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Abstract 

Persistent whole-plant disturbances can have an especially large impact on product 

quality and running costs. There is thus a motivation for the automated detection of 

a plant-wide disturbance and for the isolation of its sources. Oscillations increase 

variability and can prevent a plant from operating close to optimal constraints. They 

can also camouflage other behaviour that may need attention such as upsets due to 

external disturbances. A large petrochemical plant may have a 1000 or more control 

loops and indicators, so a key requirement of an industrial control engineer is for an 

automated means to detect and isolate the root cause of these oscillations so that 

maintenance effort can be directed efficiently. 

Although there has been considerable commercial and academic interest in methods 

for analysing the performance of control systems in these situations, they are 

usually designed to detect, and not to isolate or diagnose, faults or other root causes 

of poor performance. There are several possible causes for the presence of an 

oscillation in a control loop. Control valve non-linearity such as stiction, dead band, 

backlash or hysteresis, is one of the most possible causes. Another possible cause is 

bad tuning, which can destabilize the system. An external oscillatory disturbance is 

the third possible reason. Successful methods proposed in the literature have either 

detected the presence of sustained oscillations by analyzing the statistical properties 

of a signal, or diagnosed whether the detected oscillation has been caused by 

nonlinear problems in the loop. Only a few have tried to discriminate between valve 

problems and external disturbances, i. e. to isolate the root cause loop of wholc-plant 

oscillations. 



Previous methods for the isolation of the root cause of an oscillation include the D- 

factor and the Non-linearity index, both of which are based on an assessment of 

harmonic attenuation. Another method is Spectral ICA where the independent 

components align with harmonics also. Although reliant on the frequency response 

characteristics of harmonic propagation, all make assumptions about the attenuation 

of a plant, thus restricting their application. Major contributions of this PhD 

research include a detailed harmonic propagation analysis and the development of 

harmonic evaluation indices. The former provides an understanding needed in the 

application of any of the methods, whilst the latter leads to a new alternative 

method for the isolation of the source loop of plant-wide oscillations. Both loop-to- 

loop and loop-to-indicator propagation is modelled and the alternative method can 

detect and isolate oscillations in a multi-loop situation. Thus not only do they make 

use of controlled variables, but they also make use of indicator readings, set-points, 

and controller settings. 

The propagation model that is proposed is represented by a log-ratio plot, which is 

shown to be 'bell' shaped in most industrial situations. Theoretical and practical 

issues are addressed to derive guidelines for determining the cut-off frequencies of 

the 'bell' from data sets requiring little knowledge of the plant schematic and 

controller settings. The alternative method for isolation is based on the bispectrum 

and makes explicit use of this model representation. A comparison is then made 

with other techniques. These techniques include nonlinear time series analysis tools 

like Correlation dimension and maximal Lyapunov Exponent and a new 

interpretation of the Spectral ICA method, which is proposed to accommodate our 

revised understanding of hannonic propagation. Both simulated and real plant data 

xi 



are used to test the proposed approaches. Results demonstrate and compare their 

ability to detect and isolate the root cause of whole plant oscillations. 

Being based on higher order statistics (HOS), the bispectrum also provides a means 

to detect nonlinearity when oscillatory measurement records exist in process 

systems. Its comparison with previous HOS based nonlinearity detection method is 

made and the bispectrum-based approach is preferred. 

in the conclusions the various isolation methods are compared in several aspects 

and the bispectral method is found to be better than other isolating methods. 

Practical suggestions are also made to isolate propagated oscillations. The various 

methods, when applied together, will verify the diagnosis reached by the bispectral 

method. Process understanding, if applicable, also plays an important role when 

integrated with the data-driven analysis. 
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Chapter 1 

Introduction 

1.1 Background 

It is important to detect and diagnose the causes of oscillations in process operation 

because a plant running close to a product quality limit is more profitable than a 

plant that has to back away because of variations in the product (Martin et aL 199 1; 

Paulonis & Cox 2003; Qin 1998). They can also camouflage other behaviour that 

may need attention such as upsets due to external disturbances. A large 

petrochemical plant may have a 1000 or more control loops and indicators, so a key 

requirement of an industrial control engineer is for an automated means to detect 

and isolate the root cause of these oscillations so that maintenance effort can be 

directed efficiently. However it may not be easy to determine cause and effect 

particularly when physical influences propagate in the opposite direction to process 

flows, for instance due to recycle streams or when disturbances in the outflow 

stream of a tank cause deviations in the level of the tank. 

Over the past decade there has been considerable commercial and academic interest 

in methods for analysing the performance of a controller. The development of 

minimum variance control (MVC) benchmark based, off-line, closed loop, 

performance assessment techniques (Harris & Seppala 2001) are now so well 

established that various vendors are offering commercial analysis products based on 

them. For example, Honeywell offer the Loop Scout TM software package, and 

Matrikon offer ProcessDoctor. These performance assessment techniques are 
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usually designed to detect, and not to isolate or diagnose, faults or other root causes 

of poor performance. As highlighted by Harris & Seppala, (2001), a comprehensive 

approach for controller performance monitoring should also include the 

development of methods for diagnosing the underlying causes for changes in the 

performance of a control system. Another important limitation of these techniques 

is that the assessment assumes that the plant is in a steady state, in which the only 

variation in the controlled variable of a closed loop is as a result of stochastic noise. 

This condition is not the case when a plant is oscillating. 

Controller performance monitoring has recently become popular in the continuous 

processing industries. An indication of this can be found in Computing and Control 

Engineering (2005) where a special section on control loop assessment and 

diagnosis has been published. The importance of root cause diagnosis is emphasized 

again. 

Root causes of persistent oscillatory whole-plant disturbances include poorly tuned 

controllers, non-linearities such as saturation, dead band, or hysteresis in control 

valves or sensors (Shoukat Choudhury et al. 2004). The process itself might have 

nonlincarities that can cause limit cycle oscillations to build up within a control 

loop. Local instabilities can also arise as a result of control loop interactions when 

two controllers have a shared mass and/or energy store (e. g. pressure and level 

controllers may compete for control of the contents of a reactor). Structural 

disturbances might also be induced by coordinated transfers of mass and/or energy 

between different process units, especially when a recycle is present or by natural 
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resonances excited by noise, scheduled changes etc. Finally a disturbance in the 

loop might actually result from cyclic setpoint changes (Paulonis & Cox 2003). 

If there are some nonlinearities in the control loop, the controller may not perform 

at the desired level. Nonlinearities degrade the performance of the controller in 

several ways. For example they may produce oscillations in process variables, 

shorten the life of the control valve, may upset process stability, and in most cases 

lead to inferior quality end-products thus causing larger rejection rates and reduced 

profitability. The nonlinearities may be present in the process itself or in the 

actuators or control valves. The thesis focuses on diagnosing oscillations induced by 

actuator nonlinearities that arise from control loops. Actuator or valve nonlinearities 

are typically due to faults such as stiction, backlash, saturation, deadzone, ruptured 

diaphragm, and/or corroded or eroded valve seats. These non-linearity induced 

oscillations have certain properties which change as the oscillations propagate 

around a plant. The thesis examines how these changes might be analysed to isolate 

the root cause. 
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1.2 Aims and Objectives 

In particular this thesis describes control loop measurement based approaches for 

(1) the analysis of oscillation propagation based on an understanding of process 

dynamics and PI/PID controller settings, and (2) the detection and isolation of 

oscillations in a multi-loop situation. The aim is that these approaches should be as 

data-driven as possible, minimizing the need for detailed process model 

information, i. e. they should be based on available control loop measurements and 

controller settings. Measurements may include: 

Controlled variables 

o Controller outputs 

e Sensor readings from indicators 

e Set-points 

The objectives include: 

9 trend categorization: oscillatory or not, high or low frequency and so on; 

9 root cause isolation; 

* initial diagnosis to detennine, for instance, whether the oscillations are caused 

by a nonlinear valve problem or an aggressive controller, which are the most 

common causes for the severe deterioration of loop performance. 
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The approaches described are listed below. 

(1) A loop-to-loop, propagation model is proposed to describe how the harmonic 

content of an oscillation changes as it propagates through a plant. This model 

can be represented by a set of log-log plots, the pertinent features of which can 

be obtained from a knowledge of the controller type & settings, the frequency of 

the oscillations and control loop structures. A loop isolation procedure is then 

proposed based on an understanding of these models. A similar loop-to- 

indicator propagation model is developed that can help verify inferences made. 

(2) Changes in harmonic content can be measured via the bispectral analysis. 

(3) In addition nonlinear time series analysis tools such as Correlation dimension 

and maximal Lypunov Exponent are examined as alternative measures of the 

changes in the properties of an oscillation as it propagates. 

(4) Knowledge of loop-to-loop propagation leads to a revision to the published 

Spectral independent component analysis (Spectral ICA) so that it is able to 

isolate a root cause in both low and high frequency cases. 

(5) A bispectral approach can also give an indication of the scale of a non-linearity 

because its peak measures harmonic couplings. 



1.3 Testing The Techniques That Meet These Aims And Objectives 

Being data driven, the techniques that are proposed here were developed by 

analyzing both simulated and real data. Data was obtained from four sources. 

(1) Crude and simple simulations were used to generate data to examine basic 

properties. 

(2) Real data was obtained from an Eastman Chemical Plant. This contained low 

frequency oscillations, the cause of which had already been diagnosed by plant 

engineers. 

(3) Real data was obtained from a SE Asian Refinery Plant, which contained high 

frequency oscillations. Unfortunately the source of these oscillations was not 

known. 

(4) Two 4x4 multiloop simulations are used to validate the loop-to-loop 

propagation model, in particular the relationship between controller integral 

time and cut-off frequencies. 

6 



1.4 Outline Of The Thesis 

Chaptcr 2 first bricfly rcvicws somc gcncral mcthods for proccss monitoring and 

fault isolation, and then focuses on some specific methods that have had direct 

influences on the development of the approaches proposed here. 

Whole plant oscillations are then examined in Chapter 3, and loop-to-loop & loop- 

to-indicator propagation models are developed. 

The bispectral. analysis method is introduced in Chapter 4, where its ability to 

extract the harmonic content of oscillating signals is examined. A bi-amplitude ratio 

index is proposed as a measure of the power ratio of the fundamental to the third 

hannonic and a procedure is then proposed to localize the source loop of propagated 

oscillations based on this measure. 

Nonlinear time series tools can provide alternative measures that can be input into 

the same procedure. This is considered in Chapter 5, where a revision to the 

Spectral ICA method is also proposed. The performance of the various measures & 

methods are then compared on a simulated case and two sets of industrial data. 

Bispectral analysis as a nonlinearity detection tool is then discussed in Chapter 6. 

The various methods proposed in the thesis together with methods proposed by 

other authors are compared in the final chapter, Chapter7 and some future directions 

are advised. 



1.5 Originality 

Harmonic propagation modelling, the bi-amplitude ratio and its application, the 

application of nonlinear time series analysis tools on root cause isolation and the 

new interpretation of Spectral ICA are all original. The work has been presented at 

various symposia and conferences(Zang & Howell 2003; Zang & Howell 2004a; 

Zang & Howell 2004b), published in the International Journal of Adaptive Control 

and Signal Processing (Zang & Howell 2005a), and submitted to the Journal of 

Process Control (Zang & Howell 2005c) and Control Engineering Practice (Zang & 

Howell 2005b). 
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Chapter 2 

Some Background To Propagated Oscillations In Process 

Plants 

This chapter first briefly reviews some general methods for the detection and 

diagnosis of plant-wide oscillatory disturbances, and then focuses on some specific 

methods that have had direct influences on the development of the approaches 

proposed. 

2.1 Overview 

Severe deterioration of performance in process control loops is often indicated by 

oscillations. It is reported that about 30% of all control loops in a paper mill plant 

were oscillating because of valve problems (Hagglund, 1995). Ender (1993) 

reported similar results. The oscillations may cause increased energy consumption, 

waste of raw material and sometimes a less uniform product. Reducing or removing 

oscillations yields commercial benefits (Hagglund 1995; Martin et al. 1991; 

Shinskey 1990; Thomhill & Hagglund 1997; Thomhill et aL 2003b). Thus simple 

and efficient methods for oscillation detection and diagnosis is crucial (Xia 2003). 

There are several possible causes for the presence of an oscillation in a control loop. 

Control valve non-linearity such as stiction, dead band, backlash or hysteresis, is 
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one of the most possible causes. The fundamental frequency of a limit cycle caused 

by a valve non-linearity can be estimated by employing a technique based on 

describing functions. A significant phase shift in the describing function usually 

implies a lower-frequency limit cycle, on the other hand, a small phase shift in the 

describing function usually implies a higher-frequency limit cycle, one whose 

frequency is closer to the loop ultimate frequency. Another possible cause is bad 

tuning, which can destabilize the system. An external oscillatory disturbance is the 

third possible reason. This situation often happens in a plant that contains loop 

interactions. The source oscillation will propagate to other interacting loops and 

result in secondary oscillations. Since interaction is inevitable in process plants, the 

isolation of the oscillation source becomes difficult. 

A number of researchers and practitioners have indicated that more realistic 

estimates of the achievable performance of a plant can be obtained when one 

detects, diagnoses and removes the effect of oscillations (Harris & Seppala 2001; 

Horch A. 2000). Methods for detecting oscillations and valve stiction are described 

in Hdgglund (1995), Bittanti et al. (1997), Horch & Isaksson (1998; 1999), Seborg et 

al. (1989), (Singhal & Salsbury 2005), Rossi & Scali (2005) and Tangirala, Sharh & 

Thornhill (2005). Methods for diagnosing stiction are suggested in Deibert (1994), 

Taha et al. (1996), Ogawa (1998), Horch & Isaksson (1998), Horch (1999) and 

Stenman et al. (2003). Less work has been carried out to isolate a loop on the basis 

of measurement time series records collected from controllers and sensors 

distributed throughout a plant. The literature is limited to Thornhill et al. (2001), 

Thornhill et aL(2002b), Dobson & Thomhill (2002), Thornhill et al. (2003b), Xia & 

Howell(2003a) and Xia & Howell (2005). 
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2.2 Oscillation Detection 

Considerable research has focused on the automatic detection of oscillatory 

behaviour. 

2.2.1 Zero-Crossings Analysis Based Approaches 

One of the popular oscillation detection techniques in SISO systems is based on the 

analysis of zero-crossings of the loop operating data. Hdgglund (1995) presented a 

real-time oscillation detection method that calculates the integrated absolute 

deviation (LAE) between successive zero crossings of the controller error signal. 

The idea is that when the controller error is oscillatory rather than random, such 

deviations are large and the interval between them is large, i. e., an oscillation signal 

has larger IAE values than a random one. The definition of IAE is given by 

IAE, 
ýJY(t)jdt 

I, 

where Y(t) is the controller error signal and tj and ti, j are times of successive zero 

crossings of Y(t). These IAE deviations are compared to a threshold value which is 

based on the IAE value of a sinusoidal oscillation of amplitude a and on the highest 

frequency that might occur in the loop, i. e. the ultimate natural frequency co,. The 

. 2a 
ME for such a sine wave (asin(gt)) Is -. When the ultimate frequency is not 

0), 

2; r known, a good approximation for w. could be -, where T, is the controller T, 

integral constant. This is because, in a well-tuned controller, the ultimate frequency 
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2z 
at which a resonant oscillation occurs is similar to -. Thus the condition for 

T, 

oscillation detection is: 

L4Ei � 
[2a 

= 
aT, - 

w. Z- 
(2.1) 

In a real-time implementation, an oscillation is detected if the UE deviation 

exceeds the threshold, with a set to one percent of the controller range over a 

supervision time of 50 times the presumed oscillation period. 

Thornhill and Hagglund (1997) extended Hdgglund's zero-crossings idea to an off- 

line analysis for oscillation detection. Forsman & Stratin (1999) improved the zero- 

crossings techniques to accommodate the detection of asymmetric and irregular 

oscillations. 

Criticism I 

These methods are simple and easy to implement, however excessive noise will 

degrade their performance. Also the first two techniques were designed under 

the assumption of symmetric oscillations. 

2.2.2 Auto-Correlation Analysis Based Approaches 

Miao & Seborg (1999) have proposed a statistical-based approach to the detection 

of excessively oscillatory feedback control loops. The test is based on a decay ratio, 

which is obtained from the auto-correlation of the operating data, rather than from 

the oscillatory operating data itself. The underlying basis is that the auto-correlation 
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of an oscillatory signal is also oscillatory. Thus if the decay ratio is greater than a 

specified threshold, it is concluded that the signal is excessively oscillatory. 

Thornhill et al. (2003a) presented a method for the detection of oscillations in 

measurements from chemical processes including the case when two or more 

oscillations of different frequency are present simultaneously. They used a new 

method based on the regularity of the zero crossings of the filtered auto-covariance 

data to determine the presence of oscillations in selected frequency ranges. An 

automated filter selection algorithm for the selection of frequency range was 

proposed. 

Criticism 2 

This auto-correlation or auto-covariance based approach is an improvement on 

time domain zero-crossing methods in the sense that the calculation of auto- 

correlation essentially reduces noise effects. But the computational burden will 

be heavier, making it less suitable for online implementation. The application of 

zero-crossing analysis to auto-covariance data combines the advantages of both 

and is therefore superior to other off-line detection methods. 

2.2.3 Spectral PCA Based Approaches 

Thornhill et al. (2002a) have described the principle component analysis (PCA) of 

the power spectra of data from chemical processes. The novel feature of spectral 

PCA is that the rows of the data matrix, X, are the single-sided power spectra P(O 

of the signals over a range of frequencies up to the Nyquist frequency: 
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N frequency channels 
( PI (fl) "* PI VN) 

m process variables 
x ... ... ... 

ý, 
Pm(fl) ", Pm(fN)) 

By performing PCA of this data, the power spectra in X can be decomposed into 

combinations of several dominant spectrum-like principle components (PCs): 

ti'l tl, 
2 

t2, l 
vi + 

t2,2 
V2 I +... + 

t2, 
n Vn 

f 
+E (2.2) 

-t., 
] 

_tm, 
2 

_t., n 

where v, ' to v,, ' represent the dominant row-major spectrum-like PCs, E is an error 

matrix, which includes truncated principle components and t,,, (for i=1 M, 

j=1 ... n) are mixing factors. For example the th row power spectrum in X are 

approximately constructed by v, ' to Vn' with the relevant mixing factors Q1,1 

tog ... gti, n)- 

A single dominant peak in a power spectrum, indicating an oscillation in the time 

domain, can be created by proper linear combinations of the PCs. The clustering of 

similar oscillatory trends is achieved by a scores plot, in which the point (tij 

h, 2,..., tj,, ) maps to the rh power spectrum. Similar spectra have similar t- 

coordinates. Therefore such groups form clusters. PCA of the auto-covariance 

functions of process variables gives similar or sometimes even superior 

performance compared to spectral PCA. 
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Criticism 3 

Spectral PCA has superior performance to time domain PCA for the detection 

of clusters of data trends having similar features, even when time shifting is 

used to align the data trends. This is because spectra are invariant to the phase 

lags caused by time delays and process dynamics. Although the interpretation of 

what is detected, and the grouping of oscillation disturbances based on spectral 

PCs, is not straightforward because the smne spectral peaks could be present in 

more than one PC and becomes difficult when the number of dominant PCs 

increases, it is still a good approach to the identification of the dominant 

spectral peaks. However it doesn't address the isolation of these oscillations, 

which is of greater interest to plant operating engineers. 
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2.3 Oscillation Diagnosis 

The diagnosis of oscillations is complicated. First the source must be isolated to a 

control loop, or energy transfers or external etc., then a decision must be made as to 

whether it is caused by a poorly tuned controller or by a nonlinearity or by an 

external disturbance and so on. 

2.3.1 On-line Real-time Diagnosis 

Hagglund (1995) proposes a loop-by-loop test approach. He detennines if the 

oscillations are being generated outside the control loop, or if they are generated 

inside the loop by disconnecting the feedback by switching the controller to manual 

mode. If the oscillation is still present, the disturbances must be generated outside 

the loop; otherwise, they were generated inside the loop. The inside problem could 

be either friction in the valve or a badly tuned controller. Whether friction is present 

or not can be determined by making small changes in the control signal and 

checking if the measurement signal follows. 

Criticism 4 

The on-line approach is applicable to control engineers for trouble-shooting. It 

is time consuming and may not be possible to find the source of the 

disturbances if the plant is tightly interacting and many loops are oscillating at 

the same time. 
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2.3.2 Measurement Record Based Approaches 

Thornhill and Hdgglund (1997) provide off-line diagnostic methods which use 

indicators from routine operating data: dynamic sp-pv maps for loops where the set 

point changes often, such as loops in a cascade mode; the CLPA index, regularity 

factor and oscillation-detection threshold. CLPA provides a grey indication 

because a low CLPA value does not always mean that no action is needed whilst sp- 

pv maps give a clear signature (Thornhill and Hdgglund, 1997). The diagnosis 

procedure uses the indicators to guide a process control engineer towards suitable 

special off-line tests. 

For loops in cascade mode where the set point moves, the presence of non-linear 

features can be revealed in ans -pv map. Astr6m (1991) and McMillan (1995) have p 

illustrated the typical patterns that appear on plots of signal versus stroke for non- 

linear characteristics such as valve dead band and stick slip. Figure 2-1 shows 

idealized shapes for dynamic sp-pv maps. If the sp-pv plot of a loop is similar to the 

idealized signature of a valve dead band, or a stick sliP or an oversized valve, valve 

non-linearity is diagnosed; if it is similar to the idealized signature of a linear valve 

with phase lag, bad tuning is diagnosed. 
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Figurc 2-1: Idcalizcd sp-pv maps for dynamic systcms (Thornhill and Hagglund, 

1997) 

The basis of control-loop performance assessment (CLPA) described by 

Desborough & Harris (1992) is that the controller error should have no 

predictability over some given prediction horizon. The controller error sequence Y 

is decomposed as: 

y+ (2.3) 

where ý is the predictable component of the controller error and r the zero mean 

residuals. The aim of regulatory control is to remove any predictable components. 

That is, ^ should be small or zero. A common cause of a predictable component is y 

a persistent oscillation. Desborough & Harris's performance index can be expressed 

as: 
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,= 
mse(ý, ) 

=, 
0-, 2 

(2.4) 
mse(Y, ) mse(Y, ) 

with mse(ý ) being the mean square value of the predictable component, mse(Y, ) Y, 

the mean square value of the controller error and a, ' the variance of the (zero 

mean) residuals. When the control performance is good the controller error has 

little predictability and the index is 0 because mse(Y, ) = cr, ' . The opposite is true for 

a poorly controlled loop in which the controller error is predictable. 

Thornhill and Hdgglund extended Hagglund's zero-crossings idea to an off-line 

analysis for oscillation detection by assessing the significance of a deviation relative 

to the r. m. s. value of the residuals (a, ) that are provided by the CLPA algorithm 

rather than the absolute criterion (1% of the range). The off-line condition for a 

significant deviation relates the mean value of IAE over an interval AT between the 

zero crossings (tj+, -tj) to o-,: 

LlEj 

a, -AT, 
(2.5) 

where ý is the oscillation detection threshold. The normalized IAE deviations 

( ME 
are compared to a threshold value which is based on the normalized IAE 

value of a sinusoidal oscillation of amplitude a (a sin(wt) ) in the presence of noise 

2a 
having an r. m. s value o a: -. 

; ro* 
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The normalized IAE deviations can be plotted at the times tj+j and the regularity 

factor is derived from the sequence of ratios between adjacent intervals Ak at 

which deviations cross the threshold. Thus: 

Ri = 
Aki+l (2.6) 
Aki 

and the regularity factor, q, which depends on the threshold, is: 

nlEm n-due of R 
(2.7) 

stodard &virdion of R 

Signals judged by eye to have regular oscillations have values of q above about 1.3. 

The diagnosis method using interpretation of the CLPA index q, oscillation 

detection threshold ý and regularity factor q is then: if ý> 2/; r and q>1.3, non- 

linearity is diagnosed; if ý> 21; rr and q: 51.3, an external disturbance is possible; if 

ý:! g 21; r and q>1.3 and q>0.15, a tuning problem is diagnosed. 

Criticism 5 

The two off-line diagnosis methods are data-driven and need less loop 

information (e. g. the controller integral time) than online approaches. However, 

the dynamic sp-pv maps are only suitable for loops where the set point changes 

often, such as loops in cascade mode; the CLPA based method does not have a 

rigorous statistical interpretation and it is a grey signature because even when 

the controller error has little predictability, the r. m. s. value may still be too high 

where a hardware problem may have happened. The perfonnance of the CLPA 

based method could also degrade under circumstances with excessive noise. 
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Thornhill and Migglund (1997) also examined the features in the power spectrum of 

a controller error to produce a partial diagnosis: if the spectrum has harmonics a 

non-linearity might be present; if the spectrum has multiple peaks but no harmonics 

it is possible that the loop has been disturbed by neighbour loops; if there is only a 

single peak in the power spectrum, this is a signature of a tuning problem. 

Criticism 6 

The approach gives somewhat coarse results because many disturbed loops have 

obvious harmonic contents. The approach needs to be augmented by other 

diagnostic methods like sp-pv maps. Excessive noise may also disturb the 

appearance of harmonics in the power spectrum. 

Horch (1999) presented a new method to identify stiction in control valves. The 

method is based on the cross-correlation between control input and process output. 

The motivation is as follows: the limit cycle caused by a sticking valve will result in 

a square wave profile of the controlled variable y(t) and a triangular wave profile of 

the PI controller output u(t) (see Figure 2-2) with a ;r phase shift between them, 
2 

provided that the process has no integral action. 

Figure 2-2: Ideal y(t) and u(t) signals in the presence of stiction 
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The detection condition is then: 

(1) in the case of static ffiction (stiction) in a control valve, the y(t) and u(t) signals 

are shifted by approximately ;r so that their cross-correlation is an odd 2 

function; 

(2) oscillating external disturbances result in a phase shift of approximately ; r, so 

that the cross-correlation is an even function. This is because, in general, low 

frequency disturbances will be eliminated efficiently by the PI-controller since a 

controller with integral action has a high loop gain at low frequencies; 

(3) an unstable loop which oscillates with constant amplitude (due to physical 

saturation) also results in an even cross-correlation function. 

Both conditions (2) and (3) imply a high frequency oscillation such that the phase 

shift between y(t) and u(t), which is caused by the PI controller, is small and the 

only phase shift, i. e. 7r, is caused by the negative feedback sign. 

A similar shape-based idea was used by RengaswamY et al. (2001) to detect and 

diagnose different kinds of oscillations in control loops. The method is based on a 

semi-qualitative approach for the identification of different shapes of oscillation: 

square, triangular and non-triangular. The diagnosis of valve friction or hysteresis 

can then be achieved by examining the shape of the oscillation of the controlled 

variable and the controller output. For example: (1) a triangular controller output 

plus a non-triangular controlled variable corresponds to a situation of asymmetric 

friction; (2) a triangular controller output plus a square controlled variabic 

corresponds to the case of hysteresis. 
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Criticism 7 

Horch's sticking valve detection method is simple and straightforward, and 

process model information is not required. However it has some drawbacks: (1) 

the distortion of the ideal Y(t) and u(I) signal shapes in the presence of stiction 

could degrade the detection performance; (2) a low frequency external 

oscillatory disturbance could still be dominant in the disturbed loop, even if it is 

largely attenuated, and such a low frequency oscillatory disturbance will result 

in an odd cross-correlation function, which will contradict the second detection 

condition; (3) the method is made under the assumption that the control loop 

oscillates in a way such that the controller output and process variable display 

symmetric triangular and square waves, which is not always the case. 

Rengaswamy et al. 's method largely relies on the oscillation shape. A low 

degree of valve non-linearity may not cause the typical pattern, thus the 

diagnosis of the oscillation might not be effective in such cases. However, the 

oscillation detection algorithm has quite good performance, because it can 

recover shapes from data with up to 20% noise. 

Shoukat Choudhury et aL (2004) developed two indices, the Non-Gaussian Index 

(NGI) and the Non-Linearity Index (M), based on Higher Order Statistics (HOS) 

theory to detect and quantify signal non-Gaussianity and non-linearity. The 

approach evaluates the NGI and NLI of routine operating data and can detennine 

whether or not the measurement record is from a linear process driven by Gaussian 
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signal (NGRO), or from a linear process driven by non-Gaussian signal (NGI>O & 

NLI=O), or from a non-linear process (NGI>O & NLI>O). 

Both NGI and NLI are derived from the calculation of the squared bicoherence. 

Bicoherence is defined as: 

bic'(fl, f2)=. IB (fl, f2) 1' 
(2.8) E[IX(f, )X(f2) 12 ]E[I X(f, +2) 12 fl 

where 'bic' is known as the bicoherence function, XW is the discrete Fourier 

transform of time series x(k), and B(fj, f2) is the bispectrum in the bifrequency (fl, 

f2) defined as: 

B(fl, f2) =E 
[X (fl) X (f2) X* (fl + f2)] (2.9) 

where '*'denotes complex conjugate. 

The test for Gaussianity is as follows: 

Null Hypothesis, HO: The signal is Gaussian 

* Alternate Hypothesis, HI: The signal is not Gaussian. 

Under the null hypothesis, the test for the average squared bicoherence can be based 

on the following equation: 

P 
(2 

KL gi? > c. " 
) 

=a (2.10) 

where, c. x' is the critical value calculated from the central X' distribution table for a 

Ei-^2 
=IL^2 significance level of a at 2L degrees of freedom since CLE, _, 

bic, ,L is the 

number of bifrequencies inside the principle domain of the bispectrum, and K is the 

number of segments used in data segmentation during bicoherence estimation. If the 
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number of bifrequencies in the principle domain is very large (more than 100) the 

normal approximation of the X' distribution can be used: 

P( gi? [Ca 
+ Nf4L_1]2) =a 

4KL 

where c' ,,, 
is the critical value of standard normal distribution at a significance level 

of a. NGI is therefore defined by 

NGI = gi? 
-I[c,, ' +, vF4 

-L- I 
4KL 

At a confidence level of a the following rule based decision can be obtained: 

* if NGI: 5 0, the signal is GAUSSIAN 

o ifNGI> 0, the signal isNON-GAUSSIAN 

It is shown in (Shoukat Choudhury et al. 2004) that if the signal is non-Gaussian 

and linear the magnitude of squared bicoherence should be a non-zero constant at 

all bifrequencies in the principle domain. At a 95% confidence level if the 

maximum squared bicoherence, biP.,. is less than biP+ 2cb,,, , the magnitudes of 

squared bicoherence are assumed to be constant or the surface is flat. The NLI is 

defined as: 

2 'ý 2 NLI biýc 
.,. - (bic + 2ablc2 (2.13) 

where, o-,, C, 
is the standard deviation of the estimated squared bicoherence and 

b1c" is the average of the estimated squared bicohercnce. At a confidence level of 

95% the following rule based decision can be obtained: 
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* ifNLI= 0, the signal generating process is LINEAR 

e if NLI> 0, the signal generating process is NONLINEAR 

Criticism 8 

The detected non-linearity cannot necessarily be attributed to valve problems 

because the nonlinear nature of the process itself may have caused a large NLL 

In addition it can't discriminate between an internal non-linearity and an 

external disturbance due to non-linearity in another control loop, i. e. it cannot 

diagnose the root cause. The authors (Choudhury et al. 2004; Shoukat 

Choudhury et aL 2004) suggest using the specific patterns in the process output 

(pv) vs. the controller output (op) plot to help diagnose the causes of poor 

control loop performance. However the same authors argue in (Shoukat 

Choudhury et al. 2005) that the pv-op map captures not only the nonlinear valve 

characteristic but also the dynamics of the process and hence in some cases 

would fail to indicate a valve problem. They also suggest the mapping of valve 

position (mv) vs. op, but unfortunately this is often unavailable because the 

valve positions may not be recorded. 
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2.4 Oscillation Isolation 

A common source of oscillations is a limit cycle caused by a control valve with a 

deadband or excessive static friction (Astr6m 1991; Shinskey 2000). A process 

variable oscillating for that reason can readily propagate the oscillation to other 

variables and disturb other control loops, hence causing a plant-wide disturbance. A 

focus upon non-linear root causes can thus be justified because valve ftiction causes 

the majority of cases, according to reported surveys (Ender 1993). The methods 

listed in this section are the few published studies that have been carried out to 

isolate a loop on the basis of measurement time series records collected from 

controllers and sensors distributed throughout a plant. 

It is well known that non-linearity in a control loop can give rise to limit cycles 

(Thomhill and Hagglund, 1997). Limit cycles are periodic, and are usually non- 

sinusoidal. Harmonics having frequencies at integer multiples of a fundamental 

frequency appear in the power spectrum if the periodic component is non- 

sinusoidal. Valve non-linearity (stiction or hysteresis) induced oscillations in a 

control loop usually contain both even and odd harmonics. Such oscillations can be 

propagated to other loops due to high interactions in chemical process plant. 

Xia & Howell (2003a) used spectral ICA to extract a significance index that links 

the sources to specific plant measurements in order to facilitate the isolation of the 

sources of the oscillations; Thornhill et al. (2003b) proposed an index for non- 

linearity that grows stronger closer to the source. These data-driven approaches are 
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listed here and their comparison with the root cause diagnosis approaches proposed 

in this thesis will be given in Chapter 7. 

Thornhill et al. (2001) presented a distortion factor signature to aid the isolation of 

oscillations caused by limit cycles. The distortionfactor, D, is defined as: 

Pfund 

. 
ýýII1 DA 

plot (2.14) 

where P,,,, is the total power in the fundamental plus harmonics and Pfund is the 

power in frequency channels k to k+I occupied by the fundamental harmonic. The 

frequency range k to k+I was determined by looking at the power spectra. 

Root cause isolation based on distortion factors assumes that the harmonics of a 

limit cycle become smaller as the measurement point moves away from the root 

cause and that the time trends become more sinusoidal. The measurement having 

the highest distortion factor has more power in the harmonics and is thus a 

candidate for the root cause. 

Criticism 9 

The D factor approach is based on the same assumption as the non-linearity 

index method, i. e., on the low-pass filtering property of physical processes. As 

will be seen in Chapter 3, this does not hold in some cases. Furthermore, D 

cannot be detennined in cases with no well-defined oscillation and no spectral 

peak. 
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Thornhill et al. (2003b) also proposed a time domain measurement based isolation 

approach, the Non-lincarity index. To obtain the Non-lincarity index of a set of 

data, the time series i. e. xI, x,, .. - xNmust first be projected into a multi-dimensional 

phase space: 

N. = (Xi) Xi+d) Xi+2d) ** *Xi+(m-I)d)) i= 1ý Z** *9 

where N is the data length, d is a time delay, m is known as the embedding 

dimension and Xj is called an embedding vector of m-dimension. For example with 

d=2 and m=3, X, = (XI 
2 X3 2 X5) 3' 

X2 = (X2 
9 X4 ý X6) 1 

X3 = (X3 
ý X5) X7) and so on. 

Thornhill et aL adopted a more engineering intuitive approach to the construction of 

the phase space. The data is pre-processed to have S samples per cycle, end- 

matched, mean centred and scaled to unit standard deviation. It is then embedded 

into a phase space where d=l and m=S so that each embedding vector represents a 

single cycle of oscillatory data. 

The non-linearity index, N, is then formed to test the null hypothesis that the data 

was output by a linear system driven by Gaussian white noise: 

N= Fsurr - Ftest. 
(2.16) 3crrsurr 

where fsuff and ar., represent the mean and standard deviation of a reference 

probability distribution and root mean square (r. m. s. ) error r,., is derived by 

comparing the data with a smoothed version, obtained by applying a non-linear 

algorithm to it. The first S data points of this smoothed version are as measured 

(i. e. Vi: 1:: 5 i --: 5 S, l = x,, ). Embedding vectors that are nearest neighbours to the first 

embedding vector, i. e. (x,, x,, ---x, ) , are now identified and the subsequent points 
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e. g xis,., (i. e. the i th vector is a near neighbour to the first vector) are extracted. 

Estimate, ý is now the average of all these subsequent points. Estimation then XS+1 

moves on to the next point and so on until all points are estimated and r,,,, is 

derived. The nearest neighbour approach ensures that the average is only based on 

vectors that approximate to that vector that immediately precedes the data point to 

be estimated. Thomhill et aL have described this process as an H-step (H equals to 

S) ahead predictor, but strictly speaking such a predictor should only be based on 

embedding vectors that have happened in the past, whereas off-line estimation can 

be based on vectors from both the past and the future. The reference probability 

distribution is parameterised by simulation: the r. m. s. errors of n surrogate data sets 

are analysed to obtain the reference mean, and the standard deviation, 

These n surrogate data sets are derived from the pre-processed data. The pre- 

processed data is first Fourier transformed, then n surrogate data sets are generated 

by inverse Fourier transforming the same power spectrum, but with different 

random phases. 

The non-linearity test determines whether a time series could plausibly be the 

output of a linear system driven by Gaussian white noise, or whether its properties 

can only be explained as the output of non-linearity. Thornhill et al. relate non- 

linearity of a time series to the harmonic content of this data. If the plant acts as a 

mechanical low-pass filter, the process will filter out harmonics and process 

variable will become more sinusoidal further away from the source, therefore the 

non-linearity is strongest nearest to the source and the process variable with the 

largest N is likely to be located closest to the non-linear root cause. 
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Crilici. eni 10 

The non-linearity test approach has been successfully applied to some industrial 

cases, however, the assumption that the plant acts as a mechanical low-pass 

filter does not always hold. As %vill be discussed in Chapter 3, harmonics may 

be amplified through oscillation propagation routes and some loops further 

away from the source may contain more harmonics. Moreover, excessive non- 

Gaussian noise %%ill degrade the performance because the surrogate data pertains 

to Gaussian random signal. Additionally sub-sampling the original data may 

lose useful information, as compression could have an effect on non-linearity 

(rhornhill el al. 2004). 

Xia & Howell (2003a) applied spectral ICA to extract dominant independent 

components from spectral data. In the spectral ICA model, the rows of the data 

matrix, Al, are single-sided power spectra P(1) of the observations over a range of 

frequencies up to the Nyquist frequency (one-half of the sampling frequency): 

N frequency channels > 

P, (f P, (fN m process variables 

ý. 
P. (f ) ... P. (fv)) 

NI is then decomposed into n dominant independent components: 

Yl Yi al'i a,,, 
Y2, 

... a, 
Y20 a,,, 

YIP + a,. 2 Y. M Y2 

Y. 1i 
-Ya 

ej 
_a,., 

j a,. 2_ _a.,. 

(2.17) 

31 



where y, ' is thef' independent component (IC), A is an mxnreal mixing matrix 

and m ; -> n. An independent component is most dominant when its spectrum has a 

narrow-band peak-. These components are related to the spectral data through 

significance indices (SI) a,.,: a significance index of unity suggests the source of 

the jo IC oscillation is most probably closest to the it' process variable; a 

significance index of zero implies no correlation. 

Crificisrn 11 

Spectral ICA is very helpful in the identification of the root cause of low- 

frequency oscillations because in these cases the dominant IC is likely to be the 

fundamental harmonic and the spectra collected from the problem loop should 

display this fundamental most strongly, whereas other loops will also display 

harmonics. However, there are cases where the harmonics in loops, which do 

not contain the source, are attenuated, so that the significance index of the 

problem loop associated with the fundamental IC is unlikely to be the largest. 

Further explanation of such cases will be given in Chapter 5 where spectral ICA 

will be modified in such cases for root cause isolation. 
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2.5 Conclusions 

Previous methods for the isolation of the root cause of an oscillation that are based 

on hannonic attenuation include the D- factor and Non-linearity index (Thornhill et 

al. 2001; Thornhill ct aL 2003b)). In Spectral ICA (Xia & Howell 2005) the 

independent components align with harmonics also. Although reliant on the 

frequency response characteristics of harmonic propagation, all make assumptions 

about the attenuation of a plant, thus restricting their application. Researchers at 

Eastman have started to look at harmonic content for hardware problem diagnosis, 

for example Eastman's large-scale controller performance assessment system 

diagnoses process nonlinearities by finding harmonic peaks in the spectrum 

(Paulonis & Cox 2003), but there has not yet been a more thorough evaluation. 

Major contributions of this PhD research are its detailed harmonic propagation 

analysis and the development of harmonic evaluation indices which are helpful in 

the isolation of the source loop of plant-wide oscillations. 



Chapter 3 

Plant-Wide Oscillations 

This chapter presents an overview of whole-plant oscillations, which is divided into 

the following sub-scctions: 

9 their properties; 

9 other types of disturbances; 

* thcir propagation. 

Harmonic propagation is emphasized, because this is the main focus of this thesis. 

3.1 Properties of Oscillations 

Plant-wide oscillations might contain a single peak in their power spectrum or a few 

peaks at their fundamental and harmonic frequency channels. Moreover, the 

fundamental frequency might be either fixed or variant. 

3.1.1 Bad-Tuning and Non-Linearity Induced Oscillations 

Although there are other possible reasons that may cause sinusoidal or non- 

sinusoidal oscillations, the most common experience is that bad tuning may cause 

sinusoidal oscillations, and that valve non-linearity such as stiction, hysteresis may 

cause oscillations with harmonics. 
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3.1.1.1 Bad Tuning Induced Oscillations 

Sinusoidal oscillations are common in over-tuned loops which behave in a resonant 

manncr. A single peak- in the power spectrurn is therefore taken to be a signature of 

a tuning problem (Thornhill & HNgglund 1997). Figure 3-1 gives a unity feedback 

control system without sctpoint change. When the system is noise free or 

disturbance f is a stationary random noise, a sustained oscillation happens when the 

controller gain is increased such that the open loop gain is unity when the open loop 

phase is -180*. The Nyquist plot (Figure 3-2) shows what happens in the frequency 

response of the system. The oscillation frequency is called the ultimate frequency 

(w. ). A badly tuned controller is particularly visible in nonlinear plants where a 

change in operating point might result in a loop gain which is too-high (Migglund 

1995). However, controllers in process-control plants are often tuned 

conservatively, and bad tuning is not the most likely cause of oscillations. 

Controller Process 

Figure 3-1: A unit feedback control loop 
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Figure 3-2: Nyquist plots of open loops: open-loop transfer function G,, =CP; G. ' is 

a badlY-tuned open loop obtained by increasing the gain 

3.1.1.2 Valve Non-Linearity Induced Oscillations 

Among many types of non-linearities in control valves, stiction. and 

hysteresis/backlash are the most common reasons for oscillations in control loops 

(Haggl und 2002; Rcngas%%-amy et al. 200 1). 

Valve Stiction Model 

Many studies (Choudhury et al. 2004; Horch & Isaksson 1998; Olsson et aL 1998; 

Olsson &, Astrom 2001; Taha et aL 1996; Wallcn 1997) have been carried out to 

define and detect static friction or stiction. The commonly used valve friction model 

is the so-called physical model (Choudhury et al. 2004). For a pneumatic sliding 

stem valve, the force balance equation based on NeAlon's second law can be 

written as: 
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At dlx Forces = F. + F, + Ff +F dt' .+F, 

where Af is the mass of the moving parts, x is the relative stem position, F. =A is 

the force applied by the pneumatic actuator where .4 is the area of the diaphragm 

and u is the actuator air pressure or the valve input signal, F, = -kr is the spring 

force where k is the spring constant, F. = --aAP is the force due to the force 

imbalance across the value where a is the plug area imbalance and AP is the fluid 

static pressure difference across the valvc, F, is the extra force required to force the 

valve to be into the scat and Ff is the friction force. Fj and F. have a negligible 

contribution to the model and hencc arc ignored. The friction model includes static 

and moving friction: 

-F sgn (v) -,., F- if v#0 cp 
Ff -(F« +F, ) if v=O and IF�+F,: 5F, 1 (3.2) 

. 
-F, sgn(F. +F, ) if v=O and IF. +F, >F, 1 

where F, is Coulomb friction, F. is viscous friction and F, is the maximum static 

friction. 

The disadvantage of the physical model of a control valve is that several parameters 

must be known. Manufacturer's values are listed in (Choudhury et al. 2004). 

Choudhury et al. (2004) developed an empirical model for valve stiction that 

produces input-output (1/0) behaviour similar to that of more complicated physics- 

based models. The 1/0 characteristics of a sticking control valve are presented in 

Figure 3-3. It consists of four components: deadband, stickband, slip jump and the 

moving phase. When the valve comes to a rest or changes the direction at point A, 

the valve sticks. After the controllcr output overcomes the deadband (AB) and the 
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stickband (BQ of the valve, the valve jumps to a new position (point D) and 

continues to move. The deadband and stickband represent the behaviour of the 

valve when it is not moving, though the input to the valve keeps changing. Slip 

jump represents the abrupt release of potential energy stored in the actuator 

chambers due to high static friction; this is converted into kinetic energy and the 

valve starts to move. Once the valve slips, it continues to move until it stops, then 

eventually sticks again. 

.0 

lu 

ceacoana 

stickband+deadband 
I- 

stickband 

Valve input (controller output) 

Figure 3-3: Typical input-output behaviour of a sticky valve 

Based on the observed valve stiction behaviour, a data-driven mqdel has been 

established by Choudhury et aL (2004) which produces the same behaviour as the 

physical model. The model consists of two parameters -namely the size of the 

deadband plus stickband s and slipjumpj. If the direction of the slope of the input 

signal changes or remains zero for two consecutive instants, the valve is assumed to 

be stuck and does not move. When the cumulative change of the input signal is 
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more than the amount of the dcadband plus stickband (s), the valve slips and starts 

moving. The output is calculated using the equation: 

output = input - sign (slope) * (s - j) /2 (3.3) 

and depends on the type of stiction present in the valve: 

- dcadband: j=O, reprcscnts the pure dcadband casc without any slip jump; 

- stiction (undershoot): when j<s, the valve output can never reach the valve 

input; 

- stiction (no offset): whenj=s, the algorithm models pure stick-slip behavior; 

- stiction (overshoot): whcnj>s, the valve output overshoots the valve input due 

to exccssive stiction. 

Of interest here is the sinusoidal response of this data-driven valve stiction model, 

and in particular in its harmonic content. Its Fourier series expansion is performed 

in Appendix A: only odd harmonics arc present in the valve output signal for a pure 

sinusoidal signal input. This is consistent with the result of Fourier analysis of a 

valve with deadband published by Wilton (2000), who assumed j--O. Note that 

Choudhury et aL(2004) analysed only the fundamental Fourier component. 

Valve Backlash Model 

Backlash is present in every mechanical system where the driving element is not 

directly connected with the driven element (Horch A. 2000). Figure 3-4 shows the 

time domain behaviour for a backlash element. When the input changes direction, 

an initial change in input has no affect on the output. The amount of side-to-side 

play is referred to as the deadband (d). The deadband is centered about the output. 

There arc three modcs: 
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- disengaged, where the input does not drive the output and the output remains 

constant; 

- engaged in a positive direction, where the input is increasing (has a positive 

slopc) and the output is equal to the input minus half the deadband width; 

- engaged in a negative direction, where the input is decreasing (has a negative 

slope) and the output is equal to the input plus half the dcadband width. 

Lit 

Figure 34: Time-domain characteristic of a backlash element 

The Fourier series expansion of the output of the backlash model, when forced by a 

pure sinusoidal input, should be the same as a deadband model (i. e. the stiction 

model withj--O) because the sinusoidal input has fixed amplitude and phase. Again 

no even harmonics are seen in the output and only odd harmonics are present. 

3.1.1.3 The Shape of oscillations 

Several papers have been published on detecting and measuring valve stiction. or 

hysteresis by inspecting the shapes of the control error and the controller output 

signals during sustained oscillations (Gerry & Ruel 2001; Rengaswarny el al. 2001; 
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Rossi & Scali 2005, Rue] 2(X)O; Ruel 2002: Singlial & Salsbury 2005). They have 

suggested that the controller output should be a saw-tooth or triangular wave for a 

sticking or hysteresis valve and a sinusoid for an aggressive controller. Symmetric 

triangular waveforms contain only odd harmonics. however, in practice even 

harmonics are also observed. A possible reason for this is that triangular waves that 

are observed hi controller outputs are asymmetric and these contain both even and 

odd harmonics. Figure 3-5 shows examples of an asymmetric waveform observed 

as a result of valve stiction and a sinusoidal waveform observed as a result of 

aggressive control (Singhal and Salsbury 2005). The latter was analysed to 

distinguish between the shapes of the signals caused by an aggressive controller and 

those by a sticking valve using the ratio of the areas before and after the peak of the 
I 

control error signal. Appendix B gives the Fourier analysis of an asymmetric I 

triangular waveform. 

Valve stiction 

II 

A 

.4 L >1 A' 

ti me tinw 

Figure 3-5: Control error signal shapes for valve stiction and aggressive control 

Possible reasons for the shift in oscillation phases so that asymmetric waveforms 

are observed in practice are: 
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9 process dead time; 

o valve dead time; 

* poor valve position controller; 

* random load disturbance; 

e valve sticking stops between points D and E in Figure 3-3 while travelling in 

the same direction due to low or zero velocity (EnTech 1998; Kano et al. 2004). 

Note that the dead time in a control loop is inevitable because the valve response 

always has dead time (EnTech 1998)which affects the phases of the hannonics in 

the signal. When the phase-shifted signal goes through the non-linear valve, the 

time when the valve sticks and slips will shift accordingly so that the resulting valve 

output m(t) will shift its phase and will become asymmetric. Singhal and Salsbury 

(2005) derived the analytical expressions of control error signal shapes from first 

and second-order plus time-delay plants with valve stiction, which also showed that 

when the effective time-delay is nonzero, the shape is asymmetric. 

To demonstrate these observations a simulation was performed with a process 

transfer function of 
2-e 

-3s a PI controller of 0.5 1+ --L) and with 
(3s + 1)(I Os + 1) 12.3s 

coulomb friction . Figure 3-6 shows the time records and power spectra of the 

process variable (PV) and controller output (OP). The process dead time has shifted 

the phase of the controller output wave and both even and odd harmonics are seen 

in the PV and OP measurements. 
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Figure 3-6: The shapes and power spectra of OP and PV 

3.1.2 Fixed and Variable Frequency 

In theory, a valve nonlinearity induced oscillation will contain a single fundamental 

frequency plus its harmonics. However in practice process variation or controller 

retuning will cause the fundamental frequency and its harmonics to alter, resulting 

in a variable-frequency oscillation. Both situations are analysed here by referring to 

Nyquist plots of the open loop transfer function and of a valve nonlinearity 

describing function. 

3.1.2.1 Fixed Frequency 

The literature often models the nonlinear elements as a describing function to give 

insight into the formation of the stable limit cycle (Figure 3-7). The condition for an 

oscillation to arise in a negative feedback loop when the loop gain is -1 is 
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G,, (io)) =-1 N(X. ) (3.4) 

where G,, (io)) is the open loop frequency response which includes the controlled 

system and the controller, and N(X. ) is the describing function, which is defined 

as 

y 
(3.5) 

where X=Xnsincot is the input to the nonlinear element and Yf is the magnitude of 

the fundamental component of the output from the non-linearity. The frequency 

(point A) at which the loci of G, #o)) and -I I N(X. ) cross (Figure 3-7) should then 

be the fundamental frequency of the oscillation that arises. 

-1/ 

Figure 3-7: Existence of limit cycles 

3.1.2.2 Variable Frequency 

it can be seen from Section 3.2.2.1 that the fundamental frequency of the limit cycle 

depends on the process dynamics, the controller and valve characteristics. Either 

process dynamics or controller change will change the point of intersection of the 
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open loop transfer function G,, with the describing fimction, and hence change the 

fundamental frequency of the oscillation. 

For example Figure 3-8 shows the effect of changing the open loop Nyquist plot 

from G,, to G,, ' for instance by de-tuning the controller gain. The oscillation point 

changes from A to A' correspondingly, and the frequency will change from w, to 

02, Similarly the fundamental frequency may vary when process variations change 

the Nyquist plot of G,,. 

A key feature of a variable fundamental frequency is in the broadening of the 

harmonic peaks in their power spectrum. An example of this can be seen in Figure 

3-9, which was generated by analysing sin(O. Oltp(t)) , where 

p (t) =I+0.1 sin (0. It). 

Figure 3-8: Nyquist plots of open loops: open-loop transfer function G. =CP; G,, ' is 

a de-tuned open loop; N(X. ) is a describing function of the non-linear component 
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Figure 3-9: Time series and power spectrum of a variable frequency signal 
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3.2 Other Types of Disturbances 

Besides these oscillatory disturbances, regular or non-periodic disturbances can also 

be observed in process plants. These can result from disturbances at plant 

boundaries; sensor drifl; drift in system kinetics; controller induced step changes; 

non-stationary disturbances due to tight coupling in control loops; etc. 

Xia & Howell (2003b) have classified loop status as either (1) well-behaved and in 

steady state; (2) well-behaved but with controller compensation; (3) undergoing a 

short-term transient; (4) undergoing a trend that is disturbed in some non-stationary 

manner; (5) cycling at a relatively low frequency; (6) cycling at a fundamental 

frequency similar to the natural frequency of the loop; (7) out of control (critical). 

Non-periodic disturbances could be fitted into any of the classifications (2), (3), (4) 

and (7). The detection of these disturbances can be achieved by analysing 

qualitative and quantitative loop status statistics (Xia & Howell 2003b). 
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3.3 Harmonic Propagation 

The previous chapter reviewed time-domain based and frequency-domain based 

methods for isolating the root cause of non-linearity induced oscillations. All of 

these are based on the premise that a non-linear hardware fault in a control loop will 

introduce non-sinusoidal oscillations in the controller outputs and process variables, 

and that these oscillations contain power spectra at integer multiples of a 

fundamental frequency, i. e., harmonics. They are based on the heuristic that 

physical systems act as low-pass filters and hence a recorded measurement further 

away from the non-linear fault will contain fewer harmonics than a measurement 

near the root cause. However, the propagation of the oscillation from one control 

loop to another control loop cannot be simply deemed as propagation through a 

physical system that is inherently lowpass, for instance because the commonly used 

PI/PID controller will introduce harmonic amplification and thus the propagation 

route from one loop process variable to another loop process variable can not 

necessarily be modelled as a low-pass filter. 

Plant measurement sensors are not only installed as components in control loops but 

also to provide additional indicators of plant operation. The propagation of an 

oscillation to other parts of the plant can therefore be observed in the various 

control loops or in data collected by these additional indicators. The root cause 

might derive from a non-linear valve in a SISO loop or a cascade control system, 

which could be part of the regulatory layer in a multivariablc control scheme 

providing that the set-point changes do not reflect oscillatory behaviour. The power 

spectra of its controller output and valve opening measurement records would then 
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contain a fundamental plus harmonic content. Power spectra of measurements 

recorded at other locations around the loop would possess different harmonic 

content, because of plant filtering. In this section the harmonic propagation 

throughout the plant is analysed. Loop to loop propagation, loop to indicator 

propagation and cascade loop propagation are all considered. 

3.3.1 The Loop to Loop Propagation Shapes 

The propagation of the oscillation to other parts of a plant and, in particular, to other 

control loops clearly depends on the paths of interaction that exist in the plant. 

There is a spectrum of possible scenarios: at one extreme there are tightly coupled 

plants where all loops affect all loops, and at the other extreme there are plants with 

serial, daisy-chained arrangements where one loop disturbs another, which disturbs 

another and so on. An example of the first extreme might be a reactor with level, 

pressure and temperature control loops, which respond in tandem. If the source of 

the oscillation was to be in one of the loops, the tight coupling could result in all 

loops behaving almost identically, making it impossible to isolate the cause. The 

analysis here assumes that any coupling is relatively weak and is performed by 

viewing the source oscillations as external disturbances to other loops. To do this, a 

plant is hypothesised (Figure 3-10) that contains a number of interacting control 

loops where Loop s contains the source of the oscillation. This oscillation will then 

propagate to other loops. Propagation from loop s to loop k is considered here: C, 

and Ck represent the controllers in the two loops, P,,, Pksý Psk and PAk process transfcr 

functions, U, and Uk controller outputs and Y, and Yk controlled process variables. 
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UkE: 

Figure 3-10: Block diagram for two interacting control loops 

Harmonic analysis assumes that the plant is operating in steady state. Thus the 

analysis here is restricted to the case where there are no set-point changes or 

disturbances acting on these loops, so Y. and Yk should remain relatively constant 

unless one of the loops limit cycles. Suppose that Loop s limit cycles at a 

fundamental frequency co, as a result of a valve non-linearity, then the equivalent 

process faced by U, (i. e. Gý : Yjr = G. U. ) can be derived (Zhang et al. 2002) as 

PkpkvCk 

G, = P,, -' 1+ Ckpkk 

Pks Psk Ck 

Y, = 
[P. 

-1+ Ck , 

ju. 

(3.6) 

The dynamics of the open-loop transmission from U, to Y,, G., (s), is known as the 

effective open-loop process (EOP) (Huang et al. 2003). Similarly the propagation of 

the oscillation from U, to Yk can be described by: 
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Yk = 
Pb 

U, 
1+ Ckpkk (3.7) 

The ratio, r(co), of the magnitudes of the sinusoidal components observed at Y, 

relative to that observed at Yk at any frequency co is then given by: 

r(co) -= 

lyk 1= ph (jo» 
(3.8) y Pss (je» + Ck (j(o) [p 

fl CO 

1 

ss 
(i0» Pkk Psk (j(o) Pki (i0»] 

Equation (3.8) can also be written as 

r(co) =G 
Pk, (i0» 

(3.9) 
1, 

(i0» [l + Ck (i0» Pi* (jÜ3)]l 

The plot of 20 loglo r (w) versus log, 
O w is infonnative and in recognition of this it 

is given a name, the log-ratio plot of loop s to loop k. Its shape is dependant on the 

sub-plots of 20loglo I G, (jco) I vs. loglo w and 20 loglo I 
VS. 10910 CO. 

11+ 
Ck (jW) PAk (jo)) 

I 

Analysis of the combination of these sub-plots suggests that the shape of the log- 

ratio plot can take one of four possibilities: 

(a) a plateau at low frequencies and a negative slope at high frequencies 

(b) a positive slope at low frequencies and a plateau at high frequencies 

(c) a plateau at both low and high frequencies 

(d) a positive slope at low frequencies and a negative slope at high frequencies 

Figure 3-11 shows examples of these four possibilities, including the sub-plots from 

which the plots were constructed. 
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Figure 3-11: Typical log-ratio plots of IG, (jw)l '+Ck(jW)Pkk(jW)l and r(co) 

A low frequency asymptote with a positive slope will be observed ((b) and (d)) if 

CkPkk contains one or more poles at the origin (e. g. as with a PI/PlD controller or P 

controller with an inherent integral mode in the process Pu), whereas the low 

frequency asymptote is likely to be horizontal ((a) and (c)) if CkPU contains no 

poles at the origin (e. g. as with aP controller with no integral mode in the process). 

A negative slope at high frequencies ((a) and (d)) is to be expected, because it is 

likely that the order of Pu > order of G,: G, is influenced, predominantly, by P,, (s) 

and transfer function Pks(s) is likely to contain components that are similar to those 

contained in Ps(s), because elements of both represent common physical processes. 

The orders of Pk, (s) and G, (s) might be the same if the two loops are tightly 
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coupled, in which case the high frequency asymptote will be horizontal. Thus the 

most common shape is likely to be (d), i. e. a bell, because usually process plant 

interactions are low pass and controllers have integral action. Shape (a) might be 

relevant for plants with P controllers whereas shapes (b) and (c) might be relevant 

in tightly coupled plants. Shape (d) is the most common and hence the focus of the 

next section. 

3.3.2 Analysis of the Bell Shape 

Although the frequency at which the apex of the 'bell' occurs must be influenced by 

the cut-off frequencies of the two terms 
lp"' (jw) 

and 
I, it has IG, (jw)l 

11+ 
Ck (jo)) Pkk (jW) 

I 

been found by looking at examples that this frequency is predominantly affected by 

the cut-off frequency of the target loop disturbance transfer function 

1- 
It is found in practice that the apex of the bell is 

1+ Ck (jC9) Pkk 001 

predominantly determined by the resonant frequency of 
I 

and is 
I'+ 

Ck (jC9) Pkk (joj) 

I 

not shifted by the dynamics of IG, (jco)l greatly. An insight into this can be gained 

by looking at the models used to generate Figure 3-11 (d). Sub-plot will 

only affect the peak if its cut-off frequency is relatively low and its negative slope is 

steeper than the positive slope of 
I. Suppose that the sloPc 

11+ 
Ck (jo)) Pkk (jOj) 
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before the apex frequency (coo) of 
I 

is 20n dB/dec, then the 
11+ 

Ck PA* (fto) 

rank of 
Ipb (joj)l 

must be at least (n+l) to shift the apex frequency of the bell (w, ). FG, (jo)TI 

In addition (n+l) of the cut-off frequencies of IG, (jw)l must be less than wO i. e. at 

least (n+l) time constants must be larger than 27r/wo. A process with such large 

time constants is likely to have filtered out the oscillations observed so that the loop 

is unlikely to be on the list of candidate source loops, and hence would not be 

subject to the procedure proposed here. 

To demonstrate this, a simple example is constructed assuming that the open loop 

transmission G,, can be approximated by either a FOPDT or SOPDT model (Huang 

et aL 2003): 

Os k,, (rs + 1) e-0-1 k,, (rs + 1) e-' G, ' = 
rs+l , G, (r,, s + 1) (rs + 1) orG, * 

r2s2+2 r4-s +71 

Tenn 
IP,, (jcg)l 

can now be approximated by 
IG, (jco)l 

IG, (jco)l Aý 
k 

and an extreme case can be examined 
I 

(r, jo) + 1) (T2 ico + (r. ico + 1) 

1 

by approximating this term by a multiple pole with a cut-off frequency of half the 

target loop resonance frequency. Figure 3-12 shows the resulting shift in the apex 

jpks (fto I pk, (jo 

frequency when = 
rs+l 

and 
I- ))I l- 

where r=4n/wo. A 
IG, (jo))l Frs Y fG, (jco)l = ýrs 

+I Y' 
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significant shift in peak frequency is only obtained with a third order pole and in 

both cases significant attenuation is also obtained. 
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3.3.3 Estimating the Target Loop Disturbance Transfer Function Resonant 

Frequency 

In general the target loop disturbance transfer function resonant frequency, (j) rok 9 
is 

not normally known, although the closed loop resonant frequency, cok, and damping 

factor, 4k, might have been estimated previously, for instance during 

commissioning. If this is the case, then these parameters can be used to estimate 

Comk 

, To do this 
I- 

and 
Ck (S) PA* (S) 

can be approximated by 
1+ Ck (S) Pkk (S) 1+ Ck (S) Pkk (S) 

second order models, which have identical natural frequencies, Onk, but different 

resonant peak frequencies, (Orok and Ork respectively: 

C9, k = 
Onk 

- 

11 

+ 
-11+ 8Tk' and cok = coj(l - 2ýk2) , so that these two equations can 72= 

be combined to estimate (Orok- If this information is not available then it should be 

possible to estimate Wrok from knowledge of the ultimate frequency, O)ukt since it is 

likely (but not guaranteed) that Cork < Corok < cowc , HAgglund (1995) has pointed out 

that if a PI/PID controller is properly tuned, then usually the integral time constant 

2; r of the 0 loop, Tjk, approximates to the ultimate oscillation period - of the 
O)uk 

closed loop system. Thus 2; r should be a reasonable estimate Of Wrok. Either way T& 

the estimationof Co,, kmust be viewed with caution, and any isolation procedure 

that is proposed must accommodate this uncertainty. 
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Finally it is worth pointing out that a ripple is sometimes observed in log-ratio plots. 

This arises because of the effect of the time delay. Figure 3-13 shows two examples 

of the same process but with different time delays and hence controller settings, 

obtained on the basis of Ziegler-Nichols criteria. The ripple is clearly visible in both 

plots. 

, 21 
s 
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. 40 
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£0 

-80 

-100 

Figure 3-13: Example of 1/(I+CP) with two different time delays 

3.3.4 Loop to Indicator Propagation 

Suppose that the oscillation in Loop I also propagates to an indicator, installed 

elsewhere on the plant, which outputs signal Y3. The propagation of the oscillation 

from Ul to Y3 can be described by Y3=P3, U, if the propagation path can be 

represented by P3i. The ratio, r(co), of the magnitudes of the sinusoidal components 

of Yj to Y3 at any frequency co is then given by: 

57 

0.19 U8 
Frequency 



JY31 P31 (jo)) Ul (i(o) P31 (jo)) 

(3.10) 1 Y, I[I pi I 
Uco) U, Uco) P, I 

(jco) 

Ratio r(co) is likely to be on a positive slope of co. vs. r(co) if PI, and P3, are both low 

pass: (011": ýCO"" 0)31 where coil and C031 are their respective bandwidths; ratio r((o) is 

likely to be on a horizontal slope at low frequencies and on a negative slope 

otherwise. 

3.3.5 Cascade Loop Propagation 

If the source is located within a cascade control system, the outer-loop plant 

dynamics determines how the harmonics propagate from the inner to the outer loop. 

Referring to Figure 3-14, the ratio r(co) of the magnitudes of the sinusoidal 

components of Y, to Y2 at any frequency co is simply: r((o) = 
YL21 

-ý 
1P j(O)l 

IYIII " 22 
( 

XI r----l Y2 

Figure 3-14: Cascade control loop schematic 

3.3.6 Conclusions 

The change in hannonic content of oscillations as they propagate through a plant is 

modeled by examining ratios of observed signals. Heuristics are then proposed to 

enable these models to be charactensed without recourse to detailed plant 

identification. This will result in harmonic-content based procedures in the next 

two chapters to isolate the source of an oscillation. 
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Chapter 4 

The Bi-spectrum 

This chapter starts by introducing the Bi-spectrum, its: 

" definition and estimation 

" application to multiple oscillations 

" application to variable-frequency oscillations 

Bi-spectral analysis is then proposed as an aid to the isolation of whole-plant 

oscillations. The aid is centred on a new biamplitude ratio index. 

4.1 What It Is 

The power spectrum provides information on the second-order properties (i. e. 

variance, energy) of a signal, whereas the bispectrum provides information on the 

signal's third-order properties (i. e. skewness). Bispectral analysis is a subset of 

Higher Order Statistical (HOS) analysis, a rapidly expanding area of signal 

processing which shows great potential for a wide variety of practical applications 

(Fackrell et aL 1995). There are three main reasons for using HOS analysis: to 

extract information due to deviations from Gaussianity, to recover the true phase 

character of a signal, and to detect and quantify nonlinearities in time series (Nikias 

& Petropulu 1993). Applications of bispectral analysis have been found in fields as 

diverse as condition monitoring (Collis et al. 1998; Zhu et al. 2005), system 

identification (Tugnait & Zhou 2000; Wang et al. 2004), and fault diagnosis of 

rotating machinery (Eugene Parker et al. 2000; Li et al. 2005). 
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As reviewed in Chapter 2, Shoukat Choudhury et al. (2004) proposed a method to 

detect system non-linearity based on the bicoherence, which is a normalized version 

of the bispectrum. This section gives a detailed description of the properties of the 

bispectrum, and then analyses the reasons why the bispectrum instead of 

bicoherence, is more appropriate for oscillation detection and diagnosis. 

4.1.1 Definition 

Power spectral analysis treats each frequency component independently of all others 

to provide a measure of the distribution of signal energy across frequencies. This 

independence is the linear assumption upon which all power spectral methods rely. 

In practice it is known that many systems are not adequately represented by such 

linear models, and this prompts the investigation of higher order properties of the 

signal. The phenomenon of harmonic distortion is an example of a process in which 

frequency components couple together (Fackrell el al. 1995). The bispcctrum is a 

third-order measure which can be interpreted as measuring the amount of coupling 

at frequencies fi, f2 andf, +f2. This coupling phenomenon has been observed in real 

signals, and 'quadratic phase coupling' (QPQ is the term used to describe it. 

The bispectrurn can be formed by extending the definitions of conventional sccond- 

order power spectral measures. The power spectrum of a discrctc time series x(n) is 

described in tenns of the signal's discrete Fourier transfonn (DFT): 

E [X (f) X* (f)] 
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where E[] denotes the expectation operator, '*' denotes complex conjugation andf 

is the discrete frequency variable. The bispectrum B(fi, f2) at the bifrequency (fi, f2) 

is also defined in terms of the signal DFT: 

B(fl, f2) =E 
[X (fl) X (f2) X* (fl + f2)] (4.2) 

Note that the bispectrum. is complex, and has two frequency indices fi and f2. The 

magnitude of the bispectrum, I B(f, f2) 1, can be plotted in three dimensions with 

two orthogonal axes defining thefl, f2 plane, and the bispectral content rising from 

that plane. It is well understood that the DFT, and hence the power spectrum 

contains redundant infonnation above the Nyquist frequency f, 12, where f, is the 

sampling frequency. In a similar way several symmetries exist in the (fj, fi) plane, 

and it is not necessary to compute B(fl, f2) for all (fl, f2) (Hinich & Wolinsky 

1988). The non-redundant region is called the principal domain, is shown in Figure 

4-1 and is defined by ffl; f2 : 0: 5 f, :5f, / 2, f, :5 f2,2f, + f2= f, ) (Hinich and 

Wolinsky 1988). For the analysis of stochastic signals it is useful to divide the 

principle domain into two triangles called the inner and outer triangles. Statistical 

tests for stationarity, non-Gaussianity and the detection of aliasing have been 

devised (Hinich and Wolinsky 1988) based on summing the bispectral content in 

one or other of these triangles. However, the tests are not useful in the analysis of 

periodic signals because these signals cannot satisfy the constraints required by the 

tests. 
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Figure 4-1: The non-redundant part of the bispectral plane, showing the principle 

domain, composed of the inner triangle and the outer triangle. 

The bicoherence is a normalised bispectrum which measures QPC on an absolute 

scale between 0 and 1. It is defined by 

iC2(f (4.3) X(. )X(. 
1) 

12 IE[I X(, f I E[I I+ 
)121 fl 

The bicoherence at any frequency pair. k,. /2 can be interpreted as the fraction ol 

power at frequency. //t/, which is phase coupled to the component at 

4.1.2 Estimation 

Bispectrurn applications have been limited to date because of' the difficulty in 

interpreting bispectral features: the bispectrurn is scnsitive to many of' the 

computational factors which affect the power spectrum, but In More C0111plicated 

ways. The bispectrum can be estimated in a similar way to the Wc1ch-periodogram 

method for power spectrum estimation, but tile lengths of' data required to obtain 
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consistent estimates are longer than those required for power spectrum estimation. 

The variance of the bispectral estimates has the property: 

2 
21t f2) 3 P(fl)p(f2)p(fl + f2) (4.4) 

MK 

where P is the power spectrum and N3=MI(2J+I) is the number of smoothing 

windows in each record. It can be seen that the variance of the estimate depends on 

the second order spectral properties. The bicoherence was proposed as an 

alternative, that does not have this property. Alternatively the variance of the 

estimate can be reduced by an averaging procedure and frequency domain 

smoothing (Nikias and Petropulu 1993). The estimation procedure involves the 

application of the Fast Fourier Transform, followed by segment averaging: 

I K-1 
Bý, 

egment averaged 
(fll f2) = -Z X1(f1)Xi(f2)XiV1 + f2) 

(4.5) K ito 

and frequency-domain smoothing: 

IJJ B(fl, f2)=-j+1)2 2: 2: fisegment 
averaged(A+k19f2+k2) (4.6) (2 k, =-J k2 =-J 

where the signal x(n), 0 :5n :ýN-I is segmented into K records with M samples 

each, i. e., N=KxM, f, and f2 represent the indices of frequency, i is the 

index of the segment, X* is the complex conjugate of X denotes the estimator 

and 2J+1 is the length of the smoothing window that is applied to each record. 

In practice it is found that the estimates for periodic signals have lower variance 

than those for stochastic signals (Fackrell et aL 1995), and therefore the choices of 

the parameters (K, J, etc. ) for bispectrum estimation for oscillation isolation (this 

chapter ) and for non-linearity detection (Chapter 6) are different. In this chapter the 
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magnitude bispectrurn is used to isolate the root cause loop of plant-wide 

oscillations. All candidate measurements are well-defined deterministic signals and 

stochastic noise is not dominant, so only a few segments and smoothing windows 

are needed. Unless otherwise stated, a segment length of 1024, a 50% overlap, 

window length I (J=I, i. e. no frequency domain smoothing), and a DFT length of 

1024 are used throughout Chapter 4. In Chapter 6 the bispectrum is proposed to 

discriminate between bad tuning induced oscillations and non-linearity induced 

oscillations. Stochastic noise is more dominant especially with the example given, 

so it is necessary to have enough segment averaging and frequency domain 

smoothing to get good estimates of the stochastic part of the signals. A segment 

length of 256, a 50% overlap, a Rao-Gabr window of length 21 (J=10), and a DFT 

length of 256 are used throughout Chapter 6. 

4.1.3 Why Bispectrum? 

The bicoherence has been applied widely because the estimate of its variance is 

independent of the signal energy (Fackrell 1996). However, the bispectrum is 

preferred here because of the considerations listed below. 

4, The bicoherence is sensitive to division by a small number, as this can 

artificially increase calculated values and hence be misleading. In practice the 

peak of the bicoherence is found not to be at the quadratic phased couple 

bifrequencies. Magnitude bispectra, however, can show explicit peaks at 

frequencies where phase coupling happens. 
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The oscillations of interest are well-defined deten-ninistic signals, and as has 

been mentioned already, the estimates of deterministic signals have lower 

variances than those for stochastic signals. Therefore there is less necessity to 

normalize the bispectrum (i. e. bicoherence) to reduce the estimate variance. 

9 The calculation of the bispectrum is numerically more efficient than that of the 

bicoherence. This is very important because deterministic signals don't need 

segmentation (Nikias and Petropulu 1993) and the estimate of the bicoherence 

for the entire length of data with few segments is more time and memory 

consuming due to more matrix calculations. The bispectrum estimator, 

however, can estimate the bispectrum at desired frequency channels easily with 

few segments. 

65 



4.2 Magnitude Bispectrum of Oscillations 

By definition (Equation 4.2), if the components present at frequencies fi, f2, (fl+f2), 

and ((I-fi) are spontaneously excited modes, each will be characterized by 

statistically independent random phases. Thus through statistical averaging in 

Equation 4.2, the bispectrurn will take a zero value. On the other hand, if the sum 

and/or difference component is generated through some nonlinear interaction, then 

phase coherency exists and the statistical averaging will not lead to a zero 

bispectrum. value. Valve non-linearity induced oscillations contain both even and 

odd harmonics, that is, quadratic coherency exists in components of the oscillations 

at frequencies fo (fundamental frequency), fi (second harmonic, fi=2fo), f2 (third 

harmonic, fi=3fo), etc. Non-zero peaks are expected to be seen in these frequency 

channels in the magnitude bispectrurn plots. 

4.2.1 Oscillations With Single Fundamentals 

Non-linear source induced oscillations have a fundamental frequency, which is at 

the crossing point of the non-linearity describing function and the open loop transfer 

function of the plant (Chapter 3). The measurement records contain a fundamental 

with its harmonics. A simple example here is used to demonstrate how the 

magnitude bispectrurn of an oscillating signal shows peaks at the quadratic coupled 

bifrequencies (fundamentals and harmonics). Consider a signal with a fundamental 

together with its second and third harmonics: 

s(i) = sin(2; rfýi) + a, sin(4; rfoi+; rl5) + a2sin(6; rfOi+; r17)j=I, ---, 4096 (4.7) 
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where JO * is the ftindamental frequency: fo--0.05. and a,, a, are the amplitudes of 

harmonics: cr, = 0.5, a, ý = 0.1. The magnitude bispectrum of this signal is given in 

Figure 4-2, where the contour plot of the whole plane (including the redundant area) I 

is shown on the left panel and the surface plot of only the non-redundant area is 

shown on the right panel. C, 
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Figure 4-2: Magnitude bispectrurn of a signal with single fundamental frequency 

left panel-contour plot, right panel-surface plot quadrant. 

It can be seen that there is a strong peak at the quadratic coupled bifrequency (fo, fio), 

i. e. (0.05,0.05) in the non-redundant area. With a weak peak at quadratic Coupled 

bifrequency i. e. (0.1,0.05) it cannot he visible in the Contour plot but can 

be seen in the surface plot. The magnitude bispectra at other frequency channels, 

however, turn out to be zero, which validates the prediction that no quadratic 

coupling happens at those bifrequencies. 
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4.2.2 Multiple Oscillations 

number of non-linear oscillatory sources might be present in a plant, giving rise 

to multiple oscillations. These oscillations are likely to have different fundamental 

frequencies so that measurement records might contain two or more fundamentals 

together with their respective harmonics. The bispectrum has the inherent capability 

of detecting and diagnosing such multiple oscillations. For instance consider the 

bispectrurn of a signal with two fundamentals and their second and third harmonics: 

s(i) = sin(2; rfoi) + a, sin(4; rfoi+; rl5)+a2 sin(6; rfoi+; r 17) 
+, go sin(2; rfli) + P, sin(4; rfli +; r / 4) + fl2 sin(6; rfli +; r / 8), (4.8) 

i=1, ---, 4096 

wherefo andfi are the two separate fundamentals: fo=0.07, fi=O. 12, aj, a2, flO, A,, 82 

are the amplitudes of harmonics: a, = 0.5, a2= 0.1,80 = 0.8, fl, = 0.3,62 = 0.08. The 

magnitude bispectrum. of the signal is given in Figure 4-3. It can be seen that both 

oscillations have peaks at bi-frequcncics (fo, fo), (2fo, fo) and (fl, fi), (2f,, fi), which 

makes the separation of these oscillations straightforward. In Section 4.3.2 

automatic steps to identify these fundamental frequencies will be given by locating 

their corresponding bifrequencies. Alternatively Thornhill et al (2003a) has 

proposed an automated frequency domain filtering method to categorize multiple 

oscillations into multiple single-source oscillations. Their frequency domain filter 

sets the power in unwanted frequency channels to zero, destroying the power 

spectnun of the stochastic part of the signal. Hence it is not recommended when 

dealing with real data corrupted by stochastic noise. 
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Figure 4-3: Magnitude bispectrum of a signal with two fundamental frequencies: 

left panel-contour plot, right panel-surface plot. I 

4.2.3 Variable-Frequency Oscillations 

Multiple oscillations have multiple fundamentals whereas variable- frequency 

oscillations have one ftindarnental at one time and a different fundamental at 

another. Since the frequency varies with time, a simple method to deal with such 

kinds of data is to split the data into stages in which a fixed fundamental freqUency 

can be assumed in each. This cannot be used in the unlikely event that the fTequency 

varies constantly or the variation is so large that its peak encompasses the positions 

located by both the ftindamental and the second harmonic. 

An example of this broadening is shown in Figure 4-4 (a) which pertains to a 

normalized time series and a power spectrum of simulated oscillatory data with 

frequency variations (sin (O. Oltp(t)), where P(t)= 1+0.1 sin (0.1t)). It can be seen 

from the power spectruni plot that the i-mige of the fundamental frequency widens 
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when the three dominant peaks exist closely. The frequency pertaining to the third 

peak happens to be twice the frequency pertaining to the first one, and a nonzero 

bispectrurn is expected, which is explained by the magnitude bispectrum plot in 

Figure 4-4 (b). A similar nonzero bispectrum could happen when a few frequencies 

are coupled such as fi+f2=f3. Special care should be taken when detecting a non- 

linearity using bispectrum. One way of eliminating the possibility of variable 

frequency would be to examine the power of the first few hannonic frequencies, as 

opposed to just the second. 
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Figure 4-4 (a): Time series and power spectrum of variable frequency, simulated 

data 
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Figure 4-4 (b): The bispectrum of variable fi-equency. SiInUlated data 

Another example pertains to frequency variations observed in real plant data that 

result in a widening of the fundamental peak in the power spectrum. Figure 4-5 (a) 

pertains to real plant oscillatory data which was caused by a sticking valve. The 

power spectrum showed that the frequency varied from 0.0028 to 0.0031 as a result 

of the oscillation being faster in the second twenty-four hours than in the first 

twenty-four hours. Possible explanations are that some controller change or 

operating point change happened in the middle. The b1spectrum (Figure 4-5 (b)) 

shows peaks which are due to quadratic coupling caused by the valve nonlinearity. 

When the bispectrum is used to isolate the root cause loop of such oscillations, it is 

recommended that the first half or the last half of the data should be used in order to 

avoid cross-coupling between these two fundamentals. Figure 4-6 gives tile time 

series. power spectrum and bispectrum of the first half' of' the data. It call be seen 

from the power spectrurn plot that the fundamental frequency is now limited to only 

one peak. Although the difference between the bispectra in Figure 4-5 (b) and ill 

Figure 4-6 (b) is not visibly clear because they both have a distinct peak at 

.......................................... 

..................... ...................... 

..................... ...................... ................. 

................. ................. 
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..................... ..................... 

..................... ..................... 
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bitrequency (fo, fio) and much smaller peaks at other bifrequencies, the scale in the 

later figure is larger, which gives indication of stronger coupling between the 

fundamental and second harmonics in the first half of the signal. The automatic 

interpretation of its bispectrum will become simpler and clearer. 
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Figure 4-5 (a): Time series and power spectrurn of the variable frequency, real data 
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4.2.4 Noise Effects 

Although the bispectrum of Gaussian noise is theoretically zero, the presence of 

non-Gaussian noise in the signals can affect the bi-amplitude ratio in at least three 

ways. Any bispectrum. based approach must accommodate these eventualities. 

These three possible situations are listed below. 

Situation 1: The hannonics are hidden by this noise to the extent that they will be 

indistinguishable in the bispectrum. The net effect might then be that the bi- 

amplitude at the fundamental bi-firequency is now not the dominant peak in the 

magnitude bispectrum plot. 

Situation 2: Low-frequency noise, e. g. caused by drifting, might also result in the 

presence of a dominant peak at the corresponding low bi-frequency in the bi- 

amplitude plot i. e. at a location other than at the fundamental bi-frequency. 

Situation 3: Noise might affect the power of the harmonics disproportionately. 

Generally the Fourier series of an oscillating signal will have a larger fundamental, 

than second harmonic, than third harmonic and so on. Hence the bi-amplitudes 

should obey the relationship: B(f, f) > B(2fo, fo) > B(3fo, fo) unless corrupted 

by noise. 

74 



4.3 Root Cause Isolation Based On Bi-spectral Analysis 

The 'bell' shaped harmonic propagation described in Chapter 3 implies that the 

harmonics can either be amplified or attenuated through disturbed loops depending 

on the frequency of the oscillation relative to the apex of the bell. Based on this 

knowledge, the source of the oscillations can be found by comparing the harmonic 

content of detected oscillating loops. In this section a new index, the bi-amplitude 

ratio index, is presented, which measures the relative harmonic contents among 

oscillating signals in plant-wide oscillations. 

4.3.1 The Bi-Amplitude Ratio 

It is important to note that the bi-amplitude ratio is only intended as an index for 

oscillatory signals. These signals will have normalised measurement records 

(usually process variables), composed, primarily, of the sum of a fundamental, its 

harmonics and random noise: 

U-1 
x(n) = 1: ai cos(2; rfin + 0) + v(n), 1: 5 n.: 5 N (4.9) 

i-O 

where f, is the ith normalized frequency (frequency/sampling frequency), a, is the 

amplitude of the ih harmonic, 01 its phase, M is the number of signiricant 

harmonics, v(n) is Gaussian noise with zero mean and variance a' and is 

uncorrelated with the signal. Note that all f, 's are distinct and that index i=O 

corresponds to the fundamental hannonic, i--I the second harmonic and so on. 
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Consider the Fourier transform of a single sinusoidal component, then 

X(fl) = F(ai cos(2; rfn + 0, » = 
Nf a (co s 0, +js in 01), 6 (f - f, ) (4.10) 

where Nf is the length of Discrete Fourier transfonn and 8(. ) is the delta 

fanction. The power at each frequency channelfi is therefore: 

Nf 
2 t7 2 

P(fi) = E(X(fi)X* (fl)) + w(fl) a; +- 4 Nf 

where w(fd is the power of Gaussian noise v(n) which is a constant '7' 
Nf 

The power of the fundamental and harmonic frequency channels are likely to be 

stronger than that of others. By the definition of the bispectrum, define thefirst bl- 

amplitude, B, as the modulus of the bispectrum at the bi-frequency (fo, fo) i. e. 

B, =I B(fo, fo) I=I E[X(fO)X(fO)X*(2fO)] I=I E[X(fO)X(fO)X*(fI)] I 

=1ýý0(cosoo+jsinoo)Nfao(cosocl+jsinoo)Nfa'(cosol+jsinol)I (4.12) 
222 

jv3 

8fa,, a, 

Note that the bispectrum of Gaussian noise is zero so that the above expression 

contains only the Fourier transforms of the sinusoids. Define the second bl- 

amplitude B2 as the modulus of the bispectrum at the bi-frequency (fofi): 

3 

B2= I B(fo, fl) I=I E[X(fo)X(f, )X =-Laot7lct2 12)11 8 

It is noted that B, is dependent on the magnitudes of the fundamental and second 

harmonics and that B2 is dependent on the magnitudes of the fundamental, sccond 

and third harmonics. Therefore the first and second bi-amplitudes are associatcd 
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with the powers atfo, fi, f2 (see Equation 4.11). The bi-amplitude ratio is defined as 

the ratio of the first and the second bi-arnplitude: 

BI 
B2 

(4.14) 

From (4.12) and (4.13), r= -S-, which means that r is the ratio of power of the 
a2 

fundamental at frequencyfo to that of the third harmonic at frequencyf2. In practice, 

bi-amplitude ratio r is likely to be greater than one because the fundamental should 

dominate. The larger the bi-amplitude ratio, the stronger the fundamental power 

compared to the third harmonic power. 

4.3.2 The Calculation of The Bi-amplitude Ratio 

The bi-amplitude ratio can be calculated automatically. To do this the first and 

second bi-amplitudes need to be estimated so that the bi-amplitude ratios can be 

calculated. The results in the procedure are given below. 

(1) Test the raw data for an oscillation. Eliminate data whose variation is small 

relative to the quantisation imposed by the data acquisition system, because 

quantisation introduces harmonics into the records and makes the analysis more 

susceptible to noise. Then normalize the time records to zero mean and unit 

standard deviation. 

(2) Calculate the power spectrum PQ) of each of the signals and obtain the 

frequency that locates the maximum power (fundamental frequency) in each of their 
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spectra. Form a subset of signals that have a common frequency index (fo) because 

they pertain to a common source of oscillations. 

(3) For each signal in this subset, calculate its bispectrum. Bispectra can be 

estimated using the direct approach and segment averaging (Section 4.1.2). The 

magnitude bispectrum. is an Nf x Nf matrix with two frequency indices fi and f2, 

where Nf is the discrete Fourier Transform length of the bispectrum estimates. 

(4) For each magnitude bispectrum. matrix search the principle domain to obtain the 

maximum bi-amplitude and record its bi-frequency (fl, f2). If fi= fi=fo, i. e. the 

coupling between the fundamental and the second harmonics is the strongest, then 

set this maximum bi-amplitude as the first bi-amplitude Bl(fo, fo). Otherwise, based 

on the assumption that the closer to the source loop, the stronger the signal-to-noise 

ratio and hence a stronger coupling between the fundamental and second harmonics, 

the signal is likely to be corrupted by significant quantities of non-Gaussian noise or 

relates to an oscillation with a different fundamental frequency, in which case 

eliminate the signal from the subset because it is not possible to be close to the 

source loop. 

(5) For each of the remaining signals obtain the second bi-amplitude B2(2fo, fo) from 

the magnitude bispectrum matrix through the bi-frequency index (2fo, fo). 

I 
B, 

(6) Calculate the bispectrum ratio: r=- B2 

(7) Eliminate those ratios that conform to one of the special situations listed in 

Section 4.2.4. 
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4.3.3 Inter-loop Variation in The Bi-amplitude Ratios 

To examine inter-loop variation, first suppose that the source of the oscillation is in 

loop k-1: 

Xk k-i 
cos(2zfin + oi) + vk (n) = ai (n) 

i-0 

where f, is the j1h discrete frequency, a, "is the amplitude of the ih harmonic, 01 

its phase, Mk-l is the number of significant harmonics, v, -, 
(n) is Gaussian noise 

with zero mean and variance cr,, -, 
' and is uncorrelated with the signal. The 

corresponding bi-amplitude ratio is: 

k-I 

=a6 rk-I k1 B2 ai- 

Then if the Ph loop interacts with the k-]'h loop: 

M--l 
xk(n) = ak-' IG (2; rfl) I cos(2; rfin + 0) + vk(n) 

1-0 

where Gk(2; rfl) is the transfer function from the k-Ph loop to the kth loop, and 

normally has a 'bell'-shaped frequency response plot. The corresponding bi- 

amplitude ratio is then: 

r, =A= 
ao"I Gk(2; rfo) I 

k B2 a2*-'IGi(2; rf2)1 
(4.18) 

According to the frequency response of Gk, JGk(2; rfO)jýGj(2; rf2)j if the 

fundamental and lower harmonics arc located on the positive slope (low frequency 

case) and the hannonics are amplified, r, < r, -,, otherwise r, > r, -,. 
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This information forms the basis of a search algorithm that considers each loop in 

turn. It then hypothesises that the source of the oscillations is located in that 

particular loop and assesses whether the han-nonic distortion observed at each target 

loop and indicator agrees with this hypothesis by testing for the conditions 

discussed in the previous section. To do this a number of the harmonics observed at 

each target/indicator must be compared with those observed at the source so that the 

slope of the log-ratio plot can be estimated in the vicinity of these harmonics. The 

source loop is then deemed to be that loop that conforms to these conditions the 

closest. 

Let the bi-amplitude ratio of the source loop be r, and the bi-amplitude in the target 

loop ri. Then if the first and third harmonics in the source loop arc given by 

, 
a' and r, =- 

aor (w) 
. a, sin wt and a3sin3wt, r == Supposc that the first and third 

a2 ar (3w) 

harmonics lie on the same constant slope of the logloca. vs. 20loglo r(o)) graph and 

that this slope is of gradient ofg dBs/decade. Then 

20loglo 20 loglo 
(r(w, 

), 

=20loglor(wl)+g[loglo3w, -Ioglowl]-20logior(wl) (4.19) 

=g loglo 3 

A positive g implies amplificd han-nonics whilst a negative g implies attcnuatcd 

harmonics. 

The first stage of the scarch strategy is therefore to produce a table of bi-amplitudc 

ratios scalcd by logjo3 and with cach row pcrtaining to a diffcrcnt sourcc loop 

hypothesis. Each row would then be tested against the conditions described in the 
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previous section. These tests are encapsulated in the flow diagram shown in Figure 

4-7 and explained below, for that situation where 'bell' shapes are expected, i. e. 

controllers are of type (d) (see Section 3.4.1) and target loop disturbance transfer 

function resonant frequencies are estimated from controller integral time 

constants(see Section 3.4.3). Tolerances el and 62 are non-zero because of 

undulations in plateaus. They are typically set at about 2 in the current studies. 

1. If the third harmonic frequency of the plant-wide oscillations is lower than all the 

apexes of the 'bells' (i. e. < 27r/Tik), harmonics would be amplified in all target loops 

and loops associated with rows in which all the g's are positive can be marked as 

candidate source loops. 

2. If the fundamental har7nonic frequency of the plant-wide oscillations is higher 

than all the apexes of the 'Bell' (i. e. > 2; r/Tjk), harmonics would be attenuated in all 

target loops and loops associated with rows in which all the g's are negative can be 

marked as candidate source loops. 

3. If the oscillation period happens to be higher than the integral time constants in 

some loops and lower than those in the other loops, the situation is more 

complicated. Unless the controllers have been detuned or over-tuned, the procedure 

involves marking those loops that are associated with rows, which have positive g's 

in target loops whose integral time constants are lower and negative g's in thosc 

loops whose integral time constants are higher. 
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I Candidate source loops with P, - true I 
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Figure 4-7: Flow chart of the isolation process 
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4.3.4 Fifth Harmonic Based Verification 

Although the biamplitude ratio only evaluates the power ratio of the fundamental to 

the third harmonic, there are some other measures that can be derived from the 

biamplitude spectrum which may help to verify the isolated root cause candidates. 

For example the bi-amplitude ratios of the source loop and a target loop are very 

close, or the ratio of the source loop is even larger than that of a target loop because 

the third harmonic in a target loop is corrupted by non-Gaussian noise. The power 

ratio of the fundamental to the fifth harmonic could provide one such measure. 

This 'fifth' bi-amplitude ratio can be obtained by simply calculating another 

biampitude B3(2fo, 3fo), where 

=I B(f,, f 
Nf3 

I E[X(f, )X(fý)X* (f -ala2a4 , 
)] I=8 (4.20) 

The 'fifth' bi-amplitude ratio is defined by 

rs = 
B2 

B3 (4.21) 

In the case of low pass attenuation, the 'fifth' bi-amplitude ratio of signals recorded 

in the source loop should be the minimum amongst all those in all the loops. 

4.3.5 Examples 

Three examples are examined here to demonstrate the method proposed. One is a 

simulated plant with two interacting loops, in which one loop has a sticking valve. 

The other two are from industrial data. The simulation has the fundamental and 

lower hannonics located on the positive slope of the disturbance transfer function 
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frequency plot so that the source of the oscillation has the larger bi-amplitude ratio. 

The second pertains to an Eastman Chemical Company facility that oscillated at a 

relatively low fundamental frequency and the third pertains to a facility that had a 

relatively high frequency plant-wide oscillation. The same three examples are also 

used in Chapter 5 and Chapter 7 to assess other methods. Two more simulations 

pertaining to 4-loop plant simulations are also given, one with weak coupling, the 

other with tight coupling. The first is straightforward, whilst the second 

demonstrates the limitations of the approach. 

The Simulated Plant 

Time series were generated by simulating a simple distillation column model 

described by Seborg et al. (1989), which was adapted by incorporating a valve 

model into one of its loops. Details pertaining to the revised model are given in 

Figure 4-8; stiction in the valve (in Loop 1) was increased until the model 

oscillated. The static friction model that was used is that due to Horch & Isaksson 

(1998). Both loops oscillated. Note that the loops were excited by applying a set 

point change at time zero, whilst at the same time introducing a Gaussian 

distributed noise disturbance with zero mean and standard deviation aa-, where o- is 

the standard deviation of the pure signal, and a is the noise level (a--10%). Their 

controlled process variables (M) were recorded, resulting in two 4096-sample 

time series. The normalised records and associated power spectra are shown in 

Figure 4-9, where the frequency axis in the right panel is normalised by the 

sampling frequency (10 min-). It can be seen that there is a dominant peak at 

f=0.025 frequency/sample frequency (0.25min" or 4min period), the fundamental 

frequency, in each of the power spectrum plots. 
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Figure 4-8: The simulated plant 
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Figure 4-9: Process variable time series and power spectra for the simulation 

Figure 4-10 shows the magnitude Bode diagram of transfer function 

G=- 
P21 

- as derived on the basis of the transfer functions given 
PI I 

+C2(PlIP22 _P21P12) 
9 

in Figure 4-8. The cut-off frequency is at 4.41 rad/min (0.7 min"'). Therefore the 
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fundamental frequency (0.25 mirC 1) is on the positive slope so that the lower order 

han-nonics will be amplified relative to the fundamental. Note that the diagram is 

flat at higher frequency channels because the simulation is probably unrealistic at 

high frequencies. 

Bode Diagram of G 

i-n 
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20 ------------------- ------------------- ----------------------------- 

30 --------------- ----------------------- ............................. 

40 ........ ............................. ............................. 

50 . .................................. ............................ 

-------------------------------------- 

U. 1 

Frequency (min") 

Figure 4-10: Magnitude plot of G in the simulated case 

A larger bi-amplitude ratio is expected in Loopl because of the hannonic 

amplification. Table 4-1 gives the bi-amplitude ratios that were calculated for both 

loops and Figurc 4-11 shows the non-rcdundant bi-amplitudc plots of both loops. 

Note that the maximum bi-amplitudes in both are around the bi-frequency 

(0.025,0.025). 

Loop Number B, B2 Ratio (r) 

Loopl 

Loop2 

3.66 

8.12 

0.03 

0.23 

108.64 

35.96 

Table 4-1: The biamplitude ratios for both loops 
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Figure 4-11: The bi-amplitude plots of both loops 

Case study I (Lovv-Freauency Cave) 

Other researchers (Thornhill et al. 2002b; Thornhill et al. 2003a; Thornhill et al. 

2003b; Xia & Howell 2003a) have analysed this process data. The operators have 

reported that a sticking valve was found in the loop with Tag22, and that this was 1ý 

associated with a plant-wide oscillation in the frequency range 10.00 1 0.0 11 ( 10()- 

1000 samples/cycle). 
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Figure 4-12 shows the normalised measurements and their power spectra, for the 30 

filtered pv's. It is clear that there is a dominant, plant-wide oscillation 

corresponding to a fundamental frequency at about 0.0029 on the normalised 

frequency axis. Note that Tags 1,2,9,14,16,17,21 and 30 can be eliminated from 

the group because their power spectra show peaks at frequencies other than at 

0.0029; these loops are likely to be contaminated by excessive noise and cannot be 

considered here as root cause candidates. Tags 3,4,6,11,12,15,18,20,24,26 and 

27 relate to indicators. 

Table 4-2 lists the scaled relative bi-amplitude ratios of the control loops selected as 

root cause candidates and their corresponding controller integral times. The sample 

frequency is 20 seconds, so the fundamental frequency is at about a 114-minute 

period. Almost all of the integral time constants are less than 114/3, which suggests 

that both the fundamental and third harmonic frequency are likely to be lower than 

their resonant frequencies and so amplified harmonics (positive g's) are expected in 

the target loops. Only Tag 13 has an integral time larger than 114/3, which suggests 

that the third harmonic frequency may be larger than the resonant frequency of 

Tagl3; hence it is possible that the third harmonic might be amplified (positive g), 

attenuated (negative g) or even remain the same (zero g) relative to the 

fundamental. The diagnostic aim can therefore be interpreted as finding a source 

loop in which all the target g's are positive with the exception of that pertaining 

Tagl3. The loop with Tag22 conforms to this requirement, because the row with 

Tag22 at its head is all positive; a very small g (3.8) in the Tagl3 suggests that the 

third harmonic is not on the 20db/decade slope but on the slope after the apex of the 

'bell'. The table of scaled relative bi-amplitude ratios for loop to indicators (Table 
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4-3) provides supporting evidence for this decision of Tag22 as the source loop, 

because positive g's are to be expected in most plants. 

Normallsed PVs Normallsed Power Spectra of PVs 
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Figure 4-12: Normalized time trends of pvs and the power spectra of 30 plant 

instruments 
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- 
Target Loop 

P 1 7 8 10 13 19 22 23 25 

Ti 20 0.3 0.3 0.5 50 1.5 15.0 0.3 20 

5 - 8.5 1.1 18.8 -19.2 -20.2 -23.0 -14.2 -10.7 

7 -8.5 - -7.4 10.3 -27.7 -28.7 -31.5 -22.7 -19.2 

8 -1.1 7.4 - 17.8 -20.3 -21.3 -24.1 -15.3 -11.8 

0 0 
10 -18.8 -10.3 -17.8 - -38.1 -39.0 -41.8 -33.0 -29.5 

u 
13 19.2 27.7 20.3 38.1 - -1.0 -3.8 5.0 8.5 

z 0 19 20.2 28.7 21.3 39.0 1.0 - -2.8 6.0 9.5 

22 2 3. 3 1. ý 24.1 41.8 3.8 2.8 8. S 12.1 

23 14.2 22.7 15.3 33.0 -5.0 -6.0 -8.8 - 3.5 

25 10.7 19.2 11.8 29.5 -8.5 -9.5 -12.3 -3.5 - 

Table 4-2: Scaled relative bi-amplitude ratios (loop-to-loop) 

Indicator 

31 41 6 11 1 12 1 15 1 18 20 1 24 26 27 

5 -5.9 -8.9 - 18.2 17.5 -5.3 14.6 -5.9 -0.4 

7 - - - 12.1 11.4 - 8.5 - -6.5 

8 -6.0 -9.0 - 18.1 17.3 -5.5 14.4 -6.1 -0.6 

10 - - - -0.4 -1.2 - -4.1 - - 

13 5.3 5.1 13.8 10.7 2.2 37.1) 37.1 14-1 34.2 1 
-1.7 19.2 

19 .4 
13. () 1 7.3 1 1.4 3)-1.3 13.8 1 Q. 3 

22 5.0 4 14.0 11.0 2.5 18.1 3 7.4 14.0 14.5 1 -4.0 19.5 

23 -1.3 -1.5 7.2 4.2 -4.3 31.3 30.6 7.7 27.7 7.2 12.7 

25 -3.7 -3.9 4.7 1.7 -6.8 28.8 28.1 5.3 25.2 4.7 10.2 

Table 4-3: Scaled relative bi-amplitude ratios (loop-to-indicator) 
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Case studT 2 (HighlFrequena Case) 

This set of refinery data (courtesy of a SE Asian refinery) has been examined 

previously by others (Thornhill et aL 2001) who have recommended that loops with 

tags 33 and 34 should be considered as prime locations of the root cause. Twelve 

loops have been found to be involved in a plant-wide oscillation, so the 512-sample 

process variables pertaining to these loops were analysed. Figure 4-13 plots their 

time trends and spectra: all show a strong spectral peak at 0.06 min-' corresponding 

to oscillations with a period of 16.7 min. 

Normallsed time trends 
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0.001 0.01 0.1 
frequency (min") 

Figure 4-13: Time trends and spectra for the tags with a common fundamental 

frequency 
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Tag 33 and 24 were then eliminated from this group because their deviations were 

very small, which would make harmonic analysis unreliable. The 16.7-min period is 

known to be a high frequency so that low pass filtering was expected and therefore 

the source of such plant-wide oscillations should have the minimum bi-amplitude 

ratio. Table 4-4 gives their bi-amplitude ratios. The maximum bi-amplitude peak for 

the loop pertaining to Tag4 was found to be located at bi-frequency (0.058,0.0019) 

instead, raising the suspicion that the signal was corrupted by low-frequency noise. 

Tag4 was therefore eliminated from the search. Figure 4-14 shows bi-amplitude 

contour and surface plots for the two loops, Tag25 and Tag34. The plot of Tag34 

shows distinct the first peak at bi-frequencies (0.06,0.06); in contrast, the plot of 

Tag25 contains more features, the bi-amplitude peak at (0.12,0.06) is not as evident 

as the peak at (0.18,0.06) implying that the power at the third harmonic frequency 

. 
f--0.18 is larger than the power at the second harmonic frequency f--O. 12. Thus it 

can be associated with Situation 3 in Section 4.2.4, and concluded that non- 

Gaussian noise has enlarged the third harmonic, so that the small bi-amplitude ratio 

of Tag25 is not due to a strong third harmonic but to a strong content of noise 

around the third harmonic frequency. Thornhill, Shah & Huang (2001) have 

reached a similar conclusion about Tag25. 
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Tag B, B7 Ratio (r) 

34 0.1 4.8e-3 20.92 

13 0.056 Lle-3 49.82 

1) 0.036 1.58e-4 229.67 

10 0.01 2.12e-4 46.37 

11 0.029 2.6e-3 11.1 

20 0.036 1.42e-4 253.98 

3 0.014 1.61 e-5 880.68 

25 0.021 2.3e-3 (8.89) 

4 (0.01) (l. le-4) - 
19 0.028 5.28e-4 52.91 

Table 4-4: Bi-amplitude ratios for the 12 loops in the high frequency case study 
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Figure 4-14: Bi-amplitude plots for Tag34 and Tag25 
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The results in Table 4-4 suggest that the root cause is in the vicinity of Tagl 1 

because this has the smallest biamplitude ratio. Tag34 is the next likely candidate. 

TagI 1 was verified by examining the ratio of the fundamental to the fifth harmonic 

(Table 4-5). Although the Tagl I ratio (r) is small, that pertaining to Tag34 is even 

smaller. Plant knowledge is now needed to progress the investigation further. A 

reason for this contradictory evidence can be obtained by looking at the plant 

schematic (Thornhill, Shah and Huang, 2001). Tagl I and Tag34 are in the same 

process unit: TagI 1 is the product indicator whilst Tag34 is a flow loop. They have 

similar fundamental to fifth harmonic ratios (r) because they are physically close. 

But Tag34 is more likely to be associated with the root cause, because the plant- 

wide oscillation is very likely to have been caused by a valve nonlinearity problem. 

Tag B2(0.12,0.06) B. 1(0.12,0.18) Ratio(r) 

34 4.8e-3 1.6e-3 3.0 

13 1.1 e-3 1.95e-4 5.64 

2 1.58e-4 9.22e-7 171.37 

10 2.12e-4 2.17e-6 97.70 

11 2.6e-3 4.28e-4 6.07 

20 1.42e-4 2.93e-7 484.64 

3 1.61 e-5 3.4le-8 472.14 

25 2.3e-3 4.90e-4 4.69 

4 (1.1 e-4) (1.3 1 e-6) - 

19 5.28e-4 1.22e-5 43.28 

Table 4-5: Fifth Bi-amplitude ratio indices for the first case study 
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A Simple 4-loop Example 

The first example has a structure that might be obtained from a plant, which has a 

number of process units connected in series: 

2.22e-""' 
(36s+l)(25s+l) 

-2.33e-5-' 

G(s) = 
(35s +1)2 (25s+l) 

0 

0 

0 

3.46e-'*O" 
(32s + 1) (25s + 1) 

3.51 V" 
(12s +1)2 

0 

0 

0 

4.41C'-O"' 
(I 6.2s + 1) (25s + 1) 

-1.25e -2.1, 
(43.6s + 1) (9s + 1) 

0 

0 

0 

4.78e-'-"' 
(48s+l)(5s+l)_ 

CI(s)=0.385 1+ 1, 
C2(s) = 6.19 1+1 

34.72s) 60.8s 

C3(s)=2.836 1+ 1, 
C4 (s) = 0.732 1+ 

60.22s) 60.93s 

A stiction model (Horch & Isaksson 1998) was incorporated in LoopI to produce 

the oscillations. An oscillation period of about 55 min/cycle was chosen as this is 

approximately the same as the resonant periods of the loops. (As will be seen, the 

close proximity of the period of oscillation with that of resonance poses difficulties 

in the next example). The bi-amplitude ratios of the four loops are listed in Table 4- 

6. Application of the procedure of Figure 4-7 results in the isolation of Loopl. 

Although not used explicitly, the 3 log-ratio plots are given in Figure 4-15 to enable 

the reader to note how close the resonant periods are to the integral time constants. 
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Target Loop 

1 2 3 4 

T 34.72 60.8 60.22 60.93 

I - -18.59 -27.82 -10.83 laq 0 0 2 18.59 -9.23 7.75 

3 27.82 9.23 - 16.98 

0 W 4 10.83 -7.75 -16.98 

Table 4-6: Scaled relative bi-amplitude ratios (simple case) 
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Figure 4-15: Log-ratio plots for the simple example 
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A Tightl -Loep Plant 
., X Coupled 4 

The 4x4 process simulated was obtained from Lee et al. (1998): 

2.22e-2*"' 
(36s+l)(25s+l) 

-2.33e-"' 

G(s) 
(35s +1)2 

-1.06e 
12., 

(17s + 02 

-5.73e 
-2.5s 

(50s+l)(8s+l) 

-2.94 (7.9s + 1) e'-"-' 
(23.7s +1)2 

3.46e-"O" 
32s+l 

3.51 le" 
(I 2s + 1)' 

4.32(25s+l)e'-"-' 
(50s + 1) (5s + 1) 

0.0 1 7e-0- 2s 
-0.64e 

-20 1 

(3 1.6s + 1) (7s + 1) (29s +1)2 

-0.5 le-'*" 1.68e -2s 

(32s +1)2 (28s +1)2 

4.4le-'-"' -5.38e-o*s' 
16.2s+l 17s+l 

-1.25e-2-"' 4.78e-1-15-' 
(43.6s+l)(9s+l) (48s+l)(Ss+l). 

C, (s)=0.385 1+ 
1 C2(s) = 6.19 1+1), 

( 

34.72s 

)' ( 

21.8s 

C3(, v)==2.836 1+ 
1 C4 (s) = 0.732 1+1 

19.22s 

)' ( 

36.93s) 

Particular difficult features of this simulation are how full the 4X4 matrix is, and 

the low orders of the off-diagonal terms. This simulation was intended for control 

studies and was less concerned with model validity at higher frequencies where it is 

unlikely to be realistic. Two of the consequences here are that horizontal plateaus 

are to be expected in many of the log-ratio plots and the integral time constant 

based estimation Of Wrok is unlikely to give accurate results. 

aLcle. Loep] is the source loop) 1. Low frequena (256 mLnlo 

A stiction model (Horch and Isaksson 1998) was incorporated in LoopI to produce 

the oscillations. The bi-amplitude ratios of the four loops are listed in Table 4-7. 

The oscillation period (256 min/cycle) is quite high relative to the integral time 
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constants of the controller settings so the ratios in the source loop row should all be 

positive. Thus Loopl would be marked. 

Target Loop 

1 3 

20.16 3.49 2.01 

2 -20.16 - -16.67 -18.16 

3 -3.49 16.67 -1.48 

4 -2.01 18.16 1.48 

Table 4-7: Scaled relative bi-amplitude ratios (tightly coupled, low-frequency case) I 

2. Middle fýeqitencv (25.6 minIcycle. LooV2 is the source loop) 

The same stiction model was now incorporated in Loop2 to produce a different 

oscillation. A 25.6 min/cycle oscillating period was chosen as this is of the same 

magnitude as the integral time constants of the plant, making interpretation more 

complicated. The bi-amplitUde ratios of the four loops are listed in Table 4-8. All 

the scaled ratios are small relative to typical gradients of about 20,40 or 60; this is 
I 

to be expected when the period of the oscillations is so close to the integral time 

constants. It is now pointless invoking the procedure in Fig 
., ure 4-7 as slopes cannot 

be discerned in this data. To examine this situation further, log-ratio plots (Figure 

4-16) were generated analytically by re-arranging, then evaluating the model 

equations as described in Appendix C. As anticipated, their resonant peaks are not 

in the range 0.027 - 0.052 predicted ftorn the integral time constants and there are 

plateaus at high freqUencies in two of the plots. The 0.04min-1 (25.6 inin/cycle) 

frequency of the oscillations is higher than the resonant frequency of' Loop I but 
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lower than the resonant frequencies of Loop3 and Loop4, which explains the results 

in Table 4-8. The procedure in Figure 4-7 successfully marked Loop2 when the 

resonant frequencies were estimated from these log-ratio plots. 
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Figure 4-16: Log-ratio plots for the middle-frequency case 
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Target Loop 

2 3 

2.55 5.89 4.86 

2 -2.55 -'4 2. 

3 -5.89 -3.34 - -1.04 

1 4 -4.86 -2.30 1.04 - 
V) 

Table 4-8: Scaled relative bi-amplitude ratios (tightly coupled, midd le- frequency 

case) 

3. High fýequency (4.1 minIcycle, LooV2 is the source loQpl 

Coulomb & viscous friction was incorporated in Loop2 to produce a high-frequency 

oscillation (4.1 min/cycle). The results (Table 4-9) show significant, negative 

relative bi-amplitude ratios for Loops 1,2 and 4 as the sources. To examine this 

situation further, once again log-ratio plots were generated analytically from the 

model equations and were used to estimate the resonant frequencies. Loop I and 

Loop 4 were now eliminated on the basis of the procedure of Figure 4-7. 

Target Loop Zý 

1 1 
31 4 

2.09 -29.38 0.32 

2 -2.09 - -31.46 -1.76 

3 29.38 31.46 29.7 

4 -0.32 1.76 -29.7 

Table 4-9: Scaled relative bi-amplitude ratios (tightly coupled, high-frequency 

case) 

1 (X) 



4.3.6 Isolating Multiple Oscillations Based on The Biamplitude Ratio Index 

The bispectral approach has the inherent capability of detecting and diagnosing 

multiple oscillations. A simple example is illustrated here to demonstrate a general 

procedure for isolating multiple sources of oscillations. The simulated plant (Figure 

4-17) has the same process models and controllers as shown in Figure 4-8, but with 

independent oscillatory disturbances introduced into both loops during steady state. 

The oscillatory disturbance introduced into LoopI is a sinusoidal signal with a 

fundamental, a second and a third harmonics: 

s, (i) = sin(2; rfoli) + 0.5 sin(47rfoli) + 0.2 sin(6; rfoli), i=1, - .., 4096 (4.22) 

where fol=0.005 min" with (min") being frequency/sampling frequency ; the 

disturbance introduced into Loop2 is: 

s2 (i) = 0.8 sin(22rf02i) + 0.4 sin(4gf02')+ 0.1 sin(67rf02i), i=1, - --, 4096 (4.23) 

wherefo2=0.035 min-1. 

- 
Loopl Oscillat 

I ory1disturbance 

-2.16e' 
8.5s+l + 

. 58s) 
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8.25s+l 

1.26e"-" 
7.05s+l 

I 4.28e4'35* 2. PV 
4.39(1+i-518; 

)j 

2. OP 9.0s+1 

Loop2 Oscillatory disturbance2 

Figure 4-17. The simulated plant with multiple oscillations 
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These multiple oscillations are visible in the process variable time series and power 

spectra shown in Figure 4-18. Loopl has dominant peaks at frequenciesfol, 2fol and 

also a dominant peak at frequencyfo2 because of propagation, whilst Loop2 has 

dominant peaks at frequencies fo2 and 2fo2. Both loops have suffered from the 

oscillatory disturbance propagated from the other loop. 

Normalized PVs Normallsed Power Spectra of PVs 

I.. 

E 

0 
0 

-J 

I 

2 

El 

CL 
Ln 

CL 

2 

Figure 4-18: Process variable time series and power spectra for the simulation with 

multip e osci ations 

From their power spectra it is hard to say which loop is nearer to the possible 

sources of the multiple oscillations. The magnitude bispectrurn is now analysed. 

Figure 4-19 gives the contour biamplitude plots of both loops. It can be seen that the 

biamplitude of Loopl. shows explicit peaks at bifrequencies (fol, fol) and (2fol, fol) 

whilst the biamplitude of Loop2 only shows peaks at bifrequency (fo2fo2). It can be 
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concluded that LoopI is nearer to the oscillation with fundamentalfol, and Loop2 is 

one of those loops suffered from the oscillation with fundamental fo2. Now Loop I 

and Loop2 are categorized into parts pertaining to different oscillations. It is noted 

that this categorization procedure is automatic. All loops disturbed by these 

oscillations can be categorized into two parts in this way. In each category single- 

source oscillations can be assumed and the isolating procedure based on the 

biamplitude ratio index can be performed. 
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Figure 4-19: Magnitude bispectrum of both loops 
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Chapter 5 

Root Cause Diagnosis Based on Non-linear Time Series 

Analysis and Spectral ICA 

Having gained an understanding of harmonic propagation, harmonic evaluation 

methods should aid the isolation of whole-plant oscillations. In this chapter two 

indices based on non-linear time series analysis tools, namely Correlation 

dimension and maximal Lyapunov exponent are introduced to evaluate harmonic 

content. When combined with knowledge of harmonic propagation they are found 

to give indications of the root cause of non-linearity induced oscillations. The new 

application of the two time series analysis tools on the isolation of plant-wide 

oscillations is the main contribution in this chapter. 

Since hannonics could be attenuated if the oscillatory frequency is larger than the 

cut-off frequency of the log-ratio plot, a revised interpretation of spectral ICA is 

required in high frequency cases. 

5.1 Introduction 

The correlation dimension and Lyapunov exponents are recently developed 

descriptions which provide quantities for the characterisation of nonlinear, 

deterministic and chaotic data (Kantz & Schreiber 1997). These methods have been 

widely used to analyse non-linear time series in mechanical systems (Boltezar ef at. 
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1999; Cusumano & Moon 1995; Jaksic et al. 1999; Trendafilova & Van Brussel 

2001; Wang & Lin 2003), medical science (Burioka et al. 2001; Hecox et al. 2003; 

Lei et al. 2001; Muller et al. 2003), and chemical engineering (Guo et al. 2003; Hay 

et al. 1995; Wang et al. 2003). Sometimes the correlation dimension and/or the 

maximal Lyapunov exponent indicate non-linear or deterministic chaotic behaviour; 

whilst other references conclude that a larger correlation dimension or a larger 

maximal Lyapunov exponent corresponds to richer dynamics (Boltezar et al. 1999) 

or more system complexity (Boltezar & Hammond 1999; Burioka et al. 2001; 

Prokoph & Veizer 1999). Few have related the correlation dimension or the 

maximal Lyapunov exponent of a time series to its harmonic content because 

chaotic time series, although usually periodic and oscillatory, do not contain distinct 

fundamentals and harmonics. 

In this chapter the definitions and characteristics of the correlation dimension and 

maximal Lyapunov exponent will first be introduced. A mathematical analysis and 

a simple example will then be used to demonstrate their relationships with the 

harmonic content of an oscillating time series. Based on the understanding of 

harmonic propagation, these measures are found to give indications of the root 

cause of oscillations. Data obtained from a simulated plant and two industrial case 

studies will be analysed to demonstrate this approach. 
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5.2 Correlation Dimension and Maximal Lyapunov Exponent 

Based Root Cause Isolation 

5.2.1 Definition and Estimation 

Both techniques are based on a discrete, multi-dimensional phase space 

representation of the data. Given the time series X1 9 X2 . X3, ---, x,, then the multi- 

dimensional phase space is formed from: 

Y*i ý (xi 
I Xi+T 11 Xi+2T 

P -'Xi+(m-I)A i=1,2, ---, N 

where T is the time interval and rn is known as the embedding dimension; X, is 

called an embedding vector (point) of m-dimension. 

Correlation dimension 

The correlation dimension provides a tool to quantify self-similarity. A larger 

correlation dimension corresponds to a larger degree of complexity and less self. 

similarity. Stochastic signals are infinite-dimensional. The most frequently used 

procedure to estimate the correlation dimension was introduced by Grassberger and 

Procaccia (1983a; 1983b). They defined the correlation sum for a collection of 

points X, (i=I, 2,...,, N) in some phase space to be the fraction of all possible pairs 

of points which are closer than a given distance e in a particular nonn: 

2 Ar IV 

C(M, C) =EE E)(C-IXI-XJII) (5.2) 
(N - m)(N -m- i-m j-, +i 
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where 0 is the Heaviside step function, E)(x) =0 if x: 5 0 and G(x) =I for x>0. 

Thus Equation 5.2 counts the pairs ( X1 9 Xj ) whose distance is smaller than e. To 

eliminate the temporal correlation, the Theiler window can be used to exclude those 

pairs of points that are too close in time (Kantz and Schreiber 1997). 

It has been shown by Sauer & Yorke (1993) that in the limit of an infinite amount 

of data (i. e. N -> oo) and for small e, C scales like a power law, C (c) oc cDý , where 

D2 is known as the correlation dimension. Thus D2 is defined by 

D2= lim lim 
aInC(m, s) (5.3) 

6-40 N-+Oo aln(c) 

Convergence to a finite correlation dimension can be checked by plotting "effective 

dimensions" versus scale (e) for various embeddings (m). The easiest way to 

proceed is to compute (numerically) the derivative of InC(m, c) with respect to 

In (e), for example by fitting straight lines to the log-log plot of C(c). If the scale 

is large, then self-similarity should be minimal, whereas if it is sufficiently small 

one observes a relationship with the embedding dimension i. e. D2 is not totally 

independent. This effect is due to noise. Only on the intennediate scales can one see 

the desired plateau where the results are approximately independent of m and c i. e. 

where D2 is invariant. The region where the scale rule holds, not just the range 

selected for straight line fitting, is called the scaling range. Takens-T ei er ave 

developed an alternative estimate of the correlation dimension: 

DTT (., ) = 
C(e) (5.4) 

de' 
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Maximal L)Lapunov Exponent 

Lyapunov exponents measure the exponential divergence (positive exponents: 

chaotic motion) or convergence (negative exponents: regular motion) of two 

initially neighbouring trajectories in a phase space. In other words, they measure the 

degree of unpredictability of the future. There are many different Lyapunov 

exponents for a dynamical system. The most important is known as the maximal 

Lyapunov exponent (XI) (Kantz and Schreiber 1997). Let X, and Xj be two points 

in a phase space with a distance IIX, 
- Xj 11 = 8,, <I between them. Let 8, denote the 

distance obtained between the two trajectories t units of time later i. e. 

t 
IIX, 

+t-Xj+, 
Il. ThenX, C5, = is defined by 8, = 8,, e'ý', J, << 1. A positive?,, means that 

there is an exponential divergence of these trajectories, i. e. chaos; a negative X, 

implies the existence of a stable fixed point; if the motion settles down onto a limit 

cycle, ; ýj is zero. 

A robust, consistent and unbiased estimator for the maximal Lyapunov exponent 

was proposed by Kantz and Schreiber (1997). They compute 

IN1 
S(c, m, t) In( (5.5) 

,I 
xi+t - xj+t 

N j., U(XI) I x, eu(x, ) 

where the reference points X, are embedding vectors and U(Xj) is known as the 

ncighbourhood of X, with diameter c. If S(e, m, t) exhibits a linear increase with 

fixed slope for all m larger than some mo and for a reasonable range of c, then the 

slope of S is deemed to be invariant over this range. This slope can be taken as an 

estimate of the maximal exponent X,. 
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Automatic generation of the invariant estimates 

Estimation of the correlation sum, correlation dimension, and the maximal 

Lyapunov exponent were all based on the TISEAN software package(Hegger et al. 

1999). The automatic generation of the invariant estimates were derived as follows: 

(1) Obtain the appropriate time interval T and embedding dimension m for the given 

time series; the mutual information method (Fraser & Swinney 1986) is used to 

choose T and Cao's method (Cao 1997) is used to obtain m. 

(2) Correlation dimension estimate: apply routines d2 and c2t of the TISEAN 

toolkit with the parameters T and m to obtain DTT for a specified range of c, i. e. 

the derivatives of In C (m, c) versus in (c) for I: m+4 embeddings, which is a 

matrix of size length(s) x (m+4). 

Maximal Lypunov exponent estimate: apply routine lyap_k to obtain S(c, m, t) 

versus t for I: m+4 embeddings, which is a matrix of size length(t) x (m+4). 

(3) Correlation dimension estimate: calculate the mean and variance of DTT for the 

last 4 embcddings and then the normalized variance (variancelmean), which 

are vectors of size (length(c)). If the normalized variance is smaller than a given 

threshold, average the mean DTT within the range of c's where the normalized 

variances are small. Take the average value as the correlation dimension 

estimate. Usually the threshold for the normalized variance is given differently 

for various time series. A larger value is set for a signal with more noise 

content. 

Maximal Lypunov exponent estimate: for each of the last 4 embeddings, fit a 

line to the calculated S(e, m, t) within the range of the first several number of 
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t's and calculate the slopes of the lines. The range of fitted t's is different for 

various time series. An automatic way is to try fitting lines for 

S(c, m, 1: num) with num moving from 2: t until the fitting error is minimum. 

Take the average value of these four slopes as the maximal Lyapunov exponent 

estimate. 

5.2.2 Relationship Between The Invariants and Harmonic Content 

Intuitively, a time series with high harmonic content will be more complex and 

more unpredictable than one with a low harmonic content, and hence will have a 

larger correlation dimension and a larger maximal Lyapunov exponent. To 

demonstrate this the maximal Lyapunov exponent for a sinusoidal signal with up to 

three harmonics is obtained analytically in Appendix D. The maximal Lyapunov 

exponent is found to increase with increasing harmonic content. Here a simple 

calculation will be used to reinforce this point. Three 4096-sample time series were 

analysed to examine the effect of increasing the harmonic content: 

sl(k) = sin(2; rjk) 
s2(k) = sin(2; rjk) + 0.8 sin(4; rjk) (5.6) 
s3(k) = sin(2; rjk) + 0.8 sin(4; rjk) + 0.5 sin(6; rjk) 
k=I,. - -, 4096 

where f=0.01 is the fundamental frequency. The correlation dimensions and 

maximal Lyapunov exponents of the three time series are listed in Table 5-1. 
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Time series Correlation dimension (D2) Maximal Lyapunov Exponent (A) 

sl(k) 0.93±0.02 0.011±0.002 

s2(k) 1.06±0.01 0.026±0.002 

s3(k) 1.13±0.02 0.031±0.002 

Table 5-1: Invariant of sinusoidal signals 

It can be seen that the correlation dimension and maximal Lyapunov exponent both 

increase with harmonic content. This supports the claims that the correlation 

dimension reflects the self-similarity and the maximal Lyapunov exponent reflects 

the predictability. The future of time series with more harmonics should be more 

unpredictable and hence should have a larger invariant. 

5. . nvariant Based Isolation of The Source of Oscillations 

Again on y process variables of control loops pertaining to a plant-wide oscillation 

are considered and the fundamental frequency of the oscillations is determined. If 

the frequency is high relative to the cut-off frequency, time series that are recorded 

close to the root cause will have a high harmonic content, and those recorded 

further away from the root cause will become more sinusoidal. However the first 

few harmonics of an oscillation could be amplified if the fundamental is sufficiently 

low to locate the first few hannonics on the positive slope of the relevant log-ratio 

plot. In this case, and since the first few harmonics dominate, the time records 

further away from the source could be more complex (with large signal-to-noise 

ratio). 
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Based on this understanding of how harmonic content is affected as an oscillation 

propagates through a plant, the correlation dimension and maximal Lyapunov 

exponent can provide measures to locate the source of plant-wide oscillations. More 

specifically, the time series pertaining to the root cause should have the largest 

correlation dimension and maximal Lyapunov exponent in cases where the plant is 

inherently low pass in nature over the frequency range of concern, because the 

harmonics have been attenuated through the propagation and also because the time 

series become less complex and more predictable further away from the source; and 

the correlation dimension and maximal Lyapunov exponent pertaining to the root 

cause will be the smallest in low-frequency cases where there is amplification of the 

first few hannonics. 

5.2.4 The Effect of Noise 

The correlation algorithm is a tool for analysing the scaling properties of point sets 

in phase space (Kantz and Schreiber 1997). Deterministic signals show power law 

scaling of C(c). It is characteristic for such signals that the exponent in the power 

law is invariant under coordinate transfonnations and in particular does not depend 

on the embedding dimension m once m is large enough to ensure a proper 

reconstruction. For stochastic systems the situation is different. Delay vectors 

formed from a random signal arc not restricted to a low-dimensional manifold but 

fill all available directions in phase space. A deterministic signal with low noise 

level will have a correlation dimension plot in which the stochastic data dominates 

at small length scales (c) comparable to the amplitude of the random noise. A 

consequence of much noise, however, is the breakdown of the self-similarity of the 
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signal. As for the maximal Lyapunov exponent, for a signal with much noise, 

nearby trajectories should diverge diffusively rather than exponentially. Figure 5-1 

gives an example of such a situation, where 4096-sample normally distributed 

random noise time series with mean 0, variance 1, and standard deviation I is 

inspected. No scaling range is found in the correlation dimension plot and the 

maximal Lyapunov exponent is close to infinite. 

Noise is an omnipresent phenomenon. One way to reduce the effect of noise is to 

apply the non-linear noise reduction technique (Kantz and Schreiber 1997). In the 

root cause diagnosis procedure, the source loop usually contains a high signal-to- 

noise ratio so that scaling and divergence should be visible. Those loops with 

measurement records having no obvious scaling or divergence are possibly far away 

from the root cause. 
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Figure 5-1: Correlation dimension and maximal Lyapunov exponent for random 

noise (red dashed line fitting the slope) 

5.2.5 Examples 

The three examples used in Section 4.3.5 are examined here again. Their harmonic 

propagation has already been evaluated with the bispectral analysis approach. 
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The Simulated thne series 

Harmonics have been amplified through propagation from Loop I to Loop2, thus a 

smaller correlation dimension and maximal Lyapunov exponent, are expected in the 

source loop i. e. Loopl. The correlation dimension plots D-rr versus c, and the plots 

of S(,,. tn, t) versus tare given in Figure 5-2 and Figure 5-3 respectively. Thevalues 
I 

of the invariants in Table 5-2 confirin these predictions. 
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Figure 5-2: Takens estimator for correlation dimension of the two loops (red dashed 

line fitting the plateau) 
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Loop 1 maxknal Lyspunov exponent 
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Loop2 maximal Lyiapunov exponent 
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Figure 5-3: Maximal Lyapunov exponents of the two loops (red dashed line fitting 

the slope) 

Loop Number Correlation Dimension (D2) Maximal Lyapunov exponent 

1 1.38±0.02 0.003±0.002 

2 1.43+-0.002 0-010±0.001 

Table 5-2: Invariant estimation for the simulated case 
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j, I (L)w-Frequency Cave) Case stud 

The correlation dimensions and maximal Lyapunov exponents of each of the nine 

dominant time series are estimated. The results are listed in Table 5-3. 

Tag Number Correlation Dimension (D2) Maximal Lyapunov exponent 

5 

7-- 

8 

10 

13 2.33±0.01 0.022±0.004 

19 2.29±0.05 0.007±0.0004 

22 1.52 0.004 1 

23 

25 3.86±0.01 0.029±0.007 

Table 5-3: Invariant estimation for the Eastman case study 
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Figure 5-4(a): No typical correlation dimension found in Tag5 
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Figure 5-4(b): No exponential divergence of Tag5 

Tag22 has the smallest correlation dimension and maximal Lyapunov exponent 

inferring that it should be the nearest to the root cause. Interestingly Figure 5-4(a) 

shows the correlation dimension plot of Tag5, where no typical correlation 

dimensions can be found. All curves from different embedding dimensions behave 

different and there is no common behaviour. Figure 5-4(b) shows that the time 

series pertaining to Tag5 exhibit no linear increase, reflecting the lack of 

exponential divergence of nearby trajectories. And the time series pertaining to Tag 

7,8,10 and 23 also have no typical dimension and maximal Lypunov exponent. A 

possible explanation for this is that the stochastic content (for example, noise) in the 

time series dominates. These observations also match the propagation schematic 

provided by (Thornhill et aL 2002b), where Tag23,5,7 and 8 are all relatively far 

away from Tag22. Although Tag19 is farther away than Tagl3, it has a smaller 

correlation dimension and maximal Lyapunov exponent. This is because the 

intrinsic low-pass filtering attenuates the higher harmonics and simplifies the time 

series pertaining to Tag 19. 
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Case Stud igh-_Fre y2 ff 
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The estimated correlation dimensions and maximal Lyapunov exponents for the 12 

loops are listed in Table 5-4. The 16.7-min period is known to be a high frequency 

so that low pass filtering was expected and therefore the source of such plant-wide 

oscillations should have the largest correlation dimension and maximal Lyapunov 

exponent. It can be seen that the time series pertaining to Tag33 have largest 

correlation dimensions and maximal Lyapunov exponents than those pertaining to 

other loops. Note that the time series pertaining to Tags 13,11,24,3,25,4 and 19 

have no typical correlation dimensions and maximal Lyapunov exponents, because 

these loops are suspected to be contaminated by noise. 

Tag Number Correlation Dimension (D2) Maximal Lyapunov exponent 

34 1.19±0.03 0.011±0.0003 

13 

33 1.94±0.02 0.030±0.004 

2 1.85±0.003 0.010±0.0002 

10 1.58±0.09 0.011±0.001 

20 1.74±0.05 0.019±0.001 

24 

3 

25 

4 

19 

Table 5-4: Invariant estimation for the SE Asian case study 
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5.3 A Revised Interpretation of The Spectral ICA Method 

Spectral independent component analysis (spectral ICA) was reviewed in Chapter 2. 

This analysis has been proposed as an aid to isolate the root causes of multiple 

oscillatory sources (Xia & Howell 2003a). Its key feature is that it extracts 

dominant spectrum-like independent components each of which has a narrow-band 

peak that captures the behaviour of one of the oscillatory sources. The basis is that a 

unity significance index (SI) points to the source of an oscillation with a common 

fundamental frequency. 

As has been mentioned in Chapter 2 the extracted independent components should 

be the harmonics of the oscillation. If the oscillation is amplified in target loops 

then the fundamental should dominate in the source loop, so that the source loop 

should have a unity significance index associated with the independent component 

pertaining to the fundamental frequency. Xia and Howell (2003a) gives examples of 

this case. Conversely, if the oscillation is attenuated the source shouldn't display the 

fundamental most strongly because it also contains harmonics. Then a smaller 

significance index associated with the independent component pertaining to the 

fundamental frequency is expected. In this case the independent components 

associated with the first few harmonics are likely to be extracted and the 

significance indices associated with these ICs must be assessed together to give an 

indication of the root cause. The revision on the present Spectral ICA approach is to 

sum the indices together, because the measurement pertaining to the root cause 

should have the largest harmonic content. 
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The following gives the spectral ICA analysis for the three case studies presented in 

Section 4.3.5. It will be seen that in the low or high frequency cases, the 

significance indices has to be interpreted differently. 

5.3.1 The Simulated Time Series 

Figure 5-5 shows the dominant ICs that were obtained when spectral ICA was 

performed on the process variables of the two loops in the simulated plant (see 

Figure 4-8). Values of the significance indices (i. e. the aij values) and the 

corresponding frequencies are listed in Table 5-5. 
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Figure 5-5: The dominant independent components for the simulated case 

Significance index (SI) ICI IC2 

Loopl. PV 1.00 0.17 

Loop2. PV 0.97 1.00 

Frequency (sample frequency) 0.025 0.05 

Table 5-5: Values of significance indices and corresponding frequencies 
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The two dominant independent components (ICI and IC2) are the fundamental (at 

frequency 0.025) and second harmonic (at frequency 0.05) respectively. Loopl has 

a unity significance index for ICI indicating its stronger link to the fundamental so 

that Loop I is the root cause of the oscillation. Loop2 has a unity significance index 

for IC2, which represents the amplified harmonics that arise through propagation 

from Loop I. 

5.3.2 Case study I (Low-Frequency Case) 

In the low-frequency case study, straightforward spectral ICA failed to extract the 

harmonics that were expected so multi-range spectral ICA was applied instead. This 

meant that the ICs were extracted over a limited frequency range [0.0025 0.016] 

instead, which was chosen to include the three harmonics. Dominant ICs 

representing the fundamental, second and fourth harmonics were extracted and are 

shown in Figure 5-6. Table 5-6 gives the significance indices (SI) associated with 

the fundamental IC (ICI) and second harmonic IC (IC2) of the nine loops. The 

significance index of Tag22 associated with ICI is the largest as expected. The 

significance indices associated with IC2 are all negative (and hence set to zero), 

thus indicating a weak association with IC2. Note also that there was little power in 

the second harmonic frequency channels (see Figure 4-12). 
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Figure 5-6: The dominant independent components for case study 1 

Tag Number ICI (SI) IC2 (SI) 

5 0.54 0 

7 0.57 0 

8 0.55 0 

10 0.03 0 

13 0.76 0 

19 0.78 0 

22 1.0 0 

23 0.80 0 

25 0.70 0 

Table 5-6: Values of significance indices for case study I 
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5.3.3 Case study 2 (Iligh-Frequency Case) 

Narrow-band spectral ICA extracted the dominant ICs from the 12 oscillating 

measurements. Shown in Figure 5-7, IM and IC2 correspond to the fundamental 

and second harmonics respectively. Their values of significance indices are listed in 

Table 5-7. Since this is a high-frcquency case, the significance indices are summed 

together to give an indication of the hannonic content. It can be seen that Tag34 has 

the largest number, which means that it is the nearest loop to the root cause. It 

differs from the result from the nonlinear time series analysis method which points 

to Tag 33 because here the weights of the fundamental and second harmonics are 

summed together whilst the nonlinear time series analysis tools evaluate all the 

harmonic contents. 

normalized ICB 

ici 

C6 

E 

icz 

10 

Figure 5-7: The dominant independent components of case study 2 
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TagNumber ICI(SI) IC2(SI) ICI+IC2(SI) 

34 0.71 0.83 1.54 

13 0.61 0.32 0.93 

33 0.49 1.00 1.49 

2 0.97 0.03 1.00 

10 1.00 0 1.00 

11 0.65 0.08 0.73 

20 0.89 0.04 0.93 

24 0.38 0.04 0.42 

3 0.86 0 0.86 

25 0.35 0.17 0.52 

4 0.68 0 0.68 

19 0.49 0.11 0.60 

Table 5-7: Values of significance indices for case study 2 

5.3.4 Summary 

The revised version of spectral ICA uses the same idea as the present version, e. g. 

the significance indices and dominant ratios, but only has the different interpretation 

in low frequency and high frequency cases. Although it is as simple as summing up 

the significance indices of a few dominant ICs in high frequency cases, it is very 

convenient and practicable and has expanded the application of present spectral 

ICA approach. 
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Chapter 6 

Bi-spectrum Based Non-linearity Detection 

Being based on higher order statistics, the bispectnnn also provides a means to 

detect nonlinearity when oscillatory measurement records exist in process systems. 

The detection approach that is proposed here can discriminate between bad tuning 

induced and valve non-linearity induced oscillations, which are the most common 

reasons for limit cycles in process systems. 

6.1 Introduction 

The approach is based on the premise that the harmonic content of an oscillation 

caused by a valve non-linearity is likely to contain a significant first harmonic plus 

even and odd harmonics, whereas that caused by bad tuning will have little 

harmonic content. This is in agreement with Thornhill & Hagglund (1997) who 

have analysed power spectra to distinguish between limit cycle oscillations caused 

by non-linearities, and linear oscillations caused by, for instance, bad tuning. Their 

approach is based on whether the power spectrum has multiple peaks or a single 

peak. However, it is susceptible to noise in the time trend which can cause spurious 

peaks in the power spectrum plots. Bispectra are arguably superior for this type of 

discrimination, because white noise (Gaussian) has a bispectrum plot that is 

theoretically uniformly zero(Nikias & Petropulu 1993), and hence the impact of 

noise should be reduced. 
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6.2 Nonlinearity Detection Based On The Bispectrum 

As has been described in Chapter 4, the bispectrum, B (fl, f2 ), of a time series, 

X(n) , of finite length, N: 1 :5n -9 N, is defined by: 

B (fl, f2) = E[X(f, )X(f2)X*(f, + f2)] 

, 

where X denotes the Fourier Transfomi of x. If the signal x(n) contains excessive 

noise, its bispectrum can be estimated by applying the Discrete Fourier Transform 

directly and then by segment averaging and frequency-domain smoothing; if it is 

deterministic, the bispectrum becomes (Nikias & Petropulu 1993): 

(fl, f2) =X (fl) X (f2) X* (f, + f2) (6.2) 

which means that no segmentation or smoothing is needed. 

Suppose that data pertaining to either a controlled variable or a controller output is 

composed of a mixture of harmonics and sinusoids: 

N -1 N -IN -1 
qn +oiqk) (6.3) a cos(2; rfn + 0) +aq cos(2; rfl x(n) = 

ýý 

i 
F, 

ik 
J. 0 1-0 k-0 

where N, is the number of sinusoids, fi is the fundamental frequency, ýj the phase 

angle, a, is the magnitude of the ih sinusoid, N,, is the number of harmonics, fie is 

the 0 harmonic frequency corresponding to the th 
sinusoid, a" the magnitude of ik 

the harmonic and OIkI the phase angle. The frequencies are all distinct. 

Since the frequencies are all distinct, the Fourier transform of x(n) will only be 

nonzero at the frequencies of each of the fundamental sinusoids and their 
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hannonics. By definition (Equation 6.2) the bispectrum can only be nonzero if the 

three tenns X(f, ), X (f2) and X*(f, + f2) are all nonzero and hence it can be 

nonzero only if the signal has sinusoids or harmonics at frequencies: fIJ2, f, + f2. 

This observation can now be applied to certain specific signals. 

A signal containing a single sinusoid of frequencyfo: x(f) will be zero with 

the exception of X(f, ), so X*(fo +fO) will be zero, thus the bispectrum will 

be unifonnly zero. 

*A signal containing a single fundamental of frequency fo plus solely odd 

harmonics: X*Cf,, +f, )=O because the sum of any two odd harmonic 

frequencies will result in a frequency corresponding to an even harmonic, and 

hence the bispectrum will be unifonnly zero. 

*A signal containing a single fundamental of frequencyfo plus even harmonics: 

the bispectrurn will definitely have nonzero elements because, for instance 

X(fo), X(fo) and X*(fo + fo) are all non-zero. 

*A signal containing a single fundamental of frequencyfo plus both odd and even 

harmonics: the even harmonics will now contribute to form nonzero elements 

of the bispectrum. 

eA signal containing three or more fundamental sinusoids and solely their odd 

harmonics: is likely to have only zero elements in the bispectrum, unless an 

unusual situation arises where frequencies from two different sinusoidal series 

add up to a frequency pertaining to one of the harmonics of the third sinusoidal 

series. 
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If a process oscillation is due to bad tuning, it should oscillate at predominantly one 

resonant frequency. Thus its bispectrum. should match the first case above; in other 

words, there should be a zero bispectrum plot. However, non-linearity induced 

oscillations introduce even harmonics to the system, so the magnitude bispectrum 

plot of the process variables should have some peaks. Therefore, plotting the 

bispectrum of an oscillating measurement record should give an indication of 

whether the oscillations have been caused by bad tuning or by valve nonlinearity. 
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6.3 Illustrative Examples 

6.3.1 Simulated Data 

Three test cases are first described that are based on the simple, single input single 

output (SISO) system given in Figure 6-1. The loop was excited by simultaneously 

applying a set point change at time zero and introducing a Gaussian noise 

disturbance of 0.01% variance. The second order process is given by the following 

transfer function: 

2 -3s 

(3s + 1)(I Os + 1) 

Set 

(6.4) 

Disturbance 

++ Controlled variable Proc-ess-"L, 

Figure 6-1: Block diagram of a simple SISO process 

The controller has PI action with a gain Kc--0.5 and integral action r, = 12.3. The 

simulation was performed for 10000 seconds and the sample time was I second. To 

avoid any initial transient response, only the 8192 steady state data points from 

1000 to 9191 of the controlled variable were used. The FFT length of 256 was used 

to calculate the bispectrum, the number of samples per record was set to 256. A 

window length of 21 (J=10) was chosen to ensure an acceptable variance. 
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The nortnal condition 

Data pertaining to normal operation was generated from a simulation that contained 

a linear valve model. Figure 6-2 shows the results obtained when the simulation 

output was analysed: the time series, power spectrun-4 magnitude bispectrum (non- 
Z 

redundant area) plot of the controlled variable (PV). 
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Figure 6-2: Results for the normal process 

The bispectrum plot in Figure 6-2 should be uniformly zero, because the process is 

lineaf and driven by Gaussian noise. Although the magnitude bispectruin surface C) 1 1: 1 
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appears to be flat, there are some small peaks due to the variance of the bispectrum 

estimate. The highest peak is 0.01 and so a detection threshold is set to be slightly 

larger at 0.02. Note that this threshold would be different if a smoothing window 

length of other than 21 was chosen. 

Bad tunin-a 

The same model was used but now the controller gain was increased until the 

system oscillated. Figure 6-3 shows the results obtained when the simulation output 

was analysed: the time series, power spectrum, magnitude bispectrum (non- 

redundant area) plot of the controlled variable. 

The power spectrum plot shows a high peak at frequency 0.047 containing 90% of 

the total energy that indicates the system is oscillating at the resonant frequency. 

The bispectrum plot is flat. This is consistent with the prior analysis that a zero 

bispectnnn plot would be expected for a signal containing a single frequency 

component. Note that the highest magnitude of the other peaks was 0.0007, which 

was well below the threshold of unifonnly zero plot (i. e. 0.02) and hence all the 

other peaks were neglected. 
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Figure 6-3: Results for bad tuning 

Valve non-lineariLl 

The effect of incorporating valve stiction into the valve component model of the 

simulation was examined (Figure 6-4). 
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Figure 6-4- Results for valve stict ion 

Note that there is a peak of 0.82 in the non-redUndant area of the magnitude 

bispectrum surface plot at bifrequency (0.031,0.03 1). Also the power spectrum plot 

has a peak at frequency 0.031. This means that the signal oscillates at the I 

fundamental frequency and should have a harmonic at a frequency of' 2*0.031. 

Note the presence of this harmonic in the power spectrum plot and also its small 

magnitude. This supports the view that this approach can detect valve stiction, 

because valve stiction results in even harmonics in the process signal. 
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6.3.2 Industrial Data 

The process variable of the loop pertaining to Tag 22 was analysed again (see Case 

Study 1, Section 4.3.5). Previous work (Thornhill et at. 2002b: Thornhill et al. 

2003b) had detected the presence of an oscillation and a sticking valve was found in 

the loop with Tag 22. Figure 6-5 shows the results obtained for Tag 22: tirne series. 

power spectrum, magnitude bispectrum (non-redundant area) plot. I 
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Figure 6-5: Results for the process variable of Tag22 
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The power spectrum plot shows that the signal has a fundamental frequency of 

0.0029. The peak of the bispectrum plot is at the corresponding bi-frequency 

(0.0029,0.0029). Although the fundamental of the power spectrum is relatively 

wide, the second and third hannonic contents support the view that the signal 

contains even harmonics. Therefore it can be concluded that a valve problem is 

more likely than bad-tuning to have caused such an oscillation. 
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6.4 Comparison With Previous Non-linearity Detection Methods 

As has been reviewed in Chapter 2, Choudhury et al. (2004) have made use of 

higher order statistics to detect and diagnose poor control-loop performance caused 

by actuator nonlinearities. Their work concentrates on bicoherence based indices 

for detecting and quantifying non-Gaussianity and nonlinearity that may be present 

in regulated systems. The bicoherence method itself can't locate the source of a 

system non-linearity; it is also a nonlinearity detection method and therefore is no 

more powerful than the bispectrum. method proposed in this chapter. A comparison 

between the bicoherence-based method and the bispectrum-based method is made 

below. 

Confidence thresholds 

The bicoherence-based method obtains the NGI and NLI indices on the basis 

that the squared bicoherence at each frequency is a chi-squared W) distributed 

variable with 2 degrees of freedom. The estimated bicoherence is compared to 

the critical value calculated from the central )ý distribution table for a 

significance level a. In practice for a=0.05, an NGI value of less than 0.001 was 

assumed to be zero, and an NLI value less than 0.01 was assumed to be 

zero(Shoukat Choudhury et al. 2004). 

The bispectrum-based method assumes that a signal is linear if its maximum 

magnitude bispectrum is less than 0.02 when 21 smoothing window is applied. 
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* Estimate sensitivity 

Bicoherence is a normalized bispectrum. By normalizing, the bicoherence is 

sensitive to division by a small number, as this can artificially increase 

calculated values. It is sometimes difficult to specify at which bifrequency the 

quadratic phase coupling happens because if strong coupling exists, the 

bicoherence may be nearly unity at all of the bifrequency channels. 

Magnitude bispectrum, however, can display explicit peaks at frequencies 

where phase coupling happens. A big smoothing window can be applied to 

alleviate the dependence of the bispectrum estimate on the second order spectral 

properties. 

e Calculation efficiency 

The bispectrum. estimate is more time efficient than the bicoherence because it 

doesn't involve normalisation. Furthermore the bispectrum-based method, 

unlike the bicoherence-based method, doesn't have to look up theX2 distribution 

table in order to estimate the Gaussianity of the signal. 
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Chapter 7 

Conclusions And Recommendations 

7.1 Conclusions 

Although there has been considerable commercial and academic interest in methods 

for process monitoring and fault isolation (Chapter 2), they are usually based on a 

perception of the inherent process dynamics of a plant. Methods for the isolation of 

the root cause of an oscillation that are based on harmonic attenuation include the 

D- factor and Non-linearity index. In Spectral ICA the independent components 

align with harmonics also. Although reliant on the frequency response 

characteristics of harmonic propagation, all make assumptions about the attenuation 

of a plant, thus restricting their application. A major contribution of this PhD 

research is its detailed harmonic propagation analysis (Chapter 3) which leads to a 

model that enables these techniques to be applied to oscillations of any frequency. 

A new technique, which draws on this model more explicitly, is a bispectral 

analysis method, which has the ability to extract the harmonic content of oscillating 

signals (Chapter 4). A bi-amplitude ratio index provides a measure of the power 

ratio of the fundamental to the third harmonic and a procedure is proposed to 

localize the source loop of propagated oscillations based on this measure and on the 

propagation model developed. Unlike the non-linearity test approach it can deal 

with Gaussian noise efficiently. Chapter 5 considers nonlinear time series tools as 

alternative measures that can be input into the same procedure, where revision to 
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the Spectral ICA method is also proposed. Bispectral analysis as a nonlinearity 

detection tool is discussed in Chapter 6 and its comparison with other nonlinearity 

detection methods performed. This bispectrurn based nonlinearity detection method 

is found to be more computationally efficient and more visibly reflects the harmonic 

coupling in nonlinear signals. 

The various root cause isolation methods, the biamplitude ratio index (Chapter 4), 

the correlation dimension, the maximal Lyapunov exponent (Chapter 5), the 

enhanced spectral ICA (Chapter 5), and the non-linearity index (as proposed by 

Thornhill et al. (2003b) and discussed in Chapter 2), will be compared in the next 

sub-section. The comparison is based on their different performances on a simulated 

case and two sets of industrial data. The results show that appropriate use of the 

techniques developed in this work overcomes the problems (Criticisms 9,10 and 11 

in Chapter2) in other techniques. 
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7.2 Comparison 

* Time domain versusfrequency domain based method 

The correlation dimension, maximal Lyapunov exponent and Non-linearity test are 

time domain based methods, whilst the bi-amplitude ratio index and spectral ICA 

are in the frequency domain. 

9 Applicability to low or highfrequency cases 

The correlation dimension, the maximal Lyapunov exponent and the bi-amplitude 

ratio index are all measures that, when augmented by knowledge of the harmonic 

propagation, are applicable in both cases. The spectral ICA method proposed by 

(Xia and Howell 2003a) is only applicable for low frequency cases, because it 

assumed that the source would contain the strongest fundamental harmonic (the 

unity significance index to the fundamental IQ. The enhanced version of this 

method, as presented in Chapter 5, shows that it can be applied to high frequency 

cases by summing the significance indices to the harmonic ICs together. As 

proposed by Thornhill et al. (2003b) the non-linearity index method is based on the 

premise that process dynamics filter non-linearity during oscillation propagation. So 

it is intended to be applied to high-frequency cases where the transfer functions, of 

the controllers plus processes, filter harmonics. Table 7-1 shows the Non-linearity 

indices (N's) for the three examples presented in the previous chapters. It can be 

seen that the N test points to Loop2 for the simulated case (low-frequency 

oscillation) and to Tag23 for the low-frequency industrial case, neither of which are 

the true root causes. Both the bi-amplitude ratio index (Section 4.3.5) and Spectral 

ICA (Section 5.3) located the right root causes, i. e. Loop I for the simulation and 
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Tag22 for the low-frequency industrial case. For the high-frequency industrial case, 

however, the N test points to Tag34, which agrees with both the bi-amplitude ratio 

index (Section 4.3.5) and Spectral ICA analysis (Section 5.3). 

Simulated example LoopI Loop2 

N 0.27 1.89 

Case study I Tag22 Tagl3 Tag23 Tag5 Tag25 Tag19 

(low frequency) 

N 1.29 0.88 1.44 0.53 0.86 0.84 

Case study 2 34 13 33 2 10 11 20 24 3 25 4 19 

(high frequency) 

9.37 3.43 1.17 1.83 0.67 0.81 0.79 0.40 0.27 0.54 0.30 0.61 
N 

Table 7-1: The Non-linearity indices for the examples 

e Effect of noise 

The process variables recorded from process plants inevitably contain noise. The 

isolation methods should ameliorate the effect of noise as much as possible. 

Theoretically the bispectrum of a Gaussian noise is zero (Nikias & Patropulu 1993), 

so the bi-amplitude ratio index is less affected by noise. However the estimation 

variance of the bispectrum. of noise depends on the choice of segment length, FFT 

length and frequency-domain smoothing window length. Comparable results for 

different loops were obtained by choosing the same parameters for all of the 

oscillating signals of interest. Spectral ICA extracts independent non-Gaussian 

sources by maximizing the kurtosis of the time series, which is relative to both the 
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fourth-order central moment and the 2 nd_order central moment (Xia 2003), so the 

noise effect is minimized. The correlation dimension and maximal Lyapunov 

exponent methods do not give meaningful values when time series are corrupted by 

much noise, because noisy components hide the determinism or predictability of the 

time series. The non-linearity test inherently quantifies the signal-to-noise ratio of 

the measurement records because it compares the predictability of the time records 

with the corresponding surrogates. A larger-than-unity N value indicates non- 

linearity (Thornhill et aL 2003b). Since well-established oscillations or oscillations 

near the root cause usually have a large signal-to-noise ratio, the source loop or the 

loops near the source usually have an N value larger than unity. 

* Isolation ofinultiple oscillations 

Multi-range spectral ICA has been used to isolate multiple oscillations (Xia 2003) 

since the extracted independent components pertain to different fundamental 

frequencies. The spectral ICA method first partitions the power spectra of the time 

series into different frequency ranges with frequency-domain filtering and then 

applies the spectral ICA method on each range. Independent components at 

different frequency channels are extracted and the sources to different oscillations 

are then isolated. However the bi-amplitude ratio index has an inherent capability of 

detecting and diagnosing multiple-source oscillations without frequency-domain 

filtering. The time-domain based methods, i. e., the correlation dimension, maximal 

Lyapunov exponent and the Non-linearity index cannot be used to isolate multiple 

oscillations. 
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0 Kich is better? 

From the application of these five methods to the three examples, all methods 

worked well for the low frequency simulated case and industrial case except the 

Non-linearity test. The inapplicability of the N test for the low-frequency case has 

been analysed. For the high frequency industrial case, the results differ slightly from 

each other: Correlation Dimension and maximal Lypunov exponent methods 

isolated Tag33 (Section 5.2.5) whilst the other methods pointed to Tag34. However, 

Tags 34,33 and 13 are all highlighted by all the methods. In this kind of case, 

process understanding would be of benefit. The bi-amplitude ratio index and revised 

Spectral ICA reached the same diagnosis in all the examples because they both 

inherently extract hannonicl distribution of an oscillatory signal. They are also 

applicable to multiple oscillations. In low frequency cases both give reasonable 

diagnoses by looking for the minimum bi-amplitude index or maximum 

significance index of the fundamental IC. However in the case of low pass 

attenuation the bispectral method has a verification procedure with the fifth bi- 

amplitude ratio whilst the Spectral ICA method may not extract the independent 

component of up to the fifth harmonic. For this reason the Spectral ICA is less 

applicable than the bispectral, method. 
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7.3 Practical Steps for The Isolation of Oscillations 

Based on the analysis in this chapter a diagnostic procedure is recommended here. It 

is first important to detect whether the oscillations emanate from one or more 

sources as this will affect the choice of methods that can be applied. 

1) Identify those loops associated with the sarne oscillating source (i. e. with a 

common fundamental frequency). Thornhill et al (2003a), Xia, (2003) have 

proposed practical methods to detect multiple oscillations. 

2) Assess whether the common fundamental, plus associated second and third 

harmonics, are likely to be on the positive or negative slope of each of the 

relevant log-ratio plots. 

3) Apply the various methods. Although the bispectral method is better in most 

cases, the other isolating methods also give meaningful results. They can be 

performed to verify the results from the bispectral method. For example, the Non- 

linearity test and nonlinear time series tools will eliminate the loops with low 

signal-to-noise ratios; the Spectral ICA verifies the harmonic distribution 

identified by the bi-amplitude ratios. 

4) Apply process understanding, if possible, to confirm the identified root cause; 

see for instance Thornhill et al. (2002b) and Thornhill et al. (2003b) who have 

integrated process understanding with data-driven analysis. 
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Appendix A 

Fourier Series Analysis of The Output of A Valve Stiction 

Model 

The output of the data-driven stiction model with a sine wave input with angular 

frequency of I rad-s" and period 2; r is (Choudhury et al. 2004): 

y(t) =- 

k 
(X. 

sin sj) 7C 
0: 5 t< 

k 
(X. 

- 
s-j) 7C 

:gt'! g 7r 
2 2 
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3n 
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+s-J 
3n 

:5t --9 
27c - 2 2 

k( X. sin 
sj) 2n -ý --9 t< 2n 

(A. 1) 

where X,, is the amplitude of the input sine wave, s is the stick band, j is the slip- 

X. - jump, ý =sin-' 
( 

XI. 
S) and k is the slope of the input-output characteristic in the 

moving phase (k--I is assumed for a valve). Then the complex Fourier series 

expansion is: 

2x 
In fy 

e- 'dt, n=0,1,2 271 
t=o 

where, after substitution of sin (t) =I (eil - Cil) 
2i 

(A. 2) 
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Writing it compactly: 
2x 
fy (t) c-"'dt = T, + T2+ T3+ T4 +T5 (A. 4) 
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it -i int 
where T, fk (L"L (e - Cil S e- dt, and so on. 
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When n--O, fy (t) dt =0; when n*O, evaluation term by tenn gives: 
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Collect terms and evaluate the even and odd harmonics separately: 
i 2x 

-intd = 0, When n=2,4, ..., -fy (t) et so the even harmonics are zero. 27c 
1=0 

When n= 1,3, ..., 

i 2z 
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so odd harmonics are present when a sinusoidal input is added to the valve stiction 
model. 

Let j=O, the model becomes a dead-band model and the output to a sine wave has no 

even hannonics. 
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Appendix B 

Harmonic Content of Triangular Waves 

Without generality a triangular wave with amplitude of 1, period of 27r is given in 

Figure B- 1, where, - 
7C <a< 7E 
22 

Figure B-1: A period of a triangular wave 
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--a --a 22 
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The Fourier series expansion is: 

:5 
7C 

a) 
(2 

7r 7C 

2 +a) :: 5 t:! ý 
2+ 
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if a=O, b,, =8. 
n; r 

n,; r 
sin 2, so J(t) contains only odd harmonics since only when 

n= 1,3,5,..., b,, #0; 

if a# 0, although there are n-I values of a i. e. a= 7r - 
;r n>-2 for 

n2 

b, =O, b,, is most likely to be nonzero for both even and odd n's. 
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0 Appendix C 

Oscillation Propagation of A 4x4 Plant 

The plant is given by: 

YI P11 P12 P13 P14 Ul 

Y2 P21 P22 P23 P24 U2 

Y3 P31 P32 P33 P34 U3 

-Y4 

j 

_P41 

P42 P43 P44j 

-U4- 

(C. 1) 

Suppose LoopI is the source loop, i. e. there is a nonlinear valve in Loopl, the other 

3 loops have the following linear relationship between controller outputs and 

controlled variables: 

U2 ý- -C2Y2 0 U3 -"ý -C3Y3 9 U4 'ý- -c4Y4 

Equation (C. 1) could be rearranged to: 
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Therefore, 

yl, -1 C2 PI 2 
C3 PI 3 

CAM - -I -pil - - P, 
I- 

Y2 
= 

0 l+c2p22 C3p23 CA24 P21 
ul = M-1 

P21 
UI (C. 5) 

Y3 0 C2p32 1+ c3p33 CA34 P31 P31 

Y4 j 0 C2p42 C3p43 1+ CA44 
- -P41 _P41 - 

Because most practical processes are open-loop stable (Chen & Seborg 2003), it is 

assumed that the system is open-loop stable. Then the closed-loop system has 

column diagonal dominance for all loops at all frequencies in order to make sure 

that the closed-loop system is stable (Chen & Seborg 2003). The column diagonal 

dominance is expressed as 

ll+PII(jw)CI(jw)l> 1 lpkl(iw)cl(io»l v"w. 

Therefore in (C. 5), M is a column diagonal dominance matrix, whose inverse 

matrix M-1 can be approximated as diag[l. II-I). 
The 1+ C2P22 91+ C3P33 91+ CA44 

ratio r(w) of the magnitudes of the sinusoidal components of the source y, to target 

loops y2, y3, y4 at any frequency ca is then: 

(Co) = 
lYk 1 Pk., (iC0) 1 

(C. 6) 
IYS 1 

10 
7ss (i0» [l 

+ Ck (iC0) Pkk (jCO)] 

where s=1, k=2,3,4. 

Equation (C. 6) is the same as that derived from a 2x2 plant (Equation (3.9)). The 

resonant frequency of r(w) is also determined dominantly by the disturbance 

transfer function 
I 

as analysed before. 
1+ Ckpkk 
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Appendix D 

Relationship of Maximal Lyapunov Exponent and 

Harmonic Content 

Without loss of generality a signal with fundamental frequency of I/ 2; r is 

considered. To calculate the maximal Lyapunov exponent, only a-period time range 

is enough. 

1. Suppose that the signal containing a fundamental harmonic is described by: 

x(t) =cost, t=0,..., 2; r 

This time signal can be projected into a two-dimensional state space: 

X(t) = Cost X(t) 
f. 

i(t) = -sin t 

Select a point in the state space X(to) = fx(tO),. i(t,, )}, and select all neighbours with 

distance smaller than e, denoted as X(O = fx(t, ), At, )), i=1, ..., n, where n is the 

number of the neighbours. Let to -tj = 8, then the distance between the reference 

point and any of the neighbours is: 

D(to, g)=V(x(to)-x(to-, 5))'+(. i(to)-i(to-t5))2 =, \/-2--2cos, 5 

It can be seen that the distance is independent of t. So function S(At) is a constant 

which is independent of At. Therefore the maximal Lyapunov exponent is A=0 

2. Suppose that the signal containing a fundamental and second hannonic is 

described by: 
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x(t) =cost+ acos2t, t = 0,..., 2; r, where a is the amplitude of the second 

hannonic. 

This time signal can be projected into a three-dimensional state space: 

x(t) = cos t+a cos 2t 

X(t)= i(t)=-sint-2asin2t, t=O, ---2; r 
3ý(t) =- cos t- 4a cos 2t 

In order to obtain the maximal Lypunov exponent, the following things have to be 

done. 

Select a point in the state space X(tO)=jx(tO),. i(tO), i(tO)j, and select all 

neighbours with distance smaller than v, denoted as 

X(t) = (x(t), 
-40, . 40b i=n, where n is the number of the neighbours. Let 

t,, - tj =, 5j'O , then the distance between the reference point and any of the neighbours 

is: 

D(to,, 6j'o) = 
V(x(to)-x(to 

-8j"'))2 +(i(to)-. i(to -, 31'0))2 +(Y(to)-i(to -i6j'Q))2 (D. 1) 

Since the distance is smaller than e, the time range between the reference point and 

the neighbours 8! 0 should be very small so that cos (5, '0 =I and sin 15, ", : -- 81", . Then 
I 

Equation (D. 1) can be simplified as 

D(to, Sj'o )= le5j'o 1 Vsin' to + 12a sin to sin 2to + 52a' sin' 2to , 

So the average distance of all neighbours to the reference point X(to) is 

gilo 

D(to) 
n 

Vsin' to + 12a sin to sin 2to + 52a' sin' 2to 

The average distance at time to +At is then 
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n 

2 (to 22 D(to +At)= "n Vsin + At) + 12a(sin to + At) sin(2to + 2At) + 52a sin (2to + 2At) 

Repeat this for many values of t and obtain 

n 
15! 

D(t + At) "n Vsin'(t + At) + 12a sin(t + At) sin(2t + 2At) + 52a' sin(2t + 2At), t = 0, -- . 2; r 

Since the average distances for different t's should be all smaller than --, one of the 

logarithm of the average distances can represent the average over all the t's, for 

example at t=O: 

R 
D510 

S(At) = E(InD(t +At)) = in DO +At) = ln(_kj Vsin2 At + 12a sin At sin 2At + 52a2sin 2 2At + DO) 
n 

where Do is the initial distance, i. e. the distance at At = 0. 

Since the maximal Lyapunov exponent happens at At < 1, where sin At = At and 

n 
Y, sio 

sin2At=2At, 
VAt2 

+ 24aAt2 + 208a 2At2 
+ DO) = In(CAt + DO), 

n 

n 
go 

where c=W ý1-+24a+208a' And at At < 1, 
n 

cc At 
CAt +Do = Do( 

Do 
At+ 1) = DOeDO . Therefore, 

i go 
S(At) = In Do + -ý- At = In Do + C, rli + 24a + 208a, At, whez - C, --* Do nDo 

So 
S(At) 

= C, rl + 24a + 208a2 
At 
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3. Suppose that a signal containing a fundamental, second and third harmonic is 

described by: 

x(t) = cos t+a cos 2t +, 6 cos 3t, t=0, ---, 2; r , where 8 is the amplitude of the third 

harmonic. 

This time series can be projected into a three-dimensional state space: 

I x(t) cos t+a cos 2t +, 8 cos 3t 
X(t) i(t) sin t- 2a sin 2t - 3,6 sin 3t ,t=0, -- . 2; r 

, ý(t) cos t- 4a cos 2t - 9,8 cos 3t 

Repeat the same procedures to calculate S(At) in order to obtain the maximal 

Lypunov exponent as in part 2, we have 

D(t + At) 
n 

9,1 

sin , (t + At) + 52a' sin'(2t + 2At) + 657,6' sin'(3t + 3At) + 12a sin(t + At) sin(2t + 2At) 

n +42fl sin(t + At) sin(3t + 3At) + 372a, 8 sin(2t + 2At) sin(3t + 3At) 

and 

R(A A= In( 
' At + 12a sin At sin 2At + 52a2 sin 2 2At+657p'sin 2 3At 

--\ n V+42,8sin At sin 3At + 372a, 6sin 2At sin 3At 

In Do + C, V-1+ 24a + 208a 2 +5913)62 + 126,6 + 2232aOAt 

where D,, is still the initial distance, and C, 
nDo 

Therefore /ý = C, 41 + 24a + 208a2 +5913p2 +126fl+2232afl 

a7; o0w 
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