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Summary 

Epilepsy is a common and serious but treatable neurological disorder. Current treatment 

is limited by high rates of adverse drug effects and lack of complete seizure control in a 

significant proportion of patients. Epilepsy is suitable for pharmacogenetic exploration 

because response to antiepileptic drug (AED) treatment can be quantified and adverse 

effects can be assessed by several measures. Furthermore, there is substantial 

knowledge of the pharmacodynamics and pharmacokinetics of AEDs and some 

candidate genes implicated in the disorder have been identified. However, recent studies 

examining the association of particular genes and their genetic variants with seizure 

control and adverse drug effects have not provided definitive conclusions. 

Commonly, pharmacogenetic studies focus primarily on single nucleotide 

polymorphisms, which are single base variations in the sequence of genes. This form of 

genetic variant has the potential to influence the structure and/or function of the proteins 

those genes encode. Candidate genes for pharmacogenetic studies in epilepsy are those 

that encode proteins directly involved in the pharmacokinetics (drug metabolizing 

enzymes (DMEs), drug transporters (DTPs) and pharmacodynamics (voltage-gated 

sodium channels, y-aminobutyric acid receptors (GABA) of AED action. These 

principals have been applied to this research programme, investigating the influence of 

genetic variability on the clinical pharmacology of carbamazepine (CBZ) and 

lamotrigine (LTG). 

Although many genes could influence response to these drugs, obvious candidates are 

known. CBZ and LTG target the a-subunit of the voltage-gated sodium channels. CBZ 

metabolism involves several DMEs such as CYP3A4, CYP3A5, CYPIA2, microsomal 

epoxide hydrolase (mEH) and UGT2B7, and LTG is a probable substrate of P- 
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glycoprotein (P-gp). Common polymorphisms in genes encoding these proteins were 

examined as initial genetic factors that may influence the response to CBZ and LTG 

monotherapy. These polymorphisms include CYP3A4 g. -392A>G, CYP3A5 

g. 6986A>G, CYP1A2 g. 5734C>A, EPHX1 c. 337T>C, EPHX1 c. 416A>G, UGT2B7 

c. 802C>T, ABCBI c. 1236C>T, ABCBI c. 2677G>T/A, ABCBI c. 3435C>T and 

SCN2A c. 56G>A. 

The prevalence of these common polymorphisms was evaluated in a 400-strong study 

population from a single research unit. The polymorphisms were identified by 

polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), with 

the exception of EPHX1 c. 337 >C, which was identified by direct sequencing assay. 

Genotype distribution of each polymorphism was examined for Hardy-Weinberg 

equilibrium (HWE). Minor allele frequency ranged between 3.5% (CYP3A4 -392G) 

and 48.0% (ABCB 1 1236T). Allele and genotype distributions were comparable to 

published data for other Caucasian populations. All genotype distributions were 

consistent with HWE. As such, no apparent systematic error in the genotyping assay 

was identified. 

The influence of common polymorphisms in DME and sodium channel genes on the 

optimal dose of CBZ was assessed in a cohort of 70 patients. Optimal dose in this study 

was defined as the final dose given to a patient that successfully maintained optimal 

seizure control without intolerable side effects. Several basic clinical factors such as age 

and gender were also examined as potential predictors. The effect of predictors on the 

optimal dose of CBZ was investigated using linear regression analysis. This study 

revealed that age and common polymorphisms in the EPHX 1 gene (c. 337T>C and 

c. 416A>G) are potential predictors for optimal dose of CBZ. The significant effects of 

EPHX 1 variants may be explained by their significant contribution to the inactivation of 
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CBZ. These potential predictors explain approximately 15% of the inter-individual 

variation in CBZ dose requirements. 

The prevalence of common polymorphisms in genes that encode CBZ-related DMEs 

was examined in an effort to identify a unique adverse effect profile. A total of 14 out of 

104 patients receiving CBZ monotherapy experienced at least one intolerable adverse 

effect which led to withdrawal of treatment. Of these, 9 patients experienced central 

nervous system (CNS)-related effects and 5 patients experienced idiosyncratic 

reactions. The variant allele distributions were compared between patients who 

experienced the adverse effects and those who did not by an appropriate contingency 

table test. There was no significant difference in allele distributions between these 

groups, either for CNS-related effects or idiosyncratic reactions. These preliminary 

findings suggest that common polymorphisms in DME genes do not form a unique 

profile which increases the risk of developing intolerable CBZ adverse effects. 

The prevalence of common polymorphisms in ABCB 1 and SCN2A genes was 

investigated between seizure free and non-seizure free patients who received LTG 

monotherapy as the first AED treatment. A total of 79 patients were involved in this 

study cohort. Of these, 39 patients had reached seizure free status within the first year of 

treatment. Differences in the distribution of gene variants were examined by logistic 

regression analysis. No difference was observed in the distribution of these 

polymorphisms between the two groups, whether analysed by allele, genotype, 

haplotype or diplotype frequency. It is unlikely that common polymorphisms in ABCB1 

and SCN2A genes influence the expression and/or activity of their respective proteins to 

the level at which they can dictate response to LTG therapy. 
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The influence of common polymorphisms in ABCB 1 and SCN2A genes on the optimal 

dose of LTG was assessed in a cohort of 94 patients. Optimal dose in this study was 

defined as the final dose given to the patients that successfully maintained seizure 

freedom for at least 1 year with LTG monotherapy. Several basic clinical factors such as 

age and gender were also examined as potential predictors. The effect of predictors on 

the optimal dose of LTG was investigated using linear regression analysis. This study 

revealed that gender and common polymorphisms in the ABCB 1 gene (c. 1236C>T and 

c. 3435C>T) are potential predictors for optimal dose of LTG. These predictors explain 

approximately 17% of the inter-individual variation in LTG dose requirement. These 

findings further highlight the potential role of P-gp in the management of epilepsy 

The final study investigated the influence of ABCB 1 c. 1236C>T and ABCB 1 

c. 3435C>T polymorphisms on the pharmacokinetics of LTG. A total of 156 blood 

samples from 50 patients receiving LTG monotherapy were available for analysis. The 

influence of ABCB1 variants was evaluated by population pharmacokinetics. This 

approach successfully estimated the oral clearance of LTG monotherapy at steady-state. 

However, the absorption rate constant (Ka) and volume of distribution (Vd) of LTG 

were poorly estimated. The inclusion of common polymorphisms in the ABCB 1 gene in 

the pharmacokinetic model did not improve the estimation of oral clearance. This may 

indicate that common variants of ABCB I do not influence clearance of LTG. 

In conclusion, these results suggest that optimal doses of CBZ and LTG are associated 

with polymorphisms in genes involved in their respective pharmacokinetics. Common 

genetic polymorphisms of other DMEs that are responsible for CBZ metabolism did not 

significantly associate with CBZ dose and none were associated with CBZ adverse 

effects. Polymorphisms in the ABCB 1 gene may not be useful in predicting response to 

LTG treatment and did not influence the oral clearance of LTG. The present study is 
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preliminary but provides encouragement for future investigation, particularly, large 

scale studies of multiple polymorphisms and combinations thereof which attempt to 

identify a panel of genotypes that can be used as predictors of an individual patient's 

response to AED treatment. 
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Chapter 1: General Introduction 

1.1 Epilepsy 

1.1.1 History of epilepsy 

The word `epilepsy' originates from a Greek word, epilambanein, which means 'to 

seize' or `to attack' (World Health Organization, 2001), and the term'epilepsia' is used 

to denote a seizure. In ancient times, epilepsy or an epileptic attack was depicted as an 

abrupt suspension or seizing of a person's senses (Gastaut & Broughton, 1972). The 

basic concepts of epilepsy in ancient Indian medicine were identified during the Vedic 

period in 4500-1500 BC. The complete Ayurvedic medical system, Charaka Samhit, 

described epilepsy as'apasmara' which means ̀ loss of consciousness'. A description of 

epilepsy was also found in a Babylonian textbook of medicine dating as far back as 

1067 BC, and which emphasized the supernatural nature of epilepsy (Pierce, 2002). A 

later description of epilepsy appeared in the Hippocratic text entitled "On the Sacred 

Disease". In describing epilepsy, Hippocrates wrote the following statement: 

"It is thus with regard to the disease called Sacred: it appears to me 

to be nowise more divine nor more sacred than other diseases, but 

has a natural cause from the originates like other affections 

(Hippocrates, 400 B. C. E. )" 

Hippocrates has highlighted the fact that epilepsy is just one kind of brain disorder. This 

notion has countered the superstitious thought that epilepsy is a curse or a prophetic 

power. Galen (AD 130-200) described three types of fits, and suggested that epilepsy 

was a brain disorder related to an accumulation of "thick humours" (Pierce, 2002). 

Later, in the 19th-century, John Hughlings Jackson deduced the basic pathophysiology 

of epileptic seizures through his clinical observation (Hogan & Kaiboriboon, 2003). 
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Jackson's contributions to the field of epilepsy continue to be recognised in modern 

medical sciences. 

1.1.2 Epilepsy and its syndromes 

Epilepsy is one of the most important clinical syndromes, with a prevalence range of 3 

to 7.3 per 1000 population (Wright et al., 2000; Al Rajeh et al., 2001; Oun et al., 2003; 

Hui & Kwan, 2004). It is a difficult disorder to control (Spear, 2001) and may even 

cause sudden unexplained death (Pedley & Hauser, 2002). The term epilepsy refers to 

the recurrence of seizures from all types of pathological states or diseases (Janz, 1985). 

The International League Against Epilepsy (ILAE) and the International Bureau for 

Epilepsy (IBE) consensus defined an epileptic seizure and epilepsy as follows: 

"An epileptic seizure is a transient occurrence of signs and/or 

symptoms due to abnormal excessive or synchronous neuronal 

activity in the brain (Fisher et al., 2005)" 

"Epilepsy is a disorder of the brain characterized by an enduring 

predisposition to generate epileptic seizures and by the 

neurobiologic, cognitive, psychological, and social consequences of 

this condition. The definition of epilepsy requires the occurrence of 

at least one epileptic seizure (Fisher et al., 2005)" 

Seizures occur due to a sudden, excessive, rapid discharge in the grey matter of some 

part of the brain; this might spread further all over the brain, to produce generalised 

syndromes. The brain's electrical discharge may result in an almost instantaneous loss 

of consciousness, alteration of perception or impairment of psychic function, convulsive 
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movement, disturbance of sensation, or some combination thereof (Victor & Ropper, 

2001). 

Epilepsy syndromes are commonly characterised by their clinical presentation such as 

seizure type, age at onset, brain electrical pattern, causal factors and trend of genetic 

inheritance (Brodie & French, 2000). Generally, epilepsy syndromes are widely 

grouped into idiopathic, cryptogenic and symptomatic (Commission, 1989; Brodie & 

French, 2000). Idiopathic or primary epilepsies are epileptic syndromes with an 

unknown cause except perhaps a genetic one; cryptogenic epilepsies are epileptic 

syndromes with uncertain nature of origin and the seizures may be the only sign of brain 

abnormalities; meanwhile symptomatic or secondary epilepsies are epileptic syndromes 

with clearly known causes (Victor & Ropper, 2001; Brodie et al., 2005). Epilepsy 

treatment decisions are based principally on the type of epilepsy syndrome and the 

kinds of seizures that occur. 

1.1.3 Classification of seizures 

The present commonly used classification was proposed by the ILAE more than twenty 

years ago (TABLE 1.1; Commission, 1981) using clinical description and 

electroencephalogram (EEG) characteristics. The limitations of this classification are 

becoming increasingly apparent with advances in imaging technology and 

neurophysiology. Nevertheless, the present system has gained widespread acceptance 

and provides an effective means of communication among clinicians. 

The current classification divides seizures broadly into partial and generalised. Partial 

seizures, also called focal, are those seizures that begin in a focal region of the cortex in 
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one hemisphere. Based on the symptoms of the seizures, partial seizures can be 

subdivided into simple partial seizures and complex partial seizures. 

TABLE 1.1. International classification of epileptic seizure. Adapted from 

Commission (1981). 

Partial (focal) seizures (seizures beginning locally) 

A Simple (consciousness not impaired) 

i With motor symptoms 
ii With somatosensory or special sensory symptoms 
iii With autonomic symptoms or signs 
iv With psychic symptoms 

B Complex (with impaired consciousness) 
i Simple partial onset followed by impairment of 

consciousness 
ii Impaired consciousness at onset 

C Partial seizures evolving into secondary generalised seizures 

II Generalised seizures (convulsive or non-convulsive) 
A Absence seizures 

i Typical (petit mal) 
ii Atypical 

B Myoclonic seizures 
C Clonic seizures 
D Tonic seizures 
E Tonic-clonic seizures 
F Atonic seizures 

III Unclassified seizures 

Simple partial seizures have no impact on the level of consciousness. Depending on the 

area of the brain affected, these seizures could be expressed as shaking of a small part of 

the body, an unusual tingling or numbness of a localised body part, or even an unusual 
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smell, visual hallucination, or ill-defined feeling. Complex partial seizures occur when 

the abnormal electrical activity involves parts of the brain that affect level of 

consciousness. Thus, the critical feature of a complex partial seizure is that the person 

has altered consciousness, so that he may be confused or staring unresponsively. There 

may also be subtle, repetitive and stereotypical movements of the face or extremities. 

Sometimes a complex partial seizure can start in just one area and spread throughout the 

entire brain, resulting in a generalised tonic-clonic seizure. This seizure type is known 

as complex partial with secondary generalisation. 

Generalised seizures are caused by abnormal electrical activity that occurs over the 

entire brain simultaneously. This group of seizures affect the level of awareness and 

muscle movement of all extremities. Absence seizures are also known as "petit mal". 

They are described as staring spells. These seizures typically start in childhood and are 

often outgrown by adolescence, although adults can occasionally have absence seizures. 

Myoclonic seizures are characterized by sudden brief jerks of a single muscle or muscle 

group. It may appear as if sufferers have been startled and you may also see the head or 

body suddenly bend forward or backward. Atonic seizures are also very sudden brief 

seizures, but they involve loss of all muscle tone. The patient will suddenly go limp and 

fall to the ground. There is a significant risk of head injury during the fall. Tonic 

seizures involve stiffening of parts of the body or the entire body. Unlike tonic-clonic 

seizures, there is no progression to a clonic phase. Tonic-clonic seizures are also known 

as "grand mal". They generally start with a tonic phase with stiffening of the entire 

body. The eyes may roll back in the head, the back arches, and arms and legs stiffen. 

The clonic part is described as rhythmic jerking of the entire body. Once the seizure is 

over, the patient may feel worn out and may even sleep for a period of time. They may 

also experience some confusion. 
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1.1.4 Diagnosis of epilepsy 

The diagnosis procedure aims to determine whether the patient has epilepsy, and if so, 

the syndromic classification and underlying aetiology. Epilepsy may be difficult to 

diagnose in the early stages especially in the absence of a witnessed account. It is 

imperative that the physician obtains a complete patient history, including details of 

birth, childhood, family history, and medication regimen; a thorough medical history, 

including illnesses of the nervous system; and a thorough history of drug and alcohol 

use. A detailed description of the seizures is important to distinguish seizure types. 

The primary tool in the diagnosis of epilepsy is the EEG (King et al., 1998), which 

measures electrical activity in the brain. Seizure disorders produce characteristic 

patterns in an EEG test. In patients with partial epilepsy, the EEG may also help to 

localise the area of seizure onset. Inpatient video-EEG monitoring is used to localise 

seizure onset in patients undergoing evaluation for epilepsy surgery. It is also used to 

confirm epilepsy when the diagnosis is uncertain. Neuroimaging approaches are another 

means to identify any underlying epileptogenic structural abnormalities and are 

indicated in patients suspected to have localisation-related epilepsy. Magnetic resonance 

imaging (MRI) is undoubtedly the investigation of choice (Duncan, 1997). However, 

computer tomography should be used in preference to MRI in patients with cardiac pace 

makers, metal aneurysm clips, or severe claustrophobia, or when MRI is not available. 

Imaging techniques that show cerebral function play a growing role in the evaluation of 

epilepsy. These techniques include functional MRI, magnetoencephalography, magnetic 

resonance spectroscopy, single photon emission computed tomography, and positron 

emission tomography (Duncan 1997). Making an accurate diagnosis of an epileptic 

syndrome may allow the clinician to define the likely prognosis, provide appropriate 

counselling and choose the most appropriate treatment (Brodie & French, 2000). 



Chapter 1: General Introduction $ 

1.2 Treatment of Epilepsy 

Treatment approaches for the epilepsies can include pharmacotherapy using AEDs, 

neurosurgical procedures, removal of causative and precipitating factors, and regulation 

of physical and mental activities (Victor & Ropper, 2001). AED treatment is the 

commonest initial approach to treat epilepsy. AEDs can reduce or stop seizures 

altogether. Some patients with epilepsy do not respond to several AEDs and in this 

situation those with partial epilepsy might be considered for surgery. Another option for 

patient who are resistant to AEDs is vagal nerve stimulation (Brodie et al., 2005). 

1.2.1 History of antiepileptic drug development 

The first effective agent in the treament of epilepsy was bromide (Pearce, 2002). 

However, the usage of bromide was limited due to an association with frequent side 

effects. In 1912, phenobarbital (PB) was introduced as a better-tolerated antiepileptic 

agent. In subsequent years, Merritt and Putnam introduced a new non-sedating AED, 

phenytoin (PHT; Merritt & Putnam, 1938). Since its introduction, PHT has been a first- 

line medication for the prevention of partial and tonic-clonic seizures, and the acute 

treatment of seizures and status epilepticus. In 1953, CBZ was synthesised at the Geigy 

laboratory by Schindler and Blattner (Schmutz, 1985). It was originally developed as an 

antipsychotic and its antiepileptic properties were not observed clinically until 1963 

(Brodie & Dichter, 1997). Sodium valproate (VPA) was serendipitously discovered in 

1963 by Pierre Eymard, when it was used as a solvent in testing other potential AEDs 

(Brodie & Dichter, 1997). Since the introduction of VPA, many new AEDs have been 

developed and marketed (FIGURE 1.1). Generally, AEDs can be divided into two 

generations, the established AEDs and the modem AEDs. The modern AEDs are 
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believed to possess better efficacy and tolerability profiles than their established 

counterparts. 
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FIGURE 1.1. Year of introduction of antiepileptic drugs to the clinical 

management of epilepsy in the United Kingdom. 

1.2.2 Indications of antiepileptic drugs 

Starting treatment with an AED is a major event for the patient and should not be 

undertaken without careful evaluation. AED therapy is long term, usually for at least 

three years and, depending on circumstances, sometimes for life. The modem AEDs 

complement established AEDs that are well known to most clinicians. In addition to 
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providing more options for the adjunctive treatment of seizures, some of these new 

compounds have been approved for monotherapy (TABLE 1.2). 

TABLE 1.2. Approved indications for antiepileptic drugs. 

Partial Broad Infantile Absence 

Drug seizure" spectrumb spasms only 
Established AEDs 

Carbamazepine + 

Ethosuximide 

Phenobarbitone ++ 

Phenytoin + 

Valproic acid +++ 

New AEDs 

Gabapentin + 

Lamotrigine ++ 

Levetiracetam ++ 

Oxcarbazepine + 

Pregabalin` + 

Tiagabine` + 

Topiramate ++ 

Vigabatrin° ++ 

Zonisamide° +++ 

+ 

a Including secondarily generalised 

b Most seizure types, including partial, absence, myoclonic, tonic and both 

primary and secondarily generalised tonic-clonic 

Licensed as adjunctive treatment/add-on therapy only 

(Kwan et al., 2001; Perucca, 2001; Bazil & Pedley, 2003) 

One of the advantages of using established AEDs is that their spectrum of efficacy, 

adverse-effect profiles, drug-drug interactions, and idiosyncrasies are relatively well 
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known. Although some side effects of the established AEDs may be undesirable, they 

are usually predictable. AEDs are generally chosen according to seizure type. LTG, 

controlled-release CBZ, topiramate or VPA are first-line monotherapy options for 

partial seizures. For generalised seizures, LTG, topiramate or VPA are the options and, 

as these drugs are broad spectrum, they may also be used when there is doubt about the 

classification (Kwan et al., 2001; Perucca, 2001; Bazil & Pedley, 2003). Broad 

spectrum AEDs usually cover partial, absence, myoclonic, tonic and both primary and 

secondarily generalised tonic-clonic seizures. Although as effective as other established 

AEDs, PHT is no longer considered as a first-line treatment because of its side effect 

profile when employed on a chronic basis and its saturation kinetics, which require 

routine monitoring of its plasma concentrations. 

1.2.3 Mechanisms of action of antiepileptic drugs 

Experimental studies (both in vitro and in vivo) together with clinical observations have 

contributed to understanding of the mechanisms of action of AEDs. However, current 

knowledge on mechanisms of action is of limited application in the initiation of therapy 

for individual patients. This is because of a poor understanding of seizure 

pathophysiology. Therefore, most first line drugs are usually chosen on the basis of 

available clinical evidence (Perucca, 2001). Knowledge of mechanisms of action can 

have an important role in determining which AEDs to add-on in those patients who fail 

to respond to the first drug (Deckers et al., 2000). Combining AEDs with different 

mechanisms of action can improve the percentage of patients with controlled seizures, 

possibly up to 20 percent (Stephen & Brodie, 2002). The recent influx of newer AEDs 

into clinical practice may elevate knowledge of mechanisms of action amongst other 

potentially important drug selection criteria, particularly in the absence of sufficient 

clinical evidence or experience (Brodie, 1999; Kwan et al., 2001). 
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The mechanisms of action of AEDs are presented in TABLE 1.3. Three mechanisms 

have been proposed to explain the effects of AEDs: modulation of voltage-dependent 

ion channel (sodium, calcium, potassium), potentiation of GABA-mediated inhibitory 

neurotransmission and inhibition of glutamate-mediated excitatory neurotransmission 

(Meldrum, 2001). The opening of voltage-gated sodium channels is responsible for the 

upstroke of the neuronal action potential and these proteins essentially control the 

intrinsic excitability of the nervous system (Clare et al., 2000). Sodium channels cycle 

between functional states (open, closed, inactivated) within a matter of milliseconds. 

This character is important in producing the rapid burst of action potentials during 

normal neuronal transmission, and particularly in the production of epileptic discharges 

(Kwan et al., 2001). Many AEDs such as PHT, CBZ and LTG block the neuronal 

voltage-gated sodium channels as their principal antiseizure action (Tunnicliff, 1996; 

White, 1999). 

The key structure and sequence homology of voltage-dependent calcium channels are 

shared with sodium channels (Anderson & Greenberg, 2001). Low and high activation 

thresholds are used to widely categorise calcium channels. L-type calcium channels are 

expressed in muscle, brain and endocrine cells. N-, P/Q- and R- type calcium channels 

are found mainly in neurones. All of these channels require a strong depolarization (i. e. 

high threshold) to be activated. T-type calcium channels are low threshold channels and 

are found in various cell types (Ertel et al., 2000). The rhythmic 3-Hz spike-and-wave 

discharge that is present in generalised absence seizures is believed to be a product of 

activation of these low-threshold T-type calcium channels (Sohal & Huguenard, 2001). 

Blockade of the voltage-dependent calcium channels in a subtype-specific manner 

explains the effects of several AEDs. For example, LTG reduces N- and P-type calcium 

currents, diminishing repetitive neuronal firing, and consequently controlling seizure, 

without affecting L-type calcium currents (Pisani et al., 2004). 
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TABLE 1.3. Proposed mechanisms of antiepileptic drugs. 

13 

I Na+ 1 Ca T K+ T inhibitory j excitatory 
Drug channels channels channels transmission transmission 

Established AEDs 

Carbamazepine +++ 

Ethosuximide +++ 

Phenobarbital + +++ + 

Phenytoin +++ 

Valproic acid ++ ++ + 

New AEDs 

Felbamate ++ ++ ++ ++ 

Gabapentin + +++ + 

Lamotrigine +++ + 

Levetiracetam +++ ++ 

Oxcarbazepine +++ ++ 

Tiagabine +++ 

Topiramate ++ ++ ++ ++ 

Vigabatrin +++ 

Zonisamide ++ ++ 

+++ = primary action, ++ = probable action and += possible action (Kwan et al., 

2001; Madeja et al., 2003). 

The tetrameric structure of neuronal voltage-gated potassium channels is derived from 

the association of large protein complexes. Their monomers are related to sodium and 

calcium channel subunits (Anderson & Greenberg, 2001). Activation of potassium 

channels suppresses the generation of action potentials (Spitzer et al., 2002). Studies 

have reported levetiracetam (Madeja et al., 2003) and retigabine (Rundfeldt, 1999) 

activate potassium channel conductance as one of their mechanisms of antiseizure 

action. 
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GABA is the principal inhibitory neurotransmitter in mammalian brain and is released 

at up to 40% of all synapses (Olsen & Avoli, 1997). Insufficiency of GABAergic 

neurones has been proposed as a mechanism of seizure generation (Loscher & Schmidt, 

2002). GABA-related mechanisms, such as the promotion of GABA synthesis, increase 

in GABA release, facilitation of GABA receptors and a decrease in GABA inactivation 

are associated with AEDs such as VPA, gabapentin, vigabatrin and tiagabine (Errante et 

al., 2002). 

The complementary neurotransmitter to GABA is glutamate, which is the principal 

excitatory neurotransmitter in the mammalian CNS (Meldrum et al., 1999). Seizures 

have been associated with glutamatergic system abnormalities, including over- 

activation of glutamatergic transmission and defective ionotropic and metabotropic 

glutamate receptor properties (Meldrum et al., 1999). None of the licensed AEDs act 

solely on the glutamatergic neurones, but glutamate receptor blockade is associated with 

some AEDs (Meldrum, 2001). For example, felbamate and topiramate are believed to 

act on the NMDA- and AMPA-subtypes of glutamate receptors, respectively (Harty & 

Rogawski, 2000; Kaminski et al., 2004). 

1.2.4 Clinical pharmacokinetics of antiepileptic drugs 

Evidence supporting the relationship between plasma drug concentration and clinical 

response to established AEDs is available to aid dosage individualization (Perucca, 

1999; Affolter et al., 2003). Drug therapeutic ranges were derived from population 

pharmacokinetic studies using statistical concepts in which most of the patients 

demonstrated an acceptable clinical response with no intolerable side effects (Patsalos, 

2001). Nevertheless, some patients may demonstrate good seizure control below the 

minimum limit of the therapeutic range, and intoxication may also be present in some 
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patients with plasma drug concentrations within the therapeutic range (Browne, 1998). 

Hence, the therapeutic range is regarded as a guide to AED dosage, and an individual 

patient's clinical conditions should always be considered in cases of poor response or 

intolerable side effects. 

To achieve optimal control of seizures, AEDs must be well absorbed from the 

gastrointestinal tract, distributed into body tissues, and reach sufficient concentration in 

the brain. Almost all AEDs have more than 90 percent oral bioavailability, with the 

exception of gabapentin and vigabatrin (TABLE 1.4). Interestingly, some AEDs such as 

PHT are not only well absorbed in the small intestine but absorption also extends up to 

the colonic region (Stevenson et al., 1997). After the absorption phase, AEDs are 

distributed into body compartments depending on their physicochemical properties. In 

the blood, AEDs such as PHT, VPA and tiagabine are highly bound to plasma proteins. 

AEDs with this characteristic have a higher risk for drug interactions through 

competitive depletion from the site of protein binding. This is clearly observed in 

polytherapy regimens comprising PHT and VPA. One should aim for a lower plasma 

concentration of PHT when used concomitantly with VPA, because of plasma protein 

binding displacement (Perucca et al., 1980b; Patsalos & Perucca, 2003). Reduced 

binding to plasma proteins may shorten the AED half-life, requiring a more frequent 

dosing schedule as noted with the newer AED, gabapentin (Perucca, 2001). 

The magnitude and duration of the antiepileptic actions of AEDs are predominantly 

determined by dose and pharmacokinetic profile (Perucca, 1999). The AED dose and 

pharmacokinetic profile are in turn influenced by enzymatic biotransformation and drug 

transporters (Browne, 1998; Kim, 2002a; Ramachandran & Shorvon, 2003). Most 

AEDs undergo enzymatic biotransformation to form a more water-soluble compound 

before being excreted by the kidney. Nevertheless, some AEDs can be excreted in an 
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unchanged form or with only minor enzymatic action, for example gabapentin, 

topiramate and vigabatrin (Patsalos, 1999). 

TABLE 1.4. The pharmacokinetics of antiepileptic drugs. 

Usual 

Plasma effective 

protein plasma 
Bioavailability binding t% concentration T,,,,,, 

Drug (%) (%) (h) (µmoVl) (h) Route of elimination 
Established AEDs 

Carbamazepine 89' 75 8-22 Up to 50 4-8 >90% hepatic 

Ethosuximide <5 60 Up to 700 3-7 65% hepatic 

Phenobarbital >_ 90 45 100 Up to 170 2-8 >90% hepatic 

Phenytoin 90 90-95 22 Up to 80 3-8 >90% hepatic 

Valproic acid >_ 90 80-90 15-20 Up to 700 3-8 >95% hepatic 

New AEDs 

Felbamate >_ 80 20-25 14-23 125-250 2-6 60% hepatic (oxidation), renal excretion 
Gabapentin <60 <5 5-7 70-120 2-3 >95% renal excretion 
Lamotrigine 98 55 15-30b 10-60 2-5 >90% hepatic (glucuronide conjugation) 
Levetiracetam >_ 90 <10 6-8 35-120 1 >65% renal excretion 
Oxcarbazepine 40 8-15 50-140 3-13 >90% hepatic (glucuronide conjugation) 
Tiagabine >_ 90 96 4-13 50-250 I >90% hepatic (oxidation) 

Topiramate >_ 80 13 20-30 15-60 4-10 Renal excretion, 30% hepatic (oxidation) 

Vigabatrin >_ 60 0 5-8 6-278 1 Renal excretion 

Zonisamide 2: 90 50 50-70 45-180 2-6 70% hepatic (glucuronide conjugation, 

acetylation, oxidation) 

aextended release formulation; bcomedication with VPA and enzyme inducers. 

(Patsalos, 1999; Perucca, 1999; Perucca, 2001; Ramsay & Wilder, 2002; Bazil & 

Pedley, 2003) 

Biotransformation occurs mainly through an oxidation process and takes place primarily 

in the liver with the involvement of DMEs such as cytochrome P450 (CYP450) 

isoenzymes, hydrolases and conjugating enzymes. More than 12 isoenzymes of CYP450 

are involved in drug metabolism. Metabolism of AEDs is predominantly driven by a 

variety of CYP450 subfamilies, including CYP1A, CYP2A, CYP2B, CYP2C, CYP2D, 

CYP2E and CYP3A (Ramachandran & Shorvon, 2003), mEll and conjugating enzymes 

such as UDP-glucuronosyltransferases (UGTs; TABLE 1.5). The reaction catalysed by 
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CYP450s involves the oxidation of AEDs where there is a heterocyclic ring, an 

aromatic ring, an alkane, or an alkene substituent. CYP450 metabolism converts AEDs 

into more water-soluble compounds, which are more easily conjugated and excreted 

from the body. CYP450 metabolism also converts some AEDs, such as CBZ, PB and 

PHT, to intermediate epoxide metabolites. Many of these epoxide metabolites are 

reactive and can covalently bind to cell macromolecules, resulting in cytotoxicity 

(Madden et al., 1996). Detoxification of these reactive epoxide metabolites is mediated 

by mEH. mEH converts epoxides to trans-dihydrodiols which can be conjugated and 

excreted from the body. Conjugation of AEDs or AED metabolites is predominantly 

mediated by UGT isoenzymes in a process known as glucuronidation. Glucuronidation 

involves chemical binding of a substance to glucuronic acid via a glycosidic bond. The 

resulting glucuronide metabolite is typically much more water soluble than the original 

substance. Examples of AEDs that are mainly metabolised through glucuronidation are 

VPA and LTG (Staines et al., 2004). 

In order to understand drug disposition, DMEs cannot be studied in isolation, 

particularly where the roles of DTPs have been reported to be significant (Kim, 2002a; 

Kim, 2002b). Drug movement across tissue compartments habitually occurs in two 

directions; influx and efflux. Specific DTPs are responsible for carrying out both of 

these functions in a concentration-dependent manner (Roden, 2001). The most 

commonly recognised efflux transporter is P-gp. Several AEDs, such as PHT and LTG, 

have been shown to be transported by P-gp (Potschka & Loscher, 2001; Potschka et al., 

2002). P-gp can be found in various body tissues such as the intestinal lining, liver and 

brain. Variation in P-gp activities may be present and can potentially affect drug 

pharmacokinetics. It has been demonstrated that variation in the expression of duodenal 

P-gp correlates with the variation in plasma digoxin concentrations (Hoffmeyer et al., 

2000). Interestingly, DMEs and DTPs that are present at the level of the blood-brain 
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barrier (BBB), blood-cerebrospinal fluid barrier and various parts of the brain could also 

alter the elimination process of AEDs (Mcfadyen et al., 1998; de Lange & Danhof, 

2002). Therefore, variation in the expression and function of DMEs and DTPs may 

consequently influence the response to AED treatment. 

TABLE 1.5. Antiepileptic drugs and their related hepatic drug metabolizing 

enzymes. 

Drug 
Metabolizing 

Enzyme 

Antiepileptic Drug 

CBZ ESM PB PHT VPA TGB TPM LTG ZNS 

CYP 1 A2 ++ 

CYP2C9 ++ ++ + 

CYP2C 19 ++ ++++ 

CYP2D6 ++ 

CYP3A4 ++ ++ + ++ ++ 

CYP3A5 + +? ++ 

mEH + +? +? 

UGT 1 A4 ++ 

UGT1A6 & 1A9 ++ 

UGT2B7 + ++ 

CYP, cytochrome P450; mEH, microsomal epoxide hydrolase; UGT, UDP- 

glucuronosyltransferase; CBZ, carbamazepine; ESM, ethosuximide; PB, 

phenobarbital; PHT, phenytoin; VPA, valproic acid; TGB, tiagabine; TPM, 

topiramate; LTG, lamotrigine; ZNS, zonisamide; ++, major involvement; 

significant involvement; +7, potential involvement. (Adapted from Ramachandran 

& Shorvon, 2003). 
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1.2.5 Variability in the response to antiepileptic drug treatment 

The majority of epilepsy patients receive AEDs as the main treatment modality. 

However, response to AED therapy remains poor, despite the ever-expanding list of 

modern AEDs, introduced in the last decade and designed to possess improved efficacy 

and fewer side effects. Poor responders to AED treatment account for about 30 percent 

of epilepsy patients (Kwan & Brodie, 2000), and only small numbers of them have 

shown clinically significant improvement with the introduction of additional AEDs 

(Ramachandran & Shorvon, 2003). Patients with uncontrolled epilepsy not only suffer 

from health implications but also psychosocial and socioeconomic consequences. 

Despite the relative importance of uncontrolled seizures in a large fraction of epilepsy 

patients, the cellular basis of pharmacoresistance has so far remained elusive. Two 

major hypotheses have been proposed to explain poor responsiveness to AED therapy; 

(1) alteration in AED targets such as decreased sensitivity of ion channels and 

neurotransmitter receptors, and (2) modification in AED-related DMEs and DTPs 

resulting in decreased absorption, increased metabolism or decreased uptake into the 

brain (Bazil & Pedley, 2003; Ramachandran & Shorvon, 2003; Remy & Beck, 2006). 

Any one of these alterations may be the result of variation in genes that express the 

corresponding proteins (Roden, 2001; Spear, 2001; Ramachandran & Shorvon, 2003; 

Remy & Beck, 2006). 

1.3 Pharmacogenetics 

Interindividual variation in the response to drugs is an important clinical issue. Such 

variation ranges from resistance to treatment to adverse drug reactions and drug-drug 

interactions. It is now clear that much of the individuality in drug response is inherited 
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(Hartl & Orel, 1992). This genetically determined variability in drug response defines 

the research area known as pharmacogenetics (Vogel, 1959). Pharmacogenetic studies 

create an opportunity to explore individualisation in drug therapy, a concept of tailored 

drug type and dosage to individuals based not only on traditional clinical factors but 

also on their genetic profiles (Kruglyak, 1999). 

1.3.1 Human genetics 

The genome of an organism is its whole hereditary information. The human genome is 

stored in 23 pairs of chromosomes. A chromosome is a single large macromolecule of 

deoxyribonucleic acid (DNA), and is the basic 'unit' of DNA in a cell. DNA consists of 

two associated polynucleotide strands that wind together in a helical fashion. It is often 

described as a double helix. The DNA is a long chain of nucleotides which consist of 

deoxyribose (a pentose sugar), phosphoric acid and 4 organic nitrogenous bases (purines 

- Adenine (A) and Guanine (G), or pyrimidines - Cytosine (C) and Thymidine (T)). The 

human genome contains approximately 3.2 billion base pairs that are specifically 

arranged according to the function of a gene and genetic ancestry. A gene is a relatively 

small segment of DNA that codes for the synthesis of a specific protein. Genes consist 

of a long strand of DNA that contains a promoter, which controls the activity of a gene, 

and exons, coding sequences which determine what the gene produces. Genes also 

contain introns, non-coding regions that do not code for the gene products, but 

sometimes regulate gene expression. Exons and introns are arranged alternate to each 

other. 

Protein synthesis is a 2-part process that involves a second type of nucleic acid known 

as ribonucleic acid (RNA). The first process in protein synthesis is called transcription. 

In this step, the double DNA strands unzip from each other and a single strand of 
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messenger RNA (mRNA) is then made by pairing up mRNA bases with the exposed 

DNA nucleotide bases. Splicing is a modification of genetic information after 

transcription, in which introns are removed and exons are joined. Splicing prepares 

precursor mRNA in eukaryotes to produce mature mRNA. The second process in 

protein synthesis is translation. After the mature mRNA is manufactured, it leaves the 

cell nucleus and travels to a cellular organelle called the ribosome. In the ribosome, the 

mRNA code is translated into a transfer RNA (tRNA) code which, in turn, is transfered 

into a protein sequence. In this process, each set of 3 mRNA bases, known as a codon, 

will pair with a complimentary tRNA base triplet called an anticodon. Each tRNA is 

specific to an amino acid and as tRNA's are added to the sequence, amino acids are 

linked together by peptide bonds, eventually forming a protein that is later released by 

the ribosome. 

1.3.2 Glossary of genetics 

The commonly used terms in pharmacogenetics include allele, genotype, haplotype, 

diplotype and phenotype (Guttmacher & Collins, 2002). Alleles are alternative forms of 

a gene at a particular locus, or location, on a chromosome. Different alleles produce 

variation in inherited characteristics such as hair colour or blood type. In an individual, 

one form of the allele (dominant) may be expressed more than another form (recessive). 

A single allele for each gene locus is inherited from each parent. A pair of alleles forms 

the genotype. Genotype is the genetic constitution of an organism or cell at a particular 

locus. Usually, in a pair of alleles, each individual can be assigned to one of 3 possible 

genotypes. 

Haplotype may refer to only one locus or to an entire genome. Haplotype represents a 

set of closely linked genetic markers present on one chromosome which tend to be 
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inherited together. A diploid is a full set of genetic material consisting of paired 

chromosomes. The diploid human genome has 46 chromosomes. Phenotype is an 

observable characteristic of an organism produced by the organism's genotype 

interacting with the environment. This contrasts with genotype, which is an organism's 

genetic composition. 

1.3.3 Genetic variations among humans 

Even though the DNA sequence between humans is 99.9% identical, millions of base 

pair differences are still present (Kruglyak & Nickerson, 2001). Genetic variations 

occur as a result of insertions, deletions, simple tandem repeats (STRs) and single 

nucleotide polymorphisms (SNPs) of the DNA sequence. In insertion variations, a few 

base pairs are inserted into a genetic sequence. This can happen due to slipping of DNA 

polymerase. Insertions in the coding region of a gene may alter splicing of the mRNA or 

cause a frameshift, both of which may significantly alter the gene product. A sequence 

deletion is a variation in which a part of a chromosome or a sequence of DNA is 

missing. Any number of nucleotides can be deleted, from a single base to an entire piece 

of chromosome. Deletion of a number of base pairs that is not evenly divisible by three 

will lead to a frameshift mutation, causing all of the codons occurring after the deletion 

to be read incorrectly during translation, producing a severely altered and potentially 

non-functional protein. A STR in DNA is a class of polymorphism that occurs when a 

pattern of two or more nucleotides are repeated and the repeated sequences are directly 

adjacent to each other. 

The most common type of genetic variation is the SNP, of which there are an estimated 

1.4 million candidates in the human genome (Kruglyak & Nickerson, 2001). A SNP is a 

DNA sequence variation which occurs when a single nucleotide in the sequence differs 



Chapter 1: General Introduction 23 

between members of a species. For a variation to be considered a SNP, it must occur in 

at least 1% of the population. The estimated frequency of SNPs in the human genome is 

1 per 1000 bases (Wang & Moult, 2001). Commonly, each SNP is represented by two 

alleles. However, SNPs with more than 2 alleles are also present. SNPs may fall within 

promoter regions, coding sequences, noncoding regions, or in the intergenic regions 

between genes. SNPs within a coding sequence may change the amino acid sequence of 

the protein that is produced. A SNP that does not change the polypeptide sequence is 

termed a synonymous SNP. If a different polypeptide sequence is produced they are 

termed as non-synonymous SNPs (Guttmacher & Collins, 2002). SNPs in coding and 

regulatory regions are the most likely to affect gene function (Chakravarti, 1998). 

Approximately 50% of coding SNPs are non-synonymous, and about 80% of these non- 

synonymous SNPs have been associated with disease through alteration in protein 

stability (Wang & Moult, 2001). Nevertheless, SNPs that are not in coding regions may 

still have consequences for gene splicing and transcription factor binding. Interestingly, 

some SNPs may simply serve as markers for the unidentified susceptible 

polymorphisms rather than ascribing a causative role (Chakravarti, 1998; Carlson et al., 

2003). In many pharmacogenetic studies, SNPs are commonly used as phenotype 

markers (Davidson, 2000). SNPs can be identified using several analytical assays such 

as polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP) 

and direct sequencing. 

1.3.4 Nomenclature of genetic sequence variations 

A nomenclature system has been suggested to standardise the description of 

polymorphisms in DNA and protein sequences (den Dunnen & Antonarakis, 2001). 

Variations are described at the most basic level using either a genomic or a 

complemetary DNA reference sequence. A genomic reference sequence is preferred 
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because it includes multiple transcription initiation sites (promoters), alternative 

splicing, and multiple translation initiation sites (ATG-codons). A complementary DNA 

reference sequence is used when the entire genomic sequence is not known. 

To avoid confusion in the description of a sequence change, a letter indicating the type 

of reference sequence is used, for example; 'g. ' for a genomic sequence (e. g. g. 54A>T), 

'c. ' for a complemetary DNA sequence (e. g. c. 54A>T) and 'p. ' for a protein sequence 

(e. g. p. R54K). At the DNA level, nucleotides are designated by the bases; A (adenine), 

C (cytosine), G (guanine) and T (thymidine). Nucleotide changes are indicated by a 

number which denotes the position of the substitution in the DNA sequence counted 

from the first coding nucleotide. Substitutions are designated by a `>' character. For 

example, 65A>C denotes that at nucleotide 65 an A residue changed to C. Two 

polymorphisms in one variant are described as "first change + second change", for 

example, 69A>C+102G>C denotes an A to C transition at nucleotide 69 and aG to C 

transition at nucleotide 102 in the same variant. For the purposes of standardisation, 

alleles of a SNP are represented by the position of the SNP and base of the allele, for 

example, alleles of the c. 89A>G substitution are denoted as 89A and 89G. Genotypes of 

a SNP are represented by the position of the SNP and the pair of allele bases, for 

example, genotypes of c. 89A>G substitution are denoted as 89A/A, 89A/G and 89G/G. 

1.3.5 History of pharmacogenetics 

Inherited characteristics that were first observed by Mendel (Hartl & Orel, 1992), have 

now evolved to a more complex and applied discipline known as pharmacogenetics. 

The earliest documented evidence of individual differences in drug metabolism can be 

traced back to the ancient Greeks (Pirmohamed, 2001). Sir Archibald Garrod, an 

English physician brought forward the knowledge of biochemical genetics in his 
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description of "an inborn error of metabolism" (Garrod, 1902). An incident that 

occurred during World War II further highlighted the diversity of pharmacogenetic 

disorders. Service personnel deployed in regions with high malarial risk were given a 

prophylactic antimalarial drug, primaquine. After the drug was taken, approximately 

10% of the African-American servicemen were diagnosed with acute anemia. The 

affected individuals were found to harbour some mutations in the gene expressing 

glucose 6-phosphate dehydrogenase (Carson et al., 1956). At the end of World War II, 

medicine entered the antibiotic era, and isoniazid was introduced to treat tuberculosis. It 

was noted that some individuals who took isoniazid rapidly developed a peripheral 

neuropathy. This was later proven to be associated with genetically polymorphic N- 

acetyltransferase, an enzyme responsible for the metabolism of isoniazid (Kalow & 

Staron, 1957). In the post-war years, Motulsky and Kalow, who were interested in 

genetically determined differences in drug metabolism, wrote extensive reviews on 

heredity and response to drugs (Motulsky, 1957; Kalow, 1962). This laid the 

foundations for `pharmacogenetics', a term coined by Friedrich Vogel of Heidelberg in 

1959 (Vogel, 1959). 

The discovery of polymorphic hydroxylation of debrisoquine in man has strengthened 

the promising future of pharmacogenetics for medicine and science (Mahgoub et al., 

1977). Further polymorphisms relating to other cytochrome enzymes were discovered in 

subsequent decades. Now, the Human Genome Project and other research endeavors are 

providing information that allows a better understanding of the underlying causes of 

pharmacogenetic anomalies. 
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1.4 Pharmacogenetics of antiepileptic drugs 

Epilepsy itself has been linked to at least 33 chromosome regions (Prasad et al., 1999). 

On the basis of prior knowledge of AED pharmacodynamics and pharmacokinetics, 

candidate genes and SNPs for AED pharmacogenetic study can be identified. 

Accordingly, genes that have a potential pharmacogenetic impact in epilepsy are 

divided into four groups; (i) genes that characterize a subclass of the epilepsy, (ii) genes 

for ion channel and AED receptors, (iii) genes that encode pharmacokinetic-related 

proteins associated with AED efficacy, and (iv) genes which are associated with AED 

toxicity (Spear, 2001). Interindividual variations in genes located on or related to 

regions that express drug receptors, ion channels, DMEs and DTPs may influence the 

response to AED treatment (Spear, 2001; Holmes, 2002; Clancy & Kass, 2003; 

Ramachandran & Shorvon, 2003; Ma et al., 2004). 

1.4.1 Pharmacogenetics of antiepileptic drugs: The influence of 

pharmacodynamic genes 

Most forms of human idiopathic epilepsy have been associated with genetic variation in 

ion channels. These include generalised epilepsy with febrile seizure plus (GEFS+) and 

severe myoclonic epilepsy of infancy (SMEI) that were linked to sodium channel 

subunit (SCNIA and SCN2A, respectively) variation (Ceulemans et al., 2004; Kamiya 

et ah, 2004) and some idiopathic generalised epilepsy syndromes that have been 

associated with voltage-gated potassium channel (Chioza et al., 2002) and calcium 

channel gene polymorphisms (Chioza et al., 2001). Most AEDs are believed to act on 

ion channels to modulate the excitability of neurones. Therefore, it is possible that there 

are associations between channel abnormalities and drug responsiveness in epilepsy. 

AED targets may be altered by the changes in the genetic transcription of ion channel 
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subunits. These transcriptional changes most probably affect both the density of ion 

channels in the neuronal membrane, as well as the shape of multi-subunit channel 

complexes. Other post-transcriptional modifications of ion channel proteins that are 

induced by seizures may also affect AED sensitivity (Remy & Beck, 2006). 

Reversal of excessive neuronal hyperexcitability can be achieved by AED binding to its 

recognition site in the domain IV, segment 6 region of the voltage-gated sodium channel 

(Ramachandran & Shorvon, 2003). Alteration of this important binding site could 

potentially result in drug non-responsiveness. This postulated mechanism is supported 

by the phenotypic difference between SMEI and GEFS+. Most patients with SMEI 

carry a truncating mutation which leads to a short Na�1.1 sodium channel a-subunit 

protein and most likely causes a loss of function (Ceulemans et al., 2004). In these 

patients, protein truncation might result in destruction of the drug binding site and 

thereby explain resistance to AEDs acting on the sodium channel. On the other hand, 

GEFS+ is a more benign phenotype which results from a few SNPs in sodium channel 

genes, but a nonetheless fully expressed protein (Ceulemans et al., 2004). Compared to 

SMEI, GEFS+ is associated with a better response to AEDs. 

Other than treatment response, variability in the function of ion channels may also 

influence the amount of AED required to achieve optimal seizure control. It has been 

demonstrated that an intronic polymorphism IVS5 -91G>A in the SCNIA gene is 

associated with maximum doses of CBZ and PHT (Tate et al., 2005). Maximum doses 

of CBZ averaged 1313,1225, and 1083 mg for individuals with IVS5 -91A/A, A/G, and 

GIG genotype, respectively; maximum doses of PHT averaged 373,340, and 326 mg, 

for individuals with IVS5 -91A/A, A/G, and GIG genotype, respectively, suggesting a 

trend towards reduction in maximum dose according to genotype. This polymorphism 

affects alternative splicing of exon 5 of the SCNIA gene. The major IVS5 -91A allele 
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disrupts the consensus sequence of fetal exon 5N, possibly reducing the expression of 

this exon relative to the adult exon 5A. Analysis of SCNIA c. DNA from adult human 

brain tissue of individuals with epilepsy showed some degree of association between the 

IVS5 -91G>A genotypes and the SCNIA expression (Tate et al., 2005). Therefore, 

genetic variability in ion channels not only explains epileptogenesis but may also 

influence drug responsiveness and dosing requirements due to subtle alteration of the 

channel structure. 

1.4.2 Pharmacogenetics of antiepileptic drugs: The influence of 

pharmacokinetic genes 

Investigation of AED pharmacogenetic-pharmacokinetic association can be approached 

from two directions; (1) genes encoding DTPs and (2) genes encoding DMEs. Although 

pharmacogenetic studies examining the influence of DTP polymorphisms directly on 

AED pharmacokinetics are limited, some studies have explored the association between 

DTP gene polymorphisms and the response to AED treatment (Siddiqui et al., 2003; 

Tan et al., 2004a; Hung et al., 2005; Sills et al., 2005; Kim et al., 2006; Seo et al., 

2006a). The most studied DTP gene is ABCB 1, a gene responsible for encoding the 

efflux transporter, P-gp. P-gp is believed to be a contributor to pharmacoresistance in 

epilepsy, as several AEDs have been demonstrated to be transported by P-gp (Potschka 

et al., 2002) and over-expression of P-gp has been identified in medically intractable 

epileptic brain tissue (Marchi et al., 2004). Variability in P-gp expression may be the 

result of polymorphisms in the ABCB 1 gene and has been postulated to result in 

interindividual variation in the response to AED treatment. One study has demonstrated 

that patients with drug-resistant epilepsy are more likely to carry the ABCBI 3435C/C 

genotype than the 3435T/T genotype (Siddiqui et al., 2003). Further studies examining 

multiple polymorphic sites have concluded that haplotypes of common polymorphisms 
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in the ABCB 1 gene may be more useful in predicting response to AED treatment (Hung 

et al., 2005; Seo et al., 2006a). However, other investigations have failed to confirm the 

original association between the ABCB 1 c. 3435C>T polymorphisms and drug-resistant 

epilepsy (Tan et al., 2004a; Sills et al., 2005; Kim et al., 2006). As such, the functional 

significance of ABCB 1 gene polymorphisms in the response to AED treatment remains 

elusive. 

The second dimension of AED pharmacogenetic-pharmacokinetic association studies is 

that related to DMEs. Among the DMEs that mediate metabolism of AEDs, only 

isoforms of CYP2C have been studied in depth. (Prasad et al., 1999; Clancy & Kass, 

2003; Ramachandran & Shorvon, 2003). CYP2C9 has two functionally important 

polymorphisms, the c. 430C>T and c. 1075A>C substitutions (Scordo et al. 2004). 

Lower CYP2C9 activity is associated with the 430T+1075C variant. In a single dose 

study using 300 mg PHT, there was a significant difference in trough PHT 

concentrations between the variants of CYP2C9 (Aynacioglu et al., 1999). Compared 

with the CYP2C9 430C/C+1075A/A variant, the greatest difference in trough PHT 

concentrations was demonstrated in individuals carrying the CYP2C9 430T/T+1075A/C 

variant (95% Cl: 0.78 - 2.20; Aynacioglu et al., 1999). In a different study, the PHT 0- 

96 hour AUC after a single dose was also significantly higher in patients carrying the 

430T+1075C variant than in individuals homozygous for the 430C and 1075A alleles. 

Overall, carriers of the 430T+1075C variant have 1.8 to 2.7-fold higher PHT AUC than 

other genetic variants (Caraco et al., 2001). 

In addition, the maximal elimination rate of PHT was shown to be lower in individuals 

with the 1075C allele compared to those with the 1075A allele (Odani et al., 1997), and 

this may explain the association between higher plasma PHT concentrations and the 

CYP2C9 1075C allele (Brandolese et al., 2001; Soga et al., 2004). Carriers of the 
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430T+1075C variant have also been shown to have a higher plasma PHT concentration 

(Caraco et al., 2001), which corresponded with a mean PHT dose that was 30% lower in 

a group of patients with the 430T+1075C variant compared to those with the 

430C+1075A variant (199 ±38.6 mg versus 287 ±80.7 mg, respectively). This 

difference in PHT dose between variant groups was most evident in patients with PHT 

steady-state plasma concentrations within the therapeutic range (10 - 20 mg/l; van der 

Weide et al., 2001). A trend confirming that the PHT dose is associated with CYP2C9 

variants was also demonstrated in the prevalence profile of the variants; CYP2C9 

430T+1075C alleles were present in 62.5% of the low-dose group, 32.4% of the 

standard-dose group and 0% of the high-dose group (van der Weide et al., 2001). A 

study on maximum dose of AEDs has also demonstrated that carriers of CYP2C9 

430T+1075C variant received significantly lower PHT and CBZ doses (Tate et al., 

2005). 

1.4.3 Antiepileptic drugs as drugs of pharmacogenetic interest 

A drug with pharmacogenetic interest is one that is likely to demonstrate significant 

inter-individual variability in mortality, morbidity, quality of life impact and the risk of 

severe adverse effects. In addition to these criteria, the frequency of drug prescription 

and the number of exposed patients should also be considered (Kim et a!., 2007). Drugs 

that are frequently prescribed may also be drugs of pharmacogenetic interest because a 

larger population of patients is at risk of suffering therapeutic failure or severe adverse 

effects. 

The exciting pharmacogenetic findings in relation to PITT metabolism have a limited 

clinical application since this drug is no longer employed as a first line agent in most 

European countries, especially for the chronic treatment of epilepsy (National Institute 
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for Health and Clinical Excellence, 2004). However, a number of other AEDs is 

available for further exploration. VPA, CBZ and LTG are the three most commonly 

prescribed AEDs by clinicians in the UK (Morgan et al., 2004). The Standard and New 

Antiepileptic Drug (SANAD) study has demonstrated that the best AED for newly 

diagnosed idiopathic generalised epilepsy is VPA, whereas CBZ and LTG are the drugs 

of choice for patients with partial epilepsy (Marson et al., 2007a; Marson et al., 2007b). 

The Epilepsy Unit at the Western Infirmary is a tertiary referral centre for adults with 

new-onset and pre-existing seizure disorders and, as such, has a population which is 

predominated with partial or localisation-related epilepsy. Given that these patients are 

most commonly treated with CBZ and LTG, that these drugs have a common 

pharmacodynamic target, and that their pharmacokinetic and metabolic profiles are well 

established, it is reasonable to focus on these two important AEDS. 

1.5 Carbamazepine 

1.5.1 History and indications 

CBZ was first synthesised in the laboratories of J. R. Geigy A. G. by Schindler and 

Blattner in 1957 (Schmutz, 1985). Theoblad and Kunz reported its initial spectrum of 

anticonvulsant activity six years after CBZ had been discovered (Schmutz, 1985). CBZ 

or 5H-dibenz-[b, f]azepine-5-carboxamide (Himes et al., 1981) has been used as an AED 

for many decades. It is effective in the treatment of simple partial, complex partial and 

generalised tonic-clonic seizures. It is ineffective and may even be deleterious in 

generalised absence seizures (Liporace et al., 1994; Kochen et ah, 2002). Other 

indications for CBZ include the treatment of neuropathic pain, such as trigeminal 

neuralgia, and psychiatric disorders, such as manic-depressive illness and aggression 

due to dementia. 
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1.5.2 Mechanisms of action 
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Several mechanisms have been proposed to explain the anticonvulsant activity of CBZ. 

Its principal mechanism is on neuronal ion channels to prevent the generation of high- 

frequency repetitive firing. CBZ blocks voltage-gated sodium channels and L-type 

calcium channels (Ambrosio et al., 1999), and potentiates potassium channel 

conductance (Schmidt & Eiger, 2004), which consequently suppresses the generation of 

high frequency action potentials. CBZ binds to the inactivated state of the voltage-gated 

sodium channel and changes the gating conformation in a voltage-, frequency- and 

time-dependent manner (Courtney, 1975; Kuo, 1998; Kwan et al., 2001). It binds to a 

common receptor site located on the extracellular portion of the sodium channel. The 

common binding site contains two phenyl groups, which are probably part of the side 

chain groups of aromatic amino acids constituting the channel. The two phenyl rings in 

CBZ bind to corresponding phenyl groups in the receptor. Other mechanisms of action 

reported for CBZ include modulation of synaptic transmission and neurotransmitter 

receptors such as the purine, monoamine, acetylcholine and N-methyl-D-aspartate 

(NMDA) receptors (Brodie & Dichter, 1997; Kwan et al., 2001; Bazil & Pedley, 2003; 

Schmidt & Eiger, 2004). However, these mechanisms are not as clear as the first 

mechanism. 

1.5.3 Clinical pharmacokinetics 

CBZ is absorbed relatively slowly from the gastrointestinal tract; however, its oral 

bioavailability is high (>70%). The irregular and delayed absorption is due to its poor 

dissolution in gastrointestinal fluid, and also alteration of gastrointestinal motility by its 

weak anticholinergic properties. After a single oral dose, peak plasma CBZ 

concentrations are achieved within 4 to 8 hours (Spina, 2002). In the blood, CBZ is 75% 
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bound to albumin, and to a lesser degree to a, -acid glycoprotein. In terms of 

physicochemistry, CBZ is neutral and highly lipophilic, making it easy to cross cell 

membranes. CBZ rapidly distributes to various organs and body tissues. In single-dose 

studies employing healthy volunteers and patients, the Vd for CBZ has been estimated at 

between 0.79 and 1.86 1/kg (Spina, 2002). The biotransformation of CBZ occurs mainly 

in the liver, involving multiple DMEs such as the CYP450s, hydrolases and conjugating 

enzymes. CBZ does not undergo significant enterohepatic metabolism (Spina, 2002). In 

humans, less than 2% of CBZ is eliminated unchanged in the urine and approximately 

70% of its oral dose is renally excreted (Bertilsson et al., 1997). 

1.5.4 Metabolism of carbamazepinc 

Multiple isoforms of CYP450 enzymes may be involved in the metabolism of a single 

AED. CYP450-related metabolism has a significant influence on the plasma 

concentrations of CBZ. CBZ metabolism is mediated by CYPIA2, CYP2B6, CYP2C8, 

CYP2C9 and CYP3A4, with the latter being identified as the primary isoenzyme 

(Pearce et al., 2002; Tredger & Stoll, 2002). The phase 1 metabolism of CBZ produces 

four major metabolites; CBZ-10,11-epoxide (CBZ-E); 2-hydroxy-CBZ; 3-hydroxy- 

CBZ; and CBZ-acridan (Bernus et al., 1996). Thereafter, mEH converts CBZ-E to 

CBZ- 10,11 -diol, prior to conjugation and excretion from the body. A significant amount 

of CBZ (15%) is subject to direct N-glucuronidation, with UGT2B7 identified as the 

key enzyme (Staines et al., 2004). Most other products of phase 1 metabolism are also 

conjugated with glucuronides (Maggs et al., 1997; FIGURE 1.2). 

The intermediate metabolite, CBZ-E is known to be pharmacologically active. It is often 

associated with rash and other side effects of CBZ (Ramsay & Wilder, 2002). The rate 

of CBZ epoxidation is believed to correlate with the content of microsomal CYP3A4 in 
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human liver (Kerr et al., 1994), while inhibition of CYP3A4 by drug such as 

ketoconazole can suppress CBZ-E formation by up to 94% (Pelkonen et al., 2001). 

These findings suggest that CYP3A4 is the principal catalyst of CBZ-E formation in 

human liver. A minor role of CYP2C8 in CBZ epoxidation has also been demonstrated 

(Kerr et al., 1994; Pelkonen et al., 2001). A study using cultures of COS-7 cells has 

shown that the activity of CYP3A5 is approximately one third that of CYP3A4 with 

regard to the formation of CBZ-E (Ohmori et al., 1998). Another investigation using 

baculovirus-infected insect cells and human liver microsomes has shown similar levels 

of activity, with the CYP3A5/CYP3A4 ratio of intrinsic clearance in the convertion of 

CBZ to CBZ-E approaching 1.0 (Huang et al., 2004). These investigators also reported 

that the CYP3A4 and CYP3A5 Michaelis-Menten constant values were 248 and 338 

µM, and the maximum rate of metabolism values were 4.87 and 5.98 nmollmin/nmol, 

respectively. These observations indicate a potentially important role of CYP3A5 

enzyme in the in vivo metabolism of CBZ. 

The conversion of CBZ to hydroxy-CBZ metabolites is the second most important 

metabolic pathway after epoxidation. The hydroxylation process is mediated by 

multiple CYP450s, including CYP3A4/5 and CYPIA2 (Pelkonen et al., 2001; Pearce et 

al., 2002; Spina, 2002). Each of these CYP450s has a specific site of action on the CBZ 

molecule, corresponding to the 1-, 2-, 3-, or 4- positions of the aromatic ring (FIGURE 

1.3; Spina, 2002), however, the most common metabolites are 2-hydroxy-CBZ and 3- 

hydroxy-CBZ (Pearce et al., 2002). 

CBZ induces the CYP450 isoenzymes that are involved in its own metabolism. CBZ 

may increase the amount of CYP3A4 protein and its corresponding activity up to 3- to 

4-fold (Wolbold et al., 2003). CBZ induces CYP3A4 activity to a greater extent than 

other CYP450 isoenzymes such as CYP2CI9 (Bertilsson et al., 1997). As CBZ is 
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primarily metabolised by CYP3A4, this effect will automatically accelerate its own 

metabolism in a process known as autoinduction (Tredger & Stoll, 2002), and give a 

unique time-dependent character to the pharmacokinetics of CBZ (Bialer et al., 1998). 
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Epoxidation 

CYP3A4/S, CYP2C8 

1 Hydroxylation 

CYP3A4/5 (position 1- & 2-) 

E CYP1A2 (position 2- & 3-) 

CYP2C9 (position 3-) 

O' NHZ 

FIGURE 1.3. Chemical structure of carbamazepine and the sites of CYP450 

action. Modified from Himes et al. (1981), Pelkonen et al. (2001) and Spina 

(2002). 

1.5.5 Effects of autoinduction on carbamazepine pharmacokinetics 
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Autoinduction of CBZ metabolism involves steroid and nuclear receptors such as the 

constitutive androstane receptor (CAR) and pregnane X receptor (PXR; Fuhr, 2000). 

The involvement of PXR is crucial at the transcription level of CYP3A4 mRNA 

(Wolbold et al., 2003). In addition to PXR and CAR, the human glucocorticoid receptor 

(GR) has also been described as a contributor to CYP3A4 induction by its involvement 

in the GR-PXR/CAR-cytochrome P450 cascade (Dvorak et al., 2003; Pascussi et al., 

2003). Both GR and PXR have been reported to contribute to the transcriptional 

regulation of the CYP3A4 gene mediated by a large number of xenobiotics (El-Sankary 

et al., 2001). Although it is recognised that PXR plays a significant role in the 

transcriptional phase of CYP3A4, genetic variability in the PXR gene does not explain 

the variation in CYP3A4 expression (Schuetz, 2003) or activity (Zhang et al., 2001). 
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Autoinduction of CBZ metabolism is a dose dependent process (Liu & Delgado, 1994). 

Steady-state clearance of CBZ varies between 31 to 110 ml/min depending on the 

maintenance dose and increases linearly with dose increment (Kudriakova et al., 1992). 

The ratio of CBZ-E to CBZ ranges between 0.09 ±0.02 at 100 mg/day and 0.21 ±0.06 at 

1200 mg/day (Kudriakova et al., 1992). Dose effects on these ratios are more 

predominant at a lower dosage range. Surprisingly, age does not influence the degree of 

CBZ autoinduction, despite clear differences in metabolic capacity between young and 

elderly subjects (Battino et al., 2003). 

The effects of autoinduction on CBZ concentrations are critical. Observed 

concentrations of CBZ are 50% lower than expected concentrations at day-4 of therapy, 

with observed concentrations falling further during extended follow-up (Eichelbaum et 

al., 1975). This drop in CBZ plasma concentrations can be detrimental to seizure control 

(Macphee & Brodie, 1985). 

CBZ has been employed as a reference drug in many comparative clinical trials of novel 

AEDs for the treatment of partial seizures and generalised tonic-clonic seizures in either 

adult or pediatric subjects (Brodie et al., 1995; de Silva et al., 1996; Reunanen et al., 

1996; Tanganelli & Regesta, 1996; Chadwick, 1999; Vasudev et al., 2000; Kwan & 

Brodie, 2001; Marson et al., 2002; Fakhoury et al., 2004). Due to the effects of 

autoinduction, the dose of CBZ has to be adjusted (Tanganelli & Regesta, 1996; Arroyo 

& Sander, 1999; Fakhoury et al., 2004). Dose titration often results in a 2- or more-fold 

higher dose at the end of study than the initial target dose. In a study of childhood 

epilepsy, the median doses of CBZ at the start of therapy and after 3 years on therapy 

were 200 mg/day (50 - 400 mg/day) and 400 mg/day (150 - 1000 mg/day), respectively 

(de Silva et al., 1996). The range of maximum dose was reported to be wider in CBZ- 

treated subjects (200 - 1400 mg/day) compared with other AEDs (Chadwick, 1999). 
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This range is similar to that reported as the final dose required (200 - 1600 mg/day) to 

achieve full seizure control (Kwan & Brodie, 2001). In clinical studies, some subjects 

receive a significantly higher dose of CBZ by the end of the study period, however, 

mean CBZ and CBZ-E plasma concentrations do not differ when measured routinely 

over a four week period (Schmidt & Eiger, 2004) or even up to 48 weeks (Brodie et al., 

1995; Hogan et al., 2003). This is a demonstration of how the effect of autoinduction 

can influence plasma concentrations of CBZ over an extended period of time. These 

studies have also shown that the degree of CYP3A4 metabolic capacity among patients 

is varied and may partly associate with interindividual genetic variability. 

1.5.6 Concentration-response relationship 

The association between plasma CBZ concentrations and clinical response has been 

investigated comprehensively in seizure disorders. The therapeutic range for CBZ 

plasma concentrations has been suggested at 4 to 12 mg/l (Bialer et al., 1998), although 

minor variations on this range have been proposed in numerous other studies (Hvidberg, 

1985; Brodie et al., 1995; de Silva et al., 1996; Arroyo & Sander, 1999; Dickinson et 

al., 1999). 

Plasma concentrations of CBZ in excess of 10 to 12 mg/1 are likely to produce adverse 

effects. However, minor signs of toxicity may also be apparent at lower concentrations. 

Interestingly, some patients are able to tolerate higher levels of CBZ without obvious 

deleterious consequences. A relationship between fluctuations in plasma CBZ 

concentration and the emergence of intermittent side effects has also been described 

(Bialer et al., 1998). Optimal CBZ concentrations vary widely among patients, with 

lowest concentrations of approximately 1 to 6 mg/l required for minimal effectiveness 
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(Bialer et a1., 1998). However, CBZ concentrations lower than a threshold of 4 to 6 mg/1 

may not be able to control seizures in difficult to treat epilepsy (Bialer et al., 1998). 

1.5.7 Side effects and adverse reactions 

Most AEDs have the potential to cause side effects or adverse events. CNS related 

events represent more than 60% of overall reported side effects or adverse reactions of 

AEDs (Chadwick, 1999; Carpay et al., 2005). Up to 80% of patients on AEDs 

experience at least one adverse event (Chadwick, 1999). Adverse events are the most 

common reason for AED withdrawal in many clinical trials (Reunanen et al., 1996; 

Fakhoury et al., 2004). The most common side effects of CBZ are CNS related, for 

example drowsiness, dizziness, asthenia, headache, weakness and somnolence (Brodie 

et al., 1995; Reunanen et al., 1996; Tanganelli & Regesta, 1996; Vasudev et al., 2000; 

Hogan et al., 2003). 

CBZ is also associated with severe cutaneous reactions such as Stevens-Johnson 

syndrome, toxic epidermal necrolysis and generalised rash (Rzany et al., 1999). This 

phenomenon has been associated with the production of reactive iminoquinone, which 

is an intermediate metabolite in CBZ metabolism (Ju & Uetrecht, 1999). The initial 

cutaneous reactions may indicate a potentially life-threatening reaction known as 

anticonvulsant hypersensitivity syndrome (Svensson et al., 2000. ). Rash is experienced 

by 3.4 to 10 percent of patients on CBZ (Reunanen et al., 1996; Chadwick, 1999; 

Hogan et al., 2003) and is one of the most significant adverse events leading to CBZ 

withdrawal (Brodie et al., 1995). 
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1.5.8 Potential factors that influence the variability in clinical 

pharmacology of carbamazepinc 

Various factors contribute to variability in pharmacokinetics and pharmacodynamics, 

which may consequently affect the efficacy and toxicity of CBZ. These factors include 

patient age, organ function, drug formulation, concomitant medications and genetic 

status. Age reflects body composition and function. The weight-related Vd of lipophilic 

drugs is usually higher in adults than in children because of the greater proportion of fat 

per kg of body weight (Thomson, 2004). Indeed, it has been reported that the Vd of CBZ 

is strongly associated with body weight and demonstrates an increase when comparing 

children to adults (Reith et al., 2001). Clearance of CBZ also increases linearly with 

body weight and nonlinearly with age. With respect to body weight, infants have a 

higher clearance than older children (Delgado Iribarnegaray et al., 1997; Reith et al., 

2000) and the tl/2 of CBZ is very short in young children. CBZ is more rapidly 

metabolized to CBZ-E in children than in adults. This is in accordance with 

conventional wisdom which suggest that, biotransformation occurs at a faster rate in 

children than in adults (Gilman et al., 2003; Perucca, 2006). Thus, children may require 

a higher dose of CBZ per kg of body weight than adults. 

The effect of hepatic impairment on the pharmacokinetics of CBZ is not known. Given 

that CBZ is primarily metabolized in the liver, it is important to exercise caution when 

initiating CBZ in patients with hepatic dysfunction. The effect of renal impairment on 

the pharmacokinetics of CBZ is similarly unknown. 

Plasma CBZ concentrations can be influenced by drug interactions. These are often 

pharmacokinetic rather than pharmacodynamic in origin, and result from induction or 

inhibition of DMEs (Patsalos, 1999; Perucca, 2001; Bazil & Pedley, 2003). The CBZ-E 
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to CBZ ratio may be significantly increased by the concomitant administration of 

enzyme-inducing AEDs (PHT and PB) or decreased by enzyme inhibitors (VPA). The 

metabolism of CBZ can also be inhibited by a variety of therapeutic agents, including 

macrolide antibiotics, anti-fungals, anti-virals, and anti-hypertensive, all leading to an 

increased CBZ plasma concentration. Such drug-induced changes in CBZ kinetics are 

particularly pronounced in children (Battino et al., 1995). 

Genetic polymorphisms which result in the production of proteins with altered activity 

may also have major implications for the variability in CBZ pharmacokinetics and 

pharmacodynamics. These proteins include DMEs and ion channels. CBZ metabolism 

involves many DMEs (FIGURE 1.2; Pelkonen et al., 2001). Common polymorphisms 

in genes encoding these enzymes have been associated with several functional variants. 

Any such change in the activity of DMEs may consequently influence the plasma and 

brain concentrations of CBZ. This may in turn increase the risk of treatment failure or 

the precipitation of adverse effects with CBZ treatment. Blockade of voltage-gated 

sodium channels is the principal mechanism of CBZ action (Courtney, 1975; Kuo, 

1998; Kwan et al., 2001) and polymorphisms in the genes which encode these proteins 

have been associated with defective channel structure and several forms of epilepsy in 

children (Meisler & Kearney, 2005). These genetic variants may influence the binding 

site for CBZ and the sensitivity of the channel to blockade. As such, they have the 

potential to affect the clinical efficacy and toxicity of the drug. 
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1.6 Lamotrigine 

1.6.1 Indication and efficacy 

LTG (3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazine) is a modified derivative of 

pyrimethamine, an antifolate compound (FIGURE 1.4). It was approved for the clinical 

management of seizures in the United Kingdom in 1991. LTG was initially introduced 

as an adjunctive agent, but was subsequently proven to be effective as monotherapy in 

the treatment of both partial seizures and primary generalised seizures in newly 

diagnosed and refractory epilepsy patients (Beghi, 2004). Patients with juvenile 

myoclonic epilepsy have also benefited from LTG monotherapy (Schimschock et al., 

2005). Outwith epilepsy, LTG is employed as a mood stabiliser in depression (Herman, 

2004). The effectiveness of LTG monotherapy is comparable to that of CBZ 

monotherapy (Nieto-Barrera et al., 2001; Kaminow et al., 2003). However, LTG has 

better tolerability and a better health related quality of life measures than CBZ (Gillham 

et al., 2000; Nieto-Barrera et al., 2001). Up to 40% of patients who are refractory to 

other AEDs may respond to LTG (Knoester et al., 2005). LTG is also effective as an 

alternative AED for patients who experience intolerable adverse effects (Knoester et al., 

2005). 

1.6.2 Mechanism of action 

LTG was identified during the screening of antifolates as putative antiepileptic agents 

(Ragsdale & Avoli, 1998). However, its anticonvulsant activity does not correlate with 

its weak inhibition of dihydrofolate reductase, an enzyme involved in folate bio- 

synthesis (Bazil & Pedley, 2003). LTG acts mainly by prolonging the inactivation of 

voltage-gated sodium channels. It inhibits sustained repetitive firing of action potentials 
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in a voltage- and frequency-dependent manner (Cheung et al., 1992; Ragsdale & Avoli, 

1998; Kwan et al., 2001). These actions resemble those of the established AEDs, PHT 

and CBZ. LTG also acts on L-, N-, and P- subtypes of calcium channels to reduce post- 

synaptic depolarisation (Wegerer et al., 1997; Perucca, 2001). Blockade of voltage- 

gated sodium and calcium channels by LTG is also believed to prevent the release of 

glutamate, the principle excitatory neurotransmitter in mammalian brain (Patsalos, 

1999; Bazil & Pedley, 2003). LTG has been demonstrated to decrease spontaneous 

glutamate release and to increase GABA release in rat entorhinal cortex (Cunningham 

& Jones, 2000). This wide range of pharmacological effects may explain the broad 

spectrum of clinical activity observed with LTG 

s-I 
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FIGURE 1.4. Chemical structure of lamotrigine. Arrow shows the main position 

of glucuronidation. 

1.6.3 Clinical pharmacokinetics 

LTG is rapidly and completely absorbed following oral administration and reaches peak 

plasma concentrations at I to 3 hours after administration (T, �.; Patsalos, 1999; Bazil & 

Pedley, 2003; Doose et al., 2003). The oral bioavailability approaches 98% (Patsalos, 

1999; Bazil & Pedley, 2003; Doose et al., 2003). LTG absorption is not significantly 
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influenced by the presence of food in the gastrointestinal tract (Patsalos, 1999). The 

constant rate of absorption has been estimated at 3.18 1/h. The Vd and tin are not dose- 

dependent, and Vd has been estimated at approximately 1.14 to 1.36 Vkg (Cohen et a!., 

1987; Ramsay et al., 1991; Hussein & Posner, 1997; Wooton et al., 1997). LTG is 

approximately 55% bound to human plasma proteins. Thus, any interaction with other 

therapeutic agents through displacement from protein binding sites is regarded as 

insignificant. 

In healthy volunteers, the total apparent and renal clearances of LTG have been 

estimated at approximately 0.5 and 0.043 ml/min/kg, respectively (Cohen et al., 1987; 

Wooton et al., 1997). The t112 of LTG ranges from 23 to 36 hours (Cohen et al., 1987; 

Jawad et al., 1987; Rambeck & Wolf, 1993; Wooton et al., 1997; Patsalos, 1999). In 

patients with epilepsy, concomitant administration of LTG with enzyme-inducing AEDs 

(PHT, CBZ, primidone or PB) decreases the mean LTG tin to 14 hours (Jawad et al., 

1987; Ramsay et al., 1991). In contrast, concomitant administration of LTG with 

enzyme-inhibiting AEDs (VPA) significantly increases the ti/2 of LTG (30 - 90 hours; 

Jawad et al., 1987; Patsalos, 1999; Perucca, 2001; Bazil & Pedley, 2003). Doses may be 

adjusted accordingly but the dosing interval is unchanged as the relationship between 

LTG dose and concentration remains linear in both monotherapy and polytherapy 

(Armijo et al., 1999). Other than concomitant AEDs, several other factors may also 

influence LTG concentrations. Oral contraceptives can reduce LTG concentration 

through induction of the glucuronidation process (Sabers et al., 2001) and pregnancy is 

associated with a decrease in LTG concentrations, especially in the second and third 

trimesters (Tran et al., 2002; Petrenaite et al., 2005). Severe liver disease, such as 

cirrhosis, may reduce the elimination of LTG and potentially increase plasma 

concentrations (Marcellin et al., 2001). A modest autoinduction with LTG has been 

demonstrated and is complete within 2 weeks of LTG initiation. As a result, the 
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systemic clearance is increased by an average of 17% and the tin decreased from 27.6 to 

23.5 hours (Hussein & Posner, 1997). 

LTG undergoes 2-N-glucuronidation mainly by UGTIA4 (FIGURE 1.4; Magdalou et 

al., 1992; Rambeck & Wolf, 1993; Vashishtha et al., 2001). Glucuronide conjugates are 

the primary (90%) excreted form of LTG. Approximately 70% of oral LTG doses are 

recovered in the urine (Cohen et al., 1987). The pharmacokinetic profiles of LTG did 

not differ between healthy volunteers and patients with chronic renal failure, suggesting 

that renal impairment has little or no effect on LTG plasma concentrations (Wooton et 

al., 1997). 

1.6.4 Concentration - response relationship 

Patients with focal and generalised epilepsies are known to possess a lower resting 

motor threshold (RMT; Tergau et al., 2003). RMT is an indicator of the level of motor 

cortex excitability. A study performed in healthy volunteers demonstrated a positive 

linear correlation between LTG plasma concentrations and RMT (Tergau et al., 2003), 

suggesting that LTG significantly influences the excitability of the motor cortex in a 

concentration-dependent manner and that higher LTG concentrations may be associated 

with better seizure control. However, there are no clinical studies which have 

successfully reproduced this relationship in the epilepsy population. There is no known 

association between LTG plasma concentration and the percentage reduction in seizure 

frequency (Mahmood et al., 1998) or total seizure control (Kilpatrick et a!., 1996). The 

literature is, however, less clear with regard to the relationship between LTG 

concentration and toxicity (Kilpatrick et al., 1996; Hirsch et al., 2004). Concentrations 

of LTG higher than the recommended therapeutic range (1.5 - 10 mg/1) are often well 

tolerated and may provide better efficacy (Hirsch et a!., 2004), but those greater than 20 
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mg/I have been reported to produce adverse effects in more than 50% of patients 

(Hirsch et al., 2004). 

There is no evidence to support the appropriateness of monitoring plasma LTG 

concentration in association with seizure control. However, it may be useful in patients 

treated with polytherapy, especially when adding or removing concomitant AEDs as 

LTG concentrations are influenced by enzyme inducers such as NIT, CBZ and PB and 

enzyme inhibitors like VPA (Perucca, 2001; Bazil & Pedley, 2003). Significant changes 

in plasma LTG concentrations as a result of the withdrawal of concomitant agents may 

be detrimental to seizure control or increase the risk of adverse effects. 

1.6.5 Adverse effects 

The typical adverse effects experienced with LTG are similar to those of CBZ (Brodie 

et al., 1999; Kaminow et al., 2003). However, the number of patients who experience 

adverse effects with LTG is relatively low compared to established drugs, such as CBZ 

and VPA (Nieto-Barrera et al., 2001; Kaminow et al., 2003). Although the incidence of 

rash is higher with LTG than with CBZ, the percentage of patients with intolerable 

rashes that lead to drug withdrawal is lower (Brodie et al., 1999; Kaminow et al., 2003; 

Faught et al., 2004). This was paralleled with a lower number of drop-outs for the LTG 

group compared to the CBZ group in a head to head monotherapy trial (Brodie et al., 

1999). 
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1.6.6 Potential factors that influence the variability in clinical 

pharmacology of lamotrigine 

Numerous factors can lead to variability in pharmacokinetics and pharmacodynamics, 

and consequently affect the efficacy and toxicity of LTG. These include patient age, 

organ function, underlying diseases, drug formulation, concomitant medications and 

genetic status. Body composition and function are reflected by age. The weight-related 

Vd of lipophilic drugs is usually higher in adults than in children because of the greater 

proportion of fat per kg of body weight (Thomson, 2004). However, the weight- 

normalised Vd for LTG in children aged between 2 to 12 years is higher than that 

reported in adults (Chen et al., 1999). There is no clear explanation for this observation. 

LTG metabolism is mainly mediated by glucuronidation in the liver. The rate of 

glucuronidation is known to be lower in infants aged between 7 and 24 months than in 

older children or adults (Strassburg et al., 2002). Hence, children under 2 years may 

exhibit a lesser degree of LTG metabolism. Interestingly, the weight-normalised 

clearance of LTG is higher in children aged between 2 and 12 years than in adults (Chen 

et al., 1999). This is in accordance with the observation that, in older children, DMEs 

mature rapidly and biotransformation occurs at a faster rate than in adults (Gilman et al., 

2003; Perucca, 2006). Thus, children may require a higher dose of LTG per kg of body 

weight than adults. LTG metabolism can also be affected by severe liver disease, such 

as cirrhosis (Marcellin et al., 2001), whereas renal impairment does not directly affect 

plasma LTG concentrations but may influence the excretion of glucuronide metabolites 

of LTG (Wooton et al., 1997). Plasma LTG concentrations can also be influenced by 

drug interactions. These are often a result from induction or inhibition of DMEs (Jawad 

et al., 1987; Ramsay et al., 1991; Armijo et al., 1999; Patsalos, 1999; Perucca, 2001; 

Bazil & Pedley, 2003). It is well known that the concomitant use of LTG and enzyme- 
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inducing AEDs such as PB, PHT and CBZ may reduce plasma LTG concentrations 

(Jawad et al., 1987; Ramsay et al., 1991), whereas the interaction between LTG and 

VPA may result in increase of plasma LTG concentrations (Armijo et al., 1999). 

Dosage adjustment of LTG may be required when introducing or withdrawing these 

concomitant AEDs. 

Genetic polymorphisms which result in the production of proteins with altered activity 

may have major implications for the variability in LTG pharmacokinetics and 

pharmacodynamics. These proteins include DMEs, DTPs and specific subunits of 

neuronal ion channels. Polymorphisms in UGT genes can influence the activity of 

glucuronidation enzymes (Sawyer et al., 2003; Thibaudeau et al., 2006), and any such 

change in the activity of UGTs involved in LTG metabolism may consequently affect 

plasma and brain drug concentrations. This may increase the risk of treatment failure or 

the precipitation of adverse effects with LTG treatment. LTG is believed to be a 

substrate for P-gp (Potschka et al., 2002). Polymorphisms in the ABCB I gene which 

encodes P-gp can alter the expression and function of P-gp (Hoffineyer et al., 2000). 

This protein is expressed in various body tissues, including the intestine, liver, kidney 

and brain (Kim, 2002a; Marchi et al., 2004). Variability in the ABCB1 gene has the 

potential to influence the absorption, distribution, and elimination of LTG. 

Polymorphisms in the pharmacodynamic targets of LTG may also have an impact on its 

efficacy. Blockade of voltage-gated sodium channels is the principal mechanism of 

LTG action (Cheung et al., 1992; Ragsdale & Avoli, 1998; Kwan et al., 2001) and 

polymorphisms in the genes which encode the principal protein subunits of these 

channels have been associated with defective channel structure and several forms of 

epilepsy in children (Meisler & Kearney, 2005). These genetic variants have the 

potential to influence the binding site for LTG and the sensitivity of the channel to 
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pharmacological blockade. As such, they might contribute to interindividual variability 

in the clinical efficacy and toxicity of the drug. 

1.7 Drug metabolising enzyme, drug transporter protein 

and sodium channel genes and their common 

polymorphisms 

In accordance to the aims of this project, special attention is given to DMEs that are 

involved in CBZ metabolism, P-gp that has been reported to transport LTG, and 

voltage-gated sodium channels which are blocked by CBZ and LTG in exerting their 

antiepileptic effects. Common polymorphisms in these DME, P-gp and voltage-gated 

sodium channel genes are described in this section. Published studies examining these 

gene variants in association with AED responsiveness are limited. As such, studies 

investigating other pharmacological agents are presented to illustrate the functional 

relevance of these gene variants. The common polymorphisms examined throughout 

this research programme are listed in TABLE 1.6. These are the most widely recognised 

genetic polymorphisms of the respective proteins at the time this project was planned. 

1.7.1 Cytochrome P450: History and structure 

In 1940s, cytochrome P450 monooxygenase was first systematically documented in 

studies exploring the in vivo metabolic pathway of compounds in animals (Schenkman, 

1993). Extended work through the 1960s by many investigators revealed the presence of 

mixed function oxidase in the process of drug and xenobiotic oxidation. In 1958, 

Garfinkel and Klingenberg identified and reported CYP450 as a new pigment in 

mammalian liver microsomes (Lipscomb & Gunsalus, 1973; Sato et al., 1973). When 
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treated with carbon monoxide, the reduced form of the pigment demonstrated an 

unusually strong absorption band at 450 nm. For that reason, the pigment was known as 

Pigment-450 (P450; Sato et al., 1973). Most of these pigments are present in a 

membrane-bound state of several tissues, for example, in the liver, kidney, adrenal 

cortex, intestinal mucosa and several endocrine glands (Sato et al., 1973). CYP450s are 

named with the root CYP derived from CYtochrome P450 followed by an Arabic 

numeral denoting the gene family, a letter for the subfamily and another numeral 

designating the gene number (Gonzalez, 1993). Human CYP450 has more than 30 

isoforms. 

CYP450 has a molecular weight of about 57 000 Daltons (-500 residues) and contains 

one equivalent of ß-type haem per polypeptide. The overall hydrophobicity of CYP450 

is about 36%, and this gives a significant non-polar property to the molecule. 

Computational modelling of CYP450 suggests the existence of an a-helix and a ß-strand 

in the molecule. The structure undergoes ̀ open' and `closed' transitions to facilitate 

substrate binding and product/metabolite release (FIGURE 1.5; Black, 1993). Further 

investigations in 3-dimensional models have demonstrated that CYP450 structure is 

specific for certain substrates (Guengerich, 1987). 
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TABLE 1.6. Single nucleotide polymorphisms in selected drug metabolising 

enzyme, drug transporter protein and sodium channel genes. 
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Single nucleotide Amino acid dbSNP reference 

Protein Gene polymorphism substitution number 

CYP3A4 CYP3A4 g. -392A>G - rs2740574 

CYP3A5 CYP3A5 g. 6986A>G Splicing defect rs776746 

CYP1A2 CYPIA2 g. 5734C>A - rs762551 

mEH EPHXI c. 337T>C Y11311 rs1051740 

c. 416A>G H 139R rs2234922 

UGT2B7 UGT2B7 c. 802C>T H268Y rs7439366 

P-gp ABCB 1 c. 1236C>T G412G rs 1128503 

c. 2677G>T/A A893S/T rs2032582 

c. 3435C>T 111451 rs1045642 

Na"1.2 SCN2A c. 56G>A R19K rs17183814 

mEH = microsomal epoxide hydrolase; P-gp = P-glycoprotein; Na,, 1.2 = voltage- 

gated sodium channel alpha-2 subunit; amino acid code, A= Alanine, G= 

Glycine, H= histidine, I= Isoleucine, K= lysine, R= arginine, S= Serine, T= 

Threonine, Y= tyrosine; dbSNP = SNP database from National Center for 

Biotechnology Information available at http: //www. ncbi. nlm. nih. gov/. 
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(3-strand 

FIGURE 1.5. A schematic view of the secondary structure of the ('YI13A4 

protein. The thick arrow shows the substrate pocket. Adapted G-om Williams 'i at. 

(2004). 
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1.7.2 Cytochrome P450 3As 

1.7.2.1 Functions and tissue distribution of CYP3As 

Almost 50% of all clinically used drugs arc mctabolised by ('YP3A isolorms, mainly 

CYP3A4 and CYP3A5 (Kuehl et (il., 2001; Tredger & Stoll, 2002; Schuct/ ct al., 2004). 

Both CYP3As are also involved in the metabolism of more than 50% of Al: I)s. Other 

than xcnobiotics, CYP3A also catalyses the metabolism of endogenous substances such 

as steroids, fatty acids and prostagladins (Ohmori et al., 199 8). ('YP3A proteins are 

present in many tissues throughout the body. CYP3A expression is greatest in the liver, 

which is the main organ of drug elimination. On average, ('YP3A comprises 30 to 40% 

of total hepatic CYP450 (Shimada et al., 1994). In the small intestine, ('YP3A can be 

found in the villus epithelium (Paine et al., I997). CYP3A hepatic expression shows a 

variation as much as 40-1old among surgically excised and organ donated livers (I, amba 
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et al., 2002a; Ozawa et al., 2004). A large interindividual variability has also been 

reported for the CYP3A content in the small intestine (Paine et al., 1997; I. own ct al., 

1994). 

The CYP3A4 isoform is the dominant CYP3A enzyme in the adult liver. In contrast, 

CYP3A5 is expressed mainly in the gastrointestinal tract. Nevertheless, the CYP3A5 

isoform can also be detected in other tissues throughout the body, such as adrenal gland, 

lung, prostate and kidney (Kolars et a!., 1994; Lown el al., 1994; (icrvot et a!., 1996; 

1 laehner et al., 1996; Ilukkanen et al., 2001; Koch et a!., 2002). 

1.7.2.2 CYP3A gene locus 

The CYP3A gene locus is located on position g22. I ol'chromosome 7 (()rawa cf (Il., 

2004). Duplication of an ancestral CYP3A gene cassette of 40-55 kb forms the CYP3A 

locus. Each of the CYP3A genes contains 13 exons, which encode a 503-amino acid 

CYP3A protein (Wojnowski, 2004). The CYP3A family consists of' four members; 

CYP3A4, CYP3A5, CYP3A7 and CYP3A43 (FIGURF 1.6; Kuehl el al., 2001). 

Chromosome 7 
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FIGURE 1.6. The location of the ('YP3A gene locus on Chromosome 7 and 

arrangement of'CYP3A genes in the locus. Adapted from Wojnowski (2004). 
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1.7.2.3 Genetics and common polymorphisms of CYP3A4 

54 

Genetic polymorphisms in the flanking, intronic and exonic regions of the CYP3A4 

gene may influence its level of expression and function. In the 5'-flanking region of 

CYP3A4 gene alone, at least six different SNPs have been identified (Lamba et al., 

2002b). The polymorphic alleles of the CYP3A4 present at a lower frequency in 

Caucasians than Oriental populations, except for CYP3A4 g. 747C>G (Hamzeiy et al., 

2002) and CYP3A4 g. -392A>G (Sata et al., 2000; Kuehl et al., 2001; Gracia-Martin et 

al., 2002; Hamzeiy et al., 2002). The CYP3A4 g. -392A>G polymorphism, previously 

known as CYP3A4-V, is a SNP in the promoter region of the CYP3A4 gene and was 

first described in association with the risk of developing prostate carcinoma (Rebbeck et 

al., 1998). 

1.7.2.4 Genetics and common polymorphisms of CYP3A5 

Clear polymorphic CYP3A5 expression is found in the adult liver, small intestine and 

other organs, with individuals presenting a low level of protein (Ilaehner et al., 1996; 

Kuehl eta!., 2001; Lin et a!., 2002). The most recognised polymorphism of CYP3A5 is 

the g. 6986A>G transition (FIGURE 1.7), a SNP within intron-3 which creates a cryptic 

splice site leading to the insertion of exon-313 into the mRNA (Ilustert et al., 2001; 

Kuehl et al., 2001; Lamba et al., 2002a). This SNP prematurely produces a stop codon 

and terminates the expression of CYP3A5 protein (Kuehl et al., 2001). This explains the 

absence of CYP3A5 protein in some individuals. The nonfunctional homozygous 

CYP3A5 6986G/G genotype is present in 70-87% of Caucasians (van Schaik et a!., 

2002; Lee et at., 2003; King et al., 2003; Schuetz et al., 2004). 
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FIGURE 1.7. Distribution of polymorphisms in the CYP3A5 gene. Boxes I to 13 

represent the exons. The *3 symbolizes the g. 6986A>G polymorphism. 

1.7.2.5 Phenotype profile of common CYP3A4 and CYP3A5 variants 

55 

Hepatic CYP3A4 protein expression varies as much as 90-fold among individuals 

(Hustert et al., 2001). The high interindividual variation observed in CYP3A4 levels is 

believed to be genetically related (Chelule et al., 2003; Ingelman-Sundberg, 2004). The 

functional significance of CYP3A4 gene variants for AED metabolism is unknown. For 

substrates such as nifedipine and alphatoxin B1, the significance of genetic variability in 

CYP3A4 activity has been demonstrated among Japanese and Caucasian populations 

(Shimada et al., 1994). This is further supported by a meta-analysis of 16 studies 

employing 10 different CYP3A4 substrates, which revealed strong genetic control on 

the variability of CYP3A4-dependent metabolism of adriamycin, ethylestradiol, 

erythromycin, midazolam, nifedipine and nitrendepine (Ozdemir et al., 2000). Some 

additional 'evidence to support the importance of CYP3A4 gene variants in drug 

metabolism has also been reported. For example, a significant difference in the systemic 

clearance of midazolam, statins, tacrolimus and docetaxel has been demonstrated 

between the carriers of the CYP3A4 -392A and -392G alleles (Wandel et al., 2000; 

Hesselink et al., 2003; Goto et al., 2004; Kajinami et al., 2004; Tran et al., 2006). 

L=J 'u 
[El 
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The second most highly expressed CYP3A protein, CYP3A5, provides another potential 

avenue for exploration. Some studies suggest that CYP3A5 might not directly 

contribute to CYP3A variability due to its low protein expression in the liver (Westlind- 

Johnsson et al., 2003). Nevertheless, some investigators have demonstrated positive 

findings. It has been reported that some Caucasian subjects with the CYP3A5 6986A 

allele are able to express CYP3A5 protein at a level which corresponds to 50% of the 

total hepatic CYP3A content (Kuehl et al., 2001). Therefore, polymorphisms of 

CYP3A5 may influence the total CYP3A activity (Kuehl et al., 2001) and there is 

evidence to support this hypothesis. A significant influence of CYP3A5 polymorphisms 

has been demonstrated on the efficacy of drugs which undergo CYP3A5-dependent 

metabolism, such as lovastatin, simvastatin, artovastatin (Kivisto et al., 2004) and 

saquinavir (Frohlich et al., 2004). Carriers of the CYP3A5 6986G allele were found to 

possess a lower midazolam clearance (Wong et al., 2004). However, a similarly 

designed study in a Korean population failed to reproduce this finding (Yu et al., 2004). 

These conflicting results might be explained by ethnic differences between studies, 

which are not uncommon, and further investigation is required for clarification. 

The degree of linkage disquilibrium between common polymorphisms in CYP3A4 and 

CYP3A5 appears to be high (>90%) when calculated from all concordant homozygous 

and heterozygous genotypes (Dally et al., 2004). A 60% homology between the 5'- 

flanking region of CYP3A5 and the corresponding region of CYP3A4, from nucleotide 

-1 to -1432 (Jounaidi et al., 1994), appears to contribute to this association. Linkage 

may play an important role in the overall activities of the CYP3A protein (Lamba et al., 

2002b; Wilkinson, 2004). For substrates that are metabolised mainly by one of the 

CYP3A enzymes, effects of the CYP3A5 g. 6986A>G polymorphism are usually 

opposed to the effects of the CYP3A4 g. -392A>G (Saito et al., 2004). 
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The importance of inducer effects on CYP3A4 and CYP3A5 gene polymorphisms has 

been demonstrated in a handful of studies. Subjects who were treated with rifampicin 

and who carry the CYP3A4 -392A and CYP3A5 6986G polymorphisms appear to 

demonstrate higher midazolam clearance (Floyd et al., 2003). The extent of induction 

was also found to be approximately 50% greater in subjects with the CYP3A5 6986G/G 

genotype (Floyd et al., 2003). This evidence suggests that genetic polymorphisms can 

significantly influence the pharmacological induction of drug metabolism. 

1.7.3 Cytochrome P450 1A2 

1.7.3.1 Functions and tissue distribution of CYP1A2 

CYPIA2 is a DME that catalyzes the hydroxylation of xenobiotics such as caffeine, 

theophylline, clozapine and CBZ (Pelkonen et al., 2001). Some of the metabolites 

produced via the CYPIA2 pathway can be mutagenic and carcinogenic to human cells. 

In mammals, CYPIA2 is constitutively expressed in the liver and the olfactory mucosa 

(Zhang et al., 2000). CYP1A2 represents approximately 13% of human liver CYP450 

(Shimada et al., 1994). Interestingly, CYPIA2 was found to be more active in men than 

in women (Rasmussen et al., 2002). CYPIA2 activity can be induced by drugs such as 

CBZ (Parker et al., 1998). 

1.7.3.2 Genetics and common polymorphisms of CYPIA2 

The CYP1A gene locus is located on Chromosome 15q24.1 of the human genome 

(FIGURE 1.8). The CYP 1A locus contains two genes, CYP 1A1 and CYP I A2. The 

CYPIA2 gene comprises 7 exons that encode 515 amino acids. It also contains an 

upstream region of about 3 kb (Quattrochi et al., 1986). The CYP IA2 gene is separated 

by 23 kb from the CYPIAI gene in the CYPIA locus. These two genes are orientated in 
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opposite directions with respect to one another, and share a common 5'flanking region, 

which contains the xenobiotic response elements and hepatic transcription factors, 

including hepatic nuclear J 'actors (I INFs; Corchero ei (il., 2001). 

Chromosome 15 
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FIGURE 1.8. The location of the CYPIA gene locus on Chromosome 15 and 

distribution of polymorphisms in the CYP I A2 gene. Boxes I to 7 represent the 

exons. The * 11' symbolizes the g. 5734C>A polymorphism. 

Currently, more than 13 polymorphisms of CYPIA2 have been identilicd (Human 

Cytochrome P450 (CYP) Allele Nomenclature Conunittce, 2001). Amon; these 

polymorphisms only the CYPIA2 g. -2467del"1' and ('YP I A2 g. 5734C--A arc commonly 

found in Caucasian populations (Sachse et al., 2003; Pavancllo c! (Il., 2005). CYPIA2 

g. -2467del1' is believed to he under strong linkage with ('YPIA2 g. 5734(' A in 
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Caucasians (Sachse et al., 2003). Little is known about the influence of CYPIA2 

variants on its metabolic activity, except in the case of the CYPIA2 g. 5734C>A 

substitution, where the CYPIA2 5734A allele has been reported to be highly inducible 

(Sachse et al., 1999) and capable of adjusting the risk of developing disease (Cornelis et 

al., 2005; Moonen et al., 2005). The allele frequency of CYP1A2 5734A is believed to 

be approximately 70%, with only minor differences between ethnic populations (Hamdy 

et al., 2003a; Obase et al., 2003; Moonen et al., 2005). 

1.7.3.3 Phenotype profile of common CYP1A2 variants 

Distribution of a urinary ratio of caffeine metabolites among smokers and non-smokers 

demonstrates the presence of genetic control over CYP1A2 activity (Schrenk et al., 

1998). This is further supported by a study of caffeine metabolism in twin subjects 

(Rasmussen et al., 2002). The CYPIA2 gene variants show phenotype differences only 

in the presence of xenobiotics or environmental pollutants, such as cigarette smoking, in 

which the CYPIA2 5734A allele shows higher metabolic activity (Sachse et al., 1999; 

Sachse et al., 2003). A study using omeprazole as an inducer has established that 

variation in CYPIA2 induction is also associated with the presence of the CYPIA2 

5734C>A polymorphism (Han et al., 2002). This phenomenon may be applicable to the 

study of CBZ because it has the potential to significantly induce CYPIA2 activity, as 

demonstrated in the drug-drug interaction involving concomitant use of CBZ with 

clozapine and olanzapine (Jerling et al. 1994; Lucas et al. 1998). 

1.7.4 Microsomal epoxide hydrolase 

The epoxide hydrolases are categorised under a broad group of hydrolytic enzymes, 

which include esterases, proteases, dehalogenases and lipases (de Vries & Janssen, 
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2003). Epoxide hydrolases play an important function in the activation and 

detoxification of exogenous chemicals, such as polycyclic aromatic hydrocarbons. At 

least five forms of epoxide hydrolases are present in mammalian species. These are 

microsomal cholesterol 5,6-oxide hydrolase, hepoxilin A3 hydrolase, leukotriene A4 

hydrolase, and soluble and microsomal epoxide hydrolases (Fretland & Omiecinski, 

2000). The first four hydrolases participate in the metabolism of endogenous 

compounds. In contrast to other epoxide hydrolases, mEH activity is geared more 

towards the metabolism of xenobiotic agents (Fretland & Omiecinski, 2000). 

1.7.4.1 Tissue distribution and structure of microsomal epoxide hydrolase 

mEH has been found in all tissues studied to date. The highest expression of mEH 

protein is in the liver followed by prostate, lung and kidney (Rebhan et al., 1997). mEH 

is also present in brain tissue and may have an important role in the metabolism of drugs 

that penetrate the BBB, such as AEDs. 

The first description of epoxide hydrolase structure was based on protein derived from 

Agrobacterium radiobacter AD1 (FIGURE 1.9; Nardini et al., 1999). It consists of 2 

domains: the first or the core domain shows a typical feature of the a/ß hydrolase-fold 

topology and the second or the cap domain is primarily comprised of a-helices. 

Substrates enter the active site through a long tunnel that is filled with water molecules. 

The tunnel is located between the core domain and the cap domain. The back of the 

tunnel or the active site of epoxide hydrolase replenishes the water molecules after the 

metabolic reaction (Nardini et al., 1999; de Vries & Janssen, 2003). 



('harter 1: General Introduction 

,. 
1 

FIGURE 1.9. A schematic view of' the secondary structure of' the epoxide 

hydrolase protein. Epoxide hydrolase is built From a-helices, ti-strands and coils, 

and has a narrow hydrophobic active site (black arrow). Source from Nardini ei a!. 

(1999). 

1.7.4.2 Microsonial epoxide hydrolase activity 
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mEH catalyzes the trans-addition of water to a broad range of epoxide substrates such as 

xenobiotic alkene and arene oxides. mEl I substrates are quite selective, with little or no 

metabolism by other epoxide hydrolases (Freiland & Omiecinski, 2000). The narrow 

hydrophobic tunnel of the active site limits the ability ofml: l I to catalyze the hydrolysis 

of large epoxide molecules (Fretland & Omiecinski, 2000). 'T'ypical nrllI substrates 

include toxic and procarcinogenic compounds, as well as epoxide metabolites ofAEI)s. 

In an animal study, mEH activity was significantly increased by PB treatment (Slawson 

et at., 1996). 1lowever, the level ofml; l I induction is moderate compared to C'YP450s 

(Pirmohamed et al., 1994; Hassett et cit., 1998). A study employing human lymphocytes 

also demonstrated that mEH activities varied by 3.3-fold and 4.74old in control subjects 

and patients receiving enzyme inducing drugs, respectively (Pirmohamed et al., 1994). 
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Indirect pharmacokinetic evidence in human and animal studies suggests that hepatic 

mEH is also inducible by CBZ (Eichelbaum et al., 1985; Regnaud et al., 1988; 

Kudriakova et al., 1992). 

In a study employing CBZ-E as a substrate for mEII, it was demonstrated that the 

median log metabolic ratio of transdihydrodiol to epoxide was slightly greater in 

chronic PB and PHT treated subjects, compared to subjects not treated with inducing 

agents (Kroetz et al., 1993). However, the distribution of the log metabolic ratios did 

not differ significantly from normality (Kroetz et al., 1993). These findings indicate that 

the rate of CBZ-E metabolism is not significantly influenced by the induction of mEH. 

As such, although CBZ may induce mEH activity, it is unlikely to enhance the 

elimination of CBZ-E. 

1.7.4.3 Genetics and common polymorphisms of EPHX1 

A single functional gene, EPHXI, located at the g42.1 of chromosome 1, encodes the 

human mEH protein (FIGURE 1.10; Skoda et al., 1988; Hassett et al., 1994a). The 

EPHXI gene contains nine exons, although the first exon is noncoding. Protein coding 

begins with the sixth nucleotide of the second exon (Hassett et al., 1994a). As many as 

33 polymorphisms in EPHXI have been reported (Saito et al., 2001). Two 

polymorphisms that have been studied most extensively are the substitution of 

c. 337T>C on exon-3 and c. 416A>G on exon-4, and particularly, in relation to the risk 

of developing cancer (Jourenkova-Mironova et al., 2000; Zhou et al., 2001; Lebailly et 

al., 2002; Sonzogni et al., 2002; Cajas-Salazar et al., 2003), emphysema (Smith & 

Harrison, 1997; Budhi et al., 2003) and liver disease (Sonzogni et al., 2002). The 

frequency distribution reported for the 337C allele is much higher in Oriental 

populations (45-56%; Takeyabu et al., 2000; Budhi et al., 2003; Zhang et al., 2003) 
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compared to African and Caucasian populations (21-41%; Jourcnkova-Mironova et (11., 

2000; London el al., 2000; Wong el al., 2000), while the 416( allele is observed at a 

frequency of around I5-24% in most populations (Jourcnkova-Mironova cat al., 2000; 

Wong el al., 2000; Lebailly et al., 2002). 
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FIGURE 1.10. The location of the EPI IX I gene locus on Chromosome 1. Boxes 

I to 9 represent the exons. The *3 and *4 symbolize the c. 337'1'->(' and c. 416A>G 

polymorphisms, respectively. 

1.7.4.4 Phenotype profile of common E PI IX 1 variants 

In vita eflccts of EPI IX I variants have been demonstrated in some cases ofcancer, and 

in lung and liver diseases, especially in the presence of' xenobiotic or environmental 

factors (London el al., 2000; Wong el al., 2000; Ulrich el a/., 2001; Zhou el al., 2001; 

Cajas-Salazar el al., 2003; Lin el al., 2006). The gene-disease association is believed to 

be related to the ability of EPI IX I variants to convert a less active compound to a more 

active compound in individuals with 416(; (fast nºetaboliser) or a more active 

compound to a less active compound in individuals with 337(' (slow nºetaholiser). It has 
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been proposed that polymorphic expression of EPHX 1 may also contribute to the 

deficiency in mEH, which could be partly responsible for AED-induced idiosyncratic 

reactions such as those observed with CBZ-E (Pirmohamed et al., 1992). 

mEH-mediated hydrolysis of benzo[a]pyrene-4,5-epoxide varied 8.5- and 7-fold 

between liver samples at low and high substrate levels, respectively (Hassett et al., 

1997). This variation might be due to polymorphic expression of the EPIIXI gene. It 

has been reported that the activity of mEH is reduced by 50% in carriers of 337C, and 

increased by 25% in carriers of 416G (Hassett et al., 1994b). In addition, a study of 

EPHXI variant activity in cultures of COS-1 cells demonstrated that expression and 

activity of the EPHXI 416G-containing enzyme were 28% and 40% higher than the 

EPHX1 416A-containing enzyme, respectively (Maekawa et al., 2003). Using cis- 

stilbene oxide and benzo[a]pyrene-4,5-oxide as substrates, the hydrolysis reaction rates 

of mEH were significantly lower for the 337C/416G allele than for other EPHX1 

variants (Hosagrahara et al., 2004). In many studies, diplotypes of 337T>C and 

416A>G polymorphisms are commonly used to predict the levels of net mEH activity 

(Smith & Harrison, 1997; Sarmanova et al., 2000; Takeyabu et al., 2000; Zhou et al., 

2001; Sonzogni et al., 2002; Lebailly et al., 2002; Cajas-Salazar et at., 2003). Using 

these diplotypes, the net mEH activity can be categorised as low, medium or high. 

1.7.5 UDP-glucuronosyltransferases 

Conjugation reactions may involve glucuronidation, sulphation, glutathionation, 

acetylation and methylation. The glucuronidation process is mediated by UGTs. To 

date, 15 functionally active human UGTs have been identified. UGTs catalyze the 

biotransformation of a vast array of structurally diverse endogenous compounds and 

xenobiotics. Substrates of UGT are conjugated with glucuronic acid from a sugar donor. 
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Glucuronidation can affect both parent compounds and metabolites. Other than a 

deactivation property, UGTs may also generate bioactive and even toxic compounds 

(Radominska-Pandya et al., 2001). 

1.7.5.1 UDP-glucuronosyltransferase 2B7: Functions and tissue distribution 

UGT2B7 is an important isoform that participates in glucuronidation of physiologically 

important endogenous compounds and variety of clinically used drugs (Turgeon et al., 

2001; Court et al., 2003; Staines et al., 2004). Examples of UGT2B7 substrates include 

estrogens, catecholestrogens, bile acids, 3'-azido-3'-deoxythymidine, opioids, and CBZ. 

The UGT2B7 protein is highly expressed in liver and kidney; however, it is also 

detected in mammary gland, small intestine, lungs and brain tissue (King et al., 1999; 

Turgeon et al., 2001). 

1.7.5.2 Genetics and common polymorphisms of UGT2B7 

At present, the human UGT2B subfamily includes 7 genes; UGT2B4, UGT2B7, 

UGT2B 10, UGT2B 11, UGT2B 15, UGT2B 17 and UGT2B28 (Riedy et al., 2000; 

Levesque et al., 2001). Most of the UGT2B genes are believed to be located in one gene 

locus on Chromosome 4g13.2 (FIGURE 1.11; Riedy et al., 2000). The UGT2B7 gene 

comprises 6 exons that encode 529 amino acids (Carrier et al., 2000; Riedy et al., 2000). 

More than 80 SNPs have been reported for the UGT2B7 gene (National Center for 

Biotechnology Information, National Library of Medicine, Bethesda, USA; 

http: //www. ncbi. nlm. nih. gov/). Of these SNPs, the UGT2B7 c. 802C>T polymorphism 

has been reported to be present at a significant level in many populations. This 

polymorphism occurs in exon-2 of the UGT2B7 gene, and leads to replacement of 

histidine by tyrosine at codon 268. The presence of the UGT2B7 802T allele is higher in 
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Caucasian populations than other ethnic groups, ranging between 49% - 54'%, (13hasker 

et al., 2000; Lampe et al., 2000). Although the tJ(i' 2f37 802C% I' substitution causes an 

amino acid change, its functional significance in terms of' elidogcnous substrate and 

xenobiotic metabolisms is unclear. 
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FIGURE 1.11. The location of the UG"12U gene locus on Chromosome 4 and 

distribution of polymorphisms in the UG"I'2137 gene. Boxes I to 6 represent the 

exons. The *2 symbolizes the c. 802C--T polymorphism. 

1.7.5.3 Phenotype profile of common tJGT2137 variants 

Several studies have been pcrlormed to determine the eficets of the I I( i"I'2137 802('-1'1' 

polymorphism on xenobiotic metabolism, hoNvcver, none of these studies directly 

examined AEI) metabolism. An in vitro investigation using two types of cell culture has 

concluded that the c. 802C>T substitution may not he responsible liar the variability in 
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plasma and urine concentrations of opioid compounds, menthol, oxazepam, propranolol 

or androgens (Coffman et al., 1998). The UGT2B7 802T allele also appears to lack a 

functional effect on morphine 3-glucuronidation (Bhasker et al., 2000; Holthe et al., 

2003). Nevertheless, the carriers of the 802T allele have been shown to possess a 

significantly lower UGT2B7 activity in morphine-6-glucuronidation compared to 

carriers of the 802C allele (Sawyer et al., 2003). This phenomenon may be associated 

with the specificity of UGT2B7 in catalysing glucuronidation of morphine at position-6 

(Soars et al., 2004). 

Although the UGT2B7 802T allele has been identified as a lower activity variant, a 

recent study has demonstrated a contrary finding, with the UGT2B7 802T allele 

exhibiting a 2-fold higher intrinsic clearance in conjugating 4-hydroxy- 

catecholestrogens (Thibaudeau et al., 2006). Structural differences between substrates 

may explain the conflicting findings between these studies (Ekins et al. 2001; Ekins et 

al., 2003; Thibaudeau et al., 2006). 

1.7.6 Drug Transporter Proteins 

DTPs can be important determinants of drug absorption, distribution and excretion. The 

functional significance of DTPs is dependent upon their expression, and this can be 

modulated by genes and many substances (Ishikawa et al., 2004). DTPs are known to be 

involved in drug-drug interactions, for example between CBZ and talinolol (Lowe et 

al., 1997; Kim, 2002a; Giessmann et al., 2004). 

DTPs have also been associated with non-responsiveness to AEDs, as they significantly 

influence intestinal drug absorption and BBB drug permeability (Huai-Yun et al., 1998, 

Potschka et al., 2001; Potschka et al., 2002). Some hepatic DTPs such as P-gp may 
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affect the influx of AEI)s into hepatocytes, and the efflux of All) metabolites into the 

biliary system, which subsequently influences the rate and extent of AEI) metabolism 

(FIGURE 1.12). The expression of intestinal P-gp can also be induced by drugs such as 

C13Z (Giessmann et al., 2004). This phenomenon may further reduce drug absorption 

and enhance clearance. 
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FIGURE 1.12. A postulated model representing drug and metabolite movement 

in the intestinal epithelium and hepatocyte. OATP Organic Anion Transporter 

Protein, P-gp = P-glycoprotein, MRP Multidrug Resistance Associated Protein. 

Adapted from Kim (2002h). 

Drug distribution into brain tissues is determined by a host of factors including barrier 

systems such as the 131313, physicochemical properties of the drugs themselves, cerebral 

blood flow, drug metabolism, and pathological conditions (dc Lange & I)anhofl 2002). 

Expression of P-gp at the luminal membrane of' ccrebrovascular endothelial cells and 

within the brain parenchyma has been suggested to restrict drug, accumulation at 
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neuronal target sites (FIGURE 1.13; Tsuji & Tamai, 1997; Marchi e1 al., 2004). P-gp 

has also been reported to reduce the penetration of' several AI? I)s into the brain 

(Potschka el al., 2002). These findings support the functional relevance of P-gp in 

influencing the distribution of'AEl)s into brain tissue. 
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FIGURE 1.13. A postulated model representing the location of A13('13l 11- 

glycoprotein in the blood-brain harrier and brain parcnchynrr. Adapted from 

Marchi ei al., 2004). 

1.7.6.1 P-glycoprotein 

In the 1970s, a surface glycoprotein was first identified on ('Irinesc hamster ovary cells 

with altered permeability to colchicine (Juliano & Ling, 1976). "I'he 170 kI) 

glycoprotein was then designated as P-gp. The N-terminus of the I'-gp molecule 
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contains 6 transmembrane domains, followed by a large cytoplasmic domain with an 

ATP binding site, and then a second section with 6 transmembrane domains and a 

further ATP binding site which shows over 65% amino acid homology with the first 

half of the polypeptide (FIGURE 1.14). P-gp has been studied extensively with regard 

to its role in chemotherapy disposition and resistance (Chan et al., 2004). 

c. 3435C>T 

0844 

FIGURE 1.14. The putative 2-D structure of ABCB 1 P-glycoprotein with the 

sites of common polymorphisms. Adapted from Pastan et al. (1991). 

1.7.6.2 Functions and tissue distribution of P-gp 

P-gp is an ATP-dependent transmembrane efflux pump with a wide range of 

amphipathic hydrophobic substrates (Kim, 2002a). P-gp transports substances with 

diverse chemical structures, such as anticancer agents, cardiac drugs, I1IV protease 

inhibitors, immunosuppressants, ß-adrenoceptor antagonists, AEDs and also drug 

metabolites (Potschka et al., 2002; Schwab et al., 2003). Usually, CYP3A generated 

metabolites undergo subsequent sulfation and glucuronidation. In humans, P-gp is 

commonly co-localised and co-regulated with CYP3A in many tissues. Thus, P-gp 
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substrates were originally speculated to include most drug sulfates and glucuronides 

(Thu, 1999). P-gp may serve as a tünctional barrier against drug entry. P-gp knock-out 

mice demonstrate significant elevation in the disposition of P-gp substrates (Schinkcl ei 

at., 1996). P-gp can be detected in many tissues such as the intestine, liver, kidney, 

adrenal gland and brain (Kim, 2002a; Marchi el at., 2004). It can also he Bond in the 

apical membrane of many barrier tissues such as the 13ßI3 and blood-placenta harrier 

(Cascorbi, 2006). 

1.7.6.3 Genetics and common polymorphisms of AB('BI 

P-gp belongs to the transporter supcrI roily of the ATP-hinding cassette (ABC). In 

humans, the ABCB I gene encodes P-gp (Borst, 1997; Kusuhara & Sugiyama, 2001). 

The total length of the A13CB 1 gene is approximately 209 kb, which consists of a core 

promoter region and 29 exons (FIGURE 1.15; 13odor el al., 2005). The gene encodes a 

1280-amino acid transporter (Kim, 2002a; Schwab el eil., 2003). 
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More than 35 SNPs have been identified in the ABCB 1 gene, of which eight SNPs 

cause non-synonymous amino acid changes (Cascorbi, 2006). In many populations, the 

highest allele frequencies have been documented for the c. 1236C>T (21 - 41%), 

c. 2677G>T/A (10 - 44%) and c. 3435C>T (10 - 54%) transitions (Pauli-Magnus & 

Kroetz, 2004; Cascorbi, 2006). Significant ethnic differences exist in the frequency of 

allele and genotype distributions of the 3435C>T polymorphism of ABCBI (Schwab et 

al., 2003). In a Japanese study, strong association was demonstrated between 

c. 2677G>T/A and c. 3435C>T alleles (Tanabe et al., 2001). Carriers of the ABCB 1 *2 

variant, which signified the haplotype of 1236T-2677T-3435T were more commonly 

found among European Caucasians (62%) and South East Asians (40%) than African- 

Americans (13%; Kim et al., 2001; Tang et al., 2002; Tang et al., 2004). 

1.7.6.4 Phenotype profile of common ABCB1 variants 

Among the SNPs that have been documented for the ABCB 1 gene, polymorphisms of 

c. 1236C>T, c. 2677G>T/A and c. 3435C>T have been studied extensively (Kim, 2002a). 

However, study findings are inconsistent. Some investigations have shown that the 

3435T allele is associated with lower P-gp expression and activity, while others have 

demonstrated opposite findings. Lower expression of duodenal P-gp was found to 

correlate with the 3435T allele, resulting in higher digoxin plasma levels (Hoffmeyer et 

al., 2000). Collectively, haplotypes of ABCB 1 harboring the 3435T allele were also 

associated with higher digoxin concentrations (Johne et al., 2002). However, a large 

study has shown no significant difference in digoxin absorption between the 3435C and 

3435T alleles and other variants (Gerloff et al., 2002). A similar conflict was also 

observed with studies related to epilepsy. A higher prevalence of the ABCB 1 3435C/C 

genotype was found among poor-responders to AED treatment (Siddiqui et al., 2003), 

suggesting that the 3435C/C genotype was associated with drug resistant epilepsy. 
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However, three subsequent studies examining this polymorphism failed to confirm the 

original finding (Tan et al., 2004a; Sills et al., 2005; Kim et al., 2006). Some further 

investigations have suggested that haplotypes of these three loci might be more useful in 

predicting drug resistance in epilepsy (Hung et al., 2005) In this regard, a study 

focusing on CBZ has shown that the T-T-T haplotype at the 1236,2677 and 3435 

positions of the ABCB 1 gene was associated with a better response to CBZ therapy 

(Seo et al., 2006a). 

1.7.7 Voltage-gated Sodium Channels 

Voltage-gated sodium channels play a crucial role in the initiation and propagation of 

action potentials in neurones and other electically excitable cells (Goldin, 2003). The 

channel protein consists of a complex of a 260 kDa a-subunit in association with one or 

more auxiliary ß-subunits (Goldin, 2003; Yu & Catterall, 2003). The sodium channel a- 

subunit folds into 4 domains (I-IV), which are similar to one another and each domain 

contains 6 a-helical transmembrane segments (Sl-S6; FIGURE 1.16). The S4 region 

acts as the channel's voltage sensor. When stimulated by a change in transmembrane 

voltage, this region moves towards the extracellular side of the cell membrane allowing 

the channel to become permeable to sodium ions. A re-entrant loop between S5 and S6 

is embedded into the transmembrane region of the channel to form a narrow, ion- 

selective filter at the extracellular end of the channel. The cytoplasmic loop linking 

domains III and IV is important for channel function. This loop plugs the channel after 

prolonged activation and contributes to its inactivation. A total of nine a-subunits 

(Na,, 1.1-Na�1.9) have been functionally characterized (Yu & Catterall, 2003). 

The essential properties that enable voltage-gated sodium channels to carry out their 

physiological roles include rapid voltage-dependent activation, which opens the 
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channel, and inactivation, which closes the channel until recovery (Goldin, 2003). The 

inactivation process determines the frequency of' neuronal action potential firing. In 

general, the inactivation process can he divided to two phases, mast and slow. Fast 

inactivation occurs when the cytoplasmic loop occludes the channel. On the other hand, 

slow inactivation does not involve the cytoplasmic loop. The slow inactivation process 

is believed to involve a conformational change of the channel. Many drugs including 

AEDs affect sodium channel inactivation. 

u-subunit 11 subunit 

FIGURE 1.16. Schematic diagram of u- and fl-subunits of sodium channel 

Na,. I. 2. The a-subunit gene has four repeats (domains I- IV). Fach of the repeats 

has six membrane regions (S I -S6). The S4 region is the voltage sensor. The grey 

circle represents the position of the amino acid substitution (R I9K) which results 

from the c. 56G>A polymorphism. Adapted from Goldin (2003). 
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1.7.7.1 Tissue distribution of voltage-gated sodium channels 

75 

Consistent with a distinct role for each channel in human physiology, sodium channels 

have differential expression profiles during development and different sub-cellular 

localization in adulthood (Mandel, 1992). Na,, l. 1 and Na�1.3 are localised to the soma 

of the neurone, where they control neuronal excitability. Na�1.2 is expressed in 

unmyelinated axons where action potential conduction takes place. Na,, 1.7, Na,, 1.8 and 

Na,, 1.9 are the most abundantly expressed in the peripheral nervous system (PNS). 

Na,, l. l and Na�1.6 are also significantly expressed in the PNS. Finally, Na,, 1.4 and 

Na,, 1.5 are muscle sodium channels that control the excitability of skeletal and cardiac 

myocytes, respectively. 

Within the CNS, the expression of Na�1.1 is abundant in medulla oblongata and spinal 

cord. In contrast, the expression of Na� 1.2 is highest in the hippocampus and cerebral 

cortex (Gordon et al., 1987). These are the major seizure generating regions of human 

brain and, on the basis of this observation, it is likely that the NaJ. 2 sodium channel is 

involved in epileptic discharges and their responsiveness to sodium channel blocking 

AEDs 

1.7.7.2 Genetics and common polymorphisms of SCN2A 

The a-subunit is the principal subunit of neuronal sodium channels and is expressed by 

at least 5 genes in human brain, namely SCNIA, SCN2A, SCN3A, SCN8A and SCN9A 

(Kohling, 2002). In general, the clusters of genes encoding sodium channels are located 

on chromosomes 2 and 3. The SCN2A gene that encodes the Na� 1.2 protein is located 

on Chromosome 2q24.3 (FIGURE 1.17). This gene covers approximately 120 kb of 

g. DNA, contains 29 exons, and encodes a 2005 amino acid protein (Kasai et al., 2001). 
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Several SCN2A SNPs have been identified (Kaplan & Lacey, 1983; Kasai ('1 a/., 2001; 

heron et al., 2002; Berkovic et al., 2004). however, data regarding the prevalence of 

these polymorphisms is limited. The c. 56G>A substitution in SCN2A is a well known 

non-synonymous polymorphism (Ito et al., 2004). The c. 56G -A polymorphism which 

results in an amino acid substitution at codon- 19 of'the Na� 1.2 protein has been reported 

to have a minor allele (56A) frequency at 6% in a Japanese population (Nakayama ei 

al., 2002). 

1.7.7.3 Phenotype profile of common SCN2A variants 

Several non-synonymous SNPs in the SCN2A gene, including the c. 56(i ýA 

substitution, have been associated with paediatric seizure disorders such as lehrile 

seizure and benign familial neonatal inlänlile seizures (Su`gawara el al., 2001; Ileron ei 

al., 2002; 13crkovic et (il., 2004). The 56A allele was found to be more frequent in 

children with febrile seizure than healthy controls (Sugawara ci al., 2001). The 

mechanism by which this polymorphism alters the predispotion of'seizures is unknown. 

However, any significant modification of sodium channel structure night reasonably 

explain seizure generation and could, in theory, influence the response to A1; 1) 

treatment (Ramachandran & Shorvon, 2003). 
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1.8 Study Aims 

The aims of this thesis are listed as follows: 

77 

1. To identify the prevalence of alleles and genotypes of common CYP3A4, 

CYP3A5, CYP1A2, EPHX1, UGT2B7, ABCB1 and SCN2A polymorphisms in 

a West of Scotland epilepsy population. 

2. To establish an association between common polymorphisms in SCN2A, 

CYP3A4, CYP3A5, CYPIA2, EPHX1, UGT2B7 genes and the optimal dose of 

CBZ. 

3. To establish an association between common polymorphisms in CYP3A4, 

CYP3A5, CYP1A2, EPHX1 and UGT2B7 genes and CBZ adverse effects. 

4. To establish an association between common polymorphisms in ABCB I and 

SCN2A genes and the response to LTG monotherapy. 

5. To establish an association between common polymorphisms in ABCßl and 

SCN2A genes and the optimal dose of LTG. 

6. To establish the influence of common ABCB 1 gene polymorphisms on the 

pharmacokinetics of LTG in newly diagnosed epilepsy patients. 

Studies exploring aim (1) are presented in Chapter 3, studies exploring aims (2) and (3) 

are described in Chapter 4, and studies exploring aims (4), (5) and (6) are presented in 

Chapter 5. 
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2.1 Materials 

2.1.1 Chemicals and reagents 
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Promega® wizard DNA purification kit was purchased from Promega (Southampton, 

UK). Bromophenol blue, ethylene diamine tetraacetic acid (EDTA), ethanol, ethidium 

bromide, glacial acetic acid, isopropanol, tris base (Trizma®), and xylene cyanole FF 

were obtained from Sigma-Aldrich Co. Ltd. (Poole, UK). Chlorine tablets were 

purchased from Prime Source (Birmingham, UK). Deoxyribonucleotide triphosphates 

(dNTP mix), magnesium chloride (MgCl2), lOx PCR buffer (200 mM Tris HCl & 500 

mM KCI), and Taq polymerase were purchased from Invitrogen Ltd. (Paisley, UK). 

Molecular biology grade water was obtained from Eppendorf AG (Hamburg, Germany). 

PCR primers were purchased from MWG-Biotech (Ebersberg, Germany). 

Agarose powder was obtained from BioGene Ltd. (Kimbolton, UK). Bovine serum 

albumin (100x), lOx NE buffer, restriction enzymes (DdeI, DpnIl, EcoO1091, EcoRV, 

FokI, PspOMI, Pstl and Rsal), and DNA ladders (25 and 50 bp) were bought from New 

England Biolabs (Hitchin, UK). AMPure® system, DYEnamic ET Terminator Cycle 

Sequencing Kit and DYEnamic® ET Terminator dilution buffer were purchased from 

Beckman Coulter Ltd. (High Wycombe, UK). Ethyl acetate and methanol were bought 

from Rathburn Chemicals Ltd. (Walkerburn, UK). Sodium hydroxide was purchased 

from Fisher Scientific UK Ltd. (Loughborough, UK). 
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2.1.2 Pharmaceuticals 
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LTG and the internal standard (BWA725C) for high performance liquid 

chromatography (HPLC) were obtained from Glaxo Smith Kline (Stevenage, UK). 

2.1.3 Materials for gel electrophoresis 

2.1.3.1 Electrophoresis buffer 

A total of 3.7224 g of EDTA was dissolved in I litre of distilled water. The p11 of the 

EDTA solution was adjusted to 7.0 by slow addition of 5N sodium hydroxide. In a 

separate container, 48.4 g of tris base (Trizma®) was dissolved in 5 litres of distilled 

water. The Tris Base solution was then added to the EDTA solution. The p1! of the final 

solution was slowly adjusted to 8.0 with glacial acetic acid. Finally, distilled water was 

added to a total volume of 10 litres. 

2.1.3.2 Agarose gel 

Appropriate quantities of agarose powder (2.0,2.5 and 3.0 g) were dissolved in 100 ml 

of electrophoresis buffer to make 2.0,2.5 and 3.0% gels, respectively. The mixture was 

boiled in a microwave oven. After the agarose powder was completely dissolved, 0.5 µl 

of ethidium bromide (10 mg/ml) was added and mixed thoroughly. The mixture was 

poured into a gel tray and allowed to set for approximately 1 hour. 

2.1.3.3 Loading dye 

Small pinches (approximately 1 mg) of both bromophenol blue and xylene cyanole FF 

were mixed with 20 ml of 50% glycerol/water solution. 
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2.1.4 Equipment 
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Centrifugation: Blood samples were centrifuged in a ALC® PK130 centrifuge (DJD 

Labcare Ltd., Newport Pagnell, UK). 

DNA quantification: genomic DNA samples were quantified using a WPA Biotech 

photometer model UV 1101 (Biochrom Ltd., Cambridge, UK) 

DNA storage: The genomic DNA samples were stored in a NapCOIL UF400 -80°C 

freezer (Jencons-PLS, Forrest Row, UK). 

Direct sequencing assay: The sequencing equipment consisted of MegaBACE 1000 

DNA Analysis System and SPRIPIate 96R® plate (Beckman Coulter Ltd., High 

Wycombe, UK) 

LTG assay: The experimental equipment consisted of Shimadzu SIL-9A autosampler, 

Shimadzu SPDF-6A UV detector, Shimadzu LC-IOAT pump (Shimadzu UK Ltd., 

Milton. Keynes, UK) and Heto Maxi Dry Plus vacuum centrifuge (Iieto-Holten A/S, 

Allered, Denmark). The HPLC column was a Zorbax sil column (250 x 4.6 mm; 

DuPont UK Ltd., Stevenage, UK) 

Polymerase chain reaction: PCR was performed in a PxE 2.0 Thermal Cycler® (Thermo 

Electron Co., Basingstoke, UK) 

Restriction fragment length polymorphism assay: Separation of DNA fragments was 

performed in a Sub-cell® GT tank. A PowerPac Basic was used as a power system for 

the electrophoresis process. Separation of DNA fragments was visualised under 

ultraviolet light using Gel Doc 1000 system (all Bio-Rad Laboratories Ltd., Hemel 

Hempstead, UK). 
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2.2 Experimental Principles 

2.2.1 Polymerase chain reaction 
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PCR provides a sensitive means of amplifying small quantities of DNA. PCR was 

invented by Kary B. Mullis in 1983 (Rabinow, 1996). The discovery of polymerase 

derived from the bacterium Thermus aquaticus (Taq) which is found in the region of hot 

springs makes this method feasible. Taq polymerase is stable at the high temperatures 

required to perform the amplification, whereas other polymerases would denature. The 

concept of PCR is based on the fundamentals of natural DNA polymerization reaction. 

2.2.1.1 Polymerase chain reaction components 

PCR requires several basic components which include a DNA template that contains the 

region of the DNA to be amplified, two primers which are complementary to the DNA 

regions at the 5' and 3' ends of the DNA sequence to be amplified, a DNA polymerase 

(Taq polymerase) used to synthesize a DNA copy, dNTPs from which the DNA 

polymerase builds new DNA, buffer solution which provides a suitable chemical 

environment for optimum activity and stability of the DNA polymerase, and the 

divalent cation magnesium which is a necessary cofactor for Taq polymerase activity. 

Magnesium concentration is a crucial factor that can affect the success of the 

amplification. Template DNA concentration, dNTP concentration and the presence of 

proteins can affect the amount of free magnesium in the reaction. In the absence of 

adequate free magnesium, Taq polymerase is inactive. In contrast, excess free 

magnesium reduces enzyme fidelity and may increase the level of nonspecific 

amplification 
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2.2.1.2 PCR primer design 
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Good primer design is essential for successful reactions. A number of criteria have been 

proposed for optimal primer design. A primer length of 18-24 bases is appropriate for 

most PCR applications. Shorter primers lead to amplification of nonspecific PCR 

products. The specificity of PCR depends strongly on the primer melting temperature 

(Tm), a temperature at which half of the primer has annealed to the DNA template. 

Usually, optimal amplification is achieved when the Tm for both primers is between 52- 

58°C. The G and C nucleotide content of a primer should be between 40 and 60%. To 

assist in fulfilling these criteria, several online resources and software programmes have 

been created, such as Primer3 (Rozen & Skaletsky, 2000) and GeneFisher (Giegerich et 

al., 1996). The template DNA sequence that is required by these programmes can be 

obtained from established DNA databases, such as GenBank (National Center for 

Biotechnology Information, National Library of Medicine, Bethesda, USA; 

http: //www. ncbi. nlm. nih. gov/Genbank/). The specificity of a primer produced by these 

programmes can be examined using Basic Local Alignment Search Tool (BLAST; 

National Center for Biotechnology Information, National Library of Medicine, 

Bethesda, USA; http: //www. ncbi. nlm. nih. gov/BLAST/). This evaluation program 

compares the primer sequence to DNA sequences available in a comprehensive 

genomic database and calculates the statistical significance of matches between primer 

and targeted DNA sequence. 

2.2.1.3 Polymerase chain reaction assay 

There are three major steps in a PCR, which are repeated for 30 to 40 cycles. This is 

done on an automated thermocycler, which can heat and cool PCR tubes within a very 

short period of time. It is common that additional denaturation and extension steps are 
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included before and after the PCR cycles, respectively. In each cycle, the DNA template 

is denatured at 94°C, the primers are annealed to the target sequence at 50-60 °C and the 

two new strands are extended by Taq polymerase at 72 °C, doubling the amount of 

DNA present in a single cycle. The PCR is usually terminated with soaking at 4 °C to 

prevent any further reaction before the PCR product undergoes further sequence 

analyses. 

During the denaturation, the double strand melts open to single stranded DNA, and all 

enzymatic reactions stop. During the annealing stage, ionic bonds are constantly formed 

and broken between the single stranded primer and the single stranded template. The 

more stable bonds last a little longer (especially where primers that fit exactly) and on 

that piece of double stranded DNA (template and primer), the polymerase can attach 

and start to copy the template. Once 3 to 4 dNTPs are incorporated, the ionic bond 

between template and primer is sufficiently strong to prevent further breakage. During 

the extension phase, primers have a stronger ionic attraction to the template than the any 

forces attempting to break these attractions. Primers in positions with no exact match 

are loosely bound and do not support extension. The dNTPs are successively coupled to 

the primer in the 5' to 3' direction and in direct complementary to the DNA template. 

Approximately 1000 dNTPs can be linked to form a complementary DNA sequence in I 

minute at 72°C. 

2.2.1.4 Examining the PCR product 

The PCR product has to be examined before it is used in further applications. Not every 

PCR is successful. There is a possibility that the quality of amplified DNA is poor 

because one of the primers was poorly designed, there were too many annealing site for 

the primers or that the annealing temperature or magnesium concentration was not 
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optimised. It is also possible that there is a PCR product but of incorrect size. In this 

case, one of the primers likely anneals to a part of the gene closer (or further) than 

expected. It is also possible that both primers might anneal to a totally different gene. In 

some cases, it is possible that the primers anneal firmly to the desired locations, but also 

to other locations in the genome. In this case, multiple DNA fragments will be formed. 

Multiple DNA fragments can also produced if a lower than optimal annealing 

temperature is employed. In such cases, the primers anneal in a non-specific manner to 

the DNA template. Examination of PCR product is tarried out by gel electrophoresis. 

The size of the PCR product should be known in advance and can be confirmed by a 

DNA ladder which is included in the electrophoresis process. For successful DNA 

sequence analysis, a single PCR product of uniform size should be produced. 

2.2.2 Identification of single nucleotide polymorphisms 

SNPs can be detected using many methods, including hybridization, primer extension, 

oligonucleotide ligation, allele-specific PCR and restriction enzyme cleavage. However, 

each of these methods has its advantages and disadvantages (Syvanene, 2001; Zhang et 

al., 2005). 

2.2.2.1 Restriction fragment length polymorphism assay 

RFLP assays are based on the principle of restriction enzyme cleavage to identify the 

individual alleles of a genetic polymorphism. This method is classic, relatively 

inexpensive and reliable (Zhang et al., 2005). However, it is not recognised as a high- 

throughput technique. 

RFLP is a technique in which genotypes are differentiated by analysis of fragments 

derived from cleavage of a larger DNA fragment by restriction enzyme. The restriction 
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enzyme makes two incisions, one through each of the sugar-phosphate backbones of the 

double helix without damaging the nitrogenous bases. Any SNP that alters the 

recognition sequence of a restriction enzyme can be genotyped by RFLP. 

When the SNP does not alter the enzyme recognition sequence, mismatched PCR-RFLP 

can be employed to introduce an artificial restriction enzyme site (Haliassos et al., 

1989). This method requires the careful selection of restriction enzymes and the design 

of appropriate mismatched PCR primers. Mismatched PCR-RFLP uses a primer 

containing an additional mismatched nucleotide or nucleotides adjacent to the SNP site. 

This allows restriction recognition sequences to cover the mismatch base and SNP site. 

The artificial restriction enzyme recognition site is introduced in just one of the two 

allelic sequences. 

The presence of genetic polymorphisms is responsible for the variation in the length of 

DNA fragments created by the restriction enzyme digest of PCR products. The 

restriction enzyme is selected such that its recognition sequence contains the nucleotide 

of interest and that the enzyme cuts the target DNA at only one of the two possible 

alleles. Suitable restriction enzymes for a SNP site can be identified using online 

resources, such as RestrictionMapper (http: //www. restrictionmapper. org) and NEB 

cutter (http: //tools. neb. com/NEBcutter2/index. php; Vincze et al., 2003). The restriction 

enzyme recognises specific sequences and cuts the amplified DNA strand into series of 

fragments of different lengths. The length of the fragments can be analysed by gel 

electrophoresis. The pattern of DNA fragments is used to differentiate one allele from 

another. This is a key tool in DNA fingerprinting, reflecting the existence of different 

alleles in the individual. 
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2.2.2.2 Gel electrophoresis 
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Gel electrophoresis is a method that separates macromolecules, either nucleic acids or 

proteins, on the basis of size and electric charge. The term electrophoresis describes the 

migration of charged particles under the influence of an electric field. DNA has a 

negative charge in solution, so it will migrate to the anode in an electric field. Agarose 

and polyacrylamide are the most common separation media used in gel electrophoresis. 

In gel electrophoresis, the DNA is forced to move through a sieve of molecular 

proportions. The end result is that large pieces of DNA move more slowly than small 

pieces. The DNA fragments in the gel are visualised by the inclusion of ethidium 

bromide. This compound binds to DNA and the complex DNA and ethidium bromide 

fluoresces under ultraviolet light. A digital image can be obtained as a permanent record 

of the gel electrophoresis. 

2.2.2.3 Direct sequencing 

The direct sequencing method is a valuable complement to other methods of 

polymorphism identification such as PCR-RFLP (Yandell & Dryja, 1989). One of the 

advantages of direct sequencing is that it detects all polymorphic sites within amplified 

sequence (Engelke et al., 1988). For a small-scale study with a limited number of 

targeted polymorphism sites, direct sequencing can be expensive. In recent years, direct 

sequencing. of DNA has undergone vast development (Yandell & Dryja, 1989). The 

latest sequencing procedures involve hybridisation of an oligonucleotide primer to a 

clean DNA template fragment, extension of the primer with DNA polymerase and 

energy transfer dye-terminator reagent, resolution of the DNA fragment using capillary 

electrophoresis, and nucleotide identification using laser scanning. Most sequencing 
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processes are now undertaken by a fully automated system (Innis et al., 1988). These 

are high-throughput and increasingly economical. 

2.2.3 Methods of assessing the response to antiepileptic drug 

treatment 

The most common difficulty in pharmacogenetic studies, particularly in epilepsy, is the 

ability to identify an unequivocal drug response phenotype. Phenotypes related to AED 

treatment can be pharmacokinetic or pharmacodynamic in nature and can include drug 

dose, plasma drug concentration, response to treatment (efficacy) and occurrence of 

adverse effects (toxicity). Individual drug response can be affected by both 

environmental and genetic factors (Terwilliger & Weiss, 1998). In population-based 

studies, AED response phenotypes can also be influenced by many clinical and 

experimental factors that are directly and indirectly associated with AED treatment, 

such as circadian variability in pharmacokinetics, ethnicity, population size, 

heterogeneity of epilepsy, gradations of response, drug interactions, life-style and 

methods of assessing outcome (Sills et al., 2005; French, 2006). Non-genetic factors 

such as renal and hepatic impairments may directly influence variability in drug 

pharmacokinetics, especially for drugs that are mainly eliminated through both of these 

organs. Ethnicity is usually associated with genetic heterogeneity but also variability in 

diet and life-style, and thus, populations with mixed-ethnicity may also have a broad 

heterogeneity in terms of environmental interaction. Population size can influence 

selection and randomisation biases and epilepsy type may demonstrate different levels 

of response to a given AED, such that differences in the distribution of epilepsy 

syndromes between studies may contribute to conflicting findings. Finally, drug-drug 

interactions can influence the effective dose and concentration of AEDs, and thus, 

influence the response to treatment. 
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Assessing the response to AED treatment is complicated, however various methods 

have been proposed. AED treatment response phenotypes are commonly evaluated by 

two sets of measures related to efficacy and to safety. The primary outcome measures 

related to efficacy are seizure frequency and seizure severity, whereas the primary 

outcome measures related to safety are the incidence of adverse drug effects (Perucca, 

1997; Gilliam, 2005). 

2.2.3.1 Assessing the efficacy of antiepileptic drugs 

In clinical practice, the response of an individual patient to a specific AED cannot be 

known in advance; there is no treatment that is universally effective or universally 

ineffective. As such, it is difficult to establish whether a particular treatment is likely to 

be effective for a particular patient. The most attractive indicator of treatment success is 

complete seizure control (Perucca, 1997; Gilliam, 2005; French, 2006). However, the 

probability of achieving seizure-freedom varies greatly depending on the severity of the 

seizure disorder, pre-treatment seizure frequency and duration of the assessment period 

(Kwan & Brodie, 2000; Gilliam, 2005). The hidden difficulty in using such a definition 

is the time factor. How long the patient must be treated with the medication before 

complete seizure control can be established or discounted? It is important that the 

duration of follow-up is sufficiently long to ensure optimal individualisation of dosage 

and meaningful assessment of response at that dosage. Individuals with low frequency 

pre-treatment seizure frequencies may have to be observed for considerably longer than 

those with higher frequencies. 

Other useful endpoints include the percentage change in seizure frequency for the group 

as a whole, as well as the proportion of patients achieving at least 50% reduction in 

seizure frequency compared with pre-treatment baseline (Perucca, 1997; Gilliam, 2005). 
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However, this approach, while statistically sound, has less practical applicability as it is 

arguable that a 50% reduction in seizure frequency may not be adequate to produce a 

significant improvement in quality of life. Counting of seizures can be done directly by 

the patient or less common by an external observer. Self-reported seizure frequency 

may be inaccurate as some patients are not aware of their seizures. Patients with the 

lowest self-reported seizure frequency often have the highest proportion of 

unrecognised seizures (Gilliam, 2005). In addition, those with newly diagnosed epilepsy 

may not have had a sufficient number of seizures to permit a reliable definition of 

seizure frequency; in such circumstances, the measurement of reduction in seizure 

frequency can be meaningless. Another potential measurement of treatment efficacy is 

the reduction in seizure severity (French, 2006). Seizure severity requires a definition 

that takes several factors into account and physiological consequences of the seizure 

must be quantified. The most obvious factors include fall, loss of consciousness, and 

intensity or duration of postictal effect. It is clear for the above that variability in the 

techniques of assessing the efficacy of AED treatment can contribute to the variation in 

phenotype characterization. 

2.2.3.2 Assessing the adverse effects of antiepileptic drugs 

Evaluation of adverse effects is fraught with difficulties. One of these is the lack of 

current standardisation in the methodology for the detection and categorisation of 

adverse events. Recording of adverse effects is often based on spontaneous reporting by 

the patient, physical examination, laboratory tests or a combination thereof. 

Spontaneous reporting has clear advantages in highlighting effects which are clinically 

relevant, but it is associated with distinct variability in the accuracy of detection and 

with significant under-reporting (Perucca, 1997; Gilliam, 2005). Patients may not be 

able to report signs and symptoms of adverse effects accurately as they emerge 
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(Gilliam, 2005). An alternative to the reliance on spontaneous reporting is the use of 

standardised procedures with respect to clinical questioning and physical examination. 

Of course, a further problem is the ability to quantitatively assess the severity of adverse 

symptoms, especially for CNS-related adverse effects (Perucca, 1997; Gilliam, 2005). 

Another important issue is the need to obtain information about the time course of a 

given adverse effect, as there is a difference in the relative importance between acute, 

transient and chronic effects which persist throughout the treatment period. 

In clinical practice, the assessment of adverse effects may be considered as "biological", 

and "cognitive" or "behavioral". Biological adverse effects are those that are objective 

and evident by examination or measured by clinical tests. This category of adverse 

effects includes- rash, hair loss, liver failure, or nephritis. Supplemental tests may be 

required when the clinical history indicates a particular possibility. Biological adverse 

effects can be divided into acute and chronic events. Acute effects are generally 

idiopathic and by definition cannot be predicted or anticipated for an individual patient, 

for example aplastic anaemia, hepatitis, nephritis, or Stevens-Johnson syndrome. 

Chronic effects include disorders such as folate deficient anemia, AED-induced rickets, 

neuropathy, gingival hyperplasia, and cerebellar degeneration. Chronic adverse effects 

appear to be related more to cumulative toxicity. 

Individual sensitivities to the cognitive and behavioral side effects of AEDs are 

commonly reported by patients and their families. Behavior and cognition are altered by 

many aspects of the epileptic disorder and these may be confused with medication 

effects (Gilliam, 2005). In clinical practice, measuring a change in the patient's 

personality or behavior is almost never objective. There is almost no area of clinical 

medicine more in need of objective measures than the area of adverse drug effects. As 



Chapter 2: Materials, Experimental Principles & Recurrent Methods 92 

with efficacy, variability in the techniques of assessing adverse effects of AEDs may 

contribute significantly to the variation in phenotype characterization. 

2.3 Recurrent Methods 

2.3.1 Study subjects 

Approvals to obtain a peripheral blood sample for the extraction and pharmacogenetic 

analysis of DNA from all appropriate patients with epilepsy was granted by the West 

Research Ethics Committee (North Glasgow University Hospitals NHS Trust; Ref 

02/119(2)) in September 2002. All patients attending the Epilepsy Unit at the Western 

Infirmary, Glasgow, Scotland were invited to participate. The first 400 patients (201 

male; median age 40 years, range 14 to 85 years) who provided informed consent 

contribute to the experiments described in this thesis. Among these patients, 398 self- 

identified as being of European ancestry and the other two subjects were of Asian 

origin. The 400 DNA samples were collected continuously from September 2002 until 

December 2005. Throughout this thesis, this group of 400 patients is denoted as the 

"400-strong study population". A flow chart showing the distribution of these 400 

patients to each individual project is presented in FIGURE 2.1. 

2.3.2 Control DNA samples 

A total of 10 control DNA samples were obtained from members of staff of the 

Epilepsy Unit. All of these subjects self-identified as being of European ancestry. These 

samples were employed for the purposes of assay optimisation and validation and 

thereafter as control samples of known genotype in individual analyses. 
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FIGURE 2.1. Distribution of 400 study subjects to each individual project. 
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2.3.3 DNA extraction 
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A total of 16 ml (4 ml x4 tubes) of venous blood was collected in EDTA-coated tubes 

by qualified clinical personnel and stored at 4 T. Genomic DNA was extracted from 

leukocytes using the Promega® Wizard DNA purification kit as describe below. 

The DNA extraction was started with lysis of the red blood cells and separation of the 

white blood cells. A total of 30 ml of cell lysis solution was placed in a 50 ml centrifuge 

tube and 10 ml of whole blood added. The solution was mixed by inversion and then 

incubated at room temperature (20°C) for 10 minutes. The mixture was then centrifuged 

at 2000 xg for 10 minutes at room temperature (20°C). The supernatant was removed 

and discarded into a waste container containing a chlorine tablet, leaving approximately 

1.4 ml of residual liquid and a white pellet. These steps were repeated if the pellet 

appeared red in color. 

The next step was to release the DNA from the nucleus of the white blood cells. The 

centrifuge tube containing the white pellet was vortexed to resuspend the white blood 

cells. A 10 ml aliquot of nuclei lysis solution was added to the tube and mixed using a 

pasteur pipette. The resulting solution was then incubated at 37 °C for approximately 2 

hours. The next step was to remove the cellular proteins by a salt precipitation 

technique. A 3.3 ml aliquot of protein precipitation solution was added to the nuclear 

lysate and vortexed for 10 - 20 seconds. The solution was then centrifuged at 2000 xg 

for 10 minutes at room temperature (20°C) to separate the cellular protein (dark brown 

pellet). 

The final step was to concentrate and desalt the DNA. Without disturbing the cellular 

protein pellet, the supernatant was decanted to a universal tube containing 10 ml of 
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isopropanol. This solution was then mixed by inversion until the white "thread-like" 

DNA strands formed a visible mass. Following that, the solution was centrifuged at 

2000 xg for 3 minutes at room temperature (20°C) and the DNA emerged as a small 

white pellet. The supernatant was discarded and 10 ml of 70% ethanol was added to the 

DNA pellet. The pellet was resuspended and the tube washed by several inversions. The 

solution was again centrifuged at 2000 xg for 3 minutes at room temperature (20°C). 

The ethanol was decanted, the tube was inverted on clean absorbent paper, and the 

pellet allowed to air-dry for 10 - 15 minutes. A 200 pl volume of molecular biology 

grade water was added to rehydrate the DNA and left overnight prior to quantification. 

Thereafter, the dissolved DNA was transferred to a 250 µl cryovial using a sterile 

pipette and stored frozen at -80 °C. 

2.3.4 DNA quantification 

The concentration of DNA was quantified using ultraviolet spectroscopy. A1 µl aliquot 

of DNA solution was diluted with 70 µl of molecular biology grade water in a 

polystyrene cuvette. The optical density (O. D. ) of the DNA solution was determined at 

a wavelength of 260 nm. The genomic DNA concentration was calculated using the 

following equation: 

genomic DNA (µg/µ1) = 0.05 * O. D. * dilution factor 

2.3.5 Polymerase chain reaction 

2.3.5.1 PCR primers 

Primer sequences were usually obtained from existing publications, however, on 

occasion, an online software package, Primer3 (Rozen & Skaletsky, 2000), was used to 
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design the PCR primers. Some characteristics were standardised for all primer design, 

such as length of primers (18 - 24 bp), GC content (50%) and primer Tm (55°C). The 

genetic sequence of interest was obtained from GenBank. The specificity of the primers 

was evaluated using BLAST. 

2.3.5.2 Optimization of polymerase chain reaction assay 

All PCR assays were optimised using a standard protocol. A total of 10 control DNA 

samples were employed for this purpose. The initial PCR assay was performed in a 30 

µl reaction volume containing 100 ng of genomic DNA, 1U of Taq polymerise, 20 

pmol of each PCR primer, 1.5 mM MgC12,3 µl of IOx PCR buffer and 0.25 mM dNTP 

mix, and the final reaction volume adjusted with molecular biology grade water. The 

initial PCR conditions consisted of denaturation at 94°C for 5 minutes; followed by 35 

cycles at 94°C for 30 seconds (denaturation), 55°C for 30 seconds (annealing), 72°C for 

30 seconds (extension), and thereafter a final extension at 72°C for 5 minutes and 

soaking at 4°C. The initial annealing temperature was close to the mean Tm of both 

PCR primers. The amplified DNA fragment was separated using 2.0% agarose gel 

electrophoresis at 80V for 60 minutes and then visualised under ultraviolet light. The 

size of amplified DNA fragment was estimated relative to a DNA ladder of known size 

(25 bp or 50 bp) that was incorporated in each electrophoresis. The size of observed 

DNA fragment was compared with the size of expected fragment obtained from the 

primer design tool. The quantity of amplified PCR product was assessed based on the 

brightness of the band under ultraviolate light. PCR assays with poor DNA 

amplification were systematically modified and re-evaluated. The annealing 

temperature was adjusted in a stepwise manner without changing any other initial PCR 

conditions. In the case of low quantities of PCR amplification, the annealing 

temperature was reduced by 1 degree each time. In the case of multiple bands, the 
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annealing temperature was increased by 1 degree each time. The annealing temperature 

was typically evaluated between 50 and 60°C. The magnesium concentration was 

adjusted as a second step of optimisation once the optimal annealing temperature has 

been identified. In the case of low quantities of PCR product, the magnesium 

concentration was increased in a stepwise manner by 0.5 mM. In the case of multiple 

bands, the magnesium concentration was reduced in a stepwise manner by 0.5 mM. The 

magnesium concentration was typically evaluated between 0.5 and 2.5 mM. The PCR 

conditions were adjusted until a bright and reproducible PCR product band was 

identified on gel electrophoresis. 

2.3.5.3 Quality control of polymerase chain reaction assay 

To assess risk of contamination, two blank samples were included in each analysis, in 

which the DNA template was replaced by 1 µl of molecular biology grade water. Each 

batch of PCR analyses consisted of 18 reaction tubes (16 patient samples and 2 blanks). 

Blanks were randomly located across the thermal cycler block and also randomly 

assigned to lanes on gel electrophoresis. The blank samples were not expected to 

produce any DNA amplification. 

2.3.6 Restriction fragment length polymorphism assay 

2.3.6.1 Choosing suitable restriction enzymes 

An online restriction enzyme mapping software, NEB cutter (http: //tools. neb. com/ 

NEBcutter2/index. php), was utilised to identify suitable restriction enzymes for a given 

SNP site. On occasion, restriction enzymes were identified from existing publications. 
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2.3.6.2 Optimisation of restriction fragment length polymorphism assay 
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Each of the RFLP assays developed in this project was optimised using a standard 

procedure. PCR products from 10 control DNA samples were employed for this 

purpose. Each restriction digest was performed in a 10 pl volume containing 5 µl of 

PCR product, 1 µl x lOx NE buffer, restriction enzyme (2.5,5 to 7.5 U) and the final 

reaction volume adjusted with molecular biology grade water. These reaction mixtures 

were incubated at 37°C for up to 4 hours. At the end of 2 and 4 hours incubation time, 

an aliquot of digest product (5 µl) was removed from reaction tube and each mixed with 

a small quantity of loading dye (1 µl), and immediately loaded onto a 2.0% agarose gel. 

A DNA ladder of known size (25 bp or 50 bp) and one sample of undigested PCR 

product (5 µl) were also included in each electrophoresis run. The electrophoresis 

conditions were set at 80V for 60 to 120 minutes. At the end of electrophoresis, the 

agarose gel was visualised under ultraviolet light. The expected size of digested 

fragments was estimated relative to the DNA ladder. Incomplete digestion was 

evaluated by digesting the PCR product in a high concentration of restriction enzyme 

(10 U) and a longer incubation period (24 hours). In the case of poor resolution between 

fragments, the electrophoresis was repeated using a higher agarose concentration 

(increased in a stepwise manner by 0.5%) to permit clearer separation of digest 

fragments. 

2.3.6.3 Quality control of restriction fragment length polymorphism assay 

Each batch of RFLP analysis comprised one DNA ladder (25 or 50 bp), 2 water blanks, 

16 patient samples, one undigested control sample (PCR product), and three control 

DNA samples of known genotype, corresponding to each of the expected genotypes in 
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the population. Once all 400 patients had been genotyped, 5% were selected randomly 

and re-genotyped for confirmatory purposes. 

2.3.7 Statistical analyses 

MINITAB TM Statistical Software Release 13.32 (Minitab Ltd., Coventry, UK) was used 

to perform all statistical analyses. Logistic regression analysis was used to assess the 

association between genetic predictors and the response to AED therapy. The odds ratio 

(OR) together with its 95% confidence interval (95% Cl) and p-value were used to 

evaluate the strength of association. Genetic predictors for optimal dose of AEDs were 

identified and characterised using univariate and multivariate linear regression analyses. 

To explore interaction effects, cross-product terms were added as independent variables. 

A goodness-of-fit (r) value more than 0.8 indicates a strong predictive model. 

Pearson's correlation (r) value more than 0.8 indicates a strong association between 

variables. For this analysis, p-values less than 0.05 indicate a significant association or 

significant predictor effect. No formal power calculation and multiple testing 

corrections were undertaken for the statistical analysis; therefore, the research projects 

presented in this thesis are considered to be exploratory in an effort to generate research 

hypothesis. 
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3.1 The Prevalences of Common Polymorphisms in the 

Drug Metabolizing Enzyme, Drug Transporter Protein 

and Sodium Channel Genes in a West of Scotland 

Epilepsy Population 

3.1.1 Introduction 

In keeping with the aims of this research project, genes of interest were derived from 

current knowledge regarding the pharmacokinetics and pharmacodynamics of CBZ and 

LTG. Potentially functional variants of these genes were then selected from previously 

published information (as presented in section 1.7). The common genetic 

polymorphisms evaluated in this project are listed in TABLE 1.6. In a population based 

pharmacogenetic study, the prevalence of variant genotypes is expected to adhere to 

Hardy-Weinberg Equilibrium (HWE) conditions (Xu et al., 2002). HWE is based on the 

assumption that, under constant conditions after a generation of random mating, 

genotype frequencies throughout a population at a specified gene locus become fixed at 

a specific equilibrium value (Hosking et al., 2004). The HWE test is carried out by 

comparing the genotype distribution of each SNP against the genotype distribution that 

is predicted by HWE at that locus. Deviation from HWE can be the result of one or 

more of five violations. The first violation is inbreeding, which causes an increase in 

homozygosity for all genes. The second violation is assortative mating, which causes an 

increase in homozygosity only for those genes involved in the trait that is assortatively 

mated. The third violation is the occurrence of new mutations. The fourth violation is 

gene flow through migration in or out of the population. The fifth violation is related to 

population size, which causes a random change in genotypic frequencies, particularly if 

the population is very small. This is due to a sampling effect, and is known as genetic 

drift (Xu et al., 2002). Testing for HWE is also commonly used for the quality control 
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of large-scale genotyping and is one of the few methods which can be useful to identify 

systemic genotyping errors in unrelated individuals (Xu et al., 2002; Hosking et al., 

2004; Salanti et al., 2005; Wittke-Thompson et al., 2005). 

3.1.2 Aims 

The aim of this project was to evaluate the prevalences of common gene polymorphisms 

(TABLE 1.6) in a West of Scotland epilepsy population and to compare the allele and 

genotype distributions with previously published data from different ethnic groups. The 

genotype distribution was further examined using the HWE test as an early quality 

control measure for the genotyping methodology. 

3.1.3 Methods 

3.1.3.1 DNA samples and extraction 

A total of 400 DNA samples from the study population described in section 2.3.1 were 

utilised in this project. DNA extraction was performed following the method described 

in section 2.3.3. 

3.1.3.2 PCR-RFLP optimization 

Each PCR-RFLP methods presented below have been optimised using the method 

described in Chapter 2 (sections 2.3.5.2 and 2.3.6.2). 

3.1.3.3 Identification of CYP3A4 g. -392A>G polymorphism by PCR-RFLP 

The method described by van Schaik et al. (2000) was modified for the purposes of this 

study. Modification was undertaken to optimise the yield of PCR product which 
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included alteration in the total reaction volume, the quantity of reagents and the 

annealing temperature (as described in section 2.3.5.2). The 5'-flanking promoter region 

of the CYP3A4 gene containing the g. -392A>G polymorphism was amplified using 

forward, 5'-GGA CAG CCA TAG AGA CAA CTG CA-3' and reverse, 5'-CTT TCC 

TGC CCT GCA CAG-3' primers. A PCR product containing the CYP3A4 -392G allele 

with restriction site for the Pstl enzyme was produced by incorporating the underlined 

mismatched nucleotides into the forward primer. The PCR assay was performed in a 30 

pl reaction volume containing 100 ng of genomic DNA, 1U of Taq polymerase, 20 

pmol of each primer, 2 mM MgCI2,3 pl of lOx PCR buffer, 0.25 mM dNTP mix, and 

an appropriate volume of molecular biology grade water. 

The PCR conditions consisted of an initial denaturation at 94°C for 7 minutes; 35 cycles 

of 94°C for 1 minute (denaturation), 56°C for 1 minute (annealing), 72°C for 1 minute 

(extension); and followed by a final extension at 72°C for 7 minutes and soaking at 4°C. 

A PCR product with a size of 334 bp was expected from the amplification. 

The CYP3A4 -392A allele was discriminated from the -392G allele by digesting the 

PCR product with PstI endonuclease. The PCR product was digested for at least 2 hours 

at 37°C in a 20 µl reaction volume containing 15 µl of PCR product, 5U of Pstl 

restriction'enzyme, 2 pl of lOx NE buffer, 0.2 pl of 100x BSA (10 mg/ml) and an 

appropriate volume of molecular biology grade water. Pstl cut the PCR product at 

position 5'-CTGCA/G-3', and produced 220-bp, 81-bp and 33-bp fragments for the 

CYP3A4 -392A allele; and 199-bp, 81-bp, 33-bp and 21-bp fragments for the CYP3A4 

-392G allele. 

A total of 5 µl of digest product was mixed with 1 µl of loading dye and loaded on a 

2.5% agarose gel containing 300 ng/ml ethidium bromide. The gel electrophoresis 
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conditions were set at 100 V for 100 minutes. A digital image of' the agarose gel was 

captured at the end of' the electrophoresis process under ultraviolet transillumination 

(FIGURE 3.1). 

CYP3A4 g. -392A>(; 

A/G A/A A/A A/A (i/(i 

, ý"nI 

. �I 

FIGURE 3.1. Electrophoresis patterns tür CYI'3A4 g. -392A -(i genotypes 

analysed with PCR-RFLP assay. 

3.1.3.4 Identification of CYI'3A5 g. 6986A>C polyroorphisnI by I'('R-RFI. I' 

The method described by Fukuen et cd. (2002) was modified for the purposes of this 

study. Modification was undertaken to optimise the yield of' PUR product which 

included alteration in the total reaction volume, the quantity of reagents and the 

annealing temperature (as described in section 2.3.5.2). The intronic region of the 

CYP3A5 gene containing the g. 6986A>G polymorphism was amplified using förward, 

5'-CTT TAA AGA GCT CTT 'IT(; TC'l' CT C A-3' and reverse, 5'-('('A GGA AGC 

CAC; ACT 'FI'G Ai'-3' primers. A PCR product containing the ('YP3A5 69866 allele 

with restriction site tür the Dclet enzyme was produced by incorporating tile tilidellned 

mismatched nucleotide into the lörward primer. The P('l( assay was pert rmed in a 30 
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pl reaction volume containing 100 ng of genomic DNA, 1U of Taq polymerase, 20 

pmol of each primer, 1.5 mM MgCIZ, 3 µl of lOx PCR buffer, 0.25 mM dNTP mix, and 

an appropriate volume of molecular biology grade water. 

The PCR conditions consisted of an initial denaturation at 95°C for 10 minutes; 35 

cycles of 94°C for 30 seconds (denaturation), 56°C for 30 seconds (annealing), 72°C for 

30 seconds (extension); and followed by a final extension at 72°C for 5 minutes and 

soaking at 4°C. A PCR product with a size of 200 bp was expected from the 

amplification. 

The CYP3A5 6986A allele was discriminated from the 6986G allele by digesting the 

PCR product with DdeI endonuclease. The PCR product was digested for at least 2 

hours at 37°C in a 10 µl reaction volume containing 5 µl of PCR product, 5U of DdeI 

restriction enzyme, 1 pl of lOx NE buffer and an appropriate volume of molecular 

biology grade water. DdeI cut the PCR product at position 5'-C/TNAG-3', and 

produced 129-bp and 71-bp fragments for the CYP3A5 6986A allele; and 107-bp, 71-bp 

and 22-bp fragments for the CYP3A5 6986G allele. 

A total of 5 µl of digest product was mixed with 1 µl of loading dye and loaded on a 

3.0% agarose gel containing 300 ng/ml ethidium bromide. The gel electrophoresis 

conditions were set at 100 V for 80 minutes. A digital image of the agarose gel was 

captured at the end of the electrophoresis process under ultraviolet transillumination 

(FIGURE 3.2). 
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(i/G 

CYP3A5 g. 6986A>G 

A/( ý G/G (i/(i A/A 
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FIGURE 3.2. I: Icctrophuresis patterns for (')"I'; n5 g. 09S(, A (i ýcnýýtyIýý. ti 

analysed with PCR-RFTP assay. 

3.1.3.5 Identification of CYPIA2 g. 5734C>A polymorphism by P('R-RFLP 

106 

A new, self-designed PCR-RFLP method for the identification of CYP I A2 g. 5734C -A 

was utilised in this study. The intron- I region of the CYPIA2 gene containing the 

g. 5734C>A polymorphism was amplified using forward, 5'-C('(' T 'l (i (i(i'U A"I'A '1'G( i 

AAG GTA-3' and reverse, 5'-C"f'"I' GAG CAC CCA GAA 'I'AC ('A-3' primers. The 

PCR assay was performed in a 30 pl reaction volume containing 100 ng of genomic 

DNA, IU of Taq polymerase, 20 pmol of each primer, 2 mM Mg('I 3 µl of I Ox PCR 

buffer, 0.25 mM dNTP mix, and an appropriate volume of molecular biology grade 

water. 

The PCR conditions consisted ol'an initial denaturation at 94°(' I'm 5 minutes; 35 cycles 

of 94°C for 30 seconds (denaturation), 56°C für 30 seconds (annealing), 72"(' für I 
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minute (extension); and followed by it final extension at 72°C fi- 5 minutes and soaking 

at 4°C. A PCR product with it size of'5I8 hp was expected Irom the amplification. 

The CYP I A2 5734C allele was discriminated from the 5734A allele by digesting the 

PCR product with PspOM I endonuclcase. The PCR product was digested four at least 2 

hours at 37°C in a 10 pl reaction volume containing 5 pi of* P('R product, 5U of 

PspOM I restriction enzyme, I pl of IOx NI? huller and an appropriate volume of' 

molecular biology grade water. PspOM I cut the l'CR product at position 

3' and produced 268-bp and 250-bp fragments for the ('YP I A2 5734(' allele. The 518- 

hp PCR product remained uncut for the ('YP I A2 5734A allele (11( it IRE 3.3). 

('Y PI n2 g. 5734C>A 

A/C ý1/A 

." Ihl, 1 ý 

. 'i,:. J'u LI, 

FIGURE: 3.3. I. lectruhhoresis Patterns Iiir 1,11.1 I( A , 1& II ý pc 

analysed with PCR-RFLP assay. The 268-bp and 250-hp li'agments did [lot 

resolve clearly aller 45 minutes electrophoresis on a 2.0% agarose rel. 

('11C ' A/( ' . A, A 

A total of 5 µl of digest product was mixed with I pl of loading dye and loaded on a 

2.0% agarose gel containing 300 ng/mI ethidium bromide. The gel electrophoresis 
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conditions were set at 90 V for 45 minutes. A digital image of the agarose gel was 

captured at the end of the electrophoresis process under ultraviolet transillumination. 

The 268-bp and 250-bp fragments did not resolve clearly after 45 minutes 

electrophoresis, however, this did not affect the genotype identification. 

3.1.3.6 Identification of EPHX1 c. 337ThC polymorphism by PCR-RFLP 

The method described by Budhi et al. (2003) was modified for the purposes of this 

study. Modification was undertaken to optimise the yield of PCR product which 

included alteration in the total reaction volume, the quantity of reagents and the 

annealing temperature (as described in section 2.3.5.2). The exon-3 region of the 

EPHX1 gene containing the c. 337T>C polymorphism was amplified using forward, 5'- 

GAT CGA TAA GTT CCG TTT CAC C-3' and reverse, 5'-CAA TGT TAG TCT TGA 

AGT GAG GAT-3' primers. The reverse primer contains mismatched nucleotides for 

codon 113 (shown as bold and underlined) and codon 119 (shown as underlined only). 

The mismatched nucleotide at codon 113 was introduced to create a restriction site for 

the EcoRV enzyme and recognition of the 337T allele (Smith & Harrison, 1997). The 

mismatched nucleotide at codon 119 was introduced to eliminate the effect of the 

adjacent c. 357G>A polymorphism, which is reported to influence the estimation of 

genotypes at codon 113 (Budhi et al., 2003). The PCR assay was performed in a 30 pl 

reaction volume containing 100 ng of genomic DNA, 1U of Taq polymerase, 20 pmol 

of each primer, 2 mM MgC12,3 µl of lOx PCR buffer, 0.25 mM dNTP mix, and an 

appropriate volume of molecular biology grade water. 

The PCR conditions consisted of an initial denaturation at 94°C for 7 minutes; 35 cycles 

of 94°C for 1 minute (denaturation), 56°C for 1 minute (annealing), 72°C for 1 minute 
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(extension); and followed by a final extension at 72°C fir 7 minutes and soaking at 4°C. 

A PCR product with a size of 164 hp was expected from the amplification. 

The EP I IX 1337T allele was discriminated from the 337(' allele by digesting the P('R 

product with EcoRV endonuclease. The PCR product was digested for at least 2 hours at 

37°C in a 10 pi reaction volume containing 5 pl of PCR product, 5U of EcoRV 

restriction enzyme, I pl of lOx NE bufirr, 0.1 pl of I00x RSA (10 mg/ml) and an 

appropriate volume of molecular biology grade water. The P'eoRV cut at position 5'- 

GAT/ATC-3' and produced 140-hp and 24-hp fragments for the EPI IX 1337T allele. 

The 164-hp PUR product remained uncut for the EPIIX1 337(' allele (FIGURE 3.4). 

A total of 5 pl of digest product was mixed with I µl of loading dye and loaded on a 

3.0% agarose gel containing 300 ng/ml ethidium bromide. The gel electrophoresis 

conditions were set at 80 V for 100 minutes. A digital image of the agarose gel was 

captured at the end of the electrophoresis process under ultraviolet transillumination. 

I: PHX I c. 337T>C 

i( ll i( I (I 

16 16p 

'1 Iq, 

FIGUItI? 3.4. Electrophoresis patterns lor FTIIXI c. 337T--(' genotypes analysed 

by PCR-RI' LP assay. 
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3.1.3.7 Identification of EPHX1 c. 416A>G polymorphism by PCR-RFLP 

110 

The method described by Smith & Harrison (1997) was modified for the purposes of 

this study. Modification was undertaken to optimise the yield of PCR product which 

included alteration in the total reaction volume, the quantity of reagents and the 

annealing temperature (as described in section 2.3.5.2). The exon-4 region of the 

EPHXI gene containing the c. 416A>G polymorphism was amplified using forward, 5'- 

ACA TCC ACT TCA TCC ACG T-3 and reverse, 5'-ATG CCT CTG AGA AGC CAT- 

3' primers. The PCR assay was performed in a 30 µl reaction volume containing 100 ng 

of genomic DNA, 1U of Taq polymerase, 20 pmol of each primer, 1.5 mM MgCl2,3 µl 

of lOx PCR buffer, 0.25 mM dNTP mix, and an appropriate volume of molecular 

biology grade water. 

The PCR conditions consisted of an initial denaturation at 94°C for 5 minutes; 37 cycles 

of 94°C for 30 seconds (denaturation), 56°C for 30 seconds (annealing), 72°C for 30 

seconds (extension); and followed by a final extension at 72°C for 5 minutes and 

soaking at 4°C. A PCR product with a size of 210 bp was expected from the 

amplification. 

The EPHXI 416A allele was discriminated from the 416G allele by digesting the PCR 

product with RsaI endonuclease. The PCR product was digested for at least 2 hours at 

37°C in a 10 µl reaction volume containing 5 pI of PCR product, 5U of Rsal restriction 

enzyme, 1 µl of lOx NE buffer and an appropriate volume of molecular biology grade 

water. Rsal cut the PCR product at position 5'-GT/AC-3' and containing the EPHXI 

416G allele and produced 164-bp and 46-bp sized fragments for the EPHXI 416G 

allele. The 210-bp PCR product remained uncut for the EPHXI 416A allele. 
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A total of 5 µl of digest product was mixed with I il of loading dye and loaded on a 

2.5% agarose gel containing 300 ng/ml ethidium bromide. The gel electrophoresis 

conditions were set at 80 V for 80 minutes. A digital image of' the agarose gel was 

captured at the end of the electrophoresis process under ultra\ iuIet truisillunºination 

(FI(iURE 3.5). 

EPIIXI c. 416A>G 

A/A (i/(i n/(i nin iý, (i 

`InI'ý 

It, 1 hl 

If, Ill 

FIGURE 3.5. I: Icctrophoresis patterns for I: I'I IX I c. 41 6A -( igcnotyprs euialvsrd 

by PCR-RFLP assay. 

3.1.3.8 Identification of UGT2137 c. 802('>"1' polymorphism by I'('It-Itl'I, I' 

The method described by 13hasker el ul. (2000) was modified for the purposes of' this 

study. Modification was undertaken to optimise the yield of' PUR product which 

included alteration in the total reaction volume, the quantity of' reagents and the 

annealing temperature (as described in section 2.3.5.2). The exon-2 region of' the 

UGT2137 gene containing the c. 802C T polymorphism was amplified using forward, 

5'-TGC CTA CAT "I"AT TCT AAC C-3' and reverse, 5'-TUT (1(1 AAA Al ('"1'G 
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CAC T-3' primers. The PCR assay was performed in a 30 µl reaction volume 

containing 150 ng of genomic DNA, IU of Taq polymerase, 20 pmol of each primer, 2 

mM MgC12i 3 µl of lOx PCR buffer, 0.25 mM dNTP mix, and an appropriate volume of 

molecular biology grade water. 

The PCR conditions consisted of an initial denaturation at 94°C for 5 minutes; 35 cycles 

of 94°C for 30 seconds (denaturation), 59°C for 30 seconds (annealing), 72°C for 30 

seconds (extension); and followed by a final extension at 72°C for 5 minutes and 

soaking at 4°C. A PCR product with a size of 579 bp was expected from the 

amplification. 

The UGT2B7 802C allele was discriminated from the 802T allele by digesting the PCR 

product with FokI endonuclease. The PCR product was digested for at least 2 hours at 

37°C in a 10 µ1 reaction volume containing 6 µl of PCR product, 4U of FokI restriction 

enzyme, 1 µl of 10x NE buffer and an appropriate volume of molecular biology grade 

water. FokI cut the PCR product at position 5'-GGATG(N)9/-3' and produced 457-bp, 

79-bp and 42-bp fragments for the UGT2B7 802T allele; and 346-bp, II l-bp, 79-bp and 

42-bp fragments for the UGT2B7 802C allele. 

A total of 10 µl of digest product was mixed with I µl of loading dye and loaded on a 

2.5% agarose gel containing 300 ng/ml ethidium bromide. The gel electrophoresis 

conditions were set at 80 V for 45 minutes. A digital image of the agarose gel was 

captured at the end of the electrophoresis process under ultraviolet transillumination 

(FIGURE 3.6). 
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FIGURE 3.6. Electrophoresis patterns for UGI'2137 c. 802C-. T genotypes analysed with 

PCR-RFLP assay 

3.1.3.9 Identification of ABC131 c. 1236C>T polymorphism by I'CR-RFLI' 

The method described by Tang et al. (2002) was modified fir the purposes ot'this study. 

Modification was undertaken to optimise the yield of' PCR product which included 

alteration in the total reaction volume, the quantity of reagents and the annealing 

temperature (as described in section 2.3.5.2). The exon-12 region of the AI3C13I gene 

containing the c. 1236C>T polymorphism was amplified using forward, 5'-TCF "I'TG 

TCA CU' TAT CCA GC-3' and reverse, 5'-'1'("I' CAC ('Al' 'C('(' CT CC 'l'(i"1'-3' 

primers. The PCR assay was performed in a 20 pl reaction volume containing 100 ng of' 

genomic DNA, IU ofTaq polymerase, 20 pmol ol'each primer, 1.5 mM MgCI,, 2 pl of 

lOx PCR buffer, 0.25 mM dNTI' mix, and an appropriate volume of molecular biology 

grade water. 

The PCR conditions consisted of an initial denaturation at 94°(' I'or 10 n. inutes; 35 

cycles of 94°C for 30 seconds (denaturation), 60°C Im- 30 seconds (annealing), 72°C I'm 
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30 seconds (extension); and followed by a final extension at 72°C firr 5 minutes and 

soaking at 4°C. A PCR product with a size of 502 hp was expected from the 

amplification. 

The A13CBI 1236C allele was discriminated fi-om the 12361' allele by digesting the 

PCR product with EcoOl091 endonuclease. The PCR product was digested fir at least 

2 hours at 37°C in a 20 p1 reaction volume containing 10 fil of PCR product, 5U of 

F. coOl091 restriction enzyme, 2 pl of I Ox NE huficr, 0.2 pI of I ()Ox 13SA (10 mg/mI) 

and an appropriate volume of molecular biology grade water. EcoOlO91 cut the PCR 

product at position 5'-RG/GNCCY-3' and produced 380-bp and 122-hp fragments 1*6r 

the ABCBI 1236C allele. The 502-bp PCR product remained uncut fior the A13C13I 

1236T allele (FIGURE 3.7). 

A1=3CI31 c. 123GC? "1' 

T/T Cu' IC/C C/T ('/C 

In. ' Ll, 

;, M) I, I, 

I ý, iy 

1,1GUItl? 3.7. I: IrrU-()hh()[-csis patterns I'Or A Ii('I3I r. l? 
_; 0(' 1ý pc,, anaIý,; ct I h\ 

PCR-R1 LP assay. 

A total of 5 µl of digest product was mixed with I µI of' loading dye and loaded on a 

2.5% agarose gel containing 300 ng/mI ethidium bromide. I he f_'CI electrophoresis 
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conditions were set at 80 V for 90 minutes. A digital image of the agarose gel was 

captured at the end of the electrophoresis process under ultraviolet transillumination. 

3.1.3.10 Identification of ABCB1 c. 2677G>T/A polymorphism by PCR-RFLP 

The method described by Cascorbi et al., (2001) was modified for the purposes of this 

study. Modification was undertaken to optimise the yield of PCR product which 

included alteration in the total reaction volume, the quantity of reagents and the 

annealing temperature (as described in section 2.3.5.2). The exon-21 region of the 

ABCB I gene containing the c. 2677G>T/A polymorphism was amplified using two PCR 

assays, one for the identification of the 2677A allele (PCRI) and the other for the 

identification of the 2677T allele (PCR2). PCRI was performed using forward, 5'-TGC 

AGG CTA TAG GTT CCA GG-3' and reverse, 5'-GTT TGA CTC ACC TTC CCA G- 

3' primers. PCR2 was performed using the same forward primer as PCRI, together with 

the reverse, 5'-TTT AGT TTG ACT CAC CTT CCC G-3' primer. A mismatched 

nucleotide (underlined) in the reverse primer of PCR2 was employed to introduce a 

restriction site for the Banl enzyme. 

PCRI and PCR2 reaction components and conditions were identical. The PCR assay 

was performed in a 20 µl reaction volume containing 100 ng of genomic DNA, IU of 

Taq polymerase, 20 pmol of each primer, 2 mM MgC12,2 µl of I Ox PCR buffer, 0.25 

mM dNTP mix, and an appropriate volume of molecular biology grade water. 

The PCR conditions consisted of an initial denaturation at 94°C for 2 minutes; 35 cycles 

of 94°C for 30 seconds (denaturation), 62°C for 30 seconds (annealing), 72°C for 30 

seconds (extension); and followed by a final extension at 72°C for 7 minutes and 

soaking at 4°C. A PCR product with a size of 220 bp was expected from the PCRI 
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amplification. A PCR product with a size of 224 bp was expected from the PCR2 

amplification. 

The ABCB 1 2677non-A allele was discriminated from the 2677A allele by digesting the 

product of PCR1 with Rsal endonuclease. The PCR1 product was digested for at least 2 

hours at 37°C in a 10 pl reaction volume containing 5 µl of PCR1 product, 5U of RsaI 

restriction enzyme, 1 µl of lOx NE buffer and an appropriate volume of molecular 

biology grade water. Rsal cut the PCR1 product at position 5'-GT/AC-3', and produced 

118-bp and 102-bp fragments for the ABCB 1 2677non-A allele; and I18-bp, 82-bp and 

20-bp fragments for the ABCB 12677A allele. 

The ABCB 1 2677non-T allele was discriminated from the 2677T allele by digesting the 

product of PCR2 with Banl endonuclease. The PCR2 product was digested for at least 2 

hours at 37°C in a 10 µl reaction volume containing 5 µl of PCR2 product, 5U of Ban! 

restriction enzyme, 1 µl of lOx NE buffer and an appropriate volume of molecular 

biology grade water. BanI cut the PCR2 product at position 5'-G/GYRCC-3', and 

produced 198-bp and 26-bp fragments for the ABCB 1 2677non-T allele. The 224-bp 

product of PCR2 remained uncut for the ABCB 1 2677T allele. 

The electrophoresis conditions for both PCR1 and PCR2 assays were identical. A total 

of 5 µl of digest product was mixed with I µl of loading dye and loaded on a 3.0% 

agarose gel containing 300 ng/ml ethidium bromide. The gel electrophoresis conditions 

were set at 80 V for 120 minutes. A digital image of the agarose gel was captured at the 

end of the electrophoresis process under ultraviolet transillumination. Images from both 

PCR1 and PCR2 were analysed simultaneously to determine one of the 6 possible 

genotypes (GIG, G/T, T/T, G/A, A/A, T/A; FIGURE 3.8). 
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analysed by PCR-RI l assay. I'CR I and I'('R2 were carried-om in two separate 

reactions. The product of PC'R I was digested by Bain and the product of' P('R2 

was digested by Rsal. Digital images of' the gels from both Pt. R-RI: IT assays 

were examined simultaneously to determine the genotype. No liagment for the 

2677A allele was observed in either gel. SI to SS represent individual subjects, 

their respective electrophoresis patterns, and A13('U I c. 2677(i -'I /A genotypes. 

ii 
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3.1.3.11 Identification of ABCB1 c. 3435C>T polymorphism by PCR-RFLP 

118 

The method described by Hamdy et al. (2003b) was modified for the purposes of this 

study. Modification was undertaken to optimise the yield of PCR product which 

included alteration in the total reaction volume, the quantity of reagents and the 

annealing temperature (as described in section 2.3.5.2). The exon-26 region of the 

ABCBI gene containing the c. 3435C>T polymorphism was amplified using forward, 

5'-ACT CTT GTT TTC AGC TGC TTG-3' and reverse, 5'-AGA GAC TTA CAT TAG 

GCA GTG ACT C-3' primers. The PCR assay was performed in a 20 µl reaction 

volume containing 100 ng of genomic DNA, 1U of Taq polymerase, 20 pmol of each 

primer, 1.5 mM MgCl2,2 µl of lOx PCR buffer, 0.25 mM dNTP mix, and an 

appropriate volume of molecular biology grade water. 

The PCR conditions consisted of an initial denaturation at 94°C for 5 minutes; 33 cycles 

of 94°C for 30 seconds (denaturation), 56°C for 30 seconds (annealing), 72°C for 30 

seconds (extension); and followed by a final extension at 72°C for 5 minutes and 

soaking at 4°C. A PCR ' product with a size of 231 bp was expected from the 

amplification. 

The ABCB 13435C allele was discriminated from the 3435T allele by digesting the 

PCR product with DpnII endonuclease. The PCR product was digested for at least 2 

hours at 37°C in a 20 µl reaction volume containing 10 pI of PCR product, 5U of DpnII 

restriction enzyme, 2 pl of lOx NE buffer and an appropriate volume of molecular 

biology grade water. DpnII cut the PCR product at position 5'-/GATC-3' and produced 

163-bp and 68-bp fragments for the ABCBI 3435T allele. The 231-bp PCR product 

remained uncut for the ABCB 13435C allele. 
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A total of 5 µl of digest product was mixed with I µl of loading dye and loaded on a 

2.5% agarosc gel containing 300 ng/ml ethidium hronºide. The gel electrophoresis 

conditions were set at HO V for 120 minutes. A digital image of' the agarose gel was 

captured at the end of the electrophoresis process under ultraviolet transillumination 

(FIGURE 3.9). 

Al3('U I c. 3435(' 

II (ý( (i iI ii 

FIGURI': 3.9. I. IýrUýýýIýlýýýrrsis Iýallýrn. ý liir ; 1IWI{I 

analysed by I'C'R-RFI. P assay. 

3.1.3.12 Identification of SCN2A c. 56(; >; k pol. N nºurphisnº h) I1('ll-IlI-I. 1' 

The method described by Nakayama ei <1/. (2002) as modified Iii[- the purpose, it Iiis 

study. Modification was undertaken to optimise the yield of I'('l( product which 

included alteration in the total reaction volume, the yu: uºtity of' reagents and the 

annealing temperature (as described in section 2.3.5.2). 'I he exon-2 region of the 

SC'N2A gene containing the c. 56(i -A polymorphism was amplified using forward, 5'- 

AA"I' CAC ('III' FA 'F l'(' 'IAA 'I'(i(i '1'('-3' and re\ erse, 5'-('A(L 'I'(jA A66 ('AA 
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CTT GAC TAA GA-3' primers. The PCR assay was performed in a 20 µl reaction 

volume containing 100 ng of genomic DNA, IU of Taq polymerase, 20 pmol of each 

primer, 1.5 mM MgC12,2 µl of lOx PCR buffer, 0.25 mM dNTP mix, and an 

appropriate volume of molecular biology grade water. 

The PCR conditions consisted of an initial denaturation at 95°C for 10 minutes; 35 

cycles of 94°C for 30 seconds (denaturation), 60°C for 30 seconds (annealing), 72°C for 

30 seconds (extension); and followed by a final extension at 72°C for 7 minutes and 

soaking at 4°C. A PCR product with a size of 400 bp was expected from the 

amplification. 

The SCN2A 56G allele was discriminated from the 56A allele by digesting the PCR 

product with ScrFI endonuclease. The PCR product was digested for at least 2 hours at 

37°C in a 20 µl reaction volume containing 10 µl of PCR product, 5U of ScrFI 

restriction enzyme, 2 µl of lOx NE buffer and an appropriate volume of molecular 

biology grade water. ScrFI cut the PCR product at position 5'-CC/NGG-3', and 

produced 178-bp, 130-bp, 64-bp and 28-bp fragments for the SCN2A 56G allele; and 

206-bp, 130-bp and 64-bp fragments for the SCN2A 56A allele. 

A total of 5 pl of digest product was mixed with 1 pl of loading dye and loaded on a 

3.0% agarose gel containing 300 ng/ml ethidium bromide. The gel electrophoresis 

conditions were set at 80 V for 120 minutes. A digital image of the agarose gel was 

captured at the end of the electrophoresis process under ultraviolet trans illumination 

(FIGURE 3.10). 



Chapter 3: I)M1: & DIT Gene Polymorphism 

G; 'n 

SCN2A c. 56G>A 

(I,: 1 , IN i, -1 ( i( i ( i( i 

. 
lo(, ly 

1 78 hp 

I iii bl, 

t, 1 I, I 

FIGURE 3.10. Electrophoresis patterns for SCN2A c. 56G'-A genotypes analysed 

by PCR-RFLP assay. 

3.1.3.13 Identification of EPIIXI c. 337T>C polymorphism by direct sequencing 

121 

The genotype distribution of EPHXI c. 3371'>C identified by PCR-RFLP assay (section 

3.1.3.6) was not consistent with IIWE' (p < 0.05). ']'his was believed to be the result of 

the close proximity of a polymorphism at codon 119, and its consequent influence on 

the accuracy of genotyping by the R11 , I) technique. For this reason, a newly designed 

direct sequencing assay was employed to re-analyse all 400 1)NA samples. Four steps of 

sample preparation are required before the DNA fragment can he analysed by the 

automated MegaBACE 1000 " DNA Analysis System 

PCR amplification of the target DNA fragment: Forward (5'-(i"I'A (iCC AG'l' (iAT 

GTG (1-3') and reverse (5'-CAT G'I'A "I( i"f (ill' ('('"1' G('(' TA-3') primers were used 

to amplify a DNA fragment of exon-3 of the I: I'I lX I gene. The I'CR assay was 

performed in a 30 pl reaction volume containing 100 ng of"genomic I)NA, IU of'Yaq 
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polymerase, 20 pmol of each primer, 2 mM MgC12,3 pl of IOx PCR buffer, 0.25 mM 

dNTP mix and an appropriate volume of molecular biology grade water. 

The PCR conditions consisted of an initial denaturation at 94°C for 5 minutes, followed 

by 35 cycles of 94°C for 30 seconds (denaturation), 60°C for 30 seconds (annealing), 

72°C for 30 seconds (extension) and finally followed by 72°C for 5 minutes (final 

extension) and soaking at 4°C. A PCR product with a size of 542 bp was expected from 

the amplification. 

Purification of PCR product: The purification step was based on protocol 000601v024 

published by Agencourt Bioscience Corporation, Beverly, MA, USA 

(http: //www. agencourt. com). The purification reaction was performed in a 96-well 

plate. In each well, a total of 15 µl of PCR product was mixed with 27 pl of a magnetic 

bead solution (AMPure). The reaction was mixed thoroughly by vortexing for 30 

seconds. The reaction mixtures were then left to incubate for 3-5 minutes at room 

temperature (20°C). The magnetic beads were separated from the reaction mixture by 

placing the plate onto a magnetic plate (SPRIP1ate 96R) for 5-10 minutes. The 

supernatant was aspirated from the reaction plate and discarded. With the reaction plate 

remaining on the SPRIPIate 96R®, 200 µl of 70% ethanol was dispensed into each well 

and the plate incubated for a further 30 seconds at room temperature (20°C). A total of 

two washes were performed using 70% ethanol. The reaction plate was then placed on 

the bench to air-dry, before 40 µl sterile water was added to each well for elution of the 

purified PCR product. The plate was vortexed for 30 seconds to promote maximum 

elution. The eluant was then used in the sequencing PCR step. 

Sequencing PCR: The sequencing PCR process was based on DYEnamic ET 

Terminator Cycle Sequencing Kit (product instruction US81050PL 2002) by Amersham 
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Biosciences (http: //www4. gelifesciences. com/aptrix/uppOI077. nsf/content/). A 96-well 

plate was used to run the sequencing PCR. The PCR was performed in a 10 µl reaction 

volume containing 4 µl of purified DNA template, 5 pmol of the reverse primer (5'- 

CAT GTA TGT GTT CCT GCC TA-3'), 1 µl of DYEnamic® ET Terminator reagent, 3 

µl of DYEnamic® ET Terminator dilution buffer and I µl of sterile water. The PCR 

conditions consisted of 25 cycles of 95°C for 20 seconds (denaturation), 50°C for 15 

seconds (annealing) and 60°C for 60 seconds (extension). The sequencing PCR product 

was then cleaned using C1eanSEQ® system (Agencourt Bioscience Corporation, 

Beverly, MA, USA). 

Removal of dye-terminator: The dye-terminator removal process was based on protocol 

000600vO31 published by Agencourt Bioscience Corporation, Beverly, MA, USA 

(http: //www. agencourt. com). The cleanup reaction was performed in a 96-well plate. In 

each well, 5 µl of the sequencing PCR product was mixed with 10 µl of magnetic bead 

solution (C1eanSEQ®) and 31 pl of 85% ethanol. The magnetic beads were separated 

from the reaction mixture by placing the plate onto a SPRIPIate 96R® for 3 minutes. The 

clear supernatant was aspirated from the reaction plate and discarded. With the reaction 

plate remaining on the SPRIPlate 96R®, 100 µl of 85% ethanol was dispensed into each 

well and the plate incubated for 30 seconds at room temperature (20°C). The ethanol 

was then aspirated from the reaction plate and discarded. A total of two washes with 

85% ethanol were performed. After the washes, the reaction plate was placed on the 

bench to air-dry, before 20 µl of sterile water was added to each well for elution. The 

eluant was then used in the MegaBACE 1000TM sequencing analysis. 

MegaBACE 1000TMsequencing analysis: MegaBACE 1000TM DNA Analysis System 

utilised parallele capillary electrophoresis. High-pressure nitrogen gas was used to inject 
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the capillaries with linear polyacrylamide, a separation matrix. Eluant was loaded into 

the analyser in a 96-well plate and a electrical current was established at the tip of each 

capillary, where it came into contact with the sample. Samples were electro-kinetically 

injected into the linear polyacrylamide and travelled the length of the capillary during 

the course of the run. All sequencing samples were automatically base-called and 

presented as DNA sequencing chromatograms. The DNA sequencing signals for each 

genotype of the EPHX1 c. 337T>C polymorphism are presented in FIGURE 3.11. 

3.1.3.14 Predicting the net activity of mEH 

The net activity of mEH was predicted on the basis of an association between EPHX1 

gene variants and in vitro activity of mEH described by Hassett et al. (1994b). 

Individuals who carry the 337 + 416 diplotypes of C/C + A/A, C/C + A/G, TIC + A/A 

and C/C + GIG were predicted as having the low activity mEH, those with 337+416 

diplotypes of T/T + A/A, T/C + A/G and TIC + GIG were predicted to have medium 

activity mEH, and those with 337+416 diplotypes of T/T + GIG and T/T + A/G were 

predicted to have high activity mEH. This categorical method was also described by 

Sarmanova et al. (2000). 
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FIGURE 3.11. DNA sequencing signals of the four nucleotides around the EPHXI 

c. 337T>C polymorphism for the T/T, T/C, and C/C genotypes. 

3.1.3.15 Comparison of allele and genotype distributions between ethnic groups 

Allele and genotype distributions identified in the current study population were 

compared with data from other populations that are available in the literature. Fisher's 

Exact test or X2 test was employed for this purpose. A p-value of greater than 0.05 
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indicated that no significant differences in the allele and genotype distributions between 

study populations. 

3.1.3.16 Hardy-Weinberg Equilibrium test 

The HWE test is one of the quality control measures for genotyping method as 

suggested by several authors (Xu et al., 2002; Hosking et al., 2004; Salanti et al., 2005; 

Wittke-Thompson et al., 2005). Adherence to HWE was tested using an online 

calculator, freely available on an established website (The Online Encyclopedia for 

Genetic Epidemiology, available from <http: //www. genes. org. uk/software/hardy- 

weinberg. shtml>). The online calculator compared the genotype distribution identified 

in the current study with a distribution predicted by HWE using X2 test. A p-value of 

greater than 0.05 indicated that the observed genotype distribution was consistent with 

HWE assumptions. 

3.1.4 Results 

3.1.4.1 Allele and genotype distributions of CYP3A4 g. -392A>G and CYP3A5 

g. 6986A>G polymorphisms 

Allele and genotype distributions of the CYP3A4 g. -392A>G and CYP3A5 g. 6986A>G 

polymorphisms in comparison with other populations are presented in TABLE 3.1 and 

TABLE 3.2, respectively. The CYP3A4 -392A and CYP3A5 6986G alleles were 

predominant in the 400-strong study population, with allele frequencies of 96.5% and 

92.6%, respectively. Only one individual was homozygous for the CYP3A4 -392G/G 

genotype and four individuals were homozygous for the CYP3A5 6986A/A genotype. 

The allele and genotype distributions of CYP3A4 g. -392A>G and CYP3A5 g. 6986A>G 

polymorphisms observed in the current study were consistent with UWE (p > 0.05) and 
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comparable (p > 0.05) with other Caucasian populations but different (p < 0.05) from 

previously published Oriental and African-American populations. 

TABLE 3.1. Allele and genotype distributions of the CYP3A4 g-392A>G 

polymorphism in comparison to previously published data from different 

populations. 

Frequency 

Allele Genotype 

Study AG A/A A/G GIG Ref. 

Current studyt, n= 400 0.965 0.035 0.932 0.065 0.003 

Chinese & Japanese:, n= 80 1.000 0.000 1.000 0.000 0.000 1 

Hispanics, n= 121 0.890 0.110 0.800 0.180 0.020 1 

African-Americans, n= 116 0.455 0.545 0.190 0.530 0.280 1 

Caucasian (German)°, n= 432 0.971 0.029 0.944 0.054 0.002 2 

Caucasian (American)°, n= 230 0.935 0.065 0.891 0.087 0.022 3 

African-American#, n= 64 0.477 0.523 0.281 0.391 0.328 3 

to vs G, 0.965 vs 0.035 (95% CI, 0.024 - 0.050); HWE: X2 = 0.57, p=0.752; 

Allele and genotype distributions in comparison with current study findings, tp < 

0.05 and °p > 0.05; References: 1= Paris et al. (1999), 2= Dally et al. (2003), 3= 

Zeigler-Johnson et al. (2004). 



Chapter 3: DME & DTP Gene Polymorphisms 128 

TABLE 3.2. Allele and genotype distributions of the CYP3A5 g. 6986A>G 

polymorphism in comparison to previously published data from different 

populations. 

Frequency 

Allele Genotype 

Study AG A/A A/G G/G Ref. 

Current studyt, n= 400 0.074 0.926 0.010 0.128 0.862 

Japanesel, n= 400 0.232 0.768 0.070 0.325 0.605 1 

Caucasian (German)°, n= 432 0.063 0.937 0.002 0.121 0.877 2 

Caucasian (American)°, n= 230 0.048 0.952 0.011 0.073 0.915 3 

African-Americans, n= 64 0.638 0.362 0.446 0.385 0.169 3 

to vs G, 0.074 vs 0.926 (95% CI, 0.906 - 0.942); HWE: X2 = 1.78, p=0.410; 

Allele and genotype distributions in comparison with current study findings, tp < 

0.05 and °p > 0.05; References: 1= Sata et al. (2000), 2= Dally et al. (2003), 3= 

Zeigler-Johnson et al. (2004). 

3.1.4.2 Allele and genotype distributions of CYPIA2 g. 5734C>A polymorphism 

Allele and genotype distributions of the CYPIA2 g. 5734C>A polymorphism in 

comparison with other populations are presented in TABLE 3.3. Most (93.2%) of the 

400-strong study population carried at least one 5734A allele. Only small numbers were 

homozygous for the 5734C allele (6.8%). The allele and genotype distributions of the 

CYP1A2 g. 5734C>A polymorphism observed in the 400-strong study population were 
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consistent with HWE (p > 0.05), and comparable (p > 0.005) with other Caucasian 

populations. 

TABLE 3.3. Allele and genotype distributions of the CYPIA2 g. 5734C>A 

polymorphism in comparison to previously published data from different 

populations. 

Frequency 

Allele Genotype 

Study CA C/C A/C A/A Ref. 

Current studyt, n= 400 0.275 0.725 0.068 0.415 0.517 

Caucasian (German)°, n= 236 0.322 0.678 0.102 0.441 0.457 1 

Caucasian (Italian)°, n= 95 0.332 0.668 0.095 0.474 0.431 2 

Caucasian (Dutch)°, n= 94 0.280 0.720 0.080 0.400 0.520 3 

Egyptian°, n= 212 0.320 0.680 0.108 0.420 0.472 4 

Hispanic & Mestizo°, n= 932 0.300 0.700 0.090 0.420 0.490 5 

Japaneset, n= 159 0.386 0.614 0.163 0.447 0.390 6 

tC vs A, 0.27 vs 0.73 (95% CI, 0.69 - 0.77); HWE: X2 = 0.66, p=0.717; Allele 

and genotype distributions in comparison with current study findings, tp < 0.05 

and °p > 0.05; References: 1= Sachse et al. (1999), 2= Pavanello et al. (2005), 3 

= Moonen et al. (2005), 4= Hamdy et al. (2003a), 5= Cornelis et al. (2005), 6= 

Obase et al. (2003). 
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3.1.4.3 Allele and genotype distributions of EPIIXI c. 337T>C and c. 416A>G 

polymorphisms 

When analysed with PCR-RFLP, the genotype distribution of EPHX1 c. 337T>C was 

inconsistent with HWE (p < 0.05). This was believed to be the result of the close 

proximity of a polymorphism at codon 119, and its consequent influence on the 

accuracy of genotyping by the RFLP technique. For this reason, the 400-strong study 

population was re-analysed by direct sequencing. The genotype distribution of EPHX1 

c. 337T>C identified this method was consistent with FHWE (p > 0.05), was deemed to 

be accurate, and has subsequently been reported and employed in the remainder of this 

thesis. 

Allele and genotype distributions of the EPHX1 c. 337T>C and EPHX1 c. 416A>G 

polymorphisms in comparison with other populations are presented in TABLE 3.4 and 

TABLE 3.5, respectively. The allele and genotype frequencies of EPHX 1 337T>C and 

EPHX1 416A>G polymorphisms were consistent with HWE (p > 0.05) and comparable 

(p > 0.05) to those of other Caucasian populations. Most of study subjects were 

predicted to carry low and medium net activities of mEH, accounting for 39.5% and 

40.5% of the 400-strong study population, respectively (FIGURE 3.12). Patients who 

carried a diplotype of 337T/T and 416A/A dominated the medium mEII activity group 

(69.8%). 

3.1.4.4 Allele and genotype distributions of UGT2B7 c. 802C>T polymorphism 

Allele and genotype distributions of the UGT2B7 c. 802C>T polymorphism in 

comparison with other populations are presented in TABLE 3.6. The genotype 

distribution of the UGT2B7 c. 802C>T polymorphism in the 400-strong study 

population was consistent with UWE (p > 0.05) and comparable (p > 0.05) with other 
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Caucasian populations. Allele frequency of the UGT2137 c. 802C>T polymorphism 

approached equivalence (50%) for the C and T substitutions. The 802C/T genotype 

(54.7%) was the most common genotype observed in the study population. 

TABLE 3.4. Allele and genotype distributions of the EPHXI c. 337T>C 

polymorphism in comparison to previously published data from different 

populations. 

Frequency 

Allele 

Study 

Current study§, n= 400 

(PCR-RFLP) 

Current studyt, n= 400 

(Direct Sequencing) 

Caucasian (American)°, n= 458 

African-Americana, n= 242 

Caucasian (Australian)°, n= 496 

Chinese$, n= 252 

Japanese$, n= 172 

TC 

0.640 0.360 

0.689 0.311 

0.718 0.282 

0.791 0.209 

0.672 0.328 

0.443 0.557 

0.558 0.442 

Genotype 

T/T T/C C/C Ref. 

0.468 0.345 0.187 

0.482 0.413 0.105 

0.517 0.402 0.081 1 

0.632 0.318 0.050 1 

0.452 0.439 0.109 2 

0.302 0.282 0.416 3 

0.326 0.465 0.209 4 

The genotype distribution identified by PCR-RFLP was inconsistent with IIWE 

(X2 = 25.26, p<0.001) and was reanalysed using direct sequencing; tT vs C, 0.69 

vs 0.31 (95% CI, 0.28 - 0.34); HWE: X2 = 0.57, p=0.750; Allele and genotype 

distributions in comparison with current study findings, tp < 0.05 and °p > 0.05; 

References: 1= London et al. (2000), 2= Gsur et a!. (2003), 3= Zhang et al. 

(2003), 4= Budhi et al. (2003). 
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TABLE 3.5. Allele and genotype distributions of the EPIHXI c. 416A>G 

polymorphism in comparison to previously published data from different 

populations. 

Frequency 

Allele Genotype 

Study AG A/A A/G GIG Ref. 

Current studyt, n= 400 0.806 0.194 0.650 0.312 0.038 

Caucasian (American)°, n= 458 0.806 0.192 0.659 0.297 0.044 1 

African-Americana, n= 242 0.709 0.291 0.492 0.434 0.074 1 

Caucasian (Australian)°, n= 496 0.822 0.178 0.677 0.290 0.032 2 

Japanese°, n= 172 0.848 0.152 0.744 0.209 0.067 3 

to vs G, 0.81 vs 0.19 (95% Cl, 0.17 - 0.22); HWE: X2 < 0.0 1, p=0.999; Allele 

and genotype distributions in comparison with current study findings, tp < 0.05 

and °p > 0.05; References: 1= London et al. (2000), 2= Gsur et al. (2003), 3= 

Budhi et al. (2003). 
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FIGURE 3.12. The distribution of predictive net activity of mFII in the 400-strong 

study population. The net activity of ml; l I was predicted using a series of diplotypes 

derived from the EPHX I c. 337T>C and EPl lX l c. 410A (i polymorphisms. Low 

activity mEH = C/C+A/A, C/C+A/G, 'I'/C f A/A and ('/C f G/(i, medium activity mEl I 

T/C+A/G, T/T+A/A and T/C+G/G, and high activity ml-I'll '1'/I f A/(i and '1/I' I G/(i. 

References: Hassett el at. (I 994b); Sarmanova el at. (2000). 
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TABLE 3.6. Allele and genotype distributions of the UGT2B7 c. 802C>T 

polymorphism in comparison to previously published data from different 

populations. 

Frequency 

Allele Genotype 

Study CT C/C C/T T/T Ref. 

Current studyt, n= 400 0.476 0.524 0.203 0.547 0.250 

Caucasian (American) °, n= 202 0.463 0.537 0.218 0.490 0.292 1 

Caucasian (Australian) °, n= 91 0.511 0.489 0.275 0.472 0.253 2 

Japanese, n= 84 0.732 0.268 0.512 0.440 0.048 2 

Chinese, n= 218 0.675 0.325 0.440 0.470 0.090 3 

tC vs T, 0.48 vs 0.52 (95% CI, 0.47 - 0.57); HWE: X2 = 3.80, p=0.149; Allele 

and genotype distributions in comparison with current study findings, tp < 0.05 

and °p > 0.05; References: I= Lampe et al. (2000), 2= Bhasker et al. (2000), 3= 

Lin et al. (2005). 

3.1.4.5 Allele and genotype distributions of ABCB1 c. 1236C>T, c. 2677G>T/A 

and c. 3435C>T polymorphisms 

Allele and genotype distributions of the ABCB 1 c. 1236C>T, ABCB I c. 2677G>T/A and 

ABCB 1 c. 3435C>T polymorphisms in comparison with other populations are presented 

in TABLE 3.7, TABLE 3.8 and TABLE 3.9, respectively. The allele and genotype 

distributions of the ABCB 1 c. 1236C>T, ABCB 1 c. 2677G>T/A and ABCB I c. 3435C>T 

polymorphisms in the 400-strong study population were consistent with HWE (p > 

0.05) and comparable (p > 0.05) to those of other Caucasian populations. The majority 
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of patients were heterozygous for these polymorphisms (47.0% for 1236C/T, 44.3% for 

2677G/T and 48.5% for 3435C/T). 

TABLE 3.7. Allele and genotype distributions of the ABCBI c. 1236C>T 

polymorphism in comparison to previously published data from different 

populations. 

Frequency 

Study 

Allele Genotype 

CT C/C C/T T/T Ref. 

Current studyt, n= 400 0.520 0.480 0.285 0.470 0.245 

Caucasian (American)°, n= 100 0.540 0.460 

African-Americans, n= 100 0.805 0.195 

Chinesen, n= 92 0.380 0.620 

Malays, n= 92 0.375 0.625 

Indians, n= 95 0.347 0.653 

1 

1 

I 

I 

I 

Japanese:, n= 69 0.348 0.652 0.101 0.493 0.406 2 

tC vs T, 0.52 vs 0.48 (95% CI, 0.43 - 0.53); HWE: X2 = 1.37, p=0.504; Allele 

and genotype distributions in comparison with current study findings, tp < 0.05 

and °p > 0.05; `-' mark indicates unavailable data; References: 1= Tang et al. 

(2004), 2= Goto et al. (2002). 



136 

U 

U 
:3 
Q' 
N 
tr 

w 
aý ý 

ä 

H 

ýv ý 
0 ý 
ý 
C7 ý 

ý 
C7 

C7 
C7 

N 
G) 

F. 

0 

ý b 2 
Gn 

. -. NM It kn 

00 
öö 

ö C; ö. 

O V) v"l 
ö0ö 
6 c5 ö 

N . -, Oý 
öc 

C; C) ö 

N Olý ý 

N ... "'! 

C; C; 6 

-4 rn 

00c 

NMm "0 
M 

MMN 

cS 
ÖC 

00 O 
OO 
OO 
6 öö 

00 ý 
C; 

M 
O 
. --ý 
Ö 

M 
'CC 
. --i 
O 

I,. ) M 
.r 

00 M 

0 O\ 
ý ö 

.ý 4n 
öý o° 
ööö 

VOs 
00 O 
O V') N r- 

`V . I* d; c+1 
OÖOO 

C) ° ýo 
ý 

INA 4n 

6 
ÖÖöö 

0 
0 

..., "'' N 

° II Aý 
Or 13 
v ."p . -. II o" 

. -1 yb1.0 
NN 

. -- 
10 
O G. 

Hý >~ ýQ 

ý ed ý kc 

cl 
"cl "cd 

ýUUUý 

ÜÜ Cý Ü0 

O 
O 
. -ý 

tel ON 
00 

O 
O 
N 
II 
t~ 

Hý 

U 
.ý 
N 

ý 

ý 
tV 
U 

ý 

Q 

vi 
0 

ý 

0 
'tCC7 
cd 

ý 0 ö 
V 
a ý ý 
on ý b 
a w 
b ý 
N 

.. r 

'Cy 

b 

1-o 

ri 



Chapter 3: DME & DTP Gene Polymorphisms 137 

TABLE 3.9. Allele and genotype distributions of the ABCB 1 c. 3435C>T 

polymorphism in comparison to previously published data from different 

populations. 

Frequency 

Allele Genotype 

Study CT C/C C/T T/T Ref. 

Current studyt, n= 400 0.425 0.575 0.183 0.485 0.332 

Caucasian (Scottish)°, n= 190 0.480 0.520 0.240 0.480 0.280 1 

Japanesel, n= 69 0.557 0.443 0.304 0.507 0.188 2 

Chinese:, n= 98 0.460 0.540 0.240 0.440 0.320 3 

Malays:, n= 99 0.480 0.520 0.250 0.460 0.280 3 

Indians:, n= 93 0.380 0.620 0.180 0.390 0.430 3 

tC vs T, 0.42 vs 0.58 (95% CI, 0.53 - 0.63); HWE: X2 = 0.02, p=0.988; Allele 

and genotype distributions in comparison with current study findings, Tp < 0.05 

and °p > 0.05; References: I= Ameyaw et al. (2001), 2= Goto et al. (2002), 3= 

Balram et al. (2003). 

3.1.4.6 Allele and genotype distributions of SCN2A c. 56G>A polymorphism 

Allele and genotype distributions of the SCN2A c. 56G>A polymorphism in comparison 

with a Japanese population are presented in TABLE 3.10. The genotype distribution of 

the SCN2A c. 56G>A polymorphism in the 400-strong study population was consistent 

with HWE (p > 0.05) and comparable (p > 0.05) with the reported Japanese population. 
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The 56G/G genotype (87.5%) was the most common genotype observed in the study 

population. 

TABLE 3.10. Allele and genotype distributions of the SCN2A c. 56G>A 

polymorphism in comparison to previously published data from a different 

population. 

Frequency 

Allele Genotype 

Study GA GIG G/A A/A Ref. 

Current studyt, n= 400 0.931 0.069 0.875 0.112 0.013 

Japanese°, n= 100 0.940 0.060 0.880 0.120 0.000 1 

tG vs A, 0.93 vs 0.07 (95% CI, 0.05 - 0.10); HWE: p=0.052; Allele and 

genotype distributions in comparison with current study findings, °p > 0.05; 

References: 1= Nakayama et al. (2002). 

3.1.5 Discussion 

3.1.5.1 The prevalence of common polymorphisms in DME, DTP and sodium 

channel genes in comparison with other ethnic groups 

The frequencies of minor alleles ranged between 3.5% (CYP3A4 -392G) and 48.0% 

(ABCBI 1236T). A relatively low frequency of the CYP3A4 g. -392G allele has also 

been observed in many other studies (Paris et al., 1999; Sata et a!., 2000; Kuehl et a!., 

2001; Gracia-Martin et al., 2002; Hamzeiy et al., 2002; Dally et al., 2003; Zeigler- 
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Johnson et al., 2004). This low frequency may indicate that, in Caucasian populations, a 

large sample size is required to identify a statistically meaningful association between 

the CYP3A4 g. -392A>G variant and any respective phenotype. The g. -392A>G allele 

and genotype frequencies for the 400-strong study population were distinct from 

previously published data in Asian, Hispanic and African-American populations (Paris 

et al., 1999; Chelule et al., 2003; Zeigler-Johnson et al., 2004). In contrast, the non- 

functional CYP3A5 genotype (6986G/G) has been identified at a high frequency (30 - 

87%) in many populations (Fukuen et al., 2002; van Schaik et al., 2002; King et al., 

2003; Lee et al., 2003; Schuetz et al., 2004), including the current study population. 

These CYP3A5 variant allele and genotype frequencies are similar to those of other 

studies performed in Caucasian populations (van Schaik et al., 2002; King et al., 2003; 

Lee et al., 2003; Schuetz et al., 2004), but different to those of Japanese and African- 

American populations (Fukuen et al., 2002; Zeigler-Johnson et al., 2004). These 

findings may signify that, in most Caucasian individuals, including the current 400- 

strong study population, CYP3A activity is mainly dependent on CYP3A4. However, a 

contribution of the CYP3A5 protein to overall CYP3A activity may be important in 

around 14% of individuals who carry at least one CYP3A5 6986A allele. 

The g. 5734C>A polymorphism is the most studied CYPIA2 gene variant (Saclise et al., 

1999; Moonen et al., 2005; Pavanello et al., 2005). In the current study population, the 

genotype distribution of the CYPIA2 g. 5734C>A polymorphism is almost identical to 

that of other populations. The high frequency of the 5734A allele observed in our study 

was similarly reported for other Caucasian, Egyptian and Hispanic populations (Sachse 

et al., 1999; Hamdy et al., 2003a; Cornelis et al., 2005; Pavanello et al., 2005). In 

contrast, a study performed in Japanese subjects has reported a much higher 5734C/C 

frequency than in other ethnic populations (Obase et al., 2003). 



Chapter 3: DME & DTP Gene Polymorphisms 140 

mEH plays a vital role in metabolising drugs and detoxifying environmental pollutants 

(de Vries & Janssen, 2003). The common EPHXI gene variants, c. 337 >C and 

c. 416A>G, that express polymorphic mEH have been associated with the risk of 

developing several types of cancers and other diseases (London et al., 2000; Wong et 

al., 2000; Ulrich et al., 2001; Zhou et al., 2001; Cajas-Salazar et al., 2003). The EPHXI 

337T and EPHX1 416A alleles predominate in the majority of patients in the current 

study population. EPHX1 c. 337T>C and c. 416A>G allele and genotype distributions 

observed in the 400-strong study population were similar to those of other Caucasian 

populations (Smith & Harrison, 1997; London et al., 2000; Zhou et al., 2001; Cajas- 

Salazar et al., 2003; Gsur et al., 2003). However, the 337C allele frequency was 

different from that of previously published Chinese, Japanese and African-American 

populations (Takeyabu et al., 2000; Budhi et al., 2003; Zhang et al., 2003), whereas the 

416G allele frequency was different only to that of an African-American population 

(London et al., 2000). 

It has been shown that the expression and activity of mEH is influenced by the 

c. 337T>C and c. 416A>G polymorphisms (Hassett et al., 1994b; Maekawa et al., 2003). 

Therefore, diplotypes of these polymorphisms have been used to predict the net activity 

of mEH (Smith & Harrison, 1997; Sarmanova et al., 2000; Takeyabu et al., 2000; Zhou 

et al., 2001; Lebailly et al., 2002; Sonzogni et al., 2002; Cajas-Salazar et al., 2003). 

Most of the 400-strong study population were predicted to have low and medium 

activity mEH, which associates mainly with the T/C-A/A and T/T-A/A diplotypes, 

respectively. However, the frequency of patients with high net mEll activity may be 

important as they accounted for up to 20% of the study population. The implications of 

this are on the clinical pharmacology of drugs which are metabolised by this pathway. 
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The most studied UGT2B7 variant is the c. 802C>T polymorphism (Sawyer et al., 2003; 

Wiener et al., 2004; Lin et al., 2005; Thibaudeau et al., 2006). Allele and genotype 

distributions of the UGT2B7 c. 802C>T polymorphisms in the current study population 

were comparable with other Caucasian populations from two different continents, North 

America and Australia (Bhasker et al., 2000; Lampe et al., 2000). However, the 

prevalence of the 802C/C genotype was 2-fold higher in the present study than that 

reported in Oriental populations (Bhasker et al., 2000; Saeki et al., 2004; Lin et al., 

2005). 

The most widely investigated ABCB 1 gene variants are the c. 1236C>T, c. 2677G>T/A 

and c. 3435C>T polymorphisms. In the 400-strong study population, the 1236T, 

2677T/A and 3435C were identified as the minor alleles. The variant allele and 

genotype distributions were similar to those reported in other Caucasian populations 

(Hoffineyer et a!., 2000; Tan et al., 2004b; Tang et a!., 2004), but different from those 

in Asian populations (Goto et al., 2002; Balram et al., 2003; Park et al., 2007). A 

previous study employing a non-epileptic Scottish population reported distributions of 

c. 3435C>T alleles and genotypes that were comparable to the current study (Ameyaw et 

al., 2001). A significant difference in allele and genotype distributions of the ABCB1 

c. 1236C>T polymorphism is observed between Caucasians and African-Americans 

(Tang et al., 2004). Although pharmacogenetic studies in epilepsy have focused on 

these specific polymorphisms, the functional significance of ABCB I variants remains 

controversial (Siddiqui et al., 2003; Tan et al., 2004a; Sills et al., 2005; Kim et al., 

2006). Nevertheless, several studies have suggested that haplotypes based on these three 

SNPs may be useful in predicting drug resistance in epilepsy (Hung et al., 2005) An 

investigation focusing specifically on CBZ has shown that the T-T-T haplotype at the 

1236,2677 and 3435 positions of the ABCB 1 gene was associated with a better 

response to CBZ treatment (Seo et al., 2006a). 
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The SCN2A c. 56G>A polymorphism has previously been associated with febrile 

seizures in children (Nakayama et al., 2002). Information regarding the prevalence of 

SCN2A c. 56G>A variants is limited, especially in Caucasian populations. In the current 

study, the 56A allele was identified in just 1.3% of the population. Unlike most other 

SNPs reported here, the SCN2A c. 56G>A allele and genotype distributions in the 400- 

strong study population were comparable with a Japanese population (Nakayama et al, 

2002). 

Differences in allele and genotype distributions between ethnicities are not uncommon 

(Tishkoff & Kidd, 2004). In general, most of the variant allele and genotype 

distributions identified in the 400-strong study population were different from those 

reported for non-Caucasian populations. Greater differences were observed between 

populations of Caucasian and African ancestry than between Caucasian and Asian 

populations. This might be explained by the length of genetic divergence, which is 

approximately twice as long between Caucasoid and Negroid than between Caucasoid 

and Mongoloid (Ameyaw et al., 2001). Genetic divergence is the process of one species 

diverging over time into more than one species: Passing small random characteristic 

changes over time from one generation to the next generations. Genetic divergence 

operates on a genetic level favoring 2 or more alleles or 2 or more mix of alleles over 

the original mixture of alleles in a population. There is increasing evidence that different 

ethnic groups demonstrate significant differences in SNP distribution and linkage 

disequilibrium profiles (Tishkoff & Kidd, 2004). Furthermore, the frequency of minor 

alleles observed for CYP3A4 g. -392A>G, CYP3A5 g. 6896A>G and SCN2A c. 56G>A 

is low, which suggests that a large sample size is required to obtain sufficient statistical 

power in any study comparing the effects of the major and minor alleles at these loci. 
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3.1.5.2 Hardy-Weinberg equilibrium test 
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With the exception of the PCR-RFLP derived data for EPHX 1 c. 337T>C, the genotype 

distributions of all polymorphisms reported in this project were consistent with IIWE. 

This would indicate that the distribution of variant genotypes in the 400-strong study 

population did not violate HWE assumptions and that there was no apparent systematic 

error in the genotyping assays (Xu et at., 2002; Hosking et al., 2004; Salanti et al., 

2005). As reported in section 3.1.4.3, the genotype distribution of EPIHXI c. 337T>C 

polymorphism identified by PCR-RFLP assay was inconsistent with IIWE. Re-analysis 

using a direct sequencing technique redressed this inconsistency. This would suggest 

that the PCR-RFLP assay is not the optimal method for identification of EPHXI 

c. 337T>C polymorphisms. Other investigators have reported similar difficulties in 

detecting this polymorphism by PCR-RFLP (Takeyabu et al., 2000; Gsur et al., 2003; 

Godderis et al., 2004). It is believed that the recognition site for the EcoRV restriction 

enzyme may be altered when the mismatched reverse primer anneals to another SNP 

(c. 357G>A) adjacent to the c. 337T>C polymorphism (Takeyabu et al., 2000; Gsur et 

al., 2003). As a result, the DNA fragment amplified loses the recognition site for EcoRV 

and the prevalence of the 337C/C genotype is overestimated. A modified reverse primer 

containing a second mismatched nucleotide for the c. 357G>A site has been suggested to 

improve the performance of PCR-RFLP-based analysis (Budhi et al., 2003). However, 

the effectiveness of this second mismatched nucleotide in improving the accuracy of the 

assay remains questionable. This was the approach employed in the current study 

without significant advantage. Any conclusions from previous studies which utilised a 

PCR-RFLP assay to identify the EPHX1 c. 337T>C polymorphism may be undermined 

and should be interpreted with caution. 
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3.1.6 Conclusion 

The prevalences of common polymorphisms in genes encoding DMEs, DTPs and a 

voltage-gated sodium channel in a West of Scotland epilepsy population are comparable 

with data previously reported for other Caucasian populations. The heredity of common 

polymorphisms in DME, P-gp and sodium channel genes are consistent with HWE 

assumptions. Based on HWE, no apparent systematic errors in the genotyping assays 

were identified, except in the PCR-RFLP assay for EPHXI c. 3371>C. 
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4.1 Genetic Predictors of Carbamazepine Optimal Dose 

4.1.1 Introduction 
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The response to CBZ therapy varies from patient to patient; some will have full seizure 

control and others will fail to show any response. Finding the optimal dose of CBZ that 

maintains complete seizure control with minimal side effects is a challenge. The CBZ 

optimal dose is commonly reached by dosage adjustment based on the level of clinical 

response, the occurrence of side effects, and the effects of autoinduction. Patients that 

show modest but progressive seizure reductions might undergo continuous dosage 

adjustment for more than 1 year before the optimal dose is finally found. Within this 

period, quality of life might be compromised by ongoing seizures. Most patients are 

controlled on 600 mg/day but some patients may require up to 1600 mg/day of CBZ to 

attain complete seizure control (Kwan & Brodie, 2001). Patients with a high dose 

requirement are not easily distinguished from complete non-responders. Therefore, it 

may be useful to determine the individual CBZ dosage requirement in order to limit 

unnecessary or unreasonable titration to high doses of CBZ. 

Some studies have reported that optimum treatment response and target therapeutic 

concentrations of CBZ are achieved with a broad range of doses (200 - 1600 mg/day; 

Brodie et al., 1995; Chadwick, 1999; Kwan & Brodie, 2001). The variability in dosage 

requirement is believed to be associated with interindividual differences in CBZ 

pharmacokinetics and pharmacodynamics. CBZ pharmacokinetics are predominantly 

influenced by the DMEs (Browne, 1998; Kim, 2002b; Ramachandran & Shorvon, 

2003), while on the other hand, CBZ pharmacodynamics are primarily affected by the 

function of ion channels. 
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Polymorphisms in genes that encode DMEs and Na�1.2 sodium channel could alter the 

expression and function of their respective proteins (as described in Chapter 3) and, in 

turn, affect CBZ metabolism and the conformation of the sodium channel. These may 

consequently influence CBZ concentrations in plasma and in brain and sodium channel 

sensitivity to CBZ. As such, common polymorphisms in the DME and SCN2A genes 

may be able to predict the optimal dose of CBZ. 

4.1.2 Aims 

This study was designed to evaluate the association between common polymorphisms in 

CYP3A4, CYP3A5, CYP1A2, EPHXI, UGT2B7 and SCN2A genes and the optimal 

dose of CBZ. Clinical factors such as age and gender were also evaluated as additional 

candidate predictors. 

4.1.3 Methods 

4.1.3.1 Definitions 

The optimal dose was defined as the final dose given to a patient that successfully 

maintained optimal seizure control without intolerable side effects. Optimal seizure 

control was defined as complete seizure freedom or a significant (>_ 50%) reduction in 

pre-treatment seizure frequency which was maintained over a period of at least 12 

months. 

4.1.3.2 Study subjects 

From the 400-strong study population, 124 patients were identified as being treated with 

CBZ monotherapy. Through retrospective evaluation of individual medical records, 
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fifteen patients were excluded due to insufficient clinical and CBZ dosage information. 

Five patients that had been referred from other centres or from primary care did not 

have sufficient information on the outcome of therapy. Thirty-four of the remaining 104 

patients with complete outcome information did not respond to CBZ (n = 20) or 

experienced intolerable side effects (n =14) which resulted in the premature withdrawal 

of medication. These patients were excluded from the study because an optimal dose 

could not be established. As a result, 70 patients with optimal seizure control on CBZ 

monotherapy and with complete information on dosage regimen and relevant clinical 

data were available for analysis. Information on the clinical response of these patients 

was confirmed by an experienced clinician prior to data analysis. None of these patients 

were concomitantly treated with other AEDs or non-AEDs that may have influenced 

CBZ metabolism. Most of the patients (91.4%) were treated with a sustained release 

formulation and only a minority (8.6%) received standard release tablets. 

4.1.3.3 Genotype analysis and phenotype assessment 

Genotypes of the common CBZ-related DME and SCN2A polymorphisms were 

identified using the PCR-RFLP and direct sequencing assays described in Chapter 3. 

Genotype determination for the DME and SCN2A polymorphisms was completed on 

February 2006. Phenotype assessment was started on March 2006 and completed on 

April 2006. 

4.1.3.4 Statistical analysis 

Clinical and demographic differences between the CBZ cohort and the 400-strong study 

population were investigated using the X2 test. The distribution of age was compared 

using Student's t-test. The possibility of genotype selection bias was explored by 

comparing the distribution of individual polymorphisms between the CBZ cohort and 
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the overall 400-strong study population using the X2 test. Differences in the mean 

optimal dose of CBZ in relation to predictors such as gender and genotype of individual 

DME polymorphisms were initially compared by Student's t-test and/or analysis of 

variance (ANOVA). 

To fit the genetic information into the regression database, a specific score was assigned 

to the genotype of each polymorphisms according to the number of substituting alleles; 

no substituting allele was given score 1, one substituting allele was given score 2 and 

two substituting alleles was given score 3. Interaction between polymorphisms in a 

single gene or genomic region was identified by correlation test, represented by the 

multiplicative value of polymorphism scores, and denoted "SNP interaction". 

Significant predictors of CBZ optimal dose were then identified using univariate and 

multivariate linear regression analysis. An additive model was used in the analysis with 

an assumption that the combined effects of genetic alleles at two or more gene loci are 

equal to the sum of their individual effects. SNP interactions were added to the 

multivariate analysis and acted as a non-linear component. Predictors were added into 

or taken out from the predictive model using a stepwise approach, depending on the 

degree of impact indicated by the p-value. Data transformation was employed to 

optimise the regression modelling, specifically transformation from linear to natural 

logarithmic form. Regression coefficients of predictors that significantly influenced the 

predictive model were used to construct the CBZ optimal dose predictive equation. 

Pearson's correlation (r-value) was used to evaluate the linearity of the predictive model 

by correlating the observed CBZ optimal dose and the predicted CBZ optimal dose. A 

p-value less than 0.05 indicated the presence of a strong predictor effect. Both Pres; d� al, 

which represented the p-value of residual analysis, and r2, that represented the 

goodness-of-fit, indicated how well the data fitted the predictive model. 
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4.1.4 Results 

4.1.4.1 Patient characteristics and carbamazepine dosage regimen 
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Demographic information for all 70 patients included in the CBZ cohort is presented in 

TABLE 4.1. Distributions of gender (p > 0.05) and epilepsy syndromes (p > 0.05) were 

comparable with the 400-strong study population. The median age of patients in the 

CBZ cohort was 34 years (range 14 to 72). In 16% of the CBZ cohort the optimal dose 

of CBZ was less than the maximum dose to which those patients had been exposed. 

Thus, the optimal dose represents a composite measure of efficacy and tolerability. 

FIGURE 4.1 shows that increasing age was associated with a modest reduction in CBZ 

optimal dose, however this effect was not statistically significant (r = -0.171, p=0.156). 

Gender and epilepsy syndrome were not associated with mean CBZ optimal dose (p > 

0.05; FIGURE 4.2 and 4.3, respectively). 

4.1.4.2 Genetic predictors of carbamazepine optimal dose 

Genotype distributions for all of the common DME gene polymorphisms were similar 

between the CBZ cohort and the 400-strong study population (p > 0.05, TABLE 4.2). A 

total of 2 SNP interactions were identified, between CYP3A4 c. -392A>G and CYP3A5 

c. 6986A>G (r = -0.285, p=0.017) and between EPHXI c. 337T>C and EPIIXI 

c. 416A>G (r = -0.261, p=0.029). 
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TABLE 4.1. Patient demographics and carbamazepine doses. 
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400-strong 

study 
CBZ cohort population 

(n = 70) (n = 400) p-value 

Gender Male 48.6% 50.3% 0.796 

Female 51.4% 49.7% 

Age (years) Median 34 40 0.343 

Min 14 14 

Max 72 85 

Epilepsy syndrome IGE 27.1% 29.5% 0.689 

LRE 71.5% 67.5% 

UNC 1.4% 3% 

Optimal Dose (mg/day) Mean 874.3 

Median 800 

Min 300 

Max 2000 

Min = minimum; Max = maximum; IGE = idiopathic generalised epilepsy; LRE = 

localisation related epilepsy; UNC = unclassified epilepsy. Statistical significance 

was determined by X2 test. The p-value represents the comparison between the 

WSEP and CBZ cohort. 
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FIGURE 4.1. Correlation between carbamazepine optimal dose and age of the 

patient at the time optimal dose was attained. Correlation was determined by 

Pearson's correlation test. Dotted line represents the linear correlation between 

variables. 
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FIGURE 4.2. Distribution of carbamazepine optimal dose between genders. 

Statistical significance was determined by Student's t-test. Dotted line represents 

the mean CBZ optimal dose. 
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FIGURE 4.3. Distribution of carbamazepine optimal dose between epilepsy 

syndromes. Statistical significance was determined by Student's t-test. IGE _ 

idiopathic generalised epilepsy, LRE = localisation related epilepsy and UNC = 

unclassified epilepsy. 
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TABLE 4.2. Genotype distribution comparison between the carbamazepine 

cohort and the 400-strong study population. 

Genotype frequency 

Variant Sample p-value 

Minor Hetero - Major 

SCN2A c. 56G>A SSP 0.013 0.112 0.875 0.606 

CBZ 0.000 0.100 0.900 

CYP3A4 g. -392A>G SSP 0.003 0.065 0.932 0.333 

CBZ 0.000 0.100 0.900 

CYP3A5 g. 6986A>G SSP 0.010 0.128 0.862 0.290 

CBZ 0.014 0.171 0.815 

CYP1A2 g. 5734C>A SSP 0.068 0.415 0.517 0.792 

CBZ 0.057 0.457 0.486 

EPHX1 c. 337T>C SSP 0.105 0.412 0.483 0.748 

CBZ 0.086 0.386 0.528 

EPHX1 c. 416A>G SSP 0.038 0.312 0.650 0.417 

CBZ 0.057 0.243 0.700 

UGT2B7 c. 802C>T SSP 0.202 0.548 0.250 0.061 

CBZ 0.157 0.457 0.386 

Statistical significance was determined by X2 test or Fisher's Exact test. SSP = 

400-strong study population; CBZ = CBZ cohort with 70 patients; Minor = 

homozygous for minor allele; Hetero = heterozygous for major and minor alleles; 

Major = homozygous for major allele. The p-value represents the comparison 

between CBZ cohort and WSEP. 
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Univariate linear regression analysis showed that none of the candidate predictors was 

significantly associated with CBZ optimal dose (TABLE 4.3). A multivariate predictive 

model (Model 1) incorporating all candidate predictors (gender, age, genotypes of 7 

DME and SCN polymorphisms and 2 SNP interactions) identified age as the only 

predictor of CBZ optimal dose (p = 0.026). However, the overall model fit was not 

statistically significant (r2 = 19.3%, Presidual = 0.270, TABLE 4.4). Remodelling of 

Model 1 using stepwise regression analysis produced Model 2 which identified age, 

EPHXI c. 337T>C and EPHX1 c. 416A>G as potential predictors (p = 0.023 to 0.059) 

with a significant overall model fit (r2 = 13.3%, Presidual = 0.023). Enhancement of 

Model 2 using simple data transformation (from linear form to natural logarithmic form) 

further improved the overall model fit (r2 = 15.50%, Presidual = 0.011) and revealed 3 

significant predictors (age, p=0.023; EHPX1 c. 337 >C, p=0.019; EPHX1 c. 416A>G, 

p=0.027; TABLE 4.4). 

A predictive equation for optimal dose of CBZ was constructed from the constant value 

and regression coefficients given by Model 3. The predictive equation is presented 

below: 

lnODcBz = 6.477 - 0.006*Age + 0.156*Polyl + 0.164*Poly2 

Where InODCBZ is the natural logarithm of the optimal dose (mg/day) of CBZ, Polyl is 

the genotype score for EPHX1 c. 337T>C (T/T = 1, T/C = 2, C/C = 3), and Poly2 is the 

genotype score for EPHX1 c. 416A>G (A/A =1, A/G = 2, GIG = 3). 

The correlation between the observed CBZ optimal doses and the predicted CBZ 

optimal doses generated by the predictive equation was statistically significant (p = 

0.002) but moderate in strength (r = 0.362,95%CI 0.14 to 0.55; FIGURE 4.4). 
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TABLE 4.3. Summary of univariate regression analysis of variables predicting 

the optimal dose of carbamazepine. 

Predictor 

Gender 

Age 

Coef. r2 (%) p-value 

-55.72 0.8 0.460 

-3.581 2.9 0.156 

SCN2A c. 56G>A -82.5 0.0 0.512 

CYP3A4 g. -392A>G 76.2 0.5 0.545 

CYP3A5 g. 6986A>G -57.58 0.6 0.508 

CYPIA2 g. 5734C>A -5.11 0.0 0.935 

EPHXI c. 3377>C 95.75 4.0 0.098 

EPHXI c. 416A>G 80.71 2.3 0.208 

UGT2B7 c. 802C>T 55.66 1.6 0.301 

The relative impact of each predictor is denoted by the coefficient value (Coef. ). 

The goodness-of-fit value (r2) indicates how well the individual predictors fit the 

model. The p-value indicates the probability that the predictor influences CBZ 

optimal dose. 
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TABLE 4.4. Summary of hierarchical multivariate regression analysis of 

variables predicting the optimal dose of carbamazepine. Models were developed 

in a stepwise manner from Model 1 to Model 3. 

Model 3 
Model 1 Model 2 

Predictor (natural log) 

Coef. p-value Coef. p-value Coef. p-value 
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Constant 173.10 0.856 649.50 <0.001 6.477 <0.001 

Gender -93.63 0.249 ---- 

Age -6.36 0.026 -4.68 0.059 -0.006 0.023 

SCN2A c. 56G>A -148.90 0.263 ---- 

CYP3A4 g. -392A>G 591.10 0.402 ---- 

CYP3A5 g. 6986A>G 174.60 0.603 ---- 

CYP3A SNP interaction -189.30 0.497 ---- 

CYP1A2 g. 5734C>A 25.57 0.695 ---- 

EPHXI c. 337T>C 255.40 0.172 132.79 0.023 0.156 0.019 

EPHX1 c. 416A>G 283.80 0.181 127.77 0.035 0.164 0.027 

EPHXI SNP interaction -115.8 0.435 ---- 

UGT2B7 c. 802C>T 27.72 0.637 ---- 

r2 (%) 19.3 13.3 15.5 

PresiAual 0.270 . 
0.023 0.011 

The relative impact of each predictor is denoted by the coefficient value (Coef. ). The p- 

value indicates the probability that the predictor influences CBZ optimal dose. The 

goodness-of-fit value (r) indicates how well the individual predictors fit the predictive 

model. The significance of model fitting is represented by the p-value of residual 

analysis (presiduai)" ̀-' mark represents a predictor that was eliminated by stepwise 

regression analysis. 
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FIGURE 4.4. Correlation between the observed and predicted CBZ optimal doses 

based on the optimal multivariate regression model. Correlation was determined 

by Pearson's correlation test. Dotted line is the linear correlation between 

observed and predicted doses. 

4.1.5 Discussion 

l59 

The main objective of epilepsy pharmacotherapy is to achieve complete seizure control 

without apparent adverse effects. The ability to predict the required CBZ dose for an 

individual patient may improve the CBZ dosage decision in patients who are 

responders, and limit the inevitable titration of CBZ in patients who may be refractory. 
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Therefore, early prediction of the CBZ optimal dose may shorten the time to achieve 

optimal seizure control and reduce unnecessary exposure to a high CBZ doses. 

The optimal dose of CBZ is determined by individual pharmacokinetic and 

pharmacodynamic characteristics. Both characteristics are regulated by many factors 

including physiological and genetic factors. Candidate genetic predictors of optimal 

dose of CBZ were identified from current knowledge regarding the pharmacokinetics 

and pharmacodynamics of the drug. The ability of each candidate to predict optimal 

dose of CBZ was examined through regression modelling. This analysis was not only 

able to identify potential predictors, but also to describe how much each predictor 

contributed to interindividual variation in the optimal dose of CBZ. 

This study revealed that increasing age was associated with a reduction in the required 

CBZ dose. A similar observation has been reported in a study examining the 

relationship between CBZ dose and plasma concentrations (Battino et al., 2003). These 

investigators found that elderly patients required less CBZ to achieve the recommended 

therapeutic concentration. Increasing age is known to influence multiple physiological 

functions, including the drug elimination process, most likely as a result of decreased 

function of excretory organs such as liver and kidney (Bourdet et. al., 2001). Advancing 

age may also increase individual sensitivity to drugs and increase the risk of developing 

side effects (Bourdet et. al., 2001). Therefore, elderly patients are likely to require a 

lower amount of drug to achieve a similar response to that of younger patients. 

Genetic factors influencing both pharmacokinetics and pharmacodynamics contribute to 

the overall CBZ pharmacogenetic profile. Interindividual differences in 

pharmacokinetics are commonly associated with DME and DTP gene polymorphisms. 

However, the role of DTPs, such as P-gp, in CBZ disposition is controversial (Owen et 
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al., 2001) and potentially minimal as the CBZ molecule is highly non-polar, easily able 

to penetrate cell membranes and distributed well in many body tissues (Spina, 2002). A 

previous study failed to demonstrate any correlation between a common polymorphism 

in the ABCB 1 gene encoding P-gp and the maximum dose of CBZ (Tate et al., 2005). 

For this reason, the present study focused solely on genetic polymorphisms of DMEs as 

potential contributors to interindividual variability in CBZ pharmacokinetics. 

In this study, only two common polymorphisms in the EPHXI gene were identified as 

significant predictors of CBZ optimal dose when included in a predictive model 

incorporating patient age. It is possible that polymorphisms in other DMEs do not 

significantly influence the expression and activity of their respective proteins or that 

these proteins do not play a principal and/or irredeemable role in the metabolism of 

CBZ. 

The g. -392A>G transition is the most widely studied polymorphism in the CYP3A4 

gene. The CYP3A4 -392G allele has also been associated with a reduced capacity to 

metabolise drugs such as nifedipine and tacrolimus (Shimada et al., 1994; Hesselink et 

al., 2003). The g. 6986A>G substitution is the most commonly recognised 

polymorphism in the CYP3A5 gene. Variation in CYP3A5 metabolic capacity 

associated with the g. 6986A>G polymorphism has been observed for drugs such as 

midazolam, statins, alprazolam and tacrolimus (Hesselink et al., 2003; Goto et a!., 2004; 

Kivisto et al., 2004; Wong et al., 2004; Park et al., 2006). The present study, did not 

identify any significant difference in the mean optimal dose of CBZ between individual 

genotypes of CYP3A4 g. -392A>G and CYP3A5 g. 6986A>G. Even in the multivariate 

regression analysis, both polymorphisms failed to predict CBZ optimal dose. The reason 

why these polymorphisms do not appear to influence CBZ dosing is unclear, however, 

one possible explanation may be related to the strong linkage between these SNPs. In 
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Caucasian populations, the CYP3A4 -392G allele is usually co-localised with the 

CYP3A5 6986A allele and vice versa (Dally et al., 2003). Low activity of CYP3A4 

associated with the -392G allele is therefore balanced out by possession of a functional 

CYP3A5 enzyme in carriers of the 6986A allele (Ohmori et al., 1998; Huang et al., 

2004). Thus, there is some degree of redundancy in the genetic influences on CYP3A- 

mediated metabolism, at least in the Caucasian population. This redundancy is not 

observed in Japanese subjects, who do not express the CYP3A4 -392G allele (Paris et 

al., 1999; Seo et al., 2006b). In the resulting absence of compensatory linkage between 

CYP3A polymorphisms, the CYP3A5 c. 6986A>G variant is associated with 

interindividual variability in CBZ pharmacokinetics in this population (Seo et al., 

2006b). 

The CYPIA2 5734A allele has been reported to be highly inducible especially among 

smokers (Sachse et al., 1999), and is capable of affecting the risk of developing heart 

disease and cancer (Cornelis et al., 2005; Moonen et al., 2005; Pavanello et al., 2005). 

Although hydroxylation of CBZ involves the CYP1A2 enzyme, the present study did 

not find any association between the CYPIA2 g. 5734C>A polymorphism and the CBZ 

optimal dose. Up to 25% of the parent CBZ compound undergoes hydroxylation, but at 

least 4 DMEs other than CYPIA2 have been reported to catalyze the hydroxylation 

pathway (FIGURE 1.2; Pelkonen et al., 2001). Thus, the contribution of CYPIA2 to 

CBZ hydroxylation is potentially very minor, reducing the likelihood of detecting any 

association between CYP I A2 variants and CBZ dose. 

The importance of mEH in the metabolism of CBZ can be predicted from the CBZ 

metabolic pathway (FIGURE 1.2; Pelkonen et al., 2001). mEH may be responsible for 

more than 30% of overall CBZ metabolism. The EPHXI c. 337T>C transition causes 

substitution of tyrosine with histidine at codon-113 and the EPHXI c. 416A>G 
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transition causes substitution of histidine to arginine at codon-139. In an in vitro study, 

these amino acid changes were shown to influence the stability of mEli (Bassett et at., 

1994b). As a potential consequence of this alteration in mEH stability, and its 

recognised ability to metabolise several carcinogens, both polymorphisms have been 

associated with an adjusted risk of developing cancers and other diseases (Smith & 

Harrison, 1997; Jourenkova-Mironova et at., 2000; Sonzogni et al., 2002; Budhi et at., 

2003). Studies employing benzo(a)pyrene-4,5-epoxide and cis-stilbene oxide as 

substrates have shown that EPHX1 337C and EPHX1 416G alleles are associated with 

lower and higher mEH activities, respectively (Hassett et al., 1994b; Hassett et al., 

1997). Interestingly, the opposite was observed in a study employing CBZ-E as a 

substrate (Nakajima et at., 2005). This would indicate that the influence of EPHX1 

variants on enzyme activity is substrate-specific. This is supported by an investigation 

which examined the hydrolytic activity of mEH on three substrates: cis-stilbene, CBZ- 

E, and naphthalene oxide, in a panel of microsome samples obtained from human livers 

(Kitteringham eta!., 1996). Thus, the functional significance of EPHX1 variants and the 

percentage of mEH involvement in CBZ metabolism would support the notion that 

polymorphisms of EPHX1 gene are potential predictors of CBZ optimal dose. The 

predictive model that was constructed in the current study further strengthens this 

postulation. A significant alteration in the capacity for CBZ-E metabolism has been 

demonstrated in patients with haplotypes of EPHX1 harbouring both 337C and 416G 

alleles (Nakajima et at., 2005). As CBZ-E is commonly associated with the occurrence 

of adverse effects arising from CBZ therapy (Ramsay & Wilder, 2002) and mEH is the 

major determinant of CBZ-E metabolism, these EPHX1 polymorphisms may also be 

useful in predicting the maximum tolerable dose which should not be exceeded when 

adjusting CBZ treatment regimens. 
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Approximately 15% of parent CBZ compound undergoes glucuronidation which is 

predominantly mediated by UGT2B7. The c. 802C>T substitution is a recognised 

polymorphism in the UGT2B7 gene, but its functional significance is controvesial. The 

802T allele has been associated with an altered capacity for the metabolism of morphine 

and 4-hydroxy-catecholestrogens (Sawyer et al., 2003; Thibaudeau et al., 2006), but 

other substrates such as oxazepam, propranolol and androgens are unaffected (Coffman 

et al., 1998). In the present study, the c. 802C>T polymorphism, did not significantly 

predict the optimal dose of CBZ, suggesting that this variant does not significantly 

influence the role of UGT2B7 in the glucuronidation of CBZ. 

CBZ acts predominantly on voltage-gated sodium channels to exert its antiepileptic 

effects. Changes in the structure of sodium channels may influence their sensitivity to 

CBZ. In the current study, there was no association between the SCN2A c. 56G>A 

polymorphism and the optimal dose of CBZ. This might suggest that the SCN2A 

c. 56G>A polymorphism does not significantly affect the function of the Na,, 1.2 protein 

or its sensitivity to blockade by CBZ. Of course, CBZ can also act on other voltage- 

gated sodium channels, potentially compensating for any functional or structural defect 

in the Na,, 1.2 protein. A previous study has reported that the maximum dose of CBZ is 

significantly associated with a polymorphism located within intron-5 of SCN1A gene 

(Tate et al. 2005). However, there was a clear difference in the definition of dose 

between the Tate et al. (2005) study and the current investigation. The measure of 

optimal dose considers both efficacy and tolerability to CBZ treatment, whereas 

maximum dose reflects tolerability alone. Nevertheless, this SCN1A polymorphism is a 

potential candidate for future pharmacogenetic investigations of CBZ optimal dose and 

may be able to explain additional interindividual variability in the CBZ dose 

requirement. 
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The predictive model of CBZ optimal dose proved statistically relevant only when a 

physiological factor (age) was combined with genetic predictors. When each candidate 

predictor was analysed in isolation, none showed significant ability to predict the 

optimal dose, indicating that individual dosing requirement are determined by multiple 

factors, many of which remain to be discovered. The present study showed that 

potentially important predictors for CBZ optimal dose include patient age and 

polymorphisms in the EPHX1 gene. Although the model revealed a significant 

correlation between predicted and observed optimal doses, the strength of the prediction 

was not sufficient for application in clinical practice. The small size of the CBZ cohort 

and the retrospective design of this study have influenced its findings and their 

applicability. This study has revealed an intriguing and potentially significant role of 

EPHX1 SNPs in individual CBZ dose requirements, however it should be repeated 

independently and prospectively. The predictive model that was established in this study 

may serve as a springboard for future studies of SNP-based prediction of optimal drug 

doses. 

4.1.6 Conclusion 

None of the input factors, gender, age, and polymorphisms in DME and SCN2A genes 

can be used as a single predictor for CBZ optimal dose. However, the EPIIXI 

c. 337T>C & c. 416A>G polymorphisms appear to be potential predictors for optimal 

dose in a predictive model incorporating age. More candidate predictors in a larger 

population are required to strengthen the model. The additional candidate predictors 

may include factors that influence CBZ pharmacodynamics such as polymorphisms in 

genes encoding other voltage-gated ion channels that represent the pharmacological 

targets of CBZ. 
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4.2 A Preliminary Genetic Analysis of Drug Metabolising 

Enzymes in Patients with Carbamazepine Adverse 

Effects 

4.2.1 Introduction 

Major adverse drug reactions associated with CBZ treatment can be divided into two 

categories; CNS toxicity and idiosyncratic reactions. Several mechanisms have been 

proposed to explain the occurrence of CBZ adverse effects. One hypothesis is that CNS 

toxicity is dependent on CBZ dose and concentration (Delcker et al., 1997). The 

severity of adverse effects has been reported to be directly associated with increasing 

plasma CBZ concentrations (Weaver et al., 1988; Semah et al., 1994). In addition, this 

has also been demonstrated by the relationship between intermittent CNS effects and the 

dosing-interval fluctuation in CBZ concentrations at steady-state (Tomson, 1984). In 

some patients, CNS related adverse effects are experienced at modest CBZ doses (less 

than 600 mg/day), suggesting that these individuals possess low activity DMEs, which 

result in higher plasma CBZ concentrations. Polymorphisms in genes that encode DMEs 

may be responsible for this phenomenon. Another hypothesis is that CNS related 

adverse effects are associated with the rate of rise in plasma CBZ concentrations (Lesser 

et al., 1984; Wildin et al., 1993; Delcker et al., 1997). An adaptation effect of the brain 

in response to changes in CBZ concentration is believed to be responsible for the 

occurrence of these adverse effects (Lesser et al., 1984). 

Idiosyncratic reactions are independent of CBZ dose and/or concentration. Rashes are 

the most common cutaneous manifestation of CBZ idiosyncratic reactions, and a 

cardinal sign of CBZ hypersensitivity. Idiosyncratic reactions to CBZ can arise as a 
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result of cross-sensitivity to other AEDs (Shear & Spielberg, 1988; Moss et al., 1999). 

Although a relatively small proportion of patients experience idiosyncratic reactions, 

unattended cases can result in severe morbidity and even fatality (Shear & Spielberg, 

1988; Moss et al., 1999; Rzany et al., 1999; Maldonado et al., 2002; Pirmohamed & 

Park, 2003). Idiosyncratic reactions are believed to be associated with an increased 

activation and/or decreased deactivation of reactive intermediate metabolites 

(Pirmohamed & Park, 2003). In an animal model, the production of reactive metabolites 

of CBZ such as arene oxides and quinones is mediated by CYP450 isoenzymes such as 

CYP3As and CYPIA2 (Madden et al., 1996; Pearce et al., 2002). In contrast, the 

deactivation process is largely mediated by mEH and UGTs (Green et al., 1995; Maggs 

et al., 2000). 

Evidence suggests that polymorphisms in DME genes are able to alter enzyme activity 

(as described in Chapter 3). Polymorphisms in genes that encode activation and 

deactivation enzymes for CBZ may be causal in the precipitation of adverse drug 

effects. Together with other physiological and immunological factors, genetically 

compromised DMEs may contribute to the generation of both categories of CBZ-related 

adverse effects. Collectively, these polymorphisms may produce a unique adverse effect 

phenotype. As a result, common genetic polymorphisms of DMEs that are involved in 

CBZ metabolism were examined as potential genetic markers of CBZ adverse effects. 

4.2.2 Aims 

In an effort to identify a potentially unique phenotype of CBZ adverse effects, the 

incidence of common DME polymorphisms in patients experiencing intolerable CBZ 

adverse effects was investigated. 
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4.2.3 Methods 

4.2.3.1 Study subjects 

168 

From the 400-strong study population, 104 patients treated with CBZ monotherapy and 

possessing sufficient outcome data were identified and retrospectively screened for any 

incidence of adverse effects. A total of 14 patients had experienced at least one 

intolerable adverse effect that led to CBZ withdrawal (9 CNS-related, 5 idiosyncratic). 

The remaining 90 patients did not experience any adverse effect of sufficient severity to 

necessitate drug withdrawal, despite at least 6 months exposure to CBZ. These patients 

were employed for control purposes and randomely assigned to one of two distinct 

control groups using an online random number generator (http: //www. randomizer. 

org/form. htm). A total of five individuals were selected at random from control group 1 

and employed for comparison with those patients experiencing idiosyncratic reactions 

with CBZ. Control group 2 was first pared to include only those patients who had been 

exposed to CBZ at doses above 800 mg/day and then nine individuals were selected at 

random for comparison with those patients experiencing intolerable CNS-related 

adverse effects. Applying a minimum dose exposure criterion ensured that control group 

2 was relatively free from dose-related adverse events and sufficiently distinct from 

those patients who discontinued CBZ due to CNS-related adverse effects and who had 

done so at a median maximum dose of just 400 mg/day. 

4.2.3.2 Adverse reaction documentation 

Major adverse effects were divided into two categories, CNS-relatcd effects and 

idiosyncratic reactions. Information regarding CBZ adverse effects was obtained 

retrospectively from patient medical records. None of the patients was concomitantly 

treated with other medications (AEDs or non-AEDs) at the time of CBZ adverse effect. 
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4.2.3.3 Genotype analysis and phenotype assessment 

169 

The genotypes of recognised polymorphisms in DMEs associated with CBZ metabolism 

were identified using the PCR-RFLP and direct sequencing assays described in section 

3.1.3. Genotype determination for the DME polymorphisms was completed on February 

2006. Phenotype assessment was started on March 2006 and completed on April 2006. 

4.2.3.4 Genotype-phenotype analysis 

Minor alleles were chosen as potential genetic markers for CBZ adverse effects. The 

minor alleles were represented by the CYP3A4 -392G, CYP3A5 6986A, CYPIA2 

5734C, EPHX1 337C, EPHX1 416G and UGT2B7 802C variants. CYP3A4, CYP3A5 

and CYP1A2 were regarded as potential activation enzymes in the precipitation of 

CBZ-related idiosyncratic reactions, whereas UGT2B7 and EPHXI were regarded as 

potential deactivation enzymes. The incidence of the minor alleles of the recognised 

polymorphisms in DME genes was compared between the adverse effects groups and 

their respective control groups by the method proposed by Green et al. (1995). 

4.2.3.5 Statistical analysis 

The distributions of gender and epilepsy syndromes were initially compared by X2 test. 

The pattern of genetic polymorphisms was evaluated by allelic term. The distribution of 

minor and major alleles between adverse effect and respective control groups was 

compared using an appropriate contingency table test (Fisher's Exact test or X2 test). P- 

values less than 0.05 represented a significant difference in the distribution of minor and 

major allele between the two groups. 
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4.2.4 Results 

4.2.4.1 Patient characteristics and adverse effect profile 

170 

There was no significant difference in the distribution of gender (p = 0.388) or epilepsy 

syndrome (p = 0.503) between adverse effect and control groups (TABLE 4.5). In the 

majority of cases, adverse effects were observed at lower median CBZ doses (400 

mg/day) than was employed in the population as a whole (800 mg/day; p=0.001; 

TABLE 4.5). 

TABLE 4.5. Demographic profile of patients who experienced intolerable 

carbamazepine adverse effects. 

Intolerable Adverse Events 

Yes, n=l4 No, n=90 p-value 

Gender Male 60% 48% 0.388 

Female 40% 52% 

Epilepsy Syndrome IGE 13% 28% 0.503 

LRE 87% 70% 

UNC 0% 2% 

CBZ maximum dose (mg/day) Median 400 800 0.001 

Min 400 300 

Max 1200 2000 

IGE, idiopathic generalised epilepsy; LRE, localisation related epilepsy; UNC, 

unclassified epilepsy. Statistical significance was determined by X2 test for gender 

and epilepsy syndrome, and Student's t-test for CBZ maximum dose. Thep-value 

represents the comparison between patients who experienced intolerable CBZ and 

the population from which they are drawn. 
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Drowsiness and dizziness (6 out of 14 cases) and rash (5 out of 14 cases) were the most 

common intolerable adverse effects leading to CBZ withdrawal. Some patients 

experienced more than one adverse event simultaneously. In all patients, the adverse 

effects resolved with discontinuation of CBZ. 

4.2.4.2 The pattern of polymorphisms in drug metabolising genes in patients 

with carbamazepine adverse effects 

The incidence of common polymorphisms in DME genes are presented in TABLE 4.6 

and TABLE 4.7 for the CNS-related adverse effects and idiosyncratic reaction groups, 

respectively. For CNS related adverse effects, there was a marginally lower incidence of 

minor alleles in the adverse effect group compared to the control group (total = 20 vs 25 

alleles, p=0.402). For idiosyncratic reactions, the presence of minor alleles in DME 

genes was similar between adverse effect and control groups (total = 10 vs 11 alleles, p 

= 0.882). The presence of minor alleles in activation DMEs was comparable between 

the idiosyncratic reaction group and controls (3 vs 2 alleles, p=0.999) and there was 

similarly no difference in the distribution of minor alleles in the deactivation DME 

genes between the idiosyncratic reaction group and respective control group (7 vs 9 

alleles, p=0.559). Overall, there was no single polymorphism that was evidently 

related to the occurrence of CBZ adverse effects. 

4.2.5 Discussion 

The risk of developing adverse drug effects has been associated with several 

polymorphisms in DME genes, such as CYP2C9 and CYP2D6 (Royer, 1997). The 

expression and activity of DMEs may be decreased or increased by the effects of 

genetic polymorphisms. A decrease in DME activity may result in higher plasma drug 

concentration at routine dose, increasing the risk of developing dose or concentration 
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dependent adverse effects. This low activity phenotype may also be associated with 

accumulation of reactive metabolites that could in turn be responsible for idiosyncratic 

reactions. In contrast, the high activity phenotype may also be partly responsible for the 

development of idiosyncratic reactions through increased production of reactive 

metabolites (Shear & Spielberg, 1988; Green et al., 1995; Royer, 1997; Pirmohamed & 

Park, 2003). Accordingly, polymorphisms in genes encoding DMEs that mediate CBZ 

metabolism were hypothesised to be causal factors in the development of CBZ adverse 

effects. However, there was no clear association between the incidence of common 

polymorphisms in DME genes and CBZ adverse effects that might be considered as the 

sole determinant of treatment withdrawal. Common polymorphisms in DME genes such 

as CYP3A4, CYP3A5, CYP1A2, EPHX1 and UGT2B7 are unlikely to be a 

predominant factor in the development of CBZ adverse reactions. It is more likely that 

other factors acting concurrently with DMEs may be responsible in predisposing an 

individual to CBZ adverse effects. The overall balance between physiological factors, 

bioactivation, detoxification and immune responsiveness probably determines whether 

an adverse effect will occur. 

In many studies, the occurrence of CNS-related adverse effects is associated with the 

rate of rise in plasma CBZ concentration (Lesser et al., 1984; Wildin et al., 1993; Oiling 

et al., 1999). The CNS symptoms are manifested when the brain attempts to adapt to the 

increasing CBZ concentrations (Lesser et al., 1984; Wildin et a!., 1993). The rising 

phase of plasma CBZ concentration is controlled by three principle factors, absorption, 

distribution and elimination. The influence of absorption is most pronounced in the 

immediate aftermath of drug intake, early in the dosing interval and when the rate of 

rise in concentration is at its greatest. Therefore, factors that affect the rate of CBZ 

absorption may be more responsible for the generation of CNS-related adverse effects 

than those which influence distribution and elimination. 
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Factors that affect the rate of absorption include gastrointestinal function and drug 

formulation (Wildin et al., 1993; Oiling et al., 1999). Any given CBZ formulation is 

subject. to high interindividual variability in the rate of absorption (Cotter et al., 1977; 

Perucca et al., 1980a; Oiling et al., 1999), highlighting important differences in 

gastrointestinal function between individuals. Gastrointestinal disease may also alter 

intestinal motility and the potential for drug absorption. The pattern of dosing-interval 

fluctuation in plasma CBZ concentrations can also be affected by formulation (May & 

Rambeck, 1989; Stevens et al., 1998) and is closely associated with the intensity of 

adverse effects (Tomson, 1984). The dosing-interval fluctuation in concentrations 

observed with extended-release formulations is lower than that observed with standard 

release tablets and consequently fewer adverse effects are noted (Miller et al., 2004). 

Idiosyncratic reactions may be associated with the imbalance between activation and 

deactivation of reactive metabolites of CBZ, and also immune responsiveness (Shear & 

Spielberg, 1988; Green et al., 1995; Royer, 1997; Pirmohamed & Park, 2003). The 

reactive metabolites, arene oxides, can precipitate cellular damage if not sufficiently 

deactivated (Madden et al., 1996). Low molecular weight drugs and reactive 

metabolites bind covalently to cellular proteins and form haptens that trigger an 

immunological response (Svensson et al., 2000). The isoforms of CYP450 involved in 

CBZ metabolism are present in human skin (Wolkenstein et al., 1998) and stable 

binding between reactive metabolites of CBZ and skin CYP450s has been demonstrated 

(Wolkenstein et al., 1998). The hapten produced can precipitate a cutaneous reaction. 

As a result, the production of hapten has been postulated as one possible explanation for 

the occurrence of CBZ cutaneous reactions. The presence of anti"CYP450 antibodies in 

patients who suffer hypersentivity reactions further supports this hypothesis (Leeder et 

al., 1992). The findings of the current study suggest that common DME polymorphisms 
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do not significantly influence the pathway of activation/deactivation or the binding 

between DMEs and reactive metabolites. 

Previous studies have also failed to demonstrate any association between 

polymorphisms in the EPHX1 gene and CBZ hypersensitivity (Green et al., 1995; 

Pirmohamed & Park, 2003). Polymorphisms in genes that express DMEs may be less 

important than those that express immunological factors. The human major 

histocompatibility complex (MHC) which determines immune system recognition and 

which responds to CBZ-related antigen production is a possible causal immunological 

factor. Expression of genetically polymorphic MHCs has been identified (Leeder et al., 

1992). Furthermore, haplotypes of MHC and other immunological factors such as 

tumour necrosis factor have been associated with the severity of drug hypersensitivity 

reactions (Pirmohamed et al., 2001). 

The present study should be considered as preliminary because of the limited number of 

patients who experienced intolerable CBZ-related adverse effects. In addition, the study 

findings may also be influenced by the method of assessing adverse effects as described 

in section 2.2.3.2. Most of the adverse effects documented in this study arose from 

spontaneous reporting. Spontaneous reporting has advantages in highlighting effects 

which are clinically relevant, but is associated with extreme variability in the accuracy 

of detection and with significant under-reporting (Perucca, 1997; Gilliam, 2005). The 

retrospective nature of this study may have further compromised the accurate' 

identification and recording of relevant adverse effects. Accordingly, this study focused 

only on those adverse effects which were sufficiently severe to necessitate CBZ 

withdrawal. 
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4.2.6 Conclusion 

This preliminary study failed to reveal any association between CBZ adverse effects and 

common polymorphisms in DME genes. A large prospectively designed study is 

required to establish whether there is any functional relevance of DME gene 

polymorphisms in the development of CBZ adverse effects. Genetic variability in drug 

absorption and in proteins which contribute to the immune response should be targeted 

as potentially causal precipitants of CBZ adverse effects in future explorations. 



CHAPTER 5 

PHARMACOGENETICS OF LAMOTRIGINE 



Chapter 5: Pharmacogenetics of Lamotrigine 179 

5.1 Association between ABCB1 and SCN2A gene 

polymorphisms and the Response to Lamotrigine 

Therapy in Newly Diagnosed Epilepsy Patients 

5.1.1 Introduction 

Partially responsive and non-responsive epilepsy patients may try a number of AEDs 

over a long period of time before they are definitely identified as being refractory. This 

may result in an increased exposure to adverse drug effects, seizure progression and an 

elevation in the cost of treatment (Elger, 2003). Resistance to AED treatment remains as 

a major therapeutic challenge, despite the increasing numbers of AEDs in routine 

clinical use. Two major theories have been proposed to explain the phenomenon of 

therapeutic failure in epilepsy (Elger, 2003; Loscher, 2005), both arising from a basic 

knowledge of clinical pharmacology. Firstly, the pharmacokinetic hypothesis suggests 

that AEDs do not reach the epileptic focus in sufficient concentration (Elger, 2003; 

Loscher, 2005; Szoeke et al., 2006), and secondly, the pharmacodynamic hypothesis 

suggests that alteration in the subunit composition of ion channels and neurotransmitter 

receptors reduces their sensitivity to AEDs (Elger, 2003; Loscher, 2005). 

The pharmacokinetic profile of AEDs is predominantly determined by the activities of 

DMEs and DTPs. Brain tissue obtained from patients with medically intractable 

seizures has been shown to express a higher level of the efflux transporter protein, P-gp 

(Tishler et al., 1995; Marchi et al., 2004) and several AEDs are believed to be substrates 

for P-gp-mediated transport (Potschka et al., 2002). Overexpression of P-gp may result 

in an insufficient penetration of AEDs into brain tissue (Ramachandran & Shorvon, 

2003) and has been proposed to be responsible for the phenomenon of 

pharmacoresistance in epilepsy. Seizure activity itself can increase the expression of P. 
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gp (Rizzi et al., 2002; van Vliet et al., 2004), suggesting that any delay in achieving 

optimal seizure control might increase the likelihood of long-term intractability to AED 

treatment. 

A significant percentage of newly diagnosed epilepsy patients have been shown to 

respond poorly to LTG monotherapy (Kwan & Brodie, 2000) and one could argue that 

overexpression of P-gp may contribute to this poor response. It is widely recognised that 

the expression of P-gp can be influenced by polymorphisms in the ABCB 1 gene 

(Hoffineyer et al., 2000; Tanabe et a!., 2001; Nakamura et a!., 2002) and that these 

genetic variants may influence the ability of P-gp to transport substrates across 

biological membranes. Given that LTG is believed to be a substrate for P-gp (Potschka 

et a!., 2002) and that this protein is up-regulated in epileptic brain tissue, it is not 

unreasonable to suggest that common polymorphisms in the ABCB1 gene could impact 

on the efficacy and/or toxicity of LTG monotherapy in newly diagnosed epilepsy. 

The most commonly recognised SNPs in the human ABCB 1 gene are the c. 1236C>T, 

c. 2677G>T/A and c. 3435C>T substitutions. Several studies have explored the 

functional relevance of the ABCB1 c. 2677G>T/A and c. 3435C>T variants but 

inconsistent findings have been reported when employing drug pharmacokinetics as a 

phenotype (Hoffmeyer et al., 2000; Kim et a!., 2001; Nakamura et a!., 2002; Oselin et 

al., 2003). Other studies have evaluated the association between the ABCB 1 c. 3435C>T 

polymorphism and response to AED treatment and again have produced conflicting 

results (Siddiqui et al., 2003; Tan et al., 2004a; Sills et al., 2005; Kim et a!., 2006). The 

3435C allele was initial associated with poor response to AED treatment (Siddiqui et 

al., 2003), but at least three further studies have failed to corroborate this original 

finding (Tan et a!., 2004a; Sills et al., 2005; Kim et al., 2006). Rather than investigate 

single genotypes, some investigators have suggested that haplotypes of the three 
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common polymorphisms in ABCB 1 could be more useful in predicting drug 

responsiveness in epilepsy (Hung et al., 2005; Seo et al., 2006a). 

Discrepancies between the results of individual studies may be attributed to sample size, 

or genetic background of the respective cohorts, or they may simply have arisen by 

chance (Sills et al., 2005). Differences in AED regimens between invidual studies may 

have also significantly influenced the findings. Not all AEDs are believed to be 

transported by P-gp (Owen et al., 2001; Potschka et al., 2004). Therefore, examining 

the association between ABCB I polymorphisms and the response to monotherapy 

treatment with an AED that has been shown to be a substrate of P-gp may be more 

appropriate. 

In contrast to the transporter hypothesis discussed above, the pharmacodynamic theory 

of refractory epilepsy suggests that variations in the structure and subunit composition 

of ion channels may be associated with poor response to AED treatment (Ramachandran 

& Shorvon, 2003). This phenomenon may also contribute to poor seizure control with 

LTG therapy. LTG acts mainly on voltage-gated sodium channels to exert its 

antiepileptic effect (Zona & Avoli, 1997; Kohling, 2002), and any changes in sodium 

channel structure may affect the activity of LTG. As described in Chapter 3, the SCN2A 

c. 56G>A substitution, results in a nonsynonymous amino acid change from arginine to 

lysine at codon 19 of the Na, 1.2 a-subunit protein (Ito et al., 2004). This polymorphism 

has the potential to affect the conformation of the sodium channel and consequently its 

sensitivity to LTG. As such, this SCN2A variant may also be associated with 

interindividual variability in the responsiveness to LTG treatment. 
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5.1.2 Aims 
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In light of the pharmacokinetic and pharmacodynamic hypotheses of pharmacoresistant 

epilepsy, the prevalences of the ABCB 1 c. 1236C>T, ABCB I c. 2677G>T/A, ABCB I 

c. 3435C>T and SCN2A c. 56G>A polymorphisms were investigated in a series of newly 

diagnosed epilepsy patients in an attempt to predict the response to LTG monotherapy. 

5.1.3 Methods 

5.1.3.1 Study subjects 

From the overall 400-strong study population, 118 patients were identified as being 

treated with LTG monotherapy. A total of 79 patients from the 118 patients received 

LTG as their first ever AED, irrespective of seizure type. All of these patients were 

involved in a head to head monotherapy trial comparing LTG with VPA (Stephen et al., 

2007). Each patient was treated for at least 1 year with LTG. Patients who withdrew 

from LTG therapy for any reason before the end of the 12-month study period were 

excluded. None of the participants was concomitantly treated with any other medication 

(AEDs or non-AEDs) that might have influenced LTG metabolism. 

5.1.3.2 Genotype analysis and phenotype assessment 

Genotypes of the common SCN2A and ABCBI gene polymorphisms were identified 

using the PCR-RFLP assays described in Chapter 3. Genotype determination completed 

for the SCN2A polymorphism on February 2006 and for ABCB I polymorphisms on 

May 2006. Phenotype assessment was started on June 2006 and completed on July 

2006. 
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5.1.3.3 Haplotype and diplotype inference 
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The haplotypes of ABCB1 polymorphisms were inferred using THESIAS software 

(Testing Haplotype Effects In Association Studies; Tregouet & Garelle, 2007). The 

haplotypes were presented in the arrangement of c. 123 6C>T-c. 2677G>T/A-c. 343 5C>T. 

This study was not powered for this haplotype analysis due to limited sample size, 

therefore, the result was considered observational. ABCBI diplotypes were inferred 

using combination of genotypes of the c. 1236C>T, c. 2677G>T/A and c. 3435C>T 

polymorphisms, as described by Coulbault et al. (2006). 

5.1.3.4 Evaluation of clinical response 

Information regarding the outcome of LTG therapy was obtained retrospectively from 

the clinical study notes. Response to LTG was assessed by an experienced clinician and 

recorded in the study folders and electronic database. Complete medical history, seizure 

type and basic clinical factors such as height, weight, age and gender were documented 

at the first study visit. Progress was evaluated at study visits, scheduled every 4 to 6 

weeks, from the day of treatment initiation and for at least 12 months thereafter. 

However, patients are allowed to contact or visit the clinic at anytime in cases of 

worsening of seizure control and adverse drug reaction. Records of each study visit 

included details of seizure frequency, adverse effects, and complete LTG treatment 

regimen. Patients were categorised as seizure free if no seizure was experienced within 

the last 6 months of the study period. In contrast, patients with uncontrolled seizures or 

those who had experienced seizure break-through within the last 6 months were 

categorised as non-seizure free. 
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5.1.3.5 Statistical analysis 
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Clinical and demographic differences between the seizure free and non-seizure free 

groups were investigated using the X2 test. The distributions of age and maximum LTG 

dose were compared using Student's t-test. The possibility of genotype selection bias 

was explored by comparing the distribution of individual polymorphisms between the 

LTG cohort and the overall 400-strong patient population using the X2 test. 

The genotype distribution of each polymorphism was initially compared between 

seizure free and non-seizure free groups by contingency table tests. Logistic regression 

analysis was then used to evaluate differences in the prevalences of ABCB 1 

c. 1236C>T, c. 2677G>T/A, c. 3435C>T and SCN2A c. 56G>A polymorphisms. The 

analyses were conducted using allele, genotype, diplotype and haplotype frequencies. 

Specifically for haplotype analysis, the haplotype with the highest frequency was 

selected as the default reference. The odds ratio (OR) together with its 95% confidence 

interval (95% CI) was used as a measure of association between the gene 

polymorphisms and response to LTG treatment. All reportedp-values are two-tailed. 

5.1.4 Results 

5.1.4.1 Patient demographics and lamotrigine dosage regimen 

A total of 39 patients became seizure-free within the first 12 months of LTG treatment, 

while the remaining 40 patients continued to experience seizures despite attempts to 

optimise LTG therapy. The median age of patients was 35 years (range 13 to 80) and 

there were no significant differences in the distribution of gender (p = 0.216), age at 

evaluation (p = 0.165) or epilepsy syndrome (p = 0.332) between the seizure free and 

the non-seizure free groups (TABLE 5.1). At the end of one year, the non-seizure free 
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patients had reached a significantly higher daily LTG dose than the seizure free patients 

(p < 0.001; TABLE 5.1). 

TABLE 5.1. Patient demographics and lamotrigine doses. 

Response to LTG Therapy 

Seizure free Non-seizure free 

n= 39 is = 40 p-value 

Gender Male 56.4% 
_43,6% 

0.216 

Female 42.5% 57.5% 

Age at evaluation Mean 39.4 34.5 0.165 

Median 36.0 32.5 

Min 13 14 

Max 80 78 

Epilepsy syndrome IGE 20.5% 30.0% 0.332 

LRE 79.5% 70.0% 

Maximum dose (mg/day) Mean 180 294 < 0.001 

Median 150 300 

Min 100 150 

Max 400 600 

IGE = idiopathic generalised epilepsy; LRE = localisation related epilepsy. 

Statistical significance was determined by X2 test for gender, age and epilepsy 

syndrome, and Student's t-test for LTG maximum dose. The p-value represents 

the comparison between seizure free and non-seizure free groups. 
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5.1.4.2 Associations between polymorphisms in the ABCB1 and SCN2A genes 

and the response to lamotrigine monotherapy 

There was no significant difference in the genotype distributions of ABCB I c. 1236C>T, 

c. 2677G>T/A, c. 3435C>T and SCN2A c. 56G>A polymorphisms between the LTG 

cohort and the overall 400-strong study population (p > 0.05; TABLE 5.2). The 

distributions of ABCB1 c. 1236C>T, c. 2677G>T/A, c. 3435C>T and SCN2A c. 56G>A 

genotypes were similar between the seizure free and the non-seizure free patients (p > 

0.05; TABLE 5.3) and there was no significant association between the alleles or 

genotypes of common ABCB 1 and SCN2A polymorphisms and the response to LTG 

monotherapy (p > 0.05; TABLE 5.4). The distribution of ABCB I haplotypes is 

presented in TABLE 5.5. The major haplotypes of ABCB I in the LTG cohort were the 

T-T-T (38.8%) and C-G-C (36.9%; TABLE 5.5). There was no significant difference in 

the response to LTG treatment when common ABCBI haplotypes were compared with 

the T-T-T default reference haplotype (p > 0.05; TABLE 5.6) There was similarly no 

association between the major diplotypes in ABCB I and the response to LTG treatment 

(p > 0.05; TABLE 5.7). 

5.1.5 Discussion 

Overexpression of P-gp has been postulated to be one explanation for the poor response 

to AED treatment. Brain tissue from patients with medically intractable seizures has a 

high level of P-gp expression and several AEDs are believed to be transported by this 

protein (Tishler et al., 1995; Potschka et al., 2001; Marchi et al., 2004). LTG has been 

shown to be a substrate for P-gp (Potschka et al., 2001) and thus, it is possible that a P- 

gp-related mechanism might be responsible for any poor clinical response to LTG 

treatment. 
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TABLE 5.2. Genotype distributions of common SCN2A and ABCBI 

polymorphisms between the lamotrigine cohort and the overall 400-strong study 

population 

Genotype frequency 

Polymorphism Cohort Minor Ilelero Major p-value 

SCN2A c. 56G>A SSP 0.013 0.112 0.875 0.532 

LTG 0.025 0.140 0.835 

ABCB 1 c. 1236C>T SSP 0.245 0.470 0.285 0.657 

LTG 0.203 0.599 0.278 

ABCB 1 c. 2677G>T/A SSP 0.23 0.45 0.32 0.457 

LTG 0.10 0.52 0.30 

ABCB1 c. 3435C>T SSP 0.182 0.485 0.333 0.723 

LTG 0.177 0.532 0.291 

SSP = 400-strong study population (n = 400); LTG = LTG cohort (n = 79); Minor 

= homozygous of minor allele; Hetero = heterozygous of minor and major alleles; 

Major = homozygous of major allele. Statistical significance was determined by 

X2 test. Thep-value represents the comparison between LTG cohort and SSP. 
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TABLE 5.3. Comparison of the genotype distribution of common polymorphisms 

in SCN2A and ABCB 1 between seizure free and non-seizure free groups. 

Seizure free Non-seizure free p- 

Gene Polymorphism Genotype n=39 n=40 value 

SCN2A c. 56G>A GG 34 32 0.755 

GA 47 

AA 11 

ABCB 1 c. 1236C>T CC 12 10 0.605 

CT 21 20 

TT 6 10 

ABCB 1 c. 2677G>T GG 13 11 0.908 

GT 19 22 

TT 67 

TA 10 

ABCBI c. 3435C>T CC 770.985 

CT 21 21 

TT 11 12 

Statistical significance was determined by X2 test or Fisher's Exact test. The p- 

value represents the comparison of the genotype distribution between seizure free 

and non-seizure free groups. 
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TABLE 5.4. Logistic regression analysis of response to lamotrigine monotherapy on 

the basis of genotype and allele of common polymorphisms in SCN2A and AICB 1 

genes. 

Gene Polymorphism Genotype Allele Odds Ratio 95% Cl p-value 

SCN2A c. 56G>A GG vs not GG 1.70 0.50-5.74 0.393 

GAvsnotGA 0.54 0.14-2.01 0.357 

AA vs not AA 1.03 0.06-17.01 0.986 

GG vs AA 1.06 0.06 -17.71 0.966 

G vs A 0.66 0.22 -1.94 0.448 

ABCB 1 c. 1236C>T CC vs not CC 1.33 0.50-3.58 0.568 

CT vs not CT 1.17 0.48-2.82 0.732 

TT vs not TT 0.55 0.18-1.68 0.292 

CCvsTT 2.00 0.54-7.45 0.301 

C vs T 0.73 0.39-1.37 0.333 

ABCB 1 c. 2677G>T GG vs not GG 1.32 0.50-3.45 0.573 

GT vs not GT 0.78 0.32-1.88 0.577 

TT vs not TT 0.86 0.26-2.82 0.800 

GGvsTT 1.38 0.36-5.34 0.642 

G vs T 0.97 0.43-2.19 0.941 

ABCB 1 c. 3435C>T CC vs not CC 1.03 0.32-3.27 0.958 

CT vs not CT 1.06 0.44-2.56 0.905 

TT vs not TT 0.92 0.35-2.42 0.861 

CC vs TT 1.09 0.29-4.12 0.898 

C vs T 0.96 0.51-1.79 0.887 
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TABLE 5.5. The distribution of ABCB 1 haplotypes between seizure free (n = 39) 

and non-seizure free (n = 40) patients. 

Haplotype frequency 

ABCB 1 haplotype Seizure free Non-seizure free 

T-T-T 0.368 0.408 

C-G-C 0.393 0.346 

C-G-T 0.142 0.026 

T-G-C 0.054 0.078 

C-T-T 0.041 0.028 

T-T-C 0.001 0.014 

TABLE 5.6. Logistic regression analysis of response to lamotrigine monotherapy 

on the basis of ABCB 1 haplotype. Only haplotypes with a frequency of more than 

1% in both seizure free and non-seizure free patients were examined. 

ABCB 1 haplotype Odds ratio 
95% confidence 

interval p-value 

T-T-T 1.00 reference 

C-G-C 0.82 0.43 -1.57 0.559 

C-G-T 0.87 0.36-2.14 0.769 

T-G-C 1.42 0.46-4.44 0.545 

C-T-T 0.71 0.12-4.33 0.702 
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TABLE 5.7. Logistic regression analysis of response to lamotrigine monotherapy 

on the basis of major diplotype of the ABCB 1 gene. 

Diplotype of ABCB1* Odds Ratio 95% Cl p-value 

CC-GG-CC vs not CC-GG-CC 1.03 0.30-3.52 0.393 

CT-GT-CT vs not CT-GT-CT 1.30 0.52-3.27 0.580 

TT-TT-TT vs not TT-TT-TT 0.83 0.23-2.99 0.780 

CC-GG-CC vs TT-TT-TT 1.20 0.23-6.19 0.827 

*Diplotype arrangement: ABCB 1 c. 1236C>T-c. 2677G>T/A-c. 3435C>T. 

Variability in the expression and activity of P-gp can be influenced by polymorphisms 

in the encoding gene (Hoffineyer et al., 2000). Of the three most widely studied 

polymorphisms in ABCB 1, only the c. 2677G>T/A transition is known to produce an 

amino acid change which might in turn be associated with a functionally relevant 

phenotype (Cascorbi, 2006). The common polymorphisms of the ABCB 1 gene are 

strongly linked to each other (Kim et al., 2001; Tanabe et al., 2001; Tang et al., 2002; 

Tang et al., 2004), most likely because they exist within a single block of linkage 

disequilibrium. Accordingly, the association between common ABCB 1 polymorphisms 

and the response to LTG treatment was investigated both individually and in 

combination analyses using allele, genotype, haplotype, and diplotype of the ABCB 1 

gene. 

This study took advantage of an existing monotherapy comparison between VPA and 

LTG in order to isolate a cohort of newly diagnosed epilepsy patients treated with a 

known substrate of P-gp as monotherapy. This allowed the elimination of a number of 
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confounding factors which may have contributed to the conflicting results of previous 

investigations (Siddiqui et al., 2003; Tan et al., 2004a; Sills et al., 2005; Basic et al., 

2006; Kim et al., 2006). Evaluating the response to AED treatment without considering 

the spectrum of individual drugs to which the patients were exposed may have 

undermined the conclusions of previous studies. 

There is currently no firm evident to suggest that all clinically used AEDs are substrates 

for P-gp. This is clearly emphasised in recent studies of both CBZ (Owen et al., 2001; 

Potschka et al., 2001) and levetiracetam (Potschka et al., 2004). It is therefore unlikely 

that any changes in the expression or activity of P-gp resulting from ABCB i gene 

polymorphisms would influence the penetration of these AEDs into brain tissue. Hence, 

their inclusion in efficacy studies would weaken or possibly mask any evidence of 

association between genetic variants and response to AED treatment, particularly where 

significant numbers of CBZ and levetiracetam exposed patients are involved. In 

addition, AED polytherapy is commonly used in the management of patients with 

partially responsive epilepsy and this fact could also have affected study findings. The 

concomitant use of multiple AEDs may result in unpredictable interactions at the level 

of both DMEs and DTPs. Furthermore, some AEDs have been shown to stimulate the 

expression of P-gp (Weiss et al., 2003). Thus, drug-drug and drug-Pgp interactions 

could independently influence the response to AED treatment. This underlines the 

importance of performing such studies in patients with newly diagnosed epilepsy treated 

with AED monotherapy. 

There were no significant differences in the distribution of clinical factors such as age, 

gender and epilepsy syndromes between seizure free and non-seizure free groups. This 

would indicate that any variability arising from clinical factors was equally 

proportioned. The significantly higher daily dose of LTG in the non-seizure free group 
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is symptomatic of ongoing titration and excludes any suggestion of undertreatment in 

these poor-reponders. Almost 50% of the patients in the LTG cohort failed to achieve 

seizure free status within the first 12 months of LTG monotherapy. This percentage is 

higher than the value previously reported in newly diagnosed epilepsy patients (Kwan & 

Brodie, 2000). Differences in the duration of follow-up may explain this discrepancy. 

No significant association was observed between ABCB 1 c. 1236C>T, c. 2677G>T/A 

and c. 3435C>T polymorphisms and the response to LTG treatment, irrespective of 

whether analyses were based on allele, genotype, haplotype or diplotype frequencies. 

These findings would support the observations reported previously by Tan et al. 

(2004a), Sills et a!. (2005) and Kim et a!. (2006). If P-gp expression and activity are 

genuinely influenced by common polymorphisms in the ABCB I gene, the current study 

findings would question the role of P-gp in mediating resistance to treatment with LTG. 

Either the distribution of LTG in human brain is not significantly affected by P-gp or 

the function of P-gp at the BBB is not influenced by common ABCB I polymorphisms. 

However, there has been a suggestion that pathological overexpression of P-gp in the 

epileptic focus may overcome any genetically determined variability (Sills et al., 2005). 

In addition, it is reasonable to speculate that LTG may also be transported by other, as- 

yet-unidentified DTPs (Cascorbi, 2006). Other DTPs could potentially compensate for 

any deficiency in the function of P-gp related to genetic variability. As such, changes in 

P-gp activity secondary to polymorphic expression of the ABCB 1 gene might not be 

demonstrable in a clinical study of drug efficacy. One must also appreciate that the 

response to LTG treatment can be influenced by a multitude of additional 

pharmacokinetic and pharmacodynamic factors, such as the conformation of voltage- 

gated sodium channels and the activity of glucuronidation enzymes. 
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For AEDs such as LTG, which act predominantly on voltage-gated sodium channels, 

changes in the structure or function of the sodium channel may significantly influence 

the response to treatment. In this study, the SCN2A c. 56G>A polymorphism did not 

appear to be associated with the response to LTG treatment. This might suggest that the 

SCN2A c. 56G>A polymorphism does not significantly affect the expression or function 

of the Na,, 1.2 protein in the neuronal tissue or its sensitivity to blockade by LTG. 

However, it is also recognised that LTG can act on other voltage-gated sodium 

channels, potentially compensating for any functional or structural defect in the Na�l. 2 

protein. 

This investigation failed to demonstrate any association between the ABCBI 

c. 1236C>T, c. 2677G>T/A, c. 3435C>T and SCN2A c. 56G>A polymorphisms and the 

response to initial LTG monotherapy. Some common issues to pharmacogenetic studies 

that may influence their findings should be considered, especially the consensus of 

phenotype criteria. At the very least, it is important to recognise that results are strongly 

influenced by the duration of follow-up which was, in this case, 12 months of LTG 

therapy. The duration of follow-up can influence the number of patients who are 

categorised as seizure free and non-seizure free. Hence, the conclusions of any such 

study should be considered alongside limitations of study design. 

5.1.6 Conclusion 

There was no evidence of any association between the prevalences of ABCB 1 

c. 1236C>T, c. 2677G>T/A, c. 3435C>T and SCN2A c. 56G>A polymorphisms and the 

response to LTG monotherapy within the first 12 months of treatment. This study 

included only a small number of patients which could have had a significant bearing on 

the results. The influence of ABCB 1 and SCN2A polymorphisms should be investigated 
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prospectively in a considerably larger cohort of patients with newly diagnosed epilepsy 

and treated with AED monotherapy in order that a more definitive conclusion can be 

reached. In the meantime, any functional significance of ABCB 1 and SCN2A gene 

variants on pharmacoresistant epilepsy remains unclear. 

5.2 Genetic Predictors of Lamotrigine Optimal Dose 

5.2.1 Introduction 

AED dosing is typically based on a trial and error approach allied to the individual 

clinical experience. In the absence of a rational approach to identify optimal dose, the 

duration of uncontrolled seizures may be prolonged and some patients may be exposed 

to unnecessarily high AED doses. A wide interindividual variability in dosage 

requirement has been documented for most AEDs. For example, the effective doses 

leading to seizure freedom with CBZ range between 200 and 1600 mg/day, and for 

VPA between 200 and 2500 mg/day (Kwan & Brodie, 2001). Differences in the 

required dose between individuals are believed to be linked to genetic variability in 

genes associated with AED pharmacodynamics and pharmacokinetics. Genetic variants 

that influence dosing regimen have been reported for both PIT and CBZ, with 

maximum doses of these drugs associated with polymorphisms in the SCN1A and 

CYP2C9 genes (van der Weide et al., 2001; Tate et al., 2005). 

A study by Kwan and Brodie (2001) reported that a modest dose of LTG (100 to 200 

mg/day) can provide complete seizure control in a large number of patients. However, 

some patients may require doses up to 600 mg/day to achieve a similar degree of 

efficacy. Interindividual variability in LTG dosage requirement is likely to be 

influenced by both pharmacodynamic and pharmacokinetic factors. Although the 



Chapter 5: Pharmacogenetics of Lamotrigine 196 

previous study (section 5.1) failed to demonstrate any association between the response 

to LTG therapy and common SCN2A and ABCB 1 polymorphisms, it did not directly 

investigate any association between these genetic variants and LTG dose. It is important 

to note that the response to LTG treatment is not correlated with plasma concentration 

or dose (Kilpatrick et al., 1996; Mahmood et al., 1998). 

Thus, it is reasonable to speculate that the SNPs which were studied in the previous 

section may be able to influence the LTG dose requirement. In this section, these 

polymorphisms were investigated in relation to the dose of LTG, rather than its efficacy. 

5.2.2 Aims 

This study was designed to evaluate the association between common polymorphisms in 

the SCN2A and ABCB 1 genes and the optimal dose of LTG. Basic clinical factors such 

as age and gender were also included as potential predictors of optimal dose. 

5.2.3 Methods 

5.2.3.1 Definitions 

Optimal dose was defined as the final dose given to a patient that successfully 

maintained optimal seizure control without intolerable side effects and which was 

maintained throughout the period of follow-up without the need for adjustment. Optimal 

seizure control was defined as seizure freedom for at least 1-year on LTG monotherapy. 

5.2.3.2 Study subjects 

From the overall 400-strong study population, a total of 118 patients were identified as 

being treated with LTG monotherapy. Through retrospective evaluation of individual 
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patient records, 94 of these patients were identified as having achieved seizure free 

status for a period of at least 1 year. These patients included those who achieved seizure 

free within and after the first 12 months of LTG initiation and those received LTG as a 

second line monotherapy AED. Complete information on LTG dosing regimen and 

other basic clinical data was available for all of these individuals. None was 

concomitantly treated with any other medication (AEDs and non-AEDs) that might 

have influenced LTG metabolism. 

5.2.3.3 Genotype analysis and phenotype assessment 

Genotypes of the common SCN2A and ABCB 1 gene polymorphisms were identified 

using the PCR-RFLP assays described in Chapter 3. Genotype determination completed 

for the SCN2A polymorphism on February 2006 and for ABCB 1 polymorphisms on 

May 2006. Phenotype assessment was started on June 2006 and completed on October 

2006. 

5.2.3.4 Statistical analyses 

Clinical and demographic differences between the LTG cohort and the 400-strong study 

population were investigated using XZ test. The distribution of age was compared using 

Student's t-test. Differences in the mean LTG optimal dose between categorical 

variables (gender and epilepsy syndromes) were compared by t-test or analysis of 

variance (ANOVA), as appropriate. The association between age and optimal dose of 

LTG was evaluated using Pearson's correlation test. Evidence of genotype selection 

bias was investigated by comparing the distribution of each polymorphism between the 

LTG cohort and the overall 400-strong study population. 
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To fit the genetic information into the regression database, a score was assigned to the 

genotype of each polymorphism according to the number of substituting alleles; no 

substituting alleles was given score 1, one substituting allele was given score 2 and two 

substituting alleles was given score 3. Interaction between polymorphisms was 

investigated by Pearson's correlation test and represented by the multiplicative value of 

polymorphism scores. 

Candidate predictors included age, gender and the genotypes of each polymorphism. 

The influence of each predictor on LTG optimal dose was analysed individually using 

univariate linear regression analysis and, in combination, using multivariate linear 

regression analysis. An additive model was used in the analysis with an assumption that 

the combined effects of genetic alleles at two or more gene loci are equal to the sum of 

their individual effects. SNP interactions were added to the multivariate model and 

acted as a non-linear component. Predictors were added or removed using a stepwise 

approach, depending on the degree of impact indicated by the respective p-value. Data 

transformation from linear to natural logarithmic form was employed to optimise 

regression modelling. Coefficients of regression of the predictors which significantly 

influenced the model were used to construct a predictive equation for LTG optimal 

dose. Pearson's correlation test was used to evaluate the relationship between the 

observed optimal doses and the optimal doses predicted by the equation. Pearson's 

correlation value (r) of more than 0.8 indicated a strong correlation between variables. 

A p-value of less than 0.05 indicated a significant predictor effect. Both Presiduab which 

represented the p-value of residual analysis, and r1, which represented the goodness-of- 

fit, indicated how well the model fitted the data. 
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5.2.4 Results 

5.2.4.1 Patient demographics and lamotrigine dosage regimen 
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Demographic information for patients in the LTG cohort is presented in TABLE 5.8. 

Distribution of gender (p = 0.887) and epilepsy syndromes (p = 0.429) were comparable 

with the 400-strong study population. The median age of patients in the LTG cohort was 

38.5 years (range 16.5 to 85). 

TABLE 5.8. Patient demographics and lamotrigine doses. 

LTG Cohort 

(n = 94) 

Gender 

400-strong study 

Population p-value 

(n = 400) 

Male 51.0% 50.3% 0.887 

Female 49.0% 49.7% 

Age (year) Median 38.5 40 0.460 

Min 16.5 14 

Max 85 85 

Epilepsy syndrome IGE 35.1% 29.5% 0.429 

LRE 60.6% 67.5% 

UNC 4.3% 3.0% 

Optimal dose (mg/day) Median 200 

Min 50 

Max 600 

Min = minimum, Max = maximum; IGE = idiopathic generalised epilepsy; LRE = 

localisation related epilepsy; UNC = unclassified epilepsy. Statistical significant 

was determined by Student's t-test or X2 test, where appropriate. The p-value 

represents the comparison between the LTG cohort and 400-strong study 

population. 
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All of the patients received LTG on a twice-daily basis with total daily dose ranging 

from 50 to 600 mg. Female patients received higher LTG doses in order to achieve 

optimal seizure control (male vs female, 201 vs 279 mg/day respectively, p=0.002; 

FIGURE 5.1). There was no significant association between LTG dose and age of the 

patients (r = -0.096, p=0.356; FIGURE 5.2) or epilepsy syndromes (p = 0.674; 

FIGURE 5.4). 
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FIGURE 5.1. Distribution of lamotrigine optimal dose between genders. 
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5.2.4.2 Genetic predictors of lamotrigine optimal dose 
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There were no significant differences in the distribution of common polymorphisms in 

the ABCB 1 and SCN2A genes between the LTG cohort and the overall 400-strong 

study population (TABLE 5.9). Three potential SNP interactions were identified 

between ABCB 1 c. 1236C>T and c. 2677G>T/A (r = 0.751, p<0.00 1), c. 1236C>T and 

c. 3435C>T (r = 0.549, p < 0.001), c. 2677G>T/A and c. 3435C>T (r = 0.618, p < 0.001). 

Univariate linear regression analysis demonstrated that single predictors for LTG 

optimal dose included gender (p = 0.002) and genotype of ABCB 1 c. 1236C>T (p = 

0.010). However, the strength of prediction was weak in both cases (r2 < 10%; TABLE 

5.10). In an effort to improve the strength of prediction, the candidate predictors were 

evaluated using a multivariate linear regression analysis (TABLE 5.11). The basic 

regression model (Model 1) represents the combination effects of all candidate 

predictors and showed a better overall model fit (? = 11.2%, p=0.023) than any 

individual univariate analysis. Stepwise multivariate regression analysis identified 

gender and the SNP interaction between ABCB1 c. 1236C>T and c. 3435C>T as the 

optimal combination of predictors (r2 = 14.1%, p < 0.001; Model 2). Transformation of 

optimal dose data from linear to natural logarithmic form further improved the overall 

model fit (r2 = 16.6%, p<0.001; Model 3). A predictive equation for LTG optimal dose 

was constructed from the regression constant and coefficients of Model 3 and is 

presented below: 

1nODcrG = 4.68 + 0.32*Gender + 0.05 *(AßCß 1 c. 1236C>T*c. 3435C>T) 

where; InODLTG = natural log of LTG optimal dose (mg/day); scores for gender, 1= 

male, 2= female; scores for ABCB 1 c. 1236C>T and c. 3435C>T genotypes, I= C/C, 2 

= C/T, 3= T/T. 
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A statistically significant correlation was observed between predicted and observed 

LTG optimal doses (p < 0.001), however, the strength of the association was modest (r 

= 0.400,95%CI 0.22 to 0.56; FIGURE 5.4). 

TABLE 5.9. Comparison of distributions of common SCN2A and ABCBI 

polymorphisms between the lamotrigine cohort and the 400-strong study 

population. 

Genotype frequency 

Polymorphism Cohort Minor Hetero Major p-value 

SCN2A c. 56G>A SSP 0.013 0.112 0.875 0.974 

LTG 0.010 0.106 0.884 

ABCB 1 c. 1236C>T SSP 0.245 0.470 0.285 0.300 

LTG 0.170 0.521 0.309 

ABCB1 c. 2677G>T/A SSP 0.230 0.450 0.320 0.147 

LTG 0.140 0.500 0.360 

ABCB 1 c. 3435C>T SSP 0.182 0.485 0.333 0.305 

LTG 0.181 0.564 0.255 

SSP = 400-strong study population; LTG = LTG cohort (94 patients); Minor = 

homozygous for minor allele; Hetero = heterozygous for minor and major alleles; 

Major = homozygous for major allele. Statistical significance was determined by 

X2 test. Thep-value represents comparison of LTG and SSP data. 



Chapter 5: Pharmacogenetics of Lamotrigine 205 

TABLE 5.10. Summary of univariate regression analysis of variables predicting 

the optimal dose of lamotrigine. 

Predictor Coef. r= (% p-value 

Gender 78.31 9.2 0.002 

Age -0.72 0.9 0.358 

SCN2A c. 56G>A -35.07 0.0 0.612 

ABCB 1 c. 1236C>T 47.72 5.9 0.010 

ABCB 1 c. 2677G>T/A 27.81 1.3 0.143 

ABCB1 c. 3435C>T 29.01 1.3 0.135 

The relative impact of each predictor is presented by the coefficient value (Coef. ). 

The goodness-of-fit value (r2) indicates how well the individual predictors fit the 

model. The p-value indicates the probability of the predictor influencing LTG 

optimal dose. 
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TABLE 5.11. Summary of hierarchical multivariate regression analysis of 

variables predicting the optimal dose of lamotrigine. 

Model 3 
Modell Model 2 

Predictor (natural log) 

Coef. p-value Coef. p-value Coefi p-value 

Constant 176.30 0.121 74.79 0.077 4.68 <0.001 

Gender 83.11 0.001 76.13 0.002 0.32 0.001 

Age -0.14 0.853 ---- 

SCN2A c. 56G>A -45.15 0.207 ---- 

ABCB 1 c. 1236C>T -18.12 0.791 ---- 

ABCB 1 c. 2677G>T/A 57.51 0.499 ---- 

ABCB1 c. 3435C>T -100.0 0.382 ---- 

ABCB 1 1236C>T*2677G>T/At 8.87 0.813 

ABCB 1 1236C>T*3435C>Tt -4.13 0.923 12.46 0.015 0.05 0.009 

ABCB 1 2677G>T/A*3435C>Tt 22.48 0.591 

r2 (/) 

Presidual 

11.2 14.1 16.6 

0.023 <0.001 <0.001 

The relative impact of each predictor is presented by the coefficient value (Coef. ). 

The p-value indicates the probability of the predictor affecting LTG optimal dose. 

The goodness-of-fit value (r) indicates how well the predictors fit the model. The 

significance of model fitting is represented by the p-value of residual analysis 

(presidul)" ̀-' mark represents predictors that were eliminated in the stepwise 

regression analysis. tSNP interaction between predictors. 



Chapter 5: Pharmacogenetics of Lamotrigine 

700 ý 

600 - 

500 -i 

400 -I 

300' 

200 -i 

100 -i 

""" 

" 

" 

r=0.400, p<0.001 

9*0 

0 

*00 

0 

0 

.0 .-0 

00- o-*- 40 0 

00 

0 

0- 
0 

ý 

150 200 250 300 350 

Predicted Optimal Dose (mg/day) 

FIGURE 5.4. Correlation between observed and predicted lamotrigine optimal 

dose based on the optimal multivariate regression model. Statistical significance 

was determined by Pearson's correlation test. A single data point (") may 

represent more than one value. Dotted line is the correlation between observed 

and predicted doses. 

207 



Chapter 5: Pharmacogenetics of Lamotrigine 

5.2.5 Discussion 
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One of the biggest challenges in the treatment of epilepsy is the identification of the best 

dose of any given AED for a particular patient. Conventionally, optimal doses are 

established through a trial and error method. During the period of dosing adjustment, 

quality of life may be impacted by either under-treatment or over-treatment. This 

concern applies to all epilepsy patients and all AEDs, including LTG. Although 

complete control of seizures can be achieved with doses of 100 to 200 mg/day of LTG 

in a large number of patients, higher doses of up to 600 mg/day may be required by 

some individuals (Kwan & Brodie, 2001). Continuous titration of LTG may be 

undertaken in an attempt to achieve complete seizure control and this may expose non- 

responsive patients to unnecessarily high doses of LTG, increasing the risk of adverse 

effects and the cost of treatment. Prediction of LTG optimal dose may be useful in 

guiding dosing strategies and could improve the usage of LTG by employing slow 

titration and low target doses in potentially sensitive individuals and a quicker titration 

and higher target doses in less sensitive patients. 

In addition to conventional therapeutic drug monitoring, a genetic-based approach to the 

optimisation of AED dose may be useful (Tate et a!., 2005; Ferraro & Buono, 2005). 

Potential genetic predictors of optimum dose are genes which encode proteins involved 

in the pharmacokinetics and pharmacodynamics of LTG such as DMEs, DTPs and 

voltage-gated ion channels. LTG has been suggested to be a substrate for P-gp 

(Potschka et al., 2002) and its principle mechanism of action is believed to be blockade 

of sodium channels (Zona & Avoli, 1997; Kohling, 2002). Therefore, polymorphisms in 

the ABCBI gene that encodes P-gp and the SCN2A gene which encodes the Naj. 2 

sodium channel were evaluated as potential predictors of LTG optimal dose. Basic 
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clinical factors such as age and gender were included in the evaluation as additional 

candidate predictors. 

This study failed to demonstrate any association between age and LTG optimal dose. 

This is not surprising given that a previous report suggested that LTG pharmacokinetics 

were not significantly influenced by age in an adult population (Hussein & Posner, 

1997). The SCN2A c. 56G>A polymorphism was similarly unrelated to LTG optimal 

dose when assessed either individually or in combination with other candidate 

predictors. If the function of the Na,, 1.2 sodium channel is genuinely influenced by the 

SCN2A c. 56G>A polymorphism, then it is possible any effect of this polymorphism on 

LTG dosage requirement was masked by the interaction of LTG with other sodium 

channel subtypes (Zona & Avoli, 1997; Kohling, 2002). A polymorphism in the SCNIA 

gene has been associated with maximum doses of both PHT and CBZ (Tate et al., 2005) 

and plasma concentrations of PHT at maintenance dose (Tate et al., 2006). It is 

reasonable to suggest that this particular polymorphism in the SCN1A gene should be 

included in any future search for candidate predictors of LTG optimal dose. 

Gender and the interaction between ABCB 1 c. 1236C>T and c. 3435C>T polymorphisms 

were shown to possess the greatest predictive capacity for the optimal dose of LTG 

when employed together in a multivariate regression model. flow gender might 

influence the LTG optimal dose is unclear, as the pharmacokinetics of LTG are not 

believed to differ between males and females (Hussein & Posner, 1997). It is possible 

that this observation is based on differences in body weight, fat composition, or in sex 

hormone activity between the genders (Gallagher et al., 1996; Tanaka, 1999). Females 

have a higher fat composition than males (Lemieux et al., 1993; Gallagher et al., 1996), 

and this may increase the Vd of lipophilic drugs (Mangoni & Jackson, 2003; Thomson, 

2004). LTG is highly lipophilic in nature (Mashru et a!., 2005) and, therefore, a higher 
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dose may be required by females to achieve a similar target concentration. 

Unfortunately, the current study did not include measures of body weight, or further 

investigate the effect of fat composition, which may have been enlightening with regard 

to the relationship between dose and gender. 

The association between the ABCB 1 c. 1236C>T polymorphism and LTG dose was 

significant, with or without the- presence of gender information. Although the 

c. 1236C>T polymorphism does not result in an amino acid substitution in the encoded 

protein, this polymorphism may be linked to an as yet unidentified causal variant which 

could in theory influence the activity of P-gp or indeed any other LTG-related 

pharmacokinetic and pharmacodynamic factor. Previous studies exploring the 

functional significance of the ABCB 1 gene polymorphisms on drug pharmacokinetics 

have been largely inconclusive (Tanabe et al., 2001; Goto et al., 2002; Nakamura et al., 

2002), with differences in substrate and study design believed to be the major 

contributing factor to the conflicting findings. The c. 3435C>T substitution is the most 

studied polymorphism in the ABCB I gene. There is no general consensus with regard to 

the functional significance of ABCBI variants associated with the c. 3435C>T 

polymorphism. The 3435T allele has been associated with both higher and lower 

expression of P-gp depending on substrate studied (Hoffmeyer et al., 2000; Nakamura 

et al., 2002). Elevation in P-gp expression is believed to decrease absorption and 

increase elimination of many drugs. These effects may explain the association between 

the 3435T allele and reduced concentrations of fexofenadine (Kim et al., 2001) and also 

the poor response to chemotherapy (Sohn et al., 2006). As the 3435C>T and 1236C>T 

polymorphisms are strongly under linkage disequilibrium (Kim et al., 2001; Tang et al., 

2002; Tang et al., 2004), a similar mechanism may also explain the association between 

LTG dose and the 1236T allele. This would, in turn, explain why the association 
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between the c. 1236C>T polymorphism and optimal dose of LTG was much stronger 

when the c. 3435C>T polymorphism was included in the multivariate analysis. 

The small number of participants and the retrospective nature of this study may limit the 

potential significance of the findings. A larger prospective study in newly diagnosed 

epilepsy must be undertaken before the clinical implications of these results can be 

realistically assessed. With respect to LTG therapy, this study provides some 

information which may guide future dosing decisions. The combination of ABCB 1 

c. 1236C>T-c. 3435C>T SNP interaction and gender explains approximately 17% of the 

interindividual variability in LTG optimal dose and may be an important clinical 

indicator of whether a patient will require low or high doses of LTG to achieve 

complete seizure control. This could potentially prevent the under-treatment of 

responsive individuals or reduce the risk of unnecessary exposure to high doses of LTG 

in patients who are non-responders. Despite this encouraging finding, more candidate 

predictors are required to strengthen the model. These should include polymorphisms of 

genes that encode other sodium channel subunits and, given that LTG metabolism, is 

primarily mediated by UGT1A4, any known variants in the UGT1A4 gene (Magdalou 

et al., 1992; Rambeck & Wolf, 1993; Vashishtha et al., 2001). 

5.2.6 Conclusion 

This study suggests that patient gender and the genotypes of ABCB 1 c. 1236C>T and 

c. 3435C>T polymorphisms are useful in predicting the LTG optimal dose. In contrast, 

there was no significant association between a common polymorphism in the SCN2A 

gene and doses of LTG. The use of genetic markers in predicting LTG optimal dose 

may be advantageous in any future dose selection strategies. This study has also added 
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further support to the proposed involvement of the ABCB 1 gene and P-gp in epilepsy 

management. 

5.3 The Effects of ABCB1 Gene Polymorphisms on the 

Pharmacokinetics of Lamotrigine Monotherapy 

5.3.1 Introduction 

The single and multiple dose pharmacokinetics of LTG, when used as both 

monotherapy and polypharmacy have been studied in healthy volunteers and patients 

(Jawad et al., 1987; Ramsay et al., 1991; Hussein & Posner, 1997). In general, drug 

pharmacokinetics are affected by both extrinsic factors, such as concomitant 

medications, mealtime and composition, chronopharmacology, and lifestyle, and 

intrinsic factors, such as gender, age, body size, renal and hepatic function, phenotype 

and disease conditions. The influence of some of these factors on the interindividual 

variability in LTG pharmacokinetics has been explored previously, for example, 

comedication with other AEDs and renal impairment (Jawad et al., 1987; Ramsay et al., 

1991; Wooton et al., 1997). 

Common and clinically significant pharmacokinetic parameters include clearance, Vd 

and Ka. In healthy volunteers, the total apparent clearance and renal clearance of LTG 

have been estimated at 0.5 and 0.043 ml/min/kg, respectively (Cohen et al., 1987; 

Wooton et al., 1997). Renal impairment does not influence the clearance of LTG 

(Wooton et al., 1997). LTG has clinically important pharmacokinetic interactions with 

other AEDs. Concomitant administration of LTG with enzyme-inducing AEDs (PUT, 

CBZ, primidone or PB) increases the clearance of LTG through induction of UGT 

enzymes (Jawad et al., 1987; Ramsay et al., 1991), whereas co-medication with VPA 
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decreases the clearance of LTG through inhibition of glucuronidation (Jawad et a!., 

1987; Patsalos, 1999; Perucca, 2001; Bazil & Pedley, 2003). Consequently, the LTG 

concentration/dose ratio can be altered by interactions with other AEDs. LTG 

concentrations can also be affected by oral contraceptives (Sabers et a!., 2001), which 

are believed to induce LTG glucuronidation. The apparent Vd has been reported in the 

range of 1.14 to 1.36 1/kg (Cohen et a!., 1987; Ramsay et a!., 1991; Hussein & Posner, 

1997; Wooton et a!., 1997). No significant relationship has been identified between the 

pharmacokinetic parameters of LTG and either age or gender in adult population 

(Hussein & Posner, 1997). However, in special populations such as pregnancy, the 

clearance of LTG is higher in the second and third trimesters when compared with the 

preconception and postpartum periods (Tran eta!., 2002; Petrenaite et a!., 2005). 

To further understand interindividual variability in LTG pharmacokinetics, additional 

factors should be considered. These should perhaps include genetic variants of P-gp 

since LTG has been suggested to be a substrate for P-gp-mediated transport (Potschka et 

al., 2002). As P-gp is significantly expressed in many organs related to drug absorption 

and elimination (Kim, 2002a), alteration in the activity of P-gp may consequently 

influence the pharmacokinetics of LTG. The expression and function of P-gp has been 

associated with polymorphisms in the encoding gene, ABCB I (Hoffineyer et a!., 2000). 

The ABCB 1 gene has several common polymorphisms including the c. 1236C>T, 

c. 2677G>T/A and c. 3435C>T transitions. However, conflicting results have been 

reported regarding the association between these polymorphisms and their respective 

phenotypes (Hoffmeyer et al., 2000; Kim et a!., 2001; Gerloff et a!., 2002; Johne et al., 

2002; Yates et a!., 2003). 

In the current study, the effects of ABCB 1 c. 1236C>T and c. 3435C>T polymorphisms 

on the pharmacokinetics of LTG monotherapy were examined by utilizing plasma LTG 



Chapter 5: Pharmacogenetics of Lamotrigine 214 

concentration data obtained during a head-to-head monotherapy trial of LTG and VPA 

in newly diagnosed epilepsy patients (Stephen et al., 2007). LTG pharmacokinetic 

parameters were estimated using a population pharmacokinetic approach. A similar 

approach has been used to examine the pharmacokinetics of other AEDs (Ingwersen et 

al., 2000; Jiao et al., 2003). 

5.3.2 Aims 

The aim of this study was to perform an exploratory, retrospective evaluation of: (1) the 

population pharmacokinetics of LTG monotherapy in newly diagnosed epilepsy 

patients; and (2) the influence of ABCB 1 c. 1236C>T and c. 3435C>T polymorphisms 

on LTG pharmacokinetic parameters such as the oral clearance (CL/F; where F= 

bioavailability), volume of distribution (Vd/F) and Ka. 

5.3.3 Methods 

5.3.3.1 Study subjects 

Subjects were identified from the 400-strong study population. A total of 118 patients 

were identified as treated with LTG monotherapy. All of these patients were drawn 

from on going head to head monotherapy trial comparing LTG with VPA in newly 

diagnosed epilepsy (Stephen et al., 2007). Study visits were scheduled every 4 to 6 

weeks, at which demographic data such as age, gender and body weight were 

documented, efficacy and tolerability was recorded, and venous blood samples were 

obtained. A total of 50 patients had sufficient demographic, pharmacokinetic and 

genotypic data to be included in the pharmacokinetic analysis. Routine biochemical data 

representing the level of organ function were not included because blood samples were 

not obtained for this purpose. 
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5.3.3.2 Blood sampling 
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The mean number of blood samples obtained from each patient"was 3 (range I to 4). 

Each of these samples was taken at a different study visit. Blood samples obtained in 

this study were collected at a steady-state concentrations between 0.9 to 13.5 hours post 

dose (mean 3.8; median 3.0). Plasma was separated from whole blood by centrifugation 

at 800 xg for 10 minutes and was stored below -10°C until required for analysis. In 

total, 156 blood samples were available for drug concentration measurement. 

5.3.3.3 ABCB1 c. 1236C>T and c. 3435C>T polymorphism analysis and 

phenotype assessment 

Genotypes of common ABCB 1 gene polymorphisms were identified using the PCR- 

RFLP assays described in Chapter 3. Genotype determination completed for ABCB 1 

polymorphisms on May 2006. Phenotype assessment was started on November 2006 

and completed on March 2007. 

5.3.3.4 Lamötrigine assay 

The LTG concentration was determined by a modified version of the method described 

by Kilpatrick et al. (1996). 

Standards: Blank plasma obtained from drug-free healthy volunteers was used as a 

diluent for the stock and standard solutions. LTG stock solution was prepared by 

dissolving 20 mg of LTG in 20 ml of methanol. The stock solution was then diluted to 

10 mg/I LTG with blank plasma. Further dilution of the 10 mg/I LTG solution with 

blank plasma was required to achieve the full range of calibration standard solutions (1, 

2.5,5,7.5 and 10 mg/1). The I mg/I calibration standard solution was also used as a 
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quality control standard. Internal standard solution (2 mg/1) was prepared by dissolving 

1 mg of BWA725C in 1 ml of methanol and diluting to 500 ml with ethyl acetate. The 

calibration and internal standard solutions were stored at -20°C for up to seven days. 

Sample preparation: A 10 µl aliquot of the internal standard solution and 50 µl of 2M 

sodium hydroxide were added to 100 µl of calibration standard solutions (1,2.5,5,7.5 

and 10 mg/I LTG), quality control solution (1 mg/1) and patient plasma samples alike. 

The calibration standards were used to construct a linear calibration plot that was then 

employed to estimate LTG concentrations in the patient samples. Three of quality 

control standards were included in each batch analysis to determine and monitor intra- 

and inter-assay reproducibility. 

LTG extraction: LTG was extracted from standards and patient samples into ethyl 

acetate under alkalinised conditions. A total of 1 ml of ethyl acetate was added to both 

standards and samples before vortex-mixing for 10 seconds. The organic layer was 

separated from the aqueous layer by centrifugation at 12 100 xg for 30 seconds. The 

organic layer was removed into a conical centrifuge tube, and the ethyl acetate 

evaporated using vacuum centrifuge (Heto Maxi Dry Plus). The residue was 

reconstituted with 300 µl of flow solvent. The flow solvent consisted of hexane, ethanol 

and 35% ammonia solution in a ratio of 79.75/20/0.25 by volume. Reconstituted 

standards and samples were transferred to autosampler microvials before 

chromatography. 

High-performance liquid chromatography: Chromatography was carried out at room 

temperature (20°C) on a Zorbax sil normal-phase column (250 x 4.6 mm). The 

chromatographic system consisted of a Shimadzu LC-IOAT pump, a Shimadzu SIL-9A 

autoinjector and a Shimadzu SPDF-6A ultraviolet spectrophotometer. The injection 
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volume was set at 100 µl. Flow rate was 1.75 ml/min throughout. The detector was set 

at wavelength 306 nm with aI second rise time. The lower limit of detection was 0.25 

mg/1 LTG. The intra-assay and inter-assay coefficients of variation were <4% and <6% 

at 1 mg/I LTG, respectively. 

Calculations: Chromatograms were recorded and integrated on a- Jones 

Chromatography JCL6000 chromatography data system (Crawford Scientific, 

Strathaven, UK). LTG concentrations were determined by comparison of peak height 

ratios of analyte to internal standard, quantified in relation to volume, and expressed in 

mg/l. 

5.3.3.5 Database construction 

Details of the LTG dosage regimen, the time of last dose and the time of blood sampling 

were recorded in a specific database that could be read by NONMEM® (Beal & Sheiner, 

1992). All patients received a twice-daily LTG regimen, which is believed to be 

associated with optimal compliance. Where the time of the previous evening dose was 

not available, a standardised dosing interval of 12 hours was assumed. The time at 

which the morning and evening doses were taken is required because daily LTG doses 

may not be divided equivalently. A scoring system was employed to incorporate 

categorical data into the database, such as, gender (1 = female; 0= male), and genotypes 

of the ABCB 1 c. 1236C>T and c. 3435C? T polymorphisms (0 = C/C; 1= C/T; 2= T/T). 

5.3.3.6 Population pharmacokinetic analysis 

The population pharmacokinetic analysis of LTG was performed by the NONMEM°D 

software package, version V, level 1.1 (GloboMax L. L. C., Hanover, USA). NONMEM 

subroutines ADVAN2 and TRANS2 were specified to fit a model with first-order 
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absorption and first-order elimination to the LTG concentration data. The first-order 

conditional estimation (FOCE) algorithm was used throughout the modelling procedure. 

FOCE uses conditional estimates of the random interindividual variability while 

estimating the population parameters. The choice of a structural pharmacokinetic model 

was based on prior knowledge of LTG disposition and preliminary data from the present 

study. 

The base model (without any covariates) was initially used to describe LTG plasma 

concentration-time data and to obtain initial estimates of CL/F, Vd/F and K,. Covariate 

modelling in NONMEM® was undertaken using the following general model structures: 

Base model: TVCL = OCL 

Linear model: TVCL = OCL* WT 

Linear model with intercept: TVCL = OCL*(1 + OWT *(WT-median WT)) 

O 
Nonlinear model: TVCL = OCL*(WT/median WT) "fww 

where: TVCL is the typical population estimate of CUF; 0 is the population parameter 

estimate; WT is the body weight. 

Typical values (TVCL, TWd and TVKa) represent the population estimates of CL/F, 

Vd/F and Ka, respectively. For each patient, the magnitude of interindividual variability 

in parameters, such as CL/F, was modelled as follows: 

CLL = TVCL*exp'b'c` 

where: CLj is the value of CL/F for the j`h patient; TVCL is the typical population 

estimate of CL/F; and rl;, cL was assumed to be a random Gaussian variable with zero 

mean and variance 0CL2 that distinguished the j`h patient's parameter from the population 
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estimate as predicted by the model. A similar model was used to estimate VIF. 

Individual estimates of CL/F and Vd/F were obtained from individual Tlj estimates which 

were obtained as part of the FOCE analysis. 

The magnitude of the residual variability in plasma concentrations was modelled using 

3 error models: 

Additive error model: Cobs, ij = Cprcd, ij + error, 

Proportional error model: Cobs, ij = Cprcd, ij (1 + error2) 

Combined error model: Cobs, ij = Cpred, ij (1 + error2) + error, 

where: Cobs, y is the ith observed LTG concentration in the j`h patient; CPrca, ;j is the 

predicted LTG concentration corresponding to the ih observed LTG concentration for 

the j`h patient; error, is the additive error; error2 is the proportional error and the 

magnitude of error was assumed to be a random Gaussian variable with mean of zero 

and variance a2. Additive, proportional and combined error models were tested in this 

study. 

The potential influence of clinical factors on the population parameter estimates was 

first examined subjectively using scatterplots of individual estimates of CL/F against the 

available clinical factors. Generalised Additive Modelling (GAM) was then used as an 

additional screening tool to objectively evaluate the effect of univariate and multivariate 

factors on the base model. The Akaike Information Criterion (AIC) value produced by 

the GAM analysis was compared between the model that included clinical factors and 

the base model. A lower AIC value indicates a better goodness-of-fit of the statistical 

model to the data. 
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Various structural and covariate models were analysed using NONMEMS. Covariate 

models included body weight and ABCB 1 c. 3435C>T and ABCBI c. 1236C>T 

polymorphisms. Hierarchical models were compared by a likelihood ratio test. A 

decrease in the value of objective function (OBJF) as a result of structural 

pharmacokinetic remodeling or the inclusion of a parameter indicates a better fit. A 

change in OBJF of more than 6.63 and 9.21 are required to reach statistical significance 

(p = 0.01) for the addition of 1-fixed or 2-fixed effects, respectively. In addition to the 

above statistical condition, the following two criteria were also required to be met: good 

fit in the diagnostic plots (predicted versus measured concentration and weighted 

residuals versus predicted concentration), and low relative standard errors of the 

parameter estimates. The coefficient of variation (cv) which represents a measure of 

dispersion of a probability distribution was calculated for each parameter estimated. 

5.3.4 Results 

5.3.4.1 Patient demographics 

The study population consisted of 50 newly diagnosed epilepsy patients of whom 52% 

were male. The mean age and weight of the participants was 39 years (range 13.5 to 

80.5 years) and 75.4 kg (range 48.3 to 129 kg), respectively. There was no association 

between weight and age (r = 0.139, p=0.334), or weight and genotypes of ABCB 1 

c. 1236C>T (p = 0.279) and c. 3435C>T (p = 0.340). Female patients had a slightly 

lower body weight than male patients (70.8 kg vs 79.0 kg; p=0.057). The duration of 

treatment from initiation of LTG to time of final blood sample, was between I and 131 

weeks (mean 62 weeks). The daily doses of LTG ranged between 50 mg and 550 mg 

(median 150 mg). 
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5.3.4.2 Genotype distribution of ABCBI c. 1236C>T and c. 3435C>T 

polymorphisms 

The genotype frequencies of the ABCB I c. 1236C>T polymorphism was 14% C/C, 52% 

C/T, and 34% T/T.. The genotype frequencies of the c. 3435C>T polymorphism was 

28% C/C, 46% C/T, and 26% T/T. The genotype distributions of ABCB 1 c. 1236C>T 

and c. 3435C>T polymorphisms were consistent with HWE (p = 0.853 and p=0.841, 

respectively). 

5.3.4.3 Lamotrigine population pharmacokinetics 

The OBJF values for selected pharmacokinetic models fitted using NONMEM® are 

presented in TABLE 5.12. The first pharmacokinetic model incorporating a combined 

error model had an OBJF value of 257.7 with an aborted covariance step. The OBJF 

value did not significantly change when the interindividual variability in K. was fixed to 

zero, however, the covariance step managed to achieve completion. This simpler model 

was chosen as the base model (Model 2) and provided the following initial estimates of 

population values (mean value with relative standard error expressed as a percentage): 

OCL = 2.46 Uh (7.5%) cvn, = 45.3% (22.4%) 

Ov = 51.51(41.0%) cv� = 132% (62%) 

OKa = 1.57 /h (73.0%) 

Plots of individual estimates of CL/F versus clinical factors are presented in FIGURE 

5.5. There was no significant correlation between the individual estimates of CIJF and 

the clinical factors, except for body weight (r = 0.490, p<0.001). Plots of individual 

estimates of CL/F versus genotypes of the ABCB 1 c. 1236C>T and c. 3435C>T 

polymorphisms are presented in FIGURE 5.6. There was no significant difference in 
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individual estimates of CL/F between genotypes of either ABCB 1 c. 1236C>T (p = 

0.690) or c. 3435C>T (p = 0.384). 

The GAM analysis produced similar results to those obtained with the scatterplots 

(FIGURE 5.7). None of the factors tested improved the AIC value of the base model 

(Model 2), except body weight. Addition of other factors into the model did not improve 

the AIC value in the presence of weight. These analyses indicated that weight was the 

only factor that was likely to improve the population model fit. 

A linear effect of weight on the population value of CL/F improved the pharmacokinetic 

model fit (Model 3) and reduced the interindividual coefficient of variation in clearance 

from 45% to 37%. There was no advantage in using a non-linear model to describe the 

influence of weight. Although no influence of weight could be detected on Vd/F, this 

was deemed to be physiologically appropriate and therefore included (Model 4; TABLE 

5.12). The residual error was adequately described using a proportional error model. 

Model 4 was therefore used to evaluate the effects of ABCB 1 gene polymorphisms on 

LTG pharmacokinetics. Addition of ABCBI e. 1236C>T and c. 3435C>T genotype 

scores into model 4, either individually or in combination, did not significantly improve 

the OBJF value (Models 5&6; TABLE 5.12). The model fitting was consistent with 

the results of GAM analysis and visual examination of the scatterplots. 
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The optimal pharmacokinetic model for LTG provided the following estimates of 

population values (mean value with relative standard error expressed as a percentage; 

TABLE 5.13): 

OcL = 0.0334 1/h/kg (6.4%) cvCý = 37.8% (22.4%) 

Ov = 0.5151/kg (37.0%) cv� = 136% (46.4%) 

OKa = 0.681 /h (37.0%) 

0 
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Both the estimates of Vd/F and K$ were poorly characterised with relative standard 

errors of 37% and the interindividual variability in Vd/F had an estimated cv of 136%, 

which again indicates wide interindividual variability. 

The measured versus population predicted and individual predicted LTG concentration 

plots of the base and optimal models are presented in FIGURE 5.8. The plots indicate a 

slightly better fit with the optimal model for measured, compared to population 

predicted, concentrations, with less scatter around the line of identity. There was no 

difference between the models when the individual predictions were used. This is 

expected since the structural model was identical. 

5.3.5 Discussion 

Given the wide variability in interindividual pharmacokinetics, these findings may 

improve current understanding of the clinical pharmacology of LTG. This investigation 

complements previous traditional-type studies that have been performed in standardised 

populations receiving monotherapy or polytherapy regimens (Cohen et al., 1987; 

Ramsay et al., 1991; Bartoli et al., 1997; Hussein & Posner, 1997; Armijo et al., 1999), 

but, in addition, has uniquely examined the effects of ABCB I gene polymorphisms on 

LTG pharmacokinetics. 
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TABLE 5.13. Lamotrigine pharmacokinetic parameter estimates and their relative 

standard errors (RSE) using various models. 

Model 

Parameter 23456 
Base model Optimal model 

OcL 2.46 0.033 0.0334 0.0324 0.0329 

RSE OCL 7.5% 6.3% 6.4% 8.5% 7.4% 

Ovd 51.5 42.1 0.515 0.529 0.508 

RSE OW 41.0% 38.0% 37.0% 37.0% 37.0% 

OKa 1.57 0.709 0.681 0.657 0.691 

RSE OKa 73.0% 35.0% 37.0% 40.0% 38.0% 

OAdd NG 0.0974 --- 

RSE OAdd - 428% --- 

OPro 0.276 0.262 0.265 0.267 0.264 

RSE OPro 8.5% 10.0% 7.7% 7.7% 7.7% 

OPo11 ---0.132 
RSE OPo11 --- 

136% - 

OPo12 ---0.0552 
0.0319 

RSE OPo12 --- 
237% 398% 

cva 45.3% 37.3% 37.8% 36.9% 37.8% 

RSE CVCL 22.4% 22.9% 22.4% 22.2% 21.9% 

cvvd 132% 141% 136% 138% 134% 

RSE cv. 62% 24.5% 46.4% 49.6% 47.7% 

0, population value; CL, oral clearance; Vd, volume of distribution; Ka, rate 

constant of absorption; cv, coefficient of variation; Poll, polymorphism of 

ABCB1 c. 3435C>T; Po12, polymorphism of ABCBI c. 1236C>T; Add, additive 

error; Pro, proportional error; NG, negligible. 
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Population pharmacokinetic analysis methods, such as NONMEM®, were originally 

designed for the analysis of the type of sparse data that is routinely collected in a 

clinical setting. However, these approaches have also been shown to be useful in 

analyzing rich data sets collected in an experimental setting. The advantages of using 

NONMEM® include the ability to estimate pharmacokinetic parameters for individuals, 

to correctly handle differing numbers of data points per patient, to investigate the 

influence of clinical factors on pharmacokinetic parameters, and to separate random 

effects into interindividual variability in pharmacokinetic parameters and residual error 

in concentration measurements. 

When compared with published data, only the population estimates of CUF were 

consistent with previous results. The estimate of Vd/F was half that of previous reports 

and K. was one third of the value that has been reported elsewhere (Cohen et al., 1987; 

Ramsay et al., 1991; Hussein & Posner, 1997; Wooton et al., 1997). Both of these latter 

parameters were poorly characterised (relative standard error 37%) and interindividual 

variability in Vd/F was high. Poor quality data obtained during the absorption phase up 

to the time of peak concentration might have contributed to the inadequate estimation. 

The time to peak concentration for individual LTG doses in a chronic treatment regimen 

has been reported to range between 0.5 and 4.0 hours (Cohen et al., 1987). In this study, 

the majority of samples (67.3%) were collected within 4 hours of the last dose and 

would thus have been influenced by variability in CUF, Vd/F and K. To estimate all 

parameters effectively with sparse data collection in the absorption and distribution 

phases is difficult. In addition to the high interindividual variability and narrow range of 

time to peak concentration, any small inaccuracy in recording the time of last dose and 

the time of blood sampling could, in theory, have influenced the estimates of Vd/F and 

Ka. 
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In this study, the optimal population estimate for CL/F was 0.033 1/h/kg or 2.5 1/h based 

on a mean population body weight of 75 kg. This is in agreement with previously 

published values (Cohen et al., 1987; Hussein & Posner, 1997; Wooton et a!., 1997). 

The magnitude of interpatient variability in CL/F was 38%, which indicates significant 

unexplained interindividual variation. 

Although the estimate of CL/F was consistent with a previous report (Hussein & Posner, 

1997), it failed to demonstrate any association with the duration of therapy. This is 

probably because most of the blood samples (73%) were taken after at least 8 weeks on 

therapy, which is beyond the expected time of completion of the autoinduction process 

with LTG. It is believed that the autoinduction process is complete within 2 weeks after 

LTG initiation (Hussein and Posner, 1997), and that the short duration of autoinduction 

with LTG is unlikely to be clinically significant (Rambeck & Wolf, 1993). 

The interindividual variability in CL/F was reduced slightly when body weight was 

included in the model. This finding is consistent with a previous study by Hussein & 

Posner, (1997) who found that a higher body weight was associated with a higher CUF. 

This may be explained by the proposed correlation between body weight and liver size. 

Some studies have demonstrated a significant correlation between body weight and liver 

size (Andersen et al., 2000) and for drugs that are principally metabolised in the liver, 

there is a clear association between systemic clearance and lean body mass (Morgan & 

Bray, 1994). Studies exploring the relationship between liver size and AED clearance 

are limited. A single study in children and adolescents receiving CBZ demonstrated that 

clearance was correlated with liver volume (Reith et al., 2000). The present study lends 

further weight to the proposed association between body weight and the clearance of 

AEDs which undergo hepatic metabolism. 
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The wide tissue distribution and disparate list of compounds that are transported by P- 

gp indicate its potentially important role in drug absorption, distribution, and 

elimination. Genetic polymorphisms that alter the drug transport capacity of P-gp 

therefore have the potential to affect the pharmacokinetics of many therapeutic agents. 

The most commonly studied ABCB 1 polymorphisms are c. 123 6C>T, c. 2677G>T/A and 

c. 3435C>T substitutions. Significant linkage disequilibrium between these 

polymorphisms has been reported in both Oriental and Caucasian populations (Kim et 

al., 2001; Tang et al., 2002). Although the functional significance of ABCB 1 variants 

remains controversial, genotypes and haplotypes of ABCB 1 polymorphisms have been 

associated with alterations in the pharmacokinetics of drugs such as digoxin (11offineyer 

et al., 2000), fexofenadine (Kim et al., 2001) and cyclosporin (Yates et al., 2003). 

The current study suggests that ABCB 1 c. 1236C>T and c. 3435C>T polymorphisms do 

not significantly influence the clearance of LTG. The most obvious explanations for this 

observation include the possibility that LTG may be not a substrate for P-gp, or that the 

polymorphisms investigated do not significantly influence the expression or activity of 

P-gp. However, it is reasonable to speculate that the level of expression of P-gp in the 

intestine and any genetic variability therein may not be sufficient to influence the 

pharmacokinetics of a drug with high oral bioavailability such as LTG (Patsalos, 1999). 

Equally, P-gp efflux transport capacity may be saturable, leading to substrate overload, 

and absorption of LTG by passive diffusion or active influx transport (Cascorbi, 2006). 

Either of these alternative mechanisms could potentially mask any deficiency in P-gp 

transport capacity resulting from genetic polymorphisms. A study with cyclosporin has 

shown that the effect of the ABCB1 3435C>T polymorphism on CL/F can be largely 

attributed to altered absorption rather than hepatic clearance (Yates et al., 2003). In 

addition, a study with digoxin has also highlighted the important effect of the ABCB I 

3435C>T polymorphism on the extent of absorption rather than the rate of renal 
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clearance (Johne et al., 2002). Accordingly, the current study may indirectly indicate 

that the effect of ABCB1 c. 1236C>T and c. 3435C>T polymorphisms on the absorption 

of LTG is negligible. 

There was a large variation in. LTG CL/F within each ABCB I genotypic group. This 

might indicate the presence of other confounding factors, including as yet undetected 

SNPs or dietary and environmental contributors. It is also possible that the overall rate 

of LTG clearance is predominantly influenced by physiological factors, rather than 

genetic polymorphisms. Other than the sample size issue, the variability in estimated 

pharmacokinetic parameters can be attributed collectively to model mis-specification, 

assay variability, intraindividual variability and non-compliance with medication. Some 

of this variability may also be related to the assumption of a 12-hour dosing interval in 

subjects with incomplete dosing records. 

5.3.6 Conclusion 

The population pharmacokinetic parameter estimate of CL/F during LTG monotherapy 

was in good agreement with the findings of previous studies. Steady-state plasma LTG 

concentrations can be affected by the influence of body weight on clearance. There was 

no clear evidence to support the functional involvement of ABCB i c. 1236C>T and 

c. 3435C>T polymorphisms in the CL/F of LTG. The current study findings need to be 

verified in a large, prospective, purposely-designed pharmacokinetic study. 
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The objective of this programme of work was to examine the influence of genetic 

variability in DME, DTP and voltage-gated sodium channel genes on the clinical 

pharmacology of CBZ and LTG. The individual projects which comprise this thesis are 

to a certain extent diverse, although not unrelated. While the general introduction 

endeavours to summarise present understanding of epilepsy, its clinical treatment, 

variation in human genetics, the pharmacogenetics of AEDs, the clinical pharmacology 

of CBZ and LTG, and the genes and SNPs of interest, the individual results chapters 

developed particular aspects of the pharmacogenetics of CBZ and LTG in more detail. 

Chapter 3 addressed the prevalence of common polymorphisms in the genes of interest 

and the validity of the methods used to identify these genetic variants. Next, in chapter 

4, an attempt to study the influence of common polymorphisms in DME and sodium 

channel genes on the optimal dose and adverse effect profile of CBZ (sections 4.1 and 

4.2). Finally, in chapter 5, a series of studies was conducted to investigate the influence 

of common polymorphisms in ABCB 1 and sodium channel genes on the treatment 

response, optimal dose and pharmacokinetic parameters of LTG (sections 5.1 - 5.3). 

Individual results are discussed in detail in the relevant sections, both in relation to their 

particular limitations and in their consistency with previously published work. This 

general discussion attempts to summarise individual aspects of this project and to 

highlight those of particular interest. 

Interindividual variability in the response to drug treatment is the fundamental basis of 

pharmacogenetic studies. Pharmacogenetics offers a systematic approach to the 

evaluation of genetic influences on the response to individual drug treatments. With this 
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in mind, this project has attempted to improve the current understanding of the clinical 

pharmacology of AEDs. Previous studies in this regard have tended to focus on the 

association between genetic variation and pharmacokinetic mechanisms influencing 

AED disposition. Less emphasis has been given to the potential influence of variation in 

genes encoding AED targets (Ferraro & Buono, 2005). Although this project has 

principally concentrated on pharmacokinetic factors, efforts were also made to examine 

pharmacodynamic influences. 

The ability of the body to eliminate AEDs and their metabolites affects the magnitude 

and duration of efficacy (Perucca, 1999). Responsiveness to AEDs can be influenced by 

drug metabolism in several ways. Under normal circumstances, when the parent drug is 

the principle active compound, DME variants that have relatively low activity may be 

associated with higher plasma drug concentrations than might otherwise be expected 

under standard dosing regimens. This may result in the occurrence of adverse effects. 

On the other hand, DME variants with relatively high enzymatic activity may be 

associated with lower plasma drug concentrations than might otherwise be expected 

under standard dosing regimens. This may result in a lack of efficacy. In the case of 

AEDs that are metabolically activated, such as oxcarbazepine (Perucca, 2001), 

relatively lower biotransformation capacity may result in treatment failure due to 

inadequate plasma concentrations of the active compound, whereas, relatively higher 

bioactivation may result in the elevation of plasma concentrations and the risk of 

adverse effects. For AEDs that are active as both parent and metabolite, for example 

CBZ, the influences of variable DME activity are more complex and dependent upon 

the specific nature of the metabolic pathway and the relative contribution of individual 

compounds to the efficacy and tolerability profiles. Thus, there are a variety of potential 

mechanisms by which polymorphisms in DME genes can influence AED 

responsiveness. 
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In addition to the above, the extent by which AEDs are absorbed and distributed to 

various regions of the brain influences their potency and adverse effect profile (Browne, 

1998; Kim, 2002b; Ramachandran & Shorvon, 2003). The absorption of AEDs and their 

distribution to organs and tissues is determined not only by the physicochemical 

properties of the drugs themselves, but also by endogenous molecules such as DTPs and 

plasma proteins (Kim, 2002b; Patsalos & Perucca, 2003). Several DTP systems have 

been described that are responsible for moving substrates both in and out of cells, which 

would suggest that DTPs can be involved in drug pharmacokinetics from multiple 

mechanistic standpoints (Kim, 2002a; Kim, 2002b). The most extensively studied DTP 

in the epilepsy field is P-gp, which has been proposed to transport several AEDs 

(Potschka et al., 2002). Like DMEs, the expression and activity of P-gp may also be 

affected by polymorphisms in the encoding gene (Hoffineyer et al., 2000). 

Most AEDs have multiple mechanisms of action (Kwan et al., 2001), and definitive 

evidence linking specific molecular targets to individual drugs is lacking. It is likely that 

the effects of any given AED are a composite of its entire spectrum of cellular actions. 

The most common AED target is the voltage-gated sodium channel (Kwan et al., 2001), 

an observation which may be consistent with the premise that epilepsy can be viewed as 

arising from group of diverse ion channelopathies. There is increasing evidence to 

support the notion that several forms of epilepsy are associated with common allelic 

variants in SCN genes (Ceulemans et al., 2004; Kamiya, 2004). Thus, it is possible that 

disease susceptibility variants may influence therapeutic activity of AEDs and 

potentially contribute to the phenomenon of pharmacoresistant epilepsy. This should be 

considered in the design and analysis of drug target pharmacogenetic studies. 

In section 3.1, there were significant differences in the prevalences of common 

polymorphisms in DME, DTP and sodium channel genes when these were compared 
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between the 400-strong study population and those observed in previously published 

non-Caucasian populations. The genotype distributions of these polymorphisms were 

consistent with those predicted by HWE. Deviation from IIWE is often associated with 

systematic error in the genotyping methodology (Xu et al., 2002; Ilosking et al., 2004; 

Salanti et al., 2005; Wittke-Thompson et al., 2005). Thus, HWE can be useful as an 

initial test to evaluate assay reliability. In section 3.1, the PCR-RFLP assay designed for 

the identification of EPHX1 c. 337T>C polymorphisms produced a genotype 

distribution that was inconsistent with HWE. Re-analysis was conducted for this 

polymorphism using direct sequencing. The genotype distribution identified by direct 

sequencing was consistent with HWE. If one assumes that this discrepancy was a 

reflection of the genotyping methodology and not a characteristic of the population 

itself, then it is reasonable to suggest that direct sequencing is a more reliable technique 

than PCR-RFLP for the identification of the EPHXI c. 337T>C polymorphism. Indeed, 

several studies employing a PCR-RFLP assay to identify this polymorphism have 

reported a similar problem (Takeyabu et al., 2000; Gsur et al., 2003; Godderis et al., 

2004). 

Given that two of the study subjects were not European, population stratification can be 

useful to eliminate the diversity in drug response between ethnics. Population 

stratification refers to differences in allele frequencies between cases and controls due to 

systematic differences in ancestry rather than association of genes and disease. It has 

been proposed that false positive associations due to stratification can be controlled by 

genotyping a few dozen unlinked genetic markers. This available method is also known 

as genomic control. Further studies should utilise this approach to address the 

population stratification issue. 
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Response to AED treatment can be defined in terms of efficacy (abolition of seizures or 

reduction in their frequency) or in terms of tolerability (prevalence and/or severity of 

adverse effects). However, it is a challenge to establish a definite association between 

genotype and treatment response phenotype because non-genetic confounders, such as 

drug-drug interactions, treatment compliance and patient lifestyle, are difficult to 

control. The AED response phenotype is highly complex and represents a classic 

example of the interaction between genetic and environmental factors. As a result, 

understanding genetic variation may not fully explain the outcome of pharmacological 

treatment. When faced with such difficulties in defining responsiveness, it may be more 

prudent to employ pharmacokinetic parameters as the principal phenotypic definition in 

AED pharmacogenetic studies. These are more quantifiable and more reliable than 

measures of efficacy and/or tolerability and a more easily extrapolated from patient to 

patient, investigator to investigator and from research centre to research centre. Even 

then, a multitude of events and protein interactions occur from the moment that an AED 

is ingested. The fundamental issues of absorption, distribution, metabolism and 

excretion all involve interaction with multiple endogenous and exogenous factors, 

binding of drug to target proteins, and interactions of those proteins with both other 

proteins and DNA (Spear, 2001; Clancy & Kass, 2003; Ramachandran & Shorvon, 

2003). Despite this enormous complexity, it is possible that identifying the relative 

contribution of genetic variation to the phenotype of AED response will permit 

preliminary progress in the field of pharmacogenetics. 

Using a comprehensive drug response phenotype definition and a well-defined study 

population can improve the quality of pharmacogenetic findings, and result in a better 

understanding of the association between genotypes and phenotypes. In the current 

project, for studies involving drug responsiveness and clinical outcome, inter- 

investigator variability in clinical practice and in the assessment of individual patients 
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was largely eliminated by the selection of subjects from research projects within a 

single centre and which employed a similar procedure for the initiation of treatment and 

clinical follow-up. This ensured that all patients were treated equally. The potentially 

confounding effects of drug-drug interactions on drug response phenotypes were 

similarly eliminated by employing only those patients who were treated with AED 

monotherapy. Drug-drug interactions can affect the dose and concentration of each 

individual compound in the therapy regimen (Patsalos & Perucca, 2003), with a 

consequent influence on treatment response. CBZ and LTG were evaluated individually 

as each drug has different pharmacokinetic and pharmacodynamic characteristics. 

Categorising patients according to the severity of their seizures may have helped to 

optimise the phenotype definition. However, given the limited number of patients and 

the retrospective nature of this project, no sub-analysis was performed in terms of 

seizure severity. 

To identify a pure association between genotype and drug response phenotype, one 

should also consider the clinical relevance of each phenotypic definition. Drug response 

phenotypic definitions that are clinically relevant have more practical application and 

thus, increase the value of pharmacogenetic findings. With this in mind, in Chapters 4 

and 5, OD was employed as a composite measure of both efficacy and tolerability of 

CBZ and LTG, respectively. The OD is equivalent to the maintenance dose and is more 

advantageous than maximal tolerated dose. Previously, association between genetic 

markers and maximal tolerated doses of PHT and CBZ has been reported by Tate et a!. 

(2005). The maximal tolerated dose phenotype has clinical implications with regard to 

safety but does not provide any measure of efficacy that might have added to the 

clinical applicability of the findings. Many patients, even in a tertiary referral setting, 

become seizure free on a modest dose and may never reach their personal limit of 

tolerability (Kwan & Brodie, 2001). In these individuals, estimating maximal tolerated 
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dose on the basis of genotype is of limited and non-existent value. In the current study, 

clinical response phenotypes focused on two relevant outcomes, namely seizure 

freedom and intolerable adverse effects. These outcome measures demonstrate the 

efficacy and safety of AEDs, respectively. The probability of achieving seizure freedom 

varies greatly depending on the effectiveness of treatment and also on seizure severity, 

pre-treatment seizure frequency and the duration of the assessment period (Pcrucca, 

1997; Kwan & Brodie, 2000). Intolerable adverse effects of AEDs arc the most 

common reason for early treatment withdrawal. In many patients, the health-related 

quality of life is affected more by adverse effects than by seizures themself (Perucca, 

1997). As such, evaluation of seizure freedom and adverse effects represents an 

important component in the assessment of overall clinical outcome. 

In section 4.1, the influence of genetic variability on CBZ dose requirement was 

evaluated. Like most AEDs, CBZ doses are predominantly determined by the level of 

response and the occurrence of adverse effects. Inadequate seizure control necessitates 

an increase in CBZ dose, whereas the emergence of adverse effects limits the amount of 

drug that can be prescribed. Dosage adjustment of CBZ is complicated due to the 

potential for drug-drug interactions and the phenomenon of autoinduction. As a result of 

autoinduction and the onset of adverse effects, the maintenance dose of CBZ will be 

higher than the initial dose, but often lower than maximum dose. Typical CBZ 

maintenance doses have been reported between 200 to 1600 mg/day (Kwan & Brodie, 

2001), similar to the range of doses observed in the current project. 

This project identified polymorphisms in the EPHX1 gene as potential predictors of the 

OD of CBZ. The influence of DME variants on the pharmacokinetics of CBZ is 

important because CBZ is predominantly metabolised through hepatic enzyme 

biotransformation (Pelkonen et al., 2001). There is limited genetic variability in the 



Chapter 6: Discussion & Conclusion 242 

CYP3A4 and CYP3A5 genes (Gracia-Martin et al., 2002) and the most common of 

these had no influence on CBZ dose. This might suggest that any genetically determined 

variability in CBZ metabolism occurs at other stages of the pathway. It is possible that 

the rate of CBZ-E hydrolysis could determine the variability in CBZ metabolism. This 

hydrolysis process is predominantly mediated by mEH (Pelkonen et al., 2001). 

Polymorphisms in the EPHX1 gene are known to affect the activity of mEll (Nakajima 

et al., 2005) and therefore have the potential to influence plasma concentrations of CBZ 

and its dose requirement. Other common DME polymorphisms examined did not 

predict the OD of CBZ. This might suggest that these polymorphisms have limited 

functional consequences or that the enzymes in question are not fundamental 

contributors to CBZ metabolism. On the basis of this study, it would appear that genetic 

variants of the EPHX1 gene are the strongest candidate markers of inter-individual 

variability in CBZ dosing. 

In section 4.2, the association between polymorphisms in DME genes and a unique 

phenotype that may be exquisitely sensitive to CBZ adverse effects was evaluated. This 

study failed to reveal any association between common genetic polymorphisms and the 

proposed phenotype in question. Previous studies examining the EPIIXI gene have also 

failed to associate multiple polymorphisms with the incidence of CBZ hypersensitivity 

reaction (Gaedigk et al., 1994; Green et al., 1995). Two common polymorphisms 

(c. 337T>C and c. 416A>G) in the EPHX1 gene have, however, been associated with 

variation in the plasma concentrations of CBZ-E (Nakajima cl al., 2005). If the 

functional effect of these polymorphisms is genuine and if they are associated with CBZ 

dose (as reported in section 4.1), the the current study might question the popular notion 

that CBZ-E is responsible for precipitating many of the adverse effects associated with 

CBZ treatment (Ramsay & Wilder, 2002). Although it is dangerous to make such 

sweeping generalisation on the basis of studies with such low numbers of participants, 
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several previous investigations have indeed failed to demonstrate any correlation 

between CBZ-E concentrations and the toxicity of CBZ in epilepsy patients (Theodore 

et al., 1989; Semah et al., 1994). The current study also suggested that, with the 

exception of EPHXI, the contribution of other DME polymorphisms to the risk of 

developing CBZ adverse effects is modest or non-existent. This would support the 

suggestion that common polymorphisms in these genes do not significantly influence 

the activity of their respective enzymes. 

As with other AEDs, response to LTG treatment is likely to be significantly influenced 

by the activity of DMEs, DTPs and sodium channels. LTG is predominantly 

metabolised by UGT1A4 (Magdalou et al., 1992; Vashishtha et al., 2001) and is 

believed to be transported by P-gp (Potschka et al., 2002). As such, the major 

determinants of LTG pharmacokinetics are likely to be UGTIA4 and P-gp. The 

mechanism of action of LTG is similar to that of many other AEDs, such as CBZ and 

PHT, and is mediated by inhibition of voltage-gated sodium channels. Thus, any 

alteration in the expression or activity of UGTIA4, P-gp and voltage-gated sodium 

channels has the potential to impact on LTG pharmacokinetics and pharmacodynamics. 

Such alterations include polymorphisms in the respective encoding genes. The influence 

of UGTIA4 variants was not examined in this project because polymorphisms in this 

gene are rare and no functional variants had been reported in the Caucasian population 

at the time this project was planned. As a result, only polymorphisms in the ABCB 1 and 

SCN2A genes were evaluated in relation to the LTG treatment response phenotype. 

The findings reported in section 5.1 suggest that ABCB 1 and SCN2A variants do not 

significantly influence the response to LTG monotherapy. There are several potential 

explanations for this observation. Firstly, LTG may not be a strong substrate for P-gp, in 

which case LTG distribution in the brain might not be significantly influenced by P-gp- 
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mediated efflux transport. This is plausible because LTG is known to be highly 

lipophilic (Mashru et al., 2005). Secondly, common polymorphisms in ABC131 and 

SCN2A genes may not be functional, and thus may not affect the expression or activity 

of P-gp or Na,, 1.2 proteins, respectively. Even if they were functional, the modification 

in protein structure or function may not be of sufficient magnitude to influence the 

response to LTG treatment. Finally, it is important to remember that LTG may act on 

other subtypes of voltage-gated sodium channel and may be transported by other DTPs. 

One should also be aware that the response to AED therapy in terms of efficacy is easily 

influenced by other clinical and environmental factors, including seizure severity and 

pathological causes (Stephen et al., 2001; Brodie, 2005). 

In section 5.1, it was reported that patients who are seizure free on LTG monothcrapy 

have a wide distribution of optimal doses. Since the efficacy of LTG treatment does not 

significantly associate with its plasma concentration (Kilpatrick et al., 1996; Mahmood 

et al., 1998), it is possible that the diversity in dose requirement might be influenced by 

inter-individual variability in P-gp function and the resulting ability of LTG to cross the 

BBB. Polymorphisms in the ABCB 1 gene that have the potential to alter the expression 

and activity of P-gp were postulated to be responsible for the spread of individual LTG 

dose requirements. This hypothesis was confirmed (section 5.2) with the association 

between common polymorphisms in the ABCBI gene and the OD of LTG. This is an 

interesting finding and one which may help to dismiss concerns about whether LTG is a 

substrate for P-gp mediated transport. 

The influence of ABCB 1 variants on LTG pharmacokinetics was further examined in an 

effort to understand the relationship between polymorphisms in this gene and LTG 

dose, as reported in section 5.2. This additional investigation failed to identify any 

association with the clearance of LTG, suggesting that the influence of dose is most 



Chapter 6: Discussion & Conclusion 245 

likely related to some other as-yet unidentified pharmacokinetic or pharmacodynamic 

factors. P-gp is believed to be expressed in a tissue-specific or disease-specific manner 

(Croop et al., 1989). For example, epileptic brain tissue has been shown to have a 

higher expression of P-gp than normal brain (Marchi et al., 2004; Volk et al., 2004). It 

is possible that, in epilepsy patients, the expression of P-gp in the gastrointestinal tract, 

kidney and liver is relatively lower than that observed at the BBB. The effect of ABCB I 

variants may be enhanced in conditions where P-gp is over-expressed whereas genetic 

variability would have less impact in conditions or in tissues where P-gp expression is 

low or normal. This would explain how ABCB 1, polymorphisms can associate with 

LTG dose (by influencing BBB transfer) but not LTG clearance, which is a more 

peripheral phenomenon and not necessarily subject to disease mediated augmentation. 

The studies presented in this thesis have revealed some previously unrecognised factors 

that may influence individual AED dose requirement. The predominant application of 

these pharmacogenetic findings is in AED dosing strategies. Polymorphisms in the 

SCN1A gene have previously been identified as useful predictors for CBZ and PUT 

dose (van der Weide et al., 2001; Tate et al., 2005; Tate et al., 2006). This observation, 

together with the intriguing findings presented in this thesis, provide a theoretical 

direction for future clinical investigations to assess whether pharmacogenetic profiling 

can improve dosing decisions. There is clear clinical benefit in determining the optimal 

titration rate and target dose for an individual patient. Those who require a lower dose 

and a slower titration rate can be identified before the initiation of treatment, and any 

unnecessary exposure to high doses of AEDs can be prevented, thereby minimizing the 

risk for adverse effects. Similarly, patients with a high dosing requirement can be 

titrated faster in order to avoid prolonged periods of under-exposure and a consequent 

lack of efficacy. Pharmacogenetic profiling may also be more useful than therapeutic 

drug monitoring in determining the dose of AEDs, particularly for those AEDs that have 
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a poor plasma concentration-response relationship (Patsalos, 2001). Finally, 

pharmacogenetic testing can be utilised prospectively, before the AED is started and 

only a small amount of blood sample or a cheek-swab sample is required for genotypic 

analysis. 

These findings represent another step in the ongoing effort to improve understanding of 

the role of pharmacogenetics in epilepsy management. Knowledge of AED mechanisms 

of action and awareness of genetic factors that determine treatment response should not 

only improve the use of AEDs but may also allow AEDs to be designed for specific 

targets in particular populations or that avoid any detrimental genetic variability in 

therapeutic response. The preponderance of genetic polymorphisms in the human 

genome suggests that pharmacogenetic variability will likely be an issue for 

consideration in almost all drug treatments. 

Pharmacogenetic research has developed rapidly, with recent advances in molecular 

genetics and genome sequencing. This is largely due to the emergence of new 

technologies that allow rapid screening for specific polymorphisms, as well as recently 

gained knowledge of genetic sequence derived from the Human Genome project. 

Epilepsy-related pharmacogenetic research is beginning to take advantage of this new 

information in order to enhance current understanding of epilepsy therapeutics. This 

new found knowledge can be employed effectively in two main areas: identification of 

specific genes and gene products associated with various forms of epilepsy and which 

may act as targets for new AEDs and identification of genes and allelic variants of 

genes that can influence the response to current AEDs. 

We are still a long way from having a pharmacogenetic test that clinicians can routinely 

use to identify the most appropriate AED for any particular patient, however there is 
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increasing evidence that pharmacogenetics will be important in clinical practice. In the 

future it may be considered unethical not to perform such tests routinely to avoid 

exposing individuals to doses of AEDs that could be harmful. The ability to identify 

sensitive or insensitive individuals before commencing AED treatment would also be of 

economic importance. AED treatment based on genetic profile might avoid the current 

empiricism associated with matching the most appropriate AED, at its optimal dose, to 

each patient. The development of pharmacogenetics as a scientific discipline should 

offer a departure from current empirical prescribing and a move towards more 

individualised AED treatment. 

6.2 Future Research Directions 

The recent advances in genetic technology encourage a rapid development of 

pharmacogenetic research. The relatively high prevalence of seizure disorders, limited 

number of drugs, relatively poor success rate and the broad range of interindividual 

responses make epilepsy an ideal target for pharmacogenetic research and its 

application in clinical practice. To date, pharmacogenetie studies in epilepsy have 

predominantly explored the association between genetic polymorphisms and either the 

pharmacokinetics of specific AEDs (i. e. PHT) or the efficacy of AEDs in general 

(irrespective of individual treatments). Other established drugs such as CBZ, VPA, PB 

and ethoxusimide, and newer AEDs such as LTG, topiramate and levetiracetam have 

not yet been investigated in any significant detail. Drugs with single mechanisms of 

action (i. e. levetiracetam) or single metabolic pathways may be the best place to start. 

Levetiracetam does not appear to act via conventional AED mechanisms such as, 

GABAergic facilitation, inhibition of voltage-gated sodium channels or modulation of 

voltage-gated calcium channels. In contrast, it would appear to bind to synaptic vesicle 

protein SV2A, which is ubiquitously found in the mammalian CNS (Lynch et al., 2004). 
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As such, genetic polymorphisms in the SV2A gene are potential contributors to 

variability in the response to levetiracetam treatment. This is a single example of the 

enormous potential which exists for the exploration of pharmacogenetics in epilepsy in 

an effort to better understand the clinical pharmacology of both established and modern 

AEDs. 

The OD predictive models that were developed for CBZ and LTG in this project 

explained less than 20% of the dose variation between individuals. More genetic and 

non-genetic variables are clearly required to improve the predictability of this approach. 

Polymorphisms in genes which encode voltage-gated sodium channels, other DMEs and 

other DTPs that are related to the pharmacokinetics and pharmacodynamics of CBZ and 

LTG may be the most appropriate place to start. Polymorphisms of the SCNIA gene 

that have been reported to be associated with the maximum dose of CBZ (Tate et al., 

2005) should almost certainly be included in any such predictive model of CBZ OD or 

LTG OD, as both drugs act by blockade of voltage-gated sodium channels. However, 

other less obvious genes should not be excluded and DME and DTP genes should be 

subject to further investigation particularly with regard to those SNPs which occur less 

commonly than those reported here. Haplotype studies may be more appropriate than 

those based on genotype and whole-genome scans may become available in the near 

future. However, the genotype-based approach, as presented in this project, has some 

advantages over the haplotype strategy. Genotyping may permit the identification of 

causal variants, especially for rare SNPs, which can dramatically alter the expression 

and/or the activity of their respective proteins. This approach is typically directed by the 

notion that functional variants are highly associated with SNPs located in the promoter 

and coding regions. As such, the number of SNPs which need to be typed is limited and 

this reduces the cost of genotyping. In fact, these are the variants to which random SNPs 

searches are most likely to lead and such polymorphisms are more likely to be in 
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linkage disequilibrium with the causal allele (Risch, 2000). Employing a haplotypc 

strategy, on the other hand, is useful for SNPs that have a relatively high allele 

frequency (>10%; Becquemont, 2003) and is entirely dependent on linkage 

disequilibrium (Roses, 2000). Linkage disequilibrium occurs when combinations of 

alleles at different loci present more frequently than would be expected from random 

association. Variations of several ordered SNPs that are close to, or within, a particular 

chromosomal region are likely to be inherited together when they are in linkage 

disequilibrium. As such, SNPs associated with a drug response phenotype can `mark' 

the position on the chromosome where a susceptibility gene is located. The whole- 

genome scan technique may enable the identification of several multiple small 

susceptibility regions, within which the search for genetic markers can be focused 

(Roses, 2000). However, the haplotype strategy is not the best choice for low frequency 

SNPs because it misses rare haplotypes, which might otherwise be clinically relevant. 

To generate stronger research data, prospectively designed studies is preferred than 

retrospectively designed studies, largely because avoidance of confounding variables. A 

prospective study is designed before the data is collected, which allows the researchers 

several advantages over the retrospective study. Researchers can design a 

pharmacogenetic study with a control group, design internal devices to eliminate bias, 

and follow subject throughout the length of the study to observe development of the 

outcome in question. The down-sides of prospective studies are that they are more 

expensive and time-consuming to design and execute, and are difficult to use to study 

rare polymorphisms as the number of subjects is often too low. Although studies 

presented in this thesis have produced several intriguing findings, these have to be 

further explored in prospectively designed studies with formal power calculations 

included and followed by replication studies. 
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In conclusion, this series of pharmacogenetic studies examined the clinical 

pharmacology of CBZ and LTG and served to identify polymorphisms in genes 

encoding mEH and P-gp as potential predictors of CBZ and LTG OD, respectively. 

Common genetic polymorphisms of other DMEs that are responsible for CBZ 

metabolism, namely CYP3A4 g. -392A>G, CYP3A5 g. 6986A>G, CYPIA2 g. 5734C>A, 

and UGT2B7 c. 802C>T, did not significantly associate with the OD of CBZ and none 

were associated with CBZ adverse effects. Polymorphisms in the ABCB I gene 

encoding P-gp did not prove useful in predicting the response to LTG treatment and did 

not appear to influence the oral clearance of LTG. 

The experimental work contained in this thesis advances current knowledge of the 

association between genetic variability and the clinical pharmacology of AEDs. Positive 

findings require confirmation in a prospectively-designed study employing a larger 

cohort of newly diagnosed epilepsy patients. Characterisation of polymorphisms in 

genes that encode proteins related to AED pharmacokinetics and pharmacodynamics 

may enable us to predict efficacy and tolerability of AEDs and to make informed 

decisions with regard to titration rates and target doses for individual patients. Fostering 

a closer relationship between clinical pharmacology and genetics has the potential to 

make significant progress in the treatment of epilepsy. 
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