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Abstract 

Resistance to anthelmintics used to treat parasitic nematodes of veterinary 

importance represents a serious welfare and economic problem for the livestock 

production industry. Research into the mechanisms by which parasites develop 

resistance is necessary to prolong the life of the available drugs and to minimise 

development of resistance to new classes. Metabolism of anthelmintic 

compounds by parasites is a possible mechanism of resistance that has received 

little research, despite there being precedence in the case of insecticide 

resistance. Due to the more advanced molecular tools available and comparative 

ease of manipulation; we have used the model nematode Caenorhabditis elegans 

to investigate the metabolism of two important anthelmintic drugs, ivermectin 

and albendazole.  

Whole genome microarrays and RT-QPCR were used to identify clusters of genes, 

which are significantly up-regulated upon exposure of C. elegans to 

anthelmintic. The transcriptomic response to albendazole is characterised by 

genes potentially involved in xenobiotic metabolism. These include members of 

the cytochrome P450 family and the UDP-glucuronosyl/ glucosyl transferase 

family. In contrast, the response to ivermectin appears to represent a fasting 

response caused by the phenotype of drug exposed nematodes. Recombinant 

worms carrying GFP reporter constructs of several genes of interest 

demonstrated their expression in the intestine, which is thought to be the main 

site of xenobiotic detoxification in nematodes. HPLC-MS techniques have 

definitively shown that C. elegans is able to metabolise albendazole to two 

glucose conjugates. These metabolites are compatible with the transcriptomic 

response to the drug and are similar to albendazole metabolites produced by the 

parasitic nematode Haemonchus contortus. No ivermectin metabolites were 

identified in the current study. 

The data presented confirms the ability of the nematode C. elegans to respond 

to and metabolise anthelmintic compounds. In addition, the study validates the 

use of C. elegans as a model organism for parasitic nematodes and provides a 

platform upon which to investigate nematode metabolism further. 



ii 

Contents 

Abstract ...................................................................................... i 

Contents..................................................................................... ii 

List of Tables ...............................................................................ix 

List of Figures ..............................................................................xi 

List of Accompanying Material ........................................................ xiv 

Acknowledgement........................................................................ xv 

Declaration ............................................................................... xvi 

Definitions/ Abbreviations ............................................................ xvii 

Chapter 1: Introduction .................................................................. 1 

1.1 Introduction ...................................................................... 1 

1.2 The emergence of anthelmintic resistance .................................. 2 

1.3 Diagnosis of resistance in field populations ................................. 4 

1.4 Novel chemotherapeutics ...................................................... 5 

1.5 Alternatives to anthelmintic control.......................................... 6 

1.6 C. elegans as a model organism ............................................... 8 

1.7 Ivermectin ....................................................................... 12 

1.7.1 Mechanism of action ...................................................... 12 

1.7.2 The molecular basis of avermectin resistance in nematodes....... 13 

1.8 Albendazole ..................................................................... 16 

1.8.1 Mechanism of action ...................................................... 16 

1.8.2 The molecular basis of benzimidazole resistance in nematodes ... 16 

1.9 Drug metabolism................................................................ 19 

1.9.1 Overview.................................................................... 19 

1.9.2 Nematode genomes encode enzymes potentially involved in drug 

metabolism ........................................................................... 20 

1.9.3 Xenobiotic metabolising enzymes associated with drug resistance 25 

1.9.3.1 Phase I enzymes...................................................... 25 

1.9.3.2 Phase II (conjugation) enzymes.................................... 31 

1.9.4 Anthelmintics as substrates for xenobiotic metabolising enzymes 35 



iii 

1.10 Specific aims of this study..................................................... 36 

Chapter 2: Materials and methods ..................................................37 

2.1 Materials ......................................................................... 37 

2.1.1 Standard reagents and Media............................................ 37 

2.1.2 Caenorhabditis elegans strains and culture conditions .............. 39 

2.1.3 E. coli strains .............................................................. 39 

2.2 Standard methods .............................................................. 40 

2.2.1 Freezing and storage of nematode strains............................. 40 

2.2.2 Synchronisation of L1 larvae............................................. 40 

2.2.3 Preparation of worm lysates............................................. 41 

2.2.4 Standard Polymerase Chain Reaction (PCR) ........................... 41 

2.2.5 PCR for GFP fusion constructs........................................... 42 

2.2.6 Agarose gel electrophoresis ............................................. 42 

2.2.7 Preparation of drug plates ............................................... 42 

2.2.8 Liquid culture conditions................................................. 43 

2.2.9 RNA extraction............................................................. 44 

2.2.10 Microarray hybridisation and analysis .................................. 45 

2.2.10.1 Pre-processing........................................................ 45 

2.2.10.2 Annotation ............................................................ 45 

2.2.10.3 Processing............................................................. 45 

2.2.10.4 Ontology analysis .................................................... 46 

2.2.11 Real-time quantitative PCR.............................................. 46 

2.2.11.1 Primer design and analysis ......................................... 47 

2.2.11.2 RT-QPCR reaction parameters ..................................... 47 

2.2.11.3 Statistical analysis ................................................... 48 

2.2.12 Determination of expression patterns using Green Fluorescent 

Protein (GFP) ......................................................................... 49 

2.2.12.1 Preparation of GFP constructs ..................................... 49 

2.2.12.2 Microinjection of the GFP fusion constructs ..................... 49 

2.2.12.3 Imaging of GFP expressing C. elegans ............................ 50 

Chapter 3: C. elegans transcriptomic response to ivermectin..................51 

3.1 Introduction ..................................................................... 51 



iv 

3.2 Methods .......................................................................... 53 

3.2.1 Preparation of nematodes for microarray analysis- chronic exposure

 53 

3.2.2 Preparation of nematodes for microarray analysis- acute exposure

 53 

3.2.3 Preparation of nematodes for Real-time quantitative PCR ......... 54 

3.2.4 Pharyngeal pumping assay ............................................... 54 

3.2.5 Genotyping of strain DA1316 ............................................ 55 

3.3 Results............................................................................ 56 

3.3.1 Microarray analysis........................................................ 56 

3.3.1.1 Exposure to 0.5ng/ml and 5ng/ml IVM result in no significant 

changes to gene expression...................................................... 56 

3.3.1.2 Acute exposure to 100ng and 1µg/ml IVM results in differential 

expression of a distinct set of genes ........................................... 58 

3.3.2 Real-time QPCR confirms up-regulation of genes in response to IVM 

exposure............................................................................... 63 

3.3.3 DAVID analysis of genes with significant changes in expression 

following ivermectin exposure ..................................................... 65 

3.3.3.1 Up-regulated genes.................................................. 65 

3.3.3.1.1 Gene ontology analysis........................................... 66 

3.3.3.1.2 Gene functional classification clustering reveals CYPs and 

UGTs to be up-regulated in response to ivermectin exposure ........... 70 

3.3.3.2 DAVID analysis of down-regulated genes ......................... 72 

3.3.3.2.1 Gene ontology analysis........................................... 72 

3.3.3.2.2 Gene functional classification reveals transferases and fatty 

acid elongases to be down-regulated following ivermectin exposure .. 76 

3.3.3.3 Global analysis summary............................................ 78 

3.3.4 Pharyngeal pumping rate of strain DA1316 is reduced upon exposure 

to 1µg/ml IVM ........................................................................ 79 

3.3.5 avr-15 is wild-type in strain DA1316.................................... 80 

3.3.6 Comparison to dauer data and axenic culture ........................ 82 

3.3.7 N2 exposure to 100ng/ml IVM for 4 hours results in an overlapping 

but distinct gene set compared to DA1316 exposed to the same dose ...... 84 

3.3.8 cyp-37B1, scl-2 and mtl-1 are up-regulated in an ivermectin dose-

dependent manner................................................................... 87 



v 

3.3.9 GFP expression of cyp-37B1, scl-2 and mtl-1 ......................... 88 

3.3.10 cyp-37B1, mtl-1 and scl-2 are up-regulated in response to fasting in 

both DA1316 and N2 strains ........................................................ 91 

3.4 Discussion ........................................................................ 93 

Chapter 4: C. elegans Transcriptomic response to albendazole ................98 

4.1 Introduction ..................................................................... 98 

4.2 Methods .........................................................................101 

4.2.1 Preparation of nematodes for microarray analysis..................101 

4.2.2 Preparation of nematodes for RT-QPCR ..............................102 

4.2.3 SAGE analysis .............................................................102 

4.3 Results...........................................................................103 

4.3.1 Microarray analysis.......................................................103 

4.3.1.1 No statistically significant changes to gene expression were 

detected following exposure of C. elegans to 25µg/ml ABZ for 48 hours103 

4.3.1.2 Exposure of C. elegans to 300µg/ml ABZ for 4 hours results in 

significant up-regulation of a distinct set of genes .........................104 

4.3.2 Real-time QPCR confirms up-regulation of genes in response to ABZ 

exposure..............................................................................109 

4.3.3 DAVID analysis of up-regulated genes .................................111 

4.3.3.1 Transferase and monooxygenase terms are enriched in ABZ 

responsive genes .................................................................111 

4.3.3.2 UGTs and CYPs are enriched in the set of ABZ up-regulated 

genes 114 

4.3.4 Many ABZ up-regulated genes may be targets of mdt-15 ..........115 

4.3.5 CYP induction is evident at low doses of ABZ........................117 

4.3.6 cyp-35C1 is expressed in the gut.......................................118 

4.3.7 PCR-fusion GFP reporters appear to be unstable for genes with low 

expression............................................................................120 

4.3.8 SAGE analysis reveals enrichment of ABZ up-regulated genes in the 

intestine 121 

4.4 Discussion .......................................................................123 



vi 

Chapter 5: Analysis of anthelmintic metabolism by nematode extracts..... 129 

5.1 Introduction ....................................................................129 

5.2 Materials and Methods ........................................................133 

5.2.1 Materials...................................................................133 

5.2.1.1 Caenorhabditis elegans strains ...................................133 

5.2.1.2 Haemonchus contortus strains ....................................133 

5.2.1.3 Human Liver microsomes ..........................................134 

5.2.2 Preparation of microsomes .............................................134 

5.2.2.1 Caenorhabditis elegans culture conditions .....................134 

5.2.2.2 Haemonchus contortus culture conditions ......................135 

5.2.2.3 Homogenisation of Nematodes and Microsome isolation......135 

5.2.2.4 Analysis of microsomal protein ...................................136 

5.2.2.4.1 Protein concentration ...........................................136 

5.2.2.4.2 Cytochrome P450 concentration...............................137 

5.2.3 Drug- Microsome Incubations ...........................................138 

5.2.3.1 Human Liver Microsomes ..........................................138 

5.2.3.2 Nematode Microsomes .............................................138 

5.2.4 Ex-vivo drug exposure ...................................................139 

5.2.4.1 C. elegans ex-vivo drug exposures ...............................139 

5.2.4.2 H. contortus ex vivo drug exposures.............................140 

5.2.4.3 Homogenisation and extraction of metabolites ................140 

5.2.5 HPLC-MS methods ........................................................140 

5.2.5.1 Ivermectin ...........................................................140 

5.2.5.2 Purification of ivermectin .........................................141 

5.2.5.3 Albendazole and midazolam ......................................141 

5.3 Results...........................................................................142 

5.3.1 Microsomal extract incubations ........................................142 

5.3.1.1 Microsome preparations from C. elegans and H. contortus ..142 

5.3.1.2 Analysis of absorbance spectra of nematode culture medium

 145 

5.3.2 HPLC-MS analysis of anthelmintic- microsome incubations ........146 

5.3.2.1 Development and validation of HPLC-MS method for ivermectin 

and metabolites ..................................................................146 



vii 

5.3.2.2 Development and validation of the HPLC-MS method for 

albendazole and metabolites ...................................................150 

5.3.2.3 Nematode microsome preparations do not metabolise 

ivermectin or albendazole ......................................................153 

5.3.2.4 Nematode microsome preparations do not metabolise 

midazolam 154 

5.3.2.5 C. elegans homogenates do not metabolise ivermectin or 

albendazole .......................................................................154 

5.3.2.6 C. elegans cytosolic fractions do not metabolise ivermectin or 

albendazole .......................................................................154 

5.3.3 Inhibition of HLM reactions by nematode derived microsomal 

protein 155 

5.3.4 HPLC-MS analysis of ex vivo drug incubations........................157 

5.3.4.1 Analysis of ivermectin-live worm incubations ..................157 

5.3.4.2 Analysis of albendazole-live worm incubations.................158 

5.4 Discussion .......................................................................164 

Chapter 6: General Discussion ....................................................... 168 

6.1 Exposure to high dose ivermectin and albendazole elicit very different 

responses in C. elegans ...............................................................168 

6.2 Implications of the fasting response upon exposure to ivermectin ....171 

6.3 Mammalian xenobiotic metabolism pathways are likely to be extremely 

divergent from those of nematodes.................................................175 

6.4 Transcriptomic changes upon exposure of C. elegans to albendazole are 

consistent with the albendazole metabolites identified by HPLC-MS..........179 

6.5 C. elegans is a valid model for nematode metabolism of anthelmintics

 180 

6.6 The role of drug metabolism in anthelmintic resistance requires further 

investigation............................................................................181 

Appendices .............................................................................. 184 

7.1 RT-QPCR primers and typical reaction efficiencies.......................184 

7.2 GFP fusion construct primers ................................................188 

7.2.1 cyp-35C1...................................................................188 



viii 

7.2.2 cyp-37B1...................................................................189 

7.2.3 mtl-1 .......................................................................189 

7.2.4 scl-2 ........................................................................189 

7.2.5 GFP (pPD95.67 template) ...............................................189 

7.3 DA1316 sequencing primers ..................................................190 

7.3.1 avr-14 (ad1302)...........................................................190 

7.3.2 avr-15(ad1051)............................................................190 

7.3.3 glc-1(pk54) ................................................................190 

References............................................................................... 191 



ix 

List of Tables 

Table 1-1: Current prevalence of anthelmintic resistance in veterinary species . 3 

Table 3-1: Top 10 up-regulated probesets based on fold change following 60hrs 

exposure of DA1316 to 0.5ng/ml IVM................................................... 57 

Table 3-2: Top 10 up-regulated probesets based on fold change following 4hrs 

exposure of DA1316 to 100ng/ml IVM .................................................. 59 

Table 3-3: Top 10 up-regulated genes based on fold change following 4hrs 

exposure of DA1316 to 1µg/ml IVM ..................................................... 61 

Table 3-4: Top 10 down-regulated genes based on fold change following 4hrs 

exposure to 1µg/ml IVM .................................................................. 61 

Table 3-5: Gene functional classification of up-regulated genes following 4hrs 

exposure of DA1316 to 1µg/ml IVM ..................................................... 71 

Table 3-6: Gene functional classification of down-regulated genes following 4 

hours exposure of DA1316 to 1µg/ml IVM.............................................. 77 

Table 3-7: Top 10 up-regulated genes based on fold change following 4hrs 

exposure of N2 to 100ng/ml IVM ........................................................ 86 

Table 4-1: Top 10 up-regulated genes, based on log2-fold change, following 48hrs 

exposure of strain CB3474 to 25µg/ml ABZ...........................................104 

Table 4-2: Top 10 up-regulated genes, based on log2-fold change, following 4hrs 

exposure of strain CB3474 to 300µg/ml ABZ .........................................106 

Table 4-3: Top 10 down-regulated genes, based on log2-fold change, following 4 

hours exposure of strain CB3474 to 300µg/ml ABZ ..................................108 

Table 4-4: ABZ up-regulated gene functional classification cluster 1 (enrichment 

score 8.66).................................................................................114 

Table 4-5: ABZ up-regulated gene functional classification cluster 2 (enrichment 

score 2.64).................................................................................114 

Table 5-1: MRM transitions for ivermmectin and metabolites .....................149 

Table 6-1: Expression pattern of selected genes up-regulated in response to 4hrs 

exposure to 300µg/ml ABZ ..............................................................170 



x 

Table 6-2: Expression pattern of selected genes up-regulated in response to 4hrs 

exposure to 1µg/ml IVM .................................................................170 

Table 6-3: Comparison of top 10 up-regulated genes following 4hrs exposure of 

strain DA1316 to 1µg/ml IVM to dauer data (Jeong et al., 2009) .................173 

Table 6-4: Comparison of top 10 down-regulated genes following 4hrs exposure 

of strain DA1316 to 1µg/ml IVM to dauer data (Jeong et al., 2009) ..............173 



xi 

List of Figures 

Figure 1-1: Phylogenetic relationship between the major phylogenetic clades (I-

V) of the phylum nematoda based on SSU RNA sequence ........................... 10 

Figure 1-2: Codon 200 TTC frequency in H.contortus β-tubulin isotype 1 gene 

related to thiabendazole (TBZ) sensitivity ............................................ 18 

Figure 1-3: Schematic of xenobiotic metabolising enzyme induction ............. 20 

Figure 3-1: Real-time QPCR of individual bioreplicates sent for microarray 

analysis; 0.5ng/ml IVM vs. control ...................................................... 58 

Figure 3-2: Model fitted log2 control chip intensity vs. log2 IVM (1µg/ml) chip 

intensity .................................................................................... 60 

Figure 3-3: RT-QPCR results following 4 hrs exposure of DA1316 to Virbamec 

(1µg/ml IVM) ............................................................................... 64 

Figure 3-4: Molecular function ontology terms associated with genes up-

regulated in response to exposure of DA1316 to 1µg/ml ivermectin for 4hrs. ... 68 

Figure 3-5: Biological Process ontology terms associated with genes up-regulated 

in response to exposure of DA1316 to 1µg/ml ivermectin for 4hrs. ............... 69 

Figure 3-6: Molecular function ontology terms associated with genes down-

regulated following 4hrs exposure of DA1316 to 1µg/ml IVM ....................... 74 

Figure 3-7: Biological process ontology terms associated with down-regulated 

genes following 4 hours exposure of DA1316 to 1µg/ml IVM ........................ 75 

Figure 3-8: Fasting response genes change in expression following 4hrs exposure 

of DA1316 to1µg/ml IVM.................................................................. 78 

Figure 3-9: Pharyngeal pumping rate following 4hrs exposure of DA1316 and N2 

to 1µg/ml IVM. ............................................................................. 80 

Figure 3-10: PCR confirming the presence of glc-1(pk54::Tc1) in strain DA1316 81 

Figure 3-11: Sequence of avr-14(ad1302) locus of strain DA1316 .................. 81 

Figure 3-12: Sequence of avr-15(ad1051) locus of strain DA1316 .................. 82 

Figure 3-13: Comparison of genes enriched in dauers and those up-regulated in 

response to 4hrs exposure to 1µg/ml IVM.............................................. 84 



xii 

Figure 3-14: Comparison of up-regulated genes in all acute IVM response 

experiments ................................................................................ 86 

Figure 3-15: Up-regulation of cyp-37B1, mtl-1 and scl-2 in response to 4hrs 

exposure to varying concentrations of ivermectin ................................... 87 

Figure 3-16: mtl-1 GFP reporter (Genotype [pRF4{rol-6(su-1006)}+mtl-1::GFP]; 

avr-14(ad1302);glc-1(pk54)) ............................................................. 90 

Figure 3-17: cyp-37B1 GFP reporter (Genotype [pRF4{rol-6(su-1006)}+cyp-

37B1::GFP]; avr-14(ad1302);glc-1(pk54)) .............................................. 90 

Figure 3-18: scl-2 GFP reporter (Genotype [pRF4{rol-6(su-1006)}+scl-2::GFP]; 

avr-14(ad1302);glc-1(pk54)) ............................................................. 90 

Figure 3-19: mtl-1, scl-2, cyp-37B1 and cyp-35C1 regulation following 4hrs 

exposure to 1µg/ml IVM and 4hrs fasting in strain DA1316.......................... 92 

Figure 3-20: acs-2, gei-7 and scl-2 regulation following 4hrs exposure to 

100ng/ml IVM and 4hrs fasting in strain N2............................................ 92 

Figure 4-1: Scatter plot of whole genome microarray results following 4hrs 

exposure of strain CB3474 to 300µg/ml ABZ .........................................107 

Figure 4-2: RT-QPCR results following 4hrs exposure of strain CB3474 to Albex 

(300ug/ml ABZ) ...........................................................................110 

Figure 4-3: Ontology terms associated with genes up-regulated in response to 

4hrs exposure of strain CB3474 to 300µg/ml ABZ....................................112 

Figure 4-4: Clustering of all annotation terms associated with genes up-regulated 

in response to 4hrs exposure of strain CB3474 to 300µg/ml ABZ..................113 

Figure 4-5: Comparison of genes up-regulated in response to ABZ exposure and 

those deregulated by mdt-15(RNAi) ...................................................116 

Figure 4-6: Response of four genes of interest to 4hrs exposure of strain CB3474 

to gradient of ABZ concentrations .....................................................118 

Figure 4-7: cyp-35C1 transcriptional GFP reporter fusion (Genotype: [pRF4{rol-

6(su-1006)}+cyp-35C1::GFP]; avr-14(ad1302); glc-1(pk54)) ........................119 

Figure 5-1: HLM absorbance spectrum ................................................144 

Figure 5-2: C. elegans strain DA1316 microsomal absorbance spectrum.........144 

Figure 5-3: H. contortus strain CAVR microsomal absorbance spectrum.........144 



xiii 

Figure 5-4: Absorbance spectrum of DA1316 microsomal preparation and of 

culture medium...........................................................................145 

Figure 5-5: Major fragment ions of ivermectin and MRM chromatogram of HLM-

ivermectin incubations ..................................................................148 

Figure 5-6: BPI chromatogram of HLM- albendazole incubation and mass spectra 

of significant peaks ......................................................................152 

Figure 5-7: Proposed structures of albendazole and identified HLM metabolites

..............................................................................................153 

Figure 5-8: C. elegans microsome preparations inhibit HLM reactions ...........156 

Figure 5-9: Chromatograms of albendazole and metabolites from ex vivo C. 

elegans incubation .......................................................................159 

Figure 5-10: Chromatograms of albendazole and metabolites from heat killed ex 

vivo C. elegans incubation ..............................................................160 

Figure 5-11: Relative intensity of albendazole glucoside metabolite (elution time 

4.06) from cultures with and without preexposure to fenofibrate................161 

Figure 5-12: Structure of albendazole fragment ions ...............................162 

Figure 5-13: Confirmation of peaks m/z = 428.149Da as true albendazole 

metabolites................................................................................163 

Figure 6-1: Comparative ontologies of genes up-regulated in response to 

ivermectin and albendazole ............................................................169 

Figure 6-2: Cladogram of C. elegans CYPs, the major H. sapiens CYPs involved in 

xenobiotic metabolism and D. melanogaster CYP6G1 ..............................176 

Figure 6-3: Cladogram of C. elegans UGTs and the major H. sapiens UGTs 

involved in xenobiotic metabolism ....................................................178 

 



xiv 

List of Accompanying Material 

CD containing: 

 Full microarray data- 

  Normalised expression data for for each gene on each gene chip 

Lists of significantly up-regulated and down-regulated genes in 

each experiment 

 List of primers used for real-time quantitative PCR 

 List of primers used for fusion-PCR  

 List of primers used for sequencing 



xv 

Acknowledgement 

Firstly, I would like to thank my supervisor John Gilleard for his help, support and 

advice throughout the duration of my degree. Despite moving to Calgary his maintained 

enthusiasm for the project has helped make it both an enjoyable and educational 

experience. My thanks is extended to the rest of the faculty and staff at the Institute of 

Infection and Immunity whose help both in and out of the lab has been invaluable. In 

particular, I would like to thank Eileen Devaney, for taking on the role of supervisor; 

Gillian McCormack, for her assistance with the microinjection technique; and my 

assessor Andy Tait.  

I would like to acknowledge Al Ivens (now at Fios genomics) and Theresa Feltwell at the 

Wellcome Trust Sanger Institute, where microarray hybridisation and statistical analysis 

was undertaken. The HPLC-MS work could not have been carried out without the help of 

the members of Pfizer M&D in Sandwich. I am particularly grateful to Angus Nedderman 

for allowing me to work with his group and to Drew Gibson for guiding me through the 

analysis of mass spectrometry data. As well as being instrumental in arranging my 

externship in Sandwich, Debra Woods has always been available to offer guidance and 

information relating to this project. In addition, I would like to thank Victoria Butler for 

her work with the expression analysis of several of the genes of interest identified in 

this study, and for allowing me quote this unpublished work.  

The following people are acknowledged for their provision of materials: The C. elegans 

Genetics Centre (University of Minnesota, Minnesota, USA) for providing C. elegans 

strains; Alison Donnan (Moredun Institute, Edinburgh) for Haemonchus contortus 

isolates; Andy Fire and co-workers (Carnegie Institution of Washington, Baltimore) for 

plasmid vectors of the pPD series and plasmid pRF-4. The SAGE data, used in Chapter 4, 

were produced at the Michael Smith Genome Sciences Centre with funding from 

Genome Canada. 

I would like to acknowledge the British Biological Research council, Pfizer Animal Health 

and The Biosciences KTN (formerly Genesis Faraday) for their sponsorship of this 

project. 

Finally, a big thanks to all of the students and staff I now call friends and with whom I 

have spent the last three years drinking tea and having laughs.  



xvi 

Declaration 

The work presented in this thesis was performed entirely by the author except 

where indicated. This thesis contains unique work and will not be submitted for 

any other degree, diploma or qualification at any other university. 

 

 

Steven Laing BVMS (Hons) MRCVS, April 2010. 



xvii 

Definitions/ Abbreviations 

ABZ  Albendazole 

ABZ-SO Albendazole sulphoxide 

ABZ-SO2 Albendazole sulphone 

BH  Benjamini Hochberg 

BSA  Bovine Serum Albumin 

CAR  Constitutive androstane receptor 

CYP  Cytochrome P450 

DTT  Dithiothreitol 

EDTA  Ethlenediaminetetraacetic acid 

EHT  Egg hatch test 

FA  Formic acid 

FAD  Flavin adenine dinucleotide 

FDR  False discovery rate 

FECRT  Faecal egg count reduction test 

FMN  Flavin mononucleotide 

GluCl  Glutamate-gated chloride channel 

GST  Glutathione-s-transferase 

HLM  Human liver microsomes 



xviii 

IVM  Ivermectin 

KOG KOGs are a eukaryote-specific version of the Conserved Orthologous 

Groups (COGs) 

MeCN  Acetonitrile 

MRM  Multiple Reaction Monitoring 

m/z  mass/ charge ratio 

nAChR  nicotinic acetylcholine receptor 

NGM  Nematode growth medium 

PGE  Parasitic gastroenteritis 

PMSF  Phenylmethylsulphonylfluoride 

PPAR  Peroxisome proliferator- activated receptor 

PXR  Pregnane X receptor 

RP  Rank products 

RT-QPCR Real-time quantitative polymerase chain reaction 

TOF  Time of flight (mass spectrometry) 

UGT  UDP-glucuronosyl transferase 

XME  Xenobiotic metabolising enzyme 

 
 



  1 

Chapter 1: Introduction 

1.1 Introduction 

Resistance to commonly used anthelmintic drugs is a major problem in 

veterinary medicine (Getachew et al., 2007; Pomroy, 2006; Gilleard, 2006; 

Kaplan, 2004; Wolstenholme et al., 2004) and is becoming recognised in 

helminth parasites of humans (Osei-Atweneboana et al., 2007; Awadzi et al., 

2004a; Albonico et al., 2002; De et al., 1997; Eberhard et al., 1991). Parasitic 

gastroenteritis is though to cost the UK sheep production industry alone in the 

region of £84 million per year (Nieuwhof and Bishop, 2005). Additionally, it is 

thought that up to one billion people in sub-Saharan Africa, Asia and the 

Americas are affected by helminthoses, the most common being GI nematodes 

(Hotez et al., 2008). In order to maintain the efficacy of the currently available 

anthelmintics, and to aid in the development of novel synergists and 

therapeutics, the molecular mechanisms resulting in resistance must be 

elucidated. However, with the possible exception of the benzimidazoles, where 

genotyping of β-tubulin isotype-1 genes may be diagnostic, convincing evidence 

of conserved population-wide mutations resulting in resistance to the other drug 

classes is lacking (von Samson-Himmelstjerna et al., 2009).  

Metabolism of chemotherapeutics is a common mechanism of resistance in many 

classes of organism. Notably, insecticide resistance has been associated with 

overexpression of many classes of metabolising enzymes and in several cases a 

causative relationship has been proven (Li et al., 2007; Daborn et al., 2002). 

Studies investigating the genetics of anthelmintic resistance have largely 

focussed on mutations in the target gene of the drugs and recently the role of 

ABC transporters such as the PGPs, reviewed by Gilleard (Gilleard, 2006). The 

role of xenobiotic metabolising enzymes (XME) in anthelmintic resistance has 

been largely overlooked in the genomic era, but several recent studies have 

suggested that these pathways could be involved (Cvilink et al., 2009a; Kotze et 

al., 2006a). 
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This study has made use of whole genome microarrays and high performance 

liquid chromatography with tandem mass spectrometry (HPLC-MS) to begin to 

assess XME pathways in nematodes more fully. 

1.2 The emergence of anthelmintic resistance 

Anthelmintic therapy remains the mainstay of control of parasitic disease in both 

human and veterinary medicine. However, resistance to anthelmintic drugs has 

arisen quickly following their clinical application. Resistance to thiabendazole, a 

benzimidazole drug introduced in 1961 as the first widely used anthelmintic in 

veterinary species, was reported in the barber pole nematode of sheep, 

Haemonchus contortus, within a few years of its use (Conway, 1964; Drudge et 

al., 1964). Resistance to all three major drug classes: the benzimidazoles, the 

imidazothiazole- tetrahydropyrimidines and the avermectin- milbemycins (or 

macrocyclic lactones), is now commonplace (Sargison et al., 2007; Gilleard, 

2006; Pomroy, 2006). 

Alleles of genes which confer a resistant phenotype are hypothesised to be 

present within drug susceptible parasite populations at a low frequency (Sargison 

et al., 2007; Le Jambre, 1978). Selection by anthelmintic therapy results in an 

increase in frequency of these alleles until the population becomes sufficiently 

resistant to lead to treatment failure. Although poorly understood, the method 

and frequency of anthelmintic administration is considered to affect the rate at 

which resistance emerges in a parasite population. A recent study investigated 

anthelmintic practice in four sheep flocks in the South-East of Scotland where 

multi-resistant populations of Teladorsagia circumcincta have arisen (Sargison et 

al., 2007). Under-dosing of larger animals and over-frequent dosing were found 

to be a problem on several of the farms. Inadequate treatment of animals newly 

arrived on a farm, which may be harbouring resistant parasites, was also found 

to be a problem. In addition, many of the farms adopted a “dose and move” 

strategy, meaning that the sheep are moved to clean (parasite-free) pasture 

after having been treated with anthelmintic. The major drawback with this 

practice is that the largely anthelmintic susceptible population of eggs and 

larvae left in the original field will die due to the lack of the presence of the 

host. Consequently the in refugia population of parasites, i.e. those on the 
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pasture and not affected by anthelmintic dosing of the host, will consist entirely 

of the progeny of any resistant worms that the sheep were harbouring. Thus the 

selection pressure on the effective population is increased (Sargison et al., 2007; 

van Wyk, 2001). It should be noted that whilst resistance of human parasites is 

not currently recognised as a common clinical problem, the mass dosing 

approach used to treat and prevent diseases such as human onchocerciasis (river 

blindness), applies similar pressures on the parasite population. There are now 

several reports of reduced efficacy of anthelmintics against nematodes of 

humans (Osei-Atweneboana et al., 2007; Awadzi et al., 2004b; Albonico et al., 

2002; De et al., 1997; Eberhard et al., 1988). 

Resistant populations of veterinary parasitic nematodes are widespread. Table 

1-1, modified and updated from Kaplan (2004), summarises the main problems 

with reference to cyathostomes in horses and trichostrongyloid nematodes of 

ruminants (unless otherwise specified): 

 

Drug Hosts with high 
resistance 

Hosts with 
emerging 
resistance 

Major livestock- producing areas 
where drug is still highly effective in 
sheep, goats and horses 

Benzimidazoles Sheep, goats, 
horses 

Cattle None 

Levamisole 
(ruminants) 

Sheep, goats Cattle None 

Pyrantel 
(horses) 

Horses (USA 
only)  

Horses Unknown- few recent studies outside 
USA 

Ivermectin Sheep, goats, 
cattle 

Cattle, horses Horses- worldwide 
Sheep, Goats- Europe, Canada 

Moxidectin Goats Sheep, goats, 
cattle, horses 

Horses- worldwide 
Sheep- most regions 

Table 1-1: Current prevalence of anthelmintic resistance in veterinary species 
Adapted from Kaplan (2004).  

More recently, resistance to pyrantel has been reported in both cyathostomins 

and Parascaris equorum, including in the UK (Lyons et al., 2008b; Comer et al., 

2006). In addition, P. equorum resistance to macrocyclic lactones is now 

widespread (Reinemeyer, 2009; Lyons et al., 2008a; Stoneham et al., 2006). At 

the time of compiling the original table, Kaplan reported that no resistance 

against pyrantel or the macrocyclic lactones was seen in cyathostomin parasites 

of horses. However, there are now several reports of cyathostomin resistance to 

most of the available anthelmintics other than moxidectin (Traversa et al., 
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2009; Edward et al., 2008; Lyons et al., 2008b; von Samson-Himmelstjerna et 

al., 2007). 

1.3 Diagnosis of resistance in field populations 

The accurate diagnosis and quantification of resistance within a parasite 

population is vital so that appropriate treatment can be given on a farm to farm 

basis. Currently, anthelmintic efficacy is assessed using the undifferentiated 

faecal egg count reduction test. This is a crude test using the percentage 

decrease in egg counts taken before and after treatment as an assay of the level 

of resistance in a parasite population (McKenna, 2006). It is not specific to a 

particular parasite species and is insensitive when resistance is emerging. Other 

tests of anthelmintic resistance rely on in vitro exposure of the free living stages 

of parasites to drug. Several parameters can then be assessed such as egg 

hatching (EHT), larval feeding inhibition (LFIA) and larval migration and 

development (Coles et al., 2006; Kotze et al., 2006b; Alvarez-Sanchez et al., 

2005). However, in all cases there is marked variation in the sensitivity of the 

assays between different nematode species. In addition the EHT and larval 

development tests can provide very variable results depending on the operator 

(Coles et al., 2006). Finally, these assays provide no information regarding the 

mechanism of resistance, which may be pertinent in deciding on a therapeutic 

programme. 

A molecular diagnostic tool, testing for the presence of resistance-conferring 

alleles in a population before resistance is clinically apparent, would allow more 

educated treatment protocols to be implemented. Recent work by von Samson-

Himmelstjerna et al. (2009), has suggested that pyrosequencing of β-tubulin 

isotype 1 codon 200 may be used as a diagnostic test of benzimidazole resistance 

in H. contortus, discussed in Section 1.7.2. In order for this to be achieved for 

other anthelmintics, a thorough understanding of both the mechanism of action 

and the molecular mechanism(s) of resistance will be necessary.  
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1.4 Novel chemotherapeutics 

Since the introduction of the macrocyclic lactones in the early 1980s there have 

been no new classes of anthelmintic licensed for use in small ruminants. In 

recent years, the growing problem of anthelmintic resistance has led to 

increased research and interest in the area by several of the major 

pharmaceutical companies. In the coming months two new products are to be 

released. The first to be commercialised will be monepantel, marketed as Zolvix 

by Novartis. Monepantel is an amino-acetonitrile derivative, and is thought to be 

an agonist of a novel nematode–specific nicotinic acetylcholine receptor (nAChR) 

(Rufener et al., 2009b; Kaminsky et al., 2008a). Members of this class have a 

broad spectrum of action and have been shown to be effective against parasite 

isolates resistant to the currently available anthelmintics. The mechanism of 

action was first investigated and mapped to the DEG-3 class of nAChR in 

Caenorhabditis elegans. In vitro exposure of H. contortus larvae to increasing 

doses of monepantel resulted in resistant strains within eight generations. 

Mutations in three nAChR genes within the DEG-3 subfamily were found in the 

resistant strains (Rufener et al., 2009b; Kaminsky et al., 2008b).  

Derquantel (2-deoxyparaherquamide) is a paraherquamide derivative that is to 

be licensed as a drench in combination with abamectin. This class of drug is an 

antagonist of nAChR (Zinser et al., 2002). In Ascaris suum muscle strips 

derquantel is thought to exert its affect through the B-subtype of nAChR, 

distinct from the L-subtype through which levamisole exerts its effect (Qian et 

al., 2006). Interestingly, it is difficult to detect the effects of paraherquamide 

derivatives in C. elegans even at doses of up to 50µM (pers. comm., Dr. Tim 

Geary & Dr. Eileen Coscarelli). The spectrum of activity of the paraherquamide 

derivatives is not as broad as monepantel alone, but in combination with 

abamectin the spectrum is increased and resistant isolates are also effectively 

treated. Derquantel and abamectin will be released in the UK as Startect by 

Pfizer (WAAVP conference 2009).  

In addition to the amino-acetonitrile derivatives and paraherquamide 

derivatives, the cyclooctadepsipeptides have been shown to be active against 

resistant isolates of small ruminant parasites (Harder et al., 2003). Emodepside, 
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a member of this class, has been licensed for use as a wormer in cats and dogs. 

However, due to the expense of production it has not yet been licensed for use 

in ruminants. Emodepside inhibits development, paralyses the pharynx and body 

and stops egg production in C. elegans. It mediates these effects via the 

latrophilin-like receptors, LAT-1 and LAT-2, and the calcium activated potassium 

channel SLO-1 (Guest et al., 2007; Harder et al., 2003). 

The advent of these novel classes of anthelmintic is a welcome relief to the 

small ruminant industry. However, investigation of the mechanism of action of 

monepantel has already shown how readily H. contortus populations could 

become resistant to the drug. It is likely that this will be the case for derquantel 

and emodepside too. In the face of these possibilities it is imperative that 

research continues into the mechanisms by which parasites become resistant to 

all anthelmintics. Only with this level of understanding can appropriate 

diagnostic tests be developed to allow the educated use of new drugs and 

minimise the development of resistance.  

1.5 Alternatives to anthelmintic control 

It has been suggested that parasite control that relies entirely on anthelmintic 

dosing is not sustainable (van Wyk, 2002). Several alternatives or adjuncts to 

chemotherapeutics have been proposed to minimise the impact of parasitic 

gastroenteritis, reviewed by Sayers et al.(2005). Novel grazing management 

strategies such as rotational grazing between cattle and sheep; no dosing before 

moving to clean pasture in order to keep a susceptible in refugia population and 

alternative pasture species have been shown to reduce parasite burden and 

improve weight gain (Niezen et al., 2002; Githigia et al., 2001).  

The use of predacious microfungi such as Duddingtonia flagrans, which traps 

nematode larvae, has had mixed success in improving production parameters. 

Some authors report increase in weight gain and decrease in anaemia in 

parasitized sheep following introduction of the fungi, but others saw no 

statistical improvement (Silva et al., 2009; Epe et al., 2009; Chandrawathani et 

al., 2004; Fontenot et al., 2003). Certain plant extracts have also been shown to 

reduce nematode burden. Recent studies have investigated the use of Zizphus 
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nummularia bark, Acacia nilotica fruit, Maesa lanceolata leaves and fruit, aerial 

parts of Plectranthus punctatus leaves and Artemisia absinthium (Bachaya et 

al., 2009; Tadesse et al., 2009; Tariq et al., 2009). All of these plants were 

found to have varying degrees of anthelmintic potency. However, the active 

compounds in these plants are unknown and further research would be required 

before such plants could be used commercially in this country. In addition, 

resistance to these naturally derived anthelmintics is just as likely to arise as for 

synthesised drugs. 

Breeding sheep for resistance to gastrointestinal parasites is a continued aim of 

many groups and has had some success. Quantitative trait loci for resistance to 

PGE are currently being mapped and assessed (Marshall et al., 2009; Crawford et 

al., 2006; Kahn et al., 2003). In addition, the nutritional status of sheep greatly 

affects susceptibility to parasitic nematodes (Valderrabano et al., 2006). Protein 

supplementation has been shown to improve immunity to several gastrointestinal 

parasites (Sykes et al., 2001; Stear et al., 2000).  

Many of these strategies have been shown to have a positive effect on 

productivity and reduce worm burdens in affected animals. However, whilst they 

may reduce the need for anthelmintic dosing they do not preclude it entirely. 

Therefore, these strategies may only serve to delay the emergence of a resistant 

population and where multi-anthelmintic resistant parasite populations are 

already present, they offer little respite.  

There has been a great deal of research into viable vaccine candidates for 

gastrointestinal nematodes. Bethony et al. (2006) reviewed the available vaccine 

candidates for the blood feeding nematodes of both humans and livestock, such 

as whole irradiated worms and proteins involved in penetration (Hookworm 

species) and blood meal digestion. Several protective antigens for H. contortus 

have been discovered. The most effective single protein to date has been the 

H11 antigen (Andrews et al., 1997; Andrews et al., 1995). This represents a gut 

expressed aminopeptidase and vaccination with the native protein results in up 

to 90% decrease in worm burden. However, trials of recombinant protein 

vaccines have not provided an equivalent protection. The only vaccine against 

any nematode infection currently in use is an irradiated larvae vaccine of 
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Dictyocaulus viviparous, the cause of parasitic bronchitis in cattle. This is 

licensed as Dictol or Huskavac from Intervet (McKeand, 2000). 

The main drawback with any vaccine strategy thus far proposed for the 

prophylaxis of parasitic gastroenteritis (PGE) is the lack of a broad spectrum of 

action. PGE is rarely caused by a single species and anthelmintic drugs are useful 

in their ability to treat many co-infecting parasites simultaneously. In order for a 

single vaccine to have this effect it would need to induce a response against a 

shared antigen or contain antigens from many different species. Therefore, it is 

likely that for the foreseeable future anthelmintic drugs will remain the 

mainstay of control for parasitic helminthoses. 

1.6 C. elegans as a model organism  

Most of the nematodes of veterinary importance are obligatory parasites, making 

them very difficult to work with directly. For example, studies carried out using 

H. contortus are labour intensive due to the necessity of infecting sheep to 

maintain the reproductive stages of the parasite (Le Jambre et al., 2000). It is 

mainly for these reasons that the use of model organisms, which are more easily 

manipulated, has become more common.  

C. elegans is a free-living nematode that was first used in 1965 to study animal 

development and behaviour by Sydney Brenner (Riddle et al., 1997). The 

nematode can be grown on agar plates with a bacterial food source and as such 

is easily manipulated for a variety of experiments. C. elegans was originally used 

to investigate neural anatomy and development. However, with the complete 

sequencing of the C. elegans genome in 1998 and the production of many 

advanced genetic tools, the organism is now used as a model for many different 

processes. These range from the investigation of muscle development in zero-

gravity to the pathogenesis of Alzheimer’s disease in humans (Higashibata et al., 

2006; Link et al., 2003). 

The use of C. elegans as a model for parasitic nematodes has slowly increased 

since it was first used to screen potential anthelmintic compounds in 1981 

(Simpkin et al., 1981). However, there are several areas of parasite specific 

biology, including feeding and host immune system evasion, for which it is not a 



Chapter 1: Introduction  9 

suitable model (Gilleard et al., 2005). The appropriateness of C. elegans as a 

model for parasites can be expected to vary depending on the parasite species 

being investigated. For example, the trichostrongylid parasites have free-living 

larval stages and the adults are non-invasive, meaning they remain in the gut 

lumen of the host and do not migrate through other tissues. These may be 

expected to have more similar biology to the free-living nematode than a filarial 

nematode, such as Dirofilaria immitus, which has no free-living stages would 

(Geary et al., 2001). Phylogenetic analysis of the phylum Nematoda, would also 

suggest that trichostrongylids, including H. contortus, are more closely related 

to C. elegans, see Fig. 1-1 (Dorris et al., 1999). C. elegans’ use as a model is 

likely to be more appropriate for these species. However, transcriptomic 

analysis of C. elegans and 28 parasitic nematodes revealed that even closely 

related nematodes such as H. contortus shared only approximately 60% genome 

similarity to C. elegans (Parkinson et al., 2004). On average 23% of genes were 

unique to the species they were derived from. Therefore, C. elegans will be of 

most use as a model to investigate core biology and conserved pathways. 

Cytochrome P450 genes are ubiquitous, having been found in vertebrates, 

invertebrates, fungi and plants as well as in prokaryotes (Nelson et al., 1996). 

Many of these enzymes have important roles in core biological processes. For 

example C. elegans daf-9 (cyp-22A1) is involved in regulating larval development 

and adult lifespan, possibly through the production of a steroidogenic ligand for 

DAF-12 (Jia et al., 2002). Therefore conservation of function between C. elegans 

and parasitic nematodes may be expected. 

C. elegans has been validated as a model for the core biology of closely related 

nematodes through many different experiments. Transgenic C. elegans have 

successfully been used to drive the expression of an H. contortus pepsinogen, 

under the control of the promoter region of C. elegans cpr-5 (Redmond et al., 

1999). The H. contortus homologue of elt-2, a C. elegans GATA transcription, 

was shown to have conservation of function in the free-living nematode 

(Couthier et al., 2004). However, there are also several examples where 

function is not completely conserved. Transgenes containing LacZ reporters 

under the control of promoter regions of genes from the parasitic nematodes H. 

contortus and T. circumcincta drove expression in a tissue specific manner 

(Britton et al., 1999). However, the timing of expression was not as expected. In 
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Figure 1-1: Phylogenetic relationship between the major phylogenetic clades (I-V) of the 
phylum Nematoda based on SSU RNA sequence 
Adapted from Dorris et al. (1999). The red boxes contain examples of parasitic members of 
the associated order or family. Caenorhabditis elegans belongs to the suborder Rhabditina 
and is clustered in the same phylogenetic clade as Haemonchus contortus and other 
parasites of veterinary and human importance. 
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addition, a recent paper investigating HSP-90, revealed that neither H. contortus 

or Brugia pahangi hsp-90 homologues were able to completely rescue a C. 

elegans daf-21 (hsp-90) null mutant (Gillan et al., 2009).  

Anthelmintic mode of action is an area in which C. elegans has already been very 

useful as a model organism. Experiments with the organism have been 

fundamental in discovering the mechanism of action of all three main groups of 

anthelmintic, as well as many of the novel compounds discussed in Section 1.4 

(Rufener et al., 2009b; Brown et al., 2006; Gilleard, 2006; Dent et al., 2000; 

Cully et al., 1996; Fleming et al., 1996; Driscoll et al., 1989; Brenner et al., 

1974). Importantly, the conclusions drawn from work with C. elegans have 

consistently been validated in parasitic nematode species. C. elegans has also 

been successfully used to elucidate the mechanism of resistance to the 

benzimidazole class of anthelmintics, discussed in Section 1.8 (Kwa et al., 

1993a; Kwa et al., 1993b). However, there has been limited success for the 

avermectins and levamisole. The major problem has been that genes identified 

as sufficient to confer resistance in the model organism have not been found to 

be universally present in resistant parasite populations.  

Clearly any conclusions derived from work with C. elegans must be verified in 

the species of interest. However, the ability to undertake forward genetic 

approaches in the model organism is a powerful tool for the identification of 

genes that confer resistance to anthelmintics. Many parasitic nematode species 

have on-going genome projects in varying states of completion (see 

www.nematode.net; www.sanger.ac.uk/Projects/Helminths/). However, thus 

far none of the gastrointestinal nematodes of veterinary importance have 

completely sequenced genomes and as such the same genetic tools are not 

available. The use of high throughput techniques such as microarrays and SAGE 

analysis allows the entire genome to be investigated, decreasing the chance that 

a novel route of resistance will be missed. It also allows better investigation of 

resistance which is not caused by simple SNP (single nucleotide polymorphism) 

mutation of a gene. Furthermore, it has been noted by many authors that 

genetic techniques such as RNA inhibition, which is now commonly used in C. 

elegans research, may not be so easily applied to parasitic species (Lendner et 

al., 2008; Geldhof et al., 2006).  
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In summary, C. elegans has shown itself to be extremely useful as a model 

organism for many nematode processes. Whilst several aspects of parasite 

biology can be expected to be divergent, the free-living nematode currently 

offers the best available platform to carry out high-throughput genetic 

experiments. Providing that these studies are carried out in parallel with 

experiments in the parasitic species of interest, it is likely that C. elegans will 

continue to be fundamental in the investigation of anthelmintic resistance. 

1.7  Ivermectin 

1.7.1 Mechanism of action 

It is generally accepted that the main mode of action of the drug is brought 

about by irreversibly binding to and activating ligand-gated ion channels, 

particularly glutamate-gated chloride channels (Holden-Dye et al., 2006; Yates 

et al., 2003; Brownlee et al., 1997). Activation results in hyperpolarisation of 

the affected cell and inhibition of neuromuscular stimuli. This process can 

explain most of the effects seen in the whole nematode under experimental 

conditions and in vivo: decreased motility and feeding and a lower reproductive 

rate (Gilleard, 2006; Yates et al., 2003). A direct link between decreased 

fecundity and glutamate-gated chloride channels has yet to be established. 

Glutamate-gated chloride channels (GluCl) are thought to be heteropentomeric 

transmembrane structures. There have been six genes encoding GluCl subunits 

noted in the C. elegans genome: avr-14, avr-15, glc-1, glc-2, glc-3 and glc-4. 

Both avr-14 and avr-15 are thought to encode two subunits each by alternative 

splicing (Dent et al., 2000; Dent et al., 1997). The H. contortus genome contains 

three genes encoding four GluCl subunits. Two of the genes are clear 

homologues of those found in C. elegans, Hc-glc-2 and Hc-avr-14 (Jagannathan 

et al., 1999; Delany et al., 1998). Interestingly, the Hc-avr-14 gene is also 

thought to be alternatively spliced, a feature that is conserved in all nematodes 

in which homologues have been studied (Yates et al., 2003; Jagannathan et al., 

1999). Recent studies have also shown that an Hc-avr-14 transgene is able to 

rescue avr-14 mutations in C. elegans (McCavera et al., 2009). 
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A particular GluCl channel may contain a different combination of subunits 

depending on the species investigated and the anatomical location of the 

channel within a species. This is likely to affect where ivermectin has the 

greatest effect, as binding to different subunits, or combination of subunits, 

differentially activates a channel. For example, C. elegans GluClβ homomeric 

channels, cloned in Xenopus oocytes, are insensitive to ivermectin whereas 

GluClα1 homomeric channels are highly sensitive to ivermectin (Etter et al., 

1996). The pharyngeal muscles of C. elegans are particularly sensitive to the 

effects of ivermectin; this is thought to be dependant on the presence a GluClα2 

subunit encoded by avr-15 (Pemberton et al., 2001; Dent et al., 1997). 

Differences in subunit expression between different species of nematode, results 

in ivermectin having slightly different effects on different parasites (Holden-Dye 

et al., 2006).  

Other proposed targets for ivermectin include GABA receptors, which may play a 

role in the pharyngeal phenotype of ivermectin-exposed Ascaris suum (Brownlee 

et al., 1997). Chick or human α7 nicotinic acetylcholine receptors expressed in 

Xenopus oocytes exhibited sensitivity to ivermectin exposure as did human P2X4 

receptors (Khakh et al., 1999; Krause et al., 1998). A histamine-gated chloride 

channel (HisCl) has been implicated in avermectin sensitivity in Drosophila 

melanogaster (Gisselmann et al., 2002). However, HisCl channels are not present 

in the C. elegans genome. Whilst the GluCl channels are still accepted to be the 

main target of ivermectin in nematodes, it is clear that the mechanism of action 

of the drug is very complex. Therefore, multiple mechanisms of resistance may 

be employed by resistant isolates (Gilleard, 2006; Yates et al., 2003). 

1.7.2 The molecular basis of avermectin resistance in nematodes 

Early theories on the mechanism of ivermectin resistance have focussed on 

mutations of the receptors to which the drug binds. Selection for specific alleles 

of genes encoding several ligand-gated ion channel subunits, including 

glutamate-gated channel subunits, has been noted in ivermectin-resistant strains 

of H. contortus (Gilleard, 2006). Blackhall et al. (1998b) examined the frequency 

of different glutamate-gated chloride channel alpha subunit alleles in unexposed 

and avermectin exposed isolates of H. contortus. They found that one allele was 
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consistently more frequent in drug selected (resistant) strains compared to 

unselected isolates, whilst another was reduced in frequency. This suggests that 

IVM exposure exerts selective pressure on GluCl channels. Njue et al. (2004) 

showed selection for GluCl3α subunit amino acid changes in ivermectin resistant 

Cooperia oncophora and demonstrated that one of these changes, L256F, 

resulted in decreased ivermectin sensitivity in channels expressed in Xenopus 

oocytes. More recently, the same L256F mutation in H. contortus GluClalpha3B 

subunit has been shown to affect ivermectin binding to the channels (McCavera 

et al., 2009). However, in both cases the change in sensitivity of the channels 

was small and a direct relationship between this and the degree of resistance in 

field strains remains to be ascertained.  

P-glycoproteins, members of the ABC transporter family, have also been 

proposed to be under selection pressure in ivermectin exposed strains of H. 

contortus (Sangster et al., 1999; Blackhall et al., 1998a). This was also found to 

be the case in ivermectin-exposed strains of the human parasite O. volvulus 

(Ardelli et al., 2006). In addition, resistant isolates of H. contortus have been 

associated with mutations in β- tubulin alleles; down regulation of dopamine-

gated ion channels and up regulation of thioredoxin genes (Rao et al., 2009; 

Sotirchos et al., 2008; Eng et al., 2006). Whilst all of these studies propose 

plausible mechanisms of resistance, they are, for the most part, based entirely 

on associations with ivermectin exposure or resistance. There has been a dearth 

of work into the functional importance of these polymorphisms and their 

frequency throughout parasitic nematode populations. 

Gill et al. (1998) carried out a relatively simple study comparing differences in 

larval motility and development, as well as response to paraherquamide in three 

different laboratory-induced ivermectin-resistant strains of H. contortus. One of 

the isolates responded as per field-resistant H. contortus isolates, showing 

reduced sensitivity to ivermectin induced inhibition of development and motility 

but increased sensitivity to paraherquamide. The other two strains did not show 

a decrease in sensitivity to avermectin inhibition of development or motility, 

despite requiring a 10- fold greater concentration of ivermectin to kill 95% of the 

adults compared to parent strains. This study clearly shows that multiple 

mechanisms of resistance may be present and that experiments using 

ivermectin-resistant strains created in the laboratory must be interpreted with 
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care as the mechanisms used may be completely different to those used in field 

isolates. 

Several ivermectin-resistant strains of C. elegans have been produced in vitro. 

Mutation of three important glutamate-gated chloride channel subunits 

(GLUClα3, GLUClα2, and GLUClα1) confers a very high level of resistance, EC37 

4264ng/ml (4.86µM) IVM. However, it is interesting to note that mutation of just 

one or two of these subunits results in much lower resistance to ivermectin, EC37 

13.8ng/ml (15.73nM) IVM or less (Dent et al., 2000). Mutations to several other 

genes, not encoding known drug targets, have also been shown to confer 

ivermectin resistance to the nematode. These include innexins, components of 

nematode gap junctions, and Dyf mutants, which are thought to take up less 

ivermectin resulting in decreased sensitivity (Gilleard, 2006). More recently, 

selection of ivermectin-resistant strains of C. elegans produced by ivermectin 

exposure, rather than EMS mutagenesis, has shown that up-regulation of pgps 

and glutathione synthesis activities are associated with ivermectin resistance. 

However, no functional studies were undertaken and the ABC transporter family 

were the only genes to be analysed using real-time QPCR (James et al., 2009).  

In summary, it has been shown in parasitic species that mutations or 

overexpression of many genes may be associated with ivermectin resistance. 

Caenorhabditis elegans has been extremely useful in the initial identification 

and characterisation of many of these mutations. However, no single mutation 

has consistently been found in all ivermectin-resistant parasite populations. The 

functionality of the associated changes has not been assessed within parasite 

species. It seems increasingly likely that multiple mechanisms of resistance to 

ivermectin may be employed by parasites and that these mechanisms may differ 

between and within species. Therefore, further investigation of this complex 

problem will greatly benefit from the use of forward genetic techniques that 

allow an unbiased evaluation of the whole genome of nematodes under selective 

pressure from anthelmintics.  
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1.8 Albendazole 

1.8.1 Mechanism of action  

Albendazole belongs to the benzimidazole (BZ) class of anthelmintics. The major 

drug target of this group, β-tubulins, have been well characterised in many 

species including C. elegans and parasitic nematodes (Driscoll et al., 1989; Lacey 

et al., 1986; Laclette et al., 1980; Ireland et al., 1979). Driscoll et al. (1989) 

first mapped BZ resistance to the ben-1, β-tubulin, gene in C. elegans by 

creating resistant mutants with deletions in that gene. Several years later β-

tubulin was shown to be the target of the BZ drug group in H. contortus by 

showing that tubulin genes from the parasite could restore sensitivity when 

expressed in ben-1 mutants of C. elegans (Kwa et al., 1995). By binding to 

tubulins the BZs are postulated to inhibit polymerisation and the formation of 

microtubules, primarily in the gut. The downstream effects of this process have 

been studied in H. contortus and result in inhibition of egg hatching, slowed 

development and flaccid paralysis of the nematodes (Jasmer et al., 2000).  

1.8.2 The molecular basis of benzimidazole resistance in 

nematodes 

The mechanism of action of the benzimidazole drugs appears to be far less 

complex than that of the avermectins. Mutations in the drug target, β-tubulin, 

have generally been accepted as the major mechanism of resistance. Driscoll et 

al. (1989) used EMS mutagenesis to create several BZ-resistant strains of C. 

elegans. The resistance conferring mutations in all of these strains was mapped 

to the β-tubulin gene, ben-1. Following that it was discovered that a 

phenylalanine to tyrosine substitution at position 200 of the isotype-1 β-tubulin 

gene was consistently present in BZ-resistant strains of H. contortus (Kwa et al., 

1993a; Kwa et al., 1993b). The functional importance of these mutations was 

confirmed by heterologous expression of H. contortus β-tubulin alleles in 

transgenic C. elegans (Kwa et al., 1995). Mutations of homologous tubulin genes 

have been associated with BZ resistance in many other parasitic nematode 

species including Cooperia oncophora, Teladorsagia circumcincta and 

Trichostrongylus colubriformis (Winterrowd et al., 2003; Silvestre et al., 2002; 
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Grant et al., 1996). Importantly, a recent study of a BZ resistant population of 

Trichostrongylus axei, carrying the F200Y mutation, has revealed that there was 

no reversion to wild-type genotype following a period of 7 years with no 

exposure to the drug (Palcy et al., 2008). This suggests that this mutation can 

occur with no fitness cost to the nematode and that once BZ-resistant 

populations of nematodes are present on a farm they are likely to remain so. 

Recent research has proposed that other mutations in the β-tubulin protein may 

also be able to confer resistance to the BZs. These include glutamic acid to 

alanine substitutions at codon 198 in H. contortus and Teladorsagia circumcincta 

and phenylalanine to tyrosine substitutions at codon 167 in H. contortus, T. 

circumcincta and cyathostomin species (Pers. comm., Dr. E. Redman; Rufener et 

al., 2009a; Hodgkinson et al., 2008; Silvestre et al., 2002). Interestingly, 

benzimidazole resistant strains of Ancylostoma caninum, Ancylostoma duodenale 

and Necator americanus do not appear to be associated with mutations of 

tubulin genes at the usual codons (167 and 200) (Schwenkenbecher et al., 2007). 

In addition, BZ-resistant strains of the liver fluke Fasciola hepatica do not 

appear to be consistently associated with any mutations of β-tubulin genes (Ryan 

et al., 2008). 

Further evidence that multiple mechanisms of resistance to benzimidazoles may 

be employed came from von Samson- Himmelstjerna et al. (2009) who compared 

SNP frequency to thiabendazole resistance in different populations of 

Haemonchus contortus, see Fig. 1-2. This study showed that populations in 

which the susceptible TTC allele at codon 200 was not present, were all 

resistant to thiabendazole. However, the level of resistance varied greatly. In 

several circumstances, the variation between isolates classed as resistant was 

greater than that between some resistant and susceptible isolates. It is possible 

that these differences in resistance result from combinations of mutations in the 

β-tubulin gene. However, there are increasing reports of BZ resistance being 

associated with other mechanisms such as metabolism of the drugs and changes 

in p-glycoprotein allele frequency. Certainly, in the case of triclabendazole 

resistance in Fasciola hepatica recent studies suggest that metabolism of the 

drug to an inactive form by the fluke is a mechanism of resistance (Devine et 

al., 2009; Blackhall et al., 2008; Mottier et al., 2006).  
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In summary, whilst the mechanism of resistance to the benzimidazoles has been 

considered to be “solved”, recent research suggests that the situation may be 

more complex. von Samson- Himmelstjerna et al.(2009) report that β-tubulin 

codon 200 SNPs may be sufficient to diagnose an H. contortus population as 

resistant or susceptible. However, this classification may be rather crude, as it is 

not fully informative of the level of resistance. By examining other mechanisms 

of resistance involved it may be possible to propose protocols that can revert 

populations classified as resistant back to susceptibility.  
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Figure 1-2: Codon 200 TTC frequency in H. contortus β-tubulin isotype 1 gene related to 
thiabendazole (TBZ) sensitivity 
Adapted from von Samson-Himmelstjerna et al. 2009. Populations with 100% TTC allele at 
codon 200 are always susceptible (plotted below the horizontal dashed line). However, the 
difference in TBZ EC50 between susceptible and resistant isolates (red arrow) is much 
smaller than between certain resistant isolates (green arrow). 
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1.9 Drug metabolism 

1.9.1 Overview 

Drug metabolism has been widely researched in humans due to the great effect 

this has on the therapeutic efficacy and toxicity of drugs (de Groot, 2006; 

Guengerich, 2006; Wells et al., 2004). Enzymes involved in metabolism of toxins 

or drugs have historically been divided into two classes: the phase I enzymes, 

which serve to “functionalise” their substrate (i.e. add an active group such as a 

hydroxyl group to the substrate); and the phase II enzymes, which make use of 

the functional groups to conjugate the substrate, thus making it more polar and 

more easily excreted (Lindblom et al., 2006; Rang et al., 1999). ABC 

transporters, such as the p-glycoproteins, which aid in transporting the 

conjugated drug out of the cell, are sometimes referred to as phase III 

metabolism. 

Many components of drug metabolism pathways are inducible upon exposure to 

their substrates, see Fig. 1-3. In this way the production of drug metabolising 

enzymes can be increased when they are needed. Although enzymes such as the 

cytochrome P450s may have a broad spectrum of activity, it is generally the case 

that a substrate will induce the up-regulation of enzymes specifically involved in 

the breakdown of the substrate. In C. elegans and other species, transcription of 

drug metabolising enzymes is regulated by members of the nuclear hormone 

receptor superfamily (Lindblom et al., 2006). This is not only biologically 

important, but provides an interesting route to examine the possible 

mechanisms of metabolism of specific drugs. Using a whole genome microarray 

or RT-QPCR approach, it should be possible to identify enzymes potentially 

involved in xenobiotic metabolism due to their up-regulation following exposure 

to the xenobiotic (Rodriguez-Antona et al., 2000). There have been several 

studies using C. elegans to investigate the response to environmental xenobiotics 

or toxins using these techniques (Lewis et al., 2009; Hasegawa et al., 2008; 

Lindblom et al., 2006; Reichert et al., 2005). Reichert and Menzel (2005) 

assessed changes in transcription in response to exposure to atrazine (an 

herbicide), clofibrate (active ingredient in certain antidiuretic and 

antihyperlipidaemic drugs), fluoranthene and DES. The results showed that over 
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203 genes were over-expressed in response to the various xenobiotics, including 

nine cytochrome P450 genes: cyp-35A1, 35A2, 35C1, 14A5, 37B1, 35B2, 35B1, 

35A5 and 22A1. In addition, several other drug metabolising enzymes were 

induced along with genes of the collagen family and c-type lectins (involved in 

immune defence). However, only 26 of these genes could be induced by more 

than one of the tested compounds, showing the specificity of the response to a 

specific xenobiotic.  
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Figure 1-3: Schematic of xenobiotic metabolising enzyme induction 
Adapted from Lindblom and Dodd (2006). Xenobiotics or endogenous toxins are proposed 
to bind to nuclear receptors thus allowing them to cross the nuclear membrane and up-
regulate transcription of XME. Phase I enzymes, such as cytochrome P450s and flavin 
monooxygenases, and/ or phase II enzymes, such as glutathione-s-transferases and UDP-
glucuronosyl transferases, metabolise the toxin to inactive forms or to allow efflux through 
ABC transporters such as the p-glycoproteins. 

 

1.9.2 Nematode genomes encode enzymes potentially involved in 

drug metabolism 

The cytochrome P450s (CYPs) are an example of phase 1 enzymes involved in 

oxidation/reduction reactions. They are a large, ubiquitous family of haem 

containing enzymes, which are separated into families and subfamilies based on 



Chapter 1: Introduction  21 

amino acid sequence identity. The CYPs have a wide substrate range and are 

important in many constitutive metabolic pathways as well as in the metabolism 

of xenobiotics. In fact, members of the cytochrome P450 family are drug targets 

themselves in several infectious agents including many fungi and in 

Mycobacterium tuberculosis, the bacterial cause of tuberculosis (McLean et al., 

2007; Mellado et al., 2007).  

The human genome contains 57 P450s, but 90% of CYP drug metabolism can be 

accounted for by just five of these (Guengerich, 2006). Despite this, the 

cytochrome P450s metabolise more drugs than any other enzyme system in 

humans (de Groot, 2006). Until recently nematodes were thought to lack the 

cytochrome P450 family (Barrett, 1997; Precious et al., 1989a). However, the 

genome of C. elegans contains 75 full length cytochrome P450 genes, most of 

which belong to the CYP2, CYP3 and CYP4 families, which are involved in 

xenobiotic metabolism in humans (Gotoh, 1998). The function of most of these 

genes is unknown, but several are associated with the dauer pathway and others 

are involved in fatty acid metabolism and eggshell development (Benenati et al., 

2009; Kulas et al., 2008; Motola et al., 2006). Cytochrome P450 enzymes are 

found in the smooth endoplasmic reticulum of cells and as such are associated 

with the microsomal fraction. Identification of these proteins in microsome 

preparations relies on the characteristic peak in absorbance (soret peak) at 

450nm of the carbon monoxide-complexed, reduced protein. Interestingly, Kulas 

et al. (2008) recently reported the first convincing 450nm soret peak in C. 

elegans derived microsomal protein. Spectral evidence of P450 proteins in 

nematode derived microsomes have proved difficult to demonstrate due to a 

large peak at approximately 420nm that appears to be present in most nematode 

microsomes tested. This peak has been proposed to represent a “nemo-protein”, 

which has unknown activity and function (Rocha-e-Silva TA et al., 2001). 

Certain members of the cytochrome P450 family of C. elegans have been shown 

to be inducible following exposure to xenobiotics (Menzel et al., 2005; Reichert 

et al., 2005). Recent studies by Schafer et al. (2009) used RNAi of cyp genes to 

show that members of the CYP-14A family and CYP-34A6 were directly involved 

in C. elegans metabolism of PCB52, an example of the environmental pollutants 

polychlorinated biphenyls. Typical CYP activity, assessed by enzymatic assays, 

was found to be present in homogenates of Heligmosomoides polygyrus, a 
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parasite of the rodent small intestine, H. contortus and A. suum (Solana et al., 

2001; Kotze, 1999; Kotze, 1997; Kerboeuf et al., 1995). Extracts of A. suum have 

been found to be able to oxidise albendazole to albendazole sulphoxide (Solana 

et al., 2001). However, no work has been presented comparing the relative rates 

of ABZ metabolism between resistant and susceptible isolates. Additionally, 

recent work on the H. contortus genome has uncovered the presence of a large 

family of cytochrome P450 genes to be present in this nematode (pers. comm., 

R. Laing and Dr. J. S. Gilleard).  

The peroxidases represent another group of xenobiotic metabolising enzymes 

that are potentially involved in xenobiotic metabolism. The presence of 

peroxidases in parasitic nematodes is accepted and their activity is thought to 

help protect the nematode from both endogenous reactive oxygen species and 

those produced by the host immune system (Kotze et al., 2001). Flavin 

containing monooxygenases and several reductase and hydrolase enzymes could 

also contribute to xenobiotic metabolism. The C. elegans genome contains genes 

thought to encode homologues of each of these enzymes. Enzyme activity has 

been noted in several parasitic nematodes: carbonyl group reduction activities, 

such as those catalysed by short chain dehydrogenases, have been noted in H. 

contortus, against several model substrates (Cvilink et al., 2008). In addition, 

Ascaris lumbricoides, a parasitic roundworm of man, has been found to have 

reductive activity against azo and nitro compounds as well as hydrolytic activity 

against several substrates (Precious et al., 1989b). However, the specific 

identity of the enzymes and their function within parasitic nematodes is largely 

unknown (Cvilink et al., 2009a).  

Phase 2 enzymes include uridine dinucleotide phosphate- glucuronosyl 

transferases (UGT), glutathione-s-transferases (GST), N-acetyl transferases, 

methyltransferases and sulphotransferases. After the cytochrome P450s, the 

UGTs are the enzyme family most commonly involved in xenobiotic metabolism 

in humans (Guengerich, 2006; Wells et al., 2004). Little is known about the 

function of these enzymes in nematodes. However, the C. elegans genome 

contains 65 genes of this family, several of which have been shown to be 

induced upon exposure to xenobiotics (Lewis et al., 2009; Reichert et al., 2005).  
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The GST enzymes have been more fully characterised in both C. elegans and 

parasitic nematodes due to their role in oxidative stress adaptation and in 

surviving the host immune response. The family is organised into several sub-

types based upon amino acid sequence and homologues are present in all 

nematode species (Cvilink et al., 2009a). The C. elegans genome contains 48 

putative gst genes. Several of these may belong to a nematode specific class, of 

which H. contortus is known to have two representatives, Hc-GST1 and Hc-GSTE 

(Lindblom et al., 2006; Campbell et al., 2001). 

GST enzymes do not function solely by conjugating glutathione to substrates. 

They may also act as peroxidases or bind substrates without biotransformation 

(Salinas et al., 1999). They are involved in many constitutive biological 

processes and their function may not be conserved between species. For 

example the H. contortus and Ancylostoma caninum GSTs, Hc-GST1 and Ac-

GST1, have been shown to bind haematin and are thought to be involved in 

blood meal digestion (Zhan et al., 2005; van Rossum et al., 2004). As such they 

have attracted a great deal of attention as potential vaccine candidates. C. 

elegans is not a blood feeder and the homologous GST protein does not bind 

haematin. However, other C. elegans GSTs have been shown to be able to bind 

haematin and GST-19 production is increased at high concentrations of haem 

(Perally et al., 2008). Nematodes are unable to synthesise haem and it is 

thought that these GSTs may be important in trafficking of the potentially toxic 

haem molecule. GST sequence and activity analysis have been undertaken in 

Ascaris suum (parasitic nematode of pigs), where activity of the enzyme has 

been localised to the intestine, suggesting a role in xenobiotic metabolism 

(Liebau et al., 1997). Both Onchocerca volvulus and Ascaridia galli (parasitic 

nematode of poultry) have GSTs involved in prostaglandin synthesis. One of the 

three O. volvulus GST genes, OvGST1, has been shown to be protective against 

oxidative stress in transgenic C. elegans (Sommer et al., 2003; Kampkotter et 

al., 2003; Meyer et al., 1996). GST activity has been shown to be inducible in 

Setaria cervi (parasite of ruminants) in response to exposure to phenobarbital, 

diethyl carbamazine and butylated hydroxyanisole (Gupta et al., 2005). 

Phenobarbital was also able to induce GST production in cestodes In addition, 

the presence of GSTs has been reported in Heligmosomoides polygyrus bakeri 

(parasitic nematode of rodents); Wuchereria bancrofti and Brugia malayi 
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(filarial parasites of man) and Necator americanus (human hookworm); reviewed 

by Cvilink et al. (Cvilink et al., 2009a). Analysis of GST activity in most cases 

was carried out using standardised enzyme assays, but due to the wide substrate 

specificities of this class, the specific function of many of these enzymes within 

the organisms is not known. Many GSTs have been shown to have potent 

antioxidant activities. Those with characterised prostaglandin synthesis activity, 

isolated from O. volvulus and A. galli, may be involved in direct modulation of 

the host immune response (Sommer et al., 2003; Meyer et al., 1996; Brophy et 

al., 1995; Brophy et al., 1994). Exposure to xenobiotics has been shown to 

induce gst gene expression in C. elegans as well as several of the parasites 

described above (Lewis et al., 2009; Hasegawa et al., 2008; Custodia et al., 

2001). The functional importance of GST induction has not been elucidated. 

However, there is substantial evidence that these proteins can bind to 

anthelmintics, even if they do not conjugate glutathione to the drugs (Brophy 

and Barrett, 1990). This could explain the inhibition of activity of recombinant 

GST, from A. suum and O. volvulus, in the presence of several anthelmintic 

compounds (Fakae et al., 2000; Liebau et al., 1997). Albendazole had limited 

inhibitory affect on recombinant A. suum GST1, with an IC50 of 520 µM.  

There are limited reports in the literature of other conjugation systems in 

parasitic nematodes, though all of the enzyme systems listed above are 

putatively present in the C. elegans genome. N-acetyl transferase activity has 

been detected in Brugia pahangi, A. galli, A. suum and O. volvulus. However, 

this activity has only been detected against naturally occurring diamines, not 

against exogenous compounds. Sulphotransferase activity has been noted in C. 

elegans, again involving endogenous structural proteins (Cvilink et al., 2009a). It 

is clear that these enzyme systems have been under researched in the nematode 

family. The presence of these enzymes in the C. elegans genome suggests that 

they must at least perform constitutive biological functions. The similarity of 

many therapeutic compounds to naturally occurring compounds would suggest 

that these could also be substrates for the same enzymes.  
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1.9.3 Xenobiotic metabolising enzymes associated with drug 

resistance 

1.9.3.1 Phase I enzymes 

Daborn et al. (2002) reported that overexpression of a single P450 allele, 

Cyp6g1, is sufficient to result in a DDT resistant phenotype in Drosophila 

melanogaster. The study made use of microarrays carrying only cytochrome P450 

probesets, which were hybridised with whole organism cDNA from DDT resistant 

and susceptible strains of D. melanogaster. Results from these experiments were 

then quantified using real-time QPCR. In the resistant strain Cyp6g1 alone was 

over-expressed 10 to 100-fold compared to two susceptible strains. Sequencing 

of the DDT-resistant allele, in two different resistant strains, suggested that 

overexpression of the Cyp6g1 gene was due to insertion of a 5′-Accord 

transposable element. In addition, the same Accord element was found in all 

DDT-resistant field strains tested (a total of 20) and exhibited local linkage 

disequilibrium. This suggests that the resistant mutation originated from a single 

event that has since spread globally. Overexpression of cyp6g1 in a susceptible 

D. melanogaster background was proved to be sufficient to confer DDT 

resistance (Daborn et al., 2002). The catalytic activity of CYP6G1 against DDT 

and imidacloprid has recently been defined using heterologous expression 

(Joussen et al., 2008). DDT was converted to the inactive compound DDD by 

dechlorination and imidacloprid was hydroxylated to at least two metabolites.  

Overexpression of cytochrome P450 genes has been associated with insecticide 

resistance in many other insect species. These include Anopheles funestus and 

Anopheles gambiae, both important vectors of malaria; Aedes aegypti, the 

mosquito vector of yellow fever and dengue fever; Bemisia tabaci, a whitefly 

that is an important causes of crop destruction; and house flies (Marcombe et 

al., 2009; Amenya et al., 2008; Djouaka et al., 2008; Karunker et al., 2008; Zhu 

et al., 2008a). In addition, resistance of the ticks Boophilus microplus and 

Rhipicephalus bursa to various acaracides has also been associated with 

cytochrome P450 activity (Rosario-Cruz et al., 2009; Villarino et al., 2002). In 

each case the actual cytochrome genes involved are varied. Recent work has 

shown that while insecticide resistance in D. melanogaster in field populations is 
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associated with cyp6g1, overexpression of several other cyp genes could also 

result in resistance (Daborn et al., 2007). Ffrench-Constant et al. (2004) have 

suggested cytochrome P450s with broad substrate specificities may be 

preferentially up-regulated in field strains as they allow for resistance to 

multiple drugs. Interestingly, Schlenke et al. (2004) reported that a Doc 

transposable element was found 200bp upstream of the cyp6g1 gene in eight 

Californian isolates of Drosophila simulans. These isolates were shown to be 

more resistant to DDT than isolates without the insertion. This suggests that a 

very similar mechanism of resistance may have evolved in completely separate 

populations, which were under similar selective pressure. It is important to note 

that most of the reports described above are just associations. Other than 

CYP6G1, CYP6A2 and CYP12D1 the activity of very few of these cytochrome 

P450s against insecticides has been defined (Giraudo et al., 2009). Intriguingly, 

the mechanism of overexpression of CYPs associated with insecticide resistance 

has thus far only been found to be due to up-regulation of specific genes, due to 

mutations in the cis- or trans- regulatory regions, rather than gene amplification 

events (Li et al., 2007). 

The avermectins are used to treat both endoparasites and ectoparasites and 

resistance of several strains of insect to this drug class has been reported. In 

some cases this is thought to be associated with monooxygenation of the drugs. 

Piperonyl butoxide, a potent inhibitor of CYPs, was shown to be highly 

synergistic with abamectin in both a mutagenised resistant strain and a resistant 

strain created by abamectin selection of the Colorado potato beetle, 

Leptinotarsa decemlineata (Clark et al., 1995). In the same strains, cytochrome 

P450 content was found to be between 1.6 fold and 1.9 fold higher than that of 

susceptible strains. Significantly higher levels of the abamectin metabolites 24-

desmethyl abamectin, 24-hydroxyabamectin and an unknown metabolite were 

found in the excrement of resistant strains compared to susceptible strains. 

However, general oxidase substrate assays did not find any increase in activity, 

suggesting that a specific cytochrome P450 was overexpressed. The same 

experiments revealed a strong association between increased carboxylesterase 

activity and abamectin resistance. Similar associations have also been noted in 

abamectin resistant house flies (M. domestica), but no PBO synergism suggestive 
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of monooxygenase derived resistance was noted in abamectin resistant two-

spotted spider mites (Tetranychus urticae) (Clark et al., 1995). 

Mutations in the catalytic site and overexpression of esterase genes have both 

been shown to be involved in insecticide resistance. In the Australian blow-fly, 

Lucilia caprine, and the mosquito, Culex pipiens, single amino acid 

replacements from glycine to aspartic acid in the active sites of enzyme E3 and 

the acetylcholine esterase-1 protein respectively result in resistance to 

organophosphates (Weill et al., 2003; Newcomb et al., 1997). This is thought to 

occur via increased hydrolytic activity against the OP drugs. Insecticide 

resistance in C. pipiens and the aphid Myzus persicae may also be caused by 

overexpression of esterase genes (Field et al., 1998; Raymond et al., 1998). In 

addition, recent studies in lab selected organophosphate resistant strains of A. 

aegypti suggested that overexpression of several esterases and GSTs may be 

involved (Melo-Santos et al., 2009). 

The malarial parasites Plasmodium falciparum and Plasmodium berghei have 

become resistant to several of the drugs used to treat them. For the most part 

resistance to quinolone drugs has been associated with mutations in or increased 

expression of transport proteins such as MDR1 and PFCRT (Roepe, 2009). 

However, this is not sufficient to explain all examples of resistance developed in 

laboratory and field strains. Resistance to chloroquine, a 4-aminoquinolone drug 

used to treat malaria has been associated with increased CYP concentration, 

activities to standard substrates and cyp mRNA (Surolia et al., 1993; Ndifor et 

al., 1990). Increased chloroquine sensitivity of P. falciparum has been noted 

following exposure in combination with several P450 inhibitors in vitro. In 

addition, in vivo sensitivity of P. berghei to chloroquine was increased in 

combination with the P450 inhibitor cimetidine (Ndifor et al., 1993). However, 

other studies have found that was not always the case. Paciorkowski et al. 

(1997) reported that whilst cimetidine had clear synergistic effects in 

combination with both chloroquine and pyrimethamine, another P450 inhibitor, 

proadifen, showed no synergism, or caused antagonism of the drugs. This may be 

due to inhibition of specific CYP isoforms, but could also be due to cimetidine 

exerting its synergistic effect via another mechanism than P450 inhibition. P. 

falciparum strains are able to metabolise mefloquine, another antimalarial drug, 
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but no difference was found in the P450 content or metabolic rate between 

resistant and susceptible strains (Na-Bangchang et al., 2007).  

Resistance of certain trypanosome species has been related to enhanced 

metabolic processes. Portal et al. (2008) have reported that transgenic 

overexpression of a cytochrome P450 reductase (CPR) enzyme may increase 

resistance to benznidazole and to a lesser extent nifurtinox. CPR enzymes 

represent the rate limiting step in many CYP reactions. They serve to reduce the 

CYP enzyme back to its functional state following interaction with its substrate. 

By using transgenic trypanosome CPR enzymes in combination with rat 

microsome derived CYPS, Portal et al. (2008) were able to prove that these 

enzymes supported CYP mediated reactions. This represents an important 

discovery as CPR enzymes may interact with many different CYP isoforms. Thus 

by over-expressing a single CPR the activities of several CYP reactions may be 

enhanced.  

The azoles represent a group of antifungal drugs which target the ergosterol 

synthesis pathway by inhibiting the action of 14-α-sterol demethylase, a 

cytochrome P450 enzyme. Azole resistant strains of Aspergillus fumigatus have 

been associated with overexpression of the cyp51A gene. Studies suggest that a 

mutation in the coding part of the gene and the promoter region are required to 

convey high level resistance (Mellado et al., 2007). Overexpression of 

cytochrome P450s homologous to the cyp51 gene in Candida spp. has also been 

associated with azole resistance. However, this represents a different 

mechanism of resistance to those discussed thus far as the CYP is the target of 

the drug class. Overexpression of cyp51A presumably allows the normal function 

of the enzyme, as no evidence of CYP51 mediated metabolism of azole drugs has 

been presented. 

Antimicrobials represent the largest group of drugs specifically used to treat 

infectious agents. There are many different classes of drug available, but 

unfortunately microbe resistance to these drugs is widespread. Metabolism of 

antimicrobial agents to inactive forms is by far the most common mechanism of 

bacterial resistance (Harbottle et al., 2006). There are several incidences of 

redox mechanisms being involved. The best described is the presence of the tetx 

gene which encodes an oxygen-requiring flavoprotein active against tetracycline 
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(Wright, 2005). Interestingly, this gene was discovered in a transposon of an 

obligate anaerobe bacterium, Bacteroides fragilis. Redox enzymes have also 

been discovered in Rhodococcus equi, active against rifampicin, and 

Streptomyces virginae, which protects the bacterium from virginiamycin M1, an 

antibiotic produced by the bacterium itself. There are also several examples of 

hydrolase enzymes. The most well-known being the β-lactamases that cleave the 

lactam ring of penicillin antibiotics. Enzymatic mechanisms of resistance to 

antimicrobials are reviewed by Wright, 2005. Conjugation reactions represent 

the most common mechanism of resistance to antibiotics and are described in 

Section 1.9.3.2.  

There is growing evidence to suggest that flavin monooxygenases (FMOs) may be 

involved in triclabendazole resistance in the liver fluke Fasciola hepatica. Unlike 

benzimidazole resistance in most nematodes, resistant fluke isolates have none 

of the expected mutations in β-tubulin genes (Brennan et al., 2007). F. hepatica 

has been shown to be able to carry out sulphoxidation of triclabendazole to the 

active metabolite triclabendazole sulphoxide and to produce low levels of the 

inactive metabolite triclabendazole sulphone. Robinson et al. (2004) 

demonstrated that production of the inactive TBZ-SO2 was on average 20.29% 

greater in resistant Sligo isolates compared to susceptible Cullompton isolates. 

Studies using P450 inhibitors such as piperonyl butoxide and FMO inhibitors such 

as methimazole, suggest that whilst both enzyme systems may be involved in 

this process, the FMOs are more important (Alvarez et al., 2005). A recent study 

by Devine et al. (2009) demonstrated an increase in disruption of the tegument 

of the resistant Oberon isolate of F. hepatica following exposure to both TBZ and 

TBZ-sulphoxide when coincubated with methimazole (Devine et al., 2009). 

Interestingly, coincubation of the susceptible Cullompton isolate with 

methimazole and the drugs appeared to decrease disruption compared to the 

incubations with TBZ and TBZ-SO alone. F. hepatica does not have an annotated 

genome, thus the individual genes that may be involved have not been identified 

and further studies will be necessary to define molecular nature of 

triclabendazole resistance. 

Oxidase activities have been investigated in anthelmintic resistant and 

susceptible strains of H. contortus (Kotze, 2000; Kotze, 1997). No differences in 

activity were noted, but the assays used examined only aldrin epoxide (AE) 
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activity and 7-ethoxycoumarin-O-deethylase (ECOD). These activities are 

thought to be associated with CYP2B/ CYP3A (AE) and CYP1A1/ 2B1 (ECOD) 

activities. H. contortus microsomes were found to be inactive against several 

other cytochrome substrates standardised with human microsomes. Given the 

large family of cytochrome P450s present in the H. contortus genome it is likely 

that the enzymes are present but simply have different substrate specificities. 

Alvinerie et al. (2001) have shown that H. contortus is capable of producing a 

P450 derived metabolite of moxidectin. In contrast, earlier studies investigating 

H. contortus metabolism of closantel, using reverse-phase HPLC and C14 labelled 

closantel, revealed no metabolites in either resistant or susceptible isolates 

(Rothwell et al., 1997). However, in resistant isolates, 40-95% of radioactivity 

was associated with the closantel peak. This technique may not have detected 

very small concentrations of metabolite, which may still be physiologically 

important. 

Differences in esterase content or activity between resistant and susceptible 

nematodes have been noted by several groups (Gimenez-Pardo et al., 2004; 

Gimenez-Pardo et al., 2003; Sutherland et al., 1993; Echevarria et al., 1992). 

Gimenez-Pardo et al. (2003) used substrate assays to show that cholinesterase 

activities were six times higher in a resistant H. contortus isolate compared to a 

susceptible isolate. However, these experiments were only carried out on one 

resistant and one susceptible isolate and the functional importance of these 

differences remains to be assessed. Similar increases in acetylcholine esterase 

activity were found in benzimidazole resistant isolates of H. contortus, T. 

circumcincta and T. colubriformis (Sutherland et al., 1993). 

Compared to the plethora of data concerning the monooxygenase enzymes of 

insects and bacteria, there has been a dearth of research investigating these 

pathways in parasites. As can be seen, several studies have suggested strong 

associations between resistance and overexpression of the enzyme systems, but 

complete characterisation of the activity of the enzymes is lacking. In addition, 

the mechanisms underlying overexpression of metabolising genes have not been 

investigated in the nematode phylum. However, transposable elements are very 

common in C. elegans (Witherspoon et al., 2003; Le et al., 2001) and the 

genomes of parasitic nematodes are likely to contain many transposable 

elements as suggested by analysis of the genome of Brugia malayi and H. 
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contortus (pers. comm., R. Laing; Underwood et al., 1999). It is therefore 

possible that a disruption of the normal promoter region of a CYP or other XME 

could be involved in up-regulation of gene expression resulting in anthelmintic 

resistance in nematodes.  

1.9.3.2 Phase II (conjugation) enzymes 

As was previously discussed, the glutathione-s-transferases are known to be 

extremely important in protection from reactive oxygen species. Many 

chemotherapeutics rely on creation of these radicals to kill infectious agents. 

Therefore, it is not surprising that up-regulation or enhanced activity of these 

enzymes has been associated with drug resistance.  

Overexpression of GST enzymes has been associated with insect resistance to 

organophosphates, DDT and pyrethroids. In this role GSTs do not always act to 

conjugate the drugs. DDT resistance in Anopheles gambiae, Aedes aegypti and D. 

melanogaster may be mediated by a dehydrochlorination reaction catalysed by 

GST enzymes which use glutathione as a co-factor. Pyrethroid resistance has also 

been associated with GST overexpression in both Nilaparvata lugens, the brown 

planthopper, and in A. aegypti. In addition, recent studies have shown 

pyrethroid resistant strains of the plant bollworm, Helicoverpa armigera, to be 

associated with increased oxidase activity and GST activity (Omer et al., 2009). 

GSTs do not directly metabolise pyrethroids, but instead may be involved in 

binding and sequestering the drugs or in detoxification of lipid peroxidation 

products produced by the action of the drug (Li et al., 2007). In contrast to the 

situation with cytochrome P450s, overexpression of GST enzymes associated with 

insecticide resistance may be caused by gene amplification events, as occurs 

with Md-GSTD3 in M. domestica, or by up-regulation of specific genes, as with 

Aa-GSTD1 and Aa-GSTE2 in A. aegypti and Ag-GSTE2 in A. gambiae (Ranson et 

al., 2001; Zhou et al., 1997; Grant et al., 1992).  

Diethyl maleate, which binds glutathione, has also been shown to have 

synergistic effects in combination with diazinon in the cattle tick Boophilus 

microplus (Li et al., 2003a). This may suggest that GST activity is involved in 

resistance to diazinon, but further functional assays were not undertaken. 
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Direct interaction of UGTs, another family of conjugating enzymes, with 

insecticide drugs has not thus far been investigated. However, a microarray 

experiment carried out by Vontas et al. (2005) found several conjugating 

enzymes to be up-regulated following permethrin exposure of resistant strains of 

A. gambiae. These included several members of the UDP-glucuronosyl 

transferase family. Similarly, three UGT genes were found to be up-regulated in 

DDT resistant D. melanogaster compared to susceptible strains (Pedra et al., 

2004).  

The mechanisms behind the resistance of Leishmania spp, the protozoal agents 

which cause cutaneous and visceral leishmaniasis, to many of the compounds 

used to treat it have not been greatly researched (Croft et al., 2006). The most 

commonly used drugs are the antimonials, including meglumine antimonate and 

sodium stibogluconate, which may act by interfering with glycolysis and fatty 

acid β-oxidation. Additionally, these drugs may decrease thiol content (of which 

glutathione is an example) in the amastigote thus reducing the resistance of the 

parasite to oxidative stress (Wyllie et al., 2004; Berman et al., 1987). Resistant 

laboratory and field strains of Leishmania spp. have been associated with 

increased levels of thiols; especially trypanothione, a glutathione spermidine 

conjugate; via up-regulation of thiol synthesising enzymes (Haimeur et al., 1999; 

Grondin et al., 1997; Mukhopadhyay et al., 1996). Work carried out in L. 

tarentolae, a parasite of geckos commonly used as a model Leishmania 

organism, showed that overexpression of ornithine decarboxylase, a key enzyme 

in spermidine synthesis, could confer resistance to arsenite in combination with 

overexpression of the efflux protein PGPA. Overexpression of PGPA alone did not 

confer a similar level of resistance (Haimeur et al., 1999). Glutathione-s-

transferase activities are known to be increased in mammalian cells selected for 

arsenite resistance, but GSTs are not present in Leishmania spp. (Lo et al., 

1992). However, a GST-like trypanothione-s-transferase (TST) activity has been 

noted in several Leishmania spp. (Vickers et al., 2004). In addition to s-

transferase activity, TST is thought to be a functional peroxidase. Wyllie et al. 

(2008) demonstrated that peroxidase activity is significantly increased, between 

4 and 8.5-fold, in resistant isolates of L. tarentolae. 

Resistant isolates of Trypansoma cruzi have been shown to have higher 

glutathione levels than susceptible isolates (Faundez et al., 2005; Moncada et 
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al., 1989). Buthiomine sulphoxomine was shown to decrease the glutathione 

content in T. cruzi and to have synergistic effects in combination with nifurtinox 

and benznidazole. However, no functional assays were undertaken, so the role 

by which increased GST may result in resistance to trypanocidal drugs remains 

uncharacterised.  

Chloroquine resistance in malaria parasites is thought to arise mainly through 

the action of transport proteins and P450s. However, a recent study has shown 

that chloroquine sensitivity can be increased using chemicals that affect 

intracellular glutathione concentrations (He et al., 2009). Resistant P. 

falciparum isolates were shown to have increased intracellular glutathione, 

glutathione-s-transferase activity and glutathione peroxidise activity compared 

to sensitive isolates. Glutathione reductase activity was lower in resistant 

isolates. Enzyme activities were similarly affected in P. chabaudi, except that 

there were no differences in glutathione peroxidise activity between resistant 

and susceptible isolates. Ritonair, a potent protease inhibitor, increased the 

sensitivity to chloroquine and simultaneously reduced GST activity in the 

resistant isolates. This strongly suggests that GST-like activity may be involved in 

the resistance of P. falciparum and P. chabaudi to chloroquine. Interestingly, P. 

falciparum appears to encode only one GST gene, pcGST, making this a potential 

drug target (Deponte et al., 2005). 

Several bacterial species make use of conjugating enzymes to resist the action of 

antibiotic drugs. These include acetyl-transferases, phosphoryl-transferases, 

thiol-transferases, nucleotidyl-transferases, ADP-ribosyl-transferases and 

glycosyl transferases. These enzymes may be constitutively up-regulated or may 

be induced upon exposure to the antibiotics (Harbottle et al., 2006). Many 

different classes of antibiotic may be affected by these mechanisms, reviewed 

by Wright (2005). For example, the macrolide antibiotics may be inactivated by 

the addition of a glucose group at position 2′ of the desosamine sugar, using a 

UDP-glucosyl transferase enzyme encoded by the mtg gene of Streptomyces 

lividans (Jenkins et al., 1991). In all cases, the addition of the conjugate 

interferes with the action of the drug, usually by reducing the binding efficiency 

to the target. However, efflux pumps may also be involved in antibiotic 

resistance and in some cases drug conjugation may be used to aid in effective 

efflux of the drug (Harbottle et al., 2006).  
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Praziquantel is the only drug currently used against the blood fluke Schistosoma 

japonicum. Praziquantel has been shown to bind to S. japonicum GST and 

therefore up-regulation of GST may be a mechanism of resistance (McTigue et 

al., 1995). In the related species Schistosoma mansoni, non-conjugating GST 

activity was noted. Intact parasites or cytosol preparations incubated with 

dichlorvos produced O-demethylated dichlorvos and S-methyl glutathione 

(O'Leary et al., 1991). Des-methylated dichlorvos is pharmacologically inactive 

and this route of metabolism may explain why S. mansoni is resistant to 

dichlorvos unlike the related fluke Schistosoma haematobium. However, this 

association has not been seen in all trematodes. F. hepatica isolates resistant to 

salicylanilide anthelmintics have been shown to have lower GST activities than 

comparable susceptible isolates (Miller et al., 1994). It is hypothesised that GST 

binding may in fact increase the uptake of certain drugs. Therefore, the role of 

GST activity in drug resistance in trematodes is unclear.  

IVM selected strains of C. elegans have also been associated with changes in 

intracellular glutathione content. James et al. (2009) showed that as well as 

overexpression of drug transport proteins the concentration of glutathione was 

reduced and expression of the glutathione-s-transferase gene gstp-1 was 

increased in low-level resistant strains (6ng/ml [6.84nM] IVM) of the nematode. 

The low concentration of glutathione was hypothesised to be due to increased 

binding to ivermectin, as strains allowed to grow on standard NGM plates were 

able to return their glutathione levels to wild-type levels, but confirmation of 

this will require further work. In worms resistant to concentrations of up to 

10ng/ml (11.4nM) IVM, the glutathione level was consistently wild-type level. 

However, expression of gcs-1, a γ-gluatamyl-cysteine synthetase homologue 

which is thought to be the rate limiting step in glutathione synthesis, was 

significantly increased. Interestingly, C. elegans gcs-1 has previously been shown 

to confer resistance to arsenic and may explain the role of this gene in 

antimonial resistance in Leishmania spp. (Liao et al., 2005).  

There are few reports of the investigation of the role of phase II conjugation 

enzymes in anthelmintic resistance. Resistance of H. contortus to cambendazole 

has been associated with increased GST-like activities and recombinant A. suum 

GSTs can bind anthelmintic compounds (Liebau et al., 1997; Kawalek et al., 

1984). Sangster et al. (1986) demonstrated that T. colubriformis was capable of 
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producing a sulphate conjugate of hydroxythiabendazole. However, hydroxyTBZ 

is an inactive form of thiabendazole and no differences in the rate of 

conjugation were seen between resistant and susceptible isolates. In all of these 

reports and in the study in C. elegans, presented by James et al. (2009), no 

direct relationship between conjugating enzyme activity and resistance has been 

demonstrated. Therefore, further work will be required to investigate the role 

of these pathways in anthelmintic resistance. 

1.9.4 Anthelmintics as substrates for xenobiotic metabolising 

enzymes 

As summarised above, metabolism of chemotherapeutic compounds is a common 

mechanism of resistance utilised by many infectious agents. Whilst these 

pathways have been neglected in current research into anthelmintic resistance, 

examination of the C. elegans genome and work by several authors would 

suggest that these pathways are present in nematode species. Analysis of the 

structures of the anthelmintic compounds currently in use reveals them to have 

chemical bonds or functional groups that could potentially be acted upon by 

xenobiotic metabolising enzymes. In addition, the avermectins, benzimidazoles, 

levamisole and monepantel, are known to undergo metabolism in mammalian 

hosts to varying degrees (Gonzalez et al., 2009; Karadzovska et al., 2009; Li et 

al., 2003b; Zeng et al., 1998; Paulson et al., 1996; Fargetton et al., 1986).  

Both ivermectin and albendazole are known substrates for cytochrome P450 

mediated metabolism in mammals. Albendazole is also thought to be 

metabolised by mammalian flavin monooxygenases (Rawden et al., 2000; 

Fargetton et al., 1986). The main metabolites of albendazole are the active 

metabolite albendazole sulphoxide and the inactive albendazole sulphone. In 

contrast, ivermectin is metabolised to at least ten different metabolites by 

human microsomes (Zeng et al., 1998). Both drugs may be conjugated to 

glucuronate and ivermectin is known to undergo extensive enterohepatic 

recycling via this pathway (Gonzalez et al., 2009). 

In order for metabolism of anthelmintic to be a plausible mechanism of 

resistance, the metabolites must be inactive or be better substrates for efflux 
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pumps than the parent compounds. However, in many cases metabolism can 

lead to bioactivation of a compound. The sulphoxidation of albendazole to the 

active compound albendazole sulphoxide is just one example of this. However, 

in many cases, including that of ivermectin, whilst some of the metabolites have 

been defined their relative activity compared to the parent compound has not 

been assessed. Therefore, elucidating the mechanisms by which nematodes may 

metabolise anthelmintics is only the first step in discovering whether or not this 

is a likely mechanism of resistance. Further studies investigating the 

chemotherapeutic efficacy of any metabolites discovered will be necessary.  

1.10 Specific aims of this study 

a) To use whole genome microarrays to compare the transcriptome of C. 

elegans following exposure to anthelmintic to that of an unexposed 

control. Specifically, the anthelmintic drugs to be investigated were 

ivermectin, an example of a macrocyclic lactone drug, and albendazole, an 

example of a benzimidazole drug. 

b) To characterise the response of genes identified as differentially expressed 

in microarray experiments using real-time quantitative PCR. 

c) To characterise genes identified as differentially expressed in microarray 

experiments using GFP reporter constructs. 

d) To assess the metabolism of ivermectin and albendazole by C. elegans and 

H. contortus using HPLC-MS. 

e) To provide a framework upon which to investigate transcriptomic and 

metabolomic responses to anthelmintics in Haemonchus contortus and 

other parasitic nematodes. 
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Chapter 2: Materials and methods 

2.1 Materials 

2.1.1 Standard reagents and Media 

Ampicillin: 100mg/ml ampicillin (Sigma, A9393) in sterile distilled 

H2O. Filter sterilised and stored at -20
oC. 

Chloramphenicol: 12.5mg/ml chloramphenicol (Sigma, C0378) in 100% 

ethanol. Stored at -20oC. 

EDTA: ethylenediaminetetra-acetic acid in sterile distilled 

H2O. Stock solution of 0.5M, pH 8.0. Autoclaved and 

stored at room temperature. 

Ethidium Bromide: 10mg/ml in sterile distilled H2O. Stored at room 

temperature. 

L-broth: 1% tryptone (Oxoid, LP0042)), 0.5% yeast extract 

(Oxoid, LP0021), 1% NaCl in sterile distilled H2O. 

Autoclaved and stored at room temperature. 

LB-agar: L-broth + 1.5% agar (Oxoid, LP0011). Autoclaved and 

stored at room temperature. 

Loading buffer (5X): 100mM EDTA pH 7.5, 22% Ficoll (Sigma, F2637), 0.05% 

Bromophenol Blue (Sigma, B0126). 

M9 Buffer (10X): 3% KH2PO4, 6% Na2HPO4, 5% NaCl, 10mM MgSO4. 

Autoclaved and stored at room temperature. 

MF4 HPLC mobile phase: Methanol (H411) 10%; H2O (H949) 90%; formic acid 

(H353) 0.027%; ammonium acetate (HR079) 2mM. 

Prepared for Pfizer by Romil. 
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MF5 HPLC mobile phase: Methanol (H411) 90%; H2O (H949) 10%; formic acid 

(H353) 0.027%; ammonium acetate (HR079) 2mM. 

Prepared for Pfizer by Romil. 

NGM-agar: 0.3% NaCl, 1.7% agar (Oxoid, LP0011), 0.25% peptone 

(Oxoid, L37), 0.0003% cholesterol (1ml/L of 5mg/ml 

stock in ethanol), in sterile distilled H2O. Autoclaved 

then supplemented with 1ml/L 1M CaCl2, 1ml/L 1M 

MgSO4 and 25ml/L KPO4 buffer pH 6.0. 

Proteinase K: 10 mg/ml proteinase K (Roche, 03115836001) in 

sterile distilled H2O. Stored at -20
oC. 

S-basal 0.1M NaCl, 0.05M KHPO4 buffer pH 6.0, 12.5mg/L PEG 

water soluble cholesterol (Sigma, C1145). 

S-buffer: 129 ml/L 0.05M K2HPO4, 871 ml/L 0.05M KH2PO4, 0.1M 

NaCl, pH 6.0.  

Superbroth: Per 1L: 12g tryptone (Oxoid, LP0042); 24g yeast 

extract (Oxoid, LP0021), 8ml of 50% glycerol stock. 

Autoclaved then supplemented with 100ml of 0.17M 

KH2PO4/0.72M K2HPO4. 

TAE (50X): 2M Tris-base, 100ml/L 0.5M EDTA, 57.1ml/L glacial 

acetic acid. Autoclaved and stored at room 

temperature. 

TBE (5X): 0.45M Tris-base, 0.45M Boric acid, 100ml/L 0.5M 

EDTA. Autoclaved and stored at room temperature. 

TE buffer: 10mM Tris, 1mM EDTA pH 8.0 
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2.1.2 Caenorhabditis elegans strains and culture conditions 

Bristol N2: C. elegans wild type, DR subclone of CB original (Tc1 pattern 

I). Gift from the CGC. 

CB3474 : ben-1(e1880)III (Driscoll et al., 1989) Mutation β-tubulin 

gene resulting in high level resistance to benzimidazoles. 

Dominant at 25oC, recessive at 15oC. Gift from CGC. 

DA1316: avr-14(ad1302); avr-15(ad1051); glc-1(pk54). Mutations of 

three major subunits of glutamate-gated chloride channels 

resulting in high level resistance to ivermectin (Dent et al., 

2000). 

Culture of Caenorhabditis elegans was carried out as per standard protocols 

(Brenner, 1974). Worms were maintained at 15-20oC on NGM plates with an OP50 

bacterial lawn unless otherwise specified.  

2.1.3 E. coli strains 

OP50: A variant of the uracil requiring OP50 strain (Brenner, 

1974) with a streptomycin selectable marker. Strain 

received from CGC. 
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2.2 Standard methods 

2.2.1 Freezing and storage of nematode strains 

Strains to be frozen were grown on 5-6 5cm diameter NGM plates with OP50 

bacterial lawns until just starved and many L1-L2 larvae were present. 

Nematodes were washed from plates with 2-3ml S-buffer. The nematodes were 

suspended in approximately 1ml S-basal which was split equally between two 

1.8ml cryotubes. An equal volume of S-buffer plus 30% glycerol was added to 

each tube. The tubes were placed into a polystyrene rack and placed at -80oC 

overnight. The polystyrene ensures that the worms do not freeze too rapidly and 

die. One tube was thawed the following day to ensure successful recovery and 

the other stored in a permanent freezer location. 

To recover strains, tubes were thawed completely at room temperature. 

Approximately 500µl of the supernatant was removed and discarded. The 

remaining buffer and worm pellet was transferred to a fresh, dry NGM plate with 

an OP50 lawn. The plates were left at 20oC overnight then assessed for live 

worms. These were then picked to fresh NGM plates. 

2.2.2 Synchronisation of L1 larvae 

Nematodes were grown on 10-15 standard NGM plates with OP50 bacterial lawns 

for approximately three days until many gravid hermaphrodites were present. 

Adults and eggs were washed off each plate in M9 buffer and transferred to a 

50ml falcon tube. The tube was filled to 50ml with M9 and allowed to chill on 

ice for 15-30min. The falcon tube was centrifuged at 2500rpm, 4oC for 3min, in a 

table top centrifuge. The supernatant was removed to 2ml with a 10ml pipette 

then completely using a 1ml pipette without disturbing the pellet. 10ml of 

bleach solution (625µl 4M NaOH, 1500µl concentrated bleach [Sigma, 425044] 

and 7875µl distilled water) was added to the worm pellet and the tube agitated. 

After approx 3min, and every minute thereafter, a 10µl sample was removed and 

examined on a microscope slide under a dissecting microscope. Once the adult 

worms began to lyse and release their eggs the falcon tube was filled to the top 

with ice cold M9 buffer. The tube was immediately centrifuged at 2000rpm, 4oC 
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for 2min. The pellet of eggs was washed in this manner a further two times. 

Finally, the supernatant was completely removed and the pellet resuspended in 

approx 5-7 ml of S-buffer and transferred to a 5cm diameter petri dish. The eggs 

were incubated at 20oC overnight to allow the eggs to hatch. 

The following day 10µl of the L1 suspension was removed and the number of L1 

larvae counted. This was repeated three times and the mean number of worms 

per 10µl calculated. 

2.2.3 Preparation of worm lysates 

Worm lysates were used as template for PCR reactions unless otherwise stated.  

Lysis buffer: 10mM Tris (pH 8.0); 50mM KCl; 2.5mM MgCl2; 0.05% gelatin. 

Autoclaved and supplemented with 0.45% Tween-20 and 

0.5µg/ml Proteinase K. 

Young adult stage C. elegans were picked into a total volume of 20µl lysis 

buffer. Using a GeneAmp PCR system 9700 (Applied Biosystems) the samples 

were heated to 65oC for 90min, followed by 95oC for 15min to denature the 

proteinase K. Samples were immediately stored at -80oC until use. 

2.2.4 Standard Polymerase Chain Reaction (PCR) 

PCR reactions were performed using a GeneAmp PCR system 9700 (Applied 

Biosystems) in a 20µl volume unless otherwise stated. Routine PCR conditions 

used were 95oC for 30sec, primer annealing at 55-59oC for 30sec and extension 

at 72oC for 1-2min per 1kb of target sequence. A total of 35-40 cycles were used. 

Final concentrations of 250-500nM of forward and reverse primers and 250µM of 

each dNTP were used. Oligonucleotide primers were purchased from Eurofins 

MWG Operon. The sequences of all primers used are presented in the Appendices 

and on the accompanying CD. Amplitaq DNA polymerase (5U/µl) and GeneAmp 

10X PCR buffer (Applied Biosystems- N808-0160) were used at a final 

concentration of 1 unit of enzyme per reaction. Where appropriate a 

combination of Amplitaq DNA polymerase (5U/µl; Applied Biosystems, N808-

0160) and cloned Pfu polymerase (2.5Uµl; Stratagene, 600153-81), 5:1 by 
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volume, was used at a final concentration of 0.8 units Amplitaq DNA polymerase 

and 0.1 units Pfu polymerase per reaction. Pfu is a proof-reading polymerase 

that contains 3′-5′-exonuclease activity that enables it to proof-read for 

nucleotide mis-incorporations. This was used for all fragments amplified for 

sequencing. 

GeneAmp 10X PCR Buffer: 100mM Tris-HCl pH 8.3 (at 25oC); 500mM KCl;      

15mM MgCl2; 0.01% w/v gelatine; autoclaved 

2.2.5 PCR for GFP fusion constructs 

GFP fusion constructs were all in the region of 3kb long and a slightly modified 

PCR protocol was used. PCR conditions consisted of 10 cycles of 94oC for 10sec, 

primer annealing at 55oC for 30sec, and extension at 68oC for 4min; followed by 

25 cycles of 94oC for 15sec, primer annealing at 55oC for 30sec, and extension at 

68oC for 4min plus an increment of 20sec each cycle. A combination of Amplitaq 

DNA polymerase (5U/µl; Applied Biosystems, N808-0160) and cloned Pfu 

polymerase (2.5Uµl; Stratagene, 600153-81), 5:1 by volume, was used at a final 

concentration of 0.8 units Amplitaq DNA polymerase and 0.1 units Pfu 

polymerase per reaction. 

2.2.6  Agarose gel electrophoresis 

Nucleic acids were separated on 1-2% (w/v) agarose gels. Agarose (Invitrogen, 

15510-027) was melted in 1X TAE, or 1X TBE for RNA separation, by heating until 

in solution. Ethidium bromide was then added to a final concentration of 

0.1µg/ml and gels cast. Gels were electrophoresed in 1X TAE or 1X TBE as 

appropriate using electrophoresis equipment from Amersham Pharmacia Biotech. 

Gels were imaged using a Fluorchem 5500 UV transilluminator and image capture 

system (Alpha Inotech).  

2.2.7 Preparation of drug plates 

Nematode growth medium (NGM) was prepared to standard specifications other 

than the addition of PEG water soluble cholesterol 25mg/ml in H2O (Sigma, 

C1145) in place of cholesterol 5mg/ml in ethanol (Stiernagle, 1999). The use of 
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water soluble cholesterol increased the solubility of the compounds in NGM 

whilst allowing normal growth of the nematodes.  

Molten NGM was allowed to cool to 55oC in a water bath before being split 

between drug and control aliquots. Stock drug (ivermectin [Sigma, I8898] or 

albendazole [Sigma, A4673]) dissolved in DMSO (Sigma, D8418) was added to the 

required concentration for the drug aliquot and an equal volume of DMSO alone 

was added to the control aliquot. NGM was then poured into standard triple vent 

petri dishes, approximately 8-10 ml for 5cm diameter plates and 20-25 ml for 9 

cm diameter plates. 

2.2.8 Liquid culture conditions 

Drug exposure to high dose albendazole (300µg/ml; 1.13mM) and preparation of 

C. elegans for microsome extraction was carried out in liquid culture. C. elegans 

was cultured in S-basal with the following supplements added prior to use (per 

500ml S-basal): 1.5ml 1M MgSO4; 3ml 0.5M CaCl2; 5ml 100X trace metal solution 

(0.346g FeSO4.7H2O, 0.930g NA2EDTA, 0.098g MnCL2.4H2O, 0.144g ZnSO4.7H2O, 

0.012g CuSO4.5H2O in 500ml dsH2O); 5ml 1M KCitrate, pH 6.0. 

Concentrated OP50 was used as a food source and was prepared by inoculating 

1L superbroth with 1ml OP50 in L-broth and incubating overnight at 37oC with 

shaking at 200rpm. The bacteria were pelleted in a Beckman Coulter Avanti J-E 

centrifuge at 4000rpm, 4oC for 20min. The bacterial pellet was resuspended in 

10ml S-basal. The pellets were either stored at -20oC or kept refrigerated and 

used within two weeks. 

Cultures were initiated either with synchronised L1 larvae or 5-8 9cm diameter 

NGM plates containing many mixed stage C. elegans. They were maintained at 

20oC with shaking at 240rpm for a maximum of 5 days. Nematodes were then 

harvested by sucrose floatation as follows. The nematodes were pelleted by 

centrifugation at 3000rpm, 4oC for 3min. The pellet was resuspended in ice cold 

0.1M NaCl and pelleted by centrifugation at 2000rpm, 4oC for 3min. The pellet 

was then resuspended in approximately 20ml of ice cold 0.1M NaCl (in a 50ml 

falcon tube) and left on ice for 5min to ensure it was thoroughly chilled. An 

equal volume of ice cold 60% sucrose solution was added to each of the tubes. 
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These were immediately inverted several times and centrifuged at 3500rpm, 4oC 

for 5min.The top 20ml from each tube was removed and split between 2 fresh 

50ml falcon tubes. These tubes were immediately filled with ice cold 0.1M NaCl 

and centrifuged at 3100rpm, 4oC for 3min. The supernatant was removed from 

each of the tubes and the pellets resuspended and transferred to 2ml eppendorf 

tubes. Finally the samples were centrifuged at 2000rpm for 1min in a tabletop 

centrifuge, the supernatant removed and the pellets snap frozen and stored in 

liquid nitrogen until RNA extraction. 

2.2.9 RNA extraction 

RNA was extracted using a Trizol procedure as per the manufacturer’s 

guidelines. Briefly, four volumes of TRIzol reagent (Invitrogen, 15596-026) was 

added per C. elegans pellet (100-1000µl). The sample was homogenised and 

vortexed and left at room temperature for at least 5min. Insoluble debris was 

removed by centrifuging at full speed at 4oC for 10min in an Eppendorf 

Centrifuge 5810 R tabletop centrifuge. The supernatant was removed to a fresh 

tube and 20% volume of chloroform added. The mixture was vortexed for 15sec 

and left at room temperature for 3min. Following centrifuging at full speed, 4oC 

for 15min the aqueous layer was removed and the chloroform wash repeated. 

Finally, 500µl isopropanol was added and the RNA precipitated at -80oC. The RNA 

was pelleted by centrifugation at full speed, 4oC for 10min. The RNA pellet was 

resuspended in RNase free water and treated with DNase I (Qiagen, 79254) in 

solution for 10min, before purification and concentrating using RNeasy columns 

(Qiagen, 74104).  

Individual RNA samples were initially quantified by 260/280 absorption on a 

Gene Quant pro spectrophotometer (Amersham Biosciences) and were analysed 

by gel electrophoresis (1.2% agarose TBE gel, 100V, 1hr). Samples were then 

appropriately diluted for analysis on an Agilent Bioanalyser 2100. This is a 

microfluidics-based platform, which separates RNA fragments based on size and 

detects them via laser-induced fluorescence. Data is compared to that of a 

standard ladder to produce accurate quantification of RNA concentration. RNA 

integrity is assessed based on the whole electrophoretic trace including 

ribosomal RNA ratios, the “inter region” between the 18S and 28S ribosomal RNA 
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fragments and background fluorescence. An RNA integrity number (RIN) between 

1 and 10 is then assigned, 1= degraded and 10= intact. In this study, RIN of 

greater than 8 out of 10 were accepted for further analysis by microarray. 

Samples for microarray analysis were re-precipitated in ethanol for storage and 

delivery to the Wellcome Trust Sanger Institute on dry ice. 

2.2.10 Microarray hybridisation and analysis 

2.2.10.1 Pre-processing 

Sample labelling and hybridisation to Affymetrix C. elegans GeneChip arrays 

were performed at the Wellcome Trust Sanger Institute, using standard 

Affymetrix protocols (performed in Dr. Al Ivens’ laboratory). The DNA microarray 

contained 22625 gene probes corresponding to 22150 C. elegans genes 

(http://www.affymetrix.com/index.affx). Scanned array images (CEL files) were 

quality control assessed using the arrayQualityMetrics Bioconductor package 

(www.bioconductor.org) in the R environment (www.r-project.org). Arrays 

identified as possible outliers were removed from subsequent analyses. 

2.2.10.2 Annotation 

An updated annotation dataset was assembled for the C. elegans probesets 

(genes) present on the Affymetrix GeneChip. Data were sourced from WormBase 

(Sept. 2008).  

2.2.10.3 Processing 

Linear model fitting of the array data was undertaken, taking into account 

bioreplicates using the limma (Linear Models for Microarray Data) Bioconductor 

package (www.bioconductor.org/packages/bioc/html/limma.html). A series of 

pairwise comparisons (test relative to control) was subsequently performed to 

identify differentially expressed genes. Significance of the differential 

expression values was assessed using two approaches. Firstly, an empirical 

Bayesian approach, with a multiple testing correction (Benjamini & Hochberg) 

was undertaken at the Sanger Institute (Benjamini et al., 1995). Secondary 

analysis was carried out using a Rank Products methodology, which has been 
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proposed to be less discriminative against microarray experiments with lower 

numbers of biological replicates (Breitling et al., 2004). In both cases initial 

analysis of significance was carried out using a False Discovery Rate cut-off of 

5%.  

2.2.10.4 Ontology analysis 

Further analysis was carried out, using the freely available DAVID software (the 

Database for Annotation, Visualisation and Integrated Discovery) from the 

National Institutes of Health (Huang et al., 2009; Dennis, Jr. et al., 2003), to 

assess the functional annotation and clustering of the genes noted to be 

differentially expressed between samples. Input into the program consisted of 

genes shown to be significantly altered in expression using the Rank Products 

algorithm, with a False Discovery Rate cut off of less than 10%. The gene lists 

were compared to a whole genome background to provide information regarding 

enrichment of particular families or biological functions. Initially gene functional 

classification clustering was carried out using medium stringency. 

2.2.11 Real-time quantitative PCR 

Microarray experiments can be insensitive leading to false negative, or 

alternatively, false positive results. Consequently, we have used RT-QPCR to 

confirm the results for those genes represented on the array by probes showing 

the greatest differential expression between drug-exposed and non-exposed 

worms. SYBR green I is a fluorescent dye that can be used to quantitate DNA. 

When bound to double-stranded DNA the dye absorbs light of wavelength 488nm 

and emits light of wavelength 522nm with intensity proportional to the amount 

of bound dye. 

SYBR green I will bind to any double-stranded DNA. Therefore, several steps 

must be taken to ensure accurate results. All RNA samples were subject to 

DNase I treatment prior to cDNA synthesis using a cloned AMV first strand 

synthesis kit (Invitrogen, 12328-032). No template controls and no reverse 

transcriptase controls, only differing from the experimental samples by the 

absence of reverse transcriptase, were included for all samples. Finally, 

dissociation curves were carried out for all samples in all analyses to ensure that 
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a single product was amplified in each reaction. In the case of primers designed 

to span an intron, this will help to identify gDNA contamination as gDNA would 

be expected to be a larger product and produce a melting curve at a higher 

temperature. 

2.2.11.1 Primer design and analysis 

Where possible RT-QPCR primers were designed to the following criteria: primers 

were all between 20 and 25-bp long; the product of the PCR was between 160-

200bp in length; the product spanned an intron to give differentially sized 

genomic and cDNA products; the melting temperatures of the primer pairs were 

matched and were between 55 and 60oC. ama-1, encoding a subunit of RNA 

polymerase II, was used as a normalising gene. This constitutively expressed 

gene showed no significant changes on microarray analysis and has been 

extensively used as a normalising gene in differential expression studies in C. 

elegans (Johnstone et al., 1996). All primer sequences were compared to the 

current C. elegans genome using a BLASTn search to ensure that they amplified a 

unique DNA fragment (www.wormbase.org/db/searches/blast_blat). In addition, 

all primers were used with standard PCR methods to amplify fragments from 

both C. elegans genomic and cDNA and analysed by gel electrophoresis. Only 

primer sets showing single bands of the expected size amplified from both gDNA 

and cDNA were used for RT-QPCR analysis. Primer sequences may be found in 

Appendix 7.1 and on the accompanying CD. 

2.2.11.2 RT-QPCR reaction parameters 

All reactions were carried out using Brilliant SYBR Green QPCR mastermix 

(Stratagene, 600548). The final concentration of primers was between 300 and 

400nM in a total reaction volume of 25µl. A Stratagene Mx3000P QPCR system 

was used with the following parameters: 7.5min at 95oC; 40 cycles of 0.5min 

95oC, 0.5 min 59oC, 0.5min 72oC; and finally 1min 95oC followed by 0.5min 59oC 

and a gradient to 95oC. Fluorescence was measured at the end of the elongation 

phase (72oC) during each cycle, for quantitation, and continuously during the 

final gradient from 59-95oC, to assess dissociation curves. Data was captured and 

analysed using Stratagene MxPro software. 
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Standard curves for all primer sets were run over 5-fold dilutions of sample cDNA 

from 1:25- 1:625. Where possible, primer sets used for analysis of experimental 

samples had a standard curve with an efficiency of 90-105% and an Rsq of 0.99 or 

above, over the range of experimental sample concentrations. Rsq is a measure 

of the fit of all data to the standard curve plot, where 1.00 equals perfect 

alignment. In some cases despite attempts to optimise the PCR this was not 

possible. However, standard curves were assessed alongside all experiments and 

their efficiencies applied to the quantitation algorithm for that experiment. All 

samples were analysed in duplicate or triplicate on every plate and no template 

controls and no reverse transcriptase controls for all experimental samples were 

included. 10µl of a 1:50 dilution of the sample cDNA was used to compare the 

relative quantity of each gene within each biological replicate, using the ∆∆Ct 

method outlined below: 

 Normalised Unknown = (1+E target)-∆Ct target 

    Control    (1+E norm)-∆Ct norm 

Where, E = efficiency of PCR amplification; maximum 1 (or 100%) 

∆Ct = difference in threshold cycles between samples (unknown- 

control) 

  target = gene of interest 

  norm = normalising gene (ama-1) 

2.2.11.3 Statistical analysis 

Where stated, normalised threshold cycle values from real-time QPCR studies 

were subject to statistical analysis using a paired student’s t-test.  
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2.2.12 Determination of expression patterns using Green 

Fluorescent Protein (GFP) 

2.2.12.1 Preparation of GFP constructs 

GFP reporter constructs were created using a PCR fusion protocol as described 

by Hobert et al. (2002). The promoter region of the gene of interest was 

amplified with a forward primer approximately 3Kb upstream from the ATG start 

site of the gene of interest (primer A), and a reverse primer immediately 

upstream of the ATG (primer B). Primer B was designed with a 5′ 24bp tag that 

was complimentary to primer C. Primer C and D are the forward and reverse 

primers used to amplify the GFP gene, including synthetic introns and unc-54 3′ 

UTR, from Fire vector pPD95.67 (Fire et al., 1990). Primer sequences are 

available in Appendix 7.2 and on the accompanying CD. 

The products of these two reactions were assessed by gel electrophoresis to 

ensure that bands of the expected size were present. 1µl of each of the PCR 

reactions was then used in a final PCR using the nested primers A* and D* which 

amplified a single linear fragment consisting of the promoter region of the gene 

of interest fused to the GFP gene.  

2.2.12.2 Microinjection of the GFP fusion constructs 

Constructs were injected into the syncitial gonad of young adult hermaphrodites, 

of the ivermectin resistant strain DA1316, along with the marker construct pRF-4 

and p-Bluescript KS+ added to a total DNA concentration of 160-200ng/µl (Mello 

et al., 1991). pRF-4 is a plasmid used as a cotransformation marker to identify 

transgenic worms. It contains the mutant allele rol-6(su1006), which encodes a 

cuticle collagen gene that produces a dominant roller phenotype. Progeny 

carrying the transgene exhibit an inability to move in a normal sinusoidal 

pattern, instead rotating around their longitudinal axis and rolling in circles. F2 

worms showing the roller phenotype were selected and maintained as a 

transmitting line.  
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2.2.12.3 Imaging of GFP expressing C. elegans 

Nematodes were picked on to microscope slides with 2% agarose/ 0.065% sodium 

azide pads. 5-10µl of M9 buffer was applied to the pad to prevent desiccation of 

the nematodes and a cover slip was placed on top and sealed with Vaseline. 

Expression patterns were visualised using a Zeiss, Axioscop 2 plus microscope. 

Images were collected and processed using Improvision Openlab software 

(www.improvision.com). 
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Chapter 3: C. elegans transcriptomic response to 

ivermectin 

3.1 Introduction 

Ivermectin is an avermectin drug and has been used by the veterinary profession 

as an endectoside, treating both endoparasites and ectoparasites, since the 

early 1980s. The drug is also used in human medicine to treat a variety of 

parasitic diseases, most importantly the filarial helminthoses caused by 

Onchocerca volvulus and Brugia malayi infection (Boatin et al., 2006; Horton et 

al., 2000). 

The pharmacokinetics of ivermectin has been examined in many mammalian 

species including humans and veterinary species such as cattle, sheep, pigs, 

horses and dogs, reviewed by Gonzalez et al. (2009 and 2008). Ivermectin is a 

highly lipophilic drug which is readily absorbed following ingestion, subcutaneous 

or intramuscular injection and topical application. The drug has a long plasma 

half life in all species; in humans this has been estimated at approximately 1 

day, but may be up to a week depending on species and formulation of 

ivermectin (Gonzalez et al., 2009; Bousquet-Melou et al., 2004). This is thought 

to be partially due to the large volume of distribution and extensive 

enterohepatic recycling of the drug (Gonzalez et al., 2008). There are few 

studies investigating the routes of metabolism of ivermectin in humans. 

However, Zeng et al. (1998) have shown that ivermectin is metabolised to at 

least ten metabolites by human liver microsome preparations. Using a 

combination of microsomes containing specific CYP isoforms and CYP3A4 

antibodies, their work suggested that the predominant enzyme involved in this 

biotransformation is CYP3A4. 

In animals, most of the dose of ivermectin is excreted unchanged with minimal 

metabolism (Gonzalez et al., 2009). 24-hydroxy-methyl metabolites predominate 

in sheep, cattle and rats and as a result fat esters are also found. 3′-O-desmethyl 

metabolites are more common in pigs and goats (Gonzalez et al., 2009; Chiu et 

al., 1986). The enzymes responsible for biotransformation and the 
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pharmacological activity of metabolites have not been assessed. However, 

altering the composition of the side groups of macrocyclic lactone drugs, where 

biotransformation may occur, is known to dramatically affect their potency 

(Michael et al., 2001). 

There have been few studies investigating the induction of cytochrome P450s 

and other potentially xenobiotic metabolising enzymes by ivermectin. Skalova et 

al. (2001) have reported that CYP activities are induced in rats and mouflon but 

not in fallow deer following exposure to ivermectin. These studies made use of 

substrate assays which are thought to distinguish specific CYP isoforms. A single 

therapeutic dose of ivermectin resulted in induction of CYP1A1/2, CYP2B and 

CYP3A activities in mouflon. However, in rats, CYP1A1 and CYP1A2 activities 

were only significantly induced after exposure to high doses of ivermectin (20 to 

30-fold the therapeutic dose), no induction in CYP2B/ CYP3A4 activities were 

noted. Bapiro et al. (2002) found that ivermectin caused no induction in CYP1A1 

and CYP1A2 activities in human HepG2 cells. However, enzyme activities specific 

to other CYP isoforms were not assessed. 

Induction of cytochrome P450 gene expression is thought to occur via binding to 

and activation of nuclear hormone receptors such as the constitutive androstane 

receptor (CAR), pregnane X receptor (PXR) and peroxisome proliferator 

activated receptor (PPAR), as well as several others (Wei et al., 2000; Kliewer et 

al., 1999). Specific studies investigating the pathways by which ivermectin may 

induce CYP activity have not been carried out. 

In order to investigate the potential for ivermectin to induce nematode 

xenobiotic metabolising enzymes (XMEs), the transcriptomes of Caenorhabditis 

elegans exposed to ivermectin and an unexposed control group were compared. 

Ivermectin is an extremely potent drug, effective plasma concentrations in 

cattle are between 0.5-1ng/ml (0.57-1.14nM; Lifschitz, 1999). DA1316 is a 

laboratory created strain of C. elegans with mutations in three glutamate-gated 

chloride channel subunits, which are reported to confer extremely high 

resistance to ivermectin. In order to minimise transcriptomic changes resulting 

from the phenotype of drug intoxicated worms and generalised stress responses, 

DA1316 was used for intial microarray experiments.  
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3.2 Methods 

3.2.1 Preparation of nematodes for microarray analysis- chronic 

exposure 

Initially a chronic exposure to low dose ivermectin was used. Approximately 

10000 synchronised DA1316 L1 larvae per experimental condition were added to 

OP50-seeded NGM plates containing 0.5 or 5ng/ml (0.57-1.14nM) ivermectin 

(Sigma, I8898) or control plates at approximately 500 nematodes per 5cm 

diameter plate. The nematodes were grown in standard conditions (20oC) for 

approximately 60hrs until greater than 90% of worms had reached the L4 stage. 

The nematodes were then washed into 15ml falcon tubes with M9 buffer and 

centrifuged at 2500rpm, 4oC for 3min. The pellet of worms was washed twice by 

removing the supernatant, refilling the tube with fresh M9 buffer and repeating 

the centrifugation step. Finally the pellet was snap frozen and stored in liquid 

nitrogen until RNA extraction. 

3.2.2 Preparation of nematodes for microarray analysis- acute 

exposure 

Synchronised DA1316 L1 larvae (approximately 10000 per experimental 

condition) were grown for 53hrs at 20oC on standard NGM plates with OP50 

bacterial lawns. The nematodes were washed from the plates with M9 buffer 

into a 50ml falcon tube and washed twice in M9 buffer as per Section 3.2.1. The 

supernatant was again removed and the worms resuspended in 2-3ml of fresh 

M9. The suspension of worms was split equally between control plates and plates 

containing 100ng or 1µg/ml (114nM or 1.14µM) IVM (Sigma, I8898) at a density of 

500- 600 worms per 5cm diameter plate. After 4hrs exposure the nematodes 

were harvested and stored in the same manner as described in Section 3.2.1. 

Similar experiments were carried out using the Bristol N2 strain, with exposure 

to 100ng/ml (114nM) IVM. These were chronologically identical to previous 

experiments, but due to the N2 strain growing slightly faster than the DA1316 

strain the nematodes were at the young adult stage at the time of harvesting.  
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RNA extraction and microarray hybridisation were carried out as described in 

Chapter 2. 

3.2.3 Preparation of nematodes for Real-time quantitative PCR 

Three separate biological replicates from those sent for microarray analysis were 

used for RT-QPCR assays. The protocol used to prepare these replicates was 

identical to that described for the microarray experiments except that a 

commercial pour-on preparation of ivermectin (Virbamec 5mg/ml, Virbac Animal 

Heath) was used as the source of drug. RNA was extracted and cDNA synthesised 

from 5µg total RNA for each sample using a cloned AMV first strand synthesis kit 

(Invitrogen, 12328-032) with random hexamer primers. For each sample an 

identical reaction lacking reverse transcriptase enzyme was carried out. cDNA 

was then purified using PCR purification columns (Qiagen, 28106) according to 

the manufacturer’s protocol. 

Investigation of gene up-regulation following exposure to a gradient of 

ivermectin concentrations was also undertaken. The method was the same as 

the microarray experiments but five matched cultures of C. elegans were 

prepared. Cultures were exposed for 4hrs to 1, 10, 100 and 1000ng/ml (1.14, 

11.4, 114 and 1140nM) IVM or to no IVM as a control. Ivermectin (Sigma, I8898) 

dissolved in DMSO (Sigma, D8418), stock 10mg/ml (11.4mM), was used and all 

cultures contained an identical volume of DMSO. 

3.2.4 Pharyngeal pumping assay 

Ivermectin (Sigma, I8988) plates were prepared to final concentrations of 1, 10, 

100 and 1000ng/ml (1.14, 11.4, 114 and 1140nM) IVM and a matched no drug 

control. Synchronised N2 and DA1316 L1 larvae were allowed to grow on 

standard NGM plates at 20oC for 53hrs. The L4/ young adults were then picked 

on to drug plates and allowed to remain at 20oC for a further 4hrs. The 

pharyngeal pumping rate of ten worms of each strain at each concentration of 

drug was then assessed over a period of 1min.  
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3.2.5 Genotyping of strain DA1316 

DA1316 has mutations in three glutamate-gated chloride channel subunit genes: 

avr-14, avr-15 and glc-1. avr-14(ad1302) and avr-15(1051) represent single 

nucleotide substitutions. Analysis of these mutations was assessed by amplifying 

an approximately 300bp region around the proposed mutation site and 

sequencing by direct PCR sequencing using both a forward and reverse primer. A 

combination of Taq: Pfu (10:1) DNA polymerase was used to increase the fidelity 

of the PCR reaction. glc-1(pk54::Tc1) represents a Tc1 transposon insertion at 

amino acid 255 of GLC-1. Analysis of this mutation was carried out using a 

primer within the glc-1 gene and one within the Tc1 transposon, which would be 

expected to give a 666bp product in the mutant strain and no product in wild-

type worms. All primers used for amplification and sequencing are available in 

Appendix 7.3 and on the accompanying CD.  
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3.3 Results 

3.3.1 Microarray analysis 

3.3.1.1 Exposure to 0.5ng/ml and 5ng/ml IVM result in no significant changes 

to gene expression 

Initial experiments used an extremely conservative dose of ivermectin. After 

60hrs exposure to 0.5ng/ml (0.57nM) IVM there were no stage differences 

between the drug and control plates of strain DA1316. However, N2 worms 

grown on this concentration of drug had severely retarded development 

compared to control plates. In total three biological replicates (three 0.5ng/ml 

IVM and three controls) were sent for microarray hybridisation and analysis and 

none were dropped following quality control. Only two genes were found to be 

significantly up-regulated using an empirical Bayes t-test with Benjamini-

Hochberg FDR correction to 5%. The top 10 up-regulated genes, based on log2 

fold-change, were initially thought to be encouraging. Table 3-1, shows that two 

cytochrome P450 genes, one UGT and one GST-like gene were up-regulated. 

Interestingly, RNAi of several of these genes (cyp-13A6, T16G1.6, cdr-1, 

F15E11.2) results in cadmium hypersensitivity, suggesting a shared regulatory 

pathway (Cui et al., 2007). However, QPCR analysis of the cyp-13 family using 

the same biological replicates as were sent for microarray analysis revealed that 

only two of the three replicates showed up-regulation of cyp-13A6. The third 

replicate showed a significant down-regulation of the same gene (Fig. 3-1). 

Further biological replicates did not show any change in the expression level of 

cyp-13A6 using real-time QPCR. 

Range finding experiments were carried out and 5ng/ml (5.7nM) IVM was 

determined as the highest concentration of IVM that could be used over 60hrs 

without causing stage differences between DA1316 exposed to drug and control 

populations. Four biological replicates were sent for microarray analysis (four 

exposed to 5ng/ml IVM and four controls). However, two chips were dropped 

following quality control, both of which represented the transcriptome of 

nematodes exposed to IVM. Analysis of the remaining chips revealed no 

statistically significant changes in the expression of any genes. 
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Probeset Gene ID Log2 
FC 

p-value Adjusted 
p-value* 

Ontology 

189575_at cyp-13A6 4.57 1.62E-13 3.66E-09 

cytochrome P450 

(CYP3/5/6/9 subfamily) 

190651_at ugt-61 2.36 2.27E-10 2.56E-06 

UDP-glucuronosyl/ glucosyl 

transferase KOG 

172020_x_at lin-36 0.89 1.90E-03 4.07E-01 

involved in vulval 

development 

189457_at cyp-34A9 0.86 2.49E-03 4.62E-01 

cytochrome P450 (CYP2 

family) 

178563_at T16G1.6 0.81 5.38E-04 2.40E-01 

predicted small molecule 

kinase 

191611_at cdr-1 0.70 9.26E-05 1.59E-01 

glutathione-s-transferase-like 

protein (microsomal). 

177676_s_at C53B4.3 0.63 7.16E-04 2.52E-01 
uncharacterised 

174112_at cogc-2 0.63 6.21E-03 5.98E-01 

orthologue of mammalian 

conserved oligomeric golgi 

complex subunit.  

186519_at 
F15E11.12| 
F15E11.15 0.63 2.90E-01 1.00E+00 

uncharacterised 

187628_s_at C30G12.6 0.56 6.66E-03 6.09E-01 
uncharacterised 

Table 3-1: Top 10 up-regulated probesets based on fold change following 60hrs exposure of 
DA1316 to 0.5ng/ml (0.57nM) IVM 
cyp-13A6, cyp-34A9, ugt-61 and cdr-1 represent genes that are potentially involved in 
xenobiotic metabolising pathways. 
*Benjamini Hochberg False Discovery Rate correction 

 
Only three genes were up-regulated more than 2-fold following 60hrs exposure 

to 5ng/ml (0.57nM) IVM: cgh-1 represents a dead-box RNA helicase which is 

extremely important in oocyte and spermatocyte development; rpn-2 represents 

a non-ATPase subunit of 26S proteasomes 19S regulatory particle and is required 

for embryonic, larval and germline development; prp-17 is uncharacterised but 

encodes an mRNA splicing factor KOG. None of the top 10 were genes potentially 

involved in xenobiotic metabolism.  
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Figure 3-1: Real-time QPCR of individual bioreplicates sent for microarray analysis; 
0.5ng/ml (0.57nM) IVM vs. control 
A logarithmic scale is used due to the highly variable up-regulation. cyp-13A6 is over 1000 
fold up-regulated in one biological replicate, but significantly down-regulated in another. 

 
It was decided that increasing the number of biological replicates at this dose of 

drug was unlikely to improve the results and that a different approach was 

needed. Despite strain DA1316 being reported to be unaffected by doses of 

ivermectin up to 4µg/ml (4.56µM), we found that significant stage differences 

occurred between drug exposed and control C. elegans over 60hrs. Therefore, 

we decided to use a shorter exposure of 4hrs and increase the dose of drug 

significantly. 

3.3.1.2 Acute exposure to 100ng and 1µg/ml IVM results in differential 

expression of a distinct set of genes 

Experiments were carried out as per Section 3.2.2.2. Exposure to 100ng/ml 

(114nM) IVM was assessed first. In total, six drug exposed and six matched 

control RNA samples were sent for analysis. Two chips were dropped following 

quality control, one drug exposed and one control. Analysis of the remaining 

chips revealed there to be no probesets with significantly altered expression 

using a Bayesian t-test with FDR correction to 5%. However, using the rank 
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products algorithm there were twelve probesets considered to be significantly 

up-regulated and three considered to be significantly down-regulated (FDR <5%). 

The top 10 up-regulated genes, based on log2 fold change, are listed in Table 3-

2. Considering the number of biological replicates and high dose of drug this is 

still a surprisingly small list of genes whose expression levels were significantly 

changed. 

Probeset Gene ID Log2 
FC 

BH 
FDR* 

RP  
FDR+ 

Ontology 

172744_at mtl-1 1.59 5.86E-01 0 
metallothionein 

184913_s_at T22F3.11 1.44 6.40E-01 0 

permease of major facilitator 

family KOG 

192737_at scl-2 1.31 9.04E-01 0 
sterol carrier-like protein 

189221_at cyp-37B1 1.27 7.31E-01 0 

cytochrome P450 (CYP4/19/26 

subfamilies) 

186971_at C23G10.11 1.23 8.59E-01 0 
uncharacterised 

173729_at T22F3.11 1.21 8.84E-01 0 

permease of major facilitator 

family KOG 

183381_at C50F7.5 1.12 8.65E-01 1.00E-02 
uncharacterised 

186521_at F21C10.10 1.10 7.10E-01 1.11E-02 
uncharacterised 

173550_at F45D3.4 1.08 9.99E-01 1.25E-02 
uncharacterised 

190978_at sodh-1 1.07 8.65E-01 1.82E-02 

alcohol dehydrogenase class V 

KOG 

Table 3-2: Top 10 up-regulated probesets based on fold change following 4hrs exposure of 
DA1316 to 100ng/ml (114nM) IVM 
cyp-37B1 and sodh-1 represent the only genes in the top 10 that may potentially be involved 
in “classical” xenobiotic metabolising pathways. However, there are many uncharacterised 
genes that may have novel roles in the response to ivermectin. 
*BH Benjamini Hochberg correction of Bayesian t-test.

 

+
RP Rank Products analysis 

 
Experiments were carried out using 1µg/ml (1.14µM) IVM in a similar manner. 

Again six drug exposed and six matched controls were sent for analysis. Only one 

control chip was dropped. At this concentration of ivermectin there were 1352 

genes with significantly altered expression following analysis with the empirical 

Bayesian t-test and a FDR cut off of 5% (786 up-regulated and 565 down-

regulated). Analysis of the five complete biological replicates using the rank 

products algorithm suggested that only 369 probesets were significantly altered 

in expression with the same FDR correction (216 up-regulated and 153 down-

regulated). All genes considered significant in the rank products analysis are also 

considered significant in the t-test analysis. Fig. 3-2 summarises the microarray  
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Figure 3-2: Model fitted log2 control chip intensity vs. log2 IVM (1µg/ml, 1.14µM) chip 
intensity 
The scatter plot represents the entire 22625 probesets represented on the Affymetrix chips. 
The upper and lower yellow lines represent up-regulation greater than 2-fold and down-
regulation greater than 2-fold respectively. The plots marked A-H represent the top 10 up-
regulated genes in Table 3-3. 

data and Tables 3-3 and 3-4 list the top 10 up-regulated and down- regulated 

probesets based on log2 fold change. Full microarray data can be found on the 

accompanying CD. 

The top 10 up-regulated genes are not immediately striking as those potentially 

involved in xenobiotic metabolism pathways in either the 100ng/ml (114nM) or 

1µg/ml (1.14µM) IVM experiments. However, there are several similarities 

between the lists, including the presence of mtl-1, scl-2 and cyp-37B1, which 

suggests there is a consistent response at the two doses of drug. cyp-37B1 

represents a cytochrome P450 and therefore could potentially be involved in 

oxidoreductive metabolism. This gene has previously been shown to be up-

regulated in microarray experiments investigating the response to other 

xenobiotics including PCB52, fluoranthene, progesterone and oestrogen (Menzel 

et al., 2007; Reichert et al., 2005; Custodia et al., 2001). sodh-1 is represented 

in the top 10 up-regulated in response to 100ng/ml (114nM) IVM and is also 

significantly up-regulated in the 1µg/ml (1.14µM) IVM experiment. This gene  
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Probeset Gene ID Log2 

FC 
BH FDR RP FDR Ontology 

172744_at mtl-1 4.99 8.48E-09 0 
metallothionein 

192737_at scl-2 3.27 6.90E-04 0 
sterol carrier-like protein 

186971_at C23G10.11 3.20 1.58E-03 0 
uncharacterised 

189221_at cyp-37B1 3.09 1.07E-05 0 

cytochrome P450 (CYP4/19/26 

subfamilies) 

177613_at F57G8.7 3.01 2.26E-08 0 
uncharacterised 

177671_at K03D3.2 2.83 8.41E-09 0 
uncharacterised 

178900_s_at F45D3.4 2.77 2.11E-03 0 
uncharacterised 

187964_at F54F3.3 2.51 1.31E-04 0 

triglyceride lipase-cholesterol 

esterase KOG 

180946_at ilys-3 2.51 4.47E-07 0 
invertebrate lysozyme 

173335_s_at dod-3 2.33 2.26E-08 0 
down stream of daf-16 

Table 3-3: Top 10 up-regulated genes based on fold change following 4hrs exposure of 
DA1316 to 1µg/ml (1.14µM) IVM 
cyp-37B1 represents the only gene potentially involved in xenobiotic metabolism pathways. 
However, there is good correlation with the 100ng/ml (114nM) IVM experiment. Five genes 
represented in this table were also present in the top 10 up-regulated genes in the 100ng/ml 
IVM experiment. 

 

 

Probeset Gene ID Log2 
FC 

BH FDR RP FDR Ontology 

176939_at spp-23 -2.79 1.10E-05 0 
saposin-like protein family 

190404_s_at folt-2 -2.55 3.23E-04 0 
putative folate transporter 

179187_s_at F46F2.3 -2.36 1.10E-02 0 
uncharacterised 

189345_at pho-13 -1.88 2.70E-04 0 

predicted intestinal acid 

phosphatase 

192528_at C35A5.3 -1.83 1.84E-05 0 
uncharacterised 

187085_s_at gst-10 -1.77 5.60E-05 0 
glutathione-s-transferase 

190744_at ugt-63 -1.77 2.74E-03 0 

UDP-glucuronosyl/ glucosyl 

transferase KOG 

175489_at F18E3.11 -1.72 1.18E-04 0 
uncharacterised 

177747_at 
F58G6.9| 
srm-3 -1.72 9.95E-04 0 

uncharacterised 

188441_at F21F8.4 -1.70 1.59E-03 0 
KOG- aspartyl protease 

Table 3-4: Top 10 down-regulated genes based on fold change following 4hrs exposure to 
1µg/ml (1.14µM) IVM 
ugt-63 and gst-10, both potentially involved in xenobiotic metabolism pathways, are 
significantly down-regulated. 
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encodes a putative class V alcohol dehydrogenase, an important class of 

xenobiotic metabolising enzyme. There are no reports of sodh-1 being responsive 

to xenobiotics in the literature, but the related gene sodh-2 has been reported 

to be ethanol responsive in Caenorhabditis elegans (Kwon et al., 2004).  

mtl-1 was the most highly up-regulated gene in the current study and represents 

a metallothionein gene, which is known to be highly inducible in response to 

oxidative stress and heavy metal intoxication (Cui et al., 2007). However, this 

gene has also been shown to be induced in the presence of many xenobiotics 

including clofibrate, β-naphthoflavone and steroid hormones (Reichert et al., 

2005; Custodia et al., 2001). scl-2 encodes a protein whose function is largely 

unknown. The gene contains a sterol carrier-like protein domain 

(www.wormbase.org).Therefore, SCL-2 may be involved in lipid metabolism, as 

may F54F3.3 which is a putative cholesterol esterase. Many of the other up-

regulated genes are completely uncharacterised and so their potential role in 

the response to ivermectin exposure is unclear. Interestingly, many of these 

genes have been shown to be regulated together in the response to bacterial 

infection. Exposure to Pseudomonas aeruginosa was shown to result in up-

regulation of mtl-1, scl-2, cyp-37B1 and sodh-1 as well as C23G10.11, F45D3.4, 

F54F3.3, C50F7.5 and dod-3 (Troemel et al., 2006). In addition mtl-1, ilys-3, 

dod-3, sodh-1, T22F3.11, C50F7.5, F21C10.10 and F45D3.4 are proposed 

downstream targets of the FOXO family transcription factor DAF-16 (Murphy et 

al., 2003). 

The top 10 down-regulated genes include a glutathione-s-transferase and an 

UDP-glucuronosyl/ glucosyl transferase. These both represent gene families that 

would be expected to be up-regulated if ivermectin were inducing xenobiotic 

metabolising genes. Experiments examining gst-10(RNAi) have proposed it to be 

integral to the response to heat, electrophilic stress and paraquat intoxication 

(Ayyadevara et al., 2007). Therefore, if C. elegans was exhibiting a general 

stress response following exposure to ivermectin this gene may be expected to 

be up-regulated. ugt-63 represents a putative UDP-glucuronosyl/ glucosyl 

transferase and has been proposed to be up-regulated in C. elegans exposed to 
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ethanol (Kwon et al., 2004). Induction of expression of this gene was also seen in 

response to albendazole exposure, see Chapter 4.  

The remainder of the top 10 down-regulated probesets represent a diverse group 

of genes, most of which are largely uncharacterised. However, KOG domains 

present in many of the genes would suggest that many are involved in general 

metabolism of lipids and proteins. spp-23 represents a saposin-like protein, 

which is potentially involved in lipid binding and metabolism. However, proteins 

with a saposin-like domain may have numerous functions including antimicrobial 

action (Bruhn, 2005). Also down-regulated are a putative intestinal acid 

phosphatase (pho-13), an aspartyl protease (F21F8.4) and two genes potentially 

encoding mineral transport proteins (srm-3 and folt-2). Interestingly seven of 

the ten genes have also previously been shown to be down-regulated in response 

to Pseudomonas aeruginosa infection. Only gst-10, srm-3 and F21F8.4 were not 

down-regulated in the microarray screen carried out by Troemel et al. (2006). 

However, none of these genes were proposed as targets of DAF-16 mediated 

suppression (Murphy et al., 2003). 

3.3.2 Real-time QPCR confirms up-regulation of genes in 

response to IVM exposure 

QPCR primers were designed for several of the most interesting up-regulated 

genes following exposure to 1µg/ml (1.14µM) IVM. Analysis was carried out using 

three separate biological replicates independent to those sent for microarray 

analysis. The purity of ivermectin from Sigma, as was used for the microarray 

experiments, is stated to be ≥90% ivermectin B1a and ≤5% ivermectin B1b. 

Therefore it was possible that the changes seen in the microarray were as a 

result of impurities rather than a response to ivermectin itself. Virbamec is a 

commercial preparation of ivermectin licensed for use in cattle, and as such is 

presumed to be pure. However, the exact make up of the excipient was not 

detailed and experiments were carried out comparing nematodes exposed to 

Virbamec and those containing no additional supplements to the standard NGM. 

Real-time quantitative PCR results are summarised in Fig. 3-3. 
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All genes examined that were considered to be up-regulated in the microarray 

experiments were validated using RT-QPCR experiments. The fold-change of 

specific genes was higher using RT-QPCR than that suggested by microarray 

experiments. This was likely due to RT-QPCR being much more sensitive than 

microarrays which compare many genes simultaneously. In addition, random 

hexamer primers were used in the reverse transcriptase step, which may 

exaggerate differences in expression. The absolute fold-change is likely 

unimportant as the purpose of the real-time QPCR was to confirm the results of 

the microarray experiments and the biological significance of absolute up-

regulation of a gene is unknown. The control genes were selected on the basis of 

them showing no significant changes on the microarray. col-19 is an adult 

specific collagen gene. The lack of any change in the expression of this gene 

between the experimental groups also confirms the accurate staging of the 
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Figure 3-3: RT-QPCR results following 4 hrs exposure of DA1316 to Virbamec (1µg/ml [1.14 
µM] IVM) 
All genes proposed to be up-regulated by microarray were confirmed by RT-QPCR. The 
control genes showed no significant changes on microarray analysis and confirm that the 
response to ivermectin is not a general stress response. cyp-35C1 is up-regulated in 
response to albendazole exposure (Chapter 4), but appears down-regulated in response to 
Virbamec exposure. 

 
biological replicates. Several genes on the control panel were chosen because 

they are proposed to be involved in general stress responses: sip-1, HSF-1 and 

gst-1 (www.wormbase.org; Ayyadevara et al., 2007; Cohen et al., 2006; 
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Halaschek-Wiener et al., 2005). In addition, an example of the p-glycoprotein 

family, pgp-1, was investigated. This gene has been proposed to be 

constitutively up-regulated in ivermectin selected lines of C. elegans and 

members of this family have also been proposed to be induced following IVM 

exposure of resistant isolates of H. contortus (James et al., 2008; Prichard et 

al., 2007). None of these genes showed any significant alteration of expression 

following exposure to Virbamec.  

cyp-35C1 was chosen as a control since it is up-regulated in response to 

albendazole (see Chapter 4) as well as several other xenobiotics (Reichert et 

al., 2005; Menzel et al., 2001). This gene is not significantly down-regulated on 

microarray analysis and has a log2 fold change of -0.49. However, real-time 

QPCR demonstrated cyp-35C1 to be consistently down-regulated following 

exposure to Virbamec (fold change 0.423).  

3.3.3 DAVID analysis of genes with significant changes in 

expression following ivermectin exposure 

3.3.3.1 Up-regulated genes 

Global analysis of function was carried out using the freely available DAVID 

software from the National Institute of Allergy and Infectious Disease (NIAID), 

National Institutes of Health (NIH). The gene lists assessed consisted of up-

regulated genes with a false discovery rate cut-off of less than 10%, as assessed 

by the rank products method. This up-regulated data set contained 292 

probesets, which represented 254 genes in the Caenorhabditis elegans genome.  

DAVID software aids in the interpretation of biological function of large gene 

lists by assigning annotation terms to each gene. DAVID makes use of gene 

ontology terms but also integrates information from several other gene identifier 

databases (Huang et al., 2009). Prevalence of annotation terms within a gene 

list are compared to the prevalence in the background list, in this case the 

whole C. elegans genome. Fold enrichment is then calculated and a modified 

Fishers exact test (EASE score) used to assign significance. Finally, DAVID 

software can be used to cluster genes within a list based on similar functional 

annotation terms.  
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3.3.3.1.1 Gene ontology analysis 

113 probesets represented genes encoding hypothetical proteins with no 

associated gene ontology terms. These probesets could not be included in the 

analysis, but may represent novel genes which are important in the response to 

ivermectin. Fig. 3-4 and 3-5 represent ontology terms associated with a 

minimum of two genes and with an associated EASE score (p-value) of ≤0.1, a 

total of 99 genes. The terms are listed in order of the calculated significance of 

enrichment. The pie charts represent the actual number of genes associated 

with each of the ontology terms.  

Fig. 3-4 represents the molecular function ontology terms. There is a significant 

enrichment of genes with oxidoreductase activity. This includes five cytochrome 

P450 genes, two flavin containing monooxygenases (FMO), two short chain 

dehydrogenase genes and an alcohol dehydrogenase, all of which could 

potentially be involved in xenobiotic metabolism. In addition, this term is also 

associated with three catalase genes, a fatty acid desaturase, a gamma 

butyrobetaine hydroxylase (potentially involved in carnitine biosynthesis) and a 

phytanol-CoA alpha-hydroxylase. These genes are all potentially involved in fatty 

acid breakdown and metabolism. The other molecular function ontology terms 

are essentially overlapping and represent the same genes. 

Perhaps of more interest are the biological process ontology terms, Fig. 3-5. The 

most significantly enriched group are genes associated with the term aging, 

which includes mtl-1, sodh-1, cyp-34A9 and dod-3. In addition, this group 

contains other down-stream targets of DAF-16 including catalase genes (ctl-2, 

ctl-1), a gut esterase (ges-1), a fatty acid CoA synthetase gene (acs-17), a 

predicted isocitrate lyase/ malate synthase (gei-7) and an acylsphingosine 

amidohydrolase (asah-1), which may all be involved in fatty acid metabolism 

pathways. The terms generation of precursor metabolites and energy; metabolic 

process; organic acid metabolic process; carboxylic acid metabolic process and 

catabolic process all include genes potentially involved in lipid breakdown. 

Overall, there does not appear to be enrichment of terms that could be 

specifically associated with xenobiotic metabolism pathways. The analysis 

suggests that the nematodes are undergoing a stress response associated with an 

increase in lipid catabolism. Importantly, assessment of microarray data and 
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confirmatory real-time QPCR (Fig. 3-3), suggest that this is not a general stress 

response, as there is no significant up-regulation of heat shock proteins (hsp-

16.1, hsp-16.49, hsp-70), stress associated glutathione-s-transferases (gst-1, gst-

4, gst-38) or other stress associated genes (sip-1, hsf-1).  

The only cellular component ontology terms associated with more than two 

genes and with an EASE score < 0.1 were: Intrinsic to endoplasmic reticulum 

membrane and microsome and vesicular fraction. These terms were associated 

with only two genes: fmo-1 and fmo-2. 

Increasing the number of annotation terms to include protein domains 

(INTERPRO, PIR_SUPERFAMILY, SMART), KEGG pathways and functional 

categories (COG_ONTOLOGY, SP_PIR_KEYWORDS, UP_SEQ_FEATURE), in addition 

to GOterms, did not significantly increase the number of genes annotated. The 

sole KEGG pathway term to be significantly enriched was fatty acid metabolism. 

This term was associated with five genes: F54F3.4, acs-2, sodh-1, acs-17 and 

F58F9.7.  
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Molecular function Ontology Terms p-val

9.52E-02coenzyme binding (5)

7.89E-02transition metal ion binding (25)

6.86E-02
oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular 
oxygen, NADH or NADPH as one donor, and incorporation of one atom of oxygen (2)

6.39E-02ion binding (31)

5.75E-02flavin-containing monooxygenase activity (2)

4.75E-02metal ion binding (31)

3.35E-02hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds (4)

2.47E-02tetrapyrrole binding (6)

2.47E-02heme binding (6)

1.07E-02antioxidant activity (4)

4.65E-03oxidoreductase activity, acting on peroxide as acceptor (4)

4.65E-03peroxidase activity (4)

8.12E-04catalase activity (3)

4.87E-04iron ion binding (11)

2.15E-04
oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular 
oxygen (6)

2.92E-05monooxygenase activity (9)

1.12E-06catalytic activity (72)

6.02E-08oxidoreductase activity (26)

 

Figure 3-4: Molecular function ontology terms associated with genes up-regulated in 
response to exposure of DA1316 to 1µg/ml (1.14µM) ivermectin for 4hrs. 
Terms are listed in order of significance as assessed by EASE score. The absolute number 
of genes associated with each term are shown in brackets and in the pie chart. 
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6.14E-02catabolic process (7)

7.71E-02cellular catabolic process (6) 

7.09E-02nitrogen compound metabolic process (6)

4.25E-02response to stress (7)

3.37E-02monocarboxylic acid metabolic process (4)

2.29E-02response to chemical stimulus (6)

1.24E-02carboxylic acid metabolic process (8)

1.24E-02organic acid metabolic process (8)

7.68E-03oxygen and reactive oxygen species metabolic process (3)

3.69E-03response to oxidative stress (4)

1.82E-03response to hydrogen peroxide (3)

1.82E-03response to reactive oxygen species (3)

1.21E-03metabolic process (67)

7.41E-04hydrogen peroxide metabolic process (3)

7.41E-04hydrogen peroxide catabolic process (3)

8.28E-06electron transport (15)

5.15E-06generation of precursor metabolites and energy (17)

7.78E-08determination of adult life span (14)

7.78E-08multicellular organismal aging (14)

7.78E-08Aging (14)

Biological Process Ontology Terms p-val

 

Figure 3-5: Biological Process ontology terms associated with genes up-regulated in 
response to exposure of DA1316 to 1µg/ml (1.14µM) ivermectin for 4hrs. 
Terms are listed in order of significance as assessed by EASE score. The absolute number 
of genes associated with each term are shown in brackets and in the pie chart. 
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3.3.3.1.2 Gene functional classification clustering reveals CYPs and UGTs to 

be up-regulated in response to ivermectin exposure 

Clustering up-regulated genes based on similar functional annotation aids in the 

elucidation of important pathways induced by ivermectin exposure. Enrichment 

scores for each group are the log converted geometric mean of the p-values 

associated with each of the annotation terms in the cluster. These provide a 

guide as to the significance of these clusters, a score over 1.3 represents a 

significant enrichment. 

The genes up-regulated in response to ivermectin exposure clustered into six 

groups. However, these clusters contained only a total of 33 genes, 221 genes 

were not clustered. Table 3-5, shows the top four clusters all of which had 

enrichment scores of greater than 1. There are two groups that could potentially 

be involved in xenobiotic metabolism. Cluster 1, enrichment score 5.12, contains 

a group containing five cytochrome P450 genes and three catalase genes. These 

share annotation terms relating to oxidoreductase activity, ion binding and 

multicellular organismal aging. The up-regulated cyp genes belong to the CYP4 

(cyp-37B1 and cyp-32B1) and CYP2 families (cyp-34A9, cyp-34A4 and cyp-33C7) 

(www.wormbase.org; Gotoh, 1998). Both cyp-34A9 and cyp-33C7 have been 

shown to be up-regulated in dauer constitutive TGF-beta mutants (Liu et al., 

2004) Interestingly, there are no members of the cyp-35 group (also CYP2 

family), which have been associated in the response to many xenobiotics (Menzel 

et al., 2005). 

Cluster 3, enrichment score 1.35, contains a group of four putative UDP-

glucuronosyl/ glucosyl transferases. These are important enzymes in phase II 

metabolism, functioning by conjugating glucuronosyl/ glucosyl groups to 

endogenous and exogenous compounds to aid in their excretion from the 

organism.  

The remaining two clusters contain a group of putative transcription factors 

(cluster 2; enrichment score 2.09) and a final group sharing terms associated 

with their location in the cell membrane (cluster 4, enrichment score 1.23). 
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Functional group 1: Enrichment score 5.12 

Probeset Gene ID Ontology 

173480_s_at cyp-32B1 cytochrome P450 

AFFX-Ce_catalase_M_s_at, 
188587_s_at, AFFX-
Ce_catalase_5_s_at 

ctl-3 catalase 

189457_at cyp-34A9 cytochrome P450 

189309_at cyp-33C7 cytochrome P450 

188687_s_at ctl-2 catalase 

189343_at cyp-34A4 cytochrome P450 

AFFX-Ce_catalase_M_s_at, 
AFFX-Ce_catalase_5_s_at, 
188587_s_at 

ctl-1 catalase 

 

189221_at cyp-37B1 cytochrome P450 

173490_s_at F09F7.7 KOG- 2-oxoglutarate and iron dependent 
dioxygenase related proteins 

Functional group 2: Enrichment score 2.09 

Probeset Gene ID Ontology 

193927_s_at Y48A6B.7 cytidine deaminase 

192333_at pqm-1 paraquat responsive (transcription factor) 

171737_x_at, 190566_at T12G3.1 KOG- ZZ type Zn finger 

189967_at C06G3.6 KOG- ZZ type Zn finger 

176141_s_at Y58A7A.4 Uncharacterised 

Functional Group 3: Enrichment score 1.35 

Probeset Gene ID Ontology 
176453_at ugt-31 UDP-glucuronosyl/ glucosyl transferase 

191053_at ugt-4 UDP-glucuronosyl/ glucosyl transferase 

191434_at ugt-54 UDP-glucuronosyl/ glucosyl transferase 

184602_at ugt-25 UDP-glucuronosyl/ glucosyl transferase 
Functional Group 4: Enrichment score 1.23 

Probeset Gene ID Ontology 

173200_s_at inx-2 innexin 

186660_s_at F46C5.1 uncharacterised 

179396_at C35A5.6 uncharacterised 

188431_s_at dct-1 DAF-16/FOXO controlled germline tumour 
affecting 

Table 3-5: Gene functional classification of up-regulated genes following 4hrs exposure of 
DA1316 to 1µg/ml (1.14µM) IVM 
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3.3.3.2 DAVID analysis of down-regulated genes 

217 probesets were down-regulated with a false discovery rate cut off of 10%, 

using rank products analysis. This represented a total of 192 genes that were 

analysed using DAVID software.  

3.3.3.2.1 Gene ontology analysis 

59 probesets represented genes with no annotation data. Fig. 3-6 and 3-7 

represent annotation terms associated with at least two genes in the list and an 

EASE score of ≤0.1, a total of 108 genes. 

The most significantly down regulated molecular function annotation term is 

catalytic activity, Fig. 3-6. This term is associated with six UDP-

glucuronosyl/glucosyl transferases, four glutathione-s-transferases, one 

cytochrome P450 and one short-chain dehydrogenase. More specific terms for 

each of these families, including oxidoreductase and transferase activity, are 

also significantly down-regulated. These represent gene families that would be 

expected to be up-regulated in a xenobiotic detoxification response.  

In addition to XME gene families there is significant down-regulation of terms 

associated with lipid metabolism and biosynthetic processes. This is especially 

notable in the biological process ontology terms, Fig. 3-7. The most significantly 

enriched a term is carboxylic acid metabolic process, which is associated with 

the fatty acid desaturase genes fat-5, fat-6 and fat-7; and several hypothetical 

proteins with acyl-CoA thioesterase, acyl-CoA dehydrogenase, acyl-CoA oxidase, 

glycine dehydrogenase KOGs. Several of these genes are also associated with 

amino acid metabolic processes. Genes involved in lipid transport, including 

vitellogenins, are down-regulated. Carbohydrate metabolic processes, 

exemplified by the UDP-glucuronosyl transferases ugt-12, ugt-46; the lysozyme 

genes lys-5 and lys-6; gale-1 (a putative UDP-galactose 4 epimerase) and ger-1 (a 

putative GDP-keto-6-deoxymannose 3,5-epimerase/ 4-reductase) are also 

enriched in the down-regulated gene list. 

Cellular component ontology terms associated with more than two genes in the 

down-regulated list were: Cytoplasm and cytoplasmic part, endoplasmic 
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reticulum, apical part of cell and apical plasma membrane. These terms are 

associated with many of the genes involved in fatty acid metabolism listed above 

including the fatty acid desaturases fat-5, fat-6 and fat-7. The terms apical part 

of cell and apical plasma membrane were both associated with the same two 

genes: nhx-2, a sodium/ proton exchanger, and pep-2, a peptide transporter. 

NHX-2 and PEP-2 are thought to be functionally coupled (Walker et al., 2005). 

PEP-2 is thought to co-transport H+ and peptides into the intestinal cells, whilst 

NHX-2 removes the H+  to prevent excessive acidification of the cytoplasm. The 

expression of both of these genes was reduced in daf-2 mutants (McElwee et al., 

2004). Decreased DAF-2 signalling is involved in formation of the long-lived, non-

eating dauer stage. 

As in Section 3.3.1.1.1, using protein domain, KEGG pathways and functional 

category annotation in addition to GOterms did not significantly increase the 

number of genes in the down-regulated list that were annotated. Three KEGG 

pathway terms were significantly enriched: Porphyrin and Chlorophyll 

Metabolism, 1- and 2- Methylnaphthalene degradation and Metabolism of 

Xenobiotics by Cytochrome P450s. These terms were associated with two UDP 

glucuronosyl transferases, two glutathione-s-transferases, a gene predicted to 

encode a short chain-type dehydrogenase and an alcohol dehydrogenase. The 

down-regulation of these pathways in response to ivermectin exposure is not 

consistent with a detoxification response. 
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Figure 3-6: Molecular function ontology terms associated with genes down-regulated 
following 4hrs exposure of DA1316 to 1µg/ml (1.14µM) IVM 
Terms are listed in order of significance as assessed by EASE score. The absolute number 
of genes associated with each term are shown in brackets and in the pie chart. 
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Figure 3-7: Biological process ontology terms associated with down-regulated genes 
following 4 hours exposure of DA1316 to 1µg/ml (1.14µM) IVM 
Terms are listed in order of significance as assessed by EASE score. The absolute number 
of genes associated with each term are shown in brackets and in the pie chart. 
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3.3.3.2.2 Gene functional classification reveals transferases and fatty acid 

elongases to be down-regulated following ivermectin exposure 

Functional classification of the down-regulated genes confirms the decrease in 

transferase activities following ivermectin exposure, Table 3-6. The down-

regulated genes contain a cluster of UDP-glucuronosyl transferases and a cluster 

of glutathione-s-transferases (cluster 2, enrichment 2.93; and cluster 3, 

enrichment 2.63, respectively). Members of the UGT family may perform 

constitutive functions, in addition to being involved in xenobiotic detoxification. 

The current data would suggest that certain pathways utilising glucuronidation/ 

glucosylation are up-regulated (ugt-31, ugt-4, ugt-54 and ugt-25) and others 

down-regulated (ugt-16, ugt-12, ugt-63 and ugt-22) in response to ivermectin 

exposure. It is possible that the UGTs within each group are involved in common 

pathways and further investigation of their promoter regions may provide a 

useful insight into their regulation. 

Cluster 1, enrichment score 3.35, represents genes associated with fatty acid 

metabolism. Interestingly, all of these genes have been shown to be down-

regulated during short-term fasting (Van Gilst et al., 2005b). Reduction in the 

fatty acid elongase genes elo-2, elo-5 and elo-6 and the vitellogenin genes is 

consistent with a shift from fat storage to fat breakdown which would be 

expected in a fasting situation.  
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Functional group 1: Enrichment score 3.35 

Probeset Gene ID Ontology 

190156_s_at C48B4.1 KOG-Acyl-CoA oxidase 

194059_at F08A8.2 uncharacterised 

188822_at acdh-1 Acyl CoA dehydrogenase 

190705_s_at acdh-2 Acyl CoA dehydrogenase 

187495_s_at acdh-9 KOG-  medium-chain acyl-CoA 
dehydrogenase 

Functional group 2: Enrichment score 2.93 

Probeset Gene ID Ontology 

191418_at ugt-16 UDP-glucuronosyl/ glucosyl transferase 

191778_s_at ugt-12 UDP-glucuronosyl/ glucosyl transferase 

190744_at ugt-63 UDP-glucuronosyl/ glucosyl transferase 

193604_at ugt-22 UDP-glucuronosyl/ glucosyl transferase 

Functional Group 3: Enrichment score 2.62 
Probeset Gene ID Ontology 

192407_at 

gst-4 putative glutathione requiring prostaglandin 
D synthase 

187084_at, 187085_s_at gst-10 glutathione-s-transferase 

191393_s_at gst-27 glutathione-s-transferase 

191431_at gst-26 glutathione-s-transferase 

Functional Group 4: Enrichment score 2.39 

Probeset Gene ID Ontology 

176872_at vit-3 vitellogenin structural gene 

187318_at lon-1 PR-protein superfamily 

171723_x_at, 172134_x_at vit-4 vitellogenin structural gene 

177065_at vit-1 vitellogenin structural gene 

Functional Group 5: Enrichment score 1.71 

Probeset Gene ID Ontology 

189345_at pho-13 intestinal acid phosphatase 

177183_s_at acp-6 acid phosphatase family 

175238_s_at, 182487_s_at pho-1 intestinal acid phosphatase 

191091_at pho-7 intestinal acid phosphatase  

Functional Group 6: Enrichment score 1.25 

Probeset Gene ID Ontology 

186362_s_at glf-1 UDP-galactopyranose mutase 

177190_at, 172177_x_at 

Y71H2AL.1 KOG- Ca2+/ calmodulin-dependent protein 
phosphatase 

186757_s_at F42A8.1 Uncharacterised 

190067_at F09F7.4 KOG- enoyl CoA hydratase 

189019_at C31E10.7 KOG- cytochrome B5 

194203_x_at, 177650_at lpr-3 Lipocalin- related protein 

191276_s_at elo-5 polyunsaturated fatty-acid elongase 

184144_at R193.2 uncharacterised 

173725_s_at elo-6 polyunsaturated fatty acid elongase 

180055_at ZC328.1 uncharacterised 

189318_at elo-2 palmitic acid elongase 

Table 3-6: Gene functional classification of down-regulated genes following 4 hours 
exposure of DA1316 to 1µg/ml (1.14µM) IVM 
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3.3.3.3 Global analysis summary 

Global analysis suggests that the response of C. elegans to 4hrs exposure to 

1µg/ml (1.14µM) ivermectin is predominated by an up-regulation of genes 

involved in lipid catabolism and gluconeogenesis and a down-regulation of lipid 

biosynthesis and carbohydrate metabolism. This is consistent with a change in 

metabolic profile to use stored energy as would be expected in the fasting 

response. Van Gilst et al. (2005b) used real-time QPCR to investigate the 

response of 97 fat and glucose metabolism genes in response to fasting at all life 

stages over a period of 12hrs. 39 genes were found to have altered expression 

levels in one or more life stages and 18 were consistently altered in all stages. 

Changes in the level of expression of these genes were noted as soon as 30min 

after the withdrawal of food. The log2 FC of these 18 genes following exposure 

to ivermectin is presented in Fig. 3-8. There is excellent correlation in the 

response of these genes following fasting and upon exposure to ivermectin. 
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Figure 3-8: Fasting response genes change in expression following 4hrs exposure of 
DA1316 to1µg/ml (1.14µM) IVM. 
The effect of ivermectin exposure on the expression level of 18 genes known to be 
responsive to fasting (van Gilst et al., 2005) was assessed. In general genes that were 
shown to be induced by fasting were also induced following exposure to ivermectin and 
fasting repressed genes were also repressed by ivermectin exposure. 
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3.3.4 Pharyngeal pumping rate of strain DA1316 is reduced upon 

exposure to 1µg/ml IVM 

Given the large number of genes whose alteration in expression intensity is 

consistent with a fasting response, it was important to more fully evaluate the 

phenotype of the DA1316 strain when exposed to 1µg/ml (1.14µM) IVM. Dent et 

al. (2000) report that the glutamate-gated chloride channel triple mutant rests 

in a slightly starved state, but that it is resistant to ivermectin doses of up to 

5µM (4.5µg/ml) IVM. However, resistance was measured as the ability of 

synchronised eggs to reach adulthood, over a period of 2 weeks, on ivermectin-

containing plates. After 4hrs exposure on NGM plates containing 1µg/ml (1.14µM) 

IVM, DA1316 was clearly phenotypically affected compared to controls, showing 

decreased movement. Of more interest, given the microarray results, was the 

response of the pharynx after 4hrs at this concentration of drug. Fig. 3-9 

demonstrates the pharyngeal pumping rate of both DA1316 and N2 worms after 

4hrs exposure to a gradient of ivermectin concentrations. After 4hrs at 1µg/ml 

(1.14µM) IVM strain DA1316 has a significantly reduced pharyngeal pumping rate. 

This is contrary to the recent report by Ardelli et al. (2009) who saw no effect 

on pharyngeal pumping rate of an avr-14, avr-15, glc-1 triple mutant 2.5 hours 

after exposure to 5µM IVM.
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Figure 3-9: Pharyngeal pumping rate following 4hrs exposure of DA1316 and N2 to 1µg/ml 
(1.14µM) IVM. 
Whilst strain DA1316 is more resistant to the effect of ivermectin on pharyngeal pumping, at 
concentrations greater than 100ng/ml (114nM) the pharyngeal pumping rate is significantly 
reduced. 

 

3.3.5 avr-15 is wild-type in strain DA1316 

Strain DA1316 did not appear to be responding to ivermectin in the manner 

reported by both Dent et al. (2000) and Ardelli et al (2009). Therefore, the 

three putative mutations resulting in the triple mutant phenotype were analysed 

using a combination of PCR diagnosis and PCR sequencing. The point mutation 

avr-14(ad1302) and the transposon insertion glc-1(pk54) were present as 

expected. However, the point mutation avr-15(ad1051) was not (Fig. 3-10 to 3-

12). avr-15 is thought to be a major subunit in post-synaptic glutamate-gated 

chloride channels at the neuromuscular junction of the pharynx (Dent et al., 

1997). The fact that this subunit appeared wild-type in the strain received from 

the CGC may explain why the pharynx of DA1316 is sensitive to ivermectin. It 

should be noted that wild-type avr-15 was present in two separate batches of 

DA1316 received from the CGC. 
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Figure 3-10: PCR confirming the presence of glc-1(pk54::Tc1) in strain DA1316 

 

 

 

Figure 3-11: Sequence of avr-14(ad1302) locus of strain DA1316 
The red box highlights the T to A substitution expected in mutant strain DA1316 
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Figure 3-12: Sequence of avr-15(ad1051) locus of strain DA1316 
The red box highlights where the G-A substitution should be in strain DA1316. However no 
mutation is present. 

3.3.6 Comparison to dauer data and axenic culture 

Axenic culture has been proposed to result in a change in lifestyle of C. elegans, 

resulting in a decrease in energy storage and slowing of growth rate (Castelein 

et al., 2008; Szewczyk et al., 2006). Ivermectin causes a decrease in pharyngeal 

pumping and the microarray analysis suggests that pathways involved in energy 

metabolism and storage are affected by ivermectin exposure. Therefore, 

significant overlap may be expected between the transcriptomes of nematodes 

grown in axenic culture and those exposed to ivermectin. Szewczyk et al. (2006) 

carried out microarray analysis of Caenorhabditis elegans grown in a defined 

axenic culture system and on E. coli seeded NGM plates. They defined a subset 

of 22 genes that were reliably up-regulated in nematodes grown in axenic 

culture. Most of these genes were uncharacterised, but the list included several 

genes involved in heavy metal response. Comparison of these data to the 

microarray data generated in the current study revealed that mtl-1 was the only 

gene considered to be significantly up-regulated in axenic medium that was also 

significantly up-regulated in response to ivermectin. 
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The dauer larvae of Caenorhabditis elegans is a stress resistant, hypobiotic stage 

of the nematode. Dauers do not feed and it is possible that many of the 

pathways up-regulated in response to ivermectin induced pharyngeal paralysis in 

L4 worms may also be enriched in dauers compared to non-dauer L4 larvae. 

Wang et al. (2003) used microarray analysis to compare the transcriptomes of 

dauer worms to those that have been exposed to food for 12 hours and were 

exiting dauer stage. The analysis made use of 2 colour spotted arrays and each 

chip compared RNA derived from dauers at various stages of exit to a reference 

pool of RNA derived from mixed stage N2 worms. For this reason re-analysis of 

the data in a similar manner to the method used in the current study was not 

possible. Therefore, a comparison was drawn between the ivermectin responsive 

and dauer transcriptomes based on fold change alone (greater than 2-fold up or 

down-regulation) and is presented in Fig. 3-13. The number of genes 

differentially expressed between dauers and non-dauers is much larger than that 

between IVM exposed and unexposed. This is to be expected as the dauer stage 

represents a physiologically specialised life-stage that must resist long-term 

fasting, over a period of months, and associated metabolic stress (Riddle et al., 

1981). In the current study nematodes were exposed to ivermectin for 4hrs and 

other than a decrease in pharyngeal pumping rate were largely resistant to the 

effects of the drug. However, as can be seen, a significant number of the genes 

up-regulated in response to ivermectin exposure were also up-regulated in the 

dauer stage. An overlap of no more than ten genes would be expected by 

chance, but 64 genes were up-regulated in both experiments1. Therefore, many 

of these genes may represent a response to the fasting induced by ivermectin’s 

effect on the pharynx. 

 
 
 

                                         
1
 No. of genes expected to overlap by chance (Troemel et al., 2006) =  

   No. of genes up-regulated in current study     X   No. genes up-regulated in Wang (2003) 

No. of genes assessed by microarray (22150) 
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Figure 3-13: Comparison of genes enriched in dauers and those up-regulated in response to 
4hrs exposure to 1µg/ml (1.14µM) IVM 
Many of the genes enriched in the dauer stage are also up-regulated in response to 
ivermectin exposure. An overlap of ten genes up-regulated in both experiments would be 
expected by chance, but 64 are seen to be up-regulated in both IVM exposed and dauer 
stage larvae.  

 

3.3.7 N2 exposure to 100ng/ml IVM for 4 hours results in an 

overlapping but distinct gene set compared to DA1316 

exposed to the same dose 

It is likely that many of the genes shown to be up-regulated in response to 

exposure of DA1316 to 1µg/ml (1.14µM) IVM are in fact genes up-regulated in 

response to fasting. However, some of the up-regulated genes may also be 

directly involved in detoxification pathways to eliminate ivermectin from the 

nematode. In order to identify candidate genes, microarray experiments were 

carried out using wild type Caenorhabditis elegans. Nematodes were exposed to 

100ng/ml (114nM) IVM in an identical manner to the DA1316 experiments at the 

same dose. Phenotypically, wild-type C. elegans are completely paralysed after 

4 hours exposure to this dose (data not shown) and pharyngeal pumping is 
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completely abolished (Fig. 3-9). Therefore, it was expected that genes involved 

in a fasting/ stress response would be more intensely up-regulated compared to 

the DA1316 strain, but that genes up-regulated in an ivermectin dose dependent 

manner would be up-regulated to a smaller degree.  

In total, three biological replicates were sent for analysis and no chips were 

dropped following quality assurance. Analysis of the results using an empirical 

Bayesian t-test and Benjamini-Hochberg correction for false discovery rate 

revealed there to be no significantly changes in expression. Re-analysis using the 

rank products algorithm revealed fifteen probesets, equivalent to ten genes, to 

be significantly up-regulated and eight probesets to be significantly down-

regulated (FDR <10%), see accompanying CD. The top 10 up-regulated genes are 

outlined in Table 3-7. The fact that so few probesets showed significantly 

altered expression in this comparison is remarkable given the dramatic 

phenotypic differences between the drug-exposed and control groups. 

The small number of probesets showing significant changes in expression level 

meant that DAVID analysis was not undertaken. However, comparing the list of 

up-regulated genes in this experiment to those in the DA1316 100ng/ml (114nM) 

and 1µg/ml (1.14µM) IVM experiments revealed a subset of genes that were up-

regulated in both DA1316 experiments but not in the wild-type nematode 

experiments (Fig. 3-14). 

In total there were ten genes up-regulated in both of the DA1316 microarray 

experiments, but not in the wild-type experiment, see Fig. 3-14. These included 

mtl-1, scl-2 and cyp-37B1, all of which are in within the top 10 up-regulated 

genes in the DA1316, 1µg/ml (1.14µM) IVM microarray experiment. In the wild-

type experiment the log2 fold changes of these genes were 0.03, 1.12 and 0.64 

respectively. In contrast, the log2 fold changes in the 100ng/ml (114nM) IVM 

experiment using strain DA1316 were 1.59, 1.31 and 1.27 respectively. The 

reason for the greater fold-change of cyp-37B1 and mtl-1 in strain DA1316 

compared to N2 following exposure to 100ng/ml (114nM) IVM is unknown, but 

may be related to changes in gene regulation following the complete paralysis 

induced in N2 or due to strain differences. However, these three genes appear 

to be up-regulated in an IVM dose-responsive manner as the fold changes are 
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much higher in the 1µg/ml (1.14µM) IVM experiment. Therefore, mtl-1, scl-2 and 

cyp-37B1 were initially investigated further. 

Probeset Gene ID Log2 FC BH FDR RP FDR Ontology 

173729_at T22F3.11 2.26 0.999807 0 

permease of major facilitator 

family KOG 

186971_at C23G10.11 2.01 0.999807 0 
uncharacterised 

173550_at F45D3.4 1.80 0.999807 0 
uncharacterised 

173558_at ZC443.3 1.69 0.999807 0 
uncharacterised 

179272_at C06B3.6 1.56 0.995349 0 
uncharacterised 

191581_at B0564.3 1.54 0.944618 0 
bestrophin- KOG 

184913_s_at T22F3.11 1.51 0.999807 0 

permease of major facilitator 

family KOG 

178900_s_at F45D3.4 1.35 0.999807 0.076923 
uncharacterised 

186660_s_at F46C5.1 1.32 0.999807 0.054545 
uncharacterised 

192181_at T28H10.3 1.29 0.999807 0.071429 
asparaginyl peptidase-KOG 

 

Table 3-7: Top 10 up-regulated genes based on fold change following 4hrs exposure of N2 
to 100ng/ml (114nM) IVM 
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Figure 3-14: Comparison of up-regulated genes in all acute IVM response experiments 
There are a total of ten genes that are significantly up-regulated in both the DA1316 
experiments, but not in the wild-type experiment. These were: cyp-37B1, mtl-1, scl-2, 
C35C5.8, C50F7.5, F09F7.6, F21C10.10, F53A9.8, F54F3.3 and T12D8.5. 

 



Chapter 3: C. elegans transcriptomic response to ivermectin 87 

3.3.8 cyp-37B1, scl-2 and mtl-1 are up-regulated in an ivermectin 

dose-dependent manner 

1µg/ml (1.14µM) represents an extremely high concentration of ivermectin that 

parasitic nematodes are unlikely to come into contact with. In order to assess 

the response of C. elegans to more physiologically relevant concentrations of 

ivermectin, a concentration gradient experiment was designed. Strain DA1316 

was exposed to ivermectin concentrations from 1-1000ng/ml (1.14-1140nM) in an 

identical manner to previous microarray and RT-QPCR replicates. Ivermectin 

(Sigma, I8898) was used and all groups, including controls, contained an 

identical volume of DMSO. Real-time QPCR was used to assess the fold induction 

of the candidate ivermectin specific genes: mtl-1, scl-2 and cyp-37B1. The 

results are summarised in Fig. 3-15. 
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Figure 3-15: Up-regulation of cyp-37B1, mtl-1 and scl-2 in response to 4hrs exposure to 
varying concentrations of ivermectin 
Up-regulation of the genes of interest appears to occur in a dose-dependent manner.  

 
There is no apparent induction of any of the three genes assessed at 1ng/ml 

(1.14nM) ivermectin, but moderate induction is seen at 10ng/ml (11.4nM) IVM: 

cyp-37B1 2.4-fold increase; scl-2 2.37-fold increase; mtl-1 2.59-fold increase. 
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Large fold changes are seen at both 100ng/ml (114nM) and 1µg/ml (1.14µM) IVM. 

The fold changes of each gene are slightly different than those found when using 

Virbamec as the source of ivermectin. This likely reflects the different source of 

drug used. 

3.3.9 GFP expression of cyp-37B1, scl-2 and mtl-1 

In order to assess the possible function of the candidate genes, transcriptional 

GFP reporter constructs were created for cyp-37B1, scl-2 and mtl-1, and 

assessed in a DA1316 background. Between three and five separate transgenic 

lines carrying extrachromasomal arrays were created and assessed for each 

reporter construct. 

The expression pattern of mtl-1 has previously been evaluated by other groups 

and was included here as validation of the PCR fusion technique used to create 

the reporter constructs. All three of the genes investigated showed intense GFP 

expression in the gut (Fig. 3-16 to 3-18), which is the proposed site for 

detoxification in nematodes (McGhee, 2007). mtl-1 also showed expression in 

the terminal bulb of the pharynx (Fig. 3-16), as has been reported previously 

(Cui et al., 2007; Freedman et al., 1993). The fact that constitutive intestinal 

expression was observed for this reporter was unusual. Previous authors have 

reported that whilst expression in the terminal bulb of the pharynx was 

constitutive, intestinal expression was observed only after induction with heavy 

metals. This may represent a difference in regulation of this gene within the 

DA1316 strain as compared to wild-type or may simply be due to the fact that a 

transcriptional rather than translational reporter was used in this study.  

The transcriptional reporter for cyp-37B1 showed expression in two cells in the 

tail region in addition to the intestinal cells (Fig. 3-17). These were assumed to 

be the phasmid neurons. These are proposed to be chemosensory neurons 

involved in avoidance of noxious chemical stimuli (Bargmann, 2006). As can be 

seen in Fig. 3-18, expression of the scl-2 transcriptional reporter was confined 

to the intestinal cells. 

It was noted that Caenorhabditis elegans carrying reporter construct transgenes 

of each of the three genes of interest showed increased fluorescence on starved 
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plates compared to those with an excess of food. This suggested that the 

transcription of the genes was inducible. However, it also raised the possibility 

that these genes were not specific to ivermectin exposure and may be induced 

purely as a result of the phenotype of drug exposed nematodes. Attempts were 

made to quantify the induction of fluorescence using Image J analysis 

(http://rsbweb.nih.gov/ij/index.html) and an ELISA plate reader technique 

(Fluorostar software). However, the GFP reporter was found to be unstable in all 

of the transgenic lines created, other than that for mtl-1, and GFP fluorescence, 

both constitutive and following starvation and ivermectin exposure, diminished 

to a point where accurate quantification was not possible.  
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Figure 3-16: mtl-1 GFP reporter (Genotype [pRF4{rol-6(su-1006)}+mtl-1::GFP]; avr-
14(ad1302); glc-1(pk54)) 

 

 

Figure 3-17: cyp-37B1 GFP reporter (Genotype [pRF4{rol-6(su-1006)}+cyp-37B1::GFP]; avr-
14(ad1302); glc-1(pk54)) 

 

 

Figure 3-18: scl-2 GFP reporter (Genotype [pRF4{rol-6(su-1006)}+scl-2::GFP]; avr-
14(ad1302); glc-1(pk54)) 



Chapter 3: C. elegans transcriptomic response to ivermectin 91 

3.3.10 cyp-37B1, mtl-1 and scl-2 are up-regulated in response 

to fasting in both DA1316 and N2 strains 

In order to assess the response of the genes of interest to fasting, real-time 

QPCR experiments were designed to compare the up-regulation of cyp-37B1, scl-

2 and mtl-1 in response to 4hrs fasting and 4hrs ivermectin exposure. 

Synchronised L1 larvae of strain DA1316 or N2 were grown on standard NGM 

plates for 53hrs and 40hrs respectively (i.e. until they reached L4 stage). The 

larvae were then divided equally between three groups: ivermectin with food 

source (1µg/ml [1.14µM] for DA1316 and 100ng/ml [114nM] for N2), control 

plates with food source and control plates with no food source (fasting group). 

After 4hrs under these conditions worms were harvested and RNA extracted as 

previously described. Real time-QPCR was used to compare the change in 

expression of several genes of interest under the two experimental conditions. 

Two biological replicates were used in these experiments and each biological 

replicate was assessed in duplicate. All of the genes investigated showed up-

regulation in both the ivermectin exposure and fasting group (Fig. 3-19 and 3-

20). Statistical analysis showed no difference in the level of up-regulation 

between the two groups of cyp-37B1, mtl-1 and scl-2, which strongly suggests 

that the induction of these genes following ivermectin exposure is entirely due 

to fasting caused by pharyngeal paralysis.  

acs-2 and gei-7, genes known to be involved in the fasting response, were 

investigated in wild-type worms alongside the three genes of interest. The 

nematodes in this experiment were exposed earlier than those used for 

microarray replicates, at the L4 stage, so that they were biologically identical to 

the DA1316 used in this experiment and in microarray experiments. 

Interestingly, acs-2 and gei-7 showed a significantly greater induction following 

food withdrawal than ivermectin exposure (p< 0.05). In contrast, mtl-1, scl-2 

and cyp-37B1 were intensely up-regulated in strain N2 in both the IVM exposure 

and fasting groups. Results are not shown for mtl-1 and cyp-37B1 due to the fact 

that expression of these genes in the control group was negligible and beyond 

the sensitivity of the RT-QPCR technique. However, attempts at quantification 

suggested huge up-regulation of near 300-fold. The reason for these genes’  
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Figure 3-19: mtl-1, scl-2, cyp-37B1 and cyp-35C1 regulation following 4hrs exposure to 
1µg/ml (1.14µM IVM) and 4hrs fasting in strain DA1316 
There are no significant differences in the fold-up-regulation of the genes investigated 
following exposure to ivermectin and 4hrs fasting. cyp-35C1 was unaffected by either 
treatment. 
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Figure 3-20: acs-2, gei-7 and scl-2 regulation following 4hrs exposure to 100ng/ml (114nM) 
IVM and 4hrs fasting in strain N2 
scl-2 is equally up-regulated in both conditions. However, acs-2 and gei-7, genes known to 
be involved in the fasting response, show significantly higher up-regulation following 
fasting compared to ivermectin exposure. mtl-1 and cyp-37B1 are not included in this graph 
due to inefficient amplification of transcripts in control worms. However, both appear to be 
up-regulated under both conditions. 
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absence in the list of significant genes from the N2 microarray experiment may 

be two-fold. First of all the up-regulation of mtl-1, cyp-37B1 and scl-2 may be 

stage specific and not occur in young adults, which were assessed by microarray 

experiments. Secondly, it appears that the expression of these genes is 

constitutively higher in strain DA1316 than in wild-type worms, perhaps due to a 

level of pharyngeal dysfunction causing a mild fasting response in this strain. If 

this is the case it may be that the low transcript number in control groups of 

wild-type worms affected microarray analysis in a similar manner to the 

problems encountered using RT-QPCR. Further experiments with wild-type 

worms prepared in an identical fashion to those for the microarray experiments 

(exposed to IVM at the young adult stage) would suggest that the latter may be 

the most important. However, similar issues with the detection of control 

transcript levels of these genes rendered these results unpresentable.  

3.4 Discussion 

Due to the potent nature of ivermectin, initial experiments were carried out 

using a very conservative dose of drug in combination with a resistant strain of 

C. elegans. At 0.5ng/ml IVM and 5ng/ml (0.57 and 5.7nM) IVM there were no 

phenotypic differences between drug exposed groups and control groups after 

60hrs. Glutamate-gated chloride channel subunit double mutants are reported to 

be resistant to ivermectin concentrations of around 10ng/ml (11.4nM; Dent et 

al., 2000). The reason for the initial spurious microarray results is unknown. 

Initial bioreplicates were exposed to drug plates prepared using a stock solution 

of IVM appropriately diluted in distilled sterile H2O, rather than DMSO. This 

means that the drug-exposed and control plates differed by the addition of H2O 

as well as drug. It is possible that introduction of impurities in this manner 

resulted in the initial results. It seems unlikely that cyp-13A6 is involved in the 

response to ivermectin given that its induction has not been repeatable in 

further microarray or real- time QPCR experiments.  

In most of the microarray experiments carried out, the low number of genes 

with significantly changed expression levels has been remarkable. The 

experiments were designed using a resistant strain, specifically to minimise 

changes in the transcriptome due to general stress. However, more dramatic 
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changes in gene expression were expected in the wild-type experiment, where 

phenotypic changes between the drug exposed and control groups were marked. 

This may be a result of the strict statistical analysis used to assess the 

microarray data. Many other published papers examining transcriptomic changes 

in C. elegans have used fold-change alone or a simple t-test to assign 

significance (Reichert et al., 2005; Wang et al., 2003; Custodia et al., 2001). 

Therefore, follow-up of genes beyond the statistical cut off used in the current 

study may be appropriate.  

Analysis of microarray data and real-time QPCR strongly suggests that the 

predominant response to ivermectin in this study is a fasting response. This is 

likely to be due to the pharyngeal paralysis induced by exposure to 1µg/ml 

(1.14µM) IVM. Many of the genes that were up and down-regulated have clear 

roles in fatty acid metabolism pathways and gluconeogenesis. There are no 

microarray studies in the literature comparing whole genome responses in fasted 

and control nematodes. However, comparison to dauer-stage transcriptome data 

revealed significant overlap of differentially expressed genes. The trend of gene 

expression changes between the current study and the fasting response data 

presented by van Gilst et al. (2005b) is compelling evidence of a similar fasting 

response in C. elegans exposed to IVM. van Gilst et al. (2005b) used real-time 

QPCR to monitor the expression of only a small subset of genes that were 

expected to change during fasting. Therefore, it is possible that several of the 

genes, whose expression was changed in response to ivermectin exposure, are 

novel fasting response genes. Alternatively, they may in fact be involved in the 

detoxification of ivermectin.  

The wild-type ivermectin exposure microarray experiment was compared to the 

DA1316 experiments in an attempt to elucidate genes that may potentially be 

involved in a detoxification response. This analysis was hampered by the low 

number of genes with significantly up-regulated gene expression in the wild-type 

experiment. However, there were ten genes which were not up-regulated in the 

wild type experiment but that were in both of the DA1316 experiments. Of these 

ten genes cyp-37B1, mtl-1 and scl-2 were chosen for further analysis as they 

have undergone some level of previous characterisation and were in the top 10 

list of up-regulated genes following exposure of strain DA1316 to IVM. In 

addition, cyp-37B1 is a member of the cytochrome P450 family, which has been 
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proposed to be the major group of enzymes metabolising ivermectin in 

mammalian systems (Gonzalez et al., 2009; Zeng et al., 1998). Initial analysis of 

these genes suggested they may have a role in detoxification. Their regulation 

appeared to respond to ivermectin in a dose dependent manner and all appeared 

to be expressed in the intestine of C. elegans, which is thought to be the major 

organ involved in detoxification in nematodes (McGhee, 2007). However, further 

examination of the regulation of the three genes revealed that they were up-

regulated to the same level following food withdrawal as following ivermectin 

exposure. 

mtl-1 is a metallothionein gene, which is inducible in response to heavy metal 

intoxication and stress adaptation (www.wormbase.org). mtl-1 may therefore be 

involved in protection of the nematode from stressors (Cui et al., 2007). 

However, metallothioneins have also been proposed to be involved in zinc 

signalling pathways within mammalian cells (Cousins et al., 2006). Up-regulation 

of the gene under fasting conditions may represent modulation of a similar 

signalling pathway in C. elegans. Interestingly, mtl-1 has been noted to be up-

regulated in response to several xenobiotics including progesterone, clofibrate 

and β-naphthoflavone and was also up-regulated in nematodes grown in axenic 

culture (Szewczyk et al., 2006; Reichert et al., 2005; Custodia et al., 2001). The 

phenotype of worms exposed to these xenobiotics does not appear to have been 

reported in the literature. However, it seems likely that induction of mtl-1 

occurs under many different circumstances and may represent part of a common 

signalling pathway rather than an effector protein in the response to xenobiotic 

intoxication. 

There have been no citations for scl-2 in the literature and its function remains 

largely unknown. However, the gene encodes a sterol carrier-like protein domain 

and may potentially be involved in the transport of lipid breakdown products. 

Up-regulation of a gene involved in such processes during fasting would be 

expected. 

cyp-37B1 represents a cytochrome P450 gene which encodes a CYP4/ CYP19/ 

CYP26 domain. Again, this gene has been shown to be up-regulated in response 

to other xenobiotics, but the phenotype of the exposed worms was not reported 

(Menzel et al., 2007; Reichert et al., 2005; Custodia et al., 2001). BLASTp 
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analysis reveals that isoform 1 of CYP4V2 is a homologue of C. elegans CYP37B1 

in the Homo sapiens proteome (BLAST E-value 7.9 x10-98, 90.6% length). 

Mutations of the gene encoding this protein have been associated with Bietti 

Crystalline Corneoretinal Dystrophy and the protein has recently been 

characterised as a fatty acid {omega}-hydroxylase (Nakano et al., 2009). cyp-

37B1(RNAi) suggests that this gene may have limited hydroxylase activity against 

eicosapentaenoic acid in C. elegans (Kulas et al., 2008). Therefore it is possible 

that this cytochrome P450 is involved in fatty acid metabolism.  

It is possible that several of the genes up-regulated following ivermectin 

exposure are involved in detoxification of the drug. However, given the 

overwhelming fasting response and the failure of the wild-type experiments to 

aid in identification of potential candidates, these genes may be difficult to 

define. It is important to note that many gene families potentially involved in 

xenobiotic metabolism; including cytochrome P450s such as cyp-37B1 and 

members of the UGT and GST families that were down regulated in the current 

study; may also have constitutive functions such as involvement in fatty acid 

metabolism. Therefore, selecting genes based on membership of these families 

is unlikely to assist.  

mtl-1, scl-2 and cyp-37B1 did not show statistically significant changes in 

expression following microarray analysis of wild type worms exposed to 

ivermectin and controls. Follow-up real-time QPCR experiments suggest that this 

may be due to low constitutive expression of these genes in the wild-type worm. 

In addition, the mtl-1 transcriptional GFP reporter construct showed constitutive 

expression in the intestine. Previous reported studies have suggested that whilst 

mtl-1 can be induced in the gut, constitutive expression is only found in the 

posterior bulb of the pharynx (Freedman et al., 1993). This would also suggest 

that mtl-1 expression is higher in strain DA1316 than in strain N2. The reason for 

this may be due to a level of pharyngeal dysfunction noted in glutamate-gated 

chloride channel subunit mutants resulting in slight starvation and a chronic up-

regulation of the pathways involved in this response (Dent et al., 2000).  

Strain DA1316 is phenotypically affected by high dose ivermectin exposure. 

However, despite the fact that the avr-15(ad1051) mutation is absent, this strain 

may still carry an uncharacterised functional null mutation of the avr-15 gene 
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(pers. comm.; Dr. J. Dent). If this is the case then these results are potentially 

very interesting with regard to the mechanism of action of ivermectin on the 

pharynx. An avr-15, avr-14, glc-1 triple mutant is being provided by the Dent 

lab. Confirmation of the three mutations will be undertaken and the phenotype 

following 4hrs exposure to 1µg/ml (1.14µM) IVM will be assessed. If this strain 

shows no reduction in the pharyngeal pumping rate then further microarray 

experiments using this strain may help to elucidate ivermectin detoxification 

pathways in Caenorhabditis elegans. 
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Chapter 4: C. elegans Transcriptomic response to 

albendazole 

4.1 Introduction 

Albendazole is a member of the benzimidazole class of drugs. It is used both in 

human and veterinary medicine to treat a variety of helminthoses and thus the 

pharmacokinetics of the drug in mammalian systems has been well documented 

(Mirfazaelian et al., 2002; Marriner et al., 1986; Prichard et al., 1985; Marriner 

et al., 1980). Albendazole is almost entirely converted to the active metabolite 

albendazole sulphoxide (ABZ-SO) during first-pass metabolism. This reaction is 

mostly catalysed by flavin monooxygenase and the CYP3A family (Moroni et al., 

1995; Delatour et al., 1991; Souhaili-el et al., 1988a; Fargetton et al., 1986). 

Further sulphoxidation to the inactive albendazole sulphone (ABZ-SO2) is thought 

to occur via the CYP1A family (Delatour et al., 1991; Souhaili-el et al., 1988b). 

Albendazole and its metabolites are known to induce cytochrome P450 enzymes 

and other xenobiotic metabolising enzymes in many species (Velik et al., 2005; 

Velik et al., 2004; Bapiro et al., 2002; Rolin et al., 1989; Souhaili-el et al., 

1988a). This has been assessed using enzyme assays, protein analysis and RNA 

quantitation. Studies in rats suggest that the CYP1A family is the major 

cytochrome involved in the conversion of albendazole sulphoxide to the inactive 

sulphone (Souhaili-el et al., 1988b). CYP1A activity was significantly increased in 

livers from rats exposed to ABZ as was the subsequent production of ABZ-SO2 in 

the perfused livers. Specific CYP1A activities (ethoxyresorufin O-deethylase 

(EROD) activity) and/or mRNA levels appear to be increased following exposure 

to albendazole or albendazole sulphoxide in all species examined. These include 

human HepG2 cells; rat liver microsomes following in vivo exposure; and 

intestinal and liver microsomes of mouflon (Ovis musimon) following in vivo 

exposure (Velik et al., 2005; Bapiro et al., 2002; Souhaili-el et al., 1988b). In 

addition, ABZ has shown to have some inductive effect on rat CYP 2A6, 2E1, 2B1, 

2B2 and 3A4 (Asteinza et al., 2000; Souhaili-el et al., 1988a). The induction of 

these enzymes greatly affects the pharmacokinetics of the drug by increasing 

the speed of turnover of drug metabolism and reducing the area under the ABZ-
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SO plasma concentration vs. time curve. The resulting metabolism of ABZ-SO by 

the host could effectively lower the drug concentration to which parasites are 

exposed or the duration of the exposure. It is widely accepted that exposure to 

suboptimal doses of anthelmintics predisposes to the development of resistance 

(Geerts et al., 2000).  

The mechanism by which ABZ and other benzimidazoles cause induction of 

xenobiotic metabolism enzymes is not fully understood. Cytochrome P450s have 

been shown to be induced via pathways involving nuclear hormone receptors 

(Wei et al., 2000; Kliewer et al., 1999). The structure of the drugs plays a major 

role in binding to these receptors and different members of the BZ group will 

induce CYPs to differing degrees. For example, studies carried out in H4IIE 

cultures, HepG2 cells and rabbit hepatocytes suggest that CYP1A appears to be 

induced by more planar molecules and those containing a sulphide atom or 

sulphoxide form of sulphur, as is the case with ABZ and ABZ sulphoxide (Velik et 

al., 2004). However, this is not always the case as several non-sulphur 

containing benzimidazole drugs, such as carbendazim and mebendazole, are also 

potent inducers of CYP1A in these systems (Rey-Grobellet et al., 1996). Work 

carried out with both albendazole sulphone and the sulphone metabolite of 

omeprazole, a proton pump inhibitor, suggest that the less planar and more 

polar structure abolishes the inductive effect on CYP1A (Velik et al., 2004; Lewis 

et al., 1998). It is likely there are several differences between the interaction of 

albendazole and nuclear hormone receptors between different species. 

Therefore, whilst these studies provide some insight into the mechanisms of 

induction it is unlikely that the interactions are the same in species as distantly 

related as C. elegans. 

The mode of action of the benzimidazoles has been well documented. Members 

of this group act, in both nematodes and fungi, upon β-tubulin by binding and 

inhibiting polymerisation to form microtubules. In nematodes the effect appears 

to predominate in the intestinal cells. The downstream effects of β-tubulin 

disruption by BZ drugs have only been fully characterised in H. contortus. These 

include dissociation of apical vesicles from the apical membrane in the anterior 

gut and inhibition of erythrocyte digestion by six hours post-treatment with 

fenbendazole. By twelve hours post-treatment, tissue disintegration, DNA 

fragmentation and secretory antigen dispersal in the anterior intestine was 
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noted (Jasmer et al., 2000). The eventual result is immobilisation and death of 

the worm, but the time to effect is much longer than for ivermectin exposure 

(O'Grady et al., 2004). Microarray experiments comparing albendazole exposed 

and control populations of Caenorhabditis elegans are unlikely to show signs of 

fasting as pharyngeal paralysis is not a feature of the drug mode of action. In 

addition, there are several Caenorhabditis elegans β-tubulin (ben-1) mutants 

available (www.wormbase.org). These confer high level resistance to the 

benzimidazoles, but ben-1 is presumed to be functionally redundant as mutant 

worms remain phenotypically wild-type (Driscoll et al., 1989).  

In a similar manner to the ivermectin response microarray experiments (Chapter 

3), the aim was to investigate which genes encode enzymes that may potentially 

be involved in the metabolism of albendazole. As ben-1 mutants are 

phenotypically wild-type, but completely resistant to the effect of 

benzimidazoles, a strain carrying a mutation of this gene was used to compare 

the transcriptomes of ABZ exposed and unexposed worms. This study was 

expected to return a list of genes that were specifically up-regulated in response 

to the presence of albendazole and not those involved in general stress pathways 

or those associated with drug exposure phenotypes. The functional ontology and 

expression profiles of these genes were analysed to assess the hypothesis that 

these genes were involved in xenobiotic metabolism. 
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4.2 Methods 

4.2.1 Preparation of nematodes for microarray analysis 

Initial experiments were carried out on NGM plates using strain CB3474 exposed 

to 25µg/ml (94.22µM) albendazole (Sigma, A4673) for 48 hours, during the period 

of development between L1-L4/ young adult (Section 3.2.1). Further 

experiments were designed to assess the response to an acute, 4 hour, exposure 

to high dose albendazole (300µg/ml, 1.13mM). Due to the extremely insoluble 

nature of the benzimidazole drugs it was necessary to perform these 

experiments in liquid culture. 

Standard liquid culture methods were used with the exception that water 

soluble cholesterol (Sigma, C1145) was used at a stock concentration of 

25mg/ml. This appeared to increase the solubility of the drug compared to the 

use of standard cholesterol. CB3474 strain was grown on NGM plates and 

synchronised as per standard methods (Chapter 2). Approximately 10000 L1 

larvae were then added to each of two 30ml S-basal cultures, containing 1ml 

concentrated OP50. The worms were grown at 20oC, with shaking at 240rpm for 

70hrs. 100µl samples were taken from each flask to ensure that they were 

accurately matched in developmental stage (adults). 450µl of 20mg 

albendazole/ml (Sigma, A4673) in DMSO stock solution was added to one flask 

(final concentration 300µg/ml [1.13mM] ABZ) and 450µl of DMSO (Sigma, D8418) 

to the other. The cultures were grown for a further 4 hrs, harvested by sucrose 

flotation and snap frozen in liquid nitrogen until RNA was extracted. Sucrose 

flotation, RNA extraction and microarray hybridisation were carried out as 

described in Chapter 2. 

The final concentration of DMSO in the flasks was 1.5% v/v. This did not appear 

to have any phenotypic effect over the 4hr exposure time. The high dose of 

albendazole meant that the drug was not in a true solution but a suspension. 

However, due to the constant shaking of the cultures the worms were expected 

to have received a constant exposure to the drug. 
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4.2.2 Preparation of nematodes for RT-QPCR 

Three separate biological replicates, independent from those sent for microarray 

analysis were used. The protocol used to prepare these replicates was identical 

to that described for the microarray experiments except that a commercial 

preparation of albendazole (Albex 10%, Chanelle) was used as the source of 

drug. RNA was extracted and cDNA synthesised from 5µg total RNA for each 

sample using a cloned AMV first strand synthesis kit (Invitrogen, 12328-032) and 

random hexamer primers. For each sample an identical reaction lacking reverse 

transcriptase enzyme was carried out. cDNA was purified using PCR purification 

columns (Qiagen, 28106). 

Investigation of gene up-regulation following exposure to a gradient of 

albendazole concentrations was also undertaken. The method was essentially 

identical to that used in the microarray experiments, but five matched cultures 

of C. elegans (strain CB3474) were prepared. Cultures were exposed to 0.3, 3, 

30, 300µg/ml (1.13, 11.31, 113.1, 1131µM) or no ABZ control for 4hrs. Sigma 

albendazole dissolved in DMSO (stock 20mg/ml [75.4mM]) was used and all 

cultures contained an identical volume of DMSO. 

4.2.3 SAGE analysis 

Serial Analaysis of Gene Expression (SAGE) is a technique by which the level of 

expression of many genes can be quantified. Libraries of expression data have 

been created for different larval stages of C. elegans as well as for individual 

organs of the nematode. Searching these libraries for genes with significantly 

changed expression levels, following exposure of CB3474 to 300µg/ml (1.13mM) 

ABZ, was undertaken to aid in the assessment of expression site. SAGE data were 

obtained from the Genome BC Caenorhabditis elegans Gene Expression 

Consortium http://elegans.bcgsc.bc.ca. SAGE tags were mapped to protein 

coding sequences derived from conceptual mRNAs from the WS190 mappings. 

Only unambiguous tags were assessed and all libraries were normalised to 100K 

tags to allow accurate comparison. A developmental series, FACS sorted gut cell 

and glp-4 dissected gut library were compared. 
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4.3 Results 

4.3.1 Microarray analysis 

4.3.1.1 No statistically significant changes to gene expression were 

detected following exposure of C. elegans to 25µg/ml ABZ for 48 

hours 

Initial experiments, comparing exposure to 25µg/ml (94.22µM) albendazole to 

controls, used three biological replicates with matched controls (A-C and 

controls). Following quality control one chip, control A, was dropped from 

further analysis leaving two control chips and three ABZ exposure chips for 

analysis. There were no genes with significantly altered expression using either 

empirical Bayesian or rank products analysis. No probesets had a log-fold change 

of greater than 1. However, there were two genes with log-fold changes of less 

than -1: C06B3.7 and C08F11.13. The C08F11.13 sequence encodes an integral 

membrane O-acyltransferase and may be involved in fatty acid metabolism. 

C06B3.7 is completely uncharacterised. 

Table 4-1 lists the top 10 genes, based on log-fold change, to be up-regulated 

following exposure to 25µg/ml (94.22µM) ABZ. Complete microarray data for this 

experiment is available on the accompanying CD. 

Any genes potentially involved in albendazole metabolism would have been 

expected to be up-regulated following exposure to the drug. The top 10 genes 

listed in Table 4-1 show only slight increases in expression level, but this may be 

due to the low dose of drug reaching the nematodes or the long period between 

initial exposure to the drug and RNA harvesting. The list contains only two genes 

which could be referred to as encoding “classical” xenobiotic detoxification 

genes: cyp-35C1 and ugt-41. Regulation of cyp-35C1 has been linked to the 

mediator subunit MDT-15 (Taubert et al., 2008). The top gene on the list, fat-7, 

is known to be regulated by NHR-49 and MDT-15 as a coregulator (Van Gilst et 

al., 2005b). Several of the genes; fat-7, C30G12.2, cyp-35C1, F42A8.1, ttr-14, 

T22B7.7; have also been linked to the innate immune response in studies 

investigating the response to P. aeruginosa, P. luminescens and S. marcescens 
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(Wong et al., 2007; Troemel et al., 2006). However, they are not consistently 

regulated in the same manner between or within experiments. Whilst there is 

some suggestion that these genes may truly be up-regulated, due to a linked 

regulation pathway, the lack of any statistical significance or of any genes 

showing a convincing fold change (greater than 2-fold) mean it is impossible to 

draw any conclusions. 

Probeset Gene ID Log2 
FC 

p-
value 

Adjusted 
p-value 

Ontology 

192578_at fat-7 0.80 0.59 1 Fatty acid desaturase 

185902_at F21C10.9 0.56 0.53 1 Uncharacterised 

190541_at C30G12.2 0.50 0.25 1 Predicted short chain-type 

dehydrogenase KOG 

183211_s_at C04F12.7 0.47 0.39 1 Uncharacterised 

191068_at ttr-14 0.47 0.28 1 Transthyretin related family 

domain 

181473_s_at C15C6.2 0.45 0.21 1 Uncharacterised 

189283_s_at cyp-35C1 0.44 0.62 1 Cytochrome P450 (CYP 2 family) 

173688_s_at T22B7.7 0.42 0.56 1 Acyl-CoA thioesterase KOG 

190849_at ugt-41 0.42 0.43 1 UDP- glucuronosyl/glucosyl 

transferase KOG 

186757_s_at F42A8.1 0.42 0.30 1 Uncharacterised 

Table 4-1: Top 10 up-regulated genes, based on log2-fold change, following 48hrs exposure 
of strain CB3474 to 25µg/ml (94.22µM) ABZ 
There were no statistically significant changes in gene expression as can be seen from the 
adjusted p-value (Benjamini-Hochberg) column. C30G12.2, cyp-35C1 and ugt-41 represent 
members of “classical” xenobiotic metabolism pathways. 

4.3.1.2 Exposure of C. elegans to 300µg/ml ABZ for 4 hours results in 

significant up-regulation of a distinct set of genes 

Given the lack of any significant changes in gene expression following a chronic 

exposure to 25µg/ml (94.22µM) albendazole, and previous ivermectin exposure 

assays, the experiments were repeated at a high dose of ABZ. Albendazole, like 

all benzimidazole drugs, is highly insoluble. When NGM plates were made 

containing albendazole at concentrations greater than 25µg/ml (94.33µM), the 

drug was seen to precipitate. Therefore, further experiments were carried out in 

liquid culture. A 4 hour exposure to 300µg/ml (1.13mM) ABZ was chosen as the 

mutant strain showed no phenotypic differences, as assessed by motility, 

following this exposure. In fact, wild type worms showed little sign of 
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intoxication over this period either. To assess that the drug was effective for 

microarray replicates, liquid cultures were set up with wild-type worms. 

However, these had to be exposed to albendazole for 72 hours (from L1 stage) 

before phenotypic differences between experimental and control flasks could 

reliably be seen. 

Total RNA from the four independent albendazole exposure experiments and 

four matched controls were sent for microarray hybridisation. Two chips, one 

ABZ exposure and one control, were dropped from further analysis following 

quality control leaving three biological replicates for this experiment. Analysis of 

the remaining chips using empirical Bayesian methods revealed no significant 

changes. However, the fold change of many probesets was large. Re-analysis of 

the data using the rank products algorithm showed 33 probesets to be 

significantly up-regulated and three probesets to be significantly down-regulated 

with a false discovery rate of 5%. The top 10 genes, based on log2 fold change, to 

be up-regulated and down-regulated are identical by either method of analysis 

and are represented in Tables 4-2 and 4-3 respectively. Fig. 4-1 summarises the 

results and the full microarray data can be found in the accompanying CD. 

Fig. 4-1A clearly shows that the majority of genes show no change in expression 

following exposure to 300µg/ml (1.13mM) albendazole for 4hrs. Whilst most 

microarray studies will return a large list of genes possibly affected by the 

experimental conditions these experiments were designed to minimise non-

specific change and focus on the genes responding to the presence of 

albendazole. Unlike the ivermectin experiments, the nematodes were 

phenotypically wild-type following exposure to albendazole. Therefore, genes 

involved in general or non-specific stress response pathways were not expected 

to have been affected by the drug-exposure. The genes listed in Table 4-2 are 

convincing as candidates involved in a potential drug detoxification pathway. 

There are a total of three cytochrome P450s, two UDP-glucuronosyl/ glucosyl 

transferases and one glutathione-s-transferase, see also Fig. 4-1B. 
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Probeset Gene ID Log2 
FC 

FDR BH* FDR rank 
products 

Ontology 

189282_at cyp-35C1
+ 

3.55 0.6514 0 

Cytochrome P450 (CYP 2 

family) 

189394_at cyp-35A5 3.29 0.6514 0 

Cytochrome P450 (CYP 2 

family) 

189283_s_at cyp-35C1
+ 

3.27 0.6514 0 

Cytochrome P450 (CYP 2 

family) 

189512_at cyp-35A2 2.29 0.6514 0 

Cytochrome P450 (CYP 2 

family) 

178316_at C29F7.2 2.28 0.6514 0 

Predicted small molecule 

kinase 

178563_at T16G1.6 1.98 0.6514 0 

Predicted small molecule 

kinase 

190744_at ugt-63 1.92 0.6514 0 

UDP-glucuronosyl/glucosyl 

transferase KOG 

192820_at gst-5 1.78 0.6514 0 Glutathione-s-transferase 

191418_at ugt-16 1.68 0.6514 0 

UDP-glucuronosyl/glucosyl 

transferase KOG 

177701_s_at K08D8.6 1.62 0.6514 0 Uncharacterised 

Table 4-2: Top 10 up-regulated genes, based on log2-fold change, following 4hrs exposure 
of strain CB3474 to 300µg/ml (1.13mM) ABZ 
The top ten up-regulated probesets represent a selection of xenobiotic metabolism pathway 
genes as was hypothesised. Whilst the top 10 list and fold changes are identical using 
empirical Bayesian analysis and the rank products analysis there are profound differences 
in the allocation of significance (FDR- false discovery rate) to these results between the two 
methods. 

* BH = empirical Bayesian t-test with Benjamini- Hochberg correction 

+
 cyp-35C1 is represented by two different probes in the top 10 list 

Notably cyp-35C1, which was also up-regulated following 48hrs exposure to 

25µg/ml (94.22µM) ABZ, is represented by two different probesets in this list. Of 

the three probesets not representing genes encoding xenobiotic metabolising 

proteins only one is completely uncharacterised. The other two both represent 

predicted small molecule kinases, which may be involved in the signalling 

cascade in response to albendazole. 
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Figure 4-1: Scatter plot of whole genome microarray results following 4hrs exposure of 
strain CB3474 to 300µg/ml (1.13mM) ABZ 
A. Model fitted expression levels of all 22625 probesets on control chips plotted against 
ABZ exposed chips. The upper and lower yellow lines represent a 2-fold increase and 
decrease in expression level respectively. Total number of probesets with significantly 
altered levels of gene expression are summarised based on rank products analysis.  
B. Scatter plots containing only probesets specific to members of the cytochrome P450 
(CYP), glutathione-s-transferase (GST) and UDP-glucuronosyl transferase (UGT) families. 
Members of these families present in the top 10 up-regulated genes are noted. 
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Probeset Gene ID Log2 

FC 

FDR BH FDR rank 

products 

Ontology 

183330_s_at C09B8.4 -1.51 0.6514 0 Uncharacterised 

188822_at acdh-1 -1.39 0.7026 0.1 Acyl CoA dehydrogenase 

190958_s_at F44E5.4 -1.16 0.6514 0 HSP 70 superfamily 

171941_s_at F44E5.5 -1.14 0.6514 0 HSP-70 superfamily 

173288_at spd-5 -1.06 0.6514 0.3131 

Involved in mitotic spindle 

formation and cell division 

192195_at acs-2 -1.05 0.6514 0.1643 

Fatty acid CoA synthetase 

family 

184054_at ZK355.4 -1.04 0.6514 0.3123 Uncharacterised 

182353_at ist-1 -1.01 0.6514 0.2435 

Insulin receptor substrate 

homologue 

187441_at Y110A2AL.2 -0.97 0.6514 0.2375 Uncharacterised 

172397_x_at K09E3.4 -0.96 0.6514 0.3534 

C2H2-type Zn-finger protein 

KOG 

Table 4-3: Top 10 down-regulated genes, based on log2-fold change, following 4 hours 
exposure of strain CB3474 to 300µg/ml (1.13mM) ABZ 
The down-regulated genes have varied ontologies. Many appear to be involved in fatty acid 
metabolism.  

The down-regulated gene list contains several genes that are directly involved in 

or linked to fat metabolism. acdh-1 and acs-2 encode enzymes that are part of 

the fatty acid β oxidation pathway (www.wormbase.org). acs-2(RNAi) and 

ZK355.4(RNAi) affects the fat content of C. elegans, although acs-2 depletion 

causes increased fat content and ZK355.4 depletion causes decreased fat 

content (Ashrafi et al., 2003). Whilst Y110A2Al.2 remains largely 

uncharacterised, the best BLASTp match against the H. sapiens proteome 

represents Prolow-density lipoprotein receptor-related protein 1 (BLAST E-value 

6e -07, percentage length 87.0%). This receptor is involved in cellular 

cholesterol uptake. 

ist-1 is an insulin receptor substrate homologue that negatively regulates 

lifespan and dauer development (www.wormbase.org; Wolkow et al., 2002). 

Dauer larvae are a stress resistant life stage. Therefore, down-regulation of ist-1 

may be involved in promoting the response to certain stressors, such as exposure 

to a xenobiotic such as albendazole.  
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spd-5 is an essential gene involved in spindle formation, cell division and 

anterior posterior axis development during embryogenesis (www.wormbase.org; 

Hamill et al., 2002). The mode of action of the benzimidazole drugs is to disrupt 

β-tubulin polymerisation and formation of microtubules, which are also 

intimately involved in cell division. This represents an interesting coincidence of 

function, but it is difficult to draw any conclusions given that a ben-1 mutant 

was used in these experiments and the strain was phenotypically normal at the 

experimental dose of drug. 

Due to the small number of significantly down-regulated genes and the fact that 

these genes were unlikely to be directly regulated in ABZ metabolism, further 

analysis focussed only on the up-regulated gene list. 

4.3.2 Real-time QPCR confirms up-regulation of genes in 

response to ABZ exposure 

QPCR primers were designed for several of the most interesting up-regulated 

genes following exposure to 300µg/ml (1.13mM) ABZ. Analysis was carried out 

using three separate biological replicates independent to those sent for 

microarray analysis. Albendazole (Sigma, A4673), as was used for the microarray 

experiments, is estimated to be 90% pure. Therefore it was possible that the 

changes seen in the microarray were as a result of impurities rather than a 

response to albendazole itself. Albex (Chanelle) is a commercial preparation of 

albendazole licensed for use in cattle and sheep, and as such was presumed to 

be pure. However, the exact make up of the excipient was not detailed and 

experiments were carried out comparing nematodes exposed to Albex and those 

with no additional supplements to the standard liquid culture medium. Real-time 

quantitative PCR results are summarised in Fig. 4-2. 
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Figure 4-2: RT-QPCR results following 4hrs exposure of strain CB3474 to Albex (300ug/ml 
[1.13mM] ABZ) 
The first nine genes are those suggested to be up-regulated following exposure to ABZ in 
microarray experiments. All of these also show up-regulation using Albex exposure and RT-
QPCR. The last two genes of the chart were included as negative controls as both showed 
no change in expression on the arrays following albendazole exposure.col-19 is an adult 
specific collagen and cyp-37B1 is a gene up-regulated in response to ivermectin. Neither 
shows a change in expression following ABZ exposure. 

All genes examined that were considered to be up-regulated in the microarray 

experiments were validated using RT-QPCR experiments. The fold change of 

specific genes was higher using RT-QPCR than that suggested by microarray 

experiments. This was likely due to RT-QPCR being much more sensitive than 

microarrays which compare many genes simultaneously. In addition, random 

hexamer primers were used in the reverse transcriptase step, which may 

exaggerate differences in expression. This was not considered problematic as 

these experiments were used only to confirm up-regulation of genes of interest. 

The absolute up-regulation was not important and may be biologically irrelevant. 

In addition, the lack of any change in expression level of col-19, an adult specific 

collagen gene, not only serves to confirm the accurate staging of the control and 

drug exposed populations but acts as a negative control for the RT-QPCR 

technique. Similarly cyp-37B1, which was up-regulated in response to ivermectin 

exposure, was not significantly up-regulated following ABZ exposure using 

microarray analysis or RT-QPCR. 
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4.3.3 DAVID analysis of up-regulated genes 

Global analysis of function was carried out only with the 300µg/ml (1.13mM) ABZ 

data set. In order to broaden the scope of the analysis, up-regulated genes with 

a false discovery rate cut-off of less than 10%, as assessed by the rank products 

method, were analysed. This data set contained 51 probe sets, which 

represented 42 genes in the Caenorhabditis elegans genome.  

4.3.3.1 Transferase and monooxygenase terms are enriched in ABZ 

responsive genes 

The functional annotation of the list of up-regulated genes was analysed by 

looking for enrichment of gene ontology terms. Fig. 4-3 shows the enrichment of 

several terms associated with transferase and monooxygenase enzymes. These 

classes of enzyme are common within xenobiotic metabolism pathways. 

However, 20 genes from the list had no gene ontology terms associated with 

them. Therefore, to increase the coverage of annotation the following terms 

were applied: gene ontology (GOterm_BP_all, GOterm_CC_all, GOterm_MF_all); 

protein domains (INTERPRO, PIR_SUPERFAMILY, SMART); KEGG pathways and 

functional categories (COG_ONTOLOGY, SP_PIR_KEYWORDS, UP_SEQ_FEATURE). 

Using this method only six genes were not annotated, all of which were 

uncharacterised hypothetical proteins. The resultant list of terms was highly 

redundant. Therefore, functional annotation clustering was carried out to group 

similar terms. Interestingly, only two clusters were formed and the genes 

associated with these clusters are outlined in Fig. 4-4. Enrichment scores for the 

clusters represent the geometric mean of the p-values associated with each of 

the terms in the cluster. A score of over 1.3 can be considered a significant 

enrichment. The genes in each of the clusters represent many potential 

xenobiotic metabolism genes including cytochrome P450s, an alcohol 

dehydrogenase, glutathione-s-transferases and UDP-glucuronosyl transferases. 

Other genes represented in these clusters include the predicted small molecule 

kinases and jnk-1, another kinase likely involved in signalling cascades, and the 

metallothionein encoding gene mtl-1, which was up-regulated in response to 

ivermectin exposure. Interestingly, regulation of several of these genes; 

including cyp-35C1, ugt-25, ugt-63 and gst-5; has been associated with the  
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Figure 4-3: Ontology terms associated with genes up-regulated in response to 4hrs 
exposure of strain CB3474 to 300µg/ml (1.13mM) ABZ. 
Ontology terms significantly enriched in the gene list are highlighted in red. Columns 
represent the percentage of up-regulated genes associated with each ontology term and the 
numbers at the end of the column are the absolute number of genes.  

 
coregulatory element MDT-15 (Taubert et al., 2008). As mentioned previously, 

mdt-15 is also known to associate with nhr-49 to regulate fatty acid metabolism 

pathways, which may explain the changes in expression of several genes involved 

in these pathways, such as acdh-1 and acs-2.  

Six terms were not clustered: INTERPRO- CUB-like region (ten genes); SMART-ShK 

Toxin domain (three genes); INTERPRO- Metridin-like ShK toxin (three genes); 

GOTERM_MF_ALL- kinase activity (three genes); GOTERM_MF_ALL- transferase 

activity, transferring phosphorous–containing groups (three genes); 

GOTERM_BP_ALL- response to stimulus (four genes). This includes a total of 13 

individual genes from the initial list that were not associated with either of the 

annotation clusters. 
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Figure 4-4: Clustering of all annotation terms associated with genes up-regulated in 
response to 4hrs exposure of strain CB3474 to 300µg/ml (1.13mM) ABZ 
Clustering of all annotation terms resulted in only 2 significant groups. Cluster 1 (red box) 
has an enrichment score of 7.14 and assembles functional terms associated primarily with 
the UGTs and GSTs. Cluster 2 (blue box) has an enrichment score of 2.14 and associates 
terms more specifically associated with CYPS. In both cases several other genes, not 
associated with xenobiotic metabolism pathways, are also clustered that may be significant 
in the response to albendazole exposure. 
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4.3.3.2 UGTs and CYPs are enriched in the set of ABZ up-regulated genes 

Further clustering of the up-regulated genes based on annotation term co-

occurrence revealed there to be two gene families up-regulated. Cluster 1, 

enrichment score 8.66, represents eight genes which are confirmed or putative 

members of the UDP-glucuronosyl transferase family (Table 4-4). Cluster 2, 

enrichment score 2.64, represents five genes, four of which are members of the 

cytochrome P450 family (Table 4-5). The fifth gene in cluster 2 is vem-1, which 

represents a cytochrome b5-like transmembrane protein. This gene is thought to 

play an important role in neuron development (Runko et al., 2004). However, it 

has also been reported to be induced in response to exposure to xenobiotics such 

as β-naphthoflavone and clofibrate (Reichert et al., 2005). 

 
Affymetrix Probe(s) Gene ID Ontology 

190879_at ugt-1 UDP-glucuronosyl/ glucosyl transferase KOG 

183703_s_at Y43D4A.2 UDP-glucuronosyl/ glucosyl transferase protein domain 

191066_s_at ugt-5 UDP-glucuronosyl/ glucosyl transferase KOG 

191418_at ugt-16 UDP-glucuronosyl/ glucosyl transferase KOG 

184602_at ugt-25 UDP-glucuronosyl/ glucosyl transferase KOG 

190849_at ugt-41 UDP-glucuronosyl/ glucosyl transferase KOG 

190744_at ugt-63 UDP-glucuronosyl/ glucosyl transferase KOG 

183703_s_at, 193604_at ugt-22 UDP-glucuronosyl/ glucosyl transferase KOG 

Table 4-4: ABZ up-regulated gene functional classification cluster 1 (enrichment score 8.66) 

 
 

Affymetrix Probe(s) Gene ID Ontology 

189512_at 
cyp-35A2 cytochrome P450 

189282_at, 189283_s_at 
cyp-35C1 cytochrome P450 

189394_at 
cyp-35A5 cytochrome P450 

189350_at 
cyp-29A2 cytochrome P450 

188031_s_at 
vem-1 Putative steroid membrane receptor KOG 

Table 4-5: ABZ up-regulated gene functional classification cluster 2 (enrichment score 2.64) 
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These results together with annotation clustering confirm the significant up-

regulation of gene members putatively involved in xenobiotic metabolism 

pathways in response to ABZ exposure. Whilst several classes of these genes 

were up-regulated, the UDP-glucuronosyl transferases and cytochrome P450s 

predominate and metabolism of albendazole may be expected to occur via these 

enzyme systems. 

4.3.4 Many ABZ up-regulated genes may be targets of mdt-15 

Mediator is an evolutionary conserved co-regulator of RNA polymerase II. 

Different subunits of the mediator complex allow binding of regulatory elements 

to control the transcription of specific genes. The constitutive and induced 

expression of cyp-35C1 has been shown to be dependent upon the C. elegans 

mediator subunit MDT-15 (Taubert et al., 2008). Taubert et al. (2008) 

investigated the targets of the product of mdt-15 by using whole genome 

microarrays to compare the transcriptomes of mdt-15(RNAi) worms to a control 

population. MDT-15 is thought to be a coactivator therefore genes that were 

down-regulated in this experiment could be expected to be regulatory targets of 

MDT-15.  

To assess whether more of the ABZ responsive genes may also be regulatory 

targets of MDT-15, the list of ABZ up-regulated genes was compared to the mdt-

15(RNAi) down-regulated genes. This represents a very different experiment to 

the ABZ exposure microarrays carried out in this study and log2 FC of the genes 

would not be expected to be similar. Therefore, Log2 FC for both experiments 

were converted to a scoring system where 2= highly up-regulated, 1 = mildly up-

regulated, 0= no change, -1= mildly down-regulated and -2= highly down-

regulated. 

As can be seen in Fig. 4-5, 21 of the up-regulated genes in the ABZ microarray 

appear to be regulated by MDT-15. Only eight appear to be regulated in opposite 

directions. Conspicuously, eight of the top 10 genes in the ABZ up-regulated 

microarray are regulated by MDT-15. Of the two that do not fit this pattern 

K08D8.6 showed no change in the mdt-15(RNAi) experiment and ugt-16 was not 

represented at all in that experiment. 
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Figure 4-5: Comparison of genes up-regulated in response to ABZ exposure and those 
deregulated by mdt-15(RNAi) 
Comparison of ABZ up-regulated/down-regulated genes (FDR< 10%) to the same genes in 
an mdt-15(RNAi) microarray experiment (Taubert et al., 2008). Log2 FC are not expected to 
be very similar due to the different nature of the experiments. Therefore, log2 FC has been 
converted to a simple scoring system detailed above. As can be seen, many of the genes 
show similar changes in expression. 
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4.3.5  XME RNA induction is evident at low doses of ABZ 

300µg/ml (1.13mM) ABZ represents an extremely high dose of albendazole. In 

order to investigate the response to albendazole over a range of concentrations 

RT-QPCR was used to assess the fold up-regulation of cyp-35C1, cyp-35A2, cyp-

35A5 and ugt-16 over a range of ABZ concentrations. Albendazole (Sigma, A4673) 

was dissolved in DMSO and the same volume of drug or DMSO (in the case of the 

control) was added to each of four flasks to the final concentrations of 0.3, 3, 30 

and 300µg/ml (1.13µM- 1.13mM).  

Whilst cyp-35A5 showed a 2-3 fold change at 0.3µg/ml (1.13µM) ABZ, the other 

three genes investigated did not show any convincing up-regulation. At 3µg/ml 

(11.31µM) both cyp-35A5 and cyp-35C1 showed up-regulation. Maximal fold-

changes for all genes investigated occurred at 30µg/ml (113.1µM) ABZ. The fold-

changes observed for all genes were significantly higher than in previous RT-

QPCR experiments. This may be partially due to the different source of 

albendazole used. However, in these biological replicates all of the reverse 

transcriptase minus controls also reached threshold and the dissociation curve of 

these wells showed a melting point identical to the experimental wells. The no 

template controls did not reach threshold so it was assumed that the samples 

themselves must be contaminated. Further DNase digests of the RNA samples 

and new cDNA syntheses were carried out, but the problem remained. Whilst 

these experiments will ideally be repeated, the trend seen over the 

concentration gradient is still valid as all RT minus controls (both ABZ exposed 

and control samples) were equally affected. 
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Figure 4-6: Response of four genes of interest to 4hrs exposure of strain CB3474 to gradient 
of ABZ concentrations 
All genes analysed showed their maximal fold changes at 30µg/ml (113.1µM) ABZ. Modest 
up-regulation of cyp-35A5 was apparent at 0.3µg/ml (1.13µM) ABZ and of both cyp-35A5 and 
cyp-35C1 at 3µg/ml (11.31µM) ABZ. 

 

4.3.6 cyp-35C1 is expressed in the gut 

A GFP reporter fusion construct was prepared containing the promoter of cyp-

35C1 fused to a GFP fragment amplified from plasmid pPD95.67 (Section 

2.2.12.1). Transmitting lines were obtained upon microinjection into strain 

DA1316 [avr-14(ad1302); glc-1(pk54)]. Minimal fluorescence was seen under 

standard conditions. However, upon exposure to ABZ, fluorescence could be 

seen throughout the entire length of the gut at all stages (Fig. 4-7). In a similar 

manner to the IVM responsive gene reporter constructs, the GFP production was 

not stable. Following freezing the GFP signal was significantly diminished and 

attempts to quantify GFP induction by ABZ, using Image J software 

(http://rsbweb.nih.gov/ij/index.html) analysis and direct fluorescence 

quantification with Fluorostar software, were unsuccessful.  
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Figure 4-7: cyp-35C1 transcriptional GFP reporter fusion (Genotype: [pRF4{rol-6(su-
1006)}+cyp-35C1::GFP]; avr-14(ad1302); glc-1(pk54)) 
The 3kb upstream segment of the transcriptional start site of cyp-35C1 was fused to the 
GFP gene amplified from fire vector pPD95.67. GFP fluorescence was evident throughout 
the intestine at all life stages of transgenic worms. Intensity of fluorescence was 
subjectively enhanced following ABZ exposure. 
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4.3.7 PCR-fusion GFP reporters appear to be unstable for genes 

with low expression 

The GFP expression of several of the transgenic lines created for both ABZ and 

IVM responsive genes appeared to diminish with time. The strains carrying the 

constructs [pRF4{rol-6(su-1006)}+cyp37B1::GFP], [pRF4{rol-6(su-1006)}+scl-

2::GFP] and [pRF4{rol-6(su-1006)}+cyp35C1::GFP], showed strong GFP expression 

in the F2 generation. Following maintenance by selection for the roller 

phenotype for several generations and subsequent freezing at -80oC, GFP 

expression was much less bright and for cyp-37B1 and cyp-35C1 was completely 

absent. In comparison, the strains carrying the construct [pRF4{rol-6(su-

1006)}+mtl1::GFP], continued to show strong GFP expression.  

Analysis of the GFP reporter strains was carried out using transgene specific 

primers. These consisted of a promoter specific primer (primer A* used in the 

original fusion PCR) and a common reverse primer within the gfp gene (GFP_R). 

Primer sequences can be found in Appendix 7.2 and on the accompanying CD. 

These primers were expected to produce products of 3186bp, 3167bp, 3237bp 

and 3219bp for the reporter strains of cyp-37B1, scl-2, cyp-35C1 and mtl-1 

respectively. Appropriate sized bands were amplified from worm lysates of each 

of two lines of worms carrying the constructs [pRF4{rol-6(su-

1006)}+cyp37B1::GFP], [pRF4{rol-6(su-1006)}+scl-2::GFP] and [pRF4{rol-6(su-

1006)}+cyp35C1::GFP], see Fig. 4-8. This suggests that the constructs are 

present within the worms, but for some reason are not being expressed. 

Interestingly, the transgenic line carrying construct [pRF4{rol-6(su-

1006)}+mtl1::GFP], which fluoresces as expected, has a faint band of the 

appropriate size, but a far brighter one between 1018 and 1636bp. The 

sequences of the primers used were subject to a BLASTn search against the C. 

elegans genome, but could not explain the appearance of this band. These PCR 

products will require sequencing in order to further investigate the cause of 

decreased GFP expression. There do not appear to be any reports in the 

literature of a similar phenomenon. 
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Figure 4-8: Amplification of promoter-GFP sequence from transgenic worms displaying the 
roller phenotype but which no longer fluoresce. 
The combined promoter and GFP sequence for each of the transgenic lines was amplified 
using a common reverse primer within the GFP sequence and the gene specific forward 
primers used to create the fusion construct. Two separate GFP reporter strains for cyp-
37B1, scl-2 and cyp-35C1 all had bands of the expected size. The GFP reporter strain for 
mtl-1 had an unexpected band between 1018 and 1636bp and the positive control (cyp-35C1 
promoter region- expected 3120bp) at just over 506bp, both circled red. BLASTn analysis of 
the C. elegans genome could not explain these bands. 

 

4.3.8 SAGE analysis reveals enrichment of ABZ up-regulated 

genes in the intestine 

Intestinal enrichment was assessed by comparing the number of SAGE tags for 

each of the up-regulated genes in both a whole adult and dissected gut library. 

Only tags that unambiguously associated with each of the genes of interest were 

used and the libraries were normalised to 100000 tags total. The analysis shows 

that many of the tags are expressed at a very low level. This is not unexpected 

in a set of genes that are expected to be induced in response to specific 

conditions. Additionally, the SAGE library confirms the over-representation of 

genes that are expressed in the intestine (Fig. 4-9). 
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Figure 4-9: No. of SAGE tags for ABZ responsive genes in young adult and intestinal 
libraries 
Most of the ABZ responsive genes have very low expression levels and as such have a low 
number of tags in both libraries. However, as a general trend, the genes are represented by 
higher numbers of tags in the intestinal library suggesting this is an area of increased 
expression. 
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4.4 Discussion 

Initial experiments in which C. elegans were exposed to 25µg/ml (94.22µM) 

albendazole for 48hrs did not show any significant changes in gene expression. 

No changes in gene expression associated with drug phenotype were expected as 

strain CB3474 is completely wild type at this dose and it is possible that any 

dramatic changes in gene expression in response to the drug may have occurred 

earlier in the exposure. Analysis of concentration gradient experiments with a 

four hour exposure time would suggest that at least some of the genes up-

regulated in response to 300µg/ml (1.13mM) ABZ could also be up-regulated in 

response to lower doses of drug. Parasites of sheep are likey to be exposed to 

albendazole sulphoxide at concentrations between 3.2 and 26.2µg/ml, the peak 

plasma and abomasal concentrations of drug respectively (Marriner et al., 1980). 

The use of albendazole sulphoxide rather than albendazole in these experiments 

may have been more applicable as a model of parasite drug exposure, but the 

cost of sourcing albendazole sulphoxide was prohibitive. Regardless of these 

caveats, the intention of these experiments was to maximise the number of 

genes returned as significantly changed in expression level in response to 

albendazole exposure, whilst minimising the identification of genes involved in 

drug phenotype/ worm death. Thus by using the BZ resistant strain, CB3474, in 

combination with a short exposure to an artificially high dose of albendazole we 

hoped to identify a list of genes that could be further investigated at more 

physiologically relevant concentrations of drugs. The small number of genes with 

significant changes in expression levels is perhaps unusual for most microarray 

experiments, but is testament to the success of this approach. 

Four hours of exposure to 300µg/ml (1.13mM) ABZ resulted in significant changes 

in the expression intensity of 33 genes (FDR <5%), as assessed by the rank 

products algorithm. Many of genes in the list showed very low p-values following 

t-test analysis, but following correction using a Benjamini-Hochberg technique 

none of the changes were considered significant. This may be due to the small 

number of genes showing large changes in expression level, which was the aim of 

the approach outlined above. Only 48 genes were up-regulated more than 2-fold 

and only 12 were down-regulated more than 2-fold. Huang et al. (2009) report 

that a list of at least 100 genes is optimal for analysis with DAVID software. The 
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number of probesets with significantly altered expression levels is significantly 

smaller in this study. However, up-regulation of these genes has been confirmed 

by real-time QPCR and analysis of both individual genes in the top 10 and 

analysis of function with DAVID software agree that there is an enrichment of 

genes encoding potential xenobiotic metabolising enzymes. Considering the 

question that these studies set out to answer, the results make biological sense 

which is an important aspect of analysing microarray data. 

The genes showing the greatest fold-change in these experiments were three 

cytochrome P450s of the cyp-35 family. CYPs encode ubiquitous haem-containing 

monooxygenase enzymes, which are involved in the metabolism of many drugs 

and xenobiotics in mammals and other species. The Caenorhabditis elegans cyp-

35 family has previously been reported to be inducible by several other 

xenobiotics including β-naphthoflavone and atrazine (Reichert et al., 2005); 

PCB52, fluoranthene and lansoprazole (Schafer et al., 2009; Menzel et al., 

2005); and ethanol (Kwon et al., 2004). However, up-regulation of the cyp-35 

family does not appear to be a general response to all xenobiotics as it was not 

noted in response to acrylamide (Hasegawa et al., 2008) or clofibrate and 

diethylstilbestrol (Reichert et al., 2005). In addition, no members of the cyp-35 

family were induced following exposure to ivermectin, see Chapter 3. Other 

genes clustered with the cytochrome P450s by DAVID analysis, cyp-29A2 and 

vem-1, have also been reported to be up-regulated in response to PCB52, β-

naphthoflavone and diethylstilbestrol.(Menzel et al., 2007; Reichert et al., 

2005).  

The CYP35 family in Caenorhabditis elegans is most closely related to the CYP2 

family of humans and other mammals. CYP35C1 has closest homology to H. 

sapiens CYP2B6 (BLASTp E-value: 1.1 e-56, 93.9% length). Both CYP35A5 and 

CYP35A2 bear closest homology to H. sapiens CYP2C8 (BLASTp E-value: 4.2 e-53, 

93.9% length and 4.6 e-57, 97% length respectively). Li et al. (2003b) used both 

HLM and recombinant CYPs to assess the percentage contribution of different 

human CYP isoforms to the metabolism of several antiparasitic drugs. In this 

study they found that rCYP2B6 had no activity against albendazole, whilst 

rCYP2C8 had only contributed to 0.3% of total albendazole depletion noted in 

human liver microsomes. The major CYP isoform involved was CYP1A2 (53% of 

HLM clearance). However it should be noted that the rCYP isoforms used in this 
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experiment could only account for 65% of the total clearance in HLM (measured 

by substrate depletion). Despite the seemingly low contribution to albendazole 

metabolism of the human homologues of the cyps up-regulated in response to 

albendazole in the current study, both CYP2B6 and CYP2C8 are thought to play 

important roles in drug metabolism and are highly inducible (Mo et al., 2009; 

Chen et al., 2009; Wang et al., 2008a). In addition, β-naphthoflavone and 

lansoprazol are generally accepted as strong inducers of the mammalian CYP1A 

family, but have been shown to induce CYP35A2 in C. elegans (Menzel et al., 

2001). There is marked species variation in the induction of xenobiotic 

metabolism pathways even within mammals, so variation in the responsive CYP 

members between mammals and nematodes is to be expected.  

The UDP-glucuronosyl/ glucosyl transferases are an important group of phase II 

xenobiotic metabolising genes. By conjugating glucuronate or glucose onto drugs 

directly or following functionalisation by phase I enzymes they render drugs 

more hydrophilic so that they can be excreted from the cell and organism. This 

group of enzymes is the most over-represented class of gene up-regulated in 

response to ABZ and may be very important in detoxification of this drug. 

Similarly to the up-regulated CYP genes, many of these proteins have been 

implicated in the response to other xenobiotics including atrazine, clofibrate and 

ethanol (Reichert et al., 2005; Kwon et al., 2004). Of the two UGTs represented 

in the top 10 up-regulated genes following ABZ exposure, the predicted 

polypeptide encoded by ugt-63 has closest homology to mammalian UGT1A1 and 

that of ugt-16 has closest homology to UGT2B7, both of which are involved in 

xenobiotic conjugation. Up-regulation of UGT type 1 activities following 

exposure to ABZ has been noted in the rat and is thought to speed the biological 

inactivation of the drug in this species (Rolin et al., 1989; Souhaili-el et al., 

1988a). This represents an interesting coincidence, but again species differences 

in the affinity of specific classes of XME for substrates are common. 

The cytochrome P450s and UDP-glucuronosyl transferases were the only two 

gene families to be enriched in the list of ABZ up-regulated genes. This in itself 

is suggestive of C. elegans mounting a specific response to metabolise 

albendazole. In addition, GFP reporter and SAGE library analysis has shown that 

many of these genes are highly expressed in the intestine, which is thought to be 

the major site of detoxification in the nematode (McGhee, 2007). In the case of 
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both CYPs and UGTs substrate induction of a particular gene does not mean that 

the enzyme encoded by that gene is the only one involved in the substrate's 

metabolism. ABZ is metabolised by several CYP genes in humans despite only 

inducing CYP1A1 and CYP3A4 (Li et al., 2003b). Up-regulation of cyp-6g1 in 

insecticide resistant Drosophila melanogaster appears to be present in most field 

strains (Daborn et al., 2002). However, Daborn et al. (2007) more recently 

reported that constitutive up-regulation of several CYPs could induce a resistant 

phenotype. Whilst several members of the UGT family were only modestly up-

regulated in the current study, it is likely that they have overlapping substrate 

specificities and several or all may be involved in the metabolism of ABZ. Up-

regulation of any one of the CYPs or UGTs reported in this study may 

significantly increase the tolerance of nematodes to ABZ.  

Functional annotation clustering of the ABZ up-regulated genes was used to aid 

in the identification of other genes that may be involved in metabolism 

pathways. In the same cluster as the many UGTs there are also two GST genes 

(gst-5 and gst-21) and a short-chain dehydrogenase (dhs-23), all which could 

possibly be involved in ABZ metabolism. Additionally, three protein kinase-like 

genes were also clustered due to their transferase activity. jnk-1 represents the 

sole member of the c-Jun N-terminal kinase subgroup of mitogen activated 

protein kinases in the C. elegans genome. This gene has been implicated in the 

response to heat and oxidative stress and also in the response to cadmium (Wang 

et al., 2008b). The putative small molecule kinases C29F7.2 and T16G1.6 were 

markedly up-regulated in response to albendazole and have also been implicated 

in the response to cadmium (Cui et al., 2007). Additionally, the metallothionein 

gene, mtl-1, which is important in the heavy-metal response, is also up-

regulated in response to ABZ. All of these genes may potentially be involved in a 

signalling cascade in response to ABZ exposure. 

The remaining clustered genes represent a predicted acyl-transferase (oac-6), a 

gene with an NADH: flavin oxidoreductase KOG and an uncharacterised gene 

with a predicted transport domain, which when knocked down by RNAi, results 

in a “fat increased” phenotype. All of these genes likely have function in fat 

metabolism. Interestingly, several of the few significantly down-regulated genes 

may also be involved in fat metabolism pathways. Aberration of these pathways 

has been noted in response to many lipophilic xenobiotics. This may be non-
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specific, but could also represent part of a whole organism response to minimise 

toxin ingestion by utilising internal energy stores (Taubert et al., 2008). 

Of the completely unclustered annotation terms the CUB-like domain is highly 

enriched in the list of ABZ responsive genes (p-value 1.1 E-14). The function of 

this domain or any of the genes containing it is unknown. However, these genes 

have also been shown to be inducible in other conditions. All of the genes 

containing the CUB-like domain which are up-regulated in response to ABZ are 

also up-regulated in response to infection with Pseudomonas aeruginosa and may 

be involved in the innate immunity pathways (Shapira et al., 2006). This is true 

of many of the other ABZ up-regulated genes including members of the CYP and 

UGT families. It is worth noting that P. aeruginosa secretes several toxins 

including phenazine, which has been shown to be involved in “fast killing” (4-24 

hrs) of infected C. elegans (Mahajan-Miklos et al., 1999). Therefore, up-

regulation of genes in response to bacterial infection may also represent a 

detoxification response. 

It is unlikely that the CUB-like domain containing genes, mtl-1 and those 

involved in fat metabolism are directly involved in xenobiotic metabolism. 

However, it appears that the regulation of these genes and those involved in 

xenobiotic detoxification may occur through similar pathways. The mediator 

subunit MDT-15 has been implicated in the regulation of many of the genes up-

regulated in this study. Induction of cyp-35C1 in response to fluoranthene 

appears to be MDT-15 dependant, as does the induction of mtl-1 in response to 

cadmium intoxication. However, it does not appear to be necessary for the 

response to heat shock (Taubert et al., 2008). As previously discussed, MDT-15 is 

also involved in the regulation of fatty acid metabolism in both NHR-49 

dependent and independent pathways (Taubert et al., 2006). It is clear that 

MDT-15 must interact with several metabolic regulatory factors in order to 

produce specific responses to metabolic or toxic stimuli. nhr-8 encodes a C. 

elegans nuclear hormone receptor that has previously been associated with 

xenobiotic responses to colchicine and chloroquine (Lindblom et al., 2001). 

However, Taubert et al. (2008) report that nhr-8(RNAi) had no effect on the 

induction of cyp-35C1 and other MDT-15 regulated detoxification genes in 

response to fluoranthene. Similarly, the nuclear hormone receptors encoded by 
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nhr-49 and sbp-1 do not appear to be involved in this response, despite being 

associated with MDT-15 in other pathways.  

The regulatory pathways involved in the response to specific xenobiotics are 

likely to be complex. The C. elegans genome contains 288 predicted nuclear 

hormone receptors, the function of most of which is unknown 

(www.wormbase.org). Whilst, MDT-15 appears to be a central node in many 

pathways, specificity of response may be accounted for by the NHRs or other co-

regulatory factors that MDT-15 associates with. It is also likely that MDT-15 

independent pathways are involved. The up-regulation of the CUB-like domain 

genes in this study, which appear to be repressed by MDT-15, is consistent with 

this hypothesis (Taubert et al., 2008). Investigation of the promoter regions of 

the genes shown to be up-regulated in response to albendazole may help 

uncover coincident regulator binding sites and further elucidate the regulation 

of the xenobiotic response. 
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Chapter 5: Analysis of anthelmintic metabolism by 

nematode extracts 

5.1 Introduction 

In order to completely evaluate Caenorhabditis elegans’ use as a model 

organism to investigate anthelmintic metabolism, it was necessary to prove that 

the nematode could metabolise drugs and to define the metabolites produced. 

High-Performance Liquid Chromatography with tandem Mass-Spectrometry 

(HPLC-MS/MS) is a standard technique in drug metabolism studies (Holcapek et 

al., 2008). Following incubation with whole cells or extracts, the compound and 

any metabolites are dissolved in an organic solvent. A small volume of this 

solution is isolated on a chromatography column and then subject to washing 

with an aqueous to organic gradient of mobile phase. In this manner metabolites 

are separated from the column based on their solubility. Throughout the mobile 

phase gradient a fraction of the effluent from the column is directed into the ion 

source of a mass spectrometer. In the current study an electrospray in positive 

ion mode was utilised. This serves to produce gas phase ions which are then 

separated based on the mass/charge (m/z) ratio of the ion. There are several 

different types of mass spectrometer which identify m/z in slightly different 

manners. Both quadrupole and time of flight analysis were used in this study 

(Willoughby et al., 1998).  

A quadrupole mass spectrometer contains 4 parallel charged poles in a vacuum. 

Ions are introduced along the central axis between these poles and by varying 

the voltage to the opposing poles are filtered out based on m/z. A triple 

quadrupole contains three sets of these systems and allows MS/MS capability. 

The first quadrupole screens the parent ions from the electrospray; the second 

has a nitrogen atmosphere and is used to fragment the ions from the first; the 

third, again in a vacuum, filters the fragments based on m/z.  

Time of flight (TOF) spectrometry relies on the fact that smaller mass ions will 

travel faster than larger ones. From the ion source, the ions are directed into a 

flight tube which has a pulse of high voltage applied across it. The time it takes 
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for an ion to cross the flight tube from the source to the detector is directly 

proportional to m/z. 

HPLC-MS analysis of drug metabolites has most commonly been used in human 

and mammalian studies to examine pharmacokinetics. Both ivermectin and 

albendazole are anthelmintics used in human and animal medicine and as such 

the pharmacokinetics and pharmacodynamics of these drugs by mammals has 

been well documented. Ivermectin is metabolised to ten metabolites by human 

liver microsomes (Zeng et al., 1998). However, the turn over is relatively low. 

The plasma half-life of ivermectin following subcutaneous injection is 

approximately 2.04 days in sheep and 4.95 days in cattle (El-Banna et al., 2008). 

Following oral administration to sheep the half life is approximately 3.7 days 

(Mestorino et al., 2003). In both cases the major route of clearance is in the 

faeces with minimal biotransformation. In contrast, albendazole appears to be 

metabolised to only 3 main metabolites: the pharmaceutically active 

albendazole sulphoxide (ABZ-SO) and inactive albendazole sulphone (ABZ-SO2) 

and albendazole amino sulphone (Mirfazaelian et al., 2002). Turnover of 

albendazole is rapid. The half-life of albendazole upon incubation with human 

liver microsomes is around 39.2 minutes (Li et al., 2003b). Albendazole cannot 

be measured in serum following oral dosing in humans, sheep or cattle, due to 

the rapid first-pass metabolism of the parent molecule (Marriner et al., 1986; 

Prichard et al., 1985; Penicaut et al., 1983; Marriner et al., 1980). Albendazole 

sulphoxide can be measured in high concentrations and is thought to be 

responsible for the effect of the drug in the host. 

There have been relatively few publications documenting the major metabolites 

of benzimidazoles and macrocyclic lactones in parasitic nematodes. There are no 

published papers examining the metabolism of ivermectin by nematodes. 

Alvinerie et al. (2001) reported the presence of an undefined moxidectin 

metabolite following incubation with homogenates of Haemonchus contortus 

adults. This work did not include mass spectrometry so the identity of the 

metabolite remains undefined. However, production of the metabolite was 

inhibited in the presence of carbon monoxide suggesting that the metabolite was 

the result of cytochrome P450 metabolism. Metabolism of albendazole by 

parasites has been reported in the literature (Cvilink et al., 2009b; Cvilink et 

al., 2008; Solana et al., 2001). The most recently published data revealed that 
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Haemonchus contortus produces both albendazole sulphoxide and two glucose 

conjugates of albendazole in vitro (Cvilink et al., 2008). Studies with 

Dicrocoelium dendriticum revealed only the oxidation metabolites ABZ-SO and 

ABZ-SO2. Glucosylation is a much less common pathway of metabolism in 

mammals compared to glucuronidation, but is common in invertebrates where 

glucuronidation is not encountered (Hamamoto et al., 2009; Huber et al., 2009; 

Erve et al., 2008; Gessner et al., 1973; Dutton, 1966). 

Caenorhabditis elegans has not previously been used as a model for anthelmintic 

metabolism. However, microsomal extracts have been extracted from C. elegans 

and used to assay the metabolism of endogenous fatty acids (Kulas et al., 2008; 

Zhang et al., 2003). In addition, metabolites of several potential environmental 

toxins have been shown to be produced upon incubation with the free-living 

nematode (Schafer et al., 2009)  

Cytochrome P450s are haem-containing enzymes that have been associated with 

insecticide resistance in many different insects (Amenya et al., 2008; Djouaka et 

al., 2008; Zhu et al., 2008b; Daborn et al., 2002; Berge et al., 1998). 

Caenorhabditis elegans and many parasitic nematodes do not have functional 

haem synthesising pathways and rely on exogenous sources of haem (Rao et al., 

2005). However, it is recognised that haem containing enzymes, such as 

cytochrome P450s, are both present and functionally necessary in these 

organisms. Cytochrome P450 enzymes can be found in high concentrations in 

microsomal protein preparations along with UDP-glucuronosyl transferases and 

flavin monooxygenases. The microsomal fraction is an operational definition of 

the subcellular fraction sedimented following the prior removal of mitochondria 

by centrifugation at 10000g (DePierre et al., 1976). It consists mostly of the 

endoplasmic reticulum of the cell and the enzymes which are bound to these 

membranes. However, there may be some contamination with lysosomes and 

peroxisomes. Microsomes are routinely used to investigate metabolism of drugs 

both in the development and post-development phase of drug design. Using 

microsomes allows more accurate control of the experimental conditions and 

removes the confounding factor of drug uptake into cells or in this case the 

nematode. However, in mammals and presumably in nematodes, microsomes 

may not evaluate metabolism through other enzymatic pathways, including short 

chain dehydrogenases, carboxyl esterases and some glutathione-s-transferases, 
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which are likely found in the cytosol of cells (Pfizer PDM/SOP/20 Version 2.0; 

Brodie et al., 1955). Therefore, this study made use of whole worm- drug 

incubations (ex vivo exposures), in addition to microsome- drug incubations, to 

assess a broader scope of potential metabolic pathways.  

These experiments were designed to confirm metabolism of ivermectin and 

albendazole by C. elegans and H. contortus and to compare the metabolites 

produced to those previously discovered in parasitic helminths. This will allow 

validation of the techniques used to analyse the mechanisms of metabolism of 

any anthelmintic drug. 
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5.2 Materials and Methods 

5.2.1 Materials 

5.2.1.1 Caenorhabditis elegans strains 

Bristol N2: C. elegans wild type, DR subclone of CB original (Tc1 pattern 

I). Gift from the CGC. 

CB3474: ben-1(e1880) III. Mutation of the β-tubulin gene resulting in 

high level resistance to benzimidazoles. Dominant at 25oC, 

recessive at 15oC. Gift from CGC. 

DA1316: avr-14(ad1302); glc-1(pk54). Mutations of two major subunits 

of glutamate-gated chloride channels resulting in high level 

resistance to ivermectin. Gift from CGC 

5.2.1.2 Haemonchus contortus strains 

MHco3 (ISE): susceptible inbred strain used for the Haemonchus 

contortus genome project (Roos et al., 2004; Otsen et 

al., 2001) 

MHco4 (WRS): White River Strain. Ivermectin and benzimidazole 

resistant strain isolated in South Africa and maintained 

by experimental passage (van Wyk et al., 1988). 

MHco10 (CAVR): Chiswick Ivermectin Resistant Strain. Ivermectin 

resistant strain originally isolated in Australia and 

maintained by experimental passage (Le Jambre et al., 

1995) 

All H. contortus strains were received from the Moredun Institute, 

Edinburgh. 
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5.2.1.3 Human Liver microsomes 

Pooled donor Human Liver Microsomes from Gentest 

5.2.2 Preparation of microsomes 

5.2.2.1 Caenorhabditis elegans culture conditions 

Large numbers of nematodes were grown in standard liquid culture medium 

containing 100 units/ml nystatin (Sigma, N3503). Each 250ml culture was started 

with either synchronised L1 worms or worms were washed from 20 x 5cm 

diameter NGM plates containing many adult worms (3-4 days growth at 20oC).  

Several compounds were added to cultures in an attempt to improve the yield of 

microsomal protein/ cytochrome P450s: 

Ivermectin (Sigma, I8898), final concentration 100ng/ml (114nM), for 12-

16 hrs before harvesting (cultures of strain DA1316 only). 

Fenofibrate (synthesised “in-house” at Pfizer Animal Health, Sandwich), 

final concentration 20µg/ml (55.43µM), for 24-60hrs before harvesting. 

delta-Aminolevulinic acid (Sigma, A3785), final concentration 167.5µg/ml 

(1mM), for the duration of the culture. 

The cultures were allowed to grow at 20oC for 4-5 days until many adult worms 

were present in a 200µl sample. Culture flasks were rested on ice for 15-20min 

to allow the worms to settle. Using a 50ml pipette the supernatant was removed 

to approximately 50ml, the worm pellet resuspended and transferred to a 50ml 

falcon tube. Samples were centrifuged at 2500rpm, 4oC for 3min in a table top 

centrifuge. The supernatant was removed using a pipette and the pellet 

resuspended in ice cold M9 buffer. This process was repeated twice to remove 

bacterial contamination. 
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5.2.2.2 Haemonchus contortus culture conditions 

2.5-3 million infective stage larvae (L3) in tap water were rested on ice for 15-20 

min to allow them to settle. The supernatant was removed to 200ml, using a 

25ml pipette, and the resulting pellet resuspended and transferred to 4 x 50ml 

falcon tubes. The worms were pelleted by centrifugation at 2500rpm, 4oC for 3 

minutes. The supernatant was removed to 10ml in each of the four falcon tubes. 

The L3 were exsheathed by adding 200µl of Milton sterilising fluid (1% sodium 

hypochlorite) to each of the falcon tubes and shaking at 150rpm, 37oC. 20µl was 

removed from each tube every 2-3 minutes and examined under 40x 

magnification until the majority of the worms had exsheathed. Each of the 

falcon tubes were then filled to 50ml with ice cold M9 and centrifuged at 

2500rpm, 4oC for 3min. The supernatant was removed and the tube filled to 

50ml with ice cold M9 buffer again. The larvae were washed in M9 a further 

three times. 

5.2.2.3 Homogenisation of Nematodes and Microsome isolation 

Following culture and isolation, C. elegans pellet size varied between 2-3ml. The 

pellet was suspended in two volumes of TRIS-buffer (50mM, pH7.5) 

supplemented with 0.25M sucrose, 2mM EDTA, 0.15M KCl, 0.5M dithiothreitol 

(DTT), 0.25mM phenylmethylsulphonylfluoride (PMSF) and complete protease 

inhibitor cocktail (Roche, 04 693 124 001). Alternatively, the pellet was 

suspended in simple phosphate buffer (pH 7.5) with the addition of complete 

protease inhibitor cocktail. The suspension was split between 1ml glass 

homogenisers and homogenised for 15-20min. The homogenate was subject to 

secondary homogenisation using either 3 x 30 second pulses of an Ultra Turrax T8 

homogeniser (IKA-Werke) at full speed or 3 x 30 second pulses of sonication using 

a Soniprep 150 (Sanyo). All steps were carried out on ice. Homogenates were 

subsequently used for microsome preparations or were incubated directly with 

the drug. 

H. contortus L3 pellets were suspended in buffer as above. The small L3 larvae 

proved difficult to homogenise even following exsheathment. Several methods 

were undertaken including the use of 1ml glass homogenisers; freezing in liquid 
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nitrogen followed by grinding using a mortar and pestle or tissue grinder; high 

speed vortexing with glass beads; homogenisation with Ultra Turrax and 

sonication. The most successful microsome preparations followed 

homogenisation with Ultra Turrax T8 for 4 x 30 seconds with intervals of 1min 

followed by sonication for 4 x 30sec with intervals of 1min. All steps were 

carried out on ice. 

Homogenates of both C. elegans adults and H. contortus L3 were immediately 

subject to differential centrifugation in a Sorval Discovery 100 ultracentrifuge. 

The homogenates were first centrifuged at 3000g for 5 minutes to remove 

cuticle and debris. The supernatant was removed and centrifuged at 10000g for 

10 minutes and the supernatant of this step was subject to centrifugation at 

100000g for 1hr. The supernatant of the final spin, containing the cytosol 

fraction, was removed and stored at -80oC. The microsome pellet was 

resuspended in TRIS-buffer (50mM, pH 7.5) supplemented with 20% glycerol, 

5mM EDTA, 0.5mM DTT, 0.25mM PMSF and the complete protease inhibitor 

cocktail (Roche, 04 693 124 001). If possible the microsomes were analysed and 

used the same day. Alternatively, the samples were stored at -80oC until used. 

5.2.2.4 Analysis of microsomal protein 

5.2.2.4.1 Protein concentration 

 
The protein concentrations of microsome and cytosol fractions were analysed 

using a BIORAD protein 96-well plate assay, based on the protocol described by 

Lowry et al. (1951). A 10µl sample of the microsomal or cytosolic preparations 

was diluted 1:100 in MQ H2O and stored on ice until analysis. A standard curve 

was made using bovine serum albumin (BSA), also from BIORAD, at the following 

concentrations: 

 Final protein concentration (mg/ml) Volume MQ H2O (µl) Addition 

A 0.77 100 100µl stock BSA 

B 0.38 100 100µl solution A 

C 0.19 100 100µl solution B 

D 0.44 100 100µl solution C 

E 0.22 100 100µl solution D 

F 0.11 100 100µl solution E 

G 0 100 100µl MQ H2O 
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25µl of each standard solution and each of the diluted experimental samples was 

transferred in triplicate into a flat bottomed microtitre plate. 25µl of BIORAD 

reagent A was then added to each well. Finally 200µl of Biorad reagent B was 

added to each of the wells and the plate was allowed to stand at room 

temperature for at least 15min.  

Absorbance at 750nm of each well was measured using a Spectramax plus 384 

(Molecular Devices) and Softmax Pro 4.7.1 software. The mean absorbance of 

each of the standard solutions was calculated and plotted against protein 

concentration using Microsoft Excel. A line of best fit and associated Peterson 

coefficient (R2) was calculated. Assuming R2 was greater than 0.99, this was used 

to calculate the protein concentration of the experimental samples. 

In most experiments the absorbance was not linear over the entire range of BSA 

concentrations. As the experimental samples were always very dilute the 

absorbance data of the most concentrated standard was removed from the 

analysis, which gave a linear relationship between protein concentration and 

absorbance. 

5.2.2.4.2 Cytochrome P450 concentration 

Human liver microsome samples were analysed by diluting 1:100 in phosphate 

buffer, pH 7.0. However, all nematode samples were more dilute and a dilution 

of 1:10 was used. Analysis was carried out as per Pfizer PDM SOP 20 (version 

2.0): 

The preparations were exposed to carbon monoxide by a stream of bubbles at 

approximately 1 bubble/ second for 1min. Spectral analysis was carried out using 

a Jasco V-650 spectrophotometer and Jasco spectra manager software. A 

baseline reading was taken by measuring the absorbance of phosphate buffer 

alone between 400 and 500nm. The experimental sample was then split between 

two matched cuvettes (Hellma Worldwide), i.e. reference and sample, and the 

reading was repeated. Approximately 1mg of sodium dithionite was added to the 

reference sample and the cuvette was inverted repeatedly for 1min. Both 

cuvettes were then subject to a final scan between 400-500nm. The absorbance 

data from the final reading was overlaid on the non reduced reading and 
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subtracted. After smoothing the subtracted spectrum was used to calculate 

cytochrome P450 concentration using the following formula: 

cytochrome P450 (nmol/ml)=  abs. diff. x 1000 in diluted sample 

      91 

Where, abs. diff. = Absorbance difference (450-490nm) from trace 

  Extinction coefficient= 91mM-1cm-1 

  Cuvette path length= 1cm 

5.2.3 Drug- Microsome Incubations 

5.2.3.1 Human Liver Microsomes 

Human liver microsome (HLM)- drug incubations were carried out in a total 

volume of 800µl in 50mM phosphate buffer pH 7.0. A NADPH generating system 

was used consisting of 5mM MgCl2, 5mM isocitric acid, 1mM NADP
+ and 1IU/ml 

isocitrate dehydrogenase. HLM were added to a final P450 concentration of 400 

pmoles/ml and the drug was added to 1µM-10µM. No NADP, no microsome and no 

compound controls were included in the experiments. Reactions were kept in a 

waterbath at 37oC with shaking at 200rpm for 1 hour before being terminated by 

the addition of 5 volumes of ice-cold acetonitrile (MeCN). The samples were 

centrifuged at 3000rpm, 4oC for 40min; the supernatant decanted and 

evaporated to dryness under nitrogen at 40oC using a Turbovap LV (Zymark). 

Samples were stored at -20oC until further analysis by HPLC-MS. 

5.2.3.2 Nematode Microsomes 

Cytochrome P450 concentrations could not be accurately defined for nematode 

microsome preparations. Therefore, a final microsome protein concentration of 

0.5-1mg/ml was used. Nematode microsome incubations were either carried out 

as HLM incubations or using the incubation protocol used by Kulas et al. (2008): 

100mM potassium phosphate buffer pH 7.2 with 0.1mM EDTA and 0.5µM flavin 

adenine dinucleotide (FAD) and flavin mononucleotide (FMN). NADPH (1mM) was 
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used as the hydrogen source due to the lower temperature at which the C. 

elegans reactions were incubated. C. elegans microsome incubations were 

carried out at 25oC with shaking at 200rpm for between 24-72hrs. Haemonchus 

contortus microsome incubations were carried out at 37oC, with shaking at 

200rpm for between 24-72hrs. In both cases the incubations were terminated 

and further treated as per HLM incubations. 

5.2.4 Ex-vivo drug exposure 

5.2.4.1 C. elegans ex-vivo drug exposures 

Nematodes were washed from 5 x 10cm diameter NGM plates with M9. The 

worms were pelleted and washed twice in M9. The pellet of worms was split 

equally between two 250ml volume of standard liquid culture medium plus 100 

units/ml nystatin and 3mls concentrated OP50 suspension. The flasks were 

placed in a shaking incubator at 20oC, with shaking at 240rpm for 4-5 days. 

Fenofibrate, a PPARα agonist known to induce CYPS and UGTs, was added to 

three biological replicates (experimental and heat-control cultures) for 12hrs 

prior to the addition of the anthelmintic. A further three biological replicates 

were not exposed to fenofibrate. 

On the final day of culture, when many adult worms were present and the 

cultures were almost starved of OP50, one of the paired cultures was killed by 

heating to 50oC for 30min in a waterbath. A 200µl sample was taken from both of 

the cultures to ensure that the experimental flask contained many healthy adult 

worms and that the worms in the heat exposed flask were dead. 0.5ml of 

concentrated OP50 was added to each of the cultures. Drug was added to both 

cultures: albendazole was added to a final concentration of 15µg/ml (56.53µM); 

ivermectin was added to a final concentration of 100ng/ml (114nM). Cultures 

were maintained in the shaking incubator (240rpm, 20oC) for a further 7hrs. To 

harvest, the cultures were placed on ice for 15min to allow the worms to settle. 

The supernatant was removed to approximately 50ml and the suspension from 

each culture was transferred to a 50ml falcon tube. The worms were centrifuged 

at 2500rpm, 4oC and washed three times in ice-cold M9 buffer to remove 

bacteria and excess compound. Finally, the supernatant was removed and the 

worm pellet snap frozen in liquid nitrogen and stored at -80oC until analysis. 
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Bacterial controls were carried out in a similar way using cultures containing no 

nematodes and 3ml concentrated OP50 suspension per 250ml culture. 

5.2.4.2 H. contortus ex vivo drug exposures 

2.5-3 million L3 larvae were exsheathed as per Section 5.2.2.3 and were split 

between 2 x 50ml falcon tubes. One tube was subject to heating to 50oC for 

30min to kill the nematodes. This was confirmed by analysis of 100µl sample 

under 40x magnification. Both samples were suspended in 10ml of M9 buffer, 

and albendazole or ivermectin was added to both of the tubes to a final 

concentration of 100ng/ml (114nM) IVM or 15µg/ml (56.53µM) ABZ. The samples 

were incubated at 37oC, with shaking at 150rpm for 7hrs. The L3 larvae were 

then washed three times in M9 and either snap frozen in liquid nitrogen until 

analysis or analysed immediately. 

5.2.4.3 Homogenisation and extraction of metabolites 

Pellets of both Caenorhabditis elegans and Haemonchus contortus were 

homogenised using both an Ultra Turrax homogeniser and sonication. Ten 

volumes of methanol: Tris pH9, 9:1, or acetonitrile were added to the resulting 

homogenates and allowed to stand at room temperature for 30min. The samples 

were then centrifuged at 4000rpm, 4oC for 40min to remove solid debris and the 

supernatant removed and evaporated to dryness under nitrogen. The samples 

were stored at -20oC until further analysis by HPLC-MS. 

5.2.5 HPLC-MS methods 

5.2.5.1 Ivermectin 

Both microsome and whole nematode incubations with ivermectin were analysed 

identically. Dried samples were first resuspended in 200µl 50:50 methanol: H2O 

and transferred to a tear drop microtube. The samples were then centrifuged at 

10000rpm, 4oC for 10min and the supernatant transferred to a fresh tear-drop 

microtube. Samples derived from ex vivo drug incubations required several 

centrifugation steps to remove solid debris and prepare them for HPLC-MS 

analysis. 
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20µl of experimental samples were injected onto a Phenomenex Onyx monolithic 

C18 column (100 x 3mm) using an HTS PAL autosampler from CTC Analytics. An 

Agilent 1100 series HPLC pump system was used to provide the mobile phase 

gradient at a flow rate of 1ml/min. The wash from the column was analysed 

using an Applied Biosystems 4000 QTrap, LC/MS/MS system with electrospray ion 

source in positive ion mode. Analysis was carried out by a combination of Q1 

analysis, MS/MS analysis and MRM methods. Results were analysed using Analyst 

version 1.4.1 software (Applied Biosystems). 

5.2.5.2 Purification of ivermectin 

Initial analyses of ivermectin using the system described in Section 5.2.5.1 

revealed low level impurities to be present in a standard solution of ivermectin. 

A prep liquid chromatography system was used to remove these impurities, 

which would have confounded analysis of low level metabolism. Stock ivermectin 

dissolved in 50:50 methanol: H2O was injected onto a HICHROM HIRPB, base 

deactivated C18 column with 5µm packing (250 x 7.75mm). Agilent 1200 series 

pumps and an Agilent 6110 quadrupole LC/MS system were used. Prep LCMS 

software was used to analyse and collect the ivermectin fraction based on UV 

absorption. Reanalysis as per Section 5.2.5.1 demonstrated the successful 

removal of impurities. 

5.2.5.3 Albendazole and midazolam 

Albendazole and midazolam incubations were resuspended in 200µl of 50:50 

acetonitrile: MQ water supplemented with 0.1% formic acid. Sample preparation 

prior to HPLC-MS analysis was otherwise identical to ivermectin incubations. 

5µl of experimental sample was injected onto a Waters HSS 1.8µm C18 column 

(100 x 1mm), using a Waters Acquity Ultra Performance LC system. Mobile phase 

was applied to the column at 200µl/min. MS analysis was carried out using a 

Micromass MS Technologies Q-Tof PremierTM. A reference spray using Leucine 

Enkephalin was used to provide accurate mass data. Analysis was carried out by 

Q1 and MS/MS methods using Mass Lynx 4.1 software (Waters). 
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5.3 Results  

5.3.1 Microsomal extract incubations 

5.3.1.1 Microsome preparations from C. elegans and H. contortus 

Kulas et al. (2008) reported the successful preparation of microsomes containing 

active cytochrome P450 enzymes from C. elegans strains. A modification of the 

protocol described in this paper was used to extract microsomes from both C. 

elegans and H. contortus. The yield of microsomal proteins per gram of 

nematode tissue was extremely small. However, by growing large numbers of C. 

elegans in liquid culture for four days approximately 6-9mg of protein could be 

extracted. Yields from L3 H. contortus were consistently poor (0.5-3mg). This is 

likely to be due to the difficulty in homogenising the larvae in an environment 

conducive to extracting active proteins (see Section 5.2.2.3). 

Assessment of the presence and concentration of cytochrome P450 enzymes 

relies on their characteristic peak absorption at 450nm when in the reduced 

form, following treatment with sodium dithionate, and saturated with carbon 

monoxide. None of the prepared nematode microsomal extracts showed a 

convincing soret peak at 450nm. Preparations from all C. elegans cultures had 

intense peaks with maxima at approximately 421nm. Preparations from H. 

contortus had maxima at approximately 427nm. However, the concentration of 

microsomal protein was extremely low and only two spectral readings were 

carried out so this may not be accurate. Addition of fenofibrate, a known 

cytochrome P450 inducer (Kulas et al., 2008) or ivermectin to C. elegans 

cultures prior to microsome preparation did not result in any change to the 

spectra. Delta- aminolevulinic acid, a haem precursor, has been used to improve 

the yield of P450 extractions from Caenorhabditis elegans (pers. comm. Dr. R. 

Menzel). However, supplementation of cultures with 1mM d-aminolevulinic acid 

did not alter the spectrum. In addition, microsome preparations from 

Caenorhabditis elegans were prepared in simple phosphate buffer supplemented 

with complete protease inhibitor cocktail (Roche, 04 693 124 001). The 

absorbance spectrum from microsomes prepared in this manner was identical to 

that of those prepared in the buffer described by Kulas et al. (2008). 
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To control for error in the spectral analysis of the extracts, commercially 

available human liver microsomes (HLM) were also analysed. Typical spectra for 

C. elegans, H. contortus and HLM are shown in Fig.5-1 to 5-3. 

A spectral peak at 420nm is thought to be indicative of denatured P450 enzymes. 

However, it has also been suggested that an intense soret peak at 421nm, seen 

commonly in invertebrates may in fact be a functional haemoprotein (Rocha-e-

Silva TA et al., 2001). Therefore, drug incubations were carried out with the 

microsomal preparations despite there being no measurable P450 content. 
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Figure 5-1: HLM absorbance spectrum 
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Figure 5-2: C. elegans strain DA1316 microsomal absorbance spectrum 
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Figure 5-3: H. contortus strain CAVR microsomal absorbance spectrum 

 
The absorbance spectrum of human liver microsome preparations shows a peak at 450 nm 
representing the cytochrome P450 enzyme content. Microsomal preparations from both 
Caenorhabditis elegans and Haemonchus contortus do not show a peak at 450nm. 
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5.3.1.2 Analysis of absorbance spectra of nematode culture medium 

Liquid culture medium supplemented with delta-aminolevulinic acid was notably 

darker than that with no supplementation. This suggested that there was an 

increase in haem, presumably synthesised by the E. coli food source. A sample of 

this medium was taken and subjected to carbon monoxide exposure and 

reduction with sodium dithionite in the same manner as the microsomal 

preparations. However, this sample did not go through any of the 

homogenisation, sonication or centrifugation steps which were presumed to be 

the likely stages at which P450 enzymes could be denatured.  

The absorbance spectrum of this sample showed a soret peak at exactly the 

same wavelength as the microsomal preparation of the worms grown in it. This 

result suggests that the P421nm soret peak does not represent that of a 

denatured cytochrome P450. The predominant haem-containing protein in the 

nematode is likely to be derived directly from E. coli. It is possible that the 

absorbance spectrum of this protein is masking that of smaller concentrations of 

modified haem-proteins in the nematode. 
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Figure 5-4: Absorbance spectrum of DA1316 microsomal preparation and of culture medium 
The soret peak of the both the microsomal preparation and the culture medium are almost 
identical.  
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5.3.2 HPLC-MS analysis of anthelmintic- microsome incubations 

5.3.2.1 Development and validation of HPLC-MS method for ivermectin and 

metabolites 

The HPLC-MS method used was based on that presented for the analysis of 

human liver microsome- ivermectin incubations (Zeng et al., 1998). Using the 

equipment available (see Section 5.2.5.1) the H2O- acetonitrile gradient 

described by Zeng et al. (1998) did not adequately separate the elution times of 

ivermectin and metabolites. Therefore, the commercially available mobile phase 

mixes MF5 and MF4 were used, see Chapter 2 for details. The gradient began at 

60% MF4 (organic): 40% MF5 (aqueous) and proceeded to 100% MF4 over 27min.  

A multiple reaction monitoring (MRM) technique was used which allows sensitive 

detection of predefined metabolites. This was an appropriate method for this 

analysis as previous work has shown ivermectin undergoes low level metabolism 

resulting in low metabolite signal. In addition, both ivermectin and its known 

phase I metabolites are highly lipophilic resulting in a late elution time from the 

column in combination with non specific residue. This makes it extremely 

difficult to pick out specific metabolite peaks amongst the general increase in 

the total ion chromatogram signal.  

In order to optimise the mass spectrometry method, a standardised solution of 

ivermectin was injected directly into the mass spectrometer at 1ml/min. 

Scanning between 200-1000Da identified all ivermectin ions. The declustering 

potential was then optimised to maximise the signal for each of these ions. 

Fragment ion spectra were analysed and the collision energy optimised for each 

of the parent ions to maximise the fragment signals. 

Two significant parent ions were found for ivermectin: a sodium adjunct 

(897.5Da) and an ammonium adjunct (892.4Da), as per Zeng et al. (1998). Whilst 

the sodium adjunct had an intense maximal signal at a declustering potential of 

230V, this ion was unstable when fragmented resulting in low intensity fragment 

ion spectra. The ammonium adjunct had a maximal signal at a declustering 

potential of 70V and provided consistent fragment ion spectra with collision 

energy of 35V. These parameters were used for the rest of the analyses. The 
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major fragment ions noted for ivermectin were as reported in Zeng et al. (1998). 

A peak at approximately 551Da was consistent with two dehydrations of the 

aglycone fragment of ivermectin; a peak at approximately 145Da was consistent 

with a single saccharide ion and a peak at approximately 307Da was consistent 

with the spirokeital moiety of the aglycone fragment (Fig. 5-5A). 

In order to confirm the validity of the HPLC-MS method, ivermectin was first 

incubated with human liver microsomes (400pmoles cytochrome P450). Q1 scans 

were used to identify potential metabolites based on mass changes detailed by 

Holcapek et al., (2008). Fragment ion analyses of each identified metabolite 

revealed the 307Da fragment ion, or modulations of this moiety, to be 

consistently the most intense. Therefore, transitions of the parent molecule and 

this fragment were used to identify ivermectin and metabolites in further drug 

incubations, see Table 5-1. This MRM method clearly identified all but two of 

the metabolites published by Zeng et al. (1998), see Fig. 5-5B.
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Figure 5-5: Major fragment ions of ivermectin and MRM chromatogram of HLM-ivermectin 
incubations 
A: Adapted from Zeng et al. (1998). The major fragment ions of ivermectin following MS-MS 
analysis. The fragment of m/z 307.4 was consistently the most intense in both ivermectin 
and its metabolites. B: Typical MRM chromatogram of an HLM-ivermectin incubation. Note 
the large peak representing unmetabolised ivermectin. Metabolites (M1-M8) are labelled as 
per Zeng et al. (1998).M1 transition- 878.4Da/ 307.4Da; M2 transition- 908.4Da/ 307.4Da; *M3 
transition- 908.4Da/ 323.4Da (identical transition to Zeng et al. M9 also); M4 transition- 
894.4Da/ 307.4Da (peak at same elution time as ivermectin due to naturally occurring 2 x 
C14 isotope); M6 transition-894.4Da/ 323.4Da; M7 transition- 764.4Da/ 323.4Da; M8 
transition- 924.4Da/ 323.4Da.  
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Transition ID  

(assigned by Zeng et al. (1998)) 

MS1 
(Da) 

MS2 
(Da) 

1 Ivermectin B1a 892.4 307.4 

2 Metabolite 1 (3”-O-desmethyl-IVMB1a) 878.4 307.4 

3 Metabolite 2 (4-OHMe-IVMB1a) 908.4 307.4 

4 Metabolite 3 & 9 (26-OHMe-IVMB1a and 24-OHMe-IVMB1a) 908.4 323.4 

5 Metabolite 4 (3”-O-desmethyl, 4-OHMe-IVMB1a)  894.4 307.4 

6 Metabolite 5  764.4 307.4 

7 Metabolite 6 (3”-O-desmethyl, 26-OHMe-IVMB1a) 894.4 323.4 

8 Metabolite 7 (26-OHMe-IVMB1a monosaccharide) 764.4 323.4 

9 Metabolite 8 (4,26-dihydroxymethyl-IVMB1a) 924.4 323.4 

Table 5-1: MRM transitions for ivermectin and metabolites 
MRM transitions initially used to identify ivermectin and its metabolites in HLM, nematode 
microsome and whole worm IVM incubations. The specific identities of the metabolites were 
assigned by Zeng et al. (1998) using a combination of 

1
H-NMR, LC-MS/MS and HPLC 

retention times (ID of metabolite 5 could not be confirmed). In the current study the specific 
identity of metabolites were not assessed. 

The elution times and order of elution for the various metabolites were slightly 

altered in comparison to those reported by Zeng et al. (1998). However, this is 

likely explained by the different HPLC column and mobile phase used in this 

study. M5 (764.4/307.4), representing a loss of the disaccharide moiety and an 

oxidation of the hexahydrobenzofuran moiety of the aglycone, was produced in 

very small quantities in the study by Zeng et al. (1998) and its identity could not 

be confirmed. In the current study this metabolite was not identified. In 

addition only one peak of transition 908.4/ 307.4 was identified, representing a 

single oxidation of the hexahydrobenzofuran moiety of the aglycone. Two 

metabolites with this transition with differing elution times were identified by 

Zeng et al. (1998): M3 and M9.  

Transition 908.4/307.4 showed a peak at 23.4 minutes which was identified as 

M2. However, this transition also had a broad based double peak from 19.4-

20.4min. MS/MS analysis at this time point revealed this not to be a metabolite 

of ivermectin and so this was ignored. There was a significant peak of transition 
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894.4/ 307.4 at 24.51min, the same elution time as the parent ivermectin. 

MS/MS analysis and assessment of the relative intensity of this peak suggested 

the presence of a naturally occurring isotype of ivermectin. 

Initial analyses revealed low levels of metabolites in the ivermectin standard. 

Given the low level metabolism of ivermectin previously reported this may have 

hampered identification of true cytochrome P450 derived metabolites (Perez et 

al., 2008; Zeng et al., 1998; Chiu et al., 1984). Ivermectin standards were 

purified using a prep LC method as detailed in Section 5.2.5.2. Analysis of the 

purified ivermectin using the MRM method described above revealed no 

metabolite impurities. 

5.3.2.2 Development and validation of the HPLC-MS method for albendazole 

and metabolites 

Albendazole is a much smaller molecule than ivermectin. An albendazole 

standard was found to have an intense peak using the standard phase I and II 

drug metabolite identification system available at Pfizer R&D. The benefits of 

this system included ultra performance liquid chromatography, resulting in 

excellent resolution of metabolite peaks, and Q-Tof (time of flight) mass 

spectrometry with accurate mass identification using LockSpray. This is a 

method by which the mass of metabolites can be accurately measured to within 

0.05Da by normalising mass/ charge (m/z) data to a standard solution of a 

compound of known m/z, in this case leucine enkephalin. The reference 

compound is injected into a secondary reference ion sprayer and is analysed 

simultaneously with the compounds of interest.  

Analysis of albendazole and metabolites used a gradient of 95:5% water: MeCN + 

0.1% Formic acid (FA) to 100% MeCN + 0.1% FA over 12min. Mass spectrometry 

was carried out in positive ion mode, with a declustering potential of 25mV. The 

single protonated ion of albendazole (266.096Da) was the most abundant ion 

produced, showing an intense peak at 4.44min. Initial analysis of albendazole 

and its metabolites were carried out accurately without using a multiple 

reaction monitoring method.  
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Analysis of HLM- albendazole incubations revealed that albendazole is rapidly 

metabolised to albendazole sulphoxide (ABZ-SO), a pharmacologically active 

oxidation product of albendazole (3.18min, 282.091Da). 1µM albendazole 

incubated with 400pmoles human liver cytochrome P450 for 1hr at 37oC had an 

ASOX peak 5.5 times more intense than the parent albendazole signal (Fig. 5-6). 

This is consistent with the high turnover of albendazole reported in humans and 

other mammals (Kitzman et al., 2002; Mirfazaelian et al., 2002). The 

pharmacologically inactive metabolite albendazole sulphoxone (ABZ-SO2) is 

present in the serum of treated humans, but does not appear to be a product of 

human liver microsome mediated metabolism and was not present in this study 

(Rawden et al., 2000). It is possible that this metabolite is produced extra-

hepatically or by other enzymes not present in microsome preparations. In 

addition to ABZ-SO a less intense peak was consistently seen at 3.92min with 

mass 208.093Da. This has not previously been reported but is consistent with 

cleavage across the amino bond of albendazole and will be referred to as amino-

albendazole (Fig. 5-7). This peak is not present in microsome minus or NADP 

minus controls and therefore was proposed to be a CYP P450 derived metabolite 

of albendazole.  



C
h
a
p
te

r 5
: A

n
a
lys

is
 o

f a
n

th
e

lm
in

tic
 m

e
ta

b
o
lis

m
 b

y
 n

e
m

a
to

d
e
 e

x
tra

c
ts

 
1
5
2

 

0

100

%

Time (min)
1 2 3 4 5 6 7 8 9 10 11 12

3.18

3.92

4.44

R
e
la

tiv
e

 In
te

n
s
ity

Mass Spectrum at 3.18min Mass Spectrum at 3.92min

Mass Spectrum at 4.44min The Base Peak Intensity (BPI) chromatogram shows 

the most intense peak at any moment in the analysis. 
This is not an MRM analysis, and as such the 

chromatogram is noisy due to the detection of 
impurities from the incubation/ column. The only 

peaks relating to ABZ and its metabolites are at 3.18, 

3.92 and 4.44 minutes. The mass spectra at these 
times are shown below and relate to albendazole 

sulphoxide, amino albendazole and albendazole 
respsectively.  

BPI Chromatogram 1µM ABZ + HLM

R
e
la

tiv
e

 
In

te
n

s
ity

R
e
la

tiv
e

 
In

te
n

s
ity

R
e
la

tiv
e

 

In
te

n
s
ity

m/z

m/z

m/z
0

0

0

100100

100

282.088 208.089

266.098

 

  F
ig

u
re

 5
-6

: B
P

I c
h

ro
m

a
to

g
ra

m
 o

f H
L

M
- a

lb
e
n

d
a

z
o

le
 in

c
u

b
a
tio

n
 a

n
d

 m
a
s
s

 s
p

e
c
tra

 o
f 

s
ig

n
ific

a
n

t p
e

a
k

s
 



Chapter 5: Analysis of anthelmintic metabolism by nematode extracts 153 

2

O

Albendazole

Albendazole sulphoxide Amino-Albendazole  

Figure 5-7: Proposed structures of albendazole and identified HLM metabolites 
Albendazole is rapidly metabolised to albendazole sulphoxide in mammals and high 
concentrations of this metabolite are seen in the blood. Amino albendazole has not 
previously been reported, but may be an intermediate metabolite to albendazole amino 
sulphoxone, which can also be found in the plasma of humans (Mirfazaelian et al., 2002). 

 
5.3.2.3 Nematode microsome preparations do not metabolise ivermectin or 

albendazole 

Microsome preparations from C. elegans were incubated with both ivermectin 

and albendazole. Microsomal protein concentrations were varied from 0.5mg 

protein/ml to 2mg protein/ml. The incubations were carried out either in 

phosphate buffer supplemented with NADPH or in the modified incubation buffer 

containing FAD and FMN detailed by Kulas et al. (2008). Incubations were carried 

out at 25oC for 24-72hrs. Drug concentrations were varied from 100nM to 10µM.  

MRM analysis of ivermectin incubations revealed no significant metabolite peaks 

in any of the conditions described. Q1 scans revealed no significant metabolite 

peaks on the total ion chromatogram and specific searches for phase I 

metabolites (Holcapek et al., 2008), followed by fragment ion analyses also 

revealed no metabolites. Similarly, no albendazole metabolites were identified. 

Haemonchus contortus microsome preparations were treated in a similar manner 

except that incubations were carried out at 37oC. Again, HPLC-MS of these 

reactions revealed no significant metabolite peaks. 
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5.3.2.4 Nematode microsome preparations do not metabolise midazolam 

Midazolam is regularly used as a positive control for HLM drug incubations of new 

compounds. This benzodiazepine drug has extremely high turnover in the 

presence of HLM. Midazolam is a small molecule, accurate mass 326.781Da, 

whose phase I metabolites are adequately analysed using the UPLC-QTOF system 

described for albendazole above. Midazolam incubated with HLM at 37oC for 1 

hour is extensively metabolised to the 1′-hydroxy and 4′-hydroxy metabolites, 

accurate mass 342.772Da (Ghosal et al., 1996). 

C. elegans and H. contortus microsome preparations were incubated with 

midazolam at 1µM, as described for ivermectin and albendazole above. Analyses 

of these incubations did not reveal any significant metabolite peaks. 

5.3.2.5 C. elegans homogenates do not metabolise ivermectin or 

albendazole 

Previous work has cited nematode homogenates as being able to metabolise 

moxidectin and albendazole (Alvinerie et al., 2001; Solana et al., 2001). 

Homogenates of mixed stage C. elegans strain N2 grown in standard conditions 

for 4 days were made as per Alvinerie et al. (2001) and incubated with 

ivermectin at a total concentration of 1.5mg protein/ml for 72hrs at 25oC. HPLC-

MS analysis, of these incubations did not identify any significant metabolite 

peaks. 

5.3.2.6 C. elegans cytosolic fractions do not metabolise ivermectin or 

albendazole 

Microsomal fractions are thought to contain the vast majority of xenobiotic 

metabolising enzymes. However, several enzymes such as carboxyl esterases, 

epoxide hydrolases, sulphotransferase, and glutathione-s-transferases 

predominate in the cytosol fraction. Cytosol fractions derived from parasitic 

helminths have previously been reported to metabolise albendazole (Solana et 

al., 2001). Therefore albendazole and ivermectin were incubated with 1mg 

cytosolic protein (the final supernatant following differential centrifugation) 
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prepared from C. elegans. HPLC-MS analysis of these incubations revealed no 

metabolites of either drug. 

5.3.3 Inhibition of HLM reactions by nematode derived 

microsomal protein 

It has previously been noted when preparing cytochrome P450 enzymes from 

Drosophila melanogaster that the wings and eyes of the organism contain 

inhibitors of cytochrome P450 reactions (pers. comm. Dr. D. Woods, Pfizer 

Animal Health). In order to identify the presence of inhibitors in nematode 

microsomal preparations, ivermectin was co-incubated with both HLM and those 

prepared from C. elegans at a final concentration of 1mg/ml. The presence of C. 

elegans microsomal protein resulted in an average 90.6% reduction in intensity 

of the HLM ivermectin metabolite peaks (lowest reduction 60%; highest 

reduction 100%), Fig. 5-8. This effect occurred in incubations at both 25oC and 

37oC and irrespective of whether NADPH or an NADPH generating system was 

used as the hydrogen donor. 
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Figure 5-8: C. elegans microsome preparations inhibit HLM reactions 
A: HLM ivermectin incubation analysis showing ivermectin peak with associated metabolite 
peaks. B: The same incubation with the addition of 1mg/ml C. elegans microsomal protein. 
Note the almost complete lack of metabolite production. 
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5.3.4 HPLC-MS analysis of ex vivo drug incubations 

Due to the presence of cytochrome P450 inhibitors in the microsome 

preparations, a whole worm incubation protocol was adopted. Homogenates of 

live worms previously exposed to anthelmintic drugs would be expected to 

contain low levels of metabolites of the drugs. A similar technique was used by 

Schafer et al. (2009) to investigate the metabolism of PCB52. 

C. elegans liquid cultures were allowed to grow at 20oC for 5 days in total before 

the drug was added to ensure that there were many adult worms present. 

Worms were incubated with anthelmintic drug for 7hrs with or without prior 

exposure to the cytochrome P450/ UDP-glucuronosyl transferase inducer 

fenofibrate. Due to the presence of E. coli bacteria in the cultures as a food 

source for the nematodes, control cultures were also prepared. These cultures 

either had no nematodes present or C. elegans was added as normal but killed 

by heating to 50-60oC for 30min prior to the addition of anthelmintic drug. 

Homogenates of the worms were then analysed for anthelmintic drug and 

metabolites. 

Similar experiments were carried out using Haemonchus contortus. Exsheathed 

L3 stage larvae were exposed to albendazole or ivermectin in M9 buffer for 7hrs. 

Killed nematode controls (by heating as above) were also included.  

5.3.4.1 Analysis of ivermectin-live worm incubations 

Analyses of the homogenates of worms exposed to ivermectin for 7hrs with or 

without prior induction of cytochrome P450s was initially carried out using the 

described MRM method. Whilst an intense chromatographic peak was identified 

for ivermectin, there were no significant peaks for the predefined metabolite 

transitions. As described, the MRM transitions used were based on phase I 

metabolites previously identified following the incubation of ivermectin with 

human liver microsomes. It is possible that incubating ivermectin with whole 

worms could result in phase II metabolites and/or novel metabolites not 

produced by human liver microsomes. However, no obvious chromatographic 

peaks pertaining to ivermectin metabolites were noted on the total ion 

chromatogram. Therefore, the homogenate samples were subject to in depth 
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parent mass and MS/MS screening for ion masses that could correlate to either 

phase I or II metabolites as based on the expected mass changes described by 

Holcapek et al., 2008. No significant metabolite peaks were found for any of the 

cultures. 

5.3.4.2 Analysis of albendazole-live worm incubations 

Homogenates of Caenorhabditis elegans exposed to albendazole for 7hrs were 

initially analysed using a total ion scan with accurate mass analysis. As well as an 

intense peak for albendazole at approximately 4.5 minutes there were also 

significant peaks for albendazole sulphoxide (mass 282.091Da, elution time 

3.22min), amino-albendazole (mass 208.092Da, elution time 3.93min) and two 

glucose conjugates (mass 428.149Da, elution times 4.08 and 4.26min), see Fig. 

5-9 and 5-10. Both albendazole sulphoxide and amino-albendazole were also 

found in the control samples. However, the glucose conjugate of albendazole 

was unique to the experimental samples and was also of greater intensity 

following prior exposure of the nematodes to fenofibrate (Fig. 5-11). The 

intensity of the albendazole-glucoside metabolite was between 0.7-2.3% of the 

albendazole peak in the analysed incubations. However, accurate quantitation of 

the metabolite was not possible as an albendazole-glucoside standard was not 

available. 
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Figure 5-9: Chromatograms of albendazole and metabolites from ex vivo C. elegans 
incubation 
Intensity (counts per second) of the peaks of interest is shown in top left corner of each 
chromatogram. The ex vivo incubations showed intense peaks for ABZ-SO, amino-ABZ and 
ABZ-glucoside. However, peak intensity for all metabolites was significantly lower than that 
of the parent compound (1.74 e5). * A peak at approximately 6.25 min with the same mass as 
amino-ABZ (208.092) was consistently present in ex vivo incubations. MS-MS studies 
showed this not to be a metabolite of albendazole. 
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Figure 5-10: Chromatograms of albendazole and metabolites from heat killed ex vivo C. 
elegans incubation 
Both ABZ-SO and amino-ABZ have clear peaks at appropriate elution times in this control 
sample. However, there is no clear peak for ABZ-glucoside. * see Fig. 5-9. 
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Figure 5-11: Relative intensity of albendazole glucoside metabolite (elution time 4.06) from 
cultures with and without pre-exposure to fenofibrate 
Albendazole glucoside production is significantly greater following pre exposure of worm 
cultures to 20 µg/ml (55.43µM) fenofibrate. Note the lack of an albendazole-glucoside peak in 
the bacterial control group. Graph represents the result of three biological replicates for 
each condition.  
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In order to confirm that the peaks at 4.08 and 4.26min were indeed metabolites 

of albendazole, the homogenate samples were subject to MS-MS fragment 

analysis. The declustering potential remained at 25mV and collision energy of 

25V was used to fragment albendazole and the proposed metabolites. 

Fragmentation of albendazole typically reveals three major fragment ions: 

234.06Da, 191.00Da and 159.04Da. The proposed structure for these ions is 

detailed in Fig. 5-12. Fragmentation of the proposed glucose conjugates of 

albendazole identified only two major fragments. One of mass 266.09Da is 

proposed to be albendazole itself and the other of mass 234.06Da is the sulphur 

loss fragment identified in the fragment ion spectrum of the albendazole 

standard, see Fig. 5-12 and 5-13. These findings confirm the identity of the 

peaks of mass 428.149Da as metabolites of albendazole and the mass change is 

consistent with them being glucose conjugates. The lack of peaks of mass 

190.997Da and 159.034Da in the fragment spectra of the metabolites is likely 

due to the glucose conjugate stabilising the specific bonds at the normal site of 

cleavage. The fragment ion spectra for each of the glucoside metabolites are 

identical; therefore they do not clarify the molecular position at which the 

glucose has been conjugated. 

Analysis of Haemonchus contortus albendazole incubations did not reveal any 

significant metabolite peaks. 

+

+

++

Fragment ion 1 m/z 234.053

Fragment ion 2 m/z 190.997

Fragment ion 3 m/z 159.034
+

 

Figure 5-12: Structure of albendazole fragment ions 
Fragment ion 1 is proposed to be a simple loss of the sulphur atom and reseal of the 
hydrocarbon chain. This is a common ion type of sulphur containing compounds. Fragment 
ion 2 is the result of complete loss of the C3H7S chain. Fragment ion 3 is a radical resulting 
from loss of the C3H7S chain with maintenance of an electron in the aromatic ring and loss 
of CH3O. 
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Figure 5-13: Confirmation of peaks m/z = 428.149Da as true albendazole metabolites 
Chromatograms reveal a single peak for albendazole at 4.68min and two more polar 
compounds, mass 428.149Da, with peaks at 4.06 and 4.26min. Fragment ion spectra confirm 
these peaks as metabolites of albendazole, likely to be glucose conjugates. 
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5.4 Discussion 

The failure to visualise a P450 soret peak in nematode derived microsomal 

protein was not entirely unexpected. Only one published paper has previously 

reported absorbance spectra showing a 450nm peak in such proteins (Kulas et 

al., 2008). The protocol from this paper was followed closely and personal 

communication with both Dr. Kulas and Dr. Menzel suggested the inclusion of 

fenofibrate/ delta- aminolevulinic acid and substrate within cultures to increase 

yields, none of which were successful. The only apparent difference in protocols 

was the method of homogenisation: Kulas et al. (2008) made use of a liquid CO2 

cooled automated homogeniser from Braun. Unfortunately, a similar system was 

not available at the time of this study. It may be that this method resulted in 

more complete homogenisation of the small nematodes or that the cooling 

system more effectively inhibited the denaturing of P450 than the methods 

described here. However, an absorption spectrum obtained from OP50 bacteria 

in liquid culture medium showed a peak at the same wavelength as that from 

microsomal preparations. As the culture medium did not undergo any potentially 

denaturing homogenisation steps, this would suggest that the nematodes were 

not producing proteins with a soret peak at 450nm, or that the intense 421nm 

peak was masking the presence of a small 450nm peak. C. elegans cannot 

produce haem and relies on exogenous sources (Rao et al., 2005). It may be that 

the liquid culture system or bacterial food source used here did not produce 

sufficient haem, but these were standard protocols also used by Kulas et 

al.(2008). 

The cytochrome P450 enzymes of mammals and insects can be inhibited by a 

wide range of compounds. In many cases, including midazolam metabolism by 

human CYP3A4, autoinhibition is a feature of the enzyme kinetics (McNulty et 

al., 2009; Roy et al., 2009; Zhu et al., 2009; Baliharova et al., 2005; Houston et 

al., 2000; Ghosal et al., 1996). During the preparation of microsomes from D. 

melanogaster, as part of a Pfizer R&D project, it was discovered that the eye 

pigment and wings of the insect contained potent inhibitors of CYP reactions 

(pers. comm., Dr. D.J. Woods, Pfizer R&D). In order to prepare non 

contaminated microsomes, the heads and wings of each individual fly had to be 

removed. The data presented here suggests that C. elegans may also contain 
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P450 inhibitors. The nature of these inhibitors and their anatomic location within 

the worm remains unknown. However, the extremely small size of the nematode 

makes dissection of unaffected tissues, presumably the gut, for microsome 

preparation an unrealistic goal. Therefore, an ex vivo approach to further 

studies may be more appropriate. It is interesting to note that despite the 

success of Kulas et al. (2008) in extracting functional microsomes, more recent 

studies from the Menzel group have relied on an ex vivo approach (Schafer et 

al., 2009) 

The whole worm approach to nematode drug metabolism studies does have 

several draw backs. Rigorous controls and replicates are more difficult to 

produce as the exact concentration of enzymes cannot be defined and many 

metabolic pathways are assessed simultaneously. In addition, the concentration 

of drug within liquid culture medium is unlikely to relate to the concentration of 

drug within the nematode and available for biotransformation. In this study, 

nematodes were washed several times to remove bacteria and the liquid culture 

medium. The aim of this step was to reduce the confounding effect of 

excessively high drug concentration in the final sample and the involvement of 

bacterial metabolism. However, it is possible that polar metabolites of these 

drugs were immediately excreted into the medium and therefore were not 

assessed. Finally, in order to accurately quantify the production of metabolites 

and aid in the identification of novel metabolites, experiments using 

radioactively labelled drug were originally planned. Given the large volume, 

shaking cultures necessary to carry out ex vivo experiments this was not 

possible. The concentration of radioisotope necessary was prohibitively high and 

the possibility of contamination through splashing of the cultures was 

unacceptable. However, a whole worm approach does represent a more 

physiologically relevant comparison to the process in living nematodes and 

allows analysis of a greater spectrum of potential metabolism pathways. 

Glucoside conjugates of xenobiotics are uncommon in mammals. Drugs will more 

commonly be glucuronidated in the liver of these species (Gessner et al., 1973). 

However, this study clearly shows the production of C. elegans derived 

albendazole glucose conjugates. Whilst no H. contortus metabolites were 

apparent in the current study, this may be related to the stage of the nematode, 

mass of nematode per reaction or incomplete homogenisation of the L3 larvae. 
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Recently published data by Cvilink et al. (2008) showed that that adult H. 

contortus incubated with albendazole produced albendazole sulphoxide and two 

albendazole glucoside conjugates similar to those produced by C. elegans. These 

were present in both the homogenised worms and in the medium, which was not 

analysed in this study. The similarity of the metabolites produced by C. elegans 

and H. contortus is remarkable and validates the use of C. elegans as a model to 

investigate metabolism as a mechanism of anthelmintic resistance in parasitic 

nematodes. 

The apparent increase in rate of metabolism of albendazole to glucoside 

conjugates following exposure to fenofibrate is extremely interesting. 

Fenofibrate is a peroxisome proliferator- activated receptor α (PPARα) agonist. 

Drugs of this group are used to treat hyperlipidaemia and hypercholesterolaemia 

in humans. They are known to be potent inducers of both hepatic and renal 

cytochrome P450s, UGTs, sulphotransferases and to a lesser extent GSTs (Runge-

Morris et al., 2009; Graham et al., 2008; Knight et al., 2008; Waxman, 1999; 

Kroetz et al., 1998). This result would not only suggest that the glucoside 

conjugates are produced through these pathways but that C. elegans contains a 

functional PPARα homologue. In fact, several studies have drawn comparisons 

between the mammalian PPARα and nhr-49 in C. elegans (Atherton et al., 2008; 

Van Gilst et al., 2005a).   

It is likely that C. elegans is able to metabolise albendazole to albendazole 

sulphoxide, but due to the presence of this metabolite in the bacterial culture 

controls this will require further investigation. Axenic culture techniques are 

becoming better defined and would provide an ideal platform from which to 

further investigate this question (Castelein et al., 2008). Albendazole sulphoxide 

is a pharmaceutically active metabolite and therefore this pathway is unlikely to 

be directly involved in anthelmintic resistance. Further investigation will be 

necessary to evaluate the molecular identity and pharmaceutical activity of the 

albendazole-glucoside conjugates. Potentially nuclear magnetic resonance 

spectroscopy could be used to identify the conjugation site of the glucose 

moiety in each of the metabolites. Further to this, the compounds could be 

synthesised and their activity compared to albendazole and albendazole 

sulphoxide. The amino albendazole metabolite noted in both HLM and 

Caenorhabditis elegans incubations has not previously been described and its 
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relevance is unknown. However, it is possible that this is simply an intermediate 

metabolite in the pathway that produces albendazole amino sulphoxone. This is 

a pharmaceutically inactive metabolite found in the plasma of humans dosed 

with albendazole (Mirfazaelian et al., 2002). 

No nematode derived metabolites of ivermectin were noted using any protocol. 

Ivermectin has a low rate of metabolism in human and mammal studies and it is 

possible that the rate of ivermectin metabolism by nematodes is too low to 

measure (Gonzalez et al., 2009). In the case of C. elegans, the lack of evidence 

of ivermectin metabolism in the strains used does not rule out the involvement 

of metabolism in naturally occurring resistant parasite isolates. It is possible that 

transgenic overexpression of cyps in C. elegans would result in measurable 

ivermectin metabolism. It is difficult to draw conclusions from the lack of 

metabolites following ivermectin incubation with resistant strains of H. 

contortus. These strains did not bioconvert albendazole in this experiment 

either, despite the fact that H. contortus has previously been shown to 

metabolise albendazole (Cvilink et al., 2008). In addition, the C. elegans 

incubations revealed that the method used in the current study was sensitive to 

the expected H. contortus derived albendazole metabolites. Further assessment 

of metabolism of both albendazole and ivermectin using adult H. contortus is 

warranted to assess this further. 

In conclusion, this study has shown that C. elegans can metabolise albendazole. 

The metabolite appears to be produced via a pathway that is uncommon in 

vertebrates, but which has been reported in several other invertebrates 

including the parasitic nematode H. contortus (Cvilink et al., 2008). The 

enzymes directly involved in this pathway are as yet undefined in both C. 

elegans and H. contortus and warrant further investigation. C. elegans knock out 

mutants for several cyp and ugt genes are available, and RNA inhibition of cyp 

genes has been reported in the literature (Schafer et al., 2009; 

www.wormbase.org). In addition, C. elegans can easily be manipulated to over-

express genes of interest. The HPLC-MS techniques described here could be used 

in combination with knock outs, RNAi and transgenic worms to further 

investigate the role of specific enzymes in the metabolism of albendazole and 

other anthelmintics. In addition, genes of interest from H. contortus may be 

expressed in C. elegans in order to assess their involvement in these pathways. 
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Chapter 6: General Discussion 

6.1 Exposure to high dose ivermectin and albendazole 

elicit very different responses in C. elegans 

Chapters 3 and 4 have outlined the very different transcriptomic responses of C. 

elegans to ivermectin and albendazole. In the case of albendazole a small group 

of 42 genes were up-regulated (FDR< 10%, rank products) in response to 4hrs 

exposure of young adults to 300µg/ml (1.13mM) ABZ, and only four genes were 

down-regulated. The list of up-regulated genes was enriched for those with 

predicted transferase activity and monooxygenase activity and was consistent 

with a detoxification response being mounted by the nematode. In addition, 

specific cyp genes were up-regulated, mainly the cyp-35 family, which 

corroborates recent studies suggesting that this family is highly responsive to 

xenobiotic exposure (Menzel et al., 2005; Menzel et al., 2001).  

In contrast, the response of C. elegans to 4hrs exposure to 1µg/ml (1.14µM) 

ivermectin was far more complex. 254 genes were up-regulated and 192 genes 

were down-regulated (FDR<10%, rank products). The greater number of genes 

with significantly changed expression level, compared to the albendazole 

experiments, may be explained by several factors. A greater number of 

biological replicates were available for microarray analysis of the ivermectin 

experiments, resulting in greater statistical power to identify differentially 

expressed genes. However, of greater importance is the fact that whilst the ABZ 

resistant strain (CB3474) was completely unaffected by the dose of drug used in 

the ABZ experiments, the ivermectin resistant strain used (DA1316) was not fully 

resistant to ivermectin. This resulted in gene expression changes associated with 

intoxication being noted, perhaps alongside a subset of genes involved in 

detoxification. The resultant transcriptomic response appears to be extremely 

complex in which many completely uncharacterised genes are involved, see Fig. 

6-1. 
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Figure 6-1: Comparative ontologies of genes up-regulated in response to ivermectin and 
albendazole 
The response to ivermectin was characterised by up-regulation of few genes encoding 
classical xenobiotic metabolising enzymes (XME) and many uncharacterised genes. In 
comparison the response to albendazole resulted in up-regulation of a much smaller but 
more defined group of genes including a large number of genes encoding XMEs. 

Albendazole has proven repeatedly to increase the expression and activity of 

several XMEs in mammalian systems, including CYPs and UGTs (Velik et al., 2005; 

Velik et al., 2004; Bapiro et al., 2002; Rolin et al., 1989; Souhaili-el et al., 

1988a). By comparison, there are only few reports in the literature regarding the 

inductive effect of ivermectin on XMEs, with conflicting results (Bapiro et al., 

2002; Skalova et al., 2001). Information on the interaction of ivermectin with 

nuclear hormone receptors, such as CAR/PXR/PPARα, is lacking; but it may be 

that the structure of this drug is less conducive to the up-regulation of XMEs. 

This may partially explain the long plasma half-life of ivermectin in mammalian 

systems compared to that of albendazole (Gonzalez et al., 2009; Marriner et al., 

1986; Prichard et al., 1985).  

Unpublished work using GFP reporter constructs, to investigate several 

anthelmintic responsive genes elucidated in the current study, has been 

undertaken by members of the Gilleard lab (Dr. V. Butler and Ms. S. Ravikumar). 

This has shown that whilst nearly all of the top 10 genes up-regulated in 
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response to albendazole are exclusively expressed in the gut of the nematode, 

those up-regulated in response to ivermectin may be expressed in many tissues 

(Tables 6-1 and 6-2). The intestine has been proposed to be the major organ of 

detoxification in C. elegans and nematodes as a whole (McGhee, 2007). 

Therefore, this work is again suggestive that albendazole exposure results in a 

detoxification response, whereas ivermectin exposure does not. 

Gene ID Gene 
Description 

Type of reporter GFP expression 

C06B3.3 cyp-35C1 PCR-fusion (transcriptional) 
AND plasmid PJM-355 
(transcriptional) 

intestine 

K07C6.5 cyp-35A5 PCR fusion (translational) intestine (highly expressed) 

C03G6.15 cyp-35A2 PCR fusion (translational) intestine (highly expressed) 

C29F7.2 Predicted small 
molecule kinase 

PCR-fusion (transcriptional) pharynx (highly expressed), 
posterior intestine (weak) 

T16G1.6 Predicted small 
molecule kinase 

PCR-fusion (transcriptional) anterior and posterior intestine 
(plus head neurones at L3) 

C04F5.7 ugt-63 PCR-fusion (transcriptional) hypodermis 

R03D7.6 gst-5 PCR fusion (translational) intestine, pharynx and circum-
pharynx neurones 

ZC443.6 ugt-16 PCR-fusion (transcriptional) intestine (highly expressed) 

Table 6-1: Expression pattern of selected genes up-regulated in response to 4hrs exposure 
to 300µg/ml (1.13mM) ABZ 
 

 

Gene ID Gene 
Description 

Type of reporter GFP expression 

K11G9.6 mtl-1 PCR-fusion (transcriptional) intestine and terminal bulb of 
pharynx 

F49E11.10 scl-2 PCR-fusion (transcriptional) intestine 

C23G10.11 uncharacterised PCR-fusion (transcriptional) hypodermis (dorsal and ventral) 

F28G4.1 cyp-37B1 PCR-fusion (transcriptional) 
AND plasmid PJM-355 
(transcriptional) 

intestine 

F57G8.7 uncharacterised PCR-fusion (transcriptional) hypodermis at L2 and older 

K03D3.2 uncharacterised PCR-fusion (transcriptional) hypodermis and head neurones 

C45G7.3 ilys-3 PCR-fusion (transcriptional) anterior intestine (weak) 

Table 6-2: Expression pattern of selected genes up-regulated in response to 4hrs exposure 
to 1µg/ml (1.14µM) IVM 
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6.2 Implications of the fasting response upon exposure 

to ivermectin 

Exposure of strain DA1316 to 1µg/ml (1.14µM) IVM for 4hrs appears to result in a 

fasting response. This study represents the first whole genome microarray 

investigation of this type of response in C. elegans. In addition to the up- and 

down- regulation of several genes previously reported by van Gilst et al. (2005b) 

to be responsive to short term fasting, this study has uncovered several novel 

genes which had not previously been associated with fasting in C. elegans. These 

include cyp-37B1, mtl-1 and scl-2, whose up-regulation in response to fasting 

was confirmed by real-time QPCR. Up-regulation of several similar genes in 

response to fasting of mammals has been noted: the mtl-1 gene of the rat is up-

regulated following short-term fasting of this species and the human homologue 

of CYP37B1 (CYP4V2) is thought to be a fatty acid hydroxylase (Nakano et al., 

2009; Sogawa et al., 2003; Shinogi et al., 1999). Whilst scl-2 is largely 

uncharacterised, the putative protein that it encodes carries a sterol carrier-like 

domain, which could feasibly be involved in the transport of lipid breakdown 

products. This would explain its up-regulation in response to periods of fasting. 

Both mtl-1 and cyp-37B1 did not appear to be up-regulated following exposure of 

N2 to IVM in microarray analyses. The reason for the different response between 

DA1316 and N2 is unknown, but may be due to a higher level of constitutive 

expression in strain DA1316. Alternatively, both genes may represent an 

immediate response to fasting and were only significantly up-regulated in the 

resistant strain due to the longer length of IVM exposure required for it to 

succumb to pharyngeal paralysis. This will be investigated further by analysing 

gene expression in C. elegans exposed to IVM for different durations. Many of 

the other differentially regulated genes in this study may also be involved in the 

fasting response, but further analysis will be necessary to confirm or refute this, 

as some of the genes may well be involved in a detoxification response specific 

to ivermectin exposure. However, C. elegans may provide an interesting model 

to investigate fasting responses at a whole organism level. 

Many of the genes up-regulated in response to 4 hrs exposure to ivermectin were 

also up-regulated in dauers compared to non-dauers. This is to be expected as 

the dauer represents a non-feeding stage that must rely on stored fat as an 
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energy source. The comparison made to the data published by Wang et al. 

(2003) is perhaps not ideal, as this was a comparison of dauers and dauer exit 

worms 12hrs after exposure to food. A more recent paper by Jeong et al. (2009) 

compared the transcriptomes of fed L1, L2 and L3 larvae, prior to entry in to the 

dauer-stage, to long-term dauer stage worms. A full comparison to this data was 

not possible. However, the top 10 up-regulated and down-regulated genes 

following exposure to 1µg/ml (1.14µM) ivermectin appeared to be similarly 

regulated in the dauer stage in the Jeong analysis, see Tables 6-3 and 6-4. 

Despite the overlap between the transcriptomes of ivermectin exposed and 

dauer nematodes, there are many more genes differentially expressed in the 

dauer stage. The dauer stage may survive, without feeding, for several months 

and the metabolic pathways involved in this process are likely to be very 

different to those that react to short-term fasting over a period of hours. It is 

likely that the overlapping genes noted between the current study and that of 

Wang et al. (2003) represent a subset of these genes that are involved in fatty 

acid metabolism and gluconeogenesis. 

Interestingly, Harvey et al. (2009) recently carried out a study comparing the 

transcriptome of various C. elegans lines in presence of daumone or without for 

8 hours from the L1 stage, i.e. prior to entry into the dauer stage. Daumone is a 

hormonal substance secreted by C. elegans which, at high enough 

concentrations, causes entry into the dauer stage, normally when the habitat of 

the worm is overpopulated. They identified a small subset of 89 genes that were 

consistently differentially expressed in the daumone exposed group. There was 

very little overlap between the genes up-regulated in response to ivermectin 

exposure and daumone exposure. However, eleven genes were up-regulated in 

both experiments. Most were uncharacterised, but acs-7, representing a fatty 

acid CoA synthetase, and dhs-18, representing a short chain dehydrogenase, 

were both up-regulated and both likely to be involved in fatty acid oxidation. 

The general lack of similarity would suggest that entry into the dauer-stage in 

response to daumone does not immediately result in a switch to metabolism of 

stored energy supplies. In fact, Jeong et al. (2009) propose there to be a period 

of preparatory fat storage prior to dauer entry in response to daumone.  
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Gene ID Log2 FC in response to IVM 

exposure 
Log2 FC in dauer vs. L3 
(Jeong, 2009) 

mtl-1 4.99 5.62 

scl-2 3.27 -3.59 

C23G10.11 3.2 2.43 

cyp-37B1 3.09 2.90 

F57G8.7 3.01 2.55 

K03D3.2 2.83 4.46 

F45D3.4 2.77 1.22 

F54F3.3 2.51 -2.35 

ilys-3 2.51 4.50 
dod-3 2.33 -0.73 

Table 6-3: Comparison of top 10 up-regulated genes following 4hrs exposure of strain 
DA1316 to 1µg/ml (1.14µM) IVM to dauer data (Jeong et al., 2009) 

 

 
Gene ID Log2 FC in response to IVM 

exposure 
Log2 FC in dauer vs. L3 
(Jeong, 2009) 

spp-23 -2.79 -6.85 

folt-2 -2.55 -4.98 

F46F2.3 -2.36 -5.48 

F07H5.9 -1.88 -3.66 

C35A5.3 -1.83 0.81 

gst-10 -1.77 -2.13 

ugt-63 -1.77 -0.42 

F18E3.11 -1.72 -2.16 

F58G6.9 -1.72 -2.73 

F21F8.4 -1.7 -2.70 

Table 6-4: Comparison of top 10 down-regulated genes following 4hrs exposure of strain 
DA1316 to 1µg/ml (1.14µM) IVM to dauer data (Jeong et al., 2009) 
In general, genes up-regulated or down-regulated in response to ivermectin exposure are 
regulated similarly in the dauer stage compared to L3 larvae. The most notable exception to 
this rule is scl-2 which is strongly down-regulated in the dauer stage, but up-regulated in 
response to ivermectin. 

 
The predominating effect of ivermectin on C. elegans is the paralysis of the 

nematode pharynx. Ivermectin has also been shown to inhibit pharyngeal 

pumping in the parasitic nematodes A. galli, T. colubriformis, A. suum and H. 

contortus (Holden-Dye et al., 2006; Sheriff et al., 2002; Paiement et al., 1999; 

Kotze, 1998; Brownlee et al., 1997; Adelsberger et al., 1997). Therefore, it is 

possible that modulation of genes encoding enzymes involved in fasting 

responses could provide an advantage to parasites under selective pressure from 

ivermectin exposure.  

Strain DA1316 did not contain all of the mutations reported by the CGC and Dent 

et al. (2000). avr-15 appeared to be wild type over the locus of the proposed 

ad1051 mutation. As this gene is thought to encode the glutamate-gated chloride 
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channel subunit which confers ivermectin sensitivity to the C. elegans pharynx, 

this could easily explain the transcriptomic response to 1µg/ml (1.14µM) 

ivermectin. However, personal communication with Dr. Dent has suggested that 

the strain should still have a null mutation of this gene and therefore behave 

phenotypically as an avr-14/avr-15/glc-1 triple mutant. Sequencing of the entire 

avr-15 gene is currently being undertaken. Studies with GluCl triple mutants 

have shown the pharynx to be unaffected by up to 2.5hrs exposure to ivermectin 

concentrations of 5µM (4.5µg/ml). In the current study, pharyngeal pumping rate 

was reduced approximately five-fold following 4hrs exposure of DA1316 to 

1µg/ml (1.14µM) IVM. If this strain is truly a triple mutant then this would 

suggest that ivermectin was able to inhibit pharyngeal pumping in C. elegans via 

another pathway than the currently accepted AVR14/ AVR15 interaction (Dent et 

al., 2000). An avr-14/avr-15/glc-1 triple mutant has been requested from the 

Dent laboratory to allow further investigation of this issue. 
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6.3 Mammalian xenobiotic metabolism pathways are 

likely to be extremely divergent from those of 

nematodes 

Attempts have been made throughout this study to compare the functions of 

particular mammalian cytochrome P450s to the most similar C. elegans enzymes 

based on amino acid sequence. As has been detailed at several points, 

inferences of this kind are fraught with inaccuracy and the functions of 

cytochrome P450s are likely to be very different in mammals and nematodes. 

Alignment of the C. elegans P450 family revealed that amino acid sequence 

identity is similar enough to assess phylogeny accurately only at the level of a 

particular family, for example the CYP35 family. Alignment of all of the CYPs of 

the free-living nematode reveals a remarkably divergent family of proteins. 

Therefore, addition of the major human CYPs involved in xenobiotic metabolism 

and the major D. melanogaster CYP involved in insecticide resistance to the 

alignment, only served to further increase the complexity. With these caveats in 

mind a best assessment of phylogeny was created, see Fig. 6-2.  

The topology of the cladogram presented in Fig. 6-2 is unlikely to be completely 

accurate. However, it has successfully separated the CYPs of C. elegans into the 

three major families (CYP2, CYP3 and CYP 4) noted by Gotoh et al. (1998). The 

CYP35 family, of which several members were up-regulated in response to 

exposure of C. elegans to ABZ, represent members of the CYP2 family. 

Therefore, they may be distantly related to several of the human cytochrome 

P450s involved in xenobiotic metabolism. The human cytochrome P450 involved 

in the metabolism of most of the drugs in use, including IVM and ABZ, is CYP3A4 

(Guengerich et al., 2006; Li et al., (2003); Zeng et al., 1998). Interestingly, 

CYP6G1, from D. melanogaster, appears to be in a clade with this enzyme (boot 

strap value 100). However, none of the CYPs up-regulated in response to 

exposure of C. elegans to IVM or ABZ are members of the CYP3 family.  

Chakrapani et al. (2008) proposed the use of transgenic C. elegans expressing 

GFP under the control of various cyp promoters to investigate the possible 

mechanisms by which drugs intended for use in humans may be metabolised. The 

work presented in this study and the phylogenetic analysis of the human and  
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Figure 6-2: Cladogram of C. elegans CYPs, the major H. sapiens CYPs involved in 
xenobiotic metabolism and D. melanogaster CYP6G1 
The evolutionary history was inferred using the Neighbour-Joining method (Saitou et al., 
1987). The optimal tree with the sum of branch length = 32.658 is shown. The percentage of 
replicate trees in which the associated taxa clustered together in the bootstrap test (500 
replicates) are shown next to the branches (Felsenstein, 1985). The evolutionary distances 
were computed using the JTT matrix-based method (Jones et al., 1992) and are in the units 
of the number of amino acid substitutions per site. All positions containing alignment gaps 
and missing data were eliminated only in pairwise sequence comparisons (Pairwise deletion 
option). There were a total of 639 positions in the final dataset. Phylogenetic analyses were 
conducted in MEGA4 (Tamura et al., 2007). 
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C. elegans CYP families, would suggest that this is not likely to be successful. 

The C. elegans P450s induced upon exposure of the nematode to ABZ were not 

the orthologues of those thought to be involved in ABZ metabolism in humans. In 

addition, the drug appears to be metabolised by glucosylation in nematodes, a 

pathway which is rarely described in mammals. 

Comparisons between mammalian and nematode UGTs are likely to be equally as 

problematic. This family of enzymes is also highly divergent even within C. 

elegans. ugt-63 and ugt-16 were in the top 10 up-regulated genes following 

exposure of C. elegans to ABZ. The proteins encoded by these genes were 

subject to BLASTp analysis against the human proteome and the best hits were 

UGT1A1 and UGT2B7 respectively. The cladogram presented in Fig. 6-3 includes 

all of the putative C. elegans UGTs and the human UGTs proposed to be most 

important in xenobiotic metabolism (Williams et al., 2004). The UGTs that were 

up-regulated in response to the exposure of C. elegans to anthelmintic drugs do 

not appear to belong to any particular clade. In addition, they show no clear 

relationship to the human UGTs. 

In summary, whilst the CYPs and UGT enzymes up-regulated in response to 

exposure of C. elegans to ABZ are not homologues of those involved in ABZ 

metabolism in mammalian systems, this is likely to be irrelevant. Both the CYPs 

and UGTs are rapidly evolving families and sequence similarities between 

mammals and nematodes should not be expected. The fact that a small subset 

of genes, including those encoding XMEs, was up-regulated in response ABZ 

exposure is more compelling evidence that these proteins are likely to be 

involved in detoxification than any phylogeny studies. 
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Figure 6-3: Cladogram of C. elegans UGTs and the major H. sapiens UGTs involved in 
xenobiotic metabolism 
The evolutionary history was inferred using the Neighbour-Joining method (Saitou et al., 
1987). The optimal tree with the sum of branch length = 35.043 is shown. The percentage of 
replicate trees in which the associated taxa clustered together in the bootstrap test (500 
replicates) are shown next to the branches (Felsenstein, 1985). The evolutionary distances 
were computed using the JTT matrix-based method (Jones et al., 1992) and are in the units 
of the number of amino acid substitutions per site. All positions containing alignment gaps 
and missing data were eliminated only in pairwise sequence comparisons (Pairwise deletion 
option). There were a total of 628 positions in the final dataset. Phylogenetic analyses were 
conducted in MEGA4 (Tamura et al., 2007). 
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6.4 Transcriptomic changes upon exposure of C. elegans 

to albendazole are consistent with the albendazole 

metabolites identified by HPLC-MS 

Following incubation with C. elegans cultures, albendazole was shown to be 

metabolised to albendazole sulphoxide and two albendazole-glucoside 

metabolites. Unfortunately, albendazole sulphoxide was also present in the 

control samples suggesting that the bacterial culture in which the worms are 

grown may also be able to metabolise albendazole. However, the unique 

albendazole-glucoside metabolites appear to be nematode specific. The 

predominating gene classes up-regulated in response to albendazole exposure 

were members of the UDP-glucuronosyl/glucosyl-transferase family and 

members of the cytochrome P450 family. The P450s, as has been discussed, are 

important in oxidation reactions, such as the conversion of albendazole to 

albendazole sulphoxide. In mammals, this step has been proposed to be carried 

out by a combination of CYPs and FMOs. There were no flavin monooxygenase 

genes up-regulated in the current albendazole study. UGTs are likely to catalyse 

the conjugation of glucose to xenobiotics in C. elegans and other invertebrates 

in which this pathway is common. Within mammals UGT activity has been found 

to be increased in the rat following exposure to albendazole and ABZ-

glucuronide conjugates have been found in the bile of sheep dosed with 

albendazole (Hennessy et al., 1989; Souhaili-el et al., 1988a). In addition, prior 

exposure to fenofibrate, which is known to induce the activity of CYPs and UGTs, 

appears to result in increased production of ABZ-glucoside in ABZ-C. elegans 

incubations.  

In conclusion, whilst the specific enzymes involved in the metabolism of 

albendazole by the nematode C. elegans require further investigation, the 

evidence presented in this study is strongly suggestive of the role of cytochrome 

P450 enzymes and UDP-glucosyl transferases.  
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6.5 C. elegans is a valid model for nematode metabolism 

of anthelmintics 

In addition to the evidence presented in Chapter 1, the suitability of C. elegans 

as a model for nematode metabolism has been further confirmed by the current 

study. HPLC-MS analysis of albendazole-C. elegans incubations revealed the 

presence of three metabolites: albendazole sulphoxide and two albendazole-

glucoside conjugates. Recent studies by Cvilink et al. (2008) also revealed 

albendazole sulphoxide and two glucose conjugates to be produced following 

incubation of the parasitic nematode H. contortus with albendazole. This 

provides strong evidence of the ability to extrapolate data derived from C. 

elegans metabolism experiments to other nematodes within the same 

phylogenetic clade. Whether or not this data may also be applicable to more 

distantly related nematodes remains to be assessed.  

In the current study, H. contortus L3 larvae did not produce any metabolites of 

albendazole. L3 stage larvae were initially chosen as they were easier to attain 

and have been reported to have higher levels of oxidase activity compared to 

adult parasites (Kotze, 1997). It is possible that the ability to metabolise 

anthelmintics is a stage-specific phenomenon and may be due to differential 

expression of specific xenobiotic metabolising genes, rather than an up-

regulation of general oxidase activities. However, comparison of SAGE tags in a 

developmental series of C. elegans does not reveal any of the cyps to be 

expressed at a significantly greater level in adults. UGT activity in free-living L3 

larvae and adult H. contortus has not been compared. It is also possible that 

metabolism of albendazole is a slower process in H. contortus than in C. elegans. 

The study conducted by Cvilink et al. (2008) incubated H. contortus with 

albendazole for 24hrs prior to analysis by HPLC-MS, compared to only 7hrs 

incubation time in the current study. Further HPLC-MS studies will be necessary 

to clarify the differences between C. elegans and H. contortus metabolism of 

albendazole. 
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6.6 The role of drug metabolism in anthelmintic 

resistance requires further investigation 

The data presented within the current study provides solid evidence that the 

genome of the free-living nematode C. elegans encodes genes that are 

transcriptionally responsive to the presence of albendazole and that the 

nematode is able to metabolise the drug. Studies by other groups suggest that 

these pathways are also present in certain parasitic nematodes including H. 

contortus and A. suum (Cvilink et al., 2008; Solana et al., 2001). However, in 

order to assess whether these pathways are involved in resistance to 

anthelmintics will require further studies. Whether or not the drug metabolites 

produced by C. elegans and parasitic nematodes are pharmacologically active or 

not must be assessed. In many cases within mammals the activity of drugs is 

actually increased following interaction with XMEs. For example albendazole 

sulphoxide is an active metabolite and production of this metabolite by 

nematodes will not provide any protection from the drug. Analysis of the 

albendazole-glucoside metabolites produced by C. elegans could be carried out 

using nuclear magnetic resonance spectroscopy in an attempt to identify the 

molecular position of the glucose conjugate. Following these studies, synthesis 

of albendazole glucoside and assessment of its pharmacological activity could be 

carried out in both C. elegans and parasitic nematodes.  

Resistance to anthelmintics in parasites in the field is unlikely to be conferred by 

an alteration in the rate of induction of XMEs following drug exposure, especially 

in the case of rapidly acting drugs such as ivermectin. A far more likely scenario 

is that of a mutation in an enzyme resulting in increased activity against an 

anthelmintic(s), or in regulatory regions or regulators resulting in a 

constitutively overexpressed enzyme. However, studies investigating the 

induction of XMEs following exposure to drug are relevant to discovering 

enzymes potentially involved in resistance. Giraudo et al. (2009) reported that 

eight of the twelve CYPs known to be involved in insecticide resistance in D. 

melanogaster have also been shown to be inducible by xenobiotic exposure. 

Differences in the expression level of XME encoding genes between anthelmintic 

resistant and susceptible populations of H. contortus are currently being 

investigated in the Gilleard lab (pers. comm., R. Laing and J.S. Gilleard). Should 
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these studies show an association between gene overexpression and resistance, 

then functional studies can be carried out to prove a definite causal 

relationship. Studies in C. elegans will be fundamental in carrying out these 

experiments. RNAi experiments, similar to those carried out by Schafer et al. 

(2009), will allow the elucidation of the specific identity of the enzymes 

involved in anthelmintic metabolism. This will guide the analysis of expression 

data from H. contortus and potentially other parasites. More importantly, 

functional studies will require the use of RNAi, specific knock-out mutants and 

nematodes over-expressing genes of interest. Given the difficulty of carrying out 

these types of experiments in a parasitic nematode, with a limited arsenal of 

genomic tools available, it is likely that any such experiments must be carried 

out in a heterologous system. Thus far C. elegans provides the best platform 

upon which to carry out such studies and the methods presented in the current 

study will require little modification for this purpose. The most important 

alteration required will be the use of an axenic culture system to rule out 

bacterially derived metabolites of the drugs.  

Knowledge of the metabolism of anthelmintics by nematodes and modification of 

the HPLC-MS techniques may also have applications in the design of novel 

therapeutics. Currently potential drug candidates are screened for their rate of 

metabolism in mammalian systems early in the drug discovery process. Similar 

screens investigating target organism metabolism may also be of use in screening 

out compounds that are likely to be easily deactivated by nematode 

metabolising enzymes. Many cytochrome P450 genes are closely positioned in 

the C. elegans genome. We hoped to investigate whether transgenic expression 

of whole fosmids, containing several of these genes, could result in significant 

up-regulation of the genes of interest and be of use as a screening mechanism 

for nematode metabolism. Several transgenic lines were created containing the 

fosmid WRM0616dG11 (Geneservice), which contains cyp-37B1. Initial studies 

using RT-QPCR analysis of the transgenic nematodes showed a 40-fold up-

regulation of cyp-37B1 in the transgenic line compared to wild-type worms. 

However, this experiment has thus far only been carried out once and further 

studies will be necessary to assess whether or not the result is repeatable. An 

alternative to this process would be to express parasite XME encoding genes in 

bacteria.  
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The current study was unable to define XME encoding genes that are 

transcriptionally responsive to ivermectin exposure or any nematode derived 

metabolites of ivermectin. This may suggest that wild-type nematodes are not 

able to metabolise the drug or that they do so at an extremely low level. 

However, the complication of the overwhelming fasting response in ivermectin 

exposure experiments may have masked the presence of important drug 

metabolism pathways. In addition, overexpression of a XME in a resistant isolate 

may increase the rate of ivermectin metabolism so that it results in a 

physiologically significant decrease in ivermectin concentration at the active 

site. Further studies with XME over-expressing mutants may help to investigate 

this further. 

Finally, one of the main aims in investigating mechanisms of anthelmintic 

resistance is the development of a sensitive diagnostic test for resistance 

emergence in the field. Overexpression of a gene is assessed using RNA or 

protein quantitation, but these assays will be of little use in the field due to the 

unstable nature of both RNA and proteins. Therefore, the genetic mechanism by 

which overexpression of XMEs may occur must be elucidated. Daborn et al. 

(2002) have demonstrated that overexpression of a single CYP isoform in D. 

melanogaster, resulting population wide multidrug resistance, was due to the 

upstream insertion of an Accord transposon. However, as has been seen with 

other examples of insecticide resistance, gene duplication events may also result 

in the functional overexpression of XMEs (Li et al., 2007). Investigation of these 

mechanisms should allow the development of a DNA based assay for the 

presence of these mutations, which is far more likely to be of use to farmers and 

clinicians. 
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Appendices 

7.1 RT-QPCR primers and typical reaction efficiencies 

Gene ID Primers      Efficiency (%) 

acs-2  F: 5′-GGA GAT ACC GCC ACG ATG AA-3′   103.9 

  R: 5′-ATG TTC TCT CCG TAC CTG TCA T-3′  

ama-1  F: 5′-AAG CGG CTC ACA ATG ATC TAC GA-3′  96.3 

  R: 5′-ACA CGG CGG TAT GAT GGT TGA-3′  

C06B3.1 F: 5′-GGC TAC CAC ATT GTC CGA GTT-3′   102.8 

  R: 5′-GTA GTT TCG GTA GAT TCG GCT T-3′  

C23G10.11 F: 5′-ATT CTA GCC GTC CTA CTC ATC TT-3′  92.5 

  R: 5′-GCT TGC ATT CCA CCA GTG GTT-3′  

C29F7.2 F: 5′-CGG AGT TAG GGT ACA TGT CAA-3′  102 

  R: 5′-CAA CAT TAG CAG AGT GGT CAG TT-3′  

C35C5.8 F: 5′-GGA GTG TAA CAC TCT TGG TCA T-3′  100.6 

  R: 5′-AGC TGC ATT TCA TAC TTC TCA CAA-3′  

C45G7.1 F: 5′-GTC GTT GGT TTT TCT GAC TAT TG-3′  84.9 

  R: 5′-CTT CCA CGC GGC TTC AGT T-3′  

clec-174 F: 5′-CGT TTG CCC AGT CGG TAA TGA-3  ′ 90.1 

  R: 5′-ACC GGA CGA TAA TGG CAA GAA T-3′  
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col-19  F: 5′- GTT CCA GGA TGG TAT GGT TGA   96.8 

  ATT AGA GCT-3′ 

  R: 5′-GGT CCG CAG TTA CAT TGC TCG AAT CC-3′  

cyp-35A2 F: 5′-ATG ACT GCA CCC GTT TGG TTT-3′   98.8 

  R: 5′-ACG CGT CAG TGT AAT CTT GCA-3′  

cyp-35A5 F: 5′-AAA AGG TTA TCC CAT TCG GAG TT-3′  98.1 

  R: 5′-AAC GCT CTC TTT GCA ATA CTG TA-3′  

cyp-35C1 F: 5′-GAG ATT TGA TGG AGG AGA AGA TT-3′  90.1 

  R: 5′-CAT CAA ATC GAA ATC CTA AGA GCA-3′  

cyp-37B1 F: 5′-AAG AAC GGT GGA GCA GGA TGT-3′  100.1 

  R: 5′-TTC GGG GTC CAG CAC TAA TG-3′  

dod-3  F: 5′-GAT TGT TAC GCC ACC ACC GTA T-3′  95.6 

  R: 5′-TGG GCG GGC CAC ATG AAC A-3′  

F09F7.6 F: 5′-TTA GAA TCC ACG ACG CGC CAA AT-3′  97.3 

  R: 5′-TCG GCG GCT TCC AGA TCA TCA-3′ 

F21C10.10 F: 5′-TGC TGA AAC TGT CGT CGG TCT T-3′  96.8 

  R: 5′-CTT GTC AGC GAG TTT TTG TTG TTG-3′  

F43C11.7 F: 5′-CTG ACC AGT GAG GAG GAC A-3′   85.9 

  R: 5′-GGT TTT CAA TTC CAT TGG TGG TTT-3′  
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F45D3.4 F: 5′-AAC CAA CTA CAA CAA CTA CTG AAA-3′  77.7 

  R: 5′-TTC AGT AAC AAA AGA TCC AGT GA-3′  

F53A9.8 F: 5′-GAA CAC GGA CAC GGA GAT GGT-3′  99.9 

  R: 5′-GTG ATG TTG CTC GTG GTG TTC T-3′  

F54F3.3 F: 5′-CCA GCA TAC GAC TTC ACT ACT-3′   85.6 

  R: 5′-CAC GGA GTC CCC AGA TGA A-3′  

F57G8.7 F: 5′-TCG TGG GGC CAA ATA AGG GAA-3′  95.5 

  R: 5′-TCA ACA TGA ACA CCT GGT GGA A-3′  

gei-7  F: 5′-GAT TCG GTG GAG CCC TGA AT-3′   96.2 

  R: 5′-CGC AGA CAT CAG CAG CCA AA-3′  

gst-1  F: 5′-CCG GAG ACG AGG AGA TTG TTC AA-3′  92.8 

  R: 5′-GCC TTG CCG TCT TCG TAG TTT CT-3′  

gst-5  F: 5′-CCG GAC AAC AAT ACG AGG AT-3′   105.3 

  R: 5′-GCG GTT TTT CCG TTG AGC TT-3′  

hsf-1  F: 5′-CGT TGG ATG ATG ATG AAG AAG GAT-3′  95.1 

  R: 5′-AGC CGG TGA ATG TGG GAA GAT-3′  

ilys-3  F: 5′-GTT GTA ACA TGG ACG TCG GAT-3′  99.3 

  R: 5′-CAC ATT GAC TCT TGT AGC GGT T-3′  
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K03D3.2 F: 5′-GCC TGG AAG ATG ACG ATG ATA A-3′  108.3 

  R: 5′-CAG GAC GAC ATT CTT GCC CTT-3′  

K12G11.3 F: 5′-ACG AAG GAG CTG GAA GTG TTG TT-3′  101.7 

  R: 5′-CTC CTG GAA AGT TCC AGA ACG AT-3′  

lea-1  F: 5′-CGC AGA TTC CTT CAA AGC CCA-3′   104.1 

  R: 5′-CCC AAG CAT CAC CAG CCT TAT-3′  

mtl-1  F: 5′-CTT GCA AGT GTG ACT GCA AAA AC-3′  92.7 

  R: 5′-CTT GCA GTC TCC CTT ACA TCC-3′  

pgp-1  F: 5′-GGA GCC GCG TCT GGT ATC TAT-3′  96.7 

  R: 5′-GAC CTG CAT TTA CAC GGA GAT TCA-3′  

scl-2  F: 5′-ACT CAA ATG GCG TGG GCG AA-3′   82.7 

  R: 5′-GAC GCA GAG CCC TGT GGA-3′  

sip-1  F: 5′-AGC CGG AAG AGT TGA AGG TCA AT-3′  89.7 

  R: 5′-TGG AGC CGG TCT TTG GAG CA-3′  

T12D8.5 F: 5′-CCG TAT GTA GCC TCG GAG A-3′   93.1 

  R: 5′-CGG TCG ATC TCC TGT TTC AA-3′  

T16G1.6 F: 5′-GGG AAT GGA ATA TGT CGA TGA T-3′  86.6 

  R: 5′- CTT TTA GAC CAT CGT CGT TGA A-3′  
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T22F3.11 F: 5′-ATC CCA GCC GAG AAC AAG TAT T-3′  85.6 

  R: 5′-GGT GGT GAC GAA GAG AGC AA-3′  

tts-1  F: 5′-TTT GAT GTA GGT GGA AAT TGG CA-3′  91 

  R: 5′-GTT GAG CCG GTC AAG TTT TCT-3′  

ugt-16 F: 5′-TGC ATC AAT GCC GGA AAC TAC TT-3′  103.6 

  R: 5′-TTC CAA GCC CTC CGT GAG TT-3′  

ugt-25 F: 5′-GTA CTA GAC GAA CGA CCA CAT AA-3′  100 

  R: 5′-AAG AGC TGT TTG AGG AAC CCA TT-3′  

ugt-63 F: 5′-CGC CAG GAC ATT GAT TTT GGA A-3′  103.3 

  R: 5′-ACG GTG CTT CAG GAT GTT GTT-3′  

7.2 GFP fusion construct primers 

7.2.1 cyp-35C1 

35C1FuPrA  5′-ATC CTA CGA GCG ACC CAG TT-3′ 

35C1FuPrB 5′-CCT TTG GGT CCT TTG GCC AAT CCC TGT TTT GCA ATA 

GAA ATG AAC AA-3′ 

35C1FuPrA* 5′-CTA CGA GCG ACC CAG TTT TC-3′ 
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7.2.2 cyp-37B1 

37B1FuPrA  5′-TCA CTG TTG TAC TCG AAT CTG-3′ 

37B1FuPrB 5′-CCT TTG GGT CCT TTG GCC AAT TTT TTA ATT TCA ATT 

TCA AAA ACT AG-3′ 

37B1FuPrA* 5′-ACT CGA ATC TGT TAA AAA CG-3′ 

7.2.3 mtl-1 

mtl-1FuPrA  5′-CTT CCC GTT GTC TGT CTA TAG A-3′ 

mtl-1FuPrB 5′-CCT TTG GGT CCT TTG GCC AAT CCC GAT TTC TTA ATT 

TCA GCA GTC-3′ 

mtl-1FuPrA* 5′-CCG TTG TCT GTC TAT AGA GTT TTT-3′ 

7.2.4 scl-2 

scl-2FuPrA  5′-AGC CGT TCG TGA TAC TTG TA-3′ 

scl-2FuPrB 5′-CCT TTG GGT CCT TTG GCC AAT CCC AAT TGG AGA AAA 

AAG TGC AAG TC-3′ 

scl-2FuPrA* 5′-GTG ATA CTT GTA AAC GTC TGA ATA-3′ 

7.2.5 GFP (pPD95.67 template) 

95.67FuC  5′-GGG ATT GGC CAA AGG ACC CAA AGG-3′ 

95.67FuD  5′-AAG GGC CCG TAC GGC CGA CTA GTA GG-3′ 

95.67FuD*  5′-GGA AAC AGT TAT GTT TGG TAT ATT GGG-3′ 

GFP_R   5′-GAG CAT GTA GGG ATG TTG AAG AG-3′ 
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7.3 DA1316 sequencing primers 

7.3.1 avr-14 (ad1302) 

ad1302F 5′-ACT TTG CTG AAT CGG CAG GTT-3′ 

ad1302R 5′-CTG AAT GTG AAT TGA GCA CTG TA-3′ 

ad1302F+ 5′-AAT CGG CAG GTT CAG GAG TT-3′ 

ad1302R+ 5′-GTG AAT TGA GCA CTG TAT TCC AT-3′ 

7.3.2 avr-15(ad1051) 

ad1051F 5′-ACC AGG AGA GGA TGG AAC AA-3′ 

ad1051R 5′-GGA AGA ACG AGT CGG GCA T-3′ 

ad1051F+ 5′-GAG AGG ATG GAA CAA TAC AT-3′ 

ad1051R+ 5′-AGA ACG AGT CGG GCA TCC AA-3′ 

7.3.3 glc-1(pk54) 

DKV1.3 5′-TAA TGG AGG ACC AGT TGT GG-3′ 

TcI_R1  5′-GCT GAT CGA CTC GAT GCC ACG TCG-3′ 

 

+Nested primers used for direct sequencing of PCR fragments 
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