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Abstract 

The motivation for the current study is to provide an information base on which to predict 
the implementation of future automotive HVAC (Heating Ventilation and Air-Conditioning) 

systems. Thermal state estimation is identified as the key technology in the future develop- 

ment of comfort control and so this investigation concentrates on the current state of the 

art in thermal state estimation. The aim of this thesis is to provide a detailed review of the 

requirements in volved in estimating thermal state, to investigate the control of thermal state 

via the cabin environment and to examine user interactions as a source of personalizing the 

control response. This thesis presents a number of novel contributions in this area. 

This thesis contributes a detailed comparison of three of the most popular techniques: the 
PMV (Predicted Mean Vote), the TSV (Thermal Sensation Vote) and a neural network 

approach. The TSV thermal state estimation is then used in a novel way by combining it 

with a state-space controller for the control of thermal state via the temperature of the cabin 
environment. 

The accuracies and performance of the three thermal state estimation methods are presented. 
Only a few data sets were used but the values comply with results in the literature. In addition 
to the analytical results the context of the discussions also focus on the implementation issues. 

The PMV method seemed to have marginally better performance. However, the TSV method 

was the most direct to implement and to calculate. Control of a test subject's thermal state 

within a Mercedes-Benz S-class test car was demonstrated successfully using the TSV method 
for estimation and feedback into a state-space controller. 

The second part of this thesis considers fuzzy logic and tile concept of gathering control 
information directly from the user. A rearrangement of the Fuzzy Model Reference Learning 

Controller (FMRLC) method leads to a new solution of learning interactions. The method 
is termed "Fuzzy User Reference Learning Controller" (FURLC). Tile performance of the 

technique is tested by applying it to learn to estimate the thermal state of a test subject. 
These tests were carried out by first subjecting the controller to a teaching data set and then 
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turning the learning rule off and testing with verification data. The method is designed for 

ccon-line" learning however the learning rule was switched off to allow a direct comparison with 
the neural network approach presented earlier. The controller performs well on estimating 
thermal state and after three passes with the teaching data outperforms the neural network 

approach. 

The TSV calculation, together with the cabin air temperature, is then combined with the 

fuzzy controller to form a feedback cdntrol loop. The fuzzy logic controller was applied directly 

to learning the interactions of the user. Only a few results were gathered, nevertheless, 
the controller demonstrates successfully that personal preferences in the operation of the 

automotive HVAC system can be learnt from user interactions. 

The final chapter provides an algorithmic performance comparison. The PMV, TSV, State- 

Space controller and the FURLC algorithm were all programmed into a microprocessor. An 

interface consisting of a 2x16 digit display and a 9-key keypad was also included. The com- 

putation times and memory requirements of the algorithms were determined and compared. 
The PMV method required the most time due to it's iterative nature. The algorithm code for 

the TSV method is the shortest and uses the least amount of memory. The FURLC method 

compares well against the TSV and the PMV thermal state methods and also against the 

state-space controller. 
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Preface 

This is my contribution to the area of automotive environmental control. When I started 

this work I was reminded of the quote from Hitch-Hiker's Guide to the Galaxy by the late 

Douglas Adams: 

"He had found a Nutri-Matic machine which had provided him with a plastic 

cup filled with a liquid that was almost, but not quite, unlike tea. The way it 

functioned was very interesting. When the Drink button was pressed it made an 
instant but highly detailed examination of the subject's taste buds, a spectroscopic 

analysis of the subject's metabolism and then sent tiny experimental signals down 

the neural pathways to the taste centres of the subject's brain to see what was 
likely to go down well. However no one new quite why it did this because it 

invariably delivered a cupful of liquid that was almost, but not quite, unlike tea. " 

Douglas Adams, "Hitch-Hiker's Guide to the Galaxy", Pan Books, London, pp. 94 - 95, 

(1980). 

One must always be aware that ultimate control and prediction techniques are sometimes let 

down by the actuators they control. Just as this jocular quote from the Hitch-Hiker's Guide 

to the Galaxy exemplifies, the ultimate tea making machine can only make the best of the 

ingredients it has been given. Similarly the ultimate air-conditioning controller can only do as 

much as the limitation on the air-conditioning plant will allow. The control ainis of modern 

day heating and air-conditioning systems in cars is becoming more and more sophisticated and 

involves the understanding of what thermal comfort really is. To achieve a thermal comfort 

controller one must consider the heat transfer boundaries involved (skin temperature), check 

the current physical state of the test subject (activity level and metabolism) and in essence 

predict the psychological preference "to see what is likely to go down well". 

What is suggested later in this thesis, however, is a prediction of the psychological preference 

based on previous user interactions with the system. Thus the appreciation of the control is 
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not in terms of the satisfaction with the system performance. (When control is not adequate 
the user can interact but when the system performance is not adequate the user can do 

nothing - and the controller can not learn to provide a better result than the system can 

provide). 

Thesis Contributions 

This thesis represents my own contributions in the area of automotive environmental control. 
To make it clear what these contributions are the following section will concisely describe the 

contributions from each chapter. 

Chapter I contributes a clarification of the terms used in thermal comfort analysis. 

Chapter 2 contributes a descriptive experience of the control of an HVAC system and provides 
a discussion on the observed thermal state votes. 

Chapter 3 contributes a review of three thermal state estimation methods and provides for 

the first time an evaluated performance and implementation comparison. 

Chapter 4 contributes and verifies a thermal state control method using the TSV estimation. 
It proves feasibility of the control of thermal state using a linear state-space controller. 

Chapter 5 contributes a new method of learning user interactions and shows how this could 
be implemented in the automotive cabin. 

Chapter 6 contributes a systems level performance comparison between the thermal state 

estimation methods. It also provides a realization of the typical amount of resources required 

at the systems level for thermal state estimation and control. 

The overall aim of this thesis is to provide a detailed review of the requirements involved in 

estimating thermal state, to investigate the control of thermal state via the cabin environment 
and to examine user interactions as a source of personalizing the control response. The 

motivation for the current study is to provide an information base on which to predict future 

automotive HVAC system requirements from an implementation perspective. To make these 

predictions the current state of the art in thermal state estimation is an important key because 
it is the future of developing "climate control" into "comfort control". 

The overall contributions of this thesis achieve this aim by providing performance data and 
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operational requirements from a diverse selection of preferred methods. The feasibility of 

the control of thermal state (chapter 4) is an important contribution that demonstrates the 

definite future of automotive environmental control. 

List of Abbreviations 

Abbreviation Full Description 

HVAC Heating Ventilation and Air Conditioning 

PMV Predicted Mean Vote 

PPD Predicted Percentage of Dissatisfied 

TSV Thermal Sensation Vote 

PRBS Pseudo Random Binary Signal 

ARX Auto Regression with eXogeneous variables 
FMRLC Fuzzy Model Reference Learning Control 

FURLC Fuzzy User Reference Learning Control 
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1 Introduction Background and Definitions 

This chapter is a brief outline of the history of automotive Heating Ventilation 

and Air- Conditioning (HVAC) systems and their control. This chapter will then 

present some definitions used in the thermal state estimation research. This is to 

provide background information for the following chapters. 

This chapter contributes a clarification of the terms used in thermal comfort 
analysis. 

1.1 Introduction 

Automotive Heating, Ventilation and Air Conditioning (HVAC) is an important system to 

automotive manufacturers and to their customers. Substantial research has been done to 
develop this system (for example [11, [2] and [3]). Climate control systems are also being 
investigated for electric vehicles (see [4] and [5]). The thermodynamics involved is standard 
and the dynamics of modern systems can be described simply, for a brief overview see ap- 
pendix A. The main operational objective of the system is the supply of heated or cooled 
air to the passengers at the desired temperature and air velocity and at the desired location. 
The control of the system in terms of its operational aim has been achieved using modern 
control techniques. Advances in microprocessor technology have influenced most automotive 
systems and it is now common to see actuators with built in microcontrollers. The advantages 
of micro controllers has reduced the burden on the overall control of the system: containing 
the problem of local control and offering embedded interface software for higher level control 
decisions. 

Engineers working on the control of automotive HVAC systems are now addressing the basic 

aim of HVAC (What is it really trying to do? ) not just the control of its operation. The 

answer to their question is that the system modifies the cabin environment of the automobile 
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1 Introduction Background and Definitions 

for the benefit of the passengers. Passenger thermal comfort is now an important aspect in 

the engineering of automobiles in which intelligent systems make travel more pleasurable and 

reduce driver distraction. Most HVAC systems currently available also offer additional opera- 

tional functions designed to improve drivability rather than passenger comfort, (for example 

the front windscreen de-mister which even has its own air outlet, but is now integrated into 

the control system for general thermal comfort as well as for it's own specialised function of 
de-misting). The specialised functions for improving driveability are not considered by this 

study. 

Thermal comfort research has been extensive and research has expanded in the area of auto- 

motive climate control (e. g. [6] and [7]). Many papers have drawn attention to the fact that 

the current technology used in HVAC systems for buildings is inapplicable to the automobile. 
The main difference is that the occupants of a room have an expected work level and clothing 

resistance. Since the HVAC system outputs in a building creates a uniform environment, of- 
ten for many occupants at the same time, steady state equations of human thermal state can 
be used in the control of the system. The automotive passengers are in close confrontation 

with the air outlet vents of the systems and thermal disturbances from solar gain can be 

dramatic. Furthermore automotive HVAC systems allow individual preferences to be addres- 
sed. Current state of the art shows that the utilisation of thermal comfort control in the 

automobile is close to becoming practicable. Recent research has shown a variety of thermal 

control strategies being applied (including the use of neural networks and fuzzy logic) and a 

variety of approaches (including the use of infrared sensors to observe the facial position and 
skin temperature). 

1.1.1 History of Automotive Air Conditioning Systems 

The modification of the environment of a cabin for the benefit of the passengers has been 

engineered since the very beginning. It started out simply with vents, or gaps, in the floor 

of the cabin in an attempt to increase air circulation. This also allowed a lot of dust to 

enter with the air and there was no real attempt to modify the Condition of the air. In 1884 
William Whiteley installed blocks of ice under a horse drawn carriage. Using a fan driven 
from the main axle, air was forced over the ice and thus cooled before entering the cabin. 
This idea was developed for the automobile carriage and the company Nash devised a system 
using the "Weather Eye" effect of cooling the air (by passing it over water). 

In 1902 Willis Carrier invented the first air-conditioning machine for reducing humidity in 

a printing company. He later patented his invention calling it an "Apparatus for 1yeating 

Air" and it was Stuart W. Cramer who first used the term "Air Conditioning" in 1906. The 
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I Introduction Background and Definitions 

1939 Packard was the first car to have an actual refrigerant evaporator coil fitted, which 
took up the whole boot space. Manual control consisted solely of a blower switch. In 1941 

Cadillac also offered an air-cooling system, but no compressor clutch meant the only way of 
disengaging the system was to take the belt off from under the bonnet manually (when the 

car was switched off). After World War 11 users were offered more control over the system 
but the controls, being close to the system at the rear of the car, were not easily accessible 
for the driver. With the invention of the Rotary Compressor in 1957 air conditioning units 
became smaller, quieter and more efficient. The biggest growth in air conditioning units, 

according to the Motor Service Manual, was between 1966 and 1987 with an increase of close 
to 550%. It is estimated that over 80% of cars today use air-conditioning systems. 

1.1.2 History and Current State of the Art in Thermal State Estimation 

Thermal state, sensation and. comfort have been studied since at least the 1930's with pioneers 

such as Cagge, Dage and Neilson with initial publications in the Journal of Nutrition and 
Physiology. Other early researchers include P. 0. Fanger, R. C. Nevins, C. -E. A. Winslow 

and L. P. Herrington. Thermal state started becoming of interest to the engineering rese- 

archers when air conditioning systems developed into a commercial product. The control of 

a comfortable environment is a well-established topic for the control engineer and standards 
have already been defined (such as the ASHRAE standard 55 - 66 1966 which will be quoted 
later in this chapter). 

In order to establish a control strategy the variables involved must be clearly identified. A 

block diagram of the factors affecting thermal comfort is presented in figure 1.1. Thermal 

comfort is affected by body physiology notably internal heat, skin temperature and sweat 
secretion. Activity level, clothing resistance and external variables are also important. It is 

worth noting that the human body adapts to its environment and there are many physiological 
and psychological processes affecting comfort, termed in the figure as situation perception. 

The external variables, air humidity, temperature and velocity are all controllable outputs 
from the car's HVAC system. The radiation variable is difficult and expensive to control, it is, 

however, the control of the other three external variables, with respect to radiation, clothing 

resistance and activity level, combined with a directional element which constitutes the task 

of comfort control. It was Fanger in [8] that brought together the six principal variables of 
thermal state estimation listed below. Prior to this, experimental work had been restricted 
to experiments of two or three of these variables at any one time. 
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1 Introduction Background and Definitions 

Situation 
Perception 

Figure 1.1: Simplified diagram of factors affecting personal comfort 

1. Air Temperature. 

2. Mean Radiant Temperature. 

3. Relative Air Velocity. 

4. Humidity (Partial Vapour Pressure). 

5. Activity Level (Internal Heat Production). 

6. Insulation Value of Clothing. 

This list constitutes the 6 principal variables used later in the Predicted Mean Vote approach 
to thermal state estimation. 

Research into the calculation of thermal state of a human subject is extensive. Paper [9] 

exhibits a comparative study of three different techniques and makes a distinction between 

the passive calculation of heat transfer and the study of the neural response. The passive 

study revolves around the energy transfer processes between the core of the body and the 

environment outside the body though the skin. In most cases, parameters are then correlated 

with empirical data to reference a thermal state index. Such studies have supplied extensive 

empirical data, [10] confirms that differences between people from different parts of the world 
is negligible. 

There are many parameters to consider in the thermal balance equation. Simplifications 

can be carried out as [111 shows by using a one dimensional heat conduction equation and 

assuming the head as a cylinder. The modelling process can become more and more complex, 
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1 Introduction Background and Definitions 

as shown in [12], and even include radiation heat loss [13] and evaporative heat loss [14] from 

the skin. 

Physiological research in the field of body temperature regulation has presented a complex set 
of non-linear processes that are difficult to model directly. There have been many attempts 
in the past (since 1923) by physiologists and engineers to simplify the problem (such as [15] 

and [161). 

A literature review on thermal comfort in 1990 by J. L. M. Hensen [171 suggests that there 

were two accepted solutions. One by Fanger using his "Comfort Equation" [8), associated 
"Predicted Mean Vote" and "Predicted Percentage of Dissatisfied" and the other method 
is the J. B. Pierce two-node model of human tbermoregulation, [18] and [19] (see also [201 

and [211). Since this literature review in 1990 there have been other methods published 
demonstrating the evaluation of thermal state. For example [221 in 1995 put forward the 

concept of equivalent temperature. 

With present day computational technology available to engineers, simulation of components 

can be done easily and quickly. Simulation is useful for both control design and component 

and system evaluation purposes and for both these reasons simulation of the automotive 
HVAC system has been demonstrated. Papers [23] and [241 both describe simulations of the 

cabin compartment in addition to the simulation of the air conditioning unit and this is a more 

extensive approach than earlier papers. Both papers however, are more concerned with what 
is happening within the air conditioning system and not so much with system output control. 
The first paper described the compartment model as only having two controllable variables, 

cooling load and temperature drop and in the second paper the desire was in obtaining 

a system capacity level. These two papers, however, do suggest that when designing new 

systems engineers are becoming more interested in the influence of what is happening in the 

passenger cabin. The development of such models and simulations is just as relevant in the 
development of air conditioning system control strategies. 

1.2 Definitions of Thermal Description Terms 

There has been much confusion in the literature in segregating the definitions of thermal 

comfort, thermal state and thermal sensation. One of the most famous papers in the lite- 

rature, [8], proposes a thermal state equation and calls it a comfort equation. Similarly an 
equation proposed by [25] is used to calculate a thermal sensation value which appears to 
be more like a thermal state value. In the context of this thesis the meanings of the terms 
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thermal state, thermal sensitivity, thermal sensation and thermal comfort will be discussed 

and clarified and where appropriate given numerical scales. When referring to material taken 
from the literature, the names of the variables used by the original authors will be kept to 

maintain consistency in the global community but it should be clear by the context what 

each variable represents. 

1.2.1 Thermal State 

Thermal state is one of the most used concepts in current research in the control of HVAC 

systems. It quantifies an abstract psychological measure of feeling. It is quite reasonable to 

expect that the reaction of the human body to the state of the environment plays an important 

role in the personal estimation of thermal state. This connection is the basis for most thermal 

state estimation techniques, which relate the thermal balance equation between the person's 
body and the environment to thermal state estimate through a statistically proved equation. 
Human bodies are very individual with anatomical and physiological differences, even two 
bodies that are quite similar is structure and operation may be in different modes of operation 

- such as being hungry or tired. Coupling these differences with differences in psychological 
influences and the personal estimation of thermal state does become an individual measure. 
This is what is meant by calling it an abstract psychological measure of feeling. 

The concept of thermal state has been around long before any air conditioning systems 
and is described as the degree of warmth or coldness, of the entire body, felt by a person. 
Although thermal state is essentially an abstract feeling most bodies are built roughly tile 

same and physiological reactions to the environment have a much greater influence than the 

psychological differences. It has already been said that statistical differences from people 
around the world are negligible with reference to [10]. A subtle consequence of this may be 

recognized by noting the interesting way the linguistic terms of many languages have certain 
parallels. In English there are four main terms: hot, warm, cool and cold. Similarly, in 
German there are the same four directly translated terms. In Chinese there are similarly 
tile same directly translated four terms, see figure 1.2. This global consensus may give more 
confidence in using tile statistically proved thermal state estimation equations. 

R6 Nudn Lidng L6ng 
Hot Warm Cool Cold 

Figure 1.2: Chinese symbols for the 4 linguistic thermal descriptions 
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For the researchers it is more convenient to represent the thermal state in terms of a numerical 

value and so the linguistic terms are compared to a scale. It is assumed that the linguistic 

terms are linearly spaced such that warm is half the feeling of Hot etc. and the scale is 

expanded adding intermediate terms. There are slight variations on the scale used but most 
follow the same general format. The scale used throughout this thesis is presented in table 

1.1. The thermal state scale is more commonly referred to as the thermal state index. 

Linguistic 
Values 

Numerical 
Values 

Very Hot +5 
Hot +4 

Very Warm / Slightly Hot +3 
Warm +2 

Slightly Warm +1 
Neutral 0 

Slightly Cool -1 
Cool -2 

Very Cool / Slightly Cold -3 
Cold -4 

Very Cold -5 

Table 1.1: Thermal state index 

During the experiments in this thesis the subjects were asked to supply estimates of their 

own personal thermal state. The estimates of a subject determining personal feelings are 

termed votes. The acquisition of the thermal state votes was achieved by directly uploading 

the estimate during the experiment at the time the estimate was made. In some of the latter 

experiments a touch display screen was available and was programmed to accept thermal 

vote inputs and a timer was used to help to regulate the thermal state voting of the subjects. 

The subjects were asked to interpolate between the standard values to as accurate a vote as 

possible. 

1.2.2 Thermal Sensitivity 

Thermal sensitivity is used to describe the accuracy of the test subject in estimating thermal 

state. A non sensitive person will not recognize small changes and will make larger jumps 

in thermal state votes while a more sensitive person will be able to identify slight changes in 

thernial state and will be more confident in voting to a greater accuracy. 
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1.2.3 Thermal Sensation 

Thermal sensation is quite often taken to mean thermal state. It might be argued by some 

researchers that thermal state is not a feeling but an actual physical state of the person's 
body and that the person's own feeling about the state of their body is a sensation of this 

physical state. 

The word sensation has a Latin link with the word sense, as in the sense of touch or any of the 
five main senses, with the meaning of the recognition and evaluation of an external parameter. 
However people also have a conscious awareness of situations which lead to internal reactions 

such as a sense of guilt or a sense of hurnour, thus sensation also takes the meaning of the 

ability to interpret situations with an evaluated response. The following quote encapsulates 
both these ideas: 

Sensation: The recognition and evaluation of an external event which leads to, 
but does not include, a reacting feeling. 

With this interpretation, thermal sensation is defined as the ability to recognize and evaluate 
the degree of thermal transfer from or into the environment from the body and evaluate the 

effect of this on the body's thermal state value. 

Poker players may have a high level of situation recognition but can suppress their own 
feelings - they can sense when the game is becoming more serious but they do not allow 
themselves to become nervous. This demonstrates that sensation and the actual feelings are 

separate however in cases of sensing the environment it is not so easy to make such a clear 
division. There may even be some grey Area between sensation and feeling. The difference 

between thermal state and thermal sensation and the grey area between can be demonstrated 

by examining different response to the same environment in table 1.2. 

"The air feels warm": is a thermal sensation response. 
"The air is heating me up": is a thermal sensation response coupled with a 

thermal state evaluation. 
"I am becoming warmer": is a thermal state response coupled with a ther- 

mal sensation evaluation. 
"I feel slightly warm": is a thermal state response. 

Table 1.2: Demonstration of the difference between thermal state and thermal sensation 

The two middle examples show the combined evaluation of thermal sensation and thermal 

state being used together. 
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1.2.4 Thermal Comfort 

Thermal comfort is more easily recognized because it is based on a scale of comfort, or a 

comfort index. A high comfort level for the driver and passengers is the objective of all 

luxury automobile manufacturers. Thermal comfort has been increasing in importance in 

the research of HVAC systems, not just in the automotive industry, and is currently formally 

defined by the ASHRAE, standard 55 - 66 1966 (see also [261): 

Thermal comfort is a condition of mind which expresses satisfaction with the 
thermal environment. 

Even this academically accepted definition implies a subjective evaluation, this however has 

not deterred researchers in attempting to quantify thermal comfort and to correlate it to 

environmental and physical parameters. Examples of direct quantification of comfort by [271 

and [28] are presented in table 1.3. Using such indexes many researchers have questioned 
their subjects on thermal comfort and it seems the most popular, and simplistic approach is 

to ask: 

"How comfortable do you feel in the current environment? " 

Comfort Scale used by [27] Comfort Scale used by [28] 
Linguistic Value Numeric Value Linguistic Value Numeric Value 

Very Comfortable 3 --- ... 
Comfortable 2 --- ... 

Slightly Comfortable 1 --- ... 
Neutral 0 Comfortable 0 

Slightly Uncomfortable -1 Slightly Uncomfortable -1 
Uncomfortable -2 Uncomfortable -2 

Very Uncomfortable -3 Very Uncomfortable -3 

Table 1.3: Thermal comfort scales from the literature 

Difficulty arises in the first case when realistically trying to consider what "neutral" comfort 
feels like and if you are already thermally comfortable then can you be made more comforta- 
ble? The second case avoids these issues by concentrating on the discomfort of tile subjects 

and using comfort as the topmost level and as soon as the subject is not comfortable they are 

considered uncomfortable (rather than having a neutral level). In this approach higher levels 

of comfort will be plateaued by tile numerical interpretation but as long as the subject is not 
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uncomfortable then perhaps the subject is also content within the current environment. It is 

perhaps of more interest to examine the comfort range when the subject is uncomfortable. 

It is suggested by the author that the comfort scale should be a double-sided fuzzy index 
(an expansion of the second scale in table 1.3). This is simply explained by considering the 
linguistic value of "slightly comfortable" which implicitly suggests that there is something 
that is stopping the subject from being 100% comfortable - there is some uncomfortable 

aspect. This concept is illustrated in figure 1.3 by showing the overlapping comfort and 
discomfort scales. 

A 

L 

L 

L; Omlort 

I 
W/O 

0% 

urnerical Value -3 -2 -1 0 

nguistic Values NotAtAll Slightly Comfortable 
P 

Ve ry 
of Comfort Comfortable Comfortable Comfortable 

nguistic Values Very Uncomfortable Slightly NotAtAll 
of Uncomfort Uncomfortable Uncomfortable I Uncomfortable 

Figure 1.3: Thermal comfort represented as a fuzzy variable 

Perhaps what is more interesting to the researcher are the points on the comfort scale which 
excite a reaction, as long as the subject is comfortable then the subject should also be 

content with the current HVAC settings. When the subject becomes less comfortable (or 

more uncomfortable) then the subject is more likely to desire a change in the operation of 
the HVAC system. This raises another point about satisfaction with the HVAC system. Even 

modern day automotive HVAC systems can not react immediately to a step change and can 
take a few minutes to reach the desired temperature. During this time the subject may still be 

uncomfortable. However, they are expecting the system to respond, and may even sense the 

change, and so are satisfied with the current desired temperature input level. A distinction 
between the satisfaction with the system and the satisfaction with the environment may be 

an important future step. 

Another way of representing comfort is in terms of a preferred modification to the current 

environment (which includes the idea of satisfaction). Often a subject's complaint of a par- 
ticular environment is in terms of a personal evaluation of thermal state with reference to a 
desired thermal state. For example the subject might say I am feeling slightly too warm" 

or "I would prefer to be cooler" which are both indications of comfort but with a personal 

suggestion from the subject why total comfort (100%) has not been reached. The suggestion 
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could be anything which affects the users perception of the environment, for example com- 

plaints of being "too sticky" or "too dry" could be humidity or air flow problems. Thus in 

the case where humidity and air flow are kept constant a better scale of comfort might be 

the one presented in table 1.4. 

Numerical 
Comfort Value: -3 -2 -1 0 -1 -2 -3 

Numerical 
Comfort State: -3 -2 -1 0 1 2 3 

Linguistic Much too Slightly About Slightly too Much 
Values: too Cool Cool too Cool 1 Right I too Warm Warm too Warm 

Table 1.4: Thermal comfort scale in terms of thermal state 

This is a much more useful scale as it contains more information about how the user is feeling 

and what the perceived displeasure is. It is also easier for the subject to use as it is less 

ambiguous. 
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2 Control of an HVAC Experiment and 
Observation of Thermal Sensation 

The aim of this chapter is to present the method and results of an experiment used 
in the investigation of thermal state. There are two main objectives in this part 
of the investigation: to examine the modelling and control aspects of a heating 

system and to observe and measure a subject's thermal state votes in relation 
to changes in temperature. Chapters 3 and 5 both use the data collected in this 

experiment. 

The experiments consisted of seating test subjects in a semi-enclosed cabin and 
directing heated air at their upper body and face. The first objective was fulfilled 
by implementing a controller to manipulate the air temperature. The controller 

was synthesised using a polynomial, pole placement approach and was based on 
an identified plant model. The results from this experiment together with the 
test subjects thermal state votes during the tests complete the second objective 
of the investigation. 

The results show that modelling and -control of the HVAC system has been achie- 
ved. The identified model was accurate enough on the verification data and was of 
a low order. Observing the thermal state votes of the test subjects suggests that 

most are willing to vote to the nearest decimal place but that this is the limit of 
their thermal sensitivity. The results also show an interesting phenomenon of the 

congruity of the facial skin temperature with regards to the local air temperature. 

This chapter contributes a descriptive experience of the control of an HVAC sys- 
tem and provides a discussion on the observed thermal state votes. 
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2 Control of an HVAC Experiment and Observation of Thermal Sensation 

2.1 Introduction 

2.1.1 Aim of Chapter 

The aim of this chapter is to present the method and results of an experiment used in 

the investigation of thermal state. The experiment set up consisted of an HVAC system 

which altered the environment inside a semi-enclosed cabin. In order to precisely vary the 

environment within this cabin it was necessary to implement a controller for the HVAC 

system. This also gives some useful insight into the control issues involved. The control of 
the HVAC system in this experiment is not on the same scale as one used in the automotive 
industry but the control issues are similar. The data collected from this experiment is used in 

chapters 3 and 5 to investigate different thermal state estimation methods. The experiment 

also opens discussion on some further aspects of thermal state acquisition. 

The development and testing of the experimental framework for investigating thermal state 
involved: 

1. Examining the identification, modelling and control aspects of a heating system. 
2. Observing and measuring the changes in a subject's personal thermal state votes in 

relation to changes in temperature. 

2.1.2 Background 

The experiment described in this chapter has a similar set up to an experiment presented in 

a paper by Taniguchi et al, [25]. The objectives of [251 are more specific, aiming to show a 

connection between thermal state and facial skin temperature. The results from this chapter 

will be used to compare different thermal state estimation techniques. Since [251 presented a 

successful experimental set-up it was a good basis for the design of a more general experiment. 
A thermal state estimation method presented in [251 will be explored later in chapter 3. 
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2.2 Experimental Set-Up of an HVAC System 

2.2.1 Equipment - HVAC System 

The experimental set-up consists of a large HVAC unit with one air inlet and one outlet. 
The air passes over a refrigerant heat exchanger first, for the duration of this experiment the 

refrigeration subsystem was deactivated and it was assumed that no heat was exchanged. The 

air then passes through 2 banks of heaters which were controlled via an analogue, 0-1 volt 

control signal. Both heaters were controlled simultaneously from a single voltage. The air 
ducting then narrows and channels the air through the fan, the ducting then opens out to its 

original diameter. Finally the air passes through a flexible ducting tube which can be aimed to 
direct the air. Additionally infrared lamps were used to simulate heat load from the sun and 

were also controlled by a 0-1 volt signal. The control of the infrared lamps was implemented 
by truncating the amplitude of the current of the AC power supply proportionally with 

respect fo the control signal'VOltage. The experimental setup is illustrated in figure 2.1. 

Heated air is directed at the face and upper regions of a subject's body. The subject is seated 
inside a semi-enclosed cabin consisting of a floor, roof and 3 walls with the front open. 

LJ 

Figure 2.1: Diagram and photo of the experimental setup for evaluating thermal state 

The circled numbers in figure 2.1 represent the sensor positions as explained below: 

1. Ambient Air Temperature Measurement. 

2. Air Temperature Measurement at Nozzle Outlet (measured at the center and at the 

edge of the flow). 

3. Air Temperature Measurement at Face. 

4. Face Skin Temperature Measurement (3 positions on the face). 

5. Hand Skin Temperature Measurement. 
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A detailed list of the HVAC plant properties is given in appendix B. These Nvere used to 

derive a physical model representation of the plant, also presented in appendix B. This model 
is not used in this chapter but provides an insight into the processes involved and provides 
information for future reference. 

2.2.2 Obtaining Measurement from the Temperature Sensors 

The air temperature sensors and the skin temperature sensors were all thermistors, which 

were based on the same operational properties. The temperature was related to the resistance 
in the thermistors. Figure 2.2 and equation (2.1) shows the circuit diagram and calculation 

used to extract the resistance of the thermistors using only voltages read through an AD card. 
The comparative resistance R, was selected to maximize the accuracy of the A-D converter. 

Vm 

RT : -- 
(Vs - Vm)R, 

VI. 

Figure 2.2: Circuit diagram and equation used to calculate the resistance of the temperature 
thermistors 

Some of the properties of the thermistors are listed below: 

9 Resistance @ 25'C: 10,000 92 

* Tolerance: ±0.2'C from O'C to 70'C 

* Operating Range: -55'C to +150'C 

Once the resistance had been calculated the result was interpolated in a look-up table of 

resistance versus temperature supplied by the thermistor manufacturer. A section of the 

table corresponding to the operational range of the sensor is presented in Table 2.1. 

The air temperature sensors were left to dangle in the air flow at the desired positions. The 

sensor wire was attached to a coarse mesh of string close to the sensor location to support 

the sensor. The wire was stiff enough that the suspended sensor resisted movement in the 

air flow. 
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'I'emperatufe Resistance 

-50'C 667,820.00 9, 

100C f9,903.64 Q 
i5oc I 1"), 7 14.0 3P 
20 'C' -12,493.78 Q, 

7 oc 2 10, C-. 00.00 
8, ', ') 3.95 Q 

C ý- -). 2 Fj 
40'C 5,, )25.04 Q 
45 'C 4, ýA. 87 Q 

1500C 184.79 Q, 

T2ble 2.1: Temperature rel2ted to thermistor resistance 

-he skin temperature sensors were held against th! skin by medical sticky pads. The pads 

were placed- over the ontside of the sensor an,, to insulate the sensors crom 

external temperatures. Initially only 3 facial skin tem,? erat res were measured as illustrated 

in igure 2.3. 

Figure 2.3: '.. otos a.. J Lagram --, 
f faci-. skin temperature sensor locations 

All the test subjects were male students aged 'Debweer, 20 and 25 and in good health. 

2.2.3 -Tests (Pre- Experimental) 

Once the eqiii Dmen-o was set up zý simple stblep and a random input test were performed to 

examine the syst-em response, see figure 2. a randona hiput was created -asing a random 
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generator that set the intervals indicating the time when to toggle between maximum and 

minimum heater output. 

Temperature Response to a step of the heater control signal 
80 - 
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20 

10, 
0 500 1000 1500 2000 2500 3000 

0 

0 (20.5 
CD 
ca OL 
CD 

=0 

Time (s) 

Heater Control Signal 

500 1000 1500 2000 2500 3000 
rime (S) 

Temperature Response of the HVAC Plant to a Random Binary Input Signal 
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Figure 2A Step-Response and Random Input Response of HVAC Plant 

The test included a human subject sitting in the experiment cabin and providing personal 
thermal state votes. The main aim of the initial test was to obtain the rise time and to check 
the sensor calibration. The step response shows a rise time to the final value of about 3000 
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seconds. The sensors proved to maintain accuracy when cross checked with the temperature 

readout from an industrial thermometer. 

2.3 System Identification: Least Squares ARX Approximation by 

MATLAB "ident" Tool 

An identification method for finding the plant model was preferred to the use of a physical 

model. The physical model presented in appendix B contains too many uncertain estimates 

and the final result needed severe over-adjustment of the parameters before the model became 

reasonably close to the measured system. 

The data collected for the identification process is presented in figure 2.5 and shows a step-up 

step-down input signal followed by a PRBS (Pseudo Random Binary Signal) input at different 

operating levels. The step responses were included to help in deciding the best controller 

sampling period. As a rule of thumb the number of samples per rise time should be between 

4 and 10 (see [29]). The PRBS part of the input was used for the identification process. The 

least squares approach was carried out using the "ident" tool in MATLAB. The models were 

compared against each other at the different operating ranges and on the verification data, 

see figure [? ]. The ident tool provided a "Best Fit" measure for comparing models against 

measured data which is described as the percentage of output variations that is reproduced 
by the model. This was used to select the best overall model which was a 4th order model 

with a 40s sampling time calculated from the data with the input based around the value of 
0.4. 

The best identified transfer function model is presented in equation (2.2), with the argument 

z as the z-transform operator: 

IdentMdl = 
3.951z-1 + 2.388Z-2 _ 0.09974Z-3 + 2.875z-4 (2.2) 

1-0.3323z-1 - 0.1627z-2 + 0.02573z-3 - 0.2952z-4 
With a sampling time of 40 seconds. 

Tile identified model call be used to simulate the air temperature of the plant and thus 

call be verified against previously measured data. Figure 2.6 shows how the simulated air 
temperature using IdentMdI compares with the measured air temperature. 
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Step-Up, Step-Down and PRBS Test Results for Identification 

Air Temperature Response at the Nozzle Outlet (Centre) 
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Figure 2.5: Data Collected for identification of the HVAC plant 

Measured and Simulated Random Input Signal Response 
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Figure 2.6: Verification of the identified model 

2.4 RST Control 

Desired rise time and overshoot were stipulated and used to form a set of desired poles. The 

pole-placement technique was then implemented using the polynomial approach (taken from 

[291). 
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2.4.1 Polynomial Pole-Placement Theory 

Assuming the model of the system has the format 

A(z-')y(k) = B(z-')u(k) (2.3) 

Here A(z-') and B(z-') are polynomials with a z-transform argument, z-1, such that the 

pulse-transfer function of the system is B(z-1 1. The system input and output, for time sample A(z-1) 

k, are u(k) and y(k) respectively. 

The synthesized controller will have the following format: 

R(z-l)u(k) = T(z-l)u, (k) - S(z-l)y(k) (2.4) 

Here R(z-1), S(z-') and T(z-') are designed polynomials and define the feed-forward pulse- 

transfer function as Hff = 
T(z- ') and the feedback pulse-transfer function as Hfb ` 

S(z- 
R(z-, ) 

The variable u, (k) is a control reference signal. 

This control structure can be realized graphically as shown in figure 2.7 which also shows the 

injection of noise, n(k), and plant disturbances, d'(k). 

uc y 

-n 

Figure 2.7: Graphical interpretation of implementation of the RST control method, with distur- 
bances 

Combining equations (2.3) and (2.4) and eliminating u(k) gives the closed loop system, 

u, (k) -4 y(k), in equation (2.5). 

(A(z-')R(z-1) + B(z-')S(z-1)) y(k) = B(z-')T(z-')tt, (k) (2.5) 

Thus the characteristic polynomial of the closed loop system, (A(z-')R(z-') + B(z-')S(z-1)), 

can be compared to a desired characteristic polynomial, A, I(z-1), in order to evaluate R(z-1) 
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and S(z-') as in equation (2.6). Equation (2.6) is called the Diophantine Equation. The 

closed loop characteristic polynomial, A, I(z-1), can be factored into a controller polynomial, 
A, (z-'), and an observer polynomial, A,, (z-1). The feed-forward term, T(z-1), is usually 
designed to cancel the observer polynomial. 

The Diopliantine Equation is 

A(z-')R(z-1) + B(z-')S(z-1) = AI(z-1) = A, (z-')A, (z-1) (2.6) 

There are conditions for the existence of solutions to the Diophantine Equation and different 

methods of finding the solutions such as Euclid's Algorithm or by use of the Sylvester Matrix. 
When using the polynomial toolbox in MATLAB there exists a function that automatically 
calculates a particular solution (if one exists). 

The notation from now on will be reduced by ornitting the polynomial argument, (z-1). 

The method can be extended by selecting damped stable poles in the process to be cancelled. 
This is done by extracting the factors of the identified model to be cancelled eg. A= A+A- 

and B= B+B-. The factors A+ and B+ are the factors to be cancelled and are chosen in 

monic form. Cancelation takes place by selecting a controller zero to match with a process 
pole and vice versa. Thus R, S and T are redefined with factors as shown: 

R= B+R 
S= A+. 9 

T= A+T 

(2.7) 

Following on, the Diophantine Equation (2.6) is thus modified to show that the the desired 

characteristic polynomial has factors of the cancelled parts of A and B. Thus by removing 
A+B+ the Diophantine Equation can still be solved for A, j = (A-R + B-S) and it is natural 
to assume that A, = B+A, and A,, = A+A,, 

A, j = AR + BS = A+B+ (A-T? + B-, 9) = A+B+A, l (2.8) 

The technique can be extended further by presenting a reference plant with the desired 

response to changes in the command signal. 
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B, n (2.9) Y"n - -c 

Note that because B- is not cancelled it must also be a factor of B,,, = i3,,, B- so that the 

process can follow the model exactly. R, S and T are now chosen as: 

R=A .. B+R 
S=A,,, A+, 9 

= P,, A, A, A+ 

(2.10) 

When A, B are known and properties of A, j, A,,, and B,,, are stipulated the control synthesis 
then follows a simple path. It is also advantageous to state some of the properties of R and S 

in advance, for example if we desire integral action then the polynomial R must have (1 - z-1) 

as a factor. Thus Rd and Sd shall represent desired factors of R and S respectively. 

2.4.2 Plant Controller Design 

The desired characteristic polynomial was chosen by stipulating the desired rise time and 
desired damping for both the reference model and the plant control. The refýrence mo- 
del dictates the response behaviour to changes in command signal and the plant controller 
dictates the response behaviour to disturbances. The following values were chosen: 

TrA. 150; Desired rise time of attenuation due to control reference changes. 
DAý 0.99; Desired damping of attenuation due to control reference changes. 
TrAcl 100; Desired rise time of attenuation due to disturbances. 

DAcl 0.99; Desired damping of attenuation due to disturbances. 

The above selection was chosen after an iterative simulation of the closed loop system and 

testing of the real system. B,,, was chosen to be B- - G, y, where G, y, is the gain of the 

system. 

The cancellation factors of the plant polynomials were chosen as follows: 

a A+=AandA-=l 

e B+=IandB-=B 
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i. e. the poles of the identified system are all cancelled and the numerator is not cancelled at 
all. 

Additional specifications were specified as follows: 

9 Rd ý (1 - Z- 1) 

* Sd 
--` 

I 

Thus integral action is introduced. 

With a 40 second sampling time the transfer function of the reference model -B is calculated Aý 
as: 

Ref Mdl = 
0.1148z-1 + 0.06941z-2 - 0.002899z-3 + 2.08357z -4 

- (2.11) 
1-0.9754z-1 - 0.2403z-2 

The closed loop control systeM 
B-T 

= 
B-T is: 

A,, A-R+B. S 

0.1148z-1 - 0.04665Z-2 - 0-05233z -3 + 0.1102z-4 - 0.1164z-5+ 

ClsdLp 
0.01512Z-6 + 0.01919Z-7 - 0.03074z-8 + 0.0171z-' - 0.002907z-10 

(2.12) 
1-1.986z-1 + 1.407z -2 - 0.3221Z-3 - 0.383 1Z-4 

0.5504z-5 - 0.3129z-6 + 0.08281Z-7 - 0.00836 IZ-8 

+ 

Comparing the pole-zero maps in figure 2.8 of the plant system, the reference model and 
the final closed loop system, u, (k) --ý y(k), the cancelled poles can easily be seen. It should 
be expected since it follows from the definitions of T=D,,, A+A, I, B= B+B-, and of 
A, j = A--B--A,,, Acj, that with assumptions of exact cancellation the closed loop control 

system can be simplified to the control reference model: 

B-T_ B-T 
. 

B+B- - B,,, A+A, l B,,, 
(2.13) 

A, j A-R+B-S A+B+A,,, A, l A,,, 

This assumes that the cancellation is exact. When model error or load change occurs the 

cancellation is not exact and the model starts to exhibit corrective behaviour as designed by 

the process control rather than the model control. 
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S and T Pole-zero map 
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Figure 2.8: T-S Plot of the Controlled Model and Pole-Zero Maps of IdentMdl, RcfMdI and 
ClsdLp 

Figure 2.8 also includes a Nyquist plot of the closed loop transfer function u, (k) -ý y(k), 

sensitivity function Sen, and complementary sensitivity function cSen. In order to determine 

the sensitivity and complementary sensitivity function it is useful to observe where in the 

controlled system the model error, d', and noise disturbances, n, enter the loop. Figure 2.7 

shows the standard injection points. 

The sensitivity function is calculated by finding the closed loop transfer function d'(k) ---ý y(k). 

B[1 (T-u, -S-y)] +d' R 
BT BS 

d' 
AR AR 
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Ignoring the contribution from u, in the transfer function. 

Y 
(I 

+ 
BS) 

= d' 
AR 

AR 
Y d' (2.14) 

AR + BS 

Thus the sensitivity function is: 
AR 

Sen =- (2.15) 
AR + BS 

The complementary sensitivity function is derived from the closed loop transfer function 

n(k) -ý y(k): 

cSen = 
BS (2.16) 

AR+BS 

2.4.3 HVAC Plant Air Temperature Control and Results 

The synthesized controller was used to regulate the air temperature of the HVAC plant at 
desired values and respond to step changes satisfactorily. Figure 2.9 verifies that the air 

temperature is controlled successfully and shows the controller output response. 

Control of Air Temperature at the Nozzle Outlet 

Air Temperature Response 
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Figure 2.9: Controlled air temperature of the HVAC plant and control output signal 
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2.5 Results and Discussion of Thermal Sensation Voting 

Thermal state votes were collected from the test subjects during the three stages of the 

experimental process, using a random generated binary signal (initial tests), using a PRBS 
(plant identification) and when the air temperature was controlled using a reference signal 
(control verification). 

The first stage results contain frequent rapid changes and can be used to investigate transient 

conditions. The last stage of the experiments made it possible for the outlet temperature to 
be specified and to be regulated and for step changes to be dealt with quickly. This allows 
examination of the detection of changes in thermal state by the subject and investigation of 
consistency and speed in reaching steady state equilibrium thermal state. 

Control of Air Temperature Test with Respect to the Test Subject 

Temperature Response 
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Figure 2.10: Controlled air temperature of the HVAC plant - test 11 

Figure 2.10 shows the thermal state votes and face and air temperatures that were recorded 
during the control test presented in figure 2.9. The plot shows the controller reference and 
the controlled air temperature at the nozzle outlet. The air temperature close to the subjects 
face was also recorded. The shape of the reference signal was chosen to examine the effect of 
small changes and large changes on the facial skin temperature and on the thermal state of 
the subject. 

The small steps changes in temperature in the middle and at the end of the test are not 
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2 Control of an HVAC Experiment and Observation of Thermal Sensation 

detected by the user. This is not surprising since the temperature of the air around the 

subject's face is not greatly affected. 

The slightly bigger step (2nd change) has a more prominent effect on the air temperature 

around the subject's face however the corresponding change in personal vote is vague. The 

change in thermal vote sees to preempt the step change, which just seems to continue the 

trend. 

The last phase of the test shows that the subject returned to a slightly higher thermal vote 
than for the same air temperature earlier, after being heated for a while. The thermal state 
then remains constant until the end of the test. 

An interesting phenomenon that appears in the data is the congruity of the facial skin tem- 

perature during the middle phase of the test. At the start of the test there is a range in 
facial skin temperature, but as the air temperature rises above the facial skin temperature 

the facial skin temperatures converge on the same value and as the air temperature drops 
below the facial skin temperature the facial skin temperatures drift apart again. 

It is suggested that this is due to the physiology of the subject. To start with, the air 
temperature is lower than the skin temperature and so the skin does not need to cool itself 

since it is cooled by forced convection of the air (hence different temperature at different 

locations due to geometry based cooling) but as the air temperature increases the skin starts 
to actively cool itself locally (not sweating) so that the temperatures at different locations 

become the same. The most interesting part is that the subject has switched from votes 

around 2- "feeling warm" to votes around 4- "feeling hot". Thus it is hypothesised that 

the difference in facial skin temperatures and the difference between the mean facial skin 
temperature and the local air temperature could be used to estimate the thermal state of 
the subject or at least provide a modifier coefficient to make it more user specific and reduce 

offset errors. 

This phenomenon is supported by data collected from other test subjects but not by all. Some 

data even shows the reverse scenario such as figure 2.11. The plot shows the separation of the 

skin temperatures as the air temperature rises above the mean skin temperature. This might 
be explained if the subject's body was actively warming itself at the lower temperatures. 

It is quite difficult to draw conclusions from the thermal voting by this subject during this 

test. The initial response, up to about 2500 seconds seems fine but then there is a sudden 
drop in thermal state votes at 3000 seconds. The large step up in reference air temperature 

does seem to have caused the rise in thermal state. However, just after the small slight 

28 



2 Control of an HVAC Experiment and Observation of Thermal Sensation 

Control of Air Temperature Test with Respect to the Test Subject 
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Figure 2.11: Controlled air temperature of the HVAC plant - test 12 

change down (at the higher temperature level) the subject's thermal state estimates starts 
decreasing. The small step back up (at the higher temperature level) has no effect. Just after 
the drop to the lower temperature level the thermal stat e response starts to increase again 
but only for a small peak before returning to zero. 

This test data was rejected because it is obvious that the subject did not respond to the 

test. The reason suggested by the test subject for the lack of response was that the chair 

seemed to be very cold and made him feel cold. This problem was fixed by using a chair 

with a padded seat and back rest for insulation. The reason for the disruption to the thermal 

state is not captured by any of the measured values: All hidden influences affecting thermal 

state were removed, once identified, so that the results could be correlated to the measured 

signals. These influencing factors are, nevertheless, an important consideration in determining 

thermal sate. 

The interesting thing about asking a person how they are feeling, in a thermal sense, is that 

the answer is not definite. When requesting a numerical evaluation, say between -5 (= 

cold) and +5 (= hot), it is not reasonable to ask for five decimal places. The reply will be 

approximated to a level compromising accuracy with confidence. The optimal effective level 

of accuracy is thus determined. It is expected that to measure and to control the thermal 

state to a greater degree of accuracy is pointless since the person using the system will not 
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appreciate the extra capacity. Most subjects were willing to vote the the nearest decimal 

place but it was usual to find that there was uncertainty even at this resolution. From the 

experience of these test it is suggested that this is the general limit of thermal sensitivity, 

where the accuracy of the test subject is compromised by the confidence in voting. In the 

case where confidence is compromised for accuracy the subject's consistency needs to be 

examined. 

2.6 Conclusions 

This chapter describes an experiment that was used to modify the environment of a test sub- 
ject. The experiment was not to the same scale as a system fitted to a standard automobile. 
However, similar work has been carried out in the literature and was then verified through 

application to an automotive cabin. The main aim of the use of this experiment was not to 

provide a comparative system but was simply to investigate the estimation of thermal state. 
Different methods of thermal state will be investigated in chapter 3. 

The development and testing of an experimental framework for investigating thermal state 
involved: 

1. Examining the modelling and control aspects of a heating system. 

2. Observing and measuring the changes in a subject's personal thermal state votes in 

relation to changes in temperature. 

To compare the objectives of this chapter with the results obtained it is clear that modelling 

and control of the HVAC system has been achieved. From tile work presented in appendix B 

it appears that the creation of an accurate physical model is more than a trivial task. Simple 

assumptions and roughly estimated parameters are not enough to provide an adequately 

accurate physical model response. "Fiddling" the physical model can help to increase its 

accuracy, the resulting parameters, however, become unrealistic. The presented attempt 

at providing a physical model does give insight into the heat transfer thermodynamics and 

mechanical processes that are involved, which given more time, could be expanded and re- 

evaluated to provide a better model. The identification process helped to provide a faster 

solution to finding a model of the plant. The identified model was accurate enough on the 

tested data and was of a low order. 

Control of the HVAC air temperature was successfully achieved using the identified plant 

model as a basis for control synthesis by pole placement using a polynomial approach. This 
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is a standard control technique and it shows that control of only the air temperature did not 

require any special control requirements. From the equations of the physical model it can be 

seen that control of the air temperature only results in a linear model. It is also seen that if 

control of the air temperature and the air flow rate is desired simultaneously this will result 
in non-linear system equations. The limitations on the HVAC plant used in the experiment 
described in this chapter meant that no investigation into the coupling of the dynamics of 

air temperature and velocity could bd made. 

Observing the thermal state votes of the test subjects suggests that most are willing to vote 

the the nearest decimal place but that this is the limit of their thermal sensitivity. The 

results also show an interesting phenomenon of the congruity of the facial skin temperature 

with regards to the local air temperature. 
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3 Thermal Balance Calculations and Thermal 

State Estimations 

Based on the experimental set up described in chapter 2 the aim of this chapter is 

to provide a comparative study of three methods of thermal state estimation: the 

established calculation of PMV, a more direct linear calculation based on facial 

skin temperature and a neural network approach. In chapter 5a fuzzy approach 

will also be explained. However, this is a new approach and will be presented in 

the context of part II of this thesis - Learning User Interactions. 

The methods were evaluated in terms of the estimation variance and the error 

variance and correlation. The average variance of the error is below 0.7. The 

average variance of error from the PMV is the lowest (below 0.5) but it requires 

pre-test information and a more diverse set of sensors. The TSV method was 
found to be the easiest to set up and to implement. The neural network approach 

required the most work in setting it up due to the fact that it requires a training 
data set and then needed to be taught. From the test results it appears that for 

the extra effort in applying the PMV and neural network methods there is no real 

gain in performance of estimation. 

This chapter contributes a review of three thermal state estimation methods and 

provides for the first time an evaluated performance and implementation compa- 

rison. 

3.1 Introduction 

Thermal state estimation is an established area of research and thus many different methods 

and techniques have been developed. The aim of this chapter is to examine more closely and 
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compare some of the most popular methods. Data collected from the experiment presented 

in Chapter 2 is used to generate thermal state estimations using the different techniques and 

a comparison of the results will be discussed. 

This chapter is important because it not not only provides for the first time a performance 

comparison between the thermal state evaluation results but also provides a critical evaluation 

and experience in the implementation -of the methods. One of the methods is used in a 

control experiment in chapter 4. The demonstration of these techniques is also required for 

the performance evaluation of a new method described in chapter 5. 

3.2 PMV, PPD and Fanger's Comfort Equation 

3.2.1 Background 

The PMV (Predicted Mean Vote) calculation is a modern day version of Fanger's comfort 

equation and is an established calculation used mainly in the control of HVAC systems for 

buildings. 

In 1967 P. 0. Fanger explained in an important paper, [8), that previous research involved 

experiments that varied only 2 of the 6 principal variables involved while holding all others 

constant. While providing valuable results this is a slow and expensive method. The principal 

variables have been presented already, section 1.1.2, and are restated below: 

1. Air Temperature. 

2. Mean Radiant Temperature. 

3. Relative Air Velocity. , 

4. Humidity (Partial Vapour Pressure). 

5. Activity Level (Internal Heat Production). 

6. Insulation Value of Clothing. 

The paper proposed a new method regarding the subject's skin temperature and sweat se- 

cretion as the basis of thermal comfort. From experiments with these parameters a comfort 

equation was derived in terms of the 6 principal. variables. It was presumed that a person 

would be in a state of thermal comfort for a particular skin temperature, t, and internal 

temperature, ti, that are within certain limits, a, b and c, d: 
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< ts <bc< ti <d 

Internal temperature, ti, can be expressed as a function of skin temperature and either hypo- 

thalamic temperature, thyV, or deep skin temperature, tdcev, depending on which perspective 
is taken. 

ti =f (ts, thyp) =f (ts, tdeep) 

With reference to [30) and [31] Fanger deduced that the sweat secretion level, S, could also 
be expressed as a function of hypothalamic temperature or deep skin temperature. 

f (tdeep) :ýf (thyp) (3.2) 

By combining these 2 forms, equations (3.1) and (3.2), internal temperature can thus be 

expressed as a function of skin temperature and sweat secretion. This led to a new set of 
limits that were determined by experiment. 

ti =f (t, S) Hence: a<t, <be<S 

Experiments with varying activity levels were then carried out on test groups of college-aged 
Americans to find the corresponding mean values of t, and S and the limits a, b, e and f. The 

results were collected during the last half-hour of the 3-hour experiment when no significant 

changes took place (i. e. when the subjects were in steady state). Results also showed that 

there was no significant difference between the values for males and females. Regressions were 

carried out on the results and the parameters t, and S were equated in terms of Dubois body 

surface area, metabolic rate and external mechanical efficiency. The thermal regressions for 

t, and S were then used to quantify the elements of the thermal balance equation (3.3). 

H -D - Sw -Rw -Rd= K= R+C (3.3) 

Here: 

H= Internal heat production in the human body. 

D= Heat loss by water vapour diffusion through the skin. 
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S.. = Heat loss by evaporation of sweat from the surface of the skin. 
R,,, = Latent respiration heat loss. 

Rd Dry respiration heat loss. 

K Heat transfer from the skin to the outer surface of the clothed body. 

R= Heat loss by radiation from the outer surface of the clothed body. 

C= Heat loss by convection from the outer surface of the clothed body. 

Fanger's comfort equation then evaluates each of the components of the energy balance 

equation (3.3) in terms of the principal variables to get equation (3.4). This equation is 
Fanger's Comfort Equation: 

m 
(1 - 0.35 43 - 0.061 

m 
(1 - P. 0.42 

m 
(1 -, q) - 50 

ADu ADu 

[ADu 

m Al 35.7 - 0.032 A (1 - 77) - t". 
0.023 - (44 - P,, ) 0.0014- (34 - t,, ) ADý 

ýfD-u ADu 0.181l 

4.8 - 10-8fafýff [(t, 
l + 273)4 _ (tm, t + 273)4 + flhc (t, l - t,, ) (3.4) 

The variables as defined in [81 are: 

M= Metabolic rate. 
ADu = Dubois area (the surface area of the nude body). 

77 = External mechanical efficiency of the body. 

P,, Partial pressure of water vapour in the room air. 
t,, Air temperature. 

t, j Outer temperature of clothed body. 

I, j Dimensionless term for the total heat transfer resistance from skin to outer surface of 

clothed body. 

f, l = Ratio of the surface area of the clothed body to the nude body. 

f, ff = Ratio of the effective radiation area of the clothed body to the surface area of the 

clothed body. 

t,,,, t = Mean radiant temperature. 

h, = Convective heat transfer coefficient. 

Measurements of the principal variables together with some empirical data allow a person's 

thermal state to be estimated on a thermal state index scale. Over 1300 subjects giving 

thermal sensation votes have statistically related PMV and the thermal balance equation. 
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Steady state conditions, however, are assumed and so the equation is only valid for small 
changes in thermal conditions and it is recommended that time-weighted averages of the 

variables over the previous hour are used. 

3.2.2 How it Works 

The method of evaluating PMV, equation (3.5), involves solving a recursive equation set, 

equations (3.5) to (3.8). The British Standard explains how this is done and provides a short 

code listing written in BASIC for computational calculation. 

PMV (0.303e-0.0301 + 0.028) 1 (M - W) - 3.05 - 10-3 [5733 - 6.99 (M - W) - p,, ] - 
0.42 [(M - W) - 58.15] - 1.7 - 10-5m (5867 - p,, ) - 0.0014M (34 - tj - 
3 . 96 - 10-8fl [(t- + 273)4 _ (!, +273)4 + flhc cl , 

(tl - t") (3.5) 

35.7 - 0.028 (M - W) - 
1., 113.96- 10-8f C, 

[(t, 
l + 273)4 + 273)4 ]+ fclhc (tcl - t,, ) (3.6) 

hc = 
2.38 (t, l _ t")0.25 for 2.38 (t, l _ t")0.25 > 12.1 V 

(3.7) 
1 

12. lVi;;, - for 2.38 (tcl _ tj)0.25 < 12. lVF. -, 

fcl = 
1.05 + 0.6451l for Ici > 0.078 m2 oCIW 

(3.8) 
1.00 + 1.29OIcl for Ict < 0.078 M2 oCIW 

Here: 

PMV = Predicted Mean Vote. 

M= Metabolic rate in W/m' of body surface area (1 metabolic unit =1 met = 58.2 W/7n2). 

IV = External work in W/m 2. 

1,1 = Thermal resistance of clothing in M2 oC1W (1 clothing unit =I clo = 0.155 M2 oCIW)_ 

f, j = Ratio of skin surface area when clothed to surface area when nude. 

t,, = Air temperature in 'C. 

= Mean radiant temperature in OC. 

v, = Relative air velocity in m1s. 

p,, = Partial water vapour pressure in Pa. 
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h, = Convective heat transfer coefficient in W/M2 oC. 

t, j = Surface temperature of the clothing in 'C. 

t,, = Operative temperature in 'C. 

The British standard also suPplies data sheets for the estimation of some of the variables 
such as activity levels, table 3.1, and the thermal resistance of clothing, table 3.2. 

Activity 
Description 

Metabolic Rate 
W/7n2 met 

Reclining 46 0.8 
Seated, relaxed 58 1.0 

Sedentary activity 70 1.2 
Standing, light activity 93 1.6 

Table 3.1: Estimation of activity level 

3.2.3 PMV Experimental Results 

The clothing of the test subject was observed and by using table 3.2 a total clothing value 
could be determined for each subject for each test. Activity level according to table 3.1 was 
estimated as 1.0. The British standard explains that relative humidity only influences thermal 

state at the extremity values. As the experimental conditions are not designed to vary the 
humidity level and the natural state of the air during the tests was considered normal, the 

relative humidity variable was set at a constant 50%. The air velocity has been calculated 
as presented in table B. 2 for different fan speed settings. The fan speed was set at 30% for 

the duration of the tests. The radiative energy was not measured but the cabin area was 
semi enclosed and additional heat through radiation was assumed to be negligible. The cabin 
enclosure's main aim was to reduce draught disturbance. The air temperature is thus the 

only changing input into the PMV calculation throughout the experimental tests. 

Two examples of results collected are shown in figures 3.1 and 3.2. The distribution of 
the error was calculated to examine the difference between the PMV calculation and the 

personal estimate from the test subject. In the figures the upper plot shows the personal 

votes as circles and a raw PMV estimate as the grey line. A filtered PMV estimate with 

a first order non-phase shifting filter is drawn as the black line. In the bottom plots the 

histogram of the error is presented on the left together with the distribution curves and on 
the right is the cumulative frequency curves. In both the bottom plots two curves are drawn, 

one from the raw data, A, and the other is the filtered curve using the first order non-phase 
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Thermal Insulation 
Garment Description (CIO) 

Panties 0.03 
Underpants (long legs) 0.10 

Singlet 0.04 
Underwear T-shirt 0.09 

Shirt (long sleeves) 0.12 
Panties and bra 0.03 

Short sleeves 0.15 
Light-weight (long sleeves) 0.20 

Shirts - Blouses Normal (long sleeves) 0.25 
Flannel shirt (long sleeves) 0.30 

Light-weight blouse (long sleeves) 0.15 
Shorts 0.06 

Light-weight 0.20 
Trousers Normal 0.25 

Flannel 0.28 
Light skirts (summer) 0.15 
Heavy skirt (winter) 0.25 

Dresses - Skirts Light dress (short sleeves) 0.20 
Winter dress (long' sleeves) 0.40 

Boiler suit 0.55 
Sleeveless vest 0.12 
Thin sweater 0.20 

Sweaters Sweater 0.28 
Thick Sweater 0.35 

Light jacket (summer) 0.25 
Jackets Normal jacket 0.35 

Smock 0.30 
Boiler suit 0.90 

High-Insulative, Trousers 0.35 
Fibre-Pelt Jacket 0.40 

Vest 0.20 
Coat 0.60 

Down jacket 0.55 
Outdoor Clothing Parka 0.70 

Fibre-pelt overalls 0.55 
Socks 0.02 

Ankle socks (thick) 0.05 
Long socks (thick) 0.10 

Nylon stockings 0.03 
Sundries Shoes (thin soled) 0.02 

Shoes (thick soled) 0.04 
Boots 0.10 
Gloves 0.05 

Table 3.2: Estimation of clothing rating 
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shifting filter, *. The filtered curve helps to extrapolate the reduction of the width of the 
histogram's classes to 0 (and the number of data points to co)- 

Thermal State Comparison Analysis 

Time Based Comparison of Thermal State Estimation by PMV and by Personal Vote 
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Figure 3.1: Comparison of the PMV thermal state estimate with the personal thermal state vote 
- test 10 

The reason for the difference between the PMV estimate and the personal vote of the test 

subject might be explained through calibration errors or the fact that the air flow is particu- 
larly high (in terms of the method recommendations) or by the fact that the air temperature 

at the face is significantly different to the temperature at the feet area. It should not be ruled 

out that the difference could also be due to the test subject giving false votes. This could 
be because the test subject has poor thermal sensitivity and can not give as accurate a vote 

as the PMV calculation. A strong psychological influence on the basis of a vote is the value 
that was voted previously. 

It is clear from the plots that there is some sort of offset error. The personal votes of the 

test subjects are all significantly higher. The thermal state error distribution, in the cases 

presented, shows how the difference between the PMV estimate and the personal vote is 

distributed. The distribution curves show very clearly the offset error which can be read off 

the plot as the value of the x-axis at the distribution peak. The rest of the distribution curve 
is shaped in a form similar to the normal distribution curve, which is good for evaluating the 

reliability of the PMV. 
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Thermal State Comparison Analysis - Nills 
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Figure 3.2: Comparison of the PMV thermal state estimate with the personal thermal state vote 
- test 11 

The reliability of the PMV estimate can be evaluated by means of the variance of the error. 
The variance of the actual data points must also be taken into consideration. A data set where 
the thermal votes did not change much will not give a good indication of the reliability of the 
PMV except over that range. The performance of the PMV method can be estimated using a 
correlation value as well as the variance of the data. The histograms of all the usable results 
together with the variance and correlation values for the data and for the error between the 
PMV and the actual votes are presented in table 3.3. 

3.2.4 Discussion of the PMV Method 

Discussion of Results 

In this experiment air humidity, solar gain and activity rate were assumed to be constant 
through out the test, air velocity and clothing level were constant through out the test which 

means that the PMV value depended entirely on the change in air temperature, measured at 
the face of the subject. The results show a fair correlation with the actual voting. 
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40 

01234 
Thermal State Estimation Error 

01234 
Thermal State Estimation Error 



3 Thermal Balance Calculations and Thermal State Estimations 

Test Number 

03 

05 

10 

11 

15 

Personal Thermal PMV Difference (Error) 
Vote 

II 

Vw'mme . 2.963 
25 

20 

is 

5 

0n 
-4ý5 -3 -1.5 0 1.5 3 4.5 

Thetmal Stato 

Va; iý .0 53612 Correla5on - 0.901 
25 

5 

9: 0 
,, 

-ýL 0 
-4. S -3 -1-5 0 1.5 345 

Thermal Stale 

Vadýe . 2.7272 
25 

20 

5 

0 
-4.5 -3 -1.5 0 1.5 3 4ý5 

Th-I Stt. 

Variý . 1.7015 
15 

t, 10 

ri 
It 5. AI. 

--I 
-4ý5 -3 -1.5 0 1.5 3 4.5 

Th... ISt. t. 

Vari- ý 0.38428 
20 

tis 

10 

-4.5 -3 -1.5 0 1.5 3 -75 

TheýI StWe 

Varia-e -1 ý5329 25 

20 

'to 
LZ 

0 
-4.5 -3 -1.5 0 1.5 3 4ý5 

Thwmal State 

VaHý . 0.25016 
30 

0 

10 

Variarce - 4.016 
15 

po 

0 
-4.5 -3 -1-5 0 1.5 3 45 

Thermal State 

Vý - 1.4596 
20 

ý15 

s 

-4-S -3 -I. S 0 t. 5 3 4S 
0 

The,.. l &. t. 

Vadame - 2.0499 
25 

20 

-45 -3 -1.5 0 1.5 345 
Thmmal State 

Vadý - 0.54711 
30 

t20 

-4ý5 -3 -1.5 0 1.5 345 
Th-1 Sia!.. 

Vý . 0.72129 Correlation . 0.95! 

-4.5 -3 -1-5 0 1.5 3 4.5 
0 

Thermal State 

Variý . 0.22395 C-slafion . 0.7681 
30 

ý20 

10 

-4ý5 -3 -a 0 1ý5 3 4,5 
_j st t. 

Table 3.3: Histogram results of the PMV Estimation Method 

From the histogram results displayed in table 3.3 it can be seen from test 3 that this person 
preferred to stick to the integer values of thermal state (i. e. 012 and 3), which seem to 
have significantly more values than those between. This suggests that this person was less 

confident to interpolate between the suggested linguistic values. The shape of the histogram 

and the variance of the personal vote shows a fairly good spread of points over the warmer side 
of thermal state. A good spread is also indicated by the PMV variance. The variance of the 
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error is expected to be bad because of the poor thermal sensitivity of the subject. However, 

the variance is small which indicates that the PMV has been fairly effective in estimating the 

personal thermal vote. This is confirmed by the high value of correlation between the PMV 

estimate and the personal thermal vote. 

Test 10 suffers from the problem of a poor variance of personal thermal state. The time 

domain data, displayed in Figure 3.1, - shows that the subject was responding to the changes 

instigated by the experiment. The personal response just appears to have a smaller gain 

than the PMV system. The variance of the error is actually higher than the variance of the 

personal vote which is not a good sign. The value of the variance of the error is still in line 

with that of the other tests and the poor variance of personal votes does not detract too 

much from the confidence in the PMV as shown by the correlation value which has fallen 

slightly but is still practically good. 

Test 15 also suffers from the same problem as test 10, i. e. a poor variance in personal thermal 

vote. The variance of the error however is in this case lower than the variance of the personal 

vote but the effect has reduced the correlation value. 

Test 11 shows a very good result -a wide variance of personal vote and PMV values but a very 

small variance in the error which is complimented by a high correlation value. Perhaps this 

test has slightly fewer data points than the other tests. Nevertheless, the result is particularly 

good. 

It is interesting to note that tests 3 and 5 have little or no offset errors but that the other 
three tests show some difference. The cause of the offset is not clear. Perhaps the error is a 

calibration fault or perhaps the error is a personal preference issue. The experiments were 

set up the same way, the temperature sensors were calibrated against an industrial standard 
thermometer before each test. Tests 5,10 and 11 used the same test subject yet show different 

offset values. What is clear is that the offset can be approximated by the mean of the error 

and once this has been taken care of the PMV shows a good performance. 

Discussion of Method 

The PMV is an established method described by the International and British Standards (BS- 

EN-ISO 7730) and has a few additional computational features such as the PPD (predicted 

percentage of dissatisfied) and a draught equation. 
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PPD = 100 - 95c 
(0.03353PAI V4 +0.2179PAf V2) 

(3.9) 

The PPD is an estimation of the percentage of people subjected to the measured environment 
that will be unhappy with the environment. The votes of a group of people all subjected to 
the same environment will not all be exactly the same, as expected. It is the purpose of the 
PPD to predict the percentage of people within such a group that will be unhappy with the 

environmental conditions. Equation (3.9) is used for calculating the PPD and shows that it 
is just another representation of the PMV which tackles the control issue in a different way. 
Instead of aiming to maintain a high level of comfort the PPD is used to minimize the number 
of dissatisfied people. Table 3.4 gives a comparison between values of PMV and PPD. 

PMV PPD Percentage of persons predicted to vote 
01 -1,0 or +1 -2, -1,0, +1 or +2 

+2 75 5 25 70 
+1 25 27 75 95 
0 5 55 95 100 

-1 25 27 75 95 

-2 75 5 25 70 

Table 3A The predicted distribution of PMV and PPD votes 

Unhappiness with the environmental conditions can be greatly affected by draughts - "an 

unwanted local area of cooling caused by the movement of air". The draught rating is 

expressed as a percentage of people dissatisfied due to draught, DR in equation (3.10), and 
is expressed as a function of the local air temperature, t,,, the local mean air velocity, v, and 
the local turbulence intensity, T,,. 

DR = (34 - tj (v - 0.05) 0,62 (0.37v - T,, + 3.14) (3.10) 

The British Standard presenting PMV also states acceptability of the environment for thermal 

comfort as maintaining the PPD under 10% which translates to the PMV being kept within 
±0.5. The draught rate should also be kept lower than 15%, which can be done by controlling 
the local mean air velocity. 

Recommendations for use of the PMV calculation in control of the thermal environment by 

the British Standard are as follows: 

e PMV is derived from steady state conditions and so should only be used with minor 

43 



3 Thermal Balance Calculations and Thermal State Estimations 

fluctuations in environmental disturbances. 

" Time-weighted averages over the previous 1 hour should be applied to the variables 
involved. 

" The use of the PMV index should be limited to between -2 and +2. 

" Limitation of the 6 main variables: 

M= 46 to 232W/m 2 (0.8 to. 4met) 

Ij =0 to 0.310rn 2 oCIW(o to 2clo) 

10 to 30'C 

10 to 40 'C 

- V, =0 to 1M/S 

- p,, =0 to 270OPa 

- (Relative Humidity = 30% to 70%) 

Note: the draugbt rate may limit the relative air velocity even further.. 

The PMV is designed for use with groups of people, typically working together, and so 

acceptability is defined in terms of a limit of satisfied people. This gives a problem in applying 

this approach to the automotive cabin occupants to whom the air conditioning system can 

assign individual control laws. The PPD could, however, be interpreted as the probability 

that a single occupant will be unhappy with the current environment and in this context the 

acceptability rating can be used as a control limit. 

Several assumptions and approximations have been made in the experimental application of 

the PMV. For example, the fcI value (ratio of surface area of clothed body to nude body) 

is approximated in the algorithm code from the value of the clothing resistance. Values of 

activity and clothing resistance are extracted from the tables of approximate values. The air 

velocity used in the experiments is high with regard to the recommended standards of use of 

the PMV calculation. However as the results show the PMV method has still proven to be 

quite accurate. 

3.3 Linear Facial Skin Temperature Regression Equation, 

3.3.1 Background 

The six principal variables used in the PMV method, with the exception of activity level, 

measure external conditions around the test subject. These are then used in a thermal balance 
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equation to evaluate the heat transfer between the subject and the environment. Fanger even 

states that thermal state can be reduced to an evaluation of skin temperature and sweat level. 

The two-node method by J. B. Pierce (see [181 and [19]) is also based on the thermal balance 

heat transfer process between the person and the environment. It seems then that a much 

more direct approach would be to base the thermal state on the skin temperature itself. 

This approach has attracted researchers and tested techniques have been presented in the 

literature, such as the Hardy-DuPoint 7 point method in [32] in 1938, and the work of 
N. L. Ramamathan [33] in 1964. [34] gives a useful discussion on thermal comfort, skin 
temperature and thermoregulation. The problem with this approach is that there are few 

applications where it is practically possible to observe the skin temperature. 

In the car cabin environment the non-contact measurement of skin temperature is not easy. 
With the current infrared technology it is possible to obtain facial skin temperatures, clothing 
temperatures and cabin wall temperatures however this is costly but methods and sensors are 
being developed, as in [35], [36] and [371. The use of a thermal imaging device to look at the 

environment of the user has the advantage of a continuous temperature distribution across 
the field of view. This can be used to aim the vents as well as providing skin temperature. 

There has been substantial research input from the Toyota Central Research & Development 

Labs in thermal comfort analysis in this area. In particular 5 papers have demonstrated 

significant accomplishment [25], [11], [271 [391 and [40]. The paper by Taniguchi et al [25] 

is the first of a 2-part study in which two sets of experiments were carried out in order to 

correlate the passenger facial skin temperatures with a thermal sensation vote. It was noted in 

the paper that thermal sensation evaluation by an overall average skin temperature had been 

studied for the application of building HVAC systems. In a car however, the close proximity 

of the air outlets causes a non-uniform temperature distribution and it was expected that the 

comfort of the user could be evaluated by observing the face skin temperature only. 

A pre-test experiment involved blowing air at a subject's face and recording face temperature 

and overall body temperature and the thermal sensation vote of the subject. -The test des- 

cribes a very similar experimental setup to the one carried out in the investigation described 

in chapter 2. The test involved a single tube of variable air temperature directed towards the 

test subject's face and upper body and their facial skin temperatures were recorded. Additio- 

nally the experiment included a solar simulator to reproduce a sunshine load. The subjects 
indicated their thermal state by voting on a similar 11-point scale. The test started with the 

subject in a warm state and then the air was applied and the face was cooled. The results 

showed that the facial skin temperature was greatly reduced (since the air was directed at 

the face) and the overall skin temperature showed a slight increase. Tile thermal sensation 
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vote showed a decrease and it was hence presumed that the facial temperature could be used 
to determine the subject's thermal state. The authors explained that even when heating 

the subject by aiming the outlet at the feet, correlation between facial skin temperature and 
thermal sensation vote was still high. 

The study then went on to produce a linear regression equation to equate thermal state 

votes to the corresponding mean facial skin temperature and rate of change of the mean 
facial skin temperature. It is the resulting equation from the first part of this study that 

will be examined next. The resulting equations were then tested in a car using the car's air 

conditioning system. 

This paper gives rise to an interesting discussion concerning the use of facial skin temperature 
for thermal state evaluation even when heating air is supplied via the outlet vent by the feet. 
The paper explains that facial skin temperature may be particularly sensitive to thermal 

stimuli. This is an interesting assumption since it is the face that often turns red when 
undertaking physical exercise or even when blushing which are both examples of the body 
increasing heat loss. 

3.3.2 How it Works 

In the work carried out in [25] and [111, two important equations were presented. The first, 

equation (3.11), evaluates thermal state from the average facial skin temperature and rate of 
change of average facial skin temperature. 

TSV = 0.81 (6k - 33.9) + 39.16k' (3.11) 

Here: 

TSV = Thermal Sensation Vote. 

tsk Average facial skin temperature in 'C. 
6k' Rate of change of average facial skin temperature in 'Cls. 

The second, equation (3.12), reverses the process using a desired thermal state as an input 

to determine the required average skin temperature. In place of the normal user input for 

setting the temperature a desired thermal state input is required. Equation (3.12) is thus 

derived from equation (3.11) to calculate a target skin temperature from the desired thermal 

state input. 
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tsk 
(TS + 27-5) AT + 39.1tsk 

(3.12) 
0.81A-r + 39.1 

Here 

tsk* = Target skin temperature after A-r seconds in 'C. 

TS = Thermal sensation setting. 
A, r = Time interval in s. 

This target skin temperature is then linked to the air temperature and air flow outputs from 

the HVAC system using a one-dimensional heat transfer model of the skin from the external 
surface to the body core (36.7 C). It was assumed that the air flow velocity was more likely 

to produce greater disturbance on the skin and provoke discomfort. Thus, setting of this 

parameter was left up to the user and the corresponding air temperature for the desired 

thermal state was calculated. The target skin temperature in steady state is found by solving 
equation (3.12) but with tsk* = tsk. 

Actually doing this reduces equation (3.12) to equation (3.13) which can be used to equate 
facial skin temperature with thermal state. This is an important step when discussing the 
implementation of thermal state (see chapter 6). 

tsk = 
TS + 27.5 

0.81 
(3.13) 

In the experiment described by [251,7 facial skin temperature measurements were used to 

calculate a mean value. In the experiment conducted in chapter 2 only three measurements 
were taken due to a limitation of the number of available acquisition channels. From initial 

observation it was found that temperature differences between sensors that were within a 
centinietre or so of each other were negligible (except in the case when one happened to be 

over a vein). Thus by placing each sensor at the centre of different parts of the face (and 

avoiding veins) a mean value of facial skin temperature could be determined. A diagram of 
the facial skin temperature measurement points was presented earlier in figure 2.3. 

3.3.3 TSV Experimental Results 

Using the data collected in chapter 2a TSV estimation was carried out. A detailed display 

of the results froin tests 3 and 10 are provided in figures 3.3 and 3.4, respectively, and a 
summary of all the results is presented in table 3.5. 
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Thermal State Comparison Analysis 
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Figure 3.3: Comparison of the TSV thermal state estimate with the personal thermal state vote 
- test 03 

From the time plot for data set 3, the results seem to get better arid better as the test proceeds 

and the overall time plot seems to indicate a good correlation. The error between the TSV 

estimate and the thermal vote from the subject seems to slowly disappear and this disrupts 

the histogram and distribution curves. The initial value of the TSV estimate is extremely low 

(below -5) and so it is suspected that the test subject was uncomfortable in voting beyond 

or even on the limit of the suggested voting scale. Once the test had started previous votes 

may have influenced the estimate of subsequent votes and so the initial error is propagated, 

and dissipates slowly. 

There is possibly a similar reason for the initial difference in test 10. The voting of this test 

subject with respect to the PMV approach has already been noted as being of a much lower 

gain and this is again confirmed with the TSV approach. What is interesting is that the poor 

initial response is not dissipated as smoothly as the error propagates through the data as in 

test 3. Instead there appears to be a jump as is evident in the histogram by the small peak 

at about 3.5 just to the right of the main peak, which without the smaller peak would look 

more like a normal distribution curve. This led to an analysis of part of data set 10, only 

considering the points after 1000 seconds, renamed data set 10b in table 3.5. 
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Thermal State Comparison Analysis 
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Figure 3A Comparison of the TSV thermal state estimate with the personal thermal state vote 
- test 10 

3.3.4 Discussion of the TSV Method 

Discussion of Results 

The results presented in table 3.5 show that the worst correlated and highest error variances 
are data sets 3 and 10. Observations from the time plots in figures 3.3 and 3.4 suggest that 
these results are not as bad as they appear and that perhaps some initialization problems were 
the cause. The latter parts of both the time plots look very good. This is a good indication 

that the variance and correlation values on their own can make a data set appear worse than 
it actually is. In the case of data set 10 the results were re-evaluated and presented as data 

set 10b which shows a remarkable improvement in both error variance and correlation just 
by removing a small section at the beginning of the time plot. This could be done with data 

set 10 because there appeared to be a jump in the error early on, whereas with data set 3 

the error seemed to slowly dissipate. 

The rest of the results show good performance with low error variances with respect to the 

variances of the thermal votes and the TSV estimates and with high correlation values. 
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Discussion of Method 

The derivation of the second equation (3.12) and its use in calculating a skin temperature 

reference to control the environment has strong implications on the use of facial skin tempe- 

rature as a feedback variable for the control of thermal state. This is demonstrated in the 

second part of the original paper [111. Results presented in this paper show that the controller 
is able to maintain thermal state after an initial delay caused by the air conditioner reaching 

capacity. Tests also included varying the clothing level of the subjects, which did not prove 
to be a problem for the controller. 

The benefit of basing the thermal sensation calculation on the skin temperature is that it is 
direct and avoids making assumptions about the fluid dynamics within the car and about the 
intensity of sunlight on the face, etc. 

Obtaining the mean facial skin temperature is a prerequisite of this method, which in the 

automotive application is not yet available. However with the advancement of infrared tech- 

nology the non-contact measurement of facial skin temperature is possible, yet expensive. 
The results shown above, from a simple equation and on 

' 
ly 3 facial skin temperature measu- 

rements, are encouraging and imply the potential of this approach. Combining this method 

with other measurements from around the car might make this estimation even better. 

3.4 Neural Network Evaluation 

3.4.1 Background 

Neural networks provide an other interesting approach that current researchers have applied 

to the task of thermal state estimation (see [38]). 

Furuse and Komoriya [281 examined the relationship between thermal state and skin tem- 

perature. Mean skin temperature, calculated using the Hardy-Dubois 7 point method, and 

partial skin temperature were measured. It was found through comparison that outputs from 

a neural network were closer to the experimental results than a regression calculation. The 

paper explains that the neural network, with 15 skin temperature inputs, can make use of the 

temperature distribution pattern, in contrast to the regression calculation using a mean skin 
temperature only. The paper concludes that neural networks are suitable for the evaluation 

of thermal comfort and thermal state. 
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Ueda et al [39] presented a neural network method of Predicting thermal sensation based on a 
mean facial skin temperature. By combining the facial skin temperature history measurement 
with a history of the internal cabin air temperature as inputs to a neural network structure 
their results proved that there was no need for measurement of the body skin temperature 
for accurate control. A plot of temperatures at different positions around the body showed 
that as the environmental temperature increases from a low value, the abdomen and thigh 
temperature did not rise with the face temperature but remained at a lower temperature for 
longer. This makes the subject feel colder and so facial temperature can not be used on its 

own to predict the thermal sensation. Results showed that with the setting of thermal state 
reference it was possible to keep the subject from becoming uncomfortable but to achieve a 
more comfortable state required knowledge about personal preferences. 

Another approach to determining skin temperature was investigated in a paper from Ueda et 
al [40]. The method described in this paper used a neural network based on environmental 
data to'estimate facial skin temperatures and thus avoided the use of thermocouples attached 
to the skin. This led to the control of thermal state estimated from facial skin temperature, 

which in turn was estimated from the environmental data. The results were presented in a 

separate paper [271. This seems to be a roundabout solution. However, even the PMV method 
is based around the skin temperature and a heat transfer balance between the subject and 
the environment. If it is found that the neural network method provides better results in 

estimating thermal state than a regression equation then perhaps it might also be better at 

estimating the relationship between the skin temperature and the environmental parameters. 

3.4.2 How it Works 

There are many types of neural network structures with different properties. The predominant 

methods used in the literature in the prediction and estimation of thermal state is a feed- 

forward multi-layer perceptron network. 

A perceptron consists of a set of weighted inputs which are summed and compared against 

an internal threshold function as described in figure 3.5. 

The multi-layer perceptron structure normally follows a similar profile to the one shown in 

figure 3.6 where each circle represents an individual perceptron. 

The network is a feed-forward network because none of the outputs are immediately returned 
as inputs. The system knowledge is held in the network via the input weights and it is by 
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u f-0 U3 

I 
fTh wiui) (3.14) 

Figure 3.5: The internal workings of a single perceptron 

Here, fTh represents the threshold function, y is the output, ui is the ith input and wi is the 
associated weight for that input. 
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Figure 3.6: A feed-forward multi-layer perceptron with 3 inputs and 1 output 

modifying these that the network can be taught. The most common method is called back- 

propagation. All the weights are initialized with a random value. The threshold functions 

in each perceptron need not all be the same and it is common to see linear functions in the 

output layer perceptrons and saturated siginoid functions in the hidden layers. 

The network that was formed to estimate the thermal state to provide results for this section 
had 5 input temperatures: 

Air temperature at the nozzle outlet 
Air temperature at the face 

Face temperature on the forehead. 

Face temperature on the left cheek under the eye. 
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e Face temperature on the side of the right cheek. 

The network was constructed with one hidden layer with 15 perceptron and 1 output layer 

with 1 perceptron. The training data was run 500 times from a random selection of weights. 
The selected training algorithm was the Bayesian Regulation back-propagation method, which 

updates the weights according to Levenberg-Marquardt optimization and produces a good 

generalized network. The threshold functions in the hidden layer were hyperbolic tangent 

sigmoid functions and the threshold function in the output perceptron was a linear function. 

The network was constructed, taught and simulated within the MATLAB neural network 
toolbox, which also provided analysis during training showing the perceived number of useful 

perceptrons within the network. This was used to iteratively optimize the size of the network. 

3.4.3 Neural Network Experimental Results 

The neural network method specializes in non-linear modelling of systems with certain repe- 
titive pattern behaviour. It is possible to teach a network to estimate the thermal state of any 

member of the general population. However the correct set of teaching data would have to be 

compiled in order to provide a good representation of the expected patterns and to generalize 

out any individual idiosyncrasies. It would then perhaps become directly comparable with 
the other techniques. The neural network method can make use of parameter properties that 

other methods find difficult to use, such as the distribution in skin temperature across the 

face rather than just the mean value. 

It is the advantage of the neural network method to find personalization within the teaching 

data that is of most interest. It is thus proposed that a neural network can be taught to be 

more accurate than the general methods discussed earlier by learning personal traits in the 

response. Because of this onlY 3 of the 5 data sets used earlier will be used in testing this 

method because the 3 data sets are from the same person. 

The results for the neural network approach are presented in figures 3.7,3.8 and 3.9 and in 

table 3.6. Data set 5 was used to teach the neural network and so it is obvious that the 

resulting correlation between the network's output and the measured data set will be good. 
The noise on the input sensors means that there will be some noise on the output of the 

neural network, even oil the training data. The noise level can be reduced by reducing tile 

number of perceptrons in the layers of the network. This will however mean that the network 

will have more difficulty in learning tile desired behaviour. 
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Thermal State Comparison Analysis 
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Figure 3.7: Comparison of the neural network thermal state estimate with the personal thermal 
state vote - test 05 (teaching data) 

The small noise level shown in figure 3.7 is acceptable and could be reduced by filtering 

the noise on the temperature sensors first. Alternatively the output signal from the neural 

network can be filtered, as shown in the figure (dark line in top plot). The histogram and 
distribution curves are also less significant as it is expected that error in the signal is due 

to the noise on the sensors. If the noise is truly random then the curves should assume the 

normal distribution shape, which they do. 

The teaching data (set 5) does not have good coverage of the thermal state estimation at 
low values. The network only has a few points of thermal state votes at around the 0 mark 

and nothing lower. It is expected that this will cause problems when applying the network 

with data set 10, which has many points at 0 and lower. This forces the neural network to 

extrapolate beyond its teaching data. The weights of the network were randomly selected 

and when encountering unlearnt inputs the network can not be expected to provide a good 

response. As can be seen in figure 3.8 the network's response seems to be reluctant to drop 

below the 0 mark which may be due to limitations in the teaching data. 

The neural network response in figure 3.8 is quite interesting, especially in the later lialf of 

the test. The error reduces throughout the test the step change just after 3000 seconds is 

55 



3 Thermal Balance Calculations and Thermal State Estimations 

Thermal State Comparison Analysis 

Time Based Comparison of Thermal State Estimation by NN and by Personal Vote 
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Figure 3.8: Comparison of the neural network thermal state estimate with the personal thermal 
state vote - test 10 

identified and the shape of the second set of peaks, just before and after 4000s, is correctly 
identified. The network response then follows the thermal state well below the zero mark 

staying very close to the actual thermal votes. 

The third data set provides a more realistic test of the neural network. The result shown 
in figure 3.9 demonstrate that the network can accurately track the thermal state votes of 
the subject. The noise levels are certainly worse than those in either the teaching data or in 

the results from data set 10. The noise on the sensors during this test were slightly worse. 
However the neural network seems to have been severely affected by the noise which does 

imply that it has be "over taught". 

The histogram and distribution curves seem poor in comparison to the main plot. This is 

because for each step change in thermal state the neural network response has a different 

mean error. The fact that the test involves extended periods of similar environments followed 

by rapid jumps to the next means that the errors will build up and then jump to the next 

error. Three peaks are seen in the histogram because of this at -1, -0.2 and 0.4. Note that 

the histogram is based on the unfiltered neural network output. 
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Thermal State Comparison Analysis 

Time Based Comparison of Thermal State Estimation by NN and by Personal Vote 
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Figure 3.9: Comparison of the neural network thermal state estimate with the personal thermal 
state vote - test 11 

Table 3.6 below helps to verify the discussion points. The histograms of the teaching data 

shows very few personal thermal votes and neural network votes at 0 and lower. The hi- 

stograms of the thermal votes in data set 10 show a comparatively large number of votes 
at around 0. The histogram of the thermal votes in data set 10 is also quite narrow with 
a variance of less than 0.4. It is still surprising to find the correlation between the neural 
network output and the personal thermal votes to be as high as 70%. The correlation for 

the teaching data is expected to be high and at 98% it shows the extent of the teaching. As 

observed previously the network was prone to noise which is a symptom of over teaching. 
Perhaps by allowing a greater error in the acceptable correlation of the teaching data the 

correlation of the other 2 tests could have been improved. 

The jumping around of the error in test 11 appears different in the summarised table because 

of the different sized histogram classes. The neural network response has a clear gap in the 

data points and the personal thermal votes also show spikes of data points with a gap at 
3. The wider histogram classes means that the 3 spikes seen in the earlier error histogram 

have been reduced to 2. spikes, with offset errors at just above 0 and at -1. The spike at -1 is 

detrimental to the overall error variance and correlation. 
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Table 3.6: Histogram results of the neural network Estimation Method 
. 

3.4.4 Discussion of the Neural Network Method 

The neural network approach appears to give good results. The expected advantage of using 
the neural network approach is that it can identify personalization within the teaching data 

and thus should be more accurate than the other methods - as long as the subjects are 

consistent in the way they make their personal votes. 

Problems with the method start to occur when the neural network is over-taught. The 

network can start to learn sensor noise behaviour and if the subject is not being consistent 
then learning the precise voting technique from the teaching data will not cause the network 
to be more accurate for subsequent tests, in fact this could make the network worse at 
estimating thermal state. 

The general disadvantage of using neural networks is that they require a good teaching data 

set which will give the controller a basis for interpolation of future input signals. Choosing 

the correct network structure and relevant input variables is also important in obtaining a 
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good network. Finally, because the network training is done from an initial state of randomly 

selected weights, some solutions will be better than others given the same network structure 

and the same training conditions. All training must be carried out before the network can be 

used and so if personalization of the thermal state estimation is desired then networks will 
have to be taught with personalized data sets. This has consequences for its implementation 

in the automotive application. 

3.5 Discussion: Direct Comparison of Techniques 

3.5.1 Variance and Correlation Comparison 

A direct comparison of the different thermal state estimation methods is presented in tables 

3.7 and, 3.8. 

Table 3.7 shows the variances in the thermal states of the personal votes and in the thermal 

state estimation method outputs and the error between the vote and the method output. 
The variance of the thermal votes and the variance of the method outputs should be similar 

and the variance of the error of each method should be small. 

Test 
Number 

Personal 
Vote 

PMV 
Output Error 

TSV 
Output Error 

neural network 
Output Error 

03 2.7272 2.963 0.53612 3.3202 1.5665 
05 1.7015 4.016 0.72129 3.1158 0.39316 1.6918 0.067748 
10 0.38428 1.4596 0.56134 1.3346 0.78694 0.69624 0.34606 

10b 0.44095 0.613 0.19792 
11 1.5329 2.0499 0.16691 3.5926 0.5748 2.5779 0.66721 
15 0.25016 0.54711 0.22895 0.51844 0,17814 

Avg,,,, 1.172832 2.08244 0.616243 
Avgp, p, 1.319208 2.207122 0.442922 2.376328 0.699908 
Avgp, plb 1.330542 2.232008 0.582104 
AVgprp2 1.206227 2.5085 0.48318 2.681 0.58497 1.655313 0.3603393 
Avgprp3 0.95859 1.75475 0.364125 2.4636 0.68087 1.63707 0.506635 

Table 3.7: Direct comparison of the variance in different thermal state estimation methods 

Avg,, Il is the average of data sets 3,5,10,10b, 11 and 15 
Avgp, p, is the average of data sets 3,5,10,11 and 15 
Avgp, plb is the average of data sets 3,5,10b, 11 and 15 
AVgprp2 is the average of data sets 5,10, and 11 
AVgprp3 is the average of data sets 10 and 11 
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All but one of the thermal state method outputs shows a variance greater than that of the 

subject's personal vote and the exception is the neural network's response to its teaching 
data. This suggests that the thermal state estimation methods are all more sensitive to their 
inputs than the test subjects. This needs to be confirmed from the time domain plots but 

the variance is a good indication. 

The variances of the errors in table 3.7 show that all but one are below 0.8. This gives a good 
indication of the overall accuracy of the methods and can be used to design performance 
criteria in future control strategies. In terms of using the variance of the errors to cross 
compare the different techniques there is no clearly superior method. The PMV method 
seems to be better on test 3 and 11 while the TSV method is better on test 15. The neural 
network approach shows good results on tests 5 and 10 but then test 5 was its training 
data. As discussed earlier the TSV approach does display good properties in part of test 10 
(renamed test 10b) with a very low error variance. 

The variance of the error was not the only calculated value and the correlation between the 
thermal state votes and the thermal state method outputs was also presented for each of the 

methods. These have been collected into table 3.8 below: 

Test Number PMV Error TSV Error neural network Error 
03 0.90656 0.74455 
05 0.95565 0.96072 0.98004 
10 0.85626 0.65068 0.70996 

10b 0.82326 
11 0.9635 0.96959 0.86615 
15 0.7681 0.81979 

Table 3.8: Direct comparison of the correlation in different thermal state estimation methods 

The correlation results show a good overall performance from all the methods. The lowest 
PMV correlation is 77% which is higher than the lowest of the other 2 methods. In terms of 
the correlation, the PMV method was the best method for tests 3 and 10. The neural network 
only provided the best results from its training data and even then the other methods also 
provided excellent results. The TSV method gave the best results in tests 11 and 15 but also 
provided the worst correlation of the 3 methods at 65% in test 10. Only looking at part of 
test 10 (renamed test 10b) the TSV is improved but still is not better than the PMV method 
calculated for the whole of test 10. The overall comparison would suggest that none of the 

methods has a clear advantage but that the PMV method has provided marginally better 

results for the test data used. 
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3.5.2 Method Implementation Comparison 

The neural network was expected to be the most accurate since it. was expected to learn the 

personal thermal state estimation patterns of the test subject. It was found that the noise 

on the temperature sensors started to impair the results of the network before it could learn 

sufficiently to perform better than the other 2 methods. The neural network provided the 

smallest error offset and in that respect was the most accurate method. There is evidence that 

the network was slightly over-trained but the results indicate that its performance was still 

comparable. Perhaps by pre-filtering the sensor inputs and with additional fine tuning the 

performance could be increased. The main disadvantage with this technique, in comparison 

with the other methods, is that it requires a lot of off-line training with a suitable data set. It 

might be argued that the fact that the neural network was just as bad as the other methods 

on non-trained data sets might suggest that this is due to variance in personal thermal state 

estimation by the test subject. 

The PMV is a standard method used mainly in buildings and is based on air temperature, 

air velocity, air humidity, solar gain, activity rate and clothing level. The PMV method was 
derived using assumptions of steady state and so is not so dependable in variant conditions. It 

also requires a lot of information about the environment which is not always available. In this 

test air humidity, solar gain and activity rate were assumed to be constant throughout the test 

and were given estimated values. The air velocity and clothing level were constant throughout 

the test which means that the PMV value depended entirely on the air temperature measured 

at the face of the subject. The is not a strong representation of the full method. However, 

the use of tables for estimating input parameters did result in fairly accurate correlation and 

variance results. The output offsets with the actual thermal votes were the largest for this 

method but then the documentation on this technique suggests that one hour averages should 
be taken (this was not done). 

The TSV value relies on facial skin temperature only - it does not require a lot of previous 
knowledge about the subject (as the PMV method does) and it does not require training as 

the neural network method does. With the presented test results there are offset differences 

between thermal vote and the TSV output. However, the variance and correlation results 

suggest an acceptable level of accuracy. 
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3.6 Conclusions 

Three methods of thermal state estimation have been tested on data collected from chapter 
2. The test results show that none of the methods are better than the others in terms of 

performance. The average variance of the error is below 0.7 and is only this high because 

of one bad test result, which appears to be affected by some initialization problems. The 

average variance of error from the PMV is the lowest (below 0.5) which is good considering 
that it is being applied to a turbulent transient environment. It also means that it is possible 

with good control to maintain the British Standard of acceptability of the environment for 

thermal comfort (maintaining the PMV within ±0.5 of the neutral level). 

The number of test results presented in this chapter is small and on there own are not enough 
to provide verification data for the methods involved. The aim of this chapter was not to 

test each of the methods individually. Each method has already been published and has been 

verified by the authors and by other researchers in the same field. - The results presented here 

help to confirm and to complement these previous results. The main aim of this chapter was 
to compare the implementation of each of the methods. In this respect it is quite fortunate 

that the three methods provided similar performance. This means that the effort involved in 

setting each method up can be compared more directly. 

In concluding this chapter it was found that the TSV method was the easiest to set up and 
to implement. It required a set of facial skin temperature sensors and consisted of a single 

regression equation which required no pre-test values. The PMV method was also fairly easy 
to program when given the code listing in the British Standard. The algorithm does use an 
iterative loop which is more processor demanding than the TSV method. The PMV method 

also required pre-test information such as tile clothing resistance and activity level of the 

test subject. The PMV method uses a more diverse set of inputs, which may require a more 

extensive set of sensors (such as a humidity sensor and solar gain sensor). In some automotive 

applications, however, these required sensors may already exist for other applications. The 

neural network approach required the most work in setting it up due to the fact that it 

requires a training data set and then needed to be taught. The neural network can be set 

up in different ways with different sensors and in this respect is more flexible than the other 

methods. From the test results it appears that for the extra effort in applying the PMV and 

neural network methods there is no real gain in performance of estimation. 
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The aim of this chapter is to address the application of climate control to the 

automotive cabin. This chapter extends the TSV thermal state estimation me- 

tbod, presented in chapter 3, in a novel way and introduces thermal state control 

in the automotive cabin. A plant model was identified between the desired air 

temperature input to the car's HVAC controller and the actual cabin air tempera- 

ture. A second mod el was identified between the desired air temperature and the 

subject's calculated TSV value. A 3rd order model with a 30 second sample time 

was chosen for the air temperature model and a 3rd order model with a 20 second 

sample time was chosen for the TSV model. A state-space controller was synthe- 

sised using a pole-placement technique and used to control the air temperature 

and the test subject's calculated TSV value. The results show good control of 

the air temperature and the TSV value. The control model for the TSV control- 
ler was rigorously designed to be satisfactorily fast and, consequently pushed the 

system too hard resulting in saturation of the desired temperature signal. The 

local HVAC control, for the sake of thermal comfort, would not allow the foot. 

area to become too cool and thus inhibited the cooling of the subject's feet. 

This chapter contributes and verifies a thermal state control method using the 

TSV estimation. It proves feasibility of the control of thermal state using a linear 

state-space controller. 

4.1 Introduction 

4.1.1 Aim of the Chapter 

In this chapter the the application of thermal state control in the automotive cabin environ- 

ment will be directly addressed. Parallels can be assumed between the experiment in chapter 
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2 and the real application. However for a better realization of the aspects involved an ex- 

periment was set up using a Mercedes-Benz S-class test car. The experiments carried out 
in the test car were intended to extend the work of chapter 2 and include the TSV method 
described in chapter 3. 

The aim of this chapter is to investigate the control of the Thermal Sensation Vote (TSV), 

using facial skin temperatures, developed by [25], in the automotive application. The linear 

relationship of the TSV to mean facial skin temperature and the intriguing prospects of de- 

termining facial skin temperature through infrared technology motivates the development of 

this control technique for the automotive application. The choice of using the TSV estimation 

is purely pragmatic and demonstration of the control of the TSV illustrates that control of 

thermal state, estimated by any means, is feasible. 

Additionally, control issues will be examined for certain demands on the automotive HVAC 

system. ' Since the ultimate effect of a change in the outputs of the HVAC system is to 

modify the user's thermal state value, demands on the system can be interpreted as changes 
in desired thermal state of the person. It is very difficult to show the reasons why someone's 

personal desired thermal state changes since there are many trigger variables and most are 

abstract, non-measurable and have little, if any, influence on the estimates of thermal state. 
It is expected, however, that influencing factors will result in a desired shift in thermal state 

and thus what will be examined is not just the actions by the controller to maintai na neutral 
thermal state but the actions that move away from a neutral level also. Thus it is logical 

that the input to the controller should be a reference thermal vote. 

It is believed that the control of the TSV in the manner presented in this chapter is a new 

approach and this work has been presented as a conference paper [411. 

4.2 Experimental Setup 

The test car was a Mercedes-Benz S-class with a built-in Power PC linked to the Control 

Area Network (CAN) bus on which the climate control elements communicated. Temperature 

sensors were connected to the input channels of the power PC's AD card. The temperature 

sensors were the same as those explained in section 2.2.2 and were set up in the same man- 

ner as described earlier. During the experiments data were recorded from the sensors and 
from the CAN bus every second. The temperature sensors were used to measure the 5 skin 
temperatures from the test subject's face, and an air temperature from close to the subjects 
face. Additional information from the car's own sensors was recorded from the CAN bus, 
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which included air temperature measured from a sensor located close to the rear-view mirror, 

outside air temperature, Engine coolant temperature and information from the solar sensor. 

A photograph of the internal view of the front of an S-Class's passenger cabin is presented 
in figure 4.1. The photographs shows the central air vents and the side air vents. 

Figure 4.1: Inside the passenger cabin of a Mercedes S-Class 

In addition to these there were air outlet vents for the driver and front passenger's foot 

compartments, an air outlet for the windscreen, and a side and central air vent for both 

the rear seated passengers. All 4 passenger could individually select different desired air 

temperatures and the passengers in the back of the car could select a different air flow rate 

to the people in the front of the car. 

During the experiments in the car the rear air vents were deactivated and the driver and 

passenger's desired air temperature were tied and operated as one value. The test subjects 

sat in the drivers seat and were asked to adjust the seat position as they would in order to 
drive the car. The test subjects were all male aged between 22 all(] 30 and in good health. 

A test administrator sat in the front passenger seat. The car's engine was switched oil but 

the car remained stationary for all the tests. 

During all of the experiments the subjects were quizzed on their thernial sensation and asked 
to vote for themselves. Their inputs were recorded by use of a touch screen display which 
was directly linked to the power PC. The display was prograinined to allow a value with one 
decimal place to be submitted and the test subjects were asked to be as accurate as they 

could be. Each submission was logged by the power PC with the corresponding time value. 
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4.3 Method 

This part of the investigation consisted of two main stages: identification experiments and 
closed loop control experiments using a linear state-space controller. In this chapter 2 models 
will be presented and used to synthesize controllers. A diagram of the 2 closed loop control 
systems is presented in figures 4.2 and 4.3. Figure 4.2 shows the control of the cars air 
temperature (measured at the rear-view mirror). The desired air temperature value is the 

same as the value selected by the user at the interface of the HVAC system and is not 
interpreted by the local HVAC control as the desired cabin air temperature thus a state- 
space controller was needed to control this. This control test was done for comparison with 
the work from chapter 2. The diagram in figure 4.3 shows the identification of everything 
between the input of desired air temperature and the calculated TSV value. Looking at the 

amount of disturbance injected into the air temperature controlled system will give a good 
indication of the amount of disturbances that come from the HVAC block (and the cabin 
environment) in the control of the TSV system. 
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Figure 4.2: Components of the closed-loop systems for controlling the air temperature 
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Figure 4.3: Components of the closed-loop systems for controlling the TSV 

Skin temperature measurements were used to calculate an on-line TSV estimation which was 
then fed back in to a state-space controller. The state-space controller output a desired air 
temperature which was controlled by the local HVAC controller. 

The HVAC control algorithin is a sophisticated technology that determines which vents are 
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open or closed, the actual outlet temperature and the air flow rate at each vent. The algo- 
rithm interprets interactions and decides on the best way to achieve the desired effect. The 

automatic channelling and mixing of the air to different outlets by the car's own controller 
was left on to reduce the non-linear aspects of the overall system. The desired air tempera- 
ture to the local HVAC control unit is not meant as a reference for the temperature of the 

cabin air. The local HVAC control unit does not take this input literally and interprets the 
desired air temperature (along with the current value of the other HVAC settings) as a desire 
for a particular type of environment. Thus the local HVAC control unit delivers different air 
temperatures to different vent outlets in an attempt to provide the driver or passenger with 
the desired environment. 

To speed the experiment up and to avoid variations in dead-time and rise-time the automatic 
flow rate control was deactivated and set as a constant (level 3). 

4.3.1 TSV Calculation 

The on-line TSV calculation was based on the method described in section 3.3. However, in 
this experiment more sensors were available for measuring the facial skin temperature and so 
5 measurements around the face, as illustrated in figure 4.4, were used in the estimation. 

Figure 4A Placement of the facial skin temperature sensors 

4.3.2 Identifying A Model 

A PRBS input was used to identify the dynamics of the plant. There are 2 models of interest. 

The first is the internal air temperature of the car cabin to compare with the experiment 
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done in chapter 2. The air temperature was measured from the car's own sensor located in 

the rear-view mirror housing. The second model to be identified is the TSV estimate directly 

which includes the air dynamics and human physiology. 

As seen in figure 4.5, a maximum length PRBS was used as the input of the open loop 

system. Tile input is the desired temperature setting - upper plot, dotted line. The internal 

air temperature in the cabin was measured, tipper plot black line, and the skin temperature 
of the user's face was recorded, upper plot grey line. The TSV value, lower plot grey line, 

was calculated on-line from the facial temperature measurements and was validated by the 
thermal votes submitted by the user, lower plot circles. 
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Figure 4.5: Identification of TSV from HVAC air temperature reference with a maximum length 
PRBS input 

The means and trends were removed from the data and again the "ident" too] in MATLAB 

was used to find an ARX model by the least squares method. Models were compared and 
cross-referenced with data from different subjects to find the best model overall. A 3rd order 
model with a 30 second sample time was selected for the air temperature sensor and a 3rd 

order model with a 20 second sample time was selected for the TSV output. 

By representing the identified models by polynomials as in equation (4.1)then equation set 
(4.2) represents the model identified for the air temperature and equation set (4.3) represents 
the model identified for the TSV value: 
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Test Subject's Votes Versus TSV Calculation 
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Figure 4.6: Comparison of thermal sensation estimated by the subject and calculated during iden- 
tification 

A(z-')yp(t) = B(z-')up(t) + e(t) (4.1) 

Equation (4.1) is the same as equation (2.3) presented earlier but with an error term added. 

Thus A(z-1) and B(z-1) are polynomials with a z-transform argument, such that the transfer 
B(z-1) function of the system is -A(ý=r). The plant input and output at time t, are u, '(t) and y,, (t) 

respectively. 

A(z-') =1-0.5283z-1 + 0.03598z -2 + 0.05264Z-3 
(4.2) 

B(z-1) = 0.5283z-1 - 0.03598z -2 - 0.05264Z-3 

A(z-') =1-0.2928z-1 - 0.2927z -2 - 0.2236z -3 (4.3) 
B(z-1) = 0.006119z-1 + 0.01921 Z-2 + 0.005697z -3 

4.4 Controller Synthesis 

The control design is standard state-space theory and is taken froin [29]. Consider the plant 
described in discrete state-space format (in the reachable canonical form): 
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xp(k + 1) = 4)px(k) + ]Ppup(k) 
(4.4) 

yp(k) = Cpxp(k) 

Here xp(k) is the state vector of the plant a time sample k and (Pp, Irp and Cp are the discrete 

versions of the state-space Matrices. 

A simple closed loop control method can be described by: 

up(k) = L, u, - Lxp (4.5) 

Here u, is the controller reference, L, is a scalar multiplier and Lp is a vector multiplier. It 

is the aim of the control synthesis to determine the values for L, and Lp. This control law 

can be visualized in figure 4.7: 

Lc 

-Lp Plant 0 

XP 

Figure 4.7: A simple state-space controller 

L, is a scalar value and is chosen to force the steady state gain of the closed loop system to 
be I by solving the difference between the final value theorem and the desired final value u,. 

In order to find Lp the plant must be reachable - the Controllability Matrix needs to have a 

rank = n, where n is the order of the system. 

Controllability Matrix of the plant: W,, =[r, 4)pFp 
*** 

4) Pn-I]p PI 

The vector Lp can be found using Ackermann's Formula: 

L, =[001] I'v, -1 P, (4)') (4.6) 

Where the function PpO is a polynomial with roots representing tile poles of the desired 

characteristic polynomial of the plant response. 
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When the internal states of the plant are unmeasurable then an observer has to be used to 

estimate the state values. The observer can be formed with an extra state v(k) to provide 
integral action, see equation (4.7) -a hat is used to indicate an estimated state. 

i(k + 1) = -IDOP. ý(k) + ]Popup(k) + Kop (yp(k) 
- Copý(k)) (4.7) 

Here z(k) 
xp (k) 

(D , 
C"p C, oI and K,, p v(k) 010 -P 

(Dp "P I, 
ip-P 

pp 

KP 

In the calculation of the observer Ackermann's Formula is applied in a rearranged form to 
find 1, C,, p = Pp (4), p) W,, p-1 

10... 01 ]T 
using the same PpO function that was used to 

calculate Lp and where Wp is the observability matrix of the plant model. (Note that the 

plant is only observable if W,, p has rank n). 

t 
Observability Matrix of the plant: W,, C, Cpcbp 

... 
C Cbpn-1 OP PI 

Finally a reference model can be applied to the input of the controller with a direct feed- 
forward of the model states. A diagram of this is presented in figure 4.8: 

L 

Figure 4.8: A state-space 2-D. O. F. Model Reference Controller 

The closed loop system of the control model can be represented simply in the form: 
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xrn(k + 1) = 4), nx(k) + F,,, u,,, (k) 
(4.8) 

y, n (k) =C.. xn (k) 

Where 
4D7n = 4)p - FpL,,, IPm = rpL, 

C. = CP um(k) = up(k) 

The values of L.. can be obtained by applying Ackermann's Formula again as 

L,,, =[0 (4.9) 

Here the function P,, () is a polynomial with roots representing the poles of the desired 

characteristic polynomial for the reference model. 

The feed-forward term is defined as: 

uff (k) = L, u, (k) + Cf f x�, (k) (4.10) 

Here Cff (apI - a,,, j) (ap2 - a. 2) ... (ap,, - a.,, ) and the elements api and a,,, i 
ith 

I 

are the elements of the first row of the -1-p and 4),,, matrices respectively (when in reachable 
canonical form). 

The functions PpO and P,, () were designed with two dominant poles with the excess poles 
forced to the origin in the discrete time plane. It was expected that by setting the excess 

poles to zero their influence would be too quick to have any real effect on the actual system. 
The dominant poles were evaluated via prescribed damping and natural frequencies. 

For the Air Controller these values were chosen as: 

e Plant Control Damping = 1.0 

Plant Natural Frequency 0.05 

Model Control Damping 0.8 

9 Model Natural Frequency = 0.05 

For the TSV Controller these values were chosen as: 

* Plant Control Damping = 0.7 
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Plant Natural Requency = 0.7 

Model Control Damping = 1.1 

9 Model Natural Requency = 0.05 

The performance was examined using a simulation (see figure 4.9), with a random noise on 
the simulated plant output, before being tested on the actual system. 

Discrete State Space Model Reference Control (with Observer and Integral Action) 

60 

40 

20 

0 

-20 

10 
0 

-10 

-20 

-30 

-40 

0 500 1000 1500 2000 2500 3000 3500 4000 

2- 
Step Change in Ref 

v ki I'''' i ýJIIN 11ý11ý lý11 11ý Plant Output 
Model Output 

.... Ref. Signal 

I 

0 500 1000 1500 2000 2500 3000 3500 4000 

IA 

Impulse Disturbance Load Disturbance 

..................... ......... ................... .................. ....... 

Disturbance 
, st iL ancj Est. D sturbance 

0 
I ime (bampeling period, h= 20) 

Figure 4.9: Simulation of the control of an identified model 

The simulation shows that the controller seems to be able to cope with significant noise on 
the actuator sensors and can handle step changes and disturbance changes (changes in load) 

adequately. There does seem to be slight saturation when the load change is applied. 
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4.5 Experimental Results 

4.5.1 Control of the Air Temperature 

As a first step in the experiment the air temperature was controlled and the results in figure 
4.10 show good performance apart from a slight oscillation at the higher temperature level. As 
described earlier the input for the controller, desired air temperature, is interpreted by the 
local HVAC control unit and thus gives a different cabin temperature. This can be seen 
in figure 4.10 by the difference between the measured air temperature and the input to the 

controller in steady-state conditions. 

Control of Cabin Air Temperature Using the In-car Temperature Sensor 

Temperature Reference and Controlled Response 
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Figure 4.10: Control of the Internal Air Temperature 

4.5.2 TSV Control Results 

A suitable 3rd order model was identified and an acceptable controller was formed with a 
control model darnping of 1.1 and natural frequency of 0.05 and with plant control damping 

of 0.7 and a natural frequency of 0.7. 
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Results of the control experiment from 2 subjects are presented in figures 4.11 and 4.12. The 

controlled on-line calculation of TSV is shown as the solid black lines in the upper plots and is 

compared with the command signal, upper plots dotted line, used as the controller reference. 

The control model output, upper plots grey line, shows the attempted change in TSV due 

to the step response of the command signal. The controller model, however, does not take 

into consideration the saturation of the command signal. The lower plots show the command 

signal - direct from the controller, lower plot dotted grey line, and the command signal read 
into the HVAC system, lower plot solid line, which has been rounded to the nearest degree 

and has saturation limits. The middle plot shows the result of the command signal (desired 

air temperature) on the actual cabin air temperature. 

The personal thermal vote of the subjects is also displayed on the upper plots of figures 4.11 

and 4.12 as circles. This is used to compare the effectiveness of the TSV estimation and the 

perceived personal thermal state. 

Control of the TSV of a Test Subject 
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Figure 4.11: Reference control of TSV results with Test Subject 1 
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Control of the TSV of a Test Subject 

Personal Thermal Vote and Controlled TSV Thermal State 
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Figure 4.12: Reference control of TSV results with Test Subject 2 

There is significant noise on the sensor readings. However, the results shows good response 
during heating up, tracking the model reference signal well. 

4.6 Discussion of Results 

The noise to signal ratio of the TSV seems quite high as a result of high noise levels on the 

facial skin temperature sensors. The sensors are accurate to ±0.5 'C on each sensor but were 

constantly noisy over a 0.4'C range. The 5 sensor readings were averaged over the 30 seconds 
between control samples. 

In addition to the noise there is also an interference impulse disturbance that was not tracked 

down. This was left in the measured signal to test the controller. The rejection of impulse 

disturbances in the simulation showed a quick attenuation of the disruption to the signal. 
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However, the interference impulse disturbances in the real plant were much greater than those 
in the simulation and resulted in a large perturbation of the signal after the disturbance. The 

impulses were large and could have easily been filtered out with a crude "if signal is greater 
than last value + 0.5 then ignore" statement in the algorithm code. 

The controller is designed for a discrete time system but no provision is given for a discrete 

output setting. The output from the controller had to be rounded to the nearest degree 
before being sent to the HVAC actuator. The effect of this rounding error was expected to 
be negligible, overpowered by the noise on the sensors. 

Setting the excess (non-dominant) poles to zero in the discrete complex plane is not always 
the best strategy and does not minimize tile control energy. The inherent high frequency 

components of the controller caused by the excess poles is perhaps a reason why the actuator 

signal is particularly sensitive to noise and to interference impulse disturbances. 

The control model was rigorously designed to be satisfactorily fast and, consequently pushed 
the system too hard resulting in saturation of the actuator signal. The results show, however, 
that the system dynamics allow rapid heating of the subject but made the cooling process 
much slower. When designing the controller the focus had been on the heating up phase. 
It is interesting to note that the local HVAC control favoured using the foot air outlet for 
heating and the dashboard air outlets for cooling. The air temperature measurement in 
figure 4.5 reacts faster to a drop in temperature than to an increase because it is closer to the 
dashboard. The local HVAC control, for the sake of thermal comfort, would not allow the foot 

area to become too cool and thus inhibited the cooling of the subject's feet. Even though 
the subject's face is in the cooler air, supplied from the dashboard, the subject's thermal 

state does not respond significantly which supports the use of facial skin temperature as a 
indicator of global thermal state. 

The subject's perception of thermal state did seem to disagree with the TSV estimate more 
during the cooling down phases, but this is probably because the sensation of the air on the 
face and hands is more noticeable when thermal state is consciously considered and in an 
uncomfortable environment is more easily exaggerated. 

4.7 Conclusions 

It has been demonstrated in this chapter that control of the TSV is feasible and it is suggested 
that better control performance could be generated with certain improvements. These would 
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include proper filtering of the noise and interference impulse disturbances and reduction 
of the control energy through optimal placement of the poles to reduce the demand on the 

actuator. Combining the local HVAC control with the TSV controller did inhibit performance 
during cooling, which was unexpected and should be planned for, or even bypassed in future 

investigations. 

The TSV calculation has been successfully used and for the most part it seems to have 
been fairly accurate in estimating the thermal state. However, some ! questions arise from 

the cooling phase data. The replacement of the TSV calculation with any other method of 
thermal state estimation is not expected to cause any additional control problems. 

We have successfully demonstrated the feasibility of feedback control of TSV. We believe this 
to be an important novel contribution. 
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Part II 

Learning User Interactions 
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5 Fuzzy Logic Estimation and User Reference 
Learning 

It is the aim of this chapter to examine the use of information supplied during the 

user's interactions to personalize the control response. Fuzzy logic fits well with 
the idea of thermal state and the fuzzy logic knowledge base or rule base matrix 
can be used to remember user interactions. The method is a new variation on the 

adaptive theory using on-line interactions to represent the reference model and 
inverse controller. 

The control methodology is then applied in two different ways: Firstly to learn 

and then to estimate a user's thermal state votes, and secondly to learn and to 

automate the interactions of a user with an automotive HVAC system. The fuzzy 

method is shown to learn and interpolate thermal state and is better than the 

neural network solution after only one pass through the training data. The con- 
troller learns on-line and can use sporadic input from a human operator. It was 

shown that, used as a controller with a feedback input, the fuzzy method can 

quickly start to interact for the user. 

This chapter contributes a new method of learning user interactions and shows 
how this could be implemented in the automotive cabin. 

5.1 Introduction 

5.1.1 Background (State of the Art) 

In the previous chapters thermal state estimation from environmental and skin temperature 

sensors has been evaluated and used in a control strategy. Most of the scientific literature 
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has been based on related techniques and relatively little attention has been given to the 

interactions that the user has with the HVAC interface. In some cases the aim of the auto- 

mation of the environmental control has been to reduce the amount of interface required in 

the car, as in [42). This paper presents work carried out by Valeo Thermal Systems and PSA 

Peugeot-Citron in the development of two fuzzy logic controllers used to control the thermal 

environment inside a car. The first regulates the internal temperature fixed by the user on the 

climate control panel. The new interface only requires the user to input their desires either to 

be made hotter or cooler and not, as previously, an absolute temperature. The fuzzy tempe- 

rature regulation controller only manipulates the blend door, the distribution and air intake 

doors and the blower voltage. The second part of this paper considers a thermal balance 

regulation (comparable to the PMV estimation method) using the temperature regulating 
fuzzy controller with a supervisor program that calculates the thermal balance of the user. 
The thermal balance is calculated from 6 parameters: internal cabin temperature, operative 
temperature, metabolic rate, thermal resistance of clothing, humidity and air flow velocity. 
It is assumed that the best thermal comfort is accomplished when the thermal balance of 
the user is around zero and hence the target temperature is calculated for the temperature 

regulator. The modified instrument panel only allows the user to ask to be heated or to be 

cooled, successive presses on the particular button representing intensity of the demand. The 

consequence of user input is to modify the clothing resistance value in the thermal balance 

calculation. This modification uses a fuzzy logic system with 3 inputs: the original value of 
the clothing resistance, the value of thermal balance and the magnitude of the demand. 

Although this strategy assumes that the most desirable thermal balance of a user will be a 

zero heat transfer balance, the interaction of the user, which causes a modification to the 

clothing resistance variable, will inherently adapt the system to the preferred desired thermal 

state. It is the use of the personal interaction to personalize the response that is of particular 
interest. However, in the case described above the interface was simplified whereas left in its 

original form the user interactions can provide much more information. 

There has been little research into algorithms for learning user preference for automotive 

HVAC systems. Federspiel and Asada [431 aimed to provide a neutral thermal state in 

steady state conditions, but also illustrated an interesting approach for mapping the function 

of thermal state for individual users. The method demonstrated by Ritter and Holdgrew 

(441 categorized the environmental and driver information into "situations" and learnt user 

preferences for these situations. They also suggested learning from the user the relationship 

between the situations. 
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5.1.2 Aim of the Chapter 

It is the aim of this chapter to examine the use of information supplied during the user's 
interactions to personalize the control response. This can be achieved by introducing per- 

sonalization into the thermal state estimation method or by directly adapting the control 

output. The framework for such a control strategy is presented in figure 5.1. 

User's 
Comfort 
Level 

Figure 5.1: Block diagram of a learning control structure 

The controller uses information from the user and their environment to suggest the best 

output by the HVAC plant. The aim of the controller is not to rely on feedback, rather to 

remember user interactions with the system to build a feed-forward database. Hence it needs 
to remember what it has learnt for different environments. Thus the controller is shown with 

a "Remembered Interactions" memory. Additionally, the controller may have to interpret 

the user interaction. 

Fuzzy logic fits well with the idea of thermal state and thermal comfort because both already 

make use of linguistic variables. It is thus a natural choice for developers (see [45], [461 and 
(42]). In addition fuzzy controllers contain a memory in the form of the knowledge base or 

rule base matrix. The concept of utilizing this memory to learn user interactions comes from 

a consideration of the methods used in Fuzzy Model Reference Learning Control (FMRLC). 

A diagram of FMRLC is presented in figure 5.2, (this figure is taken from [47], page 304). 

The plant is unknown and may change without the controller realizing. The solution is to 

use a reference model -a representation of what is expected from the controller and plant 
for a given input. The difference between the reference model and the real plant is then put 

though an inverse plant model to determine the actual properties of the real controller. 

However, if the output of the plant (y) is thermal comfort then it can not be easily measured 
for feedback. Without measuring ya reference model can not be used to compare the different 

outputs. Instead user interaction stands in for the reference model. This interaction not only 
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Figure 5.2: Block diagram of a Fuzzy Model Reference Learning Controller (FMRLC) from [47] 

acts as a reference model but also eliminates the need for an inverse plant model since there 

is now a direct comparison between the output of the controller and what the output of the 

controller should be. Hence the new control strategy is more simple than FMRLC and is 

termed Fuzzy User Reference Learning Control (FURLC), figure 5.3 represents this. 
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Figure 5.3: Block diagram of a Fuzzy User Reference Learning Controller (FURLC) 

To examine the properties of such a method, two control objectives were set: 
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1. To learn and then estimate thermal state from varying facial skin temperature conditi- 
ons. 

2. To learn the correct interactions for modifying the thermal state of the user. 

For the second objective a specific set of experiments were conducted in the Mercedes-Benz 
S-class test car. The aim of the experiment was to examine the interaction of the user with 
the system and to show that it is possible for a controller to learn from the user and then to 

automate the system reducing the need for the user to interact with the system. 

5.2 Basics of Fuzzy User Reference Control 

Tile following section describes the authors own interpretation of fuzzy logic theory. [47] 

provides a good reference to the standard techniques used in fuzzy logic. 

A MISO fuzzy controller can be represented by figure 5.4. The input is a vector Ci 
T 

CI C2 ... Cn 
I 

or in the linguistic form ji and associated with this linguistic vector 

are the set of linguistic membership functions for each element of the vector (the j1h 

membership function for the ith input). 

I Rule Base Matrix I 

Dooc 
Fuzzification kchan DcFuzzification 

Figure 5.4: Internal workings of a fuzzy controller 

Thus the input element ci has the set of membership functions: 

Aij =I Ai, l Ai, 2 ... 
Ai, AIAXAIBRi 

] 

These are defined as being bounded on the universe of discourse between MINi and MAxi. 
For symmetrical triangular membership functions that are equally spaced to cover the boun- 
ded universe of discourse, for any value of ci within the bounds, the active membership 
functions can be simply calculated using equation (5.1). 
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jactivel ý-- fiX (cj-AIINj)(AfAXAfBRj-1) 
(AIAXi-AIINi) 

and 

jactive2 : jactivei +1 

Here the function fixo rounds down to the next integer. The argument of the fixo function 

can be used again to calculate the corresponding value of the membership function using 

equation (5.2): 

(ci-Af INj)(Af AXAIBRi -1) Ai, j. v ý jactivel 
(AfAXi-AIINi) 

and (5.2) 

Ajjac, j,, ý, = 
(1 

- Ajj., jýý, 

To clarify the notation consider an example of the lmathrmst element of the input vector 
(i = 1) with 5 triangular membership functions (MAXMBRI = 5) described by the diagram 

in figure 5.5: 

Aij Al. 2 A1.3 A 1.4 A is 

Universe of Discourse for ci MIN, 0 MAXI 

Cl 

Figure 5.5: Example of an input on the universe of discourse with input membership functions 

If cl = 0.75, MIN1 = -2 and MAX, = +2 (with the centres of the membership function at 

-2 -1 01 2) then the 2 active membership functions (jactive, 
12 

)I 
where the subscript (1 12) 

means 1 or 2, are calculated using equation (5.1) and the values of the membership functions 

are calculated using equation (5.2): 

jactivel ý fix (0.75+2)(5-1) +1= fix (2.75) +I=3 (2+2) 

and 
jactive2 ý jactivel +I= 
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Thus 
Ajj,, j,, ý =3- (2.75) = 0.25 

and 
Ai, 

jacli"2 -: = (1 - 0.25) = 0.75 

This is done for all the elements in the input vector. 

The output of the controller is u or in the linguistic form ii which has the linguistic member- 

ship functions 
. 
13 

[ J1 J2 ... in I. 
Where j, is the same as the j index from the membership 

function set AIj, and i2 is the same as the j index from the membership function set A2, j 

etc. Thus for all possible combinations of Aij 
... 

Anj there is a corresponding output 

membership function as an element of the matrix BI 
il i2 ... in 

Thus the size of B is 

MAXMBR1 - MAXMBR2 -... - MAXMBR,,. 

With this notation the linguistic interpretation of the rule base "If Premise Then Conse- 

quence" statement can be expressed in a general form by the following: 

If Z, = Ajj, And 22 = A2, j, And ... A,,, j, Then ii =B I il j2 
... 

in 

The purpose of the inference mechanism is to evaluate the premise. The aim ofevaluating 
the premise is to find a value that represents how closely the premise describes the actual 
inputs. The premise for each rule can be evaluated in different ways but the simplest is to 

treat the And as a minimum operator thus the premise for each rule, PI 
il i2 in 

takes the form of equation (5.3). 

p= min (Al, j,, 
A2J2) An, j. ) (5-3) 

1 il i2 
... 

in I 

The process of fuzzification using symmetrical triangular membership functions will result in 

only 2 active input membership functions per input. Hence there is a maximum of 2' premise 

rules with non-zero values and so equation (5.3) is thus modified to give equation (5.4) where 

r=1,2,..., 2" 

P, = inin 
( 

Ajj,..:,, 
ýý 112 

7 
A2J2., 

ji, 112 
1... IA,, 7inactivell2 

) 
(5.4) 

The corresponding activated elements of the rule base matrix from the consequence of the 

rules can also be referenced in terms of r as in equation (5.5): 
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B 
j2a, 

ti,, 112 3n 
'act've112 (5-5) 

1 ilactive112 

The inference mechanism then relates the premise to the element of the rule base matrix 
(output membership functions), which again can be done in a variety of ways. If the premise 
closely resembles the actual situation then we want the corresponding output membership 
function to be more strongly weighted. Maintaining consistency the minimum operator will 
be used again to do this and the resulting output membership functions are called the implied 

membership functions, Bi,,, p, in equation (5.6): 

Bi,,,,,, = min (P,, B,,, t, ) (5.6) 

Note that all Bi,, p, are still functions as shown in figure 5.6 as the shaded parts of the output 

membership functions B,,, t, for r=1 and 2. 

Baci, Bach 

P2 

Universe of Discourse 
0 Binipi BiMP2 for the output u 

Figure 5.6: Formation of implied output membership functions 

The defuzzification process takes the implied output membership functions and calculates 

a value for the actual output u. There are many methods for doing this but the most 

common is the Centre Of Gravity (COG) method. The equation for the COG method is 

quite straightforward and is defined by: 

Er br -f 
BiMPr 

(5.7) Er f Bimpr 

Here b, is the central position of the membership function on the output universe of discourse. 

The integral represents the shaded area under the implied membership functions Bi,,,,,, and 
is easily calculated for the truncated form of the symmetric triangular membership functions, 

with width w by equation (5.8). 
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2 
Bi, 

p, w 
(pr 

2 
(5.8) 

When using this method it is important that the denominator of equation (5.7) does not 
become zero. It can be seen from rearranging equation (5.8) that f Bi, p, becomes zero only 

when P, =0 or 2. P, however, is confined between 0 and 1 and as long as at least one of 
the active premises is greater than 0 then this anomaly is avoided. This will be true as long 

as for every point on the universe of discourse for each input there is a membership function 

greater than zero. This explains why it is necessary for the membership functions on the 

extremities to saturate and remain saturated out past the limits (see Figure 5.5). 

It is noted that u is calculated only from P, and from b,. P, is obtained from the inputs, 

equation (5.4), equation (5.5) is not used at all and so the Rule Base Matrix can be used to 

store the values of b, directly. Hence, equation (5.5) is replaced with: 

br =B1 ilactive112 hý, 
tj, e 112 ,** 

inactive, 
12 

I 
(5-9) 

Thus BI 
il i2 ... in I 

becomes a matrix of centres of the output membership functions 

to be used with equation (5.8) in the COG calculation. 

5.3 Learning By Modification to The Rule Base Matrix 

The output from the controller depends on two values, P, derived from the inputs, and b, 

the values stored in the rule base matrix. The rule base matrix does not necessarily have 

to remain constant and there are fuzzy logic methods for modifying it on-line such as the 
"knowledge-base modifiers" used in adaptive fuzzy control. One such approach states that if e 
is the difference between the actual controller output, u, and the desired output, u*, equation 
(5.10), then the elements of BI 

il i2 ... in I representing the active output membership 

functions (i. e. b, from equation (5.9)) call be modified by simply adding e as in equation 
(5.11). 

U- U* (5.10) 
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b, 

This simple addition in conjunction with the COG method of defuzzification will guarantee 
that the next time the same inputs are applied e will be zero. However there are variations 
that can be investigated such as weighting the addition by the premise value so that mo- 
difications are relative to the contribution of the output membership function to the final 

value of u. Hence the learning rule in equation (5.11) becomes that in equation (5.12). This 

ensures that only elements that contributed significantly are modified significantly. 

b, -4 b, + P, - 

Alternatively the effects of both equation (5.11) and equation (5.12) can be combined with 
an independent coefficient, the "Convergence Factor" C? jPc a., 3 in equation (5.13): 

b, ---ý b, + (P, + CvFc (I - P, )) 

This will reduce the error, e, in the output of the controller at a faster rate of adaptation than 

equation (5.11) but is a more damped version than equation (5.12) and makes it possible, 
by varying CvFc on-line, to modify the learning rate for different events. It may be more 
desirable to start with the effects of equation (5.11) (CvFc = 1) for a quicker convergence 
but then later to follow the effects of equation (5.12) (CvFc = 0) for fine tuning. 

5.4 Implementation of Learning from User Interactions 

User interaction is an ideal source of reference for the controller. In adaptive control using 
the knowledge-base modifier techniques the error in control action, e, is obtained indirectly, 

through an inverse fuzzy model. However the user of a system can be given access to the 

output of the controller to make overriding commands and so when the controller makes a 
bad output the user can correct the output when it happens. This means u* can be measured 
directly. 

The user is not expected to input a correct action for every new element of the rule base 

that the controller encounters. When the controller encounters an element of the rule base 

matrix that has no previously learnt value then the last controller output is stored in the 
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new element. (This is when it is desirable for the convergence factor to be 1 to speed up 
the learning process at the beginning). This will spread the previously learnt output over 

situations that are similar to each other initially. 

It is now left to recognize when the controller has no previously learnt data to use for a 

specific set of inputs. There are at least 2 solutions: 

To initialize the BI 
il j2 ... in I matrix with values that are outside the possible 

range of controller outputs (i. e. a value that can not be learnt at any time). Thus when 
that value is seen within the controller it is known that it could not have been learnt 

and so must be an area of empty memory. If implementing this method with an initial 

value that is far outside the possible values of u it is appropriate to use equation (5.11) 

for learning with since it immediately learns the correct value and will not result in u 
being outside the possible range after learning has taken place. 

To use a second matrix of the same dimensions as a record of where learning has taken 

place. This is a more comprehensive method since information about how much data 
has been learnt to a particular place can be stored. It also gives a greater opportunity for 

development of the algorithm (see equation (5.14) below). The cost of these advantages 
is in memory requirement, especially for controllers with many inputs, as the memory 

rises exponentially with each input (of similar dimensions). 

Following on from the second solution, the matrix used to record learning is noted as 
LB 

I il i2 ... in I where a value of 0 in the corresponding element indicates that nothing 

has been learnt and a value of 1 indicates a fully learnt element. Equation (5.13) can thus be 

modified so that learning is not just based on the premise but also on the previous amount of 
learning that has take place in that element. This can be done by replacing the convergence 
factor with (1 - LB 

I il i2 ... in I) and after rearranging: 

b, +(1- (1 - P, ) LB 
I il j2 ... in 1) c (5.14) 

There are many more opportunities for development. For example, a distinction in the matrix 
LB between user learning and auto learning could be used so that user learning overrides 

surrounding elements and automatic learning will be implemented only until the element 

reaches a certain value after which the algorithm interacts instead of learning. 

When updating the LB matrix the learning rules can be used again. For example, LB can 
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be updated by using equation (5.13) but with an e of I so that the LB matrix correctly 

represents the quantity of adaptation of the B matrix which uses the same learning rule. 

The error e calculated from equation (5.10) could be replaced by a specifically calculated 

error for each element of the B matrix. In this case e would be calculated as in equation 
(5.15) below: 

b, -u* (5.15) 

An implementation of the control method is provided in appendix C. 

5.5 Experimental Work and Results 

Two scenarios will be used to demonstrate the performance of the FURLC method. First 

the data collected in chapter 2 of this thesis will be used to examine the interpolation clia- 

racteristics. A fuzzy estimator will be taught to predict thermal state based on the same 
inputs as the Neural Network approach in Chapter 3, facial skin temperature and the air 
temperatures at the face and nozzle outlet. The second scenario, using the Mercedes S-class 

test car, teaches a FURLC the user interactions directly. The inputs into this controller were 
the thermal state of the subject, calculated using the TSV method (see Chapter 3) and a 

reference thermal state. 

5.5.1 Learning Thermal State Votes from User Estimates 

This test was done off-line to examine the feasibility of the method. It has already been 

mentioned that fuzzy logic is a good method for the interpretation of thermal state and 
thermal comfort. In order to evaluate the ability of the FURLC method to learn and to 

interpolate between learnt values, it was thus conceived to teach an estimator to predict the 

thermal state of a subject. The method could then be compared to the results of chapter 3. 

The biggest advantage of FURLC is that it learns on-line. This test, however, was done 

off-line but used the data collected in chapter 3 in a simulation as if the estimator was being 

implemented on-line. This allows the examination of the estimator's output as it learns and 

adapts. The convergence factor, CvFc, the number of membership functions and the learning 

rules can be modified and the simulation can be re-run. Training data can also be retaught 
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many times to the same estimator. 

In order to compare the estimator to the other methods, the inputs into the estimator, from 

which it learns the correct response, must be appropriate. It has already been demonstrated 
that a neural network was able to learn a fairly accurate response with inputs of facial skin 
temperature and air temperature and so the same inputs were selected for use with the fuzzy 

method. The estimator was set up with 5 membership functions for each input with MAX 

and MIN values on the universe of discourse the same as the max and min values of the 
inputs in its training data set (Data Set 05). The rule base matrix was initialized with zeros. 

The first result in figure 5.7 compares results using different convergence factors. Tile plots 
show the actual thermal votes of the test subject as the black dots, the 2 grey lines on 
each plot are outputs from the estimator. The dark grey binary output represents when the 

estimator is able to use previously learnt data to interpolate the thermal state (high) and 
when it does not have enough data (low). The light grey line is the calculated thermal state. 
When the estimator does not have enough information to confidently calculate a value of 
thermal state the last confidently calculated value is used. This is why at the beginning of 
each of the plots in figure 5.7 the estimator's output seems to rise in steps. A comparison 
between the estimator's estimate of thermal state and the personal thermal vote is presented 
in the form of a histogram of the error. Note that it is on the next time sample that the learnt 
data is applied and so the error between the estimator's output and the personal thermal 

vote is calculated prior to learning. 

It can clearly be seen from figure 5.7 that the estimator can quickly learn. The start of the 

plots show a stepping shaped output from the estimator but later the output becomes more 

active. As stated before the convergence factor is a tool to be used on-line to adapt the rate 

of learning. Thus it is not unexpected that the result when using a convergence factor of 
1.0 shows a much closer fit to the personal thermal votes (a faster learning approach) and a 
higher correlation value. The results with the convergence factor set to 0.1 do show a slight 
deterioration in estimation, however the result is still fairly accurate. The binary knowledge 

signal is the same for all the plots because the teaching data is the same and the number of 

membership functions is the same in each of the cases. 

Figure 5.7 just proves that the estimator has the ability to interpolate. In order to test its 

ability to learn thermal state it should be tested on data other than the learning set. In 

reality the learning algorithm would be left on continuously to constantly keep the rule base 

matrix up to date. However in order to compare the effectiveness of the learning in estimating 
thermal state the learning rule was turned off and the estimator was applied to other data sets 
to examine the performance. Continuing the comparison with the neural network approach it 
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Figure 5.7: Comparison of results using different convergence factors 

should be noted that the teaching data in figure 5.7 was the same as the teaching data for the 

neural network. The other data sets from the same test subject are used as the Verification 
data - as was done with the neural network approach. These results are presented in figure 

5.8. 

The results in figure 5.8 show that the teaching data (in the top plot) provides a poorly 
distributed set of teaching points for estimating the thermal state in data set 10 (middle 

plot). This is observed from the binary knowledge signal which shows large areas with a 
low output. Even from observing the thermal votes given in the teaching data there are 

relatively few points with values around 0 from which to learn from, in comparison to the 

many points around 0 in data set 10. The way the estimator was set-up, in terms of the 

MIN and MAX values on the universes of discourse, means that it is quite likely that the 

estimator is operating close to the saturation limits. The peak values at around 2000s and 
4000s do show fairly accurate evaluation. The lower plot, data set 11, does not have the same 

problems as data set 10 and the estimator's estimate of thermal state is much more accurate. 

The results from figure 5.8 are very encouraging, especially from data set 11. This was after 

passing the estimator through the teaching data only once, compared to the neural network 

which was trained 500 times on the same data. However, in the simulation environment it is 

possible to take the same estimator and pass the same teaching data back through it. The 
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Figure 5.8: Interpolation of a taught thermal state estimator on unlearnt data sets 

advantage of this is that data points that contradict each other when using a convergence 
factor of 1.0 can be separated out slightly by applying a lower convergence factor. Thus 

after training an estimator speedily using a convergence factor of 1.0 the estimator can be 

retrained (with the same data) using a lower convergence factor to fine tune the response. 
This is demonstrated in figure 5.9. After teaching the estimator with a convergence factor 

of 1.0 it is re-taught using a convergence factor of 0.5 and then re-taught again using a 

convergence factor of 0.1. 

The benefit of relearning with a lower convergence factor is clearly seen from figure 5.9. The 

large noise of the estimator's output in the upper plot is reduced in the lower plot. The 

variance of the error is reduced and the correlation is increased. The final estimator, after 
being passed through the teaching data three times, seems to provide a much more desirable 

estimation. However this also needs to be tested on the verification data. Again the learning 

rule is turned off and the "over- trai ned" estimator is applied to data sets 10 and 11, see figure 

5.10. 

The extra learning the estimator has received has seemed to increase its accuracy in estimating 
the thermal state, even with data set 10. Tile middle plot in figure 5.10 still shows that data 

set 10 is suffering from a lack of representation in the teaching data. Both the results of data 

sets 10 and 11 in figure 5.10 are improved from those shown in figure 5.8. 
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Figure 5.9: Demonstration of relearning with reduced convergence factor 
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Figure 5.10: Interpolation of an over trained estimator on unlearnt data sets 
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The results from data set 10 in figure 5.10, although showing an improvement, still contain 
large areas of data where the estimator has no information on which to base an estimate. The 

teaching data can be stretched to cover more states by reducing the number of membership 
functions. This will, however, have a converse effect on the maximum operational performance 
due to the competition between points, for the same elements in the rule base matrix. The 

simulation was run again but with an estimator that was initialized with three membership 
functions on each universe of discourse. The teaching performance is presented in figure 5.11 

and the verification is presented in figure 5.12. 
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Figure 5.11: Demonstration of relearning with reduced convergence factor and fewer membership 
functions 

An advantage of reducing the number of membership functions is that it reduces the requi- 
red memory size of the estimator. This will reduce the hardware cost of implementation. 
However, as seen in figure 5.11 the correlation figures are not as good as those presented in 

the same test but with 5 membership functions, figure 5.9. An interesting result from the 

estimator with only 3 membership functions during learning is that the second learning phase 
(middle plot, figure 5.12) seems to have made the correlation worse. It should be realized 
that because the estimator started with no knowledge of the interactions the correlation of 
the upper plot is very much dependent on the spacing between the points. The stair pattern 
at the beginning shows that the estimator was unsure of the correct response but that the 

error was never very great. Because the estimator has only 3 membership functions due to 
the choice of symmetrical triangular input membership functions at least 2 will be active for 
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Figure 5.12: Interpolation of an over taught estimator with fewer membership functions on un- 
learnt data sets 

each input. With the convergence factor set to learn at a fast rate both active membership 
functions will be fully modified, irrespective of premise values, corresponding to the error. 
This leads to a lot of modifications many contradicting the others. The result in the middle 
plot of figure 5.11 shows the effect of this. Once the estimator is relearnt with the smaller 
convergence factors the correlation is improved again. The distribution shape of the final 
histogram in figure 5.11 is more like that of the normal distribution than any other. 

To finish the analysis some results were gathered using a modified learning rule. Up until 
now the learning rule that has been applied has been the rule expressed in equation (5.13) 

with the error term calculated from equation (5.10). The results so far have been good and 
equation (5.13) has proved to be a very versatile learning rule. The error term however is 

not so specific to the location of the rule base matrix and so for the next set of results was 
replaced by equation (5.15). Five input membership functions are used again across the input 

universes of discourse. The results are illustrated in figures 5.13 and 5.14. 

The results show a less noisy output in the learning data in figure 5.13 and in the verification 
data in figure 5.14. In terms of the correlation values the results are the best yet both in the 

learning performance and the verification plots. The modification to the error calculation has 

the same effect as reducing the convergence factor, i. e. making the learning rule more specific 
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Figure 5.13: Demonstration of relearning with reduced convergence factor using a modified lear- 
ning rule 
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Figure 5.14: Interpolation of an over taught estimator with a modified learning rule on unlearnt 
data sets 
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to individual rule base elements, but without the disadvantage of slowing the learning process 
down. However, in the application of thermal state prediction., it may be more desirable not 
to make the learning rule too specific. Since the estimates of the test subject are susceptible 
to an error band relating to how accurately the user can interpret thermal state, the estimator 
should not assume to be too specific and a certain amount of competition between data points 
should be allowed. 

Discussion 

Tile effectiveness of the test subjects in estimating their own thermal state may start a 
discussion on how refined the estimator should be. This is more of an issue about the number 
of membership functions than about making the learning rule more individual. Reducing the 

number of membership functions will reduce the number of elements in the rule base matrix 
and will increase competition from teaching data points for those elements. This will help to 

even out rogue data points and reduce the need for the user to be as accurate in estimating 
thermal state. Reducing the number of membership functions also has the added advantage 
that it reduces memory size requirement in the hardware. The disadvantage is that the 

maximum obtainable operational performance is reduced by compromising the estimator's 
accuracy 

The input data to the estimator was unfiltered and contained a lot of noise which can be 

seen to have affected the output of the controller. The additional passes through the teaching 
data has helped to make this noise less significant and it is suggested that an even better 

performance could be achieved by filtering the inputs. 

5.5.2 Learning Desired Outlet Temperature from User Interactions 

Aim 

So far the FURLC method's ability to learn and interpolate thermal state has been demons- 

trated. This verifies, by using an on-line learning approach, that the method can be applied 
to learning user interactions. The second part of the experimental work is to confirm that 
the FURLC method can use feedback inputs, in the automotive cabin. 

99 



5 Fuzzy Logic Estimation and User Reference Learning 

Methodology 

The experimental setup described in chapter 4 using the Mercedes-Benz S-Class was also used 
to test the FURLC method. As with the previous experiments the TSV method was used to 

estimate the thermal state of the subject and was used as an input into a fuzzy controller. 
Thus, the TSV estimation was used as a feedback term in the controller. Additionally the 

cabin air temperature was used as an input into the controller and was thus a second feedback 

term. 

The controller output was the temperature setting of the car's HVAC system. The local 

control of the car's HVAC system was left on, as with the experiments in chapter 4. The 

test subjects were also given access to the temperature setting of the HVAC system through 

the interface panel. A diagram of the set up is presented in figure 5.15 which shows the 

inputs into the fuzzy controller. The diagram also shows the direct link between the user's 
interaction and the car's local HVAC control system. 

7 <L 

I Input by User HVAC Unit 

Reference TSV CarControl System 

ir Temp. 

Temp. or TSV FURLC 

Algorithm 

around the Car 

Figure 5.15: Diagram of the FURLC experiment in the car 

The use of the TSV is a compact way of expressing the changes to the actual thermal state 

of the driver. The experiments in chapter 4 used a desired thermal state reference as the 

control signal. The reasons for this were explained in the chapter and for the same reasons 

a pre-determined reference thermal vote is used as an input to the FURLC. This reference 

thermal vote is also shown to the test subject who is asked to change the HVAC settings 
(after the algorithm has been given time to react) to feel the same as the desired personal 

thermal state. The reference thermal state is just a temporary replacement for a thermal 

comfort indicator which represents a desired shift in thermal state. 
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The experiment was run as follows: 

1. A reference thermal vote is displayed to the user. 
2. The driver is asked to adjust the HVAC settings in order that his thermal vote matches 

the reference as closely as possible. 
3. Tile algorithm learns the interaction. 

4. The next reference thermal vote is loaded. 

5. The new reference thermal vote is shown to the algorithm first. 

6. The algorithm is allowed time to react automatically and to adjust the HVAC settings. 
7. Once the algorithm settles down the user is shown the new reference thermal vote. 
8. The process is repeated from step 2. 

Results 

Two sets of results are presented in this thesis from two different test subjects. The results 

are presented in figures 5.16 and 5.17. In each figure there is an upper plot with the desired 

air temperature as the black line and the actual measured air temperature as the light grey 
line. Along the bottom of the upper plots there are a series of dark grey spikes which indicate 

the modifications to the desired air temperature. The spikes pointing up were interactions by 

the controller and the spikes pointing down were interactions by the user. In the lower plots 
in each figure there is a black line showing the reference thermal state, the circles are the 

personal votes from the test subject and the grey dotted line is the calculated TSV estimate 

of thermal state. 

The data presented in the two figures is relatively short and for each test the controller started 

with a blank memory. This makes it difficult to compare the results from different thermal 

state reference steps. One step in thermal state reference for which the algorithm knows how 

to interact may be followed by a step for which the algorithm does not know how to interact. 

Thus important observations have been highlighted by tall ellipses placed on the upper plots. 

The test subjects were asked to make their interaction so as to cause their thermal state 

to converge with the reference thermal state as quickly as possible. It is interesting to see 

that in figure 5.16, at about 2200s, the initial drop in desired temperature made by the test 

subject is attenuated by the next interaction by the algorithm (the user then confirms this 

action with another slight increase in desired air temperature just after). The response by 

the algorithm is a cause of the feedback in the system. As the subject's TSV estimate and 

the internal air temperature drops the FURLC algorithm stabilizes the thermal state. The 
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Figure 5.16: FURLC applied with feedback to learn desired temperature from test subject B 

algorithm increases the temperature to the value that was learned from interactions during 

the initial thermal state reference. 

The second elliptical highlight in figure 5.16 shows that the algorithm made the first major 
interaction and the third elliptical highlight shows an interaction that was entirely carried out 
by the FURLC algorithm. This shows the ability of the controller to learn user interactions 

and then to apply the interaction to major changes in thermal state in the automotive cabin. 

Figure 5.17 confirms the observations in the results presented in figure 5.16. The thermal 

state reference follows the same path and the same three observations can also be seen in the 

results. This test subject make slightly more interactions and as a result so does the FURLC 

algorithm. The first elliptical highlight in figure 5.17 shows a similar response to the first 

elliptical highlight in figure 5.16 but not as obviously. The difference is because the controller 
is using a different set of user interactions to learn from. It is obvious from the lower plots 
that the second test subject is more thermally sensitive than the first test subject. This will 

also affect the performance of the FURLC method. 

The two other elliptical highlights in figure 5.17 show that the fuzzy controller starts to 

102 



5 Fuzzy Logic Estimation and User Reference Learning 

Air Temperature 
40 - 

Measured 
Desired 

-30 
Interaction 

. 
Q- 

- V 
" 

20 

] 

E 
10 - 

-- - 
l 

-I 'F 
(C 

M rl irmT U 

rT e 

Ts 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 50DO 
Time (s) 

Thermal State of the Subject 
3 

- Requested Stat-e 
Calculated TSV 

1 

2 0 PersonalVote_ 03)0- 0 0C 
0 0 0 

Un 
0 

0 
. . ý%, 

. 
0 ýq 

0a Iý , ý9 
0i; i 

J 

C, 
(Y -, k"' s A" 00-0 

-i . ., ý-ý, ý. , ' 
-V P; ý i 

, 

00 ;. v ý 0 7 00 

Ocbo -C60- 

-2 - I L 
0 500 1000 1500 2000 2500 3000 3500 4t6 45 OO 5tO 

Time (s) 

Figure 5.17: FURLC applied with feedback to learn desired temperature from test subject C 

interact for the user and eventually manages to entirely make the interactions, as with figure 

5.16. Note that in the cases where the algorithm makes the only interaction (highlighted by 

the third ellipse) the scenario is similar to the third step change in thermal state reference, 

and it is from interactions during this previous step that the controller learnt how to interact. 

Discussion 

The reference signal, which the test subject and the controller are asked to follow, is designed 

to help speed up the learning of the controller so that results can be seen within the allocated 
experimental time frame. The number of interactions by the user provide far less data points 
than those used to teach the controller to estimate thermal state. The controller performance 
can not be expected to be as good as those seen with the thermal state estimator, however, 

the use of feedback variables can be seen to activate learnt control actions. 

Because the controller is attempting to learn the interactions by the test subject to modify 
their own thermal state, the inputs to the controller also need to represent the changes in 

thermal state. This could be carried out by including the same inputs into this controller 
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that were used by the thermal state estimator. However, this would require too many inputs 
into the controller and so the TSV, as a compact alternative, was used. 

It can also be seen by comparing the results that although the reference thermal state followed 

the same sequence for both test subjects the actual values of desired air temperature selected 
(once in steady state) are different for each person. The way the controller learns helps to 

preserve the individual user preference. 

5.6 Discussion on FURLC 

Tile benefit of using a fuzzy controller is that it allows for the specific localization of data 

learning. Since only stimulated rules are on at any one time then only these (and perhaps 
the surrounding rules) are used to modify specific parts of the rule base matrix. 

In most forms of control synthesis a plant model is required such as the models identified in 

chapters 2 and 4. Even neural networks have a representation of the plant dynamics encoded 
into the weights of the network during learning. Considering the fuzzy logic controllers in 

general one might think that, in a similar way to the neural networks, the plant dynamics 

are encoded into the rule-base knowledge. This could be a valid assumption in the case of 

controllers that are synthesized off-line. However, the FURLC method seems a little deceptive 
because exactly the same on-line control algorithm and same control structure can be used 
to estimate thermal state or to learn user interactions. Because tile user updates the rule 
base and is in essence a separate entity to the controller it may erroneously appear as if the 

controller is in absence of need of a representation of any plant dynamics at all. The truth is 

that in attempting to make the control method diversifiable and relying on the ability of the 

user to teach the controller, the supply of plant dynamic behaviour is made more difficult. 
The controller relies on tile chosen inputs, and tile user's recognition between the desired 

output and those inputs. The inputs then must correlate to the output and thus the inputs 

must transfer information about the plant. Not only this but the user must also recognize 
the relationship between the inputs and what the output should be. Thus the information 

about plant dynamics are encoded into the controller by the choice of inputs and tile user 
teaches the relationship, as the user sees it. If the user starts to react to a variable that is not 

represented by an input, the controller's performance will start to deteriorate. An input that 
has no relation to the output will not cause the controller's accuracy to fall but it will slow 
down the learning process because it will increase the size of the rule base matrix making 

more elements to fill tip. 
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The choice of membership functions used for each input is also an important decision made 
by the control engineer in designing the controller. Too few and the controller performance 
is compromised, too many and then it takes longer for the controller to learn enough to be 

useful. The choice of how many membership functions to use is also dependent on the choice 

of the expected range of the input and on the expected reaction by the users for that input. 

For example, humidity only really affects thermal comfort at extreme levels and so this input 

could probably consist of only three membership functions representing high, low and normal. 
A thermal state input such as TSV which is highly related to the change in thermal comfort 

may be better having a larger number of membership functions. 

Note that when dealing with personal feelings such as thermal state there are additional 
disturbances from within the human body that may lead to a choice of extra inputs such as 

a "time of day" variable. 

5.7 Conclusions 

This chapter aimed to examine the use of information supplied during the user's interactions 

to personalize the control response. Previous work on this topic has given some results to 

suggest that it is possible. The motivation of this chapter led to the innovation of applying a 

variation on Fuzzy Model Reference Control (FMRLC), the new method was termed Fuzzy 

User Reference Control (FURLC) and was investigated through experiments. 

The FURLC method has been shown to learn and then interpolate thermal state and is better 

than the neural network solution after only one pass through the training data. Subsequent 

passes through the training data make it even better. The effects of modifying the convergence 
factor shows improved performance as has modifications to the learning rule. 

The FURLC algorithm learns on-line and can use sporadic input from a human operator. 

A second verification experiment in a Mercedes-Benz S-class test car showed successful use 

of the FURLC method with feedback inputs. It was demonstrated that the controller can 

learn to interact for the user. The way the controller operates also shows that it preserves 

individual user preferences. 

It was also expressed through discussion that the inputs into the controller and the number 

of membership functions for each input needs careful consideration when designing a specific 

controller. The experimental results show that this can be done, certainly in the application 

of the control over the desired air temperature of an automotive HVAC system for control 
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of the thermal state. To extend this functionality to the control over the air flow rate of the 

same HVAC system is not expected to cause any additional problems. 
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Systems Level Analysis 
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The aim of this chapter is to investigate the microprocessor performance of the 

implementation of the TSV and PMV thermal state estimation methods and the 

state-space control and FURLC methods. The performance is measured in terms 

of the time taken to complete one loop of the methods algorithm code together 

with the size of the code and the memory required by the methods for local va- 

riables. 

The fuzzy algorithm took the least amount of time to execute. The TSV me- 
thod had the least amount of code being only a linear regression equation. The 
PMV code needs the most space. The active memory needed by each method 
showed that the TSV is again the best with the fuzzy model the worst when in- 

cluding the size of the rule base matrix. 

This chapter contributes a systems level performance comparison between the 

thermal state estimation methods. It also provides a realization of the typical 

amount of resources required at the systems level for thermal state estimation 

and control. 

6.1 Introduction 

6.1.1 Aim of the Chapter 

This chapter will investigate the implementation issues involved and inspire some systems 
level appreciation by examining the operation of thermal state estimation algorithms and 

control methods in a microprocessor. The hardware is housed in a small hand held device 

called the "Thermal State Gizmo" or TS Gizmo. 
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The purpose of the TS Gizmo is for sensor acquisition and estimation of thermal state, in 

most environments but in particular in the automobile. Thermal state estimation of the 

driver and passengers is a common evaluation and is used to help provide reference signals 
to the beating and air-conditioning systems. The performance of the microprocessor in the 

TS Gizmo will be measured. 

The aim of this chapter is to examine the requirements for thermal state acquisition in terms 

of system hardware. Performance measurements will be made on the functions used and on 
the CPU to determine the workload demanded by the algorithms. 

6.1.2 Background 

Previous attempts at thermal state estimation devices have been presented in the literature 

such as [481 by Kang et al, which provided a PMV evaluation device. Utilizing only the 
PMV thermal state approach means that the device is inhibited by the same disadvantages 

as the PMV thermal state approach. It has already been stated that the PMV approach has 

no direct measurement from the person involved and with assumptions of steady state the 
device is only really useful in slowly changing environments using sensor data averaged over 
the previous hour. It has been shown in chapter 3 that these requirements can be relaxed 
while maintaining fairly accurate results in a dynamic environment and Kang et al [481 stated 
in their paper that their device is suitable for the automotive application as well as for home 

and office space. 

As stated in [491, the fundamental motivations for the integration of microelectronics into 

automotive systems are: 

* Increasing functionality and performance. 
Decreasing cost. 
(Political sanctions and requirements such as emission restrictions). 

"Performance can be defined as the ability to perform a specified function with 
increased precision, as well as the ability to perform a larger number of functions 
in a given time period. " 

The paper goes on to explain that better microelectronics can help improve performance by: 

* More complex and accurate interpolation inethods. 
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9 Acquisition and evaluation of a greater number of sensors. 

* Allowing a larger database to search from. 

Alternatively the number of sensors can be reduced by relying on computationally derived 
data. For a more expensive microprocessor the reduction in sensors may provide a less 

expensive solution. Software implementation of hardware components can also reduce cost 
and allow standardization of system components throughout vehicle models reducing system 
development time and cost. 

There exists an optimal compromise between using more sensors and computing derived data 

using less sensors. The solution will be unique for individual applications and thus a TS 
Gizmo can help to find this solution for car manufacturers. 

6.2 Description of the TS Gizmo 

The usefulness of the TS Gizmo, with the advantage of being portable, is that it can be 

used to test the appropriateness of the observation of thermal state and can then be used to 

compare different thermal state estimation techniques with different setups of sensor types 

and positions. The TS Gizmo is designed to be more versatile than the device proposed by 
[48]. Currently the TS Gizmo is programmed with the PMV, TSV and fuzzy logic thermal 

state estimation methods and is more flexible in terms of functionality with programmable 
input channels. The state space control algorithm used in chapter 4 was also programmed 
into the device. 

To start the design of the TS Gizmo a list of specifications was conceived: 

" Should be a hand held device --ý Small 

" Should run from battery and mains -4 Power efficient. 

" Should give accurate measurements from the sensors --ý good resolution on AD conver- 

sion and good specification on the sensors. 

" Should be applicable to the experimentation in the automotive application -4 Link to 
CAN and serial port. 

6.2.1 Selection of Hardware and Hardware Issues 

Main Components: 
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CPU MC9S12DP256 of the HCS12 family running at 8 MHz 

Keyboard / On-Off Switch 

Display 

Power Supply / Battery Compartment 

4, Sensor Input Interface 

(AD Conversion unit - Part of CPU) 

Output Control Signal 

Serial Port and CAN Port Communication with the TS Gizmo 

The display chosen was a Powertip Alphanumeric dot matrix LCD with a2 row x 16 character 
display area. The display has a standard 8 bit ASCII interface utilizing Chip-on-Board 

technology. The display has a variable LCD brightness and an LED back light however the 
back light was disabled to reduce power consumption". The display could be programmed to 

activate only when needed so as to save battery life. 

The keypad is a 4A grid of keys that operate 8 pins, as shown in figure 6.1 below: 

Pin No. 

5 -- 

6--- 

7 
-- 

8--- 

1 9 

Grounded. 

Figure 6.1: Illustration of Keyboard and association of output pins 

To test for a key press pins 1 to 4 are turned high and pins 5 to 8 are scanned for a high. If 

a high is found then this initiates a more detailed search for the correct key. Pins 1 to 4 are 

sequentially made high and pins 5 to 8 are scanned for each case. When a high is found then 

the combination of which pin was turned high (1 to 4) and which pin reads a high (5 to 8) 

corresponds to the key that is pressed. This operation is done so quickly that the keyboard 

can be fully scanned many times during even the briefest touches by a human user. 

The temperature sensors are the same as those used in the experiments described in chap- 

ters 2, section 2.2.2, consisting of up to 5 skin temperature sensors and 3 air temperature 

sensors. The temperature sensors are in the form of thermistors, which relate resistance to 
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temperature, so it is thus necessary to determine the resistance of the sensor from the vol- 
tage measured across it (see equation (2.1) in chapter 2). The evaluated resistance is then 

cross-referenced with a look-up table to determine the temperature (see table 2.1 in chapter 
2). All the reference resistors are housed in the same casing block and have been, are, and 

will be, exposed to similar environments. 

Note that although the TS Gizmo is being set up to read thermistor resistances it should 

not be too difficult to connect alternative sensors to the TS Gizmo in such a way that the 

resistance can represent the property being measured. 

Previous experiments with these temperature sensors has suggested that filtering of the sen- 

sors may be required and this can be done with hardware or software. The sensors are 
interfaced through an AD conversion module to provide the inputs into the TS Gizmo, alter- 

natively a CAN connection allows direct access to the automotive communication bus which 

could allow the Gizmo to use the car's own sensors. 

With the set up suggested the voltage across the reference resistor will be a constant drain on 
the power supply, thus wasting power. This is improved by connecting each resistor with its 

own power supply which can be switched on when a sensor is connected or even only when 
the sensor is being read. There is also an internal drain on the power supply which means 
that it is not at maximum when it is pulled across the sensor and reference resistance. The 

supply voltage can be measured by switching it across the AD converter directly. 

Insight into the choice and set-up of the AD converter can be obtained from an equation 
presented in Chapter 3, equation (3.13) restated below as equation (6.1). The equation was 
derived from the TSV thermal state estimation method and equates facial skin temperature to 

a thermal state estimate. As the TSV method is implemented in the TS Gizmo the equation 
can be used appropriately. 

tsk = 
TS + 27.5 

0.81 
(6.1) 

Limiting the range of thermal state values between ±2 will result, from equation (6.1), in 

a skin temperature range between 31.48'C and 36.42'C. From the data about the skin 
temperature sensors given in section 2.2.2 in chapter 2 and by applying a 5th order polynomial 
interpolation to table 2.1 this results in a range of resistances between 7565.79Q and 6158.75Q. 

Using a reference resistance of 10009 and a supply voltage of 5 volts gives a voltage range 
between 0.5837 and 0.6984 volts from equation (6.2) below, which is a rearranged version of 

equation (2.1) in chapter 2. 
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V, R, 
(6.2) 

RT + R, 

For skin temperature sensors that are accurate to ±0.2 IC the minimum AD resolution requi- 
red for the most accurate reading is ±0.0044 volts (using the difference between 31.48'C and 
31.68'C => 0.5881 volts). Conversely if the acquisition resolution is set then the maximum 
sensor accuracy could be calculated s6 that more sensitive (more expensive) sensors need not 
be bought. The reference resistance and supply voltage are chosen to maximize the voltage 
range from the sensors to that allowed by the acquisition card. For example using a reference 
resistance of 10000Q and a supply voltage of 10 volts gives a 0.496 volts voltage range with 
a minimum resolution of 0.0194 volts (using the difference between 36.22'C and 36.42'C). 
Using equation (6.2), table 6.1 was created which shows different set up configurations: 

Temperature (IC) 31.48 31.68 36.22 36.42 
RT (Q) 7.5658 7.5022 6.2096 6.1588 

With V, =5 and R, = 1000 
V,, in volts 0.5837 0.5881 <=> 0.6935 0.6984 
Difference 0.0044 0.0049 

With V, =5 and R, = 10000 
V,, in volts 2.8464 2.8568 3.0846 3.0943 
Difference 0.0103 0.0097 

With V, = 10 and R, = 10000 
V,,, in volts 5.6929 5.7136 <* 6.1692 6.1886 
Difference 

1 
0.0207 4* 0.0194 

Table 6.1: Operational resolutions by choice of V, and R, 

The AD converter can be optimized to save power by regulating operation to run only when 

required rather than all the time. Similarly algorithm code can be optimized to save power by 

running only when required. This will optimize processor bandwidth and reduce the power 

consumption. Knowledge about the software demands on the processor can help in deciding 

the correct CPU frequency speed to use. 

The serial connection was included to allow uploading experimental results to an external 

storage device. The CAN link also allows a control algorithm to interact with the car's own 

systems. 
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6.2.2 Functionality and Issues of Software Architecture and Configuration 

The software was written in C and optimized by a pre-compiler. Some of the options on the 

optimizer were turned off because of "over optimization" errors. 

The software architecture can be described in terms of functionality. The software was divided 
into separate groups classified as follows: 

Keyboard Drivers 

AD Drivers 

Gizmo Functions 

Menu Functions 

Display Drivers 

Output Drivers 

The keyboard drivers and menu functions ran on separately configured interrupt routines. A 
high frequency interrupt was used for the keyboard drivers, which have a simple job of testing 
the keyboard for a pressed key. When it finds a pressed key it stores the key identification. 
The AD drivers are used to get the most recent values stored in the AD buffer. 

Gizmo functions contain the main computational algorithms for the thermal state estima- 
tions and the controller outputs. The results from these functions are stored into a shared 

memory. The gizmo functions ran in a continuous loop, apart from when being interrupted. 

Temperature interpretation was coded into the gizmo functions group. The sensor look-up 

table was interpolated with a 3rd order polynomial. The TSV and PMV thermal state esti- 

mation methods were coded into the Gizmo functions. A State-Space controller was also 

programmed into the gizmo functions group, the same controller that was used in chapter 
4. The output of the controller was not used, and the function was only used to test the 

required processing power. For a similar reason the FURLC method was also programmed 
into the gizmo functions group. 

The Menu functions used a less frequent interrupt routine in comparison to the Keyboard 

drivers. The menu functions are used to interpret the keyboard input and provide the desired 

display information. The Display drivers are called by the menu functions and are used to 

write the desired message to the display. The dot matrix display drivers required a lot of 
time, relative to other operations, in order to update the display and this limited the effective 

speed of the menu functions interrupt. 
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Communication between the groups of functions takes place via the shared memory. The for- 

mat for the shared memory is a single C structure variable, which comprises of substructures 
each representing the results of different functions. Each substructure contains a semaphore 
for write-operation protection. 

In addition to the main operational functions a timer function was also included in order 
to examine the performance of the other functions. This timer will be explained later when 
discussing the performance experiments. 

Most of the computations programmed contain floating point calculations. Floating point 

calculations are not 100% accurate and it is apparent that at some stage the floating point 

value has to be rounded when converting for binary calculations. This is a well discussed 

problem and has been given special attention by the IEEE in the form of a set of standards 
to which floating points should be represented. 

6.3 Experimental Work 

6.3.1 Examination of System Performance - Timing of Functions 

Deciding on the type of hardware to use will depend on the desired performance-cost combina- 
tion. Slower, smaller components will be cheaper but obviously performance will be reduced 
and vice-versa. The choice of components is usually application based. Information on issues 

that affect the choice of components is of interest to both the automotive manufacturer and 
the supplier of the system components. The aim of this experiment is to provide some useful 
information about the demands on the system hardware. 

Methodology 

In order to investigate the speed of computation a method for timing individual function 

routines was programmed into the TS Gizmo. An internal clock timer was the preferred 
method and involved setting up an extra interrupt function to increment an integer counter. 
A value could be read from the counter before the start of a function call and read again after 
the end of the function and the difference would be the time taken during the calculation 
of the function. A separate function, called a stopwatch, was programmed to do this. The 

stopwatch function returned 2 integer values to represent the number of elapsed milliseconds 
and elapsed microseconds. 
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The internal clock interrupt was actually set to increment the counter after slightly more 
time than the counter value represented. The difference was the time taken by the clock 
interrupt itself so that the counter represented the total time that the processor was engaged 
in the real computation without measuring the time taken by the clock interrupt. 

Because the software includes a few other interrupts these had to be disabled before starting 
the stopwatch and then enabled once the stopwatch had been stopped. 

Results 

The stopwatch function was designed to capture the time between the "StartWatch" and 
"ReadWatch" commands and not to include any time taken by these commands. When 

using multiple stopwatches however no account of the others is taken and so the time for 

the "StartWatch" and "ReadWatch" commands of other stopwatches had to be subtracted. 
The time taken by these commands was found by overlapping 2 stopwatches with no other 
commands in between: 

StartWatch(l) 

StartWatch(2) 

ReadWatch(l) 

ReadWatcli(2) 

Results: 

* Watch(l) = 0.005 ms : Time taken for the "StartWatcli" cominand 

9 Watcli(2) = 0.010 ms : Time taken for the "ReadWatch" command 

The stopwatch commands were used to time the functions. Because processor times can vary 
depending on operational events (such as iterative loops), the functions were timed 10 times 

and the averages were calculated. The results are presented below: 

* StartUpo = 33-307 ms 

* Recorded from within StartUpo: 

- GetCliVal() = 4.619 ms 
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- FURLC-Outo = 4.588 ms 

* Relnitializeo = 39.937 ms 

* Recorded from within Relnitializeo: 

- GetChVal() = 4.929 ms 

e Main Loop (with StartUp) = 140.152 ms 

e Main Loop (without StartUp) = 66.770 ms 

& Recorded from within the Main Loop 

- GetChVal() = 4.929 ms 

- CetTSVO = 7.280 ms 

- GetPMVo = 20.300 ms 

e Controllero = 5.543 ms 

9 FURLC-Outo = 4.586 ms 

The StartUpo function and the ReInitializeO functions have similar purposes and involve 

initializing or re-initializing parts of the shared memory which included the large matrices 

used in the fuzzy logic method. It takes almost 5 ms to extract a sensor value (GetCliVal()). 

The PMV method (GetPMVO), with its iterative algorithm took tile most processor time, 

20.3 ms. The TSV function (GetTSVO) took 7.3 ins but most of this is due to the calculation 

of the rate of change of the skin temperature from a history of values of tile skin temperature. 

The main FURLC function (FURLC-Outo) took tile least amount of time of 4.6 ms. The 

state-space controller function (Controllero) needed 5.5 ms. 

Measuring function times with a scope on an output pin 

Because the stopwatch commands relied on an interrupt call, they were not easily implemen- 

ted within other interrupt functions and so the timing of these functions needed to be done 

in another way. 

Another method of measuring the time taken by a function is to directly wire an oscilloscope 
to an output pin and to set the pin high when the function is on and low when the function 

is not running. The time taken by the function can then be directly read off the oscilloscope 

screen. With this method the smaller the time taken by the measured function the more 
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accurately the duration can be read. This approach can only be used while measuring time 

within loops because the oscilloscope that was used could only show measurements in real 

time (could not pause the screen). This is suited to the measurements of code within the 

interrupts which are frequency dependent. 

The UserInterfaceo function updates the display with the correct menu display. The UserIn- 

terfaceo is the main calling function for the display and so recording the time of this function 

will also be the total time used to update the display. The display functions are very time 
dependent on specific displays and on the number of changing digits, some will take longer 

than others. This also means that swapping between displays (where a lot of digits are chan- 

ged) will be quite time consuming. Thus timing the UserInterfaceo function will result in a 
variation in times depending on what is happening to the display. 

Time measured for the UserInterfaceo function: min time ; zzý 160 ps: max time ýýi 4 ms. 
Usually, when left idle the routine will take between 160 ps and 600 ps. 

After taking out the actual display routine to leave just the menu finder (Menu-Main), the 

time measured for the Main-Menuo function was: min time ; zý 9 ps; max time ;: ý- 260 ps. 

Measuring the other functions with the oscilloscope gave the following results: 

e GetTSVO -z:! 7.4ms (7.2ms to 7.5ms) 

GetPMVO ; zz; 20ms to 21ms 

Controllerozzi 5.6ms 

e FURLCO P: ý 4.6ms 

These confirm the results measured by the stopwatch function. 

6.3.2 Memory Requirements 

Memory requirements covers 2 meanings: the storage of the function code and constant 

variables on the chip's flash memory, and the amount of RAM type memory needed by a 
function to handle its local variables. The storage requirements of the whole TS Gizmo code 

are stored for reference in a memory map file generated by the compiler after optimization 

of the code. From this file the relevant data have been surnmarised in table 6.2, along with 

the global variable requirements (which are local with respect to the file they are in). 
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Files Storage Memory File local Variable Memory 
Gizmo. c 75 326 
display. c 500 19 
adc. c: 241 0 
serial. c 76 0 
timerx 90 44 
dac. c 58 0 
keyb. c 277 1 
menu-fUnctions. c 4426 1553 
gizmo-functions. c 8435 1718 

S= 817) 
FURLC. BMx = 320) 

(Start-Up 613 
(Gizmo-Main 185 
(ReInitialize 151 
(StrWrt 16 
(GetChVal 1887 
(GetTSV 507 
(GetPMV 2229 
(Controller 1538 
(FURLC-Out 1309 
Total 17645 3694 
Total Downloaded 19457 (10 blocks) 

Table 6.2: Memory requirements read from the compiler memory map file 

Rom table 6.2 it can be seen that the TSV function (GetTSVO) requires the least storage 
memory whereas the PMV algorithm requires the most. The size of the shared memory, S, 

and the main FURLC rule base matrix, FURLC. BMx, is also shown. 

The variables used locally within each function are presented in table 6.3. The list of the 
types of variables used can be quoted as a total amount of memory by referencing the list of 
variable allocation sizes: 

Char 8 bit 

Short 16 bit 

Int = 16 bit 

Float = 16 bit 

Pointers = 16 bit 

These variable size allocations are not always tile same and depend oil the platform being 

used. 
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Function Char Short Int Float -Structure Memory 
StartUpo 2 32 
Gizmo-Maino 2 32 
ReInitializeO 2 32 
StrWrto 2* 32 
GetChVal() 4 1 23 448 
GetTSVO 4 2 TSVstruct* 112 
GetPMVO 1 2 30 PMVstruct* 536 
Controllero (total) 2 67 1104 
Controllero (control) 51 816 
FURLC-Outo 16 18 FURLC-Struct* 560 
FURLC-Learno 5 3 FURLC-Struct* 144 
FURLC-Checko 4 FURLC-Struct* 80 

Table 6.3: Number of local variables used in each function 

From table 6.3 the controller function seems to require a lot of floating point values. The 

table shows two entries for the controller function, a total count of all the variables used and 
then a separate count for the variables that are used in the actual control method itself The 

reason this is quite high is because the actual control model is stored as a variable array of 
floats. This could be re-coded to use defined constants which would take up only storage 

memory. 

6.3.3 Discussion 

The PMV estimate worked on an iterative solution and varied the most in terms of the 

processor time taken. The iterative loop was limited to a maximum number of iterations so 
that there was a hard maximum time the function would take. The PMV function only hit 

this hard limit when the air temperature sensor that it was using was disconnected. The 

times shown in the results are for normal working conditions. 

Due to the reduced available time for programming, tile algorithms were not written for 

optimal CPU performance but were written in such a way as to simplify programming and 

reduce debugging time. Ali optimizing pre-compiler was used but it is expected that a revamp 

of the algorithm code with tile aim of better CPU performance could improve the times taken 

for the different functions. The results presented in this chapter, however, demonstrate a case 

study from which a first consideration of hardware design can be initiated. It is often the 

case that styles of production code also aim to increase readability and understandability of 
the code and reduce development time and debugging time and CPU optimization is post- 
development consideration. 
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Only the main FURLC function was tested, FURLC-Out. This is the bulk of the compu- 
tation and the learning function is only activated when there is something to learn. The 

microprocessor that is being used does have fuzzy logic support built in. This comprises of 
4 fuzzy assembly language commands. The use of these commands has been documented as 
being as much as 15 times faster than a program with conventional programming commands. 
There are some restrictions with using the built in functions, e. g. the defuzzification has to 

use singleton output membership functions. Nevertheless, it is expected that the FURLC 

functions could be speeded up using these in-built functions. 

6.4 Conclusions 

The final times indicate the amount of computation required to estimate thermal state and 
to provide a foundation control structure. This helps in decisions about how much extra 

capacity is left in the chip for other -functions. For example the fastest desired sampling rate 
for the thermal state estimation and thermal state control may be 4 times a second, with a 

maximum computational time of 100ms on an 8MHz processor. This leaves a maximum of 
GOOms for other functions, or a slower chip could be used. 

The experimental results show exactly how much more computation is required by the PMV 

method compared to the TSV method of thermal state estimation and the PMV iterative 

solution means that it is not certain exactly how long it requires, which makes real-time 

programming less predictable. The main code of the fuzzy controller took the least amount 

of time to execute. The TSV method is the shortest code and takes tip the least amount 

of storage memory being only a linear regression equation. The PMV code needs the most 

space. The active memory needed by each method showed that the TSV is again the best 

with the fuzzy model the worst when including the size of the rule base matrix. 

The FURLC method seems to compare well against the TSV and the PMV thermal state 

methods and it also compares well against the state-space controller. Both were used to 

control the thermal state in conjunction with the TSV method. 
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7.1 Thesis Summary and Final Discussion 

The motivation for the current study is to provide an information base on which to predict the 
implementation of future automotive HVAC systems. The work in this thesis was carried out 
in cooperation with a key provider of microprocessor and data communication components 

of the automotive HVAC system, and with a major automotive company. Thermal state has 

been identified as the key technology in the future development of comfort control, which 
is the goal of modern day automotive HVAC control. The aim of this thesis is to provide a 
detailed review of the requirements involved in estimating thermal state, to investigate the 

control of thermal state via the cabin environment and to examine user interactions as a 
source of personalizing the control response. 

Chapter 1 discusses the meaning of thermal state and offers the author's opinion on the 
definitions of some of the more frequent terms. In the discussion on thermal comfort it is 

recommended that a satisfaction scale should be used similar to the one in table 1.4. This is 

essentially an evaluation of thermal comfort based on a thermal state estimation. The two 

concepts are linked. 

The future requirements of climate control will depend on the processes and equipment 

used to measure thermal state and already most luxury cars use some sort of thermal state 

calculation in the control of the cabin environment. This clearly sets the aims of the first part 

of this thesis to investigate more closely the methods and implementations used in thermal 

state estimation. The aim of chapter 3 was to investigate three of the more popular methods 

of thermal state estimation and to compare the results. The set-up and experimental design 

for the data acquisition used to calculate the thermal state was presented in chapter 2. 

Although the three methods of thermal state estimation are not new methods the results 

presented in chapter 3 give a detailed comparison and overview of thermal state estimation 

that has not been found in the research literature. In this respect this chapter provides a 
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novel contribution. 

The experimental work continued in chapter 4 with the control of thermal state via a state- 

space controller designed using a pole-placement technique. This work uses one of the me- 
thods of thermal state estimation, outwith its original context, in a new way to control the 

thermal state of a test subject. Chapter 4 is also important because it introduces the ap- 

plication of thermal state control within the automobile cabin. The state of the test car's 

control over its HVAC system did not include any form of feedback control from the driver 

or passenger. However, the operation of the system was sensitive to the comfort of the oc- 

cupants. This was found to have a detrimental effect on the test results. It is however an 
interesting consideration in the implementation of the control of thermal state and highlights 

added restriction in maintaining comfort. 

The control of thermal state is, after all, only part of the solution. Thermal comfort is a 

much more difficult condition to quantify. Chapter 5 marks the beginning of the second part 

of this thesis because it aims to tackle thermal comfort in a new way. The idea of using the 

interactions from the user to identify personal preferences in thermal comfort control is only 
just starting to be investigated. This thesis provides a new approach to this concept in the 

form of a fuzzy logic method that has been designed to learn. 

The method was tested by applying it to the task of learning thermal state. Because this 

task has a lot of background research and results from three methods were already presented 
in chapter 4 it was a good task for performance analysis. The fuzzy algorithm proved to be 

very effective. The algorithm was then applied, in a verification task, to learn user interac- 

tions for specific demands on the automotive HVAC system. The demands on the system 

were interpreted by a thermal state reference signal. Note that the fuzzy algorithm is not 
controlling the thermal state according to a reference but is learning the interactions, from 

a user, that depend on the difference between the current thermal state and the reference 
thermal state, i. e. the comfort according to table 1.4. 

The final chapter provides a case study of the implementation of the algorithms used. This 

thesis is not just about new methods of investigating thermal state but about the types of 
information that are, and will be, needed and about the types of calculations used to estimate 

and control thermal state. 

Even though the sample times of the controllers are quoted in tens of seconds and the com- 

putation times are given in milliseconds, what is important is the bandwidth required on the 

processor and on the data transfer bus that communicates the sensor signals with the main 

algorithm. The discussions on thermal state in chapter 3 also allow the contemplation of 
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extra sensors that might be required. The case study demonstrates that there are significant 
differences in computational time and hardware resources between the methods implemented. 

7.2 Overall Conclusions 

The aim of this thesis was to investigate methods of estimating thermal comfort for the 

passengers of an automobile with particular interest in using passenger feedback information 

from the HVAC system in predicting individual preferences. This has been carried out. 
The objective of this work was to provide an information base on which to predict future 

automotive HVAC system requirements from an implementation perspective. It is not the job 

of this thesis to predict the future requirements of implementing automotive climate control, 
but to provide an overview of the state of the art to show the direction that the research is 

going, and to provide several novel contributions in these areas. 

The current state of the art in automotive climate control is centred around estimating the 
feelings of the user of the system. Thermal state estimation has already been shown to be 

quantifiable and provides a good basis on which to control the climate. The results presented 
in chapter 3 show the accuracies and performance of the three thermal state estimation 
methods, which can be used to determine future controller and computational specifications. 
Only a few data sets were used but the values comply with results in the literature. The types 

of measurements needed and the implementation issues for each method are also described. 
All three methods provided fairly accurate results and the PMV method seemed to have 

marginally better performance. This seems a little strange since it is not recommended for 

use in such a turbulent environment and all the input variables, except air temperature, were 
estimated. The TSV method was the most direct to implement and to calculate. 

The control of the automotive cabin environment was demonstrated in chapter 4. The ap- 

proach taken is an original contribution. However, the processes involved are standard tech- 

niques and the results from this chapter help to clarify the current ability and capacity of 
the automotive HVAC control systems. The results show that the thermal state of a test 

subject, estimated using the TSV method, was successfully controlled. It is suggested that 

better control performance could be achieved with certain improvements to the experiment. 

One possible future development in the control of the automotive environment is adaptation 

via user interactions. This idea is explored in this thesis and a new concept of applying 

knowledge base modifiers to fuzzy logic control mechanism in order to learn user interactions 

is presented in chapter 5. The new idea performs well on estimating thernial state and 
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outperforms the neural network approach presented in chapter 3. The fuzzy control method 

was also tested with feedback variables. However, limited test *resources meant that each test 

contained few data points to learn from and only a few tests could be made. The results 

show that the controller was able to effectively learn user interactions and automate learnt 

actions in a feedback control loop. User preferences were also preserved. 

The final part of this thesis concludes the analysis of the implementation of control of the 

automotive cabin climate based on thermal state with a chapter on algorithm performance. 
Algorithm performance is an important issue in system level implementation and ultimately 
has a direct influence on the overall cost of the system. In the conclusions from this chapter 

the fuzzy logic approach introduced in chapter 5 is shown to maintain competitiveness with 

the other methods tested. 

This thesis achieves its aim of providing an overview of the current state of the art in automo- 
tive climate control based on thermal state estimation. New approaches have been presented 

and validation results prove the methods. 

7.3 Recommendation for Further Research 

Apart from the obvious extensions of chapter 2 to include the additional sensors required for 

the PMV such as humidity and air flow, the draught equation could be integrated into the 
PMV calculation to provide a more transient solution. 

Investigations into controlling the air temperature input together with the air velocity is an 
important step that was not possible with the equipment supplied in chapter 2. This would 
have made a valuable contribution to the conclusions of this thesis. 

The results presented in Chapter 2 presented an interesting observation of facial skin tempe- 

rature relative to the air temperature and the thermal state vote. The phenomenon observed 

showed the facial skin temperature of the test subjects, which were individual values at the 

beginning of the test, converge to the same value as the air temperature increased above the 

mean facial skin temperature. At the same time the thermal state jumped from a warm level 

to a hot level. This was briefly discussed and it was hypothesised that it had something to 

do with the body physiology however this observation could be investigated further. 

More thermal state estimation methods could be included in the comparison in chapter 3. 

However, the three methods chosen together with the fuzzy method described in chapter 5 

cover all the main types of successful methods presented in the literature. 
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Given more time with the test car used in chapters 4 and 5 might have allowed some of the 

problems to be overcome. The large impulse disturbances were an unexpected interference 

and, although it provided a good test of the controller's robustness to disturbances, it should 
have been removed. The unexpected effect that the car's own HVAC controller had on the 

experimental results could also have been investigated further. During the experiments the 
test car remained stationary. An experiment that was not included in this study but that 
had been considered was to measure'the thermal state of the driver of the test car during 

a test drive. The aim of this experiment would have been to examine the range of thermal 

state feelings and the rate of change of thermal state during a typical driving session. The 
TS Gizmo described in chapter 6 would be the perfect tool for this job. 

126 



Appendices 

127 



A: Thermodynamics of HVAC 

The system theory for automotive heating, ventilation and air conditioning (HVAC) has 

been extensively covered and consists of textbook thermodynamics, however many papers 

are still produced based on this application. Development of this automotive feature has 

been proliferate and will continue to expand for many years in the future. 

In the modern day air-conditioning systems there are 6 main components. The air fan, the 

evaporator, the compressor, the condenser, the expansion valve and the heater. Simplistically 

these components fit together as shown in figure A. I. 
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Figure A. 1: Components of an automotive heating, ventilation and air conditioning system 

The refrigerant is pumped around the cycle by the compressor. The most popular compressors 

used are the two cylinder reciprocating type, the four cylinder RADIAL and the six cylinder 
AXIAL types. Refrigerant is sucked in to the compressor at low pressure and is forced out at 

a higher pressure. The compressor supplies work to the refrigerant and is powered by means 
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of a drive belt from the engine. The drive belt is connected to the compressor clutch, which 
can either engage tile compressor or not. With a solenoid actuator the compressor clutch can 
control the refrigerant flow with a two-position (or on-off) control action, however in most 
cases the clutch is only used to switch the refrigerant cycle on or off (linked to the economy 
switch). The state of the art in compressor design and control is ever increasing as evident 
in papers [50] and [51]. 

The refrigerant used in the system was originally a substance called R12 however with the 

abolition of CFC's and a general move away from using ozone unfriendly materials, a repla- 
cement for R12 was necessary. This provided an interesting problem since R12 is still the 
best engineering solution as a refri gerant and suggested replacements require system retrofit- 
ting and operational changes. Additional costs and efficiency reduction have supplied good 
motivation for research in this area and many papers have been issued under this topic such 
as [521. 

Considering the refrigerant cycle starting at the point 1 and moving around to 4: If assuning 
an adiabatic process with negligible kinetic energy differences between input and output then 
the work of the compressor, W in (Jls), can be described by equation (A-1). If h,, is the 

entlialpy at position n shown on figure A. 1 then h2 should be greater than h, and thus Vý is 

positive 

li7 = rh (h2 - hl) (A-i) 

The high pressure refrigerant is then condensed to a lower enthalpy. Simplistically the kinetic 

energy differences between input and output become negligible and the fluid does no work. 
This reduces the steady flow energy balance to equation (A-2), where OC 

... d,,,,,, is the heat 

transferred to the refrigerant and h2 > h3 making OCondenser 
negative. 

OCondenser 
ý rh (h3 - h2) (A-2) 

Next the refrigerant is throttled through the expansion valve which reduces the pressure. 
Heat transfer into the valve can be ignored and again the kinetic differences are negligible. 
No work is done and so the energy equation (A-3) is simply an equality. 

114 
= h3 (A-3) 
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Finally the refrigerant undertakes the evaporation process before starting the cycle again. The 

evaporator pulls in heat energy to evaporate the refrigerant. The pressure of the refrigerant 
is kept constant, the fluid does no work and with the assumption that the kinetic energy 
differences between input and output become negligible, the energy equation can be written 

as equation (A-4), With (ýEvaporater being the heat transferred to the refrigerant with h, > h4 

and ýEvaporater being positive. 

QEvaporater -= fn (hi - h4) (A-4) 

The coefficient of performance of a refrigerator is defined as the useful output over the in- 

put. The effectiveness of the system is dependent on how much heat is taken away by the 

evaporator. Hence the coefficient of performance of the refrigeration is shown in equation 
(A-5). This is not termed as efficiency since the coefficient of performance could have a value 
greater than 1. 

QEvaporater 
CPRefrigerator ýW (A-5) 

The refrigerant cycle T-s diagram will look similar to figure A. 2. 

T 

S 

Figure A. 2: Example of thermodynamic refrigerant cycle T-s diagram 

Note that expansion through the throttling valve is not isentropic which results in a smaller 

coefficient of performance. However the alternative is to use an expansion machine which 

could extract work from the system and would give a better refrigeration effect i. e. heat 

extracted per unit mass of refrigerant. In the automotive application the benefits of using an 

expansion machine are not worth the complication to the system. It can also be seen from 

figure A. 2 that the refrigerant is superheated before entering the compressor and although this 

gives the compressor more work, which reduces the coefficient of performance, it avoids liquid 
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refrigerant washing the compressor's lubricating oil into the evaporator. If the evaporator 
does superheat the refrigerant as shown in the diagram then this ideal cycle will have an 
increased refrigeration effect over other cycles with non-superheated regions (such as the 

reverse Carnot cycle). 

When describing the 2 regions (2-phase and superheated) each will have different evaporator 

properties but this is only taken in to consideration for more advanced simulations. Another 

addition for more advanced simulations is the condensation from the air on the outside wall 
of the evaporator. This will take place if the temperature of the evaporator wall becomes 

lower than the 'Due Point' or value of formation. An indication of the value of formation for 

air at 1 bar, 28'C and with a relative humidity * of 30% is 8.8'C. Condensation will affect 
the convection heat transfer coefficient in a way that is difficult to predict and will depend 

on materials and surface geometry. 

The suction service valve is used to empty and fill the system with refrigerant and can also be 

used to measure the system pressure. The receiver-drier is used to separate the superheated 

vapour and the liquid but can also be used to filter out dirt and moisture. The heater and 
the evaporator are similar in nature and provide hot and cold surface areas respectively for 

conditioning the air flowing through the system. Engine coolant is diverted into the heater 

system to provide a heat source. The flow of coolant can be controlled by the use of a valve 

and the temperature of the coolant is dependent on the speed of the engine. 

"'Relative Humidity is the ratio of the actual partial pressure of the vapour to the partial pressure of the 
vapour when the air is saturated at the same temperature" as defined by [53] 
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Development of a Physical Model 

Plant Parameters and Properties of Air for Approximate 

Calculations 

The parameters of the HVAC plant were measured approximately by conventional methods 

and are listed below: 

Vol,, 11 0.9242 m3: Volume of air in the HVAC plant from the heaters to the outlet nozzel. 
Vol,,,. l 0.6742 m3: Volume of air in the HVAC plant from the point where the heater 

walls were heated (taking heat from the air). 
A=7.12168 M2 Area of the heated HVAC walls. 
Wthk = 0.002 m Wall thickness. 

ExtDim 0.22 m Exit diameter of nozzle. 
EquDim 0.47 m Equivalent diameter of HVAC plant when assumed as a tube duct. 

III = 8.5 Amps Maximum electrical current through heaters. 

VII = 240 Volts Maximum electrical voltage in the heaters. 

The Properties of Air for Approximate Calculations: 

Cp(Air) 1.005 103 JI(Kg 'C) Specific Heat Capacity, (constant pressure). 

C, Mir) 0.718 103 JI(Kg 'C) Specific Heat Capacity, (constant volume). 

R= 287 JI(Kg 'K) : Specific Gas Constant. 

P(., It,,, ) = 1.01325 - 105 N1, M2 : Atmospheric Pressure. 

Properties of Air at Low Pressure and at 310'K: 
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p=1.892 - 10-5 Kgl(m s) : Viscosity of Air 

k=0.027 W/(7n 'C) : Thermal Conductivity 

P(Air) = 1.1415 Kgl?, n3 : Density of Air 

Properties of Steel for Approximate Calculations: 

cp = 0.46 - 10' JI(Kg OC) : Specific Heat Capacity 

p(st) = 7800 Kg/m 3: Density of Steel 

Using the measured parameters of the HVAC plant and the properties of air and steel for 

approximate calculations, more useful values can be calculated: 

7nall ý P(Air) ' VOIall = 1.0550 Kg : Mass of air in the HVAC plant. 

Mcool --= P(Air) * VOIcool = 0.7696 Kg : Mass of air being cooled by the heater wall. 
UTn 

(3.2+2.5) 
= 2.85 m/s : Air velocity, average of the velocity at the outlet nozzle center 2 

and edge respectfully, (see below). 
ExtDirn2 

Th = 7r -4 Um "P(Air) = 0.12367 Kg1s Air mass transfer rate. 
Cir Cp(, tel) - thick -A= 51105.3192 JI'C Heat Capacity of Heater Walls 

h=9.68459 or 10.0302 W1 (M2 o C) : Heat Transfer Coefficient for heating and cooling re- 
spectfully, (see below for the calculation). 

Qf(,,,,,, 7) = 61HVH = 12,240 W: Maximum Power Output from HVAC heaters (2 3-phase- 

heater hence the multiplier of 6). 

In deriving these calculations certain assumptions have been made 

1. The estimated area of the heater wall is assumed to be the same for the inside as for 

the outside, i. e. A= Ai,,, = A,,, t. 
2. The value of the gravitational constant g is assumed to be 9.80665m/s 2. 

Calculation of Air Velocity 

Although the air flow rate through the HVAC system is an input variable it was not varied 

and was thus thought of as a constant system parameter. The control unit for the fan setting 

was not electronically variable and had to be set by hand as a percentage setting of the 
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fan power. To relate the chosen percentage to actual air velocity some measurements were 
recorded by an electronic manometer. 

The traditional manometer is a simple "U" tube with water resting at the bottom, see figure 
B. 1. The pressure difference between the different sides is equivalent to the mass of water 
that has been displaced or the difference in height between the different water levels. This 

can be represented as equation (B-1). - 

VAir -> )S 

Ah 
--f- 1 

Tr2 
2 P(Air) '(Air) ý P(1[2o)gAh 

Figure B. 1: Explanation of a simple "U" tube manometer 

Taking P(1120) ýý 1000 and rearranged equation (B-2) to form equation (B-3). 

E- 
V(Air) 

2 rT(A 

i r) 

(B-2) 

(B-3) 

The electronic manometer displayed results in terms of mm as equivalent difference in height 

of water in a "U" tube. The readings were taken at the HVAC system nozzle outlet, at the 

edge of the nozzle outlet, at the face (the same positions as the air temperature measurement 
(3)) and at the neck area. The results are shown in table B. 1. From these results and using 

equation (B-3) the velocity of the air was calculated and is presented in table B. 2. 

Calculation of the Heat Transfer Coefficient 

The heat transfer coefficient is calculated for flow within a tube of diameter EquDim using 

equation (B-4) (Ref. J. P. Holman, Heat Týansfer, McGraw Hill, 1989. p. 274 Example p. 283) 

recommended by Dittus and Boelter relevant for fully developed turbulent flow in smooth 
tubes for fluids with a Prandtl number between 0.6 and 100 and with moderate temperature 
differences between the wall and the flow: 

AP = p(,,, O)gAh (B-1) 

If one end is open to atmospheric pressure and relating 
pressure to air velocity: 
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Fan Speed 
Setting (%) 

Manometer measurement (in mm) at: 
Nozzle Outlet Edge of Nozzle Center of Face Neck 

Calibration 
Error 

20 0.08 0.02 0.05 0.00 0.01 
23 0.18 0.10 0.12 0.07 0.01 
25 OM 0.20 0.23 0.15 0.02 
27 0.40 0.25 0.25 0.15 0.01 
30 0.60 0.30 0.35 0.25 0.01 
32 0.78 0.35 0.48 0.30 0.01 
35 1.10 0.70 0.65 0.50 0.01 
40 1.60 0.80 1.05 0.75 0.01 
50 3.00 1.50 2.00 1.20 0.03 

Table B. I: Measurements taken from an electronic manometer to calculate air velocity 

Fan Speed 
Setting (%) 

Velocity (in m/s) at: 
Nozzle Outlet Edge of Nozzle Centre of Face Neck 

20 1 1724 0.5862 0.9269 0.0000 
23 1.7586 1.3108 1.4359 1.0967 
25 2.0726 1.8538 1.9879 1.6054 
27 2.6216 2.0726 2.0726 1.6054 
30 3.2108 2.2704 2.4523 2.0726 
32 3.6609 2.4523 2.8718 2.2704 
35 4.3474 3.4681 3.3419 2.9310 
40 5.2432 3.7075 4.2475 3.5898 
50 7.1796 5.0767 5.8621 4.5408 

Table B. 2: Air velocity for different settings of fan power 

0.8 NUEquDim ý- 0.023 - ReEquDim * Pr' 

NUEquDirn ý 
htc-EquDirn 

: Nusselt number k 
P(Air)-U, n-EquDim : Reynolds number ReEqUDiM ý 11 

Pr = 
Cp(Air)'11 

0.7042i: Prandtl number k 

(B-4) 

Where n is 0.3 for cooling or 0.4 for heating. Note that equation (B-4) is for flow along a 

smooth cylindrical tube. The actual plant consists of ducting with a cross-section of varying 

shape and contains components which cause disturbance and turbulence to the air flow. Thus 

equation (B-4) is a gross approximation. 
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A Physical Model 

A simple physical model of the system can be described by a set of 3 control volumes, see 
figure B. 2. The output of the system is the temperature TA2 and the inputs are the energy 

supplied from the heaters, ýf, and the ambient air temperature entering the plant, TAo. Mass 

flow rate is kept constant during the experiments and is assumed to be constant throughout 

the plant. 'Lumped Heat Capacity Systems' are assumed for the 3 control volumes so that 

the rates of temperature change within each can be equated to the summation of the energy 

terms entering. < As stated before it is assumed that the inside surface area of the plant 

wall is equal to the outside area of the plant wall, Ai,, = Aout =A>. 

Q'I To 
ConLrol Volume 3- CV3 

oil 

'T T A TI., M Qf T"c" 

------------------------------ IV Control Volume I CV I Control Volume 2= CV2 

Figure B. 2: Block diagram of a simple representation of the HVAC system 

The first control volume surrounds the heating elements and the air flowing passed the heating 

elements to the point where the warm air starts to come in contact with the plant wall. The 

mass of air in the control volume is thus given as mcv, = m,, jj - m, ýýj = 0.28537Kg. It is 

assumed that the air is mixed and of uniform temperature at this final point and that all the 

electrical energy has been transferred into thermal energy in the air. The energy transfer for 

this control volume can be expressed by equation (B-5). 

dEcvl dTcvl 
dt - """ " dt = ?h* CA (TAO - TA I) + ýf (B-5) 

The second control volume contains the air flow from the end of the first control volume to the 
outlet nozzle of the plant. The mass of air in this control volume is just Simply MCV2 = M, ""J. 
Energy is lost from the air into the heater walls, 01I 

=h-A (TcII - TCVA reducing the air 

temperature thus forming the energy transfer equation (B-6). Note that 011 uses TCJ'I and 

not, as might be expected, 
(TCVI+TI12 ) because it was too low and did not allow the heater 

2 
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wall to heat up enough which then lead to TCV2 not heating up enough. The justification for 

using TCV, is that the cross-sectional temperature distribution of the air was not constant 
throughout the plant as assumed by the model thus a hotter channel of air did pass further 

through the plant in the centre of the ducting. 

dEcV2 dTcV2 
dt - MCV2 * CA -" Tn' CA (Till - 

TA2) -h-A (Tcv, - 
TCV3) (B-6) 

dt 

The third control volume contains the plant wall that is heated by the air flow in control 

volume 2, ýH = It -A (Tcv, - TCV3). The heater wall is also cooled by the ambient air 
temperature on the outside, ýA = It -A (TCV3 - TAO). This gives equation (B-7). 

dEcV3 dTcV3 

dt - cli 
dt =h-A (TAo + Tev, - 2TcV3) (B-7) 

Assuming Tcv, ý TA17 TCV2 ý TA2 and TCV3 = T11 and using equations (B-5), (B-6) and 
(B-7) in the MATLAB SIMULINK environment with the properties of the plant described 

in section previously a model was simulated. As is seen in figure B. 3 the simulation using 

the parameters evaluated directly show very different dynamics. The method for calculating 
h was not expected to be sufficient since equation (B-4) is relavent for a smooth tube of 

constant cross-section. The measured results show no indication of such a difference between 

the dynamics due to the heaters and those due to the plant walls as is shown by the model. 
No thought was given to the heater elements warming up as it was expect that this would 
be so quickly that it would be negligible. Whatever the cause of the slower dynamics the 

"fix" was to increase the size of the first control volume and hence the mass. The dynamics 

of the heater wall was altered by changing the thickness value of the wall. As the actual 

plant consists of ducting with a cross-section of varying shape the thickness of the plant wall 

was difficult to estimate and yet very sensitive to the model simulation. By re-evaluating the 

values of h as 17 W/(M2 oC), the size of control volume 1 by an extra 2m3 and the thickness 

of the plant wall to 5 mm the model was tuned to the measured data and re-simulated, as 

shown by the modified simulation line in figure B. 3. 
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Step Input Response Test 
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Figure B. 3: Measured response and simulated response of a physical model of the HVAC plant 
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Structures and Algorithm Diagram s 

The method outlined in chapter 5 has been kept general and this is a great advantage when 
programming the algorithm. The benefit is that general functions can be written without 
being specific to individual controllers. The controllers themselves are actually the variables 
that are passed through the general functions. It then makes sense to collect together the 

variables and parameters of each controller in a structure format. The "control-structure" is 

then passed through the general functions, which performs the general calculations using the 

control-structure's parameters, and the control-structure's variables are thus modified. 

Consider the control-structure CtIStr with the following fields: 

CtIStr. In[i] = Latest values of the controller inputs 

CtlStr. MAX[i] Largest allowable value of the input 

CtIStr. MIN[i] Lowest allowable value of the input 

CtIStr. MAXMBR[i] = Number of input membership functions 
CtIStr. W = Width of output membership functions 
CtIStr. CvFc = Convergence factor 
CtIStr. BMx[.. ] = Rule base matrix 
CtIStr. LBMx[.. ] Memory of learning 

CtIStr. Out-Old Last calculated output 
CtlStr. Out-Msrd Measured output 
CtlStr. Out-Calc Output calculated from inputs 

CtlStr. MPrm-Calc = Premise values P, 

CtlStr. ActMbr-Calc = Activated output membership functions 

CtlStr. Ctr-UIuse = Counter used after a user interaction 

CtlStr. Ctr-Learn Counter used to delay learning 

CtIStr. Chck-Flg Operation flag 
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There are 3 main functions that need to be carried out on the control-structures: 

1. Evaluated the output of a controller for a given set of inputs. 

2. Teach the controller by modifying the controllers rule base matrix. 

3. Update the counters to operate. the control action of the previous 2 functions. 

The general functions fit together like so: 

t --------------------------------- Figure CA: Main control algorithm loop 
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Read in CtlStr. In [) at time t 

G 

Use Ct1Str. MAXH, 
CtlStr. MIN[], 

and CtlStr. MAXMBR[] 

with CtlStr. In[] 
to calculate Equ. (I) and Equ. (2) 
(save Ct1Str. ActMbr_Ca1c[]) 

Use the values of the input membership functions 
calculated from Equ. (2) in Equ. (3b) to calculate 

Ct1Str. MPrm-Ca1c[1 

Use Ct1Str. MPrm-Ca1c[] 
with CtlStr. W 
to calculate Equ. (7) 
anduse CtlStr. ActMbr Calc[] 
and CtlStr. BMx[][] ... [] 
with Equ. (8) to find the values of the centres of 
the activated output membership functions. 

Finally use the results from Equ. (7) and Equ. (8) 
in Equ. (6) to calculate the controller output 

CtlStr. Out-Calc 

Figure C. 2: Diagram of the output function operation 
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I Read in CtlStr. Out_Msrd at time tI 

Use CtlStr. Out Msrd, 
and CtlStr. Out Ca1c, 
to calculate Equ. (9) and use result, 
with CtlStr. MPrm Calc[] 

CtlStr. BMx[][] ... 
and CtlStr. CvFc 
in Equ. (12) to modify 

CtlStr. BMx[][] ... 
update CtlStr. LBMx [][) 

Figure C. 3: Diagram of the Learning function operation 
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IF 
ct I st, Q. t_pld 

YES 

s 
CtIStr=tr_UI- 

so 
CtIStr. Clck_Flglo 
_te 

NO 

ctý L 

NO 

IF NO 
C, Is 'r. Ct, 

-Uluse END 

YES 
IF. y. f. li,. NO 
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I"""' 
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YES sd 
ctistr. ctr uiuse 

- E14D i I 
sd 

CtIStr. Chck_FIgW, 
D. N. thiýt 

sd 

NO IF 
ctistr. Ctr_Learn 

END 
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I IIF I 
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END ; -I CtlStr. Ctr_L-r. 

END .I 
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Figure CA: Flow diagram of the decision function operation 
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