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Abstract 

Many asteroids and comets orbit the inner solar system; among them Near 

Earth Objects (NEOs) are those celestial bodies for which the orbit lies close, and 

sometimes crosses, the Earth’s orbit. Over the last decades the impact hazard they 

pose to the Earth has generated heated discussions on the required measures to 

react to such a scenario. 

The aim of the research presented in this dissertation is to develop 

methodologies for the trajectory design of interception and deflection missions to 

Near Earth Objects. The displacement, following a deflection manoeuvre, of the 

asteroid at the minimum orbit intersection distance with the Earth is expressed by 

means of a simple and general formulation, which exploits the relative motion 

equations and Gauss’ equations. The variation of the orbital elements achieved by 

any impulsive or low-thrust action on the threatening body is derived through a 

semi-analytical approach, whose accuracy is extensively shown. This formulation 

allows the analysis of the optimal direction of the deflection manoeuvre to 

maximise the achievable deviation. 

The search for optimal opportunities for mitigation missions is done through 

a global optimisation approach. The transfer trajectory, modelled through 

preliminary design techniques, is integrated with the deflection model. In this 

way, the mission planning can be performed by optimising different contrasting 

criteria, such as the mass at launch, the warning time, and the total deflection. A 

set of Pareto fronts is computed for different deflection strategies and considering 

various asteroid mitigation scenarios. Each Pareto set represents a number of 

mission opportunities, over a wide domain of launch windows and design 

parameters. 

A first set of results focuses on impulsive deflection missions, to a selected 

group of potentially hazardous asteroids; the analysis shows that the ideal optimal 

direction of the deflection manoeuvre cannot always be achieved when the 

transfer trajectory is integrated with the deflection phase. A second set of results 
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includes solutions for the deviation of some selected NEOs by means of a solar 

collector strategy. The semi-analytical formulation derived allows the reduction of 

the computational time, hence the generation of a large number of solutions. 

Moreover, sets of Pareto fronts for asteroid mitigation are computed through the 

more feasible deflection schemes proposed in literature: kinetic impactor, nuclear 

interceptor, mass driver device, low-thrust attached propulsion, solar collector, 

and gravity tug. A dominance criterion is used to perform a comparative 

assessment of these mitigation strategies, while also considering the required 

technological development through a technology readiness factor. 

The global search of solutions through a multi-criteria optimisation 

approach represents the first stage of the mission planning, in which preliminary 

design techniques are used for the trajectory model. At a second stage, a selected 

number of trajectories can be optimised, using a refined model of the dynamics. 

For this purpose, the use of Differential Dynamic Programming (DDP) is 

investigated for the solution of the optimal control problem associated to the 

design of low-thrust trajectories. The stage-wise approach of DDP is exploited to 

integrate an adaptive step discretisation scheme within the optimisation process. 

The discretisation mesh is adjusted at each iteration, to assure high accuracy of the 

solution trajectory and hence fully exploit the dynamics of the problem within the 

optimisation process. The feedback nature of the control law is preserved, through 

a particular interpolation technique that improves the robustness against some 

approximation errors. The modified DDP-method is presented and applied to the 

design of transfer trajectories to the fly-by or rendezvous of NEOs, including the 

escape phase at the Earth. The DDP approach allows the optimisation of the 

trajectory as a whole, without recurring to the patched conic approach. The results 

show how the proposed method is capable of fully exploiting the multi-body 

dynamics of the problem; in fact, in one of the study cases, a fly-by of the Earth is 

scheduled, which was not included in the first guess solution. 

 



 

 

 

 

 

 

To my brother Marco 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Isaiah 43, 1–3  

 

«Do not be afraid. I’ve redeemed you. 

I’ve called your name. You’re mine. 

When you’re in over your head, I’ll be there with you. 

When you’re in rough waters, you will not go down. 

When you’re between a rock and a hard place, it won’t be a dead end 

Because I am God, your personal God, the Holy One of Israel, your Saviour. 

I paid a huge price for you: all of Egypt, with rich Cush and Seba thrown in! 

That’s how much you mean to me! That’s how much I love you! 

I’d sell off the whole world to get you back, trade the creation just for you. 

So don’t be afraid: I am with you» 
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Richard Feynman, “The Value of Science”, in Frontiers in Science: A Survey, 

Ed. E. Hutchings, Basic Books, New York, 1958. 

 

«The same thrill, the same awe and mystery, comes again and again when we 

look at any question deeply enough. With more knowledge comes a deeper, 

more wonderful mystery, luring one on to penetrate deeper still. Never 

concerned that the answer may prove disappointing, with pleasure and 

confidence we turn over each new stone to find unimagined strangeness 

leading on to more wonderful questions and mysteries - certainly a grand 

adventure!» 

 

 vi



 

Acknowledgments 

I would like to acknowledge my advisors, Dr. Gianmarco Radice and Dr. 

Massimiliano Vasile for making this work possible. Their support and guidance 

have been precious throughout these years. I would like to thank Max, for 

conveying to me “the same thrill, the same awe and mystery” that make research 

so beautiful, and for sharing the enthusiasm of working in team. Thank you for the 

invaluable scientific guidance and the contribution to many of the ideas in this 

thesis. I would like to thank Gianmarco, for making this extraordinary experience 

possible. Thank you, for supporting me always e unconditionally, for believing in 

my abilities and giving me confidence in them. Your positiveness encouraged me 

and helped me in playing down my worries and insecurities. I am very grateful to 

each member of the Department of Aerospace Engineering of the University of 

Glasgow, because the environment has been friendly, supportive and stimulating. 

I am thankful to the examiners of this thesis, Dr. Victor Becerra and Dr. Jongrae 

Kim for the fruitful discussion. 

For many reasons, my experience of the PhD in Glasgow has been one of 

the best and strongest in my life, it has changed and extended my visions and 

strengthened my beliefs. I would like to thank all my colleagues and best friends 

of the Space Advanced Research Team; you have been wonderful “travel mates”, 

on every day of this experience. Thank you Pau, I have learnt a lot from the close 

collaboration with you, saving the Earth from NEOs has been enjoyable together! 

Thank you Matteo, for being always available, encouraging and supporting me. 

Thank you for your splendid friendship, Nico, for listening to my thoughts and for 

sharing with me yours. A big hug and sincere thank-you to Christie, Daniel, 

Edmondo, Stuart, Imran, Anna, Giulio, Irene, Paola, Matt, Giangi, Nita, DC, 

Kiran, Tao, my Scottish supporters, Janice, Celia and James. With each one of 

you I have shared unforgettable precious moments of my Glaswegian experience. 

The biggest thank-you goes to my family: Emilia, Giorgio, Riccardo, Marco 

and Fabrizio, because their love and unconditional support is always with me, 

 vii



Acknowledgments 

 

 viii

even at 1,912 km far away. I am grateful to my parents, for teaching me that good 

results come from strong commitment and for raising me to chase my dreams. 

Grazie papi, because with your morning phone calls I experienced that distances 

are nothing, if you believe so. Grazie mamma, for your constant care, for sharing 

my feelings and anxieties, and sometimes not sleeping because of them. A big hug 

to Richi, who shows me his love with no needs for words! Marco, I feel you close 

to me in every single moment. 

Fabri, living so far during these years has been difficult, but we only know 

how that made us close. Thank you for your patience, presence and love. You are 

the one who completes me. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

I declare that, except where explicitly stated, the work contained in this 

dissertation is my own. 

 

 

 

 

 

 

 

 

 

November 2009, Camilla Colombo 

 

 

 ix



 

Contents 

Abstract ............................................................................................................. iii 

Acknowledgments................................................................................................. vii 

Contents .............................................................................................................. x 

List of figures ....................................................................................................... xiii 

List of tables.......................................................................................................... xx 

Nomenclature ...................................................................................................... xxii 

List of symbols ............................................................................................... xxii 

List of constants.............................................................................................. xxx 

List of acronyms............................................................................................. xxx 

Chapter 1. Introduction .......................................................................................... 1 

1.1. Near Earth Objects and problem definition ............................................ 1 

1.2. Research motivations and objectives ...................................................... 3 

1.3. Background ............................................................................................. 5 

1.3.1. Impact hazard .............................................................................. 5 

1.3.2. NEO deflection strategies ........................................................... 7 

1.3.3. Asteroid deviation ..................................................................... 10 

1.3.4. NEO interception and trajectory optimisation .......................... 13 

1.4. Methodologies developed and implemented......................................... 16 

1.5. Dissertation organisation....................................................................... 20 

1.6. Contributions......................................................................................... 21 

Chapter 2. Impulsive NEO deflection.................................................................. 24 

2.1. Asteroid deviation problem................................................................... 24 

2.1.1. Maximum deviation strategies .................................................. 28 

2.1.2. Accuracy analysis ..................................................................... 32 

2.1.3. Representation on the b-plane................................................... 35 

2.2. Mission options for impulsive deviation............................................... 50 

2.2.1. Targets selection ....................................................................... 50 

2.2.2. Impact model and optimisation problem definition .................. 53 

 x



Contents 

 

2.2.3. Results ....................................................................................... 56 

2.3. Summary ............................................................................................... 63 

Chapter 3. Low-thrust NEO deflection................................................................ 65 

3.1. Asteroid deviation problem................................................................... 66 

3.1.1. Analysis of the optimal thrust direction .................................... 70 

3.2. Semi-analytical formulae for low-thrust deviation action .................... 72 

3.2.1. Latitude formulation ................................................................. 73 

3.2.2. Periodic variation of the orbital parameters .............................. 78 

3.2.3. Time formulation ...................................................................... 82 

3.3. Mission options for low-thrust deviation .............................................. 89 

3.3.1. Targets selection ....................................................................... 90 

3.3.2. Spacecraft model and optimisation problem definition ............ 91 

3.3.3. Results ....................................................................................... 95 

3.4. Summary ............................................................................................. 109 

Chapter 4. Comparison of mitigation strategies for hazardous NEOs............... 111 

4.1. NEO deflection strategies model ........................................................ 112 

4.1.1. Impulsive action...................................................................... 113 

4.1.2. Low-thrust action .................................................................... 116 

4.2. Transfer trajectory............................................................................... 119 

4.3. Multi-criteria optimisation problem formulation................................ 120 

4.4. Objective function definition .............................................................. 123 

4.5. Deflection mission options.................................................................. 126 

4.5.1. Targets selection ..................................................................... 127 

4.5.2. Pareto fronts ............................................................................ 128 

4.5.3. Multi-criteria analysis ............................................................. 138 

4.6. Summary ............................................................................................. 142 

Chapter 5. Optimal low-thrust trajectories to asteroids through an algorithm 

based on differential dynamic programming ...................................................... 144 

5.1. Differential Dynamic Programming ................................................... 145 

5.1.1. Differential dynamic programming for trajectory optimisation....

 ................................................................................................. 145 

5.2. Modified DDP method........................................................................ 160 

5.2.1. Discretisation scheme ............................................................. 160 

 xi



Contents 

 

 xii

5.2.2. Mesh definition ....................................................................... 162 

5.3. Algorithm ............................................................................................ 165 

5.3.1. Heuristics to improve the convergence rate ............................ 170 

5.4. Local refinement of low-thrust trajectories......................................... 172 

5.5. Asteroid rendezvous and fly-by missions ........................................... 177 

5.5.1. Rendezvous with asteroid Apophis......................................... 180 

5.5.2. Rendezvous with asteroid Apophis from a geostationary transfer 

orbit ................................................................................................. 187 

5.5.3. Fly-by of asteroid 2002 AA29 ................................................ 195 

5.6. Summary ............................................................................................. 203 

Chapter 6. Conclusions ...................................................................................... 204 

6.1. Summary and findings of the thesis .................................................... 204 

6.2. Limitations .......................................................................................... 211 

6.3. Remarks for future work ..................................................................... 213 

References .......................................................................................................... 216 

Appendix A. Secular variation of orbital elements due to low-thrust 

manoeuvre  ................................................................................................. 232 

A.1. Secular variation of eccentricity over one orbital revolution.............. 232 

A.2. Secular variation of semi-major axis over one orbital revolution....... 235 

A.3. Secular variation of anomaly of the pericentre over one orbital 

revolution........................................................................................................ 236 

A.4. Secular variation of the mean anomaly over one orbital revolution ... 237 

Appendix B. Influence of the technology readiness level on the multi-criteria 

analysis  ................................................................................................. 242 

 



 

List of figures 

Figure 2.1: Impulsive NEO deviation. .................................................................. 25 

Figure 2.2: Components of the optimal δv direction for a) asteroid 2000SG344 
and b) asteroid 1979XB. .................................................................... 30 

Figure 2.3: Deviation achieved with ||δv||=0.07 m/s for a) asteroid 2000SG344 and 
b) asteroid 1979XB. ........................................................................... 31 

Figure 2.4: Relative error calculated by orbit propagation for asteroid 2000SG344.
............................................................................................................ 32 

Figure 2.5: Relative error for the deviation of a) asteroid 2000SG344 and b) 
asteroid 1979XB................................................................................. 33 

Figure 2.6: Deviation of a) asteroid 2000SG344 and b) asteroid 1979XB........... 34 

Figure 2.7: Maximum relative error for different asteroids. ................................. 34 

Figure 2.8: Earth-centred local reference system: a) b-plane representation and b) 
geometry of hyperbolic passage......................................................... 35 

Figure 2.9: Impact parameter and magnitude of the deviation for 1979XB with δv 
= 0.07 m/s; b*-parameter (bold lines), and deviation (thin lines). ..... 37 

Figure 2.10: Impact parameter for asteroid 1979XB ∆t<1TNEO: a) strategy of 
maximum deviation and b) strategy of maximum b*-parameter. ...... 37 

Figure 2.11: Impact parameter for asteroid 2000SG344 ∆t<0.5TNEO. Strategy of 
maximum deviation (solid line) and maximum b*-parameter (bold 
line). ................................................................................................... 39 

Figure 2.12: Deviation (dashed line) and its projection (bold line) on the b-plane 
calculated through the two-body problem and minimum deviation 
computed through the three-body problem (continuous thin line): a) 
maximum deviation strategy for asteroid 1979XB and b) maximum 
b*-parameter strategy for asteroid 1979XB. ...................................... 41 

Figure 2.13: Projection of the deviation (continuous line) on the b-plane 
calculated through the two-body problem and minimum deviation 
computed through the three-body problem (dashed line) for asteroid 
1979XB. The bold lines represent the results of the maximum-b* 
strategy, the thin lines represent the result for the maximum-deviation 
strategy. .............................................................................................. 41 

Figure 2.14: Components of the deviation in the b-plane for asteroid 1979XB. .. 42 

Figure 2.15: Fly-by representation in the b-plane reference system. a) case A: the 
asteroid is approaching the fly-by of the Earth and b) case B: the 
asteroid is at the end of the fly-by. ..................................................... 43 

 xiii



List of figures 

 

Figure 2.16: Projection on the b-plane of the deviation for asteroid 2000SG344 
(left) and asteroid 1979XB (right) with δv = 0.07 m/s applied a) along 
the tangent to the motion, b) along the normal to the motion, and c) 
along the h-direction. ......................................................................... 45 

Figure 2.17: Projection on the b-plane, function of Δt for a) asteroid 2000SG344 
and b) asteroid 1979XB. .................................................................... 46 

Figure 2.18: Projection on the b-plane of the deviation. δv = 0.07 m/s applied 
along the optimal (normal line), the tangent to the motion (dark grey 
normal line), the normal to the motion (black bold line), and the h 
(light grey bold line) directions for a) asteroid 2000SG344 and b) 
asteroid 1979XB................................................................................. 46 

Figure 2.19: Distribution of the components of δv, represented through the 
Gaussian membership function, with 3σ = δvt, mean/100. a) Tangential 
component, b) normal component, and c) component along the h 
direction.............................................................................................. 48 

Figure 2.20: Projection on the b-plane of the deviation. δvt, mean = 0.07 m/s applied 
along the tangent direction with 3σ = δvt, mean/100 for a) asteroid 
2000SG344 and b) asteroid 1979XB. ................................................ 48 

Figure 2.21: Distribution of the components of δv, represented through the 
Gaussian membership function, with 3σ = δvt, mean/10. a) Tangential 
component, b) normal component, and c) component along the h 
direction.............................................................................................. 49 

Figure 2.22: Projection on the b-plane of the deviation. δvt, mean = 0.07 m/s applied 
along the tangent direction with 3σ = δvt, mean/10 for a) asteroid 
2000SG344 and b) asteroid 1979XB. ................................................ 49 

Figure 2.23: Optimal interception of a) asteroid 1979XB and b) asteroid 
1996TC1............................................................................................. 57 

Figure 2.24: Optimal interception arguments of latitude for a) asteroid 1979XB 
and b) asteroid 1996TC1. ................................................................... 57 

Figure 2.25: Optimal interception of a) asteroid 2000SB45 and b) asteroid 
2002TX55. ......................................................................................... 58 

Figure 2.26: Impact velocity function a) of the eccentricity and b) of the 
inclination (h-component). ................................................................. 58 

Figure 2.27: Pareto front for a) asteroid 2000SG344 and b) asteroid 2002GJ8. .. 59 

Figure 2.28: Pareto front for asteroid 2002VU17. ................................................ 62 

Figure 2.29: Optimal impact ∆v distribution for direct impacts: a) results of the 
single-objective optimisation and b) results of the multi-objective 
optimisation........................................................................................ 62 

Figure 3.1: Low-thrust NEO deviation. ................................................................ 66 

Figure 3.2: Relative error on the deviation of a) asteroid Apophis and b) asteroid 
1979XB. ............................................................................................. 78 

Figure 3.3: Semi-analytical expression of the eccentricity for asteroid Apophis. 80 

 xiv



List of figures 

 

Figure 3.4: Relative error between the numerical and semi-analytical integration 
of a) the eccentricity, b) the semi-major axis, and c) anomaly of the 
pericentre for asteroid Apophis (left) and asteroid 1979XB (right)... 81 

Figure 3.5: Relative error between the numerical and semi-analytical integration 
of the mean anomaly for a) asteroid Apophis and b) asteroid 1979XB.
............................................................................................................ 82 

Figure 3.6: Time-formulation algorithm. .............................................................. 85 

Figure 3.7: Relative error of the time formulation for a) asteroid Apophis 
(ka=2.2×105 km3/s2) and b) asteroid 1979XB (ka=2×104 km3/s2). ..... 87 

Figure 3.8: Relative error on δM for a) asteroid Apophis and b) asteroid 1979XB.
............................................................................................................ 88 

Figure 3.9: Percentage of savings in computational time by using the semi-
analytical time formulation with respect to the numerical integration 
of Gauss’ equations. a) Asteroid Apophis and b) asteroid 1979XB. . 89 

Figure 3.10: Magnitude of the acceleration for Apophis. ..................................... 92 

Figure 3.11: Launch opportunities for a deviation mission to Apophis. The colour 
scale represents the value of the achieved deviation at the MOID. ... 96 

Figure 3.12: Deviation mission to Apophis: a) Pareto front. Launch mass, warning 
time and magnitude of the deviation are represented on the three axes. 
b) Achieved deviation as a function of the time length of the thrust 
arc. ...................................................................................................... 97 

Figure 3.13: Orbit and MOID characteristics for different values of semi-major 
axis starting from Apophis case: a) asteroid orbits and b) true anomaly 
of the MOID. ...................................................................................... 98 

Figure 3.14: Sensitivity of the deviation to the semi-major axis: a) deviation 
achieved for orbits with different values of semi-major axis and for 
increasing values of thrust interval and b) relative error for different 
values of semi-major axis. The white line represents Apophis case (a = 
0.922 AU)........................................................................................... 99 

Figure 3.15: Orbit and MOID characteristics for different values of eccentricity 
starting from Apophis case: a) asteroid orbits and b) true anomaly of 
the MOID. ........................................................................................ 100 

Figure 3.16: Sensitivity of the deviation to the eccentricity: a) deviation achieved 
for orbits with different values of eccentricity and for increasing 
values of thrust interval and b) relative error for different values of 
eccentricities. The white line represents Apophis case (e = 0.191). 101 

Figure 3.17: Launch opportunities for a deviation mission to 1979XB. The colour 
scale represents the value of the achieved deviation at the MOID. . 102 

Figure 3.18: Deviation mission to 1979XB: a) Pareto front. Launch mass, warning 
time and magnitude of the deviation are represented on the three axes. 
b) Achieved deviation as a function of the time length of the thrust 
arc. .................................................................................................... 102 

 xv



List of figures 

 

Figure 3.19: Orbit and MOID characteristics for different values of semi-major 
axis starting from 1979XB case: a) asteroid orbits and b) true anomaly 
of the MOID. .................................................................................... 103 

Figure 3.20: Sensitivity of the deviation to the semi-major axis: a) deviation 
achieved for orbits with different values of semi-major axis and for 
increasing values of thrust interval and b) relative error for different 
values of semi-major axis. The white line represents 1979XB case (a = 
2.350 AU)......................................................................................... 104 

Figure 3.21: Orbit and MOID characteristics for different values of eccentricity 
starting from 1979XB case: a) asteroid orbits and b) true anomaly of 
the MOID. ........................................................................................ 105 

Figure 3.22: Sensitivity of the deviation to the eccentricity: a) deviation achieved 
for orbits with different values of eccentricity and for increasing 
values of thrust interval and b) relative error for different values of 
eccentricity. The white line represents 1979XB case (e = 0.726).... 106 

Figure 3.23: Launch opportunities for a deviation mission to Castalia. The colour 
scale represents the value of the achieved deviation at the MOID. . 106 

Figure 3.24: Deviation mission to Castalia: a) Pareto front. Launch mass, warning 
time and magnitude of the deviation are represented on the three axes. 
b) Achieved deviation as a function of the time length of the thrust 
arc. .................................................................................................... 107 

Figure 3.25: Launch opportunities for a deviation mission to Itokawa. The colour 
scale represents the value of the achieved deviation at the MOID. . 108 

Figure 3.26: Deviation mission to Itokawa: a) Pareto front. Launch mass, warning 
time and magnitude of the deviation are represented on the three axes. 
b) Achieved deviation as a function of the time length of the thrust 
arc. .................................................................................................... 108 

Figure 4.1: Orbit of the selected asteroids: a) 2D view, and b) 3D view............ 128 

Figure 4.2: Pareto front for the deviation of asteroid Apophis through different 
strategies: a) kinetic impactor, b) nuclear interceptor, c) mass driver, 
d) attached spacecraft propulsion, e) solar collector, and e) gravity 
tractor. .............................................................................................. 132 

Figure 4.3: Pareto front for the deviation of asteroid Itokawa through different 
strategies: a) kinetic impactor, b) nuclear interceptor, c) mass driver, 
d) attached spacecraft propulsion, e) solar collector, and e) gravity 
tractor. .............................................................................................. 134 

Figure 4.4: Pareto front for the deviation of asteroid Castalia through different 
strategies: a) kinetic impactor, b) nuclear interceptor, c) mass driver, 
d) attached spacecraft propulsion, e) solar collector, and e) gravity 
tractor. .............................................................................................. 136 

Figure 4.5: Pareto front for the deviation of asteroid 1979XB through different 
strategies: a) kinetic impactor, b) nuclear interceptor, c) mass driver, 
d) attached spacecraft propulsion, e) solar collector, and e) gravity 
tractor. .............................................................................................. 137 

Figure 5.1: Dynamic programming approach. .................................................... 147 

 xvi



List of figures 

 

Figure 5.2: Control law schedule according to Jacobson’s algorithm. ............... 150 

Figure 5.3: Trajectory associated to the control law in Eq. (5.12)...................... 150 

Figure 5.4: Control law during the convergence process. Direct transfer Earth to 
Mars, with a time of flight of 200 days. ........................................... 151 

Figure 5.5: Trajectory discretisation within the optimisation problem............... 161 

Figure 5.6: Trajectory discretisation in the Static/Dynamic Control approach. The 
grey arrows show that the control is kept constant within a segment.
.......................................................................................................... 162 

Figure 5.7: Modified DDP algorithm.................................................................. 169 

Figure 5.8: Pareto front for a deviation mission to asteroid Apophis. ................ 174 

Figure 5.9: Points of the Pareto front locally optimised through the DDP method.
.......................................................................................................... 175 

Figure 5.10: Percentage of propellant mass saved through the local optimisation of 
the solutions. .................................................................................... 176 

Figure 5.11: Thrust magnitude. The dashed line represents the first guess solution 
provided to the DDP algorithm, the continuous line is the optimal 
thrust profile. a) Entire trajectory and b) close-up on the escape phase.
.......................................................................................................... 181 

Figure 5.12: Time evolution of the thrust components. ...................................... 181 

Figure 5.13: Mass. The dashed line represents the first guess solution; the 
continuous line is the optimal profile. .............................................. 182 

Figure 5.14: Rendezvous trajectory to Apophis represented in the Earth inertial 
reference frame. a) Entire trajectory and b) close-up on the escape 
phase................................................................................................. 183 

Figure 5.15: Trajectory to Apophis rendezvous. Transfer in the Sun inertial 
reference frame. The dashed line represents the first guess transfer 
solution; the continuous line is the optimal trajectory. Apophis and 
Earth orbit are represented respectively in red and blue continuous 
lines. ................................................................................................. 184 

Figure 5.16: Evolution of the Keplerian elements during the escape phase. The 
dashed line represents the first guess solution; the continuous line is 
the optimal profile. a) Semi-major axis expressed in Earth radii, b) 
eccentricity and c) inclination. ......................................................... 185 

Figure 5.17: Time of flight sensitivity. The integral term of the cost function 
(normalised to the weight parameter w) is represented on the y axis. 
Each point represents an optimised transfer (with final constraints 
satisfied) with a given time of flight. The cross shows the result 
corresponding to the solution fully presented in this section. .......... 186 

Figure 5.18: Thrust magnitude for the mission with m0 = 1350 kg. The dashed line 
represents the first guess solution provided to the DDP algorithm, the 
continuous line is the optimal thrust profile. a) Entire trajectory and b) 
close-up on the escape phase............................................................ 187 

 xvii



List of figures 

 

Figure 5.19: Mass for the mission with m0 = 1350 kg. The dashed line represents 
the first guess solution; the continuous line is the optimal profile... 187 

Figure 5.20: Mass. The dashed line represents the first guess solution; the 
continuous line is the optimal profile. .............................................. 189 

Figure 5.21: Thrust magnitude. The dashed line represents the first guess solution 
provided to the DDP algorithm, the continuous line is the optimal 
thrust profile. a) Entire trajectory and b) close-up on the escape phase.
.......................................................................................................... 189 

Figure 5.22: Time evolution of the thrust components. ...................................... 190 

Figure 5.23: Evolution of the instantaneous eccentricity with time during the 
spiralling-out phase. The dashed line represents the first guess, the 
continuous line is the optimal solution............................................. 190 

Figure 5.24: Close-up on the escape phase. The dashed line represents the first 
guess, the continuous line is the optimal solution............................ 191 

Figure 5.25: Trajectory to Apophis rendezvous. The dashed line represents the 
first guess transfer solution; the continuous line is the optimal 
trajectory. a) Transfer in the Earth inertial reference frame. The circle 
represents the target position, the cross is the final state of the optimal 
trajectory. b) Transfer in the Sun inertial reference frame. Apophis and 
Earth orbit are represented respectively in red and blue continuous 
lines. ................................................................................................. 192 

Figure 5.26: Fly-by of the Earth. The cross represents the pericentre of the 
hyperbola with respect to the Earth. a) Fly-by phase and b) close-up of 
the passage from the pericentre of the hyperbola............................. 193 

Figure 5.27: Evolution of the thrust and velocity magnitude during the fly-by. The 
dashed line represents the first guess solution; the continuous line is 
the optimal profile. The cross symbol is in correspondence of the 
pericentre passage. a) Thrust magnitude and b) velocity magnitude 
with respect to the Earth................................................................... 194 

Figure 5.28: Evolution of the angles of the velocity vector with respect to the 
Earth inertial reference frame, during the fly-by. The dashed line 
represents the first guess solution; the continuous line is the optimal 
profile. The cross symbol is in correspondence of the pericentre 
passage. a) In-plane angle of the velocity vector and b) out-of-plane 
angle of the velocity vector. ............................................................. 195 

Figure 5.29: Trajectory of asteroid 2002 AA29 relative motion with respect to the 
Earth. ................................................................................................ 196 

Figure 5.30: Transfer trajectory to 2002 AA29 fly-by in the Sun inertial reference 
frame. The dashed line represents the first guess transfer solution; the 
continuous line is the optimal trajectory. 2002 AA29 and Earth orbit 
are represented respectively in red and blue continuous lines. ........ 196 

Figure 5.31: Thrust magnitude. The dashed line represents the first guess solution 
provided to the DDP algorithm, the continuous line is the optimal 
thrust profile. a) Entire trajectory and b) close-up on the escape phase.
.......................................................................................................... 197 

 xviii



List of figures 

 

 xix

Figure 5.32: Time evolution of the thrust components. ...................................... 197 

Figure 5.33: Mass. The dashed line represents the first guess solution; the 
continuous line is the optimal profile............................................... 198 

Figure 5.34: Trajectory to 2002 AA29 fly-by represented in the Earth inertial 
reference frame. a) Entire trajectory and b) close-up on the escape 
phase................................................................................................. 199 

Figure 5.35: Evolution of the Keplerian elements during the escape phase. The 
dashed line represents the first guess solution; the continuous line is 
the optimal profile. a) Semi-major axis, b) eccentricity, c) inclination, 
and d) anomaly of the ascending node. ............................................ 200 

Figure 5.36: Lagrange point passage. The cross highlights the position of the 
Lagrange point L2 when the trajectory changes its inclination. ...... 201 

Figure 5.37: Angles of the thrust vector. The dashed line represents the first guess 
solution; the continuous line is the optimal profile. a) Right ascension 
and b) declination. ............................................................................ 201 

Figure 5.38: Acceleration components. The dashed line represents the first guess 
solution, the continuous line is the optimal solution. The black line 
indicates the acceleration due to the Earth’s gravity field, the black 
bold line indicates the disturbing acceleration due to the Sun and the 
bold grey line indicates the thrust acceleration. a) Acceleration 
magnitude, b) x component of the acceleration, c) y component of the 
acceleration, and d) z component of the acceleration. ..................... 202 

Figure 6.1: Comparison between the approximated low-thrust model and the 
numerical integration in the three-body problem (Earth inertial 
system): a) transfer to Apophis, and b) Earth escape phase............. 214 

 



 

List of tables 

Table 2.1: Physical parameters for considered NEOs........................................... 52 

Table 2.2: Optimal launch opportunities for a direct transfer to selected asteroids 
as a result of the multi-objective optimisation. .................................. 60 

Table 2.3: Optimal launch opportunities for transfers to selected asteroids via a 
single Venus swing-by as a result of the single-objective optimisation.
............................................................................................................ 63 

Table 3.1: Computational time of the analytical and numerical approach. .......... 78 

Table 3.2: Maximum relative error between the numerical and semi-analytical 
integration. ......................................................................................... 80 

Table 3.3: Asteroids orbital and physical parameters. .......................................... 90 

Table 3.4: Mission characteristics......................................................................... 91 

Table 3.5: Acceleration constant and average of the accelerations acting on the 
asteroid. .............................................................................................. 92 

Table 4.1: Margins on the wet mass into orbit for the different deviation strategies.
.......................................................................................................... 124 

Table 4.2: Search domain for the multi-objective optimisation.......................... 126 

Table 4.3: Asteroids orbital and physical parameters. ........................................ 127 

Table 4.4: Strategy dominance for asteroid Apophis.......................................... 140 

Table 4.5: Strategy dominance for asteroid Itokawa. ......................................... 140 

Table 4.6: Strategy dominance for asteroid Castalia. ......................................... 140 

Table 4.7: Strategy dominance for asteroid 1979XB.......................................... 141 

Table 5.1: Mission characteristics....................................................................... 173 

Table 5.2: Mission characteristics....................................................................... 180 

Table 5.3: Parking orbit parameters. ................................................................... 188 

Table 5.4: Mission characteristics....................................................................... 188 

Table 5.5: Mission characteristics....................................................................... 195 

 

Table B.1 : Technology readiness levels. ......................................................... 243 

Table B.2 : TRL for the different mitigation schemes...................................... 243 

Table B.3 : TRL mapping into required time to fully develop the required 
technology. ....................................................................................... 245 

Table B.4 : Strategy dominance for asteroid Apophis considering the technology 
readiness level. ................................................................................. 246 

 xx



List of tables 

 

 xxi

Table B.5 : Strategy dominance for asteroid Itokawa considering the technology 
readiness level. ................................................................................. 246 

Table B.6 : Strategy dominance for asteroid Castalia considering the technology 
readiness level. ................................................................................. 247 

Table B.7 : Strategy dominance for asteroid 1979XB considering the technology 
readiness level. ................................................................................. 247 

 

 



 

Nomenclature 

List of symbols 

Latin symbols 

kA  Matrix of the DDP algorithm at stage k. 

MOIDA  Matrix form of the proximal motion equations. 

a  Acceleration vector, km/s2, or coefficient matrix of the Runge-Kutta-

Fehlberg integration scheme. 

a Semi-major axis, km. 

AU Astronomical unit, km. 

kB  Matrix of the DDP algorithm at stage k. 

b  Coefficient matrix of the Runge-Kutta-Fehlberg integration scheme. 

b Semi-minor axis, km. 

*b  Impact parameter, km. 

lb  Lower boundary for the solution vector of the global optimisation. 

ub  Upper boundary for the solution vector of the global optimisation. 

kC  Matrix of the DDP algorithm at stage k. 

C  Constraint. 

c  Coefficient matrix of the Runge-Kutta-Fehlberg integration scheme. 

c Constant. 

kD  Matrix of the DDP algorithm at stage k. 

D  Domain. 

d  Hovering distance, m. 

md  Diameter of the mirror, km. 

trd  Index associated to the transfer trajectory. 

kE  Matrix of the DDP algorithm at stage k. 

E Incomplete elliptic integral of the second kind. 

 xxii



Nomenclature 

 

e Eccentricity. 

re  Relative error. 

F Incomplete elliptic integral of the first kind. 

f  Discrete-time state transition function. 

f  Function containing the continuous dynamics equations. 

dG  Matrix form of the Gauss’ equations, considering an impulsive change 

in the velocity. 

tG  Matrix form of the Gauss’ equations, considering an impulsive change 

in the velocity at time t. 

G  Universal gravity constant, km3/(kg·s2). 

g Scalar stage-wise loss function. 

0g  Standard free-fall, km/s2. 

kH  Matrix of the DDP algorithm at stage k. 
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Chapter 1.  

Introduction 

Near Earth Objects (NEOs) interception and hazard mitigation has been 

recognised as a key issue for the safety of life on Earth. This thesis will respond to 

this requirement and will develop methodologies to allow the interception and 

deviation of potentially hazardous asteroids and comets. 

In this chapter we will introduce the motivations and objectives of the study. 

Subsequently, a summary of the current state of the art in asteroid deflection and 

interception will be given. After a brief overview on the impact hazard, we will 

present the deflection strategies proposed in literature. In particular, the analysis 

will focus on methods to compute the variation of the asteroid course following a 

deflection manoeuvre. In this context, we also review some analytical models for 

low-thrust trajectory design and investigate their application to the computation of 

the diverted trajectory of the NEO. 

For the study of asteroid interception, an overview of various approaches for 

low-thrust trajectory optimisation is given. A brief discussion of direct and 

indirect approaches, in order to highlight the reasons which led us to the selection 

of the differential dynamic programming technique for the design of interception 

transfers to NEOs, is also performed. 

Finally, a summary of the methodologies developed and implemented in this 

study is provided. 

1.1. Near Earth Objects and problem definition 

Asteroids and comets orbit the Sun since the earliest stages of the life of the 

solar system. The orbits of most asteroids lay between the orbit of Mars and 

Jupiter, whereas the comets are concentrated in the Kuiper Belt, beyond the orbit 

of Neptune, up to 55 AU from the Sun. Almost 450,000 known small bodies orbit 
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in the solar system [1], and the number increases as astronomical surveys 

continue. Among the family of asteroids and comets, Near Earth Objects* are 

those bodies that have been attracted by the gravity of the other planets into orbits, 

which bring them near the Earth’s, with a perihelion distance less than 1.3 AU. 

These celestial bodies, which travel at very high velocity relative to the Earth, 

range in size from pebbles to kilometres-diameter objects. 

Near Earth objects have been generating growing scientific interest because, 

as primordial remnants of our solar system, they preserve precious information 

about its formation, composition and evolution; besides, their collision with the 

early Earth, would have influenced the shape and composition of our planet. Some 

NEOs are especially attractive targets for low-cost missions, because of their 

orbital accessibility with current technologies and short flight duration. This 

suggests their use for the exploitation of raw materials and for the settlement of 

future bases, to extend the human exploration to Mars and beyond [2],[3]. 

Nevertheless, NEO collision with the Earth represents a possible risk to 

mankind. A short-term threat is posed by a large number of small asteroids, which 

could cause local devastating effects to our planet. On the other hand, impact 

hazards with global catastrophic consequences could occur, on a long-term, if a 

larger kilometre-sized body were to hit the Earth [4]. Advances in orbit 

determination and theoretical studies on hazard characterisation have increased 

the capability of predicting potential impacts. A subcategory of NEAs is defined 

Potentially Hazardous Asteroids (PHAs), which have a non-zero probability of 

collision with the Earth. This is determined accordingly to their orbital parameters 

and absolute magnitude; specifically, objects with a Minimum Orbit Intersection 

Distance (MOID) from the Earth’s orbit equal or less than 0.05 AU (i.e., 

approximately 7,480,000 km) and a diameter larger than 150 meters (which is 

equivalent to an absolute magnitude of 22.0 or less [2]) are considered potentially 

hazardous objects. There are currently 1105† known PHAs [5]. 

                                                 
* The definition of Near Earth Objects includes Near Earth Asteroids (NEAs) and Near 

Earth Comets, which are comets with a period less than 200 years. Within this dissertation we will 
often use the term asteroid alone; however, except where explicitly stated, the techniques 
developed can be applied to either class of celestial bodies. 

† Current number of PHAs from NASA Near Earth Object Program homepage: 
http://neo.jpl.nasa.gov/neo/ [Retrieved: 13 March 2010]. 
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The impact hazard raises major issues, among them the need to increase the 

present knowledge of the orbits and physical properties of such bodies, to 

accurately assess (after initial observation) the likelihood of a collision with the 

Earth well in advance, the inadequacy of current techniques and technologies 

necessary for mitigation, disaster management, politics and policy of planetary 

defence, and communication with the public. Moreover, careful thought is 

required to investigate options for fast and efficient interception of a potentially 

dangerous NEO and for minimising or removing the threat it poses. Several 

organisations and governments have recognised the threat of asteroid hazard and 

have established discussion panels on the state of the art and the issues of NEO 

discovery and characterisation, available deflection systems, current and future 

mitigation and study missions and technologies, impact hazard and effects, 

involvement of the general public, political and policy implications [6]. The 

outcome of these works is a series of recommendations and steps that should be 

followed by the international community to undertake a program on planetary 

defence [7],[8]. In Great Britain a debate took place in the House of Commons in 

March 1999 and a Task Force to the Minister for Science to report on potentially 

hazardous near Earth objects was established in January 2002. The Task Force, 

which released its findings in September 2000, stated that “We recommended that 

the Government, with other governments, set in hand to studies to look into the 

practical possibilities of mitigating the results of impact and deflecting incoming 

objects” [9]. 

Over the last decades significant efforts have been devoted to the 

monitoring [10],[11] and cataloguing of potentially hazardous objects, together 

with a continuous update of the risk assessment related to each potential 

hazardous object [12]–[15], but little research has been carried out to assess how 

to act and react in the case of a NEO travelling on a collision course with the 

Earth. 

1.2. Research motivations and objectives 

The aim of this research is to find methodologies for the optimal 

interception and deviation of potentially hazardous near Earth objects. 
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Several deviation strategies have been proposed and the space community is 

discussing the current capabilities for NEO mitigation. Therefore, the first 

objective is to develop a formulation of the asteroid deviation problem, which 

allows assessing the effectiveness of any proposed mitigation strategy. The 

general applicability of this formulation is desired to model the effect of various 

deflection strategies and to accommodate to the wide range of orbital elements of 

NEOs. Moreover, high accuracy is essential in predicting the variation of the 

displacement of the asteroid, achieved through the application of a deflection 

action on it. 

The second objective is to study methodologies for the design of optimal 

transfers to the interception of dangerous NEOs. In fact, in order to assess the 

effectiveness and efficiency of a mitigation strategy, the complete mission has to 

be modelled. Moreover, for the selection of optimal launch opportunities, the two 

main phases of the mission, namely interception and deflection phase, have to be 

linked into an integrated design. For example, the total mass of the spacecraft into 

orbit and the warning time (i.e., elapsed time between the date the mission is 

launched from the Earth and the date of the hazard impact) should be minimal for 

a given deviation achievable. Instead of designing a single mission scenario, a 

more general approach hinges on the analysis of families of optimal opportunities, 

according to different criteria. In computational terms, this translates in exploring 

a wide domain of design parameters and hence requires the use of preliminary 

design techniques (usually under the hypothesis of two-body problem dynamics), 

for fast modelling the transfer leg. 

At a second stage, once a set of first guess solutions for the overall mission 

has been identified, a selected number of refined trajectories can be optimised, 

using a more accurate model of the system dynamics. In this context, this research 

aims to study and develop techniques for the solution of the optimal control 

problem associated to the design of low-thrust trajectories. The principal 

requirements are accuracy in reproducing the trajectory, in order to fully exploit 

the dynamics of the problem within the optimisation process, and robustness, to 

converge even when a poor first guess solution is available. 

The last research objective is to define a wide variety of deflection mission 

opportunities for a number of selected asteroids, over a wide range of possible 
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launch dates. Moreover, the purpose is to perform a comparative assessment of 

the more feasible mitigation strategies proposed in literature, in order to evaluate 

their efficiency and technology readiness. In order to perform a comprehensive 

analysis, to compare the various deflection strategies according to a wide number 

of mitigation scenarios, in terms of target NEOs and mission design parameters, a 

method will be defined. 

1.3. Background 

1.3.1. Impact hazard 

The Earth, as with most of the planets of the solar system, from its 

formation up to recent times, has experienced a strong interaction with minor 

celestial bodies such as asteroids and comets. This is testified by the numerous 

craters on the Moon and other planets [16]. 

The over 170 impact structures or craters recognised around the globe 

provide scientific evidence that such astronomical events have repeatedly 

occurred in the past [17], though in many cases the erosion and the movement of 

the terrestrial plates cancelled their sign. 

These impact events have had effects on the geological, climate and 

biosphere evolution of our planet, sometimes with global and dramatic 

consequences. A catastrophic impact during the Cretaceous-Tertiary period, about 

65 millions years ago, has been suggested by Alvarez et al. [18] as the cause for 

the extinction of many species among which the dinosaurs, observed in the 

paleontological record. The asteroid impact hypothesis has been widely 

acknowledged since the identification of the Chicxulub Crater on the coast of 

Yucatan, Mexico [19],[20], which is estimated to have been caused by a celestial 

body of about ten km in diameter. In fact, the potential impact of such a large and 

massive object, though statistically unlikely, having a probability of one event 

over millions of years, would certainly pose a critical threat to most of the 

population of the planet, mainly because dust material from the impact would be 

injected into the stratosphere, preventing sunlight to reach the surface for several 

years [18]. The size of an object that could pose a threat to the global ecosystem 

 5



1.3. Background 

 

has been estimated to be larger than 1 km and is estimated that the number of such 

objects is around 1000 [21]. 

If these large size bodies are extremely rare, on the other hand objects with 

diameter greater than 40 m, which is considered the critical threshold above which 

the Earth’s atmosphere is no longer disintegrating an object, are estimated to be 

more than one million in number, with a statistical frequency of impact of one 

hundred years or even less. An example of such an event happened at the 

beginning of the twentieth century in Siberia, where an object of few tens of 

meters, though disintegrating before hitting the ground, pulverised many square 

kilometres of the Siberian forest [22],[23]. An equivalent impact in a densely 

populated area would have locally devastating effects [4]. 

Though the concern for hazard from impact of comets was first expressed 

by Halley in 1705 [24], the threat of an asteroid hitting the Earth has been 

recognised and accepted only over the last decades, and sometimes brought to the 

attention of a wider public, for example through spectacular events such as the 

collision of fragments of the comet Shoemaker-Levy 9 with Jupiter in 1994 [25]. 

The discovery of Apophis (for which an impact in 2029 has been definitively 

excluded, through a passage in a keyhole during the 2029 fly-by could still lead to 

an impact in 2036‡ [26]) has drawn the attention of public and media to the issue 

of potentially hazardous objects, and, consequently, to the technological and 

detection capabilities that nations have in order to implement a mitigation and 

prevention policy. 

At the same time, space agencies have started widening their scope to 

comets and asteroids not only to improve the current knowledge of these small 

celestial bodies, but also to develop the technological capabilities required in case 

an object should pose a serious threat to the Earth. Several fly-by, rendezvous or 

sample return missions to asteroids and comets have been scheduled to track their 

position and velocities, map the surface, determine size, shape, mass, rotation rate, 

density, gas and dust emission and characterise their chemical composition and 

structure. Past missions such as Giotto (ESA) [27], Deep Impact (NASA) [28], 

NEAR-Shoemaker (NASA) [29], Deep Space 1 (NASA) [30],[31], Galileo 

                                                 
‡ 99942 Apophis risk page, available at http://neo.jpl.nasa.gov/risk/a99942.html [Retrieved 

14 September 2009]. 
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(NASA) [32], Stardust (NASA) [33], present missions like Rosetta (ESA) [34], 

Hayabusa (JAXA) [35], and future missions like Dawn (NASA) [36] testify the 

interest of space agencies in scientific exploration of the solar system. In 

particular, the European Space Agency is now assessing the feasibility of Don 

Quijote asteroid deflection precursor mission [37],[38], which plans to impact a 

spacecraft with a high relative velocity onto an asteroid and measure its 

deflection. Should this mission launch, this would be the first technological 

demonstration of our capability to deviate an asteroid if needed. 

1.3.2. NEO deflection strategies 

During the last decades a number of possible strategies to prevent a collision 

of a potentially hazardous object with Earth have been proposed [39],[6]. Most of 

them consider a change in linear momentum of the asteroid, with a consequent 

variation in its nominal orbit, this resulting in an increase of the distance of 

minimum displacement of the object from the Earth. The mitigation strategies 

reviewed in the literature can be catalogued depending on their interaction with 

the asteroid, as: 

 Strategies producing an impulsive change in the linear momentum of the 

asteroid, such as kinetic impactors or nuclear interceptors; 

 Strategies producing a multi-impulsive change in the linear momentum of 

the NEO by ejection of material, such as mass drivers; 

 Strategies actively producing a low-thrust, such as attached propulsion 

devices, ablation-based technologies, gravity tractors; 

 Strategies passively producing a low-thrust by inducing thermo-optical 

changes of the asteroid surface. 

Deflection by kinetic impactor is the simplest technology: a spacecraft acts 

as a projectile and hits the NEO at high relative velocity [40]–[43]. As an 

alternative, nuclear explosion devices can be adopted [44],[45], in three different 

forms: 1) stand-off, the explosion occurs at a certain distance from the asteroid 

surface; 2) the explosion takes place on the surface of the asteroid; 3) the nuclear 

warhead is placed under the asteroid surface. If the explosion takes place on or 

under the asteroid surface, the ejected mass from the body is bigger. However, 
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stand-off explosion, occurring at a certain distance from the NEO, is more robust 

against the uncertainties on asteroid materials, components, shape, etc. On the 

other hand, the use of nuclear explosives in space is banned by the Outer Space 

Treaty [46] and the misuse of this deflection system could pose a higher risk than 

the probability of NEO collision with Earth [47]. 

Systems like kinetic impactors and nuclear interceptors will deliver an 

impulse that will change the asteroid orbit or break it into fragments [48],[49]. 

Strategies relying on kinetic impact or nuclear explosion can achieve the threat 

mitigation either by diverting the asteroid or comet course, or by destroying it in 

space with a single explosive charge on, or, below the surface. This latter option, 

however, is a critical strategy, as the asteroid could only fragment and still impact 

the Earth and potentially cause more damage [50],[51]. 

Mass drivers deliver a multi-impulsive change in the linear momentum of 

the NEO by collecting material from the asteroid surface and ejecting it away 

from the asteroid. The effect is equivalent to the steam of an engine device; the 

only difference is the use of in-situ material (material from the asteroid surface) as 

propellant [52]. 

Other mitigation strategies produce a continuous low-thrust action on the 

asteroid; concepts include attached propulsion devices, gravity tugs or strategies 

making use of ablation of the NEO surface. In the first case a propulsion system is 

anchored to the body and operates along the desired direction, determined 

accordingly to the rotation of the asteroid. The anchored device can adopt any 

conventional or advanced propulsion system (e.g. electrical, chemical or nuclear 

propulsion, solar sails, etc.) [53]. The technical problem related to this scheme is 

the connection between the device and the rotating asteroid. The gravity tractor 

consists of a spacecraft hovering above the asteroid; the gravitational attraction 

between the two bodies is exploited to pull the asteroid and move it [54]. This 

strategy has the advantage of not being affected by the uncertainties on the 

asteroid surface and composition, because it does not need physical contact with 

the NEO. Another option deflects the threatening object from its nominal orbit, by 

provoking the ablation of its surface. For example a mirror collects the solar 

radiation and, through a system of lenses, it focuses it onto the asteroid’s surface 

[55]–[58]. The same principle is exploited by a spacecraft-based laser beam, 
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which is concentrated onto the asteroid surface, producing the vaporisation of the 

surface [59],[60]. Ablation-based strategies produce a beam of ejected material 

that would act as a thrust according to the Newton’s third law. 

Coating the surface of the asteroid is used to alter the albedo and modify the 

induced Yarkovsky acceleration [61]. The resulting thrust is small compared to 

other schemes, especially for increasing NEO size. 

A small number of authors have performed a partial comparative assessment 

of the numerous proposed mitigation strategies. Some of these emphasise a 

classification system based on effectiveness in acting near instantaneously on the 

hazard, or producing a long duration continuous effect [62]. Some considerations 

on the capabilities of current technologies (i.e., near-term, medium-term or long-

term strategies) were also included in the discussion; however, simplified 

dynamics model were used to asses the required velocity increment for the 

deflection (for example, the deflection manoeuvre is assumed applied at the 

pericentre of the NEO’s orbit). Other authors classified various mitigation 

strategies on the basis of the coupling between the dynamics of the deflection of 

the object and the guidance of the spacecraft [63]. The approximation of the 

control delivered by the spacecraft to the NEO depends on the motion of the two 

bodies and on the deflection mechanism capabilities. Three main categories of 

strategies are identified, respectively based on cratering of the NEO, continuous 

mass ejection or on action at distance, such as exploiting solar pressure, with solar 

sails or paint. 

In recent years several studies have been performed at NASA [64], to 

analyse possible alternatives for NEO deflection, evaluate their effectiveness and 

identify recommended options for further studies. Several potential mitigation 

strategies were modelled with inputs from other studies. Unlike previous work, a 

complete mission design was performed, including a first approximation of the 

required ∆v (i.e., velocity change) for the interception or rendezvous of the 

asteroid. Some mitigation options were analysed with the purpose of building a 

parametric model and quantifying the relation between required system mass, 

mission time and size of the object deflected, however, a procedure for comparing 

the different technologies was not defined. In a subsequent report [6] an attempt 

was made to graphically compare alternatives for NEO deflection; five scenarios 
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were identified, representing different sizes of threat. The system performance 

was described as the “effective momentum change” (i.e., ∆v required for the 

deflection multiplied by the NEO’s mass) and the launch performance (i.e., 

deflection vehicle launch mass) to place the payload into an intercept trajectory. 

Finally Rogers and Izenberg [65] used the normalised specific impulse of 

the divert technology (defined as the ratio of the impulse imparted to the weight-

on-Earth of the strategy) as a qualitative way of comparing the efficiency of 

various mitigation strategies. 

1.3.3. Asteroid deviation 

In order to determine the variation of the displacement of the NEO, 

following the application of any of the proposed strategies, it is convenient to 

classify them according to the equivalent action they deliver to the body. The 

effect all the proposed deflection strategies have on the asteroid can be 

distinguished either as an impulsive or nearly instantaneous variation of the 

velocity of the asteroid, or as a low-thrust, if they act on the asteroid over an 

extended period of time, with a continuous momentum change [6]. Hence in the 

following of this study, they will be distinguished between impulsive strategies 

(e.g., kinetic impactor, nuclear interceptor. Mass driver can be considered as a 

multi-impulsive strategy, even if its effect is comparable to the deviation produced 

by a continuous action) or low-thrust strategies (e.g., solar collector, pulsed laser, 

gravity tractor, enhanced Yarkovsky effect, etc.). 

The consequent variation of the orbit of the asteroid can be computed 

through a numerical procedure, and the result has to be validated through orbit 

tracking and astronomical observations. Carusi et al. [40] studied the v  

requirement for deflecting a hazardous near Earth object at different epochs. The 

orbital course of the asteroid following a deflection impulse along its velocity is 

computed through the numerical propagation of the full n-body dynamics. They 

show that when an encounter occurs before the impact epoch, the required 

deflection manoeuvre is noticeably lower if given before rather than after the 

encounter itself. Kahle et al. [66] extended this study by removing the assumption 

of a manoeuvre along-track; they show that using a different direction for the 

deflection manoeuvre in the vicinity of a planetary encounter significantly 
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increases the performance. The issue with numerical approaches is the 

computational time, which becomes a limit when the trajectory has to be 

integrated over a long period without losing accuracy. Of course, in the case of a 

real event, the CPU time would not be an issue; nonetheless, a number of authors 

have developed analytical formulations to make extensive investigations and 

gather useful lessons from the computation of a wide range of solutions. In this 

case the simplification of the two-body problem is often adopted. 

Ahrens and Harris [67] gave an estimation of the v  required for deflecting 

an asteroid from an Earth-crossing orbit, by perturbation either perpendicular or 

along the direction of motion, and Scheeres and Schweickart [68] derived an 

analytical expression of the shift in the position of the asteroid, under the 

assumption of a circular orbit and a constant acceleration aligned with the velocity 

of the NEO. This strategy, which yields a change in the mean motion of the 

asteroid, is proposed for long lead time until the impact. Subsequently, Izzo [69] 

proposed a similar solution, but extended it to non circular orbits. However, this 

formulation introduces an integral term that was solved analytically only in the 

case of an impulsive deflection manoeuvre. Furthermore, the effect of the 

deviation strategy is translated in a change of mean motion and hence in a phase 

shift; other changes in the orbital geometry are not included. 

A more general approach was used by Conway [70] to determine the near-

optimal direction in which an impulsive manoeuvre should be given. The 

modified orbital course was propagated analytically forward in time by means of 

Lagrange coefficients expressed through universal formulae [71]. An analysis on 

the minimum v  and the optimal impulse angle was performed also by Park and 

Ross [72], who used Lagrange coefficients to propagate the deviated orbit of the 

asteroid rather than only its displacement with respect to the nominal course. They 

also included the effects of the Earth’s gravity [73],[74], obtaining a more 

accurate estimation of the optimal impulse. Song et al. [75] investigated the 

deflection of asteroids and comets using a power-limited laser beam. They used 

the same technique proposed by Park and Ross [72] to solve the heliocentric two-

body motion after the laser is shut off, whereas when the laser is on, the trajectory 

of the Earth-crossing object is numerically integrated. They found that the optimal 

operating angle between the asteroid velocity and the thrust acceleration vector 
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remains in the range 150–180 deg for warning times longer than one asteroid 

period, regardless of the orbital elements of the asteroid.  

Low-thrust analytical models 

The attention is now focused on NEO deviation by technologies delivering a 

continuous low-thrust action. In particular, when the objective is the identification 

of many mission opportunities (i.e., favourable conditions for deflection), global 

optimisation techniques can be employed, to perform an extensive search for 

optimal solution over a search space. In this case, the evaluation of several tens of 

thousands of trajectories is required, thus the numerical computation of the 

deflected course of the asteroid would be impractical. 

Since 1950 [76]–[78], several authors have proposed analytical solutions for 

some particular cases of low-thrust control problems. Tsien [77] and Benney [78] 

developed a solution for escape trajectories, respectively, subject to radial and 

tangential continuous thrust acceleration. Following a similar formulation, Boltz 

[79],[80] proposed a solution in case the ratio between the thrust and the gravity 

acceleration is kept constant. In both cases, the orbit is assumed to be circular or 

nearly circular. 

Kechichian [81] used an averaging technique to compute analytical 

solutions for orbit-raising with constant tangential acceleration in the presence of 

Earth shadow. Kechichian’s equations, which contain some terms expanded in 

power of the eccentricity, are accurate for small-to-moderate values of the 

eccentricity up to 0.2. The effects of the Earth oblateness are also considered. Gao 

and Kluever [82] adopted an averaging technique with respect to the eccentric 

anomaly for continuous-tangential-thrust trajectories, also accounting for the 

Earth oblateness and the Earth shadow. The value of the elliptic integrals in the 

solution of Gao and Kluever is approximated and the accuracy of the solution 

depends on the eccentricity. 

Other analytical solutions for low-thrust trajectories were studied by 

Petropoulos [83], who presented a general overview of the approximated solutions 

derived so far. In his work, Petropoulos developed some analytical integrals to 

describe the secular evolution of the orbit of a spacecraft subject to different thrust 

control laws. The rate of change of the orbital energy and the eccentricity are 
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time-averaged and reformulated, introducing some elliptic integrals, which are 

valid for all initial eccentricity from slightly above zero. 

1.3.4. NEO interception and trajectory optimisation  

Asteroids are nowadays appealing targets for space missions. The orbit of 

those asteroids classified as Near Earth Objects comes close to the Earth’s orbit 

around the Sun; this makes their exploration viable with current technologies. In 

particular, as testified by some missions like Dawn [36] and Hayabusa [35], the 

use of low-thrust propulsion showed in the last decade to be a valuable option to 

decrease propellant consumption, at the expense of longer times of flight. 

The design of low-thrust trajectories requires the solution of an optimal 

control problem, the difficulty of which increases with the complexity of the 

transfer and the fidelity of the trajectory model. Multi-body dynamics, gravity 

assist manoeuvres, capture or escape phases concur to increase the complexity of 

a trajectory design problem [84]. Furthermore, the low level of thrust implies long 

transfer times and a low control authority because the thrust level is comparable to 

the gravitational forces. Moreover, the design of interplanetary transfers involves 

dynamics of variable scales, i.e., from planetocentric phases (e.g., during gravity 

assist manoeuvres) to heliocentric legs. 

In order to properly handle the different scales, it would be desirable to have 

an optimisation method that can adaptively change the discretisation of the 

numerical integration of the dynamics, during the optimisation itself. 

Additionally, it should be robust enough to converge even when a poor first guess 

solution is available and accurate enough to reproduce the trajectory with high 

fidelity, hence exploiting a full dynamical model. 

Direct and indirect methods 

In general, methods for trajectory optimisation are classified under direct or 

indirect approaches [85],[86]. Directs methods are known to be quite robust, 

convergence being reached even if a poor first guess solution is available; 

however, collocation method efficacy is bounded by the definition of the 

discretisation of the state variables prior to the optimisation [87]–[89]. Direct 

shooting methods overcome the disadvantage of collocating the states, but still 
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need the a priori collocation of the control [90],[91] and tend to be less robust than 

collocation methods. 

On the contrary, indirect methods guarantee the accuracy of the solution, 

which satisfies Pontryagin’s maximum principle [92], but, on the other hand, they 

require a good first guess for the adjoint variables. Common applications usually 

focus on a single phase of the mission, in which the primary body does not 

change, such as Earth centred transfers [93] or heliocentric leg [94],[95]. 

When direct and indirect methods are applied to the design of transfers 

which involve multi-body dynamics (i.e., include escape and capture phases) or 

gravity assist manoeuvres (not simplified as impulsive change of velocity), a 

patched conic approach is usually adopted. The overall trajectory is divided in a 

sequence of problems, each of them expressed in the primary body reference 

frame; different segments are then patched together, through boundary constraints 

at the edge of each segment (direct methods), or through conditions on states and 

costates (indirect methods). Many applications have been presented, making use 

of direct methods [96]–[99], indirect methods [100]–[103], or hybrid methods 

[104],[105]. 

The patched conic approach allows handling different time and distance 

scales over different segments of the trajectory, hence avoiding numerical 

sensitivity; however, since the transition conditions from one segment to the 

following one are defined a priori, the solution may not fully exploit the multi-

body dynamics nature of a transfer. 

Previous works attempted to optimise multi-body low-thrust problems, 

treating the trajectory as a whole, without resorting to the patched conic approach; 

Whiffen et al. presented many interplanetary trajectories, including escape, 

capture and fly-bys, computed with the Static/Dynamic Control (SDC) algorithm 

[106]–[108], Lantoine and Russel [109] proposed a hybrid differential dynamic 

programming algorithm and applied it to a LEO to GEO orbital transfer and 

Olympio [110] developed a gradient-based method to address the problem of 

interplanetary transfers with escape and capture phases. 
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Differential dynamic programming 

In this work we investigate the use of Differential Dynamic Programming 

(DDP) (introduced by Jacobson and Mayne in 1969 [111]) for designing 

interplanetary trajectories to the rendezvous and fly-by of near Earth objects, 

including the escape phase at the Earth. This technique can be classified among 

direct methods, but, unlike the other approaches, the time dependence is not 

removed from the parameterisation. 

DDP is derived from the theory of dynamic programming [112], and 

overcomes its inherent “curse of dimensionality” (see Yakowitz and Rutherford, 

[113]) by replacing the cost function of the problem with its quadratic expansion 

in the neighbourhood of a nominal non-optimal trajectory. The optimisation 

process is based on successive iterations, in which the coefficients for a feedback 

control law are generated through the stage-wise solution, backward in time, of 

Bellman’s partial differential equation, and the consequent improved trajectory 

and control policy are then propagated forward in time. 

Because the minimisation is performed through successive approximations 

around a nominal solution, the large scale problem, associated with the 

optimisation of a low-thrust trajectory, is translated into a series of problems of 

small dimensions. In other words, the stage-wise approach allows to efficiently 

handle problems with a large number of stages; this overcomes the limit of direct 

transcription methods, which lead to the solution of systems of nonlinear 

programming problems of increasing dimension with the number of discretisation 

steps (or stages). For example the trajectory representative of SMART-1 mission, 

computed by Betts and Erb [88] required the solution of a sparse optimisation 

problem with 211,031 variables and 146,285 constraints. 

Moreover, DDP is based on Bellman’s principle of optimality which is a 

necessary and sufficient condition for a solution to be locally optimal [114]; hence 

the solution of the optimal control problem preserves the accuracy of indirect 

methods, without requiring a first guess solution for the adjoint variables. 
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1.4. Methodologies developed and implemented 

The present research focuses on the orbital dynamics of the asteroid 

deviation problem and studies the design and optimisation of interplanetary 

trajectories for the interception and rendezvous of potentially hazardous NEOs. 

The effect on the asteroid of any deflection strategy can be modelled either 

as an impulsive action or as a low-thrust continuous manoeuvre. In both cases, a 

semi-analytical formulation is derived to compute the displacement of the position 

of an asteroid at the MOID point, after a deviation manoeuvre. 

This approach makes use of the proximal motion equations [115] expressed 

as a function of the orbital elements, through Gauss’ planetary equations [71]. 

This formulation provides a very simple and general means to compute the 

variation of the MOID with good accuracy, without the need for further analytical 

developments. It is worth underlying that the computation of the deflection 

distance through proximal motion equations can be adopted for any deviation 

strategy (low-thrust and impulsive) and represents an extension and a 

generalisation of the methodologies proposed in previous works [40],[68],[69], in 

which analytical formulae were derived to compute the deviation due to a 

variation in the orbital mean motion, i.e., due to an action applied along the 

direction of the motion of the asteroid. 

In this work, near-optimal directions for the deviation impulse are derived 

using a simple restricted two-body dynamic model. The gravitational effect of the 

Earth is accounted for by looking at the obtained deviation on the b-plane. This 

allows the computation of the correct estimate of the minimum intersection 

distance between the asteroid and the Earth. The accuracy of the result is then 

assessed using a numerical propagation of the post deviation conditions within a 

full three-body dynamic model, which includes the Sun and the Earth. 

If low-thrust mitigation options are selected, the computation of the 

achieved deviation requires, in the general case, the numerical integration of the 

diverted trajectory. To overcome the issue of computational time, a set of semi-

analytical formulae is developed, under the assumption that the deflection strategy 

uses the Sun as a power source, and therefore the thrust acceleration is inversely 

proportional to the square of the distance from the Sun. The reason for this choice 
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is that, as will be shown in Chapter 4, the solar collector mitigation strategy 

showed to be the most efficient among the low-thrust deflection options. 

Furthermore, the attention is focused on the case in which the thrust is aligned 

with the tangent to the osculating orbit of the asteroid. To obtain an analytical 

solution for the variation of the orbital elements, Gauss’ equations are averaged 

over one orbital revolution. However, the required accuracy for the computation 

of the deflection distance is higher than for the design of a generic low-thrust 

trajectory; hence, unlike other works [81]–[83], the periodic variation of the 

orbital elements is also taken into account. In addition, the analytic integrals are 

updated with a one-period step to further improve the accuracy. The general 

applicability of the proposed formulation and its accuracy is demonstrated through 

a number of test cases. Furthermore, some analyses are presented on the 

sensitivity of the deviation to the in-plane orbital elements of the nominal orbit of 

the asteroid. 

The second research objective is to study methodologies for the design of 

transfer trajectories that intercept and rendezvous with PHAs. A NEO mitigation 

mission requires the integrated design of the two phases of the mission, namely 

interception and deflection phase. In fact, the mission performance is determined 

by contrasting drivers, such as the total mass of the spacecraft into orbit and the 

total time of the mission, which should be minimal for a given deviation. In this 

work, the search for different transfer options is performed with a particular global 

optimisation procedure based on an automatic branch and prune of the solution 

space combined with an agent-based search technique [116],[117]. In particular, 

an extensive search for all mission opportunities is carried out, over a wide range 

of launch dates that are Pareto-optimal with respect to three criteria: the 

achievable displacement of the asteroid at the point of MOID, the time between 

the launch and the hypothetical impact, and the propellant mass for the transfer 

trajectory. The use of high fidelity models of the trajectory (i.e., characterised by a 

complete dynamics and a full and accurate description of all the singular events, 

such as gravity assist manoeuvres) would be impractical; hence, at this stage, 

preliminary design techniques are used to model the trajectory (shape-based 

approach for low-thrust transfer [118] and Lambert’s algorithm for impulsive 

transfer [71],[119]). 
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The proposed formulation of NEO deviation through impulsive and low-

thrust action, together with the model of the transfer trajectory, by means of 

existent preliminary design techniques, provides a way to fully model a generic 

mitigation mission. In order to give some insight into the NEO deviation problem, 

the formulae developed are applied to the design of a set of mitigation scenarios. 

Instead of using a single hypothetical mission case, a set of hundreds of solutions 

is found, each one representing a complete mission with a specific launch date and 

transfer time. 

Firstly, the attention is focused on the analysis of impact strategies for the 

deflection of asteroids. Because ideal optimal deflection conditions cannot always 

be achieved, a characterisation of optimal mission opportunities is performed for a 

restricted group of selected PHAs over a very wide range of possible launch dates. 

The result of this analysis demonstrates that with a small spacecraft and very 

simple transfer strategies, it is possible to obtain considerable deviations for the 

majority of the threatening asteroids. 

Moreover a set of mitigation missions through a solar collector strategy is 

designed by means of the semi-analytical low-thrust formulae and a shape-based 

approach for the transfer trajectory. Families of Pareto-optimal solutions, for 

different asteroids, that minimise the warning time and the spacecraft mass, while 

maximising the orbital deviation, are presented. The warning time is defined as 

the time difference between the impact epoch and the launch date that is required 

to achieve a given deviation; hence it gives quantitative information on the time to 

react, once the impact hazard has been confirmed. 

Another result of this research is a comparison of deflection technologies, 

proposed in literature, according to different criteria. A set of NEOs, differing in 

physical characteristics (i.e. size, mass and spin properties) and orbital parameters, 

was selected for this analysis. A group of different mitigation strategies is then 

applied to these asteroids, and evaluated in terms of four figures of merit: 

achieved deflection distance at the MOID, warning time, total mass into orbit and 

technology readiness level, i.e., the required technological development to 

implement a given mitigation strategy. The deflection distance between the 

asteroid and the Earth is the displacement of the position of the asteroid at the 

MOID, achieved by a deviation manoeuvre applied before the encounter. The first 
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three criteria (deflection distance, warning time and mass into orbit) express 

quantitatively how easy deflecting an asteroid with a given strategy is, and 

whether a given deviation strategy can be implemented with present launch 

capabilities. A multi-criteria optimisation is used, to provide a preliminary and 

relative measure of the effectiveness of one deviation over another according to 

the selected criteria. The novelty of this study is the use of the dominance criterion 

(borrowed from multi-objective optimisation) to make a comparative assessment 

of all the various mitigation options, over a wide range of initial masses and 

warning times. 

In order to address the second research objective, the trajectory design 

process is performed on two levels. Once a large number of optimal interception 

options have been identified over a wide solution domain, high fidelity models are 

used to locally refine some solutions. In light of the strength and drawbacks of 

traditional direct and indirect methods, it was decided to investigate the use of 

differential dynamic programming for designing low-thrust interplanetary 

trajectories to the rendezvous and fly-by of near Earth objects, including the 

escape phase at the Earth. 

In this research, the stage-wise feature of DDP (discussed in Section 1.3.4), 

is exploited to integrate an adaptive variable step discretisation scheme within the 

optimisation process. The discretisation grid is adjusted at each iteration, to better 

adapt to the non-linear dynamics of the problem. A Runge-Kutta explicit method 

is selected for the numerical integration and the derivatives of the dynamics 

scheme are analytically derived. The stage-wise approach also allows handling a 

multi-phase trajectory as a whole, without recurring to the patched conic 

approximation. 

A particular interpolation technique is used to preserve the feedback nature 

of the control law, thus improving robustness against some approximation errors 

introduced during the adaptation process. The algorithm developed applies global 

variation of the control law [111], through the use of DDP and non-linear 

programming techniques; this ensures a further increase in robustness. The 

constraints on the target state at the end of the trajectory are included in the 

optimisation problem as an additional term of the cost objective, through a time 

invariant vector of Lagrange multipliers, whose value is modified along the 
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convergence process [120]. The results presented show how the proposed 

approach is capable of fully exploiting the multi-body dynamics of the problem; 

in fact, in one of the study cases, a fly-by of the Earth is scheduled, which was not 

included in the first guess solution. 

1.5. Dissertation organisation 

This dissertation is divided into six chapters, which introduce different 

aspects of the research on optimal interception and deflection of near Earth 

objects. The first part of each chapter explains the theoretical development and the 

method adopted, subsequently some results are presented as the application of the 

theory. The thesis is organised as follows. 

Chapter 2 introduces the reader to the asteroid deviation problem. The 

analytical formulation for an impulsive deflection manoeuvre is derived and its 

accuracy is assessed. The chapter continues with an analysis of the optimal 

manoeuvres in order to maximise the achievable deviation and a study on 

including the gravitational effect of the Earth, through the b-plane representation. 

In Section 2.2 a characterisation of optimal mission opportunities is performed, 

applying a kinetic impact to a number of selected potentially hazardous asteroids. 

In Chapter 3, the attention is focused on deviation techniques that make use 

of a continuous low-thrust action. A semi-analytical solution is derived for the 

asteroid deviation problem when a selected control-acceleration profile is used 

(Appendix A contains some mathematical developments left aside in Chapter 3). 

The accuracy and computational time of this approach are shown, together with a 

sensitivity analysis on the orbital elements of the asteroid. In Section 3.3 we 

perform an extensive search for mission opportunities to rendezvous with the 

asteroid by means of a low-thrust spacecraft and a solar collector device for the 

deflection. 

Chapter 4 presents a comparative assessment of six deflection strategies: 

kinetic impactor, nuclear interceptor, mass driver, low-thrust attached propulsion, 

solar collector, and gravity tug. A multi-criteria optimisation is used to compute a 

set of optimal solutions for the mitigation of four different asteroids. A dominance 

criterion is defined to compare the set of solutions and a technology readiness 
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level is associated to each one of the deviation system to asses the required 

technological development (Appendix B). 

Following the formalisation of the deflection problem and the identification 

of a wide number of optimal mitigation mission opportunities in Chapter 2 to 4, 

Chapter 5 focuses on the low-thrust transfer problem. An optimisation method 

based on differential dynamic programming is studied and applied to the design of 

rendezvous and fly-by trajectories to near Earth objects. The classical DDP 

approach is introduced in Section 5.1, whereas Sections 5.2 and 5.3 present the 

modified method, which was adopted for designing trajectories to asteroids. 

Sections 5.4 and 5.5 present some interesting cases of transfer trajectories, aimed 

at highlighting the strengths of the proposed approach. 

Finally Chapter 6 summarises the finding of this research and gives an 

insight into possible further developments of this study that will be subject of 

future work. 

1.6. Contributions 

The contents of this dissertation have been published in four stand-alone but 

highly related journal papers. 

The study on optimal impact strategies for asteroid deflection was published 

in the AIAA Journal of Guidance, Control and Dynamics in 2008 [121]. The low-

thrust formulation was presented at the 2007 Planetary Defense Conference in 

Washington, D.C. An extended version was presented at the 58th International 

Astronautical Congress in Hyderabad, India [122] and was published in the AIAA 

Journal of Guidance, Control and Dynamics [123]. 

The results on the comparative assessment of different deflection strategies 

are the outcome of a joined work with Dr. Joan Pau Sanchez, who developed the 

model of the deflection devices and were presented in 2007 at New Trends in 

Astrodynamics and Applications III conference in Princeton, New Jersey [124] 

and at the 57th International Astronautical Congress, in Valencia, Spain [125]. A 

more exhaustive version of this study was discussed at the 2007 Planetary 

Defense Conference in Washington, D.C. and published in the AIAA Journal of 

Guidance, Control and Dynamics in February 2009 [126]. 
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Finally the algorithm based on differential dynamic programming was 

presented in Milano, Italy in June 2008 at the conference New Trends in 

Astrodynamics and Applications V. This study has been published on the journal 

Celestial Mechanics and Dynamical Astronomy [127]. Some results of Chapter 5 

were presented at the 59th International Astronautical Congress, in Glasgow [128]. 
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 Colombo C., Vasile M. and Radice G., “Semi-Analytical Solution for the 

Optimal Low-Thrust Deflection of Near Earth Objects”, Journal of 

Guidance, Control and Dynamics, Vol. 32, No. 3, May–June 2009, pp. 796–

809, doi: 10.2514/1.40363. 
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Chapter 2.  

Impulsive NEO deflection 

This chapter presents an analysis of optimal impact strategies to deflect 

potentially dangerous NEOs. To compute the increase in the minimum orbit 

intersection distance of the asteroid due to an impact with a spacecraft, simple 

analytical formulae are derived from the proximal motion equations. The 

proposed analytical formulation allows an analysis of the optimal direction of the 

deviating impulse transferred to the asteroid. This ideal optimal direction cannot 

be achieved for every asteroid at any time; therefore, an analysis of the optimal 

launch opportunities for deviating a number of selected asteroids is performed 

through the use of a global optimisation procedure. The results in this chapter 

demonstrate that the proximal motion formulation has very good accuracy in 

predicting the actual deviation and can be used with any deviation strategy since it 

has general validity. Furthermore, the characterisation of optimal launch 

opportunities shows that a significant deviation can be obtained even with a small 

spacecraft. 

2.1. Asteroid deviation problem 

Given the orbit of a generic near Earth object, identified by its orbital 

elements, the Minimum Orbit Intersection Distance (MOID)  between the 

NEO and the Earth is defined to be the minimum distance between the osculating 

orbits of the two bodies

r

*. The MOID is used as a warning indicator of hazard 

collision, because a small r  could represent a close encounter, if the two 

bodies are in phase. As a consequence of the evolution of NEOs’ ephemerides 

                                                 
* Note that in this thesis we will use the term MOID as the minimum distance between the 

osculating orbits of the Earth and the NEO, but also to indicate the location along the asteroid’s 
orbit where the minimum distance occurs. 
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with time, due to planetary gravitational perturbations [129], the MOID also 

changes in time [5],[13]. 

The objective is to maximise the deflection of the asteroid at the MOID by 

applying an impulsive deviation action at a certain time . The impulse acts as a 

quasi-instantaneous perturbation on the orbit of the NEO and its new orbit can be 

considered to be proximal to the unperturbed one (see 

dt

Figure 2.1). 

  

NEO 
interception 

nominal 
orbit 

MOID 

proximal 
orbit 

impulsive 
manoeuvre

 
Figure 2.1: Impulsive NEO deviation. 

 
Let a, e, i,  and    be respectively the semi-major axis, eccentricity, 

inclination, anomaly of the ascending node, and anomaly of the pericentre of the 

nominal orbit of the NEO. If MOID  is the true anomaly of the NEO at the MOID 

along the unperturbed orbit, and *
MOID MOID     the corresponding argument of 

latitude, we can write the variation of the position of the NEO after deviation, 

with respect to its unperturbed position, by using the proximal motion equations 

[115]: 
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

 (2.1) 

where rs , s  and hs  are the displacements in the radial, transversal and 

perpendicular-to-the-orbit-plane directions, and 21 e   . The linearising 
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assumption to compute Eqs. (2.1) is that the variation of relative position 

r  r  is small compared to the inertial chief orbit radius , that is MOIDr

MOIDr r   [115], where  Trs s s   r h . Moreover, Eqs. (2.1) are limited 

to elliptical orbits ( ), because of the term 1e  21 e . 

The variation of the orbital parameters a, e, i,   and   are computed 

through Gauss’ planetary equations [71] considering an instantaneous change in 

the NEO velocity vector  v . Let the components of the impulsive variation of the 

velocity vector  Tt n hv v v  v  be along the velocity vector and normal to 

it, in the plane of the osculating orbit, and perpendicular to it. 
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 (2.2) 

where  and  are respectively the orbital radius and velocity at the point the 

deflection manoeuvre is given, h is the angular momentum, p the semilatus 

rectum, b is the semi-minor axis and 

dr dv

Sun  the gravitational constant of the Sun. 

The preceding variation on the mean anomaly M takes into account only the 

instantaneous change of the orbit geometry at time . On the other hand, due to 

the change in the semi-major axis, we have a variation of the mean motion n and 

therefore a change in the mean anomaly at the time of the MOID, given by: 

dt

  MOIDn dM n t t n t       (2.3) 
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where  is the time at the MOID along the orbit of the NEO,  MOIDt

 
 

Sun Sun
3 3

n
aa a

 


 


 

and  is the time-to-MOID, defined as t MOID dt t . Eq. (2.3) takes into account the 

phase shift between the Earth and the NEO. The total variation in the mean 

anomaly between the unperturbed and the proximal orbit is therefore: 

 
2

2 1 sin cosd d
d t d n

d

e r rb
M v v
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n t   (2.4) 

The result in Eq. (2.4) can be proved as follows,  and , respectively 

the mean anomaly at the MOID on the nominal and on the perturbed orbit, can be 

expressed as: 

MOIDM MOIDM

 
   

 
MOID

MOID

dd t

d

M M t M n n t

M M t n t

    

  

 
 (2.5) 

from which Eq. (2.4) can be computed as . MOID MOIDM M M  

Eqs. (2.2) are limited to 1e  , because of the term 21 e . Moreover, this 

set of equations present singularities for zero inclination and/or zero eccentricity 

(the terms sin  and e are at the denominator of the expressions describing the 

variation of , 

i

   and M). If a NEO with eccentricity or inclination equal to zero 

is found, the set of equations Eqs. (2.1) and Eqs. (2.2) would have to be rewritten 

using the non-singular elements [71],[115]. The classical elements representation 

was used here because it yields a more elegant result. 

At this point, if  Trs s s    r h  is the vector distance of the asteroid 

from the Earth’s orbit at the MOID and  Trs s s    hr

MOIDt

 is the variation 

given by Eqs. (2.1) at , then the objective function for the maximum 

deviation problem is the following: 
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  (2.6)     2 2

r r h hJ s s s s s s           2

The proposed formulation provides a very fast analytical way of computing 

the variation of any asteroid’s orbit due to any impulsive deviation action. It is 

both an extension and a generalisation of other approaches [40],[68],[69] that are 

based on the modification of the orbital period due to an action on the asteroid. In 

these approaches, only the effect on the orbital mean motion due to a change in 

the orbital energy was considered, and the variation in the other orbital elements 

was neglected. As a consequence, the resulting deviation could be maximised only 

by acting in a direction parallel to the velocity vector of the asteroid. Any other 

strategy producing an action in a normal direction could not be investigated. 

Compared with more general methods that involve analytically propagating 

the perturbed trajectory by using the Lagrange coefficients [72], the proposed 

approach does not require any solution of the time equation for every variation of 

the orbit of the asteroid and is therefore less computationally expensive. On the 

other hand, it is conceptually and computationally equivalent to those approaches 

[70] that analytically propagate only the variation of the position and velocity of 

the asteroid by using the fundamental perturbation matrix [71]. Conversely, the 

benefit of using proximal motion equations expressed through orbital elements is 

the explicit relationship between the components of the perturbing action and the 

variation of the geometric characteristics of the orbit of the asteroid. 

2.1.1. Maximum deviation strategies 

By combining Eqs. (2.1) and Eqs. (2.2), it is possible to compute the 

transition matrix  that links Φ  v  at  to dt r

a

 at  for each time . To make 

explicit the dependence on the impulse components in each of the equations, Eq. 

MOIDt dt

(2.3) has to be rewritten as a function of   as follows: 

 Sun
5

2

3

2nM n t t a

a


        (2.7) 

If now Eq. (2.4) is incorporated into system (2.2) and, along with Eqs. (2.1), is 

expressed in matrix form, we have: 
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  (2.8) 
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and  is the matrix dG

 

 

2

Sun

*

*

*

2

2
0 0

2 cos
sin 0

cos
0 0

sin
0 0

sin

2 cos2sin sin cos

sin

2 1 sin cos 0

d

d d
d

d d

d d

d
d d

d
d

d d

d d

d d
d d

d d

a v

e r

v av

r

h

r

h i
r

e r ia
ev ev h i

e r rb b

eav p eav a










 

 

d

 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 

        

G  (2.10) 

 29



2.1. Asteroid deviation problem 

 

The subscript indices, MOID and d, indicate that the matrices are calculated 

respectively at  and . As suggested by Conway MOIDt dt [70], in order to maximise 

     MOID max dt r Φ v t

dt

 (2.11) 

the associated quadratic form  has to be maximised by 

choosing an impulse vector 

   T T
dt v Φ Φ v

 dtv

TΦ Φ

  parallel to the eigenvector ν  of , 

conjugated to the maximum eigenvalue of . 

TΦ Φ

Figure 2.2a and 2.2b represent 

the components of the optimal impulse unit vector  ˆ opt dtv , projected onto the 

 , ,t n h  reference frame (where t̂  is along the direction of motion,  is the 

direction of the angular momentum, and  is the component normal to the 

motion, in the orbital plane), as a function of the time-to-MOID ∆t expressed as a 

multiple of the NEO orbital period . The out-of-plane component h of 

ĥ

n̂

NEOT ˆ opt v  

is not shown since it is always less than 1510 . The components of the  

are shown for asteroid 2000SG344 with small eccentricity and inclination 

( , 

 opt dtˆ v

0.067e  0.11i   deg) and asteroid 1979XB, characterised by highly elliptical 

orbit ( e ) and  deg. These two asteroids were selected as 

representative examples of NEOs’ orbital parameters (in particular in terms of 

eccentricity and inclination). Note that the components of the optimal 

0.73 25.14i 

 v  

direction are represented in Figure 2.2 in terms of components of the unit 

eigenvector . ν
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Figure 2.2: Components of the optimal δv direction for a) asteroid 2000SG344 
and b) asteroid 1979XB. 
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As a result of this analysis, we can infer that for a t  smaller than a specific 

, which is different for every asteroid, the component perpendicular 

to the motion dominates the other two, whereas for larger , the tangential 

component becomes dominant. This conclusion is in agreement with the 

preliminary analysis on the 

NEO NEO1t T 

t

 v  direction performed by Ahrens and Harris [67], 

the numerical verification by Park and Ross [72], and the mathematical 

demonstration provided by Conway [70]. It can be noted that the value of the 

normal component of the optimal deviation impulse goes to zero periodically, 

with a period equal to that of the asteroid. Therefore, a deviation impulse given in 

the normal direction yields no deviation after an exact number of revolutions. 

Figure 2.3a and 2.3b emphasise the optimality of the solution: the deviation 

obtained with 0.07 m/s v  was calculated, applying the manoeuvre along the 

optimal direction (solid line), and along the tangent direction (dotted line), the 

normal direction (dashed-dotted line), and the out-of-plane direction (dashed line). 

The deviation r  associated to ˆ opt v  is the maximum displacement and overlaps 

the deviation achieved with a normal impulse for low t , and the deviation 

obtained with a tangent manoeuvre for longer t . An impulsive action at the 

pericentre is found to be the most effective one, whereas a  v  at the apocentre 

gives a deviation close to the minimum. In fact, the orbital velocity is higher at the 

pericentre; as a consequence, an impulsive manoeuvre will achieve a higher 

variation in semi-major axis [see first of Eqs. (2.2)] and hence in the mean motion. 

The choice of an optimum timing along the orbital period is more significant for 

highly eccentric orbits (see Figure 2.3b). 
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Figure 2.3: Deviation achieved with ||δv||=0.07 m/s for a) asteroid 2000SG344 
and b) asteroid 1979XB. 
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Although the direction of the optimal impulse is given by the maximisation 

of the quadratic form associated with the transition matrix, the sign of opt v  at 

this point of the analysis is completely arbitrary. However, if we define the 

relative difference  between the deviation computed for , directionre  v ˆ opt v  and for 

ˆ opt v , as 
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and we plot it as a function of the time-to-MOID (see Figure 2.4), we can 

conclude that the sign of opt v  does not change the magnitude of the deviation. 

This can be alternatively demonstrated by changing the sign of  v  in Eqs. (2.2). 

The variation of the orbital parameters is of opposite sign and, consequently, the 

displacement of the asteroid [described by Eqs. (2.1)] is also in the opposite 

direction but with the same magnitude. This result confirms the results obtained 

by Conway [70]. 
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Figure 2.4: Relative error calculated by orbit propagation for asteroid 
2000SG344. 

 

2.1.2. Accuracy analysis 

The accuracy of Eqs. (2.1) was assessed by numerically propagating 

forward in time the deviated orbit of the asteroid and comparing the obtained 

variation in the position vector with the one predicted by Eqs. (2.1). The nominal 
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trajectory was propagated from the deviation point up to the MOID, for a period 

up to 15 years, and the deviated trajectory was integrated† starting from the 

deviation point on the asteroid orbit, with the perturbed velocity vector v v . 

The two-body problem is used as model of the dynamics: 

 
Sun

3

d

dt
d

dt



 

  


r
v

v
r

r

 

As a measure of accuracy, the relative error is computed, between the variation in 

position after numerical propagation and the analytically estimated deviation: 

 
propagated estimated

propagated

re
 






r r

r
 (2.12) 

Figure 2.5 shows the relative errors, for asteroid 2000SG344 and for 

asteroid 1979XB, as a function of the time-to-MOID t  and the magnitude of 

opt v . These two asteroids, the former with 0.1e   and  deg, the latter with 

 and  deg, were chosen in order to study the impact of the orbital 

parameters on the relative error. 

10i

0.1e  10i 

Figure 2.6 reports the deviation value associated 

to the relative error in Figure 2.5. 
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Figure 2.5: Relative error for the deviation of a) asteroid 2000SG344 and b) 
asteroid 1979XB. 

                                                 
† An adaptive step-size Runge-Kutta-Fehlberg integration scheme integrator is used, with 

absolute tolerance of  and relative tolerance of 121 10 91 10 . 

 33



2.1. Asteroid deviation problem 

 

0
5

10
15

0
0.5

1
1.5

2
0

0.5

1

1.5

2

2.5

x 10
6

Δt [y]δv
opt

 [m/s]

δr
 [

km
]

a) 

0
5

10
15

0
0.5

1
1.5

2
0

2

4

6

8

10

12

x 10
6

Δt [y]δv
opt

 [m/s]

δr
 [

km
]

b) 
Figure 2.6: Deviation of a) asteroid 2000SG344 and b) asteroid 1979XB. 

 
For both asteroids, the relative error grows with the time-to-MOID and with 

opt v , because the difference between the deviated orbit and the nominal orbit 

increases significantly and the proximal motion equations become inaccurate 

when describing the actual motion of the asteroid. In fact, as also stated by Schaub 

and Junkins [115], the hypotheses under which the equations were derived hold 

true until the relative orbit radius is small compared to the chief orbit radius. The 

difference in the maximum relative error between the two asteroids is remarkable. 

If we compute the maximum relative error (i.e. for 15t   years and 2 m/sv  ) 

for a large number of asteroids characterised by different sets of orbital 

parameters, we can see (Figure 2.7) that its value increases as a function of the 

eccentricity of the orbit of the asteroid. 
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Figure 2.7: Maximum relative error for different asteroids. 
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2.1.3. Representation on the b-plane 

To describe the motion of the NEO when entering the Earth’s sphere of 

influence, the achieved deviation can be represented on the plane that is 

perpendicular to the incoming relative velocity of the small body at the planet 

arrival (i.e., the b-plane) [130]. We can define a local reference system centred on 

the Earth with the axis   perpendicular to the b-plane aligned along the 

unperturbed velocity of the asteroid relative to the Earth, the axis   along the 

direction opposite to the projection of the heliocentric velocity of the planet onto 

the b-plane, and the axis   that completes the reference system (see Figure 2.8a). 
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'Ev  Ev  
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a) 

 

Ev

b-plane 

Earth 
*b  

 r r
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b) 

Figure 2.8: Earth-centred local reference system: a) b-plane representation and 
b) geometry of hyperbolic passage. 

 
The general transformation from the Cartesian to the b-plane reference 

frame is: 

  (2.13) -plane Cartesian
ˆ ˆˆ

T

b
   x ξ η ζ x

where  is a generic vector and , x η̂ ξ̂ , and ζ̂  are column vectors that can be 

computed as 

 NEO,nominal Earth

NEO,nominal Earth

ˆˆ ˆˆ ˆ
ˆ


 



U v η
η ˆ ξ ζ ξ η

U v η
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where  is the unperturbed velocity of the asteroid relative to the Earth, 

expressed in a Cartesian reference frame, and  is the heliocentric velocity of 

the Earth. The proper representation would be on the instantaneous b-plane, 

perpendicular to the deviated relative velocity of the asteroid; however, the 

maximum relative error between the plane perpendicular to the nominal relative 

velocity and the plane perpendicular to the perturbed relative velocity is around 

0.01. Thus in the following, we will use the b-plane associated with the nominal 

relative velocity, which avoids the additional calculation of the velocity of the 

deflected asteroid. Moreover, for this analysis, the distance at the MOID was set 

to zero, to have the Earth at the origin of the reference system on the b-plane. To 

this aim, the phase 

NEO,nominalU

Earthv

  and periapsis anomaly   of the asteroids were modified to 

have . This will not change the result of this analysis, because the other 

geometric properties of the orbit are unchanged. 

0r 

On the b-plane we can represent the distance  (called the impact 

parameter) from the Earth to the intercept of the asymptote of the hyperbola of the 

deviated orbit of the asteroid: 

*b

 * 2b 2    

Figure 2.9 shows the impact parameter (bold lines) for a highly elliptic 

asteroid (1979XB), together with the norm of the deviation r

*b

 (thin lines), by 

applying the deviation manoeuvre in the various directions analysed (i.e., 

tangential, normal, perpendicular-to-the-orbit-plane directions and optimal 

direction for the maximisation of the magnitude of the deviation). Although for a 

time-to-MOID  above a specific value, which is different for every asteroid (in 

the case of 1979XB, ), the maximisation of the -parameter and 

the maximisation of the deviation lead to the same conclusion on the optimal 

deflection strategy, for smaller 

t

0.25NEO NEOt 

t

T

 , the b-plane suggests a different strategy. This 

can be appreciated in Figure 2.10a, which contains a close-up of Figure 2.9 for 

. 1 NEOt T 
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Figure 2.9: Impact parameter and magnitude of the deviation for 1979XB with 
δv = 0.07 m/s; b*-parameter (bold lines), and deviation (thin lines). 
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Figure 2.10: Impact parameter for asteroid 1979XB ∆t<1TNEO: a) strategy of 
maximum deviation and b) strategy of maximum b*-parameter. 

 
The difference between the two results depends on whether or not we 

consider the Earth to be at the MOID point when the asteroid crosses it. 

The formulation of the maximisation problem in Eq. (2.11) is modified to 

maximise the projection of the deviation in the b-plane instead of the deviation 

r . As we want to maximise only the two components of the deviation   and  , 

we have: 

  *
MOID -plane

1 0 0

0 0 0 0

0 0 1
b

t






   
       
     

b r  
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where  MOID -planeb
tr  is the deviation vector  MOIDtr  described in the b-plane 

reference frame, computed through the conversion matrix ‡R : 

    MOID -plane db
t t r RΦ v  

In this way the system in Eq. (2.8) is replaced by: 

  *

*
db

tb Φ v  (2.14) 

with the transition matrix 

  *

1 0 0

0 0 0

0 0 1
b

 
   
  

Φ RΦ

Hence the maximisation of  is equivalent to maximising the quadratic form 

 associated to problem Eq. 

*b

   * *

T T
d b b

t v Φ Φ v dt

                                                

(2.14). Note that the 

maximisation problem can be solved even if the transition matrix  is singular. *b
Φ

The result of the maximisation of  can be seen in *b Figure 2.10b. For 

example, for asteroid 1979XB, we can conclude from the b-plane analysis that the 

direction of the optimal impulse changes from the tangent direction to the normal 

 
‡ The matrix  converts the deviation vector R  MOIDtr  computed in the    

reference frame through Eq. (2.1) to the b-plane reference frame. Given a generic vector x , the 
general transformation from   to the Cartesian reference frame is: 

, ,r h

, ,r h

 Cartesian , ,
ˆ ˆˆ

T

r h
   x r θ h x  

where , , and  are column vectors that can be computed as r̂ θ̂ ĥ

ˆˆ ˆˆ ˆ


  


r r v
r h θ h r

r r v




 

In this case  and  are respectively the nominal position and velocity of the NEO at the MOID. 
The general transformation from Cartesian to b-plane reference frame is reported in Eq. (2.13). 
Hence the transformation from   to the b-plane reference frame is: 

r v

, ,r h

 -plane , ,

ˆ ˆ ˆ ˆˆ ˆ

b r h

T T



       

x R x

R ξ η ζ r θ h
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to the motion at , whereas for NEO0.15t T  NEO0.55t T  , the tangential 

component dominates. 

In Figure 2.11 the result for the r -maximisation strategy (thin line) is 

compared whit that for the -maximisation strategy (bold line), for asteroid 

2000SG344 in the range . The maximisation of the impact parameter 

would lead to choose the h direction strategy for very small 

*b

0.5t  NEOT

t , the n direction for 

a range of 0.15 , and the tangential direction for higher NEO N0.25T t   EOT t . 

Note that for small , the angle of the optimal impulse changes, depending on 

the orbital parameters of the asteroid, but for higher 

t

t , the optimal strategy is 

always along the direction of motion. 
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Figure 2.11: Impact parameter for asteroid 2000SG344 ∆t<0.5TNEO. Strategy of 
maximum deviation (solid line) and maximum b*-parameter (bold line). 

 

Three-body analysis 

The results obtained with the b-plane formulation imply an increase of the 

 v -requirement due to the gravitational effects of the Earth, which is consistent 

with the results found by Ross et al. [73]. Furthermore, they suggest a different 

optimal strategy for short times-to-MOID. We can verify the reliability of these 

results by propagating the motion of the asteroid after the deflection manoeuvre 

for two different cases: the optimal deflection manoeuvre is computed as the 

result of the maximisation of the deviation, and the optimal deflection manoeuvre 
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is computed as the result of the maximisation of the b*-parameter. A full three-

body dynamic model was used, considering the Sun and the Earth as gravitational 

bodies: 

 
Sun Earth-NEO Sun-Earth

Earth3 3

Earth-NEO Sun-Earth

d

dt
d

dt

 

 

         

r
v

r rv
r

r r r
3

 

where Sun  and Earth  are respectively the Sun and Earth gravitational constant. r  

is the position vector with respect to the Sun inertial reference frame,  is 

the position vector of the Earth in a Sun-centred inertial reference frame and 

 is 

Sun-Earthr

Earth-r NEO

 Earth-NEO Sun-Earth r r r  

The trajectory was propagated, after a 2 m/s impulse, over the interval 

 MOID NEO0.1p dI t t T  ; then, the closest point to the Earth was computed as 

follows, with nonlinear programming techniques: 

    
min,3 Earth NEOmin

p
b

t I
r t


 r r t  (2.15) 

As can be seen in Figure 2.12a, a deflection manoeuvre computed maximising the 

deviation is not an optimal strategy for short times-to-MOID, whereas the one 

computed maximising the -parameter (see *b Figure 2.12b) leads to better results. 

Note that this is true for short times-to-MOID, whereas for longer times the two 

strategies are equivalent. With both strategies, the projection of the deviation on 

the b-plane (bold line) is a reliable estimation of the actual deviation computed 

with the three-body model (thin line). The deviation at the MOID, considering the 

two-body dynamics (dashed line) instead, does not accurately predict the actual 

minimum distance from the asteroid in proximity of the Earth. The results of the 

maximisation of the -parameter and the maximisation of the deviation can be *b
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compared also in Figure 2.13 that represents the projection of the deviation on the 

b-plane and min,3br  for the two strategies. 
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Figure 2.12: Deviation (dashed line) and its projection (bold line) on the b-plane 
calculated through the two-body problem and minimum deviation computed 
through the three-body problem (continuous thin line): a) maximum deviation 
strategy for asteroid 1979XB and b) maximum b*-parameter strategy for 
asteroid 1979XB. 

 

0 0.05 0.1 0.15 0.2 0.25
10

2

10
3

10
4

10
5

b* , δ
r 

[k
m

]

Δt [T
NEO

]

 

 

b* (max δr)

b* (max b*)
δr

min,3b
 (max δr)

δr
min,3b

 (max b*)

 
Figure 2.13: Projection of the deviation (continuous line) on the b-plane 
calculated through the two-body problem and minimum deviation computed 
through the three-body problem (dashed line) for asteroid 1979XB. The bold 
lines represent the results of the maximum-b* strategy, the thin lines represent 
the result for the maximum-deviation strategy. 
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Analysis of the deviation components in the b-plane 

Figure 2.14 shows the components of the deviation in the b-plane as a 

function of the time-to-MOID, when the optimal strategy is computed by 

maximising . In the same figure,  is the time corresponding to *b
min, 3brt min,3br , 

defined in Eq. (2.15); 
min,3 MOIDbrt t   represents the difference between the instant 

when the actual minimum distance from the Earth is reached and the expected 

time at the unperturbed MOID. This quantity is expressed in days, multiplied by 

106 to make it comparable in scale with the components of the deviation. 

The components of the deviation projected onto the b-plane have a 

discontinuity corresponding to the discontinuity in 
min,3 MOIDbrt t  . In particular 

when , we have 
min, 3 MOID 0

brt t   0  ; this means that the asteroid at  has 

not intersected the b-plane yet (the component normal to it is negative). This 

situation is depicted in 

MOIDt

Figure 2.15a, in which point A represents the asteroid 

approaching a fly-by of the Earth. When 
min,3 MOIDbrt t 0  , then 0  ; this means 

that the asteroid at  has already intersected the b-plane (the component 

normal to it is positive). This situation is depicted in 

MOIDt

Figure 2.15b, in which the 

point B represents the asteroid after the fly-by. 
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Figure 2.14: Components of the deviation in the b-plane for asteroid 1979XB. 
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A
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*b

projection of A
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a) The asteroid is approaching the fly-by of the Earth.  

NEO, deviatedU  

B 

 


*b

projection of B 
on the b-plane 

 
b) The asteroid is at the end of the fly-by of the Earth. 
Figure 2.15: Fly-by representation in the b-plane reference system. a) case A: 
the asteroid is approaching the fly-by of the Earth and b) case B: the asteroid is 
at the end of the fly-by. 

 
The two situations described in Figure 2.15 are a consequence of the sign of 

the impulsive manoeuvre opt v  obtained from problem (2.8). In fact, for a  v

D

 

along the motion, the period of the asteroid is increased; hence at  the 

asteroid is at point A in 

MOIt

Figure 2.15a. On the other hand, for a  v  along the 

motion, the period of the asteroid is decreased; hence at  the asteroid is at 

point B in 

MOIDt

Figure 2.15b. The choice of  v  or  v , which corresponds to case A 

or B, will lead the asteroid in its subsequent course (i.e., after t ) to pass closer 

or farther from the Earth

MOID

§. 

The analysis on the b-plane demonstrates that, assuming no gravity of the 

Earth, the -parameter is the correct estimate of the minimum intersection *b

                                                 
§ The switching of  and the components on the b-plane in Figure 2.14 is due to 

the fact that the direction of 

min,3 MOIDbrt t 

 v  is not univocally determined by the solution of the -
maximisation problem.  

*b
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distance between the asteroid and the Earth. Therefore, in the general case, when 

the nominal unperturbed MOID is not zero, the total deviation  r r  has to be 

projected on the b-plane. If the Earth’s gravity is included in the calculations, the 

computation of the pericentre of the hyperbolic trajectory (the actual minimum 

distance from the Earth) can be derived from the -parameter *b [73]. The 

minimum distance will occur at an instant of time that precedes or follows the 

time of the unperturbed MOID passage, whether the deflection action decelerates 

or accelerates the asteroid (  v  or  v ).  

Figure 2.16 represents the projection on the b-plane of the deviated points 

for different values of  for the deflection of asteroid 2000SG344 (left) and 

asteroid 1979XB (right). The deviation was calculated by applying the impulsive 

manoeuvre along the tangent to the motion (

t

Figure 2.16a), the normal (Figure 

2.16b) and the out-of-plane directions (Figure 2.16c) respectively. It can be noted 

that an impulse along the tangent direction produces a substantial variation of the 

 component, with a secular and a periodic term and a small periodic variation of 

the   component. An impulse in the normal direction instead produces a purely 

periodic variation of both components. To better appreciate Figure 2.16, it is 

useful to remind a property of Öpik theory [130]: it decouples the two key 

parameters associated with a planetary encounter, the shift in time and the MOID. 

As demonstrated by Bourdoux and Izzo, the  -component represents the shortest 

distance between the Earth and the asteroid (hence it is strictly related to the 

geometrical variation of the MOID), whereas the  -component is a measure of 

the time shift between the asteroid and the Earth passage at the MOID [131]. The 

difference in the three strategies can be appreciated in Figure 2.17a (asteroid 

2000SG344) and Figure 2.17b (asteroid 1979XB), which represent the evolution 

of the two components in the b-plane along the time axis. 
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Figure 2.16: Projection on the b-plane of the deviation for asteroid 2000SG344 
(left) and asteroid 1979XB (right) with δv = 0.07 m/s applied a) along the 
tangent to the motion, b) along the normal to the motion, and c) along the h-
direction. 
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Figure 2.17: Projection on the b-plane, function of Δt for a) asteroid 2000SG344 
and b) asteroid 1979XB. 

 
Figure 2.18 shows the result of a deflection action along the three directions 

and in the optimal direction for a low-eccentric orbit (asteroid 2000SG344) and a 

highly elliptical orbit (asteroid 1979XB). It can be noted that for highly elliptical 

orbits, such as asteroid 1979XB (see Figure 2.18b), the best results are achieved if 

the impulse is given at the pericentre of the orbit. A  v  at the apocentre on the 

other hand is almost the less efficient action, because it changes   (related to the 

MOID) but not  . Note that by acting k orbital periods before the time at the 

MOID (where k is an integer number), the deviation component along   is zero. 

For an orbit with a low eccentricity (see Figure 2.18a), a deviation manoeuvre at 

the pericentre is still the most efficient, though it does not maximise  . 
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b) 
Figure 2.18: Projection on the b-plane of the deviation. δv = 0.07 m/s applied 
along the optimal (normal line), the tangent to the motion (dark grey normal 
line), the normal to the motion (black bold line), and the h (light grey bold line) 
directions for a) asteroid 2000SG344 and b) asteroid 1979XB. 
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Analysis on the uncertainties on the impulsive manoeuvre 

An analysis on the uncertainties due to a possible error in the impulsive 

manoeuvre magnitude and direction can be performed, exploiting the 

representation on the b-plane. The deviation was calculated for increasing values 

of time-to-MOID , by applying an impulsive manoeuvre along the tangential 

direction and assuming an error on the direction and the magnitude of the 

t

 v . A 

normal distribution was used to model the three component of 

 Tt n hv v  v v , characterised by a mean value meanv  of: 

 
, mean

, mean

, mean
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The analysis was performed with two different values of standard deviation 

(in each case taken equal for all the three components). Figure 2.19 shows the 

distribution of the components of  v , with a standard deviation equivalent to 

, mean3 100tv   and Figure 2.20 represents the projection of the consequent 

deviation on the b-plane. To the deviation achieved with 0.07 m/stv   (also 

represented in Figure 2.18), the projection of the deflection considering an 

uncertainty on the  v  is superimposed. For each nominal point, corresponding to 

a certain , the shape of the uncertainty region (shape in colour magenta) 

assumes a roughly elliptical shape, which changes and rotates depending on the 

value of the time-to-MOID. 

t

Figure 2.21 and Figure 2.22 contain the  v  

distribution and the corresponding projection of the deviation, assuming a 

standard deviation equivalent to , mean3 1t 0v  . 
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Figure 2.19: Distribution of the components of δv, represented through the 
Gaussian membership function, with 3σ = δvt, mean/100. a) Tangential 
component, b) normal component, and c) component along the h direction. 
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Figure 2.21: Distribution of the components of δv, represented through the 
Gaussian membership function, with 3σ = δvt, mean/10. a) Tangential component, 
b) normal component, and c) component along the h direction. 
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2.2. Mission options for impulsive deviation 

In the following section, we focus the attention on the analysis of optimal 

impact strategies for the deflection of NEOs. Among the different prevention 

strategies considered against a potential hazardous object in collision route with 

the Earth, the simplest one is the kinetic impact. In fact, as will be shown, 

effective kinetic impacts resulting in a variation of the MOID of thousand of 

kilometres seem to be already achievable with the current launch and spacecraft 

capabilities, provided that the time difference between the momentum change and 

the potential Earth impact is large enough. 

The ideal optimal deflection conditions, derived in Section 2.1.1, cannot 

always be achieved, because the transfer trajectory to the asteroid must be 

included in the design of a generic mitigation mission. The analytical formulation 

of the maximum deviation problem can be used to find a wide range of launch 

opportunities. A wide number of target NEOs was selected for this analysis. The 

idea is to explore, for each one of them, a wide interval of launch dates and 

transfer times and to collect all the solutions that maximise the deviation and 

minimise the warning time. 

It was decided to look only for mission options with a relatively low transfer 

time; therefore, only direct transfers and transfers with one single swing-by of 

Venus are considered. Longer sequences of swing-bys, though improving the 

deviation, would imply a longer term planning and more complex operations. 

2.2.1. Targets selection 

Potentially Hazardous Asteroids, a subclass of NEOs, are defined based on 

parameters that measure the asteroid’s potential to make dangerously close 

approaches to Earth. Different research groups in the world keep updated 

databases [such as the Sentry system [12] at the Jet Propulsion Laboratory (JPL) 

or the Near Earth Objects Dynamic Site (NEODyS) [13] at the research centre in 

Pisa, Italy] that continuously asses the risk posed by these objects. As more 

ground-based observations become available a more accurate determination of the 

PHAs orbits will be performed and, as a consequence, some of the asteroids might 

be removed from the possible-impact-risks list. However, looking at the current 
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estimate for potential impacts through the next century, there are still a few 

objects whose impact probability is not negligible in statistical terms. 

Table 2.1 shows an extract of 30 objects taken from the JPL catalogue of 

asteroids**, with the exception of 2004VD17, which, although foreseen to have its 

closest approach with the Earth in the years 2102–2104, is currently considered as 

the most dangerous objects in terms of impact probability, due to its large size 

relative to the other PHAs listed. Table 2.1 lists the asteroids and their properties, 

used in the analysis. For simplicity, each asteroid is given a local reference 

number (instead of using the formal names or international Id numbers). The 

semi-major axis a is given in astronomical units; the inclination i, argument of the 

ascending node Ω, anomaly of the pericentre ω, and mean motion M are in 

degrees; the estimated mass is in kilograms, and the epoch is given in Modified 

Julian Days (MJD). The list considered contains some bodies that have recently 

become objects of interest for the scientific community: Apophis, 2004VD17, and 

2005WY5 are, in fact, reported in the JPL catalogue of the most recently observed 

objects as the currently most risky, having a Palermo scale [15] ranging between 

 and ††0.57 2.61 . Some of the objects in the list are among those not recently 

observed or even lost, which is a major issue in the current assessment of their 

risk. Because of the limited capabilities of ground-based observation and limited 

available resources, most of the hazardous objects can be lost for several years, 

resulting in the possibility that when new observations of the objects are available 

again, they could definitely rule out the possibility of an impact or actually turn 

out to have an increased impact probability, with the additional drawback of a 

reduced warning time. 

The rationale behind the selection presented in Table 2.1 is twofold. We are 

interested in providing some general considerations on optimal impact trajectories 

and consequent deviations strategies, and for this reason, we surveyed a set of 

potential dangerous objects presenting a large variety of orbital and physical 

characteristics. As can be noticed from Table 2.1, our selection collects objects 

having semi-major axes ranging between 0.85 and 3 AU, eccentricity as high as 

0.92 and orbital inclination up to 28 deg, with estimated masses in a range 

                                                 
** Data available online at http://neo.jpl.nasa.gov/risk/ [Retrieved 13 March 2008]. 
†† Value from http://neo.jpl.nasa.gov/risk/ [Retrieved 13 March 2008]. 
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between 107 and 1012 kg. Such substantial differences in both orbital elements and 

mass will eventually affect the optimal impact and deflection strategy. At the 

same time, we want to look at some actual sample cases, considering real objects 

which currently have quite a high impact probability (usually indicated in terms of 

Palermo scale), to provide a worst-case assessment of the current and short-term 

future capabilities of deflecting hazardous objects such as Apophis or 2004VD17 

if such an unlikely, but highly disastrous, event should ever be faced by our 

society. The MOID  was calculated using the Earth’s ephemerides on the 1st of 

January 2000 at 12:00 hrs (0 MJD since 2000). As a consequence of this 

approximation, the MOID of asteroid 1997XR2 is less than the Earth’s radius. 

The actual MOID varies with time 

r

[132], due to the actual orbit of both the Earth 

and the asteroid; furthermore, a MOID smaller than the radius of the Earth does 

not imply an imminent impact, because the Earth and the asteroid could not be at 

the MOID at the same time. Note that, the aim of this work is not to reproduce a 

realistic impact scenario, but rather to assess the actual achievable deviation, as 

opposed to the theoretical deviation, derived in the Section 2.1, depending on the 

mass and orbital characteristics of the asteroid. In this respect the modulus and 

direction of the MOID vector play an important role, as will be demonstrated in 

the following sections. A more accurate calculation of the MOID would produce a 

more precise estimation of the actual achievable deviation, but would not 

invalidate the results of this dissertation. 

 
Table 2.1: Physical parameters for considered NEOs. 

Id Name a e i Ω ω M Epoch Mass r  
  [AU]  [deg] [deg] [deg] [deg] [MJD] [kg] [km] 

1 2004VD17 1.50 0.58 4.22 224.2 90.7 286.9 53,800.5 2.7×1011 229,479.20

2 Apophis 0.92 0.19 3.33 204.4 126.3 222.2 53,800.5 4.6×1010 36,651.75

3 2005WY55 2.47 0.72 7.26 248.4 285.9 3.30 53,800.5 1.9×1010 696,520.60

4 1997XR2 1.07 0.20 7.17 250.8 84.6 211.8 53,800.5 1.7×1010 3,277.43

5 1994WR12 0.75 0.39 6.81 62.8 205.8 27.3 53,700.0 2.0×109 283,313.30

6 1979XB 2.35 0.73 25.14 85.5 75.7 62.0 53,700.0 4.4×1011 3,720,840.42

7 2000SG344 0.97 0.06 0.11 192.3 274.9 132.3 53,800.5 7.1×107 124,351.73

8 2000QS7 2.68 0.66 3.19 153.5 218.7 84.8 53,800.5 9.9×1010 542,496.18

9 1998HJ3 1.98 0.74 6.54 224.9 92.7 333.6 50,926.5 4.5×1011 1,907,030.74

10 2005TU45 1.97 0.49 28.5 120.2 76.8 34.1 53,651.5 3.3×1012 38,152,163.70

11 2004XK3 1.21 0.25 1.43 58.1 302.2 22.0 53,800.5 1.1×108 168,758.33

12 1994GK 1.92 0.59 5.60 15.4 111.4 17.3 49,450.5 1.5×108 445,443.47

13 2000SB45 1.55 0.39 3.67 195.5 216.3 214.4 53,700.0 1.3×108 199,226.54
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Id Name a e i Ω ω M Epoch Mass r  
  [AU]  [deg] [deg] [deg] [deg] [MJD] [kg] [km] 

14 2001CA21 1.66 0.77 4.93 46.4 218.8 65.5 53,700.0 4.3×1011 5,574,409.52

15 2005QK76 1.40 0.51 22.9 337.6 266.1 36.1 53,613.5 4.1×107 122,907.28

16 2002TX55 2.23 0.57 4.37 190.2 148.8 16.8 53,800.5 3.4×108 534,543.89

17 2005EL70 2.27 0.92 16.18 167.5 167.5 12.0 53,438.5 1.9×108 21,308,100.31

18 2001BB16 0.85 0.17 2.02 122.5 195.5 327.4 53,800.5 1.5×109 704,667.59

19 2002VU17 2.47 0.61 1.49 55.7 308.8 11.37 52,599.5 7.3×107 1,500,966.15

20 2000TU28 1.07 0.18 15.64 203.1 280.6 227.0 53,800.5 3.0×1010 166,332.26

21 2001AV43 1.27 0.23 0.27 30.7 43.0 226.9 53,800.5 1.2×108 632,550.85

22 2002RB182 2.54 0.65 0.22 165.5 254.3 347.4 52,532.5 1.1×109 302,338.44

23 2002GJ8 2.97 0.82 5.30 144.2 180.3 261.3 53,800.5 1.3×1011 13,925,769.75

24 2001FB90 2.48 0.78 1.92 266.3 14.5 343.3 51,993.5 5.7×1010 4,781,828.50

25 2005NX55 1.52 0.58 26.16 106.4 277.2 327.2 53,563.5 3.8×109 5,098,118.30

26 1996TC1 1.86 0.72 14.53 5.0 258.8 22.8 50,363.5 2.3×108 11,305,879.51

27 6344P-L 2.64 0.64 4.66 184.9 232.6 349.8 37,203.5 1.2×1010 4,183,900.25

28 2004ME6 2.36 0.57 9.44 112.2 210.3 346.1 53,182.5 1.5×109 4,343,813.94

29 2001QJ96 1.59 0.79 5.87 339.1 121.3 333.9 52,147.5 3.3×109 292,749.39

30 2004GE2 2.04 0.70 2.16 45.1 259.9 341.6 53,112.5 8.0×109 856,426.32

 

2.2.2. Impact model and optimisation problem definition 

The impact between the spacecraft and the asteroid is considered to be 

perfectly inelastic; we do not take into consideration additional impulsive effects 

due to the ejection of mass or gasses. The variation of velocity imparted by the 

spacecraft to the asteroid is therefore given by the equation: 

 
 NEO

d

d

m

m m
  


v v  (2.16) 

where the relative velocity v  of the spacecraft with respect to the asteroid at the 

impact point is computed from the ephemerides of the asteroid and from the 

solution of Lambert’s problem for the spacecraft, and the parameter   

(representing the momentum enhancement factor) has a value of 1 in this 

implementation. 

The mass of the asteroid  was estimated from its measured magnitude, 

whereas the mass of the spacecraft  at the impact point was computed through 

the rocket equation as follows: 

NEOm

dm
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 tot
0

0

expd
sp

v
m m

g I

 
   

 
 

where the specific impulse spI  was taken equal to 315 s and the total ∆vtot is the 

sum of all the required manoeuvres that the spacecraft has to perform after launch. 

Note that , at the denominator of Eq. dm (2.16), can be neglected. 

All the celestial bodies are considered to be point masses with no gravity, the 

ephemerides of the asteroids were computed using the mean orbital elements in 

Table 2.1, and analytical ephemerides considering the long-term variation of the 

orbital elements were used for the Earth and for Venus. The model of analytic 

ephemerides approximates JPL ephemerides de405‡‡. In the case of direct Earth–

asteroid transfers, ∆vtot is the required velocity change at the Earth to reach the 

asteroid, in the case of Earth–Venus–asteroid transfers, ∆vtot accounts for the 

required velocity change at the Earth to reach Venus, plus the deep space 

correction required after the Venus swing-by to reach the asteroid (further details 

on the trajectory model can be found in [119]). The initial mass of the spacecraft 

is , and the launcher is assumed to provide an escape velocity of 2.5 

km/s. If the required ∆v at launch is less than the escape velocity provided by the 

launcher, a higher effective mass at launch is considered, to fully exploit the 

launcher capabilities. In this case the initial mass is: 

0 1000 kgm 

 exc
0

0 sp

1000exp
v

m
g I

 
   

 
 

where . We consider that a minimum of 20% of the mass of 

the spacecraft at launch is allocated to structure and subsystems, whereas a 

minimum of 10% of the propellant mass is allocated to tanks and propulsion 

system; therefore the quantity 

exc launch2.5v  v

tot

0

1.1exp 0.3
sp

v

g I

 
   
 

 at impact must be positive. 

Hence, we define a constraint  on the residual mass computed at the impact: mC

                                                 
‡‡ Data available online at http://naif.jpl.nasa.gov/naif/pds.html [Retrieved 13 March 2008]. 
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sp

v
C

g I

                  
 

The deviation r  is therefore a function of the mass of the spacecraft at 

impact and can be written in compact form as follows: 

 
NEO

m dC m

m
  r Φ v  

where  is the transition matrix introduced in Section Φ 2.1.1. The square of the 

modulus of the MOID after deviation then becomes: 

 
NEO NEO

T

m d m dC m C m
J

m m
 

  
        
   

r Φ v r Φ v

  (2.17) 

which has to be maximised with respect to the launch date  and the deviation 

time . Note that, from the analysis presented in Section 

0t

dt 2.1.3 the strategies that 

aims at maximising b* are more accurate than the ones aiming at the 

maximisation of r §§. However, in the following, we use the latter strategy, 

because it provides good and reliable results for medium to long times-to-MOID 

and requires a lower computational cost. 

To better examine the full range of launch opportunities, three different 

optimisations were run, fixing three different upper limits for the maximum 

warning time, which is the time from launch to the time the asteroid reaches the 

MOID: respectively, up to 5, 10, and 15 years. This was obtained by fixing the 

upper limit for a possible launch date to, respectively, [3650 5475] MJD2000, 

[3650 7300] MJD2000, and [3650 9125] MJD2000. Because the warning time can 

be up to 15 years, we computed all the times the asteroid is crossing the MOID for 

up to 15 years after the upper limit for the launch date, and we took the first date 

the asteroid reaches the MOID. Because some asteroids in Table 2.1 cannot be 

                                                 
§§ To have a precise estimate of the miss distance from the Earth, the projection on the b-

plane of  r r  should be computed. Here, however, we are not interested in computing the 

minimum distance from the Earth, rather to compute the optimal manoeuvre and we do not 
consider the Earth to be at the MOID point when the asteroid crosses it. 
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reached with a low-cost direct transfer, the benefits of a single swing-by 

manoeuvre with Venus were also analysed. More complex sequences and multi-

burn manoeuvres can further improve the deviation in the desired time frame; this 

will be the subject of future work. 

As we are interested in a large number of local minima for the objective 

function given in Eq. (2.17) rather than only the global minimum, we used a 

particular global optimisation method that blends a stochastic search with an 

automatic solution space decomposition technique (see Section 4.3). This method 

has proven to be particularly effective when compared to common optimisation 

methods, especially when applied to space trajectory optimisation problems 

[116],[117]. 

Furthermore, it is expected that the largest deviations can be obtained with 

the longest warning time; thus, we performed an additional analysis, minimising 

the warning time  along with objective function wt (2.17): 

 MOID 0wt t t   

For this second analysis, the aim is to find the set of Pareto-optimal 

solutions (i.e., all those solutions for which there is no other solution that has a 

better value for both  and ). We used the same optimisation method but in its 

multi-objective version 

J wt

[133] (a more extensive explanation of the multi-criteria 

optimisation problem formulation will be given in Section 4.3). 

2.2.3. Results 

Single-objective optimisation 

The results of the single-objective optimisation consist of a number of 

families of mission opportunities for each upper boundary on the maximum 

warning time. When the asteroid has high inclination, the optimal interception 

points are concentrated close to the ascending and descending node of the orbit. 

Two examples are shown in Figure 2.23 (asteroid 1979XB and asteroid 

1996TC1), and the value of the argument of latitude at interception is shown in 

Figure 2.24. As can be seen in Figure 2.23, the interception points, marked with a 
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dot, are straddling the pericentre. This is the best compromise between an impact 

at the pericentre, which is the point that ensures the maximum change in the 

orbital period, and the transfer trajectory to reach the asteroid from the Earth. On 

the other hand, when the pericentre of the asteroid orbit is close to the Earth orbit, 

as in the case of asteroid 2000SB45 and 2002TX55 (see Figure 2.25), many 

optimal solutions are grouped around the pericentre. 

The value of the impact velocity is almost a linear function of the 

eccentricity of the orbit (see Figure 2.26a), and its out-of-plane component 

increases with the inclination of the orbit (see Figure 2.26b). 
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Figure 2.23: Optimal interception of a) asteroid 1979XB and b) asteroid 
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and b) asteroid 1996TC1. 
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Figure 2.25: Optimal interception of a) asteroid 2000SB45 and b) asteroid 
2002TX55. 
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Figure 2.26: Impact velocity function a) of the eccentricity and b) of the 
inclination (h-component). 

 

Multi-objective optimisation 

For each mitigation scenario (i.e., different upper boundary on the 

maximum warning time), a number of solutions were found that are Pareto-

optimal with respect to the total deviation  r r  and warning time . Two 

sets of Pareto-optimal solutions are given as an example in 

wt

Figure 2.27. The 

former asteroid (2000SG344) has a low-eccentric orbit, whereas the latter asteroid 

(2002GJ8) has an eccentricity 0.82e  . The Pareto front for the low-eccentric 

case has a more regular shape (see Figure 2.27a); the Pareto front of the high-

eccentric case (see Figure 2.27b), instead, is strongly influenced by the synodic 

period between the asteroid and the Earth, and its shape is driven by the target 

interception at the orbit nodes. 

 58



Chapter 2. Impulsive NEO deflection 

 

 

0 1000 2000 3000 4000 5000 6000
1.24

1.26

1.28

1.3

1.32

1.34

1.36
x 10

5

warning time [d]

||Δ
r 

+
 δ

r|
| [

km
]

a) 

1500 2500 3500 4500 5500 6500
1.3926

1.3926

1.3926

1.3926

1.3926

1.3926
x 10

7

warning time [d]

||Δ
r 

+
 δ

r|
| [

km
]

b) 
Figure 2.27: Pareto front for a) asteroid 2000SG344 and b) asteroid 2002GJ8. 

 
Among all the solutions of each Pareto-optimal set for each scenario, we 

selected (listed in Table 2.2) those that maximise the total deflection. For each 

mission, details of the optimal trajectory are given: namely the launch date , the 

time of flight ToF , and the mass of the spacecraft at the interception point with 

the asteroid . The deflection scenario selected for each case is identified by 

 (i.e., the asteroid passes through the MOID position along its orbit), which 

also determines the warning time for that mission . The components of the 

relative velocity of the spacecraft with respect to the NEO at the interception point 

are , , and , and 

0t

dm



MOIDt



wt

tv nv hv r  is the achieved deviation. 

The last column of Table 2.2 highlights the net deviation at the MOID (i.e., 

   r r r ). The table shows that the value of the deviation r  can be 

significantly higher than the actual modification of the MOID. Furthermore, from 

the comparison between the actual achieved deviations of asteroids with small and 

big , we can infer that r r  itself plays an important role and cannot be 

neglected when dealing with a realistic impact scenario. 
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Table 2.2: Optimal launch opportunities for a direct transfer to selected 
asteroids as a result of the multi-objective optimisation. 

Id*** t0 ToF tMOID  tw md ∆vt ∆vn ∆vh r  
 r r –

r  

 [d] [d] 
[MJD 
since 
2000] 

[d] [d] [km/s] [km/s] [km/s] [km] [km] 

4100.06 408.52 5826.16 1726.10 743.48 -10.48 -19.00 1.27 16.38 1.0
4836.37 341.55 7855.58 3019.20 962.04 -10.05 -17.83 1.25 42.24 2.21 
4105.08 403.60 9208.52 5103.44 743.74 -10.47 -18.97 1.18 56.84 3.5
4165.11 310.87 5842.53 1677.42 1176.78 2.65 -2.75 -1.15 16.67 4.4
4697.60 62.89 7460.40 2762.80 940.69 3.24 -0.78 -0.82 35.82 10.72 
4697.91 65.67 9401.85 4703.93 965.74 3.17 -0.53 -0.81 62.29 18.6

3 4671.63 507.57 9418.49 4746.86 481.39 -16.60 -20.91 -2.15 1430.33 169.1
5448.36 146.33 5618.12 169.75 374.42 -1.64 10.09 0.14 0.48 0.1
4946.31 245.89 7658.52 2712.20 527.53 -3.63 6.75 -2.63 75.76 12.24 
5369.94 229.44 9290.84 3920.89 968.31 -2.25 7.03 -3.83 128.66 22.6
4103.70 334.67 5585.66 1481.96 943.91 6.66 1.81 -2.94 489.45 122.2
4100.17 338.79 7508.27 3408.10 939.58 6.64 1.98 -3.08 1250.35 319.35 
4100.94 339.59 9190.56 5089.62 919.72 6.59 2.37 -3.07 1874.36 492.9
4257.00 356.52 8465.81 4208.81 636.13 -15.60 -17.87 11.55 82.27 11.86 
5590.11 253.95 9781.67 4191.55 617.61 -12.83 13.81 -13.12 76.50 11.0
3650.50 205.05 5544.35 1893.85 438.29 -5.21 6.62 0.10 14706.27 1424.6
3650.50 202.34 7662.00 4011.50 437.80 -5.16 6.61 0.09 32375.88 5325.97 
3650.50 205.13 9426.72 5776.22 438.15 -5.21 6.62 0.10 47763.64 10553.8
4804.87 321.39 8264.05 3459.18 1141.92 -10.24 -12.57 -0.14 409.39 81.18 
4803.57 322.13 9868.32 5064.75 1143.05 -10.18 -12.50 -0.10 611.95 121.4
4436.62 152.66 5547.61 1110.99 457.87 -9.83 -12.31 7.25 10.63 0.8
5395.86 170.98 7593.49 2197.64 855.62 -14.83 22.08 -2.71 53.50 3.79 
5397.67 168.77 9639.38 4241.71 874.91 -14.88 22.09 -2.65 109.25 7.4
5652.58 330.37 8033.43 2380.85 701.13 -8.34 4.49 -11.69 1.98 0.610 
6801.12 194.28 10058.89 3257.77 1054.79 -10.89 10.10 -11.24 5.84 1.6
3932.94 215.43 5681.67 1748.72 669.74 -6.89 8.24 0.63 23841.97 4681.2
3919.51 222.80 7630.18 3710.67 680.47 -6.99 8.35 0.85 57010.04 16165.611 
3923.98 220.05 9578.69 5654.71 678.18 -6.96 8.34 0.77 89492.17 32181.5
3650.50 68.57 5680.49 2029.99 964.32 -9.98 -12.47 3.26 100650.26 19921.6
6531.11 99.78 7624.88 1093.77 1041.12 -9.12 -11.02 2.27 50732.19 8718.412 
3650.50 70.03 9569.27 5918.77 1029.02 -9.61 -12.19 3.23 308146.24 116366.7
3650.50 220.97 5969.30 2318.80 555.76 -8.57 3.11 2.75 44922.04 15913.6
3650.50 219.50 7391.97 3741.47 564.95 -8.56 3.43 2.65 76038.17 30907.213 
3650.50 218.10 9525.99 5875.49 571.35 -8.55 3.72 2.57 123008.50 58697.1
6583.79 136.24 7529.57 945.78 309.54 -9.90 -15.77 -4.40 4.89 0.314 
6581.72 138.43 9874.18 3292.46 312.38 -9.87 -15.70 -4.16 19.67 1.3
3650.50 227.20 5583.43 1932.93 1359.20 -9.44 -11.63 -11.80 265233.42 174397.2
3650.50 227.21 7397.08 3746.58 1359.50 -9.44 -11.63 -11.80 527916.98 424692.315 
3650.50 227.25 9210.74 5560.24 1360.55 -9.44 -11.63 -11.79 790680.51 682933.9
4578.23 60.07 5867.83 1289.60 1360.86 -8.78 -4.69 2.62 39109.10 5733.2
4455.05 118.79 8298.70 3843.65 793.55 -9.69 11.57 -0.57 65299.94 27043.716 
4546.08 97.26 9514.13 4968.05 1804.38 -8.00 -4.63 2.20 187881.19 44490.0
5346.70 212.60 5566.21 219.52 273.45 -25.20 24.83 -3.26 30.66 2.5
3867.85 411.59 8067.07 4199.22 407.68 -14.41 17.11 -4.25 76168.47 4546.117 
3864.13 417.78 9317.50 5453.37 418.41 -14.38 17.33 -4.48 105870.84 6119.9

                                                 
*** The designation numbers correspond to the asteroids listed in Table 2.1. 
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 r r –
Id*** t0 ToF tMOID  tw md ∆vt ∆vn ∆vh r  

r  

 [d] [d] 
[MJD 
since 
2000] 

[d] [d] [km/s] [km/s] [km/s] [km] [km] 

3755.42 424.18 5573.42 1818.00 872.68 4.70 1.17 -1.58 755.27 219.4
4131.45 336.26 7592.06 3460.61 1496.89 3.19 1.99 -1.31 1925.68 557.418 
4129.64 338.16 9322.33 5192.69 1496.07 3.19 2.03 -1.34 2965.54 863.3
3650.50 201.18 6716.97 3066.47 668.09 -9.67 4.28 -0.53 266564.21 38923.2
3650.50 203.42 8138.22 4487.72 684.28 -9.63 3.62 -0.52 408070.55 75442.119 
3650.50 204.67 9559.48 5908.98 691.48 -9.62 3.26 -0.52 548972.26 123032.9
3846.60 230.17 5723.91 1877.31 753.46 -2.96 -2.30 -8.95 37.72 13.0
3842.14 234.39 7755.70 3913.56 764.40 -2.89 -2.30 -8.70 84.18 29.320 
3865.47 105.14 9381.13 5515.66 648.50 -2.65 3.22 7.78 90.89 37.1
3804.42 288.73 5629.83 1825.41 1578.00 -3.06 -7.03 0.10 24477.83 1051.0
3826.17 272.04 7737.97 3911.80 1536.69 -3.08 -7.13 0.15 54828.62 3768.421 
4795.22 308.28 9319.08 4523.86 2103.02 -3.17 -2.02 -0.16 96856.26 7416.7
3753.67 283.60 6936.07 3182.40 1963.39 -9.36 -9.93 -0.07 52177.12 3830.9
3724.34 311.75 8417.98 4693.64 1936.20 -9.25 -9.76 -0.02 76581.96 8627.022 
3754.23 283.40 9899.90 6145.66 1954.74 -9.39 -9.99 -0.07 103984.39 16160.8
4108.27 595.86 8293.93 4185.66 347.87 -21.69 -23.22 -1.66 210.06 1.623 
4108.03 597.02 10151.47 6043.44 346.45 -21.67 -23.09 -1.63 311.42 2.3
4638.90 146.75 6274.21 1635.31 465.31 -15.75 23.17 -1.52 250.69 2.7
4639.23 146.04 7702.81 3063.57 474.87 -15.83 23.23 -1.54 513.35 5.424 
6077.27 137.19 10560.01 4482.74 288.77 -19.62 26.95 -1.15 584.01 6.4
5216.27 357.41 6144.63 928.36 596.31 -12.15 -16.67 -12.69 654.03 102.2
5950.28 307.64 7517.33 1567.04 735.93 -11.77 -15.09 -12.39 1555.50 204.225 
3774.30 434.60 9576.37 5802.07 303.65 -12.35 -19.21 -11.18 2491.86 543.1
6044.00 152.45 8036.66 1992.67 359.50 -19.42 26.10 8.57 53436.71 11541.426 
6058.42 141.37 9901.02 3842.60 278.23 -18.56 26.17 7.89 81765.09 20810.0
5844.80 240.64 7674.41 1829.61 588.33 -11.27 10.11 2.14 897.61 103.127 
7322.19 312.87 9245.58 1923.40 1034.88 -8.85 8.22 2.51 1128.88 238.4
5483.00 166.08 5654.45 171.45 600.25 -9.33 9.06 4.28 2.55 0.5
3921.63 366.06 8311.08 4389.44 696.64 -7.07 5.40 4.15 10707.80 4942.528 
3919.12 369.63 9639.39 5720.27 713.03 -7.01 5.31 4.07 14551.53 6592.9
3915.75 391.15 5785.14 1869.39 1537.58 -14.27 22.63 -2.96 5522.96 50.9
3905.58 401.40 8002.33 4096.75 1527.61 -14.46 22.84 -2.82 13908.93 329.129 
3907.39 399.72 9480.46 5573.07 1494.54 -14.66 23.04 -2.89 19345.68 641.5
4654.83 160.20 5857.48 1202.65 595.10 -14.02 20.39 0.92 1123.71 47.6
4655.90 159.89 7998.45 3342.56 578.40 -13.89 20.25 0.90 3261.83 146.230 
4655.25 159.14 10139.43 5484.18 607.49 -14.13 20.49 0.91 5743.99 251.7

 
It should be noted that a number of solutions computed with the single-

objective approach belong to the set of Pareto-optimal solutions of the multi-

objective optimisation. As an example, Figure 2.28 shows the Pareto-optimal set 

for asteroid 2002VU17; the black points represent the solutions within an upper 

boundary of 5 years, the dark grey points the solutions with an upper boundary of 

10 years, and the light grey points the solution with an upper boundary of 15 

years. The three circles represent the Pareto-optimal solutions with the maximum 

deviation of each scenario; the three crosses are the optimal solutions from the 

single-objective optimisation with the maximum deviation of each scenario. 
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Figure 2.29 represents the distribution, for all the asteroids and for both analyses, 

of the components of the impact velocity in the orbit plane. 
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Figure 2.28: Pareto front for asteroid 2002VU17. 
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Figure 2.29: Optimal impact ∆v distribution for direct impacts: a) results of the 
single-objective optimisation and b) results of the multi-objective optimisation. 

 

Venus swing-by 

Figure 2.29 shows that very-high-speed fuel-efficient impacts have both 

very high normal and tangential components with negative sign. High-speed direct 

impacts, therefore, correspond to trajectories that intersect almost perpendicularly 

the orbit of the NEO and not necessarily at the perihelion. Because this particular 

behaviour is due to the limitations on propellant consumption, one or more 

gravity-assist manoeuvres could improve the impact performance. Here, the effect 

of a single swing-by of Venus will be considered. Table 2.3 reports all the 
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solutions that show a significant improvement of the total deviation with respect 

to the direct transfer options. 

 
Table 2.3: Optimal launch opportunities for transfers to selected asteroids via a 
single Venus swing-by as a result of the single-objective optimisation. 

Id††† t0 ToF tMOID tw md vt vn vh r  
 r r –

r 

 [d] [d] 
[MJD 
since 
2000] 

[d] [d] [km/s] [km/s] [km/s] [km] [km] 

4516.93 247.64 5618.12 1101.19 609.91 -4.40 11.85 -3.49 32.36 9.4
3881.90 1292.77 7658.52 3776.62 551.48 -4.86 11.88 -1.28 99.84 28.84 
3866.34 912.49 9290.84 5424.50 755.42 -4.69 11.01 -2.60 252.62 57.2
3901.67 648.33 5547.61 1645.93 508.23 -13.31 27.14 -4.44 15.25 1.5
3899.06 647.96 7593.49 3694.43 592.22 -13.40 26.51 -4.82 51.91 4.49 
3901.41 648.51 9639.38 5737.97 510.18 -13.33 27.14 -4.47 76.53 7.6
3865.16 272.27 5681.67 1816.51 776.60 -6.37 6.56 0.40 24957.00 4928.8
3917.58 220.53 7630.18 3712.60 717.81 -6.84 10.39 -0.40 58123.89 16594.211 
3918.67 218.93 9578.69 5660.02 719.28 -6.80 10.61 -0.41 91166.93 32981.6
4455.02 704.40 5966.50 1511.49 534.06 -15.21 -26.51 -2.50 12.45 0.7
4540.25 622.35 7529.57 2989.32 306.22 -24.34 -32.83 1.04 32.57 1.614 
3805.78 1363.04 9874.18 6068.40 429.34 -21.45 -29.45 -1.42 73.47 2.3
4443.39 447.77 5723.91 1280.52 272.73 -8.75 -18.87 -8.33 20.13 6.2
3950.95 832.02 7349.34 3398.39 460.33 -6.46 3.25 8.88 73.59 30.420 
5078.74 528.35 9381.13 4302.39 561.01 -5.88 6.81 8.25 124.05 69.4
3896.88 431.01 6172.31 2275.43 720.76 -13.63 16.04 13.56 71975.85 12271.526 
3871.68 454.34 8036.66 4164.98 781.25 -16.51 22.58 9.53 185251.39 28983.5
3929.37 574.96 6103.23 2173.86 553.06 -14.63 13.82 1.81 1050.20 173.3
3921.14 589.63 7674.41 3753.26 689.31 -13.56 10.93 1.58 2496.01 333.927 
5629.76 433.82 9245.58 3615.83 517.10 -10.32 6.13 3.27 1318.43 279.8
3930.58 1120.13 5785.14 1854.56 403.36 -24.39 31.21 -1.28 1308.55 14.429 
4457.15 1349.65 8002.33 3545.19 563.93 -18.86 30.26 -1.23 5419.39 354.5

2.3. Summary 

In this chapter, a simple analytical expression based on proximal motion 

equations is derived for the computation of the deflection of potentially hazardous 

asteroids. An analysis of the accuracy of the proposed analytical formulation has 

shown its accuracy for a wide range of orbit geometries and for different deviation 

strategies. This formulation represents an extension of all the approaches based on 

a variation of the mean motion of the asteroid. Furthermore, it is less 

computationally expensive than the approaches based on the use of the Lagrange 

coefficients. The proposed formulation is first used to predict the optimal 

                                                 
††† The designation numbers correspond to the asteroids listed in Table 2.1. 
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direction of the deflection  v  that has to be applied to the NEO. The results 

presented in this chapter are in agreement with already existing results obtained 

with different techniques. This confirms the correctness of the approach and the 

validity of the basic assumptions that were made. 

Moreover, a wide range of mission opportunities is analysed through a 

hybrid global search method. Optimal launch options for direct transfers and for 

transfers via a single Venus gravity-assist manoeuvre are identified for a selection 

of 30 asteroids with different orbital characteristics and different masses. 

Though the assumed impacting spacecraft mass is quite small, it can be seen 

that remarkable deviations can be achieved with a reasonable time-to-MOID by 

producing a small  v  along track. On the other hand, for very short times-to-

MOID a more consistent  v  is required, especially if the gravitational effects of 

the Earth are considered; in this case the direction of the optimal impulse depends 

on the time-to-MOID and the orbital parameters of the asteroid. The results 

obtained in this chapter show that the actual achievable change in the MOID can 

be significantly different from the deviation r  as a consequence of the modulus 

and direction of the MOID vector itself. Therefore, the actual MOID cannot be 

neglected, in general. Furthermore, it was shown that the ideal point of 

interception of the asteroid, when the transfer is considered, is not necessarily the 

pericentre of the orbit of the asteroid. 

The importance of the transfer trajectory suggests that more complex 

sequences of gravity-assist manoeuvres and multi-impulse transfers may improve 

the results obtained in this chapter. The design of more efficient transfer 

trajectories is currently under investigation and will be the subject of a future 

work. 

 



 

Chapter 3.  

Low-thrust NEO deflection 

This chapter focuses on the deflection of a near Earth object with a low-

thrust strategy providing a continuous push on the threatening body over a certain 

interval of time. The displacement of the asteroid at the minimum orbit 

intersection distance from the Earth’s orbit is computed through the proximal 

motion equations as a function of the variation of the orbital elements. In the 

general case, the variation of the orbital elements between the deviated and the 

nominal orbits is computed by numerical integration of Gauss’ equations, 

considering the thrust acceleration of the deflection strategy as a perturbing 

acceleration. 

Section 3.2 presents a semi-analytical solution of the asteroid deviation 

problem when a low-thrust action, inversely proportional to the square of the 

distance from the Sun, is applied to the asteroid. A set of semi-analytical formulae 

is derived to compute the variation of the elements: Gauss’ planetary equations 

are averaged over one orbital revolution to give the secular variation of the 

elements, and their periodic components are approximated through a 

trigonometric expansion. Two formulations of the semi-analytical formulae, 

latitude and time formulation, are presented along with their accuracy against a 

full numerical integration of Gauss’ equations. It is shown that the semi-analytical 

approach provides a significant saving in computational time while still 

maintaining a good accuracy. 

Finally, some examples of deviation missions are presented as an 

application of the proposed semi-analytical theory. In particular, the semi-

analytical formulae are used in conjunction with a multi-objective optimisation 

algorithm to find a set of Pareto-optimal mission options that minimises the 

asteroid warning time and the spacecraft mass while maximising the orbital 

deviation. 

 



3.1. Asteroid deviation problem 

 

3.1. Asteroid deviation problem 

Given the time of interception  of a generic NEO, the objective is to 

maximise the minimum orbit intersection distance from the Earth by applying a 

low-thrust deviation action, which consists of a continuous push along the 

asteroid’s centre of mass

it

* over a certain interval of time. In general, any deviation 

strategy generates a perturbation of the nominal orbit of the asteroid. The new 

orbit can be considered proximal to the unperturbed one (see Figure 3.1). 

NEO 
interception

nominal 
orbit 

MOID 

proximal 
orbit 

low-thrust 
manoeuvre 

 
Figure 3.1: Low-thrust NEO deviation. 

 
The proximal motion equations [115] can be again used to describe the variation 

of the NEO displacement at the MOID relative to its unperturbed position, after 

the low-thrust action. The nominal orbit of the NEO is taken as chief orbit and the 

perturbed orbit at the end of the low-thrust arc is considered the deputy orbit. Eqs. 

(2.1) that are recalled here for clarity are valid also in the low-thrust case: 
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 (3.1) 

 
* In this study, the deviation action is always considered aligned with the NEO centre of 

mass. The control issues related to the mechanics of moving an asteroid considering it as a rigid 
body, with spin properties, are not considered. On the other hand, in the results sections of this 
thesis margins on the total mission mass are added to take into account the propellant mass for the 
spacecraft control in proximity of the NEO. The reader can refer to [68] for more details on the 
mechanics of the NEO seen as a 6 degrees-of-freedom body. 
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where 21 e   , MOID  indicates the true anomaly of the NEO at the MOID 

along the unperturbed orbit, and *
MOID MOID     the corresponding argument of 

latitude. The variation in position  Tr s  hs s r  is expressed in the 

radial-transversal-perpendicular-to-the-orbit-plane reference frame as function of 

the orbital parameters between the two orbits; in a matrix form: 

    MOID MOID MOIDt r A α t  (3.2) 

where    MOID

T
t a e i       α



M  is the vector of the orbit 

element difference at the MOID between the perturbed and the nominal orbit, and 

M is the mean anomaly. When a low-thrust deviation action is applied over the 

interval i et t MOIDet t, where  is the time when the manoeuvre is ended, the 

total variation of the orbital parameters can be computed by integrating Gauss’ 

planetary equations [71]: 
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in cos
h

i

 (3.3) 

The low thrust strategy provides an acceleration    Tt n ht a a aa

ta

ha

, here 

expressed in a tangential-normal-binormal reference frame, such that  and  

are the components of the acceleration in the plane of the osculation orbit, 

respectively, along the velocity vector and perpendicular to it, and  is the 

component perpendicular to the orbital plane. Note that the derivative of M in the 

na
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sixth equation of system (3.3) takes into account the instantaneous change of the 

orbit geometry at each instant of time  i et t t  and the variation of the mean 

motion n due to the change in the semi-major axis along the thrust arc. 

Letting    TMt a e i α  be the vector of the orbital 

parameters, we define 

      Te it t M       α α α a e i   

as the finite variation of the orbital elements with respect to the nominal orbit in 

the interval  i et t , obtained from the numerical integration of Eqs. (3.3). It is 

important to point out that M  in Eqs. (3.1) must include the phase shift between 

the Earth and the asteroid. Therefore, because the mean anomalies at the MOID 

on the perturbed  and on the nominal orbits  are computed as MOIDM MOIDM

 

       
 
 

MOID MOID MOID

MOID MOID

e e e e

i i p

i p

 MOID

e i

e e

M M t n t M n t t

n t t M

M n t t

     

   

 

 t M t

n t t

 

   

where  is the passage at the pericentre, then the total variation in the mean 

anomaly between the proximal and the unperturbed orbit is 

pt

   MOIDe iMOID MOID i i e eM M M n t n t        n n t

 

M  (3.4) 

where  is the nominal angular velocity and in

 Sun
3

a a


 

en   

The variation of the other orbital parameters in Eqs. (3.1) is simply a a   , 

e e   , i i   ,    ,    . 
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If  Trs s s    r h  is the vector distance of the asteroid from the 

Earth at the MOID and  Trs s s  h r  is the variation given by Eqs. (3.1) 

at , then the objective function for the maximum deviation problem is MOIDt

      2 2

r r h hs s s s s s             r r
2  (3.5) 

The proximal motion equations provide a very simple and general means to 

compute the variation of the MOID with good accuracy, without the need for 

further analytical developments. 

Gauss’ equations (3.3), together with Eq. (3.4), provide a way to compute 

the variation of the orbital elements between the nominal and the deviated orbits. 

The equations account both for the geometrical variation of the orbit and the 

secular change in the mean motion. To compute the effect of any low-thrust 

deflection strategy, Gauss’ equations would have to be numerically integrated. 

However, in Section 3.2, we will restrict our attention to the case of a tangential 

push with the modulus inversely proportional to the square of the distance from 

the Sun. Note that if we integrate only the first term of the last of Eqs. (3.3), 

neglecting the variations of e, i, ω and Ω, and insert it into Eq. (3.4), we would 

get: 

   MOID

e

i

t

e i i i e e t
M n n t n t n t n dt        (3.6) 

which is the secular change in the mean motion, already considered by other 

authors [68],[69]. The equivalence of Eq. (3.6) to what is already in the literature 

can be demonstrated as follows. Let us start by rewriting Eq. (3.6) as 

  MOID

ee

i i

tt

t t
M n t t n dt        

and integrating by part 

  MOID

e

i

t

t

dn
M t t

dt
   dt  (3.7) 
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Now, the differential dn  can be written as a function of da , and through the 

first of Gauss’ equations (3.3) as a function of the time shift dt: 

 
2

5 2
Sun

Sun

3 2

2 t

a v
dn a da da a dt


    

 
 

Hence, Eq. (3.7) becomes 

  MOID

Sun

3 e

i

t

tt

v
M t t a

a



   dt  

If we now use the superscript ^ to denote the time coordinates measured 

from the interception time  and we take the mean value of the semi-major axis 

out of the integral, we get: 

it

    
ˆ

MOID0
Sun

3 ˆ ˆ ˆ,
et ˆM t t t

a



     v a dt  

which then can be translated from M  to the variation of the time to encounter 

 , induced by the strategy deflection action a , projected onto the velocity of the 

asteroid [69]: 

    
ˆ

MOID0
Sun

3 ˆ ˆ ˆ,
eta

t t t


     v a ˆdt



 

3.1.1. Analysis of the optimal thrust direction 

An estimation of the optimal direction of the push can be driven from the 

maximum deviation analysis performed for the impulsive action case (see Section 

2.1.1). The asteroid impulsive problem was written through the state transition 

matrix as the sensitivity of the current position vector at the MOID with respect to 

the velocity increase at the deviation time [see Eq. (2.8)]. The maximisation of 

 MOIDtr  in Eq. (2.8) suggests that the optimal direction of the impulsive action 

is along the tangent direction, and this one is associated with the shift in time 

between the position of the asteroid and the Earth, rather than with a geometrical 
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variation of the MOID. This result is valid for t  larger than a specific 

. NEO NEO1t T 

In the case of a low-thrust manoeuvre, as a first approximation, these results 

can be generalised by choosing the control vector at time t instantaneously tangent 

to the optimal impulsive  
opt t v . This is equivalent to maximise 

        MOID MOID tt t  r A G v Φ t t v  

for each instant of time  i et t t , where  tΦ  is the transition matrix that links 

the impulsive  at time t to the consequent deviation at .  is the 

matrix in Eq. 

 t v MOIDt MOIDA

(3.2) and  is the matrix associated to the Gauss’ equations written 

for finite differences; that is, the control acceleration is replaced by an 

instantaneous change in the asteroid velocity vector: 

tG

    MOID tt t α G v  

In Section 3.2, to derive a semi-analytical formulation of the low-thrust 

asteroid deviation problem, we focus on low-thrust acceleration along the tangent 

direction. This is a valid assumption when we consider hazardous cases with a 

warning time longer than approximately . For a better estimation of the 

optimal direction of thrust in the case of low-thrust propulsion, one can refer to 

the analysis by Song et al. 

NEO0.75T

[75]. Note that, for long times-to-MOID, the direction 

that maximises r  is also optimal for the maximisation of  r r  and its 

projection into the b-plane†. 

 

                                                 
† For an actual impact hazard r  is less than the Earth radius. 

 71



3.2. Semi-analytical formulae for low-thrust deviation action 

 

3.2. Semi-analytical formulae for low-thrust deviation 

action 

In this section, a set of semi-analytical formulae will be derived to calculate 

the total variation of the orbital parameters due to a low-thrust action. A 

continuous acceleration  is applied along the orbit track, with modulus given by ta

 
2
a

t

k
a

r
  (3.8) 

where r is the distance from the Sun and  is a time-invariant proportionality 

constant that has to be fixed according to the specification of the power system. 

The selection of this acceleration law does not represent a severe restriction to the 

mission design, in fact Eq. 

ak

(3.8) describes any strategy that exploits the Sun as a 

power source: for example, a solar electric propulsion spacecraft that rendezvous 

with the NEO, anchors to its surfaces, and pushes, or a solar mirror that collects 

the energy from the Sun and focuses it onto the asteroid surface to ablate it. 

Moreover, if the formulae presented in the following are adopted to design a low-

thrust trajectory, Eq. (3.8) represents the control acceleration due to a power-

limited spacecraft. 

Two formulations of the asteroid deviation problem, which make use of 

different independent variables for deriving the semi-analytical formulae, will be 

presented. The latitude formulation expresses the secular and periodic variation of 

the orbital parameters as function of the argument of latitude, whereas the time 

formulation introduces the time as independent variable. The use of latitude as 

independent variable allows deriving some elegant formulae that contain only two 

elliptic integrals to be solved numerically. The time formulation, although more 

complex and requiring the numerical solution of more terms, is necessary when 

dealing with the asteroid deviation problem. In fact the use of time as independent 

variable allows considering the component of the deviation associated to the shift 

in time between the passage of the Earth and the asteroid at the MOID. 
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3.2.1. Latitude formulation 

Gauss’ equations are written as a function of the true latitude * : 

 
* *

d d dt

d dt d 


α α
 

where, in case of zero-acceleration out-of-plane , ha

 
*

2

d

dt r

 h
  (3.9) 

where h is the orbital angular momentum. Under the hypothesis of planar 

tangential manoeuvre, Eqs. (3.3) become 
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 (3.10) 

Equations (3.10) are averaged over one period of the true anomaly   [71], 

yielding the average rate of change of the orbital parameters: 

 
,2 2

* *
0

1

2

d d
d

d d

  


  

   
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α α
 

The total variation α  of the orbital elements over one orbital period of *  

can be approximated as: 
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if a zero variation in the anomaly of the pericentre is assumed (i.e., *d d  ). 

This assumption holds true when the deviation is calculated over one integer 

number of orbital revolutions, because the periodic variation of the anomaly of the 

pericentre   is zero and the secular one is of order 1110  rad for the level of 

acceleration used in this chapter. Thus, the variation of the orbital element over 

one revolution can be written as 
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 (3.11) 

By considering a and e constant within one revolution, the following 

analytical formulae can be derived after some algebraic manipulations (see 

Appendix A): 
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(3.12) 

where 
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is the orbital velocity, and   is defined as 
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Equations (3.12) contain two elliptic integrals to be evaluated only once 

every orbital period: 
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where 
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is the incomplete elliptic integral of the first kind and 

 
 2

4
E ,

2 1

e

e

 
 

  
 (3.14) 

where 

   2

0

E , 1 sin d


       

is the incomplete elliptic integral of the second kind [71],[134]. Note that the 

integral kernels (3.12) to be evaluated in 0 2   and 0  are function only of the 

semi-major axis and the eccentricity. 

The variation of the mean anomaly M strongly influences the consequent 

deviation, calculated through Eqs. (3.1). Hence, when the primitive function is 

evaluated in the upper limit 0 2  , the value of the eccentricity is set equal to 

e  e  to have a better approximation of M  in Eqs. (3.12). This allows taking 

into account the secular variation e  over one orbital revolution. Finally, the total 

variation of the orbital parameters over the thrust arc is determined by integrating 

Eqs. (3.12) with the Euler method with a step size of one orbital period (i.e., 

summing up Eqs. (3.12) over the number of revolutions rev , updating the value 

of a, e, E, F for each revolution

 n

). 

  
rev

rev
1

, , ,
n

n j
j

a e E F


  α α  

where  , , ,j a e E Fα   comes from the evaluation of Eqs. (3.12) within the 

integration boundaries  * *
0 01 2 2j j      

*

 , with j an integer number and 

 the number of full revolutions of revn  . 
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Accuracy analysis 

The accuracy of Eqs. (3.12) is assessed by computing the relative error on 

the achieved deviation r  between the numerical propagation of Gauss’ 

equations and the semi-analytical formulae: 
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The deviation r

* *
0 0

 is calculated considering a push of the asteroid over the 

angular interval 2j     , with j an integer number and by calculating the 

resulting displacement right at the end of the thrust arc. The vector estimatedr  is the 

deviation obtained by means of the analytical formulae (3.12), and propagatedr  is 

computed through the numerical integration of Gauss’ equations (3.10): 
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Figure 3.2a represents the relative error on the computation of the deviation 

of Apophis when pushing over an increasing number of orbital revolutions and 

starting the deviation manoeuvre at different angular positions. In fact, the 

variation of the orbital parameters over one orbital revolution depends on where 

the manoeuvre starts along the orbit. In the legend,  is the time at the pericentre, 

 is the time when the deviation action commences, and  is the asteroid 

nominal orbital period. 

pt

it NEOT

Figure 3.2b shows the relative error for an asteroid with 

higher eccentricity and inclination ( 0.73e  , 25i   deg). An adaptive step-size 

Runge-Kutta-Fehlberg integrator is used for the numerical integration, and the 

absolute and the relative tolerance are set to 1 1 160
5

 and , respectively, 

to obtain a relative error of the order of 10

14102.3

 . The value of  used for the 

following analyses is  km3/s2 for asteroid Apophis (

ak

52.2 10ak   Figure 3.2a) and 

 km3/s2 for asteroid 1979XB (42 10 ak Figure 3.2b). The reasons that led to 

these values will be explained in Section 3.3.2. 
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Other than the accuracy, an advantage of the analytical formulation is a 

significant reduction in the computational cost with respect to a numerical 

integration through a Runge-Kutta method. In fact, the CPU time‡ required for the 

numerical propagation of Gauss’ equations is one order of magnitude higher than 

that required for the computation of the analytical formulae, as reported in Table 

3.1. 
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Figure 3.2: Relative error on the deviation of a) asteroid Apophis and b) 
asteroid 1979XB. 

 
Table 3.1: Computational time of the analytical and numerical approach. 

Orbital 
periods 

Time analytical 
[s] 

Time numerical 
[s] 

Percentage of saving in 
computational time 

(analytical/numerical) 
1 4.3×10–3 5.6×10–2 92.3 
2 6.1×10–3 7.2×10–2 91.5 
3 6.8×10–3 9.9×10–2 93.1 
4 9.3×10–3 1.2×10–1 92.2 
5 1.2×10–2 1.4×10–1 91.7 
6 1.3×10–2 1.7×10–1 92.0 
7 1.6×10–2 1.9×10–1 91.7 
8 1.9×10–2 2.1×10–1 91.1 
9 2.0×10–2 2.3×10–1 91.2 

10 2.2×10–2 2.5×10–1 91.2 

 

3.2.2. Periodic variation of the orbital parameters 

The analytical formulation in Eqs. (3.12) describes the mean variation of the 

Keplerian elements; hence, it gives a sufficiently accurate estimate of their 

variation over one full revolution of the true latitude. For smaller angular 

intervals, the periodic component of the perturbation must be included because its 

                                                 
‡ Time calculated with a Pentium® 4 CPU at 3.00 GHz, using Mathworks Matlab v. 2007b. 
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variation is not zero. To this aim, an expression is derived to estimate the periodic 

component of semi-major axis, eccentricity and argument of the pericentre. The 

trend of a , , and e   as functions of *  can be approximated by Eqs. (3.15): 
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 (3.15) 

where the first two terms are the initial condition for the secular evolution at point 

i (i.e., the point at which the deviation action commences), the third term indicates 

the secular variation obtained from Eqs. (3.12), and the fourth one is the periodic 

variation. The coefficients ,  and CaC eC   are the amplitudes of the periodic 

variation. Their value is set through a calibration process: Gauss’ equations in 

Eqs. (3.10) are numerically integrated over one orbit of * . With the vectors 

num,2a , num,2e , and num,2ω  resulting from the numerical integration of Eqs. 

(3.10), we then have 
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from which the amplitudes of the periodic components can be computed as 
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where * * * 2i i      

ak

. Because Eqs. (3.16) come from a numerical 

integration, this calibration process is time-consuming. However, it needs to be 

performed once and for all, given the asteroid and the proportionality constant of 

the acceleration . In fact, it was verified that for low-thrust action, the 

amplitude of the periodic components of the perturbation is almost constant over a 

number of integration periods that are sufficient to deviate the asteroid by a 

considerable distance. 

Through the calibration process the second and the fourth terms in Eq. 

(3.15) can be determined. The former term is required to find the initial condition 

for the secular variation of the orbital parameters. For example, Figure 3.3 

compares the semi-analytical expression of the eccentricity (bold solid line) with 

the numerical evolution (solid line) for asteroid Apophis. The dotted line 

represents the mean variation. Table 3.2 summarises the maximum of the relative 

error between the semi-analytical and the numerical integration of e, a, and  , 

over 10 revolutions of * , for low- (Apophis) and a high-elliptic asteroid 

(1979XB), respectively. The evolution of the relative error is also shown in Figure 

3.4. 
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Figure 3.3: Semi-analytical expression of the eccentricity for asteroid Apophis. 

 
Table 3.2: Maximum relative error between the numerical and semi-analytical 
integration. 

 Asteroid Apophis Asteroid 1979XB 
Eccentricity 1.3×10–6 1.4×10–7 
Semi-major axis 3.5×10–8 8.2e×10–8 
Anomaly of the pericentre 6.9e×10–7 6.6×10–8 
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Figure 3.4: Relative error between the numerical and semi-analytical 

integration of a) the eccentricity, b) the semi-major axis, and c) anomaly of the 
pericentre for asteroid Apophis (left) and asteroid 1979XB (right). 

 
To properly take into account the periodic variation of the mean anomaly 

within an interval smaller than one revolution, the corresponding Gauss’ equation 

has to be integrated over * : 

 
2 2

*
2 1 sin t

dM b e r r
n

d eav p



a

h

  
    

  
 (3.18) 
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in which  *e  ,  *a  , and  *   are expressed through Eqs. (3.15). The 

relative error on M with respect to the full integration of Eqs. (3.10) is represented 

in Figure 3.5. 

Note that introducing the periodic terms allows for the computation of the 

evolution of the orbital elements starting from any angular position along the 

orbit. In fact, if the point when the deviation action commences [i.e., point i in 

Eqs. (3.15)] is different from the pericentre, the initial mean parameters are 

different from the initial osculating elements. The periodic terms ensure the 

required accuracy for a deviation manoeuvre starting and stopping at any angular 

position. This would have not been achieved by using other formulations [81]–

[83] that account only for the secular variations. 
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Figure 3.5: Relative error between the numerical and semi-analytical 
integration of the mean anomaly for a) asteroid Apophis and b) asteroid 
1979XB. 

 

3.2.3. Time formulation 

In some applications, the semi-analytical formulae introduced in Section 

3.2.1 and 3.2.2 are enough to describe a low-thrust trajectory. The variation of the 

orbital parameters over an integer number of full revolutions of the angle *  can 

be calculated directly from Eqs. (3.12); for the last revolution, the periodic 

components are added to the secular variations through Eqs. (3.15). This 

approach, called latitude formulation in the following, does not use time as 

independent variable. It allows a considerable saving in computational time while 
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still providing good accuracy, comparable with a low-tolerance numerical 

integration. 

However, the time is required when dealing with the asteroid deviation 

problem, because the component of the deviation associated to the shift in time 

has to be taken into account. In fact, the latitude formulation accounts only for the 

shift in position of the asteroid. Given the thrust arc  i et t , we want to apply the 

described semi-analytical formulation to find the displacement of the asteroid 

after a given time. Equations (3.12) are used to compute the variation of the 

orbital elements over the number of full revolutions contained in the time interval 

 i et t . For the remainder of the thrusting arc, the element differences are 

calculated using Eqs. (3.15) and (3.18). The interval *  corresponding to the 

time interval  i et t  is computed by numerically integrating Eq. (3.9). Note that 

the terms corresponding to the secular variation of the parameters in Eqs. (3.15) 

are calculated updating a , e , and   at each orbital revolution. 

Given the asteroid identification number  and the proportionality 

constant of the acceleration , the calibration procedure gives the amplitude of 

the periodic component of a, e and 

NEOid

ak

  (step 0). Once computed, the values of , 

, and 

aC

eC C  are kept constant for every  i ett t  and for the evaluation of the 

variation of the orbital elements over different time intervals, for a given asteroid 

(i.e., a given set of nominal orbital elements). The algorithm proceeds with the 

calculation of the upper limit on the number of revolutions contained in the 

interval  it et ; the quotient of the division between et ti  and the nominal 

period of the asteroid is rounded to the nearest integer towards infinity§ (step 1). 

In fact, due to the perturbation introduced by the low-thrust action, the time to 

perform a full revolution of *  is different from that of the unperturbed orbit. For 

each revolution, the value of the secular variation of the orbital parameters is 

computed with Eqs. (3.12) (step 2), updating a and e at each integration step 

                                                 
§ The quotient of the division between te-ti and the nominal period of the asteroid is rounded 

to the nearest integer towards infinity if the thrust is given in the direction of the velocity vector. 
Otherwise, if the thrust is given in the opposite direction with respect to the velocity vector, the 
period of the deviated orbit will decrease, hence the number of revolutions along the perturbed 
orbit may be greater than the number of revolutions along the nominal orbit. 
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(which is one period long) and recalculating the elliptic integrals in Eqs. (3.13) 

and (3.14). Once the secular variations are available (step 3), the value of *  

corresponding to the thrust arc and the exact number of revolutions are computed 

through Eq. (3.9), with the orbital parameters computed through Eqs. (3.15). The 

secular variations of the parameters calculated in step 2 are added up over the 

number of full revolutions (step 4), whereas the calculation of the variation of the 

orbital elements in the remainder of the thrust arc is performed through the 

evaluation of Eqs. (3.15) and the integration of Eq. (3.18) (step 5). Note that 

 *a  ,  *e  , and  *  , given by Eqs. (3.15), are calculated updating the 

values of a , e , and   at each revolution. The output of the algorithm is the 

total variation of the orbital elements over the interval  i et t . The overall 

process is illustrated in Figure 3.6. 
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Step 0: Set Ca, Ce, Cω 

Step 1: Calculation of the upper limit on 
the number of revolutions of * , rev,upn  

Step 2: Eqs. (3.12) over rev,upn  and 

determination of the secular variation of 
parameters a , e ,  , and M  for 
each revolution 

Step 3: Computation of 
*

*
e

i

t

t

d
dt

dt

    

Step 4: Sum of 
revnα  over revn  

Step 5: Calculation of the variation of the 
orbital elements over the last arc through 
Eqs. (3.15) and the numerical integration 

of Eq. (3.18) 

last arcα revnα  

rev last arcn    α α α

INPUT: 

OUTPUT:

ak , NEOid

 i et t  

 
Figure 3.6: Time-formulation algorithm. 

 

Accuracy analysis 

The accuracy of the time formulation is verified by computing the relative 

error  between the deviation , time formulationre estimated, tfr , calculated through the 

algorithm summarised in Figure 3.6, and the deviation propagated, tfr , computed with 

the numerical integration of Eqs. (3.3). 
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propagated, tf estimated, tf

, time formulation

propagated, tf

re
 






r r

r
 

The relative error is computed for increasing values of the proportionality 

constant . ak

ak

e t

Figure 3.7a and 3.7b report  calculated with the nominal 

value of  (set in Section 

, time formulationre

ak ak

, time formulationre

3.3.2), 10  and 100 , respectively, for asteroids 

Apophis and 1979XB. The values of  are plotted against the push 

time , which was set equal to the time-to-MOID it MOID it t t    (i.e., 

). MOIDet t

The high value of the relative error when NEO1t T   is due to the 

approximation introduced with the periodic components of the orbital elements in 

Eqs. (3.15). For , the difference between orbital elements of the 

perturbed and the nominal orbit 

NEO1t T 

α  is of the same order of magnitude of the 

approximation error of the periodic components. As a consequence, the relative 

error difference of the orbital elements 

 propagated, tf estimated, tf
, 

propagated, tf
re 

 



α

α α

α
 

is high. In particular, the error on the assessment of the orbital parameters a, e, 

and   affects the difference of mean anomaly, which significantly contributes to 

the terms in Eqs. (3.1). Figure 3.8 represents the relative error on M  for two 

asteroids. 
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b) 
Figure 3.7: Relative error of the time formulation for a) asteroid Apophis 
(ka=2.2×105 km3/s2) and b) asteroid 1979XB (ka=2×104 km3/s2). 
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Figure 3.8: Relative error on δM for a) asteroid Apophis and b) asteroid 
1979XB. 

 
 

Hence, the time formulation can be substituted to the numerical integration 

only for a thrust arc  longer than one orbital revolution (i.e., the relative error in t

Figure 3.7 is lower than 210 ). On the other hand, when low-thrust strategies are 

selected, the thrust arc is, in general, longer than 1 . NEOT Figure 3.9 depicts the 

percentage of saving in computational time of the semi-analytical approach with 

time formulation, with respect to the numerical integration. When  the 

gain is around 40%, and it increases with the length of the push arc. 

NEO1t T 
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b) 
Figure 3.9: Percentage of savings in computational time by using the semi-
analytical time formulation with respect to the numerical integration of Gauss’ 
equations. a) Asteroid Apophis and b) asteroid 1979XB. 

3.3. Mission options for low-thrust deviation 

In this section, the analysis of some NEO deviation missions is presented. 

The semi-analytical approach is used to compute the displacement of the position 

of the asteroid at the MOID point after a low-thrust deviation manoeuvre and a 

shape-based approach is adopted to model the transfer trajectory. A global search 

is performed over a wide range of launch dates and times of flight to find a set of 

 89



3.3. Mission options for low-thrust deviation 

 

optimal solutions according to three criteria: the mass at launch, the warning time 

(i.e., elapsed time between time at launch and time at the MOID), and the total 

deviation. Each solution of the multi-objective global optimisation represents a 

complete mission design, which includes the transfer leg from the Earth to the 

asteroid interception, and the deflection manoeuvre over a finite period of time. 

3.3.1. Targets selection 

Four asteroids are selected, based on their orbital parameters: Apophis with 

low eccentricity and inclination and 1979XB with high eccentricity and high 

inclination ( 0.73e   and 25.14i   deg). Castalia and Itokawa, with a mass of 

 kg and  kg respectively, are selected to analyse the influence of 

the mass of the asteroid. The orbital elements that are most significant for the 

following analysis are reported in 

121.4 10 10103.5

Table 3.3, together with the minimum orbit 

intersection distance and the mass of the asteroid. The MOID  is calculated 

using the Earth’s ephemerides on 27 January 2027 at 12:00 hrs, taken from 

analytic ephemerides which approximate JPL ephemerides de405

r

**. As already 

pointed out, the actual MOID varies with time [132], due to the actual orbit of 

both the Earth and the asteroid. On the other hand, the aim of this work is not to 

reproduce any specific and realistic impact scenario, but rather to assess the 

performance of a low-thrust deviation action over a wide range of mission 

opportunities. A more accurate calculation of the MOID would produce a more 

precise estimation of the actual achievable deviation but would not invalidate the 

results in this dissertation. 

 
Table 3.3: Asteroids orbital and physical parameters. 

Asteroid 
Semi-major axis 

[AU] 
Eccentricity Inclination 

[deg] 
MOID 
[km] 

Mass 
[kg] 

Apophis 0.92 0.19 3.33 30,706 4.6×1010 
1979XB 2.35 0.73 25.14 3,725,733 4.4×1011 
Castalia 1.06 0.48 8.9 3,013,439 1.4×1012 
Itokawa 1.32 0.28 1.62 2,769,832 3.5×1010 

 

                                                 
** Data available online at http://naif.jpl.nasa.gov/naif/pds.html [Retrieved 28 January 

2009]. 
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3.3.2. Spacecraft model and optimisation problem definition 

As a reference case, we consider a spacecraft equipped with a solar mirror 

with a diameter of 100 m and a dry mass  dm [135] of 895 kg. The spacecraft is 

launched at time  (selected in a range of 20 years before the possible collision), 

with maximum hyperbolic excess velocity of 3.5 km/s, and equipped with an 

engine delivering an unlimited thrust with an 

0t

3000 sspI  . Once the spacecraft 

has intercepted the asteroid, the low thrust deviation manoeuvre is performed 

from  up to the time at the MOID (i.e., it MOIDet t ); no propellant is assumed to 

be consumed during the deviation phase, but a 25% margin on the total wet mass 

is considered, to account for station-keeping and mirror deployment operations. 

Table 3.4 summarises the key parameters of the mission. 

 
Table 3.4: Mission characteristics. 

spI  3000 s 

md  100 m 

dm  895 kg 

Margin on  0m 25% 

,maxv  3.5 km/s 

 MOID 0 max
t t  20 y 

 

The value of  is set according to the model of the solar collector 

developed in 

ak

[126]. The value of  is chosen to obtain the same order of 

acceleration provided by a solar inflatable mirror, with a diameter  of between 

100 and 110 m, along the range of distances from the Sun covered by the asteroid 

during its motion. 

ak

md

Figure 3.10 compares the acceleration computed through the 

full model described in [126] against Eq. (3.8) over a feasible range of distances 

for asteroid Apophis. Between the orbit apocentre and pericentre, Eq. (3.8) (solid 

line) gives an acceleration comparable with that calculated through the full solar 

collector model (dashed lines). Note that Eq. (3.8) does not take into account the 

decrease of the mass of the asteroid due to the ablation of the material. 

Table 3.5 reports the values of the acceleration constant  for each 

asteroid, together with the average of the thrust acceleration on the nominal orbit 

ak
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of the asteroid, according to Eq. (3.8), the average of the Sun gravitational 

acceleration, and the ratio between the two accelerations. 
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Figure 3.10: Magnitude of the acceleration for Apophis. 

 
Table 3.5: Acceleration constant and average of the accelerations acting on the 
asteroid. 

Asteroid ka [km3/s2] 
Average thrust 

acceleration [km/s2] 
Average gravitational 
acceleration [km/s2] 

Acceleration 
ratio 

Apophis 2.2×105 1.2×10–11 6.8×10–8 1.7×10–4 
1979XB 2.0×104 3.5×10–13 9.0×10–9 3.9×10–5 
Castalia 6.5×103 3.4×10–13 4.8×10–8 7.0×10–6 
Itokawa 2.0×104 5.5×10–12 3.3×10–8 1.6×10–5 

 
A multi-objective optimisation is performed to minimise the vector 

objective function: 

  0min wm t         r r r  (3.19) 

with respect to the launch date, the time of flight and the hyperbolic excess 

velocity. In Eq. (3.19)  is the wet mass of the spacecraft at the Earth: 0m

  0 1.25d pm m m    (3.20) 

where  is the propellant mass for the transfer, pm MOID 0wt t t   is the warning 

time, and  r r  is the total deviation to be maximised [see Eq. (3.5)]. Note 

that, from the analysis presented in Section 2.1.3 the strategies that aims at 
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maximising b* are more accurate than the ones aiming at the maximisation of r . 

However, in the following, we use the latter strategy, because it provides good 

and reliable results for medium to long times-to-MOID and requires a lower 

computational cost††. 

Low-thrust transfer trajectory 

The transfer trajectory is calculated through a shape-based method (see 

[118]). The low-thrust arc is obtained by shaping the trajectory through a set of 

pseudo-equinoctial elements‡‡ and the required control to follow that trajectory is 

obtained through algebraic computation by an inverse method: 

 
2

Sun2 3

d

dt r
 

r r
u  

where  is the control acceleration vector and r  the position vector in a Cartesian 

reference frame. An exponential shape is adopted, described by three shape 

parameters 

u

 1 2 3

T  ρ : 

  0

0 1
L Le   ρα α α

  
 

where  indicates the vector of pseudo-equinoctial non-singular elements. For 

further details on the trajectory model the reader can refer to 

α


[118],[136]. 

Because in this test case the dry mass of the spacecraft is set, the propellant 

mass required for the transfer trajectory is computed through the following 

expression: 

 
0 0

exp 1
fL

p d
spL

dt
m m dL

I g dL

  
  
    


u




                                                

 (3.21) 

 
†† To have a precise estimate of the miss distance from the Earth, the projection on the b-

plane of  r r  should be computed. Here, however, we are not interested in computing the 

minimum distance from the Earth, rather to optimise the interception and deflection manoeuvres 
and we do not consider the Earth to be at the MOID point when the asteroid crosses it. 

‡‡ The elements are called pseudo-equinoctial because they do not always satisfy exactly 
Gauss’ equations unless the thrust is zero. 
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where L      indicates the true longitude that is used as independent 

variable in place of the time, and  and 0L fL  represent the initial and final true 

longitude of the trajectory. Additionally, the shape-based approach introduces the 

following constraint on the time of flight: 

 
0

fL

L

dt
ToF dL

dL
   

As a consequence, a constraint on the time of flight has to be included in the 

optimisation problem (3.19): 

 
0

:  
fL

ToF

L

dt
C dL ToF

dL
  10 days  (3.22) 

The value of the parameter 1 , which is mostly responsible for the time of 

flight constraint satisfaction, is determined within an inner Newton loop of the 

shape-based trajectory-model generating algorithm, whereas the remaining two 

shape parameters are set as optimisation parameters, along with the launch date 

, the time of flight ToF , the integer number of revolutions around the Sun , 

and the launch conditions. The design variables vector of the global optimisation 

is therefore: 

0t revn

 0 rev 2v vt ToF n v 3   
    x  

where the escape velocity vector provided by the launcher is fully determined by 

its magnitude v , the in-plane angle  v 
 measured from the tangent direction to 

the projection of the velocity vector v  on the orbital plane, and the out-of-plane 

angle v 
 between the velocity vector v  and its projection on the orbital plane 

(measured from the orbital plane to v ). 2  and 3  are selected within the range 

 0.5 0.5 , the number of integer revolution is chosen between 0 and 3, and the 

time of flight between 25 and 1500 days. 
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The solution of the multi-objective optimisation problem in Eq. (3.19) is 

found through a hybrid optimisation approach, blending a stochastic search with 

an automatic solution space decomposition technique [116],[133] (a more 

extensive explanation of the multi-criteria optimisation problem formulation will 

be given in Chapter 4). 

3.3.3. Results 

Apophis deviation mission 

Figure 3.11 represents a set of launch opportunities for a deviation mission 

to Apophis, assuming that the asteroid is at the MOID on the 7th July 2027 

(10,049 MJD2000). Note that the Earth is not at the MOID on the same date, 

because the aim of these test cases is to measure the achieved deviation, not to 

reproduce a real impact scenario. 

The launch dates and transfer times in Figure 3.11 correspond to the set of 

Pareto-optimal solutions in Figure 3.12a. In Figure 3.11, we can see that a wide 

range of launch opportunities are available every year between 2010 and 2030, 

though the required transfer time might change significantly. In particular, we can 

identify two groups of solutions around 5000 MJD2000 and 7500 MJD2000 with 

a short transfer time, a scattered set of solutions with a transfer time between 500 

and 600 days, and three groups of solutions with long transfer time. Note that we 

used a non-exhaustive§§ stochastic search process; therefore, more solutions can 

exist in the same range of launch dates. In Figure 3.12a, the three axes represent 

the components of the objective function equation (3.19); the z axis contains the 

magnitude of the deviation r . The mass into space , which is limited to 

5000 kg in this analysis, is a function of the mass of propellant required to 

perform a transfer from the Earth to the asteroid. In the case of Apophis, a mission 

using a solar collector with a diameter of 100 m would achieve deviations of the 

order of 106 km, in a time range of 20 years of warning time, and solutions with 

1000 days of warning time have a deviation of about 20,000 km. 

0m

                                                 
§§ The stochastic approach of the search process is non-exhaustive in the sense that it does 

not guarantee to find a feasible (or optimal) solution with probability 1, but it searches non-
systematically until a specific stop criterion is satisfied. 
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The modulus of the achieved deviation is proportional to the length of the 

thrust interval  and has a periodic trend with the angular position of 

the point of interception, as shown in 

MOID it t t  

Figure 3.12b. The colour scale represents 

the value of the true anomaly (in degrees) at interception. 
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Figure 3.11: Launch opportunities for a deviation mission to Apophis. The 
colour scale represents the value of the achieved deviation at the MOID. 
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a) Pareto front for a deviation mission to Apophis. 
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b) 
Figure 3.12: Deviation mission to Apophis: a) Pareto front. Launch mass, 
warning time and magnitude of the deviation are represented on the three axes. 
b) Achieved deviation as a function of the time length of the thrust arc. 

 
Neglecting the transfer phase and assuming the same value of the 

acceleration constant , the sensitivity of the deviation to the in-plane orbital 

elements a and e of the nominal orbit of the asteroid can now be investigated. 

Several values of semi major-axis and eccentricity are considered, covering the 

range of in-plane elements for a group of 338 Aten asteroids from the JPL 

catalogue

ak

***. The range considered for semi-major axis in astronomical units is 

, and the range for eccentricity is 0.0130.64 0.99a  0.89e  . For each value 

of eccentricity and semi-major axis, the corresponding orbit is computed keeping 

the other orbital elements equal to the parameters of Apophis. The deviation is 

calculated for increasing values of the pushing time, from 1 day up to 20 years 

before the date at the corresponding MOID. 

Figure 3.13a shows the different nominal orbits obtained starting from the 

orbital elements of Apophis by changing the value of the semi-major axis (see 

Apophis orbit in bold line, the Earth orbit in dashed line, the crosses indicate the 

MOID points), and Figure 3.13b the true anomaly of the MOID (the cross marker 

indicates Apophis case).  

The modulus of the deviation of the asteroid at the MOID is displayed in 

Figure 3.14a as a function of the pushing time. Note that as a consequence of the 

                                                 
*** Data available online at http://neo.jpl.nasa.gov/cgi-bin/neo_elem [Retrieved 05 August 

2008]. 
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acceleration law, which goes with the inverse of the distance from the Sun 

squared, the achievable deviation for a fixed warning time decreases with the 

increase of the nominal semi-major axis. This is clear if we analyse the first 

equation of Eqs. (3.3) and we substitute the value of the acceleration: 

 
2

2
Sun

2 akda a v

dt r
  

In fact, this term is proportional to 1 2a  and is the term that mostly influences the 

value of the deviation, because it contributes to the shift in time. 

As we can appreciate from Figure 3.14b, the relative error with the precise 

numerical integration does not exceed 10–2, which means that the accuracy of the 

analytical formulae is good in the selected range of values of the semi-major axis. 
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b) 
Figure 3.13: Orbit and MOID characteristics for different values of semi-major 
axis starting from Apophis case: a) asteroid orbits and b) true anomaly of the 
MOID. 
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b) 

Figure 3.14: Sensitivity of the deviation to the semi-major axis: a) deviation 
achieved for orbits with different values of semi-major axis and for increasing 
values of thrust interval and b) relative error for different values of semi-major 
axis. The white line represents Apophis case (a = 0.922 AU). 

 
The sensitivity analysis to the eccentricity is shown in Figure 3.16. The 

resulting orbits and MOID obtained by changing the eccentricity are shown in 

Figure 3.15. The orbit of Apophis is the bold line in Figure 3.15a, and the Earth 

orbit is represented by the dashed line. In this case (see Figure 3.16a), for the 

same pushing time, the magnitude of the deviation increases, with the increase of 

the eccentricity. The fluctuations within the orbital period are also more visible. 

The local maxima correspond to an interception point prior to the pericentre. 
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Note that a good accuracy is also assured for different values of eccentricity 

within the range . 0.013 0.89e  Figure 3.16b shows the relative error of the 

time formulation. Note that the accuracy of the time formulation is, in general, 

lower than the accuracy of the latitude formulation. In fact, the former needs a 

further operation, which is the determination of the value of *  corresponding to 

the thrust arc and the exact number of revolutions (see step 3 in Figure 3.6). 
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b) 
Figure 3.15: Orbit and MOID characteristics for different values of eccentricity 
starting from Apophis case: a) asteroid orbits and b) true anomaly of the 
MOID. 
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Figure 3.16: Sensitivity of the deviation to the eccentricity: a) deviation 
achieved for orbits with different values of eccentricity and for increasing 
values of thrust interval and b) relative error for different values of 
eccentricities. The white line represents Apophis case (e = 0.191). 

1979XB deviation mission 

The launch opportunities for a deviation mission to asteroid 1979XB are 

represented in Figure 3.17. The NEO is at the MOID on the 20th May 2030 

(11,097 MJD2000). In this case, the launch opportunities are grouped in single 

strips, with an average transfer time ranging between around 200 and 800 days. 

The corresponding set of Pareto-optimal solutions is shown in Figure 3.18a, 

which shows that the maximum achieved deviation is of the order of 105 km, 

because the mass of the asteroid is  kg, significantly higher than the mass 

of Apophis. 

114.4 10

The high eccentricity of the orbit of asteroid 1979XB emphasises the 

periodicity of the achievable deviation with t  (see Figure 3.18b, in which the 

colour scale indicates the angular position at interception). The considerable step 

in the value of the deviation is in correspondence of an interception before the 

pericentre. This effect is amplified for this asteroid, because its orbit is highly 

elliptical. 
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Figure 3.17: Launch opportunities for a deviation mission to 1979XB. The 
colour scale represents the value of the achieved deviation at the MOID. 

 

1000
2000

3000
4000

5000

0
2000

4000
6000

8000
0

1

2

3

4

5

x 10
5

m
0
 [kg]t

w
 [d]

||δ
r||

 [
km

]

 
a) 

0 1000 2000 3000 4000 5000 6000 7000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

Δt [d]

||δ
r||

 [
km

]

 

 

−150

−100

−50

0

50

100

150

 
b) 
Figure 3.18: Deviation mission to 1979XB: a) Pareto front. Launch mass, 
warning time and magnitude of the deviation are represented on the three axes. 
b) Achieved deviation as a function of the time length of the thrust arc. 
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The same analysis of sensitivity to the semi-major axis and the eccentricity 

is performed by computing the deviation for a range of a and e and by keeping the 

other parameters equal to that of 1979XB, which belongs to the Apollo class [5]. 

Although the range of the eccentricity is always 0.013 0.89e  , for the semi-

major axis a range of 1.0006 3.595a   AU is considered as the range of semi-

major axis of the Apollo class, taken from the JPL catalogue†††. 

Figure 3.19a shows the different orbits (1979XB orbit in bold line and the 

Earth orbit in dashed line), and the position of the MOID for each orbit (cross 

markers). The corresponding true anomaly is depicted in Figure 3.19b (the cross is 

1979XB MOID ). Because the inclination is quite high, the point of minimum 

distance with the Earth orbit identifies also the ascending or descending node of 

the asteroid. 

Also in this case (see Figure 3.20a), the value of the deviation, for a fixed 

pushing time decreases with the increase of the semi-major axis (the 1979XB case 

is represented by a white line). The different shape with the orbital period with 

respect to Figure 3.14a is due to the higher eccentricity (e = 0.726). Finally, the 

accuracy is represented in Figure 3.20b. The relative error, despite being always 

under 3×10–2, increases with the semi-major axis for fixed value of the pushing 

time. 
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b) 
Figure 3.19: Orbit and MOID characteristics for different values of semi-major 
axis starting from 1979XB case: a) asteroid orbits and b) true anomaly of the 
MOID. 

                                                 
††† Data available online at http://neo.jpl.nasa.gov/cgi-bin/neo_elem [Retrieved 05 August 

2008]. 
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Figure 3.20: Sensitivity of the deviation to the semi-major axis: a) deviation 
achieved for orbits with different values of semi-major axis and for increasing 
values of thrust interval and b) relative error for different values of semi-major 
axis. The white line represents 1979XB case (a = 2.350 AU). 

 
The sensitivity to the eccentricity is depicted in Figure 3.22. Figure 3.21 

shows the different orbits and MOID angular positions. In Figure 3.21a 1979XB 

orbit is the bold line and the Earth orbit is represented by the dashed line. In 

Figure 3.21b MOID  of asteroid 1979XB is the cross symbol. 

As already observed in Figure 3.16a, for the same pushing time, the 

magnitude of the deviation increases with the increase of the eccentricity (see 

Figure 3.22a). Also in this case, a good accuracy is achieved for different values 
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of eccentricity within the range 0.013 0.89e  . Figure 3.22b shows the relative 

error of the time formulation. 
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b) 
Figure 3.21: Orbit and MOID characteristics for different values of eccentricity 
starting from 1979XB case: a) asteroid orbits and b) true anomaly of the 
MOID. 

 

0
0.2

0.4
0.6

0.8
1

0
1

2
3

4
5

6
0

2

4

6

8

10

12

x 10
5

 

eΔt [T
NEO

]
 

||δ
r||

 [
km

]

1

2

3

4

5

6

7

8

9

10

11

x 10
5

 
a) 

 105



3.3. Mission options for low-thrust deviation 

 

0
0.2

0.4
0.6

0.8
1

0
1

2
3

4
5

6
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

 

eΔt [T
NEO

]
 

e r,
 ti

m
e 

fo
rm

ul
at

io
n

0

0.005

0.01

0.015

0.02

0.025

 
b) 

Figure 3.22: Sensitivity of the deviation to the eccentricity: a) deviation 
achieved for orbits with different values of eccentricity and for increasing 
values of thrust interval and b) relative error for different values of 
eccentricity. The white line represents 1979XB case (e = 0.726).  

 

Castalia deviation mission 

A deviation mission to asteroid Castalia is designed, considering the 

asteroid at the MOID on the 17th June 2027 (10,029 MJD2000). Note that the 

favourable launch dates (Figure 3.23) recur with the synodic period between the 

Earth and the asteroid. The corresponding values of the initial mass, warning time, 

thrusting interval and magnitude of the achieved deviation are represented in 

Figure 3.24. 
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Figure 3.23: Launch opportunities for a deviation mission to Castalia. The 
colour scale represents the value of the achieved deviation at the MOID. 
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b) 
Figure 3.24: Deviation mission to Castalia: a) Pareto front. Launch mass, 
warning time and magnitude of the deviation are represented on the three axes. 
b) Achieved deviation as a function of the time length of the thrust arc. 

 

Itokawa deviation mission 

A deviation mission to Itokawa is presented (see Figure 3.25), considering 

the MOID interception on the 20th July 2027 (10,072 MJD2000). The orbit of the 

asteroid is almost in the ecliptic plane and its pericentre is close to the Earth’s 

orbit. The mass of the asteroid is  kg, relatively small compared to the 

previous two cases, thus the Pareto front in 

103.5 10

Figure 3.25 contains remarkable 

solutions with initial masses of approximately 1300 kg. A recurrent feature of the 

Pareto front is the periodicity with the angular position of the interception (see 

Figure 3.26b). 
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Figure 3.25: Launch opportunities for a deviation mission to Itokawa. The 
colour scale represents the value of the achieved deviation at the MOID. 
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Figure 3.26: Deviation mission to Itokawa: a) Pareto front. Launch mass, 
warning time and magnitude of the deviation are represented on the three axes. 
b) Achieved deviation as a function of the time length of the thrust arc. 

 108



Chapter 3. Low-thrust NEO deflection 

 

3.4. Summary 

In this chapter, a solution to the asteroid deviation problem in the case of a 

low-thrust deviating action is proposed. The proximal motion equations are used 

to compute the achieved deviation at the minimum orbit intersection distance, and 

semi-analytical formulae are derived to calculate the total variation of the orbital 

elements at the end of the thrust arc. The proposed semi-analytical formulation is 

proven to provide a significant savings in computational time with respect to the 

direct numerical integration of Gauss’ equations. In particular, for the latitude 

formulation, the savings in computational time is up to 1 order of magnitude. The 

time formulation displays a lower savings, because the accuracy requirements are 

quite stringent for the specific application to NEO deviation. Nonetheless, for very 

expensive calculations, such as the generation of the Pareto sets that require 

several hundred of thousands of function evaluations, the semi-analytical 

formulae allow the generation of double the number of Pareto sets in the same 

computational time. Moreover, the gain in speed is not compensated by an 

equivalent loss in accuracy. The results in the chapter show that the relative error 

on the variation of the orbital elements is small for a push interval longer than one 

orbital period and remains small for long spirals. On the other hand, for shorter 

periods, numerical integration has to be used because it produces more accurate 

results. Finally, the proposed semi-analytical formulae are accurate for a wide 

range of values for eccentricities, semi-major axis and accelerations, suggesting 

their use for the fast generation of first guess solutions for long escape or capture 

spirals.  

The chapter presents some applications of the semi-analytical formulation to 

the generation of sets of Pareto-optimal solutions for the design of mitigation 

missions to asteroid Apophis, 1979XB, Castalia, and Itokawa. For all the 

asteroids, a wide range of launch opportunities are found between 2010 and 2030, 

with an achieved deviation that grows above the Earth–Moon distance for warning 

times above 20 years. For shorter warning times, between 3 to 5 years, the 

achievable deviation is of the order of the radius of the geostationary orbit. The 

value of the achieved deviation presents a periodic trend with the true anomaly of 

the interception point; in particular, when the eccentricity of the asteroid is high, 
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an interception before the pericentre is significantly more effective than an 

interception after the pericentre. 

 



 

Chapter 4.  

Comparison of mitigation strategies 

for hazardous NEOs 

Over the last few years, the possible scenario of an asteroid threatening to 

impact the Earth has stimulated an intense debate among the scientific community 

about possible deviation strategies [8]. This chapter presents a comparative 

assessment of some of the more feasible mitigation schemes proposed in the 

literature (i.e., kinetic impactor, nuclear interceptor, mass driver, solar collector, 

low-thrust attached propulsion, and gravity tug). A mathematical model of each 

strategy, which outputs the deflection action applied to the asteroid as a function 

of the mass available at the interception point, is implemented. The formulations 

described in Chapter 2 and Chapter 3 are used to translate the impulsive or low-

thrust manoeuvre applied to the asteroid in a variation of its displacement at the 

point of minimum orbit intersection distance. The transfer trajectory from Earth to 

the interception of the target is modelled through preliminary design techniques. 

For each deflection scheme, a multi-criteria optimisation method is adopted 

to construct a set of Pareto-optimal solutions that minimise both the mass of the 

spacecraft at launch and the warning time, while simultaneously maximising the 

deviation at the MOID. A dominance criterion is then defined and used to 

compare all the Pareto sets of the different mitigation schemes. This approach 

allows assessing the effectiveness of the strategies proposed in the literature, 

based on set of hundreds of potential missions, instead of choosing a single 

hypothetical mission case. In Appendix B the technology readiness of each 

strategy is evaluated and used to recompute a more realistic value for the required 

warning time. 
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4.1. NEO deflection strategies model 

The effect of the various deviation strategies on the asteroid can be 

modelled either as an impulsive variation of its velocity (e.g., kinetic impactor, 

nuclear explosion, mass driver considered as a multi-impulsive strategy), or a 

slow-push on the asteroid with a continuous momentum change (e.g., solar 

collector, asteroid tug, gravity tractor). To evaluate the performance achievable 

with each deviation strategy, a set of mathematical models is exploited. Each 

model yields the total impulse imparted to the asteroid as a function of the mass 

available at the asteroid interception. The general form of the strategies model for 

an impulsive deviation strategy is 

  NEO, ,d df m t id v  (4.1) 

and for a low-thrust deviation strategy is 

  NEO, , ,d i ef m t t ida  (4.2) 

where  is the mass of the spacecraft at the NEO interception, which is defined 

as the mass available, after the transfer Earth–asteroid, to alter the trajectory of the 

celestial body, and  is the asteroid identification number that is used to 

identify the orbital and physical properties of the NEO. The deflection manoeuvre 

is imparted to the NEO as an impulsive 

dm

NEOid

 v  at , or as a continuous acceleration 

 over the interval 
dt

a it te  (where  is set equal to  in this analysis, with 

the exception of the attached spacecraft propulsion strategy). 

et MOIDt

The system design and the mathematical models of the deflection schemes, 

represented by Eq. (4.1) and Eq. (4.2), were developed by Sanchez, and a 

comprehensive explanation can be found in [126],[137]. In the following we will 

not describe the mathematical derivation of the models and the detailed 

explanation of the physical phenomena taken into account. However, all the 

strategies considered will be briefly introduced and qualitatively described to 

provide a good understanding of the deflection schemes and some of the 

assumptions made for the mathematical formulation. Particular emphasis will be 
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placed on the mass margin added (usually on the transformation from the mass of 

the spacecraft at the asteroid interception to the mass available for the power 

system) to emphasise the conservative approach, in accordance with other studies 

and some in-flight experimental data. Subsections 4.1.1 and 4.1.2 are also 

intended to explicit the interaction between the outputs of the action models and 

the formulation for computing the consequent deviation at the MOID. 

Among the variety of NEO mitigation options proposed in the literature, six 

strategies are selected for this study, namely kinetic impactor, nuclear interceptor, 

mass driver, attached spacecraft propulsion, solar collector, and gravity tractor. 

However, the technique proposed in the following for the comparative assessment 

can be used to compare more strategies not included here. 

4.1.1. Impulsive action 

Kinetic impactor and nuclear interceptor represent the most common 

impulsive deviation strategies. Both schemes count on a spacecraft that intercepts 

the asteroid and impacts against it (i.e., kinetic impactor) or delivers a nuclear 

warhead which explodes in vicinity of it (i.e., nuclear interceptor). In both cases, 

the strategy performance is function of the transfer trajectory, not only in terms of 

the time in advance the asteroid is intercepted, but also because the direction of 

the deflecting impulse depends on the arrival condition of the spacecraft at the 

target object. Deflection through mass drivers, even if having an effect 

comparable to other low-thrust deflection strategies, can be modelled as a series of 

impulsive changes in the asteroid velocity. 

Kinetic impactor 

A spacecraft (or another small celestial body) is inserted into an orbit that 

intersects the asteroid course and will collide with the NEO at high relative 

velocity. This is the simplest concept of hazard mitigation, partially tested by the 

mission Deep Impact [28] and proposed for the ESA asteroid deflection precursor 

mission Don Quijote [37]. Through the collision, the asteroid linear momentum is 

modified; the spacecraft kinetic energy is transferred to the NEO, and this effect is 

enhanced by the ejection of surface material expelled as a consequence of crater 

formation after the impact. 
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The collision is modelled as a simple inelastic impact and a momentum 

enhancement factor   is introduced to take into account the amplification of the 

momentum change due to the ejected materials. A conservative value of 2   is 

chosen in this analysis [48],[138]. The variation of velocity imparted by the 

impactor spacecraft is given by Eq. (2.16) here reported: 

 
 NEO

d

d

m

m m
  


v v  

where  is the mass of the spacecraft at the interception point and  the 

mass of the asteroid. The relative velocity of the spacecraft with respect to the 

asteroid at the deviation point 

dm NEOm

v  is computed from the solution of a Lambert’s 

problem [71]. Consequently, the direction of the  v  provided depends on the 

characteristics of the transfer trajectory. The variation in orbit geometry is 

computed with the first five equations in Eqs. (2.2) and Eq. (2.4), and the NEO 

deviation at the MOID is computed through Eq. (2.1). 

Nuclear interceptor 

Mitigation through nuclear detonation ensures the highest energy density 

compared to other options. The strategy considered in this study consists of a 

nuclear warhead that is detonated at a certain distance from the asteroid. The 

energy transferred to the asteroid is mainly carried by debris from the explosion, 

x-rays, gamma, and neutron radiation [139]. Because the neutron radiation is the 

most efficient in terms of material evaporation, a fusion device [126], which 

maximises this interaction, is selected. The total impulsive manoeuvre is 

composed by: 

 radiation x-rays debris neutrons       v v v v v  

and is directed along the spacecraft velocity vector with respect to the asteroid at 

the end of the interception transfer trajectory. The variation in orbit geometry is 

computed with the first five equations in Eqs. (2.2) and Eq. (2.4), and the NEO 

deviation at the MOID is computed through Eq. (2.1). 
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The mass of the nuclear device considered in this study is 30% of the dry 

mass of the spacecraft at the end of the transfer trajectory. 

Mass driver 

One or more spacecraft, equipped with a mass driver and drilling device, 

land and anchor to the asteroid surface. The NEO linear momentum is modified 

by the ejection of the surface material that is drilled out and accelerated away 

from the asteroid by an electromagnetic rail gun. In this way the spacecraft power 

is converted into kinetic energy, by exploiting in-situ resources [52],[140]. 

The total effect on the asteroid orbit can be described as a series of multi 

impulsive manoeuvres. The change in velocity of the asteroid for each shot is 

determined through the law of conservation of momentum: 

 shot, 

NEO ( )
j

j

m
v

m t
  ev  (4.3) 

where  is the mass expelled per shot by the mass driver device and  is the 

excess velocity of the ejected material, estimated to be 200 m/s, within the range 

100–300 m/s given in the literature 

shot, jm ev

[67],[140]. The total mass of the NEO  

decreases at every shot. The frequency of the shots is computed assuming that the 

spacecraft lands on the asteroid equator, the rotational axis of the body is 

perpendicular to its orbital plane, and such that the material is ejected every time 

the mass driver device is pointing along the optimal direction (see Section 

NEOm

2.1.1). 

The mass expelled per shot  depends on the total power converted 

from electric to kinetic, considered to be 30% of the available power (the 

remaining part represents mechanical losses) and 30% of the mass at the 

interception is allocated to the power system. The mathematical model of the mass 

driver provides the frequency of shots and the magnitude of each impulse 

shot, jm

jv  that 

is given to the asteroid along the direction that optimises the instantaneous 

deflection. The mass driver is in operation from the interception time  up to  

(where  is set equal to  in this analysis). 

it et

et MOIDt
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At each shot, the finite variation of the orbital elements of the asteroid is 

computed with Eqs. (2.2) and Eq. (2.4) substituting jv  given by Eq. (4.3), and 

the new set of orbital parameters must be calculated before the subsequent 

impulsive action. The mean anomaly after each shot and before the following 

mass ejection is computed from the first of Eqs. (2.5) and Kepler’s equation is 

solved for the osculating eccentric anomaly and the true anomaly, by the Newton 

method described in [71]. The deviation at the MOID, computed through Eq. (2.1) 

is a function of the total variation of the orbital parameters over the operational 

time. 

4.1.2. Low-thrust action 

All low-thrust actions need the rendezvous of a spacecraft with the 

hazardous object. By timing the pushing manoeuvre or controlling the hovering 

position, the deflection action acts along the optimal direction (see Section 3.1.1). 

Mitigation through in-situ spacecraft propulsion presents the issue of anchoring to 

the target surface, whereas solar collector and gravity tug do not require an 

attachment mechanism to the asteroid, hence are less influenced by its shape and 

spinning properties. 

Attached spacecraft propulsion 

Among the strategies to divert the orbit of the NEO, one option considers a 

spacecraft attached to the surface of the asteroid. The linear momentum of the 

hazardous object is perturbed by the thrust given by the propulsion system of the 

spacecraft. Any propulsion system could be exploited (e.g., electric or chemical 

engine, or non-conventional systems like solar sails). 

In this study a spacecraft powered by an electrical engine is considered, 

because, compared to a chemical engine, it requires less propellant mass to 

achieve the same deviation of the asteroid. The system consists of two engines 

with  situated at opposite spots along the equator of the asteroid. By a 

proper schedule of the thrusting period of each engine, a quasi-constant thrust 

with correct pointing can be obtained. A scattering factor takes into account the 

misalignment from the optimal thrust direction. 

3000 sspI 
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In this case, the mass of the spacecraft at the end of the transfer trajectory 

includes the system mass and the propellant mass for the deviation phase. The 

mass available for the power subsystem is 50% of the dry mass. The total 

variation of the NEO orbital elements is computed through the numerical 

integration of Eqs. (3.3) over the thrust interval and Eq. (3.4), with an acceleration 

along the direction defined in Section 3.1.1, with a magnitude given by the 

following expression 

    
engine

NEO

t
m m




T
a

t
 

where  is the constant thrust provided by the attached engine, and  is 

the mass of the spacecraft. The mass consumption for the deflection phase is 

computed with the equation 

engineT  m t

 
engine

0sp

dm

dt I g
 

T
 

Sanchez at al. [126] showed that, fixing the available mass of the spacecraft 

system and the maximum period of time for the application of the low-thrust 

deflection manoeuvre  MOIDit t , thrusting continuously over the whole interval 

 MOIDit t

MOIDt t 

 is not necessarily more efficient than thrusting for a shorter interval 

 with higher levels of thrust. In fact, the comparison of the deviation 

achieved adopting the continuous-thrust strategy against the deviation by means 

of a scheduled-thrust strategy suggests a pushing manoeuvre that commences at  

and stops after the last pericentre passage before 45% of the total available time. 

This result is implemented in the model used for the present analysis. 

it

it

Solar collector 

The use of solar ablation for mitigation of threatening NEOs was first 

proposed by Melosh [56]. A big inflatable mirror is used as light collector, 

focusing sunlight onto the surface of the asteroid. The high energy concentration 

over a limited area causes the ablation of the surface and the evaporating material 
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produces a gas jet that acts as the plum of exhaust gases of a conventional 

propulsion system. 

The solar collector system design accounts for 30% of the dry mass of the 

spacecraft mass at rendezvous with the NEO for the inflatable structure and 

attachments. The model of the deviation strategy computes the evaporation flux 

NEOdm dt  from the illuminated area of the asteroid surface, and from there it 

derives an expression for the magnitude of the deviating acceleration (its direction 

is specified in Section 3.1.1): 

  
 

NEO

NEO

dm
V

dtt
m t

  
a  (4.4) 

where V  is the average velocity of the particles in the evaporated jet and   is a 

factor that takes into account the dispersion of the particles in the ejecta plume. 

Eq. (4.4) is substituted into Eqs. (3.3) and (3.4), and they are numerically 

integrated, together with the equations of the asteroid mass consumption on the 

surface due to sublimation, to compute the total variation of orbital parameters. 

Gravity tractor 

Another option that does not require the direct contact between the 

spacecraft and the NEO is the gravity tractor. The mutual gravitational attraction 

between the asteroid and the spacecraft can be exploited to move the NEO away 

from its orbit [54]. A spacecraft hovers at a constant distance from the asteroid, 

with a configuration such that the exhaust gases from the engine do not impinge 

the asteroid’s surface. In this way there is an escape of mass from the NEO–

spacecraft system and an acceleration acting on the asteroid given by 

    
2

Gm t
t

d
a  (4.5) 

where  is the universal gravity constant, d the hovering distance and m is the 

mass of the spacecraft that is computed through the equation 

G
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engine

0sp

dm

dt I g
 

T
 

where the total thrust of the engine has to counteract the gravitational pull, slanted 

by an angle   between the pointing direction of the engines, and the line between 

the spacecraft and the NEO centre of mass. 

 
 

NEO
engine 2 cos

Gm m t

d 
T  

Eq. (4.5) is substituted into Eqs. (3.3) and (3.4), and they are numerically 

integrated to compute the total variation of orbital parameters. 

The gravity tractor model considers 50% of the spacecraft mass at the 

asteroid available for the power system. 

4.2. Transfer trajectory 

To perform a comparative assessment of the various deflection strategies, an 

entire mission from launch to final mitigation is modelled. The transfer trajectory 

determines the available mass at the target interception for sizing the deflection 

system; moreover, the arrival conditions at the end of the transfer path influence 

to various degrees the efficiency of the mitigation schemes. 

The transfer trajectory is designed through different preliminary design 

techniques, considering a two-body problem, with the Earth and the asteroid as 

point masses with no gravity. The Earth ephemerides are computed through 

analytic ephemerides which approximate JPL ephemerides de405*, and the 

ephemerides of the target asteroids are computed from their orbital elements. 

A chemical engine with 315 sspI   is selected for mitigation missions by 

means of kinetic impactor and nuclear interceptor. The transfer trajectory is 

modelled through Lambert’s problem [71], and the propellant mass is determined 

from  at the Earth. 0v

                                                 
* Data available online at http://naif.jpl.nasa.gov/naif/pds.html [Retrieved 28 January 2009]. 
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 0
0

0

1 expp
sp

v
m m

I g

        
 

For the remaining mitigation schemes (i.e., mass driver, attached spacecraft 

propulsion, solar collector, and gravity tractor) an electrical engine is selected 

with . The trajectory is modelled through the shape-based method 3000 sspI 

0m

 

[118],[136], briefly described in Section 3.3.2. In this case the initial mass of the 

mission  is selected as a parameter of the optimisation, hence the computation 

of the propellant mass in Eqs. (3.21) is substituted by the following expression 

 
0

0
0

1 exp
fL

p
spL

dt
m m dL

I g dL

  
    
    


u

 

where L      indicates the true longitude,  and 0L fL  represent the initial 

and final true longitude of the trajectory, and  is the control acceleration vector. u

In both cases, the spacecraft is assumed to be at time  at the Earth with 

zero relative velocity and initial mass . The mass available at the asteroid for 

performing the deflection phase is equal to 

0t

0m

0 pm m . 

4.3. Multi-criteria optimisation problem formulation 

The optimality of each strategy is defined through a number of criteria or 

objectives that have to be attained. Unlike single objective problems, multiple 

objective problems look for a set of optimal values rather than a single optimal 

one. The general problem is to find a set X  of feasible solutions x  such that the 

property  P x is true for all X D x : 

  | ( )X D P x x  

where the domain  is a hyper-rectangle defined by the upper and lower bounds 

on the components of the vector : 

D

x
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  | ,  1,...l u
i i i iD x x b b i n        

where the index i indicates the components of x  and n is the total number of 

components.  and  indicate, respectively, the lower and the upper bound on 

the i-component. 

l
ib u

ib

All the solutions satisfying the property P are defined to be optimal with 

respect to P or P-optimal and X can be said to be a P-optimal set. 

Multiple objective optimisation 

In the case of multi-objective optimisation, if P is a dominance condition or 

Pareto optimality condition for the solution , then the solution is Pareto-optimal 

if  is true. According to the definition, a set of parameters is Pareto-optimal 

if there exists no other feasible vector of variables which would decrease some 

criterion without causing a simultaneous increase in at least one other criterion

x

 P x

†. 

Each solution vector  is associated with a scalar dominance index  such 

that: 

jx  d jI x

  ( ) |  d j p k jI k k N  x x  x  

where the symbol  is used to denote the cardinality (i.e., number of elements) of 

a set,  represents the dominance of the solution  over the solution , and 

 is the set of the indices of all the feasible solutions in the population. 

 kx jx

pN

The solution  dominates solution  if all the components of criteria or 

objectives vector  associated to  are better (i.e., lower in the case of a 

minimisation) than all the components of the criteria or objectives vector  

associated to  (i.e., strong dominance). 

kx

 kJ x

jx

 kx

 jJ x

jx

                                                 
† This definition is valid in the case of a minimisation. When a multi-objective 

maximisation is performed, a set of parameters is Pareto-optimal if there exists no other feasible 
vector of variables which would increase some criterion without causing a simultaneous decrease 
in at least one other criterion. Note that in Section 4.3 all the definitions will be given for a 
minimisation problem; in the case of a maximisation problem, all the definitions have to be 
accordingly changed. 
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      1,...k j i k i j i m   x x J x J x  

where the index i indicates the components of  J x  and m is the total number of 

components of the vector objective function  J x . 

The property  P x  in this case simply defines non-dominated solutions: 

  | ( ) 0dX D I x x   (4.6) 

This definition gives not one unique solution, but a set of not-dominated 

solutions, that generate the Pareto front. 

For constrained problems, the property  P x  has to be true and all the 

solutions of the not-dominated set must be feasible, i.e., the constraint must be 

satisfied: 

   constrained | ( ) 0  0dX D I C   x x x   

where   0C x  represent the constraint. 

The search of the P-optimal sets X, for each strategy, is performed here 

through a multiagent-based search approach hybridised with a domain 

decomposition technique developed by Vasile [133]. 

Single objective optimisation 

In the case of single-objective optimisation‡, the set X contains all the 

solutions that are local minima or are below a given threshold. Because we are 

looking at local minima solutions, the property  P x  is to be a local minimiser, 

or a solution  can be said to dominate the solution x  if the associated value of 

the objective function . 

*x

   *J Jx x

    * *J J x x x x  (4.7) 

For constrained problems, all the solution * Xx  must also be feasible: 

                                                 
‡ The single-objective optimisation is used in Section 2.2.3; however we include it in this 

subsection to introduce the formulation of the optimisation problem all at once. 
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  * 0C x  

In order to construct the set X, a systematic sampling of the solution space 

along with a local minimisation started for each sampled point would be 

computationally expensive. Therefore, the problem is tackled through a more 

efficient domain decomposition technique hybridised with a stochastic global 

optimisation method [116],[117]. During the optimisation process, the overall 

domain is partitioned in smaller subdomains and in each of them a search is 

performed and the solutions found are saved in memory. The solutions stored in 

the archive are prevented to crowd in a single solution (feature controlled by a 

crowding parameter) to identify several local minima rather than only the global 

one. For these reasons, when the optimisation process is ended more than one 

single result is available. 

Now property P may not identify a unique set, therefore we can define a 

global optimal set oX  such that all the elements of oX  dominates the elements of 

any other X. 

  * * *| ( )   oX D P X     x x x x  x  

where the symbol  represents the dominance of the solution  over the solution 

. Because we are looking at a minimum, the solution  is said to dominate the 

solution  if Eq. 

 *x

x *x

x (4.7) is verified. In this case oX  would contain the global 

minimum or a set of global minima all with the same value of  *xJ . 

4.4. Objective function definition 

To define the optimality of each strategy a multiple objective minimisation 

is performed, according to three figures of merit§: 

 0min wm t      x
r r  (4.8) 

                                                 
§ Note that the three terms of Eq. (4.8) are properly scaled within the optimisation process. 
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The mass in space  is the wet mass at the Earth after launch. Even if the 

strategies were modelled with a very conservative approach, an additional margin 

on the initial spacecraft mass was added to take into account the corrective 

manoeuvres required during both the transfer leg and the deflecting arc. The 

margins, reported in 

0m

Table 4.1, are set considering the actual technology level of 

the different strategies. Note that the effective mass available for the transfer 

trajectory and the deflection manoeuvre is the total mass  diminished by the 

percentage margin in 

0m

Table 4.1, according to the strategy under consideration. 

 
Table 4.1: Margins on the wet mass into orbit for the different deviation 
strategies. 

Deviation strategies Margin on the mass at launch 
Kinetic impactor 5% 
Nuclear interceptor 15% 
Mass driver 25% 
Attached spacecraft propulsion 25% 
Solar collector 25% 
Gravity tug 25% 

 
The second component of the vector objective function Eq. (4.8) is the 

warning time  that is the interval between the launch date and the 

time at the MOID. The encounter time  is fixed as the first date the asteroid 

reaches the minimum orbit intersection distance from the Earth orbit after 1 

January 2029 at 00:00 hrs (10,592.5 MJD2000). Note that the Earth is not 

necessarily at the MOID at ; on the other hand the aim of this analysis is to 

measure the achieved deviation and not to reproduce a real impact scenario. 

MOID 0wt t t 

MOIDt

MOIDt

The third component to be maximised is the total deviation at the MOID 

 r r , where  is the MOID distance and r r  is computed by means of 

Gauss’ equations and relative motion equations, through the action model 

described in Section 4.1. As already stated, for the hypotheses of the proximal 

motion equations to hold true, the relative orbit radius r  must be small 

compared with the nominal orbit radius r. For this reason, the maximum 

acceptable deviation is set equal to the Earth–Moon distance, as this is considered 

a sufficient distance to ward off the threat of an impact. Note that the total 

deviation is chosen as figure of merit and not the ability of a particular deflection 
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strategy to avoid the keyholes [132]; in this case a smaller r  would be enough to 

produce significant results. 

For the mass driver, low-thrust attached propulsion, solar collector, and 

gravity tug strategies the direction of the  v  change or the acceleration is given in 

the direction that maximises the deviation r  and the sign of the optimal 

manoeuvre (i.e.,  v  or  v ) is chosen to maximise the total deviation at the 

MOID  r r  (see Section 2.1.1). 

The three figures of merit in Eq. (4.8) give an estimate of size, cost, time, 

and effectiveness of a mitigation mission; the initial mass strongly determines the 

required launch capabilities and the cost of the mission, the warning time is a 

measure of the time in advance the mission has to be planned, and the deviation 

achieved can be used to compare the effectiveness of the various strategies. 

The problem is to find the Pareto-optimal set X given in Eq. (4.6), in other 

words, a set of non-dominated solutions according to the three criteria in Eq. (4.8). 

The general from of the solution vector x  in the case of high-thrust transfer 

(modelled through Lambert’s arc) is 

  0 0 trm t ToF dx  

where  is the mass at launch (comprehensive of mass margin),  is the launch 

date,  the time of flight, and  is an index equal to 0 or 1 identifying a 

direct or retrograde arc. In the case of a low-thrust transfer model (with the shape-

based method described in Section 

0m

ToF

0t

trd

3.3.2) the solution vector also contains the 

number of revolutions around the Sun and the two shape parameters for the low-

thrust arc**. 

  0 0 rev 2m t ToF n 3 x  

Note that the low-thrust transfer case requires also the satisfaction of the 

constraint on the time of flight given by Eq. (3.22) and reported here: 

                                                 
** The first shape parameter of the shape-based method is automatically determined inside 

the trajectory modelling algorithm. 
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0

:  
fL

ToF

L

dt
C dL ToF

dL
  10 days  (4.9) 

Each solution X D x

oF

 represents an entire mission, which launches from 

the Earth at  with initial mass , intersects the asteroid at  and 

performs an impulsive manoeuvre, or rendezvous with the asteroid at  

and performs a low-thrust manoeuvre over a continuous pushing time 

 (except for the attached spacecraft propulsion strategy

0t

 0t 

0m 0t ToF

0t T oF

MOIDt t T   ††). 

The search for Pareto-optimal solutions is performed over a wide domain of 

initial masses to represent all different sizes of missions. The launch date is fixed 

between 1000 days and 20 years before the time at which the asteroid reaches the 

MOID, and the time of flight ranges within 25–1000 days. The boundaries of the 

solution vector x  are reported in Table 4.2. 

 
Table 4.2: Search domain for the multi-objective optimisation. 

Element on the state vector Lower bound Upper Bound 
Initial mass [kg] 100 100,000 
Launch date tMOID – 20 years tMOID – 1000 days 
Time of flight [d] 25 1000 
Number of revolutions 0 3 
Shape parameter 2  –1 1 

Shape parameter 3  –1 1 

 

4.5. Deflection mission options 

The following section presents different scenarios for the mitigation of a 

number of selected asteroids. Fixed a target asteroid, the transfer trajectory to 

reach it from Earth is modelled through preliminary design techniques (see 

Section 4.2); subsequently, six deflection strategies (presented in Section 4.1) are 

applied to increase the displacement of the asteroid at the MOID. For each 

mitigation scheme, a set of Pareto-optimal deflection missions is computed 

according to the objective function in Eq. (4.8). The concept of dominance is 

proposed to perform a comparison of the various deflection strategies, according 

                                                 
†† In the case of the attached spacecraft propulsion strategy: .  0MOIDt t t ToF   
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to the three criteria of the optimisation. In Appendix B the technology readiness of 

each system is included in the analysis, by adding to the warning time the time 

delay necessary for the required technology to be completely viable. 

4.5.1. Targets selection 

The effectiveness of a given deviation strategy depends on the orbital and 

physical characteristics of the NEO it is applied to; for this reason, four asteroids 

are chosen for the multi-criteria analysis (see Table 4.3 and Figure 4.1). Apophis 

belongs to the Aten class (i.e., with semi-major axis smaller than Earth's: 

 and apocentre distance ); because of the uncertainties on 

its orbit after the next encounter with Earth in 2029, it is often selected as a case 

study for the ongoing discussion on the available options for its deflection. The 

other asteroids selected for this study, Itokawa, Castalia, and 1979XB, belong to 

the Apollo class (i.e., Earth-crossing objects with semi-major axis larger than 

Earth's:  and pericentre distance 

1 AUa 

a

0.983 AUar 

pr1 AU 1.017 AU ) group and differ for 

their mass and orbital elements. Other physical characteristics that influence the 

performances of the action models are the density and the rotational speed of the 

asteroid‡‡. The interested reader can refer to [126],[137] for further information 

on the asteroid model. Note that the nominal MOID of the Apollo class asteroids 

is quite big; this means that the three asteroids do not currently represent a real 

impact hazard to our planet. However, the aim of this analysis is to present a 

qualitative comparison of the different deflection strategies and not to reproduce a 

real impact scenario. The same technique presented in Section 4.3 can be applied 

to other study cases. 

 
Table 4.3: Asteroids orbital and physical parameters. 

Asteroid 
Semi-major axis 

[AU] 
Eccentricity Inclination 

[deg] 
MOID 
[km] 

Mass 
[kg] 

Apophis 0.92 0.19 3.33 30,706 4.6×1010 
Itokawa 1.32 0.28 1.62 2,769,832 3.5×1010 
Castalia 1.06 0.48 8.9 3,013,439 1.4×1012 
1979XB 2.35 0.73 25.14 3,725,733 4.4×1011 

 

                                                 
‡‡ A density of 2.5 g/cm3 is taken for all the asteroids, whereas the rotational period of the 

four asteroids is respectively: 30.54 hrs for Apophis, 12.13 hrs for Itokawa, 4.07 hrs for Castalia, 
and 10 hrs for asteroid 1979XB. 
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Figure 4.1: Orbit of the selected asteroids: a) 2D view, and b) 3D view. 

4.5.2. Pareto fronts 

A convenient representation of the result of each deflection strategy is the 

Pareto front, constituted by all the optimal solutions that have lower cost (i.e., 

lower mass and warning time and higher total deviation) than points 

corresponding to other choices of parameters. Figure 4.2–Figure 4.5 present the 

Pareto fronts for the mitigation of asteroid Apophis, Itokawa, Castalia, and 

1979XB, respectively, by means of all the deflection schemes analysed. Each 

black dot represents a complete preliminary design for a mission that launches 

from Earth, intercepts the asteroid and applies a deflection manoeuvre. To 

improve the visualisation of the Pareto fronts, for each figure an interpolating 

surface has been generated from the scattered set of Pareto optimal solutions. The 

x and y axis represent the first two components of the cost function Eq. (4.8), 

initial mass  and warning time ; on the z axis the deviation 0m wt r  is reported. 

The shape of the Pareto fronts is mostly dependent on the mitigation 

strategy used. NEO orbital characteristics, size and rotational period also model 

the surface of the Pareto front, sizing it and slightly changing the inclination and 

position in the criteria space. Some common features can be recognised in the 

Pareto fronts for all the asteroids, in particular the linear or quadratic increase of 

the deviation with the initial mass (directly related to the models of the strategies), 

and the periodicity along the warning time axis, which is related to the transfer 

trajectory and the angular position of the interception point where a variation of 

the asteroid velocity is more effective. Note that for low-thrust propulsion, the 

 128



Chapter 4. Comparison of mitigation strategies for hazardous NEOs 

 

concentration of the solutions along stripes on the  axis is due to the constraint 

of the time of flight in Eq. 

wt

(4.9); in fact it was verified that the points are more 

spread if this constraint is relaxed (however, in that case the solutions would not 

be feasible). 

Apophis deviation mission 

The mitigation scenario considered for asteroid Apophis is identified by a 

close encounter with the Earth on the 14th April 2029 (10695.8 MJD2000). 

Figure 4.2 presents the Pareto fronts for the mitigation of asteroid Apophis 

by means of all the deflection schemes analysed. The range of initial masses and 

warning times covered by the solutions in the Pareto fronts is similar for all 

strategies and depends on the boundaries on the optimisation parameter vector . 

The range of achievable deviation, on the other hand, gives an idea of the 

capability of each mitigation scheme. 

x

The strategies that exhibit the best results for almost all the asteroids 

considered are the solar collector and the nuclear interceptor (see Figure 4.2e and 

b); in fact, they reach the limit set on the maximum deviation (equal to the 

Earth−Moon distance) for small values of the wet mass and warning time. Note 

that, the two schemes are completely different, as the deviation is achieved 

through a continuous thrust arc in the former case, or through an impulsive change 

of the linear momentum in the latter case. The mass driver strategy (see Figure 

4.2c) shows a satisfactory performance, reaching the maximum deviation in some 

cases; even if this scheme is modelled as a multi-impulsive-action, its effect is 

analogous to a continuous thrust manoeuvre. Strategies like kinetic impactor, 

attached low-thrust propulsion, and gravity tractor present deviation ranges of one 

order of magnitude less than the one achievable with nuclear interceptor and solar 

collector; a deviation of approximately 10,000 km is reached for values of initial 

mass and warning time close to the maximum considered. 
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a) Pareto front for the deviation of asteroid Apophis through 
kinetic impactor. 

 
b) Pareto front for the deviation of asteroid Apophis through 
nuclear interceptor. 
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c) Pareto front for the deviation of asteroid Apophis through 
mass driver. 

 
d) Pareto front for the deviation of asteroid Apophis through 
attached spacecraft propulsion. 
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e) Pareto front for the deviation of asteroid Apophis through 
solar collector. 

f) Pareto front for the deviation of asteroid Apophis through 
gravity tractor. 
 

Figure 4.2: Pareto front for the deviation of asteroid Apophis through different 
strategies: a) kinetic impactor, b) nuclear interceptor, c) mass driver, d) 
attached spacecraft propulsion, e) solar collector, and e) gravity tractor. 
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Itokawa deviation mission 

The asteroid Itokawa is at the MOID point on the 5th February 2029 (10,628 

MJD2000). The Pareto fronts of the optimal solutions by means of the various 

deflection schemes are reported in Figure 4.3. The solar collector and nuclear 

interceptor reach also in this case the maximum limit set on the deviation, 

followed by the mass driver strategy. In all the Pareto fronts the stripes along the 

 axis are due to the choice of the best condition for the transfer trajectory and 

the interception point. 

wt

In this case few solutions exist for the kinetic impactor strategy for low 

value of masses and warning times. The reason is that, unlike the other strategies, 

the performance of kinetic impactor and nuclear interceptor are strongly related to 

the arrival condition at the asteroid. Since we optimise  r r  instead of only 

r , the ideal optimal direction of the  v  change is determined also in its sign 

(i.e.,  v  or  v ), but the real direction (when the transfer trajectory is included 

in the optimisation) could be far from the ideal one. In a real impact scenario 

0 r , hence the sign of the impulsive manoeuvre (but not its direction) is less 

influential because either  v  or  v  achieve a similar value of  r r . 

Due to the size and orbital elements of the asteroid Itokawa, the gravity tug 

is less performing than the low-thrust attached propulsion and kinetic impactor. 
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a) b) 

c) d) 

e) f) 
Figure 4.3: Pareto front for the deviation of asteroid Itokawa through different 
strategies: a) kinetic impactor, b) nuclear interceptor, c) mass driver, d) 
attached spacecraft propulsion, e) solar collector, and e) gravity tractor. 
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Castalia deviation mission 

The mitigation scenario for asteroid Castalia considers the asteroid at the 

MOID on the 25th August 2029 (10,829 MJD2000). The Pareto fronts for all the 

deflection strategies are presented in Figure 4.4. The values of deflection achieved 

are generally lower than the other scenarios due to the high mass of the asteroid. 

For such a big asteroid only few strategies could be implemented to achieve a 

significant deflection. Its orbit is also considerably different from the Earth’s and, 

for this set of orbital elements, chemical transfers (simply modelled as Lambert’s 

arcs) do not allow meeting the most favourable conditions for an impulsive 

manoeuvre. 
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a) b) 

c) d) 

e) f) 

Figure 4.4: Pareto front for the deviation of asteroid Castalia through different 
strategies: a) kinetic impactor, b) nuclear interceptor, c) mass driver, d) 
attached spacecraft propulsion, e) solar collector, and e) gravity tractor. 
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1979XB deviation mission 

Figure 4.5 presents the Pareto front for a set of mitigation missions to 

asteroid 1979XB, which is at the MOID on the 20th May 2030 (11,097 MJD2000). 

The kinetic impactor has higher performances than the low-thrust attached 

propulsion and gravity tug strategies; because of the high eccentricity and 

inclination, an intercepting trajectory is more efficient in term of propellant 

consumption than a rendezvous with high relative velocity. 

a) b) 

c) d) 

e) f) 
Figure 4.5: Pareto front for the deviation of asteroid 1979XB through different 
strategies: a) kinetic impactor, b) nuclear interceptor, c) mass driver, d) 
attached spacecraft propulsion, e) solar collector, and e) gravity tractor. 
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4.5.3. Multi-criteria analysis 

The effectiveness and efficiency of each strategy are expressed through a set 

of Pareto-optimal points. To compare one strategy against the others we can 

define the concept of dominance of one Pareto set over another: an element (or 

solution belonging to the Pareto set) k of strategy A is said to be dominated by an 

element j of strategy B if all the components of the vectorial objective function  

are better (smaller) than all the components of the vectorial objective function , 

where: 

B
jJ

A
kJ

 1, 2, , ...
TA A A A

k k k m kJ J J   J  

The dominance index    ,
A
kd A BI x  of an element k of strategy A with respect to 

strategy B is the cardinality of the set of elements of the Pareto front of strategy B 

that dominate the element k. 

      , |  A B B
k p jd A BI j j N  x x  A

kx

m

 (4.10) 

where the dominance symbol  in Eq.  (4.10) means that all the not equal 

components of  are better than the components of  (i.e., simple dominance): B
jJ A

kJ

  (4.11) , ,  1,...B A B A
j k i j i k i   x x J J

If the dominance index    ,
A
kd A BI x  associated to an element k of strategy A is 

zero, it means that there is no element of the Pareto front of strategy B that 

dominates the element k. 

We can say that strategy  dominates strategy  if the percentage of 

elements of A that are dominated (i.e., with dominance index  different 

than zero) by B is less than the percentage of the elements of B that are dominated 

by A. 

As Bs

 
 

,
A

d A BI x
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where  is the total number of the solutions in the Pareto front of strategy  

and  is the total number of solutions in the Pareto front of strategy . 

AN

B

As

N Bs

The dominance of the different strategies is shown in Table 4.4–Table 4.7 

for the mitigation of asteroid Apophis, Itokawa, Castalia, and 1979XB, 

respectively. Chosen an asteroid, the numbers contained in the table are the 

percentages of dominance of one deviation strategy over another one. The value in 

each cell represents the percentage of elements of the strategy in the 

corresponding row that dominate over the elements of the strategy in the 

corresponding columns. For example in Table 4.4 (Apophis), 100% of the 

elements of the Pareto front of the nuclear interceptor dominate over the elements 

of the Pareto front of the mass driver mitigation strategy. Only 8% of the solutions 

of the Pareto front of the nuclear strategy dominate the elements of the solutions 

of the solar collector. The bold style in some cells of the tables indicates when one 

strategy clearly dominates over the other strategy in the corresponding column. In 

most of the cases, the sum of the percentage in a given cell with the percentage in 

the cell symmetric with respect to the diagonal is not 100 because the points on 

the Pareto set are not uniformly distributed, hence it could happen that 100% of 

points of one strategy are dominating only on a small fraction of points of the 

other set. Another reason is that the definition of dominance used in the 

comparison between two strategies is true also in the case of equality of two 

components [i.e., simple dominance, see Eq. (4.11)]. These figures have an 

inherent margin of error since the Pareto sets for each strategy are only composed 

of a finite and discrete number of elements. More accurate numbers can be 

computed by increasing the number of solutions, uniformly distributed, in each 

Pareto set. 
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Table 4.4: Strategy dominance for asteroid Apophis. 

 
Kinetic 

impactor 
Nuclear 

interceptor 
Mass driver 

Attached 
propulsion 

Solar 
Collector 

Gravity 
Tractor 

Kinetic 
impactor 

– 0 1 17 0 78 

Nuclear 
interceptor 

100 – 100 100 8 100 

Mass 
driver 

100 0 – 100 0 100 

Attached 
propulsion 

100 0 0 – 0 100 

Solar 
Collector 

100 98 100 100 – 100 

Gravity 
Tractor 

74 0 0 0 0 – 

 
Table 4.5: Strategy dominance for asteroid Itokawa. 

 
Kinetic 

impactor 
Nuclear 

interceptor 
Mass driver 

Attached 
propulsion 

Solar 
Collector 

Gravity 
Tractor 

Kinetic 
impactor 

– 0 0 95 0 100 

Nuclear 
interceptor 

100 – 100 100 63 100 

Mass 
driver 

100 1 – 100 0 100 

Attached 
propulsion 

54 1 0 – 0 100 

Solar 
Collector 

100 64 100 100 – 100 

Gravity 
Tractor 

11 0 0 0 0 – 

 
Table 4.6: Strategy dominance for asteroid Castalia. 

 
Kinetic 

impactor 
Nuclear 

interceptor 
Mass driver 

Attached 
propulsion 

Solar 
Collector 

Gravity 
Tractor 

Kinetic 
impactor 

– 0 0 79§§ 0 96§§ 

Nuclear 
interceptor 

100 – 100 100 0 100 

Mass 
driver 

100 11 – 100 0 100 

Attached 
propulsion 

87 0 0 – 0 96 

Solar 
Collector 

100 100 100 100 – 100 

Gravity 
Tractor 

87 0 0 14 0 – 

 

                                                 
§§ In this case, the numbers indicating the percentage dominance of the kinetic impactor 

over the low-thrust attached propulsion and the gravity tug are not very reliable, because the points 
of the Pareto front for the deflection mission of Castalia through kinetic impactor are concentrated 
in a small area of the range of masses and warning time. 
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Table 4.7: Strategy dominance for asteroid 1979XB. 

 
Kinetic 

impactor 
Nuclear 

interceptor 
Mass driver 

Attached 
propulsion 

Solar 
Collector 

Gravity 
Tractor 

Kinetic 
impactor 

– 2 9 76 3 99 

Nuclear 
interceptor 

100 – 100 100 61 100 

Mass 
driver 

97 2 – 100 2 100 

Attached 
propulsion 

7 3 0 – 3 100 

Solar 
Collector 

100 25 99 99 – 100 

Gravity 
Tractor 

5 5 0 0 2 – 

 
The comparison tables confirm the dominance of nuclear interceptor and 

solar collector strategies over the other options. The solar strategy is better 

performing than the nuclear interceptor for asteroids Apophis and Castalia, 

whereas the nuclear impactor achieves higher deviations (for the same values of 

masses and warning times) than the solar collector scheme for the asteroid 

1979XB. In fact the orbit of asteroid 1979XB has high eccentricity and 

inclination; for this reason, it is hardly accessible for a rendezvous mission. 

Moreover, it goes far from the Sun, hence the exploitation of the solar radiation is 

less efficient. The mass driver system usually achieves better results over the 

whole domain than the kinetic impactor, low thrust attached propulsion and 

gravity tug strategies. The gravity tug strategy is usually dominated by all the 

other options; however it dominates the kinetic impactor over some regions of the 

domain in the case of Apophis, Itokawa and Castalia. In particular, the increased 

mass of Castalia (with respect to the other asteroids) penalises to a greater degree 

the kinetic impactor with respect to the gravity tug strategy, the reason for this 

being intrinsic to the system model [137]. The kinetic impactor has good 

performances for the Itokawa scenario, whereas it is particularly outperforming 

with respect to the low-thrust attached propulsion and the gravity tug in the case 

of asteroid 1979XB, because of its high eccentricity and inclination. 

In Appendix B the multi-criteria analysis is performed considering as 

additional criterion the Technology Readiness Level (TRL) of each deflection 

strategy as a measure of the expected practicability in the near future. 
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4.6. Summary 

In this chapter, different strategies to deviate dangerous NEOs are 

compared. The formulation described in Chapter 2 and Chapter 3 is used to 

compute the variation of the MOID due to a given impulsive or low-thrust 

deviation strategy. The performance of each strategy is evaluated in terms of 

warning time, wet mass of the spacecraft at the Earth, and achievable deviation at 

the MOID; a set of Pareto optimal solutions is computed according to these three 

criteria for each asteroid mitigation scenario. The sets of Pareto optimal solutions 

for each strategy are then compared by defining the dominance of one Pareto set 

over another. Moreover, in Appendix B, the technology readiness level of each 

system is taken into account by adding to the warning time the time needed to 

fully develop the required technology. 

This preliminary comparison shows that the solar concentrator and nuclear 

interceptor are generally dominant. The solar collector strategy remains a 

competitive technology even after technology readiness considerations (see 

Appendix B). On the other hand, kinetic impactor can still be a very reasonable 

option for small asteroids, as it is able to achieve deviations of several Earth radii 

with an affordable mass. The definition of the TRL factor is, of course, arbitrary 

and is subject to the actual development of each specific piece of technology that 

composes a given strategy. However, for the kinetic impactor no technology 

development is required at present and it is therefore the only strategy already 

available. The percentage of dominance for the other methods, instead, is 

expected to change according to the future investment in one technology or the 

other. 

On the other hand, it has to be noticed that NEO mitigation through 

impulsive action presents the risk of fragmentation of the asteroid in pieces that 

could still impact the Earth causing damage. A more accurate comparison would 

require taking into account the contingency of fragmentation of the asteroid due to 

an impulsive deflection action [51]. Moreover, a more complete reproduction of 

the actual Pareto sets would provide more accurate figures for the percentage of 

dominance and more criteria could be used for the multi-criteria optimisation, 

such as mission cost and robustness of the deflection action. 
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Finally the analysis presented in this chapter is limited to a small group of 

asteroids. A more exhaustive analysis comprising a larger group of asteroids is 

currently being performed and will give an indication on the most effective 

strategy for a given class of asteroids [126]. 

 



 

Chapter 5.  

Optimal low-thrust trajectories to 

asteroids through an algorithm based 

on differential dynamic programming 

In the previous chapters families of optimal solutions for potential 

deflection missions to NEOs have been generated, each one representing a 

complete mission with a specific launch date and transfer time. The global search 

for launch opportunities is performed using simplified models for the trajectory 

and considering a two-body dynamics; in particular the preliminary design of the 

low-thrust trajectory is performed through a shape-based approach [118],[136], 

which provides an estimation of the required propellant mass. 

As a second stage, the first guess solutions of the Pareto fronts can be 

refined and the transfer trajectory can be designed using more accurate models of 

the dynamics. In this chapter, an optimisation algorithm based on Differential 

Dynamic Programming (DDP) is developed and applied to the design of 

rendezvous and fly-by trajectories to near Earth objects. Differential dynamic 

programming is a successive approximation technique that computes a feedback 

control law in correspondence of a fixed number of decision times. In this way the 

high dimensional problem characteristic of low-thrust optimisation is reduced into 

a series of small dimensional problems. The proposed method exploits the stage-

wise approach to incorporate an adaptive refinement of the discretisation mesh 

within the optimisation process. A particular interpolation technique is used to 

preserve the feedback nature of the control law, thus improving robustness against 

some approximation errors introduced during the adaptation process. The 

algorithm implements global variations of the control law, which ensure a further 

increase in robustness. The results presented here show how the proposed 
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approach is capable of fully exploiting the multi-body dynamics of the problem; 

in fact, in one of the study cases, a fly-by of the Earth, which was not included in 

the first guess solution, is scheduled. 

Section 5.1 introduces the classical DDP approach, whereas Section 5.2 and 

5.3 present the modified method. The DDP algorithm is applied in Section 5.4 to 

refine the transfer trajectory of the solutions of one of the Pareto fronts presented 

in Chapter 3. Section 5.5 contains an analysis of some mission opportunities for 

the rendezvous and fly-by of a selected number of asteroids; for these transfers 

also the escape phase is considered, hence the three-body dynamics model is used. 

Some solutions with a long time of flight and a high number of spirals will also be 

presented. 

5.1. Differential Dynamic Programming 

Differential dynamic programming, firstly introduced by Jacobson and 

Mayne in 1969 [111], is a successive approximation technique for finding the 

optimal control of a non-linear system. It overcomes the issue of dimensionality 

linked to dynamic programming [112], by introducing in the optimisation process 

a linear-quadratic approximation of the cost function in the neighbourhood of the 

nominal trajectory. 

Given a nominal control strategy, each iteration of DDP produces, through 

the backward propagation of the difference Bellman equation, a feedback control 

strategy which is forward propagated, to give an improved trajectory and a 

reduction in the cost function. The control laws, produced within successive 

iterations, approach the optimal control solution of the problem. 

5.1.1. Differential dynamic programming for trajectory 

optimisation 

The standard DDP technique works with two variable classes: the system 

state vector  ts  and the dynamic control vector  tu . A low-thrust trajectory is 

characterised by a continuous-time dynamics. However, for solving the low-thrust 

optimisation problem through DDP, the discrete-time approach is usually adopted; 
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the continuous-time problem is transcribed in a discrete-time system and 

approximated by difference equations. Given a sequence of controls   , the 

resulting trajectory    is computed by the recursive formula: 

1

N

k k
u

1

1

N

k k




s

 
 1

1 1

, ; 1,...,k k k kt k  



s f s u

s s

N
 (5.1) 

where 1s  is the initial condition at time , which is assumed fixed and f  is the 

discrete-time state transition function, which expresses the state vector at time 

 as a function of state and control vector at the previous time step. We define 

 as the stages of this problem, i.e., the decision times over which the 

control law is allowed to change. 

1t

1k 

1,k  ..., N

The optimisation problem is described by a cost function to be minimised; 

we define the cost function of a trajectory with initial condition 1s  and control 

schedule    as: 
1

N

k k
u

    1
1

; ,
N

k k
k

J g


u s s u ;k kt  (5.2) 

where g represents the scalar stage-wise loss function of  k, ;k k ts u . Eq. (5.2) 

corresponds to the integral term of the cost function for the continuous-time 

problem. The optimisation problem is to determine the sequence of control 

 that minimises Eq.   1

N

k k
u (5.2) under certain constraints. The constraints 

considered at this point are equality constrains on the final state: 

  1 1;N Nt  φ s 0  (5.3) 

where the final time  is supposed to be given explicitly. The constrained 

optimisation is converted into an unconstrained one by including Eq. 

1Nt 

(5.3) into the 

cost function in Eq. (5.2) through a time invariant set of Lagrange multipliers  λ

[120]: 
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      1
1

; , ;
N

T
k k k k N

k

J g t  


  u s s u λ φ s 1 1; Nt  (5.4) 

If we try to minimise Eq. (5.4) through dynamic programming, we need to apply 

Bellman’s principle of optimality for discrete-time systems [111]: 

      1 1min , ;
k

k k k k k k kV g t V     u
s s u s  (5.5) 

Eq. (5.5) gives the optimal return function at stage k,  k kV s , defined as the cost 

  ;k kJ u s   associated to the segment of the trajectory starting at point , if the 

optimal control policy is employed (see 

ks

Figure 5.1). 

 
 

t 1t 1Nt 
 

s  

ku
 

kt
 

ks

 
Figure 5.1: Dynamic programming approach. 

 

The value of  results from the minimisation of the optimal return 

function at stage  added to the term of the k-stage-wise loss function g. 

Starting from the final condition at the end-point of the trajectory: 

 k kV s

1k

    1 1 1 1;T
N N N NV t    s λ φ s  

dynamic programming requires the solution of Eq. (5.5) from stage N backward to 

stage 1. The limitation of dynamic programming for continuous problem is the 

high dimensional problem resulting from the application of Eq. (5.5) to every 

stage k. In fact this is equivalent to finding a family of optimal solutions, one from 

each different initial point , 1,...,k k Ns . 

In order to overcome this computational limitation, differential dynamic 

programming applies the principle of optimality in the neighbourhood of a 

nominal trajectory. At each stage k, the full expression of the stage-wise cost 
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function g and the optimal return function from the next iteration onward  are 

replaced by their quadratic approximation about the current nominal control and 

trajectory. 

1kV 

The state and control vectors at each discretisation step can be written as a 

variation from their nominal values: 

 k k k

k k k




 
 

s s s

u u u
 (5.6) 

where the superscript dash indicates the nominal conditions. With this notation, 

  1

N

k k
u  is the nominal control profile and   1

1

N

k k




s  the corresponding trajectory, 

obtained by the integration of Eqs. (5.1) under the nominal control   1

N

k k
u . 

Said  QP   the linear and quadratic part of the Taylor expansion of a 

generic function, differential dynamic programming reduces Eq. (5.5) to: 

      1 1 1min , ;
k

k k k k k k k k k k k
u

V QP g t V


             s s s s u u s s  (5.7) 

Similarly to the procedure for solving Eq. (5.5), the solution of Eq. (5.7) is 

performed backward in time, from the final stage N to the initial stage 1, the 

boundary condition at  being: 1Nt 

    1 1 1 1 1 1;T
N N k N k NV s QP s t          s λ φ s  

The necessary requirement is that the new control sequence should produce small 

variations in the state vector such that the linear-quadratic approximation in Eq. 

(5.7) holds true. This may be achieved even with a big variation in the control 

action, as long as the time duration of this variation is small. This means that the 

new control  does not need to be restricted to the neighbourhood of ku ku , 

therefore the second of Eqs. (5.6) can be modified as follows: 

 *
k k k u u u  (5.8) 
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where the global variation in the nominal control ku  to  is computed by 

minimising Eq. 

*
ku

(5.7), where the nominal trajectory ks  is substituted: 

      
* 1 1min , ;
k

k k k k k k kV QP g t V      u
s s u s  (5.9) 

Therefore the linear-quadratic expansion of Eq. (5.5) is now evaluated about the 

point  *,k ks u : 

      *
1 1 1min , ;

k
k k k k k k k k k k k

u
V QP g t V


     

        s s s s u u s s  (5.10) 

This hypothesis was implemented in an algorithm that employs global variations 

in the control, hence strong variations in the state [111],[120]. 

The necessary condition to minimise the right hand side of Eq. (5.10) is to 

set to zero its first derivative with respect to the control. This leads to the 

definition of a feedback strategy of the form: 

 k k k  u β s  (5.11) 

The variation in control is expressed as a function proportional to the state 

variation. Eqs. (5.9) and (5.10) are computed backward in time for every stage 

 and the coefficient  is constructed and stored in memory. ,...,1k N kβ

At this point, the trajectory is swept forward in time, for every stage 

: the successor control policy  is constructed and the new trajectory 

is propagated through the state transition function f , with the initial condition 

1,...,k  N ku

1s : 

 

 
 

*

1

1 1

, ; 1,...,

k k k k k

k k k kt k

   


 
 

u u β s s

s f s u

s s

N  

A posteriori we need to verify that the variations of the control do not break 

the assumption of linear-quadratic approximations in Eq. (5.10). To this purpose, 

a method was proposed by Jacobson and Mayne [111] and later refined by 
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Gershwin and Jacobson [120], to determine the section of the trajectory over 

which the new control strategy can be applied. 

The nominal control is applied over an initial segment of the trajectory, up 

to step , afterwards the new strategy is adopted: limk

 
lim

*
lim

1,..., 1

,...,

k

k

k k k

k k

k k N

  
 

u
u

u β s
 (5.12) 

The resulting control law and the associated trajectory are represented 

respectively in Figure 5.2 and Figure 5.3: 

 

k 1 N
 

u ku

limk
 

nominal control new control law 
 

Figure 5.2: Control law schedule according to Jacobson’s algorithm. 
 

 

1s  

nominal trajectory 

new trajectory 
limks

1Ns

1N s

 
Figure 5.3: Trajectory associated to the control law in Eq. (5.12). 

 

The guess value of  is initially set to 1 and is progressively increased, 

until an improvement in the value of the cost function 

limk

  1;kJ u s  with respect to 

its nominal value   1;u s kJ  is registered. This procedure is called step-size 

adjustment method. 

In summary, the core of the DDP technique consists in a backward recursion 

followed by a forward recursion. A nominal trajectory and control policy are 
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required as input and an improved control law and trajectory are provided as 

output, which ensures a decrease of the value of the cost function. Successive 

iterations of the backward and forward recursions produce control laws that 

progressively approximate the optimal control of the problem. Figure 5.4 depicts 

the history of the control magnitude during the convergence process for a direct 

transfer from Earth to Mars. The value of  selected at the first iteration of the 

algorithm is close to the number of discretisation steps N and tends to 1 as 

convergence is reached. 

limk
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Figure 5.4: Control law during the convergence process. Direct transfer Earth 
to Mars, with a time of flight of 200 days. 

 
The algorithm has quadratic convergence under the assumption that the 

Hessian matrix of the cost function is positive definite [141]−[143]. 

In the following subsections, the fundamental DDP algorithm is derived, in 

the case of end-point equality constraints. The purpose is to give a concise 

exposition of the original method upon which the one proposed here (see Section 

5.2) is based on. We report it here because the algorithm derivation is useful to 

understand the algorithm itself and in order to summarise some part of the theory, 

presented in different references: the algorithm derivation with global control 

variations by Jacobson and Mayne [111], the end-point constraints algorithm by 

Gershwin and Jacobson [120], and the matrix algorithmic exposition by Yakowitz 
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and Rutherford [113]. For the entire demonstration the reader should turn to the 

source references. 

The fundamental DDP algorithm 

In this subsection we derive the fundamental DDP algorithm, for an 

unconstrained problem, starting from the general formulation presented in the 

previous section. Both sides of Eq. (5.10) are expanded in Taylor series about the 

point  *,k ks u : 

 

   

 

1

1 1
1 1 1 1 1

1
min , ;

2
1 1

2 2
1

2

k

T k k
k ss k s k k k k k k k k k

k k T k T k T k
s k u k k ss k k uu k k us k

k T k
k k s k k ss k

V V V g t

V V V


  

       

  



 
    

      

     

   

u
s s s s s u g

g s g u s g s u g u u g s

s s s s



 (5.13) 

where  is defined as the difference between the optimal return function 

obtained by applying 
k

N

j j k
u  from the state ks  until the end of the trajectory, and 

the nominal cost computed by using  N

j j k
u  from the state ks  until the end of the 

trajectory: 

    k k k k kV V  s s  (5.14) 

Analogously we define    1 1 1 1k k k k kV V      s 1s , whereas  *, ;k k kg g t  s u k

 , ;k k kg s u t . The left-hand side of Eq. (5.13) contains linear and quadratic 

terms of ks  and the right-hand side contains linear and quadratic terms of ks , 

ku  and 1k s , where: 

 
   *

1 1 1 , ; , ;

1 1

2 2

k k k k k k k k k k k

k k T k T k T k
k s k u k k ss k k uu k k us k

t t  

       

        

     

s s s f s s u u f s u

f f s f u s f s u f u u f s
 (5.15) 
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with   *, ; , ;k k k k k kt  f f s u f s u kt

T 

. By substituting Eq. (5.15) into Eq. (5.13) 

and by grouping the terms of the same order, the resulting equation can be written 

in a matrix form: 

  (5.16) 

1 1 1

min
k

T T T
k k k k k k k k k k k k k k k

T T T
k k k k k k k k k k k


        

    

   

         

u
s P s Q s s A s u C u u B s

s E u D g Q f f P f



where some matrices are introduced for clarity purpose. 

 

1

2

1

k
k ss

k
k s

V n

V n

n 

 

P

Q

 

denote the linear and quadratic part of the Taylor expansion of the optimal return 

function at stage k. The matrices , , ,  and , instead, contain the 

derivatives of the stage-wise loss function g and the state transition function f  at 

stage k, and the derivatives of the optimal return function of the next stage 

forward . If  and  are respectively a 

kA kB kC

m

kD

1

kE

1kV  ku ks   and 1n  vector, we define ug  

and sg  to be respectively the 1 m  and 1 n  gradient of the scalar cost function g 

with respect to the components of the control and the state vector; uug , ssg  and 

sug  represent the block components of the Hessian matrix of g respectively of size 

,  and . Said mm n n nm  , ; ktk kf s u  the state transition matrix, we denote 

with  and uf sf  the Jacobian of f  with respect to u  and s  of size  and n m n n  

and with , uuf ssf  and  the blocks components of the Hessian matrix of f  

respectively of size , 

usf

m m n n n n   and n m n  . All the above quantities are 

evaluated at  *,k ks u . 
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1 1 1
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1 1 1
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j
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E g f f f
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1 k

 (5.17) 

Note that the last terms of the matrices ,  and  have to be rewritten in 

order to represent a quadratic form respectively with respect to   , 

 and  . Moreover the matrices ,  are symmetric. 

kA kB kC

C

,k k s s

 ,k k s u ,k k u u kA k

The constant part of Eq. (5.16) , instead, can be grouped in: 

 1 1
T

k k k k k k k         g Q f f P f  (5.18) 

with the final condition: 

 1 0N   (5.19) 

The value of  in Eq. *
ku (5.8) is computed by solving the minimisation problem on 

the right hand side of Eq. (5.9), which is equivalent to solving the right hand side 

of Eq. (5.16) for ks  and ku set to zero: 

 
* 1min
k

T
k k k k k k 1       

u
g Q f f P f  (5.20) 

As a consequence at  the following condition is satisfied: *
ku

 1 1 1 11
0 0

2
k T k k k k T k k

u k s k k ss k u s u k ss u kV V V V                    
g f f f g f f f D 0  
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Once  is computed, Eq. *
ku (5.16) can be solved with respect to ku

k

. The 

necessary condition for the minimisation of Eq. (5.16) with respect to u  implies 

that: 

 11
2 0

2k k k k k k k k       C u B s u C B s  (5.21) 

Eq. (5.21) gives the coefficient  of the feedback control law in Eq. kβ (5.11): 

 11

2k k k m n β C B   (5.22) 

The variation in control in Eq. (5.21) can be substituted back in Eq. (5.16) and by 

grouping the terms of the same order we obtain: 

 
11

4

T
k k

T
k k k k





 

Q E

P A B C Bk

 (5.23) 

with the final conditions: 

 
 

 

1 1

1 1

;

1
;

2

T
N N N s

T
N N

1

1N ss

t

t

  

  

   

   

Q λ φ s

P λ φ s
 (5.24) 

Eqs. (5.20), (5.17), (5.18), (5.22), and (5.23) are computed backward in time for 

every stage  with the final condition Eqs. ,...,1k N (5.19) and (5.24) at stage 

N+1 and the coefficient   1

N

k k
β  is stored in memory for the forward propagation. 

DDP ensures an improvement at each iteration under the condition that the 

Hessian of the cost function, i.e., the matrix  is positive definite. In case this is 

not verified, different procedures can be applied (see 

kC

[144],[111],[113],[145]). 

The one implemented in this work replaces the matrix , for the computation of 

Eq. 

kC

(5.22), with the positive definite matrix 

  
min2k k m  C C  (5.25) 
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where min  is the minimum eigenvalue of the matrix  and  the identity 

matrix of size m. The condition on the matrix  is even more stringent; in fact, 

in order to achieve a sufficient descent direction at each iteration, the matrix  

should also be far from being non-positive definite 

kC  m

mi

kC

kC

[146]; hence the active shift 

Eq. (5.25) is applied, also in case the minimum eigenvalue n , although 

positive, is smaller than a given small positive value (10-6 is usually adopted). 

Once the backward propagation is terminated, the trajectory is swept 

forward in time, for every stage 1,...,k N ; the new control policy is given by 

Eq. (5.12) and the corresponding trajectory is computed by Eq. (5.1). The value of 

 in Eq. limk (5.12) has to be chosen such that the following condition is satisfied, c 

being a constant between 0 and 1. 

      
lim1 1; ;k kJ J c k  u s u s  (5.26) 

where   1;kJ u s 

ut

 is the value of the cost function associated to the new control 

law, computed with Eq. (5.4). Following to the definition in Eq. (5.14),  is 

used as a measure of the predicted change in cost applying the control law Eq. 

limk

(5.12). 

A single iteration of DDP is composed by the backward and the forward 

recursion that produce an improved control law and trajectory. A number of 

iterations follow one after the other, until the stopping condition 

 1 o    (5.27) 

is verified, being  a fixed threshold. out

Treatment of the terminal equality constraints 

The terminal constraints are added to the cost function through a set of 

Lagrange multipliers  to give the Lagrange function in Eq. λ (5.4). 

Here we follow the method proposed by Gershwin and Jacobson [120]. At 

first Eq. (5.4) is minimised fixing the value of the Lagrange multipliers λ . 

Successive iterations of DDP follow until the convergence criterion Eq. (5.27) is 
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satisfied. At this point a variation of λ  is allowed, in order to find a control law 

that decreases the constraints violation. Eq. (5.5) is now expanded not only in ku  

and ks  but also in  λ  about the point  *, ,k ks u λ , where λ  is considered to be 

the nominal value of the Lagrange multipliers: 

 

 

 

 

1

1
1 1 1

1 1 1
1 1

1 1

2 2
1

, ;
2

1

2
1 1

2 2

T k T k T k
k s

s

k





g s

λ λ

k

k

k







k k
k ss k s k k k k

k k T k
k k k k k k u k k ss k

T k T k k
k uu k k us k k s k

T k k T k
k ss k k

V V V V V V

g t

V V

V V V

 

 

      

   

    

     




  

  
  

     

        

   

   

s s λ λ s λ s λ s

s u g g u s g s

u g u u g s s s

s s λ s 1
1

T k
sV   λ



 

1

 (5.28) 

Substituting Eq. (5.15) and grouping some terms, Eq. (5.28) can be written in a 

matrix form: 

 

1 1

T T T
k k k k k k k k k

T T T T T
k k k k k k k k k k k k

T T T
k k k k k k

      

      

      

    

  

s S

 

    

s P s λ R λ λ Q s Z λ

s A s u C u u B s s E u D

λ R λ s H λ u K λ Z λ

  (5.29) 

where more matrices are introduced for clarity; respectively on the left side: 

  
1

1

2

k
k

k
k

k
k s

V l

V

V n







 

l l

l

 

 

Z

R

S

 (5.30) 

and on the right side. 

 

 

 
 

1
1

1
1

1
1

1
1

1

2

1

k
k

kT k kT
s

kT
u

f

f

k s s k

kT k
k u s k

k
k

V l l

V n l

V m l

V l





















 

  

  

 

R

H f S

K f S

Z

 (5.31) 
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Note that the variation of Lagrange multipliers is introduced only once an 

optimal control law has been found with λ λ ; as a consequence, from Eq. (5.28) 

*
ku u k  and hence  and 0k g 0k f  . This is equivalent to using the small 

control variation algorithm [111]. Now, by differentiating Eq. (5.29) with respect 

to ku  we obtain: 

 
1 1

2 0

1 1

2 2

k k k k k

k k k k k k

  

   

   

  

C u B s K λ

u C B s C K λ
 

Hence the variation of the control contains also a term proportional to the 

variation of the multipliers: 

 k k k k   u β s γ λ  (5.32) 

The associated coefficient kγ  is computed during the backward recursion and 

stored in memory together with coefficient : kβ

 11

2k k k m l γ C K   (5.33) 

By substituting back Eq. (5.32) into Eq. (5.29) we obtain: 

 

1

1
1

1

1

2
1

4

T
k k k k k

T
k k k k

k k








 

 



S H B C K

R R K C K

Z Z

k  (5.34) 

 

with the final conditions: 

 

 

 

1 1

1

1 1

;

;

T

N s N N

N

N N N

t

t

 



  







S φ s

R 0

Z φ s

1

1



 (5.35) 

 158



Chapter 5. Optimal low-thrust trajectories through an algorithm based on DDP 

 

The backward recursion is performed for every stage ,...,1k N , in which 

the same equations of the main DDP loop are solved, with the addition of Eqs. 

(5.31), (5.33), (5.34), and with the final condition Eqs. (5.35); the coefficients 

 and    are stored in memory.   1

N

k k
β

1

N

k k
γ

At this point we can determine the variation of Lagrange multipliers λ , by 

maximising Eq. (5.28) at  and 1t 1s , with respect to λ  (see [111]); this gives: 

 1 1

1

2
T  λ R Z  (5.36) 

under the requirement that  is negative definite (hence invertible). 1R

The new control law and trajectory are propagated for every stage : 1,...,k N

  1

1 1

, ; 1,...,
k k k k k

k k k kt k

 



  
 
 

u u β s γ λ

s f s u

s s

N  (5.37) 

Also in this case,  λ  has to be verified not to exceed the range of validity of the 

linear-quadratic expansion, hence the constant 0 1   is introduced in Eq. 

(5.36): 

 1 1

1
0

2
T  



1 

 

λ R Z

λ λ λ

 
 (5.38) 

The value of   is chosen, through a linear search method, so that the following 

condition is satisfied [120]: 

 
       

      

1 1 1

2 1
1 1 1 1 1 1

, ; , ;

1 1
; ;

2 2

k k

T

N N N N k

J J

t t reltol J



  
   

  

     
 

u λ s u λ s

φ s R φ s u ; s
 (5.39) 

where  is a relative tolerance. Eq. reltol (5.39) compares the actual improvement 

in the cost function to the one predicted through the linear-quadratic expansion. 

Moreover the change in  has to reduce the violation of the terminal constraints: λ
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    1 1 1 1; ;N N N Nt t    φ s φ s 0  (5.40) 

5.2. Modified DDP method 

When the optimisation problem is not very sensitive, for example when 

designing a two-body problem transfer, the conventional DDP technique, 

described in Section 5.1, can be applied to find the optimal control. However, if 

the problem involves more complex dynamics, such as escape or capture phases, 

or gravity assist manoeuvres, the propagation becomes a crucial point. In 

particular, the use of a time mesh fixed a priori can jeopardise the high fidelity 

representation of the problem; on the other hand, the coupling between the 

integration scheme and the optimisation process must be handled very carefully, 

in order not to compromise convergence. 

The approach proposed in this paper uses a variable step integration method 

for the propagation of the dynamics and the integration mesh is refined at each 

iteration of DDP. 

5.2.1. Discretisation scheme 

The low-thrust continuous problem, characterised by the dynamic system 

 

      
 

0

0 1

, ; f

d t
t t t t t t

dt
t

   



s
f s u

s s


 (5.41) 

where  and 0t ft  define the time interval, is approximated by difference equations 

as shown in Eq. (5.1), where the state transition function  represents the explicit 

scheme for the numerical approximation of Eq. 

f

(5.41): 

 
  1

1 1

, , ; ; 1,...,k k k k k kt h k N  



s f s f s u

s s


 (5.42) 

where  is the discretisation step. Note that in the rest of the chapter the 

dependences of the function f  were written in the simplified form: 

kh
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     , ; , , ; ;k k k k k k k kt tf s u f s f s u h  

In this thesis we use the discrete-time form of DDP; according to this 

approach, the N steps identify both the decision times of the trajectory (i.e., the 

points where the feedback control is computed) and the steps of the numerical 

propagation, as shown in Figure 5.5. 

 
 

t 1t 1Nt 

s  ku
 

kt
  

Figure 5.5: Trajectory discretisation within the optimisation problem. 
 

In a previous application of the discrete-time DDP algorithm to orbital 

transfer, a fixed step size Euler integration scheme was used (see [120]). 

However, such a simple integration scheme is not appropriate when the dynamics 

becomes highly non-linear. In other more recent DDP-based approaches, the issue 

was solved by dividing the trajectory in a number of segments over which the 

thrust is constant [106],[109]. Within a single segment Whiffen integrates 

backward a system of coupled ordinary differential equations which are the 

integral form of the discrete-time DDP matrices, whereas Lantoine and Russel 

introduce a second order state transition matrix to map the propagation of the 

dynamics. In these approaches, decision times and integration steps do not 

coincide. 

In this work, the classical discrete formulation is used (see Figure 5.5) but 

the mesh is discretised with a more accurate scheme than the one adopted by 

Gershwin and Jacobson [120]: a variable step-size Runge-Kutta-Fehlberg 

integration scheme, with a six stage pair of approximation of the fourth and fifth 

order [147]*: 

                                                 
* A Runge-Kutta-Fehlberg integration scheme is selected because it provides higher 

accuracy than first order methods (such as the Euler method) by maintaining a single-step 
structure, however, with an increase of the number of function evaluations for each step. 
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,
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, ;
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r

r k k j r r k k r k
r

t h

h t h j





 






  

     
 





s f s u s b f

f f s a f u c



   
 (5.43) 

where  is the continuous dynamics of the problem, ,  and  the coefficient 

matrices of the integration scheme and  the length of the discretisation step. 

f a b c

kh

Note that the integration scheme Eq. (5.43) is chosen to be explicit, as it 

allows the analytic evaluation of its derivatives which are required in the DDP 

procedure [in Eqs. (5.17) and Eqs. (5.31)]. 

The identity between decision times and integration steps increases the 

computational requirements but ensures high fidelity of the dynamics and allows 

varying the control at each integration step. Note that, if  is kept constant over a 

certain number of discretisation steps, Eq. 

ku

(5.43) reduces to the trajectory model 

used by Whiffen and Lantoine (see Figure 5.6)†. 

 
 

t 1 'N


s  

k

ku

 
Figure 5.6: Trajectory discretisation in the Static/Dynamic Control approach. 
The grey arrows show that the control is kept constant within a segment. 

 

5.2.2. Mesh definition 

If the dynamic system Eq. (5.42) is not correctly integrated, the optimisation 

of the control law could lead to an incorrect solution. This is likely to occur if a 

fixed step size is used. For this reason, in the approach proposed in this thesis, the 

                                                 
† In the SDC approach the trajectory is divided in a number  of constant-thrusted 

periods, and the dynamics is numerically integrated within each single period 

'N

1

'
1 1,...,

k

k

k k dt k N






   s s f  

k  and 1k  indicate the decision times that are the points where the control is allowed to vary. 

Whiffen derives some Riccati-like equations that are the continuous form of Eqs. (5.17), without 
considering the terms linked to the global variations of control. These equations are backward 
integrated from the decision time 1k   up to the previous one k , and, at that point, Eq. (5.21) is 

evaluated. 
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step-size of the integration scheme is adapted at each iteration of the DDP 

algorithm. 

We define a nominal time-mesh grid  N  together with the first guess 

trajectory and control sequences   1

1

N

k k




s  and   1

N

k k
u . The backward and forward 

propagation of DDP are then executed with the nominal mesh. Once a value of 

 is determined, according to condition Eq. limk (5.26), the trajectory selected for 

the next DDP iteration follows, within the range  lim0 k , the nominal path, 

while the segment of the trajectory  
lim

1N

k k k




s  implements the new control strategy 

 
lim

N

ku
k k

, according to Eq. (5.12). The segment  
lim

1N

k k k




s  of the trajectory is 

propagated through the adaptive-step integration algorithm and a new mesh  N  

is defined for   and   . 
lim

1N

k k k




s

lim

N

k k k
u

In order to perform this operation, the control law, which is given on the 

original mesh points, needs to be interpolated in the new points required by the 

integration algorithm. Handling properly the interpolation is essential to preserve 

the DDP performances; in fact a bad interpolation could introduce errors which 

can results in rejecting the control computed by the DDP. 

Two interpolation schemes were adopted in this study; the first one, called 

complete interpolation in the following, directly interpolates the control  
lim

N

k k k
u  

on the new mesh. Recalling Eq. (5.12), the complete interpolation technique 

interpolates the left hand side of Eq. (5.44): 

  *
lim ,...,k k k k k k k N   u u β s s  (5.44) 

The second interpolation technique, although more computationally 

expensive, ensures a higher accuracy. Rather than interpolating the control 

computed on the nominal mesh through the forward recursion  
lim

N

k k k
u , each 

term on the right hand side of Eq. (5.44), namely , , and *
ku kβ ks , is independently 

interpolated. In this way the feedback nature of the control variation computed by 
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the DDP is fully exploited: if the state    moves away from the one 

computed on the nominal mesh  

lim

1N

k k k




s

lim

1N

k k k




s , the term of the control  k k kβ s s  

changes as a consequence. The piecewise cubic spline interpolation method is 

adopted [148]. We will call this technique as term-wise interpolation. 

In some cases (see for example the transfer problem presented in Figure 5.4 

and Sections 5.4 and 5.5.1) the complete interpolation technique is enough to 

reach convergence, whereas in more sensitive and complex cases, the complete 

interpolation introduces small errors in the interpolated control that, propagated 

through a sensitive dynamics, may result in an unrecoverable increase of the final 

constraints violation. For example for the transfer problem presented in Section 

5.5.2, the term-wise interpolation technique was essential to reach the 

convergence. In particular, the section of the trajectory where the spacecraft 

passes close to the Earth’s gravity field, highlighted in Figure 5.26 (see p. 193), 

showed to be very sensitive to the control profile and hence required a very high 

accuracy in the control law interpolation. 

Once the new mesh is defined, an additional test is performed, to assess 

whether the refinement of the mesh did not introduce errors in the dynamics. The 

cost computed with the new mesh   11
;

N

k k
J


u s

 

 must not differ from the cost 

computed with the nominal mesh  11
;

N

k k
J


u s  by a predefined quantity: 

         1 1 11 1 1
; ; ;

N N N

k k mesh k mk k k
J J reltol J reltol

  
  u s u s u s 1esh

                                                

(5.45) 

By using the term-wise interpolation technique, condition Eq. (5.45) was 

always satisfied‡. In the cases in which the complete interpolation technique is 

adopted, Eq. (5.45) is used as verification of the failure of the interpolation 

technique; when that occurs, the DDP mesh refinement is performed again, with 

the term-wise interpolation technique. 

 
‡ This was verified for all the results showed in Section 5.5. 
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Note that the mesh refinement during the optimisation process increases the 

computational time, but only in this way one can ensure that the algorithm 

convergences to a correct solution. 

5.3. Algorithm 

We now report a summary of the algorithm adopted in this work. The 

algorithm is composed by the following steps: 

Initialisation 

A nominal set of Lagrange multipliers λ  and a control law   1

N

k k
u  is given 

as an input to the algorithm; the associated nominal trajectory   1

1

N

k k




s  is 

propagated through Eq. (5.1), where 1s  has also been fixed. The first guess 

trajectory also determines the nominal mesh of the problem  N . The cost 

function   1;kJ u s   associated to the nominal strategy and trajectory is evaluated 

through Eq. (5.4). 

Moreover, the derivatives of the state transition function and the stage-wise 

loss function g are analytically computed. 

Loop1: Control law loop 

Step 1: 

The parameters needed for starting the recursive computation of Eq. (5.16) 

are initialised at step , through Eq. 1N  (5.19) and Eqs. (5.24), computed with the 

nominal value of the Lagrange multipliers λ . 

 
Step 2: Backward propagation performed for each stage k from stage  to stage 

1: 

N

The nominal control ku  is perturbed to the new nominal policy , by 

minimising Eq. 

*
ku

(5.20). The local minimisation of Eq. (5.20) is performed 

numerically, through a subspace trust-region method, based on the interior-

reflective Newton method [149],[150]. The analytical expression of the gradient is 
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supplied. The derivative of the state transition function and the stage-wise loss 

function g are evaluated at  *,k ks u  and the matrices in Eq. (5.17) are constructed. 

Eq. (5.18) represents the forecast of the improvement in the cost function 

associated with stage k, whereas the matrices  and  are computed through 

Eq. 

kQ kP

(5.23) and replaced to the one of the next step forward. The coefficient  is 

computed with Eq. 

kβ

(5.22) and stored in memory for the forward propagation. If 

the matrix  is not positive definite, Eq. kC (5.25) is used for the computation of 

: kβ

 11

2k k k m n  β C B  

 
Step 3: Forward propagation performed from step 1 to step : N

The trajectory is propagated through Eq. (5.1), with the improved control 

law Eq. (5.12). The value of  is determined through Eq. limk (5.26), to provide a 

decrease in the objective function, and to not exceed the range of accuracy of the 

linear-quadratic expansion. The constant c in Eq. (5.26) was set in a value 

between 0.5 and 0.1. 

 
Step 4: 

When a new control sequence  
lim

N

k k
u  is selected, the corresponding leg of 

trajectory is integrated with the adaptive step integration method, by interpolating 

the control through the complete interpolation technique or the term-wise 

interpolation technique, and a new discretisation of the control is obtained 

. The value of the cost function associated to the new discretisation and the 

value computed on the original mesh are compared through Eq. 

 
lim

N

kku

(5.45). The new 

mesh, together with the improved control law and the associated trajectory are set 

as the nominal conditions for the next DDP iteration (Step 1). 
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Convergence Criterion: 

The first loop of DDP is stopped when lim 1k   and the increase of the cost 

function is under a small value, set for stability analysis: 

   1 1
max 1, ;

N

out k k
J

 1
       

u s  (5.46) 

Usually  is set to be around 10-6 but it can be increased up to 10-4 if the 

problem is very sensitive in order to filter the numerical error introduced by the 

integration over a long time of flight. 

out

Loop 2: Equality constraints loop 

Step 5: Backward propagation performed for each stage k from stage  to 

backward until stage 1: 

N

The matrices in Eq. (5.17) and Eq. (5.23) are constructed, together with the 

new matrices in Eq. (5.31) and Eq. (5.34) with the initial condition Eqs. (5.24) and 

Eq. (5.35). All the derivatives are now evaluated at point  , ,k ks u λ . Coefficients 

 and kβ kγ  are computed through Eq. (5.22) and Eq. (5.33) and stored in memory 

for the forward propagation. 

 
Step 6: Forward propagation performed from step 1 to step : N

The value of the Lagrange multiplier vector is updated with Eq. (5.38) and 

the new control law is propagated with Eq. (5.37). The value of   is set according 

to condition Eq.(5.39). 

 
Test on the final constraints 

The violation of the constraints is updated and, if condition Eq. (5.40) is 

verified, the new value of  is set as the nominal one, together with the control λ
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sequence and trajectory; else   is further decreased. The algorithm goes back to 

Step 1 for further DDP iteration. 

 
Stopping condition 

The overall algorithm terminates at the end of loop 1, if condition Eq. (5.46) 

is satisfied and the constraints violation is under a required tolerance. 

The overall algorithm is sketched in Figure 5.7: 
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Final state equality constraints: 
 Backward recursion: same Eqs. as Loop 1 with the addition of Eqs. (5.31), 

(5.33) and (5.34) with the final condition Eqs. (5.35). Coefficients   1

N

k k
β  

and   1

N

k k
γ  stored in memory; 

 Forward recursion: computation of  λ  with Eq. (5.38) and propagation of 

new control and trajectory with Eqs. (5.37); 

 Set  with tests Eq. (5.39) and Eq. (5.40) 

 Nominal control and trajectory discretised on the nominal mesh  N  

 Evaluation of the cost function with the nominal value of Lagrange multipliers λ  

 Computation of the analytic expression of the partial derivatives of f  and g 

Backward Recursion 
for every k from N to 1 with the final conditions Eqs. (5.19) and (5.24) at stage N+1: 
 determination of *

ku  through Eq. (5.20); 

 computation of the derivatives of the state transition function and the cost function 

at  *, ,k ks u λ ; 

 evaluation of Eqs. (5.17), (5.18); 

 the coefficient kβ  is computed through Eq. (5.22) and stored in memory. The 

active shift Eq. (5.25) is applied if the Hessian matrix is not positive definite; 

Forward Recursion 
for every k from 1 to N with the initial condition 1s : 

 computation of the new control law and trajectory through Eqs. (5.12) and (5.1); 

 limk  determined through Eq. (5.26). 

convergence 
criterion Eq. 

(5.46) 

verify final 
constraints Eq. 

(5.40) 

end 

yes 

yes 

no 

no 

 propagation through the adaptive-step integration algorithm; 

 test Eq. (5.45); 
 new control and trajectory sequence set as nominal; 

 
Figure 5.7: Modified DDP algorithm. 
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5.3.1. Heuristics to improve the convergence rate 

As mentioned above, DDP has quadratic convergence if the Hessian matrix 

of the problem is positive definite, i.e., the problem is locally convex. Conversely 

for non-convex control problems, the convergence rate downgrades to linear 

[113]; this is a common difficulty in direct methods as well. 

Within the DDP procedure, this can be diagnosed in different ways; the 

matrix  is not positive definite and the search for the local minimum  of Eq. kC *
ku

(5.20) may fail in Step 2 of the backward propagation. 

Another common issue linked to the inaccuracy caused by the numerical 

approximation of the derivatives through finite-difference [146] is here avoided, 

because the derivatives of the cost function and the state transition function are 

analytically computed; this assures higher accuracy and allows saving 

computational time. 

Moreover, the problem variables were scaled to have the same weight in the 

neighbourhood of the problem solution, thus preventing ill-conditioning of the 

Hessian matrix [146]. 

The cost function chosen for the constrained optimisation problem is the 

Lagrange function in Eq. (5.4). Eq. (5.4) is used both as cost function to be 

minimised and as a merit function to measure a progress of each iteration of DDP 

[151]. Both the expressions of the integral term  and the equality 

constraints 


1

, ;
N

k k k
k

g

 s u t

 1 1;N Nt  s  were chosen to be quadratic forms. For this reason, 

numerical instability may occur if, in the equality constraints loop, any component 

of the Lagrange multiplier  becomes negative. λ

Different heuristics were introduced in order to improve the convergence 

rate or to speed up the optimisation process. When the search of the local 

minimum  of Eq. *
ku (5.20) fails, in Step 2 of the backward propagation, the 

nominal control ku  is used in place of , in the following of the k-iteration. As a 

consequence the new control is restricted to be in the neighbourhood of the 

nominal strategy, according to: 

*
ku
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 k k k k u u β s  

Anyway, only a limited number of iterations are allowed to fail in the search of 

the control . After a fixed number of iterations fail, the backward propagation is 

broken, and the value of limk r initialising the step-size adjustment method is set 

equal to the last value of the index k. In this case, the algorithm with global 

control variations showed to be very efficient, because, if at a given iteration k of 

the backward propagation the problem is locally non-convex, we do not need to 

terminate the backward propagation up to Step 1. 

*
ku

 fo

t w

Another heuristic is adopted when, in the equality constraints loop, any 

component of the Lagrange multiplier  becomes negative. The negative 

component itself is set to zero and the value of the integral term of the objective 

function  is multiplied by a weight parameter : 

λ


1

, ;
N

k k k
k

g

 s u 

 
 
 

1 1

1 1

;

;

T
N N

T
N N

t
w

t
 

 





λ φ s

λ φ s
   

where  indicates the original Lagrange vector, and  is the modified one, where 

the negative component is set to 0. 

λ λ

The end-point constraints loop may terminate without a decrease of the 

constraints violation, if condition Eq. (5.39) and Eq. (5.40) are never satisfied for 

any value of  . If this occurs, rather than stopping the process, a trial value of  

is set and the algorithm continues with Loop 1. 

λ

 
    1 1

1 1
2

1

10 ;
;

T
N N

N Nl

j
j

t
t






 
 



 
  



λ s
λ λ s  

Finally an important consideration on the convergence rate of the process 

can be made. The algorithm with global control variations usually converges 

faster than the traditional small control variations algorithm [113], especially 

when far from the optimal solution. 
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This was verified on the design of the trajectories presented in Section 5.5. 

With the small control variations algorithm, it was necessary to resort to a 

continuation technique on the specific impulse, whereas it was possible to find 

directly the final solution with the global control variations algorithm. However, 

the convergence of the global control variations algorithm becomes slower, as the 

value of  decreases. This is handled by switching to the small control variations 

algorithm, when close to the convergence within the first DDP loop, and 

switching back to the global control variation algorithm, once the value of λ  is 

modified by the end-point constrains loop. 

1

5.4. Local refinement of low-thrust trajectories 

The intent of this section is to show the application of the algorithm based 

on DDP to the local refinement of the low-thrust transfer trajectories presented in 

Chapter 3 and Chapter 4. In particular, the deflection mission scenario of asteroid 

Apophis will be considered. 

As in Section 3.3, a set of missions are computed for the interception and 

deflection of asteroid Apophis via a low-thrust powered spacecraft and a solar 

concentrator strategy. The interception and the deflection phase are optimised 

together through a global search [116],[133] and the low-thrust transfer is 

preliminary designed with a shape-based method [118]. The low-thrust transfer is 

modelled considering the Sun as the only gravitational body (i.e., two-body 

problem), assuming zero velocity at the Earth’s sphere of influence§. Moreover, a 

25% of margin is added to the spacecraft mass at launch. Although the very same 

approach of Section 3.3 is here used for the trajectory model and the global search 

of optimal solutions, the parameters of the mission scenario are slightly different 

from the parameters presented in Section 3.3; hence we report them here for 

clarity** (see Table 5.1). A spacecraft equipped with a solar mirror with a 

                                                 
§ In Section 3.3, instead, a maximum hyperbolic excess velocity of 3.5 km/s was allowed. 
** Note that a different choice of mission parameters such as the specific impulse, the 

relative velocity at the Earth, and the time at the MOID does not alter the purpose of this section. 
The DDP-based algorithm can be applied to perform the local refinement of all the low-thrust 
transfer options presented in Chapter 3 and Chapter 4. 
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diameter of 100 m and a dry mass  of 895 kg is considered dm

3250

[135]. The 

spacecraft is launched at a time , selected in a range of 20 years before the 

possible collision, and is equipped with an engine delivering an unlimited thrust 

with a constant specific impulse of 

0t

I ssp   [88]. 

 
Table 5.1: Mission characteristics. 

spI  3250 s 

md  100 m 

dm  895 kg 

Margin on  0m 25% 

,maxv  0 km/s 

 MOID 0 max
t t  20 y 

 
The result of the global search to identify candidate solutions for an 

interception and deviation mission to Apophis is reported in Figure 5.8. The 

asteroid is assumed at the MOID on the 15th May 2036 (13,284 MJD2000). The 

three axes of the Pareto front are related to the components of the objective 

function in Eq. (3.19), respectively the initial mass , the warning time , and 

the magnitude of the deviation 

0m wt

r . Note that, being the final mass at the asteroid 

interception fixed, the initial mass depends on the propellant mass for the transfer 

leg. As already pointed out at page 95, a mission making use of a solar collector 

of 100 m achieves deviations of the order of 106 km, in a time range of 20 years, 

whereas solutions with 1000 days of warning time have a deviation of about 

20,000 km. 
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Figure 5.8: Pareto front for a deviation mission to asteroid Apophis. 

 
To verify the propellant mass estimation computed through the global 

search, 80 solutions of the 500 points of the Pareto set in Figure 5.8 were locally 

optimised with the DDP-based method. The two-body dynamics is used to 

describe the motion of the spacecraft: 

 Sun
3

0sp

d

dt
d

dt mr

dm

dt I g




 

   


  


r
v

v T
r

T

 

where Sun  is the Sun gravitational constant, spI  the engine specific impulse, and 

 the standard free-fall. The variables of the problem are the state vector 

, made of position, velocity (expressed in a Sun-centred 

Cartesian reference frame) and mass of the spacecraft, and the control vector, 

made of the three components of thrust along the coordinate directions . 

The cost function used for the minimisation through DDP is 

0g

  ts r m
T v

 t u T

     2

1
1

1
;

2

N
T T

k k k k N
k

J w h 


    T s T T λ s s 1 target  (5.47) 
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where w is a weight factor and 1k kh t t k 

λ

 the integration interval at step k. The 

second term of Eq. (5.47) includes the rendezvous condition at the asteroid 

through the Lagrange multipliers vector . The time constraints of each mission 

are set equal to the launch dates found through the global search; therefore, the 

locally optimised solutions have the same launch date and time of flight as the 

Pareto points, but a different thrust profile [i.e., the optimal thrust profile for the 

minimisation of Eq. (5.47)] and a different propellant mass. Figure 5.9 highlights 

the point of the Pareto set which were refined with the DDP-based algorithm. The 

black points belong to the original set of solutions and the red points are the 

corresponding solutions after the local optimisation. The propellant mass is 

determined by the DDP-based algorithm starting from the first guess solution, 

then the initial mass is computed with Eq. (3.20). In most of the cases, the initial 

mass required to achieve the same asteroid deviation decreases with the 

refinement of the solution. 
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Figure 5.9: Points of the Pareto front locally optimised through the DDP 
method. 

 
Figure 5.10 reports the percentage of propellant mass saved by the local 

optimisation of the trajectory, defined as 

 ,prelimiminary design ,DDP optimised

,DDP optimised

100p p

p

m m

m


  
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where  is the propellant mass estimated with the shape-based 

method. In most of the cases the optimisation through the DDP method allows a 

significant saving in propellant mass. However, some solutions present an 

increased propellant mass with respect to the preliminary design case; this is due 

to the different objective function used within the DDP algorithm. In fact the 

integral term of the cost function in Eq. 

,prelimiminary designpm

(5.47) is equivalent to 

  
0

0

2
t ToF

g

t

J t


  T dt  

where  tT  is the magnitude of the thrust vector function of time. Instead, the 

first term of the cost function in Eq. (3.19) indicates a minimisation of the 

propellant mass that, disregarding the constant coefficients w, is equivalent to 

  
0

0

t ToF

g

t

J


  T t dt  (5.48) 

If the local optimisation was performed with the objective function in Eq. (5.48), 

all the solutions would present a decrease of the propellant mass††. 
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Figure 5.10: Percentage of propellant mass saved through the local 
optimisation of the solutions. 

                                                 
†† The minimisation according to the cost function in Eq. (5.48) would require the DDP-

based algorithm with constraints on the control function. This will be subject of future work. 
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The preliminary design of the trajectory for the construction of the Pareto 

front does not include the transfer leg for escaping the Earth gravity field. In fact 

it was assumed the initial position of the spacecraft to be out of the sphere of 

influence of the Earth, with a zero relative velocity and a margin of 25% was 

added on the total wet mass. An estimation of the propellant mass needed for the 

Earth escape, will be provided in the next section. 

5.5. Asteroid rendezvous and fly-by missions 

The algorithm presented in the previous sections is now applied to the 

optimisation of low-thrust trajectories to fly-by and rendezvous of near-Earth 

objects. The whole trajectory is described in an Earth inertial reference frame, 

centred in the Earth with the x axis in the γ-point direction and the z axis normal to 

the ecliptic plane, in the direction of the orbit angular momentum of the Earth (the 

y axis completes the reference frame). The variables of the problem are the state 

vector , comprising position, velocity and mass of the 

spacecraft and the control vector, of the three components of thrust along the 

coordinate directions 

   T
t s r v

 t

m

u T . The equations governing the motion of the 

spacecraft are: 

 Earth Sun-s/c Sun-Earth
Sun3 3

Sun-s/c Sun-Earth

0sp

d

dt
d

dt mr

dm

dt I g

 


 

      
  

  

r
v

r rv T
r

r r

T

3


  (5.49) 

where Earth  and Sun  are, respectively, the Earth and Sun gravitational constant. 

 is the position vector with respect to the Earth inertial reference frame,  

is the position vector of the Earth in a Sun-centred inertial reference frame and 

 is: 

r

Sunr

Sun-Earthr

-s/c
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 Sun-s/c Sun-Earth r r r  

The state vector of the Earth  was taken from analytic ephemerides which 

approximate JPL ephemerides de405

Sun-Earths

‡‡. 

The terminal conditions at the asteroid, either rendezvous or fly-by, are 

included in the cost function through a quadratic term. In the case of a rendezvous 

mission the terminal constraints are: 

  

 
 
 
 
 
 

2

1 target

2

1 target

2

1 target

1 1 2

, 1 ,target

2

, 1 ,target

2

, 1 ,target

;

N

N

N

N N

x N x

y N y

z N z

x x

y y

z z
t

v v

v v

v v









 







 
 
 
 
    

 
 

 
 
  

s  

whereas in the case of fly-by are: 

  
 
 
 

2

1 target

2

1 1 1 target

2

1 target

;

N

N N N

N
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

  
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 
 
   
 

  

s  

where  is the state vector 

representing the position of the asteroid at the final time of the trajectory. For 

measuring the constraints satisfaction, the infinity norm of the error in position 

target target target target , target , target , target{ }T
x y zx y z v v vs

tarr r get 
 and velocity target 

v v  is required to be under a given tolerance; 

specifically an absolute tolerance of 10,000 km is set for the positions and 0.01 

km/s for the velocities. 

The integral term of the cost function instead is selected to be the integral of 

the square of the norm of the thrust vector: 

                                                 
‡‡ Data available online at http://naif.jpl.nasa.gov/naif/pds.html [Retrieved 28 January 

2009]. 
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   1
, ;

2
T

k k k k k kg t w h s u T T  (5.50) 

being w a weight factor and 1k kh t t k   the integration interval at step k. In 

summary the cost function of the problem is: 

     2

1 1
1

1
;

2

N
T T

k k k k N
k

J w h 


    T s T T λ s starget  

Generation of a first guess solution 

A first guess is generated by patching together two low-thrust arcs with 

fixed thrust aligned to the velocity vector: one inside the sphere of influence of the 

Earth (i.e., until the distance from the Earth reaches the radius of the Earth’s 

sphere of influence) and one from the Earth to the asteroid. The first guess 

solution is a function of a reduced set of parameters: the departure time from the 

Earth and the angular position on a fixed parking orbit, the time of flight, and the 

thrust magnitude out of the Earth’s sphere of influence. The thrust magnitude of 

the spiralling-out phase is set outwith the optimisation. Thus, a global search for 

optimal first guesses is performed using Differential Evolution [152]. The 

objective for the global search is to minimise the error in distance (for a fly-by 

mission) or in distance and velocity (for rendezvous mission) between the state of 

the spacecraft and the target position at the final time: 

 

3
1, target , 

global search
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3 3
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1 1
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where and 10,000 kmrefr  0.01 km/srefv  . 

In the following three trajectories will be presented, the first two are 

rendezvous transfers to asteroid Apophis, the third one is a fly-by of asteroid 2002 

AA29. In each of the three cases, the first guess is of course non optimal from an 

optimal control point of view and does not satisfy the terminal constraints; 

therefore the DDP algorithm is used to compute a locally optimal and feasible 
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trajectory. The two transfers to Apophis presented are quite different for initial 

orbit around the Earth, thrust magnitude, time of flight and mass of the spacecraft. 

In the second case (Section 5.5.2) being the initial orbit elliptical, the escape phase 

from the Earth is particularly sensitive to the three-body dynamics and the optimal 

solution differs pretty much from the first guess solution. In fact a fly-by of the 

Earth is scheduled, by the DDP algorithm, which was not included in the first 

guess trajectory. The transfer trajectory to asteroid 2002 AA29 (Section 5.5.3) 

presents also some interesting features, in correspondence of the passage in 

vicinity of the Lagrangian point L2. 

5.5.1. Rendezvous with asteroid Apophis 

The problem is to design an optimal low-thrust trajectory to rendezvous the 

asteroid Apophis, starting from an initial circular orbit (with the radius equal to 

the GEO), lying on the Earth equatorial plane. The spacecraft has an initial mass 

of 500 kg and is equipped with an engine capable of delivering a variable thrust at 

a fixed specific impulse 3250 sspI  . A first guess solution for the transfer is 

computed with the global search procedure illustrated in the preceding section. 

The departure date and transfer time were imported from the first guess. Table 5.2 

summarises the main mission parameters. 

 
Table 5.2: Mission characteristics. 

Initial mass 500 kg 
Specific impulse 3250 s 
Departure date 19 August 2023 (8630.95 MJD2000) 
Time of flight 990.4 days 
Initial orbit radius 42,328 km 

 
The optimal solution found has a propellant mass consumption of 133.15 kg 

and the thrust profile represented in Figure 5.11. The first guess (dashed line) is 

obtained with tangential thrust 0.15 N until exiting the Earth’s sphere of influence 

and 0.0109 N afterwards. The value of the thrust magnitude outside the Earth’s 

sphere of influence was imported from the first guess. The thrust evolution has an 

oscillatory behaviour with the spiralling-out from the Earth and the oscillation of 

the x and y-components are higher that the one along the z-axis (see Figure 5.12) 

The mass evolution follows approximately the first guess solution along the 

spiralling-out phase, whereas moves away from the first guess solution when out 
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of the Earth gravitation (see Figure 5.13). Note that the optimal solution has a 

mass consumption higher than the first guess because the constraints are satisfied 

under the required tolerance. The constraints violation in km and km/s of the first 

guess solution is: 

  1 target first guess
3,708,314 9,936,689 8,362,980 0.51 3.09 0.038

T

N s  s  

whereas it is under the required tolerance for the optimal solution: 

  1 target optimal
4210.7 8089 1481.4 0.006 0.0045 0.00006

T

N s  s  
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Figure 5.11: Thrust magnitude. The dashed line represents the first guess 
solution provided to the DDP algorithm, the continuous line is the optimal 
thrust profile. a) Entire trajectory and b) close-up on the escape phase. 

 

8600 8800 9000 9200 9400 9600
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Time [MJD2000]

T
hr

us
t c

om
po

ne
nt

s 
[N

]

 

 
T

x

T
y

T
z

 
Figure 5.12: Time evolution of the thrust components. 
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Figure 5.13: Mass. The dashed line represents the first guess solution; the 
continuous line is the optimal profile. 

 
The transfer trajectory (see Figure 5.14) is represented in the Earth inertial 

system, the reference frame used for the optimisation process. Approximately 

thirty spirals are needed, with the level of thrust depicted in Figure 5.11, to escape 

the Earth’s gravity field§§. 

Figure 5.15 shows the trajectory represented in the Sun inertial reference 

frame, and Figure 5.16 represents the time evolution of semi-major axis, 

inclination and eccentricity, during the escape phase (computed with respect to the 

Earth relative system, until the semi-major axis becomes negative and the 

eccentricity becomes smaller than 1). 

 

                                                 
§§ The optimisation of the whole trajectory with the DDP algorithm required 3003 

integration steps. Eight complete loops of the algorithm (see Figure 5.7) were needed, with an 
equivalent computational time of around 20 hours with a code written in Matlab®, on an AMD 
Athlon(tm) 64 Processor 3500+ @ 0.99GHz machine. 
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Figure 5.14: Rendezvous trajectory to Apophis represented in the Earth 
inertial reference frame. a) Entire trajectory and b) close-up on the escape 
phase. 
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Figure 5.15: Trajectory to Apophis rendezvous. Transfer in the Sun inertial 
reference frame. The dashed line represents the first guess transfer solution; 
the continuous line is the optimal trajectory. Apophis and Earth orbit are 
represented respectively in red and blue continuous lines. 

 
 

The optimal solution is characterised by a monotonic increase of the semi-

major axis (see Figure 5.16a). 
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a) Evolution of the semi-major axis during the escape phase 
(expressed in Earth radii). 
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Figure 5.16: Evolution of the Keplerian elements during the escape phase. The 
dashed line represents the first guess solution; the continuous line is the optimal 
profile. a) Semi-major axis expressed in Earth radii, b) eccentricity and c) 
inclination. 

 
We then studied the evolution of the objective function for different times of 

flight, in the range of [700 1450] days. The result is reported in Figure 5.17. 
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Figure 5.17: Time of flight sensitivity. The integral term of the cost function 
(normalised to the weight parameter w) is represented on the y axis. Each point 
represents an optimised transfer (with final constraints satisfied) with a given 
time of flight. The cross shows the result corresponding to the solution fully 
presented in this section. 

 
The same trajectory was computed considering an initial mass of 1350 kg 

and keeping the other parameters equal to the values in Table 5.2, in order to give 

an estimation of the propellant mass needed for the Earth escape for the 

heliocentric trajectories computed in Section 5.4. The magnitude of the thrust 

vector is reported in Figure 5.18 and the mass of the spacecraft is shown in Figure 

5.19. It has been computed that, for a mission with these characteristics, the 

propellant mass needed to exit the sphere of influence of the Earth is about 100 kg 

and the time of flight of the transfer is increased of 100 days with respect to the 

time for performing only the heliocentric leg. This implies that, if the escape 

phase from the Earth gravity field is taken into account in the Pareto fronts in 

Section 5.4, the additional propellant mass can be accounted for in the 25% of 

mass margin. However, an increase of the warning time has to be considered. 
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Figure 5.18: Thrust magnitude for the mission with m0 = 1350 kg. The dashed 
line represents the first guess solution provided to the DDP algorithm, the 
continuous line is the optimal thrust profile. a) Entire trajectory and b) close-
up on the escape phase. 
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Figure 5.19: Mass for the mission with m0 = 1350 kg. The dashed line 
represents the first guess solution; the continuous line is the optimal profile. 

 

5.5.2. Rendezvous with asteroid Apophis from a 

geostationary transfer orbit 

Another mission to asteroid Apophis is studied, with departure from a 

Geostationary Transfer Orbit (GTO). The arrival date at the asteroid is fixed on 

the 19th August 2033 (12283.5 MJD2000), based on the analysis of missions to 

deviate asteroid Apophis in Section 5.4. In fact, this launch date allows having 

1000 days before the possible impact of the asteroid with the Earth on the 15 May 

2036. The spacecraft, with initial mass of 1300 kg, is equipped with a low-thrust 

engine able to deliver a variable thrust at a fixed specific impulse of 3250 s. 
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The parking orbit of this transfer is a Geostationary Transfer Orbit (GTO) 

with an inclination of 23 deg with respect to the ecliptic; the transfer orbit 

injection point is fixed at the pericentre of the GTO and a midday launch is 

considered. The parking orbit parameters are reported in Table 5.3 and the other 

mission parameters are summarised in Table 5.4; the value of the time of flight 

and the magnitude of the thrust out of the sphere of influence of the Earth are 

fixed from the first guess solution. The DDP algorithm is used to find the solution 

to the optimal control problem and to satisfy the final constraints. The constraints 

violation in km and km/s of the first guess solution is: 

  1 target first guess
20,041,710 60,297.6 1,954,650 3.07 1.5 1.19

T

N s  s  

whereas it is under the required tolerance in the optimal solution: 

  1 target optimal
24 3.4 24.7 0.00046 0.0086 0.0017

T

N s  s  

 
Table 5.3: Parking orbit parameters. 

Apocentre height 35950 km 
Pericentre height 500 km 
Inclination 23.44 deg 
Anomaly of the ascending node 0 deg 
Anomaly of the pericentre 185.24 deg (midday launch) 
True anomaly 0 deg (pericentre) 

 
 

Table 5.4: Mission characteristics. 
Initial mass 1300 kg 
Specific impulse 3250 s 
Departure date 28 September 2029 (10,862.6 MJD2000) 
Time of flight 1420.9 days 

 
The optimal solution found has a propellant mass consumption of 336.95 

kg; the optimal solution has a higher mass consumption because the final 

constraints are satisfied (see Figure 5.20). The thrust profile is represented in 

Figure 5.21 and Figure 5.22. The first guess (dashed line) is obtained with 

tangential thrust 1 N until exiting the Earth’s sphere of influence and 0.0374 N 

afterwards. The oscillatory behaviour of the thrust with the spiralling-out from the 

Earth (see Figure 5.21b) causes small oscillations of the instantaneous eccentricity 

around the initial value, whereas the eccentricity of the first guess solution 
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(obtained with tangential thrust) decreases with time. This can be appreciated in 

Figure 5.23, which represents the evolution of the eccentricity with respect to the 

time and in Figure 5.24 which contains a close-up of the spiralling-out phase. 
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Figure 5.20: Mass. The dashed line represents the first guess solution; the 
continuous line is the optimal profile. 
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Figure 5.21: Thrust magnitude. The dashed line represents the first guess 
solution provided to the DDP algorithm, the continuous line is the optimal 
thrust profile. a) Entire trajectory and b) close-up on the escape phase. 
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Figure 5.22: Time evolution of the thrust components. 
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Figure 5.23: Evolution of the instantaneous eccentricity with time during the 
spiralling-out phase. The dashed line represents the first guess, the continuous 
line is the optimal solution. 
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Figure 5.24: Close-up on the escape phase. The dashed line represents the first 
guess, the continuous line is the optimal solution. 

 
Figure 5.25 shows the whole transfer trajectory in the Earth inertial 

reference frame (see Figure 5.25a) and in the Sun inertial reference frame (see 

Figure 5.25b). The dashed line is the first guess solution; the continuous line is the 

optimal solution. The solution found through the DDP algorithm presents a fly-by 

of the Earth that was not imposed in the first guess solution. The fly-by is 

indicated in Figure 5.25b with a cross and is shown in Figure 5.26 in the Earth 

inertial reference frame. The first guess solution progressively escapes away from 

the Earth gravity; the optimal solution instead goes far from the Earth and comes 

closer again to exploit the gravitational pull of the Earth for reaching the 

heliocentric transfer injection conditions. 
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b) 

Figure 5.25: Trajectory to Apophis rendezvous. The dashed line represents the 
first guess transfer solution; the continuous line is the optimal trajectory. a) 
Transfer in the Earth inertial reference frame. The circle represents the target 
position, the cross is the final state of the optimal trajectory. b) Transfer in the 
Sun inertial reference frame. Apophis and Earth orbit are represented 
respectively in red and blue continuous lines. 
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Figure 5.26: Fly-by of the Earth. The cross represents the pericentre of the 
hyperbola with respect to the Earth. a) Fly-by phase and b) close-up of the 
passage from the pericentre of the hyperbola. 

 
Figure 5.27 and Figure 5.28 are shown to demonstrate the presence of the 

fly-by phase. Figure 5.27 depicts the evolution of the thrust magnitude and the 

velocity magnitude during the fly-by phase, Figure 5.28 shows the in-plane angle 

  and the out-of-plane angle   of the velocity with respect to the inertial 

reference frame centred at the Earth. 

The peak in all the graphs in Figure 5.27 and Figure 5.28, in fact, is in 

correspondence of the passage from the pericentre (cross symbol in the figures). 

The velocity magnitude is almost unchanged at the entrance and exit from the fly-
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by (see Figure 5.27b); whereas the in-plane and out-of plane angles, which 

represent the direction of the velocity vector, have a quasi-instantaneous change in 

correspondence of the pericentre passage (see Figure 5.28). In correspondence of 

the pericentre passage, a peak of the optimal control thrust is scheduled; this 

allows the following escape from the Earth (see Figure 5.27a). 
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b) 

Figure 5.27: Evolution of the thrust and velocity magnitude during the fly-by. 
The dashed line represents the first guess solution; the continuous line is the 
optimal profile. The cross symbol is in correspondence of the pericentre 
passage. a) Thrust magnitude and b) velocity magnitude with respect to the 
Earth. 
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b) 
Figure 5.28: Evolution of the angles of the velocity vector with respect to the 
Earth inertial reference frame, during the fly-by. The dashed line represents 
the first guess solution; the continuous line is the optimal profile. The cross 
symbol is in correspondence of the pericentre passage. a) In-plane angle of the 
velocity vector and b) out-of-plane angle of the velocity vector. 

 

5.5.3. Fly-by of asteroid 2002 AA29 

Asteroid 2002 AA29 is a near Earth asteroid characterised by a “horseshoe 

orbit” with a full revolution of 95 years (see Figure 5.29). The latest nearest 

approach of the asteroid to the Earth was in January 2003, after that it reversed its 

direction once again***. A mission to the fly-by of 2002 AA29 is studied, with its 

parameters reported in Table 5.5. The initial orbit is circular (with the radius equal 

to the GEO) on the Earth equatorial plane. 

 
Table 5.5: Mission characteristics. 

Initial mass 500 kg 
Specific impulse 2500 s 
Departure date 27 April 2003 (1,212.2 MJD2000) 
Time of flight 256.6 days 
Initial orbit radius 42,328 km 

 
The trajectory in the Sun inertial reference frame is depicted in Figure 5.30, 

whereas Figure 5.31 reports the thrust magnitude with a close-up on the 

spiralling-out from the Earth†††. The dashed line shows the magnitude of the first 

guess thrust: a constant thrust of 0.15 N is planned until a distance equal to the 

                                                 
*** http://neo.jpl.nasa.gov/2002aa29.html [Retrieved 28 August 2009]. 
††† The optimisation of the whole trajectory (composed of around thirty spirals for the 

escape phase and the heliocentric leg) with the DDP algorithm required 2754 integration steps. 
One complete loops of the algorithm (see Figure 5.7) was needed, with an equivalent 
computational time of around 17 hours with a code written in Matlab®, on an AMD Athlon(tm) 64 
Processor 3500+ @ 0.99GHz machine. 
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Earth’s sphere of influence is reached; afterwards a constant thrust of 0.0088 N is 

applied along the direction of the velocity around the Sun. The continuous line in 

Figure 5.31 is the optimal solution computed through the DDP method. Figure 

5.32 represents the time evolution of the thrust components and Figure 5.33 shows 

the mass of the spacecraft. The propellant mass needed for the asteroid 

interception is 49.3 kg. 
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Figure 5.29: Trajectory of asteroid 2002 AA29 relative motion with respect to 
the Earth. 
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Figure 5.30: Transfer trajectory to 2002 AA29 fly-by in the Sun inertial 
reference frame. The dashed line represents the first guess transfer solution; 
the continuous line is the optimal trajectory. 2002 AA29 and Earth orbit are 
represented respectively in red and blue continuous lines. 
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Figure 5.31: Thrust magnitude. The dashed line represents the first guess 
solution provided to the DDP algorithm, the continuous line is the optimal 
thrust profile. a) Entire trajectory and b) close-up on the escape phase. 

 
 

1250 1300 1350 1400 1450
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time [MJD2000]

T
hr

us
t c

om
po

ne
nt

s 
[N

]

 

 
T

x

T
y

T
z

 
Figure 5.32: Time evolution of the thrust components. 
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Figure 5.33: Mass. The dashed line represents the first guess solution; the 
continuous line is the optimal profile 

 
Figure 5.34 represents the trajectory in the Earth inertial reference frame. 

The tolerance required for the fly-by of the asteroid is a maximum error of 10,000 

km on the components of the relative position with respect to the asteroid. No 

constraints on the velocity are imposed; hence the spacecraft intercepts the 

asteroid with a relative velocity of 5.56 km/s. The dashed line represents the first 

guess trajectory which has a constraints violation on the three components of the 

position of , the continuous line indicates 

the optimal solution for the trajectory, with a violation of the position at the 

asteroid of . The red line describes the 

motion of 2002 AA29 with respect to the Earth inertial system. 
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Figure 5.34: Trajectory to 2002 AA29 fly-by represented in the Earth inertial 
reference frame. a) Entire trajectory and b) close-up on the escape phase. 

 
Figure 5.35 reports the trend of the instantaneous Keplerian elements 

(computed with respect to the Earth relative system) along the trajectory until the 
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escape from the Earth (i.e., semi-major axis becomes negative and eccentricity 

becomes bigger than 1). The escape occurs slightly before for the optimal 

trajectory than the first guess one. 
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Figure 5.35: Evolution of the Keplerian elements during the escape phase. The 
dashed line represents the first guess solution; the continuous line is the optimal 
profile. a) Semi-major axis, b) eccentricity, c) inclination, and d) anomaly of the 
ascending node. 

 
As can be seen from Figure 5.35, there is a sudden change of the orbital 

elements, especially inclination and anomaly of the ascending node, in a range of 

20 days between 1370 and 1390 MJD2000. This occurs when the spacecraft 

passes in vicinity of the Lagrangian point L2, as can be appreciated from Figure 

5.36. When passing in the vicinity of L2, a small change in the direction of the 

thrust vector (see Figure 5.37) produces a big variation of the orbital elements. 

 

 200



Chapter 5. Optimal low-thrust trajectories through an algorithm based on DDP 

 

0

x 10
5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

x 10
6

 

x [km]

 

y 
[k

m
]

First guess
s
f
 first guess

s
0

Earth
Target
2002 AA29
Optimal
s
f
 optimal

L2 motion
Elbow point
L2 at elbow

 
Figure 5.36: Lagrange point passage. The cross highlights the position of the 
Lagrange point L2 when the trajectory changes its inclination. 

 
Figure 5.37 shows the angles of the thrust vector, the in-plane right 

ascension angle (Figure 5.37a), taken from the tangential direction along the 

velocity vector to the projection of the thrust vector on the orbital plane, and the 

out-of-plane declination angle (Figure 5.37b) from the projection of the thrust 

vector on the orbital plane up to the thrust vector itself. 
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Figure 5.37: Angles of the thrust vector. The dashed line represents the first 
guess solution; the continuous line is the optimal profile. a) Right ascension and 
b) declination. 
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Finally Figure 5.38 represents the components of the acceleration acting on 

the spacecraft, in the first guess (dashed line) and optimal (continuous line) 

solution. The components represented are respectively the acceleration due to the 

Earth’s gravity field  (black lines), the disturbing components due to the 

interaction between Sun-Earth and Sun-spacecraft  (bold black lines), and the 

acceleration produced by the engines,  (bold grey lines). Focusing on the 

acceleration magnitude (

Ea

da

Ta

Figure 5.38a) it can be noticed that around 1370 

MJD2000, the acceleration component due to the Sun becomes bigger than the 

Earth’s gravitation. Figure 5.38b, c and b, instead, contain the x, y and z 

components of the acceleration. 
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Figure 5.38: Acceleration components. The dashed line represents the first 
guess solution, the continuous line is the optimal solution. The black line 
indicates the acceleration due to the Earth’s gravity field, the black bold line 
indicates the disturbing acceleration due to the Sun and the bold grey line 
indicates the thrust acceleration. a) Acceleration magnitude, b) x component of 
the acceleration, c) y component of the acceleration, and d) z component of the 
acceleration. 
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5.6. Summary 

This chapter presents a modified Differential Dynamic Programming 

algorithm for the optimisation of low-thrust trajectories. The principal advantage 

of the proposed algorithm is that the problem is discretised in a number of 

decision steps, so that the optimisation process requires the solution of a great 

number of small dimensional problems (one for each stage). The stage-wise 

approach allows the use of an accurate adaptive integration of the dynamics 

during the optimisation process. The main advantage is that high fidelity dynamic 

model can be used. A Runge-Kutta-Fehlberg integration scheme is incorporated in 

the DDP scheme, together with a particular interpolation technique that preserves 

the feedback nature of the control variation. This particular technique improves 

the robustness of the algorithm against some approximation errors that are 

introduced during the adaptation process. A further increase in robustness is 

obtained by the use of global control variations, which showed to be more 

appropriate than the small control variations algorithm for the solution of the 

problems presented in this chapter. 

In particular, the case of a transfer to asteroid Apophis, starting from a 

Geostationary Transfer Orbit around the Earth, demonstrates as differential 

dynamic programming is able to introduce an additional fly-by, not included in 

the first guess solution. 

 



 

Chapter 6.  

Conclusions 

A crucial issue related to the safety of our planet is the danger represented 

by small celestial bodies such as comets or asteroids, which travel along orbits 

that may intercept the Earth and cause catastrophic impacts. This research 

responds to the requirement of hazard mitigation and proposes methodologies for 

the design of optimal trajectories for the interception and deflection of Near Earth 

Objects. 

In this chapter an overview of the work done is provided, and the main 

results of this thesis are summarised and commented. On the base of the findings 

of this study, an outline of future works and some recommendations are given. 

6.1. Summary and findings of the thesis  

The design of a mitigation mission requires the definition of two phases, 

namely, the interception transfer leg from the Earth to the asteroid and 

subsequently the deflection phase, during which a low-thrust or impulsive action 

is applied to the target body to continuously or quasi-instantaneously deflect its 

orbit and increase the minimum orbit intersection distance with the Earth. 

The first objective is to find a general formulation of the asteroid deviation 

problem, characterised by broad applicability and high accuracy. In Chapter 2 and 

3, the asteroid deviation problem has been formulated making use of the linearised 

relative motion equations for general elliptic orbits, considering the nominal orbit 

of the asteroid as the chief orbit, and its new obit after the deflection manoeuvre 

as the proximal orbit to the unperturbed one. These equations express the 

displacement of the target celestial body at the minimum orbit intersection 

distance, as a function of the variation of the orbital elements between its 

perturbed course after the deflection manoeuvre, and the nominal unperturbed 
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orbit. The relative motion formulation has general applicability for any impulsive 

or low-thrust deviation manoeuvre, whose effect can be described as a variation of 

orbital parameters. The classical Keplerian elements representation has been used, 

and their variation is computed through Gauss’ equations. In the case of an 

impulsive action, Gauss’ equations have been written in the form of finite 

differences (Chapter 2), whereas, when a low-thrust manoeuvre is applied on the 

target body for a certain period of time, the equations have been numerically 

integrated (Chapter 3). In both cases, an expression for the variation of the mean 

anomaly, which takes into account the change in the orbit geometry and the phase 

shift between the Earth and the NEO due to a variation in the mean motion, was 

found. 

The validity conditions of the relative motion formulation have been 

discussed in Chapter 2, and the accuracy analysis performed has shown the 

correctness of the proposed approach for a wide range of orbit eccentricities 

(covered by a large number of asteroids characterised by different sets of orbital 

parameters). This formulation represents an extension of other expressions that 

consider only the change in the asteroid orbital period due to a variation in the 

mean motion; unlike those approaches, the proposed formulation is able to 

describe a strategy producing an action in any direction (i.e., not only in the 

direction tangent to the motion). Furthermore, it is less computationally expensive 

than more general methods based on the analytical propagation of the perturbed 

trajectory by using the Lagrange coefficients, because it does not require the 

solution of the time equation for the evaluation of the deviation. On the other 

hand, it is conceptually and computationally equivalent to the approach that uses 

the fundamental perturbation matrix to propagate only the variation of position 

and velocity, instead of the complete orbit. Conversely, the proximal motion 

formulation expressed in Keplerian elements variation benefits from the direct 

relation between the deflection manoeuvre and the variation of the geometrical 

characteristics of the orbit of the NEO. 

In Chapter 2 the transition matrix form of the relative motion equations and 

Gauss’ equations for impulsive deflection has been exploited to study the optimal 

direction for maximum deviation strategies. The b-plane representation has been 

used to take into account the final motion of the asteroid in the Earth’s sphere of 
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influence. In an actual impact scenario, in which the Earth is at the MOID and 

, the impact parameter  can be used as a good estimate of the minimum 

distance between the asteroid and the Earth. This has been verified by comparing 

the projection of the deviation on the b-plane with the deviation computed by 

numerical propagation of the perturbed motion (after an impulsive 

0r  *b

 v  is imparted 

to the asteroid) in the three-body dynamics model. 

The analysis of the results on the b-plane has shown that the effective 

deviation, considering the Earth’s gravity, is smaller compared to the deviation 

computed in the two-body problem; this implies an increase of the  v -

requirement due to the gravitational effects of the Earth. This is in accordance 

with the results found by Ross et al. [73]. Furthermore, the -parameter 

maximisation strategy suggests, for short times-to-MOID, a different optimal 

direction than the one found through the 

*b

r -parameter maximisation. Instead, for 

a certain time-to-MOID , which is different for every asteroid, the 

maximisation of the -parameter and the maximisation of the deviation lead to 

the same conclusion on the optimal deflection strategy. 

NEO NEO1t T 

*b

Some interesting considerations can be drawn from the analysis of the 

deviation components in the b-plane, given that the  -component represents the 

shortest distance between the Earth and the asteroid (hence it is strictly related to 

the geometrical variation of the MOID), whereas the  -component is a measure 

of the time shift between the asteroid and the Earth passage at the MOID [131]. 

The latter component constitutes the main contribution to the total resulting 

deviation achieved by a manoeuvre tangent to the velocity. In fact, an impulse in 

the tangential direction produces a secular and periodic variation of the  -

component and a periodic variation of the  -component, whereas a strategy given 

in a direction normal to the motion produces a purely periodic variation of both 

the  - and  -component. The secular variation of the  -component 

demonstrates that only an impulse in the tangential direction has an effect that 

increases if the manoeuvre is imparted more than one orbital period in advance. A 

velocity change in a direction normal to the motion, instead, has an effect that 

overlaps for more than one orbital period in advance, although it can represent the 

optimal option for short times-to-MOID. This is in accordance with Conway’s 
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results [70] and supports the assumption made in the existing literature of 

tangential direction for long times-to-MOID. Moreover, we gave a physical 

interpretation to the  -component, which is linked to the time difference between 

the instant when the actual minimum distance from the Earth is reached 

(considering the three-body problem dynamics) and the expected time at the 

MOID (estimated with a two-body approach). 

The angular position of the deflecting manoeuvre along the unperturbed 

orbit also plays an important role; in fact a manoeuvre applied at the pericentre 

confirms to be the most efficient in maximising the consequent deviation. 

Chapter 3 focused on NEO deviation through low-thrust strategies. In the 

general case of continuous acceleration acting on the threatening body, the 

numerical integration of Gauss’ equations is necessary. In the case of a low-thrust 

deviating acceleration inversely proportional to the square of the distance from the 

Sun, a set of semi-analytical formulae has been derived, which only requires the 

evaluation of two elliptic integrals for every orbital revolution. Unlike other semi-

analytical formulations, the periodic variation of the orbital elements has also 

been modelled. In fact, it was verified that considering the secular variation alone 

is not enough to describe with high accuracy the displacement at the MOID; this 

because high precision is required in determining the change in mean anomaly. 

The periodic terms ensure the required accuracy for a deviation manoeuvre 

starting at any angular position along the orbit of the NEO; this would have not 

been achieved by using other formulae that account only for the secular variations. 

The accuracy of the latitude and time formulations proposed has been extensively 

shown, through comparison of numerical data against semi-analytical prediction, 

for a range of values of the eccentricity, semi-major axis and proportionality 

constant of the acceleration. 

The semi-analytical approach that was proposed allows reducing the 

computational time to 40% against the full numerical propagation of Gauss’ 

equations. This is not particularly important when one single solution is 

computed, but represents a huge benefit if thousands of solutions have to be 

computed, for example when constructing a Pareto front. 

The second objective of this study is to develop a fundamental optimal 

control theory and apply it to the interception of hazardous asteroids. In this vein, 
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a novel approach adopted in this work has encompassed the interception and the 

deflection phases as inseparable at the stage of preliminary design of a mitigation 

mission; in fact the mass and time requirements are highly influenced by the 

transfer leg for reaching the asteroid’s orbit. At the same time, unlike existing 

literature, which is mainly focused either on the analysis of optimal deflection or 

on the study of a selected mission case, our study is aimed at finding several 

mission options rather than focusing on a single mission scenario. 

A wide variety of mitigation missions, which maximise the total deviation at 

the MOID, while minimising the mass at launch and the warning time, has been 

computed. A hybrid global approach has been used to perform a multi-criteria 

optimisation that identifies sets of Pareto-optimal solutions [116]. The global 

search has been performed over a wide domain of mission parameters, such as 

launch date, time of flight, and geometrical characteristics of the transfer. At this 

stage, preliminary design techniques have been adopted for modelling the 

interception trajectory. 

Chapter 2 presented a wide range of mission opportunities for asteroid 

mitigation through kinetic impact strategy. Thirty near Earth asteroids, with 

different masses and orbital elements, were selected, and for those targets optimal 

launch opportunities for direct transfers and transfer via Venus fly-by were 

identified. The results show that, with current technologies, a reasonably small 

spacecraft impactor of 1000 kg can obtain remarkable deviation in a limited time 

range. Another finding of the mission simulations is that the direction of the 

impact velocity moves away from the theoretical optimal direction, when we 

consider the interception transfer leg and real case scenario for which . In 

fact, the component of the velocity normal to the motion in the orbital plane 

becomes more significant. Therefore the actual MOID can not be neglected in 

general. Moreover, when the transfer leg is optimised, the optimal interception 

point is not necessarily the pericentre and for highly inclined asteroid is, as 

expected, close to the orbit nodes. 

0r 

In Chapter 3 further mission opportunities, for deflection missions to four 

selected asteroids, have been computed. At the same time, these results represent 

an exemplificative application of the semi-analytical formulation for low-thrust 

deviation, derived in the first part of the chapter. The mission design assumes a 
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solar collector which focuses the Sun light onto the asteroid, causing the ablation 

of its surface; however, the acceleration law hypothesised for the analytical 

developments, could be alternatively used to model a low-thrust attached 

propulsion device with solar power system. The Pareto fronts presented show that 

deviation of the order of the radius of the geostationary obit can be reached with 3 

to 5 years warning time, whereas for longer warning times the achievable 

deviation can increase to the Earth–Moon distance. The modulus of the achieved 

deviation is proportional to the length of the thrusting interval and has a periodic 

trend with the true anomaly of the interception point; in particular, when the 

eccentricity of the asteroid is high, an interception before the pericentre is 

significantly more effective than an interception after the pericentre. 

Further mission options have been proposed in Chapter 4; the results 

presented define a wide variety of deflection mission opportunities for a number 

of selected asteroids, over a wide range of possible launch dates. The purpose of 

this chapter is also to qualitatively assess the more feasible mitigation strategies 

proposed in the literature and currently discussed in the international panel debate 

about asteroid mitigation. The design approach explained in Chapter 2 and 3 has 

been adopted to construct a number of Pareto sets, each one making use of a 

different deviation strategy. The launch mass, warning time and total deviation 

have been used as figures of merit for the multi-objective optimisation. The 

concept of dominance, borrowed from multi-objective optimisation, has been 

exploited to compare different solutions belonging to various Pareto fronts, 

obtained using the three criteria chosen for selecting the optimal points. With 

respect to the existing literature, an analytical method has been used to compare 

different options. The proposed approach allows assessing the effectiveness of a 

mitigation strategy, based on set of hundreds of potential missions, rather than 

choosing a single hypothetical mission case. Moreover, the technology readiness 

of each strategy has been considered by adding to the warning time the man-years 

necessary to develop the required technology (Appendix B). A preliminary 

comparison has been driven from the Pareto fronts and the comparison tables have 

been presented in Chapter 4. Solar collector and nuclear interceptor are, in 

general, the dominant strategies, because they reach values of deviation of the 

order of the Earth–Moon distance for relatively small values of the initial mass 
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and the warning time. Moreover, the solar collector system remains competitive 

also after evaluating the solutions according to their technology readiness. Kinetic 

impactor showed to be a feasible option to deviate asteroid of small dimensions, 

such as asteroid Apophis, because no technology development is required. 

However, the risk of fragmentation has to be carefully considered when dealing 

with impulsive strategies. 

The second objective of the research presented in this thesis is addressed on 

two levels; in Chapter 2, 3 and 4 a large number of asteroid interception options 

has been identified, through a global search over an extended search domain. In 

Chapter 5 a selected number of solutions has been locally refined, by using a high 

fidelity model for the trajectory design. Among the methods for trajectory 

optimisation available in the literature, the technique of Differential Dynamic 

Programming has been investigated. The stage-wise feature of DDP has been 

exploited to develop a method for low-thrust trajectory optimisation that is 

capable of adjusting the discretisation mesh at each iteration of the convergence 

process. An interpolation technique has been studied to compute the thrust vector 

on the refined mesh, without jeopardizing the feedback nature of the control law. 

For this reason, when solving a problem, that is particularly sensitive to the 

dynamics, the interpolation of the control vector is performed separately on each 

term that constitutes the complete control law. Moreover, the use of the algorithm 

with global control variations has ensured a further increase in robustness. The 

results section of Chapter 5 firstly focuses on the transfer solutions identified 

through the global search introduced in the previous chapters. A number of 

solutions belonging to a Pareto front for a low-thrust mission to asteroid Apophis 

has been locally refined with the DDP-based algorithm, and the saving in 

propellant mass with respect to the preliminary design shown. Three trajectories 

have then been presented, as an application of the DDP-based algorithm to more 

complex case studies. The trajectories have been modelled in the three-body 

dynamics, considering the Earth and the Sun as gravitational bodies; both the 

escape leg, starting from an Earth-centred parking orbit, and the heliocentric leg to 

the asteroid interception have been optimised, without making use of the patched 

conic approach. In particular, the results presented for a rendezvous mission to 

asteroid Apophis, starting from an elliptical orbit around the Earth, shows how the 
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DDP-based approach is able to schedule an Earth fly-by, not included in the first 

guess solution, in order to optimise the escape trajectory. 

To summarise, the aim of this dissertation is to provide a significant 

progress in the design of trajectories for interception and deflection missions to 

Near Earth Objects. The main findings are represented by theoretical 

developments validated through a large set of numerical results: 

 A semi-analytical formulation for modelling the asteroid deviation problem 

has been provided, underpinned by general validity (for both impulsive and 

low-thrust deviation) and high accuracy. 

 An approach to the design of NEO mitigation missions has been performed; 

the two fundamental phases of the mission (i.e., interception and deflection 

phase) have been combined and a multi-criteria optimisation approach 

allowed computing thousands of launch options. The analysis is therefore 

more general and extended to several different case scenarios. 

 A method based on Differential Dynamic Programming has been proposed 

and developed for the local refinement of low-thrust transfer trajectories, 

with particular emphasis on the high fidelity of the trajectory (important for 

n-body dynamics application) and the robustness of the technique. 

 A wide variety of mission options has been presented and analysed for 

mitigation mission to a number of asteroids and adopting different 

deflection strategies. 

 A preliminary multi-criteria comparison among the deflection strategies 

proposed in the literature has been performed, and an approach for the 

analytic comparison of the efficiency of different options, according to 

several criteria, has been suggested. 

 Some refined low-thrust trajectories are shown, which include the escape 

transfer leg from the Earth. 

6.2. Limitations 

The formulation proposed for the solution of the asteroid deflection problem 

has been shown to have general applicability for several deviation strategies and 
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the approach presented can be applied to compute the achievable deflection of any 

objects within the NEO class (i.e., both near Earth asteroids and comets). 

However, it has to be noted that in Chapter 2 and Chapter 3 the proximal motions 

equations and Gauss’ equations have been written in their Keplerian-elements 

form that limits the application to eccentricities 0 1e  . 

The asteroid displacement following a deflection manoeuvre has been 

computed using the two-body problem assumption and the b-plane representation 

has been adopted to compute the effective deviation considering Earth’s motion; 

moreover, as shown in Section 2.1.3, the strategies that aims at maximising b* are 

more accurate than the ones aiming at the maximisation of r . The b-plane model 

is valid provided that the manoeuvre is imparted before entering the Earth’s 

sphere of influence. Otherwise, a more accurate model, hinging on the three-body 

dynamics, should be used to get a more precise estimation of the deviation. 

The prediction of the orbit deviation by a low-thrust action requires, in 

general, the numerical integration of Gauss’ equations. In this thesis we derived a 

semi-analytical solution in the case of tangential acceleration, inversely 

proportional to the square of the distance from the Sun; the proposed solution can 

model the effects of a deviation scheme based on a solar electric propulsion 

spacecraft, or a solar collector. Other strategies, such as attached nuclear electric 

propulsion or gravity tug, are characterised by different thrust laws; hence, further 

mathematical developments are needed to obtain a semi-analytical formulation for 

these cases too. 

The results presented in this dissertation show how the transfer trajectory 

strongly influences the outcome of the overall mitigation mission to a selected 

asteroid, because the total mass and warning time requirements are highly 

influenced by the orbital elements of the asteroid to be intercepted. This suggests 

that more complex sequences of gravity assist-manoeuvres may improve the 

design of the transfer leg. Moreover, a better estimate of the propellant mass for 

the transfer phase can be obtained considering the constraint on the maximum 

thrust level. This additional constraint should be taken into account in the global 

search of Pareto-optimal solutions and also in the refinement of the low-thrust 

trajectory, by solving a constrained optimal control problem. 
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6.3. Remarks for future work 

The formulation of the asteroid deviation problem can be easily extended to 

the most general representation of either circular, elliptical, hyperbolic, and 

parabolic orbits, by using the non-singular equinoctial elements [71]. Besides 

avoiding singularities for zero eccentricity and inclination, this would allow 

broadening the study to Near Earth Comets. 

Further studies are required for the precise determination of the optimal 

direction of a low-thrust deflection manoeuvre (in this thesis the simplifying 

hypothesis of tangential thrust has been used). A numerical estimation of the 

optimal thrusting angle has been provided by Song et al. [75], but a semi-

analytical solution could be found by superimposing the effects of the thrust 

components along the principal directions. 

The latitude and time formulation developed in Chapter 3 for low-thrust 

asteroid deflection can have a significantly broader application for the fast 

generation of first guess solutions for low-thrust trajectories. We are currently 

studying an approach for the global search of low-thrust trajectories including the 

escape phase from the Earth. In particular, the whole transfer trajectory is divided 

into three legs: 

 The first leg (i.e., spiralling-out leg) is modelled in the two-body problem, 

considering the Earth as the only gravitational body. The escape spiral is 

computed through the semi-analytical technique presented in Chapter 3. 

 The second part of the trajectory describes the escape segment. For this leg 

the third-body effect can not be neglected; thus, the trajectory is numerically 

integrated, under the assumption of tangential thrust with constant 

magnitude, until the spacecraft escapes from the Earth. 

 The third leg represents the heliocentric phase to reach the target body. The 

two-body approximation is adopted in this case and the transfer design 

makes use of a shape-based method, with exponential shape of the pseudo-

equinoctial elements [118]. 

The semi-analytical technique used for the generation of the first leg ensures 

a saving in computational time with respect to the full numerical integration; 
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hence it allows the extensive search of solutions over extended domains. The 

accuracy of the whole model has been verified, comparing it to the full 

propagation of the trajectory in the three body problem. Figure 6.1 shows a 

comparison between the solution provided by the approximated model (blue line) 

and the numerical integration of the transfer in the three-body problem (red line). 

Figure 6.1a represents the whole trajectory in the Earth centred reference plane 

and Figure 6.1b contains a close up of the escape phase. 
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Figure 6.1: Comparison between the approximated low-thrust model and the 
numerical integration in the three-body problem (Earth inertial system): a) 
transfer to Apophis, and b) Earth escape phase. 

 
The method used in Chapter 4 for the preliminary comparison among 

different deviation strategies could be used to include other mitigation options in 
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the analysis. For a second phase of the mitigation mission definition, more 

complex models could be used for the trajectory design and the strategy actions. 

Moreover, the results of the comparison can be improved by computing a greater 

number of solutions for each Pareto front. 

Finally, the DDP-based method presented in Chapter 5 achieved, in the 

author’s opinion, promising results. For this reason, an improved version of the 

algorithm is under development to solve bang-bang control problems 

(maximisation of the final mass of the spacecraft), and also optimise static 

parameters, such as the time of flight and the initial conditions. 
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Appendix A.  

Secular variation of orbital elements 

due to low-thrust manoeuvre 

In this appendix the derivation of Eq. (3.12) is showed, starting from Eqs. 

(3.11). 

A.1. Secular variation of eccentricity over one orbital 

revolution 

We consider the first of Eqs. (3.11) 
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and we take out of the integral sign the gravitational constant and the orbital 

parameters a, e, and h, which are considered constant within one revolution of the 

true anomaly: 
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We now focus only on the integral term and we first solve the indefinite integral: 

 



Appendix A. Secular variation of orbital elements due to low-thrust manoeuvre 

 

 

2

2 2

2 2

2

2 2

2 2

2
2

2

2

cos 1 2 2 cos 1 1

21 2 cos 1 2 cos

1 2 cos 1 1

2 1 2 cos

1 1 2 cos 1

2 1 2 cos 1 2 cos

1 1 1
1 2 cos

2 2 1 2 cos

1 1 2 cos

2 1

e e e
d d

ee e e e

e e e
d

e e e

e e e
d

e e e e e

e
e e d d

e e e e

e e e

e

  
 

 


 
 

  




   
 

   
   

 
 

   
  

    


   
 

  




 





 

 





 2

2 2

1 1

2 1 2 cos

e e
d d

e e ee
 


 


  

 

recalling that   21 1 1e e    e 1 and that 0 e  . According to the double 

angle formulae 
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where   is a generic angle; we substitute the term cos  within the two integrals: 
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If we perform the change of variables: 
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After some algebraic manipulation we get: 
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The two integrals identify, respectively, the incomplete integral of the second and 

the first kind, with 
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
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Hence: 
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where c is a constant. The change of eccentricity within one revolution is 

therefore: 
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(A.2) 

Eq. (A.2) can be reordered as the second of Eqs. (3.12) 
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introducing the orbital velocity v and the quantity   defined as: 
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Note that the elliptic integrals Eqs. (A.1) are computed numerically, using a 

vectorised implementation of Carlson's duplication algorithm given in [134]. 

A.2. Secular variation of semi-major axis over one orbital 

revolution 

The variation of the semi-major axis is derived analogously to the 

eccentricity. We consider the second of Eqs. (3.11): 
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that can be rewritten taking out of the integral sign the quantities a, e, h that are 

considered constant within one revolution of true anomaly: 
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The indefinite integral can be simplified following the same procedure for finding 

Eq. (A.2): 

 235



A.3. Secular variation of anomaly of the pericentre over one orbital revolution 

 

 

  
 

  

 
  

 

 

2 22

2 2

2 2

2

2
2

1 2 1 2sin 21 2 cos

1 1 1 1

1 2 1 2sin
2

1 1

1 1 2 4 sin
2

1 1

1 4
2 1 sin

1 1

e ee e
d d

e e e e

e e
d

e e

e e e e
d

e e

e e
d

e e

  




 

 

   
 

   

  
 

 

   
 

 


 

 

 







 

Also in this case we can identify the elliptic integral of the second kind: 
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The variation of semi-major axis over one orbital revolution is therefore: 
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and introducing v and   we obtain the second of the Eqs. (3.12): 

 
 

0

0

2
2

2
Sun

2 2 4
E ,

2 1
aa k v e

a
h e

 




 


  
    

    
 

A.3. Secular variation of anomaly of the pericentre over 

one orbital revolution 

The variation of the anomaly of the pericentre is derived from the fifth of 

Eqs. (3.11): 

 236



Appendix A. Secular variation of orbital elements due to low-thrust manoeuvre 

 

 

 

 

 

 

0

0

0

0

0

0

0

0

2 2

2
Sun

22

2
Sun

22

2
Sun

2
2

2

Sun

sin 1 1
2

1 2 cos

2 1 sin

1 2 cos

2 1 1 1 2 sin

2 1 2 cos

2 1 1
1 2 cos

a

a

a

a

a e
k d

eh e e

k a e
d

eh e e

k a e e
d

eh e e e

k a e
e e

eh e

 



 



 



 



 
 

 
 

 
 












 
   

  


 

 

 
  

 

     
  






 

which gives the change of the anomaly of the pericentre given by Eqs. (3.12): 
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A.4. Secular variation of the mean anomaly over one 

orbital revolution 

Finally the derivation of the variation of the mean anomaly is shown. The 

last of Eqs. (3.11) can be written distinguishing three terms that we solve 

separately: 
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The first term can be written in the form 
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The indefinite integral can be solved with some algebraic manipulations [153] and 

recalling that 2 21 cos sin   : 
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The remaining integral can be solved by substitution and exploiting the relation 

   2 2cos 2 cos sin     

where  is a generic angle. 
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The substitution adopted is: 
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The integral in Eq. (A.3) becomes: 
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The first term of the variation of mean anomaly is therefore 
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which after simplification gives 
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The second term can be easily solved: 
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and the integral in the third term: 
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can be solved by variable substitution: 
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Hence the third term is: 
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which after simplification gives: 
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Hence the total variation of mean anomaly is: 
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Appendix B.  

Influence of the technology readiness 

level on the multi-criteria analysis 

As an additional criterion to the multi-criteria analysis performed in Section 

4.5.3, we consider the Technology Readiness Level (TRL) of each method as a 

measure of the expected practicality in the near future. The standard definition of 

TRL from [154],[155] (reported in Table B.1) consists of a number from 1 to 9 

defining the level of maturity and development of a certain space system, from its 

concept up to the system flight validation. For each mitigation scheme a certain 

TRL interval has been determined, taking into account past missions and available 

experiments* and is presented in Table B.2. To have a conservative approach, the 

decision of the TRL interval was done considering the part of the required 

technology with the lowest TRL. 

Despite the fact that no mission to test this technology is flying yet, the 

technology for the kinetic impactor has been considered to be fully developed, 

hence a range TRL 7–8 is assigned. Examples of this technology are the Deep 

Impact mission [28] and the asteroid deflection precursor mission Don Quijote, 

currently under study at the ESA [37]. The use of nuclear in space is banned by 

the Outer Space Treaty [46], but the effects of a nuclear explosion have already 

been studied. Hence an interval of TRL 6–8 is assigned, mainly because the 

environment in which the technology would be used is completely different from 

that for which it was designed and tested. An important issue for impulsive 

strategies, like kinetic impactor and nuclear interceptor, is the high precision 

required on the direction of the v , because the deflecting action is assumed to be 

applied in one single manoeuvre. On the other hand, it is also possible to schedule 

                                                 
* As already stated in Section 4.4, an additional margin on the initial spacecraft mass is also 

added, according to the level of development of the required technology. 
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a series of manoeuvres one after the other to increase the robustness of these 

options. The low-thrust attached technology has been considered to be at an 

intermediate stage where the critical function and characteristics have been 

demonstrated. However, the thrusting requirement are higher than the existing 

engines and the anchoring system has to be considered, even if it has been already 

studied, on a smaller scale, for missions like Rosetta [34] and Hayabusa [35]. 

Hence, an interval of TRL between 4 and 6 was assigned. Solar Collector and 

Mass Drivers are assumed to be, respectively, at TRL 2–3 and 2–4 because they 

would require a substantial redesign of existing technologies. The main issues for 

the solar collector are the control of the spacecraft in formation with the asteroid, 

adaptive optics, and autonomous pointing [58]; the mass driver strategy instead 

requires anchoring system, mining technologies and high power generation. Basic 

experiments with these technologies have already been performed; examples are 

the deployment of inflatable structures [156], or the autonomous drilling of 

planetary surfaces. Finally, deviation through gravity tractor would require control 

of the spacecraft in proximity of the asteroid and a nuclear power generation, 

hence it is considered at a TRL interval 3–5. A more detailed discussion on the 

TRL assignment is provided in [126]. 

 
Table B.1 : Technology readiness levels. 

TRL Technology readiness 
1 Basic principles observed and reported 
2 Technology concept and/or application formulated 
3 Analytical and experimental critical function and/or characteristic proof-of-concept 
4 Component and/or breadboard validation in laboratory environment 
5 Component and/or breadboard validation in relevant environment 

6 
System/subsystem model or prototype demonstration in relevant environment (ground 
or space) 

7 System prototype demonstration in space environment 

8 
Actual system competed and flight-qualified through test and demonstration (ground 
or space) 

9 Actual system flight-proven through successful mission operations 
 

Table B.2 : TRL for the different mitigation schemes. 
Mitigation strategy TRL range 

Kinetic impactor 7–8 
Nuclear interceptor 6–8 
Mass driver 2–4 
Attached low-thrust propulsion 4–6 
Solar collector 2–3 
Gravity tractor 3–5 
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 To take into account the technology readiness in the multi-criteria analysis, 

the TRL factor is translated into a measure of man-years for developing the 

required technology . Hence, the launch of a mitigation mission is subjected 

to a time delay, necessary for the required technology to be validated, 

demonstrated and flight-qualified. The definition of warning time is modified to 

be: 

TRt

 , TR MOID 0 TRwt t t t     

The mapping between the TRL and the period for development is done through 

the logistic function [126]: 

 TR

1 exp
ct

a
t





b 

 
  

  (B.1) 

where  is the man-years required to take a technology from TRL 1 to TRL TRt   

and  represents the turning point for the development of the technology when it 

starts to be tested in relevant environment. The coefficients a, b and 

ct

  were 

chosen so that: 
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   

      10

 (B.2) 

The last condition in Eq. (B.2) means that 10 man-years are necessary to 

develop a technology from the breadboard validation in laboratory environment 

up to the system prototype demonstration in space environment. The value of 

 corresponding to the TRL [according to the logistic function in Eq. TRLt (B.1)] 

are reported in Table B.3†. 

 

                                                 
† No strategy is considered to be at TRL 1. 
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Table B.3 : TRL mapping into required time to fully develop the required 
technology. 

TRL TRt  [man-year] 

2 15 
3 13.9233 
4 11.5392 
5 7.7077 
6 3.8762 
7 1.4921 
8 0.4154 
9 0 

 
The date at which the asteroid is at the MOID is kept fixed for all the 

strategies applied to a given asteroid to analyse the effects of each scheme for the 

same MOID. As a consequence, the effect of the technology readiness level is to 

increase the warning time corresponding to the same deviation the strategy would 

achieve without considering the TRL. All the points of the Pareto fronts are 

shifted along the  axis and those points, whose  becomes bigger than the 

maximum warning time without considering TRL, are eliminated from the 

comparison. For warning times less than the minimum time for developing a 

certain strategy, the corresponding deflection is zero. The Pareto fronts of Eq. 

wt , TRLwt

(4.8) are modified as follow: 

 0 TRwm t t         J r r  

Table B.4–Table B.7 show the results of the multi-criteria comparison 

considering the TRL for the strategies applied to the mitigation of the selected 

asteroids. By comparing Table B.4–Table B.7 with Table 4.4–Table 4.7, few 

preliminary considerations can be drawn. The first consideration is that when the 

technology readiness level is considered, the kinetic impactor becomes 

competitive since its Pareto front encloses parts of the criteria domain that the 

other strategies are not able to cover; this is a direct consequence of the translation 

along the  axis. The nuclear interceptor still dominates over the other strategies 

and becomes dominant over the solar collector for all the asteroids analysed. On 

the other hand, even after the technology readiness filtering, the solar mirror 

strategy remains particularly competitive over all the strategies with the exception 

of nuclear interceptor. For example, for the case of asteroid Apophis, the solar 

collector passes from a percentage of dominance over the nuclear interceptor of 

wt
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98% without considering TRL (see Table 4.4) to 4–3% when TRL is added (see 

Table B.4). The mass driver scheme cannot be completely discarded, because it 

has a satisfactory behaviour. Finally the technology readiness analysis reveals the 

impracticability of the low-thrust attached device. In fact, the achieved results are 

comparable with the kinetic impactor, despite the more complex technology of the 

low-thrust system. 

 
Table B.4 : Strategy dominance for asteroid Apophis considering the 
technology readiness level. 

 
Kinetic 

impactor 
Nuclear 

interceptor 
Mass driver 

Attached 
propulsion 

Solar 
Collector 

Gravity 
Tractor 

Kinetic 
impactor 

– 28–0 96–86 100–63 91–87 100 

Nuclear 
interceptor 

100 – 100 100 100 100 

Mass 
driver 

77–99 0 – 100–99 3–4 100 

Attached 
propulsion 

0–88 0 6–59 – 5–60 100 

Solar 
Collector 

96–97 4–3 96–97 100 – 100 

Gravity 
Tractor 

0 0 83–9 13–1 83–90 – 

 
Table B.5 : Strategy dominance for asteroid Itokawa considering the 
technology readiness level. 

 
Kinetic 

impactor 
Nuclear 

interceptor 
Mass driver 

Attached 
propulsion 

Solar 
Collector 

Gravity 
Tractor 

Kinetic 
impactor 

– 2–0 100–63 100 63 100 

Nuclear 
interceptor 

100 – 100 100 100 100 

Mass 
driver 

73–98 0 – 100–99 0–31 100 

Attached 
propulsion 

52–38 0–1 94–49 – 94–75 100 

Solar 
Collector 

100 0 100 100 – 100 

Gravity 
Tractor 

1–4 0 31–39 0 31–72 – 
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Table B.6 : Strategy dominance for asteroid Castalia considering the 
technology readiness level. 

 
Kinetic 

impactor 
Nuclear 

interceptor 
Mass driver 

Attached 
propulsion 

Solar 
Collector 

Gravity 
Tractor 

Kinetic 
impactor 

– 81–2 99–97 100–97 98 100 

Nuclear 
interceptor 

100 – 100 100 100–99 100 

Mass 
driver 

70–88 0 – 88–64 0–47 100–95 

Attached 
propulsion 

20–61 0–2 77–93 – 75–96 100 

Solar 
Collector 

100 15–24 100 100 – 100 

Gravity 
Tractor 

0–57 0 48–38 0 48–65 – 

 
Table B.7 : Strategy dominance for asteroid 1979XB considering the technology 
readiness level. 

 
Kinetic 

impactor 
Nuclear 

interceptor 
Mass driver 

Attached 
propulsion 

Solar 
Collector 

Gravity 
Tractor 

Kinetic 
impactor 

– 69–3 100 100 100–99 100 

Nuclear 
interceptor 

100 – 100 100 100 100 

Mass 
driver 

3–21 0 – 87–96 47 95–99 

Attached 
propulsion 

0 0 61–50 – 71–73 100 

Solar 
Collector 

62–85 0 69–86 63–86 – 65–86 

Gravity 
Tractor 

0 0 49–42 0 65–94 – 
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