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Abstract

The one-dimensional model of Olufsen (2000) [34] for blood flow in the systemic arteries

has been extended and built upon in a number of ways. Firstly, it has been applied to

hypotheses of diseases of the systemic circulation, and that of the microcirculation. With

a view to better understanding the microcirculation (the smallest vessels of the systemic

circulation) and its diseases, the model has been extended to provide predictions of the

propagating pressure pulse and flow rate in small arteries.

Secondly, Olufsen’s model has been used as a base upon which to build a model of the

pulmonary circulation, incorporating both the pulmonary arterial and venous circulations,

with detailed simulations of pressure and flow predicted in the large pulmonary arteries

and large pulmonary veins. To this end, a new model has been developed to describe a

connected network of small arteries and small veins, replacing the small arterial model

used as an outflow condition in the original model. A new outflow condition to describe

the return of blood from the pulmonary venous system to the left atrium of the heart has

also been implemented.

Finally, this new pulmonary model has been applied to various hypotheses as to the

causes of diseases and disorders of the pulmonary circulation, providing predictions of

pressure and flow in the large pulmonary arteries and veins in both normal and abnormal

circumstances, and showing agreement with clinical observations.
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Chapter 1

Introduction

Physiological fluid dynamics, particularly the mathematical modelling of the propaga-

tion of the pressure pulse in arteries, is an area of applied mathematics that has witnessed

great advancement in the last half century. The drive behind this has not least been be-

cause of the strong multi-disciplinary aspect of an area that is of great interest to both

mathematicians and clinical investigators alike, but also the explosion in the availability of

ever improving high powered computational resources has led to more detailed investiga-

tion of fluid dynamical phenomena, with the goal of further enhancing our understanding

of the cardiovascular system.

The history of fluid mechanics stretches as far back as Archimedes who, in the 3rd

century BC, first investigated hydrostatics and buoyancy. Significant advancements in

the field were developed over the centuries by the likes of Isaac Newton (viscosity, C17),

Blaise Pascal (hydrostatics, C17), Daniel Bernoulli (hydrodynamics, C18), Jean Louis

Marie Poiseuille (viscous/laminar flow, C19) [1], and significantly Claude-Louis Navier and

George Gabriel Stokes (Navier-Stokes equations, C19), but it was the more recent work

of mathematicians such as John R Womersley and Sir James Lighthill that developed the

field of physiological fluid dynamics and the study of blood flow in arteries.

A paper in memorial of Lighthill by Timothy J Pedley, 2003 [39] describes some of his

contribution to the field of cardiovascular fluid dynamics, as well as summarising other

contributions to the field in recent history, including those of Womersley, and touching on

that of Mette Olufsen, upon whose work much of this thesis is based.

1
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Figure 1.1: The Vein Man, Vesalius (1554)
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Figure 1.2: Pressure levels along the length of the systemic circulation (left hand side) and

the pulmonary circulation (right hand side) [30].

The Cardiovascular Circulatory System

The mechanism by which blood is transported around the human body is the cardio-

vascular circulatory system, consisting of two distinct parts - the systemic circulation, and

the pulmonary circulation - both connected to the heart. By far the larger of the two,

the systemic circulation originates at the left ventricle of the heart, and its purpose is to

transport oxygenated blood to the many tissues of the body where oxygen and carbon

dioxide are exchanged, and then return the deoxygenated blood to the right atrium of the

heart. The pulmonary circulation, emanating from the right ventricle, then carries blood

to the lungs to be re-oxygenated, before returning to the heart at the left atrium to begin

the entire circulatory process over again [30], [37].

In both systemic and pulmonary circulations, the vessels that carry blood away from

the heart are the arteries, while the veins are the vessels through which blood returns to

the heart. The smallest arteries may be referred to as arterioles, and similarly the smallest

veins as venules, while the tiny interconnecting vessels are the capillaries.

The heart, through beating, regularly ejects blood from the left and right ventricles into

the aorta (of the systemic circulation) and the main pulmonary artery (of the pulmonary

circulation), and valves prevent this fluid from flowing immediately back into the heart.

Since the arterial walls are elastic, this increase in pressure due to the introduction of
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more fluid causes the vessel to distend, and the fluid is set in motion. The restoring

force of the vessel walls, combined with the inertia of the blood results in a pressure wave

propagating along the artery. As indicated in Figure 1.2, the pressure in the systemic

arteries is considerably higher than in the systemic veins or any part of the pulmonary

circulation. This means that the walls of the large systemic arteries are generally thick and

strong, while the systemic veins and pulmonary arteries and veins are generally thinner.

As a propagating pressure pulse reaches a bifurcation - where a larger artery splits into

two smaller arteries - part of the energy of the pulse wave is transmitted into each of the

smaller arteries, and part is reflected back along the original artery. A bifurcation is said

to be ‘well-matched’ if most of the energy of an incoming pressure pulse is transmitted and

very little reflected. Most notably in physiological bifurcations, the iliac bifurcation is not

well-matched and a significant proportion of the pressure pulse is reflected. This reflected

wave component can be seen in the shape of the pressure-time waveform measured in the

aorta.

Why model the circulation?

There are a number of reasons why we may wish to study the mechanics of the cardio-

vascular circulatory system and physiological flows [38]. From a purely physiological point

of view, we may wish simply to further improve our understanding of how the circulatory

system works. In terms of pathophysiology, we may study how the circulatory system

might go wrong to assist understanding of the origins and development of disease, and

similarly for diagnosis we may attempt to infer what has gone wrong from measurements

of, for example, blood pressure. Finally there is the possibility of a cure - detection and

quantification of a stenosis may serve as the basis for surgical intervention, while simulation

of physiological flows is extremely important in the design of prosthetic devices.

Diseases of the Circulation

The majority of deaths in the developed world result from cardiovascular diseases, most

of which are associated with abnormal flow in the arteries [25], [32]. Both the development

and effects of atherosclerosis are strongly linked to fluid mechanical factors [18], the result

of which can lead to constriction or blockage (stenosis) of arteries, and ultimately heart

attacks and strokes. Stiffening of the arterial vessel walls, and the resulting effect on

blood flow through these vessels, generally occurs with ageing, and has been linked to
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hypertensive abnormalities in both the systemic [29] and pulmonary [43] circulations.

While the above disorders are generally diseases of the larger arteries of the circulation,

in both the pulmonary and systemic circulations problems may also arise in the smaller

vessels. A reduction in density of vessels in the vascular beds serving some tissues, whether

due to anatomical absence of vessels (vascular remodelling), occlusion or lack of perfusion,

has also been linked to instances of hypertension, although whether this is a cause of, or

result of the increased blood pressure is not clear [12], [51]. It is important, therefore, to

be able to study the effect of blood flow in the small arteries, as well as the large arteries.

One-Dimensional theory of pulse propagation in arteries

Linear Theory

Linear models of blood flow in large arteries begin by considering an infinitely long,

distensible tube of uniform area A, containing incompressible, inviscid fluid of density ρ,

perturbed by small, long wavelength disturbances and governed by three equations —

conservation of fluid mass and momentum, and a state equation or “tube law” relating

cross-sectional area A to local transmural pressure P [37]. Some straightforward analysis

shows that these disturbances obey the linear wave equation, propagating without changing

shape at wave speed c0, called the Moens–Korteweg wave speed (although first discovered

by Thomas Young [55]).

Based on continuity of pressure and flow rate at a junction, peaking of the pressure wave

can be explained by reflections which occur at bifurcations where there is a discontinuity in

the characteristic impedance, Y = A/ρc, of vessels. Incident and reflected waves travel in

opposite directions with the same wave speed (in that particular vessel), and the reflected

wave is in phase with the incident wave (causing an increase in pressure wave amplitude in

the parent vessel) if the sum of the admittances of the daughter vessels is less than that of

the parent vessel, called a “closed end” junction, or of opposite phase (causing a reduction

in parent vessel pressure wave amplitude) if the sum of the admittances of the daughter

vessels is more than that of the parent vessel, called an “open end” junction. If the sum

of the daughter vessel admittances equals that of the parent vessel, there is no reflection

and the junction is well-matched.

This simple analysis, however, predicts pressure and flow waveforms that are in phase

with one another, contrary to what is clinically observed. The phase difference between

these waveforms was explained by the analysis of Womersley [54], who introduced viscous
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and viscoelastic effects, and the Womersley parameter α = a
√

ω/ν, where a is vessel

radius, ω is the angular frequency of the oscillation in pressure gradient and ν is kinematic

viscosity. This parameter relates pulsatile frequency and viscous effects — when α is small

(≤ 1), the frequency of oscillations is low enough that a parabolic velocity profile has time

to develop during each cycle, and the flow will be very nearly in phase with the pressure

gradient, but when α is large (≥ 10), as is the case in the large arteries, the velocity profile

is relatively flat or plug-like, and there is a phase lag between the pressure gradient and

the flow.

Nonlinear theory

The nonlinear form of the governing equations of blood flow in arteries — the conser-

vation of fluid mass and momentum, and the state equation — are hyperbolic in form,

and can be integrated using the method of characteristics. This type of analysis suggests

that nonlinear waves propagate in the forward and backward directions in a vessels with

variable speeds, meaning that characteristics can run together and form discontinuities

or shocks. In normal physiological conditions, a shock would not be expected to form,

however in cases of aortic valve incompetence the heart compensates by ejecting a greater

volume of blood and clinicians report a ‘pistol-shot’ pulse, likely to correspond to the

formation of a shock.

It is also possible, and in some cases preferable, to compute solutions to the governing

equations numerically using finite difference methods [17].

Models of the Circulation

Attempts to model the full arterial circulation generally begin with the same basic

building blocks — dividing the arterial tree up into short cylindrical vessel segments be-

tween bifurcations in which the axisymmetric flow and pressure can be calculated numer-

ically, with an inflow condition at one end, and with continuous pressure and conserved

flow into its daughter vessels at the other end, or an outflow condition if it is a terminal

vessel of the tree. The inflow condition may be a prescribed pressure-time, or flow-time

relationship, while a lumped resistance to flow is generally applied as an outflow condition

after a few generations of large vessels, and this is enough to produce decent predictions

of blood flow and pressure in the large arteries [42].
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Olufsen’s Model

Faced with the increasing complexity of describing more and more generations of the

arterial tree in order to improve the accuracy of these models, Mette Olufsen [33], [34] de-

vised a method of analytically determining the dynamic, frequency dependent impedance

of a peripheral arterial tree, to be applied as an outflow condition to a model of just three

or four generations of large arteries simulated in detail. The output of her model showed

a much better phase relationship between pressure and flow-rate wave forms than models

with constant peripheral admittances.

The advantage of Olufsen’s approach over other one dimensional models is that, al-

though they are not simulated in detail, in a fluid dynamical sense the smaller arteries of

each vascular bed are included in the model by means of the dynamic impedance (which

may be different for each vascular bed). This approach is also not any less efficient than

other one-dimensional models, due to the fact that these impedances need only be calcu-

lated once, and not at every time step of the numerical scheme (the two-step Lax-Wendroff

method) being used to resolve detailed flows and pressures in the large arteries.

Three-Dimensional Models

As large scale computation has become more feasible, it is now possible to compute

detailed three-dimensional flows in large arteries. While this is undoubtedly useful in

computing flows around, for example, a stenosis, the reasons for continuing with a one-

dimensional model are two-fold. Firstly, it is still not computationally feasible to simulate

a model of the arterial system in any higher dimension, and secondly that measured flow

and pressure profiles during surgery are one-dimensional.

The Pulmonary Circulation

The pulmonary circulation has received relatively little attention in terms of pres-

sure and flow modelling when compared to the systemic circulation. Unlike the systemic

circulation, where the pressure drop occurs across the arteries, the pulmonary pressure

drop continues across both the arterial and venous sides of the circulation, and including

this venous tree into a one-dimensional model along with an arterial tree is obviously a

challenge.

Existing models of the pulmonary circulation [5], [6] have applied a constant pressure

gradient over the circulation, along with detailed models of small tree structures, to in-
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vestigate regions of perfusion when the lung is in different orientations. A group headed

by C.A. Taylor have recently developed detailed, patient-specific one-dimensional models

of blood flow in pulmonary arteries [47], [50], but there has not to our knowledge been a

model of pulsatile flow and pressure in the pulmonary circulation including the pulmonary

veins.

Aims of this thesis

There are two aims to the work in this thesis. The first aim is to further develop the

model of Olufsen [34] to investigate in more detail pulse pressure and flow in the small

arteries of the systemic circulation, as well as its application to diseases of the circulation.

The second aim is to develop a new model, based on Olufsen’s systemic model, to

describe the pulmonary circulation. The particular aims of this new model are to produce

detailed simulations of pressure and flow in the large pulmonary veins, as well as the large

pulmonary arteries, and to derive a new method for connecting an arterial and venous tree

into a single model.

The outline of the thesis is as follows.
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Chapter 1 Introduction. This introduction.

Chapter 2 The Systemic Arterial Model. Gives a more detailed overview of

the model of Olufsen, upon which much of the work in this thesis is

based.

Chapter 3 Applications of the Systemic Arterial Model. Describes a number

of applications and adaptations of the systemic arterial model, includ-

ing testing hypotheses of disease, the derivation of new equations for

determining pulse pressures and flows in small arteries, and describes

the structure and properties of a pulmonary arterial model.

Chapter 4 Joining an Arterial and Venous tree. Derives the equations for the

new model of a connected arterial and venous system.

Chapter 5 The Pulmonary Circulation Model. Completes the description of

the pulmonary system, including the structure and properties of the

pulmonary veins.

Chapter 6 Validation and Applications of the Pulmonary Circulation

Model. Defines the ‘normal’ conditions of the pulmonary circulation

model, and describes its application to hypotheses of disease.

Chapter 7 Conclusions and Discussion. Outlines the achievements of the mod-

els in this thesis, as well as some of their limitations and potential im-

provements.

Appendix A Lax-Wendroff Scheme. Gives an overview of the equations of the

numerical finite difference scheme used to solve the nonlinear equations

in the large vessels.

Appendix B Generations and Orders in Branching Trees. Gives a brief expla-

nation of the terms ‘generation’ and ‘order’ when referring to vascular

trees, and describes popular methods of assigning orders.



Chapter 2

The Systemic Arterial Model

In 2000, Mette Olufsen et al. [34] produced a simple, but effective, model for blood flow

in the arteries of the systemic circulation using one-dimensional equations derived from

the axisymmetric Navier-Stokes equations for incompressible flow in compliant vessels.

The model consists of two parts: the large arteries, simulated in detail as a binary tree of

compliant, tapering vessels that mimic the actual geometry (lengths and diameters) of the

human arterial tree, and the small arteries, modelled as binary asymmetric structured trees

at the terminals of the large arteries for which the frequency-dependent input admittance

can be calculated analytically. The vessels of the structured trees representing the small

peripheral beds of arteries are modelled as straight segments of compliant vessel and,

unlike the large arteries, do not mimic the actual geometries of the vessels in the human

arterial tree, but are based on general statistical relationships which are estimated from

literature data.

2.1 Large Arteries

Blood flow and pressure in the large arteries are predicted from a non-linear one-

dimensional model, based on the incompressible Navier–Stokes equations for a Newtonian

fluid in a tapering elastic vessel. The inflow boundary condition is based on a velocity

profile measured in the ascending aorta, while the outflow condition is predicted from a

dynamic impedance applied at all terminals of the large arteries. [35]

10
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Figure 2.1: Depiction of a tapering large artery [32].

Geometric Properties

As mentioned previously, the large arteries are modelled as a bifurcating tree in which

individual vessels are considered to taper along their length. Also, at each bifurcation the

radius at the bottom of the parent vessel is larger than the radius at the top of either

of the daughter vessels, however, the sum of the cross-sectional area of the two daughter

vessels is greater than the area of the parent vessel, meaning that the total cross-sectional

area increases at each bifurcation. Further, the tapering of the individual undistended

vessels follows an exponential curve of the form

r(x) = rtopexp(−kx), (2.1)

where k = log(rbot/rtop)/L is the tapering factor, rtop and rbot are the radii at the top

(proximal) and bottom (distal) ends of the vessel respectively, L is the length of the vessel

and x is the location along the artery. Thus, to describe the geometry of the large arteries,

the proximal (x = 0) and distal (x = L) radius, and the length of each vessel is required.

Structural Properties

The volume compliance of the arterial wall can be approximated as

C =
dV

dp
≈ 3A0L

2
r0

Eh
, (2.2)

where V is the volume of the given segment, p is the pressure, r0 is the equilibrium radius,

A0 = πr2
0 is the cross-sectional area, L is the length of the artery, E is Young’s modulus,

and h is the wall thickness. Thus, elastic properties of the vessels can be described from

estimates of Young’s modulus, the radius and the wall thickness in the relation Eh/r0,

which is plotted as a function of r0 in Figure 2.2, using data from Stergiopulos et al. [48]

Using a least squares fit, a curve of the form
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Figure 2.2: Plot of Eh/r0 as a function of r0 [33].

Eh

r0
= k1exp(k2r0) + k3 (2.3)

has been fitted to the elastic data. The parameters for this are k1 = 2.00× 107g/(s2cm),

k2 = −22.53cm−1, and k3 = 8.65× 105g/(s2cm).

Fluid Dynamics

A one dimensional model can be built using three equations describing the motion of

the fluid in a given vessel in the longitudinal direction, the motion of the vessel walls, and

the interaction between the fluid and the walls. These three equations are the Navier–

Stokes equations (which describe pressure and flow of the fluid), a continuity equation

that ensures what flows in flows out, and a state equation which relates the fluid influence

of the vessel walls to the elastic properties.

In order to reduce the three-dimensional problem to a one-dimensional one, further as-

sumptions must be made. First, it is assumed that all vessels have circular cross-section,

and that the flow is axisymmetric, eliminating the third dimension from the model. Sec-

ondly, the velocity profile is assumed to be flat with a narrow boundary layer providing

some friction to the system. Knowing the velocity profile allows integration over the

cross-sectional area, removing the second dimension from the model. As a result a one-

dimensional model is obtained.

A full derivation of the equations used in this model can be found in [35], and will only
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be stated here. These are the momentum equation,

∂q

∂t
+

∂

∂x

(
q2

A

)
+

A

ρ

∂p

∂x
=

2πνR

δ

q

A
, (2.4)

the continuity equation,

∂q

∂x
+

∂A

∂t
= 0, (2.5)

and the state equation,

p(x, t)− p0 =
4
3

Eh

r0

(
1−

√
A0

A

)
, (2.6)

where q is flow, A is cross-sectional area, ρ is the density of the fluid, p is the pressure,

ν is kinematic viscosity, δ is boundary layer thickness, R is the radius of the given vessel,

p0 is external pressure, Eh/r0 is described above, x is distance along the vessel in the

longitudinal direction, and t is time.

Flow and Pressure

The equations above describe flow and pressure in a single vessel segment, and so

appropriate boundary equations are required to extend this model to describe the arterial

tree.

Firstly, an inflow condition is required, describing the periodic flow into the aorta, i.e.

cardiac output at the aortic valve, as shown on the left in Figure 2.3. Second, conditions

are required describing flow and pressure across each bifurcation - these are conserved flow

qp = qd1 + qd2 and continuous pressure pp = pd1 = pd2 , where the subscripts p, d1 and d2

refer to the parent and first and second daughter vessels of the bifurcation, as in the right

picture in Figure 2.3.

Finally, an outflow condition is required at the terminals of the large arteries. Here a

frequency dependent impedance, Z(x, ω), related to flow and pressure by,

P (x, ω) = Z(x, ω)Q(x, ω),

and determined from the model for the small arteries, is applied.

Since the inflow is periodic, it is assumed that flow and pressure can be expressed using

a complex periodic Fourier series. So let
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Figure 2.3: Left: Inflow as a function of time, Right: A single bifurcation [33], [35].

p(x, t) =
∞∑

k=−∞
P (x, ωt)eiωkt and q(x, t) =

∞∑
k=−∞

Q(x, ωt)eiωkt,

where ωk = 2πk/T is the angular frequency, and

P (x, ωk) =
1
T

∫ T/2

−T/2
p(x, t)eiωkt and Q(x, ωk) =

1
T

∫ T/2

−T/2
q(x, t)eiωkt.

By inverse Fourier transform, Z(x, ω) can be transformed to obtain z(x, t), and by

convolution theorem it is possible to find an analytic relation between p and q:

p(x, t) =
∫ t

t−τ
q(x, τ)z(x, t− τ)dτ, (2.7)

which is the outflow condition for the large arteries.

2.2 Small Arteries

The purpose of the model of the small arteries is to determine an impedance to apply

as the outflow condition to the more detailed model of the large arteries. Blood flow and

pressure in the small arteries are predicted from a linear one-dimensional viscous model

(a wave equation) which is derived from linearisation of the incompressible axisymmetric

Navier-Stokes equations for Newtonian fluid in a non-tapering elastic vessel.
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Figure 2.4: Structured tree description of the small arteries [34].

Structure

The small arteries are modelled as a binary asymmetric structured tree, as shown in

Figure 2.4. At each bifurcation the radii of the left and right daughter vessels are scaled

by a factor α and β, respectively, with respect to the parent vessel. Because each branch

is terminated when the radius is less than some pre-described minimum radius, the tree

does not have a fixed number of generations.

The branching nature of the structured tree is governed by a number of relations.

There is a relation describing how radius changes over an arterial bifurcation, a power law

based on the principle of minimum work, given by,

rξ
p = rξ

d1
+ rξ

d2
,

where 2.33 < ξ < 3.00, since ξ ≥ 3.00 corresponds to laminar flow, and ξ ≤ 2.33 corre-

sponds to turbulent flow [52].

There are also relations describing the asymmetry of the tree (ratio of left daughter

radius to right daughter radius), and an area ratio (ratio of total cross-sectional area of

the two daughter vessels to area of parent vessel). These ratios are, respectively,

γ = rd1/rd2 and η =
r2
d1

+ r2
d2

r2
p

=
1 + γ

(1 + γξ/2)2/ξ
.

From these three relations for ξ, γ, and η, it is possible to determine the two scaling

relations α and β described in Figure 2.4,

α = rd1/rp = (1 + γξ/2)−1/ξ and β = rd2/rp = α
√

γ.
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From literature [32], it is possible to find values for the radius exponent of ξ = 2.76,

and area ratio η = 1.16, yielding an asymmetry ratio of γ = 0.41, and scaling ratios of

α = 0.9 and β = 0.6.

The vessels of the structured tree are scaled until a pre-determined minimum radius

rmin (0.010cm for the systemic arteries) is reached, at which point the tree is terminated.

Also, the length of each segment in the structured tree is determined from the radius by

a length to diameter ratio, estimated from literature [32] to be L/d ≈ 25± 5.

Fluid Dynamics

Unlike the large vessels, the small arteries do not taper, and for computational feasi-

bility a linear model is used. Again, only a brief description of the model will be given

here - a more detailed description can be found in [35].

From the one-dimensional axisymmetric Navier–Stokes equations, the linear momen-

tum equation is,
∂ux

∂t
+

1
ρ

∂p

∂x
=

ν

r

∂

∂r

(
r
∂ux

∂r

)
, (2.8)

where ux is longitudinal flow velocity, and the other terms are as defined previously.

Taking Fourier expansions of velocity and pressure, ux(r, x, t) = Ux(r, x)eiωt and p(x, t) =

P (x)eiωt and substituting into (2.8), yields,

iωUx +
1
ρ

∂P

∂x
=

ν

r

∂

∂r

(
r
∂ux

∂r

)
. (2.9)

Since the vessels do not taper, the solution to (2.9) is,

Ux =
1

iωρ

∂P

∂x

(
1− J0(rw0/r0)

J0(w0)

)
,

where w0
2 = i3w2, and w2 = r0

2ω/ν is the squared Womersley number, an J0 are Bessel

functions.

Cross-sectionally averaged flow q = Qeiωt is given by

Q = 2π

∫ ∞

0
Uxrdr,

giving the momentum equation for the small arteries,

iωQ = −A0

ρ

∂P

∂x
(1− FJ) , (2.10)

where FJ = 2J1(w0)
w0J0(w0) .
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As for the large arteries, the continuity equation is

∂q

∂x
+

∂A

∂t
= 0,

which can be re-written as,

C
∂p

∂t
+

∂q

∂x
= 0,

where

C =
∂A

∂p
=

3A0r0

2Eh

(
1− 3pr0

4EH

)−3

≈ 3A0r0

2Eh

is the state equation, approximated from linearising the state equation for the large arter-

ies. Taking Fourier expansions again gives the continuity equation for the small arteries,

iωCP +
∂Q

∂x
= 0. (2.11)

Solutions to the Linear Model

Differentiating the continuity equation (2.11) with respect to x, and substituting into

the momentum equation (2.10), gives wave equations in flow Q and pressure P ,

ω2

c2
Q +

∂2Q

∂x2
= 0, or

ω2

c2
P +

∂2P

∂x2
= 0, (2.12)

with wave propagation velocity c =
√

A0(1−FJ )
ρC .

Solving (2.12) gives,

Q(x, ω) = a cos(ωx/c) + b sin(ωx/c), and (2.13)

P (x, ω) = i

√
ρ

CA0(1− FJ)
(−a cos(ωx/c) + b sin(ωx/c)), (2.14)

where a and b are integration constants.

Determining root impedance

Since P (x, ω) = Z(x, ω)Q(x, ω), and writing g = cC =
√

CA0(1− FJ)/ρ, then from

(2.13) and (2.14),

Z(x, ω) =
ig−1(b cos(ωx/c)− a sin(ωx/c))

a cos(ωx/c) + b sin(ωx/c)
.

At x = L, i.e. at the end of a vessel segment,

Z(L, ω) =
ig−1(b cos(ωL/c)− a sin(ωL/c))

a cos(ωL/c) + b sin(ωL/c)
,
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and at x = 0, i.e. the root of a vessel segment,

Z(0, ω) =
i

g

b

a
.

So, assuming Z(L, ω) is known,

b

a
=

sin(ωL/c)− igZ(L, ω) cos(ωL/c)
cos(ωL/c) + igZ(L, ω) sin(ωL/c)

,

and so the root impedance for any vessel, in terms of its terminal impedance, can be found,

Z(0, ω) =
ig−1 sin(ωL/c) + Z(L, ω) cos(ωL/c)
cos(ωL/c) + igZ(L, ω) sin(ωL/c)

. (2.15)

Also, for any vessel the input impedance for zero frequency is,

Z(0, 0) = lim
ω→0

Z(0, ω) =
8µlrr

πr3
0

+ Z(L, 0), (2.16)

where lrr is the length to radius ratio of the structured tree.

So we have Z(0, ω) = f(Z(L, ω)), as well as bifurcation conditions Z−1
P = Z−1

d1
+ Z−1

d2
,

and terminal conditions for the structured tree, Zterm (set to be zero) and rmin. This is

enough information to determine the impedance at the root of the structured tree, and

hence provide an outflow condition to the model.

2.3 Computing Flows and Pressures

The arterial vessel network used in the systemic arterial model is described in Figure

2.5, with vessel dimensions summarised in Table 2.1. The inflow profile representing car-

diac output, as described in Figure 2.3, is attached to the start of vessel 1, and structured

tree outflow conditions are attached to each of the terminal large arteries, represented by

the areas shaded grey.

The length, top and bottom radius of each of the numbered vessels are specified, and

the bottom radius of each terminal vessel is also the root radius of its attached structured

tree. Equations (2.4) and (2.5) are then solved numerically at a spatial resolution of 4

points per cm, and a temporal resolution of 8192 points per period to find the flow and,

through (2.6), the pressure profiles in these vessels.
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Figure 2.5: Arterial vessel network used in the systemic arterial model [34].
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No. Name Inlet diameter (cm) Outlet diameter (cm) Length (cm)

1 Ascending aorta 1.250 1.140 7.000

5 Aortic arch 1.140 1.110 1.800

7 Aortic arch 1.110 1.090 1.000

9 Thoracic aorta 1.090 0.850 18.800

11 Abdominal aorta 0.850 0.830 2.000

13 Abdominal aorta 0.830 0.800 2.000

15 Abdominal aorta 0.800 0.790 1.000

17 Abdominal aorta 0.790 0.730 6.000

19 Abdominal aorta 0.730 0.700 3.000

20 External iliac 0.450 0.430 6.500

21 Femoral 0.430 0.400 13.000

24 Femoral 0.400 0.300 44.000

22 Internal iliac 0.200 0.200 4.500

23 Deep femoral 0.200 0.200 11.000

2 Anonyma 0.700 0.700 3.500

3, 8 Subcl. and brach. 0.440 0.280 43.000

4 R. com. carotid 0.290 0.280 17.000

6 L. com. carotid 0.290 0.280 19.000

10 Celiac axis 0.330 0.300 3.000

12 Sup. mesenteric 0.330 0.330 5.000

14, 16 Renal 0.280 0.250 3.000

18 Inf. mesenteric 0.200 0.180 4.000

Table 2.1: Dimensions of the large vessels of the Systemic arterial model [32].



CHAPTER 2. THE SYSTEMIC ARTERIAL MODEL 21

Numerical Solutions

In order to solve numerically for flow and pressure in the large arteries, using the

two-step Lax-Wendroff method [57], we introduce the function,

B(r0(x), p(x, t)) =
1
ρ

∫ p(x,t)

p0

A[r0(x), p′]dp′ (2.17)

⇒ ∂B

∂x
=

A

ρ

∂p

∂x
+

∂B

∂r0

dr0

dx
. (2.18)

The last term of this can be evaluated explicitly, and so can be added to both sides of the

momentum equation (2.4) to give,

∂q

∂t
+

∂

∂x

(
q2

A
+ B

)
= −2πνqR

δA
+

∂B

∂r0

dr0

dx
. (2.19)

This allows us to write (2.4) and (2.5) in conservation form as,

∂

∂t
U +

∂

∂x
R = S, (2.20)

with dependent variables,

U =

 A

q

 ,

system flux,

R =

 q

q2

A + B

 ,

and right hand side,

S =

 0
−2πr0

δR
q
A +

(
2
√

A
(√

πf +
√

A0
df
dr0

)
dr0
dx

)
 .

With the inflow and bifurcation conditions described in Figure 2.3, and the outflow

condition given by (2.7) we have inflow and outflow boundary conditions for each of the

large arteries in Figure 2.5 meaning we can solve numerically for flow and pressure in each

of these arteries. More details of how we do this numerically can be found in [32] and

Appendix A.
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Applications of the Systemic

Arterial Model

By means of a number of fairly straightforward adaptations, we have extended Olufsen’s

systemic model to apply to various physiological scenarios. While the results of these are

interesting in their own right, they also provide a useful precursor to the more detailed

pulmonary model that we will develop later.

The scenarios that we have looked at are,

• Arterial compliance and hypertension - we will later use a similar approach to

describe Pulmonary Arterial Hypertension and Chronic Thromboembolic Pulmonary

Hypertension.

• Microcirculatory rarefaction and hypertension - we will later use a similar

approach to describe Pulmonary Hypertension in association with hypoxic lung dis-

ease.

• Pulse Pressure in Small Arteries - some of the equations used in determining

these pressures will later be used when developing the model to describe a joined up

arterial and venous network.

• A Pulmonary Arterial Model - a simple description of the Pulmonary arter-

ies, providing a basis upon which to build our more detailed model of the entire

Pulmonary circulation.

22
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3.1 Arterial compliance and hypertension

Since peak, trough and pulse pressures are related to the physical properties of elastic

arteries, much attention has been paid to arterial stiffness and its relation to hypertension

and other cardiovascular risk factors [29]. In this section, we investigate this relationship

by modelling changes in arterial stiffness and observing the resulting effect on the predicted

pressure and flow waveforms in each of the proximal and distal aorta, and radial artery.

In Olufsen’s systemic model, arterial compliance is controlled by estimates of Young’s

modulus E, vessel wall thickness h, and undistended radius r0, in the parameter Eh/r0

(see equations (2.3) and (2.6)). By increasing (or decreasing) the value of this parameter,

we can model the effects of increased (or decreased) arterial stiffness.

A further advantage of Olufsen’s model is that the separate descriptions for large

and small arteries allows for parameters to be varied independently in each of the large

and small arteries. This means that we can model three different instances of arterial

compliance changes - changes in small arterial compliance only, changes in large vessel

compliance only, and uniform compliance changes in both large and small arteries.
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Results

Figures 3.1 and 3.2 show the effects of compliance changes in the small arteries only on

pressure and flow respectively in the proximal aorta. The percentage value refers to the

percentage change in the stiffness parameter Eh/r0 away from the values established by

Figure 2.2 and equation (2.3) in Section 2.1, ‘Mean’ refers to the average value over a pe-

riod, ‘Peak’ and ‘Trough’ are the maximum and minimum values over a period respectively,

and ‘Pulse’ is the difference between ‘Peak’ and ‘Trough’.

Little effect is seen on peak and mean pressures, however a slight drop in trough

pressure (and resulting increase in pulse pressure) is seen in instances of stiffer small

arteries.

Little or no effect can be seen in the flow profiles for the proximal and distal aorta,

although slight earlier and higher peaking of the flow wave in the radial artery can be seen

in instances of the most compliant small arteries.

Figures 3.3 and 3.4 show the effects of compliance changes in the large arteries only,

and Figures 3.5 and 3.6 show the effects of uniform compliance changes in both the large

and small arteries. In both these cases, significant increases in peak and pulse pressures

can be seen with increasing arterial stiffness. Further, in both the flow and pressure profiles

of the more distal vessels (the distal aorta and the radial artery), we see earlier peaking

of the incident and reflected components of the waveforms (the first and second peaks

respectively, most obvious in the distal aorta flow plot of Figure 3.6) as a result of the

increased wave speed due to stiffer vessels.
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Figure 3.1: Effects of changing small vessel compliance on pressure.



CHAPTER 3. APPLICATIONS OF THE SYSTEMIC ARTERIAL MODEL 26

Figure 3.2: Effects of changing small vessel compliance on flow.
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Figure 3.3: Effects of changing large vessel compliance on pressure.
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Figure 3.4: Effects of changing large vessel compliance on flow.
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Figure 3.5: Effects of changing both large and small vessel compliance on pressure.
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Figure 3.6: Effects of changing both large and small vessel compliance on flow.
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Interpreting these results

The similarity of the effects seen by changing large vessel compliance only, and by

uniformly changing both large and small vessel compliance, suggest that the effects of

stiffening the large vessels far outweigh the effects of stiffening the small vessels. This

agrees with the findings of Azer and Peskin [3], who performed a similar brief investigation

on a different implementation of the same base model.

Further, our results support Azer and Peskin’s conclusion that stiffening of the large

arteries results in pressure increases consistent with observations of isolated systolic hy-

pertension, as occurs in aging [13], [19], [29].
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3.2 Microcirculatory rarefaction and hypertension.

The microcirculation can be described as the blood flow through the smallest blood

vessels of the circulatory system – arterioles, capillaries and venules of typically less than

100µm diameter [40]. Studies have shown that the pre-capillary drop in blood pressure

occurs mostly over vessels of diameter 0.001-0.030cm [28], [41], thus the microcirculation

is the site of maximum resistance within the arterial tree, although the precise location

and nature of these ‘resistance arteries’ is not well known [10].

Microcirculatory rarefaction is defined as a reduction of vessels per unit volume within

the vascular bed, and may be further classified as structural (an anatomical absence of

vessels) or functional (vessels anatomically present but not perfused) [12]. Structural rar-

efaction has been observed in both skin capillaries, and intramuscular resistance arteries

in hypertension. Importantly, it has also been demonstrated in borderline hypertension,

and in normotensive young offspring of parents with hypertension, suggesting that micro-

circulatory rarefaction may be a cause of hypertension rather than the other way around.

Developing the model to include microcirculation and effects of rarefac-

tion.

Olufsen’s model describes the small vessels of the circulation as a binary asymmet-

ric structured tree, as described in Section 2.2, where the relationship between parent

and daughter vessel radii is characterised by a number of parameters, namely the radius

relation,

rξ
p = rξ

d1
+ rξ

d2
, (3.1)

with exponent 2.33 ≤ ξ ≤ 3.0, the asymmetry ratio,

γ = rd1/rd2 , (3.2)

and the area ratio,

η =
r2
d1

+ r2
d2

r2
p

=
1 + γ

(1 + γξ/2)2/ξ
, (3.3)

where η > 1.

Physiological data suggests values of ξ = 2.76 and η = 1.16, implying a value of

γ = 0.41, for normal individuals [32], however in instances of rarefaction there are fewer

small calibre blood vessels than normal in a given volume of tissue, and this can be

modelled by decreasing the value of the area ratio, η. This is a good model for structural
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Figure 3.7: Relationship between radius exponent ξ, asymmetry ratio γ and area ratio η.

rarefaction as decreasing η results in there being fewer generations in the structured tree,

and vessel radius decreasing in size with generation number more rapidly than would

normally occur, mimicking the observed reduction in density of small vessels.

Results - Effects on vessel density

Figure 3.7 shows how the area ratio, η, varies with changing radius exponent ξ for

different values of the asymmetry ratio γ. Increasing either ξ or γ results in an increase

in η.

Figure 3.8 shows the effect of changing the radius exponent ξ (and thus altering the

area ratio η) on the total number of vessels in a structured tree modelled vascular bed.

It shows how the vascular bed becomes rarefied (i.e. the total number, and thus density,

of vessels is reduced) when the area ratio η is decreased, and also how the vascular bed

becomes more dense with increased values of η.

Figure 3.9 shows how many terminal vessels - the smallest calibre vessels - there are in

the structured tree, and how this varies with ξ and η. Again, we see that a reduced area

ratio results in rarefied trees with fewer small calibre blood vessels.
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Figure 3.8: Effects of rarefaction on the total number of vessels in a structured tree with

root radius rroot = 0.300cm and minimum radius rmin = 0.010cm.

Figure 3.9: Effects of rarefaction on the number of end vessels in a structured tree with

root radius rroot = 0.300cm and minimum radius rmin = 0.010cm.
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Results - Effects on Pressure Pulse

For various degrees of rarefaction, predicted pressure pulse and flow waveforms were

generated for the Proximal Aorta (5cm above the aortic valve), Distal Aorta (5cm from

the end of the abdominal aorta) and Radial Artery (2cm from the end of the artery).

Figure 3.10 shows the predicted pressure pulse waveforms in the Proximal Aorta. It

shows how decreasing the radius exponent and/or asymmetry ratio, and therefore decreas-

ing the area ratio creating rarefied vascular beds, results in shifting the pulse waveform

upwards on the pressure scale although little change in the shape of the waveform is ob-

served. This same pattern of shifted waveform is also seen in the predicted pressure pulses

of the Distal Aorta (Figure 3.13), and the Radial Artery (Figure 3.16).

The generated flow profiles for each of the Proximal and Distal Aorta, and Radial

Artery are shown in Figures 3.11, 3.14 and 3.17 respectively. Almost no change is seen in

the flow profile of the Proximal Aorta, while in the Distal Aorta we see small changes in

the amplitude and position of the reflected wave component (the later, smaller peak in the

flow wave profile) which is smaller and occurs slightly later in rarefied conditions. In the

Radial Artery, the amplitude of the flow waveform is notably reduced with rarefaction.

Figures 3.12, 3.15, and 3.18 show the mean pressures and pulse pressures (difference

between peak and trough pressure) for the predicted waveforms of the Proximal and Distal

Aorta, and Radial Artery. They show how mean pressure increases with increased rar-

efaction in an almost linear relationship with decreasing radius exponent. Interestingly,

however, pulse pressure is seen to decrease in instances of increased rarefaction (and thus

increased mean pressure), and further that in the Radial Artery pulse pressure appears to

tail off to a maximum of around 33mmHg with increased vessel density.
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Figure 3.10: Effects of rarefaction on pressure pulse waveform in the Proximal Aorta.
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Figure 3.11: Effects of rarefaction on flow waveform in the Proximal Aorta.
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Figure 3.12: Effects of rarefaction on mean, pulse, peak and trough pressure in the Prox-

imal Aorta.
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Figure 3.13: Effects of rarefaction on pressure pulse waveform in the Distal Aorta.
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Figure 3.14: Effects of rarefaction on flow waveform in the Distal Aorta.
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Figure 3.15: Effects of rarefaction on mean, pulse, peak and trough pressure in the Distal

Aorta.
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Figure 3.16: Effects of rarefaction on pressure pulse waveform in the Radial Artery.
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Figure 3.17: Effects of rarefaction on flow waveform in the Radial Artery.
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Figure 3.18: Effects of rarefaction on mean, pulse, peak and trough pressure in the Radial

Artery.
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Interpreting these results

We defined rarefaction previously as a ‘reduction of vessels per unit volume within the

vascular bed’. Figure 3.8 shows that our method of modelling rarefaction, by reducing the

area ratio η of the structured tree, decreases the total number of vessels in the structured

tree. Since each vascular bed still has to serve the same area, this can be interpreted as

having the desired effect of reducing the overall density of vessels in the vascular bed.

We may further describe rarefaction as an anatomical absence of the smallest calibre

of blood vessels, and the terminal vessels of the structured tree are, by their definition,

the smallest vessels calibre of vessels in the vascular bed. Figure 3.9 shows again how our

modelling of rarefaction simulates this absence of smaller vessels by vastly reducing the

number of end vessels in the structured tree.

The effects of this rarefaction of small vessels, as seen in Figures 3.10 - 3.18, are

that the simulated pressure waveforms in the large arteries are of higher peak and mean

values compared to normal and more densely packed vascular beds. This supports the

hypothesis that microcirculatory rarefaction in smaller, distal arteries may indeed be a

cause of hypertension in the larger proximal arteries [2], [31].
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3.3 Pulse Pressure in Small Arteries.

As mentioned previously, the haemodynamic pressure drop in the systemic arteries

occurs mostly across the smaller ‘resistance’ arteries [28], [41]. While Olufsen’s model [32],

[34], [35] takes into account the effect of the smaller arteries on the flow and pressure of the

larger arteries by means of the overall impedance of the tree of smaller arteries, the flow

and pressure in the smaller arteries is not explicitly determined. We have now developed a

method to adapt Olufsen’s model to provide theoretical calculations of the pressure pulse

in the small resistance arteries, without losing the overall efficiency of the original model.

Equations for a single vessel

Olufsen’s model for small arteries (see Section 2.2) tells us that at any spatial point,

x, along a vessel, the flow and pressure at that point, for frequency ω in the frequency

domain, can be found respectively by,

Q(x, ω) = a cos(ωx/c) + b sin(ωx/c), and (3.4)

P (x, ω) = i

√
ρ

CA0(1− FJ)
(−a sin(ωx/c) + b cos(ωx/c)), (3.5)

with wave speed c =
√

A0(1−FJ )
ρC , and gω = cC =

√
CA0(1− FJ)/ρ, and where a and b are

constants.

Non-dimensionalising these equations by

P (x, ω) = ρglP̃ (x, ω), and (3.6)

Q(x, ω) = qcQ̃(x, ω), (3.7)

where ρ is the density of blood, g is acceleration due to gravity, l is the characteristic length,

and qc is the characteristic flow, allows for the non-dimensional form of the impedance,

Z̃(x, ω), to be found from its dimensional form Z(x, ω) by,

Z(x, ω) =
P (x, ω)
Q(x, ω)

=
ρgl

qc

P̃ (x, ω)
Q̃(x, ω)

=
ρgl

qc
Z̃(x, ω). (3.8)
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Vessel boundaries

At the start of a vessel, i.e. where x = 0, inlet flow and pressure can be written as,

Q(0, ω) = a, and (3.9)

P (0, ω) = ib/gω, (3.10)

allowing constants a and b to be represented in terms of the non-dimensional flow and

pressure at the start of a vessel, i.e.,

a = qcQ̃(0, ω), and (3.11)

b = −igωρglP̃ (0, ω). (3.12)

At the end of a vessel, i.e. when x = L, outlet pressure can be written as,

P (L, ω) = (i/gω)(−a sin(ωL/c) + b cos(ωL/c)), (3.13)

meaning that, by substituting for constants a and b, the non-dimensional pressure at the

end of a vessel can be determined in terms of the non-dimensional flow and pressure at

the beginning of the vessel,

ρgl · P̃ (L, ω) = (i/gω)(−qcQ̃(0, ω) sin(ωL/c)− igωρglP̃ (0, ω) cos(ωL/c)), (3.14)

i.e. P̃ (L, ω) = P̃ (0, ω) cos(ωL/c)− iqc

gωρgl
Q̃(0, ω) sin(ωL/c). (3.15)

Also, the non-dimensional flow at the end of a vessel can be determined via its rela-

tionship with pressure and impedance,

Q̃(L, ω) =
P̃ (L, ω)
Z̃(L, ω)

. (3.16)

The Structured Tree

In Olufsen’s model, the smaller arteries are treated as an asymmetric binary structured

tree of non-tapering one-dimensional vessels. At each bifurcation in the structured tree,

the left and right daughter vessel lengths and radii are determined by scaling the length

and radius of the parent vessel by scaling factors α and β respectively, as shown in Figure

2.4.

Given this description, we shall from here on notationally refer to pressure, flow and

impedance at the end of the root vessel as

P̃ (L, ω) = P 0
L,
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Q̃(L, ω) = Q0
L,

Z̃(L, ω) = Z0
L,

and the pressure, flow and impedance at the start and end of a generic vessel of the

structured tree, that has been scaled by a factor αnβm with respect to the root vessel, as,

P̃ (0, ω) = Pαnβm

0 ,

P̃ (L, ω) = Pαnβm

L ,

Q̃(0, ω) = Qαnβm

0 ,

Q̃(L, ω) = Qαnβm

L ,

Z̃(0, ω) = Zαnβm

0 ,

and

Z̃(L, ω) = Zαnβm

L .

Vessels α and β

Since pressure is continuous across a bifurcation, the pressure at the beginning of vessel

α, Pα
0 , is the same as the pressure at the end of its parent vessel, P 0

L. Further, the flow

at the beginning of vessel α, Qα
0 , can be found from the pressure, Pα

0 , and the impedance,

Zα
0 , at that point, from

Qα
0 = Pα

0 /Zα
0 . (3.17)

Knowing the flow and pressure at the beginning of vessel α, equation (3.15) allows us

to determine the pressure at the end of that vessel,

Pα
L = Pα

0 cos(ωLα/cα)− (iqc/gα
ωρgl)Qα

0 sin(ωLα/cα), (3.18)

which further allows us to determine the flow at the end of vessel α from equation (3.16),

Qα
L = Pα

L /Zα
L . (3.19)

An identical argument can be applied to vessel β, the other daughter vessel of the root

vessel of the structured tree, giving,

P β
L = P β

0 cos(ωLβ/cβ)− (iqc/gβ
ωρgl)Qβ

0 sin(ωLβ/cβ), (3.20)

and,

Qβ
L = P β

L/Zβ
L. (3.21)
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The α branch

The succession of vessels scaled by a factor α from its parent vessel is what we refer to

as the α branch of the structured tree, represented graphically by the leftmost branch in

Figure 2.4. Since α > β, the α branch represents the longest possible route from the root

to the terminus of the structured tree.

By the argument in the previous section, the pressure at the end of any vessel in the

α branch can be found as,

Pαn

L = Pαn

0 cos(ωLαn
/cαn

)− (iqc/gαn

ω ρgl)Qαn

0 sin(ωLαn
/cαn

), (3.22)

where the pressure at the start of the vessel is the same as the pressure at the end of its

parent vessel, i.e.,

Pαn

0 = Pαn−1

L . (3.23)

and the flow at either the start or end of the vessel can be determined from the pressure

and the impedance, e.g.,

Qαn

0 = Pαn

0 /Zαn

0 . (3.24)

This means that for any vessel in the α branch,

Pαn

L = Pαn−1

L cos(ωLαn
/cαn

)− (iqc/gαn

ω ρgl)(Pαn−1

L /Zαn

0 ) sin(ωLαn
/cαn

), (3.25)

so that the pressure at the end of any vessel can be found from the pressure at the beginning

of the root vessel, and the impedances at the beginning of each vessel in the structured

tree - both of which are pre-determined in Olufsen’s model. This allows us to calculate

the pressure (and, through its relation with the impedance, the flow) in any vessel of the

α branch, without losing the numerical efficiency of Olufsen’s original model.
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An algorithm for determining pressures in the α branch

• Read p0
L(t) from file (in time domain).

• Transform p0
L(t) to P 0

L(ω) (frequency domain) by P 0
L(ω) = FFT (p0

L(t)).

• For each frequency,

– Compute impedances for the tree.

– For each vessel in Computed(i, 0),

∗ Get Pαi

0 from parent vessel using (3.23) and store.

∗ Compute Pαi

L using (3.22).

– End For.

• End For.

• Transform Pαi

0 (ω) to p0(t) (time domain) by p0(t) = IFFT (P0(ω)).

• Convert p0(t) to mmHg by p0(t) = p̃0(t) · ρgl/1332.20

The β branch

By an identical argument as for the α branch, we can determine the pressures (and

flows) in any generation of the β branch by,

P βn

L = P βn−1

L cos(ωLβn
/cβn

)− (iqc/gβn

ω ρgl)(P βn−1

L /Zβn

0 ) sin(ωLβn
/cβn

). (3.26)

The β branch represents the shortest possible route from the root to the terminus of

the structured tree.
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Self similarity in the Structured Tree

The composition of the structured tree is such that it is possible to have more than one

vessel that has been scaled by the same factor, with respect to the root vessel, but have

different parent vessels. For example, vessel αβ (parent vessel α) and vessel αβ (parent

vessel β) will have identical physical characteristics (length, radius), but because they have

different parentage, the pressures in these vessels will be different. Despite this, it is still

possible to find a relation between the pressures in these vessels. For vessel αβ,

Pαβ
L = Pαβ

0 cos(ωLαβ/cαβ)− (iqc/gαβ
ω ρgl)Qαβ

0 sin(ωLαβ/cαβ) (3.27)

= Pα
L cos(ωLαβ/cαβ)− (iqc/gαβ

ω ρgl)(Pα
L /Zαβ

0 ) sin(ωLαβ/cαβ), (3.28)

and for vessel βα,

P βα
L = P β

L cos(ωLαβ/cαβ)− (iqc/gαβ
ω ρgl)(P β

L/Zαβ
0 ) sin(ωLαβ/cαβ), (3.29)

so that,

P βα
L

Pαβ
L

=
P β

L cos(ωLαβ/cαβ)− P β
L (iqc/Z

αβ
0 gαβ

ω ρgl) sin(ωLαβ/cαβ)

Pα
L cos(ωLαβ/cαβ)− Pα

L (iqc/Z
αβ
0 gαβ

ω ρgl) sin(ωLαβ/cαβ)
(3.30)

=
P β

L

Pα
L

. (3.31)

This gives us the similarity relations,

P βα
L =

(
P β

L

Pα
L

)
Pαβ

L , (3.32)

and,

Qβα
L =

(
P β

L

Pα
L

)
Qαβ

L , (3.33)

since Zαβ
0 = Zβα

0 , Lαβ = Lβα, cαβ = cβα, and gαβ
ω = gβα

ω .
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Results

Using the algorithm described earlier, Figure 3.19 shows the overlayed pressure profiles

from successive vessels of the α branch of the vascular bed at the termination of the Femoral

artery (vessel 24 in Figure 2.5), as well as the mean pressure with radius along the branch.

The forward propagation of the pressure pulse, and pressure drop along the branch is

clearly visible.

Figure 3.20 shows the mean pressures for all vessels in the Femoral arterial bed, as

well as the number of vessels of each size, with the region relating to the microcirculation

expanded on the right hand side. These are found by creating a number of bins of radius

ranges, and calculating the mean pressure of-, and number of-, vessels in each bin. Since

there are far more smaller arteries than there are larger arteries, some of the bins in the

regions of the large arteries contain no vessels.

Figures 3.21 - 3.24 show the same results for each of the Renal arterial bed (at the

terminal of vessel 14 in Figure 2.5), and the Carotid arterial bed (at the terminal of vessel

4 in Figure 2.5).

Interpreting these results

In each of the three regions we investigated, but most visible in the femoral arterial

bed, the steepest drop in blood pressure occurs over arteries of less than 0.050cm radius,

suggesting these as the location of the ‘resistance arteries’. A limitation of our model,

however, is that any vessel of less than 0.010cm radius is automatically denoted as a

terminal vessel of the structured tree due to the minimum radius parameter, forcing our

predictions of the pre-capillary pressure drop to occur over vessels larger than this value.

This could be improved by reducing our minimum radius parameter, and sectioning the

structured tree to allow for different physical properties of very small vessels down to

the level of capillaries (which are currently ignored). Until then, the true location of the

‘resistance arteries’ remains unclear [10].
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Figure 3.19: Pressure in the Femoral Arterial vascular bed.

Figure 3.20: Mean pressures and number of vessels versus radius in the Femoral Arterial

vascular bed.
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Figure 3.21: Pressure in the Renal Arterial vascular bed.

Figure 3.22: Mean pressures and number of vessels versus radius in the Renal Arterial

vascular bed.
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Figure 3.23: Pressure in the Carotid Arterial vascular bed.

Figure 3.24: Mean pressures and number of vessels versus radius in the Carotid Arterial

vascular bed.
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3.4 A Pulmonary Arterial Model

By changing the description of the large systemic arteries in Olufsen’s model to instead

describe the the geometry and structure of the large pulmonary arteries, but still utilising

the structured tree outflow condition, we can produce a first attempt at a pulmonary

arterial model.

Since this model describes only the arterial side of the pulmonary circulation, and since

the terminal condition for the structured tree outflow condition is one of zero impedance

(and hence zero pressure), we know that this description can not be entirely accurate as

it is known that there is a noticeable pressure pulse measurable in the pulmonary veins.

However, by constructing this model we can show both the requirement for, and later the

improved accuracy of, our full pulmonary circulation model.

Large Vessel Structure

Thanks to our collaborators in the Scottish Pulmonary Vascular Unit, we have obtained

detailed measurements of the structure of the largest pulmonary arteries of a healthy

volunteer through magnetic resonance imaging (MRI). Figure 3.25 shows a schematic of

the measured arteries (the first three generations of the pulmonary arterial tree), indicating

the lengths and diameters that were measured, and how the measured vessels were indexed,

with the measured values summarised in Table 3.1. Two vessels - numbered 4 and 6 in

Figure 3.25 and Table 3.1 - were too short to determine their inlet diameters and length,

however their outlet diameters were measured and so these vessels were assumed to be

short and non-tapering. Further, the lengths of all vessels measured have been rounded to

the nearest 0.250cm to match the spatial resolution used in the numerical computation.

Vessel 0, the main pulmonary artery, is the initial vessel of the pulmonary circulation,

so the inlet of this vessel is where we attach our inflow condition representing the flow

emerging from the right ventricle. Vessels 3, 4, 5, and 6 are the terminal vessels of the

large pulmonary arterial model, and it is to the outlet of these vessels that we attach the

structured tree outflow conditions.
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Figure 3.25: Schematic of the large Pulmonary arteries, as measured by MRI.
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Figure 3.26: Pulmonary inflow profile (flow into the main pulmonary artery from the right

ventricle), as determined by MRI (left image, 45 points per period) and after interpolation

(right image, 8192 points per period). The shape of this waveform is typical, however the

cardiac output is slightly higher than in the measurements of Cheng et al. [8], [9].

Inflow Condition

During the MRI scans to measure the the structure of the pulmonary arteries, it was

also possible to measure the flow through these vessels. This allowed us to measure the

inflow into the pulmonary system at the inlet of the main pulmonary artery. The flow rate

was measured at 45 equally spaced time points over the period of one heart beat, as shown

in the left graph of Figure 3.26, but by using a numerical spline we can interpolate this to

8192 points per period, the resulting periodic profile shown in the right graph in Figure

3.26. This increased temporal resolution matches that of our numerical model, and allows

us to use the flow profile described in Figure 3.26 as our inflow condition to the model.

Outflow Condition - Structured Tree

For our first attempt at a Pulmonary arterial model we continue to use the structured

tree outflow condition as described by Olufsen and in the previous chapter. Since the data

used to evaluate the parameters which determine the branching structure of the systemic

structured tree (the branching exponent, ξ, the asymmetry ratio γ and the area ratio, η)

were found by considering the data from many studies, including those of the pulmonary

system [44], we believe it is reasonable to assume that these values, ξ = 2.70, γ = 0.9 and

η = 1.16, are still relevant in describing the branching structure of the smaller pulmonary

arteries.
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Figure 3.27: Vessel radius vs length for pulmonary arteries, data from Huang et. al. [21].

One parameter, however, which is significantly different in the pulmonary arteries

when compared with the systemic arteries is the length to radius ratio, lrr of the vessel

segments of the structured tree. Data collated by Fung [14] (based on studies by Singhal

et. al. [46]) and most recently data collected by Huang et. al. [21] show that arterial

vessel segment lengths, when compared with their radii, are considerably shorter in the

pulmonary circulation (lrr ∼ 10− 20) than in the systemic circulation (lrr ∼ 50) [22].

The left graph of Figure 3.27 shows a plot of radius versus length of vessels of the

pulmonary arterial tree, as given by the most recent study of Huang et. al., 1996 [21],

with the right graph showing a log-log plot of the same values. The 15 points represent the

averaged lengths and radii for each of the 15 orders of the pulmonary tree, as described

by the diameter-defined Strahler ordering model (see Appendix B).

The largest orders in Figure 3.27 represent the first few generations of the pulmonary

arterial tree - order 15 being the main pulmonary artery, order 14 the left and right

pulmonary arteries etc. - which are of course defined explicitly in our pulmonary arterial

model. As such, the data for these points is not relevant when determining the parameters

for our structured tree.

Ignoring the largest three data points in Figure 3.27, the remaining data can be rea-

sonably approximated by two straight line fits - one for the 4 smallest orders (orders 1 -

4), as shown in the left graph of Figure 3.28, and one for the remaining 8 orders plus the

largest order of the other fit (orders 4 - 12), as shown in the right graph in Figure 3.28.

These fits lead to length to radius relations of

l = e2.76r1.10 = 15.75r1.10 (3.34)
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Figure 3.28: Logarithmic plot of radius vs length for vessels of radius r < 0.005cm (order

1 - 4) and vessels of radius r > 0.005cm (order 4 - 12) respectively.

for vessels of radius r ≥ 0.005cm, and

l = e−0.58r0.47 = 0.56r0.47 (3.35)

for vessels of radius r ≤ 0.005cm.

Elastic Properties

The 2003 paper by Krenz and Dawson [24] contains a summary of 26 studies on the

distensibility of arteries in pulmonary networks in 6 different species, including humans.

They described the distensibility of the vessels in terms of the distensibility parameter, α,

defined by

D/D0 = 1 + αP, (3.36)

where P is transmural pressure, D is vessel diameter at pressure P, and D0 is vessel

diameter at P = 0.

They showed that, across all of the studies they considered, a constant value of α =

0.02/mmHg reflected the tendency of all data reasonably well (see Figure 3.29).

Olufsen’s model incorporated the elastic properties of vessels through the state equa-

tion, (2.6), which can be re-written as,

P =
4
3

Eh

r0

(
1−

√
A0

A

)
, (3.37)

where P is again transmural pressure, as in (3.36), A is the cross-sectional area of a vessel

at pressure P , and A0 is this area when P = 0. Eh/r0 is Young’s modulus times wall
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Figure 3.29: Pulmonary arterial distensibilities, from Krenz and Dawson, 2003 [24].

thickness, divided by vessel radius when P = 0, and is the parameter we use to represent

the elastic properties of blood vessels.

It is this quantity, Eh/r0, that we wish to relate to the value of α determined by Krenz

and Dawson and described above, and we do this by means of the vessel distensibility,

defined as,

D =
1
A

dA

dP

∣∣∣∣
P=0

. (3.38)

First, we differentiate (3.37) with respect to A to find,

dP

dA
=

4
3

Eh

r0

√
A0

2A
√

A
, (3.39)

so that
1
A

dA

dP
=

3
2

r0

Eh

√
A

A0
(3.40)

and

D =
1
A

dA

dP

∣∣∣∣
P=0

=
3
2

r0

Eh
, (3.41)

since A = A0 when P = 0.

Now, by rewriting (3.36) in terms of radius rather than diameter, we can find from it,

1
A

dA

dP
=

1
πr2

d(πr2)
dP

=
2αr2

0 + 2α2r2
0P

r2
, (3.42)

so that

D =
1
A

dA

dP

∣∣∣∣
P=0

= 2α, (3.43)
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since r = r0 when P = 0.

By equating these two expressions for distensibility - equations (3.41) and (3.43) -

we can now write Olufsen’s stiffness parameter, Eh/r0, in terms of Krenz and Dawson’s

distensibility parameter, α, as,
Eh

r0
=

3
4α

. (3.44)

Further, whereas Olufsen’s model for Eh/r0 in the systemic arteris varied with vessel

radius (see equation (2.3) and Figure 2.2) the value of α = 0.02/mmHg derived from Figure

3.29, when substituted into (3.44), suggests a constant value of Eh/r0 = 50000g/s2cm for

the pulmonary arteries, irrespective of vessel radius.

Results

Using the description of the pulmonary arterial structure and properties given in this

chapter, the predicted flow and pressure profiles for the Main Pulmonary Artery are shown

in the first two graphs in Figure 3.30. The simulation suggests a mean pressure Pmean =

7.7mmHg at the inlet of the pulmonary artery, peak pressure of Ppeak = 13.2mmHg,

a trough pressure of around Ptrough = 2.0mmHg, and thus a pulse pressure Ppulse =

11.2mmHg. Although the shape of the predicted pressure pulse and flow waveforms look

qualitatively good, these pressure values are noticeably lower than typical pulmonary

artery mean pressures of around 14.7mmHg [14], [56].

The remaining graphs of Figure 3.30 show the predicted waveforms in the Right and

Left Pulmonary Arteries respectively. While flow is divided up between arteries of each

generation, very little change is seen in the pressure profile along each artery. This is

further backed up in Figure 3.31 which shows the flow and pressure profiles at the outlet

of each of the large terminal arteries (Vessels 3 - 6 in Figure 3.25).

Using the same method as described in the previous section, Figure 3.32 shows the

propagation of the pressure pulse and mean pressure along the α branch of the structured

tree attached to the terminal of Vessel 3 in Figure 3.25. Figure 3.33 further shows the mean

pressures against radius across the entirety of the same vascular bed, with the number of

vessel with radius shown in the right graph.



CHAPTER 3. APPLICATIONS OF THE SYSTEMIC ARTERIAL MODEL 64

Figure 3.30: Predicted pressure and flow profiles in the Main Pulmonary Artery (Vessel

0 of Figure 3.25), the Right Pulmonary Artery (Vessel 1 of Figure 3.25), and the Left

Pulmonary Artery (Vessel 2 of Figure 3.25). The flow split between Left and Right Pul-

monary Arteries, with more flow to the larger vessel, is in agreement with observations by

MRI [8], [9].
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Figure 3.31: Flow and pressure profiles at outlets of terminal large arteries.
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Figure 3.32: Pressure profiles and mean pressure with radius in the α branch.

Figure 3.33: Mean pressures and number of vessels with radius in the structured tree of

small pulmonary arteries.
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Interpreting these results

The pulmonary arterial model provides qualitatively good predictions of the pressure

pulse in the larger pulmonary arteries, as demonstrated in Figure 3.30. It is the unreal-

istically low predicted pressure, and the evidence of Figures 3.32 and 3.33, however, that

suggests the inaccuracies of this model. The mean pressure can be seen to drop to zero

at the end of the smallest vessels of the structured tree, as is inevitable given the zero-

impedance outflow condition, but we will see later (Figure 5.1) that the pressure drop in

the pulmonary circulation is more steady and occurs right across the arteries, capillaries

and veins. This means that, while the peak and mean pressures predicted by this model

seem accurate, it is likely that there is still information absent which would result from

the influence of the pulmonary capillaries and veins, and which may have an effect on the

shape of the arterial waveform as well as the peak and mean values.



Chapter 4

Joining an Arterial and Venous

tree

In order to produce a model of the complete pulmonary circulation, we must first

produce a method of joining together an arterial tree and a venous tree. To do this,

we intend to replace Olufsen’s structured tree outflow condition with a new model that

is based on that model, but describe both a divergent, bifurcating arterial tree, and a

confluent venous tree, with the two trees connected at their terminal vessels. Instead

of providing an impedance as an outflow to a large arterial model, our new model will

instead determine the admittance of a connected vascular network, taking the form of

a 2 × 2 matrix, Y, relating the pressure and flow at the outflow of a large artery (the

root/inflow to the small arterial tree) to the pressure and flow at the inflow to a large vein

(the root/outflow of the small venous tree) as shown in Figure 4.1.

Figure 4.1: Linking an Arterial and Venous tree

68
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Figure 4.2: Single vessel segment. Flows Q1 and Q2 are in opposite directions.

4.1 Admittance matrix for a single vessel

Based on Olufsen’s model for small arteries (Section 2.2), and Figure 4.2, the frequency

domain flow and pressure at any distance point x along a vessel segment is

Q(x, ω) = a cos(ωx/c) + b sin(ωx/c), and (4.1)

P (x, ω) = (i/gω)(−a sin(ωx/c) + b cos(ωx/c)), (4.2)

where a and b are constants, ω is frequency and gω =
√

CA0(1− FJ)/ρ (see Section 2.2

for further explanation of terms).

Vessel boundaries

Using the notation described in Figure 4.2, the flow and pressure at the beginning of

a vessel segment, i.e. when x = 0, can be written as,

Q1 = a, and (4.3)

P1 = ib/gω, (4.4)

and at the end of a vessel segment, i.e.when x = L, the flow and pressure is,

Q2 = −(a cos(ωL/c) + b sin(ωL/c)), and (4.5)

P2 = (i/gω)(−a sin(ωL/c) + b cos(ωL/c)). (4.6)

So, in matrix form, P2

Q2

 =

 cos(ωL/c) −(i/gω) sin(ωL/c)

igω sin(ωL/c) − cos(ωL/c)

 P1

Q1

 , (4.7)
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since  P1

Q1

 =

 ib/gω

a

 . (4.8)

Matrix form

By defining CL ≡ cos(ωL/c) and SL ≡ sin(ωL/c), we can write,

 P2

Q2

 =

 CL −iSL/gω

igωSL −CL

 P1

Q1

 (4.9)

or,  P1

Q1

 =

 CL −iSL/gω

igωSL −CL

 P2

Q2

 . (4.10)

By rearranging, we can find that, Q1

Q2

 =
igω

SL

 −CL 1

1 −CL

 P1

P2

 , (4.11)

meaning that

Y(ω) =
igω

SL

 −CL 1

1 −CL

 (4.12)

is the admittance matrix for ω 6= 0 for any one artery or vein.

When ω = 0 - the Zero frequency/DC component

From the linearised 1D axisymmetric momentum equation, equation (2.8), re-written

as,
∂u

∂t
+

1
ρ

∂p

∂x
=

ν

r

∂

∂r

(
r
∂u

∂r

)
, (4.13)

we take Fourier expansions of fluid velocity, u(r, x, t) = U(r, x)eiωt, and pressure, p(x, t) =

P (x)eiωt, so that (4.13) can be expressed as,

iωU +
1
ρ

dP

dx
=

ν

r

∂

∂r

(
r
∂U

∂r

)
, (4.14)

i.e.
1
ρ

dP

dx
=

ν

r

∂

∂r

(
r
∂U

∂r

)
(4.15)

since we are dealing with the case when ω = 0, meaning that iωU = 0 .
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Now, ν = µ/ρ and dP/dx is independent of r, so we can rearrange and integrate (4.15)

with respect to r,

r2

2µ

dP

dx
+ A = r

∂U

∂r
(4.16)

⇒ ∂U

∂r
=

r

2µ

dP

dx
+

A

r
, (4.17)

where A is a constant of integration. However, since we know ∂U/∂r is finite at r = 0,

A = 0 and we can further integrate (4.17) with respect to r again to find,

U =
r2

4µ

dP

dx
+ B, (4.18)

where B is a constant. But the no-slip boundary condition tells us that fluid velocity

U = 0 on the vessel walls r = r0, so

U =
r2 − r2

0

4µ

dP

dx
. (4.19)

Now we can find an expression for the Fourier expansion of the flow, q(x, t) = Q(x)eiωt,

in relation to the pressure P by integrating (4.19) over the cross-sectional area,

Q = 2π

∫ r0

0
Urdr (4.20)

=
2π

4µ

∫ r0

0
r(r2 − r2

0)
dP

dx
dr (4.21)

=
π

2µ

dP

dx

[
r4
0

4
− r4

0

2

]
(4.22)

= − π

8µ

dP

dx
r4
0. (4.23)

Since we are dealing with steady flow, we know that ∂q/∂x = 0, and continuity implies

that ∂q/∂x = 0 ⇔ ∂Q/∂x = 0, meaning that we can write,

Q = β, (4.24)

where β is a constant.

Therefore, substituting (4.24) into (4.23) and rearranging, we find that,

dP

dx
= −8µβ

πr4
0

(4.25)

⇒ P = −8µβ

πr4
0

x + γ, (4.26)

where β and γ are constants.
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So we have,

Q1 = β, (4.27)

−Q2 = β (sign convention, see Figure 4.2), (4.28)

P1 = γ, and (4.29)

P2 = γ − 8µβL/πr4
0. (4.30)

Therefore,  P2

Q2

 =

 1 −8µL/πr4
0

0 −1

 P1

Q1

 , (4.31)

and,  P1

Q1

 =

 1 −8µL/πr4
0

0 −1

 P2

Q2

 . (4.32)

So,  Q1

Q2

 =
πr4

0

8µL

 1 −1

−1 1

 P1

P2

 , (4.33)

and

Y(0) =
πr4

0

8µL

 1 −1

−1 1

 (4.34)

is the admittance matrix for ω = 0 (DC component).

Non-dimensional admittance matrices

The frequency domain pressure and flow can be non-dimensionalised by,

P (x, ω) = ρglP̃ (x, ω), and (4.35)

Q(x, ω) = qcQ̃(x, ω), (4.36)

where ρ is the density of blood, g is acceleration due to gravity, l is the characteristic

length, qc is the characteristic flow and P̃ and Q̃ are the non-dimensional pressure and

flow respectively. This allows us to find the non-dimensional form of the admittance, Ỹ ,

from its dimensional form through,

Y (x, ω) =
Q(x, ω)
P (x, ω)

=
qc

ρgl

Q̃(x, ω)
P̃ (x, ω)

=
qc

ρgl
Ỹ (x, ω), (4.37)

meaning that for ω 6= 0, (4.11) becomes, Q̃1

Q̃2

 =
igω

SL

ρgl

qc

 −CL 1

1 −CL

 P̃1

P̃2

 , (4.38)
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and for ω = 0, (4.33) becomes, Q̃1

Q̃2

 =
ρgl

qc

πr4
0

8µL

 1 −1

−1 1

 P̃1

P̃2

 , (4.39)

meaning that

Ỹ(ω) =
igω

SL

ρgl

qc

 −CL 1

1 −CL

 (4.40)

and

Ỹ(0) =
ρgl

qc

πr4
0

8µL

 1 −1

−1 1

 (4.41)

are the non dimensional admittance matrices for a single vessel for ω 6= 0 and ω = 0

respectively.

We shall from here on re-define

Qi = Q̃i,

Pi = P̃i,

and

Yij = Ỹij ,

so that,  Q1

Q2

 =

 Y11 Y12

Y21 Y22

 P1

P2

 , (4.42)

where

Y11 = − igωCL

SL

ρgl

qc
,

Y12 =
igω

SL

ρgl

qc
,

Y21 =
igω

SL

ρgl

qc
, and

Y22 = − igωCL

SL

ρgl

qc

for ω 6= 0, or

Y11 =
πr4

0

8µl

ρgl

qc
,

Y12 = −πr4
0

8µl

ρgl

qc
,

Y21 = −πr4
0

8µl

ρgl

qc
, and

Y22 =
πr4

0

8µl

ρgl

qc

for ω = 0.
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Figure 4.3: Two admittances in parallel.

4.2 Admittance Matrix for two vessels in parallel

We consider here two vessels, A and B, in parallel joined to a common inflow and out-

flow, as described in Figure 4.3. Since we know pressure is continuous across a bifurcation,

the pressure at the inlet of vessel A is the same as the pressure at the inlet of vessel B, and

the pressure at the outlet of vessel A is the same as the pressure at the outlet of vessel B.

We call these inlet and outlet pressures P1 and P2 respectively, so that, QA
1

QA
2

 = YA

 P1

P2

 , (4.43)

where QA
1 and QA

2 are, respectively, the inflow and outflow of vessel A, and YA is the

admittance matrix for vessel A, and similarly QB
1

QB
2

 = YB

 P1

P2

 , (4.44)

where QB
1 , QB

2 and YB are the inflow, outflow and admittance matrix for vessel B.

We further know that flow is conserved across a bifurcation, so for our two vessels

connected in parallel, the total inflow Q1 = QA
1 +QB

1 and the total outflow Q2 = QA
2 +QB

2 ,

meaning we can add the above equations to get, Q1

Q2

 =

 QA
1 + QB

1

QA
2 + QB

2

 =
(
YA + YB

) P1

P2

 . (4.45)

Thus

Y = YA + YB (4.46)

is the total admittance matrix for two vessels in parallel.
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Figure 4.4: Two admittances connected in series.

4.3 Admittance matrix for two vessels in series

We shall now consider two vessels connected in series, as described in Figure 4.4. Using

the notation in Figure 4.4,

QA
1 = Y A

11P
A
1 + Y A

12P
A
2 , (4.47)

QA
2 = Y A

21P
A
1 + Y A

22P
A
2 , (4.48)

QB
1 = Y B

11PB
1 + Y B

12PB
2 , and (4.49)

QB
2 = Y B

21PB
1 + Y B

22PB
2 . (4.50)

Let P = PA
2 = PB

1 . Then we may solve for P from equations (4.48) and (4.49). Since

QA
2 = −QB

1 ,

Y A
21P

A
1 + Y A

22P + Y B
11P + Y B

12PB
2 = 0, (4.51)

so, by rearranging,

P = −Y A
21P

A
1 + Y B

12PB
2

Y A
22 + Y B

11

. (4.52)

Substituting this result into equations (4.47) and (4.50), we get,

QA
1 =

(
Y A

11 −
Y A

21Y
A
12

Y A
22 + Y B

11

)
PA

1 − Y A
12Y

B
12

Y A
22 + Y B

11

PB
2 , and (4.53)

QB
2 = − Y B

21Y A
21

Y A
22 + Y B

11

PA
1 +

(
Y B

22 −
Y B

21Y B
12

Y A
22 + Y B

11

)
PB

2 . (4.54)

Therefore,  QA
1

QB
2

 = Y

 PA
1

PA
2

 , (4.55)

where

Y =
1

Y A
22 + Y B

11

 det(YA) + Y A
11Y

B
11 −Y A

12Y
B
12

−Y A
21Y

B
21 det(YB) + Y A

22Y
B
22

 (4.56)

is the admittance matrix for two vessels connected in series.
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Figure 4.5: Simple example of back to back arterial and venous trees.

4.4 Linking an Arterial and Venous tree

We now have everything we need to compute the total admittance of a pair of back-to-

back arterial and venous trees of any size. As with the original structured tree model, each

tree is binary but generally asymmetric - the number of generations required to reach the

terminal vessels varies with different paths. Topologically, the two trees are mirror images

of each other - this is a requirement to ensure both trees have the same number of terminal

vessels - but each vessel is allowed to have different properties from its image vessel in the

other tree. This is important as arteries and veins generally have very different properties.

Every vessel in either tree is indexed with corresponding image vessels having the same

index, but labelled as ‘artery’ or ‘vein’ as appropriate. For each indexed (pair of) vessel(s),

two arrays are stored containing the indexes of said vessel’s daughter vessels (one for left

daughter vessels, one for right daughter vessels), or if it is a terminal vessel its entries in

the arrays of daughter vessels are set to zero. Every terminal vessel in either tree connects

to its image vessel in the other tree.

The admittance matrix for each individual vessel may be determined by (4.42), and

the total admittance of the two connected trees can be found recursively by adding the

admittance matrices of vessels and subtrees in series (using (4.56)) and in parallel (using

(4.46)) as appropriate.
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A simple example

To find the total admittance of the simple back-to-back arterial and venous trees de-

scribed in Figure 4.5, one would begin by calculating the individual admittance matrices

for each of the six individual vessels using (4.42). We then add the admittance matrix of

each terminal vessel in series with that of its corresponding vessel in the other tree using

(4.56), in this case vessels A2 and V2 are added in series, and vessels A3 and V3 are added

in series to give a single admittance for each of the A2-V2 and A3-V3 branches.

Now, the A2-V2 and A3-V3 branches share parent vessels, and so the combined A2-V2

admittance can be added in parallel (using (4.46)) with the A3-V3 admittance to find the

admittance matrix of the A2-V2-A3-V3 sub-tree.

Finally, by twice using (4.56), we add in series the admittance of vessel A1 with the

A2-V2-A3-V3 sub-tree admittance, and this combined admittance is then added in series

with the admittance of vessel V1 to find the total admittance of the system described in

Figure 4.5.



Chapter 5

The Pulmonary Circulation Model

The pulmonary circulation differs from the systemic circulation in a number of ways,

most notably in that the pulmonary circulation, unlike the systemic circulation, has a

relatively pressurised venous system (see Figure 5.1) - that is flow through the pulmonary

veins is driven by a pressure gradient, and there are no valves like there are in the systemic

veins. This means that, whereas Olufsen’s systemic model considered only the arterial side

of the systemic circulation, for our model of the complete pulmonary circulation we wish

to consider the venous side of the system, where there is still a measurable pressure pulse,

and also the capillary network in between.

In Section 3.4, we adapted Olufsen’s model to describe the arterial tree of the pul-

monary circulation, and we will use the same description again to describe the large

pulmonary arteries in our new model. It is also necessary to produce a description of

the large pulmonary veins to describe the outflow of the pulmonary circulation draining

into the left atrium of the heart. Finally, we will develop a new model to describe the

connected network of both small arteries and small veins.

5.1 Large Pulmonary Arteries

The structural and elastic properties of the large pulmonary arteries, as well as the

inflow into the main pulmonary artery, that were described in the production of the pul-

monary arterial model in Section 3.4 will again be used to describe the large arterial section

of our new pulmonary circulation model.

78
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Figure 5.1: Longitudinal pressure distribution in pulmonary blood vessels, from Zhuang et

al. [56], where PA is airway pressure, PPL is pleural pressure, and the numbers 1 and 2 refer

to order numbering by generation, and by a Strahler method respectively (see Appendix

B).
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5.2 Large Pulmonary Veins

The large pulmonary veins will be described in an identical manner to the large arteries

- a tree of large vessels with an ‘outflow’ condition at the opening of the largest vein

(equivalent to the inflow condition to the large arteries), ‘inflow’ conditions at the ends

of the terminal vessels (equivalent to the outflow conditions of the large arteries), and

identical bifurcation conditions as for the arterial tree. Since the pulmonary veins are

known to follow closely the course of the pulmonary arteries, we have described the large

pulmonary venous tree simply as a mirror image of the arterial tree described in Figure

3.25. The diameters and lengths of these vessels also fall within the range suggested by

the data of Huang et al. [21].

Outflow Condition

The outflow condition to our large pulmonary veins, applied at the opening of the

largest pulmonary vein, is also the outflow condition of our full pulmonary circulation

model, and describes the return flow of blood from the pulmonary veins to the left atrium

of the heart.

Whereas at the inflow to the pulmonary arteries we prescribed an imposed flow profile

condition, at the outflow of the pulmonary veins we shall prescribe an imposed pressure

condition. Since this condition is imposed at a position immediately above where blood

drains relatively freely into the left atrium, we believe that setting the pressure to be a

very low value, or zero at this point is a reasonable outflow condition for our model (as

suggested in Figure 5.1). This also ensures a pressure gradient right across the pulmonary

circulation to drive the flow of blood.

Elastic Properties

In the absence of extensive data on the elastic properties of the pulmonary veins, it has

been suggested to us by our clinical collaborators that the compliance of the pulmonary

veins need not differ much from that of the systemic veins, on which there has been

collected suitable data [26], [49]. The justification for this is that the blood passing through

both the systemic and pulmonary veins do so at similarly low pressures.

Figure 5.2 summarises a fit to data collected by Stooker at al in 2003 [49] on pressure-

diameter relationships in the human greater saphenous vein, which is often used in bypass
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Figure 5.2: Pressure vs fractional change in diameter. Data from Stooker et al [49].

surgery. They plotted the fractional change in diameter against pressure for two regions

of the greater saphenous vein - in the lower leg and in the upper leg respectively - and

this plot is recreated in the left graph of Figure 5.2. The gradient of the pressure-diameter

relations plotted in Figure 5.2 is equivalent to the distensibility parameter α described in

Section 3.4 for the pulmonary arteries.

The diameter of the greater saphenous vein is generally larger than that of the pul-

monary veins, and we believe it is reasonable to assume that in regions of low pressure

(p < 10 − 20mmHg) in Figure 5.2 the vein may be deformed due to collapsing, and in

regions of high pressure (p > 30 − 40mmHg) the vein may be deformed by being over

stretched. The intermediate region of interest, where we believe the vein is undeformed,

is what we use to derive our stiffness properties for the pulmonary veins.

The p ∼ 20− 30mmHg region of interest is expanded in the right graph of Figure 5.2,

and it can be seen that in both the upper and lower leg the pressure-diameter relations

coincide and are roughly linear. Fitting a straight line to this region yields a gradient,

and thus distensibility parameter, of 0.02/mmHg - exactly the same as was found for the

pulmonary arteries in Section 3.4. This is perhaps not surprising as the region of interest

of pressure we derived this from - p ∼ 20 − 30mmHg - is approximately the same as the

peak pressures seen in the pulmonary arteries.
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Figure 5.3: Vessel radius vs length for pulmonary veins, data from Huang et. al. [21].

5.3 Small Vessel Structure

The small vessels of the pulmonary circulation will be modelled as a back-to-back pair

of arterial and venous structured trees, as described in the previous chapter. This provides

us with an admittance matrix relating pressure an flow at the outflow points of the large

arterial model to the pressure and flow at the inflow points of the large venous model.

The properties of the small pulmonary arteries (lengths, radii, stiffness) were described

in the production of the pulmonary arterial model in Section 3.4, and the same description

will be used here. The small pulmonary veins, however, have different properties to the

arteries, and so further description is required.

It is a requirement of our algorithm for joining arterial and venous trees that the

two back-to-back trees be topologically mirror images of each other. This means that

the parameters which govern the branching nature of the structured tree - the branching

exponent, and area and asymmetry ratios - must be identical for the arterial and venous

trees. Further, the top and bottom radii of each vessel in each tree must match that of its

image in the other tree. The vessel length (as a function of its radius) and wall stiffness,

however, can be varied for the different trees.

Huang et al, 1996 [21] provide data on the average lengths and radii of vessels across

the 15 orders of the pulmonary venous tree, as summarised in the left graph of Figure

5.3. As we did with the pulmonary arteries in Section 3.4, we ignore the data for the

largest three orders of the pulmonary venous trees, as these three largest generations are

described explicitly in our model of the large pulmonary veins. A log-log fit of the data for

the remaining 12 orders, as seen in the right graph of Figure 5.3, suggests a length-to-radius
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relation of

l = e2.68r1.00 = 14.54r (5.1)

for all pulmonary veins of radius r < 0.200cm.

5.4 Incorporating into the numerical scheme

We continue to use the two-step Lax-Wendroff scheme to solve for flow and pressure in

our new pulmonary model. We again use a prescribed flow profile, given by Figure 3.26,

as our inflow condition, and similarly now use a prescribed pressure profile as our outflow

condition. This outflow pressure is set to be zero for all time for this model, but could be

set to any prescribed pressure-time profile. Details of how these are incorporated into the

numerical scheme are given in A.1 and A.4 of Appendix A respectively.

The bifurcation conditions are identical as for the systemic arterial model, but we

now require a new matching boundary condition at the terminals of the large pulmonary

arteries and veins respectively. This condition is derived from the admittance matrix

described in Chapter 4 which states that, QA(L, ω)

QV (0, ω)

 =

 Y11(ω) Y12(ω)

Y21(ω) Y22(ω)

 PA(L, ω)

PV (0, ω)

 ,

where QA(L, ω) and PA(L, ω), and QV (0, ω) and PV (0, ω) are the frequency domain flows

and pressures at the ends of the terminal arteries and veins respectively.

Transforming this to the time domain using convolutions gives,

qA(L, t) =
∫ T

0
(pA(L, t− τ)y11(τ) + pV (0, t− τ)y12(τ)) dτ , and (5.2)

qV (0, t) =
∫ T

0
(pA(L, t− τ)y21(τ) + pV (0, t− τ)y22(τ)) dτ, (5.3)

which are the matching boundary conditions to be applied at the end of terminal arteries

and veins respectively. Details of how this is incorporated into the numerical scheme are

given in A.3 of Appendix A.



Chapter 6

Validation and Applications of the

Pulmonary Circulation Model

Figure 6.1 shows predicted pressure profiles, as well as peak, trough, pulse and mean

pressures in the main pulmonary artery (Vessel 0 of Figure 3.25) for a range of values of

the minimum radius, rmin, in arterial and venous structured trees. Figure 6.2 shows the

predicted pressures profiles for the right and left pulmonary arteries for the same range of

values of rmin.

A minimum radius value of rmin = 0.001cm, as used in the pulmonary arterial model

in Section 3.4, results in the highest pressure predictions in Figures 6.1 and 6.2, with peak

pressures around 70mmHg. Clearly this is much higher than realistic values that would

be expected in the large pulmonary arteries, and so we choose rmin = 0.005cm, which

predicts more realistic pressures, for what we consider ‘normal’ conditions in our model.

The justification for choosing rmin = 0.005cm comes from equations (3.34) and (3.35),

and Figure 3.27 of Section 3.4. These suggest that the length-to-radius relation of vessels

in the small pulmonary arteries changes at this point, implying that vessels smaller than

this value are arterioles with different properties to the larger arteries (that control the

flow of blood into the pulmonary capillaries), or the pulmonary capillaries themselves. In

the absence of a capillary model (see Chapter 7), we therefore choose to terminate our

structured tree above this level.
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Figure 6.1: Predicted pressures in the Main Pulmonary Artery.

Figure 6.2: Predicted pressures in the Right and Left Pulmonary Arteries.
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6.1 Normal Physiological Conditions

Having determined what constitutes normal conditions in our model, Figure 6.3 shows

the predicted flows and pressure in the main, left and right pulmonary arteries under these

conditions. Similarly, Figure 6.4 shows the predicted flows and pressures in the main, left

and right pulmonary veins (i.e. the veins that are the image of the three largest pulmonary

arteries, see Chapters 5 and 7).

The magnitude and shape of the predicted pulmonary artery pressure and flow wave-

forms are in good agreement with clinical measurements [27] (left hand graphs of Figure

6.5).
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Figure 6.3: Predicted pressure and flow profiles in Main, Right and Left Pulmonary Ar-

teries.
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Figure 6.4: Predicted pressure and flow profiles in Left, Right and Main Pulmonary Veins.
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Figure 6.5: Measured pulmonary artery pressure and flow waveforms. NONPH - Normal

Physiological Conditions, CTEPH - Chronic Thromboembolic Pulmonary Hypertension,

IPAH - Idiopathic Pulmonary Arterial Hypertension. From Lankhaar et al. [27].

6.2 Pulmonary Hypertension

Pulmonary hypertension is a rare condition which can have grave consequences for

those affected. The condition may arise as the result of multiple mechanisms, and as a

result can be divided into a number of clinical classifications [36], [45],

• Group I - Pulmonary Arterial Hypertension - in this group of conditions, the

pathophysiology is located in pulmonary arteries and arterioles of less than 0.050cm

diameter, with increased stiffness and resistance in the smaller vessels [27], [43].

• Group II - Pulmonary Venous Hypertension - here, the pulmonary arteries

are normal, but failure of the left heart to pump blood efficiently leads high pressure

in the left atrium, pooling of blood in the lungs and distended pulmonary veins [45]

• Group III - Pulmonary Hypertension in association with hypoxic lung

disease - this group includes conditions that involve pulmonary vascular remodelling

(typically affecting vessels of less than 0.050cm diameter) and loss of the pulmonary

vascular bed (vascular rarefaction) due to underlying respiratory disease [51].

• Group IV - Chronic Thromboembolic Pulmonary Hypertension - here, the

problem is initially located in larger vessels with increased stiffness and decreased

cross-sectional area. Eventually there may be involvement of the small vessels in the

same way as Pulmonary Arterial Hypertension [7], [11].
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6.2.1 Pulmonary Arterial Hypertension

Pulmonary arterial hypertension may have a variety of causes [4], but an underlying

feature of the condition is the stiffening of the smaller pulmonary arteries [43]. Reeves et.

al. [43] showed that the distensibility parameter α (see Section 3.4) decreased in chronic

hypoxia and with ageing, resulting in the stiffening of vessels.

As we did in Section 3.1 for the systemic arteries, we model this reduction in distensi-

bility by increasing the stiffness parameter Eh/r0, which is inversely proportional to the

distensibility parameter α (see equation (3.44)).

Results

Figure 6.6 shows the effects of increased small vessel stiffness on predicted pressures

in the three largest pulmonary arteries. We see that increasing the stiffness parameter

leads to an increase in peak and pulse pressure. We also see that peaking of the pressure

wave occurs slightly later in instances of stiffer small arteries, and that a local minimum

visible shortly after the main peak disappears when the small vessels are stiffened. This

is in good agreement with the observations of Lankhaar et. al. [27] (right hand graphs

of Figure 6.5) in cases of idiopathic pulmonary hypertension compared to no pulmonary

hypertension (control).

Figures 6.7, 6.8 and 6.9 show the effects of stiffening the small pulmonary arteries (and

thus mimicking the hypothesis behind pulmonary arterial hypertension) on pulmonary

arterial flow, pulmonary venous pressure and pulmonary venous flow respectively. Little

effect is seen on the pulmonary arterial flow, while the stiffening of the small arteries

causes an increase in the amplitude of oscillation of the pulmonary venous pressure and

flow waveforms.
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Figure 6.6: Effects of changing small vessel compliance on Pulmonary Artery Pressure.
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Figure 6.7: Effects of changing small vessel compliance on Pulmonary Artery Flow.
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Figure 6.8: Effects of changing small vessel compliance on Pulmonary Venous Pressure.
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Figure 6.9: Effects of changing small vessel compliance on Pulmonary Venous Flow.
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6.2.2 Pulmonary Venous Hypertension

Pulmonary venous hypertension may be more a condition of the left heart than of the

lungs [45]. The inability of the left heart to pump blood efficiently results in a build up

in pressure in the pulmonary veins. Since our outflow condition describing venous return

to the left atrium in our pulmonary model is a prescribed pressure condition, we may

simulate this build up in pressure by simply increasing our prescribed pressure value at

the outlet of the largest pulmonary vein.

Results

Figure 6.10 shows predicted pressure profiles in the largest pulmonary arteries, for

venous boundary pressures ranging from -5mmHg to +35mmHg. Almost no effect is

seen on the shape of the pressure profile, it is simply shifted up the pressure axis with

increased venous boundary pressure. Similarly, mean pressure increases in proportion

with the increase in venous boundary pressure, while pulse pressure drops very slightly at

higher pressures. The same results are seen in Figure 6.12 for pulmonary venous pressure

- shifting of the pressure profile and an increase in mean pressure in proportion with the

increase in boundary pressure.

Figure 6.11 shows little or no effect of changing venous pressure on pulmonary arterial

flow, while Figure 6.13 shows a slight reduction in amplitude of the pulmonary venous

flow with increased venous pressure.
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Figure 6.10: Effects of pulmonary venous hypertension on pulmonary arterial pressure.



CHAPTER 6. VALIDATION & APPLICATIONS OF THE PULMONARY MODEL 97

Figure 6.11: Effects of pulmonary venous hypertension on pulmonary arterial flow.
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Figure 6.12: Effects of pulmonary venous hypertension on pulmonary venous pressure.
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Figure 6.13: Effects of pulmonary venous hypertension on pulmonary venous flow.
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6.2.3 Pulmonary Hypertension in association with hypoxic lung disease

Vascular remodelling associated with hypoxic lung disease results in an inhibition of

oxygen absorption into the bloodstream [51]. Further, the loss of vascular beds due to

vascular rarefaction may result in pulmonary hypertension.

In Section 3.2, we described the rarefaction of the systemic microcirculation by reducing

the radius exponent ξ and the asymmetry ratio γ, thus reducing the area ratio η, of the

structured tree (see Figure 3.7 for how ξ and γ affect η). We shall again use this approach to

model rarefaction in the pulmonary circulation, however, whereas the systemic rarefaction

model affected only an arterial tree, in our pulmonary model both the tree of small arteries

and of small veins will be rarefied.

Results

Figure 6.14 shows predicted pressure pulse waveforms in the main pulmonary artery.

It shows how rarefied vascular beds result in a significant increase in peak, trough and

mean arterial pressure, as reinforced in Figure 6.16. Further, as the degree of rarefaction

is increased, the separate peaks from the incident and reflected pressure pulses merge to

form a single, more featureless, peak in the pressure waveform. This coinciding of the

incident and reflected pressure may also explain the point of inflection in the relation

between rarefaction and pulse pressure that can be seen in Figure 6.16.

Little change can be seen in the predicted main pulmonary artery flow waveforms in

Figure 6.15 apart from a slight decrease in peak flow with increased rarefaction.

The same effects can be seen in the right (Figures 6.17 - 6.19) and left (Figures 6.20

- 6.22) pulmonary arteries, although the scale of reduction in flow is greater in the larger

left pulmonary artery, than in the right.

Figures 6.23 - 6.31 show the effects of rarefaction on the pulmonary veins. Rarefaction

can be seen to generally cause a reduction in the amplitude of both the venous pressure

and flow waveforms. Interestingly, however, a reduction in amplitude is also seen when

the parameters controlling rarefaction (particularly ξ) are increased above what is con-

sidered normal physiological values. Rarefaction also causes a phase shift in the venous

pulse waves, with both venous pressure and flow waveforms peaking earlier under rarefied

conditions.
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Figure 6.14: Effects of rarefaction on pressure pulse waveform in the Main Pulmonary

Artery.
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Figure 6.15: Effects of rarefaction on flow waveform in the Main Pulmonary Artery.
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Figure 6.16: Effects of rarefaction on mean, pulse, peak and trough pressure in the Main

Pulmonary Artery.
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Figure 6.17: Effects of rarefaction on pressure pulse waveform in the Right Pulmonary

Artery.
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Figure 6.18: Effects of rarefaction on flow waveform in the Right Pulmonary Artery.
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Figure 6.19: Effects of rarefaction on mean, pulse, peak and trough pressure in the Right

Pulmonary Artery.
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Figure 6.20: Effects of rarefaction on pressure pulse waveform in the Left Pulmonary

Artery.
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Figure 6.21: Effects of rarefaction on flow waveform in the Left Pulmonary Artery.
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Figure 6.22: Effects of rarefaction on mean, pulse, peak and trough pressure in the Left

Pulmonary Artery.



CHAPTER 6. VALIDATION & APPLICATIONS OF THE PULMONARY MODEL110

Figure 6.23: Effects of rarefaction on pressure pulse waveform in the Left Pulmonary Vein.
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Figure 6.24: Effects of rarefaction on flow waveform in the Left Pulmonary Vein.
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Figure 6.25: Effects of rarefaction on mean, pulse, peak and trough pressure in the Left

Pulmonary Vein.
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Figure 6.26: Effects of rarefaction on pressure pulse waveform in the Right Pulmonary

Vein.
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Figure 6.27: Effects of rarefaction on flow waveform in the Right Pulmonary Vein.
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Figure 6.28: Effects of rarefaction on mean, pulse, peak and trough pressure in the Right

Pulmonary Vein.
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Figure 6.29: Effects of rarefaction on pressure pulse waveform in the Main Pulmonary

Vein.
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Figure 6.30: Effects of rarefaction on flow waveform in the Main Pulmonary Vein.
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Figure 6.31: Effects of rarefaction on mean, pulse, peak and trough pressure in the Main

Pulmonary Vein.



CHAPTER 6. VALIDATION & APPLICATIONS OF THE PULMONARY MODEL119

6.2.4 Chronic Thromboembolic Pulmonary Hypertension

The pathophysiology of Chronic Thromboembolic Pulmonary Hypertension is similar

to that of Pulmonary Arterial Hypertension, except that it occurs in the larger proximal

pulmonary arteries [7], [11], although the small vessels may also become involved evenually.

As we did in Section 3.4 for the systemic arteries, and in Section 6.2.1 of this chapter

when modelling Pulmonary Arterial Hypertension, we can simulate the initial effects of

chronic thromboembolic pulmonary hypertension by stiffening the large arteries only. We

can then model the later effects, when the small arteries become involved, by stiffening

both the large and small arteries uniformly.

Results

In Figure 6.32, we see how increasing the stiffness of the large pulmonary arteries results

in an increase in peak and pulse pressure in those arteries, and that there is a steeper,

earlier peak to the pressure pulse in stiffer arteries, with a secondary peak appearing shortly

after the first. This increase in pressure and appearance of a second peak agrees with

the observations of pressure pulses in patients with chronic thromboembolic pulmonary

hypertension by Lankhaar et al. [27] (middle graphs of Figure 6.5), although the scale of

the observed increase in peak pressure is much greater than in our predictions.

Predicted flows in the pulmonary arteries are shown in Figure 6.33, with little effect

seen apart from slightly later peaking of the flow wave in the left and right pulmonary

arteries, a less pronounced effect than suggested in clinical observations [27].

In the pulmonary veins, a slight increase in amplitude of both the pressure waveform

(Figure 6.34) and flow waveform (Figure 6.35) is seen in instances of stiffer large arteries

without any notable changes in the shape of the waveforms.

When we add in the effects of the small vessels by carrying out uniform changes of

both large and small vessel stiffness, we see a more significant increase in pressure in the

pulmonary arteries (Figure 6.36) with increased stiffness, as well as the earlier peaking of

the pressure pulse we observed previously. This is more in line with clinical observations.

The same slight effect of later peaking of left and right pulmonary arterial flow wave-

forms can be seen in Figure 6.37, while in the pulmonary veins more significant increases

in amplitude of both the pressure (Figure 6.38) and flow (Figure 6.39) waveforms are seen

in instances of stiffer arteries, as well as earlier peaking of both waveforms.
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Figure 6.32: Effects of changing large vessel compliance on Pulmonary Artery Pressure.
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Figure 6.33: Effects of changing large vessel compliance on Pulmonary Artery Flow.
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Figure 6.34: Effects of changing large vessel compliance on Pulmonary Venous Pressure.
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Figure 6.35: Effects of changing large vessel compliance on Pulmonary Venous Flow.
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Figure 6.36: Effects of changing both large and small vessel compliance on Pulmonary

Artery Pressure.
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Figure 6.37: Effects of changing both large and small vessel compliance on Pulmonary

Artery Flow.
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Figure 6.38: Effects of changing both large and small vessel compliance on Pulmonary

Venous Pressure.
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Figure 6.39: Effects of changing both large and small vessel compliance on Pulmonary

Venous Flow.



Chapter 7

Conclusions and Discussion

The first aim of the work in this thesis was to further develop the model of Olufsen,

with particular reference to the small arteries. In Sections 3.1 and 3.2 we used the systemic

arterial model to examine the hypotheses of two conditions linked to systolic hypertension.

We saw how the stiffening of the arterial vessel walls, and the rarefaction of the microcir-

culation both resulted in increased pressure in our simulations in the large arteries. The

second case, in particular, showed the advantage of being able to model the small vessels

when compared with other models using a lumped peripheral resistance outflow condition.

In Section 3.3 we derived new equations, as an extension to Olufsen’s model, to explic-

itly determine flow and pressure profiles in the small arteries of the systemic circulation.

We showed that a steep drop in pressure occurs over a range of arteries of around 0.030-

0.050cm radius, which is in agreement with clinical observation and estimations of the

location of the resistance arteries. However, clinical observations also suggest that the

pressure drop tails off over vessels of around 0.001-0.010cm radius, which is not seen in

our model due to the termination of the structured tree at vessels of 0.010cm radius, above

capillary level, forcing the pressure to go to zero at this point. A simple improvement to

rectify this would be to section the structured tree model by vessel radius into three parts

— the arteries, arterioles and capillaries — each with different structural and physical

properties. We believe that this would produce a more accurate simulation of the pressure

drop over the small arteries.

The second aim of the work in this thesis was to develop a new model of the pulmonary

circulation, including detailed flow and pressure simulations in the large pulmonary arteries

and veins, with a new model for connecting an arterial and venous tree. Over the course

of Section 3.4, and Chapters 4 and 5 we described the properties of the pulmonary arteries
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(and constructed a stand alone pulmonary arterial model), derived the new equations for

determining the admittance matrix of a connected network of arterial and venous trees, and

described the properties of the small pulmonary vessels and large pulmonary veins. This

allowed us to construct a new model of the pulmonary circulation, for which we defined

normal conditions at the start of Chapter 6. This model displayed the characteristics

expected in the pulmonary circulation — little change in the amplitude of the pressure

pulse along the pulmonary arteries, and a low amplitude but visible pressure pulse in the

pulmonary veins.

In Section 6.2 we tested several hypotheses underlying the pathogenesis of hypertensive

disorders in the pulmonary circulation. In each case, changes away from the normal

conditions of the pulmonary circulation in line with the hypotheses resulted in increases in

the systolic pressure predicted in the pulmonary arteries. In simulating the hypothesis of

pulmonary arterial hypertension (Section 6.2.1) and chronic thromboembolic pulmonary

hypertension (Section 6.2.4) in particular, our results were in good agreement with clinical

observations. The addition of a venous circulation to our model allowed us to better

investigate pulmonary venous hypertension (Section 6.2.2), and to simulate venous flows

and pressures in each abnormal situation.

Limitations of the current model and further work

The most notable limitation of the current model is the lack of available data for

validation. While clinical measurements of pulmonary flow and pressure in normal and

abnormal conditions [27] have been used to provide some validation (Section 6.2), an ideal

scenario would be to use MRI flow measurements from the same subject in each of the

main pulmonary artery (for model inflow, as is already used), further down the arterial

tree in the left and right pulmonary arteries (for model validation), and if possible also in

the pulmonary veins for further validation.

A further limitation of the structured tree model is that there is currently no allowance

for the possibility of trifurcations in the branching structure. While bifurcations are far

more prevalent, trifurcations can and do occur in the pulmonary anatomy, and so a po-

tential improvement to the model would be to add an allowance for this.

It has already been mentioned that the model for predicting pressure in the small sys-

temic arteries could be improved by sectioning the structured tree model, and including a
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capillary model, which would allow greater insight into the function of the microcircula-

tion. Similarly, the effects of the pulmonary capillaries are not included in our pulmonary

circulation model. Instead, the arterial tree is joined directly to the venous tree with no ac-

counting for the complex network of tiny vessels around the alveoli. Theory exists [14], [15]

as to the structure of, and flow in, these tiny vessels, and it is possible that they have an

effect on the resistance in, and pressure drop across, the pulmonary circulation. We saw

at the beginning of Chapter 6 that when we reduce the minimum radius of our structured

trees to include capillary, or near-capillary sized vessels, the predicted pressure in the

pulmonary arteries rises well above physiological values, proving that the structured tree

model is not a suitable one for describing the capillaries.

It has been suggested, however, that the effect of the pulmonary microcirculation on

the input impedance of the larger vessels is small, but that the effect on the phase difference

between the pressure and flow in these arteries is large [16]. As such, the development

and inclusion of a new model to describe flow in the capillary network around the alveoli

would greatly enhance the pulmonary circulation model.

The description of the large pulmonary veins used in the pulmonary circulation model

is largely a mirror image of the large pulmonary arteries. This is justifiable as the arterial,

venous and brachial trees generally follow the same closely linked branching structure,

however the venous tree does not reconverge to a single vessel as the model suggests,

but rather four large pulmonary veins drain blood into the left atrium. The model could

be improved with a new description of the largest pulmonary veins, with four outflow

conditions at the end of the four largest pulmonary veins, rather than the one that is

currently used.

The outflow condition itself may also be improved upon. Currently, the outflow condi-

tion for blood draining from the pulmonary veins into the left atrium is that the pressure

at this point is zero. However, while the pressure at this point is indeed minuscule, the

beating of the heart and resulting opening and closing of the valve at the entrance to the

left atrium means that fluid periodically collects, and then drains away, in the pulmonary

veins, and a new outflow condition to describe this would also improve the validity of the

model.

The above mentioned outflow condition could also be improved as part of a solution

to an issue that affects both the pulmonary and systemic models, namely that the inflow

condition is given as a prescribed flow into the largest artery over time. This means that



CHAPTER 7. CONCLUSIONS AND DISCUSSION 131

the inflow to the model, i.e. the output from the heart, can not and does not react to

any stimuli that may occur elsewhere in the system — the heart rate stays the same, and

cardiac output never increases nor decreases. This is particularly limiting to the current

model when attempting to model diseased states of the cardiovascular system. Further,

the imposed inflow profile may contain encoded information which may adversely affect

the predictions of the simulated flows and pressures further down the tree. A dynamic

heart model controlling cardiac output (and, in phase, venous return in the pulmonary

circulation model) would be the most significant advancement that could be made to these

circulation models.

These models have been demonstrated to be both interesting and useful, as confirmed

by our clinical collaborators, but it is also clear that there is still scope for improvement to

them which would further enhance their credibility as useful and accurate clinical model,

and possibly even a diagnostic tool.



Appendix A

Lax-Wendroff Scheme

In conservation form, the equations to be solved are,

∂

∂t
U +

∂

∂x
R = S, (A.1)

where the dependent variables are represented by

U =

 A

q

 , (A.2)

the system flux by,

R =

 q

q2

A + B

 , (A.3)

and the right hand side of the equation by

S =

 0
−2πr0

δR
q
A +

(
2
√

A
(√

πf +
√

A0
df
dr0

)
dr0
dx

)
 . (A.4)

Equations

Let Un
m = U(m∆x, n∆t), and similarly for R and S. The solution at all points in the

interior is determined by first determining some intermediate values at steps (m+1/2, n+

1/2). Using a uniform grid, we can derive a four point formula, predicting the flow at time

level (n + 1) as follows,

Un+1
m = Un

m −
∆t

∆x

(
Rn+1/2

m+1/2 + Rn+1/2
m−1/2

)
+

∆t

2

(
Sn+1/2

m+1/2 + Sn+1/2
m−1/2

)
. (A.5)

Using two intermediate points at time level (n + 1/2), and using (A.3) and (A.4), it is

possible to determine,

Rn+1/2
m+1/2 Sn+1/2

m+1/2

Rn+1/2
m−1/2 Sn+1/2

m−1/2

132
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Figure A.1: Ghost point, marked with a circle, at distance point −1/2 – a half step before

the opening of a vessel – and at time-step n+1/2. Points marked with a cross are already

known, and the point marked with a square is found by averaging between its adjacent

time-steps.

This is done using the definition,

Un+1/2
j =

Un
j+1/2 + Un

j−1/2

2
+

∆t

2

(
−

Rn
j+1/2 −Rn

j−1/2

h
+

Sn
j+1/2 + Sn

j−1/2

2

)
(A.6)

for j = m + 1/2 and j = m− 1/2.

A.1 Inflow Condition

The inflow into the system is described by a periodic function, Figure 2.3. Also, A will

be determined from the boundary condition for q. In order to find A, we need to evaluate

q
n+1/2
1/2 . This can be found by introducing a ghost point, see Figure A.1. Then,

q
n+1/2
0 =

1
2

(
q
n+1/2
−1/2 + q

n+1/2
1/2

)
(A.7)

⇔ q
n+1/2
−1/2 = 2q

n+1/2
0 − q

n+1/2
1/2 , (A.8)

and from (A.5),

An+1
0 = An

0 −
∆x

∆t

(
(R1)

n+1/2
1/2 − (R1)

n+1/2
−1/2

)
+

∆t

2

(
(S1)

n+1/2
1/2 + (S1)

n+1/2
−1/2

)
, (A.9)

where (R1)
n+1/2
−1/2 = q

n+1/2
−1/2 and (S1)

n+1/2
−1/2 = 0.
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Figure A.2: Ghost point, marked with a circle, at distance point M + 1/2 – a half step

beyond the end of a vessel – and at time-step n + 1/2. Points marked with a cross are

already known, and the point marked with a square is found by averaging between its

adjacent time-steps.

A.2 Bifurcation Condition and Systemic Outflow Condition

The numerical equations for a bifurcation boundary, and for the systemic outflow

boundary, are described in detail in [32]. Since these have not been altered in any of the

models described in this thesis, a full description has not been included here.

A.3 (Pulmonary) Matching Condition

Arterial Side

On the arterial side of the matching boundary, the convolution integral can be written

as,

qA(M∆x, t) =
∫ T

0
(pA(M∆x, t− τ)y11(M∆x, τ) + pV (0, t− τ)y12(M∆x, τ)) dτ, (A.10)

where the subscripts A and V denote the arterial and venous sides of the matching bound-

ary respectively, and the matrix Y relates the flow and pressure on either side of the

matching boundary by,  qA

qV

 =

 y11 y12

y21 y22

 pA

pV

 .

Equation (A.10) can be discretised by,

qn
M =

(
pA(M,An

M )(y11)0 + pV (0, An
0 )(y12)0

)
∆t + (qA

tms)
n
M , (A.11)
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where the current time is t = n∆t and,

(qA
tms)

n
M =

N−1∑
k=1

(
(pA)<n−k>N

M yk
11 + (pV )<n−k>N

M yk
12

)
∆t. (A.12)

Here, N is the number of time-steps per period, and < · >N denotes the modulo operator,

the range of which is the set {0, 1, . . . , N − 1}.

From the numerical scheme, (A.5), we had,

An+1
M = An

M − ∆x

∆t

(
(R1)

n+1/2
M+1/2 − (R1)

n+1/2
M−1/2

)
+

∆t

2

(
(S1)

n+1/2
M+1/2 + (S1)

n+1/2
M−1/2

)
(A.13)

= An
M − ∆x

∆t

(
(R1)

n+1/2
M+1/2 − (R1)

n+1/2
M−1/2

)
, (A.14)

since S1 = 0, and

qn+1
M = qn

M − ∆x

∆t

(
(R2)

n+1/2
M+1/2 − (R2)

n+1/2
M−1/2

)
+

∆t

2

(
(S2)

n+1/2
M+1/2 + (S2)

n+1/2
M−1/2

)
. (A.15)

The unknowns in these equations are qn+1
M , An+1

M , (R1)
n+1/2
M+1/2, (R2)

n+1/2
M+1/2, and (S2)

n+1/2
M+1/2.

As for the inflow boundary, these can be determined by establishing a ghost point, see

Figure A.2, such that,

A
n+1/2
M =

1
2

(
A

n+1/2
M−1/2 + A

n+1/2
M+1/2

)
, (A.16)

and q
n+1/2
M =

1
2

(
q
n+1/2
M−1/2 + q

n+1/2
M+1/2

)
. (A.17)

These equations add two more unknowns to the system, namely q
n+1/2
M and A

n+1/2
M . These

can be found using the boundary condition at the time levels n + 1/2 and n + 1,

q
n+1/2
M =

(
pA(M,A

n+1/2
M )(y11)0 + pV (L,A

n+1/2
L )(y12)0

)
∆t + (qA

tms)
n+1/2
M ,(A.18)

and qn+1
M =

(
pA(M,An+1

M )(y11)0 + pV (L,An+1
L )(y12)0

)
∆t + (qA

tms)
n+1
M . (A.19)

Venous Side

By following an identical argument as for the arterial side of the matching boundary,

we find the following six equations for the venous side of the matching boundary for a

vessel of length L∆x,

An+1
L = An

L −
∆x

∆t

(
(R1)

n+1/2
L+1/2 − (R1)

n+1/2
L−1/2

)
, (A.20)

qn+1
L = qn

L −
∆x

∆t

(
(R2)

n+1/2
L+1/2 − (R2)

n+1/2
L−1/2

)
+

∆t

2

(
(S2)

n+1/2
L+1/2 + (S2)

n+1/2
L−1/2

)
, (A.21)

A
n+1/2
L =

1
2

(
A

n+1/2
L−1/2 + A

n+1/2
L+1/2

)
, (A.22)
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q
n+1/2
L =

1
2

(
q
n+1/2
L−1/2 + q

n+1/2
L+1/2

)
, (A.23)

q
n+1/2
L =

(
pA(M,A

n+1/2
M )(y21)0 + pV (L,A

n+1/2
L )(y22)0

)
∆t + (qV

tms)
n+1/2
L , (A.24)

and

qn+1
L =

(
pA(M,An+1

M )(y21)0 + pV (L,An+1
L )(y22)0

)
∆t + (qV

tms)
n+1
L . (A.25)

Solving the equations.

The twelve equations (A.14 - A.19) and (A.20 - A.25) have the following twelve un-

knowns,

An+1
M qn+1

M A
n+1/2
M q

n+1/2
M A

n+1/2
M+1/2 q

n+1/2
M+1/2

An+1
L qn+1

L A
n+1/2
L q

n+1/2
L A

n+1/2
L+1/2 q

n+1/2
L+1/2

The number of equations can be reduced by substituting (A.16), (A.17) and (A.22) into

(A.18), and by substituting (A.16), (A.22) and (A.23) into (A.24). Hence (A.18) and

(A.24) can be written as,

q
n+1/2
M−1/2

+q
n+1/2
M+1/2

2 = (
pA(M,

A
n+1/2
M−1/2

+A
n+1/2
M+1/2

2 )(y11)0 + pV (L,
A

n+1/2
L−1/2

+A
n+1/2
L+1/2

2 )(y12)0
)

∆t + (qA
tms)

n+1/2
M ,

(A.26)

and

q
n+1/2
L−1/2

+q
n+1/2
L+1/2

2 = (
pA(M,

A
n+1/2
M−1/2

+A
n+1/2
M+1/2

2 )(y21)0 + pV (L,
A

n+1/2
L−1/2

+A
n+1/2
L+1/2

2 )(y22)0
)

∆t + (qV
tms)

n+1/2
L .

(A.27)

Thus, the eight equations to be solved are (A.14), (A.15), (A.19), (A.20), (A.21),

(A.25), (A.26) and (A.27) with unknowns

x1 = An+1
M , x2 = qn+1

M , x3 = A
n+1/2
M+1/2, x4 = q

n+1/2
M+1/2,

x5 = An+1
L , x6 = qn+1

L , x7 = A
n+1/2
L+1/2, x8 = q

n+1/2
L+1/2,

and initial guesses,

(x1)0 = A
n+1/2
M−1/2, (x2)0 = q

n+1/2
M−1/2, (x3)0 = An

M , (x4)0 = qn
M ,

(x5)0 = A
n+1/2
L−1/2, (x6)0 = q

n+1/2
L−1/2, (x7)0 = An

L, (x8)0 = qn
L.

Newton Scheme - Residual Equations

Equation (A.14) becomes,

(fr)1 = k1 − x1 − θx4, (A.28)
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where

θ = ∆x/∆t,

and

k1 = An
M + θ(R1)

n+1/2
M−1/2.

Equation (A.15) becomes,

(fr)2 = k2−x2−θ

(
x2

4

x3
+ B(M + 1/2, x3)

)
+γ

(
F (M + 1/2, x4, x3) +

dB(M + 1/2, x3)
dx

)
,

(A.29)

where

γ = ∆t/2,

k2 = qn
M + θ(R2)

n+1/2
M−1/2 + γ(S2)

n+1/2
M−1/2,

B(M + 1/2, x3) = f(r0)M+1/2

√
x3(A0)M+1/2,

F (M + 1/2, x4, x3) =
−2π(r0)M+1/2

δR
x4

x3
,

and

dB(M + 1/2, x3)
dx

=
(

dB

dr0

dr0

dx

)n+1/2

M+1/2

=
(

2
√

x3

(√
πf(r0) +

√
A0

df

dr0

)
−A

df

dr0

)
M+1/2

(
dr0

dx

)
M+1/2

.

Equation (A.19) becomes,

(fr)3 = k3 − x2 + k4pA(M,x1) + k5pV (L, x5), (A.30)

where

k3 = (qA
tms)

n+1
M ,

k4 = (y11)0∆t,

and

k5 = (y12)0∆t.

Equation (A.20) becomes,

(fr)4 = k6 − x5 − θx8, (A.31)

where

θ = ∆x/∆t,

and

k6 = An
L + θ(R1)

n+1/2
L−1/2.
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Equation (A.21) becomes,

(fr)5 = k7 − x6 − θ

(
x2

8

x7
+ B(L + 1/2, x7)

)
+ γ

(
F (L + 1/2, x8, x7) +

dB(L + 1/2, x7)
dx

)
,

(A.32)

where

γ = ∆t/2,

k7 = qn
L + θ(R2)

n+1/2
L−1/2 + γ(S2)

n+1/2
L−1/2,

B(L + 1/2, x7) = f(r0)L+1/2

√
x7(A0)L+1/2,

F (L + 1/2, x8, x7) =
−2π(r0)L+1/2

δR
x8

x7
,

and

dB(L + 1/2, x7)
dx

=
(

dB

dr0

dr0

dx

)n+1/2

L+1/2

=
(

2
√

x7

(√
πf(r0) +

√
A0

df

dr0

)
−A

df

dr0

)
L+1/2

(
dr0

dx

)
L+1/2

.

Equation (A.25) becomes,

(fr)6 = k8 − x6 + k9pA(M,x1) + k10pV (L, x5), (A.33)

where

k8 = (qV
tms)

n+1
L ,

k9 = (y12)0∆t,

and

k10 = (y22)0∆t.

Equation (A.26) becomes,

(fr)7 = k11 −
x4

2
+ k4pA(M, (k12 + x3)/2) + k5pV (L, (k13 + x7)/2), (A.34)

where

k11 = (qA
tms)

n+1/2
M − 1/2(qn+1/2

M−1/2),

k12 = A
n+1/2
M−1/2,

and

k13 = A
n+1/2
L−1/2.

Equation (A.27) becomes,

(fr)8 = k14 −
x8

2
+ k9pA(M, (k12 + x3)/2) + k10pV (L, (k13 + x7)/2), (A.35)

where

k14 = (qV
tms)

n+1/2
L − 1/2(qn+1/2

L−1/2).
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Newton Scheme - Jacobian



−1 0 0 −θ 0 0 0 0

0 −1 ξ1 ξ2 0 0 0 0

ξ3 −1 0 0 ξ4 0 0 0

0 0 0 0 −1 0 0 −θ

0 0 0 0 0 −1 ξ5 ξ6

ξ7 0 0 0 ξ8 −1 0 0

0 0 ξ9 −1
2 0 0 ξ10 0

0 0 ξ11 0 0 0 ξ12 −1
2



(A.36)

where,

ξ1 = θ

((
x4

x3

)2

− dB(M + 1/2, x3)
dx3

)
+ γ

(
dF (M + 1/2, x4, x3)

dx3
+

d2B(M + 1/2, x3)
dxdx3

)
,

ξ2 = −θ
2x4

x3
+ γ

dF (M + 1/2, x4, x3)
dx4

,

ξ3 = k4
dPA(M,x1)

dx1
,

ξ4 = k5
dPV (L, x5)

dx5
,

ξ5 = θ

((
x8

x7

)2

− dB(L + 1/2, x7)
dx7

)
+ γ

(
dF (L + 1/2, x8, x7)

dx7
+

d2B(L + 1/2, x7)
dxdx7

)
,

ξ6 = −θ
2x8

x7
+ γ

dF (L + 1/2, x8, x7)
dx8

,

ξ7 = k9
dPA(M,x1)

dx1
,

ξ8 = k10
dPV (L, x5)

dx5
,

ξ9 = k4
dPA(M, (k12 + x3)/2)

dx3
,

ξ10 = k5
dPV (L, (k13 + x7)/2)

dx7
,

ξ11 = k9
dPA(M, (k12 + x3)/2)

dx3
,

ξ12 = k10
dPV (L, (k13 + x7)/2)

dx7
.
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A.4 (Pulmonary) Outflow Condition

In contrast to the inflow to the system, at the outflow from the system the area A

is know, but the flow q is unknown and will be determined from the boundary condition

for A. In order to do this, we need to evaluate A
n+1/2
M+1/2 by again using a ghost point, see

Figure A.2. Then,

A
n+1/2
M =

1
2

(
A

n+1/2
M−1/2 + A

n+1/2
M+1/2

)
(A.37)

⇔ A
n+1/2
M−1/2 = 2A

n+1/2
M −A

n+1/2
M+1/2. (A.38)

Now, (A.5) tells us that,

qn+1
M = qn

M − ∆x

∆t

(
(R2)

n+1/2
M+1/2 − (R2)

n+1/2
M−1/2

)
+

∆t

2

(
(S2)

n+1/2
M+1/2 + (S2)

n+1/2
M−1/2

)
, (A.39)

where (R2)
n+1/2
M+1/2 and (S2)

n+1/2
M+1/2 are given by (A.3) and (A.4) respectively. (A.5) also tells

us that,

An+1
M = An

M − ∆x

∆t

(
(R1)

n+1/2
M+1/2 − (R1)

n+1/2
M−1/2

)
+

∆t

2

(
(S1)

n+1/2
M+1/2 + (S1)

n+1/2
M−1/2

)
⇒ q

n+1/2
M+1/2 =

∆t

∆x

(
An

M −An+1
M

)
+ q

n+1/2
M−1/2, (A.40)

since (R1)n
m = qn

m and (S1)n
m = 0.

Equations (A.38), (A.39) and (A.40) provide us with a system of 3 equations for the

three unknowns A
n+1/2
M+1/2, q

n+1/2
M+1/2, and most importantly, qn+1

M .



Appendix B

Generations and Orders in

Branching Trees

The ‘generation’ and ‘order’ of a branching tree are two similar, but not identical

concepts. A ‘vessel’ is a segment of a branching tree between two points of bifurcation,

have a parent and two daughter vessels - except in the case of the root vessel, which has

two daughters but no parent vessel, and in the case of terminal vessels, which have a parent

vessel but no daughters.

The ‘generation’ of a tree of vessels, or the ‘generation number’ of a vessel in the tree,

as used by Weibel [53], simply describes the number of points of bifurcation between a

particular vessel and the root vessel. The generation number of a vessel in the tree will

always be one greater than its parent vessel - so the root vessel is generation 0, its daughter

vessels are generation 1, their daughters are generation 2, and so on.

In the structured tree model used by Olufsen, and in our pulmonary model, the asym-

metric nature of the branching tree means that terminal vessels of the tree can exist over

a wide range of generations, and that vessels of the same generation may be of widely

varying lengths and radii. This means that there is little or no relation between genera-

tion and properties such as lengths and radii of vessel segments. As such, most studies

on the morphometry of smaller vessels use an ordering system such as the ones described

below to index the vessels of a branching tree, and data from these, such as lengths as

radii, is presented as an average for a particular order rather than a particular generation

as vessels of the same order are more likely to be similar.

141
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B.1 The Strahler Ordering System

In the popular Strahler system [14], [20], [46] of ordering vessels in a branching tree,

the smallest vessels (terminal vessels) of the tree are said to be of order 1. When two

vessels of order 1 meet, the next largest vessel is a vessel of order 2. Two vessels of order

2 meet to form a larger vessel of order 3, etc. However, if an order 1 vessel meets an order

2 vessel, the larger combined vessel remains of order 2. Similarly, if an order 2 vessel and

and order 3 vessel meet, the combined trunk’s order remains at 3, and so on.

If the branching tree is of a binary symmetric form, i.e. every vessel gives birth to two

identical daughter vessels, then the tree will have the same number of orders as it does

generations (albeit numbered from opposite ends). However, this is very rarely the case

in physiological situations.

B.2 The Diameter-Defined Strahler Ordering System

A variation on the previously mentioned ordering system is the diameter-defined Strahler

system. Again, in this system, the smallest vessels are said to be of order 1, and two order

1 vessels combine to form a vessel of order 2, etc, but a vessel of order 1 and a vessel of

order 2 may combine to form a vessel of order 2 (as in the normal Strahler system), or of

order 3 if the diameter of the confluent vessel is greater than a certain value [23]. This

means that, in general, the diameter-defined Strahler system leads to more orders in the

branching tree than the normal Strahler method would describe. Once again, however, if

the tree is a binary symmetric tree, then the Strahler and diameter-defined Strahler orders

are identical, and there are again the same number of orders as generations.
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