering the probability of the truth in propo-

sitions. Given two hypotheses A and B, it is possible to determine the joint prob-

ability of these being true, denoted p(A,B). The joint probability is expressible

using p(A) and p(B), the individual probability densities of the hypotheses, and the

conditional probability densities p(A|B) and p(B|A) (that is, the probability of A

being true given B and the probability of B being true given A). The product rule

for joint probabilities p(B)p(A|B) = p(A)p(B|A) leads to the typical form of Bayes’

theorem

p(Hi|D, I) =
p(Hi|I)p(D|Hi, I)

p(D|I)
(1.15)

where

Hi proposition representing the hypothesis
D proposition representing data
I proposition representing prior information

p(Hi|D, I) posterior probability of the hypothesis
p(Hi|I) prior probability of the hypothesis

p(D|Hi, I) probability of obtaining the data if the hy-
pothesis and the data are true (the likeli-
hood)

p(D|I) normalisation factor to ensure∑
i p(Hi|D, I) = 1

(24)

Within the context of gravitational wave data analysis then, the proposition

may be that ‘the data contains a gravitational wave signal’, and in fact it is a trivial

task to construct a measurement known as the odds ratio; the ratio of the posterior

probabilities of two hypotheses H1 and H2.

O12 =
p(H1|D, I)

p(H2|D, I)
=
p(H1|I)

p(H2|I)

p(D|H1, I)

p(D|H2, I)
. (1.16)

Bayesian methods thus allow competing theories to be compared, and can incor-

porate prior information. Nevertheless, although simple to define, actually calcu-

lating the posteriors may by computationally expensive. A typical application for

gravitational wave data analysis is to recover astrophysical source parameters from

a particular signal, with the desired output being the marginal posterior probabil-

ity distribution for each parameter. It is possible to calculate these with a process
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called marginalisation. For a set of n parameters {λi|i = 1, 2, .., n} and a desired

parameter λk, it is possible to calculate the marginal posterior probability as

p(λk|D, I) =

∫
λ∗
p(λ|D, I)dλ∗, (1.17)

where λ∗ is the set of parameters excluding λk. What is clear though is that this

method may require multi-dimensional integrals that may not be easy to evaluate.

Moreover, the described approach has not simplified the problem if it represents only

another way to present the results of an exhaustive search through the parameter

space (by means of testing out multiple hypotheses).

Markov Chain Monte Carlo

Markov Chain Monte Carlo searches are an attempt to avoid the need for an exhaus-

tive search through a large parameter space. Fundamentally, the MCMC approach

is to construct a quasi-random walk through the parameter space where the pos-

terior density in a region of the space and the probability of being in that region

are proportional. The following explanation follows the terminology and approach

of (24) closely, which provides a full explanation of the technique and a number of

instructive examples.

The walk uses a Markov Chain, a record of the path through the parameter

space where the next step depends on the current step. Although this may appear

confusing at first, the principle is easily explained: given a proposal distribution of

the parameters to be explored and a current position in the parameter space Xt,

a candidate value -Y - for the random walk’s next step -Xt+1 can be chosen, and a

decision is taken whether or not to accept the candidate based on the ratio

r =
p(Y |D, I)

p(Xt|D, I)

q(Xt|Y )

q(Y |Xt)
, (1.18)

known as the Metropolis ratio. The candidate is then accepted if the condition

r > 1 is satisfied, or with a probability of r by generating a random value from a

probability distribution between 0 and 1. The process can then simply be repeated

with the path at the new position. In general the walk will move towards regions

of increasing probability but is free to move away from these and explore regions of

low probability (although it will soon move away from those). The benefit is that

the chain will sample the parameter space with a probability density equal to the

posterior probability p(X|D, I).
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Naturally, there are refinements of this technique designed to optimise perfor-

mance, such as tempering, variable step size, and changing the burn-in period (a

number of initial steps that are subsequently ignored so that the posteriors are not

unduly affected by the choice of the starting point in parameter space (24), (25)),

but the simple situation is still illuminating. Given time, a properly constructed

Markov chain can explore the entire parameter space, but its concentration in ar-

eas of high probability will identify possible candidate parameters that can then be

subjected to more exhaustive searches.

The data analysis concepts in this section are no more than a brief description,

covering only a small subset of the those in use by gravitational wave data ana-

lysts throughout the international gravitational wave community. They have been

included to illustrate the elaborate nature of the techniques considered, just as the

range of sources described in Section 1.1.1 is an indication of the scale of the field

that analysis techniques must be applied to. Accordingly, it is extremely unlikely

that a single approach will produce all of the meaningful output that we desire (nor

would it be expected to any more than the notion of one detection process that

would cover all electromagnetic emissions from astrophysical sources).

The remainder of this thesis is an examination of alternative approaches to grav-

itational wave data analysis, with an initial focus on performing an analysis with

a reduced amount of information. The intent is not to ignore the expertise of the

wider analysis community or their methods, but to investigate whether we can pro-

duce useful information about the presence or makeup of different sources quickly

or simply.



Chapter 2

A rapid search for Chirp Mass and

Coalescence Time in SMBH

binaries

2.1 Supermassive Black Holes

Black holes with masses of the order 106M� − 109M� are commonly known as Su-

permassive Black Holes (SMBH) and are believed to exist in the centre of most

galaxies -an inference from the motion of stars or gas clouds near the centre- includ-

ing the Milky Way (26), (27). The merger of two or more of these objects due to

the collision of galaxies or even as isolated SMBH binaries (that is, binary systems

devoid of other inspiralling material) will produce gravitational waves within LISA’s

frequency band. These coalescences will provide valuable information about the be-

haviour of spacetime in strong gravitational fields, and the high amplitude of the

signals will allow the events to be detected at exceptionally large distances. Such

events are therefore particularly interesting not only for the field of gravitational

wave astronomy, but those of cosmography and cosmology as well.

2.1.1 The Mock LISA Data Challenges

The Mock LISA Data Challenges (MLDC) are a series of datasets generated by

the MLDC Taskforce (W..l) containing simulated gravitational wave data and sim-

ulated LISA noise, released in a number of ‘rounds’. With a standard encoding, and

available to any interested party, the two goals of the MLDC were (W..o) “fostering
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the development of LISA data analysis tools and capabilities, and of demonstrating

the technical readiness already achieved by the gravitational-wave community in

distilling a rich science payoff from the LISA data output”(W..o). Each challenge

generally consists of training datasets accompanied by a key containing the source

parameters of the gravitational wave signals, in addition to blind datasets (contain-

ing signals from similar sources to the training datasets, but which do not provide

a key with the specific source parameters); this allows participants to gauge the

effectiveness of their efforts to extract useful science from the training data before

repeating the process without the benefit of a known solution.

Each round of the MLDC has a limited period in which groups or individuals

can submit their results after which key files containing source parameters for the

blind challenges are released, again allowing the performance of each analysis to

be evaluated, both individually and in comparison to other participants. Although

not intended specifically as contests this format encourages discourse on the cor-

rect approach to the challenges, the criteria by which success is judged and robust

analysis methods. Subsequent challenges examine specific situations or increase the

complexity of existing situations, with the goal of providing increasingly realistic

circumstances with which to test analysis codes.

The following sections provide a brief description of the MLDC so far, and the

intended focus of data analysis attempts. The specifications of individual datasets

are provided by (W..e) and (W..o), while reports on the first two rounds are given

by (28) and (29) respectively. A more detailed overview of the rounds 1B to 3 is

provided by (30) and (31), as well as a discussion of the analysis methods used by

various participating groups.

2.1.2 MLDC datasets

The first round of MLDC datasets was designed to allow the development of basic

tools for the analysis of datasets containing primarily of single, or non-overlapping

multiple signals, grouped in three general categories: i) white dwarf binaries ii)

extreme mass ratio inspirals iii) supermassive black holes. Additionally, a dataset

featuring confusion noise (wherein the overlap of multiple signals makes it diffi-

cult to extract information about the individual sources) was included. The initial

challenge was active between June and December 2006 with preliminary analysis

presented at the 11th Gravitational Wave Data Analysis Workshop ((W..a),(32)),
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but a supplementary challenge (designated Round 1B) was issued using updated

data generation codes and was concluded December 2007.

Running concurrently with some datasets from the initial challenge (specifically

the extreme mass ratio inspiral datasets, in order to account for the expected dif-

ficulty of analysis on these waveforms), round two began in December 2006 and

included datasets containing multiple overlapping sources and ‘The Whole Enchi-

lada’; a two-year long dataset containing gravitational wave signals from a variety of

sources previously presented separately, giving a more realistic simulation of LISAs

output and providing a test for analysis methods without the benefit of a single

category of source types or isolated sources. The analysis result submission for the

second round was June 2007.

The third MLDC round built on the previous round, including two new sources:

burst signals from cosmic string cusps and a stochastic gravitational wave back-

ground. Further the challenges incorporate improvements to some of the source

models used, such as spinning SMBHs and the corresponding spin-spin and spin-

orbit interactions. This round ran between April and November 2008. Recently, a

fourth round of MLDC Challenges (W..n) has been announced, consisting of another

‘whole enchilada’ dataset in order to focus the analysis on the “global-fit problem

of detecting and analyzing sources of different types superposed in the LISA data”.

The deadline for entry to this round is intended to be late Autumn 2010.

2.1.3 SMBH signals in MLDC datasets

Correctly determining orbital evolution of the SMBH system during the merger is

particularly involved, requiring consideration of the evolution of the galaxies housing

each SMBH, and the interaction of the black holes with infalling gas and material,

but unless explicitly stated the SMBH mergers considered throughout this chapter

involve two SMBHs isolated from any disruptive effects from other objects. Even for

isolated SMBH binary systems, what we require is a solution to Einstein’s equations

(describing spacetime being curved by the presence of the two massive objects),

but as a full solution is not yet possible Post-Newtonian approximations are used

instead, expressing the solution as deviations from Newton’s theory of gravity.

Although higher-order Post-Newtonian (PN) effects could be calculated, the or-

bital evolution of SMBH binaries in the initial MLDC datasets was restricted to
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the 2PN approximation without spin-spin or spin-orbit modulations, with the ad-

ditional assumption that the orbits were circular. Furthermore, only the dominant

mass-quadrupole harmonic is present, and the amplitude of this is not subject to

PN correction; this simplification may be referred to as the ‘restricted’ PN approx-

imation. The first two rounds of the MLDC therefore presented particularly simple

waveforms, allowing each binary to be described by seven parameters plus sky loca-

tion(see Table 2.1).

The inspiral waveform of these binaries should be visible to LISA for a significant

amount of time, and the observation of the frequency of the gravitational waves at

a time t(f) can be related to the coalescence time of the binary tc by the relation

tc − t(f) = 5(8πf)−8/3 (M(1 + z))−5/3[
1 +

4

3

(
743

336
+

11µ

4M

)
x− 32π

5
x3/2 +O(x2)

]
(2.1)

where the chirp mass of the binary system, M = η3/5M, with η = M1M2

M2 ,

M = (M1+M2), the PN expansion parameter x(f) is given by x(f) = (πM(1 + z)f)2/3

and z is the binary’s redshift (see (33), (34)).

To lowest order, then

tc − t(f) = 5(8πf)−8/3 (M(1 + z))−5/3

= 3.003× 106

(
f

10−4

)−8/3(
M(1 + z)

106M�

)−5/3

(2.2)

and a simple rearrangement of this expression yields

f =

 tc − t(f)

3.003× 106
(

M(1+z)
106M�

)−5/3


−3/8 (

10−4
)

Hz. (2.3)

Note: In the remainder of this chapter, the reshift of a source is ignored when

determining chirp mass, since it is unknown.

Because the final moments of the merger and the ringdown are not part of this

frequency evolution, a taper is applied to the waveform to prevent spectral leakage
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M1 Mass of first black hole.

M2 Mass of second black hole.

tc Time of coalescence.

Φ0 Initial orbital phase.

θ Inclination of orbital angular momentum to observer’s direction.

D Luminosity distance.

ψ Polarisation angle.

Table 2.1: The physical parameters for a SMBH binary.

(due to the large dynamical range resulting from suddenly terminating the waveform

suddenly in the time domain).

The third round of the challenges included spin effects and the resulting modula-

tions due to the now precessing binary orbits, marking a departure from the simple

waveforms present in the first two rounds, and increasing the parameters required

to describe the binaries; both the magnitude and orientations of the spins are re-

quired. While rigorous and accurate parameter estimation of SMBH binary signals

have been implemented with some success, we have tried to explore a rapid search

for the signals and the information to be gained from such a method.

2.2 The rapid search

The following section explores our somewhat naive search for SMBH binary signals

in MLDC datasets, and an attempt to extract the chirp mass and coalescence time

of these signals, referred to as the ‘excess power’ method. We believed there was

merit in sacrificing the accuracy of results possible from techniques such as MCMC

searches or matched filtering, for speed. Our motivation was that our estimates

could then be passed on as initial data for an MCMC search, providing prior in-

formation that would allow us to home in on accurate parameter values under this

more thorough analysis.

We considered a hierarchical approach to the gravitational wave data analysis.

Our contribution would be an initial stage in such an approach; to quickly, if inac-

curately, provide estimates of parameter values. This way, we could incorporate of

research into the efforts of the wider data analysis community, but hopefully without

recreating or overlapping those efforts. Again, this was not intended to be a full
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solution to the problem but at this stage was rather an initial investigation into the

difficulties of gravitational wave data analysis and an exercise in manipulating and

gaining familiarity with the MLDC datasets.

Unless otherwise stated, the MLDC Challenge 1.2.1 training dataset will be

used throughout the following section to illustrate this method and its application

to further datasets is given in section 2.2.2.

Generating spectrograms

The following method is used to generate the SMBH spectrograms discussed in later

sections, using the notation of (35).

The gravitational waveform is represented by a vector of M real numbers xk,

k = 1...M representing the strain amplitude channel (X(t) or Y (t) or Z(t)) with a

sample frequency of fs. The power spectral density of this waveform is then

PSD =
2 · |y|2

fs · S2

(2.4)

where ym is the short-time Fourier transform (of length N) of xk, wj represents the

vector of real numbers of length N that makes up the window function, and

S2 =
N∑
j=1

w2
j . (2.5)

Throughout, a sample frequency of fs = 1/15 Hz is used, and the windowing

function is a Hanning window, defined as

wj =
1

2

[
1− cos

(
2π · (j − 1)

N

)]
. (2.6)

Windowing was necessary to remove discontinuities in the timeseries being con-

verted into a spectrogram. Discrete Fourier Transforms assume that the timeseries

repeats itself infinitely in a periodic manner and if the frequency of the input signal

is not an exact multiple of the sample frequency (and therefore does not fall in the

exact centre of a frequency bin), then there is a discontinuity between the first and

last samples, spreading power across the spectrum. Window functions generally

start and end at or close to zero, removing this discontinuity. There are a number

of defined and named window functions, although it is perfectly possibly to design

custom window functions. Each will involve a compromise between the reduction
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of the spectral leakage into other frequency bins, the amplitude accuracy and the

width of the peak in the frequency domain when applied to a signal.

The Hanning window was an appropriate choice for our work in this thesis be-

cause it causes small amounts of spectral leakage, and narrow peak widths, at the

cost of some amplitude accuracy. However, our analysis methods (further explored

in this chapter and in Chapter 4 onwards) relied more on recovering information

about the shape of spectral features than recovering the amplitudes of signals, mak-

ing this an attractive choice. Further, the Hanning window was a built-in function

of the Matlab package used in our analysis, making it simple to incorporate into our

algorithms.

Alternative window functions (such as flat-top windows which could recover the

amplitude accurately) would have contributed more spectral leakage or wider peak

width, distorting the shape of the signal in the spectrograms. Heinzel (35) assesses a

number of window functions, giving their strengths and weaknesses.. Unfortunately,

there was not sufficient time to test our analysis techniques using spectrograms

created with different window functions. It is possible that there exists an optimal

window which has eluded us, but the Hanning window appeared to be sufficient for

our purposes.

2.2.1 The ‘excess power’ method

The frequency evolution of SMBH inspirals in MLDC dataset signals produced by

the relation in Eqn. 2.3 produces a sort of ‘characteristic’ shape, changing only

slightly when the chirp mass of the binary is altered. Naturally, this will also change

depending on the coalescence times as well, but if these are equal the shape is

apparent (see Fig. 2.1).

In some cases, the presence of such signals could be identified by eye within a

spectrogram of the dataset (see Fig. 2.2.1) but, the signal is usually drowned out by

noise above and below a small range of frequencies. Within this range however, the

signal stands out. Crucially, the power in the waveform increases as the coalescence

time approaches; by isolating the time of maximum power we will be able to identify

the coalescence time.

The initial step is to select a range of frequencies that isolate a region of high

SNR in a spectrogram of the dataset; in practice this involves ignoring extremely
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low-frequency information and anything higher than a few mHz, and the refinement

of this method identified a desirable range of 0.1− 1 mHz (shown in Fig. 2.3(a)).

The total power in each time bin across this range of frequencies is calculated (see

Fig 2.3(b))- the increase in SNR as the inspiral progresses towards the coalescence

time reveals itself as a corresponding increase in these measurements; there will be

a contribution of power from the noise too, but the signal should produce most of

the power. It is this ‘excess power’ (that is, above the noise contribution) that we

wish to guide us.

Crucially, because the MLDC dataset does not include the final merger and

ringdown the coalescence time of the signal is then followed by a sharp drop in the

sum power measurement, a feature which we can exploit. The rise and fall in sum

power measurements can be turned into distinct spikes if a sensible threshold is

applied, and the peaks of these spikes are then used as the first estimates for the

coalescence time of the SMBH signals. The peaks are found by identifying those time

bins for which the sum power measurement lies above the threshold but precedes

a time bin that falls below the threshold (thus, the sharp drop really is key to the

first estimates). Each estimate is considered evidence of a separate candidate SMBH

signal.

This stage is simple enough in practice, but we then examine subsets of the

original dataset surrounding each of the candidates, slicing these subsets into several

sections and constructing PSDs from each slice, determining the most powerful

frequency bin in each slice. In theory, this highlights the frequency evolution of the

SMBH signal leading up to the coalescence (see Fig 2.5(b)). We refer to these as

extracted evolutions.

Specifically, we looked at the timeseries data from two days preceding the initial

candidate coalescences up until those values, creating five slices. We discovered that

our results were more accurate if the slices were of unequal length; each was half

the length of the preceding slice (that is, the first of the five slices contained one

days’ worth of timeseries data, the second half a day, and so on). Furthermore, we

actually took the average value of the three most powerful frequency bins rather

than the most powerful outright. Thus, our extracted frequencies were not regularly

spaced, but closer together as we approached the candidate coalescence time (during

which the frequency of the gravitational waves was increasing ever more rapidly).

It is then possible to extract a chirp mass and coalescence time using a simple

least-squares fit. A bank of templates for different chirp masses and coalescence
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Figure 2.1: The ‘characteristic shape’ of SMBH inspiral signal frequencies in the

final hour before coalescence. The chirp mass for the binaries is in the range 1 ×
106 − 3× 106 M� with a resolution of 1× 105 M�, and as the chirp mass increases

(depicted with a change from black to red), so does the sharpness of the curve. An

insert showing the last minute before coalescence is also included.
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(a) SMBH waveform from the MLDC Challenge 1.2.1 dataset X channel

(b) The spectrogram constructed from the waveform above.

Figure 2.2: A SMBH inspiral waveform with noise, and the corresponding spectro-

gram. The signal cannot be seen in the waveform timeseries, but evidence of the

characteristic shape is visible in the spectrogram at low frequencies with consider-

able difficulty (the relevant region is highlighted as a guide). The natural logarithm

of the power (indicated by the colour bar) is shown to make the feature easier to

see.
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(a) The selected frequency region of the spectrogram in Fig. 2.2(b). The presence of the SMBH
signal is much easier to see here.

(b) The sum power measurements from the spectrogram above.

Figure 2.3: The isolated frequency region of the spectrogram and the sum power

measurements. The approximate coalescence time corresponds to the peak of these

measurements. The logarithm of the power is displayed.
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times (we refer to these as trial coalescence times and chirp masses)can be generated

covering a desired parameter range with a particular coarseness, dependent to a large

extent on available computing resources. For a given trial chirp mass and coalescence

time, the expected evolution according to Eqn.2.3 (that is, the expected frequency

at the same times as the extracted frequencies are calculated) can be compared to

the extracted evolution and the best fit selected.

In other words the fitting procedure algorithm was simply

1. Extract the strongest frequencies from PSDs around the time of the candidate

coalescences, and the corresponding time. These are the extracted times and

frequencies.

2. Select a trial chirp mass and coalescence time. Determine the frequency of the

gravitational wave at the extracted times according to the trial values. These

are the trial frequencies.

3. Perform a least-squares fit on the five extracted and trial frequencies, and

record this value as well as the trial values.

4. Repeat stages 2 and 3 for different trial values.

5. Select the smallest least-squares value; the corresponding trial values are the

best fit parameters.

Naturally, there are a number of subtleties involved in implementing this ap-

proach. As the expected quadrupole frequency heads towards infinity as the co-

alescence time approaches, it is important not to attempt to fit templates to an

extracted frequency evolution including data from after the sharp drop off in to-

tal power- this would establish a different shape to which the templates would not

match well. Therefore by examining the frequency evolution preceding the original

estimated coalescence time the method risks ignoring or missing the point of highest

SNR in favour of robustness in tackling different datasets. Conceivably, contribu-

tion from the noise could produce a peak later than the coalescence time, although

the high SNR of the SMBH signal has thus far prevented this, allowing the initial

estimates to be considered an upper bound for the data considered. It is worth em-

phasising that the search for the best fit parameters can cover times beyond these
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estimates; it is simply that the fit is made only to extracted frequencies from before

this point.

Furthermore initial implementation of this method was simplified by the avail-

ability of noise-only datasets, allowing noisy datasets to be whitened by accounting

for the power present in the expected LISA noise. The mean power of the noise at

different frequencies, 〈Pnoise(ν)〉is calculated, as well as the power in the noisy time

series at different frequencies and times Pn(ν, t). The whitened power Pw(ν, t) is

simply the ratio of the two measurements.

Pw(ν, t) =
Pn(ν, t)

〈Pnoise(ν)〉

This is a simple approach but highlights the signal (as seen in Fig. 2.4(c)). Nev-

ertheless, its success depends to some extent on the gaussian, stationary nature of

the noise used during the challenge, which will not be an appropriate approach for

a more realistic representation of the data. One immediate change is that the sum

power measurements are altered by the whitening, and are henceforth referred to as

normalised sum power measurements.

The extent of the data used to extract the frequency evolution is another subtlety;

ideally the search should look as far back as possible without attempting to search

before the beginning of the dataset, or so far back that it is confused by other sources.

It must also refrain from pursuing the signal frequency as it drops down into the

strong extremely-low-frequency noise. A more sophisticated approach may contain

conditional statements allowing the search to avoid these problems elegantly, but in

its current form it consistently looks at the data only in the two days preceding the

initial coalescence time estimates.

Some thought must also be given to the possibility of false alarms. These would

manifest as a spike corresponding simply to a small fluctuation in the sum power

close to the threshold set to isolate the SMBH signals. The search would assume

this to be a coalescence candidate and attempt to extract the frequency evolution

from spectrogram data preceding it; in some sense this is mostly harmless but the

resulting information would be useless. In order to reduce the possibility of this

occurring, the search has a ‘resolution’ of one week, only allowing one spike to

become an estimated coalescence time (corresponding to the time bin associated

with the maximum sum power within this period; by this process, candidates close

enough in time are merged). Although this has solved the problem with regards to
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(a) The original spectrogram

(b) The spectrogram of the noise

(c) The whitened spectrogram

Figure 2.4: The original spectrogram (within the selected frequency range), the

noise spectrogram, and the resulting whitened spectrogram. In all cases, the natrual

logarithm of the lower is displayed (indicated by the colour bar).
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current MLDC datasets, it nevertheless has the disadvantage of limiting the ability

of the rapid search to distinguish between multiple inspiral signals coalescing in a

shorter period of time. However, the demands of the search for frequency bins of

maximum power during the frequency evolution extraction would not be able to

cope with this situation anyway.

Finally, ignorant of a preferred distribution of chirp mass values and free to

choose the coalescence time arbitrarily, it is simplest to conduct the 2-dimensional

search in a grid (the coarseness of which is dependent on available computing re-

sources). It would be fairly trivial though to extract to incorporate distribution

information into the search.

2.2.2 The results of the rapid search

The excess power method was applied to a number of MLDC datasets, and the

resulting extracted parameters are discussed below. A number of points of note

raised by the different datasets are examined in further detail in section 2.3. For the

purpose of running multiple iterations of the search, it was necessary to recalculate

the noise present in the dataset- details of the method used are given in appendix

A. In total, the tests were repeated 100 times for each dataset, and individual

spectrograms and sum power measurements throughout the section are taken from

one iteration of the rapid search.

Furthermore, each rapid search was conducted on a 2-dimensional grid with a

chirp mass resolution of 2000M� and a time resolution of 30 seconds; this was

adopted for practical reasons as we wished to justify the rapid nature of the search

and to be able to conduct the search on a standard desktop computer. The trial

coalescence times covered a period five days preceding and following the candidate

coalescence times, while the chirp mass range was changed depending on the dataset

in use (this is discussed in Section 2.3). Finally, a uniform threshold for the nor-

malised sum power measurements of 1 × 104 was used throughout; this value was

determined empirically by examining the MLDC datasets and normalised sum power

measurements in the provided challenge datasets.

2.2.2.1 Challenge 1.2.1

Challenge 1.2.1 contained a single SMBH binary inspiral with a high SNR (450 <

SNR < 500), and was easily identified by the excess power method search (see Fig.
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2.5(a)). A best-fit trial coalescence time and chirp mass were identified, and Fig.

2.5(b) shows the original spectrogram of the MLDC dataset around the time of

the coalescence, with the extracted frequencies used overlaid on this (and a line

showing the expected evolution). Also included is the ‘true’ evolution; the expected

frequencies given the true coalescence time and chirp mass. However, even a close

look at the time surrounding the candidate signal coalescence, the two lines are

extremely difficult to tell apart.

A histogram of the 100 iterations of the search provides further information (see

Fig. 2.6(a) and Fig. 2.6(b)). On a scale that shows the full extent of the dataset

(blue lines denote the range of the chirp mass searched, and the extent of the dataset

time, although the actual search for the best-fit time only covers the 10-day period

stated earlier), the best-fit coalescence time appears to be same for all iterations,

while there is a spread in the chirp mass. However, a closer look at the results, in

Fig. 2.7(a) and Fig. 2.7(b), reveals that there is a spread in both parameters, with

no strong contender for the most likely value for either.

2.2.2.2 Challenge 1.2.2

Challenge 1.2.2 contained a single SMBH binary inspiral as well, albeit with a greatly

reduced SNR (20 < SNR < 100). In addition, the SMBH binary did not coalesce

during within the time of the dataset. Therefore, there was no sharp drop off

in the sum power, and as a result the excess power method failed to identify a

candidate time. Given this, the attempt to find best-fit parameters was stymied, so

no result were recorded. Fig. 2.8(a) shows the original waveform, along with the

whitened spectrogram (Fig. 2.8(b)), and the normalised sum power measurements

for the dataset (Fig. 2.8(c)). Although it is possible to see an increase in the sum

power measurements towards the end of the dataset, there is certainly no visible

characteristic shape

In this dataset, no normalised sum power measurement is actually higher than

the threshold, and attempts to lower this threshold began to produce numerous false

alarms quickly. This did show that the algorithm was able to deal with large num-

bers of candidate signals, but revealed no further useful information (the extracted

evolutions were very poor fits to any expected evolution).
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(a) Normalised sum power measurements. The initial estimate of the coalescence time, marking the
peak of these measurements, is shown as well (green square).

(b) Whitened spectrogram and evolution overlays. The natural logarithm of the power (indicated
by the greyscale bar) is used to make the structure of the features easier to see.

Figure 2.5: The normalised sum power measurements of the MLDC Challenge 1.2.1

dataset spectrogram, and a close up of the spectrogram around the time of the

candidate coalescence time. The extracted times and frequencies are shown, along

with the expected evolution of the signal if the best-fit trial values were used in

Eqn.2.3 (labelled here as ‘Recovered evolution’; red line), and the expected evolution

according to Eqn.2.3 using the correct chirp mass and coalescence time (green dashed

line). At this resolution, they are almost completely indistinguishable.
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(a) Best-fit trial coalescence times

(b) Best-fit trial chirp mass

Figure 2.6: Histogram of the MLDC Challenge 1.2.1 best-fit parameters according

to the rapid search. There is an visible spread in the chirp mass, but the coalescence

times selected are not as uniform as they appear.
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Figure 2.7: A closer look at the results from Fig. 2.6(a) and Fig. 2.6(b). The spread

in the best-fit values of the parameters is evident, and there does not appear to be

a clear choice for the most likely value of either.



2.2 The rapid search 39

(a) The original waveform

(b) The whitened spectrogram. The natural logarithm of the power (indicated by the colour bar) is
used to make the structure of the features easier to see.

(c) Sum power measurements

Figure 2.8: The MLDC Challenge 1.2.2 dataset waveform, whitened spectrogram

and normalised sum power measurements. The SMBH signal is not distinguish-

able in either the timeseries or the spectrogram, and there is no peak sum power

measurement to act as a candidate coalescence time.
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2.2.2.3 Challenge 2.2: ’The Whole Enchilada’

Known as ’The Whole Enchilda’, Challenge 2.2 contained a wealth of information.

As well as five of SMBH inspiral signals, there were gravitational wave contributions

from Extreme Mass Ratio Inspirals, and 30×106 galactic white-dwarf binaries. This

did not change our approach though; the search proceeded as normal.

The rapid search identified all three SMBH signals that coalesced within the

time period covered by the dataset (there were two signals present that coalesced

some time later; their coalescence time and chirp masses have been included in the

histograms of the recovered best-fit values). These candidates were sufficiently far

apart that they were not merged, and their distinct evolution could be extracted.

Fig. 2.9(a) shows that at least two of the signals are visible in the original data,

while the whitened spectrogram in Fig. 2.9(b) reveals three (one very faintly). The

wide range in sum power measurements from the different signals requires that they

are displayed on a logarithmic scale (see Fig. 2.9(c)), but a single threshold still

isolates all three spikes.

Histograms of the best-fit parameter values shows that the best-fitting chirp

masses were not particularly accurate, although the coalescence times are fairly

accurate estimates of the true values (as indicated by the red line in Fig. 2.10(a)

and the corresponding close-up plots). The spreads in the values is also different for

each signal.

Fig. 2.12 shows an example of the recovered results overlaid on the original

dataset spectrogram as well as the true evolution. Again, it is extremely difficult to

tell them apart unless we take a much closer look at them individually (Fig. 2.13(a)

− Fig. 2.13(c)).

2.3 Remarks about the rapid searches

The results of the rapid search for SMBH do not seem particularly promising, and the

approach is not sufficiently robust for us to be truly confident about. Nevertheless,

it raises a number of points that can prove instructive when dealing with similar

challenges and highlight the difficulties in applying the rapid search method to more

complicated problems. The following section addresses these issues.
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(a) The original data

(b) The whitened spectrogram. The naatural logarithm of the power (indicated by the colour bar)
is used to make the structure of the features easier to see.

(c) Normalised sum power measurements. The range throughout the dataset is so large a logarithmic
scale has been adopted here.

Figure 2.9: The MLDC Challenge 2.2 dataset waveform, whitened spectrogram

and normalised sum power measurements. There are three distinct signals visible

(although the third is considerably more difficult to see).
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(a) Trial coalescence time histogram for MLDC Challenge 2.2

(b) Trial chirp mass histogram for MLDC Challenge 2.2

Figure 2.10: Histograms of the best-fit trial parameter values of MLDC Challenge

2.2 dataset according to the rapid search. The parameter values of those signals that

coalesced after the dataset finished have also been included, although there was no

possibility that they would be detected by the rapid search method since it relied

on the sharp drop in power associated with the coalescence.
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Figure 2.11: A closer look at the best-fit coalescence times MLDC Challenge 2.2

dataset according to the rapid search.
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Figure 2.12: Spectrogram of the MLDC Challenge 2.2 dataset, with the true evo-

lution and recovered evolution of the detected SMBH signals added. At this scale

it is almost impossible to tell them apart, the lines representing them are too close.

The natural logarithm of the power is displayed (indicated by the greyscale bar).



2.3 Remarks about the rapid searches 45

Figure 2.13: A closer look at the three SMBH signals in the MLDC Challenge 2.2

dataset with the recovered and true evolutions. The difference is easier to see, but

the match is still good. The natural logarithm of the power is displayed (indicated

by the greyscale bar).
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2.3.1 Why SMBH signals are amenable to rapid searches

Principally, we have relied on the high SNR possible from SMBH binary gravita-

tional wave signals. As seen previously this is occasionally high enough to identify

some signals by sight in the MLDC data, and even when it is not, such as the third

signal identified by the rapid search in the MLDC 2.2 dataset, the sum power mea-

surements can identify the coalescence without user input. Unfortunately, without

the high SNR the rapid search method struggles (as demonstrated by the MLDC

1.2.2 dataset). Thus far, the threshold applied to the sum power measurements

required is unable to result in meaningful coalescence time estimates if it cannot

extract the correct frequency evolution in the run-up to coalescence. Furthermore,

because one threshold is applied to an entire dataset, we limit its robustness as a

means of isolating different-SNR signals and requires us to look at the sum power

measurements before choosing the threshold, distancing the method from a com-

pletely automated search. However, under the correct circumstances, this approach

does work in the sense that we can pick out the evolution of the signal from back-

ground noise, something that would clearly not be possible without the high SNR.

We also rely on our assumption that the signal’s quadrupole frequency within the

spectrograms fits the characteristic shape we observed in the noise-free frequency

evolution. As well as the stated assumptions about the frequency evolution, there

was an implicit assumption that when we added the SMBH signals to a noisy time-

series that this shape would not be distorted, and that a simple least-squares fit was

the best approach to determine the extracted parameters. We assume too that the

effects of the LISA antenna pattern and the source location information for each

signal will similarly keep the frequency evolution in the desired shape. In its current

incarnation, the rapid search cannot accommodate these possibilities, and cannot

provide an estimate for any such parameter. Nevertheless, we must not lose sight

of how we approached this problem; we decided to attempt a rapid, almost cursory,

search for SMBH gravitational wave signals at the expense of accuracy, to use as

estimates for more thorough searches. The attempt was deliberately simple, and

our expectation was that we would produce simple and not necessarily informative

results. By reducing the situation to a two-parameter search, the computational

resources required were small; each search of an MLDC dataset took less than one

minute on a standard desktop computer, and were re-run very easily (the results

shown in the histograms of the 100 searches of each dataset took a little over an
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hour to produce). A search of a larger parameter space (as discussed in section 3)

would increase the computational demands, and risk the accuracy of describing the

search as ‘rapid’.

Crucial to the current working of the search is the advantage of a rapid drop in

power after the coalescence time, without which the mergers will not manifest as

spikes in the same manner. One approach is to address this advantage simply in

terms of the data as presented in the mock challenges and to exploit known features.

However, it is worth remembering that the datasets are designed to simulate LISA

output and that the goal for analysis techniques is their application to this output

for the purpose of extracting useful science. Although the features of the signal

during the merger is not yet incorporated into the MLDC datasets, this may be

a necessary step to ensure confidence in any search technique used, and would be

particularly important for our excess power method.

Lastly, the formation and growth processes of SMBHs are not well understood

and the coalescence event rate is highly uncertain. The number of these coalescences

that are then detectable using the excess power method is therefore even more un-

certain. Nevertheless, estimates of the coalescence rate is fairly low (36),(37), a

necessity for the excess power method (although Sesana et al (38) suggest ≈ 100

during a three year mission is possible). The rapid search depends on being able

to distinguish individual spikes and is vulnerable to mergers that coalesce within a

short time interval. Should SMBH mergers (or other sources capable of producing

sufficiently high SNR signals as to significantly alter the sum power measurements)

prove to be more numerous than currently believed, the excess power method may

not be useful even as a rapid search, continually producing false alarms and strug-

gling to determine the frequency evolution of overlapping or otherwise competing

sources.

2.3.2 Limitations of the rapid searches

The rapid search was a simple approach to a complicated situation, so the inaccu-

racy of the results produced are not unexpected. Nevertheless, as an initial foray

into gravitational wave data analysis (as stated previously, the true purpose of this

exercise) it provided a wealth of information that can be used to inform a more

sophisticated attempt.
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The search was indeed rapid at the resolutions considered, but becomes ever

slower as these resolutions are increased. We are not increasing the parameter space

itself (although select mass ranges were used, and the searches would be even slower

if this range was increased) but simply the number of templates required for each

search. It became apparent that we could quickly reach a state where the search

could no longer be justifiably deemed ‘rapid’. This would be unacceptable; we

desired an alternative to any sort of exhaustive search and were willing to trade

accuracy for speed.

Additionally, our approach was ad hoc; a solution designed specifically for the

MLDC Challenges we had easy access to. While this was a sensible choice, there

were drawbacks to being inextricably linked to these datasets. The robustness of the

rapid search would be vulnerable to changes to the MLDC data, and such changes

could take a number of forms.

Firstly, updates to the simplified waveforms could produce datasets that did not

provide the feature exploited by the rapid search. Similarly, the noise (assumed to

be stationary and gaussian) may not be an appropriate reflection of LISA’s real noise

output, and a more accurate simulation may obscure the characteristic frequency

evolution feature. The whitening stage of the excess power method, while not strictly

necessary in the presence of high SNR signals, does rely on being able to determine

the average noise at different frequencies with some accuracy, and if this is no longer

appropriate a more sophisticated account of the noise would be needed. Although

not inherently problematic to incorporate, changes in the noise must be examined

carefully and their effect on the frequency evolution extraction tested.

Additionally, the antenna pattern and the corresponding modulations to the

gravitational wave signals as LISA’s orbits were not included either (LISA was con-

sidered to be located at the solar system barycentre). While minor fluctuations may

not effect the excess power method in the presence of a high SNR signal, weaker

signals risk disappearing in the noise. Further, the process of whitening the spec-

trogram would have to be modified to take the orbital effects into account even if

the form of the noise itself remained unchanged. Once again, the demands of grav-

itational wave measurements are evident- quite aside from the precision required,

the long periods of observation introduce complications that must be taken into

account. Thankfully there is no reason that the antenna pattern could not be intro-

duced to the rapid search, but it does come at the cost of requiring datasets to be
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accurately timed with respect to LISA’s orbit rather than being applicable to any

dataset ignorant of the precise time period under scrutiny.

Finally, as presented, the rapid search only makes use of the X channel in the

MLDC datasets, ignoring data in the Y and Z channels; therefore the rapid search

does not make use of all available information. Though it would likely come at an

increased cost in terms of speed (although this can be countered by using faster,

or multiple, CPUs), it might be possible to improve the accuracy of the search by

looking for coincidental coalescence estimates in different data channels, or combin-

ing them in a manner that improved the SNR of the signal for frequency evolution

extraction. There is nothing inherently problematic in using these other channels,

simply that the rapid search method was designed only to consider a single data

stream. By the time we had produced a working version of the procedures involved

and had tested this on the X channel of MLDC datasets, the shortcomings of the

method had become clear and we had resolved to abandon the notion of using excess

power and evolution extraction in favour of a more sophisticated approach.

The excess power method rapid search fails to be a particularly useful tool for

parameter extraction, and similar approaches are not the focus of current data anal-

ysis techniques; a complicated situation certainly seems to demand a complicated,

or difficult-to-implement, solution (likely of the type suggested in section 1.2.4). It

is clear that the rapid search, despite its strengths in taking advantage of some of

the simple assumptions and situations in the challenge datasets, is not utilising all

the information possible and pays a price for this in terms of the accuracy of its re-

sults. Nevertheless, implementing this method has proved instructive in highlighting

the difficulties of analysing gravitational wave datasets as well as the particulars of

MLDC datasets.



Chapter 3

EMRI problem space

The shortcomings of the rapid search exposes the dangers of over-simplifying the

analysis problem and failing to take into account all of the necessary information.

Nevertheless, it seems clear that a full solution to a complicated system may be

unfeasible and we must consider how to approach such a situation. This chapter

explores Extreme Mass Ratio Inspiral (EMRI) systems and their gravitational wave

output as waveforms and spectrograms, and an introduction to the data analysis

challenge posed by exploring EMRI ‘problem space’- the parameter space inhabited

by this output.

3.1 EMRI systems

An Extreme Mass Ratio Inspiral is the inspiral of a stellar mass compact object

(CO) into a supermassive black hole (SMBH), and such systems are a fascinating

potential source of gravitational waves for the LISA mission. The compact object,

stellar remnants such as stellar black holes or neutron stars, are expected to have

masses in the range 1M� . µ . 102M� while the supermassive black hole will

be 105M� . M . 107M� (39): thus the mass ratio of the two is extreme. EMRI

binaries are expected to occur as COs sink towards the centre of galaxies, perturbing

their path until they pass close to the SMBH and become bound to it. The binary

orbit then decays via gravitational wave emission at frequencies within LISA’s band,

before the CO plunges into its massive companion.

There are several reasons that make EMRIs particularly interesting. The extreme

mass ratio means the CO can be treated as a perturbation of the spacetime of the
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Figure 3.1: An EMRI binary system. The physical parameters are described in

Table 3.1.

SMBH, and the gravitational waves emitted will encode information about this

spacetime, allowing it to be mapped out and to determine whether these are in fact

Kerr black holes as described by General Relativity. Additionally, LISA is expected

to detect a few thousand inspirals out to a redshift z . 1 during the lifetime of the

mission (40), (41).

However, extracting useful information from EMRI gravitational waves will prove

a formidable technical challenge. The signal amplitudes are expected to be below

that of LISA’s instrumental noise, and further obscured by galactic binary confusion

noise. Likewise, the antenna pattern for the spacecraft will modulate the signal over

time. Most significantly, a fully coherent matched filter search would require ∼ 1040

templates (a rough estimate, explored in (41)), a computational task beyond even

the most optimistic predictions of computer power available at the time of the LISA

mission. Therefore, sub-optimal detection strategies must be considered, such as

stack-slide search algorithms (42).

Nevertheless, successful extraction requires theoretical understanding of EMRI

gravitational waveforms and a method for generating these. Almost inevitably, there

is a conflict between the resulting accuracy of the waveforms and the ease with which

they can be generated. A number of different approaches are examined briefly below.
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MiSaTaQuWa waveforms

The waveforms calculated by Mino, Sasaki, Tanaka, Quinn and Wald (see (43),

(44)) are significant for incorporating the first-order gravitational self-force influ-

ence of a test particle in a curved spacetime and the corresponding deviation from

geodesic motion, representing a significant step towards what Drasco (39) charac-

terises as ‘Capra’ waveforms; those of even greater ambition which require the deriva-

tion of higher-order parts of the self-force to create extremely accurate gravitational

waveforms and in turn detailed predictions about gravitational wave measurements.

Indeed, Poisson sets out what he calls the Capra scientific mandate

• To formulate the equations of motion of a small body of mass m in a specified

background spacetime, beyond the test-mass approximation.

• to concretely describe the motion of the small body in situations of astrophys-

ical interest, including generic orbits of a Kerr black hole

• to properly incorporate the equations of motion into a wave-generation for-

malism

but this only acts as a framework of desirable, thus-far elusive, goals.

Teukolsky waveforms

Saul Teukolsky was able to derive a description for first-order gravitational field

perturbations of a rotating black hole -as well as electromagnetic and neutrino field

perturbations (45), (46)- encapsulated in the ‘Teukolsky master equation’; Teukolsky

waveforms are generally considered to be those based on solving this equation. The

most common strategy is to iteratively extract snapshot waveforms by computing

the geodesic orbits of a point particle on a background spacetime. These snapshots

approximate the true waveform, and the rate of change of orbital constants inform

the next iteration. By stitching together a sequence of the snapshot waveforms it is

possible to approximate the inspiral waveform, and recent challenges have been to

apply this technique to generic orbits (eccentric, evolving and inclined, with non-zero

black hole spin angular momentum).

‘kludge’ waveforms
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Kludge waveforms describe those waveforms based on different, potentially con-

flicting formalisms and assumptions. Less accurate than more rigorous approaches,

they have the advantage of retaining significant features present in more realistic

waveforms while being computationally cheap. Further, kludge waveforms are often

far easier to adapt by incorporating or removing physical effects. This flexibility and

availability makes them immensely valuable for examining data analysis techniques.

In the MLDC datasets, EMRI waveforms are calculated from the ‘analytic kludge’

method introduced by Barack & Cutler (see (47)) whereby the orbit is approxi-

mated as a Newtonian orbit at a given instant, but which evolves according to

post-Newtonian equations including the effects of radiation reaction, pericentre pre-

cession and Lense-Thirring precession of the orbital plane on the orbital decay. The

EMRI system produces a Peters-Matthews (48)waveform corresponding to the in-

stantaneous orbit. The waveforms produced display the main features expected

from true waveforms while being simple and quick to generate, with the expectation

that search strategies successfully implemented on analytic kludge waveforms can

be adapted to accommodate true GR waveforms once they become available.

Therefore, subsequent description and analysis on gravitational waveforms in this

thesis will concern only those generated by the analytic kludge method. Analytic

techniques will also be applied to simple situations (such as in Section 4.2), but

it will be made clear that this is to test the robustness of the technique and the

data used is not designed to be a realistic depiction of a gravitational waveform.

Application of the analysis to different waveform types is discussed in Chapter 7.

3.2 MLDC waveforms, spectrograms and param-

eter space

The two-body EMRI systems presented in the MLDC datasets are described by 14

parameters 1, and for clarity this section (and the remainder of the thesis) follows

the notation given in (W..e).

The SMBH and CO masses are M and µ respectively, while the magnitude of the

spin angular momentum is S and the angle between the orbital angular momentum

L̂ is λ. The eccentricity and mean anomaly of the orbit are e and Φ, and the direction

1A complete description requires 17 parameters, but the spin of the CO is ignored, although
it can be marginally relevant (see (47)).
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t0 The time where the orbital frequency sweeps through a

fiducial value ν0

µ The mass of the CO

M The mass of the SMBH

S/M2 Magnitude of specific spin angular momentum of SMBH

e0 e(t0) where e(t) is the orbital eccentricity

γ̃0 γ̃(t0) where γ̃(t) is the angle in the orbital plane between

L̂× Ŝ and the pericenter

Φ0 Φ(t0) where Φ(t) is the mean anomaly angle

θs Source’s direction polar angle

φs Azimuthal direction to source

λ cos−1(L̂ · Ŝ)

α α(t0) where α(t) is the the direction of L̂ around S.

θk Polar angle of SMBH’s spin

φk Azimuthal direction of SMBH’s spin

D Distance to source

Table 3.1: The physical parameters of the EMRI system and their meaning. The

notation is designed to inform the description of the waveform generation method.

of pericentre with respect to L̂× S is γ̃. Together, these parameters are ‘intrinsic’;

they govern the evolution of the system independent of an observer’s location or

orientation.

In contrast, the ‘extrinsic’ parameters are those that locate the binary in time

and space, and describe its orientation with respect to an observer; a Cartesian

system based on ecliptic coordinates is used (wherein the Earth’s orbit around the

sun is the x−y plane). The polar angle and azimuthal direction to the EMRI system

are θs and φs, while θk and φk represent the same properties for the SMBH’s spin.

The angle α is the direction of L̂ around S, and D is the source’s distance. Lastly,

many of these parameters vary in time as the orbit evolves, requiring the variable t

that specifies when the other parameters hold their particular values.

Generating MLDC EMRI datasets

In practice, generating EMRI waveforms is a straightforward process, a strength

of the analytic kludge approximations. A point is selected in the 14-dimensional

parameter space representing the point of the CO plunge- in particular, t0 defines
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the time when the inspiral phase comes to an end and the unmodelled final plunge

is said to occur. The selections are however, subject to some limitations: in the

Schwarzchild metric, a point particles plunges at a frequency

νmax = (2πM)−1

[
1− e2

6 + 2e

]3/2

, (3.1)

and this is used to calculate the ‘fiducial’ frequency value ν0 (that is, the radial

orbital frequency at the time t0). This value is the maximum allowed radial orbital

frequency, beyond which the evolution is cut off.

The orbital evolution is determined by solving the ODEs 3.2 - 3.6 for ν(t), Φ(t),

γ̃(t), e(t) and α(t) for the desired period of time . We used Matlab’s built-in ODE

solver to make these calculations. Fig. 3.2 shows the evolution of these parameters

over a short period of time. Peters and Mathews (48) determined how to relate these

variables to the second time derivative of the inertia tensor in a Newtonian binary

system, and in turn this is used to explicitly express the n-harmonic components of

amplitude strain for the two gravitational wave polarisations.

Finally, the gravitational wave strain h+, h× at the detector can be calculated

from the strain amplitude coefficients of each polarisation. At this point, LISA

Simulator and/or Synthetic LISA would be used to create the LISA TDI responses

(see 1.2.3) X(t), Y (t) and Z(t). However, we concentrated solely on the h+ and h×

polarisations assuming an observer positioned at the solar system barycentre (SSB).

It should be noted that the most common approach is to solve the orbital evo-

lution ODEs for distinct timesteps, each with constant seperation in time (MLDC

datasets usually have this cadence set at 15 seconds). Each timestep will be ini-

tially given with respect to the time t0, but these can be relabeled for the creation

of MLDC datasets (which may contain multiple overlapping signals). A realistic

calculation of LISA’s response will depend on the times considered with respect to

LISA’s position and corresponding antenna pattern, but we omitted the effects of

the spacecrafts’ orbits. This omission is discussed further in Chapter 6.

dν

dt
=

96

10π
(µ/M3)(2πMν)11/3(1− e2)−9/2

{[1 + (73/24)e2 + (37/96)e4](1− e2) +

(2πMν)2/3[(1273/336)− (2561/224)e2 − (3885/128)e4 − (13147/5376)e6]− (2πMν)

(S/M2) cos(λ)(1− e2)−1/2[(73/12) + (1211/24)e2 + (3143/96)e4 + (65/64)e6]}, (3.2)
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dΦ

dt
= 2πν, (3.3)

dγ̃

dt
= 6πν(2πMν)2/3(1− e2)−1[1 +

1

4
(2πMν)2/3(1− e2)−1(26− 15e2)]

−12πν cos(λ)(S/M2)(2πMν)(1− e2)−3/2, (3.4)

de

dt
= − e

15
(µ/M2)(1− e2)−7/2(2πMν)8/3[(304 + 121e2)(1− e2)(1 + 12(2πMν)2/3)

− 1

56
(2πMν)2/3((8)(16705) + (12)(9082)e2 − 25211e4)]

+e(µ/M2)(S/M2) cos(λ)(2πMν)11/3(1− e2)−4

[(1364/5) + (5032/15)e2 + (263/10)e4] (3.5)

dα

dt
= 4πν(S/M2)(2πMν)(1− e2)−3/2. (3.6)

In general, we are not attempting to generate MLDC datasets. Our analysis will

concentrate first on isolated EMRI signals before dealing with multiple signals, and

will deal primarily with the h× polarisation of the gravitational waveforms without

the effect of the antenna pattern or looking at TDI responses. The necessity and

wisdom of this approach will be addressed throughout the analysis, but for the

moment we can consider this to be the ‘output signal’.

Generating spectrograms

The 14-dimensional parameter space of EMRI systems poses significant compu-

tational challenges, and some of these difficulties can be dealt with by considering

the spectrograms of the resulting gravitational waveforms of the EMRI signals. As

Fig. 3.3 shows, the waveforms are not immediately revealing judged simply by eye,

and the spectrograms (see Fig. 3.4) do provide a more instinctive (to the author’s

eye, at least) way of viewing the evolution of the waveform. However, the true ad-

vantage of examining spectrograms rather than the waveforms themselves is more

fully explored in Section 4.1.2.1.

The method used to generate EMRI spectrograms from the waveform timeseries

follows the notation of (35). In practice, it is identical to that presented in 2.2 except

that the timeseries being considered is the gravitational wave strain amplitude rather

than the LISA data channels.

The gravitational waveform is represented by a vector of M real numbers xk,

k = 1...M representing the strain amplitude (h+ or h×) with a sample frequency of
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Figure 3.2: The 5 orbital evolution parameters evolved over a short period of time,

using a randomly selected list of initial parameters. The saw-tooth appearance in

some is the result of the angles being calculated modulo 2π.
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Figure 3.3: An analytic kludge EMRI waveform in the four hours preceding the

coalescence, and a closer look at the hour before the final plunge. The evolving

sinusoidal nature of the waveform can be seen, but specific details are hard to make

out by examining the timeseries alone. The parameters were chosen from a small

subset of the whole EMRI parameter space (matching those of the waveform ξ

described in Section 6.1), but is intended simply as an example of a ‘typical’ EMRI

waveform before its coalescence.

Figure 3.4: A spectrogram of the h× polarisation an analytic kludge gravitational

waveform. Also included is a plot displaying the natural logarithm value of the

power indicated by the colour bar, revealing some fine structure in the signal (that

is the higher frequencies have some power in them, which is not immediately clear

from the left-hand spectrogram). The waveform used to generate the spectrogram

is the same as in Fig. 3.3, but covers a period of approximately two weeks preceding

the coalescence.
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fs. The power spectral density of this waveform is then

PSD =
2 · |y|2

fs · S2

(3.7)

where ym is the short-time Fourier transform (of length N) of xk, wj represents the

vector of real numbers of length N that makes up the window function, and

S2 =
N∑
j=1

w2
j . (3.8)

The specific values of the above properties are stated in the relevant sections (see

4.2 and 6), but unless otherwise stated the MLDC convention of a fs = 1/15 Hz

sample frequency is used, and the window function is a Hanning window, defined as

wj =
1

2

[
1− cos

(
2π · (j − 1)

N

)]
. (3.9)



Chapter 4

Mapping the EMRI parameter

space

4.1 Principal Component Analysis

The extent of the EMRI parameter space and the computing cost of generating even

the simple analytic kludge waveforms makes an optimal search for EMRI signals

unfeasible, requiring a non-optimal approach to the problem.

A sample of EMRI spectrograms (see C.3) reveals that they do not always differ

significantly when generated with distinct parameters, suggesting that the parameter

space with regards to pattern matching might have a reduced dimensionality. The

following chapter discusses the procedure of Principal Component Analysis (PCA)

to map this reduced parameter space, an its application to EMRI spectrograms in

a small region of the original parameter space.

4.1.1 PCA Theory

Principal Component Analysis (also known as the Hotelling transform or Karhunen-

Loève decomposition) is an attempt to account for the variance in a dataset of ob-

servations of a set of correlated variables with a smaller set of uncorrelated variables

called principal components. It is often helpful to visualise the observations as a

cloud of points in a high dimensional space spanned by the variables, and the first

principal component defining line in the variable space of closest fit to these points,

accounting for as much of the variance in the dataset as possible. The second prin-

cipal component is a line perpendicular to the first accounting for as much of the
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remaining variance as possible and defining a plane of closest fit with the first prin-

cipal component. Further principal components define hyperplanes in the variable

space while accounting for yet more of the dataset’s remaining variance.

The number of principal components cannot exceed the dimensionality of the

variable space, but in the situation that there are linear dependencies in the variables

there may be fewer. Thus, it may be possible to account for all of, or the majority of,

the variance in the dataset by using a subset of the principal components. By doing

so, the redundancy of some of the variables can be used to reduce the parameter

space, making it more amenable to automated searches.

For clarity, it is easiest to describe PCA with respect to EMRI spectrograms from

the outset. Motivated in part by the work of Turk and Pentland (49) (whose mathe-

matical conventions are followed closely throughout this chapter), each spectrogram

may be considered for the moment simply to be one point in a high-dimensional space

encompassing every possible EMRI spectrogram: the problem space. The spectro-

grams have N time and frequency bins, so the problem space has N dimensions;

each point is defined by a vector of length N .

A set of training points Γ1,Γ2,Γ3, ...ΓM , and their mean-subtracted counterparts

Φ1,Φ2,Φ3, ...ΦM (where Φn = Γn−Ψ and Ψ = 1
M

∑M
n=1 Γn), are used to create a set

of M vectors ui chosen so that the variance

λk =
1

M

M∑
n=1

(uTkΦn)2 (4.1)

is maximised, constrained by the demand that

uTk uk = δlk =

{
1, if k=l;
0, otherwise.

(4.2)

That is, the vectors are orthonormal, and account for the maximum amount of the

training points’ variance.

The variance of a linear combination uTkΦn is uTkCuk, where

C =
1

M

M∑
n=1

ΦnΦT
n (4.3)

is the covariance matrix of the mean subtracted training set. To maximise the

variance subject to the orthonormal constraint, Lagrange multipliers are utilised
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(see (50), (51)), requiring a solution to the equation

d

duk

(
uTkCuk − λ(uTk uk − 1)

)
= 0 (4.4)

giving

Cuk = λuk (4.5)

or

(C − λIN)uk = 0, (4.6)

where IN is the (N × N) identity matrix. Therefore, λ is an eigenvalue of the

covariance matrix C, and uk is the corresponding eigenvector.

It may not be obvious which eigenvector of the covariance matrix gives ukΦn the

maximum variance, but the value to be maximised is uTkCuk, and thus

uTkCuk = uTk λuk = λuTk uk = λ, (4.7)

meaning that the eigenvalue λ should be as large as possible. By arranging the eigen-

values in order of decreasing magnitude, the associated eigenvectors are arranged in

order of the amount of variance they account for. The first eigenvector is termed

the first principal component and accounts for the most variance in the training

set, the second accounts for the largest portion of the remaining variance and is the

second principal component, and so on until all the variance is accounted for1. It is

a straightforward exercise to calculate the variance in the dataset contained by the

first p principal components as a fraction of the total variance by∑k
p=1 λi∑M
p=1 λi

. (4.8)

4.1.1.1 Avoiding the covariance matrix

The covariance matrix is symmetric, and therefore orthogonally similar 2 to a diago-

nal matrix whose entries are the eigenvalues of the covariance matrix (see (52)) and

there is an orthogonal matrix whose columns are the corresponding eigenvectors.

In short, it is always possible to find a set of principal components of the EMRI

spectrograms by performing the spectral decomposition of the covariance matrix.

1Jolliffe (51), provides the proof with respect to the size of the eigenvalues.
2matrices A and B are orthogonally similar if there exists an orthogonal Q such that B =

QTAQ.
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Unfortunately it will be computationally expensive to determine the N eigenvec-

tors of the covariance matrix, but in the situation where the training set of points is

smaller than the problem space dimensionality there will only be M−1 eigenvectors

with an associated non-zero eigenvalue (or fewer, if linear dependencies exist).

The covariance matrix can be expressed as

C = AAT , (4.9)

with A = [Φ1 Φ2 ... ΦM ], and will be N ×N . Turk and Pentland (49) showed that

by considering the matrix L = ATA, where Lmn = ΦmΦT
n , and by determining the

M eigenvectors of this matrix (M < N), it is possible to determine the eigenvectors

of the covariance matrix.

(ATA)vl = µlvl (4.10)

can be premultiplied by A

(AAT )Avl = µlAvl (4.11)

revealing that Avl = ul are in fact the eigenvectors of the covariance matrix of

the dataset. This method is not as computationally expensive as manipulating the

covariance matrix directly, and at this stage the eigenvectors are normalised. This

process forms a basis set of vectors that span the space inhabited by the training

set of spectrograms, and potentially the entire problem space.

4.1.2 Application of PCA to EMRI spectrograms

In practice, spectrograms are presented as an A × B image (marking specific time

and frequency bins, and the power contained in each bin), which can be reshaped

as a column vector of length N . The PCA method detailed previously applied to

each of these vectors produces a set of orthogonal ‘eigenspectrogram’ column vectors

that span the space inhabited by the training spectrograms. Each eigenspectrogram

is a principal component of the training set space, and the two terms are almost

completely interchangeable1. However, it is unlikely that this space covers the entire

problem space, requiring the capacity to review the quality of the eigenspectrograms

generated and to change them as needed.

1In the remainder of this work it may be assumed that the eigenspectrogram have been nor-
malised, unless otherwise stated.
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A test spectrogram Γ can be ‘projected’ into the space spanned by the eigen-

spectrogram basis set (henceforth the eigenspace) with the operation

ωk = uTk (Γ−Ψ) (4.12)

creating a vector Ω = [ω1, ω2, ..., ωM ] describing the contribution, or ‘weight’, of each

eigenspectrogram to the spectrogram. Two methods of assessing test spectrograms

immediately present themselves;

Spectrogram reconstruction

A test spectrogram may be reconstructed to some extent by summing the eigen-

spectrograms according to its weight vector. Formally then, the reconstruction of

the spectrogram is

ΦR = ΣM ′

i=1ωiui (4.13)

noting that M ′ ≤M . The distance between the reconstruction and the point in the

problem space inhabited by the (mean-subtracted) test spectrogram, the ‘residual

distance’, is then

D =‖ Φ− ΦR ‖ . (4.14)

A simple measurement of what we might think of as the ‘quality’ of the re-

construction, is to express the difference between the original spectrogram and the

reconstructed version as a fraction of the power contained by the original spectro-

gram. We will henceforth refer to this measurement simply as the residual, denoted

R and calculated as

R =
‖ Φ− ΦR ‖
‖ Φ ‖

. (4.15)

Spectrogram classes

Spectrogram classes may be defined using a number of known spectrograms and their

weight vectors. The distance ε between a test spectrogram and kth spectrogram class

is calculated as

ε2 =‖ Ω− Ωk ‖2 (4.16)

using the test spectrogram weight vector Ω and the weight vector of the kth spec-

trogram Ωk.

With these two assessment methods, there are four possible categorisations of

test spectrograms:
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1. Near the eigenspace and near a spectrogram class In this situation, the

spectrogram is close to or inside the space spanned by the eigenspectrograms,

and its projection vector is similar to a previous spectrogram. It will not con-

tribute much new information with which to better define the problem space,

although this depends on the threshold for defining ‘near’. The most extreme

case of this category is where there is zero distance to a particular spectro-

gram class and a perfect reconstruction, indicating that the test spectrogram

belongs to the training set used to create the principal components (assuming

each of these defined a spectrogram class).

2. Near the eigenspace but far from a spectrogram class A spectrogram in

this category is also close to or within the subspace already defined by the

principal components, but is not ‘known’ (that is, it doesn’t appear to project

into the eigenspace like any other spectrogram recorded). Once again, there

is an associated threshold that must be considered defining ‘far’.

3. Far from the eigenspace and near a spectrogram class Most likely a false-

positive, the spectrogram appears to belong to a spectrogram class but does

not belong to the eigenspace. This situation arises when the quality of recon-

struction must be high, but the distance to different spectrogram classes is

allowed to be large. This category requires special care and is explored further

in 4.1.3.

4. Far from the eigenspace and far from a spectrogram class This indicates

that the test spectrogram is significantly different from others, inhabiting a

region of the problem space far from the eigenspace, and projecting into the

eigenspace to create an unfamiliar weight vector. A similar result may be

gained by substituting the test spectrogram for something distinctly alien col-

umn vector, such as that created from an entirely different waveform. In the

application of PCA to face recognition (see (49)), images fall into this category

when the system is presented an image that is not a face at all.

4.1.2.1 Why a spectrogram-based eigenspace?

Spectrogram-based PCA may seem counter-intuitive: observations of a problem

space defined by 14 variables have been replaced by observations of anN -dimensional

problem space (where N � 14), and the time resolution has been reduced from
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seconds to hours. It is therefore wise to examine what makes spectrograms amenable

to PCA and the best choice.

The most straightforward approach might appear to be to simply use the EMRI

gravitational wave timeseries. Fundamentally, the method would remain unchanged

from that described previously, but the phase of the waveform can radically change

the principal components produced. Two waveforms that differed only in phase

would produce two distinct principal components despite their similarities. Con-

structing spectrograms destroys this phase information and would only produce

one principal component (the second spectrogram could be reconstructed from the

information in the first). Naturally, redefining the situation should not be done

thoughtlessly, but COs are expected to undergo thousands of orbits of the SMBH,

suggesting that the initial orbital phase is marginally relevant.

4.1.3 A method for spanning EMRI parameter space using

eigenspectrograms

A simple iterative algorithm for a principal component-based attempt to span EMRI

spectrogram parameter space takes the following form:

1. A selection of training spectrograms are generated, and the corresponding

eigenspectrograms created, defining the eigenspace.

2. Generate a batch of test spectrograms, and project them into the eigenspace,

creating a set of weight vectors.

3. Reconstruct the test spectrograms according to their weight vectors and the

calculated eigenvectors. A threshold RT for the residual is considered:

(a) R > RT : spectrogram cannot be well reconstructed and therefore con-

tains new information which should incorporated into the eigenspectro-

gram set. The spectrogram is considered to be a candidate.

(b) R < RT : spectrogram is well reconstructed, and does not include enough

new information to expand the eigenspectrogram set.

4. Any spectrogram designated as a candidate is incorporated into the set of

eigenspectrograms, enlarging the eigenspace. The mean spectrogram is up-

dated to include the contribution from the new spectrograms.
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5. Steps 2, 3 and 4 are repeated until a termination condition is met.

Each part of this framework requires attention.

Generating training spectrograms
To some extent, the spectrograms used to create the training set are unimportant.

If, as is likely, the training set does not contain all relevant information to create

an eigenspace that accounts for most of the variance in the problem space, test

spectrograms will be poorly reconstructed by the eigenspectrograms generated and

the dataset will be expanded on the next iteration. Should the training set of spec-

trograms actually contain all relevant information on the other hand, the algorithm

will have met any sensible termination condition and have run to completion.

Nevertheless, the training set must contain only example EMRI spectrograms

(within the desired parameter space, in the event that only a subspace of the problem

space is being examined) since they are not assessed like test spectrograms, and are

used to define an eigenspace straight away. PCA does not ‘know’ what an EMRI

is, or any astrophysical meaning behind its input or output. For example, the

inclusion of a SMBH spectrogram in the training set would create an eigenspace that

incorporated some part of SMBH parameter space, and prevent similar spectrograms

from being rejected when using the eigenvectors to detect EMRI signals (see chapter

6).

In practice, finite computing resources means that a limited number of iterations

can be performed. On a standard desktop computer (3 Gb of RAM, 2.61 GHz), it

was possible to store around 700 eigenspectrograms in memory at once (the precise

number varied from test to test, dependent on the information content of each eigen-

spectrogram), allowing the mathematical operations required to determine residual

values to be processed quickly. It was also possible to store individual eigenspectro-

grams in memory in order to make the desired calculations rather than store one

large array, allowing us to retain far more that 700, but at the cost of increased

processing time (as each eigenspectrogram would have to be read from memory and

then discarded before the next one was loaded). We decided to prioritise speed,

knowing that we would have to run several tests multiple times as we developed

our algorithms. However, the requirement of large eigenspaces revealed in some

of these tests (see later) suggested that without a substantial increase in available



4.1 Principal Component Analysis 68

RAM memory, the latter method of organising the data would be necessary to span

problem spaces well. In its current incarnation at least, the PCA examined here

was beyond the capabilities of a standard laptop computer at the time of writing.

It is reasonable to expect that increases in available processor speed over the next

few years -since we have time to develop our PCA before the LISA mission begins-

would mitigate the problems of loading individual eigenspectrograms, but a more

rigourous comparison between the two possible methods of storage (and retrieval)

was not explored. There is a balancing act between how quickly the algorithm can

go through each iteration, and how much information can be held in memory at any

given time.

Another issue here is how to generate useful spectrograms- obviously an exhaus-

tive progression through the original EMRI parameter space is unfeasible (and the

motivation for this approach), but any prior information about the structure of the

problem space can be easily incorporated into the algorithm from the generation of

the training set, and continued with the generation of test spectrograms. There is

nothing to prevent a distribution changing over time by incorporating new infor-

mation either. Therefore, it would be possible to incorporate Baye’s theorem and

an MCMC approach to selecting points in a parameter space in order to sample

from regions that produce high residual values. However, it is crucial to understand

that the PCA algorithm will simply transform the data it is provided in an attempt

to reveal its underlying structure, but does not itself incorporate prior information

about this structure.

Generating test spectrograms
Again, a static or evolving (by which we mean one that incorporates new information

after an iteration of the PCA) distribution may be consulted for the purpose of

selecting the parameters used to generate the spectrograms. While it is possible

simply to generate a single test spectrogram for every iteration of the algorithm,

it is more computationally efficient to generate batches of test spectrograms and

assess them all using the existing set of eigenspectrograms. The number of test

spectrograms generated per batch is usually dependent on computational resources,

with between 30 and 50 being an efficient balance between processing time per

iteration and memory requirements.

Furthermore, it is easier to take candidate spectrograms, find the eigenspec-

trogram set of these using the existing average spectrogram for mean subtraction,
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and then join it to the existing eigenspectrogram set. The principal components of

this enlarged set, once normalised, are the eigenspectrograms for all of the train-

ing set and candidate spectrograms. Although it may initially seem confusing, this

process still ensures that only those spectrograms sufficiently different from those

already within the defined eigenspace will be used to expand it. In the event that

several spectrograms in one test batch are designated candidates despite being iden-

tical, their inclusion will simply result in one or more additional zero-eigenvalue

eigenspectrograms in the expanded set, which are automatically removed. A more

complicated situation arises if several candidates are similar but not identical: had

the algorithm been iterated one test spectrogram at a time, the inclusion of the first

candidate may have prevented the next test spectrogram from being designated a

candidate depending on the residual threshold. However, calculating the expanded

set of eigenspectrograms will simply result in one or more additional eigenvectors

with small eigenvalues, which can be eliminated at this stage (and are, by default).

Nevertheless the mean spectrogram will be slightly different once updated, but this

is unlikely to be significant unless the residual threshold is particularly low and all

of the eigenspectrograms are kept (which is counter-productive in an attempt to

reduce the parameter space).

Like selecting appropriate training spectrograms, it is assumed that the test

spectrograms will in fact be constructed from analytic kludge waveforms in the

manner previously discussed. The algorithm above is designed to map out the

problem space, not to search within it (this is considered in Chapter 6), and PCA

adheres to the notion of ‘rubbish in, rubbish out’; unless the residual threshold RT

is extremely high, non-EMRI spectrograms will appear radically distant from the

established eigenspace and the information they contained will be used to expand

it.

Quality of reconstructions: the residual
The reconstruction residual threshold RT gives an intuitive measure of the distance

of the test spectrograms from the eigenspace, and can be easily expressed as a

percentage of the original spectrogram if desired. In the above method it is the

only measure used, but it is not immediately obvious what constitutes a sensible

threshold, or even whether the threshold should remain unchanged or evolve over

the course of many iterations.
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Despite this, it is easy to imagine two situations that are best avoided. First,

that the threshold is set too high, in the sense that every test spectrogram is con-

sidered ‘well reconstructed’ and the eigenspace is never expanded because no new

information is incorporated. Second, that the threshold is too low, and even very

similar spectrograms are used to expand the eigenspace by minute amounts each

iteration. The ideal situation strikes a balance between these two extremes, produc-

ing meaningful output in a reasonable time, but how to achieve this balance is not

clear without preliminary runs of the algorithm.

The algorithm above does not include the effects of, or attempt to define, spectro-

gram classes, since at this point there is no clear way to approach such classification.

Simply judging by eye is not useful, since there is no obvious feature that might be

the signature of a particular type of EMRI (at least not with the limited numbers

of spectrograms it is possible to generate and examine), and clustering in the high

dimensional problem space would be impossible to visualize. PCA, blind to the un-

derlying structure of the dataset used until it is presented to the algorithm, does not

suggest any classes itself. Further, at this stage PCA is not being used to examine

a known signal, but this notion is explored in 6.2.

A more extensive exploration of a problem space consisting of all gravitational

wave signals might benefit from classes, if different signal types produce spectro-

grams different enough to be group in distinct clusters- this is discussed further in

chapter 7 concerning the applicability of a similar approach to PCA, linear discrim-

inant analysis.

Termination conditions
The termination conditions are likely to be motivated primarily by computing re-

sources; the processing time allowing a certain number of iterations to be performed

or the hardware available dictating the size of the matrices that can be manipu-

lated. Alternatively, the algorithm might be designed to terminate based on the

PCA output in a variety of ways before these hard limits. For instance, it could be

programmed to stop when the variance in the eigenvalues falls below a given limit,

or when one thousand (say) consecutive test spectrograms consistently fall below a

certain residual threshold. What constitutes a sensible termination condition must

be given considerable thought, but early choices when largely or entirely ignorant

of the expected PCA output are likely to be fairly simple.
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What is certain, is that to be useful the mapping process must stop at some point

so that its performance can be analysed. The eigenvectors produced are simply a

reinterpretation of the data generated- what is important is if, and how, it aids

comprehension of the original problem.

4.2 Initial tests on sinusoids

Having established an iterative method for spanning the EMRI spectrogram problem

space using eigenspectrograms, the following section provides details of the initial

efforts to implement it under a variety of circumstances in order to evaluate its

performance. Therefore it is worth reiterating the expectations from the proposed

principal component analysis method: a ‘successful’ implementation will provide

the principal components of the EMRI spectrograms; a set of orthogonal vectors

which span the problem space and can therefore be used to construct any EMRI

spectrogram. Further, it will be possible to identify non-EMRI spectrograms since

these will not inhabit the problem space.

Properly developed, these abilities will provide a basis for a method that searches

LISA data for EMRI signals. Nevertheless, ignorant of the extent of the EMRI spec-

trogram problem space, and aware of the complicated structure of the spectrograms

generated, it is sensible to test the PCA method on much simpler spectrograms first,

followed by tests of the EMRI spectrograms within restricted regions of parameter

space. Not only does this afford a greater level of control over the situation and thus

allows errors to be spotted more easily, but is less computationally expensive than

tackling the entire EMRI problem space.

4.2.1 PCA performed on sinusoids

The analytic kludge EMRI waveforms appear to be slowly-evolving sinusoids. Con-

sequently, the timeseries of simple sinusoids are the obvious choice from which to

construct spectrograms to test the proposed principal component analysis method.

There are several aspects of these spectrograms, and their relevance to EMRI spec-

trograms, that must be examined separately. For this reason, and to highlight dif-

ferences between them, it is important to keep the construction of the spectrograms

as consistent as possible.
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Therefore, the sinusoid spectrograms being considered are all created from M =

213 -sample long waveforms, with a sample frequency of 800 Hz. The fourier trans-

form and Hanning window applied to the timeseries have lengths of 512 samples,

with a 50% overlap between segments. The spectrograms produced have a frequency

resolution of 1 Hz and covers the range 1− 100 Hz1 while the time resolution is 0.32

seconds.

The spectrograms are deliberately significantly different from those produced

from MLDC datasets. As stated previously, this is primarily to make the analysis

less computationally expensive and easier to manipulate, but has a further benefit; to

act as a transition between the theoretical desciption of the PCA and its application

to EMRI spectrograms. By performing tests on simple sinusoid spectrograms, we

are able to demonstrate the robustness of our approach and clearly show its effect

on the data it is provided.

4.2.1.1 Simple monochromatic spectrograms

The most straightforward contruction is a set of spectrograms created from monochro-

matic waveforms, with frequencies randomly chosen from the frequency range defined

above. Furthermore, only a single waveform amplitude is permitted. As expected,

the spectrograms display lines centred at the chosen frequency that have constant

power over the entire time period in question (examples are given in Fig. 4.1).

Initially, the training set is composed of ten spectrograms, and the initial eigenspec-

trograms are calculated from this set.

The PCA method is then iteratively applied by producing a number of test spec-

trograms and determining the principal components’ ability to reconstruct them.

Each iteration only introduces one new monochromatic spectrogram with a ran-

domly chosen frequency, and a threshold for the residual measurment of the recon-

struction is set at R = 0.001. Any reconstruction that is above this threshold is

used to expand the set of principal components, while those that fall below it are

disregarded. Spectrogram classes are not used to evaluate test spectrograms in this

situation, but will be used to examine the resulting eigenspace.

There are 100 unique spectrograms that can be generated under these conditions.

Although all of the power is not contained at one frequency (some power leaks into

1Matlab allows the user to specify a vector of frequencies and calculates the spectrogram using
the Goertzel algorithm (53). Specified frequencies are rounded to the nearest discrete fourier
transform bin commensurate with the signal’s resolution (see (W..m)).
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Figure 4.1: The timeseries of two monochromatic sinusoids (17 Hz and 37 Hz) and

the corresponding spectrograms. Only the first 500 data points of the waveforms

are displayed in the left-hand plots.

adjacent frequency bins), spectrograms generated from waveforms with significantly

different frequencies have almost no overlap in the distribution of power, and the

PCA method therefore creates 100 principal components; each distinct spectrogram

cannot be reconstructed with contributions from the others, and must be incorpo-

rated into the set of eigenvectors. After this new test spectrograms are inevitably

copies of previous spectrograms and can therefore be reconstructed from the eigen-

spectrograms almost perfectly (with extemely small amounts of residual power due

to rounding errors): the eigenspectrograms span the problem space. The quality of

the reconstructions over 500 iterations is displayed in Fig. 4.3, and a complete set

of eigenspectrograms is included for reference in Appendix C.1.

With the defined eigenspace covering the entire problem space, some additional

test spectrograms were created as examples of one of the categories described in

section 4.1.2. A definition of spectrogram classes is required, but this can be provided

unambiguously by having each of the 100 spectrograms form its own class. The

weight vector of each of the 100 unique spectrograms projected into the 100 principal

components can be used to define how close the additional test spectrograms are

from each spectrogram class using their projections.
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Figure 4.2: Four randomly chosen eigenspectrograms from the eigenspectrogram set

that spans the monochromatic sinusoid eigenspace. A complete set of eigenspectro-

grams is given in C.1.
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Figure 4.3: The residual measurements of reconstructions during 500 iterations of

the PCA method. As unique spectrograms are added, the problem space is better

defined, improving the quality of the reconstructions. Eventually, all 100 unique

spectrograms are included and the principal components define the problem space

completely. Subsequent spectrograms can be reconstructed almost flawlessly.
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The four spectrograms a-d are displayed in Fig. 4.5, and details regarding their

construction are given below. The simplicity of the monochromatic spectrograms

permits straightforward definitions of ‘near’ and ’far’, given in Table 4.1. The spec-

trogram class distance required to define ‘far’ was determined empirically during

some initial tests, while the threshold for residual measurements was more open to

interpretation. We decided to demand low residual measurements to be classified

‘near’, because we were performing the initial tests in situations we had a significant

amount of control over and would therefore not present the PCA algorithm that

was very different from the training spectrograms (except in those cases where this

was specifically the purpose behind the test spectrogram). We had no such prior

expectations when we examined EMRI spectrograms later on, using our experience

gained by examining the sinusoid spectrograms and an appreciation of the com-

plicated evolution of the waveforms to inform our choices for threshold values of

R.

a) Near the eigenspace and near a spectrogram class The test spectrogram

is simply created from another monochromatic waveform in the predefined

frequency range (specifically, 50 Hz); as expected, the spectrogram can be

reconstructed flawlessly (see Fig. 4.6. Further, the frequency of the test spec-

trogram can be determined by calculating the distance between its weight

vector and those of each of the 100 spectrograms used to define the eigenspace

(this is demonstrated in Fig. 4.7 and Fig. 4.8). The correct spectrogram will

have an identical weight vector, whereas the others will be distinct and hence

more distant.

b) Near the eigenspace but far from a spectrogram class Here, the test spec-

trogram is created from a 50 Hz monochromatic waveform, but the amplitude

is doubled. As a result, the contributions from each eigenspectrogram is larger,

but again, the spectrogram can be reconstructed extremely well (R � 0.001,

see Fig. 4.9). However, the difference in the weight vectors (Fig. 4.12) means

that this spectrogram is very distant from the defined spectrogram classes

(Fig. 4.11). Despite this, the spectrogram class closest to the weight vector of

the new spectrogram belongs to the unique spectrogram constructed from the

50 Hz waveform.
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R ε2

Near ≤ 0.001 ≤ 4× 1012

Far > 0.001 > 4× 1012

Table 4.1: Distance from the eigenspace and spectrogram classes in the context of

monochromatic spectrograms.

c) Far from the eigenspace and near a spectrogram class It is difficult to en-

gineer a spectrogram that satisfies these two conditions. A waveform that

changes frequency halfway through (but remains within the defined frequency

range) will project into the eigenspace in such a way that its weight vector will

not be distant from those of the monochromatic spectrograms, but the quality

of the reconstruction is poor (R ≈ 0.71). The two frequencies in this example

are 50 Hz and 65 Hz, but the effect is observed in any similar combination.

d) Far from the eigenspace and far from a spectrogram class Finally, this

spectrogram is significantly different from the others, and is therefore is poorly

reconstructed (see Fig. 4.16, R ≈ 0.7) and far from any spectrogram class

(see Fig. 4.17 and 4.18). The waveform used to generate the spectrogram is

calculated from the a vector of random amplitudes (1 − 20) and frequencies

(within the defined frequency range), resulting in the chaotic distribution of

power throughout its duration.

What does the PCA reveal?

Firstly, the majority of the eigenvectors appear as we would expect; linear combi-

nations of the monochromatic spectrograms, with different contributions from each.

It is difficult to extract much information simply by looking at them, but it can

be seen that the power at each frequency remains constant over time. Similarly,

the weight vectors of the unique spectrograms do not provide much visual infor-

mation (see Fig. 4.4), but we can see that each eigenspectrogram contributes to

the makeup of each spectrogram to some extent, again as expected. Although the

individual eigenspectrograms (and hence weight vectors) will be different, repeated

trials of this situation will provide essentially the same results (see Fig. 4.19); the

order in which the spectrograms are used to expand the eigenspace does not alter

the effectiveness of the end result.
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Figure 4.4: Weight vectors for 5 randomly selected spectrograms according to the

complete set of 100 eigenspectrograms. Displayed in this manner, it is difficult to

extract useful information, but they define the spectrogram classes and the typical

distances between them.

Even so, when sorted according to increasing eigenvalue (and hence by the

amount of variance in the dataset they account for) the first and last eigenspec-

trograms look closer to unaltered spectrograms than a combination of 100 different

frequency components. The precise method by which Matlab determines the eigen-

vectors and eigenvalues is dependent on the LAPACK algorithm library (see (W..h)

and appendix B for details), but the power in the unusual eigenspectrograms is cen-

tred on the frequency of the final spectrogram added during the iterative process to

define the eigenspace. Further, the weight vectors of the spectrograms according to

the eigenspectrograms calculated iteratively show that there is minimal contribution

from the first and last eigenspectrograms, except in those whose frequency matches,

or is close to, the final spectrogram added.

During every iteration that incorporates a new spectrogram to expand the eigenspace,

we are determining the eigenvectors of a set consisting of several orthogonal vec-

tors plus one non-orthogonal vector, rather than from a set of non-orthogonal vec-

tors. This has the effect of scrambling the output produced somewhat; creating an

eigenspace from a complete set of 100 spectrograms non-iteratively (that is, starting

with a training set of the 100 unique spectrograms) creates eigenvectors that are
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Figure 4.5: Four spectrograms a-d representing different categories. Each one pro-

vides a different insight into the behaviour of the PCA method.
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Figure 4.6: Spectrogram a and its reconstruction with a complete set of eigenspectro-

grams. The 50 Hz spectrogram belongs to the set used to construct the eigenspace

and can therefore be reconstructed almost perfectly. A spectrogram showing the

difference in the power between the original and the reconstruction is also included.
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Figure 4.7: The distance between test spectrogram a (see Fig. 4.5) and the 100

unique spectrograms, according to their weight vectors. The spectrograms are or-

dered according to their inclusion in the set used to create the eigenspace, and the

minimum distance is highlighted.

Figure 4.8: The frequencies of the unique monochromatic spectrograms, according

to the order of their generation. The most likely frequency of the test spectrogram

a (see Fig. 4.5), as determined by the minimum distance calculated from weight

vectors is highlighted. The two match exactly (50 Hz).
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Figure 4.9: Spectrogram b and its reconstruction with a complete set of eigenspec-

trograms. The 50 Hz spectrogram does not belong to the set used to construct the

eigenspace, but can still be reconstructed almost perfectly. A spectrogram show-

ing the difference in the power between the original and the reconstruction is also

included.
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Figure 4.10: The weight vectors for the 100 unique monochromatic spectrograms

(in black) as well as the weight vector of spectrogram a according to the same

set of eigenspectrograms (in red), which matches the weight vector of the 50 Hz

spectrogram.

rather different looking. There is no cause for concern though, since the same small

errors in the reconstruction of a type a spectrogram are present in both situations.

It appears to be impossible to eliminate this source of error completely.

In addition, a spectrogram added iteratively is nearly orthogonal to the set of ex-

isting eigenspectrograms before expansion, even though it may be radically different

in appearance. This allows it to be incorporated into the set of eigenspectrograms

almost unaltered, with the smallest-eigenvalue eigenspectrogram being a ‘correction’

vector that accommodates the orthogonalisation algorithm’s inability to make com-

pletely error-free orthogonal eigenvectors. The precise relation between the power in

the smallest-eigenvalue eigenspectrogram and the overlap between adjacent-integer-

frequency spectrograms is unknown as yet, but the error in the resdiaul of a spec-

trogram of type a from a complete set of eigenspectrograms is of the same order of

magnitude as a rounding error (R ≈ 10−14). In addition, most of the power contri-

bution to the error is centred at the frequency of the final spectrogram added (see

Fig. 4.6).

If we attempt to reconstruct spectrograms using a subset of the eigenspectro-
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Figure 4.11: The distance between test spectrogram b (see Fig. 4.5) and the 100

unique spectrograms, according to their weight vectors (in red). Also included is the

distance between the 50 Hz spectrogram and each of the 100 unique spectrograms

(in black), giving an indication of how far spectrogram b is from the spectrogram

classes compared to the typical distance between them.
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Figure 4.12: The weight vectors for the 100 unique monochromatic spectrograms

(in black) as well as the weight vector of spectrogram b according to the same set

of eigenspectrograms (in red). It shows that the magnitude of the contributions for

spectrogram b is generally much larger than those of the original spectrograms.

grams, we can see that all 100 are always required for a perfect reconstruction. While

this shows that the space is spanned completely by the eigenspectrograms, it also

confirms that there is no redundancy in the problem space. Even if we wanted to

reconstruct each of the spectrograms such that the residual measurements are less

than R = 0.5, around 90 eigenspectrograms are required (most can be reconstructed

with fewer, but in order to guarantee success we take the maximum number, see

Fig. 4.20).

Despite its robust way of constructing the set of eigenspectrograms, the PCA

method has taken some effort (and computational power) to do so. Here though,

we are reaping the benefits of prior knowledge of the problem space. We know that

it will require 100 principal components to span the problem space because each

observation of the problem space is so distinct. In the monochromatic spectrogram

space, the same effect can be achieved by creating a training set of the 100 unique

spectrograms and running the PCA method once. It would also be possible to

further simplify the generation by creating ‘spectrograms’ that were with all of the

power contained at the desired frequency: completely lacking any overlap, these
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Figure 4.13: Spectrogram c and its reconstruction with a complete set of eigen-

spectrograms. The reconstruction is poor because the original spectrogram is unlike

those that define the eigenspace, but it contains components of two of these (a 50

Hz and 65 Hz spectrograms) and so projects into the eigenspace close to defined

spectrogram classes. A spectrogram showing the difference in the power between

the original and the reconstruction is also included.
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Figure 4.14: The weight vectors for the 100 unique monochromatic spectrograms

(in black) as well as the weight vector of spectrogram c according to the same set of

eigenspectrograms (in red). The magnitude of the contributions for spectrogram c

is of the same magnitude as those of the original spectrograms, but does not match

any of them.
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Figure 4.15: The distance between test spectrogram c (see Fig. 4.5) and the 100

unique spectrograms, according to their weight vectors (in red). Also included (in

black) is the distance between the 50 Hz spectrogram and each of the 100 unique

spectrograms, giving an indication of how far spectrogram c is from the spectrogram

classes compared to the typical distance between them.
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Figure 4.16: Spectrogram d and its reconstruction with a complete set of eigen-

spectrograms. The reconstruction is poor because the original spectrogram is unlike

those that define the eigenspace because of its significantly distribution of power and

so projects into the eigenspace in a very different manner from defined spectrogram

classes. A spectrogram showing the difference in the power between the original and

the reconstruction is also included.
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Figure 4.17: The weight vectors for the 100 unique monochromatic spectrograms

(in black) as well as the weight vector of spectrogram d according to the same set of

eigenspectrograms (in red). The magnitude of the contributions for spectrogram d

is larger than those of the original spectrograms, and does not match any of them.

Figure 4.18: The distance between test spectrogram d (see Fig. 4.5 and the 100

unique spectrograms, according to their weight vectors (in red). Also included is the

distance between the 50 Hz spectrogram and each of the 100 unique spectrograms,

giving an indication of how far spectrogram b is from the spectrogram classes.
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‘spectrograms’ would each be an eigenvector, and their weight vectors would only

contain a non-zero contribution from themselves.

Our knowledge of the problem space also helps to set the residual threshold

required to include new spectrograms particularly low, since two different spectro-

grams would contain distinct information. Likewise, having each spectrogram rep-

resent a distinct spectrogram class. On the other hand, the typical distance between

the spectrogram classes was established empirically after a successful generation of

the eigenspectrograms. In this situation then, they are not used to influence the

construction of the eigenspectrogram set, and the manner by which we determine

the qualities ‘near’ and ‘far’ are applied retrospectively.

What can we learn from the four spectrograms?

The characteristics of the spectrograms that cause them to be placed in distinct

categories reveal information about the eigenspace that has been constructed and

the behaviour of the iterative PCA method itself. This information will suggest

what may be expected when a similar approach is applied to more complicated

spectrogram and different parameter spaces, mindful of the intended subject of the

analysis, the EMRI spectrograms.

Spectrogram a confirms that the eigenspectrograms generated do indeed span the

required space by showing their ability to recreate any of the original spectrograms.

This is to be expected of course, since we are only rearranging the information sup-

plied by the spectrograms, rather than reducing it (again, this is due to the lack of

redundancy in the problem space). Though it is not particularly illuminating pro-

vided the PCA is operating properly, testing using a-type spectrograms is a simple

method of checking for errors in the PCA processes. With regards to EMRI spectro-

grams, the situation is the same; we should expect that if the iterative PCA method

is supplied an EMRI spectrogram it has been shown previously (and determined to

be sufficiently different to be worth including in the dataset used to construct the

eigenspectrograms), it will not be included a second time because it contains no new

information.

The test spectrogram b is more interesting, since it reveals that the residual is

not sensitive to the amount of power in the spectrogram, only the distribution. The

weight vector showing the contribution of each eigenspectrogram has the same shape

as that of spectrogram a (compare the weight vectors of Fig. 4.10 and Fig. 4.12), but
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scaled up, since the spectrogram is fundamentally a rescaled version of spectrogram

a (in terms of the power in each time and frequency bin). Again, this is expected,

since the eigenvectors form a basis set for the eigenspace and any point that is a

scalar multiple of a point in the eigenspace is also in the eigenspace. This may

be particularly significant when analysing EMRI spectrograms because the signal

strength of the gravitational waveforms will depend on the source distance. This is

the first indication that there is redundancy in the EMRI problem space that can

be exploited by principal component analysis.

Spectrogram c has two separate components, each belonging to the eigenspace

(or would, if they continued for the entire duration of the spectrogram). In combi-

nation, however, they create a spectrogram quite unlike the set used to construct

that eigenspace. Despite this, they project into the eigenspace with a weight vector

that is close to others in the set, making it impossible to reject it based on spec-

trogram class distances alone. Thankfully, the high residual measurement from this

reconstruction attempt using the eigenvectors would allow it to be rejected by a

search based on this measurement, but the presence of multiple signals may result

in similar situations. The focus of the technique thus far has been on isolated sig-

nals (multiple and overlapping signals are discussed in 6.3), but we must be careful

to distinguish between detecting no signals and detecting too many. Further, this

situation confirms that the continuity of the data in the spectrogram is an impor-

tant feature; a loss of the signal at specific frequencies or for short periods of time

will create erroneous structure in the spectrogram that will cause it to seem like a

distinct entity.

Finally, spectrogram d shows that the PCA method will not be able to recon-

struct every spectrogram it is presented with, and that such spectrograms project

into the eigenspace in a dissimilar manner to those that belong. Such behaviour was

anticipated, but this test was a useful confirmation.

Governing each classification was our definition of ‘near’ and ‘far’. As stated

previously, when we controlled the process of generating the training and test spec-

trograms in these simple situations, it seemed appropriate to determine the spec-

trogram classes definition empirically and settle on a low residual measurement to

deem a reconstruction ‘good’ quality. Nevertheless, later tests (see Fig. 4.24 and

Fig. 4.25) showed that it was possible to reconstruct a test spectrogram in a man-

ner that seemed extremely similar to its original form visually, but was deemed to

have too high a residual to be considered so by the PCA algorithm. Therefore,
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Figure 4.19: Multiple application of the PCA method to monochromatic spectro-

grams using random generation of the frequencies to be included. After 500 itera-

tions, the eigenspace has been completely mapped in each run, and the behaviour of

the set of eigenspectrograms is consistent despite the eigenspectrograms that make

up these sets being different.

we could not be confident that our thresholds were particularly wise choices. At

this stage however, it seemed they were sufficient to show the four categories in a

straightforward manner.

4.2.1.2 Simple polychromatic spectrograms

Having established that the PCA can be used to define the eigenspace of a very

simple situation, the next step should be to complicate matters and see how the

PCA performs. EMRI spectrograms are clearly not monochromatic, so the logical

next step is to perform PCA on polychromatic spectrograms of some description.

This time, spectrograms are constructed from sinusoids with randomly chosen

frequencies in the same manner as the monochromatic spectrograms. However, the

sinusoids are now given multiple frequency components under a number of different

circumstances.
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Figure 4.20: The number of eigenspectrograms required to reconstruct each of the

100 unique spectrograms such that the residual R < 0.5. As discussed, the particular

spectrogram considered is irrelevant since the order of their inclusion is random, and

are numbered sequentially here for simplicity only.

Monochromatic training spectrograms, 2-frequency-component

spectrograms

We first attempt to span the problem space defined by spectrograms constructed

from sinusoids with two frequency components (see Fig. 4.21). There are
(
100
2

)
+

100 = 5050 such constructions possible, so the problem space appears to be much

larger than before, and the residual threshold has been set at RT = 0.01 to reflect

what we expect to be the increased difficulty of completely defining this space; we

believed that the space would be hard to span, but didn’t want every test spectro-

gram to be used to expand the eigenspace (we wanted some test spectrograms to be

deemed ‘near’ to the parameter space, so made the residual threshold higher than

before in an attempt to produce this behaviour from the algorithm).

In an attempt to use our knowledge of the previous problem space to aid us, the

training set eigenspectrograms initially consists of those used to span the monochro-

matic spectrogram problem space. One might assume that the reconstruction of a

polychromatic spectrogram can be achieved by simply using the sum of the weight

vectors corresponding to each frequency component, but the inter-modulation of
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the two frequency components in the sinusoids results spectrograms that do not

project into the eigenspace in this way. Spectrograms with widely-separated fre-

quency components do not suffer much from this effect and can be reconstructed

from the original eigenspectrogram rather well, but in those with a small separation

in the frequencies the effect is more pronounced 1.

The original eigenvector set is therefore insufficient to span the problem space,

and the eigenspace it spans must be extended. The residual measurements over a

large number of iterations of the PCA method (Fig. 4.22) shows that the actual

eigenspace required in this situation is much larger than that of the monochromatic

spectrograms, and needs a large number of eigenvectors to span it. Indeed, after

5000 iterations, 400 eigenvectors had already been defined. At this stage the process

was halted, since the purpose was principally to understand the effect of multiple

frequency components of the PCA method rather to provide a complete solution to

each solution.

With an eigenspace that does not completely span the problem space, the ability

of the eigenvectors to reconstruct new spectrograms is extremely varied. We are not

throwing away any information (simply rearranging it), so any new spectrogram sim-

ilar to one already incorporated can be reconstructed well, but those that are not are

reconstructed poorly. The main disadvantage is that the behaviour is inconsistent,

with the residual values for different test spectrograms varying by orders of magni-

tude. Fig. 4.24 shows an extremely good quality reconstruction (R ≈ 1.7 × 10−14)

of a spectrogram with two randomly chosen frequency components, in stark con-

trast to a second reconstruction from the same set of eigenspectrograms displayed

by Fig. 4.25 (here, R ≈ 0.02). It is this inconsistency that make it impossible to be

confident about the usefulness of the output produced if the test spectrograms are

going to be selected randomly.

Ignorant training spectrograms

The previous attempt is repeated, but starting with ten training spectrograms gener-

ated in the same manner as the spectrograms that will be assessed (and incorporated

into the eigenspectrogram set if necessary). This time, the expectation is not that

1To check that the inter-modulations were responsible, test spectrograms were created by
simply summing two monochromatic spectrograms together. This pseudo-spectrogram could be
reconstructed perfectly as expected, with a weight vector equal to the sum of the weight vectors
of the two monochromatic spectrograms.
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Figure 4.21: The timeseries of two polychromatic sinusoids and the corresponding

spectrogram. Only the first 500 data points of the waveforms are displayed.

Figure 4.22: The residual measurements of reconstructions during 5000 iterations of

the PCA method. The new spectrograms being assessed are polychromatic, but the

training set of eigenspectrograms are those that completely defined the eigenspace

of the monochromatic spectrograms.
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Figure 4.23: Four randomly chosen eigenspectrograms from a set constructed using

monochromatic training spectrograms and further polychromatic spectrograms. It

can be seen that now the structure is not time-independent.



4.2 Initial tests on sinusoids 98

Figure 4.24: Polychromatic spectrogram and its reconstruction using 400 eigenspec-

trograms. The third spectrogram, showing the difference between the two, demon-

strates that the residual measurement is very small R ≈ 1.7× 10−14.
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Figure 4.25: Polychromatic spectrogram and its reconstruction using 400 eigenspec-

trograms. The third spectrogram, showing the difference between the two, reveals

that the reconstruction is of fairly poor quality, with a residual measurement of

R ≈ 0.02, although the main features are retained.
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the eigenspace can be spanned (the problem space is identical), but simply that the

random generation method for both the training spectrograms and the tested spec-

trograms will produce a similar output from the iterative PCA method as before.

This will show that prior knowledge about the structure of the problem space has

limited impact after a large number of iterations.

After 5000 iterations, it initially appears that this is indeed the case. 420 eigen-

spectrograms have been created at this point (see Fig. 4.27) with little sign that the

problem space has been well spanned (see Fig. 4.26). However, in general new test

spectrograms cannot be reconstructed as well as from the previous eigenspectro-

gram set that began with the eigenspectrograms that spanned the monochromatic

spectrogram problem space.

This in not surprising, since the almost complete orthogonality of two widely sep-

arated frequency components meant that by starting with a set of eigenspectrograms

that could reconstruct each frequency component individually, spectrograms of this

type were no obstacle. The only unreconstructable spectrograms in this situation

were those that featured two frequency components that were close in value. Start-

ing with an eigenspectrogram set that was created randomly, on the other hand, has

really only helped to remove these from the set of unreconstructable spectrograms,

leaving a far larger set that still contains information that must be included.

Despite this, the residual measurements of two test spectrograms may still differ

by orders of magnitude (see Fig. 4.28 and Fig. 4.29). Therefore we still face the

prospect of inconsistency.

Twenty frequency components

This time, each sinusoid has 20 frequency components with integer-value frequencies

in the range 1−100 Hz and constant amplitude, and the corresponding spectrogram

is created. The training set consists of ten such spectrograms, and further spectro-

grams are generated in an identical manner. This time, the drop off is particularly

rapid, and within approximately 600 iterations, the reconstructions produce resid-

uals that are consistently below the residual threshold used to exclude them from

the set of spectrograms that to create the eigenspace (RT = 0.001 once again).

The difference between this and previous circumstances is not entirely expected,

since the previous polychromatic spectrograms suggested that the problem space is

very large. However, the nature of the principal component analysis is to split the
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Figure 4.26: The residual measurements of reconstructions during 5000 iterations

of the PCA method. New spectrograms being assessed are polychromatic waves

with two frequency components, as are the training spectrograms used to create an

eigenspace initially.

data provided by the spectrograms into orthogonal vectors; because each spectro-

gram contains a large number of components, it seems that they quickly provide all

of the necessary combinations for the PCA to resolve into eigenspectrograms (after

2000 iterations, approximately 600 eigenvectors have been created). Even the nu-

merous inter-modulations between frequency components do not provide too much

of a challenge for the process, although in general the reconstruction quality is not

particularly good. The main advantage over the previous eigenspectrogram output

is that the residual measurements produced are much more consistent.

The polychromatic spectrograms represent a significantly larger problem space

than that of the monochromatic spectrograms. Unsurprisingly, we saw that ap-

proaching the problem in the same manner to the smaller space was not successful,

but that the PCA method was manipulating the data in a consistent way. It also

highlighted that there was some benefit in trying to expand our defined eigenspace

to span a dissimilar problem space.

The rapid drop in the residual measurement values of the reconstructions of

the spectrograms with twenty frequency components suggests that the random ap-
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Figure 4.27: Four randomly chosen eigenspectrograms from a set constructed using

polychromatic training spectrograms and further polychromatic spectrograms.



4.2 Initial tests on sinusoids 103

Figure 4.28: Polychromatic spectrogram and its reconstruction using 420 eigen-

spectrograms. The third spectrogram, showing the difference between the two,

demonstrates that the reconstruction is of poor quality (the residual measurement

R ≈ 0.02).
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Figure 4.29: Polychromatic spectrogram and its reconstruction using 420 eigenspec-

trograms. The third spectrogram, showing the difference between the two, reveals

that the reconstruction is of fairly high quality (R ≈ 8 × 10−5), but still far from

perfect.
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Figure 4.30: The timeseries of a polychromatic sinusoid with a 20 frequency com-

ponents and the corresponding spectrogram. Only the first 500 data points of the

waveforms are displayed.
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Figure 4.31: The residual measurements of reconstructions during 5000 iterations

of the PCA method using training and test spectrograms with 20 frequency compo-

nents.
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Figure 4.32: Four randomly chosen eigenspectrograms from a set constructed using

polychromatic training spectrograms and further polychromatic spectrograms, each

with 20 frequency components.
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Figure 4.33: Polychromatic spectrogram with 20 frequency components and its re-

construction using 617 eigenspectrograms. The third spectrogram, showing the

difference between the two, reveals that the reconstruction is not particularly good

quality (R ≈ 0.008), although the main features have been retained.
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proach to adding spectrograms can work well. This is particularly important given

our ignorance about the distribution of data in the EMRI spectrogram space, al-

though the disadvantage is that a large number of iterations are required to create

a far smaller number of eigenspectrograms. Potentially, the PCA method will be

computationally expensive in terms of processing time rather than memory usage.

4.2.1.3 Quasi-monochromatic spectrograms

EMRI waveform spectrograms have multiple frequency components, but the poly-

chromatic spectrograms already examined do not mimic them particularly closely;

clearly, they lack the frequency evolution observed in the EMRI spectrograms, and

it is necessary to examine the PCA method when faced with this situation.

A sinusoid of increasing frequency provides a rough approximation to an EMRI

waveform, but to keep the situation simple we shall only add a positive first-order

time derivative ḟ to the sinusoids’ starting frequency f , and construct the sinusoid

according to the basic form

y(t) = A · sin(2πft+ ḟ). (4.17)

Each waveform will only involve a single starting frequency and time-derivative, and

are therefore quasi-monochromatic. The ḟ component will determine the change in

the sinusoid frequency between the beginning and end of the waveform, correspond-

ing to the slope of the lines containing power in the resulting spectrogram (see Fig.

4.34). As in previous situations, the amplitude A and the times under consideration,

t, are identical for all sinusoids created.

A uniform rate of change of frequency may seem appropriate (every sinusoid cre-

ated with ḟ = 1Hzsec−1, for example), but in fact this will result in an eigenspace

spanned by 100 eigenspectrograms, much like the situation using monochromatic

spectrograms. This is because once again there are only 100 unique spectrograms

possible under these circumstances (a resulting eigenspectrogram set has been in-

cluded for interest, see C.2). Despite any differences in appearance, the PCA treats

each spectrogram simply as a column vector, and the elements of these column can

be arranged in any order without losing any information, requiring only a reverse

arrangement to become meaningful once again. Naturally, the same arrangement

would have to be applied to every spectrogram whenever the PCA is attempted, but

the PCA method does not know what it being applied to, and will manipulate an
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EMRI spectrogram, the image of a face, or even a column vector of random numbers

in the same manner.

Therefore, the sinusoids used to create the spectrograms have randomly selected

starting frequencies f as well as a randomly selected ḟ component, ensuring that the

frequency change between the beginning and end of the sinusoid is an integer in the

range 1−5 Hz. The residual threshold is set at RT = 0.01, and 5000 iterations of the

PCA method are applied, beginning with a training set consisting of 10 spectrograms

constructed in the described manner.

Although not as easy to span as the monochromatic spectrogram problem space,

the eigenspace is quickly created (see Fig. 4.35), requiring approximately 500 eigen-

spectrograms to ensure that the residual measurements R is particularly low (typ-

ically, new spectrograms are recreated such that R ≤ 10−14) . Like those of the

polychromatic spectrograms, the resulting eigenspectrograms do not provide much

meaningful visual information themselves, and testing the PCA method multiple

times under the same condition produces extremely similar output, but it can be

seen that the eigenspectrograms are not time-independent. As a final complication,

the process is repeated once more with frequency change range of 1 − 10 Hz. This

time, almost 800 eigenspectrograms are required to define the problem space well

(see Fig. 4.38 and Fig. 4.39).

It is not surprising that allowing the frequency of the sinusoid to change re-

quires more principal components than monochromatic spectrograms, since the

quasi-monochromatic spectrograms display lines of power that can be orientated

in a number of ways according to the amount of frequency change; the problem

space that must be spanned is therefore bigger. How much bigger depends on the

number of orientations that are available to each line.

Despite the ability of the PCA method to eventually define the eigenspace, we

are still considering an approximation of EMRI spectrograms. The rate of change

of frequency in the sinusoids, ḟ will not be uniform, nor is it a first-order derivative

with respect to time. Nevertheless, the quasi-monochromatic spectrograms do show

that the PCA method is robust enough to generate an eigenspace that spans a

problem space where the frequency components of the spectrograms evolve.

We have tested the PCA method on a number of sets of spectrograms, each

imitating a particular aspect of EMRI spectrograms. Although this does not equate

with tackling the EMRI spectrograms themselves, each of the simplified spectrogram



4.2 Initial tests on sinusoids 111

Figure 4.34: The timeseries of two quasi-monochromatic sinusoids and the corre-

sponding spectrograms. Only the first 500 data points of the waveforms are dis-

played.

Figure 4.35: The residual measurements during 5000 iterations of the PCA method.

The new spectrograms being assessed are quasi-monochromatic (of the first type

described), as are the training set of eigenspectrograms.
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Figure 4.36: Four randomly chosen eigenspectrograms from a set constructed using

the first set of quasi-monochromatic spectrograms. It can be seen that the structure

is not time-independent.
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Figure 4.37: A quasi-monochromatic spectrogram and its reconstruction with a set

of eigenspectrograms. Although the eigenspace has not been completely spanned,

the reconstruction is very close to the original; a spectrogram showing the difference

in the power between the original and the reconstruction is also included.
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Figure 4.38: The residual measurements during 5000 iterations of the PCA method.

The new spectrograms being assessed are the second set of quasi-monochromatic

spectrograms, as are the training set of eigenspectrograms.

sets provide some insight about what we may expect from what is undoubtedly a

more complex situation.

The monochromatic sinusoid spectrograms served primarily to prove that a sim-

ple problem space could be spanned by a set of eigenvectors, and that the PCA

method could cope with the iterative incorporation of spectrograms with randomly

chosen frequency components. The eigenspectrograms produced contained a couple

of oddities that illuminated the inner workings of the algorithms used, but sup-

ported the notion that the PCA method was quite robust. Lastly, it provided a

clear demonstration of the four categories of test spectrogram.

Polychromatic sinusoid spectrograms were no more difficult to create or ma-

nipulate, but belonged to a much larger problem space that could not be spanned

easily. Although not realistic substitutes for EMRI spectrograms, they did suggest

that creating an EMRI eigenspace will be much more computationally expensive,

if in fact possible. They also demonstrated that because the PCA method splits

the information it is provided into orthogonal vectors, having more components can

actually help to span the space more quickly.

The uniform frequency evolution rate present in the first quasi-monochromatic
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Figure 4.39: Four randomly chosen eigenspectrograms from the second set con-

structed using quasi-monochromatic spectrograms. Again, the structure is not time-

independent.
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sinusoid spectrograms proved that the transformation of spectrograms into column

vectors (and its ‘retransformation’) needs only to be consistent, and is not meaning-

ful itself, while the random rates of evolution broke the time-independent nature of

the eigenspectrograms and created a larger problem space (though one that could

be spanned rather well).

Ultimately, we return to how the sinusoid spectrograms illuminate the problem of

applying principal component analysis to EMRI spectrograms. Now, we can be con-

fident that the PCA method is robust enough to handle spectrograms, but should

be wary that the problem space may be too large to span. EMRI spectrograms

will combine the difficulty of multiple frequency components and the problems of

their inter-modulations, as well as the fact that these components will be evolving

at different rates in different spectrograms. The frequency range will have a much

higher resolution than the sinusoid spectrograms and will not be confined to inte-

ger frequencies, while the observation time being considered will be several orders

of magnitude larger. In addition, the waveforms and spectrograms are far more

computationally expensive to generate and store than the simple sinusoid. Finally,

we are very ignorant of the EMRI spectrogram problem space and have no prior

information to guide when selecting parameters from which to generate waveforms

(and hence spectrograms).

Together, the complexities of the EMRI spectrograms suggest they will pose

quite a different challenge from the sinusoid spectrograms. Nevertheless, performing

principal component analysis on the sinusoid spectrograms was a valuable exercise,

allowing us to investigate more transparent situations and the issues they raised,

before proceeding to the main objective.

4.3 Initial tests on EMRI spectrograms

With a preliminary investigation of principal component analysis complete, we now

look to apply the PCA method to EMRI spectrograms. However, there are a number

of issues that must be addressed before tackling what is a markedly more extensive

problems.

Typical EMRI spectrograms

The procedure for generating EMRI spectrograms has already been described (see

3.2). Specifically, for the initial tests in this section, the waveforms are 80640 samples
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Figure 4.40: A ‘typical’ EMRI spectrogram. The source parameters are drawn from

limited parameter space used in initial PCA attempt, but are not given explicitly.

long, with a sampling frequency of 1/15 Hz (as is the case for MLDC datasets),

corresponding to approximately two weeks of simulated data. The spectrograms

produced span the frequency range 0− 33.33 mHz with a resolution of 0.5208 mHz.

As with previous EMRI spectrograms, the time displayed in the included images

indicates the time remaining until the coalesence time tc. An example spectrogram

of this type is shown in Fig. 4.40.

4.3.1 Adapting the PCA method to EMRI spectrograms

Although individual EMRI spectrograms can be manipulated in the same way as

any other spectrogram, the PCA method was altered slightly from its original form.

The majority of these alterations were minor, generally splitting large arrays or

organising output in such a way that the increased computational cost of generating

and storing EMRI spectrograms and eigenspectrograms could be accommodated

(and minimised where possible). Nevertheless, there are a few more significant

changes that require a brief explanation.

Fig. 4.41 describes the adapted PCA method in diagrammatic form. To keep

matters simple, a number of terms are introduced to denote certain sets of vectors

rather than repeat their description each time.
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Multiple test spectrograms per iteration

Rather than each iteration generating and assessing a single test spectrogram, it is

possible to perform the same operations on a batch B of p spectrograms, identifying

a subset B′ of q candidate spectrograms (where q ≤ p) that can be used to expand

the eigenspace. In practice, the eigenspectrograms of this subset are calculated first

(denoted E2) and joined to the existing eigenspectrogram set (denoted E1), creating

the expanded set E3. The eigenspectrograms of E3 are calculated (and denoted E4),

before the next iteration is attempted.

This may seem like needless complication, in particular the calculation of E2,

but there is a possibility that more than one member of the candidate spectrogram

set B′ are identical or very similar. If this is the case E2 will contain a zero-

eigenvalue eigenspectrogram (or near-zero) which can be removed before being joined

to E1. This arrangement is less memory-intensive and faster than handling test

spectrograms one at a time.

Therefore, we can construct a simple method for creating and expanding the

eigenspace.

1. First, generate some training spectrograms, and construct a set of eigenspec-

trograms E1 from these.

2. Load a set of test spectrograms B and evaluate them according to the set E1.

3. Determine which of the test spectrograms B are sufficiently far from the

eigenspace to warrant their use in expanding this space. This subset is B′.

4. Construct a set of eigenspectrograms from B′. These are denoted E2.

5. Merge the sets E1 and E2 to create E3. This is done by simply joining the two

arrays storing the eigenspectrograms, no further mathmatical manipulation is

required.

6. Determine the eigenvectors of the set E2, denoting them E4. These eigenvec-

tors span the space occupied by the training spectrograms and the set B′.

7. Repeat stages 2 to 6, replacing the set E1 with the set E4 and using a new

set of test spectrograms B. Multiple iterations of this method will continue to

expand the eigenspace.
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Figure 4.41: The PCA method explained diagrammatically, incorporating alter-

ations made to accommodate the nature of EMRI spectrograms. The red arrow

between B and E1 indicates that E1 is used to evaluate the spectrograms that make

up the set B.
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Weight vectors and class distances

Without detailed prior information about the EMRI spectrogram problem space,

we cannot sensibly define spectrogram classes before the iterative part of the PCA

method is applied (recall that these were defined retrospectively for the sinusoid

spectrograms). Therefore, distance calculations cease to be meaningful too, and the

weight vectors of specific spectrograms are only useful in order to determine the

reconstruction quality as measured by the residual. As a result the weight vectors

are calculated, but not stored at each iteration. The disadvantage is that they can

not be recalled for analysis, but it speeds up each iteration of the PCA method and

reduces the memory usage. In the adapted method, the residual R is the only value

by which the test spectrograms are judged during each iteration.

h+ and h×

The EMRI waveform is split into two components, h+ and h×. Although theses are

not completely independent, at this stage of the analysis we treat them as utterly

distinct. Therefore, the eigenspectrogram sets produced only attempt to span the

problem space inhabited by spectrograms from one of the components. As before,

the remainder of this chapter only concerns the h× component and the

resulting output.

4.3.2 PCA performed over a small region of parameter space

It is not obvious if the available computing resources are able to define the entire

EMRI spectrogram problem space, and certainly doubtful that such a thing could

be done quickly. A sensible approach then is to apply the principal component

analysis to spectrograms drawn from a very small region of the problem space before

attempting the same on larger regions.

4.3.2.1 Initial test: a redundant parameter

A useful test at this stage is to identify some redundancy in the EMRI parameter

space quickly. In its present format, the power in the spectrograms should vary

according to the source distance, but will not be affected by things like antenna

pattern or source location. Therefore, two sources that are identical in every respect

other than their distance from the detector (D) should produce waveforms that
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Figure 4.42: The residual measurement R of EMRI signals from sources of varying

distances. There are small differences between each measurement, but these are very

small. Therefore, we conclude that the source distance is a redundant parameter.

differ only in their amplitude, and the corresponding spectrograms will differ only

in the amount of power stored in each time-frequency bin.

In terms of the column vectors the PCA method is manipulating, each test spec-

trogram will simply be a rescaled version of the training vectors. The eigenspectro-

gram set created from the training set should contain all the necessary information

to reconstruct any test spectrogram simply by rescaling the weight vector of one of

the original training set spectrograms. In fact, only one eigenspectrogram should

be required; an indication that the PCA method is working is that all other eigen-

spectrograms should be zero-vectors, and have an associated eigenvalue of zero.

Ten spectrograms were used to create the training set and the corresponding

eigenspectrogram set. The distance to the source was selected randomly from the

range 1× 109 - 2× 109 parsecs, for an integer number of parsecs. As expected only

one eigenvector with a non-zero eigenvalue was produced from this set, identical in

appearance to the first of the training spectrograms apart from the scaling (see Fig.

4.43). As the iterative part of the PCA method begins, the test spectrograms can

be reconstructed extremly well with this eigenspectrogram and the eigenspace is not
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Figure 4.43: The first training spectrogram used and the first eigenvector. There is

no additional information incorporated into the spectrogram set, and so the eigen-

spectrogram produced is identical to the original spectrogram (apart from normali-

sation).

expanded (we set a residual threshold of RT = 0.01.

Fig. 4.42 shows the reconstruction quality of 200 test spectrograms (assessed in

batches of 10) where the mean value of R = 1.375×10−12 with a standard deviation

of 4.95×10−13. Although this is not a particularly extensive test, it quickly becomes

clear that the behaviour is not going to change and the process is halted.

We may conclude then that the single-eigenspectrogram set spans this limited

problem space, as we predicted. Repeating this test using different randomly-

selected values for the source distance produces the same output. Under these

circumstances, the source distance is a redundant parameter because it does not

affect the residual measurements to any significant degree.

4.3.2.2 Initial test: varying two parameters

Having established a source of redundany in the EMRI problem space as it has

been presented, we extend the tests to examine altering two parameters. The set of

parameters governing the EMRI evolution allows a large number of possible combi-

nations, but to go through them exhaustively would be extremely time-consuming
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and all may not be particularly informative. Accordingly, three combinations were

chosen, each with what was believed to represent a different ‘category’.

A) CO mass and SMBH mass A brief look at some example spectrograms (be-

fore PCA was being considered) suggested that the masses of the two black

holes in the EMRI system seem to affect the gravitational waveform fairly

significantly. By varying these two parameters, we expect the resulting spec-

trograms to be fairly distinct from each other; the lack of redundancy here will

mean that the residual will probably be fairly high even after a large number

of iterations.

B) CO mass and source distance Now, we have a combination of what we be-

lieve to a parameter that is not redundant (CO mass) with another that is

(source distance). Together, we expect them to present a parameter space

that has some redundancy, but as yet we are unsure how this will affect the

creation of the eigenspace.

C) Φ and S These two parameters have not previously been considered, and are

best classified as a combination that we are entirely ignorant of. The lack

of prior information about the type of spectrograms that will be produced is

another useful test of the robustness of the PCA method, since there is little

chance of (even unconsciously) choosing values for either parameter that we

suspect will be ‘well behaved’ (by which we mean they will produce residual

measurements according to some fashion we know that the PCA method can

cope with).

Ignorant of the redundancy that we might expect in the parameter space of

each combination, the PCA was attempted with two different residual thresholds

below which spectrograms would be used to expand the eigenspace. The first, RT =

0.1, was deliberately high, while the second, RT = 0.01 would help to define the

eigenspace better. Using two thresholds allowed us to make a rough estimate of

how large the eigenspectrogram set would have to be to define the eigenspace any

further.

As a final condition, it was decided that allowing the parameter values to vary

completely randomly throughout the selected parameter ranges may be too com-

putationally expensive, so they were restricted to moving on a grid with uniform
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Test A B C

Range 100− 100− 0− 2π

(parameter 1) 200M� 200M�

Resolution 1M� 1M� π/180

(parameter 1)

Range 1× 106− 1× 109− 0.1

(parameter 2) 1.1× 106M� 2× 109 pc 0.6

Resolution 100M� 1× 106 pc 0.01

(parameter 2)

Number of 1× 105 1× 105 18× 103

possible points

Table 4.2: Test parameter ranges and resolutions for some two-parameter initial

tests.

resolution. Naturally, this means we are not able to sample completely freely from

the designated parameter ranges, and this restriction is discuessed in section 7.3. A

list of the parameter ranges, their resolution, and the number of possible points in

parameter space for each combination are given in Table 4.2.

What do the tests show?

A) The residual measurements follow a curve that dips sharply before leveling out,

aping the type of behaviour from the tests of the sinusoid spectrograms with

20 frequency components (see Fig. 4.31). This shows that two EMRI spectro-

grams taken from this range are comprised of similar components to a large

extent, while the differences can be incorporated into the eigenspectrogram

set and expand the eigenspace.

However, there is a large difference between the number of eigenvectors re-

quired to define the eigenspace better than the two residual thresholds. When

RT = 0.1, only 67 are needed, while the RT = 0.01 threshold generates 366

eigenvectors, and repeated tests of this parameter space produce similar re-

sults. It seems that restricted to this region of parameter space, it is fairly

easy to define the problem space to a limited degree, but to define it well is

significantly more difficult.
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Figure 4.44: Residual measurements of test spectrograms in a two-parameter space

(CO and SMBH mass). Two different residual threshold are applied (0.1 and 0.01)

producing slightly different long-term behaviour.

Figure 4.45: Residual measurements of test spectrograms in a two-parameter space

(CO mass and source distance D). Two different residual threshold are applied (0.1

and 0.01), changing the long-term behaviour.
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Figure 4.46: Residual measurements of test spectrograms in a two-parameter space

(mean anomaly angle and spin magnitude). Two different residual threshold are

applied (0.1 and 0.01), but the long-term behaviour is similar.

B) The second test behaves differently. Again, spectrograms are similar, so the

residual measurements become quite small rather quickly, but further test

spectrograms do not seem to expand the eigenspace incrementally; incorpo-

rating them into the eigenspectrogram set only appears to help reconstruct

that particular spectrogram but not others. That is, after a rapidly dropping

slope for the first few iterations, the slope disappears and we are faced with a

number of fairly independent ‘events’. In this way, the parameter is similar to

the polychromatic spectrograms in 4.2.1.2.

The higher threshold requires 49 eigenspectrograms and the second requires

100. In particular, the set of 100 eigenspectrogram defines the eigenspace very

well, as subsequent reconstruction attempts have R ≈ 1 × 10−13. It seems

that in this case, the CO mass is indeed the only significant parameter and

the source distance is irrelevant. This is encouraging since we are identifying

redundancy in the EMRI parameter space as intended, but is slightly trouble-

some since every possible CO mass spectrogram might be different enough to

require their own eigenvector to define it well.

C) This time, the spectrograms are very similar, and the parameter space can be
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spanned to a high accuracy with a far fewer number of eigenspectrograms than

the number of possible combinations (55 and 53 for R = 0.1 and R = 0.01)

respectively.

It appears that the spin magnitude of the SMBH is probably the most signif-

icant parameter here. In retrospect this might seems clear, that changing the

mean anomaly angle was only really adding a small phase shift to the gravita-

tional waveform, information that would be lost during the construction of the

spectrograms. In reality, we can’t make such bold claims; there are only 50

possible spin magnitude possibilities, so the mean anomaly angle must impart

at least a bit of unique information to the spectrograms. Therefore, despite

their combined parameter space being highly redundant (at this resolution),

the ‘shape’ of the eigenspace is not entirely obvious.

Regardless, this is an encouraging result to some extent. Similar behaviour

from other combinations of EMRI parameters would suggest significant redun-

dancy in the EMRI problem space and the possibility that an easily manage-

able number of eigenspectrograms can be used to span it.

There are a number of lessons to learn from the limited parameter space tests,

but the different output produced by the PCA method from each test makes it

difficult to apply these to the EMRI problem space as a whole. The three tests

represent a small fraction of the number of possible two-parameter combinations,

and there is insufficient time to exhaustively explore each one. Furthermore, the

different output produced offers few clues about the behaviour that might be ex-

pected from a three-parameter test (although source distance does appear to be

consistently redundant) or larger parameter spaces. Nevertheless, the very fact that

the output could be so varied for different parameter spaces forces us to appreciate

the complexity of the EMRI problem space and the wisdom of investigating the

simple sinusoid spectrograms first.

The tests also show that there will probably not be a linear relationship between

the number of eigenspectrograms required to span the space to a certain accuracy,

and that accuracy. It may be the case that computational resources are the deciding

factor in the residuals that may be expected. We must consider theR-value threshold

levels more carefully in future; blanket thresholds are not likely to be sufficient.

It would make more sense to have a variable threshold that first starts high to
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incorporate only significantly different spectrograms before lowering and gradually

defining the eigenspace to better match the problem space.

4.3.3 PCA performed over a large parameter space

We may conclude from the two-parameter tests that although they demonstrate

the ability of the PCA method to process the information presented by the EMRI

spectrograms, we cannot yet extrapolate the performance of the program on the

entire EMRI problem space. In an attempt to do so to a limited degree, we perform

a quick test of the program’s performance on a much wider parameter space. We

are not yet ready to deal with the entire EMRI problem space, but this should give

an indication of the output we might expect.

The parameter ranges and resolutions used in the large parameter space test are

given in Table 4.31, as well as the number of possible combinations of the parameters.

As can be seen, this is a truly huge space (potentially), so only a residual threshold

of R = 0.1 is used, but otherwise the PCA method is used in exactly the same

manner as the two-parameter tests.

As Fig. 4.47 shows, the large parameter space does not yield to the PCA method

quickly, with the residual measurements generally remaining above R = 0.1. In fact,

almost no spectrogram can be reconstructed to within the quality demanded, and

after 489 are incorporated into the eigenspectrogram set the process is halted due to

memory constraints. However, it may still be possible to glean valuable information

about the eigenspace from the data we can collect.

In one sense the output is not encouraging, the number of eigenspectrograms

required to span the EMRI problem space is clearly beyond the computational ca-

pabilities of a current desktop computer. Regardless, the residuals do appear to

be improving, albeit slowly, and assuming that this trend continues it is possible

to make a very rough estimate of how many eigenspectrograms are needed before

the spectrograms might be expected to reconstructed with R ≤ 0.1 on a regular

basis; a linear fit of the large parameter space suggests that ≈ 1700 eigenspectro-

grams would be required. In its current incarnation, storing an eigenspace with this

1Noticeably absent is an alteration to the eccentricity of the orbits. This was due to a difficulty
in maintaining the accuracy of the ODE solving process at the time. However, the extent of
the parameter space was already large enough to prove impossible to span with the available
computational resources.
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Figure 4.47: The residual measurements for multiple iterations of a large parameter

space. Test spectrograms are examined and incorporated into the eigenspectrogram

set; the residual decreases as the problem space begins to be spanned, but the

reduction is gradual and is fuelled by the inclusion of so many new spectrograms that

there is insufficient memory to follow this process for a large number of iterations.
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Parameter Parameter Parameter Number of

Range Resolution possible points

µ 100− 1M� 100

200M�

M 100− 1× 106− 5000

200M� 1.5× 106M�

S/M2 0.1− 0.01 50

0.6

γ̃0 0− π/180 360

2π

Φ0 0− π/180 360

2π

θs 0− π/180 360

2π

φs 0− π/180 360

2π

λ π/24− π/180 75

11π/24

α 0− π/180 360

2π

θk 0− π/180 360

2π

φk 0− π/180 360

2π

θk 1× 109− 1× 106 pc 1× 105

2× 109 pc

Total 1.469× 1032

Table 4.3: Parameter ranges and sampling resolutions for a large parameter space.

The total number of possible selections is vast, but the principal components of the

spectrograms within the parameter space may be significantly smaller.
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number of eigenspectrograms would require an order of magnitude more memory

than currently available to a standard desktop computer. Of course, this doesn’t

take into account that in the long-term, were it feasible, the PCA output may be

significantly different; we are assuming that we are looking at the initial stages of

something like Fig. 4.44, although this is not necessarily true. Furthermore, it is

difficult to be sure the length of the flat tail in the residual measurements that would

be required before we could be confident that the space had been well spanned, but

if the estimate was roughly accurate (to within even a few orders of magnitude)

we are still using a great deal less computational power than required by matched

filtering.

We know for sure now that the EMRI problem is too difficult to ‘solve’ com-

pletely, even within the boundaries that we had originally established. Consequently,

we shall stay away from further larger parameter space tests so that we can examine

the issues raised by the tests in Section 4.3 in greater detail without falling foul of

finite computing resources. Subsequent examinations will concentrate on individual

aspects of a PCA-based approach to detecting EMRI gravitational wave signals.



Chapter 5

A PCA-based search for EMRI

signals

We have shown that it is possible to perform a principal component analysis on

EMRI spectrograms, but must address the applications for the information pro-

duced; that is, we have to show how the method we have employed can be used to

search for gravitational wave signals from EMRIs. The following chapter discusses

a possible search method and the results it produces under a variety of conditions.

5.1 Search method

Previously, two intuitive methods of assessment have been discussed (see 4.1.2), but

since we have not successfully spanned the entire EMRI spectrogram problem space

we have concentrated on the residual measurements of test spectrograms while the

distance from spectrogram classes has been abandoned. Although this is not an

ideal situation, it does suggest a very simple search method building on concepts

already introduced.

Rather than consider a single test spectrogram, we now consider a timeseries

H(t), of length L, containing a h× polarisation EMRI gravitational waveform. This

timeseries can then be split into i segments of a length equal to that used to generate

the EMRI spectrograms that are used to construct the eigenspace (Ls, say). Each

segment can be turned into a test spectrogram Ti and reconstructed according to its

projection into the eigenspace; segments that can be reconstructed well inhabit the
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problem space and are candidate detections, while those that cannot are far from

the eigenspace and are deemed unlikely to be EMRI signals.

In short, the search method moves through the timeseries and selects a segment

of it, checking to see if this segment ‘looks like’ an EMRI spectrogram. A detection

may be registered, or not, depending on the similarity demanded, but either way

this slice is abandoned and the search moves on until the entire timeseries has been

segmented and examined.

Naturally there are a number of issues that require clarification, given below.

However, the complexity of the EMRI spectrograms immediately suggests a num-

ber of circumstances that should be looked at individually before a search of more

realistic timeseries’ are conducted, and each of these demonstrates the workings of

the search as well as any description.

The timeseries H(t) This data needs only to be in the same format as the usual

EMRI analytic kludge waveforms. The sampling frequency is a crucial aspect,

but the timeseries itself can cover a much longer period of time than the usual

EMRI waveforms. The only constraint is that the timeseries must clearly be

at least as long as each segment (that is, L ≥ Ls).

‘Waveform time’ The length of the timeseries (and its sample frequency) defines

a period of time, but the waveforms do not correspond to a particular date,

as they would if the searches were performed during the time the LISA mis-

sion was active; this is natural enough, since we are looking at simulated data.

Rather than attempt to create some reference point (such as the date we might

expect LISA to begin broadcasting strain measurements), we will instead sim-

ply consider the time only with respect to the start of a timeseries, which will

begin at time t = 0 seconds. We will always assume a sample frequency of

fs = 1/15 Hz, and will therefore give Waveform time in seconds.

The spectrograms Each segment must be turned into a spectrogram in the same

manner as those used to define the eigenspace, otherwise a valid EMRI signal

might project into the eigenspace in an unfamiliar manner and escape de-

tection. Similarly, there is the potential for false detection if the spectrogram

generation method is altered, projecting non-EMRI signals into the eigenspace

such that they appear as EMRIs.
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In practice it is really only necessary to ensure that a segment of the correct

length Ls is selected, and that any windowing or other manipulation of the

waveforms that generated the original spectrograms is also performed on the

segments.

The segments We determine the segments by creating an index of starting posi-

tions in the timeseries that indicate the starting point of the data that we wish

to test, and create a related index that marks the end point. If we define a

start position x, and calculate the end position y = x + Ls, then every time-

series data point between these two points define the segment that is turned

into a spectrogram and tested.

The search method allows us to define a search ‘resolution’ in terms of the val-

ues of consecutive entries in the starting/end position indexes, or equivalently

in terms of the number of timeseries data points that consecutive segments

will differ by. For example, with a search resolution of k, a segment Ta will

contain the timeseries data between x and x+Ls, and the next segment Ta+1

to be turned into a spectrogram will contain the timeseries data between x+k

and x+ k + Ls.

The total number of segments that will be turned into spectrograms and anal-

ysed, i, is therefore

i =
L− Ls
k

+ 1. (5.1)

Depending on the length of the timeseries and the search resolution desired,

i will not be always be an integer value, in which case it is rounded down to

the nearest integer.

There are also two particularly significant segments. The first is the segment

that produces the minimum reconstruction residual in the entire search Tm.

The second, Tc, is the segment which is closest to the EMRI signal in terms of

the start and end data points in the timeseries; depending on the position of

the waveform within the timeseries and the resolution of the search this may

or may not be an exact match. Although these designations are often assigned

to the same segment, this is not always the case.

Tm can be determined easily, but we are only able to determine Tc in tests

where we can position the EMRI signal where we wish. Due to this it will be a
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useful indicator of how well the search method performs when we control the

construction of the timeseries H(t), but cannot be used when we do not have

this control.

When plotting the residual measurements of spectrograms, the final data point

of the segment used will define the corresponding Waveform time representing

that spectrogram. This is the most intuitive designation given the backwards-

evolution of the EMRI signals; if we know the coalescence time of a signal

then the spectrogram assigned this time will contain the segment-length of

evolution leading up to this point.

The possibility of 0/0 Though we do not have any prior knowledge of how the

search will work under some circumstances, we can prepare ourselves for the

situation where a segment will contain no gravitational strain at all. In this

situation the resulting spectrogram will have zero weight associated with each

possible eigenspectrogram. This is entirely expected, but the reconstruction

will also be contain no data and be considered ‘perfect’. However, the lack of

power in either spectrogram will create a situation where the reconstruction

residual will be R = 0
0
, which is determined to be ‘NaN’ according to Matlab

(‘Not-a-Number’).

Because this will only occur where there is a complete lack of gravitational

wave strain, these entries are automatically replaced with R = 1 to make it

clear that there is no signal in the segment.

Fig. 5.1 presents the search method in diagrammatical form, and the annotations

A - F are explained below.

A The timeseries in loaded into memory.

B A ‘index list’ of start and end points within the timeseries is constructed, defining

the segments of the waveform data to evaluate. The specific contents of the

list will depend on the search resolution, the length of the timeseries data and

the length of the eigenspectrograms used to evaluate each segment (equal to

that of each segment).
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C Select a segment of the timeseries data, using the index list points. Each segment

is evaluated once, and it is most straightforward to work methodically through

the index list in order of increasing Waveform time.

D Create a spectrogram from the selected timeseries segment.

E Evaluate the segment spectrogram using an eigenspectrogram set as a test spec-

trogram according to the usual PCA method described previously, producing

a residual measurement for this segment.

F Store the residual measurement from the segment. At this point, processes B -

E are repeated, selecting a different entry from the index list and using it to

select and evaluate a different segment of the timeseries.

5.2 Searching for noiseless EMRI spectrograms

As noted, the search method can be applied to any timeseries in the correct format.

To keep matters straightforward, we consider only isolated EMRI signals free from

the effects of an antenna pattern or noise to begin with, yet we must simplify the

problem space even further in order to produce useful output.

In order to be clear about the detections, we test the timeseries H(t) on a set of

eigenspectrograms that span a limited parameter space to a high degree. The most

obvious choice is to identify a single, redundant parameter in the EMRI problem

space such as distance D, but in fact it will be beneficial to engineer a situation

where we can modify this single parameter in a way that will change the resulting

spectrogram so that it cannot be reconstructed perfectly. This seems confusing

initially, but will prove to be informative as we examine different circumstances

under which the search will operate.

Thus, eigenspectrograms that define the eigenspace to be searched are drawn

from the limited parameter range in Table 5.1, and are generated in the same manner

as described in Section 4.3. Due to the finite resolution of the search, the parameter

space is only ‘spanned’ as long as the test parameters are drawn from the same finite

grid. This allows us to generate EMRI spectrograms with identical parameters, those

that are slightly different, and finally those that are significantly different.
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Figure 5.1: The PCA search method explained diagrammatically. Each process is

explained in the main text (see Section 5.1).
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Parameter Value for defining Test 1 Test 2 Test 3

eigenspace

100− 200M�

µ (with resolution of 152 177.7 144.4

1M�)

M 1× 106M� 1× 106M� 1× 106M� 1.2× 106M�

S/M2 0.6 0.6 0.6 0.4

e0 0.1 0.1 0.1 0.1

γ̃0 π/2 π/2 π/2 π/2

Φ0 π/2 π/2 π/2 π/2

θs 0 0 0 0

φs π π π π

λ π/6 π/6 π/6 π/5

α π/2 π/2 π/2 π/2

θk 0.1 0.1 0.1 0.1

φk 0 0 0 0

D(pc) 2× 109 2× 109 2× 109 2× 109

Table 5.1: The physical parameters of the EMRI signals used in Test 1 − 3 in

Section 5.2, and the parameters of the EMRI signal spectrograms used to generated

the eigenspace used to conduct the search.
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(a) Searchable waveform containing an EMRI signal with parameters matching those used to create
the eigenspectrograms and hence the eigenspace.

(b) Searchable waveform containing an EMRI signal with parameters that are slightly different from
those used to create the eigenspectrograms and eigenspace.

(c) Searchable waveform containing an EMRI signal with parameters that are significantly different
from those used to create the eigenspectrograms and eigenspace.

Figure 5.2: Searchable waveforms containing EMRI signals.
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5.2.1 Test 1:EMRIs with matching parameters

We first examine a timeseries H(t) containing a single noiseless EMRI waveform,

with parameters defined by Table 5.1. Specifically, the timeseries waveform is three

times longer than the EMRI waveform it includes (length L = 241920 data points

≈ 42 days with a sample frequency of fs = 1/15 Hz), and the EMRI signal begins

at the 125970th data point. All other entries are zero. The waveform is shown in

Fig. 5.2(a), and the result of the search in Fig. 5.3.

To search with a resolution of one data point would require 161281 search spec-

trograms to be constructed, which is not practical. However, because the timeseries

clearly contains a signal we shall search with a resolution of ten data points, requiring

16129 search spectrograms. We are abusing our prior knowledge of the situation to

some extent; a person who is ignorant of EMRI waveforms would be able to see some

sort of signal in Fig. 5.2(a), but would not necessarily know that it was an EMRI

signal. However, we must be clear that we are presenting the search method the

simplest conditions possible in order to judge its performance under circumstances

that we can control.

The search shows that the residual power from the reconstructions drops to

R = 0.0032 before climbing once more, and by highlighting the spectrograms Tc

and Tm, we see that the two are one and the same. This segement of the timeseries

used to create this spectrogram actually begins with the 100001th data point, so is

not an exact match for an EMRI spectrogram used to create the eigenspace, but

it is very close and subsequently can be reconstructed very well. As expected, the

‘NaN’spectrograms preceeding and following the EMRI signal give this search it

shape, but the drop in residual measurements is unmistakable and clearly highlights

the presence of the EMRI signal. The residual measurements of segments sur-

rounding Tc/Tm do contain some structure, shown in 5.4, but the minimum point is

unambiguous.

5.2.2 Test 2:EMRIs with not-quite matching parameters

Now, we search a waveform that contains a gravitational wave signal from a sin-

gle noiseless EMRI waveform generated with parameters that are similar to, but

not identical to, the parameters used to make spectrograms that constructed the

eigenspace (the parameter are given explicitly in Table 5.1). The timeseries is the
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Figure 5.3: Residual measurements of the segment spectrograms of the waveform

containing an EMRI signal described in Section 5.2.1. The segments Tm and Tc are

the same; there is a strong suggestion that an EMRI signal has been found.

Figure 5.4: A closer look at the residual measurements around the Tc/Tm segment

in Fig. 5.3. There is some structure in surrounding segments, but the most likely

location of the EMRI signal is unambiguous.
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Figure 5.5: Residual measurements of the segment spectrograms of the waveform

containing an EMRI signal described in Section 5.2.2. As in Fig. 5.3 segments Tm

and Tc are the same.

same length as is in the previous test, again the start point for the EMRI signal is

the 125970th data point, and the search resolution is ten data points.

The search produces very similar output to the first test waveform, shown in

Fig. 5.5, with a clearly defined dip centred on the segments Tc and Tm which again

refer to the same segment. The residual in question is R = 0.0177, higher than the

first test but still low. Once more it is clear that the search reveals a likely EMRI

signal very close to the actual signal, and again we see a similar structure to the

measurements around this point (see Fig. 5.6).

5.2.3 Test 3:EMRIs with significantly different parameters

This time, we generate an EMRI from parameters that are significantly different

from those used to generate the eigenspace (given in Table 5.1), but keep the start

position of the signal and the resolution of the search from the previous search.

Under these conditions, the search struggles, and concludes that Tc and Tm are

quite widely separated; its ability to reconstruct the search spectrograms with the

eigenspectrogram set available is actually best when it is not actually looking at the

EMRI signal spectrogram.
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Figure 5.6: A closer look at the residual measurements around the Tc/Tm segment

in Fig. 5.5. Similar to Fig. 5.4, there is some structure in surrounding segments,

but the most likely location of the EMRI signal can still be seen clearly.

Furthermore, the shape of the residual measurements, given in Fig. 5.7, is rather

different than in previous tests. The dip is superficially similar, but the minimum has

been shifted to later spectrograms, is wider. Most telling, the residual measurements

are much higher, with the minimum R = 0.52. Under normal conditions it is unlikely

that this segment would be a viable candidate for an EMRI detection.

5.2.4 Test 4:A non-EMRI signal

Finally, two non-EMRI signals were searched. This was mainly to assert that a

search could be performed on pretty much any timeseries as long as it was in the

correct format, and partly out of curiousity to see how the search would perform on

unusual timeseries.

The first test (test 4A) replaced an EMRI signal with some random strain mea-

surements, with amplitudes of the same order of magnitude to that of previous test

EMRI signals (≈ 1× 10−21), and is shown in Fig. 5.9(a). This was not intended to

be a representation of realistic noise, nor even a signal with any physical basis, but

simply a quick method of generating a waveform that looked nothing like an EMRI.

As the search results show (Fig. 5.9(b) and Fig. 5.9(c)), the search does not provide
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Figure 5.7: Residual measurements of the segment spectrograms of the waveform

containing an EMRI signal described in Section 5.2.3. Unlike previous searches, Tc

and Tm are not the same segment, and the shape of the slope is different. The

residual measurements for this search are much higher as well.

Figure 5.8: A closer look at the residual measurements of some segments in Fig.

5.7. The fine structure found in other searches is missing here.
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any reasonable candidates for detection. Even the apparent structure in the search

is the result of a very small differences in the residual measurements; the segment

that is designated Tm here has a residual measurement of R = 0.99995.

Next (test 4B), an EMRI signal was produced but then ‘flipped’, so that it

appears as an EMRI evolving backwards in time (see Fig. 5.10(a)). Again, there

was no real physical basis for this signal, but it proved a useful check that structure

that shows evolution of the EMRI signal is built in to the eigenspectrograms. The

search produced high residuals as expected, with a minimum of R = 0.919 indicating

that the reconstructions bore little resemblance to the segment spectrograms.

5.3 What do the simple tests tell us?

It is important to be frank with ourselves when looking at the results of the searches

in Section 5.2; none of the timeseries analysed are ‘realistic’. They do not take

into account effects such as noise sources or LISA antenna patterns, presenting

themselves only as a single isolated signal. Thus the searches cannot yet be said to

indicate how adept the search method itself is at searching for EMRI signals, but

can still provide a wealth of useful information which we can build on. Naturally,

future work would include a realistic estimate of the noise in a timeseries of LISA

data.

5.3.1 A searchable waveform

Creating a searchable timeseries itself is straightforward, but actually conducting

the searching requires more thought. Rather quickly, the number of spectrograms

that must be searched becomes very large if the search resolution is small (and hence

computationally expensive). Thankfully, it is not necessary to process each one in

turn; once the starting/end point indexes are determined, different segments can be

examined individually, and could be sent to separate processors for analysis before

the results were collected.

Still, in a situation where we had to analyse a years worth of data the computa-

tional cost is not insignificant. Despite this, in its current form the search of each

spectrogram is fast enough to generate residual measurements in real-time (assum-
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(a) A searchable waveform containing some random strain measurements. The signal is not intended
as realistic noise, but simply to create a waveform that is unlike any EMRI waveform.

(b) Residual measurements of the waveform above. There is some structure, but it is not apparent
here. Note that the segments Tc and Tm are widely separated.

(c) A much closer look at the residual measurements. There are tiny variations present, but they do
not reveal any likely candidates for EMRI detection.

Figure 5.9: Non-EMRI signal 4A search results.
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(a) A searchable waveform containing a ‘backwards-evolving’ EMRI signal.

(b) Residual measurements of the waveform above. They display some interesting structure, but
none are low enough to be considered possible detections. Note that the segments Tc and Tm are
widely separated.

Figure 5.10: Non-EMRI signal 4B search results.
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ing fs = 1/15 Hz) with a search resolution of 1 data point1 although this would

require a timeseries that updated in real-time too. Nevertheless, the test timeseries

typify those that we must examine for the moment; apart from our own construc-

tions, the MLDC datasets will produce year-long timeseries and data from LISA

will cover similar periods of time, but the approach remains unchanged.

The search resolution can change things fairly dramatically, however. Fig. 5.12

shows the effect of changing the search resolution on the residual measurements for

the waveform created in Section 5.2.1. Only the search with a resolution of one data

point really finds the tiny residual power we expect from an EMRI signal with the

parameters that were chosen (R ≈ 1 × 10−14), even though larger resolutions do

produce a clear indication that the residual alters significantly around a particular

time. Taken to an extreme, where the entire timeseries is only divided into a few

segments, the shape does become harder to see and the residual power measured is

higher even for the best matching segment. Table 5.2 converts a number of search

resolutions into approximate times based on a sample frequency of fs = 1/15 Hz as

an aid.

Nevertheless, it can be seen in Fig. 5.12 that the shape of the search results

from the waveform Section 5.2.1 is largely unchanged when considering the ten data

point and one data point resolutions even when looked at closely. Indeed, because

of the computational cost of searching the waveform with a resolution of one data

point, the ten-data-point search was used to find a minimum residual point, and the

timeseries surrounding this position were then re-searched at the smaller resolution.

While there was a risk that a different structure would be revealed by this closer

search, it does not appear to be the case in this situation. It must be kept in mind

that there is no guarantee such a situation will occur in other waveforms, especially

those where the signal is not so obvious.

Thus we must balance the computational expense of the searches and the quality

of the results they produce. The test timeseries of Section 5.2 all revealed their shape

and character with a resolution of ten data points (limited tests with a resolution

of one data point revealed very little change in the results), but it is clear that to

extract the most information each data point must be searched.

1This is of course dependent on the number of eigenspectrograms used in the reconstructions,
but even an eigenspace spanned by many thousands of eigenvectors would still be processable in
near real-time.
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Search Search

resolution resolution

(data points) conversion

1 15 seconds

10 21/2 minutes

100 25 minutes

1000 ≈ 4 hours

10000 ≈ 42 hours

Table 5.2: Conversion of various search resolutions into approximate equivalent

timescales for quick reference, based on a sample frequency of 1/15 Hz.

Figure 5.11: The effect of varying the search resolution on residual measurements for

the waveform described in Section 5.2.1. Only a resolution of 1 data point generates

the residual measurements where the segment will match a spectrogram used to

generate the eigenspace.
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Figure 5.12: A close look at the residual measurements from searches of varying

resolutions on the waveforms described in Section 5.2.1. The general shape is re-

vealed with a search of 100 data points, with only slight differences generated by

the 10-data-point and 1-data-point searches.

5.3.2 Signal placement

The placement of the EMRI signal within the timeseries can be important too. Only

a search resolution of one data point is guaranteed to overlap with the EMRI signal

completely but if this is not practical then we risk not having sufficient overlap to

produce a good quality reconstruction revealed by a small residual measurement.

All the same, the search is fairly robust in that it tolerates the placement of the

EMRI signal waveform pretty much anywhere within the timeseries; as long as it is

entirely within the timeseries, the output produced from the segments covering that

period will be similar.

This principle is demonstrated in Fig. 5.13 where the EMRI signal from Section

5.2.1 is moved around the timeseries and searched with a search resolution of ten

data points. There are a number of placements considered:

A The original positioning, producing exactly the same results as detailed in Section

5.2.1.

B The EMRI signal begins right at the start of the timeseries. The drop in residual
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power is absent, since there are no segments leading up to the signal but

the recovery is present as the segment contain progressively less of the EMRI

signal. The minimum residual is the first segment of the signal, matching the

spectrogram exactly, with R ≈ 8× 10−14.

C The signal begins at the 125975th entry, so does not exactly match the spec-

trogram from any segement. Despite this, the residual measurements are not

changed significantly, with a minimum of R = 0.0075. Fig. 5.13 shows that

plotting these values over those of placement A obscures the latter. Fig. 5.15

shows the differences in residual measurements between placement C and A.

D The EMRI signal is only partially present, it does not lie entirely within the

timeseries being searched. Here we see the drop in residual power, but not

the point at which the segment and the EMRI signal overlap exactly, nor the

recovery. The minimum residual here is R = 0.861.

It seems that we must return to the search resolution problem, since the pro-

portion of the waveform captured by any segment depends on the resolution and

placement together. Again, the ideal solution is a one-data-point search resolution

of a timeseries that is continually updated. This eliminates that concern that resid-

ual measurements are high simply because there isn’t the correct overlap between

the segment being examined and the signal, and mitigates the computational cost

of processing long timeseries each time. Naturally, placements B and D are difficult

to deal with, but are unavoidable depending on what period the timeseries covers;

the operational time of the LISA mission and what EMRI signals occur during this

time are inevitable constraints on the signals that this search method can potentially

detect.

5.3.3 Waveform duration

As stated the spectrograms being examined must be generated in the same manner

as those used to create the eigenspectrograms that define the eigenspace, but this

generation can be changed. Thus far we have not repeated the eigenspace generation

or searches using EMRI waveforms of different durations, but it is feasible and may

have a significant effect.

This topic is explored further in Section 6.6, but the most immediate concern is

that we are currently considering signals that begin and end abruptly. The duration
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Figure 5.13: The effect of signal placement within a searchable waveform on the

residual measurements generated, as described in Section 5.3.2. In particular, place-

ments A and C are indistinguishable in this plot.

Figure 5.14: A closer look at the search around the minimum residual measurements

generated by signal placements A and C from Fig. 5.13. Tiny differences are visible,

but the shape of the residual measurements for both placements is very similar. The

small offset between the two signal placements does not affect things to any great

degree.
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Figure 5.15: The difference between the residual measurements generated by signal

placements A and C from Fig. 5.13, around the time of the minimum residual

measurements. The slight differences suggest that the difference between signal

placement does not affect things greatly.

of an actual EMRI waveform will be much longer than the searchable waveforms

we are constructing, and in reality EMRI signals early on in their evolution may be

present (and will not coalesce during the waveform). This will doubtlessly affect the

shape of the search residual measurements, making a sharp near-symmetric shape

such as that produced by the tests in Section 5.2.1 and 5.2.2 less likely.

5.3.4 Final remarks

We must address the question of what the search method is actually looking for. As

mentioned, none of the waveforms produced represents realistic challenges for the

search, so it is hard to infer its behaviour under different circumstances from the

initial tests. These issues are addressed in Chapter 6, but it is important to be clear

on a few points before proceeding.

Although we have stated that tackling the EMRI waveforms themselves in a

traditional manner might not be computationally feasible, we have not yet proven

that the spectrogram/eigenspectrogram approach is the best one. Certainly, when

looking at waveforms such as those in Fig. 5.2, anyone would be able to identify the
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EMRI signal with little prompting. The searches of these waveforms do produce dif-

ferent results though, in particular the one featured in Section 5.2.3. Furthermore,

the inability of the search method to reconstruct the non-EMRI signals is encour-

aging. Therefore, we can cautiously proceed with the knowledge that in simple

situations the search should be able to distinguish between EMRI and non-EMRI

signals, and the makeup of the particular EMRI signal will affect the search results.

So far so good, but what should we count as a detection? Clearly selecting

the segment Tm will not always work even when an EMRI signal is present, and

is not a helpful guide when the signal is non-EMRI. To complicate matters, our

residual measurements to not produce ‘spikes’ with a sharp drop off that can be

easily isolated, but are more likely to produce slopes. For these reasons, we will

will delay defining ‘a detection’ until we have a better grasp on how the search

behaves under more realistic conditions. Although it may seem easier to make such

a definition at this stage, we do not want to prematurely assume anything based on

the very simple searches performed so far.



Chapter 6

Further searches for EMRI signals

Preliminary PCA-based searches for EMRI signals showed promise under constrained,

largely idealised circumstances, but their usefulness can only really be assessed un-

der more realistic conditions. This chapter identifies some major complications to

the types of signals and searchable waveforms examined in the previous chapter,

considering the effects of each on the search for the EMRI signals separately and in

combination. In doing so, the difficulty of identifying the signals will increase, but

so to will the relevance of the searches in the detection of gravitational waves.

6.1 Waveform lengths and a searchable waveforms

Previous searchable waveforms have only contained EMRI signal waveforms of the

same duration as those that are being searched for (and equivalently, the same

length as each segment being evaluated). Now that we are attempting to construct

more realistic tests, we must acknowledge that the EMRI signals will not ‘switch

on’ in this manner, and that we should include their evolution leading up to this ≈
2-week-long section that we have previously concentrated on.

The increased complexity of the waveforms that will be searched increases the

possibility of confusion. In order to ensure that things remain comprehensible,

we need unambiguous definitions for some of the concepts or parameters required.

Simplified versions of these definitions are also included in the Nomenclature section

preceding the main body of this thesis for reference.

‘Searchable waveform’ A gravitational strain waveform that is the target of the

search for EMRI signals. The waveform is represented by a timeseries of grav-
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itational H× strain measurements, sections of which are manipulated further

(being turned into spectrograms and projected into the eigenspace). We re-

place the old convention of simply referring to the timeseries H(t) because the

searchable waveform may be the combination of several timeseries, typically

multiple EMRI signals and noise.

‘Time from coalescence’ In the event that the EMRI signal is present but dif-

ficult or impossible to distinguish by eye within the searchable waveform, a

measure of the time before (negative values) and after the coalescence time

(positive values) is useful. The previously-defined Tc compliments this mea-

surement, but we can avoid having to define the signal in terms of which

spectrogram incorporates the signal (this can be useful when showing multiple

residual measurements on the same plot).

A new set of eigenspectrograms has been constructed and will be used for the

remainder of this chapter. Table 6.1 details the EMRI spectrograms set used to cre-

ate the eigenspace being examined (we will name this set Υ), while each searchable

waveform will have 220 data points with a sample frequency of 1/15 Hz, correspond-

ing to approximately six months of data. EMRI waveforms that have been added to

the searchable waveform were evolved backwards from the coalescence time for 220

data points as well; as long as the coalesence falls within the extent of the search-

able waveform’s waveform time, we can avoid the signal ‘switching on’. Naturally,

gravitational strain from any EMRI signals that would fall before the beginning

of waveform time are ignored (for example the searchable waveform shown in Fig.

6.1 only reveals approximately three months of strain measurements from an EMRI

signal, since the evolution further back in time would correspond to times t < 0).

The searches being conducted are still analysing the approximately-two-week-

long gravitational wave signal from an EMRI, regardless of the duration of the

searchable waveform. Fig. 6.1 shows part of an EMRI signal subsequently referred

to as ξ, generated with parameters given in Table 6.1 and inserted with a coales-

cence time (in waveform time) of 7869600 seconds (approximately three months

from the beginning of the waveform) to create a searchable waveform. ξ will be

used extensively for demonstration purposes throughout this chapter, and unless

otherwise stated, will be inserted into a searchable waveform with a coalescence

time tc = 7869600 seconds. The particular parameters of ξ were chosen at random,

constrained only by the fact that they must match those of one of the spectrograms



6.2 Noisy EMRI signals 157

Figure 6.1: A searchable waveform containing an EMRI signal ξ. The coalescence

occurs at waveform time 7869600 seconds (approximately three months from the

beginning of the waveform). The segment that will produce a spectrogram belonging

to the set Υ is marked in black.

in the set Υ, albeit evolved backwards in time for six months. The extent of the

signal matching one of the Υ spectrograms within ξ is also highlighted.

The increased length of the waveforms being searched means that searches nat-

urally take longer to process. Keeping in mind the results displayed in Fig. 5.12,

the default search resolution throughout this chapter will be 100 data points. This

represents a compromise between the ability to perform searches within a reasonable

time (on a desktop computer a search of this type will take approximately 20 min-

utes) and the ability to pick out fine structure within the residual measurements of

the searches. As before, the resolution can be changed at will if deemed necessary.

6.2 Noisy EMRI signals

The most obvious shortcoming of previous searches is that the EMRI signal is the

only gravitational strain present in the searchable waveform. There, we tacitly sup-

posed some flawless detector that was able to measure gravitational strain without
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Parameter Value for defining ξ

eigenspace

100− 150M� 140M�

µ (with resolution of

1M�)

M 1× 106M� 1× 106M�

S/M2 0.6 0.6

e0 0.01 0.01

γ̃0 π/2 π/2

Φ0 π/2 π/2

θs 0 0

φs π π

λ π/6 π/6

α π/2 π/2

θk 0.1 0.1

φk 0 0

D(pc) 2× 109 2× 109

Waveform duration 1209600 15728640

(secs)

Table 6.1: The physical parameters of the EMRI signal spectrogram set Υ used

throughout Chapter 6 to generated the eigenspace used to conduct searches. The

specific parameters of the EMRI signal ξ is also given, since it will be used exten-

sively.
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any noise whatsoever, but this is not a useful way of approaching the problem; we

must get to grips with likely sources of noise that will alter the signals in order to

test the effectiveness of the PCA-based searches.

6.2.1 Adding noise to searchable waveforms

A standard LISA sensitivity curve (given by (W..q)) was used to generate noise

timeseries, to which EMRI waveforms could be added. This process and a description

of the noise sources present is rather involved and is given in detail in Appendix A

in an attempt to keep matters in this section straightforward.

6.2.1.1 Searching the noise

Timeseries of LISA’s noise have large contributions from low-frequency noise (see

Fig. 6.2), producing strain measurements that look very different from an EMRI

waveform (see Fig. 6.3). However, before adding EMRI signals we conduct a search

of two noise-only timeseries’ (denoted SW1 & SW 2), serving much the same func-

tion as the non-EMRI signal searches described in Section 5.2.4 but with a more

instructive focus; the performance of the searches when there are no signals will

produce a sort of baseline with which we can judge how large an effect an EMRI

signal will produce and whether such an effect can be deemed ‘significant’.

The searches themselves are performed in exactly the same manner as those in

Chapter 5, and the residual measurements show that noisy segments are far removed

from the eigenspace (see Fig. 6.4). In fact, the residual measurements are all so

close to R = 1 that we define another parameter (see Fig. 6.4(b))

R2 = 1 − R. When R ≈ 1, this can be used to reveal structure in residual mea-

surements. Note that as R increases, R2 decreases and vice versa; searches

highlighting a minimal value of R in a searchable waveform will highlight a

maximum R2.

These results are actually encouraging because they indicate that a segment

containing only noise will project into the EMRI eigenspace in a manner that is

very unlike any of the EMRI spectrograms. Further, there seems to be no overall

pattern to the structure revealed by the R2 values of either search. It is of course

premature to try and apply some rule such as ‘ignore all R2 measurements below

1× 10−9’ based on these two searches, but we have established that while variations
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Figure 6.2: The strain amplitude spectrum of LISA noise, as given by (W..q).

Figure 6.3: Two searchable waveforms (denoted SW1 & SW 2) constructed from

the sensitivity curve given in Fig. 6.2. Neither waveform contains an EMRI signal,

only noise.
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(a) The residual measurements R of searchable waveforms SW 1 & SW 2 (see Fig. 6.3). On this
scale they are indistinguishable and appear to contain no structure.

(b) R2 measurements for the searchable waveforms SW 1 & SW 2. Fine structure is revealed, but
the measurements do not appear to have any obviously meaningful shape.

Figure 6.4: Residual measurements of searchable waveforms SW 1 & SW 2



6.2 Noisy EMRI signals 162

in the residuals occur even without the presence of a signal, they are extremely

small.

6.2.1.2 The first search

Having looked at searchable waveforms containing only noise, we now add an EMRI

signal to the noise and search again, hoping to find lower residual measurements

around the time of the EMRI signal.

The noise waveform is exactly the same as SW 1, to which the EMRI waveform

ξ has been added. The searchable waveform produced is given by Fig. 6.5, but the

residual measurements do not immediately suggest the presence of a signal (see Fig.

6.6, noting that R2 is required to highlight the structure once again), being of the

same order of magnitude as those produced by the noise-only search.

The presence of an EMRI signal prompts us to use the ‘Time from coalescence’ to

determine how well the search finds the signal, but it is clear that simply looking for

the highest R2 value does will not work, nor does there appear to be any meaningful

shape preceding or following the coalescence time which might indicate the presence

of a signal (at least, nothing immediately obvious). As might be expected, the R2

measurements in the latter half of the searchable waveform are identical to those

measured for SW 1, since there is no EMRI signal contribution to the strain after

the coalescence.

Not unsurprisingly then, the noise has a huge impact on the effectiveness of the

search, and as presented in the examples above is sufficient to completely obscure

an EMRI signal. Fig. 6.7 shows a spectrogram of the segment Tc of the searchable

waveform in Fig. 6.5 and it does not suggest the presence of an EMRI signal to the

naked eye either.

We now attempt to mitigate some of the adverse effects of the noise in order to

reveal the presence of a signal in the searchable waveforms.

6.2.2 Whitening the noise

The large contributions of low-frequency noise (which we shall classify as noise below

1 × 10−4 Hz for the moment1) as well as contributions from frequencies above the

1EMRI signals of the sort we have been investigating are typically above this frequency, but
we desire a small ‘buffer’ in the event of different behaviour from signals selected from different
parts of the EMRI problem space.
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Figure 6.5: A searchable waveform containing the EMRI signal waveform ξ (the

segment of the waveform containing the signal belonging to the set Υ -the ‘target’

of the search- is in black).

Figure 6.6: Residual measurements of the searchable waveform shown in Fig. 6.5,

given as R2 = 1−R. Note that under these conditions, Tm is actually the segment

containing the highest R2 value.
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Figure 6.7: A spectrogram of the segment Tc in the the searchable waveform shown

in Fig. 6.5. The EMRI signal does not stand out (the logarithm of the power is

displayed in an attempt to highlight the fine structure in the signal, to no avail).

Nyquist frequency of the waveforms based on a 1/15 Hz sample frequency (that is,

above 33 mHz), produces strain measurements that vary over a range that is orders

of magnitude larger than the strains produced by the EMRI signal waveform.

We are not only being stymied by the magnitude of the noise but its shape as

well, something that can be seen easily by looking at typical EMRI spectrograms

(such as those in Fig. 4.40) and the strain amplitude spectrum of LISA noise (Fig.

6.2); thankfully the signal we are looking for is strongest at frequencies free from

the low or high-frequency noise. However, in terms of principal components of

the eigenspace, no eigenspectrogram will be able to account for the low-frequency

noise, but the power will still overwhelm the signal itself. As a result, residual

measurements will remain high (as we have seen).

Rather than try and cut out the noise, it might make more sense to approach the

problem in a similar manner to the SMBH inspiral signal search presented in Section

2.2.1 and whiten the noise in each segment being searched. Armed with what we

believe to be a good representation of the noise, we might be able to higlight an

EMRI signal in a searchable waveform.

This approach requires only a slight modification to the existing search method.
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When the spectrogram of a segment is constructed, the power in each frequency and

time bin Ps(ν, t) is recalculated according to

Ps(ν, t) =
Po(ν, t)

〈Pnoise(ν)〉

where Po(ν, t) refers to the original segment.

In order to effectively use the whitened signal, we must take care to compare like

with like. Therefore, we construct a new eigenspace using the set Υ but whitening

each spectrogram (with the first L measurements of waveform A, described below).

There are still 50 unique spectrograms by virtue of the 50 unique spectrograms,

hence we still produce a set of 50 eigenspectrograms, although they do look different

from the usual eigenspectrograms (see Fig. 6.13). After the eigenspace is generated

though, the projection of new whitened spectrograms into the eigenspace and their

reconstruction proceed as normal.

Once again, we look at a couple of searchable waveform containing only no noise

in order to gauge the typical behaviour the search when there is no EMRI signal

present. Fig. 6.8 shows two searchable waveforms that were used to investigate this

behaviour, in three different ways, and Fig. 6.9 shows the residual measurements of

the searches, each of which requires some explanation.

A The searchable waveform corresponds to A in Fig. 6.8, and each segment spectro-

gram is whitened by a spectrogram constructed from the first L measurements

of that same waveform. We are free to do this because there is no EMRI signal

contributing to the searchable waveform, but it is an unusual situation in that

we are using some of the noise to whiten the noise itself. However, because we

are using the mean noise power at each frequency based only on the content

of the first L measurements, there will still be variations in subsequent test

spectrograms; they will not be perfectly whitened.

B The searchable waveform now corresponds to B in Fig. 6.8, but the test spectro-

grams are whitened according to the first L measurements of the searchable

waveform A. This allows us to check how variations in the residual measure-

ments change with different searchable waveforms but the same whitening

source.

C Finally, the searchable waveform B in Fig. 6.8 is used again and we change the

whitening source to another L measurements from the searchable waveform A
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(specifically, the measurements between 6660015 and 7869600 seconds in wave-

form time). With this arrangement we can double check the effect of keeping

the searchable waveform constant but whitening with a different source.

The residual measurements obtained from from the arrangements A,B and C are

still high, but display variations that are noticeable without resorting to calculating

R2 equivalents. A in particular shows some strong features, but there is no obvious

pattern to them, as we might expect given that the noise does not contain any other

structure other than as a result of its amplitude spectrum.

On the other hand, both B and C display one main feature towards the end of

the measurements, but again their similarity could have been foreseen since they are

the results of testing the same waveform but with different whitening sources. The

difference between the two in terms of residual measurement is not as great as the

features themselves, nor does it compare to most of the features seen in A.

It appears then that whitening the test spectrograms does impact the resid-

ual measurements greatly, producing variations that are many orders of magnitude

larger than those in similar searchable waveforms that are not whitened. Further-

more, the differences between the searchable waveforms themselves are more signifi-

cant than those produced by using different sources to whiten test spectrograms (to

within reason; the notion of using radically different whitening sources is discussed

in Section.6.2.6).

Again, applying some blanket rule that would just ignore the features seen in

Fig. 6.8 is overly hasty, but we must be prepared to accept that if the test spec-

trograms are whitened then there will be variations in the residual measurements

of a searchable waveform that have nothing to do with an EMRI signal. Only if

the addition of a signal produces rather different results will we be able to infer its

presence using this search method.

The next logical step is to add an EMRI signal to the noise and search for it.

Three new noisy timeseries were generated, and ξ added to each to create three new

searchable waveforms (labelled in Fig. 6.10 simply as 1, 2 and 3), before the usual

search method was applied. The same whitening source used to create A in Fig.

6.8 was used for each searchable waveform.

Fig. 6.10 reveals residual measurements that show seemingly random structure

for each searchable waveform. There is no apparent pattern to the size of the
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Figure 6.8: Noisy timeseries used either as a noise source or a whitening source.

Figure 6.9: Residual measurements of searchable waveforms containing noise but no

EMRI signal. The search includes the whitening stage.



6.2 Noisy EMRI signals 168

Figure 6.10: Residual measurements of searchable waveforms containing EMRI sig-

nal ξ and noisy timeseries. The search includes the whitening stage. Each searchable

waveform contains a different contribution from noise, but are whitened by the same

source. Variations in the residuals on the same scale as those in Fig. 6.9 are present,

but not in the region close to the coalescence time for the EMRI signal.

features in the residual measurements, and no apparent correlation between any two

searchable waveform results. Crucially, there does not appear to be any significant

feature centered around the coalescence time for the EMRI signal or any similarity

in the behaviour of the residual measurement plots around this time. Furthermore,

none of the features have residual measurements that are as small as those found in

the largest feature in Fig. 6.8.

Therefore, we can be confident in saying that simply whitening the test spectro-

grams in the manner described will not show the presence of an EMRI signal in a

noisy searchable waveform in any obvious way, and any change that the signal makes

to the residual measurements of test spectrograms around its coalescence time will

not stand out from the changes caused by the noise.
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Figure 6.11: An eigenspectrogram whitened by the original noise amplitude spec-

trum. The presence of the EMRI signal is noticable, but the structure is slightly

different from noise-free EMRI signal eigenspectrograms. The logarithm of the power

is displayed to highlight the fine structure in the signal.

6.2.3 Suppressing low level noise

We are still being thwarted by the noise, but as remarked upon previously, the power

from the EMRI signals is strongest at frequencies free from the strongest noise. The

higher-frequency noise is not too concerning give our standard sample frequency of

1/15 Hz, but the low-frequency noise is troublesome.

To suppress the low-frequency contributions we might ordinarily apply a highpass

filter to our noise timeseries but as Appendix A describes, our process is somewhat

backwards, creating a timeseries from a strain amplitude spectrum. Therefore, we

generate a new timeseries by zeroing the power in the amplitude spectrum for any

frequency below 1e−4 Hz first and then following the procedure discussed in the

appendix using this new amplitude spectrum as our starting point.

Fig. 6.14(a) shows a searchable waveform created in this manner, while Fig.

6.12 is the corresponding amplitude spectrum recalculated from this waveform. In

the recalculation, a small amount of residual low-frequency noise creeps back in, but

this is approximately ten orders of magnitude smaller than the noise at the ‘useful’

frequencies and was not deemed to significantly alter the noisy timeseries produced.
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Figure 6.12: A recalculated strain amplitude spectrum of LISA noise, with the

low-frequency noise suppressed. The original amplitude spectrum is also shown in

black.

Figure 6.13: An eigenspectrogram whitened by the noise amplitude spectrum with

low-frequency noise suppression. Again, the EMRI signal stands out. The logarithm

of the power is displayed to highlight the fine structure in the signal.
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(a) A searchable waveform with supressed low-frequency noise but containing no EMRI signal.

(b) A searchable waveform with supressed low-frequency noise and containing the EMRI signal ξ.
The segment containing the signal belonging to the set Υ is shown in black. The significance of the
difference between the waveform here and the waveform in Fig. 6.14(a) is not detectable by eye, but
the projection into the eigenspace of the two waveforms is radically different.

Figure 6.14: Searchable waveforms with suppressed low-frequency noise
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We now apply the usual search method to two searchable waveforms containing

EMRI signal ξ and noisy timeseries with the low-frequency components supressed

(these waveforms are defined only as ‘EMRI signal 1’ and ‘EMRI signal 2’). Each

noise timeseries is generated seperately, while a third noise timeseries is created for

use in the whitening calculation, but otherwise the searches proceed as normal.

This time, there is an unmistakable dip in the residual measurements centred

on the segment Tc. The drop in residual power itself is not particularly large ≈
0.04, but it is far larger than the typical variations in segments far removed from

Tc. Just to confirm that there was nothing remarkable about the positioning of ξ,

another searchable waveform containing only noise (another fresh generation of a

noise timeseries, defined as ‘No EMRI signal’) was searched as well1.

The results of these three searches is given in Fig. 6.15, and are certainly much

more pleasing than previous results at first glance. There is no confusion about

the probable location of a signal due to similar drops in residual power during the

waveform, and the behaviour of the residual measurements of the entire waveform

is somewhat reminiscent of the results produced from noiseless EMRI spectrograms

in Section 5.2.

There is a suggestion then that this dipping behaviour in the residual measure-

ments is characteristic of the presence of an isolated EMRI signal in a searchable

waveform, but we will not try to extend this into a definition yet. Nevertheless, this

is a comforting indication of an isolated EMRI signal detection in a noisy timeseries.

Although the presence of the EMRI signal within the searchable waveform is

not obvious, a spectrogram of the Tc segment as shown in Fig. 6.16 will reveal it,

and a spectrogram of the same segment after whitening (Fig. 6.17) makes things

even easier to see. The implications of being able to see the EMRI signal without

resorting to principal component analysis are discussed in Section 6.2.6.

6.2.4 Was the whitening necessary?

The possibility that EMRI signals could be clearly indicated in a plot of residual

measurements is exciting, but we must be cautious. The searches in Section 6.2.3

used test spectrograms that featured suppressed noise and were whitened, while we

1to aid in the comparison, the searchable waveform containing no signal has its time defined
with respect to a non-existent coalescent time identical to that of the ξ waveform
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Figure 6.15: Residual measurements of searchable waveforms containing EMRI sig-

nal ξ and noisy timeseries with the low-frequency components supressed, as well

as one waveform that does not contain an EMRI signal. The dip produced by the

presence of an EMRI signal is obvious, suggesting that such behaviour in residual

measurements may be characteristic of the presence of an isolated EMRI signal in

a searchable waveform.



6.2 Noisy EMRI signals 174

Figure 6.16: A spectrogram of the segment Tc in the searchable waveform in Fig.

6.14(b) before whitening. The EMRI signal can be seen faintly (as a line sloping

between 0.005 and 0.01 mHz). The logarithm of the power is displayed to highlight

the fine structure in the signal.

Figure 6.17: A spectrogram of the segment Tc in the searchable waveform in Fig.

6.14(b) after whitening. The EMRI signal can be seen, more clearly than in the

non-whitened spectrogram. The logarithm of the power is displayed to highlight the

fine structure in the signal.
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saw in Section 6.2.2 that whitening without suppressing the noise produces very

different results (and did not suggest the existence of a signal even when one was

present).

It may be that the noise suppression was the only necessary operation, and that

whitening does not produce any worthwhile effect. To settle this matter, the searches

of the three searchable waveforms 6.2.3 were repeated, without whitening the test

spectrograms during the search and using the original eigenspectrograms created

from the spectrogram set Υ.

The residual measurements produced by these searches are shown in Fig. 6.2.4,

with the two waveforms containing the EMRI signal ξ indicating the segement Tc.

The presence of the EMRI signals can be seen in the overall structure of the residual

measurement, but individual measurements in these ‘regions of interest’ are not

significantly larger than those outside it, and once more we must calculate R2 values

because the residual measurements R are so large. Further, the minimum residual

measurement (maximum R2 value) in the waveform Tm does not match Tc and is

not even the peak of the region of interest.

There is still the possibility that omitting the whitening could lead to a detection

if the R2 could be evaluated by eye, but automatically flagging up these regions of

interest would be particularly difficult. We conclude that we need suppressed low-

frequency noise and whitening to produce a clear indication of the presence of an

EMRI signal and that neither modification will be successful on their own.

6.2.5 Noise levels

It appears that we can see an EMRI signal in a noisy timeseries provided we suppress

the low-frequency noise and whiten the spectrograms properly. However, we must

try and establish just how strong the evidence really is; after all, the drop in residual

power in Fig. 6.15 is actually very small. What we want is to calculate a signal-to-

noise ratio (SNR) that we can apply to a set of test spectrograms in order to define

how strong potential EMRI signals are with respect to typical fluctuations.

To do so, we calculate the power in weight vectors of the test spectrograms within

a searchable waveform, giving a measure of the power of their projection into the

eigenspace, and will refer to this as their Weight Power, denoted WP. Thus

WP =‖ Ω ‖ . (6.1)
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(a)

(b)

(c)

Figure 6.18: Residual measurements of searchable waveforms containing noise with

suppressed low-frequency components but no whitening. In two, the presence of an

EMRI signal can be seen, but the evidence is not particularly strong, and cannot

be identified automatically by highlighting the Tc segment.
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What we need is to determine the Weight Power found in searchable waveforms

containing EMRI signal(s) and noise, as well as those containing only noise, and will

denote these WPS and WPN respectively (note that there will be as many of these

measurements as there are search spectrograms for any given searchable waveform).

Using the set of noise Weight Power measurements, we calculate the mean noise

Weight Power < WPN > and the standard deviation in the set δ; with this, we have

an estimate of the power in spectrograms within a noisy searchable waveform, as

well as an estimate of the typical fluctuations throughout the searchable waveform.

Now, when analysing a searchable waveform, we take a test spectrogram (q say),

and calculate its Weight Power WPS(q). We define the SNR for this spectrogram

to be

SNR(q) =
WPS(q)−< WPN >

2δ
(6.2)

The reasoning behind this calculation is straightforward when shown pictorially.

Fig. 6.19(a) shows the Weight Power of spectrograms within a searchable waveform

containing an EMRI signal (specifically, the same waveform denoted ‘EMRI signal 1’

in Fig. 6.15) as well as the Weight Power within a searchable waveform containing

only noise (here, the waveform denoted ‘No EMRI signal’ in Fig. 6.15). These

measurements are WPS (in black) and WPN (in red).

From this, the mean noise Weight Power < WPN > is determined (included as

a blue line) and the values of noise Weight Power one standard deviation either side

of this measurement are calculated too, revealing a ‘channel’ marking the typical

fluctations in the noise Weight Power with width 2δ. The SNR then, is how far

a test spectrogram’s Weight Power is above the average noise Weight Power, as a

measure of the typical fluctuations of noise Weight Power.

The definition we have used is straightforward in its calculation, but isn’t the

usual way of thinking about SNR in a noisy waveform since we are only defining the

signal in terms of a its projection into a space we have constructed. This is poten-

tially misleading, since if we do not define this space correctly then we may ignore

some contribution from an EMRI signal. Nevertheless, we have always been aware

that the PCA-based construction of a problem space would not always be complete

and would be at best a useful approximation of the original parameter space. Given

this, our definition of SNR behaves appropriately; the process is insensitive to EMRI
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(a) The Weight Power of test spectrograms in the EMRI signal 1 searchable waveform shown in
Fig.reffig: whitenened 1 (in black), as well as the Weight Power of test spectrograms containing
only noise (in red). Also included are the mean noise Weight Power (blue line) and boundaries one
standard deviation from this measure (in green).

(b) The signal-to-noise ratio determined from the plot above. The basic shape is retained, but the
measure is more meaningful.

Figure 6.19: Weight Power and SNR calculations for a searchable waveform.
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signals or EMRI-like signals that do not project into the eigenspace, and similarly

only the noise that projects into the eigenspace is counted.

In practice, we can see easily that if a searchable waveform contains only noise

and no EMRI signal then the SNR measurements will be around 0, while a stronger

EMRI signal (resulting from an increase in the gravitational strain amplitude) will

increase the SNR. More power in the noise will decrease the difference between the

signal weight power and the mean noise weight power (hence reducing the ‘signal’

part of the SNR calculation), while if the fluctuations in the noise weight power

increase (consequently increasing δ) then the SNR will be reduced1. Always, there

is the underlying assumption that the noise used to calculate < WPN > is an ap-

propriate estimate of the noise present in the searchable waveform containing the

EMRI signal(s).

To demonstrate how the SNR changes, we create new searchable waveforms

containing EMRI signals of different strain amplitudes; easily done by changing the

distance of the EMRI source. Each searchable waveform is created including the

contribution from a different noise timeseries, but is whitened by the same source

(we use the waveform shown by Fig. 6.14(a)). In all other respects the EMRI

signals are exactly the same as ξ. Table 6.2 gives details of the SNR measurements

shown in Fig. 6.20, including the maximum SNR for each set of measurements

(SNRmax) and the distance of the EMRI source. Also included is the minimum

residual measurement from each set (Rmin, corresponding to R(Tm)), which in all

the waveforms tested was the same spectrogram as Tc.

The effects are clear, if unsuprising; increasing the amplitude of the EMRI signal

added to the searchable waveform increases the SNR.

6.2.5.1 The Principal Components of the noise?

Since we are able to produce spectrograms of the noise, it might seem that we

could avoid some of the problems caused by noise by determining their principal

components and using them to expand the eigenspace. We might then imagine that

1One must be careful about what we mean by the ‘noise’. In the context of the searchable
waveforms, noise refers to the fluctuations in the gravitational strain resulting from the LISA
sensitivity curve, while in the context of the SNR calculations we refer to the fluctuations in the
weight power measurements of a searchable waveform containing LISA sensitivity noise but no
EMRI signal.
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SNR measurement EMRI distance SNRmax Rmin

set (pc)

1 2× 109 34.47 0.958

2 1× 109 308.01 0.784

3 0.1× 109 2.24× 106 0.058

4 0.01× 109 2.23× 1010 0.006

5 0.001× 109 2.23× 1014 5.54× 10−4

Table 6.2: The distance of an EMRI source, and the corresponding maximum SNR

(SNRmax) and minimum residual measurement Rmin.

Figure 6.20: The SNR of EMRI signals from varying source distances; as the distance

decreases, the SNR increases. The range in SNR necessitates a logarithmic scale, so

all SNR < 0 values are omitted.
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Figure 6.21: An eigenspectrogram, calculated from whitened EMRI spectrograms

without the low frequency suppression. The logarithm of the power is displayed to

highlight the fine structure in the signal.

Figure 6.22: An eigenspectrogram, calculated from whitened EMRI spectrograms

and low frequency suppression. The logarithm of the power is displayed to highlight

the fine structure in the signal.
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a noisy EMRI signal within a searchable waveform can be reconstructed perfectly

by the eigenspectrograms that span this space, and that the presence of this kind

of signal would be quite obvious once the results of the search.

This may indeed be the case, but we would now be attempting to span the

problem space inhabited by EMRI signals and LISA noise. Regardless of the extra

computational cost of such an approach (which may be significant, although we are

currently ignorant of this), this shift in the focus of the search would not actually

help; pure noise segments would still project into the eigenspace that had been

created, and could also be reconstructed to some degree, presenting themselves as

possible candidates for EMRI detections.

Even if the noise was orthogonal to the EMRI signals -which is largely true since

the noise doesn’t project well into the EMRI signal eigenspace according to Section

6.2.1.1- and created eigenspectrograms only concerning the noise, all that weight

vectors of segments showing large contributions from these eigenspectrograms really

reveals is the presence of noise in the segment (we could in theory identify these

by looking at each eigenspectrogram in turn by eye, although there is no guarantee

that it would be obvious). Clearly, this does not aid our understanding to any great

extent, since we were aware of the noise being present in the waveforms in the first

place.

For these reasons, the principal components of the noise are not used or even

calculated. Further discussion of this matter is given in Chapter 7.

6.2.6 Remarks on noisy EMRI signals

Adding noise to the searchable waveforms affects the search for EMRI signals greatly,

and this section has contained a large amount of information. It will be beneficial to

summarise what we have learned before remarking on individual aspects highlighted

by the searches.

In brief, we are unable to get a clear indication of an EMRI signal’s presence in a

searchable waveform unless the low frequency noise that LISA will see is suppressed

and the eigenspectrograms and test spectrograms are whitened according to the

shape of the new noise amplitude spectrum with this suppression. Neither whitening

alone nor reshaping the noise amplitude spectrum alone will accomplish this, and

if both these stages are omitted then we are unable to gain any useful information

from the search whatsoever.
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We have also seen that changing the whitening source is not hugely important

as long as it has a similar amplitude spectrum, and that different noisy timeseries

within the searchable waveforms do not change search results a great deal either if

they have the same amplitude spectrum too.

The SNR measurements are only a guide for the moment. Like the prospect that

a dip in the residual measurements of a searchable waveform (or a spike in the SNR)

indicates the presence of an EMRI signal, we have only thus far found something to

build on. A more thoughtful examination of how to register a potential detection

is given in Section 6.5, but there are still other aspects to the searchable waveforms

that must be explored and accounted for before we formalise our detection process.

Naturally, the previous tests do not cover every aspect of noisy searchable wave-

forms. The behaviour of the residual measurements in the presence of a signifi-

cantly different amplitude spectrum, using a radically different whitening source, or

the measurements that would be produced using a set of eigenspectrograms created

from spectrograms inhabiting a different region of EMRI parameter space have not

been included, but by this stage we feel sure that we do not require such exhaustive

testing. So far, there has been every indication that the PCA-based search method

is robust enough that we could process this data, and consistent enough that we can

reproduce our successes if necessary.

One concern is that whitening the spectrograms as they are incorporated into the

training set and used to generate the eigenspectrograms is taking unfair advantage of

our prior knowledge, but it is a necessary step. Whitening at this stage is reshaping

the EMRI signals, without which they would always differ from the whitened test

spectrograms (even if the EMRI signal within that test spectrogram belonged to the

training set) resulting in high residual measurements during searches. Naturally,

the resulting eigenspectrograms are rather different from those produced without

the whitening stage, but as mentioned previously, the unique components from each

EMRI signal are still present despite the reshaping. Conceivably, these could be

altered enough by the whitening that the residual threshold for test spectrograms

RT would have to be different from the threshold for non-whitened test spectrograms,

but this is simply done; a repeat of a test like that in Section 4.3.3 would indicate

an appropriate choice.

It is slightly concerning that the EMRI signal can be seen by eye in the spectro-

grams of low-frequency suppressed noisy timeseries, but we must bear in mind that
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the PCA-based search method developed is able to search through many thousands

of spectrograms in a consistent manner, producing a measure of its projection into a

parameter space inhabited by EMRI signal (and beyond this, a measure of the SNR

of these projections). Further, while we have only considered single isolated signals

so far, we can extend the scope of the problem to include multiple signals for which

tracking individual EMRI signals by eye will not be straightforward.

6.3 Multiple EMRI signals

Until now the EMRI signals in the searchable waveforms have been isolated, but it

would be unwise to evaluate the PCA-based search method only in this simple situ-

ation. Therefore, we consider the additional complexities of a waveform containing

a number of EMRI signals. Throughout, we consider a number of contributions to

strain measurements from different CO - SMBH EMRI systems, rather than multiple

COs orbiting around a single SMBH.

The presence of multiple signals renders the ‘time to coalescence’ measure in

a searchable waveform insensible. Therefore, every waveform will be presented in

terms of ‘waveform time’, like searchable waveforms without a signal. Further, we

are attempting to examine the behaviour of the search only with regards to aspects

involved in multiple signals and as such have temporarily removed the contribution

expected from LISA noise. Consequently, the need for SNR calculations is eliminated

too.

Finally, each of the waveforms described in this section were regenerated several

times using different parameters for the EMRI signals, although each was taken from

the set Υ in all parameters except for the duration of the waveform, producing near-

identical results. This is to be expected, since we have a set of eigenspectrograms

that spans the required eigenspace completely, and the projection of individual spec-

trograms into this eigenspace only alters the specific weight vector being considered.

6.3.1 The α waveform

Initially, we examine a searchable waveform α containing two widely-separated

EMRI signals (shown in Fig. 6.23(a)), each taken from the set Υ. Although this

is a somewhat backwards approach given the unrealistic nature of the EMRI signal

‘switching on’ described in Section 6.1, at this stage we simply want to check that
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the search method will work in the expected manner; with no overlap between the

two signals, and each reconstructible on their own, the search should show two dips

in the residual measurements each centred on the coalescence time of the EMRI

signal.

Fig. 6.23(b) shows that this is indeed the case. There is no signal confusion,

and the two dips in the residual measurement have a minimum at the coalescence

time for each EMRI signal. A closer look at the dips shows that each of the two Tc

segments correspond to almost perfect reconstructions (R ≈ 1×10−14 in both cases),

again as expected. Naturally, our usual approach of checking the minimum residual

measurement is not particularly useful since it will only select a single value (and

corresponding coalescence time) and we would prefer something that highlights two

distinct signals, but judging it only by eye for the moment we are confident that the

presence of two EMRI signals does not cause surprising behaviour from the search

method.

6.3.2 The β waveforms

Able to handle the simplest of multiple-signal situations, we now construct a number

of searchable waveforms designated βi (i = 1, 2, .., 6), where the time between the

coalescence of two EMRI signals is altered. Unlike the α waveform signals, the β

waveforms do not switch on, creating an overlap between the two EMRI signals, but

apart from the duration of the signal present in the searchable waveform they share

all parameters in common with two EMRI signals taken from the set Υ.

Fig. 6.24(a) and Fig. 6.24(b) show the residual measurements from the searches

of the β waveforms, while Table 6.3 gives the coalescence times involved. The

first signal (in waveform time) is kept constant, while the second appears to move

backwards in time as subsequent tests are performed. As a result, what begins as

residual measurements reminiscent of those produced from the α waveform gradually

change from distinct dips to the creation of a general region of reduced residual

measurements as the coalescence times get closer together.

As the overlap between the signals increases, so does the confusion between the

two. The projection of the search segment spectrograms into eigenspace changes

and it becomes increasingly difficult to distinguish between the two, but crucially

this projection is not so alien as to produce very high residuals. In fact even at

their closest (alternatively, at their maximum overlap) there remains a structure



6.3 Multiple EMRI signals 186

(a) The searchable waveform α.

(b) Residual measurements of the searchable waveform α.

Figure 6.23: Searchable waveform α, and residual measurements. Two EMRI sig-

nals are present, widely-separated in time. With no overlap, the PCA-based search

method is able to reconstruct them almost perfectly, strongly indicating their pres-

ence.
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(a) Residual measurements of the searchable waveform β1 − β3.

(b) Residual measurements of the searchable waveform β4 − β6.

Figure 6.24: Residual measurements of the β searchable waveforms. As the overlap

between the signals increases, the two signals become less distinct.
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Searchable waveform tc tc

name (EMRI signal 1) (EMRI signal 2)

β1 3939600 11814600

β2 3939600 6369600

β3 3939600 5154600

β4 3939600 5139600

β5 3939600 4539600

β6 3939600 4239600

Table 6.3: The coalescence times of the two EMRI signals in the β searchable

waveforms. Coalescence times are given in terms of the waveform time (in seconds).

that suggests to the eye that two different signals are present, something that is

considerably more difficult to see from looking at the searchable waveforms them-

selves. Fig. 6.25(a) and Fig. 6.25(b) show the searchable waveforms β1 and β6,

demonstrating the signals with minimum and maximum overlap respectively. While

we might infer that there are two signals in β1 based on what now about isolated

EMRI signal waveforms, β6 looks different, with the region of overlap beginning to

look like a single signal or perhaps a different type of signal altogether.

The coalescence times were chosen to represent a variety of circumstances. The

first three are widely separated, but the third was chosen to produce a ‘bridge’

between the two dips; the two coalescence times here are separated by a period

slightly greater than the segment length of a search spectrogram. β4 separated the

coalescence times by slightly less than one segment length, and β5 and β6 close this

gap even further.

It is important to note that although the signal with the later coalescence time

is being altered in terms of its placement, the earlier signal is not unaffected. Even

when the dips are fairly distinct (as produced from β1 − β3), the residual measure-

ments around the time of this earlier coalescence begin to climb higher as the second

signals’ coalescence ‘approaches’.

6.3.3 The γ waveforms

The searchable waveforms γ are a special case of β-like waveforms, imagining a

situation where several EMRIs coalesce at the exact same time (tc = 7869600 secs).

Between two and five different signals were added to the waveforms (each taken at
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(a) Searchable waveform β1.

(b) Searchable waveform β6.

Figure 6.25: β.
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Figure 6.26: Residual measurements from the searchable waveforms γ1 − γ4.

random from the set Υ but evolved backwards for ≈ six months), but again the

search proceeded as normal. Adding more signals increases residual measurment

around the coalescence time, as Fig. 6.26 clearly demonstrates, but the shape of

the residual measurements remains unchanged from what we have begun to deem

characteristic of an isolated EMRI signal.

This is not entirely unexpected. The overlap in the different waveforms doesn’t

change, and the individual EMRI signals do look very similar, so we might reasonably

predict that the resulting combined signal is also very similar. And despite the

overall strain in the searchable waveform increasing as more signals are added, this

alone would not make the signal increasingly difficult to reconstruct.

Instead, we have situation akin to that explored in Section 4.2.1.2, whereby the

inter-modulation of two combined sinusoids result in a projection into the eigenspace

that differs from the projection of two individual sinusoids which are then combined.

In the γ waveforms, the signals being combined are more complicated but otherwise

the situation is the same.

If each EMRI signal was identical however, the reconstructions would be close to

perfect (and the residuals close to zero), since this would project into the eigenspace

in a manner identical to one of the spectrograms belonging to the set Υ, but a dif-

ferent weight vector (scaled by some factor depending on how many EMRI signals
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had been included). As discussed before, the PCA search method is not sensitive to

amplitude this way, and would handle the increased contribution from each eigen-

spectrogram without concern. It is only the fact that each of the EMRI signals in

the γ waveforms is different that causes such high residual measurements.

What the γ waveforms suggest then is that we will not be able to identify over-

lapping EMRI signals, and that looking at the residual measurements alone will not

allow us to tell whether we are looking at multiple signals (and if we are, how many),

or just a signal that is EMRI-like in appearance. This is unfortunate, since it ham-

pers our ability to use the PCA-based search to identify numerous EMRI signals,

and may restrict us merely to highlighting periods of time when EMRI signals are

likely to be occurring.

6.3.4 The δ waveforms

A final set of searchable waveforms present an extreme challenge for the PCA-based

search method; 50 EMRI signals with randomly-generated coalescence times are

combined and examined. Each signal is randomly selected from the set Υ although

evolved backwards for ≈ 6 months, and the intention is to present an almost chaotic

situations that the search will struggle with.

Fig. 6.27(a) and Fig. 6.27(b) show both the residual measurements from one

such search and the searchable waveform. It is not possible to see the individual

EMRI signals simply by eye (except the final one, which is addressed later) and

it is difficult to determine anything meaningful about the searchable waveform in

this manner. Furthermore, the residual measurements do not display distinct dips

centred on the coalescence times of the signals.

Signal confusion reigns in this waveform, with the residual measurements for the

beginning of the waveform being very high (R ≈ 1). Further on in the waveform,

sufficient time has passed to allow some EMRIs to coalesce and their contribution to

the overall signal disappears, causing the signal confusion to drop off and resulting

in a general trend of the residual dropping as time goes on. Nevertheless, it is only

when the majority of the EMRIs have coalesced that the residual measurements drop

by any great amount, and there is no point where there is a distinct dip revealing

an isolated EMRI signal.

This behaviour occurs time and again. Fig. 6.28 shows three different δ search-

able waveforms, each displaying similar behaviour. It is clear that this amount of
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(a) Residual measurements for searchable waveform δ1.

(b) Searchable waveform δ1.

Figure 6.27: The searchable waveform δ1 and the residual measurements from the

search.
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Figure 6.28: Residual measurements from the searchable waveforms δ1 − δ3.

overlap between different EMRI signals is extremely detrimental to any attempt to

reconstruct test spectrograms. There may be a few pronounced dips in the residual

measurements, but nothing that would strongly suggest that we are confident about

suggesting a coalescence time.

Fig. 6.29(a) shows the first segment-length of the searchable waveform δ1, a

region of extreme confusion that projects far from the eigenspace, while Fig. 6.29(b)

shows the final segment-length, when most of the EMRIs have coalesced and are no

longer contributing to the overall signal. Fig. 6.30(a) and Fig. 6.30(b) then show

the spectrograms that would be constructed from these segments of the searchable

waveform. The signal confusion is self-evident in Fig. 6.30(a) (one might suggest

there is more than one EMRI signal present, but it is not possible to see 50 distinct

signals), while enough coalescences have occurred by the time of the test spectrogram

in Fig. 6.30(b) for individual EMRI signals to be seen dropping out. Regardless of

the improvement over time, the search is still looking at a spectrogram containing

more than one EMRI signal at all time, and struggles to reconstruct it using the

eigenspectrogram set available.
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(a) The first segment-length of searchable waveform δ1.

(b) The final segement-length of searchable waveform δ1.

Figure 6.29: Searchable waveform δ1 segments
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(a) The first test spectrogram of searchable waveform δ1.

(b) The final test spectrogram of searchable waveform δ1.

Figure 6.30: Searchable waveform δ1 spectrograms. The logarithm of the power is

displayed to highlight the fine structure in the signal.
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6.3.5 Mutliple signal searchable waveform remarks

The effects of overlapping EMRI signals are certainly a necessary consideration, but

as presented the previous waveforms still represent a simplified situation. Princi-

pally, we have still restricted ourselves to a six-month period to search, and a limited

eigenspace within which to project the signals.

Practical reasons prevent us from eliminating these restrictions, but they are still

concerning. Although it seems unlikely, the combination of multiple EMRI signals

within a parameter space may combine in a manner that mimics an EMRI signal

outwith that parameter space, and we cannot rule this out without spanning the

EMRI problem space in its entirety. Similarly, there may be other gravitational wave

sources that project into an EMRI signal eigenspace like EMRI signals themselves.

Further, our tests have thus far only highlighted situations where EMRI signals end

during the period covered by the searchable waveform and ignore EMRI signals that

may be many years from coalescence.

Nevertheless, the α,β,γ and δ waveforms do suggest that the presence of multiple

EMRI signals can still be detected using the PCA-based search method under non-

ideal circumstances, even though we may not always be confident about how many

sources there are or their exact coalescence times.

6.3.6 EMRI populations and event rates

The waveforms β1 and δ1 represent little signal confusion and extreme signal confu-

sion respectively, and while examining the behaviour of the search under these two

extreme circumstances is useful, a searchable waveform with a more realistic amount

of signal confusion is highly desirable. Therefore, what we require is an accurate

estimate of the EMRI coalescence event rate.

Unfortunately, calculating such an estimate is far from trivial. Gair and Barack

(41) explore the issue thoroughly, considering estimates of gravitational capture

rates of SMBH and the space density of SMBHs amongst other factors, while Fre-

itag (40) considers the inspiralling rates in a central galactic black hole. Common

to both, however, is the acknowledgement that the calculations contain many un-

certainties. Furthermore, the number of detectable signals of the EMRI signals in

(41) is calculated using event rate estimates and their theoretical SNR, based on

coherent integration.
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The PCA-based search is a different prospect, and it is unclear quite how many

sources may produce detectable signals, and at what rate, since we do not yet have

a robust definition of ‘detection’; so far, our best method for estimating EMRI

signal coalecences within the framework of the PCA-based approach are gained by

examining the SNR measurements by eye.

A cosmological model of EMRI signal sources, their distribution and their pro-

jection into an eigenspace is beyond the scope of this thesis but there is no denying

that without this information it is not possible to accurately estimate the signal

confusion due to multiple EMRI signals. The multiple-signal tests were not without

merit, however; we were able to see the effects of overlapping signals (and it is in-

evitable that should more than one EMRI signal be present during the time LISA

is operational there will be some degree of overlap), and the δ waveforms do show

a situation in which the search method will struggle in its present form. Inevitably

the PCA code will not work under all circumstances, and it may be that the pres-

ence of multiple EMRI signals represent a fundamental shortcoming. Some further

discussion of this issue is given in Chapter 7.

6.4 The antenna pattern

Of all the approximations we have made in our analysis so far, the most obvious

departure from reality is that we have ignored the effects of LISA’s orbit and the

response of the detector. In all previous tests, the detector is considered to be at

the solar system barycentre for the duration of the searchable waveforms, and we

have only examined the h× polarisation of gravitational waveforms. Furthermore,

the response of the detector to the gravitational wave sources is not included in our

analysis. Naturally, lacking these features is concerning. Time constraints prevented

their inclusion into the PCA-based search method outlined in this thesis, but we do

have good reason to believe that the underlying theory and implementation are

sound, and that we can improve on our treatment of the problem by incorporating

new features as time goes on without fundamentally reworking our approach. The

principal components of their signals will remain the basis of our attempts to detect

EMRIs.

Originally, the 80640-sample long waveform segments from which spectrograms

(and then eigenspectrograms) were constructed was chosen almost at random, being

the length segment handled most efficiently by Matlab’s ODE solving process during
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the orbit evolution of the EMRI analytic kludge waveforms. In retrospect this

was probably a sensible choice; the approximately-two-week period that each test

spectrogram covers is much shorter than the orbital period of LISA (one year), so

changes to gravitational strain measurements as a result of the detector response

changing throughout the course of the orbit within the period of a test spectrogram

should be fairly small. Untreated, these changes will be an additional source of noise

that will not be combated effectively by the whitening process currently used since

its spectral shape will change throughout the segment, in turn reducing the SNR of

EMRI signals and thus reducing the possibility of successful signal detections. As

yet the magnitude of this noise is not known.

Additionally, EMRI signals with identical parameters other than the time of their

detection will project into the eigenspace in different ways due to the positioning of

the detector changing, but it is possible that this could be taken into account. While

the PCA approach has so far considered the entire EMRI parameter space, it would

be possible to consider a subspace that did not include source location parameters.

Multiple sets of eigenspectrograms could then be constructed, each corresponding

to a separate region of the sky, and searchable waveforms could be be assessed using

each of the sets. In principal, this could provide a crude method of extracting source

location information based on the signals’ projection into the different eigenspaces,

with the assumption that the residual measurements within the set corresponding

to the correct region of the sky for the source would be smaller than in other sets.

This may not hold true, however; redundancy within the EMRI problem space may

mean an EMRI signals in one location actually projects into an eigenspace in an

extremely similar manner to a different EMRI signal in another location, to the

extent that any differences between the two are overwhelmed by sources of noise.

Against this uncertainty, the extra computational cost of generating -and using-

each of the eigenspectrogram sets is perhaps not a great concern, but if this did

prove to be a valid method real-time searches would be beyond the abilities of a

single desktop computer.

6.5 How to detect the EMRI signals

Having examined major aspects of the waveforms that we will have to search through,

we have reached a stage where we need a workable method to determine whether
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or not we are actually detecting a signal or not. Until now, the residual measure-

ments gained by analysing test spectrograms have only indicated the detectability

of a signal, and our prior knowledge of where the signals are (since we created the

searchable waveforms containing them) allowed us to determine whether or not we

were on the right path.

The coalescence time of an EMRI signal should correspond to the peak of the

SNR measurements around that time, since this is the point at which the signal

projects most completely into the eigenspace. Naturally, this is subject to some

variation because of noise within the searchable waveform, but for a strong signal

the peak should at least provide a good estimate of the coalescence time.

However, the presence of multiple EMRI signals means that we cannot simply

isolate the maximum SNR measurement in a searchable waveform, nor every SNR

measurement above some threshold since this will typically include measurements

leading up to and following the true coalescence time because of the spiked shape

caused by the presence of an EMRI signal. Furthermore, as the β waveforms showed,

the interference between overlapping EMRI signals can cause the SNR of the spikes

to change (and of course increasing the amplitude of the EMRI signals by changing

the source distance will also change the SNR). Nonetheless, in many cases estimating

the number of EMRI signals and their coalescence times seems trivial from a human

perspective; regardless of their SNR, it is fairly easy to pick out likely spikes from

the noise and to see where they peak. We need a way to automate this process.

The first step is to recognise that the peaks of the SNR spikes are simply local

maxima on a curve formed by all of the SNR measurements. We can therefore isolate

them by calculating the gradient of this curve at each point and finding where the

gradient changes from positive to negative. These points are then the estimates

of the coalescence times for the EMRI signals. This is a very straightforward and

computationally inexpensive process, but it is not infallible. The presence of noise

means that measurement-to-measurement we are not dealing with a smooth curve,

producing small variations that are also local maxima in a region where there is an

overall trend in the gradient of the SNR measurements.

Our second step then is to remove these small variations by setting those SNR

measurements below a threshold to zero, effectively smoothing out the line in regions

of low SNR. A robust method to determine the threshold level is not immediately

obvious; while isolated EMRIs can produce high-SNR sharp spikes, this sharpness

changes depending on the search resolution and the signal itself. We have restricted
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ourselves thus far to a limited subspace of the EMRI parameter space, and while

the resulting waveforms do seem to produce an almost characteristic shape as they

project into the eigenspace, we cannot be sure that this will hold true using different

eigenspaces. Therefore, we cannot simply disregard estimates by demanding that

the SNR rises and falls by a some amount within a certain time surrounding a local

maxima (the grammar here betrays this fact; appropriate choices for ‘some amount’

and ‘a certain time’ are unknown).

Instead, we smooth the curve of the SNR measurements by convolving it with

a gaussian window before determining the local maximum. This averages out the

small variations that might cause problems, albeit at the risk of smoothing out some

genuine spikes cause by the presence of an EMRI signal. Fig. 6.31(a) shows this

method applied to a waveform, and the points of local maximum, which we take as

our estimates of the EMRI signal coalescence times.

When applying this process, it became clear that using different window widths

could distort the overall shape of the SNR curve, and that these windows would

also be spanning a different period of time depending on the search resolution (in

effect the resolution of the curve). Furthermore, the use of a gaussian shape for the

window had been selected primarily for computational convenience (being a built-in

function in Matlab), and it would be possible to achieve slightly different results

using different shapes. Nevertheless, we had assumed that the method would be

crude, and at this stage of the analysis we did not have sufficient time to exhaustively

check the effects of changes to the parameters of this method, nor to fully explore

different options (a more thoughtful approach in suggested in Section 7.3, but could

not be implemented properly in time). Therefore our definition of ‘a detection’, and

the application of the smoothing process to searchable waveforms in the following

section were understood to represent a first attempt only due to the pressures of a

deadline, undertaken with the acknowledgement that there were a number of sources

of uncertainty that would have to be examined before it would be suitable even as

a proof-of-concept.

6.6 Final test

We have not been able to exhaustively examine or include the effects of every com-

plication that a realistic searchable waveform may contain, even those we are aware

of, and we are doubtless ignorant of many more. Despite this, we have tested the
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(a) SNR measurements of a searchable waveform containing two EMRI signals and noise.

(b) A closer look at the SNR measurements around the first coalescence time.

Figure 6.31: SNR curve and its smoothed counterpart, with the local maximum used

as estimates of coalescence times. A threshold of SNR = 5 has been applied before

the smoothing to eliminate candidate measurements caused by small fluctuations.
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PCA-based search method in a variety of situations, and have a good notion of what

we looking for as an indication of the presence of EMRI signals.

Therefore, we construct one last set of tests exploring circumstances under which

we hope to justify the use of EMRI spectrogram principal components as a basis for

a search for these sources within gravitational waveform measurements.

A noisy searchable waveform containing multiple signals

The δ waveforms demonstrated a situation in which the PCA-based search was

breaking down, unable to produce distinct dips in residual measurements that would

indicate the presence of an EMRI signal. Although it would be perfectly possible to

use the smoothing method to obtain estimates of candidate coalescence times within

such a waveform, the sheer number of overlapping signals make it difficult to see all

of the EMRI signals even by eye.

Therefore, for a final test of searchable waveforms we constructed ourselves, we

concentrate on β-like searchable waveforms containing two overlapping EMRI signals

and noise. One hundred different noise timeseries, generated in the usual manner,

were added to the signals (this number was decided on based on the available time

and computational resources), and the same smoothing process was applied to each

one in a limited Monte Carlo process that would provide some estimates of the

coalescence times. The two signals were then moved closer together until they ap-

peared to merge. Table 6.4 gives the coalescence times used, with each κ ‘waveform’

actually representing all 100 searchable waveforms with these coalescence times. Be-

cause of the computational requirements of producing and analysing 100 searchable

waveforms, a search resolution of 1000 samples was used (≈ 4.2 hours, see Table

5.2).

One intermediate stage was applied to κ1; different SNR thresholds were applied

prior to smoothing in order see how the number of estimated coalescences changed.

Fig. 6.32 shows how the number of detections drops as the SNR threshold rises,

settling on a threshold value of SNR=5. This value was then used for all of the other

κ waveforms, since it isolated two rough periods of time containing the majority of

the estimates and the true coalescence times.

Widely-separated coalescence times always produced two distinct estimates with

little or no spread (in most cases all one hundred searchable waveforms would settle

on two SNR measurements/test spectrograms as being the most likely candidates
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Searchable waveform tc tc

name (EMRI signal 1) (EMRI signal 2)

κ1 3939600 4239600

κ2 3939600 6369600

κ3 3939600 5154600

κ4 3939600 5139600

Table 6.4: The coalescence times of the two EMRI signals in the κ searchable

waveforms. Coalescence times are given in terms of the waveform time (in seconds).

for the coalescence times), therefore the κ waveforms were specifically constructed

to have significant overlap. κ1 is identical in construction to β6, when the signal

confusion was certainly apparent in the noise-free residual measurements; only the

resolution of the search applied is different.

Remarks on the κ waveforms and the results of the searches

Although crude, the smoothing method applied to fairly strong signals does

appear to produce results close to what we might have expected if we simply looked

at the SNR measurements by eye. Adding different noise timeseries to the EMRI

signals causes test spectrograms to project into the eigenspace slightly differently

each time, so the point of maximum SNR in each spike shifts slightly and hence

the estimated coalescence times shift too. Available resources prevented us from

repeating the searches with better resolutions or with more searchable waveforms,

so it is hard to be confident that the spread in the histograms in Fig. 6.32 Fig.

6.33 is anything other than a very rough indication of what might be produced if we

had the luxury of more time. However, the behaviour of the histograms as the true

coalescence times get closer together is interesting. Distinct regions of estimates

being to merge and it becomes first difficult and then impossible to tell them apart,

replaced with a single region with many possible coalescence times (as shown in Fig.

6.33 with the κ4 waveform).

Again, this is expected behaviour. If we consider the separation of the EMRI

coalescence times, given a search resolution of 1000 steps and a step size of 15

seconds, only κ1 has the signals separated by significantly longer than the width of

the window used to smooth the measurements. κ2 separations are only somewhat

larger than this size, and κ3 is approximately equal to the window width. By κ4,
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Figure 6.32: Histograms of the estimated coalescence times of the 100 κ1 searchable

waveforms, after smoothing the SNR measurements and applying an SNR threshold

below which candidate detections were ignored. The number of estimates at a given

time, labelled here as ‘Detections’ 1, 2 and 3, correspond to a threshold of SNR =

1, 3 and 5 respectively.
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Figure 6.33: Histograms of the estimated coalescence times of the 100 κ2, κ3 and

κ4 searchable waveforms, after smoothing the SNR measurements and applying an

SNR threshold of 5.
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Figure 6.34: SNR measurements of the κ waveforms. As the overlap between the

EMRI signals increases, the previously-distinct local maxima merge and become

indistinguishable.

the two coalescences are separated by only 1000 data points in the timeseries, and

it is therefore no surprise that the smoothing will see this as being part of the same

feature. At this point, it seems clear that the spread in coalescence time estimates

are caused by the changing noise used in each of the κ4 searchable waveforms.

Certainly, our eyes can do no better by this stage. Fig. 6.34 shows the SNR

measurements from one example of each of the κ waveforms. κ1 clearly contains

two distinct peaks, and they can be seen with difficulty in κ2, but beyond this point

there appears to be only one feature.

Thus we remain confident that the PCA-based search and the resulting mea-

surements will allow us to make quick estimates of the coalescence time of EMRI

signals provided that they are sufficiently separated in time, but it requires a more

sophisticated effort to increase the accuracy of the estimates (conceivably, one sim-

ple step towards this goal would be to attempt the searches with better resolution).

In addition, when faced with a cluster of points as given by the κ4 histogram, we

would be able to determine how likely it was that we were seeing a multitude of

overlapping sources, or simply a couple of sources affected by noise.

Similarly, a better method of determining the existence and significance of local



6.6 Final test 207

maxima is desirable. Even above a certain threshold there are persistent estimates

that (because we constructed the waveforms) we know are false positives, and the

current SNR threshold was applied with little thought (and considerable prior knowl-

edge about the expected output). There is also a bias towards the estimates being

applied to the first of the coalescences when the signals are close together; as the

first drops out the SNR falls, causing the spike to appear to peak at the first co-

alescence. These problems would be particularly troublesome in situations such as

those in the δ waveforms, and if this is a likely scenario then there is a great deal

more work necessary before the methods used so far could provide reliable estimates

of the existence and coalescence times of EMRI signals.



Chapter 7

Conclusions

Previously, we stated that the analysis of gravitational wave data posed a formidable

task, with some different challenge from those inherent in observing electromagnetic

signals (in addition to the extreme difficulties of measuring the data itself). Thus,

our intention was to investigate unconventional analysis techniques with an emphasis

on quick search methods. Our goal was to determine what, if any, useful information

could be extracted from simulated gravitational wave data from such searches.

From the beginning, there was no realistic expectation that our simple ap-

proaches would return all of the information available from each source, nor that

the signals produced by these sources would necessarily be yield to the proposed

search methods. While these predictions proved largely accurate, the analysis did

produce some surprises and suggested that certain aspects of the work did merit

further consideration.

The following chapter provides an overview of the results of the research in this

thesis, and attempts to place them within the context of the wider gravitational

wave data analysis community and their efforts. This is followed by a number of

recommendations regarding future work on the research presented.

7.1 Thesis summary

The rapid search in Chapter 2 proved to be a rather inaccurate method for detecting

SMBH inspiral signals, and required too much user input to be deemed robust.

Thresholding the sum power measurements over a user-defined level, isolating a

particular band of frequencies to examine and automatically merging the inspiral

times for candidate detections within a certain period of time; the grammar itself
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betrays the subjective nature of the process. In short, our approach was too simple.

Nevertheless, the rapid search did highlight some of the difficulties in manipulating

the gravitational wave data. Furthermore, it made us consider a visually-orientated

approach to detection; we relied on a characteristic shape of a signal in the MLDC

challenges which we could see by eye in the spectrograms of the datasets, at least

for strong signals.

We carried this focus over in our consideration of the EMRI gravitational wave

signals. With a much wider parameter space to consider, our least-squares fit method

employed in the rapid searches of Chapter 2 was going to be computationally unfea-

sible, but the inability to see the waveforms within MLDC challenge spectrograms

by eye demanded an alternative approach. It was the high signal-to-noise ratio

of the SMBH binaries that allowed us to extract the shape of the signal from the

background. Only by examining the analytic kludge waveform spectrograms them-

selves (such as those in Fig. C.22) and noting their visual similarity did we convince

ourselves that there might be exploitable features within the EMRI signals.

The principal component analysis outlined in Chapter 4 provided a framework

with which we could measure the similarity of EMRI spectrograms and construct a

new parameter space spanning them. Although it would have been possible to im-

mediately apply this theory to EMRI spectrograms, we could not predict the likely

behaviour of the iterative PCA method constructed; it would have been difficult to

locate faults in our algorithms. Thus we decided to implement our process using

spectrograms of simple sinusoids; their construction was fast and easily understood,

and a variety of different situations could be explored in a well-controlled manner.

Additionally, we believed that they were sufficiently similar to the EMRI spectro-

grams (in particular the quasi-monochromatic sinusoids of Section 4.2.1.3). Only

after we assured ourselves that the PCA process behaved as we believed it should

did we feel confident about examining the EMRI spectrograms.

Results of the initial tests of PCA on EMRI spectrograms convinced us that the

problem space could not be easily spanned, and that our focus would be necessarily

restricted to a small region of parameter space (rather, in the context of PCA, a

small number of training points from the problem space and the space spanned by

the signals they contained). A large number of aspects of the EMRI signals required

attention

With a firm grasp of the behaviour of the PCA process and the response of

EMRI spectrograms to it, we were then able to turn our attention to the prospect of
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actually searching for signals of this type within a dataset. Our search method also

required testing under a number of circumstances, each producing slightly different

output that we sought to understand.

Finally, Chapter 6 detailed attempts to make the searchable waveforms more

realistic, and determine the performance of the search method in more challenging

situations. Our efforts to ameliorate the difficulties encountered by the original

iteration of the search method, and convert the output into a detection algorithm

are included as well.

7.2 Using the results

The collaborative nature of gravitational wave data analysis has been stressed through-

out this work, and the research within would certainly be impossible without the

firm foundation of others within the wider community (in particular, the analytic

kludge waveform generation method). Therefore, we must consider how best to use

the results to contribute to the wider pool of knowledge.

We were unable to completely span the EMRI problem space with available

computing resources, but an extension of the PCA applied to a large parameter

space (as demonstrated in Fig. 4.47) which would completely span this space (to

within a given residual threshold) could reduce the necessary computational power

needed to perform different searches from the method describe in Chapter 5. Because

the PCA reshapes the parameter space that has to be examined, it makes sense to

conduct searches within this new space rather than attempting to convert our results

back into the original parameter space.

Alternatively, our estimates of the coalescence times and the number of ‘events’

are most useful as starting points in a more thorough search. We have already ruled

out exhaustive searches through EMRI parameter space, but they would be useful

initial states of an MCMC search within this parameter space. Although its use

is much more widespread within the field of social sciences, PCA has not received

a great deal of attention in the gravitational wave data analysis community; as a

result, PCA-based searches may be difficult to integrate with other types of analysis.

A significant drawback to the PCA is that by throwing out the redundant infor-

mation, it is difficult to extract parameters from a signal based on its projection into

a constructed eigenspace. The weights of a projection do provide a ‘fingerprint’ for
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that signal, but it is not unique except in those cases where the eigenspace is as large

as the original parameter space (making the PCA a rearrangement of the original

information without discarding anything). In its current form, spectrogram classes

can provide a starting point for all parameters defined by the original parameter

space, but there is the difficulty of deciding which signals actually define the classes

and how distant they should be from each other; if multiple signals widely separated

in the original parameter space project into an eigenspace in an identical manner

then there are multiple choices for the parameter values used to define that class.

Despite the challenges of constructing the EMRI eigenspace, the PCA-based

search does provide some quick estimates, with a minimum amount of prior knowl-

edge about the signals it is searching for. In these respects, we have maintained our

stated focus of our research into gravitational wave data analysis. The results show

that our approach is unlikely to supplant current analysis, but there is hope that

it may prove complimentary to these efforts or can be utilised by them as initial

estimates (see the next section for a roadmap of future work). Nothing in the work

done suggests that PCA is a limited method, or that there is some inherent difficulty

in applying it to EMRI spectrograms, but further work is required to prove that it

is a useful tool for gravitational wave data analysis.

7.3 Future work

As presented, the PCA-based search algorithm is not a robust method for detecting

EMRI gravitational wave signals in its present incarnation. However, the results

from the initial tests do suggest that the signals are amenable to PCA and that

the parameter space does contain redundancy that can be exploited. Thus, there is

no fundamental reason to advocate abandoning this avenue of research in order to

develop the method further. A number of limitations have already been identified

in the main body of this thesis, and this section suggests some improvements that

must be resolved before we can have real confidence in the viability of our approach.

It should be reiterated that PCA is all ‘up-front’ effort; the construction of the

eigenspace is by far the most computationally expensive part of the process, and

must be done iteratively. As the eigenspace expands, the process becomes slower and
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more memory intensive. In Section 4.3.3, we stated that the necessary resources were

beyond that of a standard desktop computer, but there is room for improvement to

our procedures if we could access greater resources.

Generating the EMRI waveforms is particulary time consuming, but in fact all

we require is that these waveforms are presented to the PCA algorithm in the cor-

rect format (that is, a timeseries with the correct sample frequency in a data format

that Matlab was able to read and store as an array). Therefore, it would be possible

to have a CPU dedicated solely to producing test waveforms and passing them to

another CPU dedicated to producing the eigenspectrograms. It is also possible to

have multiple CPUs generating their own smaller eigenspectrogram sets before com-

bining them, in much the same way as shown in Fig. 4.41 but eventually combining

multiple E4 sets to make a larger eigenspectrogram set. Only the redundant infor-

mation is discarded at each stage, and there will be redundancy in the combined

sets that must be removed by calculating their eigenspectrograms.

Eventually, we still require a system that can determine the eigenvectors of the L

matrix (see equation 5.1 - 4.11). Further, projecting new signals into the eigenspace

means that the entire set of eigenspectrograms must be able to be held in memory or

loaded in piece by piece. The former method is faster but more memory-intensive,

the latter uses less memory but is slower.

Because we were unable to completely span anything but small subspaces of

the EMRI parameter space, the notion of spectrogram classes was not particularly

useful. However, if we imagine a situation where the entire problem space is spanned

by a constructed eigenspace, they can make a valuable contribution.

If we store individual EMRI spectrograms, we can re-project them into the now-

complete eigenspace, creating fingerprints for each one. Many will be similar, and

can be used to determine a number of spectrogram classes separated by a distance

of at least ε2 (see equation 4.16). As stated previously, new test spectrograms that

project close to one of these classes in the eigenspace are not necessarily close in

terms of the original parameter space. However, if we were interested in passing on

starting values to an MCMC search in the original parameter space, we could advise

that there are multiple possible starting points, each of which could be used to start

a separate chain (in an extreme case where two signals project in the exact same

way, either would be equally valid starting points).



7.3 Future work 213

The inclusion of spectrogram classes also reintroduces the possibility of iden-

tifying those spectrograms that would cause false alarms by projecting into an

eigenspace in a reconstructible manner but far from a defined spectrogram class.

Although our initial tests did not allow for this possibility, being able to identify

such signals would be an important step towards making the PCA more useful.

Finally, it may be that there are small parameter ranges shared by spectrograms

within an individual spectrogram class. This was not explored during the research

presented, but it is possible that performing principal component analysis on the

parameter values themselves would reveal common traits. In fact, this is a much

more traditional approach to PCA; numerous observations of a few parameters (14,

in this case), rather than in our setup where we have a few observation of an unknown

number of ‘parameters’ (each time-and-frequency bin of the spectrograms).

So far, we have not made use of realistic noise in the searchable waveforms.

The approximations used in Chapter 6 were useful to demonstrate the behaviour

of the PCA search when a candidate signal was hidden in noise, but we saw that

different noise profiles altered the way that a signal projected into a constructed

eigenspace (the difference between the original power spectra and those with low-

frequency suppression). Thus, basing a search method on that type of projection

is not appropriate if the true noise profile is different. Further, when whitening the

segment spectrograms we used our approximated noise profile: if we tried this when

the true noise profile was different we risk obscuring an EMRI signal present in the

timeseries rather than highlighting it.

Therefore, an understanding of the noise detected by LISA is crucial for con-

structing the eigenspace and searching timeseries for EMRI signals. Realistic noise

may not be gaussian or stationary as we have assumed throughout this work, and

when we include accurate orbital information for the spacecraft we will certainly see

a periodic change in the noise strain measurements as they orbit the sun throughout

the duration of the mission. There may even be changes to the expected instrumen-

tal noise as a result of design changes between now and the time the mission get

underway.

However, the somewhat modular nature of the PCA-based search described in

previous chapters is helpful here. The PCA does not know what it is using to

contruct the eigenspace, it is up to the user to provide meaningful information. If

we can generate more realistic noise timeseries, we can proceed in the same manner
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as before, but it would be wise to repeat some (or all) of our initial tests to check

that signals present in this new noise projected into eigenspaces in a meaningful

manner (that is, distinct from the noise itself).

Another significant limitation is that we have not yet properly adapted our anal-

ysis to the actual strain measurements that will be recorded by LISA, instead lim-

iting ourselves to the h× strain produced by EMRIs as detected at the solar system

barycentre. As well as the effects of the antenna pattern, we recognise that the strain

measured by the spacecraft will combine the two polarisations of the gravitational

wave.

In this matter, the way to proceed is not clear. If we could accurately account for

the antenna pattern, we could analyse strain measurements at each spacecraft and

look for coincident events. This would require determining the eigenspectrograms

of combined polarisations of EMRI signals, and how this might be accomplished

is not yet known. One crucial aspect of the PCA method is that the algorithm

does not actually know what signals in the spectrograms actually are; as far as it is

concerned they are simply an array of information (which is reshaped into a column

vector). PCA reveals redundancy in the signals it is presented, so as long as we give

it ‘correct’ spectrograms we will get meaningful output.

This has some significance beyond our concerns about what the signals look

like to the detectors. The PCA method we use is essentially pattern-matching,

and as a result if EMRI signals actually look different from the analytic kludge

waveforms they will not project into whatever eigenspace we construct. If more

accurate waveforms than the analytic kludge forms can be easily generated then

they can simply replace the latter.

In a related manner, if the beginning or end of the EMRI signals exhibit be-

haviour that was not particularly redundant (the zoom-whirl behaviour towards the

end might satisfy this concern, but this works as a general principle), this could

actually be eliminated by simply not including it in the test spectrograms. As a

result, the projection of a signal would be closest to the eigenspace for a section of a

searchable waveform that did not include this behaviour. As a result, we would be

providing estimates for when the signal began to display this behaviour rather than

coalescence time. By ignoring this behaviour, we would surely be throwing away

some useful information, but this might be preferable to not being able to span the

eigenspace at all.
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Of particular concern is the ability to recognise the presence of multiple signals

within a searchable waveform based on on their residual measurements (and by

extension, the SNR measurements) needs significant improvement. The smoothing

procedure coupled with detecting local maxima is a crude first attempt, but struggles

with multiple signals or those with significant overlap. However, there is considerable

expertise within the gravitational wave data analysis community with regards to

Bayesian analysis which might help implement a more meaningful search method.

Currently, efforts concentrate on follow-up studies of candidate detections (54), and

have applied MCMC searches to MLDC data sets (55), and there are a number of

sophisticated refinements to the basic MCMC search method (see Section 1.2.4.3).

Nevertheless, Simha (X..a) investigated a Bayesian approach to determining the

number of discrete sinusoids within a data stream (with an eye towards applying

the method to LISA data), a process that might be readily adaptable to the EMRI

search SNR measurements, revealing how many EMRI signals there are within a

searchable waveform. Though basic, it is valuable introductory material given the

similarity of the problem it considers to the EMRI signals and provides an instructive

initial framework for a search.

If we assume that the presence of an EMRI signal within a searchable waveform

produces a ‘characteristic’ shape in the recorded SNR measurements (we have al-

ready seen the spikes, asymmetrical about the coalescence time, in our initial tests;

see Fig. 6.20 and Fig. 6.19(a)), we can model this data D as a sum of M such shapes

with different coalescence times and amplitudes, along with random Gaussian noise

n. The model data for a particular combination of coalescence times and ampli-

tudes, F, is a summation of these shapes without the noise. To model the shape

itself we would create a look-up table β showing the response of the PCA-based

search to the presence of a single EMRI signal in a searchable waveform. Fig. 7.1

shows the normalised SNR of ten strong EMRI signals (reducing the effect of the

noise on the shape), and the mean value of these ten. The relevant parameters will

definitely include the amplitude of the shape’s peak (A) and the coalescence time

with respect to the waveform time (tc), although there may be others that we have

not considered.

Therefore, we have

D =
M∑
k=1

Akβ(t− tck) + nk (7.1)
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and

F =
M∑
k=1

Akβ(t− tck). (7.2)

We want to determine the probability distribution of M, by calculating the

probability of a particular value of M within the SNR measurement dataset. In

terms of Bayes’ theorem (see Section 1.2.4.3), we want to calculate

p(M|D, I) =
p(M|I)p(D|M, I)

p(D|I)
. (7.3)

We can immediately assign a uniform prior since we have no preference for a

given number of EMRI signals within a dataset, and we can express the likelihood

as a marginal integral over our parameters and utilising the probability product rule

p(D|M, I) =

∫
...

∫
p(D, Ak, tck |M, I)dMAkd

M tck

=

∫
...

∫
p(Ak, tck |M, I)× p(D|Ak, tck ,M, I)dMAkd

M tck . (7.4)

Again, we have no preference for a particular amplitude or coalescence time, so we

assign a uniform probability distribution to p(Ak, tck |M, I) for amplitudes between

0 and some value Amax, and for a coalescence time between 0 and the period covered

by the searchable waveform tmax.

The last hurdle is to determine p(D|Ak, tck ,M, I) = p(D|{F},M, I), which we

do by assuming that each SNR measurement is independent and that the noise in

each is representable using a gaussian distribution. Hence,

p(D|{F}, I) =
1

σ
√

2π
exp

−
(
F−D

)2

2σ2


(7.5)

and therefore

p(D|{F},M, I) α exp

[
−(χ)2

2

]
(7.6)

with

χ2 =
∑(

F−D

σ

)2

(7.7)
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Figure 7.1: Normalised SNR measurements of ten searches for EMRI signals with

randomly-chosen CO mass values (all other values correspond to those in the set Υ).

The coalescence time for each signal is the same (tc = 7869600 seconds), and the

eigenspace they are projected into is that constructed from the set Υ. There is no

definite characteristic shape to the measurements, but they are very similar and all

ten searches are not distinct. The mean normalised SNR is also included (in blue),

a first approximation of a characteristic shape.

where the summation is over the i SNR measurements (from the i segments of the

searchable waveform).

Finally, we now have

p(M|D, I) α
1

(Amaxtmax)M

∫
...

∫
exp

(
−χ2

2

)
dMAkd

M tck . (7.8)

To find the probability distribution for the number of sources, we perform the in-

tegrations over the defined parameter ranges for different values of M, and plot

the probabilities. The peak of this plot should reveal the most probable number of

EMRIs within the searchable waveform.

A number of problems immediately suggest themselves. Firstly, our noise is not

independent since the measurements are based on searchable waveform segments
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with a great deal of overlap. However, the major drawback is our uncertainty about

the suitability of our model data. We do not have a clear understanding about

its form, and the mean characteristic shape in Fig. 7.1 would only be a crude

approximation. Further, we are basing even this on results from our initial tests; a

spanned eigenspace might create an entirely different shape when spectrograms are

projected into into it. It may be that a characteristic shape does not exist at all, or

that several further parameters are required to defining it, increasing the scale of the

numerical integration required (it seems likely that some sort of ‘width’ parameter

for the characteristic shape would be required).

Unfortunately, even if we are comfortable with these uncertainties, the compu-

tational effort of numerically integrating over the desired parameters may be far too

large to handle. The range of amplitudes itself is likely to be very large (as seen

in Fig. 6.20) and the coalescence times could be at any point in the data stream

(recall, approximately one year of LISA data ≈ 221 data points at the design sample

rate). If these are indeed the only two significant parameters, we still require an

integral sum over 2M parameters.

This is not the end of the matter, however, since we could carry out an MCMC

search throughout our parameter space to determine the correct probability distribu-

tion. Once again, techniques already developed by gravitational wave data analysts

could help make performing this kind of search more effective. Several improvements

to a basic MCMC have been explored, including reverse jump MCMC (where the

characteristic shape model itself is a parameter and the search can jump between

different model), and parallel tempering (changing the likelihood surfaces to allow

easier access to hard-to-reach areas of the parameter space); (56) and (24) provide

an introduction to these techniques and how to implement them, while (57) and (58)

discuss the use of the Blocked-Annealed Metropolis Hasting algorithm (BAM) and

Delayed Rejection schemes respectively. Nevertheless, even in a rudimentary form,

this approach seems extremely computationally expensive, and a more careful anal-

ysis of the situation would be necessary before we attempt to implement the outlined

approach. This would also provide an indication of which improvements to the basic

MCMC search could be usefully applied, since the aforementioned techniques are

just some of many available. Finally, we may even decide to consider other types of

algorithm that examine multi-modal likelihood surfaces such as MULTINEST (59).
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A roadmap for future work

So far, we have only been able to apply our PCA-based approach to a small num-

ber of situations involving EMRI signals, as well as our basic tests on sinusoid-based

spectrograms. Whether dealing with limited parameter spaces or approximations of

noise present in our timeseries, we have been conscious that our techniques, however

promising, will require further work before we can use them to produce astrophys-

ical estimates. This final section presents a brief guideline for how to go from our

current efforts towards this goal.

• Firstly we must extend the parameter space from which we extract our trial

spectrograms and create an eigenspace. Doing so will show the long term

behaviour of the residual measurements and a more accurate estimate of the

number of eigenspectrograms needed to span the EMRI problem space that

that provided by examining Fig. 4.47. To do so we will need a more efficient

storage system, the patience to undergo a large number of iterations, or a larger

memory capacity than available on a standard desktop computer. Ideally,

we will be able to draw parameters for trial spectrograms from a significant

fraction of the problem space.

• Next, we must check the behaviour of our PCA-based search method using

this expanded eigenspace and a large number of timeseries containing different

EMRI signals. Determining whether it follows the behaviour presented by our

limited searches will allow us to feel confident about the basis of those searches,

or force us to reexamine how to search for signals using the eigenspectrograms.

Thus far the PCA-based searches presented in Chapter 5 appear promising,

but we cannot be sure that EMRI signals will project in a distinguishable

manner (compared to noise signals, say) when drawn from a larger problem

space.

• If no major problems have been posed by the previous steps, we would desire

definitions of spectrogram class for different EMRIs. This may allow us to de-

termine correlations between particular parameters and their projection into

the eigenspace (all high-eccentricity EMRIs may project in a similar manner,

for example). If this does not occur it will inform us that it is not possible to de-

termine characteristics of an EMRI system based on the principal components
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of the resulting waveform. However, if there are clear spectrogram classes, we

can use projections of new spectrograms to determine possible starting points

(or significant ranges in parameter space) for other search methods, such as

MCMCs.

• To make our searches more realistic, we can repeat the eigenspace generation

and searches using more accurate waveforms (if they become available) as

well as more accurate representations of the noise detected by LISA, and the

effects of the antenna pattern on signals. This will allow us to present a

more realistic scenario for our search method to work on, and more authentic

representation of spectrograms’ projection into an eigenspace (as well as a

more complete eigenspace). Further, we would want to use the information

from both gravitational wave polarisations rather than discarding one.

• We would then look at the EMRI signals and their principal components un-

der a number of circumstances, to see how our techniques worked in different

regimes (other than our test case, where we examined a two-week period lead-

ing up to the coalescence of the compact object and the supermassive black

hole). Amongst others, we would look at the principal components of spectro-

grams covering different lengths of time (shorter, and longer, and at different

times leading up to the coalescence), examine the effects of changing the sam-

ple frequency, and more thoroughly investigate the effect of signal-to-noise on

the projection of signals into the eigenspace. It would also be worth applying

PCA to gravitational wave signals from different types of sources: the same

approach may be able to be used to search for these sources, and there may

be some overlap of eigenspectrograms with those of the EMRIs, which would

need to be examined carefully.

• Finally, we would look at our ‘detection’ method again, in an attempt to find

a better way to determine coalescence times and numbers of sources more

accurately. This may involve refining the smoothing technique, or adopting a

Bayesian framework of some kind. This would be a significant change to our

current situation, since our detection method is in a rather rudimentary stage.

Ultimately, the desired end product would be a bank of eigenspectrograms that

spans the EMRI problem space. Additionally, we would be able to account for
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or adapt to the distortions to EMRI signals caused by noise and the effects of

LISA’s orbit. Then the projections of LISA data into the eigenspace could be used

to indicate the presence, and number of, EMRI signals in that data, and provide

estimates for the coalescence times of the signals. Depending on the nature of the

projection, we may also be able to suggest possible parameters for the EMRIs, or

at least regions of the parameter space they might inhabit.

This information would likely be passed to a matched-filtering search, using

templates generated by selecting parameters suggested by a MCMC search through

the original parameter space (or an alternate search technique based on moving

around the parameter space in such a manner that we home in on the correct

parameter values). The PCA-based search would only be a part of a hierarchical

search for EMRI signals, but would prevent us from searching exhaustively through

the original parameter space.

There are significant obstacles to turning our PCA-based search method into a

viable means to detect the presence of EMRI signals within LISA data, still more if

we want to produce estimates for anything beyond the coalescence times of our de-

tections. However, we still believe that the basic procedure is worth taking further,

and will be able to contribute to the wider gravitational wave data analysis commu-

nity’s efforts confirm the existence of gravitational waves. The inherent difficulties

in making such a confirmation should not dampen our enthusiasm for pursuing that

goal.
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Recalculating noise

In Chapters 2 and 6.2 we required the ability to add noise to particular datasets,

without an obvious method for generating a suitable timeseries from scratch. There-

fore, we attempted to generate noise datasets based on existing examples of noise.

We required a noise curve; strain amplitude measurements at given frequen-

cies covering the frequency range under consideration (0−33 mHz in the case of the

MLDC datasets). Thankfully the MLDC provided an accompanying noise-free time-

series for each of the noisy training datasets (useful for testing analysis techniques

in more idealised situations), allowing us to extract a noise-only timeseries.

It was then possible to extract a noise curve from a spectrogram of this noise-

only timeseries, averaging the strain power throughout the period covered by the

timeseries, from which we could then determine the average strain amplitudes easily.

The stationary nature of the LISA noise allowed us to do so without worrying that

we were averaging over some modulating effect.

The noise was also designed to be gaussian in nature, and the absolute values of

our strain amplitudes provided a measure of the standard deviation σ of the noise

curve at each frequency. Therefore, we generated a vector of normally-distributed

random numbers with standard deviation equal to the σ values. A partner vector of

imaginary numbers representing randomly chosen phases was also generated at this

time, in the same manner. The two vectors were combined into a single array with

each frequency having a real and imaginary component to the strain amplitude, and

an inverse Fourier transform of this array produced a new noise timeseries, with the

same spectral shape as the original. To construct a new noisy timeseries containing
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a signal, we had only to add the noise-free timeseries with that signal to our new

noise timeseries.

The key benefit was flexibility. The algorithm used merely required a noise

curve, but was indifferent as to its origins. Therefore, the difference between the

MLDC Challenge datasets 1.2.1 and 2.2 for example simply required regenerating

some noise used the relevant noise-only dataset (in this manner, the presence of

additional signal sources such as the white dwarf binaries in Challenge 2.2 did not

trouble us since they formed the signal part of the operation, and were removed

from the original noisy timeseries in exactly the same way as the signal timeseries

lacking these sources in Challenge 1.2.1).

Fig. A shows an original timeseries (that of MLDC Challenge 1.2.1) and a

newly-generated noise. The spectrograms of those timeseries is shown in Fig. A.

In Chapter 2, the noise in the MLDC datasets was originally generated by the

LISA Simulator ((W..t),(60)) or Synthetic LISA ((W..r), (61)) programs, but at

the time of creating the Rapid Search Method we were unable to integrate either of

these programs into our search algorithms. Thankfully, the inclusion of noise-free

datasets along with the noisy datasets allowed us to determine noise-only datasets

by simply subtracting the former timeseries from the latter, after which we were

able to follow the ‘recipe’ above.

When we were required to generate noisy timeseries in Section 6.2, the approach

was fundamentally the same as before, except that we did not have to extract the

noise-only timeseries from MLDC datasets. Instead we used a timeseries generated

by using the ‘Sensitivity Curve Generator for Spaceborne Gravitational Wave Ob-

servatories’ ((W..q), which produces strain amplitude measurements, (62) and (63)

describe the procedure in greater detail).

Being given the strain amplitude measurements to begin with removes the need

to deal with averaging strain power measurements, but the response of the detector

has been averaged over source direction and gravitational wave polarisation, and

therefore provides only an approximation to the real noise timeseries that might be

detected by LISA. However, we have already introduced approximations such as ig-

noring the contribution of gravitational wave signals from other non-EMRI sources,

and treated the h× and h+ polarisations of the gravitational wave as completely sep-

arate. Thus, we had already resigned ourselves to the fact that analysing searchable
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(a) Original MLDC Challenge 1.2.1 noise timeseries

(b) Newly-generated noise timeseries

Figure A.1: The noise timeseries given by MLDC Challenge 1.2.1 (red), and a new

noise timeseries generated strain from this (black).
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(a) Original MLDC Challenge 1.2.1 spectrogram

(b) Newly-generated spectrogram

Figure A.2: A spectrogram of the original noise timeseries given in Fig. A.2(a), and

a spectrogram of the regenerated noise timeseries in Fig. A.2(b).
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(a) Original strain amplitude sensitivity curve

(b) Newly-generated strain amplitude sensitivity curve

Figure A.3: A strain amplitude sensitivity curve from the Sensitivity Curve Gen-

erator (red) is shown in Fig. A.3(a), while Fig. A.1(b) displays an average of ten

regenerated strain amplitude spectrums, showing that the two match closely.
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waveforms including EMRI signals and noise was only going to provide an estimate

of the output we might produce if the PCA-based search was applied to real data.

The final difference between the regeneration in this situation was that the origi-

nal amplitude strain did not provide the desired frequency resolution, requiring us to

use linear interpolation to achieve this. While this is another source of uncertainty,

we felt that it would not be a significant one.

Fig. A shows the strain amplitude noise curve used to add noise to the EMRI

signal searchable waveforms, and the average of 10 noise curves constructed from

newly-generated timeseries, while Fig. A shows a timeseries generated using the

original noise curve according to Larson’s generator as well as one using the method

described.

The drawback to regenerating and adding the noise in this manner is that there

is an element of treating the process like a black box. It was beyond the scope of

this thesis to thoroughly investigate the noise in LISA; its inclusion was designed to

provide support for proof-of-concept of the SMBH rapid search and the PCA-based

EMRI search. In this regard, the approach used provided suitable approximations

of real noise consistent with those previously used, but it does not speak to the

appropriateness of those original sources.

Nevertheless, one of the strengths common to both searches is their modular

construction. Changes to the expected noise, whether a result of new TDI combi-

nations or an alteration in the strain sensitivity, can be easily incorporated into the

algorithms. Although some work was done regarding the effects of whitening the

noise (and noisy signals) and low-frequency noise suppression, a more exhaustive ex-

amination is required to provide strong support the two search methods outlined in

this thesis. Furthermore, the expertise of those involved in constructing the original

noise timeseries allows us to be confident in the suitability of our methods.
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(a) Original sensitivity curve timeseries

(b) Newly-generated sensitivity curve timeseries

Figure A.4: A noise timeseries generated using the Sensitivity Curve Generator

(W..q) (in red), and a new noise timeseries from the regenerated strain amplitude

spectrum (in black). The first 1000 points are displayed.
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The ‘eig’ function in Matlab

As presented in this thesis, the calculation of the eigenvectors and eigenvalues using

Matlab is treated as a black box; we trust it to return meaningful, accurate out-

put but do not consider the precise method of operation. While the alternative -

designing a solving algorithm from scratch - was impractical, it seemed prudent to

include some additional details in the event that concepts within the main body of

work were reused or continued with different software.

The intent here is not to suggest that the author has a full understanding of the

algebraic techniques involved in the solving algorithm. Time constraints prevented a

more thorough investigation of the algorithm and the sources of error that prevented

residual measurements of training spectrograms to better than R ≈ 10−14; the

assumption being that the theory behind the methods presented in the thesis were

not at fault, and that the next step would be to look more closely at the precise

methods of calculation.

From version 6.0 (R12), the Matlab software uses the Fortran90-based LAPACK

routines library (Linear Algebra PACKage) for a number of linear algebrabic manip-

ulations of data; the ‘eig’ function which produces the eigenvalues and eigenvectors

of relevant matrices itself calls different subroutines depending on the form of the

matrix. Specifically, our inputs were designated the domain of the Symmetric Eigen-

problems (SEP) subroutines. At this stage the documentation is a little unclear, but

the specific subroutine is labelled DSTEQR, an application of the QR algorithm.

The QR algorithm itself is a process to provide a Schur factorisation of a matrix,
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from which the eigenvalues and eigenvectors can be extracted easily. This involves

iteratively describing the matrix as the product of an orthogonal matric and an

upper triangular matrix until there is a convergence towards one triangular form

for the matrix, and specifically this process involves first transforming the matrix to

upper-Hessenberg form using Givens rotations. Latini ((W..u))gives an overview of

the process and additional material regarding the QZ method used in the generalised

eigenvalue problem.
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Appendix C

Spectrograms and

Eigenspectrograms

C.1 Monochromatic sinusoid eigenspectrograms

The complete set of eigenspectrograms constructed from the set of spectrograms

in section 4.2.1.1 are displayed in Figs. C.22 - C.10. The visual representation of

the eigenspectrograms has been included for completeness’ sake, and the meaning-

ful information it imparts is discussed in the main body of work. To aid clarity,

‘eigenspectrogram’ has been contracted to ‘espec’ and the power measurements of

each group of eigenspectrograms are displayed by the final colour bar.

C.2 Quasi-monochromatic sinusoid eigenspectro-

grams

The complete set of eigenspectrograms constructed from the set of quasi-monochromatic

spectrograms with a uniform frequency change as described in section 4.2.1.3 are

displayed in Figs. C.11 - C.20. The rate of change of frequency, ḟ = 0.0977Hzsec−1

in this case. The visual representation of the eigenspectrograms does not provide
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Figure C.1: The first ten eigenpectrograms generated by the set of single-frequency

sinusoids (see 4.2.1.1)
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Figure C.2: Single-frequency sinusoid eigenspectrograms 11-20.
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Figure C.3: Single-frequency sinusoid eigenspectrograms 21-30.
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Figure C.4: Single-frequency sinusoid eigenspectrograms 31-40.
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Figure C.5: Single-frequency sinusoid eigenspectrograms 41-50.
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Figure C.6: Single-frequency sinusoid eigenspectrograms 51-60.
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Figure C.7: Single-frequency sinusoid eigenspectrograms 61-70.
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Figure C.8: Single-frequency sinusoid eigenspectrograms 71-80.
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Figure C.9: Single-frequency sinusoid eigenspectrograms 81-90.



C.2 Quasi-monochromatic sinusoid eigenspectrograms 242

Figure C.10: Single-frequency sinusoid eigenspectrograms 91-100.
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much meaningful information, and has been included for completeness’ sake, al-

though they do appear similar in many respects to the eigenspectrograms from the

monochromatic spectrograms (see C.1). To aid clarity, ‘eigenspectrogram’ has been

contracted to ‘espec’ and the power measurements of each group of eigenspectro-

grams are displayed by the final colour bar.

C.3 Spectrogram samples

A set of eight spectrograms (see Fig. C.21) created from approximately 2-week long

analytic kludge waveforms in the manner described in section 4.3. The parameters at

time t0 are provided in Table C.1, and were drawn randomly from the same region of

parameter space as those in Section 4.3.3 using the same parameter resolution. Eight

randomly-selected eigenspectrograms from the set produced by the PCA method are

shown in Fig. C.22.
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Figure C.11: The first ten eigenpectrograms generated by a set of quasi-

monochromatic sinusoids (see 4.2.1.3).
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Figure C.12: Quasi-monochromatic sinusoid eigenspectrograms 11-20.
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Figure C.13: Quasi-monochromatic sinusoid eigenspectrograms 21-30.
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Figure C.14: Quasi-monochromatic sinusoid eigenspectrograms 31-40.
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Figure C.15: Quasi-monochromatic sinusoid eigenspectrograms 41-50.
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Figure C.16: Quasi-monochromatic sinusoid eigenspectrograms 51-60.
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Figure C.17: Quasi-monochromatic sinusoid eigenspectrograms 61-70.
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Figure C.18: Quasi-monochromatic sinusoid eigenspectrograms 71-80.
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Figure C.19: Quasi-monochromatic sinusoid eigenspectrograms 81-90.
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Figure C.20: Quasi-monochromatic sinusoid eigenspectrograms 91-100.



C.3 Spectrogram samples 254

Figure C.21: Eight randomly-selected spectrograms taken from a large parameter

space (see Table.C.1 for parameter values).
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Figure C.22: Eight randomly-selected eigenspectrograms taken from the attempt to

span the large parameter space described in Table.4.3.
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