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Abstract

Analysis of Faecal Egg Count (FEC) and Faecal Egg Count Reduction Test (FE-
CRT) datasets is frequently complicated by a high degree of variability between
observations and relatively small sample sizes. In this thesis, statistical issues
pertaining to the analysis of FEC and FECRT data are examined, and improved
methods of analysis using Bayesian Markov chain Monte Carlo (MCMC) are de-
veloped.

Simulated data were used to compare the accuracy of MCMC methods to exist-
ing maximum likelihood methods. The potential consequences of model selection
based on empirical fit were also examined by comparing inference made from sim-
ulated data using different distributional assumptions. The novel methods were
then applied to FEC data obtained from sheep and horses. Several syntactic
variations of FECRT models were also developed, incorporating various differ-
ent distributional assumptions including meta-population models. The inference
made from simulated data and FECRT data taken from horses was compared to
that made using the currently most widely used methods. Multi-level hierarchical
models were then used to partition the source of the observed variability in FEC
using data intensively sampled from a small group of horses.

The MCMC methods out-performed other methods for analysis of simulated FEC
and FECRT datasets, particularly in terms of the usefulness of 95% confidence
intervals produced. There was no consistent difference in model fit to the gamma-
Poisson or lognormal-Poison distributions from the available data. However there
was evidence for the existence of bi-modality in the datasets. Although the ma-
jority of the observed variation in equine FEC is likely a consequence of variability
between animals, a considerable proportion of the variability is due to the vari-
ability in true FEC between faecal piles and the aggregation of eggs on a local
scale within faeces.

The methods currently used for analysis of FEC and FECRT data perform poorly
compared to MCMC methods, and produce 95% confidence intervals which are
unreliable for datasets likely to be encountered in clinical parasitology. MCMC
analysis is therefore to be preferred for these types of data, and also allows multiple
samples taken from each animal to be incorporated into the analysis. Analysing
the statistical processes underlying FEC data also revealed simple methods of
reducing the observed variability, such as increasing the size of individual samples
of faeces. Modelling the variability structure of FEC data, and use of the inferred
parameter values in precision analysis and power analysis calculations, allows the
usefulness of a study to be quantified before the data are collected. Given the
difficulties with analysing FEC and FECRT data demonstrated, it is essential
that such consideration of the statistical issues pertaining to the collection and
analysis of such data is made for future parasitological studies.
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CHAPTER 1

Introduction



Introduction

Nematodes or roundworms comprise one of the most common phyla of animals, with a large
number of different species of both parasitic and free-living organisms found in a diverse
range of habitats from Antarctic soils (Yergeau et al., 2007) to the Chihuahuan Desert of
New Mexico (Freckman and Virginia, 1989). Parasitic organisms within this phylum can
be found in many plant and animal species (Blaxter et al., 1998), where they often greatly
outnumber their hosts. Several of these are also of great significance as domestic animal
pathogens; causing clinical symptoms that range from poor growth rates to anaemia and
ischaemic colic (Uhlinger, 1991; Love, 1995; Urquhart et al., 1996). A great deal of effort has
therefore been expended on studying the life cycle and pathogenesis of these parasites in an
attempt to improve the control and treatment of helminth parasitism in domestic species.
Despite this, nematode parasitism continues to be one of the main sources of economic loss
due to poor growth rate in ruminants (Molento, 2009), and are also a clinical concern in
equids in the developed world. This concern arises partly as a result of the development
of anthelmintic resistance within the nematode population (Prichard et al., 1980; Sangster,
1999b; Dargatz et al., 2000) and is compounded by the difficulties in defining the distribution
of parasites within and between hosts (Barger, 1985; Sréter et al., 1994; Stear et al., 1998).

These difficulties tend to be more pronounced in analyses of data obtained from horses. In
these datasets, small groups of animals exhibit marked variability between parasite burdens
as a result of heterogeneity in the host population. The available datasets are typically
in the form of Faecal Egg Count (FEC) data, which represent the parasite egg shedding
rate of an animal and are therefore an indirect measure of the parasite burden (Uhlinger,
1993). Application of more sophisticated statistical techniques to the analysis of parasite
distributions, and further consideration of the statistical issues surrounding the collection
and analysis of parasite burden data, would help to better understand these distributions,
ultimately leading to more effective parasite control strategies (Barger, 1985; Sréter et al.,
1994; Dopfer et al., 2004; Nielsen et al., 2006a).



1.1 LIFE CYCLE AND EPIDEMIOLOGY OF THE NEMATODE PARASITE

1.1 Life cycle and epidemiology of the nematode parasite

Parasitic nematodes of various genera are commonly found in several species of domesticated
animals, including horses and domestic ruminants such as cattle and sheep (Urquhart et al.,
1996). Within these nematode species there is a wide range of physical morphology and
pathogenicity, but with a few exceptions such as Ascarids and Nematodirus battus, all of
these nematodes share the same basic life cycle shown in Figure 1.1. Each is obligated to go
through part of its life cycle on pasture, first hatching from an egg and then undergoing a
series of transformations known as moults between three distinct larval stages denoted Ly, Lo
and Lg, before being ingested by the definitive host species as infective L3 larvae. Another
series of moults through Ly and Ljs then ensues before the nematode becomes a sexually
mature male or female adult, and undergoes sexual reproduction with another nematode of
the same species. Female worms then produce a large number of eggs which are passed out
in faeces onto the pasture, continuing the life cycle into the next generation (Urquhart et al.,
1996).

Although this basic life cycle is common to nearly all nematodes, there are key features of the
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Figure 1.1: Stylised representation of the general parasitic nematode life cycle -
larval stages represented with the prefix L and maturation stages shown using blue arrows
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biology of some parasites that provide specific adaptation strategies. For example, L4 stage
larvae of small strongyle parasites of the domestic equid can undergo a period of hypobiosis in
the large intestinal mucosa (denoted Ly, in Figure 1.1), during which they are less susceptible
to anthelmintic drugs (Uhlinger, 1991; Love, 1995; Mercier et al., 2001; Duncan et al., 2002).
There is also a large variation in size between adult nematodes of different species, from a
few millimetres to more than a meter in size, as well as differences in predilection sites along
the alimentary canal of the host (Urquhart et al., 1996). Some species of nematode also
undergo migratory stages through different areas of the body of the final host, such as the
large strongyles of horses (Urquhart et al., 1996).

A combination of the life cycle of nematode parasites and the variability in host immunity
results in an aggregated distribution of adult parasites between hosts (Sinniah, 1982; Barger,
1985; Uhlinger, 1993; Shaw and Dobson, 1995). This frequency distribution influences the
impact of parasites upon the host population (Anderson and May, 1991), and influences the
success of potential control measures such as selective breeding. This variability in parasite
burdens is also important to consider when modelling the host-parasite relationship (Boag
and Thomas, 1975; May and Anderson, 1983; Woolhouse, 1992; Kao et al., 2000). Herbert
and Isham (2000) explicitly modelled both the larval and adult stages of the parasite as
part of their stochastic host-parasite interaction model. However, it is more common to
consider only the distribution of adult nematodes between hosts when analysing data using
statistical modelling (Wilson et al., 1996; Wilson and Grenfell, 1997; Nodtvedt et al., 2002;
Torgerson et al., 2005; Vidyashankar et al., 2007). This helps to simplify a highly complex
system, but risks the loss of some potentially valuable information. Statistical analysis of both
parasite distributions and FEC distributions has generally been achieved using relatively
simple techniques such as linear regression and generalised linear models (McCullagh and
Nelder, 1989; Wilson et al., 1996), often after log-transforming the observed data (Wilson
and Grenfell, 1997). However, more computationally complex methods such as maximum
likelihood analysis have more recently become accepted as providing more useful results
(Bliss and Fisher, 1953; Wilson et al., 1996; Torgerson et al., 2005).

1.2 Modelling parasite distributions

1.2.1 Defining the statistical distribution of nematode parasites

The number of parasites within an individual is a count observation, which would be expected
to follow a Poisson distribution if parasites were truly randomly mixed within a population
(Elliott, 1977). Equally, multiple FEC measurements from an individual obtained using
a counting procedure such as the modified McMasters technique (Mines, 1977) would be

expected to follow a Poisson distribution if eggs were randomly mixed within faeces. The
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Poisson distribution is described by a single parameter, A, which equates to both the mean
and variance (Evans et al., 2000). However, it has been well established that parasites are
statistically aggregated in many species, including humans (Sinniah, 1982; Churcher et al.,
2005), sheep (Barger, 1985; Sréter et al., 1994; Morgan et al., 2005), goats (Hoste et al., 2001),
birds (Elston et al., 2001), rats (Harvey et al., 1999), wildlife (Shaw et al., 1998), and not
least in horses where there are commonly some animals with egg counts much greater than
the rest of the herd (Uhlinger, 1993; Ihler, 1995; Chandler and Love, 2002; Dopfer et al., 2004;
Torgerson et al., 2005). This aggregation is due to several factors (Crofton, 1962; Herbert
and Isham, 2000), including immunity and antigenic heterogeneity (Galvani, 2003), and leads
to FEC and parasite count data following a distribution which is over-dispersed with respect
to the Poisson distribution (Elliott, 1977).

By far the most widely chosen distribution to represent parasite count data is the negative
binomial (May and Anderson, 1978; Wilson and Grenfell, 1997; Shaw et al., 1998), first
suggested by Fisher (1941) and later studied by Anscombe (1950). This distribution is
defined as the number of failures before s successes, and was originally derived to model the
waiting time in a series of Bernoulli trials such as tossing a coin (Evans et al., 2000). In this
form, the negative binomial is parametrised by the two parameters s, the number of successes
required, and p, the probability that each Bernoulli trial results in a success. However, it
can be demonstrated that the negative binomial also generates the same probability mass
function as the gamma-Poisson compound distribution (Venables and Ripley, 2002; Vose,
2004), where the shape and scale parameters « (sometimes denoted k) and [ (sometimes

denoted 6) of the gamma distribution are related to s and p by Equation 1.1.

p=122 (L1)

The mean and variance of the gamma distribution are given by o and af? respectively.
Therefore, the mean of this compound distribution is also given by a3, and the variance by
the sum of the variances expected from the Poisson and Gamma parts of the distribution;
af + aB?. This definition allows non-integer values of o so that both a and 3 are strictly
positive continuous variables. It is this gamma-Poisson distribution that is relevant to parasite
distributions, although when used within parasitology is typically parametrised using the
mean p, and an inverse measure of aggregation k, equal to «, rather than o and 3 (Fisher,
1941). The benefit of performing calculations using the probability mass function of the
negative binomial is avoidance of the computationally complex integration of the lambda value
of the Poisson distribution over the gamma distribution, which is necessary when performing
calculations using the combined probability mass function of the gamma-Poisson compound

distribution.

The gamma-Poisson distribution describes parasite distributions well (Wilson and Grenfell,
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1997; Shaw et al., 1998) as it is highly flexible (Toft et al., 2006), although it does not always
provide a good fit (Stear et al., 1995a). We can think of the Poisson distribution representing
the counting error term (Wilson and Grenfell, 1997), while the gamma distribution reflects
the true variability between samples. As the true difference between samples decreases, and
parasite burdens become more homogeneous, this variability reduces until the distribution

converges on the Poisson (Elliott, 1977).

While there are several studies demonstrating that an over-dispersed Poisson distribution is
better suited to the analysis of FEC data than a Poisson distribution (Crofton, 1962; Pacala
and Dobson, 1988; Grenfell et al., 1995), none of these have given a biological justification for
the underlying gamma distribution. Crofton (1962) criticised the use of the logarithmic series
empirical distribution, suggested by Williams (1947), on the basis that it was ‘empirical’ and
had no theoretical background in parasitology. However a relation between the logarithmic,
Poisson and negative binomial series is provided by Quenouille (1949). Crofton (1962) also
justified the negative binomial on the basis that it was ‘fundamental’ and provided a series
of biological conditions under which the distribution of parasites could become aggregated,
but did not justify the use of the underlying gamma distribution to describe this aggregation.
For example, one such potential justification is as follows. If ingestion of infective larvae
is random, the time period between ingestion events would be described by an exponential
distribution, giving rise to a gamma distribution for the group as a sum of the exponential
distribution describing the larval intake for each animal. However, this represents only the
intake of infective larvae, and therefore does not take into account the differing effects of host
immune response and the distribution of worm genetics. Conceptually, any strictly positive
distribution could be used in place of the gamma to describe the true variability between
samples, although it is preferable to choose this distribution based on biological plausibility,
rather than on the basis of empirical fit or computational convenience alone. The lognormal
distribution has been previously suggested as an appropriate alternative to the gamma in
parasitology (Elston et al., 2001), and has been found to give similar results to the gamma
distribution for other biological problems (Thygesen and Zwinderman, 2006). A potential

biological justification for the use of a lognormal distribution is outlined below.

According to the central limit theorem, summation of more than approximately 20 of any
probability distributions will result in a distribution that is indistinguishable from the normal

distribution. A lognormal distribution is a normal distribution when log transformed, as:

Z (log (distny) ,log (distng) ...log (distny,)) = log (H (distny, dz’sth...distnn)>

The sum of a series of any distribution, and therefore the log of the same series of distributions,
is normally distributed. The log of the product of these distributions, equal to the sum of
the log of the series, must therefore also be normal. The exponent of this final distribution

will therefore be lognormal. For worm burden data, these distributions could be a series of
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distributions describing the survival rate from eggs on pasture to adult worms, with variation
in the probability of survival at each stage introduced by variation between the grazing
behaviour and immune defences of individuals, and worm genetics. These distributions of
probability could represent various aspects of the host immune system and nematode ability to
evade the host responses, each of which describes the variability in genetics and environmental
influences between worms and hosts (Anderson and May, 1991). Such a system would result
in a lognormal distribution of the mean number of worms per individual, although this
system does not account for any possible negative or positive feedback on survival from other
worms. It is also not clear what distribution would then apply to FEC as an additional
process reflecting the egg shedding rates of worms is involved, which may vary over time and
in response to positive or negative feedback influences of other parasites in the same host.
The mean FEC has been shown to be related to the worm burden (Keymer and Hiorns,
1986; Cabaret et al., 1998), but not enough is known about the influences of competition
on fecundity to be sure that this relationship is linear. There is also comparatively little
information regarding the variability in fecundity of worms in vivo, and fecundity has been
shown to be dependent on worm length (Stear and Bishop, 1999). Keymer and Hiorns (1986)
also found that fecundity was dependent on the faecal volume produced by the host, which
was itself dependent on worm burden. These complicating factors make speculation regarding
the distribution of eggs within faeces from an individual difficult; it is commonly assumed
that the distribution of FEC follows that of parasite counts, so this simplifying assumption

will be maintained here.

The generalised Poisson distribution can also be used to model count data where the data
are under- or over-dispersed relative to the Poisson distribution (Famoye, 1993), and has
been shown to be a mixture of Poisson distributions with varying mean (Joe and Zhu, 2005),
although the distribution of means is not easily defined. Other distributions resulting in a
count observation such as the binomial may also have uses in special circumstances where
there is a maximum number of observable parasites, but are less useful in the general case.
Continuous distributions have also been used to model worm egg count data; Stear et al.
(2006) considered the fit of gamma and lognormal distributions to FEC data obtained from
sheep, Reinders et al. (2003) compared the fit of the lognormal distribution to the gamma-
Poisson, and Gaba et al. (2005) found the Weibull distribution to provide a good fit to data.
However, these distributions do not take into account the Poisson error structure inherent in
the data, and comparisons of empirical fit using the probability mass at each integer produced
by discrete distributions to empirical fit using the probability density produced by continuous
distributions are invalid. The zero-inflated discrete Weibull distribution has also been used,
and was shown to give a better fit than the zero-inflated Poisson distribution in recruitment
modelling (Fortin and DeBlois, 2007), but also fails to take into account the Poisson error

structure inherent in FEC data.

Mixture models have been used in parasitology to overcome the issues of pseudo-replication
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(Paterson and Lello, 2003), and are also useful when data are comprised of two or more
distinct but possibly overlapping groups. The group classification of each data point is not
implicit in the data, so that use of a multinomial trial with associated probabilities is needed
to model the proportion of the data that belongs to each group. In a simple application to
FEC data, this mixture distribution consists of one group of ‘infected’ individuals which are
described by a Poisson distribution compounded with any continuous distribution, and one
group of ‘uninfected’ animals which have a FEC of zero. The proportion of the group which
are infected represents the prevalence of parasitism, and provides an estimate of prevalence
which is robust to the problems associated with integer population sizes reported by Jovani
and Tella (2006). Zero-inflated models have the advantage that the mean and variance of the
second distribution are defined as 0, restricting the number of degrees of freedom in the model
relative to other mixture models. These have been used in the fields of parasitology (Nodtvedt
et al., 2002; Jell et al., 2008; Walker et al., 2009), bovine mastitis (Rodrigues-Motta et al.,
2007), forest science (Fortin and DeBlois, 2007), and medical epidemiology (Bohning et al.,
2000), although their use has also been criticised in modelling road traffic accident analysis
data (Lord et al., 2005). Zero-inflated distributions are useful when zero observations can arise
from either count data (such as Poisson, lognormal-Poisson or gamma-Poisson distributions)
or from a truly zero individual (Martin et al., 2005). Analysing the distribution effectively
involves predicting the number of true zeros from the distribution of observed counts, and
then inferring the number of ‘extra’ zeros from the number of ‘observed’ zeros minus the
number of ‘expected’ zeros. Correct identification of the degree of zero-inflation (if any) will
therefore depend on the correct choice of distribution for the infected group, so that the
number of ‘expected’ zeros is accurate. It is also possible to use a zero-inflated distribution
to approximate a sub-population which has a very low mean rather than a mean of zero. The
advantage of using a zero-inflated distribution for this rather than a more accurate mixture
model of two lognormal or gamma distributions is that the model contains fewer degrees of
freedom, and will therefore be less subject to identifiability problems that often affect the
application of mixture models (Marin et al., 2005; Peng and Zhang, 2008). The disadvantage
is that the true mean of the animals in the low count group will be incorrectly identified as
zero when it is in fact small but positive, although this should not have a large impact on
the inferred overall mean of the groups as the value of this is dominated by the group with

the larger mean.

1.2.2 Methods of model selection

For any biological dataset, there are often a number of different models that can be used
to describe the data. These alternatives can either be nested, so that the most complex
model contains the same terms as the simpler model but with the addition of another term,

or non-nested so that each model contains different terms. An example of a nested pair
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of models is the gamma-Poisson and zero-inflated gamma-Poisson, because the zero-inflated
gamma-Poisson contains the gamma-Poisson distribution with an additional zero-inflation
term. By contrast, the lognormal-Poisson and gamma-Poisson are not nested because each
describes over-dispersion using a different distribution. Where the candidate models vary
in their degree of complexity, as is always the case with nested models, the most complex
distribution will describe the observed data more completely because the extra freedom in the
model affords greater flexibility (Johnson and Omland, 2004). An extreme example of this
is when a model contains as many degrees of freedom as there are data points, in which case
the model is said to be saturated and the data are described completely. However, simpler
models that describe the data nearly as well may be favoured over their more complicated

counterparts when parsimony is required.

The origins of parsimony are often attributed to Occam’s (or Ockham’s) razor; “entia non
sunt multiplicanda praeter necessitatem”, or “entities must not be multiplied beyond ne-
cessity”, although there is apparently little evidence that this quote was actually made by
William of Ockham (Thorburn, 1918). Occam’s razor is central to scientific reasoning, and
the concept is often simplified to mean that the simplest explanation that adequately de-
scribes the data should be preferred. However, this should require that the simplicity of the
model and the fit to the data be quantified.

There are several methods of choosing between different models using likelihood driven model
selection (Johnson and Omland, 2004). The likelihood-ratio test or ‘F’ test was originally
developed for comparing nested models (Neyman and Pearson, 1928), and can be extended
to the use of non-nested models under the asymptotic assumption that the sample size tends
to infinity (Cox and Hinkley, 1974). This technique compares the ‘best fit’ of two nested
models, choosing the more complex if the improvement in fit warrants the extra parameters
of the more complex model. The Aikaike’s Information Criterion (AIC) (Akaike, 1973) and
similar Bayes Information Criterion (BIC) (Schwarz, 1978) along with Rissanen’s principle
of minimum description length (Rissanen, 1978) account for the extra freedom in the model,
producing a statistic that incorporates weighting for the number of parameters and can there-
fore be compared between models. The Deviance Information Criterion (DIC) (Spiegelhalter
et al., 2002) is a further method of comparing the fit of nested models which is particularly
useful for hierarchical models estimated using Markov chain Monte Carlo (MCMC). Each of
these techniques maintain the asymptotic assumptions of likelihood ratio tests, and can be
problematic when the number of degrees of freedom in a model is not defined, as is the case
with mixture models (Millar, 2009). The Vuong’s statistic (Vuong, 1989) has also been used
to justify the selection of zero-inflated models (Miaou and Lord, 2003), although this test
statistic does not apply a penalty for increasing model complexity (Vuong, 1989; Miaou and
Lord, 2003).

An alternative approach to model selection is provided by the Bayesian philosophy. This
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paradigm allows a posterior probability density describing uncertainty in a parameter value
given the observed data to be derived from the probability of observing the data given a
parameter value and some prior probability of the parameter value. Bayes’ theorem, given

below, is the basis of this philosophy, and has its origins in Bayes (1763).

p(AB) = LEA DA (B]’j&]; )

Where P(A) is the prior probability of A, P(B|A) is the probability of observing B given A,
and P(B) is the probability of observing B. In practise, P(B) is often difficult to calculate
since it involves integration over all possible values of A, and as this is a normalising constant

that is equal for all possible values of A it is often ignored so that:

P(A|B) x P(B|A) P(A)

Bayes’ theorem is usually applied to making inference on parameter values in a fixed model,
where A is the parameter value and B is the data (Raftery, 1995). However, A can also
be thought of as the entire model, so that A encompasses all possible values of the model
parametrisation rather than a single combination of parameter values. If M represents the
posterior probability of model one, and My the posterior probability of model two, then the
probability that M; is the correct model (given that one of M; or My is correct) is given by
Raftery (1995) as:

P(D|My) P(My)
(D|Mz) P(Mz) + P(D|My) P(My)

P(M;|D) = P

This can also be written as the posterior odds for preferring model two over model one as

follows:

P(M|D) — P(D|M,) P(M)

P(M,|D) ~ P(D[Ms) " P(My)

The ratio of P(D|M;) to P(D|Mjy) is called the Bayes factor (Raftery, 1995), and is simi-
lar to the likelihood ratio test except that it considers the likelihood of the model over all
possible parameter values rather than just the most likely combination of parameter values,
and so corrects for the extra flexibility of more complex models in a more intuitive manner.
The ratio of P(M;) to P(Mz) is the prior odds, and is often equal to 1, indicating no prior
model preference, but can be weighted towards one or other model to reflect prior belief.

Bayes factors can be considered as an ‘automatic Occam’s razor’ (Smith and Spiegelhalter,

10
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1980), but under certain circumstances can be approximated using BIC (Smith and Spiegel-
halter, 1980; Kass and Raftery, 1995; Spiegelhalter et al., 2002) and sometimes AIC (Smith
and Spiegelhalter, 1980). Indeed, Jefferys and Berger (1991) provide a rationale as to how
Occam’s razor itself is a conclusion of this Bayesian reasoning, and give several examples
of simple model comparisons within this framework. Bayes factors can also be used as the
basis of hypothesis testing (Goodman, 2005; Louis, 2005). The major disadvantage of this
approach is that the marginal likelihood of the data given the model (P(D|M;)) is calculated
by integration of the likelihood over the distribution of values for all parameters, which is
often highly dimensional (Andrieu et al., 2001). The use of approximations such as BIC have
an advantage in the regard that this complex integration is not required (Kass and Raftery,
1995), although BIC has been shown to provide a poor approximation to Bayes factors under
certain circumstances (Stone, 1979; Berger et al., 2003). DIC has been used to compare the fit
of the zero-truncated negative binomial and negative binomial distributions (Kuhnert et al.,
2005), but has also been shown to be unreliable compared to Bayes factors for comparison of
the fits of zero-inflated gamma-Poisson and lognormal-Poisson distributions (Millar, 2009).
In addition, the statistical methodology underlying DIC is not well understood compared to
that of AIC and BIC, and is a topic for ongoing discussion (Alston et al., 2005).

A major problem inherent with likelihood-based model selection techniques is that, even when
used appropriately, they provide only a probability that a certain model is to be preferred
rather than the certainty that it is the correct model. Reporting results from only the ‘best
fit’ model will therefore increase both type I and type II errors associated with periodic selec-
tion of the ‘incorrect’ model. Model averaging techniques (Hoeting et al., 1999; Wasserman,
2000) attempt to overcome this by incorporating information from several models, although
logically it seems that inference obtained in this way must always be inaccurate as all but one
of the candidate models must be incorrect. A simpler and possibly safer approach is to re-
port results from all possible models along with their associated fit statistic. Reversible jump
MCMC methods allow models with an uncertain number of parameters to be fitted (Green,
1995), and can therefore be used for simultaneous estimation of several models using a single
algorithm (Black and Craig, 2002; Alston et al., 2005). However, the complexity and sub-
stantial computational burden involved with the sampling algorithm is a major disadvantage

of this technique.

An alternative approach to model selection is to prefer a particular model formulation based
on biological plausibility or prior experience with datasets of a similar nature. This is con-
ceptually equivalent to adjusting the ratio of P(M;) to P(M3) in the prior odds given above,
and allows a preferred model to be favoured with a given prior probability before combining
with the Bayes factor to obtain the posterior belief in the model. Given sufficient evidence
in the data the non-preferred model would still be indicated as more likely using this tech-
nique, although the model with the greatest prior probability will be chosen given sparse

evidence in the data. As this approach is, with the exception of the prior odds, no different

11
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to the use of a Bayes factor, the computational disadvantages are also the same. However,
this reasoning can be extended to the extreme situation where the prior evidence for one
model is so strong based on biological reasoning or experience of similar datasets that the
prior odds are sufficient to overwhelm any reasonable Bayes factor, so that calculation of the
Bayes factor is unnecessary. Therefore, model selection based on biological plausibility alone
is justifiable as long as a sufficiently strong prior belief is reasonable. Selection of a single
state model in preference to a zero-inflated model on the basis of theoretical justification has
been advocated by Lord et al. (2007), and Miaou and Lord (2003) warn against selection of
statistical distributions purely on the basis of empirical fit. Warton (2005) used AIC to com-
pare the fit of the zero-inflated negative binomial and negative binomial distributions, but
also concluded that a theoretical justification for a duel state model over a single state model
is essential. Model selection on biological plausibility alone can be tempered by use of model
validation techniques to verify that the data are sufficiently explained by the model. One
approach to model validation is to compare the observed data to potential realisations of the
data on the basis of the fitted model, to check that the observed data are not extreme given
the model (Meng, 1994; Gelman et al., 1996; Gibson et al., 2006). This helps to ensure that
the model sufficiently describes the observed data without the need to solve high-dimensional
integrals, and represents an elegant method of embedding classical statistical methods within
a Bayesian analysis. Streftaris and Gibson (2004) have also used similar methods to quantify

the length of infection chains in the analysis of foot and mouth disease epidemics.

The approaches to model selection discussed above all work under the assumption that one of
the candidate models is correct, with the others being incorrect. While in some applications
this is valid, it is unlikely to be the case in fitting parasite distribution datasets where multiple
potential sources of heterogeneity between hosts and parasites are likely to result in complex
processes underlying the observed counts (Anderson and May, 1982). In this situation, it may
be more useful to knowingly select a simpler model on the basis of tractability or improving
the interpretation of the inference. This is in line with the observation that ‘all models are
wrong but some models are useful’, attributed to Box (1976), among others. In the nested
case, a distribution that allows greater freedom in the model may also be preferred to a more
confined distribution on the basis that it is in some ways more conservative, i.e. is likely
to provide larger confidence intervals for uncertain parameters. Brame and Groer (2002)
preferred the use of a negative binomial over a Poisson distribution for this reason. This
further complicates the use of likelihood based model selection techniques, as the ‘best fitting’
model may not be the most useful if another model provides better insight into the simplified
system or produces more conservative parameter estimates, lending further credence to model

selection on biological plausibility.
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1.2.3 Statistical techniques for fitting distributions to data

When analysing parasitological data, the most common practise for determining the mean
FEC of an observed dataset is based on calculation of the empirical arithmetic or geometric
mean of the data. This is also recommended by Coles et al. (1992) to calculate the mean
Faecal Egg Count Reduction Test (FECRT) reduction in an observed dataset. Such a mea-
sure provides an asymptotic estimate of the true mean of the population, but the possible
discrepancy between the true population mean and observed sample mean is often not con-
sidered. The use of inferential statistics to determine the true characteristics of a population
given a representative sample from that population provides a method of quantifying the un-
certainty about true population parameters, and is central to most applications of statistics
to biological problems. Parametric statistics such as the t-test are invalid when applied to
right-skewed FEC data (Wilson and Grenfell, 1997). In order to overcome this, log transform-
ing FEC data to improve normality is usual (Wilson and Grenfell, 1997), often after adding
one to all observed counts to remove zero counts that cannot be log transformed (Gregory
and Woolhouse, 1993; Fulford, 1994). However, this often fails to normalise FEC data with
a small mean (Wilson and Grenfell, 1997) as the true sample means described by an ap-
proximately lognormal distribution, which would be normal if log transformed, are overlaid
by the Poisson distribution which has a larger relative effect on the combined distribution
when the mean is small. This Poisson distribution is also the source of the zero counts which
cause problems when log transforming the data, and would not be observed from the strictly

positive lognormal or gamma distributions.

In order to correctly analyse FEC, somewhat more sophisticated statistical tools are there-
fore required. One such alternative is provided by likelihood-based techniques, which use a
likelihood function to calculate the probability of obtaining the observed data from a given
model with any combination of parameters. Generalised linear models (GLM) are likelihood-
based generalisations of parametric statistical techniques such as the t-test that allow the
error structure of the data to be separated from a link function which associates the response
variable (such as FEC) with the explanatory model (Wilson and Grenfell, 1997). The like-
lihood of obtaining the response variable from the distribution describing the error term is
maximised by altering the parameters of the link function. The error distribution can be one
of a series of distributions, including the Poisson or negative binomial distributions (Wilson
and Grenfell, 1997), and allow the zero counts frequently observed with FEC data to be mod-
elled more correctly than simply adding an arbitrary constant to all the data. Generalised
linear models have been used extensively in parasitology (McCullagh and Nelder, 1989), and
have been shown to produce superior results to linear regression on transformed data (Wilson
et al., 1996; Wilson and Grenfell, 1997). The use of a GLM with a binomial error structure
and logit link, known as logistic regression, is also useful in analysis of risk factors for a binary

outcome, and has been used to analyse the risk factors associated with cyathostominosis in
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the horse (Reid et al., 1995).

While GLM are more flexible than parametric statistics, the specification of link function
and error term is still quite limited. Alternative likelihood-based techniques overcome this
limitation by considering the likelihood of the full model rather than just that of the er-
ror term: they not only describe the error structure as parametric distributions, but also
use distributions to describe the process underlying the data. Likelihoods can therefore be
calculated for virtually any conceivable model structure, and allow any reasonably well be-
haved linear or non-linear model to be fitted using whatever error structure is appropriate
(Williams and Dye, 1994). These more complex likelihood-based techniques are therefore
more sophisticated than simple GLM (Wilson and Grenfell, 1997) and have been shown to
produce superior estimates when compared to least squares (Williams and Dye, 1994). The
simplest application of likelihood principles is the use of an optimisation algorithm to find
the combination of parameters that maximises the likelihood of observing the data. This is
termed the maximum likelihood, and represents the combination of all model parameters that
gives the greatest probability of obtaining the observed data from the model. The maximum
likelihood can also be calculated using conditional, marginal or profile likelihoods, which
seek to reduce the impact of ‘nuisance’ parameters by writing the likelihood as a function
of only the parameters of interest (McCullagh and Nelder, 1989). Such maximum likelihood
techniques are widely accepted in parasitology (Bliss and Fisher, 1953; Wilson et al., 1996;
Torgerson et al., 2005), and can be easily achieved using proprietary software, as well as with
models written in statistical programming languages such as R (R Development Core Team,
2009). Although maximum likelihood methods have mainly desirable properties (Edwards,
1992), such methods usually also carry the asymptotic assumption that the distribution of
error for each parameter is normally distributed around the maximum likelihood estimate for
that parameter. This may not be valid for parameters that are difficult to estimate, such as
the dispersion parameter of the negative binomial for datasets typical in parasitology (van de
Ven, 1993; van de Ven and Weber, 1999). For these types of dataset, the number of data
points required for the asymptotic assumption of normality to hold may be far in excess
of the data available (Stear et al., 2004). The results of a simulation study suggested that
maximum or conditional likelihood produced the best parameter estimates when used with

the negative binomial distribution (van de Ven, 1993).

It is also possible to use likelihood-based methods to examine the full distribution of likeli-
hoods given different parameter combinations, also known as the likelihood curve. Likelihood
profiling is a computationally intensive method of examining the relationship between param-
eter values and the likelihood of obtaining the observed data, which calculates the likelihood
at every possible combination of parameter values. This method is feasible with models con-
taining relatively few parameters, but not with high dimensional models. One alternative
to likelihood profiling is to use Markov chain Monte Carlo (MCMC) to derive a distribution
describing the uncertainty in each parameter estimate. Although MCMC is applicable using
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frequentist principles, the technique is more often implemented within a Bayesian framework
as this allows calculation of the complex integral representing the probability of the data
to be omitted. MCMC works on the principle of Monte Carlo integration, which allows an
undefinable distribution to be evaluated by drawing samples from the likelihood or posterior
distribution (Gilks et al., 1998), approximating the population distribution using a sample
distribution. The common method of drawing these samples is using a Markov chain (Gilks
et al., 1998). Using this method, the value of the next sample to be drawn in a chain will
depend only on the value of the sample drawn immediately before it, so that the chain of
samples will after a period of time ‘forget’ its starting position. This period is known as the
‘burn-in’ period. The Markov chain will then converge on a stationary distribution that is
independent of the starting values used, from which samples representing the desired dis-
tribution can be drawn (Gilks et al., 1998). The major disadvantage of a Markov chain is
that convergence on this stationary distribution may be slow, resulting in a large amount of
computational effort being expended before the chains can be sampled from. The number of
samples required before a chain will converge is affected by the auto-correlation dependence,
which is a measure of how ‘quickly’ the chain will move between extreme values (Gilks et al.,
1998). If the ‘proposal distribution’ of possible values for a parameter at the next iteration is
heavily dependent on the value at the previous iteration, then the chain will move slowly be-
tween extreme values. If the proposal distribution is relatively unaffected by the current value
of the parameter then the chain will move more quickly between extreme values, and is said
to be well mixed. Auto-correlation dependence also affects the Monte-Carlo error associated
with a sample of values, in that a fixed number of iterations will better approximate to the
true distribution when auto-correlation dependence is low (Gilks et al., 1998). Other tech-
niques such as random sampling or Latin Hypercube sampling are generally more efficient,
but cannot be likelihood driven. There are several different possible algorithms for generating
a Markov chain (reviewed by Tierney (1994)), but the most commonly used are importance
sampling (Ripley, 1987; Geweke, 1989), the Metropolis-Hastings method (Metropolis et al.,
1953; Hastings, 1970) and the Gibbs sampler (Geman and Geman, 1990). Each of these
different mechanisms are commonly associated with different problems, and are useful for
different applications (Tierney, 1994). The Metropolis-Hastings algorithm is very flexible in
it can be used with any function for which a likelihood can be calculated, but it can be ineffi-
cient as a result of the acceptance/rejection step of the algorithm. The Gibbs sampler is less
flexible as it requires the prior distribution for each parameter to be defined as a parametric
distribution, but is more efficient as no acceptance/rejection step is required. Further details
of these sampling algorithms are given in Gilks et al. (1998). Each of these algorithms could
be implemented for individual models using any appropriate computer programming lan-
guage. However, software to implement these techniques on user-specified models is available
in the form of the Bayesian Inference Using Gibbs Sampling (BUGS) project (Lunn et al.,
2000; Thomas et al., 2006) and the similar Just Another Gibbs Sampler (JAGS) software
(Plummer, 2008).
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The major disadvantages of MCMC analysis include the relative computational complexity
associated with the technique, as well as the need to ensure that the Markov chain has con-
verged on the stationary distribution before sampling Gilks et al. (1998). A failure of the
sampling algorithm to adequately converge on the stationary distribution will distort the
posterior values for all parameters, and therefore bias the results (Toft et al., 2007). One
of the most convenient ways of checking for convergence is to sample two or more parallel
Markov chains with differing initial conditions, and use the Gelman-Rubin statistic to as-
sess convergence between the chains. As the two chains are given the same model, and the
stationary distribution of the two chains should be unaffected by the starting position, both
chains will be sampling from the same distribution if converged. The Gelman-Rubin statistic
compares the variance between chains to the variance within the chains to ensure that this
is the case (Gelman and Rubin, 1992a; Brooks and Roberts, 1998). A potential scale re-
duction factor of close to one is demonstrative of adequate convergence (Gelman and Rubin,
1992a), although the exact figure is somewhat arbitrary. It has been recommended to use
starting values that are over-dispersed with respect to the stationary distribution to ensure
the parameter space is fully explored before convergence (Gelman and Rubin, 1992a,b). It is
also important to ensure that sufficient samples are drawn from the stationary distribution
to reduce inaccuracies associated with Monte Carlo error Gilks et al. (1998). This can be
done by comparing the parameter estimates between chains and drawing more samples if
the estimates are not sufficiently similar, but can also be done using calculations on pilot
chains using the Raftery and Lewis diagnostic as described by Raftery and Lewis (1995).
Diagnostic statistics such as the Gelman-Rubin statistic and Raftery and Lewis diagnostic
are not fool-proof, and visual assessment of trace plots to compare the stationary distribu-
tion of the two chains is always advisable. However, for large scale simulated data analysis
where manual checking of each analysis would be laborious, automated functions such as the
‘runjags’ package are available (Denwood, 2008, freely available to download from CRAN at
http://cran.r-project.org/web /packages/runjags/). The ‘autorun.jags’ function of this pack-
age allows automatic calculation of chain convergence using the Gelman-Rubin statistic, and
will extend a model in increments of 10,000 iterations, or a given user-specified value, until
the Gelman-Rubin statistic is sufficiently reduced or the specified time limit is exceeded.
Run-length diagnostics using the Raftery and Lewis’s diagnostic are then used to calculate
the required number of sampling iterations, and the model extended further if required. This
function, along with the other functions in the runjags package, can be used to implement

any user-specified model in JAGS and return the Markov chains as an object within R.

One of the requirements of Bayesian analysis is that a distribution describing prior belief
about each parameter must be chosen. This prior represents our knowledge about a param-
eter before data are collected, and is updated according to the data using the likelihood to
obtain a posterior distribution for the parameter (Goodman, 2005). The use of prior distribu-
tions is somewhat controversial, and the Bayesian approach is often criticised for a perceived

lack of objectivity. However, results obtained using frequentist methods are also subjective
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in that the inference depends on the perceived experimental design (Berger and Berry, 1988).
The advantage of the Bayesian approach is that the subjectivity is constrained to the choice
of priors, rather than the frequently more opaque subjectivity issues associated with some
frequentist methods. Techniques for attempting to make the Bayesian technique objective
include robust Bayesian analysis (Berger et al., 1994), model averaging using different priors
(Wasserman, 2000), establishment of ‘reference priors’ that are thought to be minimally in-
formative, and the attempt to define objective ‘Jeffreys’ priors that contain no information
for parameter combinations where the likelihood is informative (Jeffreys, 1961). These tech-
niques are mostly quite technically complex and are difficult to implement in software such
as BUGS and JAGS, and have been criticised by subjective Bayesians as unnecessary. The
selection of priors is inherently subjective, similarly to many other statistical assumptions,
and could be considered as a useful opportunity to introduce information into the model
based on known limits of the biological system. In general, the effect of prior distribution
selection is important when dealing with limited datasets, but has little effect with larger

sample sizes (Raftery, 1995).

Each of the statistical techniques outlined above depends on the use of a parametric distri-
bution to describe the data, or at least the error structure. The technique of non-parametric
bootstrapping involves re-sampling and summarising the observed data to demonstrate em-
pirically the distribution of the parameters of interest (Efron, 1979). As such it does not
require knowledge of the distribution or processes generating the data (Mooney and Duval,
1993). Non-parametric bootstrapping approaches are therefore useful when the distribution
of data is unknown. The assumption underlying this approach is that the data obtained are
completely representative of the full distribution describing the population. This assumption
is potentially violated when dealing with small sample sizes leading to misleading results.
Computationally intensive parametric methods relax this assumption by fitting the observed
data to a distribution, so that not all possible values have to be observed in order to be sam-
pled. It is also possible to perform parametric (or semi-parametric) bootstrapping, although
the advantages of distributional independence are then lost. A non-parametric bootstrap-
ping approach has recently been suggested as an appropriate method to generate confidence
limits from equine FECRT data (Vidyashankar et al., 2007), although the small sample sizes

typically involved in equine FECRT data may be of concern when using this technique.

Although conceptually quite separate from inferential modelling, some discussion of simula-
tion modelling in parasitology is warranted here. Mathematical simulation models have been
used to develop the understanding of the host-parasite relationship (Boag and Thomas, 1975;
May and Anderson, 1983; Kao et al., 2000), to analyse the aggregation of parasites among
hosts (Woolhouse, 1992) and to examine the problem of anthelmintic resistance development
(Gettinby et al., 1989; Gettinby, 1989; Barnes and Dobson, 1990; Smith, 1990). Such models
can be either specific if formulated to model a single system very closely, or generic if designed

to simplify a system using biologically meaningful parameters (Smith and Grenfell, 1994).
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Simulation models are extremely useful for determining the effects of changing parameters
such as parasite control measures and management approaches on known systems, but are

less useful for estimating parameter values.

1.3 Advantages of statistical modelling as an inferential tool

The use of inferential statistics as outlined above represents an improvement on the calcula-
tion of summary statistics, as it allows inference to be made at the population level rather
than merely summarising the sample. As such, more useful information is obtained from
the datasets available, which allows a greater understanding of the distribution of parasites
between hosts to be developed. Such techniques could also be used to underpin prospec-
tive sample size calculations to ensure that future studies involve sufficient data collection
to provide the information required (Cohen, 1988). Some more robust statistical analysis
of FEC data (Wilson et al., 1996) and FECRT data (Torgerson et al., 2005; Vidyashankar
et al., 2007) has been advocated, although the current WAAVP guidelines for evaluating the
efficacy of equine anthelmintics suggest using both parametric and non-parametric statistical
techniques in an effort to corroborate each other (Duncan et al., 2002). Fitting observed data
to a distribution also allows inference to be made on other characteristics of the data, such

as variability between animals and possible multi-modality in the resultant data.

Statistical modelling approaches can also be used to quantify the repeatability of tests for
quantifying parasite burdens, and for examining the complex variability patterns of parasitism
within and between a group of animals. The most commonly used technique for quantifying
the parasite burden of an individual or group of animals is the McMasters method (Whitlock
and Gordon, 1939), the method of which is given in MAFF (1986). The technique is based on
the floatation dilution principle described by Stoll (1930), and involves counting the number of
eggs in a fixed volume of faecal suspension in saturated saline solution. However, quantifying
the FEC output of an animal does not give a true indication of worm burden, as it reflects
only the number of adult females (Sinniah, 1982), and does not take into account possible
effects of density dependence or worm length on worm fecundity (Stear and Bishop, 1999),
or the possible effect of worm senescence on fecundity. As a result, the relationship between
worm count and FEC is poor (Smeal et al., 1977; Uhlinger, 1993).

These techniques can be used for identifying animals that are contributing to pasture con-
tamination, and are therefore useful for controlling the underlying source of a group infection.
The process is subject to variability introduced by the process of counting eggs in a sam-
ple (Sinniah, 1982), along with any extra variability introduced by inadequate mixing of
the sample, or laboratory error in weighing faeces, or measuring solutions. However, FEC

have generally been found to have a reasonable heritability (Doeschl-Wilson et al., 2008) and
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have been used to estimate heritable traits of host resistance (Bisset et al., 1992; Vanimisetti
et al., 2004). The precision of the FEC measurement is known to be related to the number
of eggs counted (Hunter and Quenouille, 1952), and therefore the mean FEC and minimum
egg detection threshold of the technique used. Attempts have been made to quantify the
observed variability between FEC using the McMasters technique (Levine et al., 1960; Dunn
and Keymer, 1986; Rossanigo and Gruner, 1991), to derive the optimal number of samples
to take (Hunter and Quenouille, 1952; Gasbarre et al., 1996), and to calculate the power of
a FECRT (Gill et al., 1986). However, none of these studies have used a modelling approach

to attempt to partition the variance.

The seasonal variation in parasite burden and mean FEC has been well described in rumi-
nants (for example Parnell, 1962; Reid and Armour, 1972; Eysker and Vanmeurs, 1982; Smeal
et al., 1977), and has also been reported in horses (Ogbourne, 1971; Herd, 1986; Langrova,
1998; Baudena et al., 2000). However less is known about the variation in true mean FEC
over a shorter period of time. It has been suggested that observed FEC vary over the course
of a day due to factors related to feed intake and gut mobility of the host (Uhlinger, 1993),
although Bennett (1990) found no evidence for the diurnal variation in FEC of horses and
Keymer and Hiorns (1986) found no measurable bias in FEC in a study in mice, suggesting
that observed variability is truly random. Attempts have also been made to evaluate the
use of pooled FEC samples (Eysker et al., 2008), although again without much consideration
to the statistical processes underlying the procedure. Alternative methods based on similar
principles to the McMasters technique have also been proposed (Mes, 2003; Presland et al.,
2005; Cringoli, 2006), and in some cases the observed variability using the newer technique
has been shown to be less than that obtained using the McMasters technique (Mes, 2003;
Presland et al., 2005). However, none of the studies have identified the true source of the
observed variability, and some of the statistical conclusions made by Mes (2003) have been
questioned (Morrison, 2004). Use of more rigorous statistical approaches to partition the ob-
served variability would therefore be of benefit. In addition, by improving the understanding
of the statistical processes underlying the test, it may be possible to make recommendations

that would improve the repeatability of the test.

1.4 Study objectives

The overall scope of this thesis was to use a quantitative approach to improve the analysis
of faecal worm egg count data. More specific objectives were to investigate statistical issues
pertaining to the analysis of FEC and FECRT data, in order to improve analysis techniques
for existing data, and then to develop sample size calculation techniques with which to design
future studies. In order to facilitate this, novel methods for analysis of FEC data were first

developed and validated using simulated data before being applied to biological datasets.

19



1.4 STUDY OBJECTIVES

The progression of this thesis towards achieving these goals is outlined below.

Analysis of parasitological datasets is usually mainly concerned with providing inference on
the true mean FEC, although the variability of the distribution is often also quantified using
one of several possible measures. The biological relevance of each of these measures is dis-
cussed, and the properties of the chosen measure demonstrated. Asymptotic assumptions are
likely to be violated with FEC data, therefore methods of analysis using Bayesian MCMC
were explored. Several different syntactic variations of MCMC models representing differ-
ent biologically plausible distributions were compared using simulated datasets to find the
parametrisation that produced the most appropriate inference for each distribution. The
inference made, particularly from sparse datasets, was substantially affected by the choice of

MCMC model parametrisation.

Issues pertaining to the choice of statistical technique and model selection were then explored
using simulated datasets to ascertain the consequences of making incorrect asymptotic and
distributional assumptions. The usefulness of model selection based on empirical fit was
also examined using similar methods. As the zero-inflated and over-dispersed distributions
discussed are variously nested around the Poisson distribution, the inference made using
under- and over-specified models was compared, and the potential consequences were the
true distribution unknown are discussed. The validated MCMC methods were then applied
to FEC data obtained from horses and sheep to examine the parameter distributions and
distributional fit in field data, and the inferences compared to those made using the existing
methods of analysing FEC data examined in the simulation studies. The FEC data used
were from parasites with completely distinct fundamental biology as well as different host
species. The inference made from each type of data, including the difference in empirical fit

to contrasting frequency distributions, is discussed.

A further set of models to address the specific issue of the FECRT were then developed and
compared to existing methods using simulation studies, before being applied to biological
datasets. The FECRT data were from diverse sources and relate specifically to screening for
anthelmintic resistance within cyathostomin populations in horses. Statistical issues pertain-
ing to appropriate methods of FECRT data collection and analysis were then discussed, and

potential biases of the currently most widely used procedure elucidated.

Finally, a multi-level MCMC model was used to analyse FEC data obtained by repeat sam-
pling of horses so that the effect of sample variability between observed FEC could be quan-
tified, and recommendations to improve the repeatability of the McMasters technique are
made. Using this information, methods of performing prospective precision analysis for FEC
sampling, and power analysis calculations for hypothesis driven FECRT procedures, were
developed and parametrised using the above inference on the variability structure of equine
FEC data.
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Selection, development and evaluation of a
population model

2.1 Introduction

Population modelling is a useful way of analysing the distribution of parasites (Elliott, 1977;
Ngdtvedt et al., 2002; Morgan et al., 2005), and has been shown to give more useful infor-
mation than the traditional method of simply calculating the group arithmetic or geometric
mean (Torgerson et al., 2005). The advantages are that more information can be extracted
from the data by defining each count as part of a group distribution, and by treating each
FEC as a sample from a Poisson distribution, it is also possible to account for the known
counting errors associated with the McMaster technique (Dopfer et al., 2004). The main
disadvantage of this approach is that it requires the use of a parametric distribution to de-
scribe the process underlying the data. This may produce misleading results if the chosen

distribution is inappropriate.

The distribution of parasites between hosts can be quantified by simply counting the number
of parasites on/within hosts, and recording the number found on/in each host. For internal
parasites such as nematodes, a proxy for worm counts that does not require a post-mortem
examination of the hosts such as FEC may be preferable. Both measures are count observa-
tions, and therefore might be expected to fit a Poisson distribution if parasite distributions
between hosts were random (Elliott, 1977), i.e. all animals had the same expected number
of parasites. However, almost all studies of such distributions have found them to be highly
aggregated (Crofton, 1962; May and Anderson, 1978; Shaw et al., 1998), so that the true
distribution of parasites is over-dispersed with respect to the Poisson. This implies that the
observed variation is more than would be expected from a truly random process with uniform
mean, and necessitates the use of a further distribution to describe the variation in true mean
number of parasites between hosts. The distribution most widely used to describe this vari-
ation in true mean is the gamma distribution, usually formulated as the negative binomial
(see Section 1.2.1), although the lognormal distribution may be more appropriate. Extension
of these gamma-Poisson and lognormal-Poisson distributions to the equivalent zero-inflated

gamma Poisson (ZIGP) and zero-inflated lognormal Poisson (ZILP) mixture models would
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also be useful if the data are considered to be bi-modal. This allows the observed data to
be derived from one of two groups; either the ‘infected’ continuous distribution or a group
with a true mean of zero which are truly uninfected (Martin et al., 2005). Alternatively, the
distribution could be used to approximate a bi-modal distribution with one high mode and

one low mode if the majority of counts from the latter are expected to be zero.

Comparison of the inference made using each distributional assumption first requires that
the optimal parametrisation for each of the models be defined. However, no such pre-defined
models are readily available for use with software capable of implementing an analysis using
MCMC, such as WinBUGS (Lunn et al., 2000) and Just Another Gibbs Sampler (JAGS)
(Plummer, 2008). The overall aim of the work described here was to compare the accuracy
of several variants on each parameterisation using simulated data. The specific objective was
to identify the formulations with the best defined properties, for use in later chapters of this

thesis.

2.2 Defining parasite distributions

2.2.1 Introduction

There are three factors that are generally of interest when examining the distribution of
parasites between and within hosts. The most obvious is the mean, which can either be the
mean egg count or mean parasite count. This represents the expected number of parasites
or parasite eggs in an animal, and is related to the total number of parasites or eggs by
the number of animals in the group. It is therefore arguably a more useful measure of the
mid-point of the distribution than the median or mode, neither of which are frequently used
in the parasitology literature. The mean can either be thought of as the ‘population mean’,
defined here as the mean of the distribution from which all animals in the infected group
are derived, or as the ‘true sample mean’, defined here as the average of the true mean egg
shedding rate, or parasite burden, of the sampled animals. The two measures are identical
when all animals from the population are sampled, but when only a sample is taken from
the population the two are distinct, as the former describes a population from which we
only have a sample, and the latter describes the observed mean of the sample of animals.
The uncertainty associated with estimating the population mean will always be greater than
that for the true sample mean, as the population mean also includes animals which were not
sampled. For the majority of the work here the mean referred to is the population mean; the

concept of the true sample mean will be revisited in Chapter 6.

The second variable of interest is the variability, or dispersion in parasite burden or parasite

egg shedding rate. This can be subdivided into the known Poisson variability due to the
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counting process, variability between animals, the variability within individual animals over
short periods of time, and the aggregation of eggs in a single faecal pile. Quantifying the
amount of the total variability that is attributable to each of these factors is likely to be
very difficult unless large numbers of repeat samples are taken, and is impossible if only one
sample is taken per animal. Consequently, the variability is usually considered as a single
value describing all the sources of variability between samples, excluding that due to the

counting process.

When using zero-inflated distributions, the proportion of the population that produce zero
counts in excess of that expected from the distribution used to describe the majority of the
counts is also of interest. One interpretation of this value is as one minus the prevalence of
infection in the population. It is possible for the prevalence to be 100%, so that there are no
animals with a true mean of zero, in which case the zero-inflated distribution would collapse
to the simpler distribution describing the infected animals given sufficient evidence for this
in the data. In this situation, results obtained using a zero-inflated distribution and the non

zero-inflated equivalent would be equivalent.

While the mean and zero-inflation of a distribution are more clearly defined, the variability
can be measured in different ways. The most obvious is to examine the absolute standard
deviation or variance between samples, but it makes more sense to use a measure that is
standardised in terms of the mean of the distribution because the absolute variance of a sample
is likely to be heavily affected by the mean. One possibility is to use the variance : mean
ratio, also known as the coefficient of dispersion, as a measure of the variability. This has the
advantage of describing the amount of the total variability between observed counts that can
be attributed to the variability of the counting process. The variance of a Poisson process is
equal to its mean; therefore if the variance between counts is greater than the mean then the
distribution must be over-dispersed with respect to the Poisson. In practise, this measure
is not particularly helpful as the vast majority of parasite distributions are already known
to be over-dispersed. It is also possible to alter this measure slightly so that it reflects
the ratio of the extra-Poisson variance, which is equal to the variance between samples, to
the mean. In this case, any value close to zero represents a distribution with little over-
dispersion. If using the gamma distribution to describe the variability between samples, the

extra-Poisson variance : mean ratio can be derived as:

total variance — Poisson variance ()\ + a X ﬁQ) - A

= =4

mean ax

Where o and § are the shape and scale parameters of the gamma distribution respectively,
and A\ is the mean of the Poisson distribution. This measure is therefore convenient for the

gamma distribution as it is exactly equivalent to the scale parameter, 3.
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The second possible measure of variability is to use the ratio of the extra-Poisson standard
deviation to the mean, also known as the coefficient of variation (cv) . This measure is
commonly used for data measured on a ratio scale, such as positive counts, although it has
no meaning for data measured on an interval scale. Values of coefficient of variation (cv) of
close to zero indicate a Poisson distribution, and the variability between samples increases as

the cv increases towards Infinity. If using the gamma distribution, the cv would be equal to:

standard deviation of gamma distribution

CU =
mean

V/ (total variance — Poisson variance)

mean
total variance — Poisson variance
- \/( mean® )
AdaxpZ=)\
B \/M
1
“Va

The cwv is therefore related to the shape parameter «, which is often used in the parasitology

literature as the inverse measure of aggregation k.

If using the lognormal distribution with mean and variance on the log scale to describe
the variability between samples, the cv is related to the standard deviation of the log scale
distribution alone (Limpert et al., 2001). This can also be shown from the following derivation.
The variance of the lognormal distribution is given by (exp (I11))? x exp (lo?) x (exp (lo?) — 1)
and the mean by exp ({u) X exp (%), where [ is the mean and lo the standard deviation
of the distribution on the log scale (Evans et al., 2000). The ratio of the standard deviation

to mean (cv on the exponent scale) is therefore given by:

V(exp (1)) x exp (162) x (exp (10?) — 1)
exp (lp) X exp (%)
_ exp (Ip) x v/exp (I9%) x (exp (lo?) — 1)
exp (1) x exp (15°)

_ Vexp (l0?) x (exp (%) — 1)
exp (lo?)

CU =

=/exp (lo?) — 1
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In deciding which of these measures to use, it is important to consider what is being quantified.
In this case, it is most relevant to measure the ‘difference’ in worm burden or egg shedding
rate between samples, due to the differences in host susceptibility and worm survival and
fecundity. Therefore, the measure of variability that would be most useful would remain
constant when the larval challenge changes, but differences in animal susceptibility and worm
survivability are constant. Which of the different measures of variability best fulfils these
requirements is assessed using a rudimentary simulation model to describe, in very basic
terms, the variability in worm burden between animals. This is based on each host animal
being assigned a probability of removing a larva before development to an adult parasite, and
each ingested larva being assigned a probability of developing to an adult. These probabilities
are varied between hosts and larvae to simulate variability between animals and worms, and
stochastic variability in the number of adult worms between animals given a fixed larval

challenge is examined.

2.2.2 Materials and methods

A mathematical model representing the processes discussed was written in the R statistical
programming language (R Development Core Team, 2009). The number of ingested larvae
for each of 10,000 animals was fixed at the same value for each simulation. The variability in
host immune defence was simulated using a beta distribution, so that each animal was given
a distinct probability of eliminating each larva before development to an adult parasite.
The variability in worm resistance to the host immune response was modelled similarly.
The survival of each larva was then modelled using a Bernoulli trial using the combined
probabilities derived from host immunity and worm resistance, and the resultant number
of adult parasites in each host was calculated. The observed coefficient of variation and
coefficient of dispersion were calculated as % and %2 respectively, where o is the standard
deviation of the number of adult worms per animal, and g is the mean number of adult
worms per animal. The model was run a total of three times, with the second and third
simulations using altered values for the larval challenge and altered values for the variation

in host immunity and worm resistance respectively.

2.2.3 Results

The effect of doubling the larval challenge while retaining the same values for host and worm
susceptibility distributions, simulating the effect of moving the same group of animals onto a
field with a different larval challenge, is shown in Figure 2.1. The mean number of worms per
adult animal is increased, but the distribution retains a similar shape when the x-axis scale is

increased proportionately with the increase in larval challenge. In effect this can be thought
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2.2 DEFINING PARASITE DISTRIBUTIONS

of as doubling the expected number of parasites in each animal within the population, with-
out changing the proportion of worms in each individual animal. Conversely, altering the
distributions describing the host and worm susceptibilities while retaining the same value for
larval challenge alters the shape of the distribution, but not the mean (Figure 2.2). In this
case the variation in the proportion of worms in each animal is changed, altering the shape of
the distribution. In Figure 2.3, this effect is shown using an empirical cumulative distribution

function, plotting the proportion of the total worm population within each animal. The cor-

o
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& 7 87
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g =7
o - o -~
[ T T 1 [ T T 1
100 200 300 400 200 400 600 800
Number of adult worms per animal Number of adult worms per animal
(a) Distribution of adult worms with (b) Distribution of adult worms with
low larval challenge high larval challenge

Figure 2.1: The effect of altering larval challenge on the distribution of adult
worms in a mathematical model of the distribution of parasites between hosts - the
x-axis scale is increased proportionately to the increase in larval challenge
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Number of adult worms per animal Number of adult worms per animal
(a) Distribution of adult worms with (b) Distribution of adult worms with
high host / worm variability low host / worm variability

Figure 2.2: The effect of altering the distribution of host and worm variability on
the distribution of adult worms in a mathematical model of the distribution of
parasites between hosts - the x-axis scale is fixed as the larval challenge is unchanged
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Figure 2.3: The effect on the proportion of adult worms in each individual host of
altering different parameters in a mathematical model of the distribution of
parasites between hosts - the effect of changing larval challenge (orange) and the distribution
of host and worm susceptibility (blue) shown relative to the baseline parameters (black).

Table 2.1: The effect of altering either larval challenge (Dataset 2) or the
distribution of host and worm susceptibility (Dataset 3) compared to the baseline
(Dataset 1) on the distribution of worms in a mathematical model of the
distribution of parasites between hosts

Coefficient of variation Coefficient of dispersion

Dataset 1 0.220 12.158
Dataset 2 0.220 24.285
Dataset 3 0.113 3.208




2.3 SELECTING A MODEL DEFINITION FOR THE ZERO-INFLATED GAMMA
POISSON MODEL

responding coefficient of variation and coefficient of dispersion for each of these distributions

is shown in Table 2.1.

2.2.4 Discussion

In order to assess changes in host and/or parasite susceptibility independently of variable
larval challenge, a useful measure of variability would remain constant for the two distribu-
tions shown in Figure 2.1 but change between the distributions shown in Figure 2.2. Based
on the results of this simulation exercise, it appears that the cv is a suitable marker to mea-
sure aggregation for the purposes of these studies. This is also consistent with the existing
wide-spread use of the parameter ‘k’, which is an equivalent, although indirect, measure of

aggregation. This measure is therefore used exclusively in this thesis.

2.3 Selecting a model definition for the zero-inflated gamma

Poisson model

2.3.1 Introduction

There are several subtly different ways of specifying a Bayesian gamma Poisson model using
the BUGS syntax. Although each represents an equivalent model, the syntactic choice of
both potential sampling parameters and prior distributions may impact on the efficiency of
the sampling algorithm which could reduce the speed of convergence (Kass et al., 1998).
Several different model specifications were tested for convergence, reliability and accuracy by
comparing the outputs of each model to the known parameters used to generate a simulated
dataset.

2.3.2 Materials and methods
2.3.2.1 Model Specifications

A description of the processes in each variation of the ZIGP model is as follows. The Poisson
part of each model specification is identical, as each data point must be defined as part of
a Poisson process with a unique value for lambda. Similarly, the group to which each count
belongs is determined in each variant by a Bernoulli trial, the output of which is either 0
(indicating the count is part of the true zero group) or 1 (indicating the count is part of the

gamma Poisson distribution).
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The gamma distribution can be defined in one of several ways, shown in Models 2.1, 2.2 and
2.3 (see Appendix A for model code). For each of these, the prior distributions used allow
sampled values of mean to be between 0.001 and 1000, and independently, sampled values
for the cv to be between 0.01 and 10. Zero-inflation is sampled from between 0 and 100%.
The parameters used to assess convergence are mean (the mean of the gamma distribution),
% (the inverse of the shape parameter) and 1 — W (the proportion of the group that
are defined by the gamma distribution) for all models. In Model 2.1, the lambda value of each
true Poisson process is gamma distributed with two parameters; a (the shape parameter) and

b (the rate parameter or inverse scale parameter). The mean of this is therefore equal to 7,

and the cv to \/g , which is calculated from a using the output chains. The prior is on %

rather than a because é is closer to the value of interest (cv). Zero-inflation is calculated
as 100(1 — p) after running the model. In Model 2.2, the lambda value of each true Poisson
process is defined by the multiplication of a single mean value with a dispersal parameter
equal to gamma for each count. This gamma comes from a gamma distribution with a single
unknown parameter; a and a mean of ¢ = 1. Although the mean of the gamma distribution
has been altered, only the scale parameter has been changed so the shape parameter remains
unaltered. The cv is calculated from a, and zero-inflation from prob, as before. Model 2.3 is
a slight variation of Model 2.2 in that the mean of the gamma distribution is defined as the

mean of the data rather than being equal to 1. The prior is put directly on the mean as with

a

Model 2.2 as before, and b is derived from 2.

Although it has been stated that in each model variant zero-inflation is determined from a
Bernoulli trial for each count, the probability parameter of the Bernoulli trials can be defined
in one of two ways. In the Models 2.1 to 2.3, the probability of each count being part of the
true gamma Poisson distribution (ie. lambda being multiplied by one) is defined as a single
unknown parameter prob. It is also possible to allow each count to have a separate value for
this probability, so that the group value for zero-inflation is taken from the mean of prob.

Model 2.4 incorporates this modification into Model 2.3.

2.3.2.2 Data Simulation

A total of one thousand datasets were each produced with 10 and 50 observations using R.
Fach dataset was generated using a ZIGP model with parameters randomly selected from
a log (U (—1,2)) distribution, U(0,0.75) distribution, and log;, (U (—2,0.70)) distribution
for mean count, the proportion of the population that is uninfected, and the cv respectively
(where U represents the Uniform distribution). Because of the greater difficulty inherent in
analysing datasets with lower values for mean count, this parameter was taken from a log
uniform distribution to maximise the number of datasets with lower mean counts. The cv
was also taken from a log uniform distribution to increase the number of datasets that were

close to a Poisson distribution.
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Each dataset was then analysed separately using Models 2.1 to 2.4 detailed above. In order
to aid the analyses, a function was written by the author in the R programming language
that allowed the analyses to be automated, with R calling JAGS to run each simulation as
necessary. A burn-in period of 5,000 iterations was run before sampling for 10,000 iterations.
Convergence was assessed by calculating the Gelman-Rubin statistic using two chains, with
any models that failed to converge being re-run for 10,000 iteration intervals until conver-
gence was achieved, up to a maximum allowed processor time of one hour per dataset. The
required sample length was then calculated using the Raftery and Lewis’s diagnostic, and
the simulation extended if necessary. The lower and upper 95% highest posterior density
credible interval estimates along with the median estimate for each model and each dataset

were output to a text file for each model.

2.3.2.3 Statistical analyses

The final outputs for each model as well as the simulation parameters were then input into
R for comparative analysis. Because some models were unable to return usable analyses for
some datasets, because of poor convergence or a persistent error when running the model for
that dataset, and in order to make sure that each model was evaluated equally, the results for
any datasets that were not returned for any individual model were discounted for all models.
To assess the accuracy of the median estimates, the relative root-mean-square-error (RMSE)
was calculated using the simulated, or true, value for each parameter. The relative RMSE can
also be thought of as the standard deviation of the ratio between each median estimate and
the simulated values; although it should be noted that this is not equivalent to the accepted
meaning of the term ‘standard deviation’. The term ‘relative RMSE’ is used exclusively here

to avoid confusion.

2.3.3 Results

The number of datasets that were successfully analysed by Models 2.1 to 2.4 at each sample
size are shown in Table 2.2. Model 2.1 returned the most successful analyses, with Models 2.2,
2.3 and 2.4 returning similar numbers of errors and failures to converge within one hour for
the larger sample size. Model 2.4 returned comparatively few successful analysis results with

a sample size of ten.

In Table 2.3 the percentage of the simulated parameters that fell outside the 95% CI for
each combination of model, parameter and sample size used, are shown. The percentage
of simulated parameters that fell outside the 95% confidence interval for zero-inflation with
Model 2.4 was over 50% at both sample sizes. An even higher percentage were outside the 95%

confidence interval for mean count and cv with Model 2.1. Models 2.2 and 2.3 produced less
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Table 2.2: Number of simulated datasets successfully analysed by four variants of a
ZIGP model

Model 2.1 Model 2.2 Model 2.3 Model 2.4

Total successfully analysed 891 674 716 415
Model returned an error 11 201 170 326
Failed to converge 0 27 16 161
Dataset all 0 98 98 98 98

(a) Sample size 10

Total successfully analysed 936 781 763 808

Model returned an error 42 185 195 165
Failed to converge 17 29 37 22
Dataset all 0 5 5 5 )

(b) Sample size 50

results outside the 95% confidence interval for mean count than the other models. However,
both models seemed to consistently under-estimate the cv, especially at the smaller sample

size.

The root-mean-square-error at each combination of model, parameter and sample size is

shown in Table 2.4. The relative RMSE for all models was comparatively large with the

Table 2.3: Proportion of true values above and below the 95% confidence intervals
produced by four variants of a ZIGP model from the analysis of simulated data

Model 2.1 Model 2.2 Model 2.3 Model 2.4

Above mean count 95% CI 55.9% 0.3% 0.6% 0.8%
Below mean count 95% CI 0% 0% 0% 76.6%
Above variability 95% CI 47.9% 22.9% 24% 19.8%
Below variability 95% CI 25.3% 0% 0% 1.1%
Above zero-inflation 95% CI 3.9% 0.3% 0.3% 55.1%
Below zero-inflation 95% CI 0% 1.4% 1.4% 1.9%

(a) Sample size 10

Above mean count 95% CI 68.5% 1.3% 1.2% 13.1%
Below mean count 95% CI 0% 1.6% 1.6% 73.2%
Above variability 95% CI 44.2% 25.4% 25.3% 23.7%
Below variability 95% CI 23.8% 1.2% 1.3% 6.5%
Above zero-inflation 95% CI 5.2% 0.1% 0.1% 58.4%
Below zero-inflation 95% CI 0.1% 2.6% 2.3% 17%

(b) Sample size 50
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smaller sample size, although this improved for all except Model 2.1 with the larger sample

size.

2.3.4 Discussion

Of the types of errors examined, low confidence of 95% confidence intervals has the most
potential to result in inaccurate conclusions to be drawn from analyses, as a tendency to
produce inappropriately small confidence intervals will increase the Type I error rate asso-
ciated with the method. The relative RMSE is also important as it reflects the accuracy of
the ‘most likely’ estimate, although would not necessarily result in false conclusions being
drawn. The proportion of datasets returned successfully may be related to the parameters of
the distribution of the data, with for example datasets with low means and high variability
resulting in more convergence failures. For this reason, only datasets that were successfully
analysed by all models discussed were included in the calculation of confidence intervals and
relative RMSE.

On the basis of the number of datasets successfully analysed, Model 2.1 outperformed the
others. This was largely due to a reduced proportion of the datasets causing the model to
return an error associated with extreme values for the Poisson means. More of the datasets
failed to converge within the required time span with the larger sample size for Models 2.1
to 2.3, reflecting the longer running time to achieve the same number of iterations associ-
ated with larger datasets. Interestingly, Model 2.4 converged more frequently with the larger
sample size, possibly indicating an identifiably issue with the smaller datasets. Models 2.2
and 2.3 out-performed the other models on the basis of the 95% confidence intervals and

relative RMSE for the mean and zero-inflation, although had a tendency to over-estimate

Table 2.4: Relative RMSE of the median estimate for each parameter produced by
four variants of a ZIGP model from the analysis of simulated data

Model 2.1 Model 2.2 Model 2.3 Model 2.4

Mean count 260.720 109.310 110.757 95.031
Variability 0.562 6.768 6.804 6.469
Zero-inflation 5.531 4.407 4.400 11.948

(a) Sample size 10

Mean count 393.041 0.905 1.047 3.428
Variability 0.607 2.460 2.501 2.013
Zero-inflation 5.482 3.318 3.329 9.297

(b) Sample size 50
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the variability parameter. This is probably due to the choice of prior for the variance pa-
rameter compounded with the difficulty in estimating this parameter from the data tending
the sampler towards larger values, which may also explain the greater proportion of datasets
that returned an error with these models compared to Model 2.1. Model 2.1 failed to return
appropriate 95% confidence intervals for the mean parameter, indicating that placing the
prior on the mean and shape parameters produces better results than placing the prior on
the shape and scale parameters and inferring the mean from these. This is likely to be be-
cause sampling the shape and scale parameters produces good estimates of these parameters

independently, but not necessarily the dependent parameter that is the mean.

In spite of the comparatively poor results for the variability parameter, it is evident that plac-
ing the prior directly on the mean rather than on the scale parameter produces more reliable
inference on the mean, and that a single value of zero-inflation produces a more identifiable
model than using individual probabilities. The effect of altering the prior distribution on the

variance parameter in the preferred Models 2.2 and 2.3 is explored in Section 2.4.

2.4 Comparing prior distributions for the gamma Poisson model

2.4.1 Introduction

The results obtained in Section 2.3 indicate that Models 2.2 and 2.3 produce the most accurate
95% confidence intervals when analysing simulated data, although the results from both
models indicates a tendency to over-estimate the cv. This is most likely due to the choice
of prior distribution for the shape parameter having an effect on the posterior distribution,
given the lack of information on the true value of the cv in the data. As a result, the uniform
prior placed on the inverse shape parameter in the model would tend towards a posterior
distribution that was closer to being uniform than the log-uniform distribution from which
the cv was simulated. This is because, on average, the prior would tend towards values
that are higher than the simulation value. This effect might be reduced by using a prior
distribution for the inverse shape parameter that is log-uniform. The effect of the prior for cv
on the inference made using Models 2.2 and 2.3 is analysed by comparing the results obtained
using a uniform prior (presented in Section 2.3) to results obtained using a log-uniform prior

for analysis of the same data.

2.4.2 Materials and methods

Models 2.2a and 2.3a are an adaptation of models Models 2.2 and 2.3, with the prior cv

specified on the log scale. For each model, the the log of the inverse shape parameter is
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sampled from a uniform scale with a lower limit of -9.21 (= log0.0001) and an upper limit of
4.6 (=1log100). This provides prior distributions with the same limits as before, but with a
different shape. Models 2.2a and 2.3a are used to analyse the data discussed in Section 2.3.
The results of the analysis, along with the existing analyses produced using Models 2.2 and
2.3, are presented as before. Model 2.2a is also used to analyse a dataset consisting of ten

observations with no observed eggs.

2.4.3 Results

The number of datasets that were successfully analysed by Models 2.2a and 2.3a at each
sample size are shown in Table 2.2, along with the results for Models 2.2 and 2.3 from
Section 2.3 for comparison. Model 2.2a returned the most successful analysis results, defined

by the model converging and not returning an error, and Models 2.2 and 2.3 the least.

Table 2.3 shows the percentage of the simulated parameters that fell outside the 95% CI for
each combination of model, parameter and sample size used. The percentage of simulated
parameters that fell outside the 95% confidence intervals was closer to the 5% assumed value
for all parameters, except zero-inflation at sample size 10, for Models 2.2a and 2.3a than
Models 2.2 and 2.3. The relative RMSE for the cv and mean count at the smaller sample
size is reduced for Models 2.2a and 2.3a compared to Models 2.2 and 2.3 (Table 2.7). relative
RMSE for zero-inflation and mean count with the larger sample size are comparable between
all models, although slightly higher for Models 2.2a and 2.3a.

The analysis of the zero count dataset produced very large confidence intervals reflecting the
prior distribution for the mean count and zero-inflation parameters, although the posterior
distribution for the variability parameter tended towards higher values of cv compared to
the prior. The relationship between the mean count and shape parameter estimates at each

iteration are shown in Figure 2.4.

2.4.4 Discussion

The prior chosen for the inverse shape parameter appears to have a dramatic effect on the
inference for cv, indicating that the prior is more informative than the data for this parameter.
This could be due to the prior being relatively informative, but is more likely to be because the
likelihood curve is relatively uninformative due to the parameter being difficult to estimate
from data. The prior for the inverse shape parameter also appears to affect the inference
for the other parameters, although to a lesser extent. Even when the prior for cv is on
the same scale as the sampled simulation parameters, the 95% confidence intervals for this

parameter still give a lower true confidence than expected. A prior distribution of very
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Table 2.5: Number of simulated datasets successfully analysed by four variants of a
ZILP model

Model 2.2 Model 2.3 Model 2.2a Model 2.3a

Total successfully analysed 674 716 801 739

Model returned an error 201 170 101 160
Failed to converge 27 16 0 3
Dataset all 0 98 98 98 98

(a) Sample size 10

Total successfully analysed 781 763 870 830

Model returned an error 185 195 119 112
Failed to converge 29 37 6 53
Dataset all 0 5 5 5 )

(b) Sample size 50

Table 2.6: Proportion of true values above and below the 95% confidence intervals
produced by four variants of a ZILP model from the analysis of simulated data

Model 2.2 Model 2.3 Model 2.2a Model 2.3a

Above mean count 95% CI 0.6% 0.6% 1.3% 1.7%
Below mean count 95% CI 0% 0% 1.7% 1.9%
Above variability 95% CI 26.7% 27.6% 0.4% 0.4%
Below variability 95% CI 0% 0% 4.6% 4.1%
Above zero-inflation 95% CI 0.2% 0.2% 0.2% 0%
Below zero-inflation 95% CI 3% 3.2% 0% 0%

(a) Sample size 10

Above mean count 95% CI 1.5% 1.4% 3.6% 3.9%
Below mean count 95% CI 1.4% 1.4% 1.4% 1.4%
Above variability 95% CI 23.8% 23.7% 0.3% 0.4%
Below variability 95% CI 1.2% 1.4% 7.3% 8.3%
Above zero-inflation 95% CI 0.3% 0.3% 2.9% 2.6%
Below zero-inflation 95% CI 2.5% 2.2% 0.4% 0.4%

(b) Sample size 50




Table 2.7: Relative RMSE of the median estimate for each parameter produced by
four variants of a ZILP model from the analysis of simulated data

Model 2.2 Model 2.3 Model 2.2a Model 2.3a

Mean count
Variability
Zero-inflation

91.825 95.070 29.234 30.245
7.80 7.98 1.38 1.06
4.15 4.15 4.69 4.71

(a) Sample size 10

Mean count
Variability
Zero-inflation

1.420 1.460 1.550 1.540
2.260 2.280 0.426 0.426
3.920 3.930 5.360 5.340

(b) Sample size 50

Shape parameter estimate
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Figure 2.4: The relationship between mean count and the shape parameter (w%) at
each iteration using a ZIGP model with simulated data consisting of zero counts -

Model 2.2a analysis of a dataset consisting of 10 zero counts
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similar characteristics to the sampling distribution may be required before the 95% confidence

intervals perform as expected for this parameter with small datasets.

Choice of the sampling distribution for the mean count parameter appears to be less impor-
tant, as the performance of the estimates for mean count have consistently been relatively
good with all models examined. However, the choice of sampling distribution for mean count
has a greater effect when the data consist of all zero counts. The extreme lack of informa-
tion in the data results in the ZIGP model returning the prior distribution for mean, and
a posterior distribution for the variance parameter that is weighted towards larger values
of cv. The posterior distribution favouring a high mean seems counter-intuitive, but is a
result of the prior for mean being biased towards higher values. In order to account for this
high mean, the estimate for variability is increased to allow for the possibility of observing
all zero-counts. This results in an estimate for variability that is linked to the estimate for
mean, as seen in Figure 2.4. The causes and implications of this phenomenon are discussed

further in Section 2.7.

From the analysis presented here, it appears that the models with the log uniform priors
produce superior results, but it should be remembered that this is a function of the way in
which the data were generated. A prior that is closest to the population distribution of the
parameter that it represents will always produce superior results to a prior that is not close
to the population distribution, because the true value of the parameter will on average be
favoured more by this prior. Repeating this over several datasets results in a lower relative
RMSE and more accurate 95% confidence intervals in the model with the prior that better
represents the true population. This is one of of the strengths of a Bayesian approach, as
long as the population distribution of the parameter is known. Where information in the
data is sparse, the posterior distribution will be heavily influenced by the prior distribution,
even if the prior distribution is minimally informative. One solution to this could be the
use of a Jeffreys prior for the inverse shape parameter. This type of prior ensures that the
posterior is data driven, by ensuring that the prior is uninformative in areas of the likelihood
where the data is informative. The Jeffreys prior is derived from the Fisher information
matrix, and one of the key properties is that it is invariant under re-parametrisation such as
log transformation. This means that the prior will be locally uninformative on any scale, so
can be used to ensure that the posterior is likelihood driven at a given location in parameter
space. Disadvantages of the Jeffreys prior include computational complexity in calculating
the prior this way, and the potential to lead to improper posterior distributions. A subjective
Bayesian would also argue that there is no situation where there is sufficiently little prior
belief regarding a parameter to justify its use. For these reasons and because the aim here
is to eventually be able to incorporate some prior belief about the likely value of the cv, the

use of a Jeffreys prior will not be explored further.

Analyses produced by Model 2.2 were quite similar to those produced by Model 2.3, and
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those produced by Models 2.2a and 2.3a were also similar. This implies that there is little
practical difference in using a gamma distribution centred on the mean rather than a gamma
distribution centred on one. However, of the four models examined in this chapter, Model 2.2a
seems to marginally outperform the others in terms of the number of datasets that returned
an error or failed to converge. This model specification was therefore chosen to be used for
further data analyses. For instances where a uniform prior for the inverse shape parameter

would be more appropriate, the equivalent Model 2.2 should be used.

2.5 Selecting model definitions for the lognormal Poisson model

2.5.1 Introduction

Similarly to the definition of a ZIGP model, there is more than one potential definition of
a ZILP model possible using the BUGS syntax. For consistency between models the zero-
inflated distribution is specified as for Models 2.1 to 2.3a, but there are several different
possibilities for specifying the parameters of the lognormal distribution. The lognormal dis-
tribution arises as a multiplication of a series of any distribution, and is therefore normal
when log transformed (as discussed in Section 1.2.1). The mean and standard deviation of
the normal distribution on the log scale (Iu and lo) can be converted to/from the mean and
standard deviation of the lognormal distribution (@ and o) via the following calculations
(derived from Evans et al. (2000)):

[ = exp (lu + %) o =/exp (2 x lu +102) x (exp (lo2) — 1)

luzlogu—\/log<(z>2+1> za:\/log<(z)2+1>

The standard deviation of the distribution on the log scale (o) is an equivalent measure of

variability to the cv as shown in the following equation (derived from Equation 2.1):

lo = +/log (cv? + 1)

lo is also the standard measure to use to measure the ‘spread’ of the lognormal distribution.
It therefore makes sense to place the prior on this in the model specification, although the
alternative would be to place a prior on the standard deviation on the exponent scale. Simi-
larly, a prior could be placed on the mean of the distribution on the log scale, which is equal
to the log of the geometric mean of the exponent distribution, or the arithmetic mean of the
exponent distribution. In this section, a comparison of models specified using these different

parameters is made.
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2.5.2 Materials and Methods

Models 2.5 to 2.8 represent four slightly different ways of parametrising the same model. In
Model 2.5 the priors are placed on Iy and lo, in Model 2.6 they are placed on p and o, and
in Model 2.7 the priors are placed on g and lo. In Model 2.8, the priors are again placed
on Iy and lo, but this time the prior on lo is log uniform rather than uniform (similar to
Model 2.2a). In all models, in common with the ZIGP models discussed in Section 2.3, u is
sampled from between 0.001 and 1000, and cv from between 0.01 and 10. In models where
the prior is placed on [u, this requires the lower and upper limits for the prior to be calculated
so that the value for p, which is calculated from the chains after the simulation is completed,
cannot be sampled from outside the limits of 0.001 and 1000. The priors placed on lo and o

in each case allow the value for cv to vary between 0.01 and 10.

A total of one thousand datasets were each produced with 10 and 50 observations using R.
Each dataset was generated using a ZILP model with parameters randomly selected from
a log,g (Uniform (—1,2)) distribution for mean count, Uniform(0,0.75) distribution for the
proportion of the population that is uninfected, and log;, (Uniform (—2,0.70)) distribution
for cv respectively. Values for mean count were again taken from a log normal distribution
to maximise the number of datasets with lower mean counts, and cv was also taken from
a log normal distribution to increase the number of datasets that were close to a Poisson
distribution. Analysis of each dataset with Models 2.5 to 2.8, and comparative analysis of

the final outputs and simulation parameters, was performed as in Section 2.3.

2.5.3 Results

Table 2.8 shows the number of models successfully analysed by each model. Unlike the ZIGP
models, none of the ZILP models returned an error for any of the datasets analysed. All
models achieved convergence within an hour less frequently with the larger sample size, as
was seen with the ZIGP models Of the four ZILP models, Models 2.5 and 2.8 returned the

most successful analysis results.

The 95% confidence intervals produced by Model 2.6 failed to contain the simulation param-
eter for a large proportion of datasets (Table 2.9). Those produced by Models 2.5 and 2.7
contained the true parameter at least 95% of the time. For Model 2.8 only, there appeared to
be a tendency to over-estimate the variability. The relative RMSE in the median estimates
for each model is shown in Table 2.10. Models 2.5 and 2.8 produced similar relative RMSE
for mean count and zero-inflation at each sample size, although the relative RMSE for vari-
ability was smaller for Model 2.8 than Model 2.5. The relative RMSE produced by models
Models 2.6 and 2.7 were similar to or greater than those produced by Models 2.5 and 2.8 in

each case.
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Table 2.8: Number of simulated datasets successfully analysed by two variants of a
ZILP model, each with different priors, from the analysis of simulated data

Model 2.5 Model 2.6 Model 2.7 Model 2.8

Total successfully analysed 923 851 922 913
Model returned an error 0 0 0 0
Failed to converge 0 72 1 10
Dataset all 0 77 77 77 7

(a) Sample size 10

Total successfully analysed 916 871 944 828
Model returned an error 0 0 0 0

Failed to converge 77 122 49 165
Dataset all 0 7 7 7 7

(b) Sample size 50

Table 2.9: Proportion of true values above and below the 95% confidence intervals
produced by two variants of a ZILP model, each with two different priors for
variability, from the analysis of simulated data

Model 2.5 Model 2.6 Model 2.7 Model 2.8

Above mean count 95% CI 0.1% 42.9% 0.5% 0.5%
Below mean count 95% CI 1.8% 0.1% 0.2% 3.6%
Above variability 95% CI 0.6% 63.8% 2.4% 0%
Below variability 95% CI 0.5% 0.1% 0.4% 5.7%
Above zero-inflation 95% CI 0.1% 0.6% 3.9% 1%
Below zero-inflation 95% CI 0.1% 1.5% 0.1% 0.1%

(a) Sample size 10

Above mean count 95% CI 0.9% 21.6% 0.9% 1%
Below mean count 95% CI 2.3% 0.7% 1% 3.7%
Above variability 95% CI 1.8% 27.9% 1.8% 0.9%
Below variability 95% CI 1.9% 0.4% 1.2% 5.7%
Above zero-inflation 95% CI 0% 0% 0.9% 1.2%
Below zero-inflation 95% CI 0.9% 16% 0% 0.1%

(b) Sample size 50




2.5 SELECTING MODEL DEFINITIONS FOR THE LOGNORMAL POISSON
MODEL

Table 2.10: Relative RMSE of the median estimate for each parameter produced
by two variants of a ZILP model, each with two different priors for variability, from
the analysis of simulated data

Model 2.5 Model 2.6 Model 2.7 Model 2.8

Mean count 1.757 52.522 27.000 1.651
Variability 3.518 412.179 7.858 0.872
Zero-inflation 7.141 9.100 11.387 7.327

(a) Sample size 10

Mean count 0.882 9.815 1.356 0.848
Variability 1.820 1322.350 2.055 0.698
Zero-inflation 3.274 3.035 4.141 4.033

(b) Sample size 50

2.5.4 Discussion

In contrast to the ZIGP models, none of the ZILP models returned an error. The ZIGP
models appeared to be more likely to return an error in datasets with high cv than low
cv, suggesting an issue with sampling of extreme values of this parameter. One potential
explanation for the ZILP models not returning an error could be the shape of the lognormal
distribution with high variance compared to the shape of the gamma distribution with a
small shape parameter - the gamma distribution with these parameters is a single curve with
a mode close to 0, whereas the lognormal retains the skewed peak shape. This results in
extremely small values being more likely to occur with the gamma distribution than the

lognormal distribution.

As with the ZIGP models, the number of datasets that achieved convergence within the one
hour time frame was quite different between model specifications. There are several possible
explanations for a failure to converge such as bi-modality and unidentifiability. The most
likely explanation is auto-correlation which highlights the impact that subtly different model
formulations can have on the degree of auto-correlation within the resultant MCMC chains.
Models 2.6 and 2.8 returned the fewest converged datasets, suggestion a higher degree of
auto-correlation. This indicates that the model converged most easily with a prior on the lo.
In contrast, there did not appear to be a large discrepancy between the number of datasets
that achieved convergence between Models 2.5 and 2.7. However time to convergence is
dependent on the most heavily auto-correlated parameter which is invariably the variability
parameter, so that differences in mean parameter auto-correlation between these models
would not impact on the convergence time. Models 2.5 and 2.7 also produced similarly
defined 95% CI, although the relative RMSE was lower for Model 2.5 in every case. This
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suggests that a prior placed on [u directly should be preferred to calculation of [y from a

prior placed on the mean on the exponent scale.

Based on the results of this simulation, using priors based on Iy and [o produces superior
results to priors based on p and o. In contrast to the ZIGP model formulation, there did not
appear to be an advantage to using a log-uniform distribution (Model 2.8) over a uniform
distribution (Model 2.5) from which to sample lo, possibly because the distribution of cv
when using a uniform distribution for lo is more heavily weighted to lower values than when
using a uniform distribution for the inverse shape parameter of the gamma distribution.

Therefore, the model specification given by Model 2.5 was used for further analyses.

2.6 Comparing JAGS and WinBUGS results

2.6.1 Introduction

Bayesian analysis using MCMC can be achieved in a number of ways. Specific software to
implement Bayesian MCMC models using Gibbs samplers include JAGS (Plummer, 2008),
and the better known BUGS project of WinBUGS (Lunn et al., 2000) and OpenBUGS
(Thomas et al., 2006). A brief comparison of the results obtained using JAGS with results
from an identical model implemented in WinBUGS is warranted, to ensure that inference

made is independent of the choice of MCMC implementation.

2.6.2 Materials and methods

A ZIGP model was implemented in JAGS and an identical model was created in the Win-
BUGS language, with the same log uniform prior distribution for variability. One hundred
datasets were generated with a sample size of 50, as described in Section 2.3, and analysed
with each model. Unlike JAGS, WinBUGS cannot easily be interfaced with R on Unix sys-
tems, so a different method of running both models was employed. The WinBUGS model
was run using the batch script feature of WinBUGS along with the coda output facility, and
R was used to check the results for convergence using the Gelman-Rubin statistic, and to
analyse the results to produce upper and lower 95% confidence intervals and median esti-
mates. The model was run using two chains, and 5,000 burn-in iterations followed by 10,000,
and if necessary 100,000 or 500,000 sampling iterations in order to achieve convergence in
the sampled chains. For ease of comparison the same procedure was followed for the JAGS

model. Both sets of analyses were saved to a text file and input into R for comparison.

43



2.6 COMPARING JAGS AND WINBUGS RESULTS

2.6.3 Results

The number of datasets successfully analysed by both models (Table 2.11) was very similar.
In addition, the datasets that were not analysed successfully with one model tended to not be
analysed successfully with the other model. Figures 2.5 to 2.7 show the correlation between
the JAGS and WinBUGS estimates for mean count, cv and zero-inflation. Except for a
small amount of variation between the two models for estimates for cv in some datasets, the

estimates were very similar between the models.

Table 2.11: Number of datasets successfully analysed by equivalent JAGS and
WinBUGS models from the analysis of simulated data

WinBUGS
Success Error Not conv. Total

8 Total number successfully analysed 86 0 4 90

< Model returned an error 1 7 0 8

= Failure to converge 1 0 1 2
Total 88 7 5 100
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Figure 2.5: Comparative estimates of mean count from the analysis of simulated
data using equivalent JAGS and WinBUGS models
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Figure 2.6: Comparative estimates of cv from the analysis of simulated data using
equivalent JAGS and WinBUGS models
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Figure 2.7: Comparative estimates of zero-inflation from the analysis of simulated
data using equivalent JAGS and WinBUGS models



2.7 DISCUSSION

2.6.4 Discussion

Apart from relatively minor differences between the analyses, and given that the dataset was
deliberately created to contain a small amount of data resulting in confidence intervals for
several datasets being quite wide for both models, the results of the two models are almost
identical. The minor differences between the results are most likely the result of either Monte
Carlo error reflecting a need to take more samples to adequately describe the distributions, or
imperfect convergence for some datasets with one or both models. It is therefore reasonable
to conclude that use of JAGS and WinBUGS produce equivalent results, providing that the

models used are identical.

2.7 Discussion

Inference made using MCMC will always depend on the use of the correct distribution to
describe the data, and adequate attention to convergence and sample length diagnostics
to ensure that any conclusions drawn are correct (Gilks et al., 1998). The choice of an
appropriate prior distribution is also critical, and will have strong influence over the posterior
distribution where information in the data concerning a parameter is sparse (Goodman, 2005).
What is less obvious is that slight alterations in the model specification, using equivalent
sampling limits for the same parameters but subtly different formulations or priors, can
dramatically affect the degree of auto-correlation in the model and ultimately the inference
made. Where novel or complex models are being used in the real world, validation using

simulated data is important to ensure that posterior distributions of parameters are sensible.

For the model comparisons in this chapter, the priors used in each model were kept as
similar as possible so as to minimally affect the behaviour of the model. The priors used
were uninformative within limits of the allowed parameter space which was intended to be
nonrestrictive in terms of real faecal egg count data. The prior for zero-inflation allowed true
values to lie anywhere in the possible parameter space of between 0% and 100%, but the
priors for mean and cv were limited to the extremes of the values likely to be encountered
in real data. Mean egg counts of less than 0.001 are unlikely to demonstrate any eggs given
the sample sizes typically encountered, and mean egg counts of over 1000 are unlikely to be
observed. The cv was limited to values of between 0.01 and 10; these are reasonable values
for faecal egg count data as a cv of below 0.01 would be almost indistinguishable from Poisson
variation, and above 10 is much higher than reported values. Limiting the cv to these values
should help prevent the MCMC algorithm exploring, and possibly encountering problems
with, parameter values that are not practical. Although these priors were uninformative
on the scale on which they were specified, the same priors become quite informative when

transformed. This resulted in poor inference on cv for the ZIGP Model 2.2 with smaller
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sample sizes when cv was simulated on a different scale, compared to the results obtained
from using a variability prior specified on the log scale in Model 2.2a. The same effect was
not observed with the inference on mean, which was also simulated on a different scale to the
priors, reflecting the comparatively large amount of information in the data for this parameter

compared to estimating the variability parameter.

Datasets consisting of all zero counts were discarded from all analyses presented in this
chapter, as an alternative method of analysing these data would be more appropriate than
attempting to fit a distribution with an absence of observations. As demonstrated in Sec-
tion 2.4, analysis of data with no observed counts in this way result in posterior confidence
intervals for each parameter which are highly dependent on the prior distribution chosen for
that parameter, as well as the prior distribution chosen for other parameters. This results
in a correlation between the estimates for mean count and variability at each iteration (Fig-
ure 2.4). This phenomenon is observed because the likelihood of observing zero counts with
a high mean and low cv is very small, therefore low estimates of cv (high estimates of the
shape parameter) are only observed at iterations where the estimate for the mean is small.
As there is so little information in the data the mean is informed by the prior which tends
towards large values, resulting in high estimates for the cv in order to account for the high
mean. The reason for the model allowing the prior for mean to distort the prior for cv, rather
than vice versa, is not clear. It may be that this is a result of the Gibbs sampler updating the
mean before the cv, resulting in a choice of value for cv that is dependent on the previously
chosen value for the mean. However, use of an equivalently parametrised Metropolis-Hastings
algorithm produces similar inference on cv, suggesting that this is not the case. An alter-
native explanation may be that the Poisson part of the mixture distribution results in zero
observations being so much more likely with extremely low lambda values that the posterior
for cv is pushed up to allow these extremely small lambda values to be sampled more often.
Due to the large estimates of cv, the probability of observing very low lambda values would
then be sufficiently high at any value of mean to allow this solution to be sampled from
intensively. The same effect is not observed using the ZILP Model 2.5 as the prior for mean

count is on the log of the geometric mean, tending towards smaller rather than larger values.

2.8 Development of an R package to facilitate data analysis

Having developed model definitions to be used for the ZILP and ZIGP models, an R package
was developed to aid the analysis of data using the (zero-inflated) Poisson, (zero-inflated)
gamma Poisson or (zero-inflated) lognormal Poisson distributions. This R package entitled
‘bayescount’ is available to download from http://cran.r-project.org/web /packages/bayescount
(see the list of publications on page viii for citation information). Because the choice of prior

distribution for the inverse shape parameter has been shown to have an effect on inference
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made, the ability to change this prior was built into the package. A function to calculate the
likelihood at each iteration for each model is also included. The runjags package (Denwood,
2008) is used for lower-level functions to call JAGS, with convergence diagnostics based on
the Gelman-Rubin statistic and run length diagnostics based on the Raftery and Lewis diag-
nostic. This software is used to implement the MCMC methods discussed in the remainder
of this thesis.
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Distributional selection and model fit



Distributional selection and model fit

3.1 Introduction

The distribution of parasites within a group of animals provides an indication of the degree
of parasitism present, as well as the dispersion of parasites across hosts (Wilson et al., 1996).
Parasite distributions tend to be aggregated; some individuals are more heavily parasitised
than others, which has an important influence on control of the parasite as the majority
of pasture contamination is contributed by relatively few individuals (Barger, 1985; Sréter
et al., 1994). Similarly, other factors such as the presence of uninfected animals within a
group could also have implications for parasite control measures. Further benefits of un-
derstanding the distribution of parasites between individuals include the quantification of
genetic components of nematode resistance in sheep and cattle, and the ability to obtain
more accurate estimates of the true mean of the parasitised population in order to improve
the detection of anthelmintic resistance. However, all of these potential benefits depend on
the use of a a statistical technique that is capable of extracting the most useful information
from the available data. For parametric techniques, a parametric distribution which is well

approximated to the process underlying the observed data is also required.

The most widely used method for implementing population modelling in parasitology is
currently maximum likelihood estimation (McCullagh and Nelder, 1989; Wilson et al., 1996;
Torgerson et al., 2005). One disadvantage of maximum likelihood estimation is that the
distribution of error for each parameter is assumed to be normally distributed around the
maximum likelihood estimate for the parameter. Although this asymptotic assumption is
valid with large enough sample sizes, the number of data points required may be far in excess
of the data available (Stear et al., 2004). Other more computationally complex techniques
such as likelihood profiling or MCMC may produce more reliable confidence distributions for

these types of data.

The Poisson distribution is a simple model that is capable of describing count data such as
FEC. However, as FEC data are over-dispersed with respect to the Poisson, this distribution

is usually adapted to allow the mean of the Poisson process to vary, according to another con-
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tinuous distribution such as the gamma or lognormal (as detailed in Section 1.2.1). Another
type of model which has been used to describe FEC data is the zero-inflated model (Nodtvedt
et al., 2002). This is useful when describing FEC data which contains many zero counts, and
introduces the idea that a subset of the population may be be non-shedding because of re-
cent anthelmintic treatment, lack of exposure to parasites, or resistance to infection. It is
theoretically impossible to observe a positive count from these animals, so they are not part
of the distribution which describes the infected individuals within the group. In effect, a
zero-inflated model analyses the animals with a positive count to extract a lambda value
which describes the infected herd, and then extrapolates from this the number of animals
with a count of zero that would be expected to form part of the Poisson process. Any extra
animals with a count of zero are then defined as being part of the zero-inflated population;
the proportion of the group which are part of this population is therefore the prevalence of
non-infection, or one minus the prevalence of infection, within the group. The natural exten-
sion of the zero-inflated Poisson model is to allow over-dispersion within the infected animals,
using a zero-inflated negative binomial (ZINB) model, which is equivalent to a ZIGP, or a
ZILP model. This model returns values for mean count and over-dispersion of the infected

population, as well as an estimate of the proportion which are uninfected.

It is not clear which of these distributions and statistical methods is most likely to be useful
for the analysis of FEC data. Distributional selection is usually made on the basis of empirical
fit, taking into account the number of parameters in the model (Akaike, 1973; Schwarz, 1978;
Johnson and Omland, 2004). Such penalised likelihood measures are widely used as the basis
of model selection, but the penalty for increasing the number of parameters in the model
differs between methods such as BIC, AIC and DIC. The underlying assumption is that the
simplest possible explanation is to be preferred, a concept frequently known as Occam’s razor
and attributed to Occam (Thorburn, 1918). A Bayesian approach to model selection relies on
biological plausibility as well as empirical fit as a basis for model selection. Such an approach
may allow an over-specified model, such as the ZIGP, to be used in place of a simpler model,
such as a gamma-Poisson, where there is a biological reason to believe that the additional
parameters may be important, regardless of evidence for their existence based on empirical fit
(Miaou and Lord, 2003). In the case of the ZIGP model, if there were sufficient evidence for
the absence of appreciable zero-inflation or over-dispersion in the dataset, the estimates for
these parameters would reduce until the model collapsed to the simpler form. This approach
may yield more useful results than attempting to select the distribution based on a penalised
likelihood, which is difficult to calculate as the number of degrees of freedom in a mixture

model is not well defined.

Selection of the lognormal-Poisson or the gamma-Poisson must take a different approach be-
cause the two are not nested. The widespread adoption of the negative binomial appears to
be based mainly on convenience; the alternative formulation to the gamma-Poisson that re-

lieves the requirement for lengthy integration over lambda values of the Poisson distribution
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is quite appealing. The distribution has also been shown to fit FEC data well, partly as a
result of the flexibility of the distribution, and the use of an over-dispersed Poisson distribu-
tion such as the gamma-Poisson has been well justified (Crofton, 1962; Pacala and Dobson,
1988; Grenfell et al., 1995). However, little attempt has been made to justify the gamma
distribution biologically compared to the potential reasoning behind the use of the lognormal
distribution outlined in Section 1.2.1. In addition, with the advent of modern computing
power the computational burden of having to integrate the lambda value of the compound
distribution associated with using distributions such as the lognormal-Poisson become much

easier to achieve, potentially reducing the reliance on the negative binomial.

In this chapter, the inference made using some of these distributions and the utility of model

selection based on empirical fit are explored using simulated data.

3.2 Comparison of MCMC and ML for analysis of ZIGP data

3.2.1 Introduction

The current gold standard for estimating parameters of distributions in parasitology is maxi-
mum likelihood estimation (McCullagh and Nelder, 1989; Wilson et al., 1996; Torgerson et al.,
2005), available using standard statistical software (SAS, 2003; R Development Core Team,
2009). Computationally intensive methods have been recently used as an alternative to max-
imum likelihood analysis, including likelihood profiling, bootstrapping and Bayesian analysis
by means of MCMC methods using software such as WinBUGS (Lunn et al., 2000). The
term MCMC used in this chapter specifically refers to Bayesian analysis by means of MCMC
methods; although maximum likelihood estimates could also be achieved using MCMC meth-
ods. The major advantage of MCMC is that a combination of the available data and prior
knowledge of the parameter can allow inferences to be made about the parameter, even in the
absence of sufficiently informative data. MCMC methods also define the entire distribution
of the parameters rather than just the maximum likelihood estimate and standard error, and
allow models to be easily modified to represent the biological process (Goodman, 2005). Dis-
advantages of MCMC methods include the need to check for adequate convergence in order
to avoid inappropriate conclusions being drawn (Brooks and Roberts, 1998; Toft et al., 2007),

as well as the increased computer processing time required to analyse data in this way.

Both ML and MCMC methods can be used to fit a zero-inflated negative binomial model,
although simple maximum likelihood estimates are the more widely used of the two. Given
a large enough dataset each technique would be expected to produce equivalent results,

although results are likely to differ between the two approaches with less informative datasets.
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Comparison of the accuracy and reliability of the two techniques at different sample sizes is

therefore of interest.

3.2.2 Materials and Methods

A total of 1000 datasets were simulated with mean egg count randomly drawn from between
0.1 and 100, and cv randomly drawn from between 0.01 and 5. Both of these parameters were
drawn from log-Uniform distributions to maximise the number of datasets with small means
and cv. Zero-inflation was sampled uniformly from between 0 and 75% for each dataset.
For each of these 1000 combinations of parameters, data were simulated using a zero-inflated
gamma-Poisson distribution in R with sample sizes of 10, 100 and 1000 counts. The resultant

3000 datasets were stored along with the corresponding true parameter values.

MCMC analysis was achieved using Model 2.2a as described in Section 2.4. Datasets that
failed to converge within a period of one hour and datasets where JAGS returned errors were
discarded as before. ML analysis was done using the ‘zicounts’ package (Mwalili) in R. The
ML analysis also failed to return results or did not converge for some datasets. These were
removed as for the un-converged datasets from the MCMC analysis. In addition, for some
returned datasets, the standard error of one or more parameter was returned as impossible
to calculate or infinite. An ML estimate with an unknown 95% confidence interval is of little
use, and these tended to result in inaccurate estimates for the other parameters, therefore
these results were also removed. Any dataset that was removed for one of the techniques
was removed for both in order to avoid biasing the results. The final outputs for each model
as well as the simulation parameters were then input into R for comparative analysis. The
95% credible/confidence intervals output by the two types of model were compared to the
simulation parameter for each dataset, and the relative RMSE of the MCMC median and

ML estimates calculated for each combination of parameter and sample size.

3.2.3 Results

The percentage of data sets that were analysed successfully was higher for MCMC than ML
(Table 3.1). Table 3.2 shows the percentage of the simulated parameters that fell inside the
95% CI for each combination of model, sample size and parameter. In every case the 95%
credible intervals produced by MCMC contained a greater proportion of the true values than
the 95% confidence intervals produced by ML. The 95% confidence intervals produced by
MCMC contained the true parameter at least 95% of the time for mean and zero-inflation,
but less than this for cv. Of the 51 and 37 confidence intervals not containing the true
cv parameter at sample sizes 100 and 1000 respectively, there were only 7 for sample size

100 and 10 for sample size 1000 for which the true value was below the confidence interval,
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Table 3.1: Number of datasets returned by MCMC and ML techniques for each
sample size from the analysis of simulated ZIGP data

MCMC method ML method

Total successfully analysed 778 538
Model returned an error 52 0

Incalculable 95% CI 0 290
Failed to converge 0 2

Dataset all 0 170 170

(a) Sample size 10

Total successfully analysed 936 680
Model returned an error 60 0

Incalculable 95% CI 0 313
Failed to converge 0 3
Dataset all 0 4 4

(b) Sample size 100

Total successfully analysed 829 723
Model returned an error 17 0

Incalculable 95% CI 0 274
Failed to converge 154 3
Dataset all 0 0 0

(c) Sample size 1000

Table 3.2: Proportion of 95% confidence intervals produced by ML and MCMC
techniques that contained the true parameter from the analysis of simulated ZIGP
data

Sample size Parameter MCMC method ML method

Mean 0.978 0.919

Sample size 10 Variability 0.919 0.696

Zero-inflation 0.988 0.958

Mean 0.956 0.890

Sample size 100 Variability 0.925 0.678
Zero-inflation 0.956 0.905

Mean 0.957 0.896

Sample size 1000  Variability 0.931 0.715

Zero-inflation 0.962 0.950
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indicating a tendency for the MCMC method to under-estimate rather than over-estimate cv
for the larger sample sizes. For the smallest sample size, 37 of the 67 confidence intervals not

containing the true parameter had similarly under-estimated cv.

The relative RMSE for each method is shown in Table 3.3. The MCMC method produced
smaller relative RMSE for the largest sample size and cv with a sample size of 100, but had a
large relative RMSE for the mean particularly at the smallest sample size. The relationship
between the MCMC median estimate of mean and MCMC median estimate of cv for the
sample size 10 data is shown in Figure 3.1. There are a group of datasets with high estimated
mean and corresponding high estimate of cv. The majority of the datasets with a high MCMC

median estimate for mean had a small empirical mean (Figure 3.2).

3.2.4 Discussion

From the results presented here, it is apparent that analysis of data simulated with these
parameter values presents some difficulties. The relative RMSE for zero-inflation was poor
for both techniques, even with a sample size of 1000. The ML technique also produced
poor relative RMSE for variability, although this was markedly improved with MCMC at the
larger sample sizes. The ML analysis produced much smaller relative RMSE than the MCMC
technique with a sample size of ten, which is likely to be a result of the prior distribution used
for the mean for the MCMC technique. This prior distribution (Uniform(0.001,1000)) would
result in a tendency for the estimate of mean to be much higher than the distribution from
which the mean was simulated. Figure 3.1 shows a group of results with a median estimate for
mean of ~ 400 and corresponding high cv, indicating the possibility that these datasets were

the result of a high mean with a large amount of variability. Figure 3.2 demonstrates a small

Table 3.3: Relative RMSE produced by ML and MCMC techniques for each
parameter and sample size from the analysis of simulated ZIGP data

Sample size Parameter MCMC method ML method

Mean 231.38 1.76

Sample size 10 Variability 8.12 1.05

Zero-inflation 9.29 5.83

Mean 1.07 0.98

Sample size 100 Variability 0.51 1.50
Zero-inflation 7.10 5.97

Mean 0.38 0.44

Sample size 1000  Variability 0.47 1.11
Zero-inflation 5.73 6.00
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3.2 COMPARISON OF MCMC AND ML FOR ANALYSIS OF ZIGP DATA

empirical mean for these datasets, resulting in a similar effect to that discussed for datasets
with all zero values discussed in Section 2.7. The relative RMSE for each parameter appeared
to be reduced with each increase in sample size for the MCMC method, but only with the
mean parameter for the ML method. However, the values produced are not necessarily
comparable between sample sizes as a result of the removal of a different sub-set of the

datasets and parameter sets for each sample size.

In contrast to the relative RMSE, the MCMC technique consistently out-performed the ML
technique in terms of the true confidence of the nominal 95% confidence intervals produced.
The ML technique failed to identify the true interval as much as 32% of the time for variability
and 10% for mean count, although the 95% CI for zero-inflation were closer to 95% confi-
dence. The MCMC technique produced more reliable confidence intervals for all parameters,
although confidence was slightly reduced for variability, possibly as a result of a combination
of the lack of information regarding this parameter in the data and the prior tending towards
lower values of cv than the distribution from which the parameter was simulated. Use of
a prior distribution for cv and mean that was closer to the distribution from which these
parameters were simulated would have greatly improved the apparent performance of the
MCMC technique, but the intention here was to use priors that were minimally informative.
However, it appears that the lack of information available in these types of data result in
even minimally informative priors having a demonstrable effect on the posterior probability

densities.

Another difference between the two techniques was the proportion of datasets that were
successfully analysed. The MCMC technique returned usable parameter estimates for 90.0%
of the total non-zero datasets, compared to only 68.7% for the ML technique. The ML
technique produced more usable results, as a proportion of the total number of non-zero
datasets, with increasing sample size. This could be as a result of datasets with higher cv
tending towards being all zero, but is more likely to be a result of the increased information
in the datasets with a larger sample size. A large proportion of the ML results indicated
that convergence had been achieved, but were unable to determine confidence intervals for
one or more parameters. The results from these models were extremely inaccurate, and
highlight the importance of careful analysis of the outputs of generalised linear models before
making inferences based on their results. Because of the way that MCMC prior distributions
are defined, parameters cannot be returned with infinite or incalculable confidence intervals
using MCMC. Using this method, the datasets that contain no information about one or more
variables would either return the prior distribution or be removed due to poor convergence.
Only 154 datasets failed to converge using the MCMC technique, and only with a sample
size of 1000. This is a result of the time constraint on convergence; models were only allowed
to run up to a maximum of one hour to allow chains to converge, therefore models that
took longer to update as a result of more datapoints would take longer to achieve the same

number of iterations and so would be less likely to converge within the same time period.
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Chains were typically quite auto-correlated, resulting in a large number of required iterations
calculated by the Raftery and Lewis diagnostic. Mean sample sizes of over 63,000, 100,000 and
167,000 iterations respectively were required for the 678 datasets that converged at all samples
sizes of 10, 100 and 1000. The higher auto-correlation observed with larger sample sizes
possibly reflects the greater impact of the likelihood on the posterior distribution compared
to the smaller sample sizes, resulting in a reduced variance in the posterior for the variability

parameter and consequently poorer mixing across the distribution.

It can be seen from the analysis presented that the 95% confidence intervals returned by
ML were not truly of 95% confidence. The implementation used calculated these intervals
assuming a normal distribution for the error of the parameters, which is likely to be partly
responsible for this poor performance. It is possible to calculate 95% confidence intervals using
ML without making this assumption, which would have improved the proportion of datasets
where the true parameter was within the 95% CI. However, this increases the computational
complexity of the ML technique which reduces the advantage over MCMC in this regard, and

would not improve the relative RMSE associated with the results.

The comparatively poor performance of both methods with a sample size of ten indicates
that very small datasets seldom produce accurate parameter estimates, and the relatively
high error rate at sample size 100 for zero-inflation and over-dispersion is of concern because
many biological samples are no larger than this. Given the difficulty in obtaining and studying
very large sample sizes, computationally intensive methods such as Bayesian MCMC methods
can and should be used to improve estimates of distribution parameters when analysing zero-
inflated negative binomial data of smaller sample sizes, such as typically found with faecal

egg counts.

3.3 Use of a ZIGP model to analyse GP and ZIP data

3.3.1 Introduction

It has previously been stated that parasite count data such as FEC would be expected to
follow a Poisson distribution if parasites were mixed randomly in the population (Elliott,
1977), or a Poisson distribution with a further, possibly multi-modal, distribution describing
the varying mean of the Poisson part if parasites are aggregated in the population. If the
distribution describing the Poisson means is taken to be gamma, then the resultant compound
distribution is the gamma-Poisson. This distribution is equivalent to the negative binomial
(Venables and Ripley, 2002; Vose, 2004), and has been used in the analysis of countless
parasite distributions where it usually provides a good empirical fit to the data as it allows

for the data to be over-dispersed with respect to the Poisson (May and Anderson, 1978;

58



3.3 USE OF A ZIGP MODEL TO ANALYSE GP AND ZIP DATA

Wilson and Grenfell, 1997; Shaw et al., 1998). The gamma-Poisson accounts for several
zero counts representing no observed parasites or eggs, which is a frequent feature of many
datasets in parasitology, by producing a correspondingly large estimate for the cv of the
distribution. One alternative to this approach is to use a zero-inflated Poisson distribution;
a mixture distribution which allows the data to be separated into a group which may be
positive or zero (the Poisson part) and a group which may only be zero (the “extra zeros”)
(Lord et al., 2005). This allows the Poisson distribution to fit data with a larger number
of zero counts than would be expected given the mean of the non-zero counts, and is the
simplest form of multi-modal distribution that could be fitted to parasite burden or FEC
data. The gamma-Poisson and zero-inflated Poisson distributions can be combined, resulting
in a zero-inflated gamma Poisson distribution (Nedtvedt et al., 2002; Walker et al., 2009).
This ZIGP distribution allows for large numbers of zero observations to be accounted for by
either zero-inflation or a large cv in the infected population, or potentially a mixture of the

two. The two possibilities are effectively separated based on the cv of the non-zero counts.

It is important to note that although the ZIGP model allows for the data to be both
zero-inflated and over-dispersed, it is also capable of describing either a simple Poisson
process, zero-inflated Poisson process or gamma-Poisson process by simply evaluating the
zero-inflation and/or cv parameters as being close to zero. Although a frequentist approach
requires that the simplest model that adequately fits the data should be used to preserve
parsimony, a Bayesian approach is concerned more with the accuracy of the posterior distri-
bution, and would therefore allow a ZIGP model to be used for data without zero-inflation
or over-dispersion as long as the posterior value for zero-inflation or over-dispersion is close
to zero. A similar approach has been used by Toft et al. (2006) to determine if use of the
gamma-Poisson is justified in the analysis of micro-organism counts. The amount of zero-
inflation and over-dispersion present in the data is rarely known prior to analysis, therefore
being able to confidently use a single model to analyse all data types would represent a benefit
to parasitologists in terms of both time spent evaluating the fit of several different models,
and in eliminating errors in analysis caused by using inappropriate models. The difficulty in
defining the degrees of freedom in a zero-inflated mixture model makes model selection based
on penalised likelihoods even more difficult and controversial than with models with more
easily defined effective parameters, although score tests for zero-inflated models have been
used (Xiang et al., 2007). These studies have not examined the impact of using zero-inflated
models on the accuracy of inference made from datasets where zero-inflation is not important,
and conversely the impact of using non zero-inflated models in the analysis of datasets where
zero-inflation is a feature. The accuracy of inference made using the ZIGP and simpler mod-
els when analysing datasets with and without over-dispersion and zero-inflation is therefore

of interest, so that the consequences of incorrect model selection can be quantified.
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3.3.2 Materials and methods

A total of 1,000 parameter combinations of mean count, cv and zero-inflation were generated
using R, as presented in Section 3.2. For each parameter combination, a ZIGP distribution
was used to simulate a dataset with a sample size of 100. Zero-inflated Poisson (ZIP) and
gamma-Poisson (GP) distributions were used to simulate further datasets of the same sample
size, ignoring the cv and zero-inflation parameter respectively. Each of the 3,000 datasets were
analysed using the ZIGP MCMC Model 2.2a, as well as zero-inflated Poisson and gamma-
Poisson models based on Model 2.2a but with the corresponding variability and zero-inflation
components removed. Models were run until convergence for a maximum of one hour before
calculating the necessary sample size as before. The results for each combination of model

and dataset were saved and input into R for comparative analysis.

In order to directly compare the output for mean count between the zero-inflated and non-
zero-inflated models, the mean count of the infected population calculated by the ZIGP and
ZIP models was converted to the population mean as calculated by the Poisson and GP

models using the following formula:

(Number infected x infected mean) + (Number uninfected x 0)

Corrected mean count =
Number of animals in the whole population

= (1 — zero inflation proportion) x mean count

The same transformation was applied to the simulation parameters, and all references to the

mean count here refer to this parameter.

The relative RMSE was calculated for each combination of parameter, model and dataset as
described previously. In addition, the mean relative bias, calculated in a similar way to the
relative RMSE with a negative value indicating on average a lower true value compared to
the estimate, and mean relative size of the 95% confidence intervals, were compared between
models. The latter was calculated using the following formula applied to each parameter

applicable to the data type:

lati v—r

relative range = ———

elative range 7

Where L and U are the lower and upper 95% confidence interval limits, and M is the median

estimate.
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3.3.3 Results

In Table 3.4, the number of models that returned an error or failed to converge for each
model and data type are shown. Convergence was achieved for all datasets, except those that
returned an error. The ZIGP and GP models returned errors for over twice as many ZIGP
datasets than GP or ZIP datasets. The ZIP model returned errors for datasets that included
a cv component. The relative RMSE, mean relative bias, proportion of true values that fell
above and below the 95% confidence interval estimates, and mean relative CI size for each
combination of parameter, model and dataset are shown in Table 3.5. The overspecified ZIGP
model produced very similar statistics to the relevant simpler model for the mean count and
zero-inflation parameters with the GP and ZIP data. The ZIGP model underestimated the
cv present in 14% of the GP datasets, but produced a smaller relative RMSE and bias than
the GP model. The GP model overestimated the cv present in 62% of the ZIGP datasets,
resulting in a large bias and relative RMSE compared to the ZIGP model. Similarly, the ZIP
model overestimated zero-inflation in 19% of the ZIGP datasets although the relative RMSE
and bias was more similar to the ZIGP model. The relative RMSE for zero-inflation with
the ZIGP model was much higher for the ZIGP data than the ZIP data. The relative RMSE
and bias were similar between the ZIP and ZIGP model for all datasets, although the GP
model produced larger relative RMSE and bias and larger CI sizes for the ZIP and ZIGP

Table 3.4: Number of datasets returned by each combination of GP, ZIP and ZIGP
model with GP, ZIP and ZIGP simulated datasets

GP model ZIP model ZIGP model

Total successfully analysed 980 955 985
Model returned an error 20 45 15
Failed to converge 0 0 0
Dataset all 0 0 0 0

(a) Gamma-Poisson data

Total successfully analysed 967 999 974
Model returned an error 32 0 25
Failed to converge 0 0 0
Dataset all 0 1 1 1

(b) Zero-inflated Poisson data

Total successfully analysed 920 951 934
Model returned an error 76 45 62
Failed to converge 0 0 0
Dataset all 0 4 4 4

(c) Zero-inflated gamma-Poisson data
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3.3 USE OF A ZIGP MODEL TO ANALYSE GP AND ZIP DATA

data compared to the ZIGP model.

Comparison of the median estimates for mean and cv or zero-inflation produced by the ZIGP
and GP or ZIP models is shown in Figures 3.3 and 3.4. The median estimates for mean count
were very similar between the two models for the GP and ZIP data, but small differences
between the model estimates can be seen with the ZIGP data. The median estimate for cv
was on average lower with the ZIGP model compared to the GP model for the GP data, but
agreement was much poorer with the ZIGP data. There was good agreement for the median
estimate for zero-inflation between ZIGP and ZIP models for the ZIP data, but not with the
ZIGP data.

The empirical cumulative distribution function for the median and 95% CI estimates of cv
produced by the ZIGP model for the ZIP data are shown in Figure 3.5. The lower 95% CI
for cv was very close to the lower limit of the prior (below 0.0101) for 972 of the 974 datasets
(99.8%), and below 0.1 for all datasets. The upper 95% confidence limit was below one for
788 (80.9%) of the datasets. Figure 3.6 shows the empirical CDF for the median and 95% CI
estimates of zero-inflation produced by the ZIGP model for the GP data. The lower 95% CI
was below 1% for 827 (84.0%) of the datasets, but as high as 40% for some datasets. Datasets
resulting in a high lower 95% CI for zero-inflation tended to have a high simulated cv and
low simulated mean count parameter (Figure 3.7). Use of Model 2.2 rather than Model 2.2a

to analyse the same data increased the number of lower 95% CI estimates that were below
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Figure 3.3: Comparison of median estimates produced by ZIGP model (y axis) and
GP model (x axis) for GP and ZIGP simulated data - estimates for mean shown in blue
and cv in green
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Table 3.5: Comparison of the relative RMSE, bias, proportion of true values above
and below 95% CI and mean relative 95% CI size returned by each combination of
parameter and model/simulated dataset - bold entries highlight poor performance

Parameter Statistic GP model ZIP model ZIGP model

RMSE 0.36 0.30 0.33

Bias -0.03 0 -0.02

Mean Above CI 0.03 0.09 0.04

Below CI 0.02 0.05 0.01

CI size 0.56 0.43 0.54

RMSE 0.52 0.47

Bias -0.74 -0.31

Variability Above CI 0.04 0.14
Below CI 0.01 0

CI size 3.30 3.87

(a) Gamma-Poisson data

RMSE 0.26 0.10 0.11

Bias -0.06 -0.02 -0.03

Mean Above CI 0.01 0.01 0.01
Below CI 0.01 0 0

CI size 0.79 0.57 0.61

RMSE 4.81 4.57

Bias -0.79 -0.73
Zero-inflation Above CI 0 0
Below CI 0.01 0

CI size 1.03 1.09

(b) Zero-inflated Poisson data

RMSE 0.36 0.25 0.26

Bias -0.09 -0.02 -0.04

Mean Above CI 0.01 0.03 0.01

Below CI 0.01 0.02 0.01

CI size 0.98 0.61 0.75

RMSE 7.08 0.48

Bias -23.52 -0.69

Variability Above CI 0.01 0.06
Below CI 0.62 0

ClI size 2.32 4.48

RMSE 11.51 9.64

Bias -2.22 -1.74
Zero-inflation Above CI 0 0

Below CI 0.19 0.03

CI size 0.84 1.10

(c) Zero-inflated gamma-Poisson data
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1% to 952 (97.7%), and all but three datasets (99.7%) to below 5%. The upper 95% CI
estimates were more similar between Models 2.2a and 2.2 with 337 (34.2%) and 344 (35.3%)
of the estimates being below 5% for the respective models. Use of a ZILP model to analyse
lognormal-Poisson data with the same parameters resulted in 928 (92.8%) of the lower 95%
CI estimates below 1%.

3.3.4 Discussion

There was generally excellent agreement between the estimates of the ZIGP and correspond-
ing simpler model when analysing the GP and ZIP data. The more complex ZIGP model
produced all but identical median estimates, relative RMSE, mean relative bias and propor-
tion outside the 95% confidence interval (95% CI) for both mean count and zero-inflation to
the zero-inflated Poisson model when analysing zero-inflated Poisson data, indicating that
the addition of the extra-Poisson variability parameter made no difference to the analysis in
the absence of appreciable extra-Poisson variability in the data. The median estimates for
mean count and cv between the ZIGP and GP models for the GP data also showed good
agreement, although there was more disparity evident with cv. The bias and relative RMSE
were similar between the models for both parameters, but a greater proportion of the 95%
CI did not contain the true value for the ZIGP estimates. These datasets tended to have

a higher estimate for zero-inflation than the datasets where the 95% CI contained the true

Empirical CDF

I I I I I I
0 20 40 60 80 100

Zero—-inflation estimates

Figure 3.6: Empirical cumulative distribution function for the lower (blue) and
upper (red) 95% CI and median (black) estimates of zero-inflation produced by the
ZIGP model from analysis of the GP simulated data
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Zero inflation lower 95% CI

Figure 3.7: The relationship between the true mean, true cv and lower 95% CI
produced by the ZIGP model from the analysis of the ZIP simulated data

value for cv, indicating the possibility that this tendency to under-estimate the cv may be as
a result of the prior for cv tending towards smaller values, and accounting for extra zeros by

increasing the zero-inflation parameter.

The ZIGP model produced very small lower 95% CI estimates for cv for nearly all ZIP
datasets, preserving the possibility that the true cv was negligible, although the upper 95%
CI was larger than 0.1 for the majority of the datasets indicating that the possibility of
appreciable cv could not be ruled out. In these circumstances, the model is not reporting
the presence of overdispersion, but rather the lack of proof for the absence, or existence, of
over-dispersion in the data, which is an important distinction. The zero-inflation results for

the GP datasets were similar, although the lower 95% CI for zero-inflation was relatively high
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for some datasets. This was not seen when using a ZIGP specification with a prior tending
towards larger values of cv, indicating that this was a result of the prior for cv tending towards
low values of cv and consequently higher values of zero-inflation to explain the excess zeros

observed.

In contrast to the high degree of agreement shown between the ZIGP and appropriate simpler
models for the simpler forms of data, the gamma-Poisson and zero-inflated Poisson models
produced results with large relative RMSE, bias and poor agreement with the ZIGP model for
cv and zero-inflation respectively when analysing the ZIGP data. The large bias demonstrates
that the ZIP model was accounting for over-dispersion by increasing the amount of zero-
inflation, and similarly the GP model was accounting for zero-inflation by increasing the
estimate for cv. This highlights the importance of using the appropriate or over-specified
model to analyse data; based on these results use of a GP model to analyse real data with
zero-inflation will detrimentally affect the analysis of the over-dispersion present in the data,
to the extent that the 95% confidence interval will contain the true value less than 40% of
the time. The relative RMSE and bias for mean count from the ZIGP data are relatively
similar between the three models, with the ZIP model actually producing the most accurate
estimates for mean. This may be as a result of the prior on cv with the GP and ZIGP models

having an effect on the posterior estimate for mean count.

One disadvantage of using either the GP or ZIGP model appears to be an increased number
of datasets where the model returned an error associated with sampling extreme values from
the gamma distribution. The ZIP model also returned an error for some over-dispersed
datasets, likely as a result of an extremely low probability that the observed counts could
be represented by a single Poisson distribution, but successfully analysed all ZIP datasets.
The ZIP model also tended to require less iterations before convergence as a result of a lower

auto-correlation dependence.

The ZIGP model gave almost identical results to the ZIP model in the analysis of ZIP
data, and superior results for other types of data, with the exception of the increased time
to convergence and reduced number of datasets successfully returned. The ZIGP model
also correctly identified the possibility that the true cv was small for nearly all of the ZIP
datasets. These findings support the exclusive use of the zero-inflated gamma-Poisson model
over the zero-inflated Poisson model when analysing data which is known to be zero-inflated
and which has the possibility of being over-dispersed, ie. every faecal egg count dataset.
The ZIGP model performed almost as well as the GP model in the analysis of GP data, and
correctly identified the possibility that zero-inflation was minimal in the majority of these
datasets. Use of a prior that tended towards larger values of cv improved the performance of
the ZIGP model for the GP data, but may detrimentally affect the ability to analyse ZIP data
appropriately. Analysis of datasets to conservatively quantify the amount of zero-inflation

present would therefore be best using Model 2.2 rather than Model 2.2a if the data were
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gamma distributed. Use of the ZILP Model 2.5 to analyse lognormal-Poisson data resulted
in a lower 95% CI that was below 1% in 92.8% of the datasets, possibly as a result of a more

moderate effective prior on cv than is used with Models 2.2 or 2.2a.

The final conclusion from this analysis is that use of an under-specified distribution to analyse
the data can lead to misleading inference. When analysing the ZIGP data, the GP model
over-estimated the true cv in 62% of the datasets as a result of attempting to account for
the number of zero counts. Similarly, the ZIP model overestimated zero-inflation in 20% of
these datsets. The detrimental impact of using an under-specified model is therefore much
greater than that of using an over-specified model, leading to the conclusion that use of the
ZIGP model is associated with fewer type I errors than either the GP or ZIP models when

the true distribution of data is unknown.

3.4 Analysis of empirical fit as a criterion for model selection

3.4.1 Introduction

Use of model fit as an aid to model selection in non-nested models was first suggested by
Cox and Hinkley (1974), and has been fairly extensively used in many fields. However, the
assumptions underlying the likelihood ratio statistic are only asymptotically valid, which is
often not considered during the process of model selection. A model with more flexibility will
always provide a better fit, so measures of fit such as AIC and BIC also take into account
the number of degrees of freedom with which to evaluate the likelihood ratio. These model
selection criteria are the basis for the use of the negative binomial to fit parasitology data,
but the validity of using a likelihood based selection method and the impact of the selected

distribution on the results obtained has not been demonstrated.

The lognormal and gamma distributions are both strictly positive continuous distributions,
and so would therefore be expected to take a similar shape with equivalent parametrisation.
Separation of these distributions on the basis of model fits would depend on finding this
small difference. The differences between the distributions is exaggerated by increasing cv,
but is unaffected by mean. This can be demonstrated by plotting the probability density
function of each distribution with equivalent parametrisation, along with a truncated nor-
mal distribution for comparison (Figure 3.8). It is difficult to distinguish the lognormal and
gamma distributions with a cv of 0.1 or 0.5. Adding Poisson ‘noise’ to these distributions
to form gamma-Poisson and lognormal-Poisson distributions makes little difference when the
mean is high, but makes it more difficult to distinguish the distributions with low means.
In Figure 3.9 this is demonstrated using the integrated probability mass function for each

distribution and the truncated-normal-Poisson distributions. Even with a cv of 1 or 1.5, the
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Figure 3.8: Comparison of an equivalent parametrisation of gamma (red),
lognormal (blue) and truncated normal (black dashed) probability density functions
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only difference between the lognormal-Poisson and gamma-Poisson distributions is a slight
increase in the number of one counts and decrease in the number of zero counts for the
lognormal-Poisson compared to the gamma-Poisson, reflecting the exponential shape of the
gamma distribution with these values of cv. It is therefore apparent that the ability to distin-
guish the true distribution of data based on empirical fit to these very similar distributions
will depend on the mean and cv of the data, as well as the number of data points to fit.
Due to the random nature of probability distributions there will always be a difference in
penalised likelihood between gamma-Poisson and lognormal-Poisson fits to data, but based
on these graphs alone it should be apparent that any difference in small datasets with low
mean and cv is unlikely to be useful as a basis for model selection. A more detailed analysis
of the effect of sample size, mean and cv on the proportion of likelihood ratios that would

indicate the correct distribution follows.

3.4.2 Materials and methods

In order to test the usefulness of model selection based on likelihood ratios, data were sim-
ulated from gamma-Poisson and lognormal-Poisson distributions. Data were simulated with
sample sizes drawn from the set {10, 20, 50, 100, 200, 500, 1000}, and with every combination
of cv from the set {0.5, 1, 1.5} and mean from the set {5, 20, 50}. For each combination,
100 datasets of each sample size were generated to give a total of 6,300 datasets. Each was
analysed using a likelihood maximisation algorithm to find the maximum likelihood fit to
the gamma-Poisson and lognormal-Poisson distributions. For each compound distribution,
the mean and variability parameters were optimised to give the highest log likelihood fit to
the data, integrating over all possible A values of the Poisson part of the distribution. The
maximum log-likelihood for each distribution was recorded for each dataset, and the true
proportion of the 100 datasets where the maximum log-likelihoods inidcated the distribution

from which the dataset were simulated were calculated using a beta distribution.

This experiment was then repeated with zero-inflated models and data. The same combina-
tion of means and cv as used before were used to generate 100 datasets each with sample
sizes drawn from the set {20, 40, 100, 200, 400, 1000, 2000}. A zero-inflation parameter of
50% was used for each dataset, so that each contained the same number of infected group
observations as before. These data were analysed using likelihood maximisation to the ZIGP
and ZILP distributions, to find the highest log-likelihood fit to the three parameters of mean,

cv and zero-inflation.

3.4.3 Results

Figures 3.10 and 3.11 show the maximum log-likelihoods produced by the GP and LP models
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from analysis of the GP and LP data with sample sizes of 10 and 1000. For each graph, the
maximum log-likelihood from the model corresponding to the distribution used to simulate
the data is shown on the x-axis. Maximum log-likelihoods were similar between models for
the same dataset, indicating a degree of similarity to the model fits. As would be expected,
the log-likelihoods were lower with larger sample sizes, but also with larger means especially
at the largest sample size. The difference in maximum log-likelihood between datasets with
different values of cv was most obvious at the larger sample size, with datasets with a cv of 0.5
resulting in higher log likelihoods than datasets with a cv of 1.5, and the lowest log-likelihoods
for the GP data being observed with a cv of 1.

The proportion of datasets where the maximum log-likelihood was greater using the distri-
bution from which the data were simulated (y-axis) is shown in Figure 3.12. The proportion
increased for both LP and GP data with increasing sample size, mean and cv. The propor-
tions were on average lower for the LP data than the GP data, especially with the smallest
sample sizes where the maximum log-likelihood was greater for the correct model as little
as 0% of the time. The median estimate of the proportion of LP datasets that produced
a better fit with the LP model was less than 95% for all combinations of mean and cv with
sample sizes of less than 200, although the upper confidence limit was above 95% for sample
sizes of 100 and means of 20 or 50 with a cv of 1.5. The proportion of GP datasets that
produced a better fit to the GP model was on average slightly higher with a cv of 1 or above,

but similar with a cv of 0.5.

The effect of zero-inflation on the median estimates for the proportion of maximum likelihoods
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Figure 3.10: Comparison of the maximum log-likelihood produced by GP and LP
models for GP and LP simulated data with a sample size of 10 - means of 5 (green), 20
(blue) and 50 (orange) with cv of 0.5 (triangles), 1 (crosses) and 1.5 (squares). A subset of the
data, with 90 data-points only, is shown for clarity.
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Figure 3.11: Comparison of the maximum log-likelihood produced by GP and LP
models for GP and LP simulated data with a sample size of 1000 - means of 5 (green),
20 (blue) and 50 (orange) with cv of 0.5 (triangles), 1 (crosses) and 1.5 (squares). A subset of
the data (90 data-points only) shown for clarity.

inidcating the true distribution is shown in Figure 3.13. The zero-inflated datasets produced
a significantly smaller proportion (p < 0.001 and p = 0.002 for gamma and lognormal data
respectively) than the datasets without zero-inflation. For three of the ZILP datasets with
the smallest sample size, the upper 95% CI for the true proportion producing a better fit to
the ZILP distribution was less than 0.5, indicating that the ZIGP model produces a higher
maximum likelihood for these data than the ZILP model.

3.4.4 Discussion

The agreement between the maximum log-likelihoods produced by the GP and LP models
was striking, and suggests that equivalently parametrised LP and GP distributions produce
very similar fits to these kinds of data. The tendency for a better fit to data with a higher
mean and cv of one was interesting, but of little practical implication because the effect was
mirrored between the models. The proportion of the maximum likelihoods that were higher
for the distribution from which the data were generated is a measure of the usefulness of using
empirical fit as a criterion for model selection. The LP and GP models have the same number
of parameters and degrees of freedom when analysing the same data, therefore the use of any
penalised likelihood such as AIC or BIC would have given the same result as comparing
the maximum likelihoods directly. The value of cv had a large impact on the usefulness of
empirical fit, with datasets with smaller cv proving more difficult to correctly identify the
underlying distribution. A sample size of at least 500 with the GP data and 1000 with the
LP data was required to correctly identify the true distribution 95% of the time with a cv of
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Figure 3.13: Comparison of the proportion of maximum likelihoods giving a better
fit to the distribution from which the data were simulated with and without
zero-inflation in the GP and LP simulated data and models - (ZI)GP data in blue,
(ZI)LP data in red

0.5, and a sample size of more than 1000 was required when the mean was very small. The
proportion correctly identifying the GP data was always higher than that for the LP data
except with the smallest cv, possibly indicating a slight increase in flexibility to the gamma
distribution with a cv of one or more due to the change in shape to exponential decay curve.
A sample size of 100, or 50 with a large mean, was required to correctly identify GP data with
a higher cv, but this rose to a sample size of 200, or 500 with a small mean, for the LP data.
Repeating the experiment with the use of zero-inflated data and models yielded even lower
proportions of datasets where empirical fit correctly identified the true distribution. The
number of degrees of freedom in mixture models such as zero-inflated models is not defined,
so that penalised likelihoods cannot normally be calculated. However, the number of degrees
of freedom between the ZILP and ZIGP models would be the same if the estimate for zero-
inflation is the same. The slight decrease in proportion of datasets correctly identified using
the zero-inflated models may be as a result of a discrepancy in the estimate for zero-inflation

slightly altering the degrees of freedom between the models.

Based on these results, it is apparent that model selection based on empirical fit of GP and
LP models may be difficult. Sample sizes of more than the typical parasitology dataset are

required to be sure of making the correct choice of underlying distribution more than 95%
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of the time with single datasets. Crucially, it appears that datasets that are closer to having
a lognormal distribution are more likely to fit a gamma distribution better than vice versa.
Model selection on biological plausibility is therefore to be recommended in preference to
model selection on the basis of empirical fit for these kinds of data, especially where there is
a biological reason to prefer the lognormal over the gamma distribution. Alternatively, more
sophisticated inferential techniques such as reversible jump MCMC that take into account

the uncertainty in the true distribution of the data could be employed.

3.5 Comparative analysis of ZILP and ZIGP simulated data

3.5.1 Introduction

The results presented in Section 3.4 suggest that it may be difficult to distinguish data that
are closer in shape to a lognormal-Poisson compound distribution from data that are closer
to a gamma-Poisson compound distribution, and that differentiation of their zero-inflated
mixture equivalents may be even more difficult. This is likely to be a result of the asymptotic
assumptions necessary for the use of likelihood ratio tests for non-nested models being flawed
with these kinds of data. As a result, likelihood based model selection may result in the use
of an incorrect model. A comparison of the results obtained using each model given both
ZIGP and ZILP data is therefore warranted to quantify the resultant inaccuracies that are

likely to be made in parameter inference.

3.5.2 Materials and methods

The 1000 parameter combinations of mean count, cv and zero-inflation discussed in Section 3.2
were used to generate data from ZILP and ZIGP distributions. Sample sizes of 10, 100 and
1000 were used with both distributions to give a total of 6000 datasets. Each of these
was analysed using a ZILP MCMC model and ZIGP MCMC model as discussed previously.
The median and 95% confidence intervals produced by each model were compared to the

simulation parameters and the estimates compared between models.

3.5.3 Results

The total number of datasets that were successfully returned for each type of data with each
model are shown in Table 3.6. The ZILP model successfully returned results for all datasets

for sample sizes 10 and 100. The ZIGP model returned an error for some datasets, but failed
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to converge within the maximum allowed one hour time period less frequently than the ZILP
model for the sample size 1000 data. The ZIGP model returned fewer errors for the ZILP
datasets than the ZIGP datasets at the larger sample sizes.

The proportion of 95% confidence estimates produced by each model that contained the
simulation parameter for each combination of data type and sample size is given in Table 3.7.
The 95% CI produced by the ZILP model in analysis of the ZILP data contained the true
value approximately 95% of the time in all cases, although the proportion for variability at
the largest sample size was slightly lower. Similarly, the 95% CI produced by the ZIGP model
in analysis of the ZIGP data contained the true value approximately 95% of the time in all
cases, with the exception of the cv which had slightly lower confidence. In contrast, the true
confidence of the notional 95% CI for each parameter in analysis of data generated using the
contrasting distribution was markedly lower at the larger sample size for both models, for
zero-inflation at sample size 100 using the ZILP model for ZIGP data, and for cv at all sample
sizes using the ZIGP model for ZILP data. This was due to a tendency for the ZILP model
to over-estimate the mean, cv and zero-inflation for ZIGP data, and for the ZIGP model to

under-estimate the mean, cv and zero-inflation for ZILP data (Figure 3.14). This effect was

Table 3.6: Number of datasets returned by the ZILP and ZIGP models in analysis
of data simulated with sample sizes of 10, 100 and 1000 using ZIGP and ZILP

distributions
Data ZIGP data ZILP data
Model ZIGP ZILP ZIGP ZILP

Total successfully analysed 778 830 813 867

Model returned an error 52 0 54 0
Failed to converge 0 0 0 0
Dataset all 0 170 170 133 133

(a) Sample size 10

Total successfully analysed 936 996 968 999

Model returned an error 60 0 31 0
Failed to converge 0 0 0 0
Dataset all 0 4 4 1 1

(b) Sample size 100

Total successfully analysed 829 762 855 795

Model returned an error 17 0 4 0
Failed to converge 154 238 141 205
Dataset all 0 0 0 0 0

(c) Sample size 1000
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Table 3.7: Proportion of 95% CI returned by the ZILP and ZIGP models that
contained the true parameter value in analysis of data simulated with sample sizes
of 10, 100 and 1000 using ZIGP and ZILP distributions - bold entries highlight notional

95% CI with markedly lower true confidence

ZIGP data ZILP data
ZIGP ZILP ZIGP ZILP

Sample size Parameter

Mean 0.970 0989 0.970 0.984
Sample size 10 Variability 0.914 0977 0.886 0.986
Zero-inflation  0.986  0.970  0.994  0.996

Mean 0.953 0939 0939 0.954
Sample size 100 Variability 0.929 0920 0.810 0.958
Zero-inflation  0.956 0.886 0.951  0.973

Mean 0.958 0.702 0.823 0.940

Sample size 1000  Variability 0.933 0.777 0.712 0.921
Zero-inflation  0.971 0.750 0.796 0.968
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Figure 3.14: Proportion of true parameters that fell above (negative value) and
below (positive value) the 95% CI returned by the ZILP and ZIGP models in
analysis of data simulated with sample sizes of 10, 100 and 1000 using ZIGP and
ZILP distributions - sample sizes of 10, 100 and 1000 are shown in orange, blue and green,
respectively
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most pronounced at the largest sample size, although the estimation of the cv parameter
with the ZIGP model and the cv and zero-inflation parameters with the ZILP model were

also affected at sample size 100.

In addition to the differences in 95% CI produced by the models, there were also discrepancies
between the median estimates produced by the two models. The ZILP model produced on
average larger estimates for cv than the ZIGP model for both data types, with the exception
of a cluster of points with a sample size of ten and median estimate of between one and two
using the ZILP model and between three and six using the ZIGP model (Figure 3.15). A
similar pattern was less obvious with the median estimates of zero-inflation, although a slight
tendency for the ZILP model to produce higher estimates than the ZIGP model with sample
size 1000 ZILP data may be present (Figure 3.16). However, there was a tendency towards
the ZILP model producing higher lower 95% CI estimates for zero-inflation than the ZIGP
model, especially with data generated from a ZILP distribution with sample sizes of 100 and
1000 (Figure 3.17). Analysis of the same ZILP datasets yielded lower 95% CI of less than 5%
with the ZIGP model and over 75% with the ZILP model. The median estimates produced
for mean count were more similar, with the exception of some datasets that produced a large
estimate for mean with the ZIGP model and a very low estimate for mean with the ZILP
model, although a tendency towards higher estimates for some datasets with the ZILP model
and ZIGP data is evident (Figure 3.18).
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Figure 3.15: Comparison of median estimates for cv produced by the ZILP and
Z1GP models from analysis of ZIGP and ZILP simulated data - ZIGP data shown on
left, ZILP data on right, sample sizes of 10, 100 and 1000 shown in orange, blue and green
respectively
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Figure 3.16: Comparison of median estimates for zero-inflation produced by the
ZILP and ZIGP models from analysis of ZIGP and ZILP simulated data - ZIGP data
shown on left, ZILP data on right, sample sizes of 10, 100 and 1000 shown in orange, blue and

green respectively
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Figure 3.17: Comparison of lower 95% CI estimates for zero-inflation produced by

the ZILP and ZIGP models from analysis of ZIGP and ZILP simulated data - ZIGP

data shown on left, ZILP data on right, sample sizes of 10, 100 and 1000 shown in orange, blue
and green respectively
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Figure 3.18: Comparison of median estimates for mean produced by ZILP and
Z1GP models from analysis of ZIGP and ZILP simulated data - ZIGP data shown on
left, ZILP data on right, sample sizes of 10, 100 and 1000 shown in orange, blue and green
respectively

3.5.4 Discussion

These results demonstrate that use of ZILP and ZIGP models can provide very different
inference from the same data. A large proportion of the 95% CI for the ZIGP datasets
using the ZILP model and vice versa did not contain the simulation parameter for cv and
zero-inflation, potentially leading to erroneous inference on the degree of aggregation and
infection prevalence in the data. The performance of these 95% CI was worse with larger
sample sizes as 95% CI tended to be large for small data, and the difference between the
distributions is not so apparent with smaller sample sizes. The mean count parameter was
subject to less error, probably as a result of the relatively large amount of information in
the data for this parameter, although the larger estimates of zero-inflation from the ZILP
model may be responsible for a slight increase in the estimate of mean using this model. The
difference in median estimates is also worthy of note as this represents the central estimate of
the parameter and is the most often quoted. The ZILP model consistently produced larger
estimates of cv than the ZIGP model, except for the cluster of points with a sample size of
ten with large estimates produced by ZIGP. These points are likely to represent instances
where the ZIGP model produced large estimates for mean count and cv as a result of a
paucity of information in the data, and also explain the few high median estimates for mean
from the ZIGP model with very low estimates from the ZILP model at the same sample size.
This phenomenon is explained more fully in Section 2.7. As with the 95% CI, the differences

between median estimates was more apparent at larger sample sizes.
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These findings indicate that the variability parameter is most susceptible to choice of dis-
tribution, with the zero-inflation parameter being affected to a lesser extent and the mean
count parameter less still. The practical implication of this is that for datasets of the sample
size typically encountered in parasitology, the inference on mean should not be affected by
the choice of distribution regardless of the true underlying distribution of the data. Where
inference is made on the variability and zero-inflation, more attention should be paid to the
distributional selection. The main difference between the gamma-Poisson and lognormal-
Poisson distributions is the shape of the distribution with a cv of greater than one, when
the gamma distribution takes on an exponential decay shape with a mode of approximately
0, or more correctly é because the gamma distribution is strictly positive. By contrast,
the lognormal distribution retains a skewed bell curve shape, and consequently has a higher
mode than the gamma distribution with the same combination of mean and cv. The result
of this is that the gamma-Poisson distribution would be expected to have a greater weight
on zero, which can be seen in Figure 3.9. A similar finding was made by Joe and Zhu (2005)
when comparing the fit of the zero-inflated generalised Poisson and the zero-inflated gamma-
Poisson, formulated as a zero-inflated negative binomial. This appears to result in a lower
estimate for cv and zero-inflation for the ZIGP model than the ZILP model, as the ZILP
model requires a greater degree of over-dispersion and/or zero-inflation to explain the same

number of zero counts.

3.6 Discussion

In this chapter, several factors relating to the analysis of count data such as parasite burden
and FEC data have been examined. Due to the difficulty inherent in fitting mixture models
such as the ZIGP, and the skewed distributions of parameter estimates that typically result
from fitting the model to data similar to that likely to be encountered in parasitology datasets,
parameter estimation by simple maximum likelihood methods appears to be insufficient.
The disadvantage of MCMC is the increased computational effort required to implement the
technique (Gilks et al., 1998), although automated tools for data analysis and increasing
availability of faster computers make this less important. Another disadvantage of using the
gamma distribution is the proportion of datasets that returned an error, which appeared to
be associated with extreme values sampled from the gamma distribution. Further detailed
analysis of the model output identified that the errors occurred when very small values
were sampled, which tended to happen more frequently when the posterior for cv was high.
Truncating the gamma distribution with a lower bound of 1072 stops this problem occurring,
and should not affect the posterior estimates because 1072% is less than the 1%¢ percentile
for the most extreme value of cv allowed under the prior distributions used. However, even
taking into account these errors the MCMC technique still produced more useful analyses

than the ML technique. More computationally intensive parameter estimation methods such
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as MCMC should therefore be used to avoid incorrect confidence interval estimation of the
variability and zero-inflation parameters particularly. The issue of model selection was also
addressed, both in terms of the selection of nested models including a mixture model, and
the selection of non-nested models. Although likelihood ratio tests are frequently used to
select nested models based on the additional number of parameters (Johnson and Omland,
2004), the application of these tests to mixture models such as the ZIGP is not straightforward
(Millar, 2009). Based on the analyses presented, the over-specified model appeared to produce
equivalent results to the zero-inflated Poisson distribution and almost equivalent results to the
gamma-Poisson distribution for the analysis of data generated from the simpler distributions.
In contrast, neither the ZIP or GP models produced accurate parameter estimates in analysis
of the ZIGP data. The ZIGP model should therefore be used exclusively with data that are
suspected to contain some zero-inflation, and use of a prior tending towards larger values of
cv, such as the one implemented in Model 2.2, should provide reliable 95% CI on the true
degree of zero-inflation in the data, provided that the observations in the infected animals

truly follow a gamma-Poisson distribution.

Comparative analysis of the maximum likelihood fits of non-nested models identified a po-
tential problem with the use of empirical fit as the basis of model selection. The correct
model was identified as little as 60% of the time when the data were simulated using a GP
distribution, and as little as 50% of the time when the data were simulated using an LP distri-
bution. These figures did not improve to 95% until the sample size was increased to 100 with
the GP data and 200 with the LP data, depending on the mean and cv. The larger sample
size required when the data is LP distributed reflects the fact that the maximum likelihoods
were on average slightly higher for the GP than the LP model, possibly indicating that the
gamma distribution is more flexible than the lognormal for these combinations of parame-
ters. Comparison of the maximum likelihood fits of the zero-inflated equivalents produced
even less satisfactory results, despite the fact that the sample size was doubled to account
for the 50% zero-inflation parameter used. This is possibly as a result of a slight difference
between the effective number of parameters between the two mixture distributions, reflecting
the ability of the gamma-Poisson distribution to account for more zero counts than a similarly
parametrised lognormal-Poisson distribution. This finding highlights the difficulties of model
selection on the basis of penalised likelihoods using mixture distributions. On the basis of
this, model selection between the ZILP and ZIGP distributions based on likelihood ratio tests
should be considered unreliable for the majority of FEC data because the sample size, taking
into account any zero-inflation present, is not likely to be sufficient. When viewed alongside
the results presented in Section 3.5, the potential for misleading inference becomes apparent.
If data are truly ZIGP distributed and a ZILP model is used for analysis, the true cv and
zero-inflation present in the data is likely to be over-estimated. Conversely, if the data are
truly ZILP distributed and a ZIGP model is used for analysis, the true cv and zero-inflation
present in the data is likely to be under-estimated. Given the tendency for higher maximum

likelihoods with the GP compared to LP distributions, and the current almost ubiquitous
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use of the negative binomial in parasitology (May and Anderson, 1978; Wilson and Grenfell,
1997; Shaw et al., 1998), the true cv and zero-inflation present in the data are therefore likely
to be under-estimated in existing parasitological data analyses. In addition, it would also be
expected that comparison of GP and LP distribution likelihoods would indicate a superior
fit to the GP distribution for a reasonable proportion of truly LP distributed data because

typical parasitological datasets rarely exceed 100 observations.

In this chapter, the practical implications of various distributional assumptions have been
assessed using simulated data with parameters likely to be observed in FEC data. In the
following chapter, data obtained from sheep and horses are analysed using the same methods
as used here to compare the inference made under each distributional assumption, and the

results used to infer the possible true underlying distribution of the data.
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Analysis of field faecal egg count data



Analysis of field faecal egg count data

4.1 Introduction

Methods of analysing parasite count and FEC data using Bayesian MCMC methods have
been developed and validated using simulated data, and the potential consequences of making
various distributional assumptions have been explored. In the work reported in this chapter,
the models are applied to field parasitology data in an attempt to demonstrate the use of the
MCMC method in a real world setting, and to examine the underlying distribution of such
data.

4.1.1 Nematodirus infections of sheep

Nematodirus battus is one of the most pathogenic organisms that infect sheep. Infected lambs
develop acute enteritis with watery diarrhoea accompanied by inappetence and weight loss,
and will die if the disease is not controlled by anthelmintic treatment (Armour and Coop,
1991). The life-history of this species is unusual compared with other nematodes in that the
larvae develop to the infective third stage within the egg, and these eggs only hatch when
the temperature exceeds 10 °C following a cold spell. It is this temperate control that causes
simultaneous hatching of large numbers of infective larvae, which poses a severe disease risk.
Historically, disease occurs in late spring in those years with suitable weather, although more
recently, warmer and more variable weather suggests that outbreaks could also occur in late

autumn.

Despite its clinical importance, N. battus has received surprisingly little attention in terms
of veterinary parasitological research. In particular, the distribution of parasites and egg
output among hosts following natural infection is unknown, although the distribution of Ne-
matodirus spp. (predominantly Nematodirus spathiger) in 104 3-month old Australian Merino
lambs was similar to a negative binomial distribution (Barger, 1985). Mixed model analyses
indicated that the heritability of faecal egg count following natural infection with Nema-

todirus spp. was similar to the heritability of egg counts due to other strongyle species in
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New Zealand Coopworth and Romney sheep but higher for Nematodirus spp. in Scottish
Blackface sheep (Bishop et al., 2004). In all cases there were strong positive genetic correla-
tions between Nematodirus spp. egg counts and those of other nematode species, suggesting
that similar mechanisms underlay either resistance to or control of all sheep nematodes, and
that sheep could be simultaneously selected for resistance to Nematodirus spp. and other
species. Such genetic analyses depend on the use of an appropriate statistical distribution
to describe the data, so comparative analysis of N. battus and Nematodirus spp. FEC and
worm burden data using both ZILP and ZIGP models would therefore be of benefit.

4.1.2 Nematodes of the domestic equid

The clinically most significant nematode parasites of horses in the western hemisphere based
on their prevalence and pathogenicity are those of the super-family Strongyloidea (Warnick,
1992; Love, 1995; Osterman Lind et al., 1999). The life cycle of equine strongyles involves the
production of eggs from sexually mature female worms fertilised by male worms inside a final
host, followed by an obligate stage of development of at least two weeks during favourable
conditions in the external environment (Urquhart et al., 1996). The strongyle eggs undergo
hatching to L; followed by a moult to Lo and finally Ls larvae, at which point they are
infective via ingestion by the final equid host (Urquhart et al., 1996). The location and speed
of development of the ingested L3 larvae to adults in the large intestinal lumen of the host is

dependent on the genera, as outlined below.

The genus Strongylus contains three species of importance to equine parasitology; S. vulgaris,
S. edentatus and S. equinus. All are relatively large adult worms of approximately 2.5 cm in
length, and all undergo migration in the final host during the development from Lg larvae
to adults (Urquhart et al., 1996). The primary pathogenesis of these large strongyles is as
a result of the adults' feeding habits in the large intestine: the adults have large buccal
capsules which can cause significant damage to blood vessels during the process of feeding
on the mucosal surface. This causes weight loss and ill-thrift as part of the ‘mixed strongyle
infection” syndrome (Love, 1995). The migrating larvae of Strongylus vulgaris are unique
among the stongyles in that their predilection for development within the arterial blood
supply of the gut, especially the cranial mesenteric artery, results in a very different type of
pathology. Damage to the endothelium of the blood vessels caused by the developing larvae
leads to thrombus formation and marked inflammation of the arterial wall, and in some cases
aneurysms accompanied by dilatation of the arteries can occur (Urquhart et al., 1996). The
resultant reduction of the blood supply to areas of gut can result in the development of

intestinal infarction and colic, with potentially life-threatening consequences (Love, 1995).

The small strongyles or cyathostomins encompass worms of more than one genera and over 40

species (Lichtenfels, 1975), all of which share behavioural and morphological characteristics.
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All are non-migratory strongyles, and develop from the ingested L3 larvae to Ly larvae in the
large intestinal mucosa. They then emerge into the gut lumen to complete their development
into adults (Urquhart et al., 1996). This emergence of Ly larvae can cause significant damage
to the mucosa if many larvae emerge ‘en mass’ - a clinical syndrome known as larval cyathos-
tominosis (Uhlinger, 1991; Mercier et al., 2001). The Ls larvae can also undergo a period of
hypobiosis, typically of several months and sometimes several years, before emerging from
the mucosa (Love, 1995; Duncan et al., 2002). During the period of hypobiosis larvae are
naturally less susceptible to anthelmintics . This behaviour is therefore of importance to the
control of the parasite (Love, 1995; Mercier et al., 2001).

Cyathostomins are relatively small worms of only around lcm in length, but are often present
in large numbers (Uhlinger, 1991). They can contribute to the mixed strongyle infection
syndrome, and have also been implicated as a major cause of colic (Uhlinger, 1990; Barrett
et al., 2004). However, many clinically healthy horses also carry cyathostomins (Uhlinger,

1993; Love, 1995), and represent an important source of pasture contamination.

The remaining strongyle species of relevance to equine medicine are those of the genus Tri-
odontophorus (Lichtenfels, 1975). These non-migratory large strongyles are relatively rare,
and are similar to the other large strongyles in that the adults’ feeding habits contribute to

the deleterious effects of a mixed strongyle infection (Urquhart et al., 1996).

Before the use of anthelmintics became a widespread feature of horse management, large
strongyles were highly prevalent in the developed world (Duncan, 1975; Reinemeyer et al.,
1984). The extensive use of anthelmintics has historically been primarily to control these
worms, not least to prevent ischaemic colic associated with Strongylus vulgaris, and the
simultaneous control of the small strongyles was little more than coincidence. More recently,
the prevalence of the large strongyles has become markedly reduced (Osterman Lind et al.,
1999; Young et al., 1999), while the cyathostomins have surpassed them both in prevalence
(Reinemeyer et al., 1984, 1986; Herd, 1986; Uhlinger, 1991), and in clinical significance (Love
and Duncan, 1992; Uhlinger, 1993; Love, 1995). The small strongyles are now considered
to be the principle parasitic pathogens of horses (Herd, 1990; Love, 1992, 1995; Love et al.,
1999). Accordingly, anthelmintic dosing and worm control in horses in the developed world
is now almost always primarily directed against these parasites (Love, 1995; Nielsen et al.,
2006Db).
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4.2 Sheep FEC data

4.2.1 Introduction

The epidemiology of N. battus infection in sheep is primarily driven by infection of young
animals, with a large seasonal challenge of simultaneously hatching larvae and rapid develop-
ment of age-related immunity (Urquhart et al., 1996; Winter, 2002). This somewhat unusual
life cycle might be expected to result in an altered distribution of FEC and worm burdens
between animals compared to other nematodes, although the distribution of N. battus in
lambs has not been well studied beyond the observation that zero count observations are
relatively common. However, it has not been established if these zero counts are a result of
the heavy skewness of the distribution of positive counts, or if a proportion of the zero count
observations are the result of bi-modality in the distribution of parasites between hosts. As
such, comparative analysis of N. battus FEC and worm burden data using both ZILP and
ZIGP models would be of benefit.

4.2.2 Materials and methods

FEC and necropsy worm burden counts were obtained from straight-bred Scottish Blackface
sheep from a commercial upland farm in southwest Strathclyde. All husbandry procedures
followed usual commercial practise and have been described previously (Stear et al., 1998).
All lambs were kept on the same field after weaning at three or four months of age until the
end of the study. To maintain health and productivity, all lambs were given the anthelmintic
albendazole sulphoxide at the dose rate recommended by the manufacturer every 28 days until
six or seven weeks before necropsy. Cohorts of 200 lambs were studied for five consecutive
years to avoid bias due to unusually heavy or light infections in specific years. The lambs

were the offspring of 39 sires and 496 dams.

Of the 1000 lambs, 530 were examined post-mortem at 6.5 months of age, in late October
and early November each year. Standard procedures were used to estimate the concentration
of nematode eggs per gram of faeces and to enumerate adult nematodes in the abomasum
and small intestine (Armour et al., 1966; Stear et al., 1998). N. battus eggs were recorded
separately from Nematodirus spp. eggs, although adult N. battus adult worms were not

recorded separately from other Nematodirus spp.. The minimum egg detection threshold

1

; 55 EPG in the second year,

used for the McMasters technique was 1—(1)0 EPG in the first year

and % EPG in the remaining years.

The data were then analysed as described previously using the ZILP Model 2.5 along with
the ZIGP Models 2.2a and 2.2 to ensure inference made using the ZIGP model was robust
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to the choice of prior for cv. Datasets with all zero observations were excluded from the
analysis. Each dataset was allowed to run for a maximum of five hours in order to achieve

convergence.

4.2.3 Results

Shown in Figure 4.1 is the agreement between the median estimates of mean egg count in
eggs per gram (EPG), cv and zero-inflation produced by the ZILP and ZIGP model with
log-uniform prior. There was good agreement for mean count, although the ZIGP estimates
for some of the lowest values for the Nematodirus spp. datasets were slightly higher than
those produced by the ZILP model. Agreement for cv and zero-inflation was less good.
The ZILP median estimates of cv were higher for all N. battus datasets, although five of
the Nematodirus spp. datasets had a much higher estimate with the ZIGP model. These
datasets had relatively few observed eggs, indicating that the high estimate of cv and mean
count produced by the ZIGP model for these datasets is likely to be as a result of the prior
for mean count and lack of information in the data as explained in Section 2.7. The ZIGP
model produced higher estimates of zero-inflation for the Nematodirus spp. datasets, but
more similar estimates to the ZILP model for the N. battus datasets. The agreement between
the ZILP median estimates and those produced using the ZIGP model with uniform prior
on cv is shown in Figure 4.2. The agreement line is similar for mean count, although the
datasets with a small number of observed counts had a much higher mean using the second
ZIGP model. The median estimate for cv was slightly higher for all datasets using the second
ZIGP model, but the estimate for the five Nematodirus spp. datasets with few observed eggs

was markedly increased.
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Figure 4.1: Comparison of the median estimates of mean FEC (EPG), cv and
zero-inflation produced by the ZILP model and ZIGP model, with log-uniform prior
on cv, from analysis of the distribution of N. battus and Nematodirus spp. between

five cohorts of 200 lambs - N. battus datasets shown in blue, Nematodirus spp. in red.

90



4.2 SHEEP FEC DATA

Il Il Il Il L Il Il Il Il Il Il Il Il
10000 - - 100

i) o 87 B oL
© © © . S
7 - i . e L
-E 1000 - E 6 L g 80 .
17} 0y %] 7] .
e 2 5+ - 2 60 H . F
& 100 A .t - 8 4 L 8 Weel e
] %4 S ) T 404 e - L
Q o Q 3 - M A - (] . M .t
£ 04 .F. L e’ . = .
o T o I 3 o 20+ -
= ‘e = 14 & . - =
N 1% . ol N 33 N
T T T T T 0 T T T T T T T T 0 T T T T
1 10 100 100010000 01234586738 0 20 40 60 80 100
ZIGP median estimate ZIGP median estimate ZIGP median estimate
Mean count CcVv Zero—inflation

Figure 4.2: Comparison of the median estimates of mean FEC (EPG), cv and
zero-inflation produced by the ZILP model and ZIGP model, with uniform prior on
cv, from analysis of the distribution of N. battus and Nematodirus spp. between
five cohorts of 200 lambs - N. battus datasets shown in blue, Nematodirus spp. in red.

The relationship between median estimates of mean count, cv and zero-inflation for the ZILP
model and two ZIGP models is shown in Figures 4.3 to 4.5. There was no significant relation-
ship between any of the estimates using the ZILP model, although there was a relationship
between mean and cv, and cv and zero-inflation for both of the ZIGP models. These rela-
tionships were stronger for the model with the uniform prior on cv, and there was also a

relationship between mean and zero-inflation using this model.

The 95% CI estimates for zero-inflation produced by each of the models are shown in Ta-
bles 4.1a and 4.1b. The lower 95% CI produced by the ZILP model was above 10% for 15
of the 29 N. battus datasets, two of the 14 Nematodirus spp. datasets and all four worm
burden datasets. The ZIGP model with log-uniform prior on cv produced a lower 95% CI
estimate for zero-inflation of greater than 10% for 18 of the N. battus datasets, although only
four of these were also above 10% using the ZIGP model with uniform prior on cv indicating
that the lower 95% CI estimate for zero-inflation was quite dependent on the model and
prior distribution choice for these data. All but one of the lower 95% CI for Nematodirus
spp. datasets produced by the ZIGP model with log-uniform prior on cv, and all but four of
those produced using the uniform prior on cv, were above 10%. Five of these had a higher
lower 95% CI estimate using the model with uniform prior on cv. The lower 95% CI for
zero-inflation was above 10% for all adult worm burden datasets using the ZILP model and
ZIGP model with log-uniform prior on cv, and all but one dataset using the uniform prior
on cv. There was evidence that zero-inflation was above 10% using all three models for the
worm burden data in 1992, 1993 and 1995, Nematodirus spp. data from post-mortem 1994
only, and N. battus data from June 1994, May 1995, June 1995 and June 1996. Of these, the
lower 95% CI estimates were highest for the May 1995 data, a histogram of which is given in
Figure 4.6.
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Figure 4.3: The relationship between the median estimates of mean FEC (EPG), cv
and zero-inflation produced by the ZILP model from analysis of the distribution of
N. battus and Nematodirus spp. between five cohorts of 200 lambs - Line of best fit
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Zero—-inflation

Figure 4.4: The relationship between the median estimates of mean FEC (EPG), cv
and zero-inflation produced by the ZIGP model, with log-uniform prior on cv, from
analysis of the distribution of N. battus and Nematodirus spp. between five cohorts

of 200 lambs - Line of best fit shown dashed, 95% CI dotted. N. battus datasets shown in
blue, Nematodirus spp. in red.

Zero—-inflation

Figure 4.5: The relationship between the median estimates of mean FEC (EPG), cv
and zero-inflation produced by the ZIGP model, with uniform prior on cv, from
analysis of the distribution of N. battus and Nematodirus spp. between five cohorts
of 200 lambs - Line of best fit shown dashed, 95% CI dotted. N. battus datasets shown in
blue, Nematodirus spp. in red.
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4.2 SHEEP FEC DATA

The only deaths due to Nematodirus spp. infections on this farm occurred in May and
June 1995 during the period of peak intensity, which corresponds to the highest numbers of
observed eggs. Consequently, the 95% CI for zero-inflation were relatively small and it was
possible to demonstrate a reduction in zero-inflation from a lower 95% CI of between 68%
and 80%, depending on the model, in May to an upper 95% CI of between 23% and 24% in

June.

4.2.4 Discussion

There was agreement between the median estimates for mean count produced by the ZILP
and ZIGP models, but less for zero-inflation and cv. The ZILP model produced higher
median estimates of cv than the ZIGP model with log-uniform prior on cv, but not compared
to the ZIGP model with uniform prior on cv. The estimates for cv derived using the ZIGP
model are therefore influenced quite strongly by the prior, indicating a lack of information
in some datasets. The most extreme examples of this lack of information are for the five
Nematodirus spp. datasets that produced high estimates of cv from both ZIGP models relative
to the ZILP models; these datasets also produced relatively high estimates for mean count
using the ZIGP models and had relatively low numbers of observed eggs, and are therefore
likely to be influenced by the prior for mean as described in Section 2.7. The estimates

for zero-inflation produced by the ZIGP model were also quite dependent on the prior for
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Figure 4.6: Histogram of observed Nematodirus battus eggs enumerated in the
faeces of 200 lambs in May 1995 - 1 egg represents 25 EPG
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cv, indicating a cross-dependence between these parameters. This could partly explain the
correlation between median estimates of cv and zero-inflation seen in Figures 4.4 and 4.5.
The estimate for zero-inflation was lower using the uniform prior on cv for all but the five
Nematodirus spp. datasets with low numbers of observed eggs, likely as a result of the model
tending towards high estimates for cv allowing for higher estimates for mean count and
therefore increasing the estimate for zero-inflation to help account for the observed zeros.
The lower 95% confidence interval for zero-inflation was also quite variable between ZILP
and ZIGP models; the figure for N. battus in May 1994 (75% compared to 5% and 0%) being
an extreme example. This highlights the practical implication of the discrepancy between LP
and GP distributions with certain combinations of parameter values. There appeared to be
more consistency between models for the worm burden data, which most likely reflects the
difference in parameter values between the worm burden and FEC data giving the gamma-
Poisson and lognormal-Poisson distributions a more similar shape for the worm burden data,
but could potentially be the result of a true difference between the underlying distributions
of worm burden and FEC.

There was no discernible relationship between the median estimates of mean count, zero-
inflation and cv produced by the ZILP model, but there was evidence for such a relationship
using both ZIGP models. This indicates that the estimates of cv and zero-inflation produced
by the ZIGP model are more closely related to each other than when using the ZILP model.
This is likely to be a result of reduced identifiably of the ZIGP model compared to the ZILP
model, either due to a possible greater flexibility of the gamma distribution compared to the
lognormal distribution, or a weaker fit to the ZIGP model. However, it is also possible that
the data truly exhibit a correlation between these factors which is not detected using the

ZILP model because of a poorer fit to the data.

There were on average more observed N. battus eggs than Nematodirus spp. eggs in the faeces
of the lambs. Several of the Nematodirus spp. datasets had no observed eggs at all, and the
remainder produced on average higher estimates for cv and zero-inflation and lower estimates
for mean count than the N. battus datasets. The 95% CI for zero-inflation were very wide
for the Nematodirus spp. datasets, indicating the possibility that these datasets had a low
mean and large cv rather than appreciable zero-inflation. For the N. battus data, there was
sufficient evidence to show that the distribution was closer to a ZIGP than GP and closer
to ZILP than LP for four of the datasets, one of which contained sufficient evidence to be
sure that the zero-inflation component was greater than 65% of the total. The histogram for
this dataset shows all positive counts within the range of 2-30, with the majority contained
between 3 and 20. On the basis of these 28 counts, there is sufficient evidence to be sure
that the cv is not very high if the data are fit to a gamma-Poisson or lognormal-Poisson
distribution, although the large proportion of zero counts is not consistent with this. The
only way that these zero counts can be explained is by attributing the majority of them to

a distribution which is separate from the gamma or lognormal distribution describing the
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mean of the other counts. One biological explanation for these excess zero counts is that
the animals in the ‘extra zeros’ group have a mean FEC of zero, i.e. do not contain any
adult N. battus worms. The prevalence of N. battus is known to be lower than that of many
other nematodes, potentially justifying this explanation. However, it is also possible that the
infected animals are described by a distribution with more than one positive mode, or by
a uni-modal distribution with higher weight at zero given similar mean and variance than

would be expected from the gamma or lognormal distributions.

The demonstrated reduction in zero-inflation between May and June 1995 is consistent with
the view that zero-inflation in N. battus is as a result of a lack of adult worms in some
animals - with zero-inflation being higher earlier in the grazing season due to fewer lambs
having mature worms in the gut. There was no significant relationship between the mean
count and zero-inflation using the ZILP model and ZIGP model with log-uniform prior on
cv, which would suggest that an empirical rise in FEC could be explained by either increased

mean FEC of the infected group or increased prevalence independently of each other.

4.3 Equine FEC data

4.3.1 Introduction

The epidemiology of infection with cyathostomins is quite different to that of N. battus, both
in terms of the biology of the parasite and in terms of the usual host characteristics and
husbandry. These factors might be expected to lead to a quite different fit to the ZILP
and ZIGP models compared to that observed with sheep data in Section 4.2. Comparative
analysis of equine FEC data using both ZILP and ZIGP models were undertaken on field

data obtained from a variety of sources in Denmark and the UK.

4.3.2 Materials and methods

FECRT data from 64 herds of horses in Denmark, referred to henceforth as ‘Danish FE-
CRT’, were obtained. The data were collected as voluntary submission of faeces from groups
of horses to monitor for anthelmintic resistance. Only pre-treatment data from full groups
was used; post-treatment data were discarded. A further two FECRT datasets denoted ‘UK
FECRT’ were obtained from a UK property involved in the manufacture of biological prod-
ucts from a large number of long-term resident horses; post-treatment data were discarded as
before. Further equine data denoted ‘UK FEC’ were obtained from voluntary FEC submis-

sions to a commercial parasitology laboratory (Diagnosteq Liverpool), from private practises
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around the UK. Submissions were made from veterinary surgeons rather than individual es-
tablishments, so all data submitted from the same practise on the same day was deemed to
have originated from the same group of horses. Of the 3115 FEC datasets available from
Liverpool, 2592 were excluded from analysis due to a sample size of less than ten, and 79 of
the remaining datasets were excluded on the basis of all observations being zero. A total of
444 UK FEC submission datasets were included in the final analysis. None of the strongyle

eggs were speciated, but the majority of the observed counts are likely to be cyathostomin

eggs.

4.3.3 Results

Shown in Figure 4.7 are the agreement between the median estimates of mean egg count in
eggs per gram (EPG), cv and zero-inflation produced by the ZILP and ZIGP model with log-
uniform prior. As with the sheep data, there was generally good agreement for mean count
for the majority of the datasets, although some datasets produced much higher estimates for
mean count using the ZIGP model compared to the ZILP model. Agreement for zero-inflation
was better than observed for the sheep data, although the agreement for cv was still poor.
The ZILP median estimates of cv were higher for all Danish FECRT datasets, both of the UK
FECRT datasets and over half of the FEC submission datasets. The remainder of the FEC
submission datasets produced much higher estimates of cv with the ZIGP model, probably
corresponding to those with a relatively high estimate for mean as a result of low numbers
of observed eggs. The agreement between the ZILP median estimates and those produced
using the ZIGP model with uniform prior on cv is shown in Figure 4.8. The agreement line is
similar for all parameters for the Danish FECRT and UK FECRT datasets, although those

UK FEC submission datasets with low numbers of observed counts produced higher estimates
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Figure 4.7: Comparison of the median estimates of mean strongyle FEC (EPG), cv
and zero-inflation produced by the ZILP model and ZIGP model, with log-uniform
prior on cv, for 444 UK FEC, 64 Danish FECRT and 2 UK FECRT datasets - UK
FEC data shown in blue, Danish FECRT data in orange, and UK FECRT data in green.
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Figure 4.8: Comparison of the median estimates of mean strongyle FEC (EPG), cv
and zero-inflation produced by the ZILP model and ZIGP model, with uniform
prior on cv, for 444 UK FEC, 64 Danish FECRT and 2 UK FECRT datasets - UK
FEC data shown in blue, Danish FECRT data in orange, and UK FECRT data in green.

for mean count and cv and lower estimates for zero-inflation using the ZIGP model with the
uniform prior compared to with the log-uniform prior. There was no discernible relationship
between any of the median estimates of mean count, cv and zero-inflation parameters for the
ZILP model (Figure 4.9). The median estimates for cv and zi, and possibly mean and cv,
showed evidence of correlation using both ZIGP models (Figures 4.10 and 4.11) as with the
sheep data.

Shown in Figure 4.12 are the empirical cumulative distribution function for the lower (lines to
top left of each plot) and upper (lines to bottom right of each plot) 95% CI for zero-inflation
produced by the three models (shown coloured) for the UK FEC submission data (left hand
plot) and combined Danish and UK FECRT data (right hand plot). There was evidence
for zero-inflation using the ZIGP model with uniform prior on cv for 12% of the UK FEC
submission data and less than 10% of the combined FECRT data, although the lower 95%
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Figure 4.9: The relationship between the median estimates of mean strongyle FEC
(EPG), cv and zero-inflation produced by the ZILP model for 444 UK FEC, 64
Danish FECRT and 2 UK FECRT datasets - UK FEC data shown in blue, Danish
FECRT data in orange, and UK FECRT data in green.
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Figure 4.10: The relationship between the median estimates of mean strongyle
FEC (EPG), cv and zero-inflation produced by the ZIGP model, with log-uniform
prior on cv, for 444 UK FEC, 64 Danish FECRT and 2 UK FECRT datasets - UK
FEC data shown in blue, Danish FECRT data in orange, and UK FECRT data in green.
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Figure 4.11: The relationship between the median estimates of mean strongyle
FEC (EPG), cv and zero-inflation produced by the ZIGP model, with uniform prior
on cv, for 444 UK FEC, 64 Danish FECRT and 2 UK FECRT datasets - UK FEC

data shown in blue, Danish FECRT data in orange, and UK FECRT data in green.

CI were higher using the ZILP model. The upper 95% CI was above 10% for all datasets,
and as high as 100% for the FEC data and 80% for the FECRT data.

4.3.4 Discussion

The median estimates of mean count and cv for the Danish FECRT data and a subset of
the UK FEC submission data were unaffected by the choice of prior for the ZIGP model,

indicating that the results obtained from these datasets are predominantly data driven. The

subset of UK FEC submission datasets for which the inference was affected by the choice of

prior gave relatively high median estimates for mean count and cv using the ZIGP model

compared to the ZILP model, indicating a lack of information in the data due to low numbers
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Figure 4.12: Empirical cumulative distribution function of the lower and upper
95% CI estimates for zero-inflation produced by the ZILP model (blue), ZIGP
model with log-uniform prior on cv (green) and ZIGP model with uniform prior on
cv (orange) for 444 UK FEC, 64 Danish FECRT and 2 UK FECRT datasets - UK
FEC submission data shown on the left hand plot, combined Danish and UK FECRT data
shown on the right hand plot.

of observed eggs in these datasets as discussed in Section 2.7. These datasets are the group
of UK FEC datasets that have a higher estimate of cv and mean count produced using
the ZIGP model than the ZILP model, and appear to be a distinct group compared to the
remaining datasets shown in Figure 4.8. The median estimate for zero-inflation was lower
for all datasets using the ZIGP model with the uniform prior on cv, which suggests that this
parameter is affected by the choice of prior for cv. With the exception of those UK FEC
submission datasets which were substantially prior driven, agreement between the ZILP and
ZIGP models was generally good for mean count and zero-inflation, although the median
estimate for cv was larger for the ZILP model than the ZIGP models when both estimates
had a value of greater than one. This apparent change in relationship with a cv of less
than one compared to greater than one corresponds with the change in shape of the gamma
distribution between skewed and exponential shapes, and is the most likely explanation for
the phenomenon. The ZILP model also produced higher estimates for the lower 95% CI
of zero-inflation than either ZIGP models, although the upper 95% CI estimates for zero-
inflation were similar to those produced by the ZIGP model with log-uniform prior on cv.
These findings are consistent with those produced using simulated data (Section 3.5). As
with the sheep data (Section 4.2), there was no discernible relationship between the median

estimates of each parameter produced using the ZILP model.
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The median estimates of cv and zero-inflation were similarly distributed between the UK
FEC submission datasets and the Danish FECRT data, although there were proportionately
more UK datasets with a low mean of =~ 10 EPG. The UK dataset also included proportion-
ately more smaller sample sizes than the Danish data, leading to the inference for a greater
proportion of the UK FEC submission datasets being heavily influenced by the prior for cv.
The discrepancy in sample sizes is likely to be a result of the different reasons for submission
of the data; FEC data are often submitted for individual or small groups of animals as part
of long term parasite burden surveillance. However, a FECRT is unlikely to be performed
on such a small sample size of animals. The discrepancy in mean count may also be a result
of this, but could also be influenced by the more strict Danish legislation regarding use of
anthelmintics decreasing their frequency of use. It is also important to note that the UK FEC
submission data were retrieved from a general database of laboratory results, which included
only the address of the veterinary surgeon from which the data were submitted and a date of
submission. Although data submitted from the same place on the same date were assumed
to be from the same group of animals, it is possible that this may not be the case for some
datasets. Veterinary practises may have submitted samples from a number of premises in
the same batch, which would have inadvertently been combined for this analysis, although
the potential for this is somewhat limited as samples would have to be submitted to the
laboratory shortly after collection. It is also impossible to identify groups of animals that
were grazed as a group as opposed to being grazed separately using this data, which may also
affect the distribution of the data. This may partly explain why the relationship between the
median estimates for cv produced by the ZILP and ZIGP models is different for a group of
the UK FEC data than the trend for the Danish and UK FECRT data, although this is more
likely to be a consequence of the issue of small numbers of observed counts and the prior for

mean count as discussed above.

As with the sheep data (Section 4.2), there was evidence of appreciable zero-inflation in some
of the equine datasets using all three models. There were more UK FEC submission datasets
with lower and upper 95% CI for zero-inflation of above 10%, which is possibly a result of
analysing some data comprising animals grazed in more than one group as a single dataset.
However, the lower 95% CI for approximately 30% of the Danish FECRT data indicated
zero-inflation of more than 10% using the ZILP model, although this figure was lower using
the ZIGP models. It is possible that the estimates for zero-inflation truly represent instances
where animals are uninfected, although the prevalence of cyathostomins was 100% in a study
in the Ukraine (Kuzmina and Kharchenko, 2008), and is anecdotally thought to be very high
in most groups of horses, even those that undergo frequent anthelmintic treatment. The
indication of a zero-inflated group is therefore more likely to represent instances where the
observed data did not easily fit a GP or LP distribution due to a greater weight at zero than
expected given the mean and variance of the remaining counts. The greater flexibility of the
gamma distribution compared to the lognormal distribution explains the inflated estimates

of zero-inflation using the ZILP model compared to ZIGP models. This finding suggests that
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the true underlying distribution of the data is closer to either a multi-modal distribution,
or to a uni-modal distribution with greater weight at zero than provided by the LP or GP
distributions, than to the LP or GP distributions.

4.4 Empirical fit

4.4.1 Introduction

The inference made from the data presented in this chapter was quite different between the
ZILP and ZIGP models. The lower 95% CI for zero-inflation and median estimate for cv was
particularly disparate for the equine data. Based on the work presented in Section 3.4 it is
clear that differentiation of ZIGP data from ZILP data on empirical fit is difficult, and that
the parameter values as well as sample size effect the usefulness of comparison of model fit
based on a likelihood ratio. However, model selection using penalised likelihoods is common
practice, and may still provide an indication of which analysis is more likely to be accurate.
Based on the results presented in Section 3.4 the likelihood ratio is dependent on the sample
size and parameter values of the data as well as the true underlying distribution of the data. A
generalised linear model is used here to examine the relationship between maximum likelihood
fits of each model and the parameter values and sample size of the data, and observations

are related to those made using simulated data of known distributional origin in Section 3.4.

4.4.2 Materials and methods

The procedure described in Section 3.4 was used to provide maximum likelihood fits to the
data presented in Sections 4.2 and 4.3 using the GP, LP, ZIGP and ZILP distributions. The
maximum log likelihood for each combination of distribution and dataset was then input into
R for comparative analysis. The proportion of each type of dataset that produced a better
fit to the LP compared to GP or ZILP compared to ZIGP model was calculated, using a beta
distribution with minimally informative prior to generate 95% CI. A generalised linear model
was then used to examine the relationship between the likelihood ratios for the zero-inflated
models and the sample size and median estimates for mean count, cv and zero-inflation
produced by the ZILP MCMC model. The maximum likelihood estimates for zero-inflation
using the ZILP and ZIGP models were also recorded.
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Figure 4.13: Maximum log likelihood produced using the ZIGP compared to ZILP,
and GP compared to LP models, from analysis of all N. battus and Nematodirus
spp. worm burdens and FEC in five cohorts of 200 lambs - dotted line represents
equivalence of the two models
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Figure 4.14: Maximum log likelihood produced using the ZIGP compared to ZILP,
and GP compared to LP models, from analysis of all 444 UK FEC, 64 Danish
FECRT and 2 UK FECRT equine datasets
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4.4.3 Results

A comparison of the maximum log likelihoods produced by the GP compared to LP and
ZIGP compared to ZILP distributions is shown in Figures 4.13 and 4.14 for the sheep and
horse data respectively. The maximum log likelihoods were very similar between the ZIGP
and ZILP models, but consistently less for the LP compared to GP model. Table 4.2 shows
the proportion of datasets of each type that produced a higher maximum log likelihood using
the LP compared to GP or ZILP compared to ZIGP models. The observed proportion of
datasets that produced a better fit to the LP model was below 50% in all but the Nematodirus
spp. FEC dataset, and the upper 95% CI was below 50% for four of the six types of data
excluding the two combined datasets. The Nematodirus spp. FEC data that produced a
better fit for the GP model were those from May 1992, PM 1993, PM 1994 and August 1996
- all of which had relatively high lower 95% confidence intervals for zero-inflation (Table 4.1D).
The same four Nematodirus spp. FEC datasets also produced a better fit to the ZIGP model.
The 95% CI for the true proportion of sheep data that produced a better fit to the ZILP
model included 50% in every case, whilst this was true for only one set of equine data. The
lower 95% CI was above 50% for the UK FEC submission data, indicating a better fit to the
ZILP model, and the upper 95% CI was below 50% for the Danish FECRT data, indicating
a better fit to the ZIGP model.

The estimates for coeflicients obtained using the GLM with the log of the ratio of ZILP
maximum likelihood to ZIGP maximum likelihood are shown in Tables 4.3 and 4.4. There
was no evidence that the likelihood ratio is related to the mean count, zero-inflation or
sample size for the sheep data, but there was potentially a positive relationship between cv
and likelihood ratio for the N. battus data. However, this relationship was not significant,

even when all sheep FEC data were pooled. There was also no evidence for a relationship

Table 4.2: The proportion of maximum likelihoods that were higher for the LP
compared to GP model (left) and for the ZILP compared to ZIGP model (right)
for all equine and sheep data - 95% CI calculated using a beta distribution.

Better fit to LP Better fit to ZILP

Lower Median Upper Lower Median Upper
N. battus FEC 0.07 0.17 0.33 0.22 0.38 0.56
Nematodirus spp. FEC 0.47 0.71 0.90 0.47 0.71 0.90
All Nematodirus FEC 0.22 0.35 0.49 0.35 0.49 0.63
Nematodirus burden 0.00 0.00 0.45 0.15 0.50 0.85
UK FECRT 0.00 0.00 0.63 0.00 0.00 0.63
Danish FECRT 0.17 0.27 0.38 0.21 0.31 0.43
UK FEC 0.01 0.02 0.03 0.51 0.56 0.60
All equine 0.03 0.05 0.07 0.48 0.53 0.57
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Table 4.3: Coefficients for mean, cv, zero-inflation and sample size in a GLM fit to
the (log) likelihood ratios for N. battus and Nematodirus spp. FEC obtained from
five cohorts of 200 lambs, fitted separately and together

Lower 95% CI Mean estimate Upper 95% CI

N. battus -0.04 0.00 0.04

Mean Nematodirus spp. 0.00 0.00 0.00
All Nematodirus -0.01 0.00 0.01

N. battus -0.18 0.43 1.04

CV  Nematodirus spp. -0.33 -0.08 0.17
All Nematodirus -0.14 0.31 0.76

N. battus -0.06 0.01 0.07

VA | Nematodirus spp. -0.02 0.00 0.02
All Nematodirus -0.04 0.00 0.04

N. battus -0.01 0.00 0.01

Size  Nematodirus spp. 0.00 0.00 0.01
All Nematodirus -0.01 0.00 0.01

Table 4.4: Coefficients for mean, cv, zero-inflation and sample size in a GLM fit to
the (log) likelihood ratios for Danish FECRT and UK FEC equine data, fitted
separately and together

Lower 95% CI Mean estimate Upper 95% CI

Danish FECRT -0.03 -0.01 0.02

Mean UK FECRT 0.00 0.00 0.00
All equine 0.00 0.00 0.00

Danish FECRT -0.48 -0.24 0.00

(0AY UK FECRT -0.02 0.12 0.26
All equine -0.08 0.04 0.17

Danish FECRT -0.06 -0.04 -0.02

VA | UK FECRT 0.01 0.01 0.02
All equine 0.01 0.02 0.02

Danish FECRT -0.03 0.01 0.04

Size UK FECRT 0.02 0.03 0.05

All equine 0.01 0.02 0.04
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between mean count and likelihood ratio for the equine data, although there was evidence for
a weak positive effect of zero-inflation and sample size on likelihood ratio for the UK FEC
submission data. There was also evidence for an effect of zero-inflation on likelihood ratio
for the Danish FECRT data, although this effect was opposite to that seen in the UK FEC
data. There was some evidence for a negative effect of cv on likelihood ratio for the Danish
FECRT data and positive effect of cv on likelihood ratio for the UK FEC submission data.
Plotting the likelihood ratios against median estimate of cv for both the sheep and horse
data (Figure 4.15), and against the median estimate of zero-inflation and sample size for the

horse data (Figure 4.16) shows no obvious pattern.

The ML zero-inflation estimate was also recorded for each dataset for the ZIGP and ZILP
models. The ML estimates for zero-inflation were significantly higher for the ZILP model
than ZIGP model (p < 0.001, calculated using the paired Wilcoxon signed rank test). There
was also a significant Spearman’s rank correlation between the log maximum likelihood and
corresponding zero-inflation estimate for both the ZILP (p < 0.001) and ZIGP (p < 0.001)
models. The slope and intercept of this correlation, shown in Figure 4.17, was almost identical

between the models.

4.4.4 Discussion

The close association of the maximum log likelihoods produced by the ZILP and ZIGP, and

to a lesser extent the LP and GP models, shows the relative similarity between the underlying
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Figure 4.15: The relationship between the median estimate for cv produced by the
ZILP model and the log of the likelihood ratio, for all equine (left) and all sheep
(right) data - UK FEC data shown in green, Danish FECRT data in pink, and UK FECRT

data in light blue. N. battus datasets shown in royal blue, Nematodirus spp. in red.
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gamma and lognormal distributions. However, there were differences between the maximum
likelihood fits produced. With the exception of the Nematodirus spp. data all of the datasets
examined provided a better fit to the GP than the LP model, and the four Nematodirus
spp. datasets with demonstrable zero-inflation also produced a better fit to the GP model.
This is likely to be as a result of the greater flexibility to account for zero observations using
the gamma distribution compared to lognormal distribution. The UK FEC submission data
provided a particularly poor fit to the LP data, possibly as a result of a proportionately larger
number of zero counts. There was no evidence to suggest that the sheep data produced a
better fit to either the ZILP or ZIGP distributions; although a greater proportion of the
Nematodirus spp. data produced a better fit to the ZILP model and a greater proportion
of the N. battus data produced a better fit to the ZIGP model, the 95% CI for the true
proportion included 50% in both instances. Of the equine data, a greater proportion of the
Danish FECRT data gave a better fit to the ZIGP model, whereas a greater proportion of
the UK FEC submission data gave a better fit to the ZILP model. The apparent discrepancy
in model fit could potentially be explained by the differences in husbandry practises between
the UK and Denmark, but it is also possible that the true distribution of equine FEC data

follows neither of the distributions examined.

The results presented in Section 3.4 suggest that the true proportion of datasets that produce
a better fit to the ‘true’ underlying distribution of the data is effected by the sample size,
mean, and cv of the data. This simulated data did not include a zero-inflated component,
but it is also likely that zero-inflation will have an effect by reducing the effective sample
size of infected individuals. A GLM using these explanatory variables to describe the log of
the likelihood ratio, the ratio of the ZILP maximum likelihood to ZIGP maximum likelihood,
indicated that the mean count, zero-inflation and sample size had little effect on the likelihood
ratio for the sheep data. There was possibly an effect of cv on the likelihood ratio, with a
greater cv corresponding to a relatively better fit to the ZILP model for the N. battus data and
a greater cv corresponding to a relatively better fit to the ZIGP model for the Nematodirus
spp. data, although the effect was not significant in either case. There was also no evidence for
an effect of mean count on the likelihood ratio using the equine data, although a weak positive
effect of zero-inflation and sample size was evident for the UK FEC submission data and a
weak negative effect of zero-inflation was evident for the Danish FECRT data. These findings
are consistent with the apparent better fit of the Danish FECRT data to the ZIGP model and
vice versa. There was a stronger but less significant relationship between the median estimate
of cv and the likelihood ratio, again suggesting a better fit to the ZIGP model for the Danish
FECRT data and to the ZILP model for the UK FEC submission data. However, graphical
representation of these effects demonstrates the weakness of these relationships relative to
the similar effect of sample size, mean count and cv on the proportion of simulated datasets
that produced a better fit to the ‘true’ distribution (Section 3.4). This may be as a result
of using median estimates of each parameter rather than the simulation parameter, but also

suggests that the underlying distributions are not fully represented by either distribution.
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The median estimates used were produced using the ZILP model to reduce the impact of the
large estimates for mean count and cv produced using the ZIGP models for datasets with
low numbers of observed counts. However, similar results could have been obtained using
the ZIGP median estimates. It would also have been possible to approach the likelihood
comparisons by examining a distribution of likelihood ratios with data from each type of
source combined together to increase the power to differentiate the models for the combined
data. However, this method would not have facilitated the relationship between likelihood

ratio and parameter value, which was the main objective here.

There was a significant relationship between the ML estimate for zero-inflation and the max-
imum log likelihood produced by each model. This is probably a result of the variable and
ill-defined degrees of freedom inherent in mixture models, and demonstrates the futility of
penalised likelihood ratio tests where one or more of the alternative models is a mixture
models. This prevents the use of penalised likelihoods to compare a GP with ZIGP or LP
with ZILP model, although the relationship between zero-inflation and likelihood was vir-
tually identical between the ZILP and ZIGP models, indicating that these models do have
the same number of effective parameters for the same value of zero-inflation. Comparison
of likelihoods between the models is therefore valid as long as the estimate for zero-inflation
is similar. However, the tendency towards higher estimates of zero-inflation with the ZILP
model were also observed with ML estimates, which may be expected to artificially improve
the apparent fit of the ZILP model compared to the ZIGP model as a result of the associated

increased effective degrees of freedom.

4.5 Discussion

In this chapter, the inference made from sheep and equine FEC data using the ZILP and
ZIGP models has been examined. The two models produced similar median estimates of
mean count and zero-inflation from datasets that were predominantly likelihood driven, but
the ZILP model tended to produce higher estimates for cv. The 95% CI estimates for zero-
inflation also differed between the ZILP and ZIGP models, with the ZILP model producing
lower 95% CI estimates that indicated a greater degree of zero-inflation for the equine data.
Although the two distributions are very similar with values of cv less than one, it appears
from these results that the disparity between the distributions with greater cv is sufficient
to affect the inference made, especially for cv and zero-inflation. The GP distribution was
able to account for a larger number of zero observations than the similarly parametrised LP
model as a result of the shape of the distribution with a cv equal to or greater than one. The
higher mode of the LP distribution results in a reduced weight at zero compared to the GP
with equal mean and variance, so in order to explain the observed zero counts the estimate

for cv and zero-inflation is increased for the ZILP model relative to the ZIGP model. This
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inconsistency between the two models introduces difficulties to the analysis of real datasets
where the true underlying distribution of the data is unknown, and means that estimates
of the variability within a dataset cannot be directly compared between ZIGP and ZILP
models. This is further compounded by the fact that the effective degrees of freedom in
the zero-inflated models is linked to the estimate for zero-inflation, which tends to be higher
for the ZILP compared to ZIGP model. Such differences are likely to be small between
the zero-inflated models, and are unlikely to have affected these results as all inference was
compared to that made using simulated data which was subject to the same effect of zero-
inflation estimate. However, this does illustrate the difficulty of defining the effective degrees
of freedom in a mixture model and prevents comparison with the simpler GP or LP models

based on penalised likelihoods.

An appreciable degree of zero-inflation was found in both the sheep and equine data. Zero-
inflation in N. battus FEC data is consistent with the current belief that this parasite is
not present in all animals within a population, although this is not the case for existing
studies of either Nematodirus spp. parasites (Barger, 1985) or cyathostomins (Kuzmina and
Kharchenko, 2008). In the strict interpretation of a zero-inflated model, a proportion of the
observed zero counts are derived from animals with an infection rate of zero; i.e. worm eggs
would never be identified in the faeces of these animals. This could be as a result of differences
in grazing, for example the uninfected animals are grazed on pasture that does not contain
infective larvae, or any other factor affecting those animals differently to the remainder of the
group and which prevents them from containing mature adult worms. In terms of N. battus
in lambs, a zero-inflated distribution early in the grazing season could be a result of one
group of older lambs containing mature worms and another group of younger lambs that are
not yet old enough for the life cycle of the parasite to be completed. However, it is difficult
to imagine a similar effect in the distribution of cyathostomin eggs between adult horses that
have been grazed and treated with anthelmintic as a group. In this situation, it is more likely
that the zero-inflated distribution is actually describing a multi-modal positive distribution of
underlying mean counts, one of which has a relatively low mean and contributes mostly zero
observations to the overall distribution. In this situation, the use of a zero-inflated distribution
produces similar inference to a bi-modal distribution, but any low positive counts that may
arise from the low mean group would be falsely attributed to the high mean group using
a zero-inflated distribution. Each sub-group of the multi-modal distribution would still be
expected to follow a lognormal-Poisson distribution, but a separate lognormal distribution
is needed to describe each group of animals with different means. This effect potentially
explains the inconsistency in the fit to the ZILP and ZIGP distributions; as the gamma is
more flexible than the lognormal the fit of the ZIGP to any multi-modal distribution might
be expected to be superior. However, the ZILP would produce a greater maximum likelihood
when the vast majority of the data is described by either a single lognormal distribution or

a lognormal distribution with other distributions contributing nearly all zero observations.
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A multi-modal distribution may also be expected to arise as a result of differences between
homozygotes and heterozygotes for a single gene that is important in the control of para-
sitism, with the continuous distributions surrounding these major effects representing the
relatively minor effects of many other genes and environmental influences. A multi-modal
distribution of multi-species nematode eggs may also be expected to arise as a combination
of distributions describing the distribution of eggs of each species, although this explanation
cannot be used with a single species of worms as with the observed N. battus data unless
more than one population of worms was present. An alternative explanation is that the ob-
served distribution of FEC is quite different to the distribution of worm burdens, resulting
in an observed distribution of eggs that has a different shape to the underlying lognormal
distribution of worm burdens. However, the four worm burden datasets available all showed
evidence of zero-inflation using both models, and two of each produced a better fit to the
ZILP and ZIGP distributions suggesting that similar effects are seen in worm burdens and
FEC.

The suggestion of multi-modality in the data and inconsistent preferential fit between the
applied distributions prevents any firm conclusions regarding the most appropriate distri-
bution to use for the analysis of real data. The GP distribution is more flexible than the
LP, and is better able to account for a large number of zero counts, leading to a better fit
to the data observed here. However, this advantage is reduced when using the zero-inflated
equivalent distributions and as a result neither distribution consistently fits the data better.
One advantage of the ZILP is an apparent better identifiably, with less correlation between
median estimates of cv and zero-inflation suggesting that the ZILP is better able to separate
these effects than the ZIGP distribution. This may be a chance observation or a result of
the model specification, but it is consistent with the greater flexibility of the gamma dis-
tribution. Ultimately, it may be the case that the underlying means of observed FEC data
are not well described by either the gamma or lognormal distributions, either as a result of
multi-modality, or the non-linear relationship between worm burden and mean FEC. In this

case, inference made using either of the distributions presented may be inherently inaccurate.

The work presented in this thesis has so far been concerned with the application of novel
statistical methods to FEC data obtained from a group of animals at a single point in time.
However, FEC data are also frequently collected as paired samples taken approximately
one week apart to assess the effect on parasite burden of dosing with anthelmintic. More
specialised adaptations of the models presented here are required to analyse such data, and

will be explored in the next chapter.
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Applying Bayesian MCMC to the Faecal Egg
Count Reduction Test

5.1 Introduction

The FECRT is the most widely used method of assessing the in vivo efficacy of anthelmintics
against parasitic nematodes of horses, sheep and cattle (Kaplan, 2002; Coles et al., 2006),
and is an essential tool in the process of monitoring the increasing prevalence of anthelmintic
resistance. Several methods based on arithmetic, geometric or harmonic empirical mean re-
ductions calculated with or without the use of a control group have been proposed to analyse
such data (Torgerson et al., 2005). Most of these work well in sheep, goats and cattle where
large sample sizes, high means and low variability reduce the impact of statistical oversimpli-
fications, but none work well for the small, highly variable datasets often encountered with
equine data. These factors introduce an increased variability into equine FEC data (Uh-
linger, 1993), leading to a relatively inconsistent FECRT result (Miller et al., 2006). Given
the worldwide importance of anthelmintic resistance, there is an urgent need to improve and
standardise the statistical method used to analyse equine FECRT data (Kaplan, 2002; Coles
et al., 2006).

5.1.1 Control of equine nematodes

Control of the Strongyloid equine parasites is primarily achieved in the developed world via
the use of interval anthelmintic dosing (Mercier et al., 2001), given to a group of horses at
a frequency designed to reduce the number of infective larvae on the pasture (Craven et al.,
1998), and therefore to limit the rate of infection of the herd. The principle involves dosing
at a frequency sufficient to remove most of the egg producing adults, but to avoid wasting
resources and precipitating the development of resistance (Mercier et al., 2001) by treating
animals that are unlikely to be harbouring many adult worms (Uhlinger, 1991). It is also
undesirable to render a horse completely free of worms because of the beneficial effects due
to the buildup of immunity. However, total elimination of the parasite is frequently the goal

for many owners (Uhlinger, 1993).
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The pre-patent period of the parasite is a measure of the time it takes for an ingested L3 larvae
to develop to an adult and start producing eggs (Urquhart et al., 1996), and is important to
consider when designing efficient dosing strategies. The effects of worm parasitism have been
demonstrated to show seasonal variation, and it is known that in some parts of the world the
density of infective larvae on pasture is greater at some times of year than others (Ogbourne,
1976; Herd, 1986; Langrova, 1998; Baudena et al., 2000).

The susceptibility of individual animals to worms is not uniform; it is well understood that
younger and older horses are more frequently heavily parasitised than adult horses (Uhlinger,
1993; Dopfer et al., 2004), and some individuals appear to show greater susceptibility to
infection than others (Duncan and Love, 1991). There is some evidence to show that this may
be at least partly due to the effects of immunity (Duncan and Love, 1991; Klei and Chapman,
1999). Some authors advocate the specific targeting of the persistently high shedding animals
for anthelmintic treatment and worm burden monitoring. This could potentially reduce the
costs of parasite control and slow the development of resistance to anthelmintics (Dopfer
et al., 2004; Nielsen et al., 2006a). Such an approach has also been suggested in other species
such as dairy goats (Hoste et al., 2002). More strategic attempts to control parasitism based
on the known seasonal epidemiology of equine parasites have also been suggested (Herd et al.,
1985). The optimum dosing interval therefore depends on many factors and as a result is
unique to each group of animals (Uhlinger, 1991),. This has resulted in the use of varying
control strategies between premises (Lendal et al., 1998; O’Meara and Mulcahy, 2002). Many
of the strongyle control programs currently practised fail to safeguard the health and welfare
of the horses they intended to protect; either because of inappropriate timing, drug choice
(Herd, 1986), an inability to identify the truly high shedding animals, or due to the increasing

problem of anthelmintic resistance (Mercier et al., 2001).

The broad spectrum anthelmintics currently used in equine medicine all originate from one
of the following three classes of drug; the benzimidazoles, pyrantel /piperazine, and the aver-
mectins/milbemycins (O’Meara and Mulcahy, 2002). The efficacy of these drugs are known
to differ (Pook et al., 2002), with the avermectins/milbemycins and benzimidazoles generally
acknowledged to have an efficacy of greater than 95% (Klei and Torbert, 1980; Malan et al.,
1981), whereas that of pyrantel has been estimated to be in the range of 90-92% (Lyons
et al., 1974; Dargatz et al., 2000). Efficacy of anthelmintics against the pre-adult tissue-
dwelling stages of parasite is also dependent on the anthelmintic; both a five-day consecutive
treatment with oxibendazole (Dargatz et al., 2000) and, in susceptible worm populations,
treatment with fenbendazole (McBeath et al., 1978) are known to be more efficacious than
the avermectins/milbemycins and pyrantel/piperazine against larval stages (Bauer et al.,
1986).

Alternative management techniques for the control of equine nematodes such as removal

of faeces from pasture to reduce grazing contamination are also effective (Uhlinger, 1991).
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Twice weekly removal of faeces from pasture has even been shown to control parasite burden
more effectively than regular anthelmintic dosing (Herd, 1986), and is often advocated as a
worthwhile control measure (Coles, 2002; Comer et al., 2006). While faeces removal would
not necessarily be expected to remove all larvae from pasture, the density of infective larvae
on pasture and therefore larval challenge to animals should be greatly reduced. In addition,
the pasture contamination from recently dosed animals, which would be more likely to con-
tain larvae showing resistance to anthelmintic, is also reduced. Complementary veterinary
medicine has also been used to attempt to control equine parasites, although the beneficial

effects of such treatments remain unproven (Lloyd and Martin, 2006).

5.1.2 Development of anthelmintic resistance in equine parasites

Over the last two decades, an increase in resistance to commonly used anthelmintics has
been observed both in the number of host species affected and the number of drugs where
resistance has been reported (Sangster, 1999b). Resistance of parasites to chemical substances
is a natural phenomenon that in some cases pre-dates the use of the chemical as a therapeutic
agent (Dargatz et al., 2000), and the effects can be manifest in one of several ways. Parasites
are naturally resistant to many therapeutic agents, either as an inherant lack of susceptibility
during larval or encysted stages, differences in susceptibility between different species of
parasite, or as a tolerance to the drug at lower concentrations (Sangster, 1999a). However,
resistance also represents the ability of a parasite to evolve when faced with a selection
pressure; changing its own physiology to resist the effects of the therapeutic agent. Separating
these two phenomena in order to assess the development of anthelmintic resistance within a

parasite population is not straightforward (Sangster, 1999a).

The development of anthelmintic resistance is a gradual process which often progresses in
stages (Dargatz et al., 2000), ultimately leading to the situation where an anthelmintic drug
is no longer as effective in the same concentration as it was when first used in the population.
The rate of development depends on both the genetics of the nematode, and the selection
pressure for resistance which is affected by the efficacy and intensity of use of the drug
(Bauer et al., 1986; Dargatz et al., 2000), and the proportion of the parasites that are ‘in
refugia’ (Matthews, 2008). It has been shown that there is often no reversion to susceptibility
once resistance has developed (Lind et al., 2007). Definitions of some concepts relevant to
anthelmintic resistance can be found in Table 5.1 (taken from Dargatz et al. (2000)). Prichard

et al. (1980) define resistance in a similar way:

“Resistance is present when there is a greater frequency of individuals within a
population able to tolerate doses of a compound than in a normal population of

the same species and is heritable”
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Side-, cross- & multiple-resistance, and reversion are also defined in a similar way to those

given in Table 5.1.

In equine parasites, anthelmintic resistance is almost exclusively seen in cyathostomins (Coles
et al., 1992; von Samson-Himmelstjerna et al., 2002). Resistance to the benzimidazoles was
first reported in cyathostomins in 1965 (Pook et al., 2002), and has has resulted in a gradual
decline in the effectiveness of equine parasite control (Mercier et al., 2001). Benzimidazole
resistance is now common in the domestic horse population (Ihler and Bjorn, 1996; Chandler
and Love, 2002; Kaplan et al., 2004; Traversa et al., 2009), although susceptible cyathostomins
can still be found in feral animals (Young et al., 1999). There are few reports of anthelmintic
resistance within the other stronglye nematodes of horses, although there have been recent
reports of apparent lack of efficacy of ivermectin against ascarid worms in young horses
(Schougaard and Nielsen, 2007; Lind and Christensson, 2009; Reinemeyer, 2009). However,
it is not entirely clear whether this was attributable to anthelmintic resistance per se or other

factors associated with ascarid infections in young horses.

Recently, the apparent reduction of efficacy of pyrantel in horses has been reported, firstly in
the USA (Tarigo-Martinie et al., 2001; Kaplan, 2002) but later also in Europe (Ihler, 1995;
Comer et al., 2006; Lind et al., 2007; Traversa et al., 2009). The issue of whether pyrantel
resistance has been found is somewhat controversial, especially given the lack of standardis-
ation between tests for anthelmintic resistance (Craven et al., 1998) and the reportedly low
initial efficacy of pyrantel (Lyons et al., 1974; Dargatz et al., 2000). However, apparent resis-
tance to pyrantel has been reported (Traversa et al., 2009). Given the high dependence on
Pyrantel within the equine community, this is of great concern. To date, little evidence for
resistance to the avermectins/milbemycins has been reported in horses (Ihler, 1995; Coles,
2002), although one case of suspected Moxidectin resistance has been reported in donkeys
(Trawford et al., 2005), and one case of reduced efficacy of ivermectin in horses has been
reported in Germany (Traversa et al., 2009). Traversa et al. (2009) also found several cases

of multiple anthelmintic resistance in several countries.

Anthelmintic resistance has had a major economic impact in both equine and farm animal
medicine (Waller, 1997). It will also become a potential welfare issue as resistance inevitably
develops to the currently relied-upon classes of drug (Lloyd, 1998; Nielsen et al., 2006a).
Emerging resistance in all available anthelmintic classes has lead to calls for the development
of novel anthelmintics (Kaplan, 2004; Besier, 2007), with a new class of drugs isolated recently
(Kaminsky et al., 2008) appearing to be feasible for use in animals (Mason et al., 2009).
Anthelmintic resistance appears to be increasing steadily in prevalence (Waller, 1997; Kaplan
et al., 2004), despite increasing awareness of the problem. Extensive efforts are therefore
required to reverse this trend by using good management practises, more sparing use of
anthelmintics (Pascoe et al., 1999; Coles, 2002), appropriate drug selection and adequate

monitoring for the emergence of resistance (Lloyd, 1998; Comer et al., 2006).
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Table 5.1: Terms and definitions used in describing anthelmintic resistance, taken
from Dargatz et al. (2000)

Term Definition

[43

. occurs when a greater frequency of individuals in a population
of parasites, usually affected by a dose of concentration of com-
pound, are no longer affected. Resistance is inherited”. Includes
cases where higher doses or concentrations of drug are required to
remove or Kill a certain proportion of nematodes.

Side resistance Parasites resistant to one drug of a chemical class are resistant to
other drugs in the same class.

Multiple resistance Parasites develop resistance to several anthelmintic classes inde-

Resistance

pendently.

Cross resistance Describes resistance between chemical classes and has not been
described for equine parasites.

Reversion Loss of anthelmintic resistance. There are no reports of full rever-

sion in anthelmintic resistance.

Clinical resistance Recommended doses of drug fail to remove parasites

(or field resistance)

Treatment failure  Clinical resistance is one form of treatment failure, but other rea-
sons for apparent failure include diseases with the same signs, use
of the wrong drug, under-dosing, and rapid reinfection.

Dose response Concept of more drug killing more worms in a population. A plot
of response (% dead) versus log drug concentration (in vitro) or log
drug does (in vivo) is sigmoidal. The concentration, on average,
that kills 50% of worms is the EC5g. The concentration at which
95% are killed is the ECygs.

Resistance factor The ratio of EC5¢ between resistant and susceptible worms.

5.1.3 Methods for detecting resistance

In order to monitor the progression of anthelmintic resistance, it is necessary to test the
susceptibility of worms to the anthelmintic in question. There are several techniques that
can accomplish this in vitro such as the larval development assay (Pook et al., 2002), tubulin
binding assay (Martin et al., 1989) and the egg hatch test (Martin et al., 1989; Coles et al.,
1992), although these techniques are technically quite difficult and general availability for field
studies is not very widespread. Currently the most widely used test is the in vivo FECRT
(Cabaret and Berrag, 2004; Vidyashankar and Kaplan, 2005), the principle of which is to
compare the faecal egg excretion rates of horses before and after dosing with anthelmintic
(Martin et al., 1989; McKenna, 2006a). The degree of correlation between this test and the in
vitro tests has been shown to be quite poor (Craven et al., 1999; von Samson-Himmelstjerna
et al., 2002; Konigova et al., 2003), possibly as a result of the different tests evaluating

different aspects of resistance (Craven et al., 1999).

To perform a FECRT, faecal samples are collected from individuals within a group of horses
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and the number of eggs per gram of faeces are calculated using the McMaster method (de-
scribed by Coles et al. (1992) and in detail by CSIRO and Australian Agricultural Council
(1989)). Either the whole group or part of the group, leaving untreated controls, is then
dosed with anthelmintic before re-sampling the faeces of all animals 10-14 days later. The
faecal egg count reduction percentage, usually along with a lower confidence interval, is then
produced from the data. This test has several limitations, including a low sensitivity (Martin
et al., 1989; Johansen, 1989; Coles et al., 1992), the dependence of faecal egg count on factors
such as faecal consistency (Uhlinger, 1993), the variation in fecundity between female worms
(Miller, 1953; Uhlinger, 1993), and the inability to speciate strongyle eggs (Urquhart et al.,
1996). This is a potential cause of error when performing a FECRT, because the egg output
of some horses has been shown to consist of as much as 2-8% large strongyle ova (Ihler, 1995),
which will in effect dilute the egg output of resistant cyathostomins at the pre-treatment FEC
and therefore increase the apparent efficacy of the drug against cyathostomins. However, the
assumption that the detected faecal eggs are cyathostomin eggs is probably sufficiently accu-
rate because of the dominance of cyathostomins in most equine premises where anthelmintics
have been used in the past (Uhlinger, 1991; Warnick, 1992; Fisher et al., 1992; Ihler, 1995;
Martin-Downum et al., 2001; Pook et al., 2002). The repeatability of FEC has been assessed
in both sheep (Stear et al., 1995b; Miller et al., 2006) and horses (Warnick, 1992), and found
to be poor. The variability due to the daily change in egg output and variations in laboratory
technique (Dopfer et al., 2004) may be low enough that a single sample can be used to de-
cide if an animal should be dosed, but is more important when considering changes in faecal
egg count after treatment (Warnick, 1992). Faecal egg output is also not a direct measure
of parasitism (McKenna, 1981); the fact that pre-adult parasites do not produce eggs and
the considerable variation in fecundity between worms, means that the number of parasites
within an animal cannot be determined from the faecal egg shedding rate (Uhlinger, 1993;
Coles, 2002). The faecal egg count test is also an extremely poor indicator of disease due to
parasitism (Uhlinger, 1993), although the correlation between faecal egg count reduction and

parasite reduction has not been studied.

There are also many different factors which affect the parasitic burden or egg shedding rate of
the host, and complicate a faecal egg count reduction test. Faecal consistency, and therefore
the volume and egg concentration of faeces (Uhlinger, 1993), is affected by diet and concurrent
disease, which can also alter the parasite burden directly via the effects of stress (Prichard
et al., 1980). Seasonal variation in egg output (Herd et al., 1985; Reinemeyer et al., 1986;
Uhlinger, 1993) can also affect the results of the test, although this can also be compensated
for by the use of control animals within the group. However, disadvantages associated with
the necessary reduction of animals in the treated group may more than outweigh this benefit
(Coles et al., 1992). Variation in egg output between animals due to age or differing grazing
habits is also important (Uhlinger, 1993; Osterman Lind et al., 1999), and is a strong argument
for using pre- and post-treatment counts in each animal. Diurnal variation in faecal egg
output was traditionally thought to occur (Uhlinger, 1993), although Bennett (1990) did not
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find a significant diurnal variation in a study of ten horses. However, performing pre- and
post- treatment sampling at the same time of day would be a sensible precaution. Despite
all this, FEC are an excellent index of the contamination rate of pasture, the reduction of
which is the main objective of anthelmintic dosing (Craven et al., 1998; Mercier et al., 2001),
and are sufficiently easy to perform to provide an appropriate method for the detection of
resistance (Martin et al., 1989; Fisher et al., 1992).

Although most authors agree on the laboratory method of the FECRT, the calculation of
the percentage reduction and when to diagnose resistance in equine parasites has been the
subject of much debate. Several different techniques have been used to calculate the reduction,
all of which can give different results when applied to the same data (Maingi et al., 1996;
Craven et al., 1998; Cabaret and Berrag, 2004; Torgerson et al., 2005; Miller et al., 2006,
and demonstrated in Table 5.2). The cutoff value to distinguish a faecal egg count reduction
from a resistant worm burden from that of a susceptible worm burden also varies, with
some authors stipulating that a FEC reduction of less than 80% indicates resistance, while
some authors prefer to use 90% (CSIRO and Australian Agricultural Council, 1989), and
yet others use the 95% figure that is used in other species. Unlike the situation in sheep
parasitology, where the cutoff figure of 95% has been demonstrated to be appropriate given
a large enough flock size and a drug of efficacy > 99% (Coles et al., 2006), the values used in
equine parasitology are somewhat arbitrary (Bauer et al., 1986; Martin et al., 1989; Kaplan,
2002; Vidyashankar and Kaplan, 2005).

Coles et al. (1992), in the World Association for the Advancement of Veterinary Parasitology

guidelines, stipulate that the arithmetic mean be used according to Equation 5.1.

FECR =100 x (1 - t) (5.1)

C

Where t is the arithmetic mean of the dosed group and c is the arithmetic mean of the control

group 10-14 days after dosing. The advantages to using the arithmetic mean are listed by

Table 5.2: A comparison of the FEC reduction (with confidence intervals) as
calculated using four different techniqus for three equine FECRT datasets, adapted
from Torgerson et al. (2005)

Technique Menbendazole Ivermectin Moxidectin
FECR% (Coles et al., 1992) 60.9 39.8 97.6
95% ClIs (Coles et al., 1992) -13.686.5 -65.678.1 92.199.3
FECR% (Dash et al., 1988) 46.4 50.4 90.7
95% CIs (maximum likelihood) -105.787.1 -40.281.0 21.598.2
FECR% (Presidente, 1985) 18.4 55.7 94.9
FECR% (maximum likelihood) 60.8 39.8 97.6
95% CIs (maximum likelihood) 8.981.8 -36.171.1 81.399.3
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Coles et al. (1992) as:

1. easier to calculate
2. provides a better estimate of the worm egg output

3. provides a more conservative measure of anthelmintic efficacy than using the

geometric mean

These reasons are arguably in the case of (1) irrelevant, and (3) not statistically valid as the
arithmetic and geometric means are distinct and the two measures should have a different
interpretation. The arithmetic mean of the sample is also more heavily affected by single
large value than is the geometric mean. However, it is true that the population arithmetic

mean provides a better estimate of the worm egg output than the population geometric mean.

The 95% confidence intervals are then calculated using Equation 5.2 (formula given in ap-
pendix of Coles et al., 1992).

t
Confidence limit = 100 x <1 — - X exp (£2.048) x \/Yz> (5.2)
c

Where Y? is the variance of reduction, calculated as:

022 021
“Nx*z3  Nx1?

Y2

Where z; is the empirical mean pre-treatment FEC, 5 is the empirical mean post-treatment
FEC, 021 is the empirical variance in FEC pre-treatment, 02y is the empirical variance in

FEC post-treatment, and N is the number of animals.

The origin of the number 2.048 used to calculate the upper and lower confidence limits is
not given by Coles et al. (1992), although it does correspond to the value taken from a t-
distribution with 28 degrees of freedom. However, the potential justification for choosing
28 degrees of freedom are equally unclear. According to the guidelines, if both the lower
confidence limit is below 90% and the FECR is below 95% then resistance is declared, and
if either condition is met then resistance is suspected. These conditions have also been
advocated by other authors (CSIRO and Australian Agricultural Council, 1989; Ihler, 1995).

An alternative, more complicated method is to use Equation 5.3 as advocated by Presidente
(1985).

.
FECR =100 x <1 o2 Cl) (5.3)
tl.CQ
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Where the subscript ; denotes mean of the dosed or control group pre-dosing, and the sub-
script o that of the group post-dosing. However, this method requires sampling on two sep-
arate occasions, and has been shown to give similar results to the less complicated method
above (Vizard and Wallace, 1987; McKenna, 2006b).

The third commonly used method is to use Equation 5.4 as advocated by McKenna (1990,
2006a).

FECR =100 x <1 - ?) (5.4)
1

Where all animals are included in the dosed group and single pre- and post-dosing counts are
used. This method has the advantage that all animals are dosed, effectively increasing the
sample size for the test (Coles et al., 1992; Pook et al., 2002) or decreasing the cost of the
test by requiring fewer animals for the same diagnostic test sensitivity/specificity (McKenna,
2006b). Each of these three techniques can then be modified by using the geometric means in
the calculations, for example Martin et al. (1989) advocate Equations 5.1 and 5.2 using the
geometric mean. Egg counts from animals with a zero count pre-dosing (Martin-Downum
et al., 2001), or in some cases from animals with a count of less than 150 eggs per gram
(EPG) (Craven et al., 1998; Coles et al., 2006), are typically discarded before analysing the

remaining data.

The faecal egg count reduction test has been standardised in sheep (Vercruysse et al., 2001;
Vidyashankar and Kaplan, 2005), where large sample sizes increase the usefulness of the test
and minimise the impact of using some animals as controls. The distribution of parasites
within sheep is also likely to have a higher mean and reduced variability compared to that in
horses, which improves the accuracy of the faecal egg count test (McKenna, 1981). In order
to be able to apply parametric techniques, the data are often log transformed to improve the
normality (Bauer et al., 1986; Osterman Lind et al., 1999), although even this often fails to
normalise the distribution. In addition, it has been shown that the use of log-transformed data
is more likely to produce both Type I errors, or incorrectly rejecting the null hypothesis, as
well as Type II errors, or incorrectly accepting the null hypothesis, both for FEC data (Wilson
et al., 1996) and FECRT data (Vidyashankar and Kaplan, 2005). The possibility of generating
Type II errors is particularly concerning, as it could potentially lead to the false rejection of
anthelmintic resistance from data. It is also more difficult to find suitable groups of horses
to demonstrate anthelmintic efficacy in a controlled environment; many horse owners insist
on dosing of their horses even if a FEC of zero has been demonstrated (Kaplan, 2002), and
it is much more difficult to euthanize and perform a post mortem worm burden examination
on a sample of horses than a sample of sheep. These factors may have contributed to the
lack of standardisation between FECRT methods in the horse (Vidyashankar and Kaplan,
2005), despite the efforts of both the World Association for the Advancement of Veterinary
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Parasitology (Coles et al., 1992) and the “International Co-operation on Harmonisation of
technical Requirements for Registration of Veterinary Medicinal Products” (Vercruysse et al.,
2002).

It is difficult to demonstrate resistance or susceptibility within a parasite population if the
FECRT data are analysed inappropriately (Duncan et al., 2002). The use of point estimates
for the reduction in faecal egg count takes no account of variability, and results in large
confidence intervals which reduce the value of the results (Martin et al., 1989). Such methods
also fail to take into account the aggregation of parasites within the population, which not only
results in potentially valuable information being lost, but can also be a source of statistical
error if not taken into account when analysing the results of FECRT (Morgan et al., 2005).
The difficulty in analysing changes in low faecal egg counts has prompted some authors to
advocate using only horses with an initial faecal egg count of greater than 150 EPG (Craven
et al., 1998; Coles et al., 2006), which in some situations drastically reduces the number
of horses available for study and could potentially bias the results. The need to distinguish
treatment failure due to clinical resistance from treatment failure due to other causes, such as
incorrect dosage and rapid reinfection, is also important for the detection of true anthelmintic
resistance (Uhlinger, 1993). However, it is essential that these factors are overcome so that

early and accurate determination of resistance can be achieved.

5.2 Development of an MCMC model for analysis of FECRT
data

There are several different ways of formulating a MCMC model to analyse FECRT data. The
majority of datasets include a pre-treatment count for each animal in a similar way to the
data analysed in Chapters 2 to 4, and so the same distribution could be fitted to these data. A
separate distribution could then be fitted to the post-treatment data, with a mean which has
been scaled relative to the pre-treatment mean and a variance parameter that has been scaled
relative to the pre-treatment variance parameter. This scale in mean would be used to infer
the efficacy of the reduction, and most closely resembles the empirical mean reduction that is
currently used to analyse such data. Either the lognormal or gamma distributions could be
used to describe the distribution of mean counts, although use of the lognormal would make
calculation of the change in geometric mean, equivalent to change in arithmetic mean on the
log scale, simpler to calculate than the change in arithmetic mean, whereas the change in
arithmetic mean is easier to calculate for the gamma distribution. Both the geometric and
arithmetic means have been used by parasitologists, although often with no justification, so
that either formulation could be chosen. However, it can be argued that the arithmetic mean
is more useful on an epidemiological basis as it represents the pasture contamination rate more

closely, and most published efficacy studies seem to be concerned with the arithmetic mean,
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so the change in arithmetic mean using a gamma formulation will be used. As before, the
gamma-Poisson can be used both with and without a zero-inflated component, depending on
biological reasoning with individual datasets. Typically, two counts, representing the pre- and
post-treatment counts, are available from each animal from a FECRT, therefore a common
group classification will be used for the two counts for each animal. This is to say that if
an animal is part of the zero-inflated group at pre-treatment, then it must be part of the
same group at post-treatment. Consequently, if a non-zero count is observed at either pre-

or post-treatment then the animal must be classified as part of the infected group for both.

This formulation allows variability to exist both within and between animals, although neither
are modelled explicitly and only the combined variability is modelled. The variability is
allowed to change after treatment, therefore the variation between animals may change,
possibly as a result of differing efficacy between animals, and the variability within an animal
may also change, possibly as a result of variation in fecundity following treatment. Again,
these individual sources of variability are not explicitly modelled, and are combined into
the single change in variability parameter. It is not possible to separate these sources of
variability with only a single observation per animal before and after treatment, but as they
are accounted for in the model the estimate of efficacy should be robust to these effects.
One drawback of this formulation is that the ‘paired’ effect of animal between pre- and post-
treatment data is ignored, potentially resulting in a loss of power. This could be addressed by
using a different formulation, whereby the same distribution is applied to the pre-treatment
counts and a distribution of efficacy is applied to the count means, resulting in the means for
the post-treatment observed counts. The variability sources are addressed slightly differently
with this model, with the pre-treatment within and between animal variability accounted for
in the same way before, and the shape of the distribution of efficacy reflecting the variability
within animals before and after treatment as well as the change in variability between animals
after treatment, i.e. the ‘true’ efficacy distribution. A beta distribution could be used for
this efficacy distribution, which would constrain the individual mean changes to between
zero and one. However, this may not be appropriate because the true mean of the post-
treatment sample may truly be higher than that of the pre-treatment sample given the affect
of within animal variability on this parameter. More appropriately, a gamma or lognormal
distribution could be used which would allow the individual change in mean to be above
one, representing an individual efficacy of below zero, but with a prior on the mean value
restricting it to values of less than one, representing a mean efficacy of greater than zero.
However, in pilot tests of this model formulation using both beta and gamma distributions
on simulated data with values of dataset and mean taken from real data, extremely poor
convergence was observed. This may be due to model identifiably issues associated with the
multiple sources of variability associated with the efficacy distribution. It is also possible
that the comparatively good convergence of the first model formulation is as a result of
inferring the post-treatment variability, where there is comparatively little information as

a result of the lower mean counts, from the pre-treatment variability where there is more
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information. Pilot tests of model formulations using totally separate values of variability for
pre- and post-treatment data resulted in worse convergence for the post-treatment variance
parameter compared to that observed for the change in variance parameter when this is
modelled explicitly. The shape of the distribution of efficacy is not directly comparable to
the pre-treatment variance parameter, so it is not possible to aid identifiably by reformulating
the model using a distribution of efficacy in this way. In addition, the apparent distribution
of efficacy could arise as a combination of several other factors, including the aggregated
distribution of eggs in faeces, variations in worm fecundity over time, variations in faecal
consistency, and variations in the numbers of worms present, which are impossible to separate
using only a single faecal sample per individual. This model formulation was therefore not
pursued further here, but may be of use in determining the true variability in efficacy between

animals in larger datasets containing repeated measures to improve identifiability.

The formulation of the final FECRT model based on two zero-inflated gamma-Poisson dis-
tributions is given in Model 5.1. The priors used for pre-treatment mean and shape are
consistent with those used in Chapter 2. The change in mean is given a beta(1, 1) prior to
restrict post-treatment mean egg count to less than pre-treatment mean egg count, because
it would not be expected for true mean egg count to increase after treatment given the short
period of time being considered. The change in shape parameter is given a diffuse lognormal
prior with a mean of zero and precision of 0.01, so that values of less than one and more than
one are equally likely. This parameter is truncated to between 0.001 and 1000 to prevent
sampler failures associated with extreme values, and the same lower truncation of 1072% is
used for the gamma distribution as discussed in Section 3.6. Where zero-inflation is used,

the pre- and post-treatment group assignment is consistent for each animal.

5.3 Comparison of three methods for analysis of FECRT data

5.3.1 Introduction

Analysis of FECRT data can be performed in one of several different ways. The method cur-
rently advocated by the World Association for the Advancement of Veterinary Parasitology
(WAAVP) involves calculating the empirical mean and variance before and after treatment,
and calculating the empirical mean proportional reduction and estimates of the 95% confi-
dence interval for the true reduction according to Equation 5.2 (Coles et al., 1992) . This
method takes no account of the difference between uncertainty regarding the true mean of
a sample, introduced by the Poisson variability of the counting process, and variability in
the true mean of different samples. Calculation of 95% confidence intervals in this man-
ner also makes the assumption that the distribution of error for the true mean reduction is

symmetrical about the empirical mean reduction.
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A non-parametric bootstrapping approach has recently been suggested as an appropriate
method to generate confidence limits from equine FECRT data (Vidyashankar et al., 2007).
The technique involves re-sampling and summarising the observed data to estimate parame-
ters of interest (Efron, 1979), and does not require knowledge of the distribution or processes
generating the data (Mooney and Duval, 1993). Non-parametric bootstrapping approaches
are therefore useful when the distribution of data is unknown. The assumption underlying
this approach is that the data obtained are completely representative of the full distribution
describing the population, which is potentially violated when dealing with small sample sizes

leading to misleading results.

Compared to the case in ruminants, the relatively small sample size, low pre-treatment mean
FEC, and frequent zero FEC observations typically encountered with equine FECRT data
(Kaplan, 2002; Nielsen et al., 2006a) may provide a challenge to the use of a non-parametric
bootstrapping procedure, because there are relatively few data points from which to sample.
Computationally intensive parametric methods have an advantage in this regard in that the
data are fit to a distribution, so that not all possible values have to be observed in order to
be sampled, although there is also often insufficient data to be able to analyse the underlying
distribution, which prevents validation of the choice of distribution used by a parametric
analysis such as MCMC. The aim of this study was to assess the usefulness of 95% confidence
intervals generated by applying these three methods to simulated data, and then to assess

the impact of the assumptions being made for each method.

5.3.2 Materials and Methods

5.3.2.1 Simulated data generation

A total of 1000 parameters for a simulated FECRT were generated in the R statistical pro-
gramming language. The true FEC reduction was simulated from a Uniform(0.75,1) dis-
tribution, so that true egg count reductions varied in a range that is likely to be observed
clinically. The pre-treatment mean number of eggs counted and sample size were chosen
to reflect the values seen in real equine FECRT data obtained from the 64 Danish equine
datasets presented in Section 4.3. Pre-treatment mean number of eggs counted was taken
from a Uniform(1.45,53.1) distribution, and sample size per group was sampled randomly
from integers between 4 and 16. The cv between samples before treatment was sampled from
a Uniform(1,1.41) distribution, corresponding to a pre-treatment shape parameter of the
gamma distribution, k, of between 1 and 0.5. The proportional increase in cv after treatment
was sampled from the same distribution. These values were also chosen to reflect the values
most likely to be encountered in real FECRT data; published values of k are usually less

than one (Shaw et al., 1998), and differing efficacy of anthelmintic between animals would
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be expected to result in an increase in variability post-treatment unless such differences were

non-random due to a systemic effect of animal age or parasite burden, for example.

In order to test the implications of the distributional assumptions made by the MCMC
and WAAVP methods, simulated datasets were generated using the following three different
distributions of underlying sample means; gamma, multi-modal lognormal, and uniform. The
observed count was modelled as a Poisson process on top of these means. For each dataset, the
meta-population mean and variance was the same for all distributions. The gamma-Poisson
(negative binomial) distribution was parametrised by the pre-treatment means and shape
parameters simulated above for the pre-treatment data, and the product of the pre-treatment
means and one minus the true reduction in faecal egg count, and the product of the pre-
treatment shape parameter and the change in shape parameter, for the post-treatment data.
For the multi-modal data, the number of groups was sampled as between two and ten for each
dataset, and the mean of each group was sampled from a lognormal distribution with mean
equal to the population mean. Further lognormal distributions were then used to describe
the distribution of samples within each group, with the number of animals in each group
taken from a multinomial distribution with equal probability of assignment to each group
for each animal. The cv for each lognormal distribution within the compound distribution
was calculated according to the two conditions that each value is equal (representing an
equal contribution of variability from both between and within sub-group), and that the
total population variance would be equal to the total population variance of a single gamma
distribution with the given mean and shape parameter. This approximation does not hold
when the number of modes is not equal to the number of animals because the variability
between animals from the same mode is less than that between animals from different modes.
This should not affect the comparisons because the ability of the models to correctly identify
the true variance is not being tested. Equation 5.5 was used to calculate the effective cv of
the population given the cv of two compound distributions. The derivation of this equation
from the combination of two gamma distributions is given in Appendix B. The lognormal
distribution is similar in shape to the gamma distribution, so the error introduced by using
the lognormal distribution in its place will be relatively small and should also not affect the

inference made.

CVtotal = /€012 + 022 + (cv12 * cva?) (5.5)

Where cvyotq; is the effective coefficient of variation (cv) of the population, cv; is the cv in

the first distribution, and cvs is the cv in the second distribution.

For the final distribution, the lower (L) and upper (U) limits of the uniform distribution
were calculated using Equation 5.6 where p and cv are the population mean and coefficient

of variation, respectively. If the calculated value for L was less than zero, then a log-uniform
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distribution (a distribution which is uniform on the log scale) was used in place of the uni-
form distribution. In this case, an optimisation algorithm was used to find a solution to

Equation 5.7 that fit the pre/post-treatment values of p and cv generated.

cv X X /12

Lower and Upper limits = p + 5 (5.6)
U =2 % M (5 7)
= e )
_ U-L
o= (logU —log L)

The log-uniform distribution was only used when the uniform distribution would have re-
quired L < 0, so that it was possible for pre-treatment data to be of a different distribution

to post-treatment data.

Pre- and post-treatment egg count data were generated using each of these three distributions
with the 1000 parameter values, to simulate a FECRT for a total of 3000 datasets. These

datasets were then analysed using each of the three techniques.

5.3.2.2 Statistical Analysis

The analysis currently recommended by the World Association for the Advancement of Vet-
erinary Parasitology was performed as described by Coles et al. (1992). The median estimate
along with upper/lower 95% confidence intervals of the mean reduction are calculated using

Equations 5.8, taken from the appendix of Coles et al. (1992).

y2 — 2 02y
Nx+23 N xz?
mean estimate =100 <1 - :f2> (5.8)
I

con fidence interval =100 x <1 — (CEQ * exXp (j:2.048 * vY2)>>

I

Where z; is the empirical mean pre-treatment FEC, 5 is the empirical mean post-treatment
FEC, 021 is the empirical variance in FEC pre-treatment, 02y is the empirical variance in

FEC post-treatment, Y2 is the variance of the reduction, and N is the number of animals.
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Bootstrapping was conducted using a function written in the R statistical programming
language. For each dataset, new pre-and post-treatment pseudo-datasets were sampled with
replacement to the size of the original data 10,000 times. At each iteration the mean reduction
was calculated as the mean of the post-treatment pseudo-data divided by the mean of the
pre-treatment pseudo-data. The median and 95% confidence intervals of the mean reductions

for each dataset were then calculated and recorded from these 10,000 iterations.

Bayesian MCMC analysis was performed using Model 5.1, implemented using JAGS. The
model fits a gamma-Poisson distribution to the pre and post-treatment raw count data,
with parameters for pre- and post-treatment means and shape parameters. None of the
data were simulated with zero-inflation components, so zero-inflation was not used in the
model. The priors used for pre-treatment mean and shape are consistent with those used
in Chapter 2. Post-treatment mean and shape parameters are calculated by multiplying the
pre-treatment mean and shape parameters by a “change in mean” and “change in shape”
parameter, respectively. From this model, estimates of the mean anthelmintic efficacy and the
variability in anthelmintic efficacy between animals can be obtained. The “change in mean”
is given an uninformative Beta(1,1) (equivalent to Uniform(0, 1)) prior, and the “change in
shape” a diffuse lognormal prior with a mean of one. This allows inference on the true change
in mean egg shedding, with an additional parameter reflecting the true change in variability
between egg counts. The true % FEC reduction is derived from (1 — change in mean) * 100.
Calling JAGS to run each simulation and summarising of MCMC chains was automated using
the runjags package for R, with two chains. Convergence was assessed using the Gelman-
Rubin statistic (Gelman and Rubin, 1992a), and necessary sample size using Raftery and
Lewis’s diagnostic (Raftery and Lewis, 1995). The median estimate and 95% credible intervals

for the true egg count reduction were calculated in R using the MCMC output.

For all techniques, credible intervals for the true proportion of datasets contained within
95% confidence intervals were calculated using a Bayesian approach with an uninformative
Beta(1,1) prior. The mean relative size of these confidence intervals was calculated using

Equation 5.9.

ZUfL
T
N

Where L denotes the lower confidence interval, U the upper confidence interval, T the true

con fidence interval size = (5.9)

parameter value, and N the number of datasets

To assess the accuracy of the median estimates, the relative RMSE was calculated using the

simulation value for each parameter as before.
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5.3.3 Results

The relationship between the simulated and empirical % reductions is shown in Figure 5.1.
A degree of correlation is apparent, but with substantial variability. The uniform-Poisson
distribution appears to have produced the most extreme deviations. Of the 3000 datasets,
100 (3.3%) gave a mean reduction of 100% using the WAAVP method. The median (95%
simulation interval) simulated reduction for these empirical 100% reduction datasets was
99.13% (82.23% - 99.97%). As the post-treatment variance for these datasets was zero, the
WAAVP method of calculating 95% confidence intervals could not be applied. In practice,
these datasets would be assumed to represent a 100% reduction, so 95% confidence limits of
100% - 100% were assigned to these datasets. The non-parametric bootstrapping approach
also generated confidence limits of 100% to 100% for these datasets, as all possible combina-
tions of datapoints give a 100% reduction. Results are shown both with all 3000 datasets,
and with these 100 datasets excluded.

In Figure 5.2, the proportion of true reductions that were contained within the notional 95%
confidence intervals for each method are shown, both for all datasets and with the 100 datasets
that demonstrated a mean reduction of 100% removed. There is no evidence that the MCMC
method did not estimate true 95% confidence intervals for both the gamma-Poisson and
(log) Uniform data, but the confidence was lower for the multi-modal data. Non-parametric
bootstrapping and the WAAVP method both returned notional 95% confidence intervals that
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Figure 5.1: The relationship between the simulated % reduction and the empirical
mean % reduction from 3000 simulated FECRT datasets - all values shown on left,
some omitted on right. Gamma-Poisson data shown in green, multi-modal in blue and
uniform-Poisson in pink. Diagonal dotted line denotes 1:1 correlation, vertical and horizontal
dotted lines on right hand side denote limit of True/False positive and True/False negative
results (assuming an efficacy threshold of 95%)
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Figure 5.2: The proportion of 95% confidence intervals containing the simulated

true FEC reduction parameter for each method from the analysis of all simulated

FECRT datasets (solid lines) and the 2900 simulated datsets that did not give an
empirical mean reduction of 100% (dashed lines)

would be expected to contain the true value between 85% and 90% of the time for all data
types, although this improved to between 88% and 93% by removal of datasets with a mean
reduction of 100%.

The mean relative size of the notional 95% confidence intervals for each method, both with
and without the datasets that demonstrated a 100% empirical reduction, are shown in Ta-
bles 5.3 and 5.4, and the relative RMSE for each combination in Tables 5.5 and 5.6. The
MCMC median estimates produced a comparable relative RMSE to the WAAVP and boot-
strap estimates with the gamma-Poisson and multi-modal data, but lower relative RMSE for
the uniform-Poisson data. Confidence interval sizes were comparable for all techniques with

each data type.

5.3.4 Discussion

For all datasets, simulated from each of the distributions tested, the MCMC method provided
confidence intervals with the best defined properties, as well as the most precise median

estimates for the true FEC reduction when datasets with 100% reductions were removed.
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Table 5.3: Mean size of 95% confidence intervals relative to the median (MCMC
and bootstrap) or mean (WAAVP) estimate of the true FEC reduction produced
by the MCMC, bootstrap and WAAVP techniques from analysis of 3000 simulated
FECRT datasets

Gamma-Poisson Multi-modal Uniform-Poisson

Bootstrapping 0.702 0.459 0.803
WAAVP 0.673 0.532 0.786
MCMC 0.750 0.554 0.808

Table 5.4: Mean size of 95% confidence intervals relative to the median (MCMC
and bootstrap) or mean (WAAVP) estimate of the true FEC reduction produced
by the MCMC, bootstrap and WAAVP techniques from analysis of the 2900
simulated FECRT datsets that did not give an empirical mean reduction of 100%

Gamma-Poisson Multi-modal Uniform-Poisson

Bootstrapping 0.728 0.475 0.830
WAAVP 0.697 0.550 0.813
MCMC 0.741 0.541 0.802

Table 5.5: Relative root-mean-square-error (RMSE) for median (MCMC and
bootstrap) or mean (WAAVP) estimate for the true FEC reduction produced by
the MCMC, bootstrap and WAAVP techniques from analysis of 3000 simulated

FECRT datasets

Gamma-Poisson Multi-modal Uniform-Poisson

Bootstrapping 1.69 1.49 2.60
WAAVP 1.70 1.53 2.66
MCMC 1.83 1.64 1.99

Table 5.6: Relative root-mean-square-error (RMSE) for median (MCMC and
bootstrap) or mean (WAAVP) estimate for the true FEC reduction produced by
the MCMC, bootstrap and WAAVP techniques from analysis of the 2900 simulated
FECRT datsets that did not give an empirical mean reduction of 100%

Gamma-Poisson Multi-modal Uniform-Poisson

Bootstrapping 1.72 1.51 2.64
WAAVP 1.73 1.55 2.70
MCMC 1.69 1.50 1.87
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The size of the 95% confidence intervals produced was no greater for the MCMC method
when datasets with 100% reductions were removed, indicating that the MCMC methods
were producing more appropriate 95% confidence intervals rather than merely larger 95%
confidence intervals. The relative RMSE and size of 95% confidence intervals was greater for
each method with the Uniform-Poisson data than the other datsets; this is possibly a result
of the shape of the Uniform or log-Uniform distribution creating more frequent moderately
large values than would be expected with a gamma or lognormal distribution with the same
variance. Interestingly, the relative RMSE of the MCMC method seemed to be less affected
by the Uniform-Poisson data than the other methods. The reasons for this were not clear, and
it may be a chance observation, or it may be due to the MCMC method accounting for these
moderately large values with an increased estimate for the variance. Conversely, the relative
RMSE and size of 95% confidence intervals was smallest for each method with the multi-
modal data. This is most likely as a result of the effective population variance being reduced
by the clustering effect of the multi-modal distribution, as follows. The variance of the two
lognormal distributions contributing to the multi-modal distribution was calculated so that
the total variance of the compound distribution would be equal to the variance used for the
uni-modal distributions. The effective total variance of the multi-modal distribution would
only equal this if one animal was used per group, so that each animal was independently
sampled from the compound distribution. However, more than one animal was used per
group, which results in a reduction of the total effective variance because animals are no longer
independently sampled from the compound distribution. This would on average reduce the
overall variance for the multi-modal distribution compared to the uni-modal distributions,

but does not affect the conclusions drawn.

The MCMC method out-performed the WAAVP and bootstrapping methods not only for
data simulated from a gamma-Poisson distribution, where the MCMC method using the
same distribution would be expected to perform well, but also using data simulated from
different distributions. The performance of the MCMC method was less optimal using the
multi-modal data, but even here it out-performed the other two methods. This may be
due to the distributional assumptions made by the MCMC method having less practical
impact on the results of the analysis of these types of FECRT data than the assumption
that bootstrapping a limited number of data points can capture all the variability of an
inherently very variable system. Vidyashankar et al. (2007) proposed dealing with this effect
by taking into account inter-farm variability, in effect increasing the sample size of the study.
It is likely that this would improve the confidence of the bootstrapping method as long as
the total effective sample size is sufficient. The MCMC method is also capable of analysing
data from multiple sites, for example by defining a distribution of efficacy that describes the
mean FEC reduction at each site and using this extra information to reduce uncertainty in
the estimate for the true mean efficacy. Where data from multiple sites are available, and
it is reasonable to assume a distribution of efficacy describing the sites, the additional data

can be taken into account in order to reduce uncertainty in parameter estimates. However,
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the intention here was to assess the performance of each method when analysing individual
datasets in the absence of any other comparable datasets, so that taking into account inter-
farm variability would not have been possible. Based on the results presented, parametric
techniques appear to out-perform non-parametric bootstrapping in this regard when sample
sizes are small. It is also possible to perform the bootstrapping calculation differently to that
used here; for example bootstrapping the ratio between paired pre- and post-treatment counts
rather than the pre- and post-treatment pseudo-datasets themselves. This may have altered
the performance of the bootstrapping technique, but less closely resembles the formulation of
the MCMC model used and therefore makes comparison of the techniques themselves more
difficult.

The field equine data used to inform the parameter generation for the simulations were ob-
tained from Equilab Laboratory, and represented voluntary submission of FECRT data from
a wide variety of equine establishments across Denmark. As such, the data are representa-
tive of equine establishments in Denmark, although it could be argued that the distribution
of mean FEC may be different in Denmark to other European countries and the USA as a
result of the Danish regulatory requirements for prescriptions for anthelmintics. The relative
performance of the bootstrapping and WAAVP procedures would be expected to be worse
in other countries if a tendency towards smaller herd sizes and/or lower mean FEC exists in
Denmark. For example, the mean pre-treatment FEC of the data presented in Schumacher
et al. (2009) is 11 EPG which is much lower than the median (95% CI) value of 217 EPG
(115 - 863 EPG) in the Danish FECRT data presented here.

Several of the datasets generated with parameters similar to observed equine FECRT data
gave an empirical reduction of 100%, even where the true mean reductions were close to 75%.
These datasets present difficulties when using both the WAAVP and bootstrap methods,
which are unable to generate appropriate 95% confidence limits. Nineteen (19%) of these
datasets were simulated using empirical reductions of less than 95%, and so represent a
consistent source of false negatives for these methods. The MCMC method was the only
method examined here which is capable of analysing datasets with 100% empirical reductions
in an appropriate fashion, but analysis of these datasets still poses some difficulties. The
lower 95% confidence interval for efficacy is substantially decreased when analysing data
with a post-treatment dataset of all zero relative to post-treatment data with a single egg
counted, with the same pre-treatment data. This may superficially appear as though the
model is not appropriately analysing the data, but this phenomenon is related to the issue
of analysing all zeros datasets discussed in Section 2.7. When no eggs are observed post-
treatment, the model has no information from the data on which to base the estimate for
post-treatment cv, or change in cv. This means that it is possible that the post-treatment
data have a relatively high mean combined with a large cv which is resulting in zero count
observations. This effect is likely to worsen with smaller sample sizes. The prior for efficacy

is Beta(1, 1), so the effective prior for the post-treatment mean would tend towards values
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uniformly between zero and the pre-treatment mean. In order to account for this prior, the
estimate for post-treatment cv is inflated to increase the likelihood of observing zero counts
with a high mean. When more than one or two low counts are observed post-treatment,
the likelihood of a high cv decreases, so that the model tends towards lower change in cv
and consequently lower post-treatment mean. This behaviour can be addressed by placing
a more informative prior on the post-treatment cv to make such high values less likely, or a
prior on efficacy that tends towards higher values. However, this may lead towards erroneous
inference unless these priors can be properly justified. Fundamentally, it is quite possible
that such datasets really do represent instances of extremely poor efficacy along with high
variability. The reason that this initially seems strange to the casual observer is that the prior
belief when carrying out a FECRT is that efficacy is closer to 100% than 0%. The inference
made by the MCMC model is therefore appropriate given the priors, which are conservative
in the respect that the data is required to prove acceptable efficacy. Alternatively, it may be
possible to derive information from the magnitude of the change in variability to infer that
the efficacy cannot be close to zero; it may be illogical to believe that the efficacy is truly
zero if a change in variability is observed due to the treatment. The model specification could
be altered in some way to reflect this, although as the confidence intervals for the change in

efficacy were generally large it may provide little practical benefit.

The model formulation presented here uses a separate pre- and post-treatment distributions
to describe the distribution of counts, with the efficacy inferred from the ratio in means.
As discussed previously, an alternative formulation could calculate a distribution of efficacy
values derived from the paired pre- and post-treatment count data from each animal, with
the mean efficacy calculated from this. Such a formulation would require either a compound
distribution separating within and between animal variability, or a fixed effects model with
an appropriate error structure, such as gamma-Poisson, relating the observed counts to true
animal means. In pilot studies of such formulations the lack of identifiability between the
change in within animal variability and shape of the efficacy distribution precluded their use
for the available data, although their use may well be preferred given sufficient information
in the data. This model formulation will be presented later in this chapter as a method of

analysing these data at a population level.

5.4 Further Analysis of Non-Parametric Bootstrapping

5.4.1 Introduction

It is apparent from the analysis presented previously that the bootstrapping procedure dis-
cussed produces unreliable 95% confidence estimates of true mean FEC reduction with the

sample sizes typically encountered in equine FECRT data. The usefulness of the method is
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likely to be increased with increasing sample size and mean FEC; an analysis of this relation-
ship would therefore be useful to determine the minimum values at which the bootstrapping

procedure can be used without making erroneous inference.

5.4.2 Materials and Methods

Pre- and post-treatment egg count data were generated using two gamma-Poisson distribu-
tions, to simulate a FECRT. For this analysis, sample size and mean FEC were fixed for each
dataset so that the effect of increasing sample size and mean FEC on the performance of the
bootstrapping method could be assessed. Sample size was drawn from the set {5, 10, 20, 30,
40, 50, 60, 70, 80, 90, 100}, and pre-treatment mean number of eggs counted from the set
{1, 5, 10, 20, 30, 40, 50, 75, 100}, so that the range covered the most likely values observed
in field FEC data. The pre-treatment cv was chosen from the set {1, 1.41} to reflect values
commonly seen with equine FECRT, and the change in cv post-treatment chosen from the set
{1, 1.41} simulating either no change in the cv after treatment, or an increase in cv between
animals after treatment. Each of these 396 combinations was used to generate 250 datasets
using two gamma-Poisson distributions and a true FEC reduction randomly generated from
a Uniform(0.75,1) distribution. Each dataset was analysed using the bootstrap method to
provide a median and 95% confidence interval estimate as before. The 95% confidence inter-
val produced by the bootstrap analysis was compared to the simulation parameter for each
dataset, and the number of analyses where the true value was not contained within the 95%

confidence intervals was recorded for each combination of parameters.

5.4.3 Results

The effect of changing cv and Acv on the confidence of the bootstrapping method is shown in
Figure 5.3. Each plotted point represents the true confidence of the bootstrapping technique
with a cv or Acv of 1 compared to that with a cv or Acv of 1.41 for the same combination of
other parameters. The median (95% CI) proportion of 95% confidence intervals containing the
true parameter with cv = 1 was 0.924 (0.731 - 0.960), compared to 0.920 (0.713 - 0.960) with
cv = 1.41. For Acv = 1 the median (95% CI) was 0.924 (0.727 - 0.964), compared to 0.916
(0.713 - 0.956) for Acv = 1.41. Both cv and Acv have a significant effect on the proportion
of 95% confidence intervals containing the true parameter (p < 0.001), but this effect is
relatively small. Each of the four datasets with different cv and Acv at each combination of
mean and cv were therefore combined to give 99 datasets of 1000 before analysis of the effect

of mean and sample size.

The effect of increasing pre-treatment mean FEC and sample size on the ability of the boot-

strapping method to accurately predict the true FEC reduction is shown in Figure 5.4. With
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Figure 5.3: Effect of cv (left) and Acv (right) on the proportion of bootstrapped
95% confidence intervals that contained the true efficacy parameter from 250
simulated FECRT datasets - each point represents the true confidence of the bootstrapping
technique with a cv or Acv of 1 compared to that with a cv or Acv of 1.41 for the same
combination of other parameters

a sample size of five, the notional 95% confidence intervals contained the true parameter as
little as 40% of the time with a very low mean FEC. This improved to between approximately
93% and 95% for sample sizes of 50 and above with pre-treatment mean FEC of at least ten

counted eggs.

Conversely, the confidence of the estimates produced by the MCMC method using a subset
of the same data did not appear to be decreased by a reduced mean and sample size; notional
95% confidence intervals contained the true value 99% and 97% of the time with a sample
size of five and means of 1 and 100 respectively, and 97% and 96% of the time with a sample
size of 100 and means of 1 and 100.

5.4.4 Discussion

The mean, sample size, variability and change in variability all effect the utility of the notional
95% CI for mean FEC reduction produced by the bootstrapping method. The confidence
was lower with increased pre- and post- treatment cv, reflecting the increased probability of
extreme values with increasing variability, although the magnitude of this effect was relatively
low compared to that of low mean and sample size. Confidence was very low when an average
of one pre-treatment egg was counted, but rapidly increased with a mean of five and above.
At first glance this provides partial validation to the practise of removing animals with low

pre-treatment FEC, although the negative effect of the associated reduction in sample size is
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likely to more than outweigh the potential benefits of increasing the mean. Confidence was

generally very low with smaller sample sizes, even with a much higher pre-treatment mean.

The true distribution of data is unknown, therefore the most conservative estimate would
be to use the data from Section 5.3 at which the MCMC method performed worst. This
suggests that a computationally intensive parametric method such as MCMC can and should
be used in preference to the bootstrap method with a sample size of less than 40 with a
pre-treatment mean FEC of 40 counted eggs, or with a sample size of less than 50 with
smaller pre-treatment mean FEC. With larger datasets, the data distribution independence
and reduced computational effort associated with the non-parametric bootstrap procedure
make this method more attractive. These findings are specific to the type of data exam-
ined, and may not be directly applicable to other problems. Cummings et al. (2003) found
bootstrapping to outperform MCMC based estimates when applied to a specific problem in
the field of phylogenetics, although Alfaro et al. (2003) found that MCMC could outperform
non-parametric bootstrapping with smaller sample sizes for similar applications. MCMC has
also been shown to outperform bootstrapping for quantifying variance parameters (Ros et al.,
2002). Given the need to make assumptions with any type of statistical technique, it is sen-
sible to make use of simulation studies to validate these assumptions for complex problems

before relying on inference made from real data.

5.5 Field data analysis

5.5.1 Introduction

There are several variations on the method of carrying out a FECRT. For ruminants, where
larger sample sizes predominate and seasonal variation in FEC with animals is typically
observed, the majority of the methods involve a control group along with the treatment
group so that the change in FEC attributable to the drug can be separated from any change
in FEC due to other factors also affecting the two control groups. With the smaller sample
sizes encountered with equine FECRT data this would not be advisable due to the unavoidable
loss of power in the treatment group, so the tendency is to have all animals in the treatment
group. A further variation often encountered, and used with the 64 groups of horses discussed
in Sections 4.3 and 5.3, is the use of targeted dosing of higher FEC animals with all animals
demonstrating FEC under a threshold being removed from the test (Craven et al., 1998; Coles
et al., 2006). This is done partly to reduce anthelmintic use in the hope of delaying the onset
of resistance, and also partly because of a perceived difficulty in analysing data from low
pre-treatment FEC animals. Unfortunately, due to the effects of within animal variability
discussed previously, it does not necessarily follow that animals removed as a result of a

single low FEC were really the low shedding animals, and some of the higher FEC observed
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may have been due to an unusually high result in a low shedding animal. The result is to
present a further difficulty in analysing the data as a result of the bias towards high FEC for
pre-treatment data, possibly tending the pre-treatment mean towards a higher value than the
‘true’ group mean, and therefore the reduction towards higher efficacy than would otherwise

be expected due to regression towards the mean.

While it has not previously been done, it is possible to use all the pre-treatment data collected
along with the model presented in Section 5.3 to provide a more accurate, or less biased,
estimate of the pre-treatment group mean. Unfortunately, this presents a further difficulty
in analysis of the data in that the post-treatment data, which is only available from high pre-
treatment shedding animals, will be biased towards animals with a higher true mean FEC.
Modelling the missing post-treatment data as randomly missing is therefore not necessarily
accurate. An alternative is to use a more complicated model where the within animal and
between animal variability are modelled separately, and the true FEC reduction is derived
from the reduction in true animal mean for each animal. The pre-treatment animal means
are modelled as part of a group distribution; the post-treatment animal means are derived
from this and therefore follow the same shape but with a change in mean due to varying scale
parameter. There is an additional variability source compared with the previous model so that
pre-treatment variability can arise as a result of between animal variation or pre-treatment
within animal variation, which is fixed between animals. Post-treatment variability can arise
as a result of between animal variability, which is not modelled implicitly but equal to that
pre-treatment, or post-treatment within animal variability, which is scaled relative to the
pre-treatment within animal variability in the same way as the total variability used in the
previous model. This model carries the further advantages that the paired effect of animal
present in the data is modelled explicitly, possibly resulting in a greater power, and a method
of increasing power by repeat sampling from individuals is introduced. The disadvantage is
that two separate layers of variability are modelled, which may impact on convergence and
model stability. This will be especially apparent when only one observation is available per
individual, although the model should be able to partition the variability to an extent by

using the paired pre and post treatment data.

In this section, analysis of the 64 datasets discussed in Sections 4.3 and 5.3 are compared
between the two model types using both the selected data and the full data for each group

of horses. Differences in inference and the impact of model assumptions will be discussed.

5.5.2 Materials and methods

The FECRT data obtained from 64 herds of Danish horses and previously presented in Sec-
tion 4.3 was used to compare the inference made using several different FECRT models. All

datasets had more animals sampled pre-treatment than post-treatment, on the basis of selec-
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tion on pre-treatment FEC being greater than a threshold. The difficulty of analysing data
with all-zero counts has previously been discussed in Section 2.7. Three of the datasets demon-
strated 100% empirical reductions, and so presented difficulties in estimating the change in
variability for both models. These results were included in the analysis, but removed when

making inference on the change in variability.

All datasets were first analysed using the model outlined in Section 5.3, removing the data
from animals that demonstrated a low FEC (denoted ‘partial data’). The data were then
analysed using a paired pre- and post- treatment data model, with both the partial data
and the data including the previously removed pre-treatment data (denoted ‘full data’). In
this model, pre-treatment data are assumed to follow a compound gamma-gamma-Poisson
distribution, with the first gamma distribution describing between individual variability, and
the second gamma distribution describing pre-treatment within individual variability. The
post-treatment data are assumed to follow a gamma-Poisson distribution with a mean which
has been scaled relative to the second pre-treatment gamma distribution for that animal by a
reduction which is common to all animals, and a variability equal to the post-treatment within
animal variability. The post-treatment within-animal variability is scaled relative to the pre-
treatment within-animal variability, and both are common for all animals, a simplifying
assumption, and given the same non-informative prior as used previously and in Chapters 2
to 4. The post-treatment between animal variability is not directly modelled, but is equal
to the pre-treatment between animal variability because efficacy is fixed between animals.
All gamma values were truncated at a lower bound of 1072% as described in Section 3.6.
The parameter representing the change in dispersion was bounded between 0.001 and 1000
to prevent failure of the sampling algorithm associated with selection of extreme values.
The model descriptions are given in Models 5.1 and 5.2. There was significant evidence for
zero-inflation in some of the full datasets used based on the work presented in Chapter 4,
so zero-inflated distributions were used for all models so that results can be more easily

compared.

5.5.3 Results

The median-relative size of the 95% CI and median estimates of efficacy for the two models
using the partial data is shown in Figure 5.5. The individual distribution model produced
lower median estimates for efficacy (p < 0.001), and a borderline significant increase in 95% CI
size (p = 0.07) compared to the paired model. The difference in median estimate between the
two models was correlated to the amount of information in the data as defined by the relative
size of the 95% CI produced by the paired model (Spearman’s rank correlation p < 0.001;
Figure 5.6). The 95% CI for efficacy overlapped between the models in every case. The
median of the median estimates for change in shape parameter for the single distribution

model was 0.22, and the median of the median-relative 95% sizes was 16.4. For the paired
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model, these values were 0.07 for the median and 66.7 for the median-relative 95% CI size.
These values are not directly comparable between the models, although a value of below one
indicates an increase in variability post-treatment for both. The lower 95% CI for change in
shape parameter was below one in every case for both models, and the median was below
one for 50 (82% of datasets with post-treatment counts) of the paired model results and for
45 (74% of datasets with post-treatment counts) of the single distribution model results, of
which 44 were the same datasets. The upper 95% confidence interval was below one in 26
(43%) and 27 (44%) of the datasets for the individual and paired models respectively, of
which 25 were the same datasets. All 64 datasets eventually converged with both models,
although the paired model was more heavily autocorrelated. Using the required number of
samples calculated by the Raftery and Lewis diagnostic as a proxy for the most autocorrelated
parameter, the paired model required significantly more (p < 0.001); with a median (95%
CI) of 79,760 (35,636-187,181) samples compared to 41,172 (22,197-163,798) samples for the

individual distribution model.

The median estimates of efficacy and median-relative size of the 95% CI estimates of efficacy
are compared using the paired model with the full and truncated datasets Figure 5.7. The full
data produced lower median estimates for efficacy (p < 0.001), but there was no significant
effect on the 95% CI size (p = 0.92). Again, the 95% CI for efficacy overlapped between the
models in every case. The difference in median estimate relative to the median estimate for
the full data is shown plotted against the median estimate for the full data in Figure 5.8.

There was no significant correlation (Spearman’s rank correlation p = 0.55). The median
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(95% CI) of the median estimates for change in shape parameter for the full data was 0.31
(0.0007 - 11.22), and the median (95% CI) of the median-relative 95% sizes was 69.9 (4.2 -
1910.1). Compared to the same figures quoted for the truncated data above, the full data
produces a larger median estimate of change in shape with similar sized 95% CI (Figure 5.9).
The lower 95% CI was again below one in every case, with reduced numbers of 39 (64% of
datasets with post-treatment counts) and 15 (26% of datasets with post-treatment counts)

of the median and lower 95% CI estimates below one respectively.

For the full data, the estimates of zero-inflation returned were almost identical to those
produced using the simple ZIGP model Figure 5.10. There was evidence of more than 1%
zero-inflation in ten (16%) of the datasets, with four datasets returning lower 95% CI for

zero-inflation of between 10% and 20%, and one dataset returning a lower 95% CI of 26%.

5.5.4 Discussion

Using the same truncated datasets, the individual distribution model inferred slightly lower
estimates for efficacy, i.e. tended towards lower efficacy, compared to the paired model.
This difference between the median estimates appeared to be greater when the paired model

returned larger relative 95% CI sizes for efficacy, suggesting that this effect is exacerbated by
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a lack of information in the data. This implies that the individual distribution model returns
results that are more heavily influenced by the prior, which given the bias towards higher
efficacy in the datasets relative to the Beta(1, 1) prior would result in a tendency towards lower
values of efficacy. This is consistent with the smaller 95% CI returned by the paired model,
suggesting that the paired model is able to extract more information from the data. However,
the difference in medians may also be due to a potentially greater sensitivity to the effect
of pre-treatment sampling bias as a result of the paired pre- and post-treatment data. The
median-relative 95% CI sizes for efficacy appear to be similar between the models, indicating
that little extra information is gained from the paired effect when only one sample is available
per animal. Both models indicated that variability is likely to increase after treatment,
with the paired model inferring a greater increase. The change in variability is not directly
comparable between the models, as for the single distribution model the variability is applied
to the full distribution of combined within and between animal variability, and therefore
encompasses all the changes in variability that may be expected as a result of the change
in within and between animal variability as a result of treatment. Within animal variability
may change as a result of, for example, increased variability in the fecundity of worms in
response to treatment with anthelmintic. Between animal variability may increase due to
differing efficacy of drug between animals. For the paired model, this change in variability
is applied only to the within animal variability, so in theory a change in variability between
animals after treatment must be directly modelled as an effect of animal on efficacy. However,
where only one post-treatment sample is available it is impossible to separate an increase in
within animal variability from an effect of animal on efficacy, so that the model may have
been compensating for a non-uniform efficacy by increasing the change in variability. This
may explain why the paired model produced smaller estimates for the change in shape; in
order to effect the same post-treatment variability a larger adjustment would have to be made
to the within animal variability alone than the total variability. Ideally these effects would
be separated using a distribution of efficacy, or a random effect of animal on efficacy, which
would allow separate inference on the change in within animal variability and the change in
between animal variability. This would require sufficient replicated samples from each animal
to make the model identifiable, which is not currently available but would be interesting for
a future study. The change in between animal variability would be modelled indirectly as a
result of the distribution of efficacy, but could be calculated or at least approximated using
the returned chains. This would allow direct comparison of the change in within and between

animal variability as a result of anthelmintic treatment.

Three of the datasets had all zero count observations at post-treatment, and produced large
95% CI for efficacy and high estimates of post-treatment variability using the individual model
for the reasons explained in Section 5.3.4. Although the variability sources are formulated
slightly differently in the paired model, a similar effect on estimates for efficacy and change
in within animal variability is seen with only zero counts post-treatment. The weighting

towards higher values of post-treatment mean driven by the prior on efficacy is compensated
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for by inferring a large post-treatment variability and large change in variability from pre-
treatment variability. As discussed previously, this inference is a result of the prior used for
efficacy and the lack of information in the data; as there are no post-treatment counts from
which to infer the variability it would be inappropriate to use the model to try to estimate
this. Therefore, estimates of cv produced by these models are ignored, although inference on
efficacy is still appropriate because this is data driven. More useful analysis of these data
could be achieved using more informative priors for efficacy and/or the change in variability,

if such information were available.

When applied to the full data, the paired model produced lower estimates for efficacy than
when applied to the truncated data. This supports the supposition that selecting pre-
treatment data on the basis of high FEC biases the resultant efficacy estimate towards higher
values, forcing the drug efficacy to appear greater than it truly is. Figure 5.7 shows a cluster
of four points with low efficacy where this effect is much stronger, suggesting that a decrease
in efficacy may exaggerate the effect of selection, although Figure 5.8 shows that the relative
difference is not correlated to efficacy. The same outlier point can be seen on both graphs,
and is likely due to a lack of information in the data making a large difference to the me-
dian. The 95% CI estimates overlapped between the models in every case. This finding is
a result of the data collection not the analysis technique, and so applies equally well to the
use of the WAAVP or bootstrapping methodologies previously discussed. Use of the partial
dataset compared to the full dataset also resulted in a difference in inference on the change
in variability. This is also likely to be due to the effect of the selection of the pre-treatment
data; variability is reduced in the pre-treatment data so a greater increase in variability is
required to affect the same value of post-treatment variability. However, the models were
relatively consistent with the direction of change in variability - even with the full data the
possibility of an increase in variability was retained with all models, and there was sufficient
information to confirm this in 28% of the datasets. It is not clear whether this reflects an
increase in within animal variability, between animal variability or both, although there are

reasonable biological arguments for an increase in both sources of variability.

5.6 Meta-population modelling

5.6.1 Introduction

The 64 datasets of equine FECRT data were all obtained from the Equilab Laboratory, and
represented voluntary submission of FECRT data from a wide variety of equine establish-
ments across Denmark. All reductions were obtained using the same anthelmintic Pyrantel
embonate, and farms are likely to be similar in many respects such as the same species,

similar age demographic etc, although the data were not taken at the same time of year on

147



5.6 META-POPULATION MODELLING

each farm. It is therefore possible to analyse all 64 datasets together using a single meta-
population MCMC model. The paired type model is most appropriate when treatment is on
the basis of pre-treatment FEC, so only that model will be used. The results obtained will be

compared to the results from the analysis of the herds separately and these results discussed.

5.6.2 Materials and methods

The paired data model discussed previously is adapted so that the mean efficacy and change
in within animal variability for each dataset are random effects derived from a gamma dis-
tribution describing all datasets. The pre-treatment mean, variability and zero-inflation are
fixed effects and independent for each farm. The mean efficacy is given a Beta(1,1) prior
to restrict this value to less than one, and the mean change in shape parameter a diffuse
lognormal parameter with a mean of one and log precision of 0.01. The inverse of the shape
parameter of the gamma distributions describing efficacy and change in shape are given log
uniform priors between 0.001 and 1000. Due to the slower updating rate because of the
large amount of data, the maximum convergence time was extended to 12 hours. The model

specification is given in Model 5.3.

5.6.3 Results

Figure 5.11 shows the agreement between median and lower/upper 95% CI estimates pro-
duced by the metapopulation and individual paired models for efficacy of each of the 64
datasets. The regression line shown for each is less than one, indicating that the metapopula-
tion model produced less variation between datasets for all estimates. The lower 95% CI and
median estimates for datasets with no post-treatment observations (shown in triangles) were
particularly altered by use of the metapopulation model. The median-relative size of the 95%
CI for efficacy produced by the metapopulation model were smaller than those produced by
the individual paired models for 60 (94%) of the datasets. The 95% CI for efficacy overlapped

between models for each dataset.

The posterior probability densities for the mean and cv of the distributions describing the
efficacy and change in shape parameters are shown in Figure 5.12. The median (95% CI) of
the mean efficacy was 0.065 (0.053 - 0.080), corresponding to a median (95% CI) estimate
of 93.46% (92.02 - 94.74%) for the metapopulation mean FEC reduction. The median (95%
CI) estimate for the mean change in shape parameter was 0.35 (0.20 - 0.57) indicating that
the average total variability after treatment is greater than that before treatment. There was
sufficient information in the data to estimate the cv of the efficacy distribution (the variability
in efficacy between farms) and the change in shape distribution (the variability in change in

the change in variability after treatment between farms) with only a relatively wide 95% CI,
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Figure 5.11: Median (black) and 95% CI (red-blue) estimates for efficacy produced
by the metapopulation model (y axis) and the individual paired models (x axis)
from analysis of 64 Danish FECRT datasets - regression lines shown dotted, agreement

line (slope 1, intercept 0) shown dashed. Datasets with no post-treatment observations in
triangles.

although it appears that the change in variability is more consistent between farms than the

efficacy.

5.6.4 Discussion

As would be expected, fitting farm efficacy as a random effect derived from a single global
distribution dramatically reduced 95% CI for estimates of efficacy on individual farms. The
metapopulation model produced higher estimates for 62 (96.9%) of the lower 95% CI, and
lower estimates for 51 (79.7%) of the upper 95% CI, which is a consequence of the random
effects model. There also appeared to be a tendency for the metapopulation model to shift
the posterior density for each farm efficacy towards the metapopulation mean value compared
to the individual models, evidenced by the slope of the regression lines shown in Figure 5.11.
This is a result of the assumption that farm efficacies are derived from a common distribution,
making outliers appear to be as a result of extreme random variation rather than an extreme
true efficacy. The validity of this assumption depends on the validity of the distribution
used to describe these efficacies which is difficult to assess; although this effect decreases as
information about farm specific values increases. The variability in efficacy between farms
could be the result of the variability in farm management practices, age of the animals, time
of year when the sampling was performed as well as differences in the resident population
of parasites. However, this is not necessarily a continuous distribution and may not be well

approximated by the gamma distribution.

The distributional assumptions of efficacy and the change in shape parameter also allow

data where all post-treatment counts are zero to be analysed. The change in shape pa-
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Figure 5.12: Posterior probability densities for the mean (blue) and cv (red) of the
efficacy (top) and change in shape parameter (bottom) from metapopulation
modelling of 64 Danish FECRT datasets

rameter for the farms with no post-treatment observations is sampled from the distribution
informed by datasets from which information about this parameter is available. Effectively,
the post-treatment shape parameter is informed from the other datasets rather than from the
prior. The efficacy parameter for these datasets is also partially informed from the efficacy
parameter in other datasets, rather than the Beta(1,1) prior used in the individual model.
This additional information allows the confidence interval size for efficacy to be reduced to a

greater degree than for other datasets (Figure 5.12).

The 95% confidence interval for the mean efficacy was 92.0 - 94.7%, indicating that the mean
efficacy of the metapopulation is likely to be below 95%; the published efficacy value for
Pyrantel. However, the interpretation of this value is not clear because no similar efficacy
studies exist with which to compare it. Conceptually, the variability in efficacy between
farms could arise due to several factors, including systemic biases in management factors and
the age and breed of animals, along with differences in susceptibility of worm populations

between farms. The posterior density for the cv of the efficacy distribution indicates that
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efficacy is quite variable between farms, implying that these factors have an appreciable effect
on the observed variability in efficacy between reduction tests performed on different farms.
Animal age was recorded in the data so could have been incorporated into the model, but
there is no way to separate the effect of management practises and worm susceptibility on
farm efficacy. It would be reasonable to assume that a large proportion of this effect is due to
differences in worm susceptibility, but a detailed study to confirm this would be worthwhile.
One difference between the meta-population and individual based models is the restriction
on farm efficacy. In the individual model, farm efficacy is restricted to values of greater
than zero, but in the meta-population model only the mean efficacy has this restriction and
individual farm FEC reductions can be negative. This could have been addressed using a
bounded gamma distribution, although this would not have had any effect because none of

the estimated farm reductions were below 75% (Figure 5.11).

The 95% confidence interval for the mean change in shape parameter did not include one,
indicating that there is a tendency for the coefficient of variation in FEC to increase after
treatment with anthelmintic. This could be due to randomly varying efficacy of drug between
animals, varying dosing between animals, or an increase in within animal variability after
treatment due to increased variability in the fecundity of worms after treatment. This increase
in variability is observed alongside a decrease in mean, so it is also possible that there is a
biological explanation for an increase in cv with lower FEC. For example, if worms release
eggs in boluses, a larger number of worms would decrease the variability in total fecundity
because the bolus release of eggs is averaged out over more worms. Interestingly, the posterior
density for the estimate of the cv of the distribution of change in shape indicated a relatively
low cv, suggesting that the magnitude of the change in cv after treatment is more consistent
between farms than the magnitude of the change in efficacy. This implies that the variability
in efficacy between animals on a farm may be quite consistent between farms. Further studies

to validate this would certainly be of benefit.

All the inference presented here should be interpreted with a degree of caution as the as-
sumptions that farm efficacy and the change in variability can be described by a gamma
distribution may not be valid. This would not be true if the true distributions were multi-
modal, which might reasonably be expected if anthelmintic resistance was dichotomous rather
than graded, i.e. present to a degree on all farms. Adaptation of the model to allow separate
distributions of these parameters for farms where resistance is and is not present may provide
different inference, although this would require a definition of ‘resistance’ that is currently
lacking and auto-correlation of the mixed model would likely be very high. Further studies
to determine the validity and impact of the meta-population assumptions is required before

such inference can be relied upon.
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5.7 Discussion

Equine FECRT data are frequently characterised by small sample sizes, low means and a high
degree of variability (Uhlinger, 1993). Based on the results presented here, it would appear
that such data are most appropriately analysed using MCMC, although the bootstrapping
procedure is to be preferred with sample sizes of 50 or more due to the distribution inde-
pendence and reduced computational complexity involved in the analysis. Analysis of data
with treatment and untreated control groups is also possible using MCMC, but has not been
addressed in this chapter. The main reason for this is that equine FECRT datasets tend to
be small, so halving the sample size on which to base a reduction is quite detrimental (Coles
et al., 1992; Pook et al., 2002) and not easily justified. Where sufficient data are available
to do this, the additional inference on change in ‘baseline’ FEC may be valuable if there is
reason to suspect that it may be changing, although work in sheep suggests that little is to be
gained in terms of diagnostic test sensitivity and specificity from such a procedure (McKenna,

2006b).

The practise of selection of animals for a FECRT on the basis of pre-treatment FEC is
currently routine (Craven et al., 1998; Coles et al., 2006). This may increase the utility of the
WAAVP and bootstrapping methods by ensuring that the pre-treatment mean is high enough
to mitigate some of the disadvantages associated with these techniques, but has the serious
disadvantage that the effective sample size is reduced, and is not necessary for the MCMC
method because the error structure of the data is inherently accounted for. Furthermore,
based on the results presented here, it is evident that selection of animals for a FECRT on the
basis of a single high FEC will bias the result towards a higher than true mean efficacy using
any analysis method unless this effect is taken into account. Use of the paired data MCMC
model is able to do this, and has the added benefit of allowing several replicate samples to
be taken from each animal to add extra information about the pre-treatment mean FEC.
Use of replicate post-treatment samples would require a modification to the model adding an
effect of animal on efficacy so that the change in within animal variability can be modelled
independently to the variability in efficacy between animals, and possibly incorporating effects
of age or gender etc. This modification would likely reduce identifiably, but this should be
improved as more and more samples per animal are modelled. Given the relatively poor
power usually encountered with equine FECRT data especially, this alternative may provide
a useful way of increasing the utility of the method albeit at the expense of laboratory time.
The additional inference on change in variability at different levels, as well as the potential to
robustly examine the effect of age and gender on efficacy, would provide an interesting avenue
for future work with large datasets. The inclusion of a separate parameter describing the
distribution of efficacy to the paired model would also allow the true efficacy to be analysed
appropriately at an individual animal level. This is not possible using the individual model,

where the pre and post treatment means represent single sample means not animal means,
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and with the paired model without a distribution of efficacy, where the post-treatment mean
does not reflect variability in efficacy between animals. This further inference could provide
the considerable advantage of allowing quarantine or removal from pasture of individuals
with the lowest true efficacy, preserving anthelmintic efficacy on the premises for as long as

possible.

However, the paired model does carry several drawbacks. The most obvious is the increased
auto-correlation caused by segregating the within and between animal variability, which is
only a computational issue as long as identifiably is sufficient to allow convergence given a long
enough run time. There are also several assumptions inherent to this model specification that
are not made with the simpler model. In order to reduce the number of degrees of freedom,
the within animal variability is common to all animals in the model. This is definitely a
simplifying assumption, the impact of which is not clear and the validity of which can not
be assessed due to the absence of information in the data or the literature. Additionally,
the change in variability both within and between animals is modelled as being independent
of the mean. It is possible that the change in variability may be higher when the mean of
an animal is lower, for example as a result of time-clustered fecundity of individual worms
having more of an effect with a smaller number of worms. The simpler model is robust to all
of these potential effects because individual counts are assumed to be randomly distributed
over a distribution incorporating all potential sources of variability combined. This model is
therefore more conservative in terms of model assumptions, but cannot be used when animals
are selected for treatment on the basis of FEC, which may be legitimately required in order
to delay emergence of anthelmintic resistance, and is unable to benefit from the extra data

when multiple FEC per individual are available.

It is also apparent from the wide confidence intervals for efficacy presented in Section 5.5 that
analysis of a single equine FECRT dataset will often prove inconclusive. This is consistent
with the conclusions made by Miller et al. (2006) that the results of a FECRT based on
an arithmetic mean reduction can be inconsistent. The analysis of data from multiple sites
presented in Section 5.6 could yield more conclusive results, but carries several un-testable
assumptions of meta-parameter distributions and may also be less sensitive to a reduced
efficacy at a single site. Use of a bootstrapping procedure to analyse data from multiple sites
as advocated by Vidyashankar et al. (2007) also carries similar drawbacks. Alternatively, the
utility of the method could be increased by performing a suitable sample size calculation prior
to performing the FECRT, and increasing the number of samples taken and/or reducing the
egg detection threshold accordingly. This may not be practical for routine clinical tests due
to the added cost and time associated with taking more samples and counting more eggs.
A more useful solution might be to use a longitudinal approach to identify any result that
is considered ‘exceptional’; indicating a potential cause for concern to be investigated (for
more details, see Reinke (1991)). A more detailed FECRT with multiple samples taken from

each animal, and a model similar to the paired model presented in Section 5.6, could then be
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used when the data indicated a potential or arising problem. This is similar to the statistical
process control approach that has been used extensively in the manufacturing sector, and
more recently as an aid to improve medical care (Duncan et al., 2005), monitor adherence
to clinical guidelines (Peek et al., 2008), and as a tool to improve epidemiological disease
surveillance (Williamson and Weatherby Hudson, 1999; Morton et al., 2001; Arantes et al.,
2003). The application to anthelmintic resistance surveillance may represent both a more
efficient use of resources, and a greater overall diagnostic test sensitivity and specificity, than
the current use of repeated reduction tests viewed in isolation and without the necessary

sample size calculations.

In this chapter, inference has been made only on the true FEC reduction, somewhat incor-
rectly abbreviated to ‘efficacy’, with no attempt made to define ‘resistance’. This is mainly
because defining a dataset as susceptible or resistant requires a figure below which the true
FEC reduction is incompatible with susceptibility to the drug, which is often unknown (Bauer
et al., 1986; Martin et al., 1989; Kaplan, 2002; Vidyashankar and Kaplan, 2005). There are
currently a lack of general guidelines on an appropriate figure to be chosen for the FEC reduc-
tion. Studies of the FEC reduction after treatment with the same formulation of Pyrantel as
used to generate these data have found reductions between 93% and 99% (Boersema et al.,
1995; von Samson-Himmelstjerna et al., 2007). A figure of 95% seems to be tentatively
accepted as the best estimate of the efficacy of Pyrantel in a naive population, although
Bauer et al. (1986) used a lower value of 90% to define resistance. This is at least partly
attributable to a confusion in the non-statistical literature between the effects of magnitude
and significance; the target FEC reduction often appears to be adjusted on the basis of an
anticipated lack of confidence in inferences made. Compounding this, the current guidelines
based on interpretation of the mean reduction and lower 95% confidence interval while ig-
noring the upper 95% confidence interval also precludes any distinction to be made between
datasets that lack evidence for susceptibility from datasets where resistance is likely. Both
the bootstrapping and MCMC methods return a probability distribution for efficacy in place
of the mean and 95% CI returned by the WAAVP method, allowing more intuitive inference
to be made from the output. The efficacy of reductions could be classified according to the
probability that the true reduction was below a given threshold (p), allowing the distinction
to be drawn between cases where there is clear evidence for resistance and cases where there
is insufficient evidence to demonstrate acceptable efficacy. Both the bootstrap and MCMC
procedures also allow any figure to be used for the required FEC reduction, depending on the
minimal acceptable efficacy of the drug in each clinical situation. This could be the published
efficacy of the drug used, or a figure chosen to reflect the point at which other drugs or control
methods would provide better parasite control. If standardised in the veterinary parasitology
literature, such a classification scheme could improve the interpretation of FECRT results

substantially.

Analysis of equine FECRT is compounded with difficulties introduced by high variability

154



5.7 DISCUSSION

and small numbers of observations (Uhlinger, 1993; Kaplan, 2002; Miller et al., 2006; Coles
et al., 2006). Based on the results presented here, such data are best analysed using para-
metric techniques that describe the known sources of variability within the data in order to
make the most informed inference. Meta-population modelling can aid inference on individ-
ual farms, although the distributional assumptions made by using such techniques require
further investigation before any inference made can be relied upon. Analysis of data with no
post-treatment observed eggs is especially difficult, and is likely to yield inconclusive results
without prior information on the expected efficacy and/or post-treatment variability. This is
not a limitation of the analysis technique per se, rather a function of the lack of information
in the data. Alternative approaches such as bio-equivalence testing could be investigated for
analysis of these data, or inference from previous studies in similar establishments used to
generate prior distributions. Most usefully, repeated observations could be made for each
animal in order to reduce the likelihood of failing to observe eggs. Finally, the consequences
of selecting animals for a FECRT based on a single high pre-treatment FEC need to be
addressed during the analysis of such data. If targeted dosing of animals is required on
the grounds of anthelmintic resistance then the resultant data should be analysed using a
model with appropriate variability structure. If targeted dosing is not necessary, then analy-
sis of FECRT using an appropriate technique is best informed by use of all available animals

regardless of pre-treatment FEC.

One of the main conclusions of this chapter has been that the analysis of equine FECRT is
frequently associated with a large degree of uncertainty in the true efficacy, as a result of a
lack of study power. Despite this, prospective power calculations are rarely, if ever, performed
prior to undertaking a FECRT or FEC study. In the next chapter, methods of performing
such calculations are developed and parameterised using inference on the variability structure

of FEC gained from intensively sampled FEC data.
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Variability and repeatability of FEC



Variability and repeatability of FEC

6.1 Introduction

The FEC test is the most widely used method of quantifying the nematode parasite burden
of domestic animals, and is essential for both routine surveillance of parasite burdens as well
as surveillance for anthelmintic resistance (Coles et al., 2006). Despite this, the statistical
methodology behind the FEC is poorly understood, and the usefulness of any information
obtained from these data are therefore also poorly understood. Studies have been made to
attempt to quantify repeatability in FEC (McKenna, 1981; Hoste et al., 2002; Miller et al.,
2006), and even to quantify the variability sources (Mes, 2003) although with limited statis-
tical vigour (Morrison, 2004). It is currently therefore very difficult to perform suitable pre-
cision analysis for FEC data and prospective power calculations for FECRT data, frequently
leading to under-powered studies with equine FECRT datasets (as discussed in Section 5.5).
A quantitative study of these potential variability sources is therefore essential to allow future
studies to be undertaken with an adequate probability of obtaining a useful conclusion, and

may suggest ways in which the procedure could be altered to improve repeatability.

The variability structure of FEC data is likely to be quite complex, with sources of variability
aggregated at different levels of the biological system introducing a nested structure to the
data that precludes the use of simple uni-modal continuous distributions to analyse the
data. The use of intra-class coefficients (Fisher, 1954), which have been used to separate, for
example, variability within an rater to variability between raters (Shrout and Fleiss, 1979)
and the structure of variability within and between families (Stanish and Taylor, 1983),
present one possible solution. However, it is also possible to model the variability structure
directly using similar MCMC methods to those used to analyse FEC data previously, and
this approach will be used here. The variability of FEC are first considered at an individual
animal level before being expanded to multiple animals, and the parameter estimates used
to inform development of a precision analysis method for FEC and FECRT data. Although
throughout this chapter an arithmetic mean simulated egg count is used to calculate the
precision, the results also apply to more statistically complex methods of calculating the

mean egg count such as maximum likelihood analysis or MCMC, in which case the precision
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will reflect the relative size of the posterior 95% CI produced.

6.2 Quantifying variability within an individual

6.2.1 Introduction

To improve the usefulness of the standard FEC procedure, it is necessary to first identify the
source of the observed variability in FEC. It is widely understood that the FEC measurement
varies even when applied to individual animals. The source of this variability has not been

well studied but would theoretically be as a result of some combination of the following:

1. The variability in egg shedding rate within an animal over a long period of time, due

to changes in worm burden

2. The variability in egg concentration between faecal piles over a short period of time,
due to variable fecundity of a relatively fixed population of worms and variability in

faecal consistency

3. The variability in egg concentration between areas or boluses of the same faecal pile,

due to incomplete mixing of eggs within faeces on a wide scale

4. The variability in egg concentration between samples taken from the same area of a

faecal pile, which can be further subdivided into:

(a) The degree of aggregation of eggs on a local scale within faeces

(b) The amount of faeces taken per sample; for example 3 grams in the standard
method

5. The variability introduced by the McMasters technique itself, due to factors such as

errors in weighing faeces and the effect of sieving material

6. The variability introduced by the process of counting eggs

Faecal egg counts are most frequently used to obtain a ‘snapshot’ of the parasitism of a
group of animals at a single point in time, so that the variability in egg shedding rate within
an animal over a long period of time, for example over a grazing season, will not have an
effect. This source of variability will therefore be discounted. The variability due to the
counting process would be expected to follow a Poisson distribution if eggs are randomly
mixed by the process of blending and mixing, but may in reality follow an over-dispersed

Poisson distribution as a result of clumping of eggs within a sample even after mixing. Of
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the remaining four potential sources of variability, there is little available information in the
literature concerning their relative importance. The McMasters technique itself has been used
for several decades and has proved to be useful and reliable in sheep, although it has been
suggested that the process does not recover all eggs available in the sample [Mike Stear pers.
comm.|. If the proportion of eggs recovered is fixed, i.e. the McMasters technique recovers
exactly the same proportion of eggs in each sample, then this will not represent a source of
variability because the mean of each sample is scaled equally. If the proportion of eggs is not
fixed, i.e. the proportion of eggs recovered varies randomly, then this will introduce a source
of variability into the resultant FEC.

It is possible to quantify these sources of variability 2-6 by repeated sampling of an individual
over a short space of time, with several samples taken from each area of each faecal pile, and
the McMasters process replicated several times on each sample so that the variability sources
can be separated and quantified. The variability due to the process of counting the eggs can
be quantified separately by counting the number of eggs in several McMasters chambers from
the same sample and recording the results individually. It is also possible to separate the
variability introduced by the McMasters technique from the variability in egg concentration
between samples taken from the same area of a faecal pile by varying the amount of faeces
taken per sample and examining the relationship between the mean and the cv. This allows
the sources of variability that are independent of the mean total egg content of the sample,
with a fixed cv, to be separated from the sources of variability that are dependent on the
total egg content of the sample, with a variable cv. The latter represents variability in the
mean egg count of the homogenised sample of faeces, which would be expected to vary more
with a smaller homogenised sample than with a larger homogenised sample. The former
represents any source which is independent of the size of the sample, such as variability
introduced by inaccuracies in weighing faeces or measuring liquid levels as long as the standard
deviation of these is proportional to the mean. These sources of variability will be attributed
to the McMasters technique, although it is possible that further mean-dependent sources
of variability introduced by the McMasters technique exist. Assuming that both process
result in a gamma distribution, the total effective cv of the variability due to the McMasters
technique (that which is independent of the size of the sample) and the variability between
samples taken from the same area of a faecal pile (that which is dependent on the size of the
sample) is given by Equation 6.2 (for the derivation see Appendix B). It is therefore possible
to separate the two sources of variability by examining the effect of varying the amount of
faeces used on the cvyysq;. The combined variation of two independently sampled distributions

is given by:

CUtotal = V V12 + cv92 + cv12 X cvg2 (6.1)
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Where cvyorq is the effective combined coefficient of variation (cv), cvy is the cv in the first
distribution, and cvy is the cv in the second independently sampled distribution. This can
be extended to consider the average of multiple samples from one of these distributions by
dividing the cv of this distribution by the square root of the number of samples taken, or the
relative size of the single homogenised sample taken. When applied to the combination of

variability due to the McMasters technique and the variability between replicates, this gives:

2 2
B ) 01)2) ) (cv2>
CUtotal = A/ CU1 + < +cve X | — 6.2
o \/ V9 V9 (62)

Where cvyorq is the effective combined coefficient of variation (cv), cvy is the cv due to the

variability of the McMasters technique, cvs is the cv due to the degree of aggregation of eggs

on a local scale within faeces, and ¢ is the amount of faeces (in grams) used per sample.

The remaining sources of variability 2-3 can be quantified by taking samples from several
faecal piles produced by the same animal, and from different areas or boluses of a single faecal
pile. The resultant data could then be analysed using MCMC to provide parameter estimates
for the cv introduced at each level of variability within an individual, and consequently the
total variability that would be expected from samples taken from an individual over a short
period of time. This could then be compared to the total variability reported between similar

groups of animals to quantify the true variability between animals.

6.2.2 Model specification and validation

6.2.2.1 Introduction

There are several different ways of specifying an MCMC model to quantify the sources of
variability 2-5 given above. The first is a multi-level hierarchical model, using a series of
compound distributions to describe the variability in the true mean egg count at each of
the sources of variability. At each level of the model, the mean of the distribution is used to
populate the distribution at the higher tier. This formulation has the advantage of estimating
the mean egg count, but multi-level hierarchical models are frequently associated with poor
convergence. A second formulation could involve modelling the variability between egg counts
at each level separately, calculating the observed variability at each level using Equation 6.3
(again, see Appendix B for the derivation of this formula). The mean of the distribution at
each level could be modelled as part of the distribution at the tier above, using a different
value for effective variability to reflect the removal of variability at that level, preserving the

hierarchical part of the model where this information is available.
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cv.obs; = \/cv.obsi,lz + cv.actual® + (cv.obsi,l2 * cv.actualiQ) (6.3)

Where cv.obs; is the effective coefficient of variation (cv) at level i, cv.obs;_; is the effective
cv at level i — 1, and cv.actual; is the actual cv due to the variability described at tier i. The

variability at tier one is calculated using Equation 6.2.

In order to evaluate which of these two choices of model is most useful, a comparison of the

accuracy of the estimates obtained using each model was performed.

6.2.2.2 Materials and Methods

Simulated datasets were generated using a series of compound gamma distributions to de-
scribe the variability around the mean value at each level. For each dataset, a mean faecal
egg count of 250EPG was used. Twenty faecal piles were simulated from a single simulated
animal, with 15 of these piles represented by a single sample and the remaining five repre-
sented by twenty samples from different locations. Five of these samples were represented
by 30 replicates, ten of each using 1g, 3g and 9g of faeces. The remaining 15 samples were
represented by a single replicate. For each replicate, the number of eggs in ten McMasters
chambers was simulated using a Poisson distribution. This resulted in a dataset consisting

of 8400 egg count observations from 840 replicate samples.

The variability between faecal piles, between different areas of a faecal pile, between different
samples from the same area, and the variability introduced by the McMasters process were
varied between datasets. Ten datasets were generated using every combination of high (cv =
0.5) and low (cv = 0.1) values for the four possible sources of variation, giving a total of 160
datasets. Models 6.1 and 6.2 were used to analyse the 160 datasets. Gamma distributions
were used to model the variability at each level, and priors consistent with those used for
Model 2.2a were used for the variability at each tier. Each model was allowed to run for a

maximum of five hours to achieve convergence.

6.2.2.3 Results

Figure 6.1 shows the number of samples required according to the Raftery and Lewis diag-
nostic by each model. The non-hierarchical model required fewer samples (paired Wilcoxon
p < 0.001), indicating a lower degree of auto-correlation than the hierarchical model. The
non-hierarchical model failed to converge after the initial 10,000 samples for seven (4.4%)
of the datasets compared to 32 (20.0%) of the datasets for the hierarchical model, also as
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a result of a lower autocorrelation. Both models converged within the time allowed for all

datasets.

A comparison of the proportion of 95% CI containing the simulation parameter, mean relative
bias, mean relative RMSE and mean relative 95% CI size of the estimate for each of the four
modelled sourcees of variability for both models is shown in Figure 6.2. The mean relative
95% CI size and relative RMSE were very similar between the two models, although the
hierarchical produced smaller relative RMSE for three of the four sources of variability and
smaller 95% CI for all. The hierarchical model also produced smaller bias for all sources of
variability, and a proportion of 95% CI containing the simulation parameter that was closer

to the optimal 95% for three of the measures.

6.2.2.4 Discussion

The accuracy of the inference on each of the four sources of variability was quite similar
between the two models, although the hierarchical model appeared to perform better in this
regard. The variability between faecal boluses and due to the McMasters technique produced
the smallest bias, relative RMSE and 95% CI size for both models, possibly indicating that the

data contained the most information about these parameters. The proportion of simulation
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Figure 6.1: The required number of samples calculated by the Raftery and Lewis
diagnostic for the hierarchical compared to non-hierarchical MCMC model for each
of the 160 simulated hierarchical FEC datasets - equality line shown dashed
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Figure 6.2: The proportion of 95% CI containing the simulation parameter, mean
relative bias, mean relative RMSE and mean relative 95% CI size of the estimate
for each source of variability produced by the hierarchical (y axis) and
non-hierarchical model (x axis), from analysis of the 160 simulated hierarchical
FEC datasets - variability between faecal piles shown in red, variability between faecal boluses
in blue, variability between samples from the same bolus in purple, variability due to the
McMasters technique in cyan.
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parameters inside the 95% CI estimates produced by each model were in all cases less than
95%. This is likely an effect of the prior on the inverse shape parameter tending towards lower
values of cv, and could be reduced by using uniform priors on cv rather than log-Uniform
priors on the inverse shape parameter for consistency with the simulation distributions. The
hierarchical model produced 95% CI that were more appropriate for three of the four sources
of variability, possibly indicating that the hierarchical model was somehow able to extract
more information from the data. Alternatively, the superior performance may be as a result
of reduced reliance on Equation 6.3 in the hierarchical model resulting in fewer sampling
issues associated with the calculation. However, the apparent improved performance may

also be a chance observation.

In the model formulations presented, the variability at each level was assumed to follow a
gamma distribution. The cv is a strictly positive parameter, the genesis of which could be
considered as a series of multiplicative events, suggesting that a lognormal distribution may
be appropriate. This would also be consistent with the usual implementation of a random
effect. However, model specifications using the lognormal distribution produced notional
95% CI containing the true parameter only a small proportion of the time, possibly because
Equation 6.3, which was derived from the gamma distribution, does not well approximate to

the combination of lognormal distributions.

An alternative to using Equation 6.3 in the model specification to separate the variability
between samples and due to the McMasters technique could be to model the process more
literally, by modelling one distribution representing the variability between 1g sub-samples
and sampling from this distribution repeatedly according to the number of grams of faeces
used. The mean of these samples could then be used as the mean of the distribution rep-
resenting the McMasters variability. This has the advantage of reflecting the process more
intuitively, but introduces a considerable amount of extra computational effort and produces

results that equivalent to using Equation 6.3 to calculate the combined distribution.

One disadvantage of using the hierarchical model appears to be the increased auto-correlation,
resulting in a longer burn-in period before convergence is achieved and a larger number of
required samples to compensate for the increased Monte Carlo error. This auto-correlation
is caused by the inter-dependence of each of the four sources of variability using this model
formulation, which is partly overcome by using the non-hierarchical model. This increased
auto-correlation means that the hierarchical model has a higher computational requirement,
but as long as the sample size and burn-in period are increased accordingly should not
detrimentally affect the inference made. The hierarchical model appears to produce more
accurate results than the non-hierarchical model, so this formulation will be used in the

analysis of real data.
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6.2.3 Analysis of equine FEC variability data

6.2.3.1 Introduction

FEC are widely used in horses, and in contrast to the usual implementation with sheep and
cattle, are often used as the basis to quantify the parasite burden of individual animals rather
than to obtain an indication of the parasite burden of the group as a whole. Factors affecting
the variability of FEC from a single individual are therefore more important in horses than
in other domestic species. In order to quantify potential sources of this variability, data were
obtained from four horses by intensive sampling of faecal piles over a short period of time.
The variability introduced by the process of counting eggs (item 6 on the list of variability
sources given in Section 6.2.1) was then examined using a gamma-Poisson model to quantify
the over-dispersion, before quantifying the remaining sources of variability within an animal
using Model 6.1.

6.2.3.2 Materials and methods

Samples were taken from two individually stabled animals (denoted Animals 1 and 2) for
a five day period in December 2007, taking faeces from the floor of the stable during the
early morning and mid afternoon. The animals were selected from a group of six on the
basis of having the highest worm egg count a fortnight previously, and had been stabled
without grazing for four or five months prior to the sampling. For one of the ten sampling
events, five samples of faeces were taken from different areas of the faeces and analysed
separately, with the McMasters procedure performed on five separate 3g sub-samples for one
of these five samples, and the remaining four samples having only one 3g sub-sample taken.
The remaining nine sampling events involved a single sample of 3g of faeces taken from a
randomly selected faecal bolus. The number of eggs in ten McMasters chambers were counted

for each sub-sample.

Further samples were taken from two animals (denoted Animals 3 and 4) over a five day
period in December 2008. These were also stabled individually, in a different location to the
animals from the previous year. A more intensive sampling procedure was followed with these
animals, with ten large samples being taken from the same faecal pile on two occasions. Two
of these samples were divided into five 1g sub-samples, five 3g sub-samples and five 9g sub-
samples. The McMasters procedure was performed on a single 9g sample for the remaining
eight samples, and from each of the samples taken at the remaining eight sampling events.

The number of eggs in six McMasters chambers was counted for each of these samples.

The resultant 168 sets of six replicate counts from individual samples, and 36 sets of ten
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replicate counts, were analysed to quantify the amount of extra-Poisson variability present.
A gamma-Poisson model was fitted to the 204 sets of replicate counts, assuming a common
cv but allowing the 204 means to vary independently as fixed effects. The prior for cv used

was identical to that used for Model 2.2a.

A slightly modified form of the model developed in Section 6.2.2 was then used to analyse all
the data, allowing data from the four animals to be analysed together. The daily variability
(variability between faecal piles) and sample variability (variability between faecal boluses)
were modelled as fixed effects nested within animals, allowing each animal to have a separate
value for each. The replicate variability (variability between samples from the same bolus) was
modelled first as a fixed effect nested within animals (Model 6.3), and then as a single value
common to all animals (Model 6.4). The McMasters variability (variability introduced by the
McMasters technique) was fixed between animals for both models. The results obtained with
these models were compared to results obtained with a Uniform(0.001, 100) prior directly on
cv for each source of variability (Model 6.3a) to ensure that the results presented are robust

to the choice of prior.

6.2.3.3 Results

Only strongyle eggs were detected in the faecal samples, although it was not possible to
speciate the eggs further. The minimum, maximum and arithmetic mean of the observed
counts is given in Table 6.1. Animal 1 had the highest mean FEC, with Animals 2 and 4
having the lowest. Negative, or zero count, observations were made for all animals on at
least one occasion. There was a large degree of variability in faecal egg concentration, from
a minimum count of two (100EPG) to a maximum of 17 (850EPG) in the same faecal pat
of Animal 1 (mean 454 EPG). If a single FEC had been used to determine if the true FEC
of this animal was below a threshold of 350EPG, a false negative diagnosis would have been
made in 69 of 180 (38.3%) observations.

The median (95% CI) estimate of the cv of the extra-Poisson variability due to the counting

process was 0.028 (0.01- 0.11). Figures 6.3 and 6.4 show the posterior probability densities

Table 6.1: Empirical summary of observed FEC from four animals over a five day
period, with 18 samples each taken from Animals 1 and 2 and 84 samples each
taken from Animals 3 and 4

Min Mean Max

0 8.62 24
0 0.37 3
0 2.96 11
0 0.74 5
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for each of the remaining four sources of variability in the four animals, using the log scale
prior on the inverse shape parameter and uniform prior on cv respectively. Figure 6.5 shows
the posterior probability densities obtained when variability between sub-samples taken from
the same faecal sample, the replicate variability, is modelled as being independent of the
animal. The variance of the posterior estimates for all four sources of variability were reduced,

especially the sample and replicate variability.

Figure 6.6 shows the value of combined daily and sample variability and the total within
animal variability using Equation 6.1 to combine the estimates for all four variability sources
presented in Figure 6.5. The median and 95% CI estimates for the total within-animal
variability for each of the four animals is shown in Table 6.2. Animals 2, 3 and 4 showed
similar values for total within-animal variability, with a median combined value of 0.32 and
combined 95% CI of 0.19-0.68. There was an increased total within-animal variability for

Animal 1, as a result of a higher daily variability compared to the other animals (Figure 6.5).

All results presented here have been based on 3g of faeces being used per sample, for consis-
tency with the modified McMasters technique. However, the effective cv due to the replicate
variability also depends on the amount of faeces used in each sample, as shown in Figure 6.7.

The total within animal variability, calculated using the combined estimates from all animals

1 1 1 1 1 1 1 1 1 1 1 1 1 1
10 - 10 -
8 - 8 -
6 - 6 -
4 - 4 -
2 - 2 -
T T T T T T T T T T T T T T

Density

10

0 02 04 06 08 1.0 1.2 1.4
Animal 1

10

0 02 04 06 08 1.0 1.2 1.4
Animal 3

0 02 04 06 08 1.0 1.2 14 0 02 04 06 08 10 12 14

Animal 2 Animal 4

Coefficient of variation

Figure 6.3: The cv associated with each of four sources of variability, all using a
log-scale prior on the inverse shape parameter, observed in the FEC of four
animals over a five day period - daily (red), sample (blue), replicate ( ), McMasters
(black) variability

167



1 1 1 1 1 1 1 1 1 1 1 1 1 1
10 - - 10 - -
8 - 8 -
6 - 6 -
4 - 4 -
2 - 2 -
= T T T T T T T T T T T T T T
> 0 02 04 06 08 1.0 12 14 0 02 04 06 08 1.0 1.2 1.4
@ Animal 1 Animal 3
)
o
1 1 1 1 1 1 1 1 1 1 1 1 1 1
10 - 10 -
8 - 8 -
6 | - 6 -
4 - 4 -
2 - 2 -
T T T T T T T T T T T T T T
0 02 04 06 08 1.0 1.2 1.4 0 02 04 06 08 1.0 1.2 1.4
Animal 2 Animal 4

Coefficient of variation

Figure 6.4: The cv associated with each of four sources of variability, all using a
Uniform prior directly on cv, observed in the FEC of four animals taken over a five
day period - daily (red), sample (blue), replicate ( ), McMasters (black) variability

Table 6.2: Median and 95% CI estimates for the total within animal variability in
each animal, assuming replicate variability is fixed between animals and 3g faeces
are used per sample, in the FEC of four animals taken over a five day period

Lower 95% CI Median Upper 95% CI

Animal 1 0.62 0.97 1.50
Animal 2 0.19 0.37 0.86
Animal 3 0.21 0.30 0.44

Animal 4 0.19 0.33 0.56
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Figure 6.5: The cv associated with each of four sources of variability, assuming
replicate variability is fixed between animals, observed in the FEC of four animals
taken over a five day period - daily (red), sample (blue), replicate ( ), McMasters
(black) variability
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Figure 6.6: Probability density of the combined daily and sample variability (left)
and the total within-animal variability (right), assuming replicate variability is
fixed between animals and 3g faeces are used per sample, in the FEC of four
animals taken over a five day period - animals 1 to 4 shown in dark green, blue, pink and
orange respectively.
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Figure 6.7: The relationship between the amount of faeces used and the effective cv
associated with the variability in observed FEC between sub-samples from the
same faecal sample - 95% CI shown shaded in pink, 50% CI in dark pink

shown in Figure 6.5, therefore also depends on this measure (Figure 6.8). Based on these
combined estimates, the median (95% CI) estimate for total within animal cv is 0.37 (0.19 -
1.34) for 3g faeces, 0.31 (0.12 - 1.30) for 10g faeces and 0.30 (0.10 - 1.30) for 20g faeces in the
four animals observed, assuming a fixed source of replicate variability between animals. This

therefore represents a source of variability that is likely to have a clinically relevant impact.

6.2.3.4 Discussion

The extra-Poisson variability between counts taken from the same sample was minimal, indi-
cating that the process of counting eggs is approximated very well by the Poisson distribution.
The 95% CI for extra-Poisson cv included the lower limit of the prior used, so it is possi-
ble that the data were truly Poisson distributed. The median and upper 95% CI estimates
were also small, representing a gamma-Poisson distribution that is almost indistinguishable
from a Poisson distribution given the sample size of six and ten counts. This is useful as it
means that the sum of the number of eggs in a given number of chambers contains as much
information as the individual counts, removing the need to record the counts individually. It
also allows the gamma distribution describing the extra-Poisson variability to be discounted
from further analyses, reducing the potential for auto-correlation in a multi-level hierarchical

model.

170



6.2 QUANTIFYING VARIABILITY WITHIN AN INDIVIDUAL

1.4 4 N

1.2 H N

1.0 H N

Coefficient of variation
o
oo
I
T

0.6 -
0.4 K L
0.2 i
. . . .
1 5 10 15 20

Grams faeces

Figure 6.8: The relationship between the amount of faeces used and the total
effective cv associated with the variability in observed FEC within an individual
over a period of a few days - 95% CI shown shaded in pink, 50% CI in dark pink

Of the four remaining sources of within animal variability, the estimates for sample and repli-
cate variability were quite similar in all animals, although the posterior for sample variability
was increased for Animal 4, and the posterior for replicate variability slightly increased for
Animal 2 and decreased for Animal 4. However, the 95% confidence intervals of the estimates
in each animal overlapped in every case, and were relatively unaffected by the choice of prior.
This verifies that the results were predominantly likelihood driven, with the change in prior
affecting only the left tail of the posterior distributions. With the replicate variability fixed
between animals, the estimate for this source of variability was much larger than that for the
McMasters variability and sample variability in animals one to four, although the estimate
of sample variability in animal four was only slightly lower than the estimate for replicate
variability. The daily variability was also quite consistent between Animals 2, 3 and 4, but
markedly increased in Animal 1. Stear et al. (1995b) found that FEC were more consistent
when taken from an individual sheep over a short period of time than a longer period of
time, suggesting that this source of variability is important for Ostertagia spp. infections in
sheep. Animal 1 also had the highest mean FEC, which may be coincidental finding but could
suggest that the variability between egg concentration of faecal piles is somehow related to
the mean FEC shedding rate. It is possible that the stochastic nature of worm fecundity
could result in FEC variability that is somehow related to the mean FEC, but this would
be expected to decrease variability as mean increases due to the averaging of the egg release

timings of more worms. Alternatively, this animal may have been experiencing one of several
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factors that could have resulted in a more variable consistency of faecal piles, such as gastro-
intestinal upset or a change in diet, which would increase the variability in FEC over a short
period of time. As the sampling was performed in December it is also possible that the older
age of the worms within the animal caused an increase in variability, although this would
be expected to be the same for all animals. More work clearly needs to be done to study
this further. Another potential source of variability that was not directly examined in this
study is a potential diurnal variability in FEC. It has been suggested anecdotally that FEC in
horses have a tendency to be higher in the morning than the afternoon or evening, although
Bennett (1990) found no such tendency in the study of repeated FEC from ten individuals.
There was also no significant evidence of diurnal variability between the samples collected in
the morning and afternoon in this study. If such a diurnal variation truly exists, it would be

incorporated into the faecal pile variability using the statistical analysis demonstrated here.

For the purposes of this study, the variability introduced by the McMasters technique was
assumed to be the same for all animals. This is justifiable as the laboratory work was carried
out by one of two personnel in the same laboratory using the same procedure. The importance
of this source of variability may differ with laboratory, although given the relative simplicity
of the McMasters technique this seems unlikely as long as mixing of the samples remains
sufficient. The variability between replicates from the same sample of faeces was modelled
both as a fixed effect of animal, and assuming an equal source for all animals. The former
is obviously more conservative, but conceptually replicate variability could be expected to
be dependent on factors such as the time between releasing of eggs from worms and the
peristaltic activity and length of time eggs remain in the intestine, which should be more
similar between animals than other factors such as faecal consistency. This could be altered
by host characteristics such as age and breed and the predominant site of parasitism and
species distribution of parasites, and could vary substantially between host species. Further
work to examine these effects would certainly be desirable before reliance is placed on this
work in a clinical setting, but the estimates obtained assuming a fixed source of replicate
variability will tentatively be used here applied to adult horses similar in age and breed to

those sampled from.

6.3 Quantifying variability between individuals

6.3.1 Introduction

The variability in FEC within an individual animal has been quantified in Section 6.2.3,
although it was not possible to make inference on the variability between animals using this
data as the four animals sampled were not grazed as a group. The total between animal

variability was estimated for data obtained from several groups of horses in Chapter 4, and

172



6.3 QUANTIFYING VARIABILITY BETWEEN INDIVIDUALS

can be combined with the estimates for within animal variability obtained in this chapter to
obtain estimates for the variability in true mean FEC between animals. This assumes that
the variability between FEC observed in the four animals studied is representative of the
wider equine population. Given the discrepancy between the variability between faecal pats
observed in Animal 1 compared to Animals 2, 3 and 4, this may not be the case. However,
these are the only estimates currently available, and a cautious comparison of the relative

importance of within and between animal variability was considered appropriate.

6.3.2 Materials and methods

The 24 datasets with a sample size of 50 or more from the datasets presented in Section 4.3
were used to estimate the total variability between animals. Each dataset was analysed using
the ZIGP Model 2.2a to obtain a posterior distribution for the total variability (cv), from
which five thousand samples were taken for each dataset. Five thousand random samples of
total within animal variability (cw, ), based on the use of 3g of faeces, were taken from the
combined posterior estimates obtained from the four horses studied in Section 6.2.3. These
five thousand estimates of cv; and cv,, were then combined to yield five thousand estimates

of the true between animal variability, cvy, using Equation 6.4 (derived from Equation 6.1).

cvb2 + cva + cvb2cvw2 = cvt2
cvb2 + cvb200w2 = cth — cvw2
cvp? (1 + cva) = ? = cuy? (6.4)
9 cvr? — vy’
CUb = 1Lz
1+ cvuy

Median, 95% CI and 50% CI estimates were then calculated for cvy, for each of the 24 datasets,

and compared to the same quantile estimates for cv,,.

6.3.3 Results

Figure 6.9 shows the 95% CI (shown in light pink), 50% CI (darker pink) and median estimate
(red) for cvy,, relative to the 95% CI (blue lines), 50% CI (light blue rectangles) and median
(dark blue points) for cuvy in the 24 datasets. The 95% and 50% CI estimates for cv,, and
cvp, overlapped for every dataset, although the upper 50% CI was higher for cuvy, in every case
and the upper 95% CI for cvy, higher for all but two datasets. The median estimate for cuvy

was also higher than that for cv,, in every case.
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6.3.4 Discussion

Based on the results presented here, it appears that between animal variability is a more
important source of observed variability in FEC than within animal variability in horses. The
median estimate for within animal variability was 0.37, compared to the median estimates
of variability between animals of between 0.47 and 1.30, although confidence intervals were
relatively wide as a result of large confidence intervals for the total variability and large
confidence intervals for the within animal variability. However, these results indicate that
the variability within an animal is sufficient to represent an important contributor to the
observed variability in FEC in the majority of these datasets, and may even be equally or

more important than the variability between animals in some datasets.

The results presented here are dependent on the four animals studied in Section 6.2.3 having
similar components of within animal variability to the animals studied in Chapter 4. The
validity of this assumption is not verifiable with the available data, and the inference on
between animal variability may be different if information regarding the variability within
animals was available from the datasets presented in Chapter 4. Corroboration of the results
obtained here in further groups of animals would therefore be essential before relying on the
inference made here for clinical applications. However, the data presented here are sufficient
to conclude that variability within an animal is likely to be an important contributor to the
observed variability in FEC, and should be accounted for in statistical analysis of FEC data.
In light of this, many of the assumptions underlying the study designs commonly used to
perform a FECRT are likely to be violated. This supports the conclusion made in Section 5.5
that exclusion of animals from post-treatment sampling on the basis of their pre-treatment
FEC is not justified and likely to introduce bias. It also suggests that repeat sampling within
an individual would be beneficial to improve the accuracy of individual estimates of true
mean FEC.

6.4 Precision analysis

6.4.1 Introduction

The ability to predict accurately the true value of an indirectly observed parameter, such
as the true mean FEC of a group or individual, is here referred to as the ‘precision’ of the
procedure. When considering a hypothesis driven test such as a FECRT, it is also useful to
consider the ‘power’ of the procedure, or the probability that a significant difference between
the true FEC reduction and desired FEC reduction will be observed. The most common use
of power calculations is as an aid to study design, when attempting to calculate the number

of samples that need to be collected in order to be able to detect a given value of difference
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in population means, at an appropriate significance level. Consideration of the study power
may also be useful when reporting the significance level of the results of a hypothesis test,
and when considering summary statistics of a sample of data, because these methods do not
provide any perspective of how much discrepancy is expected between the population and
sample means. However, there are also several disadvantages to the use of post-hoc power
calculations in this way, and methods of quantifying uncertainty using confidence intervals

are certainly preferable (Hoenig and Heisey, 2001).

Calculating the precision or power of a study before data are collected also provides an
opportunity to change the sampling procedure to optimise the amount of data collected, or
to abandon the study altogether if the calculated precision is so small that useful results
are unlikely to be obtained. This saves time, conserves laboratory resources and is vital
when performing studies with an animal welfare concern. Although rarely considered for
this purpose, precision calculations can also be applied to the collection of FEC data, by
calculating the number of faecal samples that need to be collected in order to be able to
calculate the population or true individual mean FEC to within the desired accuracy at an
appropriate confidence level. In this case, the desired confidence level can be interpreted as
the proportion of the time that the observed mean will lie within the desired accuracy range
of the true mean. A similar mechanism can be considered for the FECRT, and has been
published by Gill et al. (1986) although does not seem to have been widely used clinically.
By considering the precision of FEC data collection when designing studies or deciding on
the minimal egg detection threshold of the technique to be used, the optimal combination of

laboratory time and usefulness of resultant data can be achieved.

There are conceptually two subtly different parameters that could both be referred to as
the ‘mean faecal egg count’ of a population. The first is the population mean egg count of
the distribution from which the sampled animals are derived, conceptually representing a
population of an infinite number of animals. The second is the true mean egg count of the
animals sampled, which represents the mean of those animals only, and is an estimate of the
true mean of a population from which the samples were taken, or one realisation of potential
means for that group of animals. This parameter is likely to be more relevant when all
individuals in a group are sampled, and when we are interested in the pasture contamination
or egg count reduction of those animals. The first measure would be more appropriate when
only a random representative sample of animals is taken from a larger group of animals, as
the true mean egg count of the sampled animals is an estimate for the true mean of the larger
population. This parameter will always be more difficult to estimate because the possible
variation in mean egg count from unobserved animals has to be taken into account. Both
parameters are relevant in different situations, so both will be examined here. In order to
avoid confusion the population mean egg count of the distribution from which the sampled
animals are derived will be referred to as the ‘population mean’, whereas the true mean egg

count of the sampled animals will be referred to as the ‘true sample mean’.
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The standard error of a mean FEC will depend on the variability between counts (further
subdivided in Section 6.2.1), as well as the number of samples taken. The variability (cv)

associated with the Poisson process of counting eggs decreases with increasing mean. This is
Vv mean

. The mean
mean

because the variance is equal to the mean, so the cv is therefore equal to
number of eggs counted (mean of the Poisson distribution) will therefore also have an effect
on the precision. In addition, the proportion of the time that a mean estimate will lie within
a given accuracy of the population or true sample mean will be affected by the given accuracy

(tolerance). The possible factors that could affect the precision of a mean FEC are therefore:

1. The number of animals sampled (not including those, if any, with means that are truly

zero and are therefore not part of the distribution describing other animals)
2. The variability between animals
3. The number of samples taken from each individual
4. The variability (cv) between true mean counts, further subdivided into:

e The variability between samples (the total variability between faecal piles and
between samples from within a pile)
e The amount of faeces taken per sample

e The variability between 1g replicates

e The variability introduced by the McMasters technique
5. The uncertainty introduced by the counting process, further subdivided into:

e The cv of the counting process (estimated at ~ 0 in Section 6.2.1, so discounted
here)

e The mean number of eggs counted per sample, which is dependent on:

— The number of McMasters chambers counted

— The true mean FEC of the animals

6. The desired accuracy

The relationship between these factors and the precision of a FEC was explored. This work

is presented in the remainder of this chapter.
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6.4.2 Precision analysis of a FEC from an individual animal

6.4.2.1 Development of the parametrisation

The probability that a single observed faecal egg count will be within a given tolerance of the
true mean of an individual depends on several factors as discussed previously, but calculating
this for the true mean a sample is relatively simple. The probability that an arithmetic mean
observation (i) will be £7 % p (where T is the tolerance and p is the true mean number of

eggs counted), and is given by the following probability expression:

Probability = P(p<pQ+T), p>pl-T) | N
where :

A= p

This probability can be calculated using the cumulative probability function of the Poisson
distribution. The variability (as cv) of the Poisson distribution decreases with increasing
mean, so the power as given above will therefore increase with increasing p. This expression
requires that an equal proportion of faeces is observed to that on which the mean is based,
but can also be expanded to represent either a proportion or multiple of this, obtained
from multiple observations from the same sample, using a basic property of the Poisson
distribution. The sum of a series of independent Poisson observations are Poisson distributed

with a mean equal to the sum of the independent Poisson means (Evans et al., 2000), so that:

Power = PO<pu(l+T)xS, O>pu(l-T)xS | A
where :

A= puxS

The additional parameter S reflects the proportion, or multiple, of the sample that is observed
(denoted the counting sensitivity), and O the total number of observed eggs. The overall
precision therefore depends on the mean number of eggs in the total observed sample, rather

than either the counting sensitivity of the technique or the mean FEC directly.

This can be extended to calculate the probability that a FEC will be within a tolerance of the
true mean of an individual by accounting for the variability within an individual. This single

source of variability is actually comprised of variability between samples (cvs), variability
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between 1g replicates (cv,), variability introduced by the McMasters technique (cvy,), and
the amount of faeces taken per sample (g). However, if only one replicate is performed per
sample then these individual sources of variability are inseparable, so only the combination

needs to be considered for a precision calculation. This combination is given by:

cvw2 = CUSQ + cvm2 + cva2—|—

(cv52 * cvm2) + (cvs2 * cva2) + (6.5)

(cva2 * C’Um2) + (cv82 % CUR > * cva2)

where :

CUq = CUp* —

V9

If this combined source of variability is considered to approximate well to a gamma distribu-
tion, it can be incorporated into a closed form calculation by using the negative binomial in

place of the Poisson distribution. The probability is then given by the following:

Probability= PO<u(14+T)xRxS, O>u(l-T)xRxS | «a p)
where : (6.6)

o =
CUw2

B= xS Xcu,?

Where the additional parameter R represents the number of repeat samples taken, S the pro-
portion of a gram observed per sample, or the minimum egg detection threshold or counting
sensitivity, and O the total number of observed eggs. This probability can then be calculated

using the cumulative probability function of the negative binomial.

6.4.2.2 The effect of different parameters on precision

As previously stated, the precision of a FEC depends on the total number of eggs counted
rather than the number of samples, counting sensitivity or mean FEC directly. The proba-
bility that an observed mean FEC will be within a tolerance of the true mean also depends
on the desired tolerance, T', because the probability that a randomly drawn sample will lie

within a range of values is dependent on the relative size of the range. This probability with
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negligible cv,, can therefore be expressed as a non-linear function of R, S, u and T. Cal-
culating the probability using a negligible value of cv,, and every combination of parameter
values with R drawn from the set {1, 2, 3, 4, 5}, S drawn from the set {0.02, 0.04, 0.06,
0.08, 0.10, 0.12, 0.14, 0.16, 0.18, 0.20}, x drawn from the set {200, 400, 600, 800, 1000} and
T drawn from the set {0.01, 0.02, 0.03, 0.04, 0.05, 0.07, 0.1, 0.15, 0.2, 0.5}, and plotting the
resultant values against R xS x yux T? yields Figure 6.10. A small amount of variation around
the agreement line is observed due to the integer nature of FEC having different effects at
different values of counting S x p (shown in darker colours on Figure 6.10), but a constant
value of R x S x u x T? can be considered to yield approximately the same probability value

given a negligible value of cuy,.

Examining the affect of cv,, introduces a degree of complexity to the relationship between R,
S, 1, and the precision of a FEC. This can be simplified by considering only the value of T’
that yields an ‘acceptable’ probability, for example 95%, that the observed mean FEC will
be within tolerance of the true mean FEC. The value of T for which the observed mean FEC

will lie £7'x the true mean FEC 95% of the time given the combination of R, S, p and cv,,

0.8 g n

Probability

0.2 - . o e e e . " —

0.001 0.01 0.1 1 10 100
Product of parameters

Figure 6.10: The effect of R x S x i1 x T? on the probability that an observed mean
FEC will lie within a tolerance (T") of the true mean FEC of an individual animal
with a negligible cv,, of 0.001, calculated using the cumulative probability density
function of the negative binomial distribution - smaller values of p x S shown as darker

grey
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in the dataset can be calculated using an optimisation algorithm. A three dimensional plot of
minimum required 7?2 x R to yield 95% power given cv,, and u x S is given in Figure 6.11. All
optimisations were performed using a large value of R = 100 to allow more precise calculation
of T with low p and S. This reduces the impact of the integer nature of FEC with low mean
and/or counting sensitivity, and avoids the situation where the probability can not be close
to 95% due to the optimal tolerance requiring theoretical fractions of observed eggs. As
would be expected, an increase in cv,, results in a larger required 7' in order to maintain
the same 95% probability, regardless of the mean, counting sensitivity and number of repeat
samples. With negligible cv, the required T is decreased with increasing mean and S in line
with Figure 6.10. With larger values of cv, the mean and S has little effect provided that the
product of these is greater than between 5 and 200 depending on the cv,,. The only method

Product of T2 and R

1.00
0.80

50

500 1000 0.01 CVw

Product of pand S

Figure 6.11: The effect of 1 x S and cv,, on the T? x R required to maintain a 95%
probability of observing a mean FEC within ;4 + T x p (the true mean FEC) from an
individual animal, calculated using an optimisation algorithm and the cumulative
probability density function of the negative binomial distribution
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of obtaining a more accurate estimate of the mean FEC in such circumstances is therefore
to take more replicate samples, or to reduce the cv,, by increasing the amount of faeces used

per sample.

The separate effects of the minimum egg detection threshold (S), mean FEC and number
of replicate samples taken (R) with a fixed cv,, = 0.37 (the median estimate based on 3g
faeces obtained from Section 6.2.3) on the tolerance with which a 95% probability is achieved
is given in Figure 6.12. When cv,, is fixed at this value, the most important factor on the
precision of a FEC is the number of replicate samples taken. The minimum egg detection
threshold has less effect with a larger mean FEC, and increasing this provides diminishing
returns beyond approximately ﬁlﬁEPG (equivalent to counting the number of eggs in four
McMasters chambers) with means of 500EPG and greater. Using only a single sample and
with a counting sensitivity of %EPG, the empirical mean observed FEC was +1x the true
mean FEC 95% of the time, which is unlikely to be sufficient on which to base clinical
decisions. Even with a mean FEC of 1000EPG and low egg detection threshold, the empirical
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Figure 6.12: The effect of varying the minimum egg detection threshold (S) on the
required tolerance (7) to maintain a 95% probability of observing p+ 7T x u (the
true mean FEC) from an individual animal, calculated using an optimisation
algorithm and the cumulative probability density function of the negative binomial
distribution - mean FEC of 250 (top left), 500 (top right), 750 (bottom left) and 1000 (bottom
right). One, two, four and ten replicate samples shown in blue, pink, dark green and red
respectively. cv equal to 0.37 for all plots.
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mean observed FEC was +0.6x the true mean FEC 95% of the time. By taking four samples
this can be reduced to a little over 0.3 x the true mean FEC, or £0.2x the true mean FEC

with ten replicate samples.

6.4.3 Precision analysis of a FEC from a group of animals

Extending this to analyse the precision of a true mean FEC of a group of animals requires
that the variability between animals and the number of animals are taken into consideration.
The latter is relatively simple to incorporate into the parametrisation of the negative binomial
by multiplying the scale parameter by the number of animals sampled. It is more difficult to
incorporate the variability between animals. Only one sample is taken per animal, therefore
it is possible to combine the variability observed within an animal (cv,,) with the variability
between animals (cvp) to obtain an effective variability that describes the single distribution
observed. This assumes that animals are sampled at random from a herd with an effectively
infinite population, which is rarely the case. In reality, each of the available animals is likely to
be sampled once, a form of structured sampling, which results in an effective variability of less
than would be expected from simply combining the variability within and between animals
into a single distribution. This effect increases when the variability between animals increases
relative to the variability within an animal, and is negligible when cv, < cv,, as all animals
have a similar individual mean FEC reducing the importance of which animals are sampled.
However, this is unlikely to be the case in most populations. It is also impossible to estimate
the precision of a FEC procedure for the true sample mean rather than the population
mean (as explained in Section 6.4.1) in this way. The true sample mean represents the true
mean FEC of the observed animals, which is more likely to be of interest clinically than
the population mean which describes some theoretical distribution from which the observed
animals, or one realisation of the observed animals, were drawn. There are some situations
where the population mean would be more useful to consider, such as when not all animals in
a population were sampled, or when considering the true difference in FEC between different

groups of animals.

The effects of structured sampling and requirement to be able to calculate the precision
for the true sample mean preclude the use of a closed form solution based on the negative
binomial, although it is possible to use a simulation model to do this. A conceptual outline

of this model is explained below.

e The mean egg count of each individual is derived from a distribution which describes the
mean egg count of each individual in that population. The variability of this distribution
accounts for the variability in mean egg count between individuals, and the mean of

this distribution describes the population mean egg count. The true sample mean is
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taken as the average mean egg count of all sampled individuals, which will converge on

the population mean as the number of animals sampled tends to infinity.

e The number of eggs in each gram of faeces within an animal is taken from a distribution
which describes the number of eggs in every gram of faces within that animal. The mean
of this distribution is equal to the mean egg count of the individual, derived from the
distribution above, and the variability of the distribution describes the variability in
the number of eggs between processed samples. This is a combination of the variability
between samples, the variability between 1g replicates, the amount of faeces taken per

sample, and the variability due to the McMasters technique.

e Eggs are randomly distributed throughout each homogenised sample of faeces. The
number of observed eggs is Poisson distributed with mean equal to the product of

counting sensitivity and the number of eggs per gram of the sample.

The vector of observed means output by this model can be used to either calculate the
probability that an observed mean will be within a tolerance of the true mean, subject to
uncertainty given by a beta distribution, or to calculate quantiles corresponding to a desired
probability of the same, with uncertainty, from which the required tolerance can be derived.
This is equivalent to optimising the tolerance to achieve the desired probability discussed
for precision analysis using the negative binomial. This approach can also be extended to
calculate the precision associated with a FECRT by including two sets of FEC from the
same animals, allowing for each set of FEC to have different values of mean, cv, and cuy,.
For this model, additional parameters reflecting the change in true mean FEC and change
in variability within and between animals are required. As with the precision for a group
mean FEC, the precision of a FEC reduction can also be considered in terms of the change
in true sample mean and change in population mean, although the change in population
mean provides a more conservative estimate of the precision given that some parasites may
be in refugia at the time the test was carried out. This is also more consistent with the
population efficacy as calculated in Chapter 5. It is also possible to extend these calculations
to calculate the power of a FECRT by also determining if each observable reduction would
indicate a significant difference to a given required reduction given a true reduction of less
than this value. This simply requires calculation of the distribution of observed values,
using the same mathematical model, given the null hypothesis of a true reduction equal to
the required reduction, and determination of the lower 0.025 quantile (assuming that the
desired two-tailed significance level is 5%) of this distribution. As any value equal to or
below this significance threshold is extreme given the null hypothesis, it can be considered
significant with no need to calculate the actual p-value. The mathematical model would then
be repeated using an alternative value for the true reduction, and the proportion of observed

reductions that are below the calculated significance threshold calculated. This value, with
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appropriate confidence intervals calculated using a beta distribution, is equal to the power of

the procedure.

The precision and power calculations discussed above assume that all required parameters,
such as the variability, mean FEC etc, are known, but it is unlikely that this would be the
case in practice. An extension of this work to include uncertainty in some of the parameters
of the population can be achieved by using Monte Carlo integration. For example, the desired
tolerance, number of animals, counting sensitivity and number of grams of faeces used are
likely to be known, but the true mean FEC, variability between animals and variability within
an animal is subject to uncertainty. In this case, the probability that an observed mean will
be within a tolerance of the true mean can be calculated using several independent random
samples from distributions describing the uncertainty in true mean FEC, variability between
animals and variability within an animal, and a probability density distribution describing
uncertainty in the true probability obtained. Another alternative to using a value of tolerance
(where tolerance = T and probability = P (i + T x p)) is to specify only a lower limit or
upper limit on the tolerance, i.e. probability = P (i1 < U) or power = P (i > L), where L
and U are the specified lower and upper limits respectively. This formulation may be more
useful in considering the power of a FECRT, where it is important to consider the probability
that the observed mean (f1) is significantly below an efficacy threshold given that the true
mean (u) is above this threshold (the probability of a false positive), or the probability that
the observed mean (i) is above an efficacy threshold given that the true mean (u) is below
this threshold (the probability of a false negative). This could be combined with the use
of Monte Carlo integration to quantify the uncertainty in the true false positive or false
negative rates given uncertainty in one or more population parameters. For example, if a
true reduction of less than 95% were considered to represent a positive case of drug resistance,
then the probability that an empirical mean reduction that is significantly less than 95% will
be observed after treatment of 20 animals with a drug of true population efficacy 85% could
be calculated given uncertainty in the pre-treatment mean and variability sources, with one
3g replicate per animal and a minimum egg detection threshold of 5 EPG. This probability
represents the power of the FECRT, or one minus the false negative rate. For the unknown
population parameters, the pre-treatment mean FEC may be predicted to be between a
minimum of 50 EPG and a maximum of 400 EPG with a most likely value of 200 EPG, the
pre-treatment replicate and individual cv predicted to be between 0.1 and 0.5 with a most
likely value of 0.3, the pre-treatment cv between animals predicated to be between 0.2 and
1.2 with a most likely value of 0.7, and each post-treatment cv predicted to be between 1
and 1.5 times the corresponding pre-treatment cv with a most likely value of 1.2 times the
corresponding pre-treatment cv. In this case, the distribution describing the uncertainty in

the power is shown in Figure 6.13.

Mathematical models written in a mixture of R and C based on the calculations demon-

strated in this chapter are included in the contributed R package ‘bayescount’ (see the list
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Figure 6.13: Distribution describing the uncertainty in the power to detect an
empirical mean reduction of less than 95% after treatment of 20 animals with a
drug of true population efficacy 85% - obtained using 250 Monte-Carlo samples from
distributions describing uncertainty in the mean pre-treatment FEC and degree of variability in
the data.

of publications for more details). This allows the precision for the true sample mean FEC
and population mean FEC to be calculated for each theoretical combination of parameters
given above, and for the power associated with a FECRT to be calculated. For the precision
analysis for the true sample mean, the simulated individual animal means are adjusted so
that the sample mean is identical to the population mean. Because of the iterative nature of
the simulation, the estimate for power is subject to uncertainty given by a beta distribution.
The R package also contains a function to calculate the precision using a negative binomial
distribution, which can be used to calculate the precision for an individual animal FEC, or
the population mean FEC where animals are randomly drawn from a very large population
or the variability between animals is considered to be negligible compared to the variability

within an animal.
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6.5 Discussion

FEC data in clinical parasitology are widely accepted to be quite variable (McKenna, 1981;
Uhlinger, 1993; Hoste et al., 2002; Miller et al., 2006), but the statistical reasons for this
poor repeatability have not been well studied. Where FEC data are taken from a group of
animals, a common assumption is that the predominant variability in the observed FEC is
as a result of variability in parasite shedding between animals, be it due to genetic, exposure
level, or other factors, and the variability in FEC within an animal is therefore unimportant.
The estimates of the relative importance of each potential source of variability demonstrated
here indicate that this is not the case, although the relatively small number of animals from
which the data were taken should be considered. It would be beneficial to apply the methods
developed here to data obtained from other animals, so that consistency of each source of
variability in the wider population can be assessed. Analysis of data obtained from animals
of different breeds and age groups should also be made. Further studies in sheep and cattle
would also be of interest, to examine the effect of different parasite locations within an animal
on the variability of fecundity, although an analysis of the use of composite FEC in sheep
suggests that less variability may be observed in this species (Morgan et al., 2005). Hunter
and Quenouille (1952) consider the between samples taken from an individual sheep to follow
a Poisson distribution very closely, although it is not clear if they are referring to a single

sample or multiple samples from an individual.

In the horses examined in this study, the replicate variability, or variability between sub-
samples taken from the same sample of faeces, appears to be a large source of the total
within animal variability using the standard McMasters technique. This is consistent with
the findings of Sinniah (1982) and Gasbarre et al. (1996), and is an important observation
because this source of variability can be reduced substantially by simply increasing the amount
of faeces used per homogenised sample. Diminishing returns appear to be obtained beyond the
use of approximately 10g of faeces, but assuming that the sample continues to be completely
homogenised even larger samples than this can be used to further decrease the effective
variability. Samples can also be amalgamated from several areas of a single faecal pile,
reducing the effect of the sample variability which was found to be important in Animal 4.
Based on these simple, low to zero cost recommendations alone, the clinical usefulness of a
single FEC could be increased substantially. The variability in FEC from an individual over
time should also be considered in clinical decision making, and where necessary repeated
sampling over an animal on more than one day in order to reduce the impact of factors
such as faecal consistency could be considered (Gasbarre et al., 1996). However, it appears
that the largest source of variability between FEC of horses is the true variability between
individuals, which is consistent with the observations in sheep (Hunter and Quenouille, 1952)
and cattle (Gasbarre et al., 1996).
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The variability introduced by the counting process was found to be very close to a Poisson
distribution, with only a small extra amount of variability added by the mechanism of the
McMasters technique. This is consistent with previously published work (Hunter and Que-
nouille, 1952; Presland et al., 2005)), and indicates that a Poisson distribution describing the
number of eggs observed has a mean very closely related to the number of eggs in the sample,
although based on the findings of Rossanigo and Gruner (1991) it is likely that this represents
a fixed proportion of the true number of eggs in the sample rather than all of the eggs. As a
result, the majority of the observed variability in FEC between samples taken from the same
animal is caused by Poisson variation and true variation in the egg content between the sam-
ples. Novel methods of detecting eggs in faeces such as the procedure advocated by Presland
et al. (2005) may therefore provide little advantage over the McMasters procedure beyond
the use of a larger sample of faeces to reduce replicate variability and counting more eggs
to reduce the Poisson variability, both of which are easily achievable using the McMasters
technique (Hunter and Quenouille, 1952). Homogenisation of larger samples, in combination
with counting more eggs, is also a cheaper and quicker alternative to the examination of mul-
tiple samples per individual advocated by Gasbarre et al. (1996), and would give the same

precision of estimates for the true mean FEC.

The experimental setup of the precision calculations was intended to closely mimic a FEC
procedure using a McMasters technique, and could theoretically have been accomplished
using the real technique given enough FEC samples of known differing mean FEC. Despite

this, some assumptions regarding the real procedure were inevitable and are outlined below:

e Laboratory technique including the weighing of faeces and decanting of liquid introduces
a source of variability with a standard deviation proportionate to the mean. This
assumes that any loss of eggs occurring during the process of centrifuging or filtering,
is a variable proportion of the number of eggs in the sample, and not a fixed number of

eggs regardless of the number of eggs present.

e The technician analysing the samples does not make a mistake in counting or fail to
report apparently unusually low or high individual FEC, i.e. there are neither type I

or type II errors when counting eggs.

e The variability between samples within an individual is common for all individuals.
This is a simplifying assumption, and based on the results presented in Section 6.2.3
does not hold for real data. The effect may be expected to be random between animals,
in which case it would not represent a source of bias, although it is also possible that

the variability may be in some way related to the mean egg count of the individual.

e The distribution of between and within animal variability in mean egg count is ade-
quately described by a gamma distribution. This is a distributional approximation, but

given the small sample sizes and flexibility of a gamma distribution it is likely to be
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reasonable. A lognormal distribution may be better justified and could have been used
in place of the gamma, but would be expected to give similar results with values of cv
less than one. Multi-modality in the distribution, if present, may not be adequately

described by either of these distributions.

A single FEC is often used as a basis for making clinical decisions on treatment within equine
clinical parasitology (Uhlinger, 1993), but consideration to the associated uncertainty of the
observation is rarely, if ever, made. Performing prospective precision analysis calculations is
not straightforward, but can be achieved using statistical software such as R, or even using
the in-built distribution functions of Excel. Given the potential impact of clinical decisions
regarding parasite treatment on pasture egg contamination, and the difficulty associated with
generating appropriate 95% CI for the true mean FEC given a single estimate, it is important
to consider the statistical issues of FEC in an individual animal. Although better estimates
and easier methods of calculating 95% CI are provided by the distribution of data collected
from groups of animals, prospective sample size calculations would be beneficial to evaluate
the loss of information compared to reduction in cost associated with using pooled FEC
samples, and could also be used when sample sizes are small so that the benefit resultant
from taking repeat samples from within animals can be assessed. An arguably greater benefit
would be achieved by application of prospective power calculations to the FECRT. One of
the main conclusions made in Chapter 5 is that estimates of the true efficacy from typical
FECRT data are subject to very poor confidence, which severely limits the usefulness of the
technique. Use of power calculations to ensure that the proposed study design is likely to
give useful inference on efficacy would represent a marked improvement of the utility of the
method, albeit at the expense of extra laboratory costs associated with analysing replicate

samples from within individuals and/or decreasing the minimum egg detection threshold.
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General discussion and conclusions

Over the last several decades, the leading method of analysis for parasitological data has
changed from calculation of empirical summary statistics, through the use of basic gener-
alised linear models (Wilson and Grenfell, 1997), to more complex likelihood based tech-
niques such as maximum likelihood analysis (Wilson et al., 1996; Torgerson et al., 2005).
In this thesis, analysis of such data using the next generation of computationally intensive
statistical methods has been explored. Bayesian MCMC models representing ZIGP and ZILP
distributions were developed and validated with simulated data, and were shown to produce
superior results to analysis using maximum likelihood techniques. The inference on the vari-
ability parameter was particularly improved when using MCMC compared to the maximum
likelihood method. For future studies concerned with the quantification of variability and/or
zero-inflation in FEC and worm burden data, analysis of the data using computationally

intensive statistical methods such as MCMC should therefore be considered essential.

The effects and validity of various distributional modelling assumptions have also been ex-
amined. Parasite data are almost ubiquitously assumed to follow a negative binomial dis-
tribution (May and Anderson, 1978; Wilson and Grenfell, 1997; Shaw et al., 1998). While
several authors have justified the use of a Poisson distribution compounded to some underly-
ing distribution describing the true variability between animals (Fisher, 1941; Crofton, 1962;
Pacala and Dobson, 1988; Grenfell et al., 1995), the use of the gamma distribution to de-
scribe this underlying variability seems to be entirely based on the convenience of having a
closed form solution for the negative binomial. Use of a lognormal distribution in place of
this gamma distribution is more easily justifiable, and has previously been suggested (Elston
et al., 2001). The gamma-Poisson and lognormal-Poisson distributions have a very similar
shape with equal mean and cv of less than one, but can be distinguished with cv of greater
than one and sufficient mean and sample size. Analysis of real equine and sheep datasets
with high cv and sufficient mean and sample size would be expected to consistently produce
a better fit to either the ZILP or ZIGP distributions, but this was not the case despite the
comparative inference made using the two distributions being quite different for some param-
eters. There was also an indication of a zero-inflated component in the FEC and worm burden
datasets examined, including in the equine data where the presence of true zero-inflation is
difficult to justify biologically. This most likely indicates that the underlying variability in

mean FEC and worm burden in infected animals does not follow either a gamma or lognor-
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mal distribution. This has serious implications for the validity of analyses which make this
assumption, particularly when using zero-inflation to model the shedding prevalence, and
further examination of the issues outlined below should be considered a priority for future

work.

The previously stated biological reasoning for worm burdens following a lognormal distribu-
tion depends on the multiplication of a series of distributions describing the variability in
various host factors such as grazing habits, adversity of the intestinal environment to de-
veloping larvae, host immune responses and genetic fitness of the ingested larvae. If all of
these distributions are independent, approximately continuous and uni-modal, the resultant
distribution of worm burdens would be approximately lognormal. The possible flaws in these

assumptions are as follows:

e It is possible that there are insufficient separate distributions for the combination to
approximate a lognormal distribution. Given the complexity of the host-parasite inter-

action this seems unlikely.

e Any feedback effects of competition on worm development are not accounted for. This
is likely to be incorrect because density dependent effects are thought to be important
in the epidemiology of helminth parasites (Dietz, 1988; Churcher et al., 2005). It is also
possible that heavily parasitised animals are immunocompromised by the presence of

large numbers of worms, leading to a positive feedback effect on larval development.

e The combination of different parasite species may have an effect on the overall distribu-
tion of worm burdens for all species. This may have affected the sheep burdens where
species of Nematodirus other than battus were present, albeit in lower numbers, and is
very likely to have affected the equine data where several species of cyathostomins are

likely to have been present.

e The assumption that all effects that contribute to the overall distribution of worm bur-
dens are continuous may be invalid. While it is justifiable for effects with an environ-
mental influence and/or multiple genetic influences to be approximately continuously
distributed, heavily influential single genetic effects could introduce a bi-modality into
the distribution. Each sub-group of the multi-modal distribution would still be ex-
pected to follow a lognormal distribution, as long as the remaining distributions were

approximately continuous.

e The overall distribution of parasite numbers may be predominated by a few, or even a

single, rate limiting step in the parasite development

The result of possible feedback and multiple species effects is likely to be complex (Dietz,
1988; Churcher et al., 2005), and the effect on the resultant distribution of worm burdens is

192



GENERAL DISCUSSION

therefore difficult to estimate. If the distributions of different worm species were independent,
then given sufficient numbers of different species the overall distribution would be expected
to approximate a normal distribution. This is obviously not the case, suggesting that the
distribution of one species is dependent either directly on the distribution of another species,
or that each species has common dependencies such as the host immune response. If there
are sufficient different species of worm that this could be considered to contribute an approxi-
mately continuous distribution, then worm species could be considered as another contributor
to the resultant multiplicative distribution. With fewer different species the resultant dis-
tribution may not approximate to a lognormal, but as each animal would reasonably be
expected to harbour more than one species of parasite, there is no reason to suspect that the
resultant distribution would be multi-modal. It is conceivable that a negative feedback effect
of the presence of developing larvae on the survival of adult worms could reduce the numbers
of animals with high worm burdens, which would produce fewer high count observations than
expected given the number of zero observations. This is a possible explanation for the excess
zeros observed. A positive feedback effect would be expected to increase the number of high

count observations relative to zero observations, which does not fit the observed data.

The more likely explanation for observing a multi-modal distribution is that one or more
of the distributions contributing to the overall distribution of worm burdens does not ap-
proximate a continuous distribution. One possible cause of this could be a single genetic
effect such as homozygosity or heterozygosity at a heavily influential genetic element such
as the MHC. If heterozygous animals are considered to be more resistant to parasitism than
homozygotes, the resultant overall distribution would be bimodal with the homozygotes con-
tributing a distribution with larger mean and the heterozygotes contributing a distribution
with smaller mean. If the mean of the heterozygotes was close enough to zero, then the
resultant distribution would appear to be a lognormal-Poisson with greater weight at zero,
which would approximate very well to a ZILP or ZIGP distribution. This effect potentially
explains the inconsistency in the fit to the ZILP and ZIGP distributions; as the gamma is
more flexible than the lognormal, the fit of the ZIGP to a multi-modal distribution with
two reasonably high means might be expected to be superior. The ZILP distribution would
produce a greater maximum likelihood when the vast majority of the data is described by
either a single lognormal distribution, or a lognormal distribution with other distributions
contributing nearly all zero observations. The implications of potential multi-modality are
important for control of parasitism; both in terms of identifying animals that are likely to
be shedding large numbers of eggs, and in identifying animals that are likely to be more
resistant to clinical disease. These may not necessarily be the same animals if the genetic
effects of susceptibility to clinical parasitism and predisposition to high egg shedding rate are
not the same. If any source of multi-modality in the data is important, then analysis of data

assuming any single continuous distribution may give misleading results.

This explanation is consistent with the observations in FEC and worm burden data, but is
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quite speculative and further work involving intensive sampling to identify any multi-modality
in the data would be a useful extension of the work presented here. As part of this further
work, mathematical modelling could be usefully employed to study the effect on the observed
distribution of worm burdens of parasite feedback effects, the combination of different species,
and the number of potentially important single genetic effects. These models could also be
extended by modelling the suspected influence of co-parasitism and host immune response
on fecundity, variability in nematode fecundity over time and mixing patterns of faeces to
explain the observed variability in egg concentration on a local scale within faeces. The
observed frequency distribution could then be compared to the lognormal-Poisson, gamma-
Poisson, ZILP and ZIGP to identify the distribution that provides the best approximation
to the data. Another study incorporating replicate sampling from individual animals would
be useful in order to validate the inference on within animal variability obtained here, or to
extend the data to include other species. Funding has recently been obtained to perform such

a study in donkeys.

While it is possible that some species of parasite in host groups with certain characteristics
such as N. battus in lambs may truly follow a zero-inflated distribution, it is likely that
the inference on zero-inflation obtained from parasites that are known to be almost 100%
prevalent does not represent a group of animals that are truly uninfected. The use of a
zero-inflated distribution in this situation is likely to be controversial. Lord et al. (2007)
examined the use of the zero-inflated distribution in the field of motor vehicle crashes, and
conclude that the statistical fit of the zero-inflated distribution was not sufficient to justify
its use without a theoretical justification to model the data as two distinct groups. The
same applies to analysis of FEC data in situations where parasite prevalence is known to
be close to 100%. In these situations, where the lower 95% CI for zero-inflation does not
include zero, it is possible to infer that the data more closely follow the zero-inflated mixture
distribution than the uni-modal distribution. However, this does not mean that a zero-
group truly exists. If the underlying cause of the apparent zero-inflation is a multi-modal
distribution of animals, one of which is a positive distribution contributing the vast majority
of the observed non-zero counts and the others contributing mostly zero observations, then
the zero-inflated distribution is a simplification of the true multi-modal distribution and is
therefore justified. Analysis of such data without the use of a zero-inflated component would
result in inferring a reduced mean and increased variability for the high shedding group of
animals. Fitting a mixture distribution with several positive modes may be preferable to
using a zero-inflated distribution, but would likely prove unidentifiable with insufficient data.
Alternatively, if the extra zeros are arising from some other mechanism, then the use of a
zero-inflated model is not justified and may give misleading estimates for the true mean and
variability in the data. Selection of the most appropriate model will ultimately depend on
the simplifications and assumptions being made about the biological system, and the most

useful inference will always be dependent on the desired purpose of the study.
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The novel MCMC analysis method was shown to produce more reliable 95% confidence
intervals when applied to FECRT data than non-parametric bootstrapping, which did not
perform well even compared to the calculation of 95% CI based on the empirical mean and
variance. Implementing MCMC presents some technical difficulties relative to calculation
of empirical means (Gilks et al., 1998), but the analysis of FEC and FECRT data presents
sufficient inherent difficulties that the extra effort associated with the more sophisticated
method is justifiable. The current (Duncan et al., 2002), and forthcoming (pers. comm.),
WAAVP guidelines for analysis of equine FECRT data do not adequately account for these
difficulties, and based on the results presented in this thesis are likely to be statistically
inadequate. In addition, the current practise of selecting animals to be included in the
FECRT on the basis of a pre-treatment single FEC (Craven et al., 1998; Coles et al., 2006) is
counter-productive as the effect is likely to improve the apparent efficacy of the drug unless
explicitly modelled, and the presence of low or zero observations in the pre-treatment data
poses no problem to analysis of the data using MCMC. Studying the change in variability
associated with a FECRT could potentially provide useful information on emerging resistance
that would be missed when examining the change in mean alone, but requires more intensive
sampling than is currently performed. Use of the paired model described in Chapter 5
also provides a statistically valid way of incorporating several replicate samples from each
available animal, which would increase the power of a FECRT substantially. While the
analysis of ruminant datasets, with smaller cv, larger sample size and larger mean relative
to typical equine datasets may be less affected by these difficulties, the improvement of
inference on cv and zero-inflation afforded by MCMC would still be beneficial, especially in
terms of the usefulness of the 95% CI produced. The comparatively poor performance of
some of the statistical techniques examined is also an indication that validation of statistical
assumptions using simulated data is an under-utilised resource. Such simulation studies are
relatively simple to implement using statistical programming languages such as R. There is
also a strong argument for using similar techniques to validate MCMC models where more
than one possible syntactic variation is possible, and to analyse the sensitivity of a model to

superficially similar prior distributions.

The priors used for cv in the model specifications presented were intended to be minimally
informative within a biologically sensible range, but as would be expected had a demonstrable
effect on inference of cv and zero-inflation when there was comparatively little information
in the data. The prior on mean count also had a strong effect when the data contained
few count observations, superficially seeming to lead to inappropriate inference for these
datasets. The fact that truly uninformative priors do not exist could be used as an argument
against Bayesian techniques, although subjective Bayesians would argue that there is no
conceivable situation in which there is no available prior information, and it can also be
argued that frequentist methods are no more objective in that conclusions depend on the
perceived experimental design (Berger and Berry, 1988). Where prior information is easily

incorporated, the ability to include this information is a major advantage of Bayesian methods
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(Goodman, 2005), especially when information in the data is limited as it often is with FEC
data. Specifying a prior for cv that limits inference to values that are likely to be observed
in real data improves the inference on mean count and zero-inflation, and where possible
using data available in similar groups of animals to inform these priors is a very useful way
of reducing uncertainty for all parameters. However, it is important to understand that even
‘minimally informative’ priors may still dominate the posterior in some situations, and to

always be sure that the prior distribution used is appropriate.

To date, prospective consideration of the precision associated with FEC and FECRT pro-
cedures has been severely under-utilised. The poor repeatability inherent in the FEC has
previously been demonstrated (for example Mes, 2003; Presland et al., 2005; Eysker et al.,
2008), but with little attempt to quantify the source of this variability with any statistical
vigour. By demonstrating that a large amount of this variability in horses is as a result of lo-
cal scale variability within faeces, a practical method of improving the repeatability has been
demonstrated, and the beneficial effect of improving counting sensitivity has been quantified.
The repeatability of the McMasters technique itself was found to be very good, suggesting
that little is to be gained from the use of more modern procedures such as FECPAK (Pres-
land et al., 2005), beyond the use of larger samples and counting the number of eggs in a
larger proportion of the sample. Further, and statistically valid, evaluation of these newer
procedures should also be performed before their use can be considered as equivalent to the
McMasters procedure. While the development of these precision analysis methods involved
the use of some advanced statistical methods, and such calculations are dependent on figures
for within and between animal variability which are currently uncertain, consideration of the
likely precision of a sampling procedure should be considered essential to efficient experimen-
tal design. While it may not be always be possible to incorporate more animals into the study,
taking replicate samples from each animal and increasing the counting sensitivity of the test
and size of faecal sample analysed is always possible. Such calculations can also be used
to examine the cost benefit ratio of undertaking more laboratory work, so that the optimal
balance of resource expenditure for experimental power can be found. When carrying out
hypothesis driven testing such as a FECRT, prospective power calculations are essential to
ensure that the study has an appropriate power before undertaking sampling. Post-hoc power
calculations can also be used to help interpret a significance result, although consideration of
appropriate confidence intervals is certainly superior (Hoenig and Heisey, 2001). The power
calculation methods developed in this thesis have been made freely available online as part
of the ‘bayescount’ package for R, and can be freely downloaded from the CRAN website at

http://cran.r-project.org/web /packages /bayescount

Within this thesis, it has been demonstrated that FEC data consist of a complex distri-
bution of observations incorporating variability derived from multiple sources, as might be
expected given the known complexity of the underlying biological system. It has also been

demonstrated that the most frequently used methods of analysis of such data are unable to
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deal with this complex variability structure, leading to inaccurate inference and potentially
incorrect clinical decisions in many cases. Computationally intensive parametric techniques
such as MCMC provide a superior method of analysis for FEC and FECRT data, includ-
ing the potential to improve the accuracy of results by incorporating repeated samples, and
should be considered mandatory for analysis of data from small groups of animals or when
attempting to quantify the variability in the data. Combining prospective power calcula-
tions and a complex MCMC model to analyse repeated samples from each individual also
provides the opportunity to drastically improve the usefulness of a FECRT for a small group
of animals. The WAAVP guidelines currently make no recommendations regarding power
calculations whatsoever (Coles et al., 1992; Duncan et al., 2002), and consider only the mean
and lower 95% confidence interval in interpreting results. Given the considerable resource
expenditure associated with monitoring anthelmintic resistance, the lack of appropriate sta-
tistical guidelines for carrying out a FECRT is unacceptable. It is therefore essential that
appropriate prospective power calculations and statistically correct calculation and interpre-
tation of the significance of observed FEC reductions be performed for all future FECRT
procedures. The implementation of such methods is not trivial, but given the widespread
availability of computing power and quantitative expertise in similar disciplines, persistence
with flawed statistical techniques in veterinary parasitology on the basis of convenience is dif-
ficult to justify. Considering the welfare implications of clinical parasitism and anthelmintic
resistance, there is a clear professional responsibility to ensure that faecal worm egg count
data are collected from optimally designed studies, and analysed using appropriate statistical
methods. The work presented in this thesis sets the tone for an overhaul of current thinking,

in order to allow these ideals to be better incorporated within veterinary parasitology.
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Model specifications



Model specifications

A.1 Faecal egg count models

for(row in 1 : N){

Count [row] ~ dpois(lambdal[row]);

lambda[row] <- probpos[row] * meancount[row];
probpos [row] ~ dbern(prob);

meancount [row] ~ dgamma(a, b);

}

mean <- a / b

# Priors

prob ~ dunif(0,1);

a <- 1/ia;

ia ~ dunif(0.0001,100);

b ~ dunif (0.000001,10000);

Model 2.1: - Independent shape and scale parameters
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A.1 FAECAL EGG COUNT MODELS

for(row in 1 : N){

Count [row] ~ dpois(lambda[row]);

lambda[row] <- probpos[row] * gamma[row] * mean;
probpos[row] ~ dbern(prob);

gamma[row] ~ dgamma(a, a);

}

# Priors

mean ~ dunif(0.001,1000);
a <- 1/ia;

ia ~ dunif(0.0001,100);
prob ~ dunif(0,1);

Model 2.2: - Gamma distribution centred on one

for(row in 1 : N){

Count [row] ~ dpois(lambda[row]);
lambda[row] <- probpos[row] * gamma[row];
probpos [row] ~ dbern(prob);

gamma [row] ~ dgamma(a, b);

}

b <- a / mean;

# Priors

mean ~ dunif(0.001,1000);
a <- 1/ia;

ia ~ dunif(0.0001,100);
prob ~ dunif(0,1);

Model 2.3: - Gamma distribution centred on mean

for(row in 1 : NM{

Count [row] ~ dpois(lambdalrow]);

lambda[row] <- probpos([row] * mean * gamma[row];
probpos[row] ~ dbern(ind.probl[rowl);

gamma [row] ~ dgamma(a, b);

}
prob <- mean(ind.prob[]);
b <- a / mean;

# Priors

mean ~ dunif(0.001,1000);

a <- 1/ia;

ia 7 dunif(0.0001,100);
for(row in 1 : N){
ind.prob[row] ~ dunif(0,1);

Model 2.4: - Independent zero-infation for each count
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A.1 FAECAL EGG COUNT MODELS

for(row in 1 : N){

Count [row] ~ dpois(lambdal[row]);

lambda[row] <- probpos[row] * gammal[row] * mean;
probpos [row] ~ dbern(prob);

gamma [row] ~ dgamma(a, a);

}

# Priors

mean ~ dunif(0.001,1000);
a <- 1/ia;

ia <- exp(log.ia);

log.ia ~ dunif(-9.21,4.6);
prob ~ dunif(0,1);

Model 2.2a: - Gamma distribution centred on one with log prior on variability

for(row in 1 : N){

Count [row] ~ dpois(lambda[row]);
lambda[row] <- probpos[row] * gamma[row];
probpos [row] ~ dbern(prob);

gamma[row] ~ dgamma(a, b);

}

b <- a / mean;

# Priors

mean ~ dunif(0.001,1000);
a <- 1/ia;

ia <- exp(log.ia);

log.ia ~ dunif(-9.21,4.6);
prob ~ dunif(0,1);

Model 2.3a: - Gamma distribution centred on mean with log prior on variability
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A.1 FAECAL EGG COUNT MODELS

for(row in 1 : N){

Count [row] ~ dpois(lambdal[row]);
lambda[row] <- probpos[row] * gammal[row];
gamma [row] ~ dlnorm(lmu, lprec);

probpos [row] ~ dbern(prob);

}

lprec <- 1 / 1sd"2;
meanl <- log(0.001) - ((1sd"2)/2);
meanu <- log(1000) - ((1sd"2)/2);

# Priors

Imu ~ dunif (meanl,meanu);
prob ~ dunif(0,1);

1sd ~ dunif(0.01,2.149);
}

Model 2.5: - Prior distribution for log standard deviation and log mean

: DA

~ dpois(lambdalrow]);
lambda[row] <- probpos[row] * gammal[row];
gamma [row] ~ dlnorm(lmu, lprec);

probpos [row] ~ dbern(prob);

3

for(row in 1
Count [row]

lvar <- log((sd/mean)”2 + 1);
lprec <- 1 / lvar;
lmu <- log(mean) - ((lvar) / 2)

# Priors

mean ~ dunif(0.001,1000);
prob ~ dunif(0,1);

sd ~ dunif (0.000001,10000);
}

Model 2.6: - Prior distribution for standard deviation and mean
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A.1 FAECAL EGG COUNT MODELS

for(row in 1 : N){

Count [row] ~ dpois(lambdal[row]);
lambda[row] <- probpos[row] * gammal[row];
gamma [row] ~ dlnorm(lmu, lprec);

probpos [row] ~ dbern(prob);

}

lprec <- 1 / 1sd"2;
lmu <- log(mean) - ((1sd"2) / 2)

# Priors

mean ~ dunif(0.001,1000);
prob ~ dunif(0,1);

1sd ~ dunif(0.01,2.149);
}

Model 2.7: - Prior distribution for log standard deviation and mean

for(row in 1 : N){

Count [row] ~ dpois(lambda[row]);
lambda[row] <- probpos[row] * gamma[row];
gamma [row] ~ dlnorm(lmu, lprec);
probpos[row] ~ dbern(prob);

}

lprec <- 1 / 1sd"2;

1sd <- exp(llsd);

meanl <- 1log(0.001) - ((1sd"2)/2);
meanu <- log(1000) - ((1sd~2)/2);

# Priors

Imu ~ dunif (meanl,meanu);
prob ~ dunif(0,1);

11sd ~ dunif(-4.61,0.81);
}

Model 2.8: - Prior distribution for log of the log standard deviation and log mean
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A.2 FAECAL EGG COUNT REDUCTION TEST MODELS

A.2 Faecal egg count reduction test models

for(row in 1:N){

Pre[row] ~ dpois(xpre.lambdalrow])

Post[row] ~ dpois(xpost.lambdalrow])

xpre.lambda[row] <- probpos[row] * pre.mean * pre.gamma[row]
xpost.lambda[row] <- probpos[row] * post.mean * post.gamma[row]
pre.gamma[row] ~ dgamma(pre.disp, pre.disp)T(107-200,)

post.gammal[row] ~ dgamma(post.disp, post.disp)T(10°-200,)

delta.mean[row] <- post.mean * post.gamma[row] / pre.mean * pre.gamma[row]
probpos[row] ~ dbern(prob)

}

pre.disp <- 1 / ia
post.mean <- pre.mean * efficacy
post.disp <- pre.disp * delta.disp

pre.mean ~ dunif(0.001, 1000)

prob ~ dunif(0,1)

ia <- exp(logia)

logia ~ dunif(-9.21,4.6)

efficacy ~ dbeta(1,1)

delta.disp ~ dlnorm(0, 0.01)T(0.001,1000)

Model 5.1: - FECRT model based on two (zero-inflated) gamma-Poisson distributions with
scaling mean and shape parameters deriving efficacy and change in variability
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A.2 FAECAL EGG COUNT REDUCTION TEST MODELS

for(row in 1:N){

Pre[row] ~ dpois(xpre.lambda[row])

Post[row] ~ dpois(xpost.lambda[row])

xpre.lambda[row] <- probpos[row] * pre.mean[row] * pre.gamma[row]
xpost.lambda[row] <- probpos[row] * post.mean[row] * post.gamma[row]
pre.gamma[row] ~ dgamma(pre.disp, pre.disp)T(10°-200,)
post.gammal[row] ~ dgamma(post.disp, post.disp)T(10°-200,)
pre.mean[row] <- group.mean * animal.gamma[row]

animal.gamma[row] ~ dgamma(animal.disp, animal.disp)T(107-200,)
post.mean[row] <- pre.mean[row] * delta.mean[row]

ind.deltal[row] <- (post.mean * post.gammalrow]) / (pre.mean * pre.gamma[row])
probpos [row] ~ dbern(prob)

delta.mean[row] <- efficacy

}

pre.disp <- 1 / ia
post.disp <- pre.disp * delta.disp
animal.disp <- 1 / iaa

group.mean ~ dunif(0.001, 1000)

prob ~ dunif(0,1)

ia <- exp(logia)

logia ~ dunif(-9.21,4.6)

iaa <- exp(logiaa)

logiaa ~ dunif(-9.21,4.6)

efficacy ~ dbeta(l,1)

delta.disp ~ dlnorm(0, 0.01)T(0.001,1000)

Model 5.2: - FECRT model based on compound gamma-Poisson distributions separating within
and between animal variability
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A.2 FAECAL EGG COUNT REDUCTION TEST MODELS

for(herd in 1:n.herds){
for(horse in 1:n.horseslherd]){
Pre[horse,herd] ~ dpois(xpre.lambdalhorse,herd])
Post [horse,herd] ~ dpois(xpost.lambdalhorse,herd])
xpre.lambdal[horse,herd] <- pre.mean[horse,herd] * probpos[horse,herd]
* pre.gamma[horse,herd]
xpost.lambda[horse,herd] <- post.meanl[horse, herd] * probpos[horse,herd]
* post.gamma[horse,herd]
pre.gamma[horse,herd] ~ dgamma(pre.displherd], pre.displ[herd])T(10°-200,)
post.gamma[horse,herd] ~ dgamma(post.displ[herd], post.displ[herd])T(10°-200,)
pre.mean[horse,herd] <- group.mean[herd] * animal.gamma[horse,herd]
animal.gamma[horse,herd] ~ dgamma(animal.displ[herd], animal.disp[herd])
T(10°-200,)
post.mean[horse,herd] <- pre.mean[horse,herd] * delta.mean[horse,herd]
probpos [horse,herd] ~ dbern(problherd])
delta.mean[horse,herd] <- efficacylherd]

3

pre.displherd] <- 1 / ialherd]
animal .displherd] <- 1 / iaalherd]
post.disp[herd] <- pre.displherd] * delta.disp[herd]

# Priors

group.mean[herd] ~ dunif(0.1, 1000)
ialherd] <- exp(logialherd])
logialherd] ~ dunif(-9.21,4.6);
iaalherd] <- exp(logiaalherd])
logiaalherd] ~ dunif(-9.21,4.6);
problherd] ~ dunif(0,1)

efficacylherd] ~ dgamma(dma, dmb)
delta.displherd] ~ dgamma(dda,ddb)
+

dmb <- dma / mean.efficacy

dma <- 1 / exp(logdmia)

logdmia ~ dunif(-4.6,4.6)
mean.efficacy ~ dbeta(l,1)

ddb <- dda / mean.deltadisp

dda <- 1 / exp(logddia)

logddia ~ dunif(-4.6,4.6)
mean.deltadisp ~ dlnorm(0, 0.01)

Model 5.3: - FECRT model based on compound gamma-Poisson distributions separating within
and between animal variability, adapted for meta-population analysis
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A.3 MODELS FOR QUANTIFYING VARIABILITY OF FEC

A.3 DModels for quantifying variability of FEC

for(i in 1:9){
adj.replicate.shape[i] <- 1/(mcmasters.cv™2 + ((i70.5/i)*replicate.cv)”2 +
(mcmasters.cv™2 * ((i70.5/i)*replicate.cv)”2))

¥

for(animal in 1:Nani)<{
ani.mean[animal] ~ dunif (0,100)
for(day in 1:Ndays){
day.mean[animal,day] ~ dgamma(day.shape, day.shape/ani.mean[animal])
for(sample in 1:Nsamples[animal,day]){
sample.mean[animal,day,sample]
~ dgamma(sample.shape, sample.shape/day.mean[animal,day])
for(replicate in 1:Nreplicates[animal,day,sample])q{
for(repeat in 1:Nrepeats[animal,day,sample,replicate]){
Count [animal,day,sample,replicate,repeat]
~ dpois(replicate.lambdalanimal,day,sample,replicate])
}
replicate.lambdalanimal,day,sample,replicate]
~ dgamma(adj.replicate.shape[Grams[animal,day,sample,replicatel],
adj.replicate.shape[Grams[animal,day,sample,replicate]]
/sample.mean[animal,day,sample])

S

replicate.logia ~ dunif(-9.21,4.6); replicate.shape <- 1/exp(replicate.logia)
replicate.cv <- 1/replicate.shape”0.5

mcmasters.logia ~ dunif(-9.21,4.6); mcmasters.shape <- 1/exp(mcmasters.logia)
mcmasters.cv <- 1/mcmasters.shape”0.5

sample.logia ~ dunif(-9.21,4.6); sample.shape <- 1/exp(sample.logia)
sample.cv <- 1/sample.shape”0.5

day.logia ~ dunif(-9.21,4.6); day.shape <- 1/exp(day.logia)

day.cv <- 1/day.shape”0.5

Model 6.1: - Variability quantification model using a hierarchical compound gamma distribution
with log-uniform priors on the inverse shape parameter
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A.3 MODELS FOR QUANTIFYING VARIABILITY OF FEC

for(i in 1:9){

adj.replicate.shape[i] <- 1/(mcmasters.cv™2 + ((i70.5/i)*replicate.cv) "2
+ (mcmasters.cv™2 * ((i70.5/i)*replicate.cv)~2))

adj.sample.shape[i] <- 1 / ((1/adj.replicate.shape[i]) + (1/sample.shape)
+ ((1/adj.replicate.shape[i]) * (1/sample.shape)))

adj.day.shape[i] <- 1 / ((1/adj.sample.shapel[i]) + (1/day.shape)
+ ((1/adj.sample.shape[i]) * (1/day.shape)))

}

for(i in 1:Days){

for(j in 1:Day.sublength[i]){

for(k in 1:Day.repeats[i,jl){

Day.count[i,j,k] ~ dpois(day.lambdali,jl)}

day.lambdali,j] ~ dgamma(adj.day.shape[Day.grams[i,jl],
adj.day.shape[Day.grams[i,jl]/day.mean[i])}

day.mean[i] ~ dunif(0,100)

# Doubled up records from Day.count are NA

}

for(i in 1:Samples){

for(j in 1:Sample.sublength[i]){

for(k in 1: Sample.repeats[i,j]){

Sample.count[i,j,k] ~ dpois(sample.lambdali,jl)}

sample.lambdal[i,j] ~ dgamma(adj.sample.shape[Sample.grams([i,jl],
adj.sample.shape [Sample.grams[i,j]]/sample.mean[i])}

sample.mean[i] ~ dgamma(day.shape, day.shape/day.mean[Sample.daytrack[i]])

# Doubled up records from Sample.count are NA

}

for(i in 1:Replicates){

for(j in 1:Replicate.sublength[i]){

for(k in 1:Replicate.repeats([i,j]1){

Replicate.count([i,j,k] ~ dpois(replicate.lambdali,j])}

replicate.lambdali,j] ~ dgamma(adj.replicate.shape[Replicate.gramsl[i,jl],
adj.replicate.shape[Replicate.grams[i,j]]/replicate.mean[i])}

replicate.mean[i] ~ dgamma(sample.shape,
sample.shape/sample.mean[Replicate.sampletrack[i]])

}

replicate.logia ~ dunif(-9.21,4.6); replicate.shape <-
1/exp(replicate.logia); replicate.cv <- 1/replicate.shape”0.5
mcmasters.logia ~ dunif(-9.21,4.6); mcmasters.shape <-
1/exp(mcmasters.logia); mcmasters.cv <- 1/mcmasters.shape”0.5
sample.logia ~ dunif(-9.21,4.6); sample.shape <-
1/exp(sample.logia); sample.cv <- 1/sample.shape”0.5
day.logia ~ dunif(-9.21,4.6); day.shape <- 1/exp(day.logia)
day.cv <- 1/day.shape”0.5

Model 6.2: - Variability quantification model using seperate non-hierarchical gamma distribu-
tions with log-uniform priors on the inverse shape parameter
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A.3 MODELS FOR QUANTIFYING VARIABILITY OF FEC

for(animal in 1:Nani)<{

ani.mean[animal] ~ dunif(0,1000)

for(day in 1:Ndays){

day.mean[animal,day] ~ dgamma(day.alanimal], day.al[animall/ani.mean[animal])

for(sample in 1:Nsamples[animal,day]){

sample.mean[animal,day,sample] ~ dgamma(sample.al[animal], sample.al[animall
/day.mean[animal,day])

for(replicate in 1:Nreplicates[animal,day,sample])q{

replicate.mean[animal,day,sample,replicate]
~ dgamma(adj.replicate.alanimal,day,sample,replicate],
(adj.replicate.alanimal,day,sample,replicatel
/sample.mean[animal,day,sample]))

adj.replicate.alanimal,day,sample,replicate] <- 1 / ((1/(replicate.alanimal]
*Grams [animal,day,sample,replicate])) + (1/(mcmasters.a)
+ ((1/(replicate.alanimal]*Grams[animal,day,sample,replicate]))
*(1/(mcmasters.a)))))

for(repeat in 1:Nrepeats[animal,day,sample,replicate])q{

Count [animal,day,sample,replicate,repeat]
~ dpois(replicate.mean[animal,day,sample,replicate])

SIS

day.alanimal] <- 1 / exp(i.day.alanimal])
sample.alanimal] <- 1 / exp(i.sample.alanimal])
replicate.alanimal] <- 1 / exp(i.replicate.alanimal])
i.day.alanimal] ~ dunif(-9.21,4.6)

i.sample.alanimal] ~ dunif(-9.21,4.6)
i.replicate.alanimal] ~ dunif(-9.21,4.6)
day.cv[animal] <- 1/day.alanimal]”0.5
sample.cv[animal] <- 1/sample.alanimal]”~0.5
replicate.cv[animal] <- 1/replicate.alanimal]~0.5

}

mcmasters.a <- 1 / exp(i.mcmasters.a)
i.mcmasters.a ~ dunif(-9.21,4.6)
mcmasters.cv <- 1/mcmasters.a”0.5

Model 6.3: - Multiple animal variability quantification model using a hierarchical compound
gamma distribution with log-uniform priors on the inverse shape parameter
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A.3 MODELS FOR QUANTIFYING VARIABILITY OF FEC

for(animal in 1:Nani)<{

ani.mean[animal] ~ dunif (0,1000)

for(day in 1:Ndays){

day.mean[animal,day] ~ dgamma(day.alanimal], day.alanimall/ani.mean[animal])

for(sample in 1:Nsamples[animal,day]){

sample.mean[animal,day,sample] ~ dgamma(sample.alanimal], sample.al[animall
/day.mean[animal,day])

for(replicate in 1:Nreplicates[animal,day,sample]){

replicate.mean[animal,day,sample,replicate]
~ dgamma(adj.replicate.alanimal,day,sample,replicate],
(adj.replicate.alanimal,day,sample,replicate]
/sample.mean[animal,day,sample]))

adj.replicate.alanimal,day,sample,replicate] <- 1 / ((1/(replicate.alanimal]
*Grams [animal ,,day,sample,replicate])) + (1/(mcmasters.a)
+ ((1/(replicate.alanimal]*Grams[animal,day,sample,replicate]))
*(1/(mcmasters.a)))))

for(repeat in 1:Nrepeats[animal,day,sample,replicate])q{

Count [animal,day,sample,replicate,repeat]
~ dpois(replicate.mean[animal,day,sample,replicate])

S RS

day.cv[animal]l ~ dunif(0.001,100)

day.alanimal] <- 1/day.cv[animal] "2
sample.cv[animal] ~ dunif (0.001,100)
sample.alanimal] <- 1/sample.cv[animal]~2
replicate.cv[animal] ~ dunif(0.001,100)
replicate.alanimal] <- 1/replicate.cv[animal]~2

}

mcmasters.cv ~ dunif (0.001,100)
mcmasters.a <- 1/mcmasters.cv”2

Model 6.3a: - Multiple animal variability quantification model using a hierarchical compound
gamma distribution with uniform priors on the cv
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A.3 MODELS FOR QUANTIFYING VARIABILITY OF FEC

for(animal in 1:Nani){

ani.mean[animal] ~ dunif (0,1000)

for(day in 1:Ndays){

day.mean[animal,day] ~ dgamma(day.alanimal], day.alanimal]/ani.mean[animal])

for(sample in 1:Nsamples[animal,day]){

sample.mean[animal,day,sample] ~ dgamma(sample.alanimal], sample.al[animall
/day.mean[animal,day])

for(replicate in 1:Nreplicates[animal,day,sample])q{

replicate.mean[animal,day,sample,replicate]
~ dgamma(adj.replicate.alanimal,day,sample,replicate],
(adj.replicate.alanimal,day,sample,replicatel
/sample.mean[animal,day,sample]))

adj.replicate.alanimal,day,sample,replicate] <- 1 / ((1/(replicate.a
*Grams [animal ,day,sample,replicate])) + (1/(mcmasters.a)
+ ((1/(replicate.a*Grams[animal,day,sample,replicate]))
*(1/(mcmasters.a)))))

for(repeat in 1:Nrepeats[animal,day,sample,replicate])q{

Count [animal ,day,sample,replicate,repeat]
~ dpois(replicate.mean[animal,day,sample,replicate])

S S

day.alanimal] <- 1 / exp(i.day.alanimal])
sample.alanimal] <- 1 / exp(i.sample.alanimal])
i.day.alanimal] ~ dunif(-9.21,4.6)
i.sample.alanimal] ~ dunif(-9.21,4.6)
day.cv[animal] <- 1/day.alanimal]l"0.5
sample.cv[animal] <- 1/sample.alanimal]”~0.5

}

replicate.a <- 1 / exp(i.replicate.a)
i.replicate.a ~ dunif(-9.21,4.6)
replicate.cv <- 1/replicate.a”0.5
mcmasters.a <- 1 / exp(i.mcmasters.a)
i.mcmasters.a ~ dunif(-9.21,4.6)
mcmasters.cv <- 1/mcmasters.a”0.5

Model 6.4: - Multiple animal variability quantification model using a hierarchical compound
gamma distribution with log-uniform priors on the inverse shape parameter and replicate.cv fixed
between animals
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APPENDIX B

Derivation of the cv of a compound gamma
distribution



Derivation of the cv of a compound gamma
distribution

In several places within this thesis, the effective cv of a distribution consisting of the combi-
nation of two gamma distributions has been calculated from the variability of each individual
distribution using the following formula:

CUtotal = V/ (€012 + cvg? + cv12 X c1?)

Where cvq; and cvs are the cv of each independent distribution, and cvyyg is the effective cv
of the compound distribution.

In this Appendix, the derivation of this formula from the combination of two gamma dis-
tributions is given (thanks to Louise Matthews for assistance with the work shown here).
Throughout, the gamma distributions will be defined in terms of the mean, p, and variance,
o2, which are related to the shape, «, and scale, 3, parameters as follows:

p=af
o? =af?

Let X represent a random variate sampled from a gamma distribution with probability density
function p(X = x) = f(x; u,0?). Further, if u is a sample from a further gamma distribution
with pdf p(M = ) = g(1; fipops 7%pop) then the combined pdf is given by:

p(X =) = / F (@3 11, 0%) g1 Hpops 0 pop) it

For simplicity, this can be rewritten as:

pdf (x) = /f(x; 1) g(p) dp

The objects of interest are the expectation (mean or F[X]) and expected variance (Var[X])
of the compound distribution represented by pdf(z). The expectation is given by:
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B.1 DERIVATION OF COMPOUND VARIABILITY

E[X] :/xpdf(:v) dx

/ /fm 1) dp dz
—/g( )/xf(wu)dwdu

The expression [z f(zu)dz is equal to the mean of z, which by definition is p. Therefore:

= Hpop

The expected variance of pdf(x) is given by:

Var[X] —E[(X — a‘c)z]

/ 2 pif(a) do — ey’

/ /f 2 10) g(p) dppdz — fipop”
:/g(,u) (/x f(zp) d:v) A — fipop”

= [ 9t) (Var(H)+ 1) dc = pie”

As Var(f) = ap? and E(f) = af; Var(f) can be substituted by u? + a. Therefore:

Var|x g(p Var +,u2) dp — ,upop2

1= [ o
/ gl ( )du Hpop

<1+ ) 1) B2 dp — ppop”

Substituting [ g(u) p? dp = Varlg(p)] + Elg(p)]? = Var[g(p)] + tpep> gives:
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B.1 DERIVATION OF COMPOUND VARIABILITY

g(w) 12 dp — prpop”

—

(VW[Q(N)] + Mpop2) - Hp0p2

1
Var(g(u)] + (1 + a) Lipop” — Iipop”

I
NN N
+
Ql— Q|+~ Q| Q|r
N— — 7 N S

Varlg(p)] + <;> Hpop”

2
In addition, substituting Var[g(u)] = tpop® and ey = ¢ = V) _ @ = ﬁ gives:

Var(z

Finally, since cvotqr =

CUtotal =

Qpop 12 af

1+ ;) Varlg(p)] + (;) Hpop”

1 FLPOPQ 1 2
( ) Qpop " o Hpor
po

2 2
+ cv ) X upop X cvpop + c? ,upop

2 2 2 2
p X cvpop + Hpop” X CUpop”~ X cv? + U™ X lpop

ﬁ, the total effective cv is given by:

\/(upop2 X CUpop? + pop® X CUpop? X €02 + €02 X fipop?)

Hpop

_ \/(Cvpoz)2 + cv? + cupop? X cv?) X \/wa2

Hpop

— 2 2 2 2
—\/ (CVpop? + cV? + CUpop? X cv?)

This can be re-written with cvp.p = cvg and cv = cv; as:

Ctoral = V/ (012 + cva? + cv12 X cvp?)

This derivation applies to the combination of any two gamma distributions, and can be ex-
tended to multiple gamma distributions by substituting cvy for \/ (cv9? + cv3? + cva? X cv3?)
etc. It should be noted that this equation was derived for the specific case of combining two
gamma distributions, and despite using a measure of variation that can easily be calculated
for many distributions is strictly applicable to the gamma distribution alone. However, the
calculated value should also be approximately correct for a distribution with similar shape,
such as the lognormal distribution with high mean and relatively small variance.
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