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Abstract

The analysis of shape is an area of statistics which has wide applications, and

is made particularly interesting by its visual nature. The field of facial shape

analysis is particularly interesting because the human face has such a complex

but familiar shape. This thesis investigates the facial characteristics of a cohort of

5-year-old children, whose faces were photographed, and the corresponding data

captured, to provide a control group with which to undertake a study into Cleft

Lip or Cleft Lip and Palate.

Chapter 1 provides an introduction to the data, in particular to the defined

landmarks of the face, and to the shape analysis theory necessary for much of

the analysis.

Chapter 2 involves the analysis of the landmark-based data, including con-

sideration of the reliability with which landmarks are identified. The issue of

sexual dimorphism is then introduced, and we consider whether any significant

differences exist between the males and females of the cohort, including the use

of principal components analysis to explore the data.

To expand upon the landmark-based analysis, the third and fourth chapters

involve the development of methods with which to extract a set of facial curves.

Chapter 3 uses a combination of 2 methods for defining planes in three di-
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mensional space with which to “cut” the face, and then identify the curve which

lies at the intersection of the face and the plane. The set of facial curves iden-

tified using this method are then analysed using the same principal components

analysis that was used for the landmark-based data.

Chapter 4 introduces theory and methodology to identify the facial curves

based on the surface curvature characteristics of the face, and goes on to explore

interesting features which were observed as part of the curve extraction.

Chapter 5 discusses the findings of the thesis and provides some thoughts on

further work which would be of interest.
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Chapter 1

Introduction

1.1 Introduction

Shape analysis is an area of statistics with wide applications, and is made

particularly interesting by its visual nature. The field of facial shape analysis is

particularly interesting because the human face has such a complex but familiar

shape. This thesis will investigate the facial characteristics of a cohort of 5-year-

old children, whose faces were photographed, and data captured, to provide a

control group with which to undertake a study into Cleft Lip or Cleft Lip and

Palate.

This thesis can be considered in two sections. The first section, in Chapter 2,

will consider the shapes of the faces of this cohort as defined by the landmarks

of the face. The reliability of the landmark identification will be considered, and

evidence of any sexual dimorphism will be sought.

The second section of the thesis, in Chapters 3 and 4, will consider two meth-

ods for extracting particular curves of the face, so as to provide an additional
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starting point for analysis. Chapter 3 implements a method using planes in three

dimensions to “cut” the face at appropriate angles, while Chapter 4 investigates

the theory behind surface curvature in the context of the faces of the cohort, and

used this theory to explore alternative methods of identifying one of the facial

curves of interest.

1.2 Data

As part of facial analysis studies of children who had undergone surgery to

repair a Unilateral Cleft Lip (UCL), or Unilateral Cleft Lip and Palate (UCLP),

facial data was collected on a cohort of 100 control subjects, with no facial clefting,

with the intention of capturing image data at the ages of 3 and 6 months, 1, 2

and 5 years. The initial analysis of the cohort, at 3 months of age, is discussed

in White et al. (2004) The data to be considered in this study are the facial

images of the subjects at 5 years of age, 88 of which were successfully captured.

Using a computerized stereophotogrammetry (C3D) camera system, as discussed

in Ayoub et al. (2003), three-dimensional images were obtained of the 88 children

(42 males, 46 females), and 33 reproducible facial landmarks were identified for

each subject by a single operator. The data available for analysis consists of

around 19, 000 three-dimensional coordinates which define the surface of the face,

although this value varies between subjects, from as low as 14, 000 to a maximum

of 25, 000.

Also available are defined groupings of three coordinates, or ‘triples’, which

allow the face to be represented as a triangular mesh, where each triple gives the

coordinates of the vertices of a triangle within the mesh.

2



Figure 1.1: Facial data represented as three-dimensional coordinates (top),a

three-dimensional mesh (centre) and a three-dimensional mesh with colour (bot-

tom).
3



Further, for display and inspection purposes, the colour to be assigned to each

point is available, and this in turn allows colour painting of each triangle. This

allows the face to be viewed in a more easily recognisable form. Illustrations of

the face in coordinate and mesh form can be seen in Figure 1.1.

1.3 Landmarks

A commonly used set of landmarks of the face are defined by Farkas (1994).

Table 1.1 describes the subset of 33 soft-tissue landmarks which are used in this

analysis, based mainly on Farkas (1994) with additional information from White

et al. (2004). The landmarks are shown graphically in Figure 1.2. This subset

includes most of the major landmarks of the face, however particular landmarks

are omitted from this list, due to problems in accurate identification. An example

of this is the Otobasion Inferius, which is defined as the point of attachment

between the earlobe and the cheek, and is regularly not identified due to poor

image quality towards the extremes of the facial area. The reliability with which

landmarks are identified is examined in Section 2.1.1.

1.4 Areas for Investigation

Initial analysis will evaluate the degree of human error by using repeated

landmark identification to identify any particular landmarks which are poorly

extracted. The cohort will also be compared to a previous five-year-old non-cleft

cohort to identify any irregularities between operators. Once the reliability of

the data has been established, it is of interest to look for evidence of any sexual

4



Landmark Name Landmark Ab-

breviation

Definition

Alar Crest acL, acR Lower limit point of the alar base

Alare alL, alR Most lateral point on the alar contour

Cheilion chL, chR Labial commissure point

Highest point of columella cL, cR Columella crest point level with top of nostril

Endocanthion enL, enR Inner eye fissure commissure point

Labiale inferius li Lower midline limit of vermillion

Labiale superius ls Upper midline limit of vermillion

Nasion n Midline point of both nasal root and nasofrontal su-

ture

Pronasale prn Most prominent point of the apex nasi

Subalare sbalL, sbalR Lower limit point of alar base

Sublabiale sl Lower border of lower lip / Upper border of chin

Subnasale sn Midline junction point between columella and upper

lip

Subnasale’ sn’L, sn’R Midpoint of columella crest

Alare’ inner al’iL, al’iR Midpoint of ala (inner)

Alare’ outer al’oL, al’oR Midpoint of ala (outer)

Christa philtri cphL, cphR Junction point between upper lip vermillion and

philtral peak

Exocanthion exL, exR Outer eye fissure commissure point

Highest point of nostril hnL, hnR Highest nostril point with head tilted at 60◦

Stomion sto Midline contact point between upper and lower lip, or

closest upper and lower lip points where lips incompe-

tent

Upper lip border ulbL, ulbR Midpoint between ch and cph on the vermillion border

Table 1.1: Landmarks for Analysis
5



Figure 1.2: Facial landmarks identified on one subject.

dimorphism that may exist. Techniques will then be discussed for extracting par-

ticular facial curves, and it will then be possible to consider some more advanced

analysis of the data.

1.5 Theoretical Considerations

The theory behind shape analysis based on landmark configurations is dis-

cussed in detail in Dryden & Mardia (1998) and the notation to be used follows

from this. It is useful, firstly, to understand what is meant when discussing the

concept of ‘shape’. Dryden & Mardia (1998) define shape as “all the geometrical

information that remains when location, scale and rotational effects are filtered

out from an object.” Thus to compare the shape of two or more objects, it is

appropriate to adjust the size, position in space and orientation of the objects

so that they match as closely as possible to one another. Any discrepancies be-

tween these adjusted objects can therefore be interpreted as differences in shape.
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The altering of the characteristics of an object in this way, and the subsequent

analysis, is achieved through Procrustes Analysis.

1.5.1 Procrustes Analysis

Consider two k × m matrices, X1 and X2, each defining k landmarks in m

dimensions and suppose that it is of interest to compare the shapes of the two

objects defined by these configurations. Initially, it is useful to manipulate the

data such that the columns of both X1 and X2 have been centred on 0. Full

Ordinary Procrustes Analysis is used to rotate, scale and shift X1 so that the

matched configuration is as similar as possible to X2. This is carried out by

minimizing the squared Euclidean distance:

D2
OPA(X1, X2) = ‖X2 − βX1Γ− 1kγ

T‖2

where ‖X‖ =
√

trace(XTX) (the Euclidean norm) and 1k is a vector of k 1s.

The minimization is over β > 0, which is a scale parameter; Γ, which is an m×m

matrix describing the necessary rotation; and γ, an m× 1 shift vector.

Using the matrix decomposition

X2
TX1 = ‖X1‖‖X2‖V ΛUT

where U and V are m×m rotation matrices and Λ is an m×m diagonal matrix,

the value of D2
OPA(X1, X2) is then minimized by

Γ̂ = UV T

β̂ =
trace(X2

TX1Γ̂)

trace(X1
TX1)

and γ̂ = 0m (a vector of m zeros)
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The full Procrustes fit of X1 onto X2 is then defined as

X1
P = β̂X1Γ̂ + 1kγ̂

T .

A partial implementation of this idea can be used to compare two landmark con-

figurations when manipulation of the size of the objects is unnecessary. Further, a

generalized version of Procrustes Analysis can be used when n ≥ 2 configuration

matrices are available, and this is outlined in Section 1.5.3.

1.5.2 Evaluating Asymmetry

To ascertain the degree of asymmetry of a shape, a reflected and relabeled

configuration can be compared to the original, and the extent of the mismatch

provides a measure of asymmetry. The configuration for analysis can be rep-

resented by the k × m matrix, X, defining k landmarks in m dimensions. A

further, reflected landmark configuration can then be described by the k × m

matrix, XR, which is constructed by reversing the first-dimension coordinate for

each landmark and then by reversing the labeling of each pair of corresponding

landmarks. Thus ‘left’-labeled landmarks are relabeled as ‘right’, and vice versa,

while centrally positioned landmark names remain unchanged. The positioning

of the shapes defined by X and XR in space are not of interest in quantifying

asymmetry, and so it is assumed that the columns of X and XR have been cen-

tred on 0. Further, since the two matrices for comparison are reflections of one

another, we can assume for convenience that ‖X‖ = ‖XR‖ = 1.

The configurations X and XR are then matched as closely as possible to one

another using Ordinary Partial Procrustes Analysis to minimise the squared Eu-

8



clidean distance

D2
OPA(X,XR) = ‖X −XRΓ− 1kγ

T‖2

where Γ is an m×m rotation matrix, γ is an m×1 shift vector and 1k is a vector

of k 1s. Note that the scale parameter β is set to 1, as an alteration of scale is

unnecessary since the two configurations have unit size.

Using the matrix decomposition

XTXR = ‖X‖‖XR‖V ΛUT

where U and V are m×m rotation matrices and Λ is an m×m diagonal matrix,

the value of D2
OPA(X,XR) is then minimized by

Γ̂ = UV T

and γ̂ = 0m (a vector of m zeros)

Thus to match the configurations as closely as possible, all that is necessary

is the rotation defined by Γ̂. No shifting or scaling is necessary in the case of

comparing reflected, centred images.

A measure of asymmetry, as proposed by Bock & Bowman (2006), can then be

defined by

A =
‖X −XRΓ̂‖2

k

which quantifies the degree of mismatch between X and XR, standardized by the

number of landmarks so as to represent the average displacement per landmark.

1.5.3 Comparing the Mean Shape of Two Populations

It is desirable to be able to estimate the mean shape of a population, and

further to be able to compare two population mean shapes, and indeed to test for

9



equality. All theory and notation is again taken from Dryden & Mardia (1998).

Suppose that a sample of n subjects is available. The k × m configuration

matrix for subject i, where i = 1, . . . , n is denoted by Xi, giving k defined land-

marks in m dimensions. Within a population, to estimate the mean shape, it is

necessary to remove the effects of location, scale and orientation. Initially, it is

again useful to manipulate the data such that the columns of each Xi have been

centred on 0, and that the scale of each configuration is set to 1.

To compare X1, . . . , Xn, Generalized Procrustes Analysis is used to minimize,

over the βi, Γi and γi,

1

n

n−1∑
i=1

n∑
j=i+1

‖(βiXiΓi + 1kγ
T
i )− (βjXjΓj + 1kγ

T
j )‖2 (1.1)

subject to the constraint that

X̄ =
1

n

n∑
i=1

(βiXiΓi + 1kγ
T
i )

has size 1. The minimum value of (1.1) is then denoted by G(X1, . . . , Xn), the

Generalized Procrustes Sum of Squares, which is found by a numerical algorithm

which defines the β̂i, Γ̂i and γ̂i, the minimizing parameters.

The resulting fitted configurations are then defined by Xi
P = β̂iXiΓ̂i + 1kγ̂i

T

for i = 1, . . . , n in the shape space.

Once the Xi have been fully Procrustes matched, the arithmetic mean shape

is obtained by simply taking the mean of each coordinate for each landmark, so

that X̄P = 1
n

∑n
i=1Xi

P is the full Procrustes mean. The tangent space to a shape

space is a concept which provides a linear approximation to the shape space so

that multivariate techniques can be implemented. In fact, the Procrustes resid-

uals Xi
P − X̄P provide a good approximation to the tangent space coordinates,

provided the shapes in the sample are fairly similar.
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To compare two independent populations with mean shapes X̄1
P

and X̄2
P

estimating population means µ1 and µ2, a Hotelling’s T 2 two sample test can be

carried out for

H0 : µ1 = µ2 against H1 : µ1 6= µ2

in the Procrustes tangent space calculated from the combined populations.

11



Chapter 2

Preliminary Analysis of

Landmark Data

The first stage in analysis of the facial data is to explore any sources of error

in the data collection. Ayoub et al. (2003) discusses sources of error due to the

nature of the camera system. Small capture errors occur due to an instability

in the C3D system when multiple images are taken, and discrepancies also occur

when differences arise in where the object for image capture is placed in relation to

the cameras. These errors are comparable with other 3D image capture systems

(Ayoub et al. (2003)). Marking up of landmarks is a source of error which can be

quantified for this particular set of data, firstly by considering the degree to which

the operator was able to reproduce the same landmark coordinates (see Section

2.1.1), and secondly by comparing the mean landmark configuration shape of

this cohort of control 5-year-old subjects with a previous 5-year-old cohort (see

Section 2.1.2.
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2.1 Reliability in Landmark Identification

2.1.1 Single Operator Consistency

In order to assess the degree of reliability with which each landmark was

identified, for 12 subjects the facial landmarks were identified on three separate

occasions, and these repeated identifications were examined to establish consis-

tency. Since the comparisons were for the same images each time, it was not

necessary to use Procrustes Analysis. The mean coordinate value for each land-

mark, for each subject, was calculated from the three repeated identifications,

and the reliability of the repeated identifications was quantified by the Euclidean

distance between each identified landmark and the corresponding mean value.

Each landmark was considered individually, so that any landmark which was

significantly inconsistently identified could be determined. For each of the 12

subjects, there were 3 measures of deviation from the mean value for each of

the 33 landmarks, so for each landmark 36 (= 3 × 12) values were available for

assessment of reliability in identification. The results are shown in Figure 2.1.

The mean operator error was found to be 0.405mm, across all landmarks,

and 96.5% of the landmarks were identified as being within 1mm of the mean,

with only 3 of the 1180 (= 33× 36) distances being greater than 1.5mm. These

landmark identification errors are greater than the errors observed by Ayoub et

al. (2003) on a cohort of infants with cleft lip at the time of the first surgical

treatment (which occurs between 3 and 6 months), however the values are still

small, and so it seems acceptable to assume that the errors generated by human

inconsistency in landmark identification are sufficiently small that data analysis

should proceed. It is also worth noting at this point that the previous analysis was
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Figure 2.1: Landmark Identification Consistency
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on much younger infants, with correspondingly smaller faces, and so we would

perhaps expect that absolute measurement errors would be larger.

2.1.2 Consistency between Different Operators

The sets of identified landmarks were compared with previous data from a

different cohort of five-year-old control subjects, which had been identified by a

different single operator. Generalized Procrustes Analysis (as discussed in Section

1.5.3) was carried out on a subset of the landmarks to test the two populations

(cohort of interest and previous cohort) for equality of mean shape. An over-

all difference in mean shape was noted, which was an unexpected finding, so it

was of interest to establish where these differences lay by carrying out a Mul-

tivariate Analysis of Variance (MANOVA) for each individual landmark within

the Procrustes matched configurations. The findings are shown in Table 2.1. It

can be seen that the majority of the Procrustes-matched landmarks are found

to be from significantly different populations, although the differences are small

in size, and so do not provide a major cause for concern. However, there is no

obvious reason as to why this should be the case, and so it is interesting to con-

sider why the two cohorts should differ. One explanation could be that there are

consistent differences between the operators in the interpretation of landmark

definitions, which would lead to consistent differences in the marked-up land-

mark coordinates. Alternatively, the two sets of data may have been sampled

from populations with slightly different characteristics, although it is not obvious

why these differences would occur. We should also exercise caution, however, in

interpreting the MANOVA results since the sample size is relatively small, and

indeed is not much larger than the number of dimensions.
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Landmark Significant Cohort

Difference

Landmark Significant Cohort

Difference

n * chL

acR * chR

acL * ls

enR sl

enL * li *

prn * exL

alL * exR

alR * cL *

sn * cR

sbalL * hnR *

sbalR hnL *

ulbL * cphL *

ulbR * cphR

al’iL * al’oL *

al’iR * al’oR *

sn’L * sto *

sn’R *

* Significant Difference shown at 1% level

Table 2.1: Comparing Historical and Current Operator Landmark Identification
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It would be interesting to be able to consider whether any difference in pop-

ulations were noted under either of the following circumstances:

• The landmarks of the two cohorts were to be marked up by the same oper-

ator

• Two different operators were to mark up a single cohort

Either of these analyses may provide further insight into why population dif-

ferences were noted in this case.

A two-dimensional frontal snapshot of the three-dimensional superimposed

Procrustes matched mean shapes is shown in Figure 2.2. Note that the mean

shapes are very similar and so if only one point is visible at a particular landmark,

this implies that the corresponding mean landmark from the other cohort is

hidden behind the visible mean landmark at this particular angle. A frontal view

of the landmark configurations of all subjects after full Procrustes matching can

be seen in Figure 2.3.
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Figure 2.2: Frontal view of the full Procrustes mean landmark configurations of

the current cohort (Red) and previous cohort (Blue), rotated to each other using

GPA.
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Figure 2.3: Frontal view of the full Procrustes individual subject landmark con-

figurations of the current cohort (Red) and previous cohort (Blue), rotated to

each other using GPA.
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2.2 Sexual Dimorphism

It is of interest to consider whether any statistically significant differences exist

between males and females of the current cohort. Previous studies have indicated

that certain inter-gender size-based facial differences do exist at 3 months (White

et al. (2004)), 4 months to 3.5 years (Yamada et al. (2002)), 8 to 14 years (Ferrario

& Sforza (1997)) and in adults (Ferrario et al. (1995)). White et al. (2004) found

that differences in facial measurements could be explained by differences in the

weight of the subjects, and Ferrario et al. (1995) and Ferrario & Sforza (1997)

both noted that once the effect of size was eliminated no significant facial sexual

shape dimorphism existed. Yamada et al. (2002), however, found no evidence of

a correlation between the size of the face and body size within any of the three

age groups studied.

2.2.1 Basic analysis

It is differences in shape that are the main focus of interest here, but initially,

it was of interest to obtain a measurement of overall size to assess any difference.

This was obtained by calculating the sum of the distances from each landmark to

the centroid of the configuration, and then scaling by the number of landmarks so

as to provide an indication of the mean distance from landmark to centroid. The

results of the comparison between male and female size (scaled by a factor of 100

for ease of interpretation) are shown in Figure 2.4. The boxplots represent the

mean ± twice the standard deviations of the respective groups. It is clear to see

that the mean sizes of the male and female configurations are very close, but that

the spread of configuration sizes in males extends to noticeably higher values. A
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two sample Student’s t test found this difference in size to be significant at the

5% level, which is in agreement with previous literature. Once this effect of size is

removed, however, it is of interest to examine the shape of the configurations and

test for any sexual dimorphism. This was carried out by Generalized Procrustes

Figure 2.4: Comparison of Male and Female Size
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Analysis and the Hotelling’s T 2 two sample test as described in Section 1.5.3.

No significant shape difference was found to exist between the males and females

of the study. A two-dimensional frontal snapshot of the three-dimensional su-

perimposed Procrustes matched mean shapes is shown in Figure 2.5. As in the

previous section, where only one (male or female) mean landmark is visible, the

corresponding (female or male) mean landmark is hidden at this particular angle.

A frontal view of the landmark configurations of all subjects after full Pro-

crustes matching can be seen in Figure 2.6.

2.2.2 Principal components analysis

An additional interesting way in which the male and female landmark con-

figurations can be compared is through principal components analysis. This is

a type of multivariate analysis which allows the reduction of the dimensionality

of the data. As it stands, the facial data has a high number of landmarks, each

defined in three dimensions. Principal components analysis seeks to identify a

small number of uncorrelated linear combinations of the variables which explain

most of the variation in the data. The theory and notation to follow are taken

from Venables & Ripley (1997).

Consider an n× p matrix of data, X, and let S denote the covariance matrix

of X. Then S is defined as follows:

nS = (X − n−111TX)T (X − n−111TX) = (XTX − nx̄xT )

where x̄ = 1TX/n is the row vector of the means of each of the variables.

To obtain the desired linear combinations with maximal (or minimal) vari-

ance, we can consider the sample variance of a linear combination xa of a row
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Figure 2.5: Frontal view of the full Procrustes mean landmark configurations of

the male (Red) and female (Blue) subjects, matched using GPA.
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Figure 2.6: Frontal view of the full Procrustes individual subject landmark con-

figurations of the male (Red) and female (Blue) subjects, rotated to each other

using GPA.
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vector x, which is aT Σa. This is then maximised (or minimised) subject to

‖a‖2 = aT a = 1, since scaling of the variance is straightforward by rescaling the

linear combinations.

Since Σ is a non-negative definite matrix, it has an eigendecomposition

Σ = CT ΛC

where Λ is a diagonal matrix of (non-negative) eigenvalues, which are in decreas-

ing order. Let b = Ca, then we require to maximise bT Λb(=
∑
λib

2
i ) subject

to
∑
b2i = 1. We can take a to be the column eigenvector corresponding to the

largest eigenvalue of Σ, and subsequent eigenvectors give combinations with as

large as possible variance but which are uncorrelated with those that have been

taken earlier. The ith principal component is then the ith linear combination

obtained using this method.

We can implement this theory to look at the principal components of the

Procrustes-matched facial landmarks data. Figure 2.7 shows the cumulative pro-

portion of the variability in the data which is explained by successive principal

components. It can be seen that each successive principal component explains

less of the variability than the previous principal component, as we would expect

from the definition. The first 20 principal components are necessary to explain

90% of the variability. The first two together explain 39% of the variability.

It is of interest to look at the relationship between the (uncorrelated) first

and second principal component scores, which are realisations of the principal

components, and to consider whether any significant difference exists between

the scores of the males and females of the cohort. Figure 2.8 shows boxplots

of the first and second principal component scores, split by sex. Although the
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Figure 2.7: Cumulative proportion of the variability in the data explained by

each additional principal component.

spreads of the scores look visually different for the first principal component score,

a Student’s t-test found no significant difference at the 5% level between the

principal component scores of males and females for the first or second principal

component scores. Indeed, the vast majority of later principal component scores

are also not significantly different between males and females.

Figure 2.9 plots the first and second principal component scores against one

another, split by males and females. As would be expected from the previous

analyses, there is no obvious split between males and females.
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Figure 2.8: Boxplots of the first and second principal component scores, split by

sex.

The findings from both sexual dimorphism analyses are in agreement with

the findings of White et al. (2004) that the variation between the sexes at these

early ages is based on size, rather than shape. It should be noted, however, that

other studies have observed shape differences between the sexes, such as Ferrario

& Sforza (1997) on 8 to 14 year-old subjects and Prahl-Andersen et al. (1995) on

9 to 14 year-old subjects. However, these studies are based on older children. It

should also be noted that the analysis in this case is based on landmarks. When

the analysis is extended to include the curvature of the face, the results may

differ.
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Figure 2.9: Plot of the first against second principal component scores, comparing

males (triangles) against females (circles).
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Chapter 3

A Planar Method for Facial

Curve Identification

Chapter 2 provides a preliminary analysis of the data, based on coordinates

of pre-defined landmarks. This yields useful results; however, since it uses only

the landmarks, a substantial proportion of the available facial information is not

being used. To develop the analysis, it is therefore desirable to extract further

information from the facial data. Previous studies, such as Bowman & Bock

(2006) and Bock & Bowman (2006) have used facial curves to examine the data.

The aim of this chapter and the next is to explore methods with which curves of

the face can be identified. This thesis will not attempt to analyse these curves, but

will concentrate on methods for their identification. In this context, the approach

adopted in identifying a facial curve is to identify a series of points which are close

enough together so that they effectively define a curve. This chapter will discuss

a planar method of curve extraction using the defined landmarks, and Chapter

4 will then discuss a method of curve extraction which uses the curvature of the
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facial surface.

The curves to be extracted in this chapter are listed below. In some cases,

curves are split into two or more sections for extraction, as the complexity of the

curve prevents accurate capture in a single plane. In particular, the relatively

complex shape of the upper lip curve involves splitting this into 6 sections for

curve extraction.

Figure 1.2 provides a graphical illustration of the locations of these landmarks.

• Eye Curve

1. “enR” to “n” to “enL”

• Midline Curve

1. “n” to “prn” to “sn”

2. “sn” to “ls”

• Nasal Bridge

1. “acR” to “al’oR”

2. “al’oR” to “prn” to “al’oL”

3. “al’oL” to “acL”

• Nasal Base

1. “sbalR” to “sn” to “sbalL”

• Lip Curve

1. “chR” to “ulbR”
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2. “ulbR” to “cphR”

3. “cphR” to “ls”

4. “ls” to “cphL”

5. “cphL” to “ulbL”

6. “ulbL” to “chL”

The first stage in extracting a facial curve is to define the plane in which the

curve is to lie. Two complementary methods for defining the plane have been

utilized, and these are discussed in Section 3.1. For illustration purposes, consider

the Midline Curve, which runs from the top of the nose to the midpoint of the

upper lip; from nasion (“n”), through pronasale (“prn”) and subnasale (“sn”) to

the labiale superius (“ls”). In the case of the Midline Curve, the required plane

would therefore be that which effectively bisects the face. Three views of this

plane can be seen in Figure 3.1

Using simple algebra, it is then straightforward to identify which of the facial

mesh line segments cross the plane, and to extract only those lying between the

relevant landmarks. In the case of the Midline Curve, this will give a series of line

segments, all of which were originally part of the overall facial mesh, and crossing

the facial bisecting plane. Again using only elementary three-dimensional geom-

etry, for each chosen segment, the particular point on the line which intersects

with the plane can be identified. In the case of the Midline Curve, this will result

in a series of irregularly spaced points, running down the ridge of the nose from

the nasion to the labiale superius. For analysis of these curves, it is desirable to

regularize the points so that the curve information for each subject contains the

same number of regularly spaced points. The final stage in curve extraction is
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Figure 3.1: The plane which passes through the midline of the face.

therefore to fit a cubic smoothing spline to the extracted points. The points are

defined in terms of the distance along the curve, ti, in the form (x(ti), y(ti), z(ti)),

and smoothing is therefore carried out for x(ti) against ti, y(ti) against ti and

z(ti) against ti separately. For each smoothing step, this essentially involves find-

ing the function f(x), with two continuous derivatives, to minimize the penalized

sum of squares
n∑

i=1

{yi − f(xi)}2 + λ

∫ b

a

{f ′′(t)}2dt,

where λ is a constant and a ≤ x1 ≤ . . . ≤ xn ≤ b. The effect of this minimization

is that the function is chosen by its closeness to the data, but with a penalty
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applied for curvature, in order to select a sufficiently smooth function. Predicted

values from this function are then identified at regularly spaced intervals to gen-

erate regularly spaced points for analysis. The theory behind fitting the cubic

smoothing spline is taken from Hastie & Tibshirani (1996). Figure 3.2 shows the

process of curve extraction for the first part of the Midline Curve.

(a) (b) (c)

Figure 3.2: (a) Points of intersection between the triangular facial mesh and the

plane which passes through the nasion, pronasale and subnasale, with required

points shown in blue, (b) Close-up view of the irregularly spaced points extracted

and (c) regularized points appropriate for analysis.

3.1 Defining the Plane

Method 1 - Three Planar Landmarks

There exists a unique plane which passes through any three given points, so

for example, the plane which is to include the Midline Curve can be defined as

that which passes through “n”, “prn” and “sn”. Unfortunately, it emerges that

Method 1 is not appropriate for defining all desired facial curves. An example of

33



a curve which is not extracted well using Method 1 is the curve running across

the upper lip, from the right to left cheilion (“chL” to “chR”). It appears that

the reason for this is that the plane which passes through, for example, the set of

three points (“cphL”, “ulbL”, “chL”) is actually at an angle very close to parallel

to the face. Hence the plane cuts not only the required facial curve, but also other

facial curves as well. In the particular case of the upper lip, a curve very close to

the required one is also cut (running through the surface within the upper lip),

and this leads to problems in tracking only the required points, as can occur in

the first image in Figure 3.3. It seems necessary to define a plane which will cut

the face at a more appropriate angle.

Method 2 - Two Planar Landmarks and a Reference Landmark

As an alternative to using the plane defined by three landmarks, as in Method

1, we can define the plane by using the two landmarks which are to be the

endpoints of the curve as lying in the plane, under the constraint that this plane

must have a third “reference” landmark orthogonal to the plane. This allows

the definition of a plane which will intersect the face in a manner which ensures

that it is closer to perpendicular to the face than parallel. However, Method 2

can only be implemented if there exists a landmark which can provide a reliable

orthogonal direction. If there does not exist such a landmark, then a “closest-

match” is chosen, which is a landmark as closely as possible orthogonal to the

required plane. However, this can lead to the tracking of a curve with the correct

endpoints, but not following the required path. An example of when Method 2

does not give the correct curve is with the first part of the Midline Curve. The

closest landmark found to being orthogonal to the desired plane, was found, by

repeated examination, to be the alare (“acL”), but the result of using Method 2 is
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Figure 3.3: Failure of method 1 to correctly extract the upper lip curve and

failure of method 2 to correctly extract the upper midline curve.
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the second curve in Figure 3.3, which clearly does not run through the pronasale

landmark.

3.2 Discussion on Implementation of Methods

1 and 2

To extract the facial curves, the first step is to choose which of Method 1 or 2

should be used to define the plane. The choice of method which we will implement

is based on comparisons which have been made on the relative performances of

each method for different parts of the face. The algorithm has therefore been set

up to use the method which has been found to be most effective for each different

curve (or section of curve). Once the plane has been defined, the same method

for curve extraction is used, regardless of the planar definition method. It is

unfortunate that it has not been possible to effectively use only one of Method

1 or 2 to extract the full set of facial curves. However, a combination of the two

methods is effective in extracting a full set of facial curves, as seen in Figure 3.4.

Table 3.1 details which method was used for the extraction of each of the

facial curves.

The use of planes to specify a two-dimensional curve describing a particular

facial characteristic can be seen to be effective, and can be used to identify each

of the facial curves of interest in the context of the cleft lip and/or palate studies

for which the data was collected.

Limitations of the method are acknowledged, in particular:

• Landmarks are identified by a trained operator, however potential irregu-

larities arise (as discussed in Section 2.1), which can affect not only the
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Figure 3.4: Full set of extracted curves using a combination of methods 1 and 2.
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Curve Method for defining the plane

Midline Method 1 (three planar landmarks)

Eye curve Method 1 (three planar landmarks)

Nose Method 2 (two planar landmarks, one orthogonal

landmark)

Base of nose Method 1 (three planar landmarks)

Lip Method 2 (two planar landmarks, one orthogonal

landmark)

Table 3.1: Methods for defining the plane for each facial curve

endpoints of the curve, but any additional reference points defining the

plane on which the curve is constrained to lie.

• There is no good reason why each facial curve should lie on a single plane.

In particular, in the context of facial analysis, it is of interest to identify any

unusual features, which may have underlying curves which deviate strongly

from a single plane.

• It does not seem efficient to split curves into multiple sections for identi-

fication, and although it has not been a problem in the control cases for

which this method has been tested, this method could result in curves which

have obviously discontinuous derivatives at the point of intersection of the

sections, particularly when unusual facial features are considered.

• Often the curves generated using this planar method are simply a series of

points connecting landmarks to one another in the most direct way across

the surface. It would be of great interest to identify those curves which are
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inherent to the face, for example the ‘ridge curves’ of the face, which are

discussed in Section 4.2

However, as can be seen in the illustrative curves in Figure 3.4, the method

of using planes to “cut” the face and hence identify curves does produce a set of

plausible curves, and indeed, the planar constraint imposed on the curves may

make any analysis or comparison more straightforward.

Chapter 4 explores alternative strategies, based on the surface curvature char-

acteristics of the face, for defining the facial curves.

3.3 Principal components analysis on the ex-

tracted curves

In Chapter 2, we concluded by carrying out principal components analysis on

the landmark data to look for the existence of any significant differences between

the males and females of the cohort. Now that we have full sets of extracted facial

curves for each individual, the natural progression is to repeat this analysis but

with the curve data, which is of higher dimension, and correspondingly includes

richer detail about the faces. The high dimensionality also means that the data is

particularly appropriate for principal components analysis, which aims to reduce

dimensionality. The analysis of the curves was carried out in the same way as the

landmark analysis, with the smoothed points that characterise the curve being

used as pseudo-landmarks.

Figure 3.5 shows the cumulative proportion of the variability of the data ex-

plained by successive principal components. The first 15 principal components

are necessary to explain 90% of the variability, compared to the first 20 for the
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landmark data. Together, the first two principal components explain 45% of the

variability in the data, compared to 39% for the first two principal components

of the landmark data. This may indicate that using the curve data to identify

principal components as a means of describing the data with reduced dimension-

ality may be more effective than using the landmark data. The results are not

hugely different, however, which is perhaps not surprising, as we are considering

the same faces, and the curves are landmark-based.

Figure 3.5: Cumulative proportion of the variability in the data explained by

each additional principal component.

Figure 3.6 shows boxplots of the first and second principal component scores,
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split by sex. The second plot in particular seems to show some differences in the

spread of the principal component scores, but a Student’s t-test found no signifi-

cant differences at the 5% level in either the first or second principal component

scores between males and females. The majority of subsequent principal compo-

nent scores also displayed no significant differences between males and females.

These results are the same as those that were obtained for the landmark-based

principal component analysis.

Figure 3.6: Boxplots of the first and second principal component scores, split by

sex.

Figure 3.7 plots the first and second principal component scores against one

another, split by sex, and, as was the case for the landmark-based analysis, no

split is apparent between the sexes.

From comparing the landmark-based and curve-based principal component

analyses, we can tentatively conclude that we may see similar results in terms

of the analysis of the data, but that the comparative richness of the curve data
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Figure 3.7: Plot of the first against second principal component scores, comparing

males (triangles) against females (circles).

may be useful should we wish to employ the technique of dimensionality reduc-

tion, which may become progressively more useful as technology allows higher

resolution images to be captured.
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Chapter 4

A Surface Curvature based

Method for Facial Curve

Identification

In Chapter 3, a method was discussed and implemented which allowed the

identification of a pre-defined set of facial curves. The main characteristics of

this method were that each curve had end-points defined by the anatomical facial

landmarks, and each curve (or partial curve for later assimilation) was constrained

to lie on a plane which was also defined using landmark data. Criticisms of this

method were acknowledged at the end of Chapter 3. It is therefore interesting

to attempt to use further properties of the face to extract the curves. In this

chapter, the degree of curvature at distinct points on the face is used to identify

where the facial ridges and valleys occur. Section 4.1 provides a discussion of

how the principal curvatures and directions of the surface are calculated and

the related definitions of ridges and their corresponding ‘red’ or ‘blue’ nature
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are then presented in Section 4.2. It has also been necessary to implement the

definition of curvature with regards to parameterized curves in two dimensions,

so this necessary theory is discussed in Section 4.3. Section 4.4 goes on to outline

how the theory behind surface curvature was implemented within R to identify

the facial curves of interest.

4.1 Surface Curvature: Principal Curvatures and

Principal Directions

The curvature of a surface can be described by the way in which the normal to

the surface changes from point to point. Gray et al. (2006) provide an excellent

discussion of the underlying theory of curvature, and the notation and theory in

this section follow from both this text and the summary given by Goldfeather &

Interrante (2004). The idea of ‘curvature’ in three dimensions is best considered

through a combination of definitions, each of which provides a different measure-

ment of the way a surface changes around any given point. Curvature functions

which are important in describing a surface include the normal curvature k and

corresponding principal curvatures kmax and kmin; the Gaussian curvature K,

and mean curvature H, which are all defined at any point p on a regular surface

M∈ R3.

Given vp, a tangent vector toM at p, normal curvature is denoted by k(vp),

which is a real number quantifying the extent of bending of M in the direction

vp. Thus at the point p, there exist many values of normal curvature, each

calculated for a different tangent vector to p. Note that all tangent vectors to p

will lie in a single plane, the normal plane to M at p. Essentially, the values of
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normal curvature quantify the degree of bending along the plane curve which is

formed by the intersection of the surface M with the plane passing through the

tangent vector vp, orthogonal to M. The maximum and minimum values of all

normal curvatures at p are known as the principal curvatures, denoted kmax and

kmin (kmax ≥ kmin), and the tangent vectors at which these extreme values occur

are the corresponding principal directions.

It can be noted that the Gaussian curvature and mean curvature are related

to the principal curvatures by

K = kmaxkmin and H =
1

2
(kmax + kmin).

The Gaussian and principal curvatures allow a distinction to be made between

different types of points on a surface, as shown in Table 4.1, for any point p.

Note that, with the exception of the umbilic, properly umbilic and planar points,

which can be considered as special cases, all point on the surface can be classified

as either elliptic convex, hyperbolic (saddle-shaped), or elliptic concave , with the

curves separating these areas known as parabolic curves. (Additional information

is taken from Kühnel & Hunt (2006) and Hallinan et al. (1999).)

The calculation of the principal curvatures and directions is made straight-

forward through the implementation of some important matrix theory. At any

point, p, a linear operator called the shape operator, can be considered through its

corresponding Weingarten matrix, which quantifies the bending of M at p. Let

Np denote the unit normal toM at p, and define X(u, v) as a local parametriza-

tion ofM in a neighbourhood of p, using Xu(p), Xv(p), Np as a local coordinate

system. Then the Weingarten matrix is defined by:
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Type of Points Gaussian Curvature Principal Curvatures

Elliptic convex K(p) > 0 kmin, kmax > 0

Elliptic concave K(p) > 0 kmin, kmax < 0

Hyperbolic K(p) < 0 kmin, kmax have opposite sign

Parabolic K(p) = 0 Exactly one of kmin, kmax is zero

Umbilic K(p) ≥ 0 kmin = kmax

Properly Umbilic K(p) > 0 kmin = kmax 6= 0

Planar K(p) = 0 kmin = kmax = 0

Table 4.1: Definitions of different types of surface point, based on Gaussian and

Principal curvatures

W (p) =
−1

EG− F 2

 Ge− Ff Gf − Fg

−Fe+ Ef −Ff + Eg


where

e = Np ·Xuu(p)

f = Np ·Xuv(p)

g = Np ·Xvv(p)

E = Xu(p) ·Xu(p)

F = Xu(p) ·Xv(p)

G = Xv(p) ·Xv(p).

The eigenvalues of the Weingarten matrix W (p) of the shape operator S

at p ∈ M are then the principal curvatures kmax and kmin of M at p. The

corresponding unit eigenvectors of W are the unit principal vectors e1 and e2

and the principal directions tmax and tmin arise from these vectors. Equally, the

Gaussian curvature can be defined as the determinant of the shape operator, and
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the Mean curvature as half the trace of the shape operator, i.e.

K(p) = det(W (p)) and H(p) =
1

2
tr(W (p)).

Another way to interpret the principal curvatures of a point on a surface is

to consider the Monge form of the surface in a local neighbourhood of the point.

The Monge form of the local surface, or Monge patch is of the form:

z = f(x, y) =
1

2
(kmaxx

2 + kminy
2) +

1

6
(b0x

3 + 3b1x
2y + 3b2xy

2 + b3y
3) +

1

24
(c0x

4 + 4c1x
3y + 6c2x

2y2 + 4c3xy
3 + c4y

4) + higher order terms

where the coordinate system is defined so that the tangent plane to the point is

z = 0, and the surface is then rotated in the x-y plane so that the x- and y- axes

are the principal directions. Then kmax and kmin are the principal curvatures.

4.2 Ridges

Consider a polyhedral surface, with ‘edges’ where two faces meet. It is rel-

atively straightforward to both visually recognise where these edges occur and

also to define them geometrically. As an example, consider the unit cube in Fig-

ure 4.1. It is obvious that the edges of this cube (the blue and red lines) can

be identified easily by a visual examination, and it is also a simple matter to

mathematically define these edges, for example the red edge shown is defined by

x = 0 , y = 0 , 0 ≤ z ≤ 1.

It is desirable to have a corresponding definition for non-polyhedral surfaces,

in particular smooth surfaces in R3, such as a face, so that curves and features

47



Figure 4.1: Unit cube
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inherent to the face can be defined, detected and studied. The features which

describe features of the surface in the same way that edges do for a polyhedral

shape are known as ridges and can be subdivided into either ‘blue’ or ‘red’ ridges.

Blue ridges are those which would be the extension of convex polyhedral edges,

and red ridges the extension of concave polyhedral edges. Together these provide

an important picture of a surface in their own right.

Since ridge lines mark the main geometrical boundaries on a surface, it is

perhaps no surprise that they are defined using principal curvature and principal

direction information, and the outline of the theory to follow is adapted from

Hallinan et al. (1999), Ohtake et al. (2004) and Page et al. (2006).

Ridge lines are essentially curves on a surface along which the surface bends

sharply, composed of a series of ridge points. Blue ridge points can be defined

by the local maximum value of kmax along the maximum principal direction

curvature line, while red ridge points are defined by the local minimum value of

kmin along the minimum principal direction curvature line.

Let M represent the smooth surface in which we are interested, with prin-

cipal curvatures kmax and kmin at a point p ∈ M, and corresponding principal

directions tmax and tmin. Now define the derivatives of the principal curvatures

along their associated directions as:

cmax =
∂kmax

∂tmax

and cmin =
∂kmin

∂tmin

.

These derivatives allow the identification of principal curvature maxima and

minima via the zero-crossings of cmax and cmin. So geometrically, blue ridges are

characterized by the following conditions:

cmax = 0, ∂2kmax

∂tmax
2 = ∂cmax

∂tmax
< 0, kmax > |kmin|.
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That is, the point of interest is a local maximum turning point in the max-

imum principal curvature direction (from the first two conditions), where the

magnitude of the degree of curvature is greatest in the maximum principal cur-

vature direction (from the third condition). Red ridges are similarly characterized

by:

cmin = 0, ∂2kmin

∂tmin
2 = ∂cmin

∂tmin
> 0, kmin < −|kmax|.

Here, the point of interest is a local minimum turning point in the minimum

principal curvature direction, where the magnitude of the degree of curvature is

greatest in the minimum principal curvature direction. In terms of the surface

in Monge form (as discussed in Section 4.1), blue ridge points are characterized

by the disappearance of the x3 term, that is, b0 = 0, while red ridge points are

characterized by b3 = 0, i.e. the disappearance of the y3 term. Ridges can also

be further subdivided into ‘elliptic’ or ‘hyperbolic’, however this shall not be

discussed here. A detailed discussion of ridges, and related surface features is

presented in Hallinan et al. (1999).

4.3 Curvature of Parametrized Plane Curves

The algorithm used in R to identify the ridge lines discussed in the previous

section is outlined in 4.4, and involves some analysis of plane curves, which are

curves which lie in a single two-dimensional plane. It is therefore necessary to in-

troduce the theory behind the analysis of curvature of plane curves. The relevant

theory, taken from Gray et al. (2006) is therefore discussed in this section.

At any point, the curvature of a curve essentially quantifies the extent to

which the curve fails to be a straight line. Consider a parameterized curve α(t) =
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(x(t), y(t)). The curvature κ2[α](t) of α(t), where the “2” represents the fact

that the curve is in 2 dimensions, is given by

κ2[α](t) =
ẋÿ − ẍẏ

(ẋ2 + ẏ2)3/2

where the derivatives are with respect to t. The value of the curvature is in-

dependent of the parametrization up to sign. Thus to evaluate the degree of

curvature of a plane curve at any given point, it is necessary to calculate both

first and second derivatives of the x and y positions of the curve independently,

with respect to the position of the point along the length of the curve.

4.4 Surface Curvature estimation for Facial Mesh

Data

At any point p on the facial mesh surface, it is firstly necessary to estimate the

Weingarten matrix, W , as defined in section 4.1. Using the local coordinate sys-

tem which was introduced in section 4.1, consider points in a local neighbourhood

of p, and fit the surface

f(x, y) =
A

2
x2 +Bxy +

C

2
y2 +Dx3 + Ex2y + Fxy2 +Gy3 (4.1)

to the points using least-squares, as discussed in Goldfeather & Interrante (2004).

By fitting this cubic surface, which is more complex than, for example, a purely

quadratic surface, Goldfeather & Interrante (2004) found that errors in principal

direction estimation were reduced. The estimated Weingarten matrix for this

surface is

W ′ =

A B

B C


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and this can be used as an approximation for the true Weingarten matrix of the

surface, with principal curvatures and directions estimated through eigenanalysis

of W ′.

Ohtake et al. (2004) implemented an effective method for identifying ridge

points using the derivative-based criteria, which determines whether each point

on the mesh is, or is not, a ridge point. Since fitting a surface to estimate the

principal curvature and directions for every mesh point on every face would be

very computationally intensive, an alternative method is used here. The aims of

the method are twofold:

1. To identify facial curves corresponding to those in the previous chapter (i.e.

with endpoints defined by landmarks), but with the flexibility to deviate

from a planar surface.

2. To establish whether any interesting ridge curves appear on the face, and

if so, to consider whether these ridge curves provide any information about

the surface unquantified by the previously extracted curves.

It seems reasonable to assume that the desired facial curves (illustrated in

Figure 3.4) will not deviate hugely from the planar curves, so to reduce computa-

tional time, it was decided to use the extracted planar points, as shown in Figure

4.2 for one subject, as starting points for identifying local ridge points.

For each planar point, p, a set of local axes was first defined so that the local z-

axis was an estimate of the normal to the surface at p, which was estimated as the

normalized average of the unit normal vectors arising from all adjacent triangular

mesh segments. Methods to estimate a more accurate surface normal include

various weighted averages, however Goldfeather & Interrante (2004) conclude that
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Figure 4.2: Midline Curve for one subject.
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the differences in surface normal which are estimated using the different methods

are not significant in practice, therefore in this case, the unweighted method was

used. The x- and y- axes were chosen as arbitrary vectors, orthogonal to both

the z-axis and each other. As an example, consider the set of local axes for a

single point on the midline plane shown in Figure 4.3. This point will be used to

illustrate concepts for the remainder of this chapter.

The surface in Equation (4.4) was then to be fitted to the local area. It was

important to choose an area of a size which captured the behaviour of the surface

around p adequately, without selecting an area so large that the closest fitted

surface would not capture the way the surface changed close to p. Various sizes

were considered for local area, ranging from 3mm to 3cm radii from p. Both

the smaller and larger values led to surfaces which, when viewed alongside the

surface mesh, did not capture the characteristics of the local area sufficiently.

The decision was therefore made to consider, as a local area, those points which

lay within 1cm of the point p. This is by no means the only acceptable value, and

it should also be observed that while this value of 1cm seems to perform well for

the meshes representing 5-year-old children, and for the area around the midline

curve in particular, it is anticipated that this would need to be reconsidered

for meshes with different characteristics. For example, we would anticipate that

the facial characteristics of younger children would occur closer together, and

similarly we would expect that the corresponding characteristics of older children

and adults would occur further apart. An illustration of an area to be used for

surface fitting is shown in Figure 4.4.

To fit the surface, it was first necessary to transform the selected points

into local coordinates, so for the local coordinate system (x = (x1, x2, x3), y =
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Figure 4.3: Local axes for one point on the planar midline curve, with the z-axis

depicted by the axis line with a point on its end.

55



Figure 4.4: Local area for surface fitting (shown in red) around one point (shown

in blue).
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(y1, y2, y3), z = (z1, z2, z3)), with point of origin p and each of x, y and z a unit

vector, the coordinate transformation will represent p as (0, 0, 0), and each local

point a = (a1, a2, a3) will be represented as:

((a1, a2, a3)− (p1, p2, p3))


x1 y1 z1

x2 y2 z2

x3 y3 z3


The surface in Equation 4.4 was then fitted to the transformed chosen points

using least squares, and the Weingarten matrix

W ′ =

A B

B C


for this surface was then used as an estimate for the true Weingarten matrix of the

mesh surface. The principal curvatures were then estimated by the eigenvalues of

W ′, with the corresponding eigenvectors estimating the principal directions. The

maximum principal curvatures for two faces are shown in Figure 4.5, while the

minimum principal curvatures for the same two faces are shown in Figure 4.6.

It is clear that certain areas of the face, such as the lips and nose are distinct

in their principal curvature characteristics, and also that there is a small degree

of overlap in the values for maximum and minimum principal curvatures. It

is also interesting to consider a visual representation of the Gaussian curvature

(= kmaxkmin) which illustrates which areas of the face are elliptic convex (kmax >

kmin > 0, areas shown in green), elliptic concave (kmin < kmax < 0, shown in

red), or hyperbolic (kmin < 0 < kmax, shown in blue). This can be seen in

Figure 4.7. Note that the characteristics of these areas may at first seem to be

in reverse, for example, one would have expected the sunken eye areas to have
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Figure 4.5: Values of Maximum Principal Curvature for two faces.
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Figure 4.6: Values of Minimum Principal Curvature for two faces.
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concave characteristics, and the protruding nasal area to be convex, but it should

be remembered that the gaussian curvature is defined in relation to the normal to

the face at a given point. Thus although a point at the tip of the nose may seem

intuitively convex, if one recalls that the given point is the origin, with z-axis

defined by the normal which points from the face towards the viewer, then it is

more obvious that the surface is, in this context, concave.

Figure 4.7: Gaussian curvature for each mesh point on a selected area of one face,

with elliptic convex areas shown in green, elliptic concave areas shown in red and

hyperbolic areas shown in blue.
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The estimated principal directions at each mesh point also provide useful

information about the surface behaviour. A selected area of the face is shown

in Figure 4.8, depicting maximum estimated principal curvature directions and

minimum estimated principal curvature directions. Both are shown on the same

image in Figure 4.9, and the necessary orthogonal nature of the relationship

between maximum and minimum principal directions is obvious.

The way in which the surface principal directions change is apparent, although

there does appear to be a certain degree of variability in the directions, for ex-

ample in the area around the tip of the nose. This may be due to the fact that

the tip of the nose is an area where the normal curvatures are very close to each

other, i.e. the surface is close to being an umbilic. At an umbilic point, the

normal curvatures are equal for every direction, and so there are no maximum

or minimum principal curvatures or related directions. The result of this is that

even at a point which is close to being an umbilic, the errors in estimating the

direction will be noticeable. It should therefore be kept in mind that the potential

errors in principal direction estimation may affect the further techniques to be

implemented.

4.5 Identifying Ridge Points on the Facial Mesh

The previous section described the mechanism by which, at each required

point, the principal curvatures and directions may be calculated. This section

implements a method which uses this information at each previously determined

planar point to identify a local ridge point. It is of interest to investigate whether

any ridge curves correspond to the facial curves of interest, in particular the
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Figure 4.8: Maximum (Blue) and Minimum (Red) estimated Principal Directions

shown for each mesh point on a selected area of one face.
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Figure 4.9: Maximum (Blue) and Minimum (Red) estimated Principal Directions

shown together for each mesh point on a selected area of one face.
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midline curve. Since a number of techniques are combined in this section, all

techniques will be illustrated using the midline curve of the face as an example.

The main result on which this is based is that a ridge point can be defined by a

point of local maximum curvature along the direction of maximum curvature. In

this context, because the points are locally defined with the z-axis as the normal

to the surface at the point of consideration p, we are in fact interested in those

curvature directions which have the greatest degree of bending away from the

area z > 0. Thus we shall be looking for the points of greatest curvature along

the minimum principal curvature direction.

Consider, as an illustration, the planar curve point which is shown in Fig-

ure 4.10, along with the minimum principal curvature direction at this point,

extending away from the point on either side (shown in red). The plane which

passes through this line of direction, orthogonal to the face, can then be defined

and used to identify the points which lie on the mesh along this direction. To

consider only a local area, it was decided to allow a ridge point within 2cm of the

planar curve to be identified. These local mesh points along the line of minimum

curvature are therefore shown in blue.

A new change of coordinate system can then be applied to force this series

of points to lie on the plane defined by z = 0. Essentially, the three-dimensional

problem of identifying the point of maximum curvature along a particular direc-

tion has now been reduced to a two-dimensional problem of identifying the point

of maximum curvature of a series of points making up a local plane curve. The

problem is to identify the point of maximum curvature in the curve which follows

the points shown in Figure 4.11. It is at this stage in the method that the plane

curve theory discussed in Section 4.3 is implemented.
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Figure 4.10: Minimum principal curvature direction at a single mesh point, with

local mesh points in this direction.
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Figure 4.11: Mesh points which lie on the minimum principal direction line,

reduced to two dimensions.
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It was decided to firstly fit a cubic smoothing spline to the points, as previously

described in Chapter 3, and discussed in more detail in Hastie & Tibshirani

(1996). We can fit the cubic smoothing spline using the smooth.spline function in

R, with the required number of degrees of freedom specified. The function will

then efficiently fit a spline to the points making up the facial curve and return the

required number of (evenly spaced out on t) predicted points along the length of

the spline. This has the effect of representing the planar curve by two separate

curves, x(t) and y(t), with t indexing the length of the curve. The first and

second derivatives of the spline at each point (and hence the estimated first and

second derivatives of the facial curve) are also returned by the function. The

first derivatives are denoted by ẋ and ẏ respectively, where ẋ = dx
dt

and ẏ = dy
dt

.

The second derivatives are correspondingly defined. It should be noted that the

valued of the derivatives are not affected by the orientation of the curve. In order

for the spline to fit the facial curve fairly well, a relatively high number of degrees

of freedom, of 8, is required. 8 is sufficient to describe the curve well because the

surface is localised and already fairly smooth. The curvature at each predicted

point was then estimated by:

κ2[α](t) =
ẋÿ − ẍẏ

(ẋ2 + ẏ2)3/2

where t represents the distance along the curve, as discussed in Section 4.3. It can

be seen that the orientation of the curve does not affect the estimated curvature

at each point. Figure 4.12 shows an example of a series of predicted points, with

the estimated curvature at each point.

Because the orientation of the curve in two-dimensions is not fixed, and may

vary depending on the coordinated transformation necessary to force the points

onto the z = 0 plane, the series of points may take one of many orientations.
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Figure 4.12: Predicted points for a cubic smoothing spline with 8 degrees of

freedom, with corresponding absolute value of curvature estimates.

It is therefore not predictable whether the point we seek of maximum curvature

will have a high positive, or high negative value. Therefore we consider the point

along the predicted curve which has a maximum absolute value of curvature.

This point is identified for the illustrated predicted points in Figure 4.13.

However, it is immediately apparent that this is not the expected point of

maximum curvature. This problem is a result of the high degrees of freedom

allowed to the spline, which seems to lead to first and second derivative estimates

which are highly variable. Some experimentation with various degrees of freedom
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Figure 4.13: Predicted points for a cubic smoothing spline with 8 degrees of

freedom, with point of maximum curvature estimated.

leads to the conclusion that using a smaller value gives a much less well-fitting

spline, but on this curve the point of maximum curvature is much more reliably

identified, as in Figure 4.14.

Therefore it was decided to combine the two prediction methods as follows:

1. Fit a cubic smoothing spline with 4 degrees of freedom to the mesh points.

This curve will be a reasonably poor fit.

2. Identify the point of maximum absolute value of curvature for this poorly

fitting spline. This will be well estimated
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Figure 4.14: Predicted points for a cubic smoothing spline with 4 degrees of free-

dom, with point of maximum curvature estimated and corresponding curvature

estimates.

3. Fit a cubic smoothing spline with 8 degrees of freedom to the points. This

should be a good fit.

4. Identify the point on this series of predicted points which corresponds (in

terms of distance along the curve) to the point of maximum curvature on

the smoothing spline with lower degrees of freedom.

The effect of these steps is shown in Figure 4.15, so the result is that the point

of maximum curvature on the z = 0 local coordinates plane is identified.
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Figure 4.15: Using a combination of two splines to identify the point of maximum

curvature.

Transforming back to the original coordinate system then gives the ridge point

closest to the planar starting point. Figure 4.16 shows all of the ridge points (blue)

which are identified using the planar curve points (red) as starting points.

It is clear that these do not, even when smoothed sufficiently, produce a

midline curve which corresponds to the planar curve. At this point, the intention

is to use the theory of ridge points to provide an alternative method to planar

curve extraction for identifying the desired facial curves. It seems that the midline

curve will not be well defined by a series of ridge points with no additional
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Figure 4.16: Ridge points identified from starting points of the planar midline

curve.

constraints. By limiting the points to be used in defining the curve to only

ridge points, which may well be good estimates of true ridge points, but which

potentially deviate hugely from the original planar curves, we are imposing an

unnecessary constraint. As an illustration, it can be seen that there are noticeable

deviations from the midline plane around the philtral area in particular.

A proposed refinement of this method involves, rather than the minimum

principal curvature direction, the use of, for every point on the planar curve,

the direction defined by the vector which runs ‘horizontally’, from one inner eye
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landmark to the other (“enR” to “enL”), as shown in Figure 4.17. This refinement

makes use of the knowledge we have of the face, and helps avoid the problems

that occur due to variations in the facial surface, which can produce misleading

principal curvature directions.

Figure 4.17: Directional vector between the eyes.

The effect of using this direction instead of the estimated minimum principal

curvature direction is that a ridge point is guaranteed to be identified at regularly

vertically spaced points, which should prevent:

(a) the same ridge point being identified more than once
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(b) errors in principal direction estimation leading to ridge points not relevant

to the required curve, for example points outwith the area of interest.

It could be argued, however, that by using a direction vector which is arbitrary,

to the extent that it is independent of surface curvature, the extracted points are

not strictly ridge points. This is certainly true, but the rationale is that we hope

to identify a series of points corresponding to (in the illustration) the midline

curve, each of which is a local maximum curvature point, though not strictly a

ridge point. With regards to the direction, it is desired to have a series of points

describing the curve as it progresses down the face, and so it seems natural to

allow the direction of consideration to cross the face horizontally, and hence to

pick out the ridge points which cross the midline plane roughly orthogonally. It

seems acceptable, then, to make use of this horizontal (when the face is viewed

from the front) vector for the midline curve, and to use a similar vertical vector

(defined by the top and bottom landmarks of the nose) for the facial curves

which cross the face roughly from left to right. The result of using this horizontal

eye-vector is the series of ridge points shown in Figure 4.18, which seems to

identify similar characteristics to the previous method, although this series of

points should be more appropriate for smoothing, as the points will exist for

every ‘horizontal’ line crossing the face, and will be, to a certain extent, more

evenly spaced.

The main characteristics which are obvious from these points are the existence

of ridge points to the side of the bridge of the nose, and around the sides of the

philtrum area. This is entirely to be expected. The sides if the philtrum are

raised and the method’s validity could justifiably be questioned if these points

were not to be identified. The ridge points identified at the sides of the nose are
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Figure 4.18: Ridge points identified from starting points of the planar midline

curve using the direction based on the vector between the eyes shown in blue,

with original planar curve points shown in red.

less intuitively correct, but it is clear on facial palpation that in fact the top half

of the nasal bridge is actually fairly flat down the midline, with sharper changes

in direction a few millimetres to either side. These are interesting facial features,

which we shall return to discuss in Section 4.6.

Meanwhile, the current aim is to identify a midline curve based on the surface

curvature. Some consideration of the absolute value of curvature for particular

series of mesh points leads to the conclusion that in some cases the predicted cubic
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smoothing spline has, for a portion of the points at least, constant curvature,

such as the points and smoothing spline shown in Figure 4.19 along with the

corresponding κ2[α](t) value at each point.

Figure 4.19: Curvature shown for a fitted cubic smoothing spline of degree 4.

Notice the ‘flat’ top of the curvature points.

Notice the series of adjacent points which have almost constant curvature.

This could be a problem in identifying the point of maximum curvature since

tiny fluctuations in curvature value could lead to the identified ridge points being

significantly different.

Therefore, to allow for multiple points with high, relevant curvature absolute
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values, the method allows the identification of any point with sufficiently high

curvature, defined in this case to be greater than 95% of the maximum absolute

value of curvature, and then, for each planar starting point, to identify which

point of high curvature lies closest to the original planar curve point. Effectively

what this achieves, for identifying the corresponding curve to the planar curve,

is to accept the already defined planar points providing their curvature was suf-

ficiently high. This prevents small fluctuations in curvature producing estimates

of ridge points which are wildly inaccurate. The results of this method are shown

in the first image in Figure 4.20.

It is obvious that the points are reasonably irregular, and it does not seem

sensible to stop at this point, and consider these (somewhat scattered) points

as our extracted curve. A natural progression is to smooth the points so that

the curve itself is smoother, and the points making up the curve are regularized,

which will be more appropriate for analysis purposes.

A smooth curve was defined by a series of predicted points from a cubic

smoothing spline, obtained using the methodology described at the start of Chap-

ter 3 , subject to the constraint that the points corresponding to the facial land-

marks on the midline curve must be fixed points on the smoothed curve. The

smoothed curve is illustrated in the second two images in Figure 4.20.

A significant number of refining steps were necessary for this method of ex-

tracting a curvature based midline curve to perform sufficiently well, with the

exception of the area around the philtrum, where the ridges are so sharply de-

fined that the points around the midline curve have low curvature in comparison.

The extension of this method to the other curves of the face would be a natural

follow-on from this work, and would involve consideration of the particular area
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Figure 4.20: Extracted then smoothed midline curve, with ridge points extracted

using the ‘> 95%’ and ‘horizontal direction’ method, shown in blue, and the

original planar curve point in red.
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of the face of interest. The distinct characteristics of the different facial curves

mean that this work is outwith the scope of this thesis, however the findings from

this chapter should prove a solid foundation from which to begin. Of particular

interest would be the principal components analysis of these curves, and com-

parison with the results obtained from the landmark-based analysis in Chapter

2 and the planar curve-based analysis in Chapter 3.
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4.6 Facial Characteristics Identified during de-

velopment of the Surface Curvature method

One of the aims of developing the surface curvature-based methods discussed

earlier in this chapter was to allow a degree of flexibility in facial curve extraction

by removing the constraint that the curve must lie on a single plane. However, it

was also the intention to look carefully at the results of the intermediate steps to

identify any interesting facial characteristics which are not immediately obvious

from a landmark or standard curve based analysis. There were three main areas

of interest which emerged:

• The identification, in the vast majority of subjects, of an apparent ‘double

ridge’ tracking either side of the upper section of the bridge of the nose.

• The area of the philtrum, which is not considered as part of the standard

set of facial curves, but is a distinctive area of the face, and in particular

tends to be an area often affected in the faces of subjects who have had

corrective surgery to repair a cleft lip and/or palate.

• The images in Figures 4.5, 4.6 and 4.7 provide extremely interesting views

of the face, and certainly provide areas for discussion.

4.6.1 The double ridge

Looking back at Figure 4.19, the most interesting characteristic is that the

graph of the curvature of the nose has a ‘flat’ top. A similar pattern was observed

for, broadly, the upper half of the bridge of the nose. The implication from this

is that the central area of the nose (as we move across the upper section of the
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nose from one side to the other) has a largely constant, high degree of curvature

when compared to the areas further from the bridge. Palpation of the nose

confirms that this seems a reasonable finding, and that rather than one central

ridge running down the bridge of the nose, in fact there seem to be two ridges

running from the top to around halfway down the nose. This goes some way to

explaining why, when extracting the midline nasal curve, it was not possible to

simply identify ridge points. In fact, doing so provides a result similar to the

blue points extracted in Figure 4.16, where many of the points identified as ridge

points lie to the side of the central nasal bridge.

Additionally, if we consider the graph of curvature shown in Figure 4.12, where

the spline used has a relatively high 8 degrees of freedom, the ridge characteristics

can be seen even more clearly, with obvious peaks in curvature appearing either

side of the midline. It seems that the smaller peaks in curvature, which occur

to varying degrees for different areas of the nose, and in different subjects, are

representative of other normal features, for example the roundness of the outside

of the nostrils.

It is encouraging that the surface curvature analysis is detecting these char-

acteristics, and although in the context of studies into cleft lip and/or palate,

these features are not of particular interest, alternative areas of study may find

the identification of these ridges useful.

4.6.2 The philtrum

Of more interest in the context of cleft studies is the nature of the area around

the lips, particularly the area between the upper lip and the nose, where deformi-

ties are most apparent. The philtrum is the small flat area below the nose which
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is bounded by two vertical ridges. Since cleft lip involves the deformity of the

upper lip, the identification of the philtral ridges is certainly of interest in this

context.

Figures 4.16, 4.18 and 4.20 all show that ridge points are being identified on

the ridges of the philtrum because these (very distinct in control faces) ridges lie

so close to the midline area under investigation.

4.6.3 Observations from the surface curvature images

This section will consider the illustrative images in Figures 4.5, 4.6 and 4.7, i.e.

those displaying the maximum principal curvature, minimum principal curvature

and Gaussian curvature for example faces. It is encouraging that the maximum

and minimum principal curvature characteristics are very similar between sub-

jects, as we would expect for surfaces as distinct as the human face. Features of

note are as follows:

• The colours representing the principal curvature at each point are on the

same scale for maximum and minimum principal curvatures, and so it is

immediately apparent that the values of maximum principal curvature are

generally in the upper half of the numerical scale, while the values of min-

imum principal curvature are generally in the lower half. This is what we

would expect, and gives encouragement that the algorithm is working as

intended. It should be remembered that a negative principal curvature

value indicates bending away from the tangent plane at the point towards

the face, while a positive principal curvature value indicates bending away

from the face.
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• The tip of the nose area can be seen to have distinct curvature characteris-

tics. The tip of the nose has relatively low (negative) maximum curvature,

as illustrated by the greens, oranges and reds in Figure 4.5, and very low

(more negative) minimum curvature, as illustrated by the red area in Figure

4.6. We had previously conjectured that the tip of the nose may be close

to being an umbilic, ie kmax = kmin, and this may still be a valid theory

for those points where both maximum and minimum principal curvature

are red. In general, though, for this area, we have kmin < kmax < 0, and

this combination manifests itself in Figure 4.7 with the red elliptic concave

Gaussian curvature area around the nose tip. An interpretation of this is

that the tip of the nose is an area completely bending towards the face from

the tangent plane at these points, or equivalently, that the area “sticks out”

of the face. By considering other elliptic concave areas in Figure 4.7, we

can see that the cheeks, forehead and areas of the lips and chin have similar

characteristics.

• The eye sockets are also distinct. Figure 4.5 shows high values of maximum

principal curvature in this area and Figure 4.6 shows that the minimum

principal curvature values in this area are high, and at some points, positive.

This corresponds to kmax > kmin > 0, i.e. the Gaussian curvature is elliptic

convex, shown by the green areas in Figure 4.7.

• The majority of the facial surface has hyperbolic Gaussian curvature, i.e

kmax > 0 > kmin. This corresponds to “saddle-shaped” areas of the face,

where the maximum and minimum principal curvatures are bending in dif-

ferent directions away from the tangent plane to the point.
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Chapter 5

Discussion

This thesis can be considered as two areas. The first area is the initial

landmark-based analysis of the faces of 88 5-year-olds, acting as control cases

for studies into cleft lip or cleft lip and palate. This analysis was considered in

Chapter 2. The second area, consisting of the majority of the thesis, is an inves-

tigation into methods for extracting, or identifying, the curves of the face. This

chapter will discuss the findings and conclusions of these two areas in sections

5.1 and 5.2 respectively.

5.1 Landmark-based Analysis

The initial analysis of the facial data, in Chapter 2, was based on a set of facial

landmarks which had been identified by a trained operator. A source of human

error was therefore introduced, and it was desired to quantify this error. The

analysis based on landmarks was carried out using Procrustes Analysis, which

allows the effects of location, scale and rotation to be removed from the objects so
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that any remaining differences are due to shape. It was found that the individual

operator who identified the landmarks for the cohort of interest tended to be

good at repeated identification of any landmark.

There were some concerns, however, that arose from the result that the shape

of the landmark configuration in the data of interest appeared to differ from the

landmark configuration of a previous cohort of 5-year-old control faces. These

faces had been marked up by a different operator, so a possible cause for the

differences could be differences in the operators’ interpretation of landmark def-

initions. An alternative explanation would be that the two cohorts came from

different populations, but there is no obvious explanation as to why this would be

the case. The multivariate analysis of variance used for this comparison should

be interpreted with caution, however, due to the small sample size, particularly

in the context of data with such high dimensions.

The landmark-based analysis then went on to consider whether any sexual di-

morphism was present in the data, that is, whether any difference existed between

the faces of the males and females of the cohort. Size was initially considered, and

although the mean size of the male and female faces was similar, the spread of the

sizes extended much higher for males than for females, and indeed a significant

difference was found to exist between the size of the male and female faces. Once

this effect of size was removed, it was then of interest to look for any difference in

the shape of the landmark configurations of males and females. Once the effect of

size had been removed, no significant shape difference was observed, which is in

agreement with previous literature considering children of this age. A difference

in shape between males and females would be expected in older children.
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5.1.1 Areas for further study

It would be of interest to conclude why differences have been observed be-

tween the cohort of interest and a previous 5-year-old control cohort. In order

to establish if these differences are due to the operators’ identification of the

landmarks, one of the following studies would be informative:

1. A single operator could mark up both cohorts.

2. Both operators could mark up a single cohort.

In either case, the multivariate analysis of variance could be repeated. If

differences were still observed between the cohorts in 1, then we could perhaps

conclude that these differences are not caused by operator interpretation of land-

mark definitions, and further investigation into the populations would be useful.

If differences were observed between the two marked-up versions of a single co-

hort in 2, then we could tentatively conclude that the operators identifying the

landmarks have different interpretations of the landmarks definitions.

In either case, the small sample size is a concern, and for this analysis it would

be preferable to have a larger number of faces for analysis. However, collecting

the data and marking up the landmarks is a very time-intensive process, and so

this may be an unrealistic option.

With regard to the sexual dimorphism analysis, it would certainly be of inter-

est to follow this cohort as they grow older, and investigate at what point male

and female faces begin to show significant differences.

The natural progression for all of the landmark-based analysis is to move

on to use the curves of the face for a similar analysis. The bulk of this thesis
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involves methods for the extraction of these curves with the intention that the

curves could be analysed in the future.

5.2 Curve Extraction

Methods for identifying the curves of the face are discussed in Chapters 3 and

4. Chapter 3 proposes a method for extracting curves based on the assumption

that each facial curve for identification, or each of the component sections for

those curves that are complex enough to require splitting, lies on a single plane

in three-dimensional space. Chapter 4 relaxes this assumption and discusses

methods for identifying the facial curves in question using the surface curvature

characteristics of the face.

The method for extracting facial curves using planes involved two steps.

Firstly the plane upon which the curve (or section of curve) was to be con-

strained to lie was defined. Simple algebra then allowed the identification of a

series of irregular points which comprised all intersections of the facial mesh and

the plane. A cubic smoothing spline was then fitted to these points to allow them

to be regularized.

Two complementary methods for defining the plane were employed, since un-

fortunately neither method was successful for all facial curves (or curve sections).

The first method defined the (unique) plane containing three named landmarks

which were all to lie on the plane. This method did not work for the curve ex-

traction algorithm when the defined plane was close to being parallel to the face,

as it then intersected many areas of the face, including areas very near to the

curve of interest, which caused problems. However, this method did work well
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for a number of the facial curves.

The second method, designed to prevent the plane cutting the face at a prob-

lematic angle, involved the use of two landmarks to lie on the plane, with one

landmark forced to lie orthogonally to the plane. This again produced a unique

plane, but worked well for those curves which had not been defined well using

the first method.

The planar method of curve extraction worked well, although there are a

couple of areas which would benefit from future refinement. These are discussed

in Section 5.2.1.

The method of extracting curves using the surface curvature characteristics

of the face is discussed in Chapter 4. The main theory underlying this chapter

involves the identification of the principal curvatures and principal directions at

each point on the facial mesh. Considering the tangent plane to any point, p,

on a surface M, we can consider any tangent vector vp, lying on the tangent

plane, passing through p. For each tangent vector, the normal curvature k(vp)

is defined, which quantifies the extent of bending of the surface M in the direc-

tion k(vp). There are therefore many values of normal curvature at p, in every

possible direction within the tangent plane. The directions which correspond

to the maximum and minimum normal curvatures are the principal curvatures,

kmax and kmin, and their corresponding tangent vectors are the principal direc-

tions. Another interesting measure of curvature, the Gaussian curvature, is equal

to kmaxkmin, and we can define ridge lines as curves on a surface along which

the surface bends sharply. Ridge lines consist of a series of ridge points. Ridge

points can also be defined in terms of principal curvatures and principal direc-

tions. It can be seen that principal curvatures and directions form a strong basis
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for investigating many aspects of the curvature of a surface.

To estimate the principal curvatures at any point, a cubic surface, known as

a Monge patch is fitted to the local facial mesh.

The theory described above was implemented and illustrated with the facial

midline curve, as follows: The maximum and minimum principal curvatures at

each point were calculated, as well as the corresponding Gaussian curvature, and

this allowed visualisation of the face and consideration of the obvious features.

The ridge points were then identified by looking for the points of greatest cur-

vature along the minimum principal curvature direction. It was of interest to

establish whether any ridges corresponded to the facial curve of interest. Using a

combination of cubic smoothing splines with different degrees of freedom, it was

possible to identify a number of ridge points in the region of the midline curve.

However, these were found to form a pattern which was unlike the midline curve

of interest.

A refinement of the method was implemented, which used a horizontal (i.e.

crossing the face from left to right) direction rather than the minimum curva-

ture direction to define a series of points which were points of local maximum

curvature of the face when moving from left to right. These points were a slight

improvement on the ridge points in terms of identifying a midline curve, since

they were broadly evenly spaced and appeared slightly less irregular than the

ridge points. However they were still not an appropriate set of points for defining

the midline curve, particularly because of the variation in the area around the

philtrum, where the philtral edges were identified.

It became apparent that one of the reasons for the midline point being iden-

tified was that particular plane curve had areas of almost constant minimum
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curvature, extending across a umber of points, in most cases spanning the bridge

of the nose. When this occurred, tiny fluctuations in the calculation of curvature

may completely change the location of the identified ridge point.

A further refinement was therefore introduced, which was to consider any

point on a plane curve with sufficiently high curvature (i.e. greater than 95%

of the maximum curvature) to be a potential ridge point, and then of these

high curvature points, for each horizontal crossing, to choose the point which lay

closest to the original midline curve. This has the result of accepting the current

planar curve points, provided their curvature was sufficiently high.

This method proved successful in identifying a midline curve, with the excep-

tion of the area around the philtrum, since the philtral edges are points of high

curvature, and are so sharply defined that the points near the midline curve in

this area have relatively low curvature in comparison. The development of this

method will allow further steps to be taken in this area, and these are outlined

in Section 5.2.1.

Chapter 4 also provided an opportunity to consider the curvature of the face

as an interesting topic in in its own right.

5.2.1 Areas for further study

The planar method for extracting the facial curves could benefit from further

work, in particular:

• It would be preferable to have only a single method for defining the plane

on which the curve should lie. This would simplify the algorithm for the

extraction.
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• The algorithm, written in the form of R code, would benefit from modifi-

cations to reduce computational time.

In the context of the surface curvature method for extracting curves, a number

of areas for future study are proposed:

• Further refinement of the method for extracting the midline curve to allow

correct identification of the area around the philtrum, perhaps by looking

for blue ridges (valleys) rather than red ridges in this area.

• An extension of the surface curvature method to the other facial curves.

This will involve consideration of each curve, or section, in turn to choose

appropriate directional vectors and local areas for consideration.

• Development of the R code used for the extraction algorithm to ensure

computational efficiency.

• The analysis of a set of extracted curves would be the natural conclusion

to this study. Barry (2008) presents a longitudinal method for analysing

shape data in a facial context, which could be implemented using curves

extracted from the cohort at different ages.
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