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Abstract 
 
This PhD thesis seeks to consider conifer forestry stream corridor design in 

relation to both in-stream and riparian zone biodiversity and functioning. The 

contribution, availability and source of basal resources within varying corridor 

conditions are the focus of this project. This approach is combined with 

surveys of community diversity on a number of key trophic scales in order to 

determine how the corridor characteristics and their associated resource 

availability, affects community structure. 

 
The effects of varying design and management of the riparian buffer zones 

within afforested stream systems on in-stream and overall habitat diversity 

and functioning remains largely unknown. Although guidelines have been 

implemented for several years (Forest and Water Guidelines, Forestry 

Commission), recommendations, although based on sound assumptions, are 

subjective assessments and tend not based on scientific research or data. As 

such, the premise of this project is to consider a variety of corridor physical 

parameters adjacent to low-order streams within two afforested catchments 

in South-West Scotland, between 2003 and 2005, in order to contribute to the 

understanding of system functioning within the limitations of forestry land-use 

and management.  

 

A number of different approaches were employed in order to define the 

proportional contributions of allochthonous and autochthonous material within 

the benthos of the stream systems. This was done in order to define resource 

availability, biofilm characteristics, stream functioning and the role of corridor 

design in influencing resource availability. Yet, despite significant 

autochthonous productivity, allochthonous organic matter was the primary 

resource utilised by many taxa. However, conversely, light regime was found 

to be fundamental in shaping production and community structure within 

these ecosystems. Consequently, here I explore a number of different trophic 

scale responses to riparian conditions in order to define the biotic responses 
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to variation of resource availability, with the aim of contributing information 

which may aid in design and management of afforested riparian zones. 
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1 General Introduction 
 

1.1 Introduction  
 

Large-scale conifer afforestation of upland areas in the north and west of the UK has 

altered the ecological status of many rivers flowing within or draining extensive 

forest plantations (Clenaghan et al., 1998; Maitland et al.; 1990; Ormerod et al., 

1986). Rapid expansion of UK forestry within the 1950s and 60s occurred during a 

period when environmental concerns were not given the priority they receive today 

(Broadmeadow and Nisbet, 2004). Commercial forestry plantation and forestry 

management expansion led to increasing concerns that large-scale alteration of land-

use would be accompanied by a general degredation of water quality. Specifically, 

many concerns centered around the fact that trees were often planted in close 

proximity to water courses, reducing light availability to in-stream and riparian zones, 

reducing ground-flora vegetation cover and helping to destabilise river banks. These 

modifications to the riparian zone were associated with marked reduction in overall 

productivity as well as diversity of the in-stream and riparian zones (e.g. Peterken, 

1996).  

 

In 1986, a 'water workshop' organised by the Forestry Commission and the Water 

Research Centre at York addressed increasing concern over the forestry industry’s 

impact on diffuse pollution, water acidification and reduced biodiversity. Following 

this meeting, the first set of best practice guidelines of forest and management and 

design were issued in 1988. The Forest and Water Guidelines have had four revisions 

(Forestry Commission, 1988, 1991, 1993 and the most current; 2003).  

 

From the early 1990s, forest design planning became an integral part of forest 

planning and management. Initially, these design priorities were integrated into state 

owned forestry, but increasingly the private sector was also involved. This approach 

integrated conservation, recreation, landscape and water issues on a whole-forest 

scale. One key aspect to this process was the implementation of stream corridor and 

streamside re-design in order to form native woodland habitat and wildlife corridors 

(Farmer and Nisbet, 2004), with densely canopies being replaced by more open 

stands and broadleaf forestry (Forest and Water Guidelines, 2003). 
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The health and function of a stream ecosystem is not only dependent on the internal 

processes of the stream but also relies on the quality of habitat, functioning and 

energetics of the surrounding terrestrial habitat (Vannote et al, 1980). The riparian 

zone (the interface (transition zone) between streams, rivers and/or lakes and their 

surrounding terrestrial habitats) forms an integral part of stream functioning and 

should be of key concern when assessing stream health and functioning.  

 

The Forest and Water Guidelines (Forestry Commission, 2003) try to balance the 

various interactions of riparian woodlands by recommending that about half the 

length of water channel is kept open to sunlight whereas the remainder is covered 

with dappled shade. However the effects of varying the design and management of 

the riparian buffer zone upon in-stream and overall habitat diversity, and ecosystem 

functioning remains poorly known (Farmer and Nisbet, 2004). As such, FWG 

recommendations although based on sound assumptions, are subjective assessments 

and tend not to be based on scientific research or data (Broadmeadow and Nisbet, 

2004). In addition, the guidelines have been criticised for their restricted scope; 

being aimed towards conservation of fish, either specifically (e.g. Mills, 1980) or by 

implication (e.g. Forestry Commission, 1993). As the majority of these ‘old style 

plantations’ are now reaching the end of their rotational cycle, there is now the 

opportunity to redesign planting style in order to maximize biodiversity and system 

functioning.  

 

The basic premise for this project was that rivers should be considered from the 

perspective of overall biological diversity, and as such, this project considered issues 

of biodiversity at different trophic scales to address energy cycling and system 

functioning within the habitats as a whole, in order to consider how variation of basic 

corridor/riparian design characteristics can be used to maximise system ‘biointegrity’.   

 

1.2 The role of riparian characteristics in influencing 
energy resources  

 
Shading within streams of native broadleaf woodland may reduce primary 

production. However, allochthonous production is usually significant and is enhanced 

through high retention of organic material derived from woody debris (e.g. twigs, 

branches and fallen trees; Pozo et al., 1998). Conversely, streams left “open” 
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(without an overhanging or nearby tree canopy cover) can have low availability of 

allochthonous material standing stock, and can often be poorly retentive of the 

organic matter entering the stream (Dobson and Cariss, 1999). However, in such 

open systems, there is a greater potential for autotrophic production with increased 

availability of Photosynthetic Active Radiation (PAR) within the stream system. 

Consequently, open systems are often characterized by high algal production, which 

provides food for primary consumers (Behmer and Hawkins, 1986). 

 

Conifer forestry can cause significant alterations to the energetics driving stream 

functioning (Pretty and Dobson, 2004). Allochthonous leaf material can be a 

substantial energy resource for stream systems (Fisher and Likens, 1973). The 

processing rate of this allochthonous material is key to the rate at which it becomes 

available to the higher levels of the food chain (Peterson and Cummins, 1974). 

Within the stream, allochthonous detritus is colonised by aquatic fungi and bacteria 

and is subsequently processed by stream macro-invertebrates. However, the success 

of processing can be affected by a number of physical and chemical factors which 

include temperature, consumer populations, acidity and overall residence time in the 

system (e.g. Dobson and Cariss, 1999; Friberg and Jacobsen, 1994). Many of these 

variables are addressed within this study, as they are greatly influenced by the 

specific corridor design. In particular, the proportion of allochthonous material 

derived from coniferous sources has been found to be of significant influence. The 

chemical characteristic of allochthonous material itself has a direct influence on 

processing rates. For example, Gessner and Chauvet (1994) found that leaves from 

oak (Quercus spp.) had relatively high lignin and tannin concentrations and thus 

were processed slowly in comparison to alder leaves (Alnus glutinosa) which, being 

nitrogen-rich, are processed rapidly. Coniferous needles however, provide a poorer 

energy source for higher stream trophic levels than leaves from deciduous species 

(Sedell et al., 1975), having high levels of lignin (Berg et al., 1982) and thick cuticles 

(Bärlocher et al., 1978). As a consequence, their process rates are much slower (e.g. 

Friberg and Jacobsen, 1994). The specific litter retention time can be a concern 

within commercial plantation forests as harvesting normally occurs before trees 

become old enough to significantly lose twigs and branches. Consequently, the 

retention time of allochthonous material is often low resulting in reduced availability 

and palatability of allochthonous resources. As such, these systems may receive little 

energetic benefit from coniferous-based detrital matter (Pretty and Dobson, 2004); 
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yet due to the proximity of the trees (and associated shading), can often also suffer 

from limited algal production (Friberg and Kjeldsen, 1994, Friberg, 1997).  

 

1.3 Conifer forestry: A source of diffuse pollution 
 

In the late 1940s and 1950s acceleration in conifer planting and the general 

expansion of the forestry industry was extensive and annual planting rates peaked in 

the early 1970s to >40000 ha yr-1 (Forestry Commission 2002a) in order to fulfil the 

role of a strategic reserve. As a consequence, approximately 20% of UK land is 

presently afforested (Neal et al., 2004). 

 

Increasingly, plantation forestry has been recognised as a major source of diffuse 

pollution (Clenaghan et al., 1998, Maitland et al., 1990 and Ormerod et al., 1986). 

The main areas of concern focused not only on the plantations themselves but also 

the activities that surrounded them. British commercial forestry has been heavily 

criticised for degrading moorland habitats, degradation of soil and rivers, a lack of 

commitment and appreciation for conservation, and generally degrading the 

aesthetic appeal of the areas affected (e.g. Ramblers Association, 1980; Nature 

Conservancy Council 1986). In addition, concerns focused on aerial application of 

fertilisers, which contributes to nutrient enrichment and run-off (Swift, 1987). 

Cultivation, drainage-channel production and road building can all contribute to 

erosion and subsequent increased sedimentation in river and stream systems (Leeks 

and Roberts, 1987). In the 1980s increased environmental awareness led to 

concerns over the apparent increased ability of plantation trees to scavenge 

atmospheric acid pollutants and thus contribute to soil and surface water acidification 

(Stoner et al., 1984). 

 

Catchment land use determines much of the variation in stream quality produced by 

varying levels of sediment and nutrient inputs, affecting physical habitat variables, 

and community composition (Omernik, 1976). The increase in proportion of 

agricultural and urban land use can cause increases in both sediment and nutrient 

inputs (Allan et al, 1997). The conversion of much of the UK’s uplands to conifer 

forestry plantation land has similarly caused changes to deposition chemistry, soil, 

and runoff character as well as having a significant role in variation of community 

composition (Neal et al, 2004). 
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1.3.1 Acidification 

 

Acid deposition is arguably the most controversial of all the impacts caused by 

widespread development of conifer forestry plantations (Nisbet, 2001). The ability of 

vegetation (particularly mature trees) to collect and concentrate elements has been 

documented some time ago (e.g. Miller and Miller, 1980). The extent to which 

atmospheric elements are absorbed depends on both the vegetation type and the 

transport mechanisms in place (Fowler, 1980). The concentration of most elements 

increases from canopy to forest floor for all tree species through mechanisms such 

as interception of acidic rain and crown leaching (Calder and Newson, 1979). 

However, drawdown and retention of pollutants is considerably greater in conifer 

plantations (Harriman and Morrison, 1982), exacerbated by the fast growth of the 

coniferous species. 

 

During high discharge events, leaching of sulphate anions from soils into stream 

water occurs. If this excess sulphate is not balanced by calcium or magnesium ions 

then aluminium and hydrogen ions make up the deficit. Thus, the geological 

buffering capacity of the underlying rocks and soils can largely determine how much 

of an effect afforestation has on the level of acidification within the catchment and 

associated water-bodies (e.g. Sheppard et al, 2004; Stutter et al., 2004). The relative 

concentration of aluminium or calcium in forest soils will have a substantial role in 

determining the effect of acid runoff (e.g. Bache, 1984). 

1.3.2 Trace Metal Contamination 

 
Studies addressing the role and variation in trace metal deposition (e.g. Neal et al., 

2004); demonstrate the importance of trace metals. For example, studies in Wales 

(Wilkinson et al., 1997) on Cr and Zn, and on Mn in Scotland (Heal, 2001), indicate 

that following harvesting operations, the deposition levels increase. Grieve and 

Marsden (2001), in a study of forest and moorland habitats, demonstrated that 

although there was much temporal and spatial variability, TOC, Al and Fe 

concentrations were significantly higher in streams draining forested catchments. 

1.3.3 Sedimentation and soil disturbance 
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The classic study which first examined the ecological effects of catchment-scale 

conifer afforestation and the activities associated with it was undertaken in the 

Hubbard Brook Experimental Forest, an experimental site established in 1955 by the 

US Forest Service to study the hydrology of small catchments. The major emphasis 

in early studies was to determine the impact of forest land management on water 

yield and quality, and flood flow. Data arising from such studies have indicated that 

sediment release and riparian soil disturbance were, until recently, responsible for 

many water pollution incidents in UK forestry (Nisbet 2001). 

 

Additionally, sedimentation and associated increases in water turbidity can severely 

reduce in-stream biodiversity (Vuori and Joensuu, 1996) and the effects may persist 

for many years after the disturbance event (Yount and Niemi, 1990). High levels of 

turbidity can reduce autochthonous photosynthetic rates by light attenuation within 

the water column (Cloern, 1987), and reduce breeding success of salmonid species 

through sedimentation of spawning gravels (Ziemer, 1991). Thus both bottom-up 

and top-down functionality of the ecosystem can be affected.  

 

Disturbance causes the most severe effects during exposure of soils through 

weathering. Thus ploughing, channel production and felling events are associated 

with the mobilisation of soils and associated nutrients. The effects of soil disturbance 

are amplified when associated with channel drainage systems as the reduced 

residence times, increased flow rates and associated erosion rates increase the 

potential for soil and nutrient transport directly into streams and rivers. The risk of 

pollution from these sources is increased when operations are followed by a period 

of very wet weather (Nisbet, 2001).  

1.3.4 Nutrient Enrichment 

 
In both aquatic and terrestrial environments the quantity, availability and quality of 

organic mater and the rate of organic mater mineralisation in soils and sediments 

has been shown to exert strong control over the rates of nitrogen transformation 

(Jones et al., 1995). In forested streams where allochthonous inputs can account for 

up to 98-99 % of total energy available to the stream ecosystem, organic carbon is 

the critical link between energy and nutrient dynamics (Kaplan et al., 1993). 

Dissolved organic carbon (DOC) can account for up to 30 – 75% of the total energy 
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inputs (Fisher and Likens, 1973) and thus, especially in nutrient limited systems the 

carbon and nitrogen cycles (and potential nutrient availability) are linked. The 

quantity of bacterial biomass is often controlled by the level of carbon availability as 

well as source quality (Bott et al., 1984). As a consequence, the carbon availability 

also dictates the bacterial nitrogen demand. Additionally, the rate of transformation 

of nitrogen is also mediated by micro-organisms reliant on oxidizable carbon 

supplies. Consequently, the rates of processes such as denitrification are reliant on 

the availability of organic carbon and are thus coupled with the carbon cycle. 

 

Forestry can affect nutrient enrichment in a number of ways. Firstly, the direct 

application of phosphate and nitrogen fertilisers, required to achieve the satisfactory 

establishment of forests on certain soil types, can lead to significant nutrient leaching 

(Swift and Norton, 1993). Secondly, indirect release of nutrients (particularly 

phosphorus) into streams following large-scale felling operations (e.g. Staaf and 

Olsson, 1994; Dyck et al., 1987) can also present a problem in upland stream waters 

whose naturally nutrient-poor systems are often phosphorus limited. Phosphorus 

enrichment can, in extreme cases, produce excessive algal growths (e.g. Swift and 

Norton, 1993), resulting in wide fluctuations in dissolved oxygen, increased biological 

oxygen demand (BOD) and even fish death (Nisbet, 2001). 

 

Buffer strip studies have demonstrated the importance of denitrification in removing 

nitrogen from anaerobic soils. Hubbard and Lowrance (1994) noted that a 7m buffer 

strip was effective at removing nitrate through plant uptake and denitrification. Pinay 

et al., (1993) found that 30m buffer strips were successful in reducing nitrate levels 

to below that of the shallow groundwater of riparian forests. Buffer strips along 

watercourses have also been shown to be effective at retaining phosphate leaching 

from forest soils following aerial applications.  

1.3.5 Bio-monitoring of river water quality under the European Commission Water 

Framework Directive (WFD): existing approaches and the need for new 

methodologies 

 

Bio-monitoring is recognised by WFD as an essential tool for use in both routine 

monitoring of freshwater ecosystem biointegrity (“ecological health”), and for 

assessment of impacts of pollution or other harmful pressures such as disturbance 
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upon these systems. Bio-monitoring procedures based on differing groups of 

organisms makes it possible to detect changes occurring in a freshwater system over 

differing timescales of impacts because the study organisms concerned integrate 

such effects over timescales ranging from days or less (e.g. microorganisms), to 

months or more (e.g. macrophytes). Within this study, using indicator species as well 

as assemblage structure (at different ecological trophic levels) allows utilisation of 

these benefits by establishing patterns of diversity associated with variable stream 

and riparian conditions. Such data can provide evidence and information on the 

effects of habitat disturbance and possible associated pollution events in streams 

draining forested areas. 

 

Such methodologies are undoubtedly useful tools for river bio-monitoring purposes. 

However the WFD also recognises the need for continuous improvement in bio-

monitoring technologies. For various reasons, dependent on factors such as size, 

geological factors, or pollution status (to mention only a few), assemblage-based 

methods may not provide an adequate picture of the state of health of a given 

stream especially when the pressures affecting biointegrity are intermittent and 

unpredictable. In these circumstances (and also as a complementary methodology to 

help assess the state of other types of stream system), any novel method which 

might aid determination of the bio-integrity state of a stream could be a valuable 

additional tool for water quality management. Thus, the following sections outline 

chapters which have utilised both traditional, and novel approaches to bio-monitoring 

in order to assess the influence of variation to conifer forest stream corridor design 

and forestry disturbance and to asses variability in ecosystem health through 

measurements of the specific community composition combined with assessment of 

both diversity and evenness 

 

1.4 Study aims 
 
This study aimed to explore the relationships involved in food-web dynamics within 

conifer forested streams and their associated corridors, in order to address the 

importance of corridor characteristics in determining and maintaining both 

biodiversity and production within food-webs. In addition to this, the project aimed 

to explore the relative importance of different energy sources driving ecosystem 

functioning in such systems. The findings can inform forest management strategies, 
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particularly in the context of riparian corridor design. This thesis presents the results 

of field studies undertaken in South-west Scotland between autumn 2003 and 

autumn 2005, aiming to cover the main subject areas as outlined below: 

1.4.1 Chapter 2: Patterns in biodiversity and standing crop biomass of riparian 

vegetation, and the role of corridor physical characteristics in shaping this 

variation.  

 
This chapter investigates variations in biomass and biodiversity of ground flora 

vegetation in stream corridors. I explore the role of riparian vegetation as a 

replacement for, or supplement to, basal energy resources, with the premise being 

that allochthonous litter availability and utilisation may be low from corridor 

coniferous sources. Defining the role of corridor characteristics in influencing 

standing stock biomass and diversity of ground flora vegetation serves to provide 

information on how these corridor habitat variables control allochthonous energy 

availability to other trophic groups and influence both vegetation and overall corridor 

diversity.   

 

1.4.2 Chapter 3: Autochthonous primary production: using traditional 

approaches to characterising biofilm autotrophic components and the 

role of light in basal energy resource dynamics. 

 

This chapter investigates temporal and spatial variation in availability and 

characteristics of in-stream biofilm material. Much of the focus of this study seeks to 

define the proportion of algal material within biofilm biomass. I use carbon and 

chlorophyll a analysis in two ways. Firstly, through the conversion of chlorophyll a 

concentrations, I calculate algal biomass within benthic biofilms of the study streams. 

Secondly, using C:Chl calculations, the proportional contribution of algal carbon to 

biofilm biomass is calculated. The physical and chemical parameters of the sites and 

temporal variation are explored in relation to biofilm content and biomass. In 

addition, algal species assemblages are considered, and dominant species discussed 

in respect to environmental variables and corridor characteristics (with particular 

reference to light availability) and changes to biofilm composition. Additionally, 
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advantages and limitations to using these relatively traditional approaches are 

considered here. 

 

1.4.3 Chapter 4: Autochthonous primary production: development of a novel 

approach to characterising biofilm content and assessing the role of light in 

basal energy resource dynamics. 

 

Here a novel approach is presented for differentiating allochthonous and 

autochthonous organic matter within benthic biofilms. The technique development is 

described here with information on the possible utilisation of isotopic signatures (δ15N 

and δ13C) and stoichiomatric measures (molar C:N), in order to delineate the source 

and contribution of organic matter to the biomass of benthic biofilms. This chapter 

assesses the comparative results from two study streams in order to describe 

changes to biofilm biomass and organic matter characteristics with corridor design 

over a temporal scale. This approach allows for the alternative measures explored to 

be examined in respect to production of a robust model. This approach is then 

combined with results from Chapter 3 in order to define the autotrophic proportion of 

the autochthonous compartment, in relation to the allochthonous organic matter. 

The results provide possible insight into biofilm functioning potential and the possible 

impacts to organic matter retention and processing by benthic biofilm biomass. 

 

1.4.4 Chapter 5: Stream macro-invertebrate species assemblage structure and the 

role of physical, chemical and biotic factors. 

 

Within this chapter, aquatic macro-invertebrates are used to assess variation in the 

habitat conditions available under the riparian and corridor characteristics associated 

with the different sites of this study. Invertebrate taxa were identified and 

characterised into Functional Feeding Groups (FFGs) according to morphological and 

behavioural traits, as described in the literature. Consideration of abundant taxa FFG 

provided information on dominant food resource preference, and thus, which basal 

resources were likely to be influencing the distribution and abundance of invertebrate 

communities and specific taxa. Multivariate ordinations are used to define gradients 

of habitat conditions which influence species composition and the physical conditions 
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important to each site assemblage. Additionally, diversity indices are used to assess 

the influence of environmental variables upon community diversity.  

 

1.4.5 Chapter 6: Characterising the effect of felling on stream corridor habitat 

functioning 

 
This study describes the immediate effect of a clear-felling event on stream and 

corridor habitats. As the felling was an unexpected event, the results are based on 

the ongoing ecological surveys of a single stream, the Black Burn. The data 

presented include benthic biofilm experimental data, combined with limited physical, 

chemical and macro-invertebrate assemblage results. Using the stoichiometric mixing 

model approach described in Chapter 4, stream biofilm composition and specifically 

the relative carbon sources and contributions that they make to stream biofilms, are 

used to provide information on the impacts of riparian disturbance to nutrient 

availability and retention within the stream system. The study focuses on temporal 

changes in biofilm composition post felling and discusses community assemblage 

modification in algae and chlorophyll production using a reference stream at an 

undisturbed location for comparative analysis. The impact on consumer species is 

investigated with analysis of macro-invertebrate populations before and after the 

event. I also consider the role of riparian vegetation on buffering the impact of the 

felling event: in particular the buffering role played by the plant community in terms 

of reducing nutrient and sediment runoff. 

 

1.4.6 Chapter 7: The impact of riparian zone structure on native fish species 

growth and survival; a study of both natural populations and experimental 

stocking. 

 

Salmonid fish species constitute the most economically important species within this 

study (Galloway Fisheries Trust, personal communication). Including an investigation 

into the impact of different riparian characteristics on higher predator species has 

benefits both to the local community but also to wider issues relating to declining 

fish stocks. In addition, the relative life span of these taxa means that they reflect 

the longer-term changes in environmental conditions. Experimental stocking of 

Atlantic salmon into selected sites characterising a variety of varying corridor 
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characteristics constitutes the primary data of this chapter. Survival success, as well 

as weight and fork-length data is included here for both years of fieldwork. This data 

is combined with the physical, chemical and ecological data from sites to determine 

relationships between site characteristics and the success of stocked salmon. In 

addition, natural populations of both Atlantic salmon and brown trout are also 

surveyed and the results produced here provide a wider scope for assessing 

population abundances with environmental variables, as well as information on 

habitats which can sustain and promote natural unstocked populations. 

1.4.7 Chapter 8: Conclusions. 

 

This chapter integrates the results from all chapters to discuses the overall role of 

stream corridor structure on ecosystem functioning. The key findings from organisms 

studied at each trophic level are integrated to provide information on the 

relationships between producer and consumer species with respect to conifer 

forestry stream habitat type. Additionally, I discuss possible optimal corridor 

characteristics which would contribute the greatest to overall system health and 

biodiversity. These results are then used to make recommendations for management 

protocols, and to define areas where improvements would have the greatest impact 

on the target habitats. 

 
1.5 Field site details 
 

Fieldwork for this project was undertaken between September 2003 and October 

2005. The field area was located in Galloway, Southwest Scotland. This target area 

chosen lies within an area of extensive afforestation, covering approximately 27% of 

the region (Helliwell et al., 2001).   

 

The two catchments studied were the Cree and neighbouring Bladnoch. Due to the 

nature of secured funding, the first year of study (Sep 2003 – Sep 2004) was limited 

to sites within the Minnoch catchment (a tributary of the Cree). Extension of funding 

at the end of year one, to provide a further two years of secured funding, allowed 

for expansion and some redesign of project parameters. As a consequence, further 

Cree catchment sites and also sites from within the neighbouring Bladnoch 

Catchment (Fig 1.1), were included. 
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Fig 1.1. Map of all sites. Site/stream name illustrated with site types where 
multiple site locations found on a single stream (Map modified from Ordnanace 
Survey).  
 

Streams in Galloway drain predominantly in a southerly direction from the Galloway 

uplands into the Solway Firth (Fig 1.2). There are seven river catchments of 

moderate size in the region, which include, from west to east, the Water of Luce 

(200 km2), the River Bladnoch (340 km2), the River Cree (370 km2), the Palnure Burn 

(50 km2), the Skyre Burn (25 km2), the Water of Fleet (90 km2) and the River Dee 

(1000 km2). 
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Fig 1.2. Catchment Systems within Galloway. Highlighted area includes the Cree 
Catchment (with Minnoch tributary) and Bladnoch Catchment. (Map modified 
from Puhr et al., 1999). 
 

Galloway has a relatively simple underlying solid geology, consisting of three main 

rock types: (1) granite intrusions of Tertiary age, (2) shales, mudstones and 

greywacke of Ordovician age and (3) shales, mudstones and greywacke of Silurian 

age. All these rocks have a low capacity to buffer external acid inputs (Edmunds and 

Kinniburgh, 1986). In addition to this, soils are generally thin, and consist primarily 

of podzols and peaty podzols; a large proportion of the more upland areas are 

covered by blanket peat (Bown et al., 1982). The annual precipitation is 

approximately 1400 mm. 

1.5.1 The Cree Catchment 

Widespread planting within the Cree catchment began in 1948. Initial development 

occurred upstream of Bargrennan (NX 350 768) between 1948 and 1954, resulting in 

forest cover totalling approximately 7% of the catchment. This was then expanded 

with a planting regime which accounted for a further 4 % additional cover, annually 

until 1965 (Tervet et al, 1995).  After a pause in planting, further development 

occurred in 1977, and in the next 10 years, planting extended to its current range 

which covers approximately 65% of the catchment. The most prevalent of species 

used in the afforestation are non-native conifers, such as sitka spruce (Picea 



Chapter 1. Introduction 

 - 15 - 
 

sitchensis) and lodgepole pine (Pinus contorta). Deciduous tree stands are rare and 

distributed mainly within the more lowland areas of the catchment. 

1.5.2 The Minnoch sub-catchment 

 

The Minnoch is the largest tributary of the River Cree. Lying within the Galloway 

Forest Park, approximately 70% of the 141km2 catchment is afforested.  The river 

has a mean flow of 7.7 m3s-1 but is subject to large spate events where flows 

reached approx 0.3 to ~ 60-90m3s-1 from 2003 – 2005, inclusive. The geology of the 

catchment is Ordovician, with shales and greywackes, including rugged uplands (Fig 

1.3). 

 

 
Fig 1.3. Falls of Minnoch during spate flow event. (NX 37100 78600). 

1.5.3 The Bladnoch Catchment 

 
The second year of the project (March 2005 to October 2005) included fieldwork 

within streams of the Bladnoch catchment in S.W. Scotland. In recent years this 

catchment has been heavily afforested with coniferous species, mainly Sitka spruce 

(Picea sitchensis). However a much higher proportion of this development is under 

private land ownership and not undertaken by the Forestry Commission (Forestry 

Commission, personal communication). The soils include peaty podsols, peaty gleys, 
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peats and brown forest soils derived primarily from lower palaeozoic greywackes and 

shales. Flow here is also characterized by spate events. Flows ranged from 

approximately 0.4 to 100 - 115m3s-1 from 2003 – 2005, inclusive. As the ranges for 

both rivers (Minnoch and Bladnoch) within the study are comparative, and the spate 

characteristic similar, variation in results from surveys are unlikely to be influenced 

by differential flow regimes between catchments. 

 

The Bladnoch catchment was recently assigned SAC status (Special Area of 

Conservation), because the River Bladnoch supports a high-quality salmon 

population, which, unusually for rivers in this area, still supports a spring run of 

salmon (as apposed to late autumn migration immediately before spawning). The 

river drains a moderate-sized catchment (340 km2) with both upland and lowland 

areas.  

 
1.6 Site Selection 
 
In total 28 sites were sampled within the study period. Due to the nature of funding 

acquisition, the sites were not all sampled over the same period. First year sites were 

confined to the Minnoch tributaries and a total of 15 sites were sampled from Sep 

2003 to Sep 2004. Streams were all low order with an average width (± SD) of 

2.20m (±1.03). All sites were selected on the basis of corridor characteristics broadly 

defined as the following: 

 
• Broadleaf shaded 

• Conifer shaded 

• Conifer corridors 

• Open 

• Clear-felled 

 
Three replicates of each site type were chosen. However, this type of selection 

process, based on broad categories, is liable to personal interpretation of site 

characteristics rather than on the basis of actual physical measurements. To 

compensate for this detailed measurements of corridor, stream and riparian 

characteristics allowed for analyses to be related either to these specific measured 

parameters or the more general site classifications based on more subjective 

observations. 
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In year two (Mar 2005 – Oct 2005), five of the original sites were abandoned due to 

one of two reasons. Firstly, two sites were removed as they had been unexpectedly 

felled (e.g. Laglany) and I felt this would confound results due to the extensive 

physical and chemical changes often associated with a large-scale disturbance event 

such as this. Secondly, expansion of the field area provided the opportunity for sites 

to be selected which were felt to be better representatives of the site types (as 

shown above).  

 

Table 1-1 shows site locations (Ordnance Survey National Grid References) as well 

as year of sampling and indications of variation in general river and corridor widths. 

Where corridor widths exceed 100m, sites are open or clear-felled. 
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Table 1-1 Site details (Cree (top) and Bladnoch catchment (bottom), 2003 – 
2005). Includes general site classifications and basic corridor characteristics as 
measured over the sampling period (± SE).  

Sites Grid Ref 

 

Year(s) 

Sampled 

Altitude 

(m) 

River Width 

(m) 

Corridor  Width 

(m) 

 Laglany Open  358 902 Year 1 250 2.49 +/- 0.2 28.33 +/- 7.37 

 Laglany Conifer Shade  358 902 Year 1 252 2.91 +/- 0.27 14.00 +/- 5.05 

 Rowantree Broadleaf  352 906 Years 1and2 320 2.44 +/- 0.18 7.43 +/- 0.49 

 Rowantree Open  352 907 Years 1and2 330 1.95 +/- 0.09 33.12 +/- 2.9 

 Rowantree Conifer Shade  351 907 Years 1and2 340 2.65 +/- 0.12 8.16 +/- 0.58 

 GT1 Broadleaf  401 799 Year 1 100 2.90 +/- 0.33 6.00 +/- 0.31 

 GT1 Conifer Shade  402 798 Years 1and2 100 2.37 +/- 0.11 6.22 +/- 0.29 

 GT1 Corridor  402 800 Years 1and2 100 1.46 +/- 0.06 12.24 +/- 0.44 

 Butler Broadleaf  362 832 Year 1 210 2.55 +/- 0.17 9.33 +/- 0.42 

 Butler Open  363 832 Year 1 200 1.14 +/- 0.01 100 + 

 High Mill Burn Clear-felled  365 814 Year 1 190 3.35 +/- 0.08 100 + 

 Pulnagashel CF1 Clear-felled  374 793 Years 1and2 130 2.40 +/- 0.13 100 + 

 Pulnagashel CF2 Clear-felled 375 797 Years 1and2 120 2.73 +/- 0.11 100 + 

 Pulnagashel Corridor  374 792 Years 1 and2 110 3.34 +/- 0.18 9.93 +/- 0.56 

 GT2 Broadleaf 407 789 Year 1 130 6.81 +/- 0.18 25.00 +/- 0.00 

 Black Burn (m) Conifer Shaded 361 852 Years 1and2 210 2.23 +/- 0.12 9.01 +/- 0.20 

 Black Burn (m) Open  360 852 Years 1and2 210 1.77 +/- 0.03 31.32 +/- 1.06 

 Black Burn (m) 

Corridor/Cleared  360 851 

Years 1  

And 2 220 1.40 +/- 0.12 100 +/- 0.00 

 Wood of Cree Broadleaf  385 701 Year 2 50 1.88 +/- 0.19 7.68 +/- 1.25 

 GT3 Broadleaf 396 784 Year 2 100 1.31 +/- 0.25 7.14 +/- 0.75 

 T33 CF1 Clear-felled  328 703 Year 2 100 0.93 +/- 0.09 91.11 +/- 2.81 

 T33 CF2 Clear-felled 327 702 Year 2 100 1.11 +/- 0.17 64.44 +/- 5.62 

 T33 SH Conifer Shade 327 703 Year 2 90 1.10 +/- 0.15 36.44 +/- 5.20 

 SPP Broadleaf  329 659 Year 2 60 1.78 +/- 0.15 3.22 +/- 0.07 

 SPP Conifer Shaded  329 658 Year 2 60 1.32 +/- 0.12 2.72 +/- 0.03 

 Black Burn (B) Corridor  283 673 Year 2 110 3.27 +/- 0.14 23.55 +/- 3.09 

 AIRIES Conifer Shaded 275 672 Year 2 120 1.35 +/- 0.03 7.22 +/- 0.98 

 FILI Corridor 284 664 Year 2 100 1.24 +/- 0.01 16.55 +/- 1.61 
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2 Patterns in biodiversity and standing crop 
biomass of riparian vegetation, and the role of 
corridor physical characteristics in shaping this 

variation  
 
2.1 Abstract 
 

The riparian zone constitutes the aquatic/terrestrial interface zone adjacent to a 

water body. The area adjacent to a stream channel forms an essential component in 

the functioning of many stream ecosystems. Overhanging vegetation creates a 

valuable food source within the stream ecosystem in the form of organic detritus 

from terrestrial origins. The transfer of energy between the aquatic and terrestrial 

zones constitutes one of the key mechanisms driving the biodiversity of the aquatic 

environment and controlling the balance between allochthonous and autochthonous 

energy sources to the stream.   

 

Sampling of riparian vegetation using replicate quadrat surveys and 400 cm2 biomass 

sampling indicated variable biomass and diversity correlations. Biomass was 

positively correlated with increasing light and altitude. Consequently, using broad 

site-type classifications, riparian vegetation biomass was significantly higher within 

‘open’ sites. Spatial variation of vegetation within sites was measured using quadrats 

positioned adjacent to the water edge, and three meters from the water edge. 

Proximity to either the streamside or the corridor edge respectively, did not translate 

to variability of either diversity or biomass of the riparian ground vegetation. The 

corridor characteristics measured did not predict changes in vegetation biomass. 

However tree height and riparian tree diversity did correlate with a positive increase 

in ground vegetation diversity. Conifer-shaded sites provided the least favourable 

conditions for riparian vegetation diversity.  

 

A significant (P < 0.001, n = 62, r2 = 0.1961) positive linear relationship was 

observed between invertebrate diversity and vegetation biomass. Neither vegetation 

biomass nor diversity could be used to predict changes in invertebrate abundance. 

Therefore, as the difference in riparian vegetation diversity was negligible between 

all sites, except ‘conifer shaded’, considering results for both invertebrate and 

riparian vegetation diversity preferences, suggested that by promoting riparian 
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vegetation biomass through increased light availability increases invertebrate 

diversity, whilst also maintaining relatively high diversity of riparian ground-cover 

vegetation. 
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2.2  Introduction 
 

The riparian zone is the interface (transition zone) between aquatic and terrestrial 

habitats associated with a river. Natural riparian zones are amongst the most 

diverse, dynamic and complex terrestrial habitats in the world, but they are very 

sensitive to environmental changes (Petts, 1990; Naiman and Décamps, 1997). This 

area adjacent to the stream channel forms an essential component in the functioning 

of many stream ecosystems (Murphy et al., 1994). Significant changes in riparian 

zones can, in turn, significantly affect the diversity of biological communities in both 

the adjacent terrestrial and aquatic habitats (Risser, 1990).  

 

As with many transitional habitats (“ecotones”), the aquatic terrestrial transition zone 

(ATTZ) supports an assemblage of species, the distribution of which is controlled by 

the gradients of resources and other environmental factors occurring along the ATTZ 

ecotone. Individual species occupy locations along the ecotone where 

physicochemical conditions are most appropriate for their survival. The riparian zone 

provides a unique habitat in which the combination of terrestrial and aquatic 

conditions supports a community structure with both allochthonous and 

autochthonous components (Moss, 1980). 

 

As well as creating an important habitat for stream corridor species, one of the most 

ecologically important roles of this ecotone is to provide biological, chemical and 

physical connectivity between water and land. For example, in the provision of 

allochthonous food material for in-stream species (Bilby and Bisson, 1992), 

overhanging vegetation contributes organic detritus:  a valuable food source within 

the stream ecosystem. The ecologically diverse habitat produced promotes increase 

of ‘drift’ food sources (e.g. flying insects) from terrestrial origins (Sagar and Glova, 

1995).  The transfer of energy between the aquatic and terrestrial zones is one of 

the key mechanisms driving the often-high biodiversity found within riparian habitats 

(Bilby and Bisson, 1992; Vought et al., 1994). 

 

Open spaces within woodland, including river corridors are important areas 

supporting the diversity of woodland flora and fauna (Peterken and Welch, 1975). 

Rides, glades and riparian habitats all contribute substantially to the woodland 

diversity of vascular plants by creating ‘edge’ habitats. These habitats support a wide 
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variety of species, often more than either the open or the shaded habitats alone 

(Peterken and Francis 1999).  

 

Under the current Forest and Water Guidelines (Fourth Edition: Forestry Commission, 

2003) the management protocol for forested areas where timber harvesting occurs 

dictates that "buffer" strips should be left adjacent to rivers, streams, and lakes to 

protect aquatic habitats. Specifically, the guidelines state that in order to provide 

adequate protection for the aquatic habitat, buffer zones should be a minimum of 

20m either side of the channel for watercourses of 2m width or greater. A buffer 

zone of 10m should be provided for those streams with a width of 1-2m and 5 

meters for those streams below 1m width (unless of importance for fish spawning in 

which case the 10m buffer strip applies). In addition, aims are established for the 

planting of a variety of native tree species (for defined locations and soil types), thus 

providing variation in the level of shading from tree species. The guidelines also 

specify that light should be maintained at such a level as to allow for continuous 

cover of ground and bank-side vegetation and that, overall, an average of 50% of 

the watercourse should be left open.  

 

Streamside vegetation provides an important additional function within stream 

systems. Specifically it (1) buffers and filters nutrients and pollutants which would 

otherwise potentially impact on stream water chemistry (Pinay et al., 1990); (2) 

stabilises stream banks (Naiman and Decamps, 1997); (3) influences channel form, 

size and flow regime (Giller and Malmqvist, 1998); and (4) influences water 

temperature and light regimes through shading effects (Gordon et al., 1992). All of 

these may have direct effects on in-stream primary productivity, and the balance 

between autotrophy and heterotrophy in the system, thus influencing the balance 

between allochthonous and autochthonous energy sources of stream corridors. The 

size of the water body also has an influence on these functions, with a greater 

influence from riparian vegetation likely in small watercourses than in larger ones 

(Giller and Malmqvist, 1998).  

 

The spatial extent of the riparian zone is generally associated with the fluctuation of 

the water level and flood regime. Along streams, export of terrestrial organic matter 

into streams and the influence of riparian physical characteristics may be from a 

wider spatial area then just the immediate bank-side (Coroi et al 2004).  The wider 
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riparian zone area has also great potential to influence in stream functioning. Away 

from the immediate bankside, the wider riparian zone also contributes to buffering of 

organic matter and sediment to streams, stabalisation of banks, influences in-stream 

autotrophic productivity (through shading by riparian trees) and contributes to the 

production and delivery of allochthonous litter to the stream (e.g. autotrophic litter 

and drift invertebrates)(Petts, 1990, Pinay et al., 1990, Naiman and Décamps, 1997 

and Giller and Malmqvist, 1998). It is in both spatial scales that I consider the 

riparian zones in this study. Consequently, streamside vegetation survey data 

collected here included both the immediate aquatic – terrestrial transitional zone 

species, closest to the water edge, and also an area more distal from the water (3 

meters), more often typified by a greater proportion of terrestrial derived vegetation 

types, yet proximate enough to the water to contribute to stream function. 

Therefore, both sub-stations (bank-side and 3 meter) are sampled in order to 

determine firstly the characteristics of vegetation likely to contribute to stream 

allochthonous carbon supply (as leaf litter etc), and secondly, any spatial variation of 

vegetation assemblage structure and biomass contributing to the overall biodiversity 

and production within the afforested catchment riparian zones. 

 

Detritus produced from conifers is generally of low palatability and food quality for 

aquatic detritivore species (Maltby, 1992). In addition, the decomposition and 

processing rate for conifer needles is relatively slow (Friberg and Jacobsen, 1994; 

Sedell et al., 1975). Short residence times have been recorded for needles in upland 

streams (Dobson and Hildrew, 1992) and may result in coniferous material rarely 

having sufficient time to decompose to a point where it is palatable for insect and 

other detritivores (Dobson and Cariss, 1997). Consequently, despite abundant over-

storey litter resources, the potential quantity of allochthonous energy provided to 

streams by conifer forests may in practice be very low (Cariss and Dobson, 1997). 

Depending on its structure and species composition, the ground flora community 

within the riparian zone may hence provide a large proportion of the energy 

delivered from the terrestrial zone, in such forest streams. The abundance of this 

allochthonous material and the diversity of ground-flora may thus significantly 

influence the functional capacity of the corridor and stream food-web.  

 

Natural tree-dominated riparian zones constitute the least disturbed riparian zones 

(Brinson and Verhoeven, 1999). Native riparian forests are able to support high 
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biodiversity, as they serve as refuges for both in-stream and terrestrial species. The 

diversity and relative abundance of the riparian ground-flora has to be examined for 

each of the different habitat types present in the conifer-afforested system, in order 

to provide information of the effect of conifer forest proximity, overall conifer forestry 

land use and changing variation in light intensities on this potentially important 

allochthonous resource. 

 

Finally, aquatic and riparian flora and vegetation have long been used as 

components in river classifications (Naiman et al., 1992, King and Caffrey, 1998; 

Holmes et al., 1999). As aquatic vegetation is usually very limited in oligotrophic and 

meso-oligotrophic rivers and in low order upland streams, bank vegetation could be 

useful in the classification of the watercourses and the potential resources available 

to them.  

 

This chapter has the following aims: 

 

1. To determine the potential riparian vegetation biomass production within 

varying types of forest riparian zone in order to determine relationships 

between potential allochthonous resources available to in-stream consumers 

and corridor design. 

2. To assess riparian vegetation diversity in order to determine variation with 

corridor design and to contribute to knowledge of total corridor biodiversity. 

3. To compare conifer and broadleaf riparian zones in order to determine the 

role of forest land use on riparian vegetation biomass, diversity and species 

evenness. 

 

2.3 Materials and Methods 

2.3.1 Study Sites 

 
The study was undertaken in Galloway, Southwest Scotland, within a single 

catchment (the Cree) in year one (autumn 2003 – summer 2004) and an additional 

second catchment (Bladnoch) in year two (2005). Initially, low order streams within 

the Minnoch tributary of the Cree Catchment were investigated. Riparian zone sites 

were confined to areas adjoining low order streams. Sites were chosen to represent 

the different habitats available within the afforested catchment. Broadly, these 
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categories were: conifer shaded, conifer corridor, open, clear-felled and broadleaf 

shaded. However, these characterisations are subjective and therefore the measured 

physical variables of each site are used to determine site differences, rather than 

relying solely on visual characterisations.  

2.3.2 Fieldwork Methodology   
 

Riparian vegetation measurements were always taken on the same side of the 

stream (true right side of the channel: facing downstream). Samples were taken on 

the bank edge and three meters from the edge. Three replicates were taken of each 

riparian location within a 10m sample-site length of stream bank to encompass the 

variation in environmental conditions found within the riparian zone. The study area 

included both the narrow strip of ground which is directly influenced by changes in 

the soil moisture level and also the more distal areas which are influenced both by 

the nutrients and moisture delivered by the stream, and also the additional physical 

variations in light intensity (due to the potentially close proximity to corridor/ 

plantation tree species).  

 

Light (PAR) was measured at each site as a percentage of incoming light at an 

adjacent open site. Simultaneous readings were taken at each location (simultaneity 

was ensured by using mobile phones, or timed readings with synchronised watches 

in areas too far apart for verbal communication, or where no phone signal was 

present). The open site readings provided a measure of 100% light at time of 

sampling. Changes in light intensity with weather and season etc. are thus taken into 

account. Light measurements were taken during each site visit to estimate mean % 

light intensity throughout the year, as well as individual light measurements for each 

sampling date. All measurements were taken at a one-meter height from the ground 

within the centre of the bank-side sampling area. In addition, physical characteristics 

of the corridors were recorded for tree height (three visual estimates per visit), mean 

corridor width (three measures of trunk to trunk distance across corridor per 

site/visit), identification of tree species within the site, altitude (available from GPS 

readings), and stream/corridor orientation (facing downstream). 

 
Replicate 1m2 quadrats were used to record ground-cover vegetation parameters (Fig 

2.1). Vascular plants and bryophyte species were identified and their cover-

abundance recorded using the Domin Scale (Table 2-1) (Dahl and Haduč, 1941). 
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Quadrats were placed randomly within each site, with positions relative to the 

streamside roughly following the example illustrated in Fig 2.1. A total of three 

replicates per location for both bank-side and 3m sites were sampled, thus providing 

a pooled total of six per station.  

 

 

 
Fig 2.1. Positioning of riparian vegetation quadrats relative to stream and corridor 
edge. 
 
During the second sample season (2005), at, a randomly selected sub-sample square 

was placed within each quadrat to provide a 20x20cm biomass sub-sample. 

Vegetation biomass was removed to ground level and stored in a cool box during 

fieldwork.  Biomass samples were then oven dried at 70OC for four days in order to 

calculate the mean vegetation dry-weight per m2 for both bank-side and three-meter 

locations. 

 
 
 
Table 2-1 Domin Scale of Cover  
(Dahl and Haduc, 1941). 

Plant species richness represents 

number of plant species found within 

all three quadrats from each site 

location (bank-side or three-meters). 

Abundance measures represent the 

mean score given to each species 

within all three quadrats. 

Domin Scale 
 

Percentage vegetation Cover
 

10 91 - 100 
9 75 - 90 
8 51 - 74 
7 34 - 50 
6 26 - 33 
5 11 - 25 
4 4 - 10 
3 < 4 and many individuals 
2 < 4 and several individuals 
1 < 4 and few individuals 
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2.3.3 Data Analysis  
 

Diversity (H) was calculated using the Shannon-Wiener equation (Equation 1), which 

integrates species richness and abundance scoring to produce a measure of diversity 

and evenness of distribution (“equitability”). 

 
Equation 1 
 

 

Where: 

 

• ni  The number of individuals in each species; the abundance of each species. 

• S  The number of species (species richness). 

• N  The total number of all individuals: 

 

 

• Pi  The relative abundance of each species, calculated as the proportion of 

the individual of a given species to the total number of individuals in the 

community: 

 

 
 

2.4 Results 
 
Measurements of the physical features of corridor design are shown in Table 2-2. 

Additionally, information on site names and locations is included. 
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Table 2-2 Physical parameters of corridor characteristics (mean ± S.E). Sample 
size (n) equals three replicates per sample visit (as indicated in the far right 
column) for each measurement variable (n = No. Visits x 3). 

Site % PAR Riv Width No. Tree Cor width Tree height Altitude Grid Ref No. Visits 

AIR 13.68 +/- 2.32 1.36 +/- 0.06 1 7.22 +/- 1.56 29.44 +/- 2.00 120.00 +/- 0.00  275 672   3 

BBB 92.38 +/- 4.86 3.28 +/- 0.22 1 23.56 +/- 4.89 16.33 +/- 3.51 111.67 +/- 1.67  283 673  3 

BBMCF 81.14 +/- 10.12 1.33 +/- 0.16 1 100.00 +/- 0.00 2.83 +/- 0.50 217.50 +/- 2.50  360 851  6 

BBMOP 82.61 +/- 2.06 1.71 +/- 0.08 1 30.48 +/- 1.45 21.67 +/- 2.04 208.75 +/- 1.25  360 852  6 

BBMSH 8.83 +/- 2.80 2.20 +/- 0.15 1 8.85 +/- 0.28 19.17 +/- 1.44 207.50 +/- 2.50  361 852  6 

BUTBR 49.11 +/- 12.69 2.55 +/- 0.28 2 8.00 +/- 0.00 10.00 +/- 0.00 210.00 +/- 0.00  362 832  3 

BUTOP 95.16 +/- 4.84 10.49 +/- 9.35 1 100.00 +/- 0.00 6.00 +/- 0.00 200.00 +/- 0.00  363 832  3 

FILI 67.26 +/- 7.09 1.24 +/- 0.03 4 16.56 +/- 2.56 11.22 +/- 1.37 100.00 +/- 0.00  284 664  3 

GT1BR 46.00 +/- 15.28 2.90 +/- 0.52 5 7.00 +/- 0.00 12.00 +/- 0.00 100.00 +/- 0.00  401 799  3 

GT1CO 54.30 +/- 12.31 1.47 +/- 0.09 2 11.71 +/- 0.50 18.50 +/- 1.00 96.67 +/- 3.33  402 800  6 

GT1SH 8.82 +/- 2.47 2.37 +/- 0.18 1 6.83 +/- 0.57 20.28 +/- 2.12 96.67 +/- 3.33  402 798  6 

GT2 51.80 +/- 25.10 5.95 +/- 0.39 5 20.00 +/- 0.00 15.00 +/- 0.00 200.00 +/- 0.00  407 789  3 

GT3 26.95 +/- 12.54 1.31 +/- 0.40 3 7.14 +/- 1.19 10.33 +/- 1.68 96.67 +/- 3.33  396 784  3 

HMB 86.84 +/- 9.30 3.23 +/- 0.07 0 100.00 +/- 0.00 0.00 +/- 0.00 190.00 +/- 0.00  365 814  3 

LAGOP 89.73 +/- 5.15 2.86 +/- 0.48 1 5.00 +/- 0.00 20.00 +/- 0.00 250.00 +/- 0.00  358 902  3 

LAGSH 18.64 +/- 15.68 2.49 +/- 0.45 1 30.00 +/- 0.00 20.00 +/- 0.00 252.00 +/- 0.00  358 902  3 

PCF1 88.34 +/- 2.03 2.18 +/- 0.17 1 100.00 +/- 0.00 1.00 +/- 0.45 128.33 +/- 1.67  374 793  6 

PCF2 86.93 +/- 3.34 2.37 +/- 0.14 1 66.00 +/- 20.82 8.00 +/- 4.90 114.00 +/- 2.45  375 797  6 

PCOR 38.35 +/- 8.64 2.73 +/- 0.34 2 7.53 +/- 2.00 24.00 +/- 6.68 104.00 +/- 2.45  374 792  6 

RBR 29.06 +/- 8.12 2.44 +/- 0.27 3 7.44 +/- 0.73 17.89 +/- 3.02 316.67 +/- 3.33  352 906  6 

ROP 72.34 +/- 8.82 1.95 +/- 0.15 3 40.46 +/- 5.34 9.89 +/- 1.35 326.67 +/- 3.33  352 907  6 

RSH 14.30 +/- 4.26 2.59 +/- 0.22 2 9.00 +/- 1.00 9.07 +/- 2.73 338.00 +/- 2.00  351 907  6 

SPPBR 33.58 +/- 25.18 1.79 +/- 0.24 5 3.22 +/- 0.11 12.33 +/- 1.90 60.00 +/- 0.00  329 659  3 

SPPSH 31.87 +/- 30.43 1.32 +/- 0.19 4 2.72 +/- 0.06 19.44 +/- 0.56 60.00 +/- 0.00  329 658  3 

T33CF1 38.18 +/- 9.49 0.94 +/- 0.14 1 88.89 +/- 5.88 1.56 +/- 0.78 67.67 +/- 32.33  328 703  3 

T33CF2 61.78 +/- 2.22 1.12 +/- 0.28 1 66.67 +/- 10.18 22.44 +/- 3.20 67.67 +/- 32.33  327 702  3 

T33SH 41.95 +/- 10.12 1.10 +/- 0.24 1 46.56 +/- 15.91 30.00 +/- 0.96 60.67 +/- 29.33  327 703  3 

WOC 24.45 +/- 17.11 1.89 +/- 0.31 5 14.47 +/- 7.95 19.44 +/- 1.11 34.00 +/- 16.00  385 701  3 

 

2.4.1 Biomass 
 
Mean dry weight biomass for the 2005 sampling season (Fig 2.2) showed significant 

(ANOVA, P = 0.001, n = 62) increase in July (797g/m2) compared with March 

(310g/m2) and September (494g/m2). However, with all stream site data pooled, 

there was no significant difference between bank-side and 3m quadrate biomass 

(ANOVA, P = 0.980).  
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Fig 2.2. Temporal variation in riparian vegetation production in 2005. Mean dry 
weight biomass (g/m2) ± 95% confidence interval. Significance of differences 
between groups determined using ANOVA (P < 0.001, n = 62). Tukey test (95% 
confidence) specified differences as signified here with differing lettering (a and 
b). 
 
Regression analysis was applied to the mean biomass samples of each river location 

(pooling B and 3m sub-sites) to compare standing crop of riparian vegetation with 

the physical parameters of the corridor measured (% light, corridor width, tree 

height, tree diversity and site altitude). Linear and polynomial relationships were 

both explored and, throughout the chapter, the approach which yielded the greatest 

significance is presented. Regression analysis was used to reveal relationships 

between the two variables in question. Regression is a statistical tool, more powerful 

then Pearsons correlation and able to determine accurately the strength of any 

relationships observed. Additionally, this approach is useful in providing a both a P 

value and r2 value for determining both the significance and variance of a 

relationship.  
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R2 = 0.1448, n = 62, P = 0.0023
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Fig 2.3. Significant positive linear relationship between light (% PAR) of the 
riparian zone sampling area and the dry-weight biomass of riparian flora 
(g/400cm2) in 2005. 
 
A significant positive linear relationship was found between PAR measurements and 

ground-flora biomass (Fig 2.3) indicating the importance of light intensity to riparian 

vegetation production. Although there is a substantial degree of variation in this 

relationship (as indicated by the low r2 value), there is evidence to suggest that 

whatever other variables are controlling production within the riparian zone at high 

light levels, at low light intensities production of biomass is limited by light.  

 

Most other corridor characteristics yielded correlation coefficient values too low to 

permit prediction of biomass responses (corridor width; P = 0.067, tree height; P = 

0.13; tree diversity; P = 0.25), with the exception of altitude (Fig 2.4), where P = 

0.001.  
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R2 = 0.2005, n = 62, P = 0.0003
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Fig 2.4.  Significant positive linear relationship between altitude (m) of site and 
the dry-weight biomass of riparian flora (g/400cm2) from samples taken in 2005. 
 

Direct delivery of terrestrial plant matter to the stream environment is likely to be a 

good indicator of the relationship between riparian vegetation and allochthonous 

material supply to the stream. Here the riparian mean biomass is compared with 

visual estimates of the proportion of stream overhung by riparian vegetation. Fig 2.5 

indicates a significant polynomial relationship between riparian biomass and 

proportion of stream overhung. Analysis using linear regression also yields a 

significant result (r2 = 0.2812, n = 62, P < 0.001). However the r2 value of the 

polynomial relationship is greater and may reflect reduced proportional overhang 

with increasing stream width (independent of biomass variation). 
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R2 = 0.3406, n = 63, P < 0.0001
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Fig 2.5 Significant polynomial relationship between bank vegetation biomass 
(g/400cm2) and the estimated proportion of stream overhung by riparian flora 
(%) in 2005. 
 
Sites were classified into categories according to their riparian characteristics: 

broadleaf, clear-felled, conifer corridor, open and conifer shaded. Fig 2.6 uses these 

categories to determine broad scale differences in the standing crop production of 

each site type and indicates a significantly greater biomass production at open sites. 
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Fig 2.6.  Variation in mean riparian ground flora biomass (± 95% confidence 
interval) within site classifications for 2005 (BR = Broadleaf, CF = clear felled, 
COR = corridor, OP = open and SH = Shade). Significant variation determined 
through ANOVA (P < 0.001) Tukey test used to indicate ‘OP’ has significantly 
greater riparian biomass (g/400cm2). Significance indicated through differing 
lettering (a and b). 
 

2.4.2 Species richness 
 

Species number and diversity index (H) data for the study sites are given in Table 

2-3.  
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Table 2-3. Species richness and Shannon-Weiner diversity index (H) scores for 
each site (± S.E). Bank-side and 3 meter sub-sites have been pooled. Sites have 
been ordered according to site-type classification. 

Site Species richness Diversity (H) Descriptor 
Rowantree Br Mean 10.91 +/- 0.9 2.13 +/- 0.10 Broadleaf Shade 

GT1 Broad Mean 9.66 +/- 1.22 2.07 +/- 0.11 Broadleaf Shade 

Butler Broad mean 7.33 +/- 0.71 1.73 +/- 0.08 Broadleaf Shade 

Wood of Cree Mean 11.33 +/- 1.28 2.12 +/- 0.39 Broadleaf Shade 

GT3 Mean 11.00 +/- 2.42 2.08 +/- 0.22 Broadleaf Shade 

SPP Broad Mean 7,86 +/- 1.44 1.79 +/- 0.17 Broadleaf Shade 

High Mill Burn Mean 10.00 +/- 0.36 2.11 +/- 0.05 Conifer Clearfelled 

Pulnagashel CF1 mean 7.25 +/- 0.66 1.74 +/- 0.11 Conifer Clearfelled 

Pulnagashel CF2 mean 6.80 +/- 0.55 1.60 +/- 0.09 Conifer Clearfelled 

T33 CF1 Mean 8.66 +/- 1.58 1.85 +/- 0.23 Conifer Clearfelled 

T33 CF2 mean 11.66 +/- 1.76 2.22 +/- 0.14 Conifer Clearfelled 
Black Burn (m) Cor/CF 
mean 7.00 +/- 0.51 1.73 +/- 0.06 Conifer Corridor/Clearfelled 

GT1 Cor Mean 8.66 +/- 0.83 1.85 +/- 0.09 Conifer Corridor 

Pulnagashel Cor Mean 6.70 +/- 0.53 1.63 +/- 0.10 Conifer Corridor 

GT2 Mean 12.25 +/- 1.84 2.26 +/- 0.15 Conifer Corridor 

Black Burn (B) mean 8.50 +/- 2.01 1.85 +/- 0.21 Conifer Corridor 

FILI mean 10.50 +/- 1.87 2.07 +/- 0.20 Conifer Corridor 

Laglany Shade Mean 3.5 +/- 1.2 1.052 +/- 0.34 Conifer Shade 

Rowantree Sh Mean  8 +/- 0.6 1.84 +/- 0.07 Conifer Shade 

GT1 Shade Mean 6.08 +/- 0.75 1.49 +/- 0.12 Conifer Shade 

Black Burn (m) SH mean 6.16 +/- 1.27 1.56 +/- 0.16 Conifer Shade 

T33 SH Mean 6.33 +/- 1.25 1.60 +/- 0.19 Conifer Shade 

SPP Shade Mean 4.66 +/- 0.67 1.32 +/- 0.13 Conifer Shade 

AIRIES Mean 4.66 +/- 1.08 1.13 +/- 0.24 Conifer Shade 

Laglany Open Mean 7.5 +/- 1.3 1.73 +/- 0.20 Open 

Rowantree Op Mean 8.83 +/- 0.66 1.94 +/- 0.07 Open 

Butler Open Mean 9.16 +/- 0.79 1.91 +/- 0.13 Open 

Black Burn (m) OP mean 6.00 +/- 0.73 1.56 +/- 0.12 Open 

 
Temporal and spatial variation of the riparian species diversity (H) is shown in Fig 

2.7, indicating that mean diversity of riparian vegetation was lowest during the 

March 2005 sampling season. There is also no indication of significant variation in 

the bank-side or 3 metre sampling station diversity indices. 
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Fig 2.7. Temporal and spatial (Bank-side = B and 3m sites = 3m) variation in 
riparian vegetation diversity (H). Diversity as calculated by Shannon–Weiner 
index ± 95% confidence interval. Significance differenced between groups 
determined using ANOVA (P < 0.001). Tukey test (95% confidence) specified 
differences as signified here with differing lettering (a, b and c). 
 
 
Consideration of the same corridor parameters analysed in conjunction with dry-

weight biomass data were compared with the diversity of the ground-flora species 

assemblage data. Regression analysis of corridor variables found temporal variation 

in the riparian vegetation response to PAR. Samples from 2004 (Cree only) showed a 

significant positive linear relationship with increasing PAR (Fig 2.8). However, those 

samples pooled for 2005 (both Cree and Bladnoch) showed no significant 

relationship (correlation coefficient r, P = 0.96). This led to questions regarding the 

appropriateness of pooling the species data from both catchments within analyses.  

 

ANOVA testing of the two catchments individually for both 2004 and 2005 combined 

indicated that there was no significant difference in the diversity of either catchment 

(P = 0.185). This was used as justification to pool the riparian vegetation diversity 

(H) data. The results of this can be seen in the following figures (Fig 2.8, Fig 2.9 and 

Fig 2.10). Pooling the data increases n, and also increases the applicability of the 

relationship to a wider spatial scale. However, there are also limitations to this 
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approach, specifically the increase of variance in the relationships, which will be 

discussed further, later in the chapter.  

R2 = 0.1498, n = 62, P = 0.0019 
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Fig 2.8.  Significant positive linear relationship between light (% PAR) and 
riparian  vegetation diversity in 2004 Cree samples (H). 
 
 
In analysis of the other corridor characteristics, correlation coefficients of r provided 

mixed results. Estimated tree height was correlated with riparian ground flora 

diversity (H) using a polynomial negative curve, and as such, tree height appears to 

have a negative impact on the under-storey vegetation assemblage (Fig 2.9). This 

result is consistent with the negative linear relation between light and vegetation 

diversity found in year one of the study (Fig 2.4).  This trend is not reflected 

however in corridor width data, as analysis of corridor width did not predict diversity 

(corridor width; r2 = 0.0066, n = 213, P = 0.24).  
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R2 = 0.0709, n = 213, P < 0.001
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Fig 2.9. Significant negative polynomial relationship between mean estimated tree 
height (m) and riparian groundflora vegetation diversity (H). Pooled data from 
both catchmets and both 2004/2005. 
 
 
Analysis of over-story tree species richness and ground flora diversity (Fig 2.10), and 

the overall differences in diversity within assigned site type groups (Fig 2.11), both 

suggest that broadleaf or species rich corridors support a greater diversity of riparian 

ground flora species. In year one, riparian sampling occurred either in spring or 

autumn (October, March and September), whereas 2005 sites include a greater 

number of broadleaf locations and a mid summer sample date (July). Therefore, 

trees would have been in full leaf and yet mean under-storey vegetation diversity of 

broadleaf sites is the highest of all site types (Fig 2.11), consequently reducing the 

direct negative influence of light on 2005 analyses.   

 



Chapter 2. Riparian Vegetation 

 - 38 - 

R2 = 0.0946, n = 213,  P <0.001
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Fig 2.10. Significant positive linear relationship between tree species richness of 
site and riparian groundflora vegetation diversity (H). Pooled data from both 
catchmets and both 2004/2005. 
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Fig 2.11. Variation of mean riparian ground flora diversity (H) (± 95% confidence 
interval) within site classifications (BR = Broadleaf, CF = clear felled, COR = 
corridor, OP = open and SH = Shade). Significant variation determined through 
ANOVA (P < 0.001). Tukey test used to indicate ‘SH’ has significantly lower 
riparian diversity (H). Pooled data from both catchmets and both 2004/2005. 
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2.4.3 Species ordination using Canonical Correspondence Analysis (CCA) 
 

To explore the response of vegetation species assemblage structure to the riparian 

environmental variables, a canonical correspondence analysis (CCA) was carried out 

(Ter Braak, 1986) using the package CANOCO (Ter Braak and Smilauer, 1999). 

Classification using TWINSPAN analysis (Hill 1979) was also applied to the data, and 

groups assigned by TWINSPAN (Table 2-5) were identified within the CCA ordination 

to help assess environmental influence on the vegetation. 

 

Within CCA 1 (Fig 2.12) inter-set correlations (Table 2-4) indicate that river width, 

altitude, corridor orientation, “East”, % light, corridor width, tree height and tree 

diversity all contribute significantly to the assemblage structure of riparian ground-

flora species. The majority of species are clustered on the opposing side of the 

ordination to increasing altitude, suggesting that this variable has a negative 

influence on species numbers.  

 

TWINSPAN analysis separated the species list into four separate groups. However by 

overlaying this result on the CCA analysis, Fig 2.12 indicates that two of the groups 

identified (1 and 4), are clearly correlated with opposing environmental gradients.  

TWINSPAN groups 2 and 3 are primarily central to the ordination and as such show 

relatively little specific preferences. However, group 1 follows a gradient of over-

storey tree diversity (often found in the broadleaf sites), tree height and low altitude 

(negative association with axis one and two -Table 2-4), whereas group 4 is closely 

associated with increasing light / corridor width (positive association with axis 2-

Table 2-4). Both TWINSPAN groups 1 and 4 are of comparable size; indicating that 

the greatest diversity is seen at one or other extreme of the physical conditions 

associated with the two opposing gradients. TWINSPAN groups 2 and 3 are both 

much smaller in comparison, suggesting that intermediate conditions yield the lowest 

overall vegetation community assemblage diversity. 
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Fig 2.12. Canonical Correspondence Analysis (CCA) 1 (species vs. environmental 
variables): Eigenvalues for ordination axis one; 0.3484, axis two; 0.263, axis 
three; 0.263 and axis four; 0.1403. Sigificance of ordination defined through 
Monte-Carlo analysis (P = 0.005). TWINSPAN groups (Table 2-5), Group 1 – black, 
Group 2 = pink, group 3 = green and group 4 =yellow. 
 
 
Table 2-4. CCA Inter set correlations of environmental variables with axes.                

Variable     AX1       AX2       AX3       AX4    
% Light    -0.125 0.556 -0.2482 0.3322 
Stream Width      0.3369 -0.1785 -0.2742 0.4014 
Corridor Width     -0.2919 0.6301 -0.1807 -0.0934 
Tree Height    0.159 -0.5125 -0.054 -0.0007 
Altitude       0.7415 0.2724 0.2078 -0.1065 
Tree spp. Richness -0.1639 -0.3509 0.6114 0.1791 
North     -0.2525 0.2634 -0.0447 0.2166 
East      0.5448 -0.0957 0.1231 0.0166 
South    -0.1319 0.1508 -0.0129 0.1296 
West     -0.289 -0.2934 -0.0964 -0.3647 
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Table 2-5. TWINSPAN species groups. Group one and two differentiations 
produced an eigenvalue of 0.388, groups three and four yielded an eigenvalue of 
0.337. Within CCA1 (Fig 2.12), Group 1 – black, Group 2 = pink, group 3 = green 
and group 4 =yellow. 
TWINSPAN Group 1 TWINSPAN Group 2 TWINSPAN Group 3 TWINSPAN Group 4 

Anemone nemorosa Athyrium filix-femina Agrostis stolonifera Acer pseudoplatanus 

Blechnum spicant Brachythecium rivulare  Deschampsia caespitosa Agrostis canina 

Calluna vulgaris  Brachythecium rutabulum Digitalis purpurea Ajuga reptans 

Cardamine flexuosa Chrysosplenium oppositifolium Holcus lanatus Anthoxanthium odoratum 

Carex flacca Conopodium majus Minium hornum  Anthriscus sylvestris 

Cotoneaster simonsii Dryopteris filix-mas  Primula vulgaris Caltha palustris 

Dactylis glomerata Knautia arvensis Ranunculus flammula Carex diandra 

Dicranum majus Lonicera periclymenum Rubus fruticosus  Carex rostrata 

Equisetum sylvaticum  Luzula sylvatica Viola palustris Carex vesicaria 

Erica tetralix Lysimachia nummularia  Chamaenerion angustifolium 

Eriophorum angustifolium Oxalis acetosella   Cirsium palustre 

Festuca ovina Potentilla erecta  Cirsium vulgare 

Festuca pratensis  Pseudoscleropodium purum   Epilobium palustre 

Festuca vivipara Pteridium aquilinum  Filipendula ulmaria 

Galium saxatile Sorbus aucuparis  Galium pulustre 

Geranium robertianum   Juncus acutiflorus 

Hedera helix   Juncus effusus 

Hieracium    Myrica gale  

Hyacinthoides non-scripta    Pellia spp.  

Ilex acquifolium   Potamogeton polygonifolius 

Lamium purpureum    Ranunculus ficaria 

Lathyrus spp   Rumex acetosella 

Luzula multiflora   Rumex obtusiflous 

Luzula spicata   Salix lapponum 

Molinia caerulea   Senecio aquaticus 

Philonotis fontana   Senecio jacobaea 

Picea sitchensis   Silene dioica 

Picea abies   Stellaria alsine 

Polytrichum commune   Stellaria media 

Quercus petraea    Taraxacum officinale  

Rhytidiadelphus squarrosus   Tussilago farfara 

Sphagnum spp.   Valeriana officinalis  

Stellaria holostea   Veronica montana 

Stellaria palustris    

Succisa pratensis    

Teucrium scorodonia    

Urtica urens    

Vaccinium myrtillus    

Veronica chamaedrys       
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2.4.4 Comparison of CCA-derived assemblages with National Vegetation 
Classification communities  

 

The species assemblage groups defined by TWINSPAN in CCA1 were analysed using 

TABLEFIT, to compare the assemblages identified by TWINSPAN with standard 

species assemblages of the UK National Vegetation Classification (NVC: Rodwell 

1991, 1992). Each group is given a ‘goodness of fit’ score to describe how well it 

compares to standard NVC groups. The results are shown in Table 2-6.  

 

Four distinct vegetation classification types were assigned. However, from the 

‘Goodness of Fit’ score, it is clear that these vegetation types are not strongly 

comparable to nationally recognised vegetation assemblages, suggesting a mixture 

of nationally-recognised communities present within the sample areas. Group 3 has 

the best goodness of fit score. Such low fits to NVC categories are not unusual when 

sampling protocols are utilised which have physical habitat parameters as their 

criteria for site selection. In such circumstances it is common to have representatives 

of more than one NVC community type present within the sampling unit, inevitably 

leading to a reduction of the goodness of fit to NVC category scores (which are 

defined using phyto-sociological procedures, on purely botanical site selection 

criteria: Rodwell 1991, 1992).   
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Table 2-6 TABLEFIT classifications (Hill, 1989). Goodness to fit scores (GTF) are 
classified as: 80-100 = Very good; 70-79 = Good; 60-69 = Fair; 50-59 = Poor; 0-49 
= Very poor. Table indicates both NVC and CORINE classification systems 
Classification NVC Community 
2.4.4.1.1.1.1 Group 1 M15 - Scirpus cespitosus - Erica tetralix 
NVC Sub-community Vaccinium myrtillus 
CORINE C31.11  "Northern Wet Heath" 
GTF Score 23 
Group 2 W10e - Quercus robur - Pteridium aquillinum - Rubus fruticosus 
NVC Sub-community Acer pseudoplatanus - Oxalis acetosella 
CORINE C4.21  "Atlantic oakwood and bluebell" 
GTF Score 33 
Group 3 Holcus lanatus - Deschampsia cespitosa 
NVC Sub-community  
CORINE C37.213 "Deschampsia meadow" 
GTF Score 58 
Group 4 Iris pseudacorus - Filipendula ulmaria 
NVC Sub-community Juncus effusus 
CORINE C37.1 - "Meadowsweet grassland" 
GTF Score 35 
 

2.4.5 Site TWINSPAN classification and CCA ordination 

 

From the TWINSPAN classification, eight groups of sites have been defined (Table 

2-7). Indicator species have been assigned to each group (as described in the Table 

legend). The presence (positive association) or absence (negative association) of the 

indicator species qualifies the site (a specific assemblage of species) into each group 

classification. 

 

Additionally, a second CCA (CCA2) ordination considers samples (site/date 

combinations) in relation to environmental variables (Fig 2.13). This ordination also 

shows overlaid sample-groups as produced by the TWINSPAN ordination of Table 

2-7. 
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Table 2-7. TWINSPAN classifications of sites (in terms of vegetation assemblage) 
within both the Cree and Bladnoch catchments from November 2003 – October 
2005. At the third level of division (iteration three), eight groups are produced. 
Separation of groups were all significant with eigenvalues of > 0.30 Group 1 is 
characterised by the positive association with Viola palustrus. Group 2, is 
positively associated with the presence of Juncus effusus. Group 3 is separated 
using the positive association with Molinia caerulea. Group 4 is associated with 
Juncus acutiflora, Cirsium palustre, Viola palustris and Juncus effusus at high 
abundance. Group 5 is characterised by the presence of Pteridium aquilinum, 
whereas Group 6 is characterised by the presence of Oxalis acetosella. Group 7 is 
indicated by Deschampsia caespitosa and abundant Sphagnum spp. Finally, group 
8 includes the following indicator species: Calluna vulgaris, Potentilla erecta and 
abundant Vaccinium myrtillus.  

Group 1 group 2 Group 3 Group 4 Group 5 Group 6  Group 7 Group 8 

GT3BJ5     PCF1BM4    LOPBN3     BUTOPBN3   GT2BM4     LSHBN3     BBMSHM5    RSH3N3      RBRBN3     

GT33J5     PCF13M4    PCF1BM5    BBMCF3J5  BBMOPBJ5   PCF1BN3    BBMSHM5  PCF23M4     RBR3M4     

SPPBRBJ5   PCF2BM4 LOP3N3     FILI3J5    GT23M4     PCO3M4     SPPSHBM5   HM3S4       ROPBS4     

SPPBR3J5   LOP3S4     PHELLBN3   FILIBS5    GT2BS4     GT1SHBS4   SPPSH3M5   GT1CBM5     RBR3J5     

GT1CBS5    BUBRBS4   PHELL3N3   BUTOP3N3   GT23S4     GT1C3M5    AIRBM5     GT1SHBJ5    RBR3N3    

GT3BS5     BUBR3S4 LOPBM4     BUOPBM4   BBMOPBM5   SPPBRBM5   AIR3M5     PCF2BS5     ROPBN3     

GT33S5   PCF1BS4   LOP3M4     BUOP3S4    BBMOPM5    BBMSH3J5   BBMSHBJ5 GTBSHBN3    ROP3N3     

  PCF13S4  LOPBS4   T33CF13M   BBB3M5   T33SHBJ5   PCO3M5     GT1SH3N3    RSHBN3     

  PCF2BS4   GT3BM5     FILIBM5    BBMOP3J5  WOCBS5    WOCBM5     HMBBN3     GT1BR3N3   

  PCF23S4  BBBBM5     BBMCFBJ5 BBB3J5     SPPSH3S5  WOC3M5     HMB3N3      RBRBM4   

  PCF2BM5    FILI3M5    T33CF1BJ  AIRBJ5     LSH3N3     T33SHBM5   RSHBM4      ROPBM4    

  GT33M5   PCF23J5    T33CF13J   AIR3J5     GT1BRBN3   T33SH3M5 HMCFBM4  ROP3M4    

  PCF1BJ5   BBMCFBS5   T33CF2BJ   BBMC3S5  GT1CBN3    SPPSHBJ5    GT1SHBM4    BUOP3M4   

  PCF13J5    AIRBS5   T33CF23J    GT1C3N3    SPPSH3J5    GT1SH3M4    HMCF3M4   

  PCF2BJ5      BBBBJ5       BUTBRBN3  BBMSH3S5   GT1CBM4     RBRBS4     

  BBMSHBS5     FILIBJ5    BUTBR3N3 GT1CO3J5    RSHBS4      RBR3S4   

  PCF1BS5      BBMCBS5     PCF13N3    T33SHBS5   RSH3S4      ROP3S4     

  PCF13S5    T33CF1BS     LSHBM4     GT1C3S5    HMBS4    GT1BR3S4  

  BUBR3M4      T33CF13S    LSH3M4     PCOBJ5     RSHBM5     RBR3M5     

  BUOPBS4     T33CF2BS    RSH3M4    PCO3J5      RSH3M5      ROPBM5    

  T33CF1BM     T33CF23S    BUBRBM4    WOCBJ5     BBMCFBM5    ROP3M5    

  BBB3S5     BBBBS5     PCOBM4   WOC3J5   BBMCF3M5   RBRBJ5  

      FILI3S5    GT1BRBM4   T33SH3S5    GT1SHBM5    ROPBJ5     

          GT1BR3M4   PCO3S5  GT1SH3M5 ROP3J5     

          GT1C3M4    SPPBRBS5    PCF13M5     RBRBS5     

          PCOBS4    SPPBR3S5   PCF23M5     RBR3S5     

          PCO3S4    SPPSHBS5 T33CF2BM   ROPBS5     

          GT1BRBS4   T33CF23M    ROP3S5  

          GT1SH3S4    RSHBJ5        

          SPPBR3M5     RSH3J5   

          PCOBM5       GT1SH3J5      

          T33SH3J5    PCF23S5      

          GT1COBJ5     RSHBS5        

          WOC3S5      RSH3S5        

          AIR3S5     BBMCF3S5      

          GT1COBS4     GT1SHBS5      

          GT1CO3S4     GT1SH3S5   

          RBRBM5       PCOBS5     
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Fig 2.13: CCA 2 Sites in relation to environmental variables. TWINSPAN group 
membership as shown in Table 2-7.  TWINSPAN Group symbols: Large layered 
circles = group 1, Black triangles = group 2, Horizontal diamonds = group 3, 
Vertical diamonds = group 4, dark edged circles = group 5, Black circles = group 
6, White circles = group 7 and grey large circles = group 8.  
 

Sample points are identified with differential symbols to illustrate TWINSPAN sample 

group membership (Table 2-7). Broadly, the samples can be split into those 

associated with broadleaf and low light conditions, and those of more open and light 

intensive habitats. For example, TWINSPAN groups 6 and 1 are indicated by the 

presence of shade adapted Oxalis acetosella and Viola palustris, respectively. In 

addition, these sites, located towards the bottom left of the ordination plot, are 

closely correlated with increased tree biodiversity, increased tree height, low altitude 

and low light intensity (percent light). Conversely, TWINSPAN groups 2 and 4 are 

indicated by the presence of Juncus effusus (for group 2) and Juncus articulatus, 

Cirsium palustre, Viola palustris and abundant Juncus effusus (for group 4); species 

which better represent an open and wet habitat. 
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2.5 Discussion 
 
Biomass of riparian vegetation could be related to the potential delivery of riparian 

material to the in-stream habitats and thus, the contribution of allochthonous 

material to in-stream consumers. Comparisons of riparian vegetation biomass and 

the proportion of overhanging vegetation of the stream yielded a positive 

relationship (Fig 2.5).  It was suspected that the significance and associated r2 values 

of this relationship were affected by the relative width of the watercourses and, as 

such, future measurements should be modified to account for stream width. 

However, the significant relationship shown in Fig 2.5 is evidence that the proportion 

of allochthonous material overhanging the stream banks was related to the riparian 

ground-flora standing crop and thus the light level (PAR) of the riparian zone (Fig 

2.3).  

 

Overhanging material provides a direct source of allochthonous carbon as well as 

increasing the delivery of drift invertebrates, which can be essential components of 

consumer diets. For example, stream consumers, such as fish, depend for up to half 

of their diets on terrestrial invertebrates that fall into streams (Elliott 1967, 1973; 

Cloe and Garman, 1996; Johansen et al., 2000; Kawaguchi and Nakano, 2001). 

These areas of overhanging vegetation also act as refuges for invertebrates and fish 

(Eklöv and Greenberg 1998) and are often utilised in the emergence of the adult 

forms of many aquatic invertebrate (see Sabo and Power 2002; Kato et al., 2003). In 

this context, it seems clear from the results presented above that the design of 

riparian zones in forest corridors should take better account of the desirability of 

enhancing light availability to increase the abundance of riparian ground-flora, and 

especially and overhanging vegetation. This could be achieved directly through 

promotion of wider corridors and reduction of riparian tree cover at bankside 

locations. 

 

It was hypothesised that there would be a direct link between riparian biomass and 

the quantity and type of allochthonous material present within the stream water 

column. Experimental collection of detrital matter available within the water column 

was explored through use of detritus traps, set during two months of the 2005 

sampling season (May and June). However this experiment failed to be consistently 

effective, mainly due to large variation in stream water level, resulting in many traps 
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being lost, broken, filled to capacity before collection, blocked or positioned above 

the current water level at the time of recovery. Thus, making comparisons of riparian 

biomass or riparian environmental conditions with allochthonous organic matter 

availability impossible. Details of the data are in Fig 10.1 of the appendix, and 

although the total dry-weight collected cannot be successfully used in analysis, the 

results do illustrate that within sites, allochthonous biomass from a monthly flow can 

yield up to 1037g (within a 100cm2 cross-section area per month) dry-weight organic 

matter. This maximum value was from Wood of Cree, a broadleaf, low altitude site 

and so it seems likely that the biomass collected was of riparian tree origin rather 

than ground-flora. 

 

Both production and diversity have different significances to the functioning of the 

stream and corridors under study. Specifically, ecosystem ecological integrity is often 

measured using diversity within a specific indicator trophic group, yet between 

trophic groups (across a food chain), ecosystem integrity and overall system 

biodiversity may be more heavily influenced by the productivity and biomass of a 

specific producer/prey trophic group. The overall aim of this project was to examine 

the conditions which best support the biodiversity, bio-integrity and overall 

functioning of the in stream and riparian habitat of forest streams. Thus, here 

diversity and standing crop were examined to determine which set of environmental 

variables best supported the greatest diversity within a single trophic group, yet also 

across the whole system. However, to attain maximum system biodiversity, diversity 

of a single trophic group (e.g. riparian vegetation), may have to be essentially 

‘sacrificed’ in favour of conditions favouring greater biomass production.  

 

Diversity of riparian vegetation data was pooled for all sample points (both 

catchments and both sample seasons). This allowed for greater applicability of the 

results to a wider scale, and reduced the danger of too great a focus on systems in 

isolation. However, although the greater sample size gained by this approach 

decreased P values, and increased significances, the high level of variance in the 

relationships was apparent with the r2 values obtained. Such a result may have been 

amplified by limitations to the physical parameters measured. For example, 

correlations between light levels and diversity will inevitably be effected by the lack 

of differentiation between broadleaf and coniferous shading. Improvements to the 

study should perhaps consider this problem in greater detail. However, separation of 
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sample sites into generic site-type classifications aided in deciphering potential 

variation between the role of light at these sites. However, future analysis of data 

using multi-regression analysis would provide some information on the significance 

of the physical corridor parameters and diversity within the boundaries of either 

season or catchment, and thus, provide a greater detail of information on the 

relationships occurring, and reduce the inevitable increased variance associated with 

pooled data sets.  

Although vegetation standing-crop was measured only in 2005, greatest biomass 

was found at higher altitude locations (Fig 2.4) within areas of greatest light 

availability (PAR) (Fig 2.3). Many studies have noted the reduced diversity of ground-

flora species within upland, open, moor land habitats and the dominance of grass 

species such as Deschampsia flexuosa (Bokdam and Gleichman, 2000). However, 

within this study high diversity could be found within two very different habitat 

types; low altitude broadleaf areas and higher altitude light intensive areas. Yet 

intermediate conditions were less favourable to assemblage diversity (Fig 2.12 and 

Table 2-5). However, using broad classification of sites according to the riparian 

characterises indicated that open areas yielded the greatest standing crop biomass 

(Fig 2.6), and although only riparian vegetation diversity at conifer shaded sites was 

deemed significantly lower then the other sites (Fig 2.11), mean vegetation 

biodiversity was greatest at broadleaf sites. As such, there is a suggestion that a 

trade off between biomass and diversity exists. Specifically, that as suggested within 

this study, and similar studies (e.g Bokdam and Gleichman, 2000), management 

must prioritise between promotion of maximum overall diversity within the 

ecosystem and maximum diversity within the riparian vegetation trophic group. 

Overall, it would appear that increase of light level here did not significantly reduce 

the diversity of the riparian vegetation trophic group. Yet under specific 

circumstances, it may be of greater benefit to reduce light level in order to promote 

the growth of specific species assemblages (or rare species) and/or to promote the 

maximum vegetation diversity (as found within broadleaf sites), at the expense of 

overall standing crop biomass.  

 

Benthic macro-invertebrates arguably represent the key consumers of allochthonous 

material which is likely to be entering the food-web through riparian vegetation 

delivery routes. The populations, assemblage structure and overall abundance and 

diversity are explored in detail in Chapter five. At this point however Fig 2.14 
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indicates a significant positive linear relationship observed between riparian biomass 

and benthic macro-invertebrate diversity. 
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Fig 2.14. Significant positive linear relationship between riparian ground-flora 
biomass and in-stream benthic macro-invertebrate diversity (H). r2 suggests that 
approximately 20 % of variation in data is described by this relationship. While 
Pearson’s Correlation shows a week positive correlation of 0.39. Although the r2 
value suggests high variance in this relationship (suggesting additional influences 
to invertebrate diversity), there is still high significance, indicating that riparian 
vegetation is an important parameter to be considered. 
 
 
However, when the diversity of riparian vegetation is explored in the same manner, 

there is no relationship (r2 = 0.003, n = 62, P = 0.89) between riparian vegetation 

diversity and invertebrate diversity. Similarly, neither vegetation biomass nor 

diversity is related to overall invertebrate abundance (P = 0.8, n = 62, r2 0.005 and 

P = 0.5, n = 62, r2 = 0.0064, respectively). Thus, these results suggest that in order 

to maximise the diversity of invertebrate species as a function of riparian vegetation, 

riparian vegetation biomass should increase irrespective of riparian vegetation 

diversity. Thus, although a scenario of relatively low light conditions, characterised 

by diverse and broadleaf riparian over-storey trees and greater tree height provide 

conditions promotes the greatest riparian ground-flora diversity, these conditions do 

not promote high biomass production. As such, over storey tree-derived 

allochthonous detritus material associated with broadleaf tree cover does not appear 

to promote greatest diversity of in-stream macro-invertebrate species within this 

system.  
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Although increased biomass and associated overhang of ground flora vegetation 

from within the riparian zone promotes a significant increase of aquatic invertebrate 

diversity, it is not possible to presume that this result can be directly related to an 

increase in the availability of allochthonous biomass. Availability of allochthonous 

organic matter within the water column was at a maximum at broadleaf sites (see 

rejected detritus traps experiment results – Fig 10.1 of the appendix). Thus, there is 

the suggestion that allochthonous organic matter derived from broadleaf over-story 

trees is not as beneficial to invertebrate community composition as the allochthonous 

material derived from riparian ground flora. This result may indicate that broadleaf 

tree-derived allochthonous litter may be of lower palatability. Alternatively, the non-

food benefits of riparian overhanging vegetation described earlier (e.g. habitat 

complexity, delivery of drift invertebrates and modification of flow patterns) may be 

of greater benefit to the in-stream assemblage then the delivery of allochthonous 

organic material. Consequently, the design of corridor characteristics should consider 

the importance of both the potential variability in palatability of allochthonous 

resources to consumer groups, and the other benefits gained by riparian ground 

flora vegetation overhang. In specific circumstances, where key species are of 

concern, management may wish to orientate habitat design priorities and 

requirements to either the in-stream or riparian zones in order to maximise the 

benefits to specific species of concern. However, within this study, as diversity of 

riparian vegetation was statistically comparable at open sites to broadleaf sites, it is 

suggested that to accomplish maximum optimal overall diversity across both trophic 

levels. Management should consider increasing riparian zone light intensity and 

“openness”. 
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3 Assessment of the autotrophic contribution of 
algae to benthic biofilms within two low order 

streams in South-west Scotland. 
 

 
3.1 Abstract 
 
The chapter discusses stream biofilm characteristics obtained through measurements 

of benthic organic matter standing crop and diversity within two catchments in South 

West Scotland subject to extensive afforestation. Understanding resource availability 

supporting the specific community structure found within differing habitat conditions, 

and particularly light regimes, is key to delineating optimal forest stream corridor 

design.  

 

Stream biofilms can also influence primary production, community respiration, 

microbial breakdown of detritus and the retention of nutrients, thereby playing a 

major role in overall ecosystem functioning.  

 

The aims of this chapter are to describe and quantify the characteristics of biofilm 

resources within study streams, through specific measurements of:  

 

• Temporal and spatial variation in the composition, general characteristics and 

overall production of the baseline resource,  

• Variation in autotrophic production and diversity with changing corridor 

characteristics, 

• Potential physical factors which can affect biofilm elemental composition,  

• Variability in the functioning capacity of the biofilm with changes in 

compositional characteristics. 

 

A two-year sampling programme of biofilm analysis was undertaken in the Black 

Burn (BB: Cree catchment) and a one-year replicate in stream T33 (Bladnoch 

catchment), using artificial, semi-flexible substrates for biofilm growth and 

settlement experiments. Although the uppermost site of BB was felled prior to 

sampling within 2005, this approach provides information on in-stream resources and 

specifically autotrophic biomass, and also modifications to biofilm characteristics 

through measurements of:  



Chapter 3. Biofilm Characterisation 1 

 - 52 -  

• Chlorophyll data, 

• Total carbon  

• Diversity of the algal component of the biofilm; determined through 

microscope analyses.  

 

Biofilm biomass significantly increased in summer 2004 and 2005 in BB biofilms. 

There was spatial variability in biofilm production with significantly greater mean 

overall biomass at BB sites. Additionally, intra-site analysis indicated higher biomass 

settlement in BBCF, 2005. Analysis of chlorophyll a concentration indicated that T33 

and BB 2004 biofilms had the greatest mean chlorophyll a. Analysis of algal species 

composition indicated that sites in BB 2005 were significantly different from those of 

T33, in their algal community composition and had comparably reduced algal 

diversity.  

 

Analysis of C:Chl indicated that very few of the BB biofilms had high algal 

contributions. Highest C:Chl was found at BB 2005, indicating minimal algal 

proportion. Applying a conversion factor to chlorophyll data allowed for the 

prevalence of algae (mg/m2) to be calculated. This approach indicated that biofilms 

from T33 had the highest algal biomass of all locations/sample years. Although 

estimations of T33 and BB 2004 were comparable, most BB 2005 samples were 

significantly chlorophyll a (Chl a) depleted. As overall autotrophic proportion of 

biofilm material within BB 2005 was low, biofilms were dominated by detritus and 

heterotrophic material. Consideration of this previous work suggests that in relation 

to the present study, the autotrophic production limitation found post-felling, may be 

contributing to reduced nutrient retention, processing and overall buffering of excess 

nutrients by in-stream biofilms 
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3.2 Introduction  
 
 
Stream biofilms can play a major role in overall ecosystem functioning as they affect 

primary production, community respiration, microbial breakdown of detritus and the 

retention of nutrients (Sabater et al., 2002).  Biofilms are generally made up of a 

matrix of algal cells, particulate organic matter at different stages of decomposition, 

and microbial organisms (bacteria, protozoans and fungi). Within this matrix, 

autotrophic algae convert atmospheric CO2 to carbohydrates and other 

photosynthetic products, while bacteria and other fungi are essential to the 

breakdown of detritus. Bacterial production is directly influenced by this autotrophic 

production. Yet, bacterial populations are controlled by food availability and 

protozoan predation. Predation by these hetrotrophic consumers often forces 

bacterial colony formation and thus, aids in the overall biofilm formation (Arndt et 

al., 2003). Primary production and detrital decomposition are influenced by nutrient 

availability. In streams, dissolved nutrients are continuously delivered to colonised 

surfaces via unidirectional water flow. Nevertheless, nutrients (primarily nitrogen, N 

and phosphorus P) are often limiting to algae, bacteria and fungi in these systems 

(e.g. Pringle et al., 1986, Tank and Webster, 1998). Additionally, algal biomass 

production is heavily influenced by a suite of other factors which include light (Hill, 

1996), temperature, invertebrate grazing (Steinman, 1996), and scouring caused by 

increased flow (Biggs and Close, 1989, Peterson, 1996). This can produce variation 

in the weight of biomass, and also the relative contribution made by each component 

(i.e. algae, bacteria, fungi and allochthonous detritus) of the biofilm to ecosystem 

functioning. 

 

Many studies of benthic systems assume that periphyton is primarily composed of 

algal cells (e.g. Frost and Elser, 2002; Bowman et al., 2005), However, recent 

studies have demonstrated that algal cells can be a minor component of ‘periphyton’ 

(e.g. Frost et al, 2001; Hamilton et al., 2001). Consequently, this chapter aims to 

quantify the proportional contribution of dominant energy sources available in 

streams through consideration of benthic biofilms. In order to achieve this objective, 

a number of potential approaches to characterising the baseline resources utilised by 

benthic biofilms will be explored. 
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Biofilms are essential to purification of river waters (Pusch et al., 1998) as they take 

up and retain organic and inorganic nutrients from the waters passing over them 

(Burkholder et al., 1990, Flemming, 1995). However, several factors can affect the 

functioning of biofilms as pollutant removers. Physical effects can include water 

velocity, water temperature and light penetration; chemical effects include pH and 

nutrient availability; and the biological effects include grazing pressure, biofilm 

biomass and the relative proportion of heterotrophs to autotrophs (algae) within the 

biofilm (Stevenson, 1996). Romani and Sabater, 2000 showed that benthic 

heterotrophs within the biofilm use by-products excreted by the autotrophs. Benthic 

algae and bacteria actively exude substantial quantities of organic carbon, primarily 

as exopolymeric substances (e.g. Hoagland et al., 1993). These exudates can 

constitute a large proportion of the carbon acquired by algae and bacteria (e.g. Goto 

et al., 1999). This nutrient production from within the biofilm has been found to 

increase the capacity of biofilms to function as water purifiers (Romani and Sabater, 

2000). A ratio of around 3:1 of autotrophs (e.g. algae) to heterotrophs (e.g. 

bacteria) was found to facilitate the largest increase in the ability of the biofilm to 

break down allochthonous detritus (Romani and Sabater 2001).  

 
The ability of the biofilm to produce energy (through the breakdown of allochthonous 

detritus and through primary production by the algae) and purify water is greatly 

affected by the biomass and thickness of the biofilm, where increasing biomass 

increases primary production. An increase in grazing by aquatic invertebrates 

decreases the thickness of the biofilm and so reduces its functional capacity 

(Mullholand et al, 1994). However, invertebrate grazing is not uniform (e.g. Tuchman 

and Stevenson, 1991) and so changes in the algal composition due to selective 

grazing can also greatly affect biofilm functioning. For example, Marti et al. (2004) 

found that Chlorophyceae (green algae) had a greater photosynthetic and nutrient 

uptake capacity than diatoms. Thus, hypothetically, selective grazing of 

Chlorophyceae by invertebrates, could result in a less productive biofilm algal 

component.  

 
Amongst the microbial organisms present in biofilms are Hyphomycete fungi. These 

diverse micro-fungi are important decomposers and play a crucial role in the 

conditioning of leaf matter for invertebrate consumption (Barlocher and Kendrick, 

1976). Microfungi can account for up to 17% of the detrital leaf mass and, 
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depending on the area of the stream, may account for as much of the stream 

production as bacteria or invertebrates (Gessner, 1997). In coniferous forest 

streams, conifer needles can support a substantial number of hyphomycete fungal 

species (as much as broadleaf species), though the rate of this colonisation is slow 

and so requires long periods (1-2 years) of submersion within the system to produce 

significant effects (Barlocher, 1992). Needle detritus retention is generally low in 

conifer forest plantations as the reduced natural dropping of woody material and 

debris (which would be the most efficient mechanism for retention: Trotter, 1990) is 

often limited when trees are felled and removed at the young age associated with 

modern plantation cycles (Cariss and Dobson, 1999). 

 

The degree to which different streams are dependent on autochthonous or 

allochthonous carbon inputs has long been of interest to stream ecologists. Sampling 

bias towards woodland streams with large visible terrestrial inputs led to the concept 

that allochthonous sources dominated in low order streams. More recently, it has 

been suggested that the importance of autochthonous carbon in supporting 

consumer production in streams has been underestimated (Minshall, 1978), 

particularly in forested headwater streams (e.g. Hawkins et al., 1982; Mayer and 

Likens, 1987).  

 

Since both autochthonous and allochthonous inputs are regulated primarily by the 

density of riparian vegetation, measuring algal production under different canopy 

conditions can give insight into the relative importance of autochthonous carbon 

inputs. Within conifer-forested catchments the degree of allochthonous and 

autochthonous production is extremely variable and both can often be limited 

(Dobson and Cariss, 1999). However, if primary production is very low, then 

autochthonous carbon cannot be a significant energy source in the system. If 

primary production is substantial, then autochthonous carbon has at least the 

potential to contribute to invertebrate and fish production. 

 

Large-scale anthropogenic activities such as logging can produce fundamental 

alterations to the supply of limited resources to the aquatic habitat, such as 

increased light (e.g. Hill et al., 2001) and nutrients (Rounick and Winterbourn, 1982). 

It has been suggested that the increase in solar flux, which is associated with forest 

clearance, results in an increase in primary production, which then extends to an 
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increase in stream invertebrates and vertebrates (Murphy, 1998). Whether increased 

solar flux is brought about as a result of active forest clearance, or as a consequence 

of wide or open riparian zones, the expected positive influence on algal biomass and 

overall levels or autochthonous primary production has been widely reported in past 

studies (e.g. Gee and Smith, 1997). As light availability is one of the primary physical 

characteristics which can be directly influenced by design and management of 

stream riparian zones, an ability to quantify the response by in-stream primary 

producers to variation in light regimes, will provide information on the potential 

resource production increase which can be achieved through specific changes in 

riparian corridor design. Chlorophyll a measurements, as well as cell counts of algae 

and bacteria, have successfully been used to illustrate greater productivity in light-

grown biofilms and to underpin suggestions that light availability has a significant 

impact on the production and functioning of a heterotrophic biofilm (Romani and 

Sabater, 1999). Here, however, I use Chl a concentrations as a proxy for algal 

biomass, as has been done is many previous studies (e.g. Romani and Sabater, 

2000; Frost et al., 2005; Rosenfeld and Roff, 1990), and seek to determine changes 

in standing crop with light regime. It is not possible to demonstrate changes in 

productivity without measures of primary production and respiration, and 

consideration of control mechanisms such as grazing and scouring. 

 

The importance of being able to quantify the algal contribution to the biofilm is 

emphasised when considering interaction between the autotrophic and heterotrophic 

components of the biofilm. Several studies suggest that this relationship has 

significant potential to influence functioning capability. Algae are important in 

increasing surface area for bacterial colonisation (Geesey et al., 1978) as well as in 

the production of metabolites used as an energy resource by bacteria (Haack and 

McFeters, 1982). As a consequence, the enzymatic activity of the bacterial 

community appears to be directly correlated to the chlorophyll concentration and 

biomass of the autotrophic component of the biofilms (Romani and Sabater, 1999). 

For example, in dark-incubated biofilms, the bacterial response to any chlorophyll 

accumulation/addition is rapid (Romani and Sabater, 1999). Biomass of algae is also 

important as low-light grown biofilms require a much greater overall chlorophyll 

density to support the same bacterial population and enzyme activity than autotroph-

rich biofilms grown under light-intensive conditions (Romani and Sabater, 1999). 

Thus increased light intensity promotes growth of biofilms with abundant algal 
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populations, whose production of polysaccharides accumulating within the matrix 

may act as an organic matter reservoir (Freeman and Lock, 1995) for internal 

bacterial activity. Such biofilms often show increased potential to adapt to variable, 

and specifically, reduced aquatic nutrient supplies. Consequently, where primary 

productivity in biofilms is high enough to supply the heterorophic component with 

sufficient exudates, an autotrophic biofilm can become relatively ‘self sufficient’ in its 

energy production.  

 

Thus, it could be hypothesised, that with highly autotrophic biofilms, the response of 

the heterotrophic component of light-grown biofilms to increases in water nutrient 

levels would be reduced. The consequence of the increased availability of internal 

metabolites for biofilms showing high autotrophic production would be a reduced 

requirement to draw down organic material from nutrient enriched waters. As such, 

dark-grown and low autotrophic biofilms may retain a greater proportion of organic 

material despite reduced overall functioning.  

 

Such studies illustrate the point that it is not possible to assume that changes in 

environmental conditions (e.g. increased light availability following tree felling) 

necessarily produce a predictable biological response from each ecosystem 

component within a given time period. Algae and macro-invertebrates, for example, 

may respond to a change in light availability on quite different time scales (e.g. Gee 

and Smith 1997). In order to determine the true impact of altered light regime on 

the bio integrity (“ecological health”) of the stream, biological monitoring using 

diversity, abundance and species evenness, of both groups of organisms at different 

trophic levels in the food chain would be desirable.  

 

A study of the impact of stream corridor characteristics on biodiversity would be 

incomplete without generating an understanding of biofilm response to changing and 

changed environmental parameters. However, in order to be consistent with past 

methodologies (and to permit comparison with results in the wider literature), more 

traditional approaches to characterising autochthonous benthic primary production 

were applied in this study. In addition, measures of the carbon content of the biofilm 

provide information on the quantity of basic energy resources available to higher 

trophic consumer groups.  In summary, the approaches used in this chapter aimed 



Chapter 3. Biofilm Characterisation 1 

 - 58 -  

to characterise biofilms using chlorophyll a measurements, dry-weight biomass, 

biofilm carbon content, and microscopic analysis of algal species composition. 

3.3 Aims 
 

1. To estimate algal biofilm component from chlorophyll measurements in order 

to gain information on algal productivity. This provides information from 

which the biofilms can be classified as either heterotrophic or autotrophic, 

thus allowing inference of the functioning capacity of the biofilm.  

 

2. To quantify the resource quality of the biofilm, as described by carbon and 

nitrogen content, providing information on the quality of biofilm material 

available for use by organisms at higher trophic levels within the stream 

system.  

 

3. To assess temporal and spatial variation in algal community composition in 

relation to environmental factors, in order to determine the relative 

importance of physical, chemical, and biotic  factors in predicting assemblage 

and diversity of stream periphyton 
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3.4 Methods 
 

3.4.1 Study Site 

 
The study was undertaken in two low order streams in Galloway (Fig 3.1): the Black 

Burn within the Cree catchment, (2004 and 2005); and T33 within the Bladnoch 

catchment (sampled in 2005 only). 

 

 
Fig 3.1. Regional location of the study in Galloway modified from Ordnance 
Survey. 
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BB 

T33

 
Fig 3.2 Black Burn (BB) and T33 site locations (other sites studied within the 
project as a whole are flagged), within Galloway Forest Park 

3.4.2 Black Burn 

 
A two-year sampling programme of biofilm analysis was undertaken in the Black 

Burn (Fig 3.3, Table 3-1). This small, upland stream catchment was characterised by 

intensive coniferous forestry. This stream encompassed a range of corridor widths 

within a study stretch length of approximately 300m. This was advantageous for a 

study where the primary objective was to study variation in baseline resources 

available under different corridor conditions, as water chemistry changes along its 

length were minimal. 
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Fig 3.3. Map of the Black Burn showing the three study sites. Furthest upstream is 
BBCOR/BBCF (corridor/clearfelled) – referred to as BBCF post felling event in 
winter 2004/2005. Middle site is BBOP (open) and furthest downstream is BBSH 
(conifer shaded). 
 
Table 3-1. BB site location descriptions and positions (UK National Grid 
references) 
 NX 36602 85358  BBSH  Downstream of bridge, forest overhangs 
 NX 36566 85333  BBOP  Upstream of bridge, open corridor 
 NX 36050 85239  BBCOR/CF  Upstream of track crossing burn, open corridor/ clearfelled in 2005
 
 
Within the Black Burn, three different sites were studied (Table 3-1). Sites were 

located in close proximity to each other to minimise variation in water chemistry but 

varied in corridor characteristics; from heavily shaded to open corridor and clear-

felled. Thus, variation existed between the sites in the amount of cover by riparian 

trees (Norway spruce, Picea abies) and therefore in light availability and other 

corridor features (Table 3-2). 
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Table 3-2. Mean values for physical parameters measured for the three Black Burn 
sites over sampling periods in 2004 and 2005 (± standard error).  
Physical Parameters BBCOR (2004) BBCF (2005) BB OP BB SH 

Light (%) 56.50 +/- 3.54 90.18 +/- 6.41 82.61 +/- 2.06 8.83 +/- 2.80 

Stream wet width (m) 1.05 +/- 0.07 1.40 +/- 0.19 1.71 +/- 0.08 2.20 +/- 0.15 

Stream depth (cm) 24.50 +/- 6.36 22.00 +/- 6.91 17.42 +/- 1.19 16.42 +/- 1.02 

Bedrock (%) 20.00 +/-7.01 21.33 +/- 5.67 25.87 +/- 3.17 10.50 +/- 2.31 

Boulders/cobbles (%) 45.00 +/- 7.01 36.67 +/- 12.02 42.50 +/- 4.79 35.00 +/- 2.89 

Pebbles (%) 30.00 +/- 14.14 16.67 +/- 8.82 24.25 +/- 9.44 32.50 +/- 4.79 

Sand (%) 5.00 +/- 0.00 3.33 +/- 3.33 3.75 +/- 2.39 12.50 +/- 6.29 

Silt/Clay (%) 0.00 +/- 0.00 23.33 +/- 14.53 7.50 +/- 7.50 10.00 +/- 7.07 

Riparian tree diversity 1.00 +/- 0.00 1.50 +/- 0.29 1.50 +/- 0.29 1.50 +/- 0.29 

Overhanging vegetation (%) 20.00 +/- 0.00 20.00 +/- 0.00 27.75 +/- 9.22 2.75 +/- 2.43 

Corridor width (m) 32.5 +/- 3.54 90.33 +/- 14.95 30.48 +/- 1.45 8.85 +/- 0.28 

Corridor tree height (m) 22.50 +/- 3.54 2.56 +/- 0.59 21.67 +/- 2.04 19.17 +/- 1.44 

Site altitude (m) 220.00 +/- 0.00 220.00 +/- 0.00 200.00 +/- 0.00 210.00 +/- 0.00 
 

3.4.3 T33 

 
The three T33 sites are located within the Bladnoch Catchment. T33 is a similar low 

order stream to the Black Burn (Fig 3.4 and Table 3-3). Both streams (BB and T33) 

have very similar geologies: Ordovician, with shales and greywackes. The highly 

siliceous granite bedrock covered by thin, patchy, organic rich and generally acidic 

soils, offers only limited ability to neutralise acid inputs from the atmosphere (Wright 

et al., 1994) and, as a consequence, the soils from both sites are naturally acid 

(Edmunds and Kinniburgh, 1986). 
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Fig 3.4. Map of T33 showing the three study sites. Furthest upstream is T33CF1 
(clearfelled), middle site is T33CF2 (clearfelled) and furthest downstream is 
T33SH (conifer shaded). 
 
T33 was added to this study in 2005 to offer a stable comparative site as Black Burn 

was experiencing influences of the clear-felling event adjacent to the uppermost site 

(BBCOR/CF). 

 
Table 3-3. T33 site location descriptions and positions (UK National Grid 
references) 
 NX 328 703  T33CF1  Upstream of road, open, previously clearfelled 
 NX 327 702  T33CF2  Downstream of road, open/ forest clearance debris 

 NX 327 703  T33SH  Furthest Downstream site, conifer shaded/ clearance debris 
 
 
T33 runs through a large open area characterised by widespread bankside growth of 

tall wet-meadow vegetation (National Vegetation Classification M23 Juncus effusus 

meadow) which produces a relatively high level of shading of the stream bed despite 

the lack of tree canopy cover (Table 3-4). The area was previously conifer plantation. 

Forestry clearance occurred between April 2002 and March 2003 at the two 

upstream sites (T33CF1 and T33CF2).  
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Table 3-4. Mean measurements for physical parameters measured for the three 
T33 sites over sampling periods in 2005 (± standard error). 
Physical Parameters T33CF1 T33CF2 T33SH 

Light (%) 38.18 +/- 9.49 61.78 +/- 2.22 41.95 +/- 10.12 

Stream wet width (m) 0.94 +/- 0.14 1.12 +/- 0.28 1.10 +/- 0.24 

Stream depth (cm) 3.33 +/- 0.38 5.78 +/- 0.40 10.89 +/- 2.26 

Bedrock (%) 0.00 +/- 0.00 0.00 +/- 0.00 10.00 +/- 3.33 

Boulders/cobbles (%) 5.00 +/- 2.89 13.33 +/- 8.33 30.00 +/- 11.28 

Pebbles (%) 83.33 +/- 3.33 46.67 +/- 11.67 43.33 +/- 12.02 

Sand (%) 5.00 +/- 2.89 10.00 +/- 5.77 10.00 +/- 5.77 

Silt/Clay (%) 6.67 +/- 3.33 31.67 +/- 9.28 6.67 +/- 3.33 

Riparian tree diversity 0.67 +/- 0.67 1.33 +/- 0.33 1.00 +/- 0.00 

Overhanging vegetation (%) 44.00 +/- 21.20 24.00 +/- 11.37 2.00 +/- 1.53 

Corridor width (m) 88.89 +/- 5.88 66.67 +/- 10.18 46.56 +/- 15.91 

Corridor tree height (m) 1.56 +/- 0.78 22.44 +/- 3.20 30.00 +/- 0.96 

Site altitude (m) 70.00 +/- 0.00 69.00 +/- 0.00 65.00 +/- 0.00 
 

3.4.4 Sampling Protocol 

 
Field based studies which have quantified biofilm/periphyton growth and settlement 

within lotic systems mainly use one of two methods: sampling of the natural stream 

substratum (e.g. Cazaubon and Loudiki, 1986; Singer et al, 2005) or using some 

form of artificial substrate sampler. Using the former, Cazaubon and Loudiki (1986) 

found that micro-distribution around the substrate itself varies strongly with current 

and light penetration, and with the shape and size of the riverbed substrate. The 

variability in results from both the intra-site and inter-site samples of the Cazaubon 

and Loudiki (1986) study made reliability and replication of results difficult. In 

addition, with increased flow intensity, natural substrates are often found to be 

unstable and subject to movement, resulting in the frequent loss of material (e.g. 

Cazaubon, 1988). 

 

The desire for reproducible, quantitative data has prompted the design of sampling 

techniques using artificial substrates (e.g. Wetzel, 1964; Tank and Winterbourn, 

1995; Fellows et al., 2006). These offer the advantages of uniform size and textural 

properties. However varying results between artificial and natural substrates has 

generated much debate as to how representative artificial substrates are (e.g. 

Castenholz, l961; Stockner and Armstrong, 1971; Foerster and Schlichting, 1965)  

 

Within this study, it was decided to use artificial, semi-flexible substrates. The 

artificial substrate comprised a 20 x 20 cm linoleum square, superglued onto 2.5 kg 
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weights and subsequently placed in the stream (Fig 3.5) in a position orientated to 

minimise turbulent flow and decrease the risk of tile loss during high flow. These 

substrates were smooth enough to allow for easy scraping of the surface for 

algal/biofilm removal, yet had a slightly pitted texture to promote a more normal 

settlement/growth pattern, than would be expected on a smooth glass slides - which 

are the more common substrate used in artificial substrate experiments (e.g. Wetzel, 

1964; Tank and Winterbourn, 1995; Fellows et al, 2006). This approach allowed for 

consistency in sampling methods and substrate growing conditions between sites, 

and in addition, were of a large enough surface area to promote sufficient biomass 

settlement for multiple analyses.  

 

 
Fig 3.5. Biofilm artificial substrate tiles in the Black Burn at the end of a 
settlement period. 
 
At each site, four tiles were placed randomly throughout a five-meter stream stretch. 

The tiles remained in situ, within the stream for approximately one month per 

sampling period, commencing 23 December 2003. Subsequent replacement and 

removal is outlined in (Fig 3.5) for the two streams.  
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Table 3-5. Treatments used for biofilms collected at both Black Burn (O = yes, / = 
no) and T33, throughout 2004 and 2005. Abbreviations for treatments are: T.CHL 
= Total Chlorophyll, D.W = Dry-Weight, I.D. = microscopic examination of 
sample/algal I.D. and E.C = Elemental Composition; isotopic and stoichiometric 
measurements (explored further in chapter four).  
      Black Burn Treatments T33 Treatments   

Deployment  Removal  No. Days T.CHL D.W I.D E.C T.CHL D.W I.D E.C 

22/11/03 23/12/03 31 O O / O / / / / 

23/12/03 24/1/04 31 / O / O / / / / 

24/1/04 20/2/04 27 / / / O / / / / 

20/3/04 24/4/04 34 O O / O / / / / 

24/4/04 29/5/04 35 / O / O / / / / 

29/5/04 26/6/04 27 O O / O / / / / 

26/6/04 2/8/04 36 O O / O / / / / 

               

7/3/05 31/3/05 24 O O O O O O O O 

31/3/05 5/5/05 35 / / / / O O O O 

5/5/05 1/6/05 26 O O O O O O O O 

1/6/05 15/7/05 44 O O O O O O O O 

15/7/05 7/8/05 22 O O O O O O O O 

7/8/05 16/9/05 39 O O O O O O O O 

16/9/05 18/10/05 32 O O O O O O O O 

 
At each sampling trip, tiles and attached weights were removed from the stream 

(handled by the weight only, to minimise disturbance of the biofilms). Tiles were 

stripped from the weight and placed into a labelled re-sealable plastic bag. Samples 

were then stored in a darkened cool box to minimise sample degradation during 

transportation back to the lab. The biofilm tiles were kept in the dark and 

refrigerated (at 5 ºC) until processed (usually the following day).  

 
3.5 Laboratory Analysis methods  

3.5.1 Biomass  

 
The biofilm material was scraped from the artificial substrates, using a glass 

microscope slide and distilled water until no visible remains of biofilm material were 

present on the tile upper surface. The diluted liquid organic slurry was placed in a 

centrifuge at 3635G for 12 minutes. The post centrifuge supernatant was decanted 

from the samples. From the concentrate remaining, a 2ml volume was removed from 

each sample for composition/species analysis. The remaining biomass was placed in 

pre-weighed beakers, and freeze-dried (usually 48 hours maximum). Weighing of the 

beakers post freeze-drying allowed for total biomass to be quantified. Approximately, 

2mg of dried biomass was retained for stable isotope and elemental analysis. Some 

samples were too small to achieve this weight and so a lesser amount was removed 
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(this could sometimes be the entire sample). The remaining sample (up to 200mg) 

was used for chlorophyll analysis. 

3.5.2 Carbon Content 

 

Weight % carbon and nitrogen were derived from biofilm samples using a sub-

sample of approximately 2 mg of biofilm material (weighed out to 0.01mg precision) 

of the dried material was loaded into an 8 x 5 mm tin capsule and crimped closed. 

Using continuous-flow isotope-ratio mass-spectrometry (CF-IRMS), the crimped 

capsules were processed for measurements by combusting in a Carlo Erba C/N/S 

analyser interfaced with a Finnigan Tracer Matt CF-IRMS. These analyses were 

carried out at the Scottish Universities Environmental Research Centre (SUERC) in 

East Kilbride. 

3.5.3 Chlorophyll Analysis 

 
Chlorophyll a was extracted following methodology primarily following Wetzel and 

Likens (1991). Approximately 200 mg of freeze-dried biofilm material was added to 

10 ml of acetone, to extract chlorophyll a pigment. This solution was mixed 

vigorously and refrigerated overnight at 4oC. To separate the acetone (for chlorophyll 

assay) from the biomass, the sample was centrifuged in a sealed tube at 1000rpm 

for 5 minutes, allowing removal of the supernatant post centrifugation with a pipette. 

2.7ml (90%) acetone/chlorophyll solution and 0.3ml (10%) distilled water was added 

to a glass spectrophotometer cuvette, covered, and inverted to mix. Absorbance of 

the solution was analysed using a spectrophotometer (Schimadzu). 

 
Calculating chlorophyll a concentration in the acetone extract: 
 
 

1. Measurements of absorbance were taken at 750 and 665 nm. Measurements 

at 665nm were used to calculate total chlorophyll a concentrations and 

measurements at 750nm (with and without acid) are subtracted to account 

for turbidity in the sample.   

 

2. Each sample was blank corrected by measurements first with a blank 

composed of 10% distilled water and 90% acetone. 
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3. The chlorophyll content was corrected for phaeo-pigments by acidification; 

HCl (0.1 ml of 6mol per ml of extract) was added directly to the cuvette 

following 665 nm and 750 nm measurements, then covered and inverted to 

mix. The tube was left to stand for 5 min. 

 
 
 
Chlorophyll a calculations followed methodology outlined in Wetzel and Likens (2002) 

and equations following Lorenzen (1967):  

 

z

 ))A(A)A((A*F*k
 =g/l)( a Chl AA00 750665750665 −−−

µ  

where: 

k = absorption coefficient of chlorophyll a = 11 

F = factor to equate reduction in absorbency to initial concentration, 1.7:1.0, or 

2.43. 

Z = path length of the cuvette or cell in cm, so usually 1cm, thus 1. 

 

However, this value produced is expressed in µg/L. Consequently, the chlorophyll 

concentration (in mg/L) was converted into an absolute amount expressed as mg Chl 

a / mg of biofilm biomass (following equation), allowing for further calculation to mg 

/m2 using biofilm biomass data measurements. 

 
 

 extraction in used biomass mg
DF*V*mg/l][Chl=  biofilm) (mg/mg a Chl   

 
V = extract volume, in litres 

 

DF = Dilution Factor - The Increase in calculated concentration that would have 

arisen from using a larger cell length (calculated by dividing absorbance readings by 

cell length). 

3.5.4 Tile composition analysis (species / detrital measurements) 

 
In order to determine possible links between characteristics of the biofilm and the 

algal species composition, samples were analysed for taxa assemblage structure and 

estimates of taxa abundance (only in 2005 samples). The 2ml wet sub-sample 
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retained from the biofilm tile was analysed as quickly as possible after collection. 

Samples were stored in an Eppendorf tube, retaining an area of a headspace to allow 

for continued respiration (to help preserve samples until analysis). The samples were 

mixed with 5ml water and a drop of the solution was placed on a glass slide for 

microscopic identification of algal species and % detritus (using x 10 magnification). 

Algal unit counts (one cell = one unit for unicellular organisms, one filament = one 

unit for filamentous taxa) and identifications covered three fields of view, following 

Prescott (1978), Belcher and Swale (1978) and Belcher and Swale (1979). 

 
3.6 Results 

3.6.1 Biomass  

 
Black Burn  
 
Mean biofilm biomass in the Black Burn was significantly (ANOVA P <0.001) greater 

in summer samples compared with spring/winter. Mean biomass on 2004 BB tiles 

increased from a mean of 163.2 ± 28.1mg/m2 (± S.E) in Dec – April to 1419.8 ± 

6.2mg/m2 (± S.E) in May-Aug. Using these seasonal cut-offs defined through Tukey 

test (95 % confidence) of the ANOVA groups described above, pooled samples from 

spring/winter and summer indicated no significant inter-site differences in biomass 

from pooled seasonal data (Dec 03 to April 04, P = 0.658; summer samples, P = 

0.912). However, from visual assessment, Black Burn Shade and Corridor indicate 

some senescence of algae into the autumn (Fig 3.6), but this was not reflected in the 

middle site (Open), which continued to be productive into August. 
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Fig 3.6. Temporal changes of Black Burn biofilm dry-weight biomass per m2 during 
2003 - 2004 (mean ± standard error). 
 
Analysis of both 2004 and 2005 data (Fig 3.7) revealed that the overall mean 

biomass of Black Burn biofilm was approximately 7700 ± 2009.3mg/m2 (± S.E). 

However, contributing to this result is the significant increase in biofilm dry-weight in 

the second year of the study (ANOVA, P < 0.001), prior to returning to levels 

comparable with mid summer of 2004 (ANOVA, P = 0.192). The Black Burn site most 

affected by biofilm biomass increase was the furthest upstream, which was also the 

site closest to an adjacent forest clearance event (in the winter of 2004/2005). It is 

suggested that this large increase in biofilm biomass was a consequence of increases 

in allochthonous nutrient runoff related to the disturbance event. 
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Fig 3.7. Black Burn temporal variation during 2003 - 2005 of dry-weight biomass 
per m2 of tiles (mean ± standard error) Note changed y-axis scale reflecting the 
considerable increase in biomass production in year two. 
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3.6.2 T33 

 
All three of the T33 sites show similar patterns of biofilm standing crop biomass  (Fig 

3.8), with no significant difference in the biofilm biomass retrieved from each of the 

three sites (ANOVA, P = 0.127). The same y-axis scale has been used in Fig 3.7 and 

Fig 3.8, in order to show comparative biomass levels between the two sites and 

years. There is a much greater standing crop at T33 in comparison to pre-felling BB. 

However biofilm biomass increased significantly in 2005 BB biofilms compared with 

T33 and BB2004. 
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Fig 3.8.  T33 biofilm dry-weight biomass (mg/m2) sampled in 2005 (mean ± 
standard error). 
 
When data from all samples within 2005 is pooled, significantly greater biofilm 

biomass production was found at BBCF compared to the most upstream of the T33 

sites (T33CF1) (Fig 3.9). Thus, despite the temporal variation in the sites (Fig 3.7 

and Fig 3.8), BBCF is still clearly distinguishable in terms of basal resource 

production from T33CF1. 
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Fig 3.9. T33 and Black Burn mean dry-weight biomass (± 95% confidence 
interval) for all samples collected in 2005. Tukey test revealed a significant 
difference (ANOVA, P = 0.050) between T33CF1 and BBCF, as indicated by 
differential letters (a and b). There is no significant difference between any other 
sites in biomass production. 
 
However all other sites have comparable biofilm standing crop, despite the variation 

in corridor characteristics and land uses of the specific riparian zone. To explore this 

result more fully, data from each sample visit is analysed separately to discern any 

spatial inter- or intra-site differences occurring over the sampling season. 

 
Table 3-6. Significant differences (ANOVA P values indicated) in biofilm dry-
weight biomass between sites, identified through Tukey analysis (95% 
confidence). Analysis is for sites on each sample date and comparisons are not 
made between dates. Sites with letter(s) in common are not significantly different 
on the date of sampling. 
  BBOP BBCO/CF2005 BBSH T33 CF1 T33CF2 T33SH P Value 
23/12/2003 a a a / / / 0.457 
20/03/2004 a b a / / / 0.009 
24/04/2004 a a a / / / 0.306 
29/05/2004 ab a b / / / 0.042 
26/06/2004 a a a / / / 0.258 
02/08/2004 a b ab / / / 0.002 
31/03/2005 a a a a a a 0.295 
01/06/2005 ab ab ab ab a b 0.032 
15/07/2005 ab a ab b b b 0.013 
07/08/2005 ab a ab b ab ab 0.035 
16/09/2005 a a a a b b < 0.001 
18/10/2005 a a a a a a 0.552 
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Table 3-6 indicates that from June until mid September 2005, one or more of the 

T33 sites produced significantly less biomass than equivalent sites within the Black 

Burn. Of the Black Burn sites, BBCF generally produced significantly higher biomass 

levels. 

3.6.3 Chlorophyll Analysis  

 

From the sum of all BB2005 chlorophyll a (Chl a) concentrations measured in 2005, a 

mean of 1.08 ± 0.25mg/m2 (± SE) Chl a was found. This was significantly lower 

(ANOVA, P = 0.012) than the mean of Chl a measured at the same sites in 2004 

(2.23 mg/m2 ± 0.31 SE). However, when compared with T33 biofilm Chl a 

(measurements only taken in 2005), there is a significantly greater weight of 

chlorophyll produced from T33 biofilms (4.04 ± 0.58 mg/m2 SE) compared with 

BB2005 (ANOVA, P < 0.001).  

 

Chl a concentrations measured here are similar to those found by other comparable 

periphyton studies. For example, Cushing et al. (1983) investigated chlorophyll 

production from periphyton of varying stream orders as part of River Continuum 

Concept (RCC) research. This study sought to determine the relationship between 

primary productivity and stream order. Although measurements were published in 

µg/cm2 (as opposed to mg/m2 here), conversion of my results indicates that the 

range of Chl a concentration measures are comparable between the two studies. 

Mean concentrations for the Cushing et al (1983) study, range from 1.2 µg/cm2  (± 

0.1 SE) to 107.2 µg/cm2 (± 36.8 SE), with periphyton Chl a concentrations in low 

order systems of 7.2 µg/cm2 (± 2.3 SE). Here BB2004 mean Chl a mean 

concentration was 22.3µg/cm2 (± 3.1 SE), BB2005 was 10.8 µm/cm2 (± 2.5 SE) and 

T33 mean concentration was highest at 40.4 µg/cm2 (± 5.8 SE). 
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Fig 3.10. Chl a at from Black Burn biofilms collected during 2004 and 2005 (mean 
± SE)  
 
Temporal and spatial variation of the Black Burn Chl a content is shown in Fig 3.10. 

In both 2004 and 2005, chlorophyll growth patterns indicate midsummer bloom 

events. However, chlorophyll production was still occurring in winter/spring 2003/4, 

whereas in 2005, chlorophyll production was almost nil until the June sampling. 

 
There was no significant difference in chlorophyll a production between sites in 2004 

(ANOVA, P = 0.866). There was a comparative delay in the commencement of Chl a 

production in the 2005 biofilm samples, compared to that of BB 2004. However, in 

addition, there was also a greater spatial variation in Chl a production in 2005 BB 

samples. For example, there was no significant difference in chlorophyll a production 

between sites in 2004 (ANOVA, P = 0.866). However, chlorophyll concentration at 

BBSH 2005 was significantly (ANOVA, P = 0.030) lower then other BB sites in 2005 

(Fig 3.11).  

 

There was significant temporal variation between sites. BB2005 chlorophyll biomass 

from the shaded site (BBSH) was lower than that of BBSH 2004 (ANOVA, P = 0.006). 

In fact, maximum concentrations of BB2005SH were only comparable with late 

autumn production of 2003. BBOP 2005 was comparable with production from BBOP 

2004 (ANOVA, P = 0.233). The expected seasonal increase in production, as 

observed in other studies of stream algal chlorophyll production (e.g. Rosenfeld and 

Roff, 1990), was delayed until the June sampling. Chl a production in BBCF is also 
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comparable with concentrations found in 2004 from BBCO. On average, variation 

between 2004 and 2005 chlorophyll biomass was only significant at the shaded site. 
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Fig 3.11. Mean Black Burn biofilm Chl a concentrations (± 95% confidence 
interval) from each sample site in 2005. Tukey test reveals significant differences 
(indicated with differing letters: a or b) between BBCF and BBSH (P = 0.030, n = 
157); where chlorophyll production is reduced. 
 
Comparisons of chlorophyll biomass between streams and sites indicate greater 

chlorophyll a concentrations in either one or both of two T33 clearfelled sites 

(T33CF1 and T33CF2) than many of the Black Burn samples (Fig 3.12). Specifically, 

the Black Burn corridor and shade site in 2004 (BBCO and BBSH) and the open and 

shaded sites in 2005 (BBOP and BBSH) have significantly (ANOVA, P < 0.001) lower 

chlorophyll a concentrations (mg/m2). Thus, there is an indication that within the 

Black Burn, under normal circumstances (i.e. pre felling), chlorophyll a production 

was limited within both the shaded and corridor sites. Under impacted 

circumstances, the open site at Back Burn was also negatively influenced while the 

clear-felled site remained comparatively productive within 2005. Within T33, light 

limitation at the shaded site (T33SH) may be influencing chlorophyll a production. 
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Fig 3.12. Mean chlorophyll a concentrations (± 95% confidence interval) at both 
Black burn and T33 sites over 2004 (BB only) and 2005. Tukey test reveals 
significant differences (indicated with differing letters: a, b, c or d) (P < 0.001, n 
= 227).  
 

3.6.4 Determining biofilm autotrophic status with C:Chl 

 
By combining both Chl a and biofilm carbon content data, there is an opportunity to 

analyse the biofilm in terms of proportional contribution from autotrophic material. 

Chl a concentration has been used in many previous studies as a proxy for algal 

biomass (e.g. Romani and Sabater, 2000; Frost et al., 2005; Rosenfeld and Roff, 

1990). Chl a serves as an indicator of the algal content because it is rapidly degraded 

outside living cells and comprises a negligible fraction of detrital organic carbon 

(Furlong and Carpenter 1988). Here, it is being used to determine the proportional 

autochthonous autotroph content of the biofilm. The C:Chl ratio in live algal biomass, 

which has been investigated mostly in phytoplankton, is known to vary with 

taxonomic composition, light availability, and other factors (Reynolds 1984). 

 

Using this measure should provide an indication of the primary productivity of the 

biofilm and also a comparative indication of the hetrotrophic and detrital content. 

C: Chl ratios <100 are a value indicative of relatively high algal cellular content in 



Chapter 3. Biofilm Characterisation 1 

 - 77 -  

natural organic matter (Geider, 1987). For example, C:Chl mass ratios of 

phytoplankton in culture and in pelagic environments commonly range between 25 

and 100 (Ahlgren 1983; Geider 1987; Riemann et al. 1989), but can be 150 or more 

in natural algal assemblages (Gieskes and Kraay 1989; Lefevre et al. 2003). Higher 

C:Chl in biofilms can reflect slower growth rates and consequent secretion of 

mucilaginous materials (de Jonge 1980). Thus the C:Chl measurements should 

provide some indication of baseline characteristics of food availability as well as the 

functionality of the biofilm. 

 

In my dataset, C: Chl a (C:Chl) ranged from 74 to 249,181. However, there is high 

temporal and spatial variation in C:Chl (Kruskal-Wallis, P < 0.001). The lowest mean 

C:Chl ratio (therefore, the biofilms with the highest proportion of carbon as 

chlorophyll), was found within the Black Burn in 2004, with a mean C:Chl of 393 (± 

49.7 S.E). This result is comparable with other studies such as Frost et al.(2005) 

(with a mean C:Chl of 405). However, in 2005, Black Burn biofilms had  on  average 

a  70 fold increase in non-chlorophyll derived carbon to the biofilm biomass reflected 

by a mean C:Chl of  approximately 26,600 (± 5023 S.E), indicating a  minimal algal 

contribution to the biofilm material. 
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Fig 3.13. Comparison of site specific C:Chl (± 95% confidence interval). 
Significant differences (Kruskal-Wallis < 0.001) between C:Chl of Black Burn 
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(2005, 2004) and T33. Distribution of means suggests significantly greater C:Chl 
at BB 2005. 
 
T33 biofilms were comparable to biofilms of BB in 2004, but C:Chl was significantly 

lower then BB 2005 biofilms (Fig 3.13); with a mean C:Chl of 741 (± 76.12 S.E).  

3.6.5 Prevalence of algae in periphyton 

 

Chlorophyll a was employed as an index of epiphytic algal biomass (as standing 

crop), to estimate total algal carbon since it allows algal material to be distinguished 

from the mixture of microbes and detritus which make up the biofilm matrix (Fig 

3.14). Algal cell carbon/Chl a mass ratios vary from about 25 to 80 depending on 

species and physiological state of organisms (Parsons et al., 1977). Estimating algal 

biomass from Chl a can be problematic, mainly because the Chl a to carbon 

conversion factor is not constant and varies among species, growth conditions 

(Banse, 1977) and radiation intensity and nutrient availability (nitrogen particularly 

appears to be a major factor affecting the chlorophyll content of algal cells) 

(Vollenweider and Kerekes, 1982). However, as a photosynthetic pigment, Chl a is 

directly related to the potential for autotrophic growth and has been employed as an 

algal biomass index in many limnological studies (Wetzel 1983), I have used it here 

as a proxy of autotrophic biomass. 

 
The transformation of Algal biomass (algal C mg/m2) from Chl a density primarily 

used the conversion factor C:Chl of 60 following Romani and Sabater (2000). In their 

study, biofilm algal composition, similarly to here, was often characterised by diatom-

dominated communities. This conversion factor lies in the middle of the range of 20–

100 suggested for benthic algae by Margalef (1983), and also well within the range 

described by Pearson et al. (1977) (25 to 80).  



Chapter 3. Biofilm Characterisation 1 

 - 79 -  

A
lg

al
 C

 (
D

er
iv

ed
 f

ro
m

 C
hl

 a
) 

(m
g/

m
2)

T3
3S

H

T3
3C

F2

T3
3C

F1

BB
SH

 20
05

BB
CF

 20
05

BB
OP

 20
05

BB
SH

 20
04

BB
CO

 20
04

BB
OP

 20
04

500

400

300

200

100

0

ab

ab

ab

a

a

ab

b b ab

 
Fig 3.14. Estimates of algal C using an average conversion factor of 60 mg. Algal 
C/m2 to mg Chl a/m2 (± 95% confidence interval), which provides an estimate of 
algal C from Chl a calculations, as carried out by Romani and Sabater (2000).  
Tukey test indicates significant differences (P <0.001) between algal carbon in 
both clear-felled sites of T33 and open and shaded sites in the Black Burn (BBOP 
and BBSH), as indicated by different letterings (a and b). There is significantly 
reduced algal biomass at the lower two BB sites of 2005 compared with the 
uppermost sites of the control stream (T33, 2005). 
 
From Fig 3.14, the calculations of biofilm algal carbon content suggest that despite 

both temporal and spatial variation, BB 2004 and T33 are comparable in total algal 

production. However, significant differences occur between the two more exposed 

sites of T33 (CF1 and CF2) and the two downstream sites of BB 2005. 

 

Consideration of the comparable proportions of algal carbon derived from 

allochthonous or heterotrophic carbon source origins, suggests that on average, 5% 

of biofilm carbon was estimated to be of algal origin. Approximately 72% of biofilm 

samples from the Black Burn (both 2004 and 2005) had less than 10% of C in the 

algal cellular fraction. This is very similar to the results of Frost et al. (2005) who 

found that algal C averaged 8.4% of the periphyton biofilm samples they collected 

from a variety of substrata from lake and low-salinity coastal habitats, whilst over 

75% of samples had algal carbon concentrations under 10% of total periphyton C.  
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However, chlorophyll content of algae can range from 0.1 to 9.7 per cent of fresh 

algal weight (Vollenweider and Kerekes, 1982). A great variability in individual cases 

can be expected, either seasonally or on an annual basis due to species composition, 

light conditions and nutrient availability (Banse, 1977; Vollenweider and Kerekes, 

1982). Thus, it was decided to explore alternative conversion factors in order to 

determine the potential variation to algal biomass resulting from variation in the algal 

chlorophyll content. The alternative conversion factors explored were the extremities 

(20 – 100) described by Margalef, 1983.  
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Fig 3.15 The range of algal biomass levels within biofilms at BB and T33 sites as 
derived from alternative Chl a conversion Factors (CF): 20, 60 and 100. Algal 
carbon content expressed as mean ± 95% confidence interval. 

 
If the conversion factor is a consistent value, changing it does not vary the relative 

difference in algal biomass between sites. However, Fig 3.15 does illustrate that 

there is a difference in algal biomass when the conversion factor is varied 

(particularly significant in T33 samples). As such, I think that with a larger study (in 

terms of either spatial or temporal scales) one should perhaps caution against using 

a single conversion factor for Chl a measurements and vary it with general species 

composition, light and nutrient levels. Studies have addressed this problem by 

measurements of algal bio-volume. Algal biovolume is a useful method for ascribing 

biomass to individual species. However, the calculations of biovolumes using 

standard geometric models (Hillebrand et al., 1999) and the conversion from volume 
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to carbon (Menden-Deuer and Lessard, 2000) are susceptible to microscopic 

measurement errors and large inter-specific variability (Mullin, Sloan and Eppley, 

1966).  To assess variation between the alternative approaches, I used microscope 

assessment of algal content (Fig 3.16) through estimates of proportion of biomass 

accounted for by algal cells within five random biofilm material fields of view.  
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Fig 3.16 Comparison of chlorophyll defined autotrophic contribution and 
Microscopic identification of algal content.  Kruskall-wallis defined significant 
differences between samples (P < 0.001). Means suggest that microscope 
analysis consistently overestimated the algal contribution to biofilm material. 
 
There was a consistently greater estimation of algal content from microscopic ID. 

This could suggest that the conversion factor of 60 was an underestimation, 

However, a number of studies (e.g. Hamilton et al., 2005), have noted that 

microscopic examination of the relative proportions of algae and detritus in FPOM 

samples can be deceptive because large algal cells are conspicuous whereas colloidal 

detritus is not, often leading to an overestimation of algal cell contribution. Also, 

microscopic examination lack specificity for definitively separating living from recently 

dead or partially decomposed cells (Paerl et al., 1976). Therefore, without 

assessment of representative communities of algal cells in culture, under the 

differing light and nutrient regimes, the use of an intermediate conversion factor 

(60), at the very least, allows this study to be consistent with a number of other 

scientific studies approaches. Additionally, various similar studies have used a single 
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conversion factor (e.g. Del Giorgio and Gasol, 1995; Romani and Sabater, 2000) or 

used Chl a directly as an estimation of algal biomass (e.g. Carrick and Lowe, 2007). 

Further, as this study encompassed a small study area, with similar land-uses, and 

geologies, and only two different stream systems, the potential for a large amount of 

variability in the chlorophyll concentration of algal cells was likely to be low. The 

comparrisons between BB sites and T33, indicates a chlorophyll concentration 

difference significant enough (P > 0.005), to suggest a reflection of increased algal 

biomass, and not a change in the conversion factor between sites. Therefore, here 

analysis of autotrophic content is continued on the basis of the middle conversion 

factor of 60. Yet the potential for this variabillity needs to be considered when 

discussing results. 

 
The majority of the low algal C estimates came from Black Burn sites in 2005 (Fig 

3.17), where only 2.3% of biofilm samples are estimated to have autotrophic carbon 

contribution of under 10 %. During 2005, the mean algal C contribution to total 

carbon was only 2.3%. In 2004 this contribution was much greater at 23.7%.  

 

Approximately 53% of T33 biofilms had algal carbon contributions estimated at over 

10%, although mean autotrophic algal C was slightly lower than BB 2004 autotrophic 

standing crop, with approximately 16% of biofilm carbon derived from algal cells at 

T33 as opposed to 23.7% in BB 2004 biofilms. 
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Fig 3.17. Per cent carbon derived from autochthonous algae using conversion 
factor of 60 from Chl a data. Kruskall-Wallis analysis indicates significant 
differences between groups (P < 0.001). Distributions of means (± 95% 
confidence interval) suggest that BB 2005 sites had lowest proportion of total 
carbon derived from algal sources. 

The high C:Chl ratios and low biovolume-derived algal cellular C content of Black 

Burn biofilms indicate a low contribution of algae to organic matter in 

periphyton/biofilms. Here, only two biofilm samples had C: Chl ratios <100, a value 

indicative of relatively high algal cellular content in natural organic matter (Geider, 

1987). The low prevalence of such values (<100) is a further indication that algal 

cells are not often a major component of biofilms of low order streams from this 

study. The results also suggest that the prevalence of biofilms with the high 

autotrophic contributions indicative of ‘healthy’ biofilms, with high enzymatic activity 

(Romani and Sabater, 2000), may be relatively rare at the sites studied here. 

However, without the hetrotrophic comparative measures, it is not possible to 

determine definitively if this is so. 

There was no significant difference in algal C contribution among any of the sites 

within 2004 (Kruskal-Wallis, P = 0.54) despite significant differences in light intensity 

between sites (Table 3-2 and Table 3-4). This consistency among undisturbed, but 

habitat-variable sites, suggests that with undisturbed conditions, changes in corridor 
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light regimes have had no significant difference in the biofilm algal C content. 

Similarily, within the single disturbed stream, (BB 2005), there was no significant 

difference (Kruskal-Wallis, P = 0.243) in algal biomass between sites. There is a 

suggestion in the data that the BB clearfelled site (BBCF) had a greater algal 

standing crop,  but this is still significantly lower (P = 0.001) than the majority of 

BB2004 and T33 biofilm samples (Fig 3.17). Additionally, there was no intra-site 

difference in T33 algal biomass (ANOVA, P = 0.976). This similarity in estimated algal 

carbon for sites within the reference stream is unsuprising as differences between 

mean % light at T33 sites were less pronounced than those at Black Burn (Table 3-2 

and Table 3-4). 

3.6.6 Benthic algal diversity as an indicator of biofilm biointegrity (“ecological 

health”) 

Chemical analyses of water provide a good indication of the chemical quality of the 

aquatic systems, but do not integrate ecological factors such as altered riparian 

vegetation or altered flow regime and therefore, do not necessarily reflect the net 

ecological health of the system (Karr et al., 2000). Biological assessment is a useful 

addition for assessing the biointegrity of aquatic ecosystems since biological 

communities integrate the environmental effects of water chemistry, over time, in 

addition to the physical and geomorphological characteristics of rivers and lakes 

(Stevenson and Pan, 1999).  

Because of their nutritional needs and their position at the base of aquatic foodwebs, 

algal indicators provide base-line information concerning ecosystem condition. Algae 

respond rapidly and predictably to a wide range of pollutants and, thus, provide 

potentially useful early warning signals of deteriorating conditions.   

 

Evaluations of algal production often focus on estimates of quantity, such as primary 

productivity and standing crop, and ignore the strong influence that changes in the 

quality of algal production can have on food web interactions. Algal taxa vary greatly 

in their edibility, and shifts in species composition can affect feeding relationships, 

population growth, and guild structure at higher trophic levels in aquatic food webs 

(Porter, 1976; DeMott and Moxter, 1991; Allan, 1995). While functional measures 

(e.g. productivity) may prove useful as monitoring tools, consideration of shifts in the 

taxonomic composition, as well as the productivity of the algal assemblage in 
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response to anthropogenic disturbances is often also required, in order to predict 

accurately the effects on other ecosystem trophic compartments. Thus, in year two 

of the study, identification of algal and abundance estimates were undertaken (Fig 

3.7). The data were used to determine diversity of algal taxa within biofilms, using 

the Shannon-Weiner Index. The Shannon-Weiner Index is affected by both the 

number of species and their equitability (“evenness”) of population abundance. A 

greater number of species and a more even distribution both increase diversity as 

measured by H. The maximum diversity (Hmax) of a sample is found when all 

species are equally abundant.  
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Table 3-7. Taxa assemblages of BB and T33 (2005). Mean taxa abundance (mean 
algal units across microscopic fields of view (n = 3), at x 10 magnification) (± 
S.E). Mean Shannon-Weiner Index and overall mean species richness also 
included. 
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In total, 51 taxa were identified within biofilm sub-samples of 2005. Diversity 

(Shannon-Weiner Index: H) of biofilm algae in spring/early summer (March – July) 

was significantly lower at all the BB sites compared with T33 sites (ANOVA, P < 

0.001). However, diversity increased from spring to summer 2005 at both sites, 

creating a diversity peak at both streams during late summer (Fig 3.18), with 

significantly greater species richness scores in August – September rather then April 

– July (ANOVA, P <0.001 for both streams). 

 

T33 represents a stream undisturbed in its recent history. Black Burn had clear felling 

disturbance during winter 2004/2005. The diversity index scores for BB sites during 

spring and early summer are close to zero (Fig 3.18), indicating both low diversity 

and unevenness and consequently suggesting that the clear-felling event had 

significant impact on the biofilm algae community composition. However, there is 

also evidence of some recovery in diversity (H) post felling from August onwards; 

diversity indices from Black Burn show no significant difference from T33 sites 

(ANOVA, P = 0.093).  
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Fig 3.18. Temporal and site variation in biofilm algal Shannon-Weiner Diversity 
Index scores throughout 2005, at both BB and T33 sites.  
 
Water chemistry and other environmental variables (e.g. PAR, pH, conductivity and 

corridor characteristics) were not measured at each algal sampling trip and thus, 

there are insufficient measurements to assess the importance of these directly to 

species composition. Consequently, species assemblages were assessed 

independently of environmental variables using two-way indicator species analysis: 

TWINSPAN (Hill, 1979) (Fig 3.19), a divisive classification method. This approach 
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was used in conjunction with DCA (Detrended Correspondence Analysis) (Hill and 

Gauch, 1980), an indirect-gradient ordination procedure (Fig 3.20 and Fig 3.21): the 

two approaches together permitting definition of species assemblages and the 

fidelity of species to an assemblage.   

3.6.7 TWINSPAN analysis 

 

Although the TWINSPAN groups could be sub-divided further, the five end-groups 

identified were the result of divisions with relatively high eigenvalues, suggesting 

good within-group similarity. Additionally, further division had the disadvantage that 

sample size is further reduced for each group, which would have reduced more 

groups to n < 3.  

 

The results of the TWINSPAN analysis are shown in Fig 3.19. Due to the nature of 

the taxa associations, uneven separations formed three small groups within the first 

three iterations of the analysis (Groups 1 -3). However in iteration 4, the main group 

was divided to form the two main taxa groups (groups 4 and 5). The strongest 

separation of groups is at iteration 1 (Eigenvalue = 0.401) and separates the main 

group of taxa from Chlorella, Cocconeis and Sphaerotilus (group 1). Sphaerotilus is a 

colonial bacterium species and so cannot be strictly grouped with the other algal 

taxa. However, the widespread presence of this taxon in a number of samples meant 

that its presence and relative abundance was recorded. Cocconeis and Chlorella are 

both unicellular algae. The division of this small but significant group early on in the 

ordination suggests that this assemblage group is very specific and significant to a 

number of sites. This assemblage is also common in the low diversity samples of BB 

from spring 2005.  



Chapter 3. Biofilm Characterisation 1 

 - 89 -  

 
Fig 3.19. Division of biofilm taxa by TWINSPAN (Hill, 1979). Strength of divisions 
indicated by eigenvalues (shown in blue). 
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3.6.8 DCA (Detrended Correspondence Analysis) 

 
DCA ordination of the species assemblage data was used to indicate the relative 

positions of the TWINSPAN groups as described in Fig 3.19. Axis units are standard 

deviations of species turnover (as a rule of thumb, 2 SD of species turnover along a 

major axis of a sample ordination corresponds to approximately a complete change 

in taxonomic content of the assemblage present: Gauch 19nn). There is lateral 

separation of the whole assemblage across group one. Separation of groups and 

associations with axis one were extremely strong, resulting in an eigenvalue of 

0.9089. The largest TWINSPAN species group (group 5) has formed a gradient 

following axis 2 (vertical). However the strength of the relationship of species with 

axis 2 was weaker (eigenvalue of 0.4237), explaining why the species are stretched 

along this axis and not heavily constrained as with axis one. TWINSPAN group 4 was 

also quite constrained along axis one. The separation of the assemblage groups 

across both axes by approximately 5.5 SD, suggest that across each axis, DCA has 

divided the assemblage into approximately 2-3 separate communities; suggesting 

substantial differences within this single group.  

 

The late separation of species groups 4 and 5 by TWINSPAN manifests in Fig 3.20 as 

the substantial mixing of the two groups within the ordination, further suggesting 

that both these relatively diverse groups are not significantly distinct within biofilm 

samples (and associated sites). 

The green alga Cladophora has often been associated with eutrophication events 

(Hynes, 1961) and is often highly abundant in nutrient- rich flowing waters (Dodds 

and Gudder, 1992), with large streamers developing under nutrient-rich conditions. 

These streamers potentially lead to low oxygen conditions at night, alter the 

community structure, slow water flow in canals, and clog industrial and domestic 

water intakes (e.g. Dodds and Gudder, 1992). Here, this taxon has been separated 

within the ordination at iteration 3, to form an individual group (group 3). Reasoning 

for this specific separation is not clear as within the DCA (Fig 3.20), it is fairly 

centralized and not separated within the ordination.  
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Fig 3.20. Detrended Correspondence Analysis (DCA) of algal taxa collected from 
the Black Burn and T33 in 2005. Axis units are standard deviations of species 
turnover. Taxa full names located in Table 10-1, in the appendix. TWINSPAN 
groups (Fig 3.19) indicated by different dots (labelling at top right corner of 
ordination). Ordination significant (Monte Carlo Test, P = 0.05). Strength of 
sample associations with axis one and two signified by eigenvalues (0.9089 and 
0.4237 respectively). 
 
Using DCA to separate sites (i.e. assemblages within samples) provides an indication 

of similarities both spatially and temporally amongst samples. For example, Fig 3.21 

indicates separation of samples temporally (following axis 2). Late summer samples 

tend to be positioned towards the top of the DCA, whereas spring samples are more 

towards the bottom of the ordination and as generally two standard deviations 

corresponds to a complete change in species composition of the samples, it appears 

that there are approximately three communities separated by seasonal variation. 
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This separation provides evidence of seasonal succession of species at T33. Seasonal 

separation in BB species assemblages is less obvious, as BB samples were much 

more strongly constrained to axis two.  

 

In addition, there is substantial spatial variation evidenced in this ordination: the 

majority of BB samples are located to the left of the ordination, on the low end of 

axis 1. T33 sites have been positioned towards the right of the ordination towards 

the higher end of axis 1. However, there is an indication of a seasonal gradient of BB 

sites along axis 1 with samples from spring and early summer situated towards the 

left and samples from late summer and autumn closer to the right of axis 1. This 

gradient may be evidence for seasonal recovery of biofilm algae species assemblage 

structure (as the community composition more closely resembles that of the 

undisturbed T33 sites).   
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Fig 3.21. Detrended Correspondence Analysis (DCA) of sites (i.e. taxa assemblage 
found within each site) collected from the Black Burn and T33 in 2005. Axis units 
are standard deviations of species turnover. Ordination significant (Monte Carlo 
Test, P = 0.05).  Sites are defined though abbreviated month sampled in 2005 (i.e. 
BB = Black Burn – OP (Open) CF (Clear-felled) and SH (Shade). T33 1 and 2 
correspond with T33 CF1 andCF2, T33SH = Shaded). TWINSPAN groups one and 
two (Table 3-8) indicated through differential shading: grey = Group 2, Black = 
Group 1. Strength of sample associations with axis one and two signified by 
eigenvalues (0.9089 and 0.4237 respectively). 
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Table 3-8. TWINSPAN sample classification. Group one and two separation yielded 
an eigenvalue of 0.588. 

Group 1    Group 2 

APRT33_1 AUGT33SH JUNT33SH OCT T33SH APRBBOP 

APRT33_2 JULBBSH MAYT33_2 SEPBBCF JUNBBOP 

APRT33SH JULT33_1 MAYT33SH SEPBBOP JULBBOP 

AUGBBCF JULT33_2 OCTBBCF SEPBBSH APRBBCF 

AUGBBOP JULT33SH OCTBBOP SEPT33_1 JULBBCF 

AUGBBSH JUNBBCF OCTBBSH SEPT33_2 APRBBSH 

AUGT33_1 JUNT33_1 OCTT33_1 SEPT33SH MAYBBSH 

AUGT33_2 JUNT33_2 OCTT33_2  JUNBBSH 

 
 
A TWINSPAN of sample sites (Table 3-8) indicates that there was no specific 

separation of site type (e.g. SH, CF or OP), and that the specific riparian 

characteristics of sample sites do not significantly impact the specific assemblage 

structure of the biofilm algae. Yet, there is separation of spring BB samples (all sub-

sites) indicating variable conditions and associated assemblage structure away from 

the samples assemblage types during this period at the Black Burn sites. This shift in 

algae community composition may be an indication of significant alteration of site 

conditions at BB during spring 2005. 

 

Combining both DCA ordinations (Fig 3.20 and Fig 3.21) provides an indication of 

which taxa were found within various sites and seasons. For example, Sphaerotilus 

and the other members of group 1 are found to be associated with spring/summer 

biofilms from BB, as are the majority of group 2 taxa. The diverse assemblage of 

group 5 is almost exclusively associated with T33 biofilms, whereas group 4 can be 

categorized as common generalists as they are found throughout all of the sites and 

sample periods. Using the distribution of group 5 also provides some information on 

the seasonal distribution of species, as there is the indication of a taxa gradient 

occurring along axis 2 of the ordinations. Spring samples are associated with taxa 

such as Oocystis, Gomphonema, Draparnaldia and Ceratium, whereas, late summer 

assemblages are dominated by a slightly more diverse collection of taxa, including 

Frustula and Palmodictyon at the top of the ordination. 
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3.7 Discussion 
 
The results of this chapter do not support the original hypothesis that algal biomass 

would be primarily limited by light intensity. There were no site-specific significant 

differences in chlorophyll concentration between either of the undisturbed sites, BB 

2004 sites or T33, 2005 (Fig 3.12).  

 

This finding contradicts a number of studies viewing light intensity as the primary 

controlling factor of in-stream algal biomass (e.g. Mosisch et al., 2001). The lack of 

coupling between these factors may suggest that light levels (PAR) available at all 

sites (including BBSH and T33SH) were not reduced enough at any point to limit 

chlorophyll production. However, it is not possible to relate variation in biomass to 

variation in primary productivity. Specifically, findings in the literature suggest that 

the correlation between estimates of algal biomass (chlorophyll a concentration) and 

primary production is quite poor (Benke et al., 1984; Mosisch et al., 2001). 

Specifically, it is important to distinguish the difference between standing crop 

biomass (independent of turnover rate) and primary production, as algal biomass in 

streams is as much a function of flow regime (Rounick andGregory, 1981; Tett et al., 

1978) and invertebrate grazing (e.g. Steinman, 1996) as it is of growth rate. Thus 

other factors may influence standing crop more than light availability, reducing and 

visible coupling between these two factors. 

 

The site-specific differences in the response to the felling event are discussed further 

in Chapter 7. However, the response of the autotrophic component is severe and has 

important potential impacts on biofilm character and functioning. Under 

circumstances of disturbance, it appears that canopy cover and riparian 

characteristics become increasingly important in controlling biofilm character and 

specifically autotrophic contribution (as BBCF has the greatest autotrophic production 

of the BB2005 samples). However, weather this variation in autotrophic biomass is 

due to light regime or the release of allochthonous-based nutrients was not 

determined. However, it is worth noting that the level of light required by algae is 

not only controlled by riparian shading, but is also a function of the turbidity and 

colouration of the water itself. Repetitions of this study would be improved by 

including in-stream light measurements combined with calculations of light 

attenuation (Zeu) in order to determine whether light limitation fell below a critical 
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point following felling as a consequence of increased organic matter release and 

sedimentation, and not solely because of the corridor design. Corridor design and 

management must take into account both the optimum light requirements of the in-

stream biota and also water quality, especially light attenuation within the water 

column.  

 

However, there was significant stream-specific variation in algal biomass as shown in 

Fig 3.14, with T33 and BB2005 yielding significantly different algal C concentration. 

Thus T33 provided relatively favourable conditions for algal growth (compared to 

BB2005). Further, there were detrimental effects to algal standing crop. Conditions 

were less favourable for autotrophic growth. 

 

As determined by Romani and Sabater (2000), a biofilm complex with an algae 

component two to three times higher than bacterial biomass results in the highest 

level of enzymatic activity within the biofilm. They also showed that it is the 

autotrophic component of the biofilm which performs a top-down control on 

cellulosic and hemicellulosic degradation in stream biofilms, and thus controls the 

rate of processing of benthic organic matter within stream systems. Changes in the 

proportional contribution of carbon to chlorophyll a (C:Chl) has the potential to cause 

significant shifts in biofilm functioning. Although heterotrophic biomass was not 

determined, variation in C:Chl provides some indication of autotrophic carbon, and 

the results here, contrary to a large number of studies (e.g. Frost and Elser, 2002; 

Bowman et al., 2005), suggested that algal cells were a minor component of 

‘periphyton’ (though similar results have been found by others: e.g. Frost et al., 

2005; Hamilton et al., 2001).  

 

On average, only 8.5% of biofilm/periphyton carbon was estimated to be from algal 

cellular origin. However, this proportional contribution was based on a conversion 

factor from chlorophyll a to algal carbon of 60. This value has beeen shown to be 

variable with species and growth conditions. As indicated by Table 3-2 and Table 

3-4, the physical conditions of each site were variable (specifically, the level of 

radiation). Additionally, the species composition was variable with site and season 

(Fig 3.20 and Fig 3.21). Thus, variability in the conversion factor was explored in Fig 

3.15, with a range of CFs from 20 – 100 (following the range described by Margalef 

(1983). The range in conversion factors resulted in an up to ~25 mg range in algal 
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carbon within the tile biofilm biomass (from T33 data). This variability in the 

potential contribution of autotrophic biomass to the biofilm material has significant 

potential impacts to any conclusions aiming to determine the proportional 

contribution of autotrophic and heterotrophic material to the biofilm biomass. 

However, the potential from variation to the conversion factor to conclusions 

regarding the potential variability of functioning capacity of the biofilm (due to 

changes in the autotrophic proportion (following Romani and Sabater, 2000)), are 

based on the proportion of autotrophic to heterotrophic material. Calculations using 

alternative conversion factors on the proportion of autotrophic material within a 

biofilm can be found in Fig 3.22. 
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Fig 3.22. Variability in the proportion of autotrophic material to biofilm biomass 
(mean ± SE) with alterations to the Chlorophyll a conversion factor (20, 60 and 
100).  
 
Although variation in the conversion factor could potentially influence the 

proportional contribution of autotrophic material, Fig 3.22 indicates that the 

autotrophic proportion remains low through all sites. Maximum autotrophic 

contribution appears to come from BB2004 biofilms. Yet the proportion is still below 

15% for all sites. This contradicts findings suggesting that periphyton is primarily 

composed of algal cells (e.g. Frost and Elser, 2002; Bowman et al., 2005).  
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With reference to biofilm functioning, without determination of the heterotrophic 

component it is not possible to estimate the proportion of heterotrophic to 

autotrophic material. Much of the biofilm biomass is likely to be composed of 

allochthonous detrital material. In order to make estimates about the relative 

proportion of heterotrophic material, the allochthonous component must be isolated 

and removed from these calculations. Consequently, the following chapter (Chapter 

4) seeks to determine the source of carbon to biofilm more fully, by exploring 

methods of determining the allochthonous and autochthonous components of biofilm 

biomass. 

 
However, a large number of studies have used Chl a as a direct proxy for autotrophic 

biomass, even to the extent where no conversion factor is used at all (e.g. Carrick 

and Lowe, 2007). Alternatively a large number of studies utilise C:Chl ratios as a 

measure of algal cellular fraction (e.g. frost et al., 2005; Hamilton et al., 2005), thus 

the approach of using Chl as a proxy for algal biomass (either directly, or indirectly 

through conversion) appears to be widespread. As the conversion factor of 60 fell 

within the centre of the range suggested in literature, it was felt that it was possible 

to use this factor and still remain consistent with other studies. 

 

Therefore, application of this factor for further calculations of carbon partitioning, 

indicated that approximately 72% of biofilm samples from the Black Burn (both 2004 

and 2005) had less than 10% of C in the algal cellular fraction. However, there was 

evidence of substantial variation between the results from 2004 and 2005 as the 

majority of these low algal C estimates came from Black Burn sites in 2005 (Fig 

3.17), suggesting that the allochthonous contribution to biofilms in 2005 was 

substantial.  

 

The significant difference in the mean algal C contribution to total carbon in 2005 

(only 2.25%, compared to 23.73% in 2005), is evidence to suggest that the relative 

contribution to the biofilm of autotrophic and hetertrophic material is substantially 

altered. It is likely that the functioning capacity is also greatly altered, resulting in 

biofilms with low autotrophic production that are likely to have a far poorer bacterial 

population, enzyme activity level and associated ability to process the excess 

allochthonous carbon entering the stream environment (Romani and Sabater, 2000). 

However, without analysis of the relative heterotrophic component it is not possible 
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to make proper conclusions. As a biofilm will be made up of allochthonous and 

autochthonous material, one can assume that within the autochthonous component, 

biomass can be split into either autotrophic or heterotrophic material. Thus in order 

to determine the heterotrophic component, I examine approaches to determine the 

relative proportion all autochthonous material within Chapter 4. 

 
 
Microscopic analysis was useful in providing information on community composition. 

However the technique has serious limitations in determining proportional 

contribution from algal cells, as quantities are often overestimated due to cells being 

more conspicuous. Additionally, there is no way of determining the origin of 

unidentifiable detrital material.  

 

However microscopic analysis proved useful in determining the variability of 

community composition across sites and also with seasonal variation. DCA analysis of 

the species assemblage revealed information on species associations and community 

composition of sites (Fig 3.20), as well as temporal and spatial variation in the 

community composition of sites (Fig 3.21). However there was no distinction 

between site type and community composition, suggestion that the degree of canopy 

cover and corridor design does not significantly impact on the in-stream biofilm algae 

community composition. There was evidence of both seasonal separation (through 

gradients along axis 2), and site separation (with BB and T33 sites separated and 

constrained in their distribution along axis 1). 

 

Species indicators were also identified within the ordinations. Diatoms are a siliceous 

class of algae reputed for being very sensitive to chemical conditions. They usually 

account for the highest number of species (up to 80%) among the primary 

producers in aquatic systems (Pan et al., 1999). As a consequence, they have 

frequently been used as biological indicators of water quality (Kelly et al., 1998, 

Prygiel et al., 2002; Leira and Sabater, 2005). For example, Sabater, (2000) showed 

that diatom indices successfully indicated the effect of a catastrophic heavy metal 

spill on a river system, although, this approach failed to reliably detect the recovery. 

Diatom analysis has therefore been considered an important contribution to the 

European Water Framework Directive (European Commission, 2000), which aims to 

achieve a “good status” for all waters in the EU before 2015. Fig 3.20 indicates that 

few of the diatom species have been located towards the left hand side of the 
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ordination, close to the BB samples, indicating evidence for low water quality at BB 

sites. Further the sewage fungus, Sphaerotilus was closely correlated with BB 

samples following the felling event in winter 2004/5.   

 

Therefore, a combined approach of autotrophic determination and species 

composition analysis has indicated that the key findings of this chapter were: 

  

• Seasonal variation in biofilm biomass at BB for both 2004 and 2005, yet 

biomass settlement was delayed in 2005 until mid summer, but was 

significantly increased overall (particularly at the clearfelled site). This 

increase in biofilm biomass was not reflected in T33, suggesting a less 

seasonally affected site.  

• Net chlorophyll concentration was comparable between sites during 2004. 

Similarities in standing crop were consistent despite seasonal variation. 

However, site-specific variation occurred in 2005, following felling, where 

chlorophyll production was greatest at the site of closest proximity to the 

clearfelling, suggesting a positive correlation between disturbance and 

production. 

• Greatest net chlorophyll mass was found at T33 sites, indicating the most 

favourable growth conditions for benthic periphyton. 

• C:Chl concentrations were highest at BB2005 sites indicating low contribution 

from algal carbon, and high inputs from external carbon contributions, 

leading to the need to determine source of carbon not of autotrophic origin. 

• The potential variation in the conversion factor (CF) of chlorophyll a to algal 

carbon indicated the potential for a 25mg increase in algal biomass per tile in 

association with CF error. This was reflected in around a 15% variation in the 

proportion of autotrophic material to biofilm biomass. It was determined that 

without estimates of heterotrophic component biomass, it was not possible to 

determine if this variation would significantly influence biofilm functioning.  

• However, consideration of study size and length and the comparative 

similarities between streams, a conversion factor of 60 was deemed 

comparable to a number of literature observations, and the approach 

comparable to the many studies that use chlorophyll as a proxy for algal 

biomass. 
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• Consideration of all potential conversion factors still indicate that biofilms are 

not autotrophic dominated. This contradicts assumptions that periphyton is 

primarily algal in origin. 

• Microscope analysis was not comparable to estimations of algal content using 

chlorophyll. Results were consistent with literature suggesting visual 

estimations result in overestimations of algal proportion. 

• However, visual ID of algal species indicated variation in algal community 

composition with season and stream, but not within stream site-specific 

variation. There was also indication of a Diatom response to disturbance 

events. 
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4 Characterising energy sources within benthic 
biofilms of upland streams 

 
 
4.1 Abstract 
 

This chapter expands on work done in the previous chapter (Chapter 3), in order to 

determine:  

• temporal and spatial variation in the elemental composition, general 

characteristics and overall production of the baseline resource  

• variation in autochthonous production and diversity with changing corridor 

characteristics 

• potential physical factors which can affect biofilm elemental composition  

• the variability in the functioning capacity of the biofilm with changes in 

compositional characteristics. 

 

Isotopic and stoichiometric analyses of biofilm samples were used to define sources 

of carbon available at the base of the food chain. Using this elemental composition 

analysis, a two-source mixing model was applied to compositional data in order to 

define allochthonous and autochthonous contributions to biofilms. Analysis of 

intra/inter-site differences is used to consider temporal and spatial responses from 

biofilms growing under different riparian conditions. 

 

Variation in the molar C:N ratio is discussed with consideration of food quality 

variation. The results indicated that biofilms from BB 2005 were found to have both 

increased allochthonous proportion and likely low protein content and as such, lower 

nutritional value. 

 

There was no difference in the proportion of autochthonous production within the 

biofilms under different intra-site conditions despite variations in percent light and 

canopy cover. However, T33 analysis indicated a reduction in autochthonous 

contribution within the shaded site, suggesting light limitation to primary productivity 

(PP). Using the autotrophic proportional data analysed in chapter 3, I compare the 

results with the autochthonous content derived using the approach outlined within 

this chapter in order to determine the proportion of algal-derived material within the 

autochthonous proportion of the biofilm biomass. Although there is error surrounding 
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integration of the results from different approaches, autotrophic biomass was 

significantly (P value < 0.001) lower than the values derived for autochthonous 

contribution. Further, this allowed for estimates of the heterotrophic proportion of 

the biofilm material to be estimated. Results indicated that a high proportion of the 

autochthonous material from BB biofilms was of heterotrophic, and not of 

autotrophic origin. The relative proportion of heterotrophic to autotrophic and 

allochthonous to autochthonous varied with stream and season. However site-

specific variation was minimal suggesting that increasing ‘openness’ of corridor may 

not contribute to an enhanced autotrophic proportion of basal resources, nor 

substantially influence the biofilm resource characteristics. However, the high 

autochthonous contribution at all sites suggested significant ‘self sufficiency’ of the 

biofilm at all sites.  
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4.2 Introduction 
 

Food quality (edibility, digestibility, nutritional sufficiency) is determined to a large 

part by the relative contributions from allochthonous sources (terrestrial inputs) and 

autochthonous production in stream systems (Findlay et al., 2001; Sobczak et al., 

2005). The former is detrital material of low nutritive value, whereas the latter (algal 

fraction) is enriched in mineral nutrients and important biochemicals (fatty acids, 

amino acids, etc.) whose concentrations vary with algal species composition and 

nutritional status (Brett and Muller-Navarra, 1997; DeMott et al., 1998; Von Elert and 

Wolffrom, 2001). 

 

Isotope analysis offers an important contribution to our understanding of ecological 

systems and the approach is becoming increasingly popular in characterising 

ecological systems (e.g. Rundel et al., 1988; Zah et al., 2001; Melville and Connolly, 

2003).  

 

The elemental composition (C:N:P) of organic matter at the base of food webs 

potentially plays a key role in food-web dynamics in the benthos ( Frost et al., 2005; 

Bowman et al., 2005). Stoichiometry is the measure of that balance of the elemental 

composition and can be used to characterise organic matter according to the ratios 

of the three nutrients. 

 

Here, these approaches are taken to characterise base-line resources available within 

streams of afforested catchments through analysis of benthic biofilm growths in 

order to characterise basal resources available to higher consumer groups within the 

stream environment.  

 

4.3 Identification of carbon source in aquatic ecosystems  
 

4.3.1 Background 

 
Many elements exist whose atoms can have alternative atomic weights. The 

alternative atomic forms are termed isotopes. Stable isotopes are those that are not 

radioactive. For example, the two common isotopes of carbon are 12C (carbon with 

atomic weight 12, natural abundance 98.89%) and 13C (atomic weight 13, natural 
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abundance 1.11%). The relative abundance of these two isotopes is modified by 

physical processes, biochemical incorporation into living systems and inorganic 

chemical reactions. For example diffusion constraints, source effects, enzyme 

selectivity and/or interactions between compounds (Rundel et al., 1988) can modify 

composition and this is termed isotopic fractionation.  

 

Isotopic compositions are expressed as the ratio of the two species of the element 

(e.g. 13C to 12C) compared with that of a standard. This standard will have a known 

value relative to the international working standard. The differences between most 

samples and the standard are very small, thus the results are expressed as parts per 

thousand (per mil or ‰). Samples are expressed as follows (Craig, 1953) in 

Equation 2. 

 
Equation 2 
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δ is delta, i.e. the change in ratio from the standard value. Isotope ratios values are 

expressed as parts per thousand (‰).  

For δ13C, CO2 produced from fossil Belemnite CaCO3, from a strata of marine 

sediment called "The Peedee Formation", (VPDB standard Chicago, Belemntella 

americana, Peedee Formation, Cretaceous, South Carolina) is the international 

standard. For δ15N atmospheric air (AIR) is the standard (Ehleringer and Rundel 

1989). Repeat analysis of international and internal laboratory standards shows that 

δ13C and δ15N can usually be measured with precision and accuracy of ≤ ± 0.1‰ 

and ≤ ± 0.3‰ respectively.  

4.3.2 Carbon Isotopes 

 

The first data on carbon isotopes (Nier and Gulbransen, 1939) showed differences in 
13C/12C between limestone, atmospheric CO2, marine plants and terrestrial plants. 

Improvements in the techniques and the development of better equipment have 
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made the technique widespread and much more accessible. In the mid 1960s 

interest in isotopic fractionation was extended with the discovery that the C4 

metabolic pathway in plants produced a more isotopically enriched tissue signature (-

9 to –14‰) than tissue from C3 plants (-20 to -35‰) (Bender, 1968, 1971; Smith 

and Epstein 1971). Aquatic plant tissues have a larger carbon isotopic range 

(between –8 and -30‰), reflecting both the metabolic pathways of the plant, and 

the mechanism by which they gain carbon - atmospheric CO2 for emergent plants 

and dissolved carbon dioxide or bicarbonate for fully submerged species.  

 

δ13C of the dissolved inorganic carbon used by aquatic plants tends to be more 

depleted in 13C than atmospheric CO2. Thus, species of plants which are fully 

submerged and which through their roots, use one of the dissolved carbon species 

drawn from interstitial hydro-soil water (e.g. Littorella uniflora) are likely to be more 
13C depleted than plants which are emergent and have access to atmospheric CO2 

(e.g. Persicaria amphibia). Similar are aquatic plants use dissolved atmospheric CO2, 

drawn from the water for photosynthesis (e.g. algae, Elodea canadensis). Dissolved 

CO2 and bicarbonate can also both be used by certain species of submerged 

macrophytes (e.g. Potamogeton pusillus) depending on pH. Table 4-1 provides 

examples of dominant sources of carbon for different plant photosynthetic pathways.  

 
Table 4-1. Carbon form, sources and photosynthetic pathways for freshwater 
plants (species shown are examples) (- = no known examples). Potamogeton 
pusillus shifts carbon source depending on water pH. SAM = Submerged Aquatic 
Macrophyte photosynthesis (Spencer and Bowes, 1990) 
C Form Source SAM C4  C3 
HCO3

- 

(dissolved) 
open water Potamogeton 

pusillus 
- - 

CO2  
(gaseous) 

air - Echinochloa 
crus-galli, 
Paspalum 
repens  

Persicaria 
amphibia,  
Typha latifolia 

CO2 
(dissolved) 

open water Potamogeton 
pusillus; Elodea 
canadensis 

 Charophytes; 
Benthic algae 

CO2  
(dissolved) 

interstitial 
hydrosoil water 

- - Littorella uniflora 
 

4.3.3 Nitrogen Isotopes 
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The two stable isotopes of nitrogen (15N and 14N) had until the late 1960s received 

little attention within the biological world, but now measurements of the ratio of 

these isotopes is routine; as information can be provided on food web structure or N 

source. For example, it is possible to determine the source of soil nitrates from the 

isotopic composition of the soil water; i.e. soil-water isotopic signature would be 

different if the nitrates were of a natural origin rather than from nitrate based 

fertilisers (Kohl et al., 1971). 

 

Diet studies using stable isotopes have determined that within a food chain, 

enrichment of the isotopic signature occurs within the consumer. A consumer’s 

isotopic signature reflects that of its food, after biochemical fractionation with 

increasing trophic level is accommodated (Peterson and Fry, 1987). Generally, δ13C 

becomes 0.0–1.0‰ enriched between trophic levels, while δ15N show a greater 

enrichment of 3–5‰ (Peterson and Fry, 1987). This makes δ15N an important 

parameter for the assessment of trophic status. If food types differ in their 

signatures, the proportional contribution of each food type to the consumer’s diet 

can be inferred from its isotopic ratio, assuming that all food types are included in 

the analysis, all foods are assimilated equally and homogeneously, and trophic 

fractionation values are known (Phillips and Koch, 2002).   

 

The relative contribution of specific food sources can be assessed using a dual stable 

isotope method (e.g. δ13C and δ15N: Fry, 1991). Modelling food web structure with 

the use of stable isotopes has now become an important part of freshwater research 

(e.g. Fry and Sherr, 1984). Isotopic signatures of consumers generally reflect the 

organic matter assimilated (e.g. Zah et al., 2001). This method, works on the 

assumption that the food source is isotopically distinct. 

 

However, the majority of nitrogen cycling studies based on isotope analysis use 

enriched isotope tracers released within aquatic ecosystem studies in order to 

determine cycling of nitrogen within systems (e.g. Robinson, 2001). This makes 

references to comparative studies within the literature which utilize natural δ15N 

signatures difficult. However, deviation of δ15N signatures from 0‰ provides 

indications of nitrogen sources (0‰ being, by definition atmospheric nitrogen 

signature) and quantity and quality of N derived by fixation (via the nitrogenase 

enzyme). Nitrogen fixers commonly produce δ15N values around or slightly below 
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0 ‰ (Handley and Raven, 1992; Gu and Alexander, 1993; France et al., 1998). 

Thus, pure algal samples displaying nitrogen isotopic signatures below zero are 

obviously subject to alternative nitrogen species sources. 

4.3.4 Stoichiometry  

 

At the beginning of the 20th century, scientific interest was focussed on nitrogen 

cycling in the oceans and the role of marine organisms in this process. This work is 

now responsible for an understanding in the relationships between the chemistry of 

the environment and of the associated organisms. The Redfield ratio (after the 

marine chemist: Alfred Redfield) was defined after Redfield found that the bulk of 

marine particulate organic matter is extremely constrained in its elemental 

composition and that this composition was remarkably similar to the composition of 

the seawater (Redfield, 1934). This elemental composition is commonly taken to be 

106C: 16N: 1P (by atoms). The Redfield ratio is generally regarded as the average 

composition of marine phytoplankton. This equates to a C:N ratio of 106:16 (i.e. 

6.6). 

 

Variations in the Redfield ratio in algae are generally due to cell-wall composition of 

different taxa. For example, dinoflagellates with a cellulose wall generally have a 

molar C:N  of around 8-10, while cyanobacteria contain relatively large volumes of 

protein which means that their C: N  is closer to 5-6 (Sterner et al., 1993).  

 

The elemental composition of organic material at the base of the food-chain 

potentially plays a key role in determining community composition and food-web 

dynamics and food quality (e.g. Frost and Elser, 2002; Frost et al., 2005; Bowman et 

al., 2005; Sobczak et al., 2005). Here, the parameter of molar C:N is investigated 

alongside isotopic measures for inferring changes in the proportion of allochthonous 

and autochthonous derived material within the biofilm.   

 

High molar C:N signatures are a reflection of increased input of organic compounds 

low in nitrogen. Organic material of allochthonous origin contains a low proportion of 

nitrogen resulting in a relatively high molar C:N. For example Wetzel, (1975) reports 

allochthonous organic material C:N of about 50:1, while material produced 
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autochthonously had a much higher initial N concentration, resulting in a molar C:N 

of around 12:1.  

 
4.4 Aims 
 

The relative roles of various sources of organic matter as the basis of stream food 

webs are difficult to ascertain. Streams commonly receive substantial allochthonous 

inputs of detrital organic matter, but they also vary greatly in their primary 

productivity, as a consequence of differing habitat conditions (e.g. light intensity, 

Allan, 1995).  Therefore, this chapter aims to: 

 

• Demonstrate the utility of using stable isotope analysis (SIA) and 

stoichiometry measurements in order to determine the relative proportion of 

carbon derived from autochthonous and allochthonous production sources 

within stream biofilms.   

 

• Integrate analysis performed in the previous chapter (quantification of the 

autotrophic proportion) in order to ascertain estimates of the relative 

proportions of autotrophic to heterotrophic material.  

 

• Explore how biofilm character varies with habitat conditions and with 

references to previous studies, explore possible variability in biofilm 

functioning, and level of self-sufficiency. 

  
4.5 Methodology  
 
Biofilm samples were measured through the placement of artificial substrates 

(linoleum tiles, as illustrated in chapter 3, methods section) within two streams of 

the study; Black Burn (Cree) and T33 (Bladnoch). For a full description of sites and 

sub-sites (BBOP, BBCO, BBCF and BBSH and T33CF1, T33CF2 and T33SH) and 

artificial substrate settlement methodology within the study see Chapter 3. 

4.5.1 Stable Isotope Analysis (SIA) 

 
For each sample, approximately 2 mg (weighed out to 0.01mg precision) of the dried 

material was loaded into an 8x5mm tin capsule and crimped closed. Using 
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continuous-flow isotope-ratio mass-spectrometry (CF-IRMS), the crimped capsules 

were processed for measurement of the δ13C and δ15N, molar C:N and wt% C and 

wt% N by combusting in a Carlo Erba C/N/S analyser interfaced with a Finnigan 

Tracer Matt continuous flow isotope ratio mass spectrometer (CF-IRMS). These 

analyses were carried out by Dr. Susan Waldron at the Scottish Universities 

Environmental Research Centre (SUERC) in East Kilbride. 

4.5.2 Mixing Models 

 
The difference in composition of allochthonous and autochthonous energy sources 

can be used to quantify the relative contribution of those components to the biofilm 

mixture, using mixing models (e.g. Phillips 2001).  

 
As a biofilm is a complex mixture of detrital matter (of both allochthonous and 

autochthonous origins), algae, bacteria and fungi, the ideal analysis would be the 

application of a mixing model which addressed separation of all these sources and 

thus providing the greatest amount of information on biofilm content and 

functioning. However, this approach relies on delineation of each individual source 

component by identification of associated end-member signatures. Due to the nature 

of the biofilm signatures measured in this study (which will be addressed further, in 

latter sections), a more practical approach, using a two-source mixing model was 

applied (Equation 3). This model uses the major organic matter sources 

(allochthonous and autochthonous inputs) as the two end-members of the 

proportionate mix (biofilm).  

 
 Equation 3. Two-source mixing model 
 

2211 MMM TT δδδ +=  
 
Where;  
δ = isotopic/stoichiometric signature 
M = mass (the fractional contribution of each organic matter source to the biofilm) 
T = Total 
1 = Source 1 
2 = Source 2  
 

The equation product is a linear relationship between the two potential source 

components, indicating the potential mixes of sources along the gradient. However a 

perfect linear relationship is only observed when there is no variation in the two end-
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member source signatures or contamination from alternative source material 

signatures. If there is variation and/or contamination of source material, then this 

can potentially result in either a different gradient in the model observed, a curvature 

to the relationship, or outliers from the linear relationship as mix signatures deviate 

from the gradient defined by either of the end-member extremes (e.g. Fig 4.1). 

 

  
Fig 4.1. Sample δ15N and stoichiometric data (BB April, 2004). Circled data points 
cannot be formed from any possible combination of the two end-member source 
signatures. Therefore, there must be variation in source signatures (from a source 
with both high molar C:N and low δ15N properties). 
 
Variation and, specifically, multiple allochthonous and/or autochthonous sources 

produce difficulties in defining the characteristics of heterogeneous biofilm material. 

However, this chapter aims to explore the use of multiple measures (e.g. 13C, 15N 

and molar C:N), to define a proxy able to delineate carbon source without being 

influenced by specific changes in intra-source composition (e.g. within allochthonous 

classification there are potential species separations such as pine needles, moss, 

deciduous leaves etc, or different algal species within the autochthonous 

classification).  

4.5.3 Allochthonous detritus estimations made by microscopic visual inspections 

See ‘Tile composition analysis (species / detrital measurements)’ section: Chapter 

Three, Methods.  

 
4.6 Results  

4.6.1 Temporal variation in elemental composition  
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Biofilm δ13C signatures ranged from –25.1‰ to –32.6‰, whilst δ15N ranged from  

-2.6‰ to 7.1‰. Molar C:N values  also showed a large signature range of 6.4 to 

34.1. 

 
Black Burn (BB) 
 
As discussed in the previous chapter and repeated here in Fig 4.2, there were 

significant increases in biomass yielded from the artificial substrates (dry weight 

biomass (g)) through the summer period (May to Aug) of 2004, compared with 

winter values (Dec to April 2004) of that same year (ANOVA, P < 0.001) of biofilm 

material from the Black Burn (BB). However, in addition, there was significant 

temporal variation in mean monthly BB biofilm biomass production in 2005 (ANOVA, 

P <0.001) and this biomass production was significantly (P < 0.001) greater than 

that of 2004. 
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Fig 4.2. Black Burn temporal variation in years one and two (2004 – 2005) of dry-
weight biomass per m2 of tiles (mean ± standard error). 
 
Such variation provoked questions regarding the possible comparable variability of 

the other measured characteristics of the biofilm material: the proportional 

contribution of allochthonous and autochthonous material over seasonal and 

temporal variation. Fig 4.4 to Fig 4.8 illustrates the temporal variability in the biofilm 

mean isotopic and stoichiometric signatures at the Black Burn for the study period 

(2003 – 2005). This signature variation is explored in order to define the elemental 

composition of the biofilm over spatial and temporal scales. Similarly, this variability 

is also compared with signatures from T33 biofilms (Fig 4.9 - Fig 4.11), which were 

subject to less dry-weight biomass seasonal variation within 2005 (Fig 4.3). 



Chapter 4. Biofilm Characterisation 2 

 - 113 -  

 

0

20000

40000

60000

80000

100000

120000

140000

Mar-05 Apr-05 May-05 Jun-05 Jul-05 Aug-05 Sep-05
Date

Bi
of

ilm
 D

ry
-w

ei
gh

t (
m

g/
m

2 ) T33CF1
T33CF2
T33SH

 
Fig 4.3. T33 biofilm dry-weight biomass (mg/m2) sampled in 2005 (mean ± 
standard error) (n = 4 samples per site, 12 per stream/ month (72 in total)). 
 
 
BB 2004 
 
A Tukey test (Fig 4.4) revealed that the δ15N values of 2003/2004 winter samples 

were generally more enriched than the summer samples. The data represents means 

(± 95% confidence interval) for the Black Burn, with all data from sub-sites pooled, 

and thus, only indicating differences in temporal variation. There was no significant 

difference (ANOVA with April omitted: p = 0.109) in the 15N values of summer 

biofilms (March - August). Monthly values during summer overlapped considerably, 

with the exception of April which was significantly more depleted (P = 0.001) than 

the other summer months. 



Chapter 4. Biofilm Characterisation 2 

 - 114 -  

15
N 

(‰
)

AUG 04JUN 04MAY 04APR 04MAR 04FEB 04DEC 03

6

5

4

3

2

1

0

a

ab

cd

d

bc

ac

bc

 
Fig 4.4. Temporal variation of δ15N (mean ± 95% C.I) at BB within sampling 
season of 2003/2004. Significant differences between sampling trips defined 
through Tukey test (95% confidence). Group separations defined through 
differing letterings (a, b, c and d). 
 
Analysis of δ13C 2004 data reveals that winter biofilm samples from 2003/2004 were 

also generally more enriched compared to those of summer 2004 (Fig 4.5). However, 

samples from May 2004 are the exception, with enriched samples comparable with 

winter biofilms. Additionally, April samples again, had the most depleted 13C 

signatures (Fig 4.5).  
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Fig 4.5. Temporal variation of δ13C (mean ± 95% C.I) of BB biofilms within 
sampling season of 2003/2004. Significant differences between sampling trips 
defined through Tukey test (95% confidence). Group separations defined through 
differing letterings (a, b, c and d). 
 
There was no such significant seasonal variation of molar C:N signatures within the 

first season of sampling (2003-2004); ANOVA: p = 0.948.  

 

Clearly, there is significant temporal variability in the isotopic parameters measured 

in year one (2003/2004). There is a suggestion of synchronous temporal changes in 

the two isotopic measures (δ15N and δ13C) although performing a regression on the 

linear relationship between the two measures does not yield a significant correlation 

(n = 57, r = 0.192, (Spearman Rank Correlation r = 0.085), P > 0.05). However, 

there was a visual suggestion of synchronous changes between isotopic signatures 

during this period. This indicates the possibility that the same causative vector is 

likely to be affecting both measures. During the same period, the values obtained for 

the stoichiometric measure (molar C:N) show very little temporal variation. 

 

4.6.2 2005 Black Burn  

 
Variation in BB signatures within 2005 are of particular interest as not only is there 

the potential for seasonally related changes, but also Black Burn was subject to 
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forest clearance during the winter of 2004/2005 of the riparian conifer plantation 

immediately adjacent to the uppermost site of the BB site chain (BBCF/CO).  

 

A Tukey test of 2005 BB δ15N revealed considerable temporal variation (ANOVA: P 

<0.001) (Fig 4.6). The variation in signatures in 2005 was of a much greater extent, 

than that of 2004. However, clear spring and summer seasonal trends are not as 

apparent as within the 2004 BB data. Additionally, as illustrated in Fig 4.6 and Fig 

4.7, there was no indication of any relationship (such as synchronicity) in temporal 

trends of mean signatures of the two isotopic signatures measured (Correlation 

coefficient of 15N and 13C, r2 = 0.0008, r = 0.028, P >0.05).  
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Fig 4.6. Temporal variation of δ15N (mean ± 95% C.I) at BB within sampling 
season of 2005. Significant differences between sampling trips defined through 
Tukey test (95% confidence). Group separations defined through differing 
letterings (a, b, c and d).  
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Fig 4.7. Temporal variation of δ13C (mean ± 95% C.I) at BB within sampling 
season of 2005. Significant differences between sampling trips defined through 
Tukey test (95% confidence). Group separations defined through differing 
letterings (a, b andc). 
 
Variation of δ13C occurred with depletion of signatures during mid-summer (June - 

September): from a mean of -28.4‰ in spring to –28.8‰ in mid summer. However 

compared with the variability in signatures which occurred within 2004 (Fig 4.5), 

where there was up to a 3‰ shift in mean signatures within sampling months. Such 

variations, although statistically significant, do not vary enough to infer changes to 

biofilm composition. 

 

Unlike in 2004, there was also significant variation in the molar C:N signatures of 

2005 samples as June biofilm samples had significantly greater C:N ratio  (P = 

0.001) (Fig 4.8). 
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Fig 4.8. Temporal variation of molar C:N (mean ± 95% C.I) at BB within sampling 
season of 2005. Significant differences between sampling trips defined through 
Tukey test (95% confidence). Group separations defined through differing 
letterings (a and b). 
 
 

4.6.3 2005 T33 

 
Consideration of 2005 T33 samples (Fig 4.9, Fig 4.10 and Fig 4.11) revealed 

significant temporal differences among sample dates for all three measured 

parameters (δ15N, δ13C and molar C:N) (all parameters, P < 0.001).  There is a 

strong negative correlation (r = -0.648, r2 = -0.42, n = 63) between the temporal 

patterns of δ15N and molar C:N. By applying knowledge of allochthonous organic 

matter stoichiometric signatures outlined in the introduction (specifically that 

allochthonous material reflects a high C:N, autochthonous, a low C:N), it is possible 

to discern that the increase in molar C:N of the biofilms during mid summer, reflects 

an increase in allochthonous organic material. Further, that through inference of the 

negative correlation between δ15N and molar C:N, allochthonous organic matter also 

appears to have a more depleted δ15N signature. 
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Fig 4.9. Temporal variation of δ15N (mean ± 95% C.I) at T33 within sampling 
season of 2005. Significant differences between sampling trips defined through 
Tukey test (95% confidence). Group separations defined through differing 
letterings (a, b, c, d and e). 
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Fig 4.10. Temporal variation of molar C:N (mean ± 95% C.I) at T33 within 
sampling season of 2005. Significant differences between sampling trips defined 
through Tukey test (95% confidence). Group separations defined through 
differing letterings (a, b, c and d ).  
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Although biofilm signatures were significantly more δ13C enriched in March 2005, T33 

biofilms δ13C mean signatures remained relatively consistent over the course of the 

2005 season; showing reduced temporal variability compared to the other elemental 

measures considered.  

 
 

13
C 

(‰
)

Oct 05Sep 05July 05June 05May 05Mar 05

-26

-27

-28

-29

-30

a

b

ab

b
b

b

 
Fig 4.11. Temporal variation of δ13C (mean ± 95% C.I) at T33 within sampling 
season of 2005. Significant differences between sampling trips defined through 
Tukey test (95% confidence). Group separations defined through differing 
letterings (a and b).  
 

4.6.4 Spatial Variation in elemental composition 

 
This study considered both inter and intra-site spatial variation of the biofilm data 

through a sampling programme that sought to discern variation both between the 

two sample streams as a whole (BB and T33), but also the variation among sites of a 

single stream (BBCF/CO, BBOP and BBSH as well as T33CF1, T33CF2 and T33SH). 

 

These sample sites represent variable riparian conditions which may contribute to 

changing delivery and production of alternative organic matter resources. This aspect 

of the experimental design is discussed fully within chapter three (methods section). 

For ease, the physical variables of BB and T33 are repeated here in Table 4-2 and 

Table 4-3 respectively.  
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Table 4-2. Mean values for physical parameters measured for the three Black Burn 
sites over sampling periods in 2004 and 2005 (± standard error) BBCOR and BBCF 
are the same location but physical changes to the characteristics of the sites 
occurred post felling activities in 2004/2005 winter. 

Physical Parameters BBCOR (2004) BBMCF (2005) BBMOP BBMSH 

Light (%) 56.50 +/- 3.54 90.18 +/- 6.41 82.61 +/- 2.06 8.83 +/- 2.80 

Stream wet width (m) 1.05 +/- 0.07 1.40 +/- 0.19 1.71 +/- 0.08 2.20 +/- 0.15 

Stream depth (cm) 24.50 +/- 6.36 22.00 +/- 6.91 17.42 +/- 1.19 16.42 +/- 1.02 

Bedrock (%) 20.00 +/-7.01 21.33 +/- 5.67 25.87 +/- 3.17 10.50 +/- 2.31 

Boulders/cobbles (%) 45.00 +/- 7.01 36.67 +/- 12.02 42.50 +/- 4.79 35.00 +/- 2.89 

Pebbles (%) 30.00 +/- 14.14 16.67 +/- 8.82 24.25 +/- 9.44 32.50 +/- 4.79 

Sand (%) 5.00 +/- 0.00 3.33 +/- 3.33 3.75 +/- 2.39 12.50 +/- 6.29 

Silt/Clay (%) 0.00 +/- 0.00 23.33 +/- 14.53 7.50 +/- 7.50 10.00 +/- 7.07 

Riparian tree diversity 1.00 +/- 0.00 1.50 +/- 0.29 1.50 +/- 0.29 1.50 +/- 0.29 

Overhanging vegetation (%) 20.00 +/- 0.00 20.00 +/- 0.00 27.75 +/- 9.22 2.75 +/- 2.43 

Corridor width (m) 32.5 +/- 3.54 90.33 +/- 14.95 30.48 +/- 1.45 8.85 +/- 0.28 

Corridor tree height (m) 22.50 +/- 3.54 2.56 +/- 0.59 21.67 +/- 2.04 19.17 +/- 1.44 

Site altitude (m) 220.00 +/- 0.00 220.00 +/- 0.00 200.00 +/- 0.00 210.00 +/- 0.00 

 
Table 4-3. Mean measurements for physical parameters measured for the three 
T33 sites over sampling periods in 2005 (± standard error). 

Physical Parameters T33CF1 T33CF2 T33SH 

Light (%) 38.18 +/- 9.49 61.78 +/- 2.22 41.95 +/- 10.12 

Stream wet width (m) 0.94 +/- 0.14 1.12 +/- 0.28 1.10 +/- 0.24 

Stream depth (cm) 3.33 +/- 0.38 5.78 +/- 0.40 10.89 +/- 2.26 

Bedrock (%) 0.00 +/- 0.00 0.00 +/- 0.00 10.00 +/- 3.33 

Boulders/cobbles (%) 5.00 +/- 2.89 13.33 +/- 8.33 30.00 +/- 11.28 

Pebbles (%) 83.33 +/- 3.33 46.67 +/- 11.67 43.33 +/- 12.02 

Sand (%) 5.00 +/- 2.89 10.00 +/- 5.77 10.00 +/- 5.77 

Silt/Clay (%) 6.67 +/- 3.33 31.67 +/- 9.28 6.67 +/- 3.33 

Riparian tree diversity 0.67 +/- 0.67 1.33 +/- 0.33 1.00 +/- 0.00 

Overhanging vegetation (%) 44.00 +/- 21.20 24.00 +/- 11.37 2.00 +/- 1.53 

Corridor width (m) 88.89 +/- 5.88 66.67 +/- 10.18 46.56 +/- 15.91 

Corridor tree height (m) 1.56 +/- 0.78 22.44 +/- 3.20 30.00 +/- 0.96 

Site altitude (m) 70.00 +/- 0.00 69.00 +/- 0.00 65.00 +/- 0.00 

 

Fig 4.12 displays the overall differences between the biofilm signatures of the two 

streams. The initial observations are that T33 had more constrained nitrogen isotopic 

and stoichiometric signatures, whereas the two years of study of the Black Burn, 

yielded a much wider range in signatures. However, applying an ANOVA to the data 

sets revealed no significant difference between sample signatures of the two streams 

for either δ15N (P = 0.704) or the δ13C measures (P = 0.166) (Fig 4.13). But Black 

Burn biofilm samples did have significantly more enriched molar C:N signatures than 

T33 (P = 0.003). 
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Fig 4.12. Spatial variation of  δ15N and molar C:N signatures of 2004 and 2004 BB 
(in black) and T33 (in grey) biofilms. April 2004 BB samples removed due to 
significantly depleted δ15N signature. 
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Fig 4.13. Spatial variation of δ13C with δ15N signatures of 2004 and 2004 BB (in 
black) and T33 (in grey) biofilms. April 2004 BB samples removed due to 
significantly depleted δ15N signature.  
 
Intra site differences were also explored. An ANOVA determined no significant 

difference in δ15N between all BB and T33 sites pooled for both 2004 and 2005 

sampling seasons. However there was spatial intra-site variation of the δ13C 

signatures (ANOVA, P <0.001) (Fig 4.14). 
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Fig 4.14. Spatial variation of mean δ13C signatures of pooled 2004 and 2005 from 
BB and 2005 only from T33 sites. Data illustrates mean (± 95% C.I). Significant 
differences between sites defined through Tukey test (95% confidence). Group 
separations defined through differing letterings (a, band c). 
 
Additionally, consideration of intra-site variation of molar C:N indicates that there 

were  significant differences amongst both T33 and BB sites (P = 0.012). BBSH was 

significantly more C:N enriched compared with BBCO 2004, T33CF1 and T33CF2. 

Generally, mean data indicated that BB sites tended to be more molar C:N enriched 

and in addition, there appeared to be an increase in molar C:N with reduced light 

levels (open to corridor/CF to shade) (Fig 4.15).  
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Fig 4.15. Spatial variation of mean molar C:N signatures of pooled 2004 and 2004 
from BB and T33 sites (2005 only). Data illustrates mean (± 95% C.I). Significant 
difference in sites (P = 0.012). Differences between groups, defined through 
Tukey test (95% confidence) and indicated through differing lettering (a and b). 
 

4.6.5 Effects of flow on δ13C signatures 

 
Although the majority of studies have used carbon isotopes for the delineation of 

organic carbon sources within the resource base of aquatic food webs, both the high 

spatial and temporal variation often associated with the δ13C signatures of 

autochthonous organic matter (Rosenfield and Roff, 1992, Zah et al., 2001; 

Winterbourn et al., 1986; Boon and Bunn, 1994), has limited the applicability of this 

approach to a number of studies.  Within the present study, site or date variation is 

explored in relation to flow to determine if the spate nature of the system can be 

related to δ13C signature. 

 

A twofold fractionation process with both the solution of gaseous CO2 in the water 

and discrimination by carbon fixation (mediated by the RubisCo enzyme) (Hecky and 

Hesslein, 1995) results in the organic carbon derived by aquatic plants having a 

theoretical isotopic signature close to -37‰ (if a full equilibrium between water and 

atmospheric CO2 exists and CO2, as a source of carbon is not limited). However, even 

in fast flowing systems, equilibrium between atmospheric and isotopic carbon is 
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rarely achieved (Raven et al., 1982, Hecky and Hesslein, 1995). In addition, when 

CO2 does become a limiting factor, some aquatic primary producers can actively 

uptake HCO3
- (a dissolved inorganic carbon species with a higher δ13C signature than 

that of dissolved CO2: Mook et al., 1974).  

 

In a study by Singer et al., (2005), small-scale variation in carbon isotopic signatures 

was explored and, specifically, the source and availability of carbon to autochthonous 

periphyton/biofilms during variations in flow conditions investigated. This study 

concentrated on the fact that mass transfer across a diffuse aquatic boundary is 

affected by flow velocity and, as a consequence, water velocity has the potential to 

control both CO2 supply and isotopic discrimination by primary producers (Keely and 

Sandquist, 1992). In addition, this effect can be more pronounced in situations of 

high productivity and carbon demand (and thus carbon limitation) (Findlay et al., 

1999).  

 

Here, samples were analysed along-side site discharge using back calculations from 

data collected by downstream SEPA gauging stations. This was done in order to 

determine whether variation in δ13C measurements was correlated with the mean 

flow conditions occurring within each of the biofilm artificial substrate settlement 

periods. The mean daily flow in the ungauged sub-catchments (BB and T33) was 

estimated from mean daily gauged flow at Minnoch Bridge (25 (NX) 352 746 for BB) 

and at Low Malzie (25 (NX) 382 545) for T33, weighted by the topographic area 

contributing to flow using Equation 4, following Wade et al. (1999):  

 

Equation 4 
 

)/( AgAuQgQu =    

 

Where Q is mean daily flow (m3 s-1), A is the topographic area contributing to flow 

[m2] and the subscripts u and g refer to ungauged and gauged catchments, 

respectively.   

 

The mean calculated discharge rates of the Black Burn and T33 were correlated with 

the associated mean δ13C measurements for the settlement period, which produced a 

positive linear relationship. However, neither were found to be significant (BB 

Correlation coefficient of r = 0.301, P = 0.369, and T33, r = 0.372, P = 0.467) (see 
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appendix: Fig 10.2 and Fig 10.3). My results were not found to be consistent with 

those of Singer et al. (2005) in respect to the overall relationship between δ13C 

signatures and velocity. Singer et al. (2005) describe an inverse relationship of δ13C 

with flow velocity (mean from 35 days settlement). Here there is no relationship at 

all, which may be due to the comparatively small size of the data set. For this reason 

the relationship between δ13C and flow will no longer be considered. 

 
However, as it is not possible to assign correlation of elemental signature variation to 

flow patterns, I suggest that the majority of the isotopic and stoichiometric signature 

variation (over both spatial and temporal scales) is due primarily to compositional 

changes of the biofilm biomass and specifically variation in the proportional 

contribution of material which have differing C and N sequestering and/or 

fractionation pathways. I have used this rationale to explore approaches designed to 

delineate biofilm composition, and provide information on basal organic resource 

composition and source in order to provide information contributing to the 

understanding of biofilm functioning and characteristics. 

4.6.6 Approach 

 

Using this rationale, the chapter now explores the variability of the biofilm 

composition and seeks to determine whether the variation in the isotope and/or 

stoichiometric signatures are a response to either:  

 

1. Variation in the proportional contribution of organic material from either 

external and internal sources (i.e. allochthonous or autochthonous) or, 

 

2. Changing signatures of the autochthonous material (for example as a 

consequence of changing autotrophic contribution). 

 

These options are explored first by combining isotopic measures with stoichiometry 

to determine a measure of autochthonous material and second, by combining 

elemental composition with chlorophyll a measures utilised in the previous chapter to 

compare with alternative approaches of quantifying autotrophic material. 
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4.7 1. Development of a mixing model to define 
allochthonous and autochthonous contribution using 
isotopic and stoichiometric measures. 

 

Linear regression relationships between molar C:N and δ13C (Fig 4.16) or δ15N (Fig 

4.17) can be used to indicate the extent to which the isotopic signatures deviate 

from the C:N ratio which is known to reflect, in a broad sense, the relative 

contribution of allochthonous and autochthonous organic matter. Combining the two 

measures may provide information on biofilm composition and characteristics which 

are not revealed using stoichiometric measures alone. Thus, I assess the potential 

use of both δ13C and δ15N as potential secondary measures of biofilm composition 

and characteristics. 
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Fig 4.16.  BB and T33 2003 – 2005 δ13C and molar C:N showing no relationship (r2 

= 0.001). Figure also illustrates how constrained the δ13C signatures are 
compared with that of molar C:N. 

 
There is no relationship between molar C:N and δ13C (Fig 4.16). I hypothesise that 

the likely cause of this inconsistency between these two measures is related to 

changing isotopic signature of the autochthonous component (e.g. caused by algal 

species change). However, the significance of the variability of the autochthonous 

signature contribution is thus dependent on the relative proportional contribution of 

autochthonous material to the biofilm biomass. If a biofilm is primarily composed of 

allochthonous material, then any extent of change to algal species composition and 
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associated isotopic signature are unlikely to significantly impact on overall biofilm 

signature dominated by allochthonous organic matter.  

 

Further, apparent from Fig 4.16, the carbon isotopic signature of the biofilm is very 

similar in nature to that of the generally regarded common terrestrial signature; ~ -

27‰ (e.g. Fry and Sherr, 1984). Specifically, autochthonous material has a large 

carbon isotopic range (between –8 and -30‰); reflecting both the metabolic 

pathways of the plant, the mechanism by which they gain carbon, and any 

fractionation of autotrophic material by heterotrophic primary consumers. However, 

the majority of biofilm δ13C signatures here happen to be close to the top of the 

range described above (–27 to -28‰). Unfortunately, the upper limits of the 

autochthonous δ13C signature range, overlaps with the values described in the 

literature for allochthonous material. The fact that the δ13C is so closely reflecting -

27‰ significantly impedes the potential of using δ13C for defining differences in 

allochthonous and autochthonous proportional organic material contribution, as most 

signatures are indistinguishable, and would be masked by an allochthonous 

signature. 

y = 0.0024x2 - 0.2443x + 6.0719
R2 = 0.3475, n = 208, P <0.001 
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Fig 4.17.  Negative linear relationship between δ15N and molar C:N (P < 0.001) for 
both BB and T33 data over both years of study (2003 – 2005), minus April 2004 
data (as explained in following text). 
 

Fig 4.17 shows a significant (r = 0.6, P < 0.001) negative linear relationship between 

δ15N and molar C:N. From the r2 value, approximately 35% of the variation in the 

data is explained by this linear regression. Due to this significant correlation between 

the two measures of δ15N and molar C:N, it was felt that the δ15N could also be 
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explored in relation to discerning autochthonous contribution. From the relationship 

(Fig 4.17), it appears that autochthonous biofilm production can also be 

characterised by the higher δ15N signatures. Similarly, low δ15N signatures can be 

related to an increasingly allochthonous-derived biofilm.  

 

The potential difficulties in differentiating and distinguishing the δ13C signatures of 

algae (which are often subject to species and growth pattern changes) from 

allochthonous material has been well documented (Rosenfeld and Roff, 1992, Zah et 

al., 2001; Winterbourn et al., 1986; Boon and Bunn, 1994). Because carbon isotopic 

signatures from the biofilms displayed similar values and were generally 

indistinguishable from potential allochthonous sources (Fig 4.18  Table 4-4), it was 

decided to use alternative attributes to delineate the two potential sources of carbon 

to the biofilm material. 
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Fig 4.18. Comparisons of δ13C and δ15N signatures of the biofilms with the 
potential source materials which will be used to construct the mixing model. The 
figure indicates that allochthonous source δ13C signatures are often 
indistinguishable from the bulk of biofilm material. This makes this measure 
impossible for application to a model which is dependent on calculations based on 
the proportional contribution of identifiable distinguishable end-members. 
 

Thus δ13C will be rejected in this respect, and both δ15N and molar C:N are explored 

in the production of a two-source mixing model to derive the autochthonous content 

of the biofilm material.  

4.7.1 Designing the mixing model 
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Biofilm signatures were significantly different in both δ15N and molar C:N values 

compared with potential allochthonous end-member source materials (deciduous and 

coniferous tree species) as source values were far out with the 95% confidence limits 

of the biofilm sample signature means. This confirms the rationale for an approach 

based on using δ15N and molar C: N as the measures of interest. The mixing model 

was produced using either molar C:N or δ15N following Equation 3. The proportional 

contribution of each source is determined through equating the source of the mix 

(biofilm) to the source of the associated two end-member values. 

 

Five potential non-algal source materials were analysed (Table 4-4). The particular 

materials were chosen as potential sources due to their abundance and proximity to 

the river course.  

 
Table 4-4. Mean isotopic and stoichiometric signatures for the biofilm and 
potential source materials. 
Material Type Taxa ∂13C ∂15N Molar C:N wt% N wt% C 
Potential source 
material             

Amphibious moss Eurhynchium n 1 -26.8 3.34 19.4 1.5 24.3 

Amphibious moss Eurhynchium n 2 -26.63 3.54 34.4 1.4 39.8 

Aquatic moss Fontinalis -42.37 2.47 25.7 2 43.8 

Deciduous tree alder -27.93 0.57 48.3 1.3 52.3 

Coniferous tree spruce -28.95 -2.02 44.1 1.4 51.3 

Biofilm Material             

Biofilm (all)  -28.67 ± 0.08 2.94 ± 0.01 14.87 ± 0.38 2.3 ± 0.09 25.92 ± 0.61

Biofilm (Black Burn)  -28.71 ± 0.1 3.01 ± 0.15 15.5 ± 0.53 2.7 ± 0.12 30.8 ± 0.47 

Biofilm (T33)   -28.58 ± 0.14 2.81 ± 0.11 13.73 ± 0.41 1.57 ± 0.09 16.9 ± 0.61 

 
 
Fig 4.19 indicates that using either molar C:N or δ15N creates separation of 

allochthonous end-member source signatures from the biofilm signatures.  
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Fig 4.19. Biofilm signatures and potential source materials showing separabillity 
of the allochthonous signatures in terms of both molar C:N and δ15N signatures. 
 
Identifying the appropriate end-member signatures has resulted in various 

difficulties. The range of allochthonous material available for use as the end-member 

signature means that I have chosen to combine the two commonest riparian tree 

species (Alder and Spruce - Table 4-4). However when the autochthonous end-

member is considered, there is not a ‘pure’ autochthonous signature available, 

through in-situ sampling methods, to be utilised as the end-member source 

signature. Instead, the most enriched δ15N signature was utilised for the 15N model, 

and the most depleted molar C:N signature was used as a proxy to an 

autochthonous signature. 

 

4.7.2 April 2004 BB data 

 

The biofilms growths in April 2004 had a mean δ15N signature significantly different 

(P < 0.001), and significantly depleted (mean = 1.06, max = 3.18 and min = -2.65), 

compared with the rest of the 2004 data set.  By including this depleted data set, the 

autochthonous end-member would be reduced by approximately 3‰ (Table 4-5). As 

April 2004 biofilm samples were both depleted in δ15N and molar C:N, they did not 

fall within the normal negative linear relationship which this model is based (Fig 

4.20). Therefore, it was decided to remove these outliers from the model as it was 

not felt that they accurately represented the remainder of the biofilm signatures and 

thus, was inappropriate sample signatures to be utilized as the model end-member.  

Such a significant depletion of the δ15N signature would result in significant increase 

in the estimations of the overall autochthonous contribution of the biofilm.  
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Although algal quantitative identification was restricted to 2005 sampling 

methodology, presence / absence observations were made of samples during 2004. 

This data has not been included in the study as it as difficult to ascertain good 

estimates of community structure, or make comparisons between year one and year 

two data, yet consideration of the 2004 species assemblages revealed the 

abundance of dual colonial brown cellular structures, thought to be Cyanobacteria, 

Nostoc spp. These growths were only present in the majority of BB samples during 

April 2004. This unusual assemblage structure provides further support for the 

removal of the data from further analyses. 

 

Table 4-5.  δ15N biofilm signatures, maximum and minimum values used as 
potential end-member with addition or removal of April 2004 data. 

δ15N end-member contributions 

 Max 
(‰) Min (‰) 

All data 7.06 -2.64 
Minus April 04' 7.06 -0.27 
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Fig 4.20. 2004 BB biofilm data, highlighting the depleted signatures attained from 
the April 2004 data. April 2004 samples were significantly more depleted in both δ 

δ15N (ANOVA, P <0.001) and molar C:N (ANOVA, P = 0.003). 

 

 
 
 



Chapter 4. Biofilm Characterisation 2 

 - 133 -  

4.8 Mixing model results 
 

4.8.1 Autochthonous component of Black Burn biofilms 

 
The model derived from δ15N signatures (Fig 4.21), combines an allochthonous end-

member (mean of the spruce and alder signatures) of -0.72‰ and an 

autochthonous end member (the highest δ15N signature) of 7.14‰.  
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Fig 4.21. Biofilm mixing model of Black Burn sites, based on δ15N signatures in 
order to determine proportional contributions of autochthonous inputs 
 
 
There was little intra-site spatial variation between the autochthonous content of the 

biofilms of different BB sites, for either years (2004, P = 0.974, 2005 P = 0.158 and 

pooled P = 0.289)), yet the variation over a temporal scale is much greater. Biofilms 

in 2004 show a decline in autochthonous content during the summer of 2004. 

Biofilms are significantly lower in autochthonous proportional content from March 

2004 onwards (with the exception of June 2004) (Fig 4.22). 
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Fig 4.22. Mean (± 95% C.I) autochthonous contribution of pooled biofilm data. 
2004 biofilm model results derived from calculations based on δ15N. Significant 
differences between sample visits derived through arcsine transformation of 
proportional data, and application of a Tukey test (95% confidence). Different 
groups indicated through differing letterings (a and b). 
 
However, autochthonous contribution varied to its greatest extent in the 2nd year of 

study (2005); with contributions to the biofilm ranging between a maximum mean of 

81% autochthonous content in BBCF, September 2005, to a minimum of 10.5% 

(BBCF) in July of that same year with the most depleted mean signatures collected 

during June 2005. 
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Fig 4.23. Mean (± 95% C.I) autochthonous contribution of pooled biofilm data. 
2005 biofilm model results derived from calculations based on δ15N. Significant 
differences between sample visits derived through arcsine transformation of 
proportional data and application of a Tukey test (95% confidence). Different 
groups indicated through differing letterings (a, b, c, d and e). 
 
 
Using this measure (δ15N) as a proxy for autochthonous contribution produces a 

relatively low estimation of the autochthonous contribution to biofilm material; with a 

2004 mean of 50.1% (± 15.69 St. Dev.) and 2005 mean of 46.7% (± 24.05 St. 

Dev.). There was no significant difference in overall autochthonous proportional 

contribution between the two years of study (P = 0.328), despite significant 

temporal variation in autochthonous production throughout each sampling season. 

 
The alternative model based on molar C:N signatures again utilises an allochthonous 

end-member sourced from spruce and alder leaves to produce a molar C:N end-

member of 46.2 and an autochthonous end-member  from lowest of the biofilm 

molar C:N signatures (6.4). These values were similar to those in the literature as 

the autochthonous end-member molar C:N (6.4) is comparable to cellulose walled 

dinoflagellates  signatures of 8-10 (Dixon and Holligan, 1989; Holligan et al., 1984) 

and the bulk of marine phytoplankton (6.6, Redfield, 1934). Additionally, the 

allochthonous signature of 46.2 is comparable with Wetzel (1975) who measured 

allochthonous material at 50:1.  
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Fig 4.24. Assessment of proportional contribution of autochthonous carbon to the 
Black Burn biofilms using molar C:N based mixing model. 
 
 
The model (Fig 4.24) produces a significantly different pattern in the autochthonous 

biofilm content compared with the previous δ15N model. Assessing intra-site variation 

reveals that there was no significant difference in the proportion of autochthonous 

production within the biofilm over different intra-site conditions (Kruskal-Wallis, 2004 

P = 0.334 and 2005 P = 0.177 (pooled, P = 0.125)) despite variations in percent 

light and canopy cover (Table 4-2 and Table 4-3). Additionally, within the first year, 

pooled site data had no significant temporal variation (Kruskal-Wallis, P = 0.77) of 

autochthonous contribution. 

 

However in 2005, autochthonous contribution in samples varied significantly over the 

sampling season (Kruskal-Wallis, P < 0.001) with a reduction and then recovery of 

mean autochthonous content during mid-summer. This shift in biofilm signatures 

resulted in June samples being significantly depleted in autochthonous material (Fig 

4.25). This result will be explored further in Chapter 7, where the affects of felling 

are addressed as during the winter of 2004/2004 an extensive area of land (which 

encompassed the most upstream site (BBCO) was clear-felled (producing BBCF). 
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Fig 4.25. Mean (± 95% C.I) autochthonous contribution of pooled BB biofilm data. 
2005 biofilm model results derived from calculations based on molar C:N. 
Significant differences between sample visits derived through application Kruskal-
Wallis (P < 0.001). From the figure, it appears that June 2005 samples were 
significantly depleted in autochthonous content. 
 
Comparisons between the two approaches (molar C:N and δ15N) reveals that the 

most obvious observation which can be made is that the δ15N model predicts less 

(Kruskal-Wallis, P < 0.001) autochthonous carbon in the biofilm material. From the 

molar C:N model, the mean autochthonous contribution is 75.3% (± 1.31 St. errors), 

whereas the δ15N model derives the mean autochthonous contribution at 48.0 % (± 

1.73 S.E) for 2003-2005 pooled. 

 

The difference between the autochthonous contribution derived from the δ15N 

measurements and that of the molar C:N measures could be due, most likely to 

misidentification of end-member signatures (i.e. the autochthonous end-member 

may only constitute an 80 – 90% autochthonous biofilm) or natural variation of the 

end-member signature in the δ15N model (from species variation or flow regime).  

 

Variation in the natural isotopic signature of the autochthonous component of the 

biofilm material was illustrated with the rejected April 2004 data set and 

consideration of this and the wide range of δ15N measures of algae taken from the 

literature, confirm that different algal/cyanobacteria can naturally vary in their δ15N 

isotopic signatures (either within-species variation (e.g. Korb et al., 1996) or with 
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species community shifts (e.g. Brett and Muller-Navarra 1997; DeMott et al., 1998; 

Von Elert and Wolffrom, 2001). Natural variation can also occur through changing 

growth conditions and the species of carbon used for photosynthesis (e.g. Singer et 

al., 2005). However, this model, as based on a set end-member signature cannot 

account for the variability of signatures independent of the variation of proportional 

contribution. 

 

Using an overestimated autochthonous end-member would result in the 

underestimation in the autochthonous contribution of carbon. This scenario is 

consistent with the depleted results gained thought the δ15N model (as shown in Fig 

4.21 compared with Fig 4.24). Further, long term increase in the abundance of algal 

species which had a relatively reduced signature (e.g. during summer months) would 

account for the variation between the two models and cause the δ15N signature to 

overestimate the % allochthonous input to the biofilm.  

 

I suggest that the more reliable approach is to use molar C:N which is consistent 

despite variations in algal assemblage and independent of changes in an algal δ15N 

signature.  

 

4.8.2 Autochthonous component of T33 biofilms 

 

Applying the molar C:N model and end-members to the 2005 T33 data, the 

autochthonous proportional contribution of autochthonous indicates significant 

temporal variability (arcsine transformed data, ANOVA, P < 0.001) (Fig 4.26). 
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Fig 4.26. Mean (± 95% C.I) autochthonous contribution of pooled T33 biofilm 
data – indication temporal variation. 2005 biofilm model results derived from 
calculations based on molar C:N. Significant differences between sample visits 
derived through application of a Tukey test (95% confidence). Different groups 
indicated through differing letterings (a, b, c and d). 
 

Additionally, T33 data also displays spatially significant variation as the contribution 

of autochthonous material is significantly (P = 0.026) reduced within the shaded site 

biofilms (T33SH) (Fig 4.27). 
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Fig 4.27. Mean (± 95% C.I) autochthonous contribution of pooled T33 biofilm 
data – indicating spatial variation. 2005 biofilm model results derived from 
calculations based on molar C:N. Significant differences between sample visits 
derived through application of a Tukey test (95% confidence). Different groups 
indicated through differing letterings (a, and b). 
 
 
However, overall, the availability of autochthonous material remains relatively 

consistent at all T33 sites within the sampling season of 2005. Indeed, the 

autochthonous organic matter available from benthic biofilm material constitutes 

approximately 81% (± 1.02 S.E) of the biofilm biomass (Fig 4.28). 
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Fig 4.28. Autochthonous content of the T33 Biofilm in 2005.  Model produced 
using Molar C:N signatures. 
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When this autochthonous production is compared with measurements taken at Black 

Burn (Fig 4.29), biofilms grown within the Black Burn in 2005 had significantly lower 

mean autochthonous contributions. However, autochthonous production of T33 was 

comparable with that of BB in 2004, despite differences in riparian characteristics 

and conditions (Table 4-2 and Table 4-3).  
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Fig 4.29.  Mean (± 95% C.I) autochthonous contribution of pooled T33 2005, BB 
2004 and BB 2005 biofilm data – indicating overall spatial/temporal variation. 
Biofilm model results derived from calculations based on molar C:N. Significant 
differences between sites derived through application of a Tukey test (95% 
confidence) on arcsine proportional data. Different groups indicated through 
differing letterings (a, and b). 
 
 
Comparison between traditional techniques of deriving % allochthonous detrital 
content (using a microscope) and the stoichiometric based mixing model. 
 
 
Here, a comparison is made between estimations of autochthonous contribution 

using molar C:N (stoichiometric approach), and estimates using microscopy (visual 

ID) as described in the methods. Percentage detrital content of microscopic slide 

sub-samples was assessed and material which contained no evidence of algal cell 

units was defined as allochthonous in origin.  

 

Comparison of this microscope ID approach to characterising the content of 

biofilm/periphyton material with the stoichiometric mixing model approach detailed 
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above, indicates that there is a shortfall in the estimations made by microscopic 

visual ID (Fig 4.30).  
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Fig 4.30 Comparative approaches used to define the allochthonous content of 
benthic biofilms; median allochthonous values (± 1st and 3rd quartiles) microscope 
and stoichiometric assessment. Significant differences in results defined through 
arcsine data and using Kruskal-Wallis (P <0.001). Means indicate that microscope 
ID yields significantly greater estimates of allochthonous material. 
 
Compared with the predominantly allochthonous dominated estimations made by 

visual inspection, molar C:N measurements (for all three sample groups) indicate 

that biofilms are dominated by  autochthonous material (Kruskal-Wallis, P <0.001). 

Such variation in the two approaches suggests that the visual inspection of 

biofilm/periphyton samples made routinely in many studies is inaccurate in 

estimating the importance of autochthonous material. Comparing these two findings 

also suggests that the general assumption of allochthonous dominated low-order 

streams (e.g. Vannote et al., 1980) may in many cases be driven by similar visual 

inspection inaccuracies.  
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4.9 Assessing impact of algal species composition and 
chlorophyll content variability on elemental composition 
 
 
Within Chapter three, biofilm autotrophic production and algal cellular carbon content 

was explored by utilizing measures of chlorophyll a and carbon content of the biofilm 

material. Here, I compare that data with the isotopic and stoichiometric measures to 

determine whether the chlorophyll content and the algal biomass derived from the 

chlorophyll concentration measurements (using a conversion factor of 60) of biofilm 

material can be related to the isotopic and stoichiometric signatures. In addition, as 

the molar C:N mixing model is employed to determine the proportional contribution 

of autochthonous material, here I compare that measure with data of the algal 

biomass (autotrophic biomass) to determine firstly any relationships between the two 

approaches and also what proportion of the autochthonous material is not algal in 

origin, but rather heterotrophic in-stream production. 

 

Initial consideration of the algal carbon mass compared with the isotopic 

measurements of the biofilms produces variable results, Firstly; there was no 

significant relationship between algal carbon and δ13C (r2 = 0.042, r = 0.204, P > 

0.05). This finding indicated that here, not only was δ13C an inadequate measure of 

autochthonous content as it resembled an allochthonous organic matter signature (~ 

-27 to -28‰), but further, δ13C variation appeared independent of autotrophic 

content. Thus, even when the variation of the carbon isotopic signature of the 

biofilm is considered independently any isotopic resemblance of the signatures to 

terrestrial resources, δ13C still does not significantly correlate to patterns in algal 

carbon content variation as defined through molar C:N. Consequently, this measure 

could not be used to estimate either allochthony or autochthony within the biofilm 

biomass of this study.   

 

However, consideration of the δ15N measurements with algal carbon calculations (Fig 

4.31) indicates that there is a highly significant positive linear relationship between 

the two measures (P < 0.001). However, comparing the algal C and δ15N relationship 

with that of the algal cellular C and molar C:N (Fig 4.32), the significance of the 

negative linear relationship of algal C and molar C:N was more significant (P < 

0.0001) and had a greater r2, suggesting that more of the variation in the algal 
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content can be predicted by molar C:N than with δ15N. From this result, it appears 

that molar C:N is both more accurate at both describing autochthonous content and 

predicting autotrophic content.  

 
 

R2 = 0.0723

-1
0
1

2
3
4
5
6

7
8
9

0 200 400 600 800 1000 1200 1400 1600

Algal Carbon (mg/m2)

δ
15

N
 (‰

)

 
Fig 4.31. Positive polynomial relationship produced from δ15N and algal carbon 
measurements. The correlation coefficient or r confirms significance of the 
relationship of P < 0.001. 
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Fig 4.32. Negative polynomial relationship produced from molar C:N and algal 
carbon measurements. The correlation coefficient or r confirms significance of the 
relationship of P < 0.0001. 
 
Interestingly, the relationship between autotrophic and autochthonous content of the 

biofilm, although highly significant (P > 0.001) (Fig 4.33), predicts less than 12% of 

the variation between the measures. This would suggest that although there is a 

relationship between autochthonous and autotrophic material, that there is 
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significant noise in the confidence of using autochthonous measurements to predict 

autotrophic content.  
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Fig 4.33. Positive polynomial relationship produced from autochthonous 
proportion and algal carbon measurements. The correlation coefficient or r 
confirms significance of the relationship of P < 0.0001. 
 
Fig 4.34 integrates the analysis of autochthonous proportion (from the molar C:N 

mixing model) with the autotrophic proportion (as defined through the three 

alternative conversions (CF 20, 60, 100) of Chl a), and considers these two 

approaches combined, in order to define the proportion of autotrophic material, 

within the autochthonous component of the biofilm material. 
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Fig 4.34 proportion of autochthonous material which is autotrophic (mean ± SD). 
Using the range of chlorophyll conversion factors described in the literature. 
Autochthonous values obtained using molar C:N derived mixing model. Kruskal-
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Wallis analysis indicated significant differences between sites (CF20, P < 0.001, 
CF60, P <0.001 and CF100, P < 0.001). 
 
Observation of means within Fig 4.34, suggested that Biofilms from T33 and BB2004 

had significantly greater proportions of autotrophic material of the autochthonous 

component than either of the Black Burn sample seasons (CF60, 3.9% ± 4.9 SD for 

BB2004 and T33 (pooled), compared to 0.8 % ± 1.2 S.D for BB 2005) (Table 4-6). 

This result suggests that through isolation of the autochthonous component of the 

biofilms, material which is not of autotrophic origin, must therefore be heterotrophic. 

Consequently, by combining the results from molar C:N autochthonous modelling 

with the conversion of chlorophyll a concentrations, results suggest that all sites 

were therefore substantially heterotrophic in character (e.g. CF 60, approximately 

95% of BB 2004, 99% of BB 2005 and 97% of T33 could be defined as consumer 

biomass).  

 

Table 4-6. Mean (± SD), Maximum and Minimum autotrophic proportion of 
autochthonous component of biofilm biomass, with differing conversion factors 
(CF) from chlorophyll a.  

 CF 20   CF 60   CF 100   
 Mean ± SD Max Min Mean ± SD Max Min Mean ± SD Max Min 

BB2004 1.73 ± 2.3 11.5 0 5.20 ± 6.8 34.5 0 8.67 ± 11.5 57.5 0 
BB2005 0.29 ± 0.4 1.56 0.003 0.87 ± 1.2 4.68 0.01 1.46 ± 2.04 7.8 0.016 

T33 0.98 ± 0.7 3.13 0.103 2.95 ± 2.1 9.38 0.31 4.93 ± 3.5 15.64 0.51 
 
Using a conversion factor of 20, there was no significant difference between BB2004 

sites in autotrophic production (Kruskal-Wallis, P = 0.755, n = 46). Further, there 

was no significant spatial variation within BB2005 (Kruskal-Wallis, P Value = 0.274, n 

= 63). Similarly, there was no variation among T33 sites (Kruskall-Wallis, P = 0.338, 

n = 62). Similarly, using a conversion factor of 60 also indicated little spatial variation 

of sites within a single stream (BB2004, P = 0.666; BB2005, P = 0.162; T33, P = 

0.362), and CF of 100 produces the same significances with Kruskal-Wallis analysis. 

 
4.10 Discussion 
 
The exact composition of the biofilm greatly affects its ability to both purify river 

systems and perform the role of energy production through primary production and 

the breakdown of detrital material (e.g. Stevenson, 1996). This role is essential to 

the functioning of the river ecosystem.  
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4.10.1 Stoichiometric data and application 

 

The significant temporal and spatial variation in stoichiometric data found within this 

study has been used within a two-source mixing model to assign proportional 

contribution of allochthonous and autochthonous carbon to biofilms measured. This 

was done on the premise that allochthonous organic matter is characterised by C:N 

of ~ 50, whereas the ratio for autochthonous organic matter is ~ 12 (Wetzel, 1975). 

 

However, it is possible that part of this variability in C:N can also be attributed to 

internal processes of the biofilm and the subsequent changes in the relative carbon 

to nitrogen content. Studies have shown that subtle changes in the molar C:N 

signatures of the biofilms can reflect the conditioning of particulate organic matter 

(either of allochthonous or autochthonous origin) performed by bacteria and fungi, 

resulting in the protein content of the biofilm rising and its C:N falling (e.g. Kaushik 

and Hynes, 1971). Additionally, active polysaccharide matrix development can result 

in the expression of a higher C:N. Thus, the functioning and growth of a biofilm may 

have effects on the stoichiometric signature independent of the allochthonous and 

autochthonous content. However variation in the molar C:N with biofilm matrix 

formation or increased protein content produce variation on a small-scale compared 

to the variation between allochthonous and autochthonous resource portioning due 

to the low nitrogen content of terrestrial organic matter. 

 

Further, studies have used stoichiometry as an indicator of food quality. Generally, a 

low C:N is taken as an indicator of high protein contained in the organic matter and 

consequently good availability of the energy (and thus, is used as a food quality 

indicator: Taylor and Roff, 1984). Consequently, C:N and proteins (as food quality) 

are negatively correlated and in relation to trophic interactions, organic matter with 

high protein content is a preferred food for consumers in the riverine food web (see 

Iversen, 1973). 

 

Thus, the variation identified in C:N within this study suggests that protein levels and 

associated food quality are greatest during spring and late summer/autumn biofilm 

growths (Fig 4.8, for BB and Fig 4.10 for T33 data). The significantly lower C:N 

found in the T33 sites (Fig 4.15) would suggest that food quality was significantly 

greater. As such, it appears that the higher molar C:N observed at BB during the mid 
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summer months of both years could reflect low biofilm protein content, high 

allochthonous contribution and increased polysaccharides matrix formation, and an 

indication of biofilm self-sufficiency and internal carbon retention (Freeman and Lock, 

1995).  

 

As there was a wide range of C:N values (especially at BB), I hypothesise that the 

influence of allochthonous contribution is likely to be the most influential 

compositional alteration to biofilm C:N (rather than the protein content of matrix 

formation). However, the suggestion that increased matrix formation is associated 

with increased C:N could  be evidence to suggest that the significant biomass 

increase associated with BB 2005 biofilms was related to the maximum nutrient 

retention by polysaccharide matrix-rich biofilms (Freeman and Lock, 1995; 

Thompson and Sinsabaugh, 2000) (specifically those limiting autotrophic or 

heterotrophic growth). The associated high C:N recorded by  these biofilms could be 

evidence for efficient nutrient retention and processing by BB 2005 biofilms. The 

higher C:N ration would also suggest that due to the increase in C rich organic 

matter, preferential drawdown and utilization would be towards materials rich in N.  

However, the increased matrix production can also reduce the diffusion rate of those 

same compounds into the biofilm (Hamilton, 1987) and as such, would reduce the 

speed and efficiency of any drawdown or retention.  

 

Romani et al. (2004) suggest that increased autotrophy in light-grown biofilms 

facilitates bacterial growth, but also internal cycling of algal exudates. In addition, 

that same study states that, although there is evidence for increased internal cycling 

of nutrients (and thus hypothetically, a reduced requirement for external drawdown 

of allochthonous DOC), the uptake of DOC (evidenced by introduction of 14C-glucose) 

was still higher in light-grown biofilms. Dark-grown biofilms, although entirely 

dependent on allochthonous DOC (rather than additionally internal cycling of 

autotrophic by-products), were not as efficient as light-grown biofilms. In addition, 

dark, heterotophic biofilms were only efficient at uptake of labile C. Therefore, more 

complex forms of humic substances and polymeric molecules, common in fluvial 

ecosystems (Volk et al., 1997), require autotrophic-driven extracellular bacterial 

enzyme activity for heterotrophic uptake (Chrost, 1990). This has significance for 

forest corridor characteristics, and would suggest that streams should have light 

levels adequate to ensure no limitation to autotrophic production. As while 
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autotrophic production is maintained at adequate levels, maximum uptake, retention 

and processing of excessive nutrients, humic compounds and abiotic compounds 

released into water-bodies during clear-felling, is ensured.  

 

Using the broader estimations of biofilm allochthony and autochthony, the mixing 

model indicated little evidence for intra-site variation of autochthonous content 

within either sample seasons at BB, utilising either the δ15N or molar C:N mixing 

model. The lack of intra-site variation would suggest that the site conditions, and 

interestingly corridor width, tree height and overall light intensity in particular (as 

outlined in Table 4-2 and Table 4-3) produce no variation in the autochthonous 

content of the biofilm material. However, intra-site variation did occur at T33. During 

2005, the mean autochthonous content of the biofilms was significantly reduced at 

the shaded site (T33SH), suggesting that biofilm autochthonous production was light 

limited and thus light dependent within the T33 system. 

 

From the molar C:N results it was clear that both T33 and BB 2004 were dependent 

on substantial production of autochthonous material. This suggests that biofilm 

material within these catchments has a high autochthonous content (~80 - 90%) 

under normal, undisturbed conditions. This is contrary to traditional literature 

suggestions that such systems have their energetic base dominated by external 

sources of detritus from bank-side vegetation (Vannote et al., 1980, Webster and 

Meyer 1997), and a community structure functioning based upon this resource (e.g. 

Bilby and Likens, 1980; Dobson and Hildrew, 1992). The reliability of this result is 

high as it is based on comparisons of biofilm stoichiometric signatures with end-

members which are influenced minimally by many of the variables which would 

influence the isotopic signatures (e.g. algal/terrestrial plant species, growth 

conditions, fractionation processes and flow patterns). Thus, there is confidence that 

although there may be a small amount of variation occurring due to protein content 

(Sterner et al., 1993), or biofilm matrix formation (Sabater, 2005), biofilm signatures 

of molar C:N ~ 20+ are likely to be highly influenced by the addition on 

allochthonous material (Wetzel, 1975). An increasing number of studies have been 

indicating similar conclusions from a range of alternative approaches and within 

different systems (Minshall, 1978), particularly in forested headwater streams (e.g. 

Hawkins et al., 1982; Mayer and Likens, 1987). Further testing of this conclusion 

should be done on any future studies. Experimental additions of allochthonous 
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material to artificial streams may indicate the extent of any natural variation in C:N, 

not directly influenced by allochthonous contributions. 

 

In order to be able to characterise the autochthonous component of the biofilm, 

chlorophyll a was employed to provide estimates of the autotrophic biomass in order 

to determine what proportion of the autochthonous compartment was of autotrophic 

origin. This provides information not only on the reliance on autotrophs within the 

system, but also on the level of internal recycling brought about by primary 

production and the associated release of N rich Extracellular Polymeric Substances. 

Further knowledge of the contribution of heterotrophic biomass provides information 

on the potential importance of the microbial loop within the stream ecosystem. 

 

Differentiating between autochthonous and autotrophic material is important. 

Autochthonous material, although of internal origin, cannot be directly linked to the 

functioning of the biofilm as examined by Romani and Sabater (1999); in terms of 

autotrophic/heterotrophic ratio. In addition, it is not possible to completely rule out 

the argument that a proportion of the autochthonous material is actually heavily 

internally processed and transformed matter of allochthonous origin. Transformation 

of this material through fractionation and metabolic processes is not detectable by 

this C:N approach and as a consequence it is not possible to discern the exact 

external energy requirements from the streams. However, it is possible to state that 

the biofilms which are not influenced by disturbance events appear to be generally 

‘self sufficient’ in their production. The overall autochthonous signature (~80 %) 

suggests under normal, undisturbed conditions, there is efficient internal processing 

of any allochthonous carbon material. As such, the direct demand for allochthonous 

material at the base of the food chain appears to be significantly reduced compared 

with autochthonous processing, production and recycling. However, according to a 

number of studies (e.g. Romani and Sabater, 1999; Freeman and Lock, 1995), self-

sufficiency of a biofilm is reliant on a high proportion and production from 

autotrophic material. Therefore, it was important to determine whether this was the 

case here. 

 

However, examining the spatial variation in the autochthonous data, one can 

speculate that if the autochthonous material was based on primary productivity (i.e. 

autotrophic), then there should be a positive increase in autochthonous content of 
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biofilms with increased corridor width and light intensity. As there was no site 

specific variation of autochthonous production at the Black Burn during either 2004 

or 2005, one would suggest that the autochthonous component is not light 

dependent and therefore not photoautotrophic dependent either. However the 

reduction in autochthonous material at the shaded site of T33, suggests that in this 

case, light dependent material is present. The inconsistency of the site data 

illustrates that it is not clear from the autochthonous data alone whether organic 

material of low molar C:N is formed from: 

 

1. Organic matter actually of allochthonous origin, yet highly processed and 

transformed by internal cycling and bacterial/fungal activity and thus light 

independent.  

 

2. Heterotrophic based material (i.e. bacteria and fungi) which are 

autochthonous, utilising the mobile metabolites and decaying matter from 

autotrophic production, yet independently, are not light dependent. 

 

3. Or autotrophic material, but not light limited even within relatively shaded, 

enclosed corridor conditions (as found at BBSH).  

 

The lack of intra-site variation at BB is inconsistent with the first scenario as 

allochthonous material is independent of the obvious riparian detritus delivery routes 

associated with increased overhanging trees and reduced corridor width and 

therefore increased allochthonous material. Thus, assuming no other nutrient 

limitation, the likelihood is instead that, as the proportion of autochthonous material 

within a biofilm cannot normally be predicted by the corridor characteristics present, 

this heterotrophic, light independent material identified is controlled by DOC, whose 

availability is controlled by wider catchment-scale land uses. Thus, using C:N as a 

measure of autotrophic production would imply that the need for open corridors 

which promote high primary production is questionable as the autochthonous 

production within these streams is consistently high under undisturbed conditions, 

regardless of corridor characteristics and design.  

 

Temporal variation of pooled site data suggested that allochthonous content of the 

biofilms was greatest during the mid-summer months of the sampling season, and 
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BB 2005 was particularly dominated by allochthonous material during June/July 

2005. This allochthonous material was associated with a significant dry-weight 

biomass increase (Fig 4.2) during mid-summer. Additionally, although pooled sites of 

T33 and BB 2004 were found to be similar in their high autochthonous mass, BB 

2005, was significantly more allochthonous dominated. The change of land use 

surrounding this shift in the composition and characteristic of the biofilm material is 

discussed in more detail within chapter seven. 

4.10.2 Chlorophyll Conversion Factor (CF) 

 

In order to better define the role of the autochthonous proportion of the biofilms, the 

autotrophic compartment of autochthonous production was quantified. In doing so, 

comparative information on the heterotrophic compartment was provided. 

Chlorophyll data was used in conjunction with an algal cellular carbon conversion 

factor in order to estimate the ratio of mass of algal cellular carbon to autochthonous 

content. Comparing two separate approaches had limitations as the set conversion 

factor (60) has been shown in the literature to be subject to variation with species, 

growth conditions and a number of other biological and physical factors. Therefore, 

three alternative conversion factors were considered in order to determine the 

potential extent of influence variation of the CF would have on the comparative 

proportion of autotrophic and heterotrophic material, which together compiled the 

autochthonous compartment of the biofilm. This data can be used to explain the lack 

of correlation between autochthonous content and corridor characteristics at sites. 

Specifically, despite varying the conversion factor from 20 to 100, the biomass from 

the autotrophic compartment was negligible compared to that of the remaining 

proportion (defined to be heterotrophic). At its greatest (BB2004, CF100), the 

autotrophic proportion only equated to a mean of approximately 9% of the 

autochthonous material. This is significantly lower than the values provided within 

Romani and Sabater, (1999), where ratios of up to 3:1 autotroph to heterotroph 

were quoted. However, some maximum values did reach to a level equating to ~ 

1:1, which may indicate more comparable autotrophic production to Romani and 

Sabater, (1999). 

 

Interestingly, there were no significant differences in the autotrophic proportion 

among sites of a single stream, despite significant physical (and specifically light) 
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variation. Therefore, it is not possible to assign light limitation (purely based on 

corridor design) as the causative factor for the low autotrophic availability within 

biofilms. One possible limitation may be low light attenuation within the water 

column during periods of high DOM/DOC release (as illustrated within chapter 

seven).  

 

The proportional contribution of the alternative resources will obviously influence the 

contribution to the biofilm matrix, which algae have the potential to make. For 

example, with reference to gross chlorophyll concentrations from the biofilm material 

(irrespective of the proportion of other biofilm components), there is site specific 

variation in the autotrophic biomass, as can be seen in Fig 4.35 (repeated from 

chapter 3). T33 sites are generally more chlorophyll (and therefore, algal C) 

enriched. Consideration of streams in isolation indicates that BBCF 2005, had a 

significantly greater chlorophyll (and therefore algal) biomass, whereas, T33 shaded 

was significantly lower (than the other T33 sites). Therefore increased canopy or 

canopy removal significantly influences gross algal content. However, the variation in 

the other components of the biofilm appear to counter this effect on the overall 

proportion of autotrophic material. 
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Fig 4.35. Mean chlorophyll a concentrations (± 95% confidence interval) at both 
Black Burn and T33 sites over 2004 (BB only) and 2005. Tukey test reveals 
significant differences (indicated with differing letters: a, b, c or d) (P < 0.001, n 
= 227). 
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The low autotrophic to heterotrophic ratio found in all sites suggests that biofilm 

functioning may be relatively poor. Romani and Sabater, (2000) showed that benthic 

heterotrophs within the biofilm preferentially use by-products excreted by the 

autotrophs (algae). Benthic algae and bacteria actively exude substantial quantities 

of organic carbon, primarily as exopolymeric substances (EPS) (e.g. Hoagland et al., 

1993). EPS can account for up to 50% to 90% of the total organic carbon of biofilms 

(Flemming et al., 2000). These exudates can constitute a large proportion of the 

carbon acquired by algae and bacteria (e.g. Goto et al., 1999). This nutrient 

production from within the biofilm has been found to increase the capacity of 

biofilms to function as water purifiers (Romani and Sabater, 1999). An ideal ratio of 

around 3:1 of autotrophs (e.g. algae) to heterotrophs (e.g. bacteria) was found to 

facilitate the largest increase in the ability of the biofilm to break down allochthonous 

detritus (Romani and Sabater, 1999). As sites had an average of between 99 and 

95% heterotrophic material (using the middle CF, 60) from within the autochthonous 

compartment (totalling ~75% of the total biofilm content), this would suggest that 

these biofilms are almost entirely dependant on heterotrophic cycling. As the 

autotrophic content appears to account for around 4% of the biomass, and the 

allochthonous material accounts for an average of 25%, the likelihood is that the 

heterotrophic material (totalling 70 % of the biofilm biomass), having a low molar 

C:N which resembles an autochthonous signature, is EPS material. This conclusion 

was similar to that derived by Frost et al. (2005), who also noted the low prevalence 

of algae within periphyton samples, suggesting the majority of material was 

mucilage-based. However, the energy base for this production is likely to be 

dependent on the higher proportion of allochthonous carbon over the smaller 

proportion of autotrophic material.  

 

Although both algal proportional contribution and autochthonous proportion were 

estimated, neither provided results comparable with visual ID measurements made 

alongside (Fig 3.16 and Fig 4.30 respectively). Microscopic field of view counts in 

general, yielded a significant over estimation of algal material. This inconsistency of 

results suggests inaccuracy of the visual ID method. A similar off-set has been noted 

in previous studies (e.g. Hamilton et al., 2005; Frost et al., 2005). Inaccuracy of a 

method so commonly used could aid in explaining why there is inconsistency 

between findings here and the general understanding that upland, low-order streams 

are dominated by allochthonous material (e.g. Vannote et al., 1980, Webster and 
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Meyer 1997) or that periphyton is generally algal-dominated (e.g. Frost et al., 2001). 

Such inaccuracy has the potential to drive gross misunderstanding of low order 

stream energy dynamics and carbon source importance.  
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Fig 4.36 Comparison of chlorophyll defined autotrophic contribution and 
Microscopic identification of algal content.  Kruskall-wallis defined significant 
differences between samples (P < 0.001). Means suggest that microscope 
analysis consistently overestimated the algal contribution to biofilm material.  

4.10.3 Implications of variation of δ15N signatures  

 
Measurements of isotopic signatures (specifically δ15N) are commonly used in diet 

studies where consumer diet contributions are assessed using fractional contributions 

of baseline resource signatures (with the addition of metabolic fractionation factors) 

(e.g., Peterson and Fry 1987, Kling et al. 1992, France 1995, Vander Zanden et al. 

1999). However, many studies make the assumption that the signature of the 

baseline resources remains relatively constant and thus, set basal resource 

signatures are used within mixing models (e.g. Cabana and Rasmussen, 1996). Here, 

baseline resources were found to vary significantly both temporally and spatially over 

the two-year study period of BB and T33 biofilm signatures (Fig 4.4 Fig 4.11 and Fig 

4.14 and Fig 4.15). Knowledge of the possible variability of base-line resources is 

useful in order to provide information on the general reliability of food-web mixing 

models based on calculations which assume stable baseline resource signatures.  
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With δ15N isotopic measures, biofilm signatures varied from a minimum of -2.6‰ 

(BB APR 2004) to a maximum of 7.1‰ (BB SEP 2005). This constitutes a temporal 

range of 9.7‰ of δ15N baseline resource signatures. As the majority of studies use a 

trophic fractionation level of 3 – 5‰ (Peterson and Fry 1987), to indicate a change 

in food chain level, the range in baseline resource δ15N signatures found within the 

present study, would equate to up to three trophic enrichments within a comparable 

food chain study. Additionally, this is of greater significance as the land-use and 

geography of all sites remains relatively consistent, and the temporal scale is 

relatively short, encompassing similar seasons. Thus, such variation (or variation of a 

greater extent) is likely to similarly occur in studies of greater spatial and temporal 

scales. By not accounting for the potential of variability of baseline resource 

signatures, diet studies have the potential to assign changes in consumer species 

signature to diet variability or trophic status and not simply to changes to the 

signatures of baseline resources (during a consistent diet). Thus this present study 

confirms the need to account for this variation when undertaking diet studies or 

using primary consumer invertebrate signatures as proxies for baseline resources.  

4.10.4 Wider implications of the technique 

 
This approach demonstrates the variability of baseline resources and therefore, has 

the potential to be important for any food chain studies wishing to understand the 

driving forces involved in differential baseline trophic interactions. Without such 

baseline information gross overestimations of source material are possible as visual 

inspections are hard to interpret accurately. This approach also provides information 

on the result of stochastic events such as clear-felling and on stream energy 

dynamics and any recovery responses by benthic biofilms as will be discussed in 

Chapter seven. 

 
Although more development of these combined techniques is required, this research 

has illustrated a potential use for stoichiometry combined with chlorophyll analysis 

which would have a substantial impact on the ability to characterise river energy 

inputs. Specifically, this method could have the greatest affect on small order 

streams where inputs of energy from in-stream production is hard to quantify due to 

the lack of large primary producers such as aquatic macrophytes. This method also 

provides information on autotrophic availability and indicates that the possible 
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utilisation/availability of allochthonous material may be significantly overestimated 

within conifer-afforested streams. 

 

Understanding of the processing capacity of biofilm growth within small stream 

systems is a promising approach which could be applied to a wider area in order to 

better understand the energy availability within different systems and the source 

material most being utilised at the base of the food chains. This research has 

demonstrated that biofilms even within heavily afforested catchments are dominated 

by internal processing of organic matter to such an extent that they appear to be 

autochthonous in character. This result suggests that, irrespective of reduced levels 

of autotrophic material, and varying light intensity, biofilm nutrient processing 

efficiency was relatively high under normal, undisturbed conditions. However, in 

addition to defining algal cellular carbon content (thus the autotrophic component), 

chlorophyll data been employed to provide, through elimination, simple estimations 

of the relative proportion of heterotrophic and autotrophic material. This data also 

illustrates that the addition of sites of light-intensive areas within afforested riparian 

zones does not have a significant impact on the relatively poor mean autotrophic 

content of the biofilm material (between 1 and 10% of autochthonous component). 

As a consequence, following Romani and Sabater (2000), one can postulate that the 

ability of biofilms to retain and process organic and inorganic pollutants may be 

limited by the reduced autotrophic contribution. However, the high overall 

autochthonous component of the biofilm material in-fact suggests that the reliance 

of the biofilm on allochthonous material was low and a high content of EPS would aid 

in nutrient and pollutant drawdown and retention efficiency (Freeman and Lock, 

1995).  

 

As such, forestry management practices, which encouraging light intensive areas 

within afforested catchments, may not significantly influence the autotrophic 

production, especially if water colouration significantly reduces light attenuation and 

the depth of the photic zone. Biofilm development was in fact, most seriously 

effected by the disturbance event of 2004/5, producing a much greater proportional 

content of allochthonous material and a much lower autotrophic to heterotrophic 

ratio. This result suggested that the ability of the biofilm to retain organic material 

and any autochthonous processing and production was significantly reduced.   
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4.11 Main findings of chapter 
 

• Like biofilm biomass, isotopic and stoichiometric signatures of the biofilms 

experienced a wide range of spatial and temporal variation. Signatures 

ranged from –25.1‰ to –32.6‰ (δ13C), -2.6‰ to 7.1‰ (δ15N), whilst 

molar C:N ranged from 6.4 to 34.1. These measures were considered in 

respect to providing delineation of allochthonous and autochthonous 

resources within biofilms. 

 

• δ13C could not be related any other variable measured. There was also no 

correlation with flow (as had been suggested in the literature). Additionally as 

δ13C signatures overlapped with common terrestrial signatures, it was not 

possible to use the measure to delineate between autochthonous and 

allochthonous material. Therefore, this measure was not considered with 

respect of model development  

 

• Molar C:N and δ15N displayed a significant negative linear relationship (P < 

0.001),. Molar C:N was most enriched during mid-summer seasons, while 

δ15N was the opposite. Significantly higher molar C:N at BB 2005 sites, 

suggested increased contribution of C rich organic material to the biofilm 

material. The opposite was true of T33 sites. 

 

• The high molar C:N values associated with the carbon rich and N low material 

of terrestrial origin. As molar C:N were highly correlated, both measures were 

used as a proxy for allochthonous and autochthonous material contribution. 

The proportional contribution was derived using a two-source mixing model. 

 

• Variation in δ15N away from the molar C:N values (especially in April, 2004) 

suggested that species variation of autochthonous material (specifically, the 

increase in blue-green algae population), resulted in unreliability of the δ15N 

as a measure of autochthonous contribution. Therefore, molar C:N was 

determined to be the most accurate and robust measure. 

 

• Variation δ15N was so significant as to represent around 2 – 3 food chain 

trophic levels in terms of the enrichment caused by fractionation through 
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ingestion. It was suggested that the variation in baseline resource signatures 

should be explored prior to any isotopic studies of consumer diets, as diet 

may appear to vary over spatial and temporal scales up to three trophic 

levels, where in fact, diet is unchained but resource signatures vary 

considerably. 

 

• Allochthonous contribution increased significantly during mid-summer at all 

sites in all streams suggesting that terrestrial organic matter release is 

greatest during this point. This result contradicted studies suggesting that 

higher temperatures associated with summer, would increase the level of 

autochthonous production. This result may have been related to increased 

growth of overhanging riparian vegetation. 

 

• Algal contribution was estimated by converting chlorophyll a concentration to 

algal carbon through the use of a conversion factor (CF). Literature findings 

suggested that the appropriate CF had the potential to vary from ~ 20 – 100 

with species composition and the physical algal growth conditions. Thus, 

three alternative CFs were explored (20, 60 and 100) in order to determine 

the extent to which variation of the CF influenced the proportion of 

autotrophic material within the biofilm biomass. 

 

• The heterotrophic and autotrophic compartment of the biofilm biomass was 

separated by calculating first the autochthonous proportion, then from within 

this mass, the autotrophic proportion (using the middle CF of 60). The 

remaining compartment was defined as heterotrophic.  

 

• From these calculations, variation between the autotrophic proportions was 

minimal between sites of a single stream. Only BB 2005 displayed 

significantly reduced autotrophic proportion. However all sites and streams 

showed low autotrophic proportion. At the undisturbed locations (BB 2004, 

T33), approximately 5% of biofilm material was autotrophic, 25% was of 

allochthonous origin, and the remaining 70% was heterotrophic in character. 

However, with disturbed sites, the allochthonous proportion increased to 

approximately 40% of the biomass of BB biofilms, and autotrophic 

contribution rarely reached above 1% of the total mean biofilm biomass. 
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• Such low autotrophic proportional contribution to biofilm biomass suggested 

that functioning capability of the biofilm to drawdown and retain organic and 

inorganic pollutants may be limited. However, the high overall autochthonous 

proportion suggested that biofilm matrix content was high and as such, the 

potential for retention was also increased. Further, the increased 

allochthonous content of the biofilm post-felling suggested that excessive 

nutrients released post-felling were retained. 

 

• Variation of the chlorophyll CF did not have a significant influence on the 

results to autotrophic contribution. Variation between streams was still 

significant regardless of CF and although there was an associated change to 

the proportional contribution of autotrophic material, CF variation did not 

result in autotrophic proportion resembling (or not) the 3:1 autotrophic to 

heterotrophic ratio suggested by Romani and Sabater (1999), for optimal 

biofilm functioning capacity. 

 

• The lack of correlation between the physical traits of specific sites and the 

autotrophic contribution to biofilm material was a surprise. The dark 

colouration and turbidity of the water at BB may have contributed to this 

result and decreased the photic zone. However, this result indicates that the 

proportion of autotrophic material within biofilms may be much lower than 

many have previously suggested. Further, the requirement to ‘open up’ forest 

canopies in order to increase autotrophic proportion may not be a worthy 

approach. However, in terms of gross chlorophyll content there was site-

specific variation (with T33 more enriched and intra-site variation at BB 2005 

and T33). Consequently, in terms of gross primary productivity, and not just 

proportional contribution of autotrophic material within the biofilm, results 

suggest that light levels should be maximised. However, the result to the 

overall proportional characteristic of biofilm material may be minimal, and not 

influence the functioning of the biofilm for either retention or processing of 

nutrients and pollutants. 
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5 Patterns Stream macro-invertebrate species 

assemblage structure and the role of forest 
corridor physical, chemical and biotic factors. 

 
5.1 Abstract 
 

Benthic macro-invertebrates were surveyed in order to provide information on 

optimal corridor characteristics and design, to maximize in-stream biodiversity 

evenness and abundance of these organisms. Functional feeding groups and 

diversity indices were determined for species assemblages at each site. Spatial and 

temporal variations in total community structure were explored using kick-sample 

methodology at all streams of the study area. These analyses were used to indicate 

variation in site diversity and provide information on basal resources influencing the 

community composition. 

 

Isolated catchment analysis (Cree and Bladnoch) reduced the impact of catchment-

specific confounding variables (e.g. altitude and pH), and in doing so, helped to 

define the role of site-specific corridor characteristics. However, even with this 

approach, the mechanisms influencing community composition and diversity were 

more often associated with a number of physiochemical variables of site (e.g. 

substrate size, algal cover, % overhanging ground vegetation, pH, conductivity and 

stream temperature), independent of design parameters (e.g. corridor width, 

overstorey tree diversity and % light).  

 

It was speculated that both algal cover and % overhanging ground vegetation would 

be closely related to light availability. Thus, although % light itself was not found to 

be significantly correlated with invertebrate diversity, the increased contribution of 

both allochthonous and autochthonous carbon resources suggests that light 

availability is an important control factor. However, the lack of direct correlation 

appeared to suggest that under maximum light levels, PAR and the two production 

responses were uncoupled.  

 

Consideration of the Bladnoch in isolation revealed a greater importance of design 

parameters (e.g. corridor width and tree diversity). Statistically different community 

assemblages were defined through TWINSPAN. These groups were associated with 
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environmental variables defined through CCA ordinations. These analyses indicated 

differential group reliance on either allochthonous detrital resources associated with 

broadleaf/diverse tree species areas, or a greater supply of algal and overhanging 

ground vegetation resources (associated with high altitude, light intensive and wide 

corridors). This provided evidence for alternative strategies to maximise stream 

invertebrate diversity, which could be applied to future forest design approaches. 
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5.2 Introduction 
 
 
The intimate relationship between a stream and its riparian zone strongly influences 

energy type and availability within upland low-order stream habitats. The balance 

between heterotrophy and autotrophy plays a key role in determining broad-scale in-

stream invertebrate community structure (Wetzel, 1975). 

 

Because the relative dominance of aquatic macro-invertebrate groups within stream 

communities shifts with differences in the available sources of energy, morpho-

behavioural adaptations of food acquisition match both the general resource 

conditions, and size of the stream habitat. Thus, the differences in adaptations in 

food acquisition are a major driver of the specific assemblage structure and species 

composition found at a given site (Cummins and Klug, 1979). 

 

Cummins (1973, 1974) concluded that mouthpart morphology was a good reflection 

of feeding mechanism, as animals can only be opportunistic within the limitation of 

their feeding apparatus. However, gut content analysis has been the technique most 

frequently used to investigate macroinvertebrate feeding, and to assign taxa to 

functional feeding groups (FFGs) (e.g.; Hawkins 1982; Chessman, 1986). By 

categorising taxa into functional feeding groups (FFGs) according to feeding 

preferences and adaptations, and defining relative diversity within each habitat 

system, the specific community assemblage structure can be used to provide 

information on food availability, the physical characteristics of the stream and 

riparian zone, energy cycling within the habitat and the importance of specific 

allochthonous or autochthonous energy sources to food-web dynamics and the 

associated community composition.  

 

Here, benthic macro-invertebrate community structure and abundance are 

quantified. The data are used to identify: 

 

1. Indicator groups of the food resource availability and preferential energy 

usage with variations in corridor and habitat conditions as well as integrated 

conditions present over longer periods.  
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2. Overall diversity and community health according to variation in stream and 

riparian conditions. 

 

5.2.1 Food resource availability and preferential energy usage with variations in 
corridor and habitat conditions. 

 
 

The conceptual model which arguably best describes longitudinal relationships along 

river systems is the River Continuum Concept (RCC) of Vannote et al. (1980). This 

suggests that upstream, low order watercourses are dominated by inputs of 

allochthonous (externally sourced) detritus. As a consequence the invertebrate 

community composition matches this energy resource and the specific conditions of 

the upstream environment. This species assemblage structure transits to high order, 

larger river systems, lower in the catchment, which are dominated by autochthonous 

(internally produced) production (and a related community composition which 

matches these resources). In the latter, autochthonous dominated scenario, the 

riparian zone has less impact on in-stream energy dynamics and the larger river 

surface area supports a greater proportion of autochthonous primary producers. 

 

The model suggested by Vannote et al., (1980) was based around eastern US stream 

systems. Streams located in Scotland often have headwaters occupied by moorland, 

not native woodlands. Additionally, streams located within plantation forests often 

have a very different riparian habitat than those seen in native woodland. 

Consequently, the RCC may not be entirely applicable to afforested UK systems and 

the specific design of the riparian zone and the corridor characteristics, and 

associated fauna described, may vary significantly from those predicted by the RCC 

model. However, by matching more natural systems, wide-scale forestry corridor 

management has the potential to significantly influence community composition and 

overall in-stream biodiversity (Dobson and Cariss, 1999).  

 

The main energy sources which influence benthic invertebrate community 

composition and abundance are either autochthonous or allochthonous. The most 

conspicuous autochthonous component is the primary producers: mainly as algae 

and macrophytes. However, heterotrophic processing of materials by bacteria, fungi 

and invertebrates, as discussed in the previous chapter, constitute a significant form 
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of internal production, and may be responsible for a significant proportion of the 

available organic biomass within stream systems. External energy inputs come in the 

form of riparian detritus and riparian heterotrophs. These potential food sources and 

their relative importance for stream ecosystem functioning are examined below, 

providing background information for this chapter’s main area of investigation.  

 

The overall aim of this chapter was to determine the role of corridor design in 

influencing the production and availability of food resources, by examination of 

aquatic invertebrate community response; and to determine the impact of different 

habitat characteristics on in-stream invertebrate diversity. 

5.2.2 Allochthonous Detrital Resources 
 

Decomposition of plant litter is a central ecosystem process in a wide range of both 

aquatic and terrestrial systems (e.g. Wagener et al., 1998). Headwater streams are 

comparable with forest floors in their dependence on allochthonous litter inputs (e.g. 

Wallace et al., 1997). However, within stream systems, litter tends to concentrate 

into discrete litter patches. Within these areas, resources are concentrated, but they 

lack the vertical structure often associated with the more complex model of a forest 

floor system. Further, the community of bacteria and fungi responsible for much of 

the decompositional processes are often much less complex. However, such ‘leaf 

packs’ lend themselves to manipulation by the flowing water and therefore often 

decompose far more rapidly than their forest floor counterparts (Hieber and 

Glessner, 2002). 

 
The breakdown of leaf litter (mineralisation and transformation) is dependent on 

both physical (e.g. physical leaching, abrasion and fragmentation of material by 

water and objects carried by the current (Hieber and Gessner, 2002)) and also 

biological processes. The organisms that drive this biological component of the 

decompositional process include detritivorous macro-invertebrate species - mainly 

shredders, collector-gatherers and filter feeders (Wallace and Webster 1996), 

bacteria and filamentous fungi species (e.g. aquatic Hyphomycetes (Suberkropp, 

1998)). The quantity, diversity and quality of detritus available within the stream to 

aquatic detritivore species is often dependent on the type of vegetation growing 

within the riparian zone and the nature, specifically physical retentiveness, of the 

stream (e.g. Jones, 1997). 
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Peterson and Cummins (1974) proposed a ‘dietary continuum’ of decay of leaf 

material. The system was based on the differentiation of decay rates of different 

plant species. Using published decay rates, they classified detritus into ‘fast’, 

‘medium’ and ‘slow’ categories and suggested that detritus from each category 

reached optimal palatability after sequentially longer periods of retention within the 

stream. Thus, the period during which food was available to detritivore based species 

was extended long after the initial autumn leaf fall when a diverse range of 

categories were present within the riparian zone. Therefore, detritivores exhibit 

dietary plasticity during the winter to accommodate newly available sources of 

palatable leaf litter.  

 
The relative importance of allochthonous energy sources and indeed, the lack of 

dependence of stream macro-invertebrate communities on primary production was 

demonstrated by a number of studies. For example, Hynes (1961) demonstrated that 

more than two thirds of the Welsh mountain stream species completed their life-

cycle in the winter, when primary production would be minimal. Further, Cummins 

and Klug (1979) found that a large portion of the aquatic insect community in 

temperate streams was synchronized to the autumnal input of leaf material, having 

emergence, oviposition and eclosion just prior to the autumn leaf loss. 

 
There are substantial practical difficulties of separating sources and components of 

detrital biomass. These issues are discussed more fully in Chapters 3 and 4, and in 

the literature (e.g. Cummins and Klug, 1979). However, the specific separation of the 

living (heterotrophic biomass) and the non-living components of detrital matter (e.g. 

the allochthonous component) has as a consequence, often instead been achieved 

through separating material into broad size categories; Coarse Particulate Organic 

Matter (CPOM) and Fine Particulate Organic Matter (FPOM). CPOM can be defined as 

organic matter having particle size larger than 1mm. Particulate material finer then 

0.5µm, is considered to be Dissolved Organic Matter (DOM) (Cummins and Klug, 

1979). 

 
The complex array of biotic and abiotic interactions that occurs in the processing of 

detrital matter, combined with the variability in the relative size and composition of 

the organic matter, determines which food resource ‘pool’ it is processed into. CPOM 

entering the stream is often colonised by fungi (primarily aquatic hyphomycetes) and 
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bacteria. This process is either done in surface waters or within benthic biofilms (see 

Chapters 3 and 4). Activity from these initial colonisers combined with bacteria and 

shredder species activity results in the continuous release of FPOM, UPOM (Ultra-fine 

Particulate Organic Matter) (<50µm, <0.5µm respectively) and DOM (Suberkropp 

and Klug, 1976). Indeed, this process is often so efficient, that it is estimated that 

less than 25 % of CPOM is mineralised directly as CPOM; the rest is transformed into 

other organic pools of detritus (Suberkropp and Klug, 1976). 

 
Differentiation in FPOM and UPOM source material often leads to differences in 

bacterial colonisation and processing of organic particles. The nature of this 

heterogeneous colonisation has also been found to stray from the often-generalised 

relationship described in studies such as Hardgrave (1970a, b, c); where the simple 

model relating level of bacterial activity directly to particle surface-area has been 

applied. However, in the case of stream systems, often the residence time of the 

particle within the aquatic environment has a much greater influence on bacterial 

activity and processing rate than the size of the particle itself (Suberkropp and Klug, 

1976, Suberkropp et al., 1976). 

 
Although the physical, chemical and biological characteristics of the stream dictate 

the general rate of litter decomposition, the specific differences in breakdown rates 

between different leaf species are dependent on the physical and chemical 

characteristics of individual species (e.g. Irons et al., 1988). For example, Gessner 

and Chauvet (1994) found that oak leaves have tough cuticles as well as high leaf 

tannin and lignin concentrations which cause slow decay rates, whereas alder has 

high leaf nitrogen concentrations, and relatively fast associated decay rates. 

Generally, coniferous species provide litter of low palatability to processing biota 

(Bärlocher et al., 1978; Sedell et al., 1975). As a consequence, in comparison to 

deciduous species, coniferous species have slow decay rates and require 

substantially longer residence times to be processed fully (Friberg and Jacobsen, 

1994; Sedell et al., 1975). The slow processing rate has been attributed to a number 

of different factors. Triska et al. (1975) found that alder leaves, which decomposed 

most rapidly, had relatively lower concentrations of lignin than Douglas Fir 

(Pseudotsuga menziesii). Berg et al (1982) described a negative relationship between 

leaf lignin concentration and decay rates. Bärlocher et al. (1978) focused on whether 

needle cuticles were the main limiting factor of decay rate; halving needles 
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longitudinally caused an increase in decay rates. From this, it was proposed that the 

cuticle provides a relatively unsuitable substrate for aquatic hyphomycete attachment 

and in addition, the cuticle locks in inhibitory oils and reduces the effects of the 

physical processing such as leaching. 

5.2.3 Autochthonous Primary producers 
 
Plants often play crucial roles in terms of both physical characteristics of the aquatic 

environment (O’Hare and Murphy, 1999; Wright, 1995; Marklund et al., 2001) and 

food availability (e.g. Junk, 1984; Newman, 1991; Sand-Jensen and Madsen, 1989; 

Jacobsen and Sand-Jensen, 1992; Gross et al., 2001, Elger and Willby, 2003; Elger et 

al., 2006). As a consequence, their presence and abundance in a system can have 

significant influence on the in-stream biodiversity and community structure 

(Carpenter and Lodge, 1986). 

 

Aquatic plants can play a key role in influencing habitat type and structure, both 

through a simple increase in substrate surface area but also by modification of 

microhabitats and the architectural diversity produced by plant growth (Murphy and 

Ali, 1997). A range of microhabitats is formed within the plant beds, producing 

modifications to flow, substrate and variation of predator/prey exposure preferences 

(O’Hare and Murphy, 1999). Due to this unique effect, a greater diversity and 

abundance of invertebrate species are often associated with macrophyte stands than 

with other substrate types (O’Hare and Murphy, 1999; Wright, 1995; Marklund et al., 

2001).    

 
Aquatic plant growth can also influence, both positively and negatively, dissolved 

oxygen concentration. Significant increases in dissolved oxygen concentrations have 

been documented during daytime, especially with fully submerged species, as 

oxygen produced during photosynthesis contributes to oxygenation of the 

surrounding water column, although at night the situation may be reversed as the 

balance of photosynthetic oxygen release to respiratory oxygen demand by the 

plants reverses. Thick mats of floating macrophytes can inhibit oxygenation and 

mixing at the aquatic boundary layer (Morris and Barker, 1977). In addition, the 

decay of plant material consumes large amounts of oxygen and thus contributes to 

further de-oxygenation through an increase in the biological oxygen demand 

(Godshalk and Wetzel, 1978). 
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Autotrophic growth also contributes to water nutrient enrichment throughout the 

water column. Actively growing plants release between 1 and 10 % of 

photosynthetically produced dissolved organic carbon (DOC) into the water (Hough 

and Wetzel, 1975). This source of nutrients positively influences both algal 

growth/productivity and bacterial activity. This increase in activity, results in 

enhanced processing of detritus and the increase in the overall resources available to 

higher consumer species (see Chapters 3 and 4). In addition to this, the structural 

complexity of autochthonous plant matter can be important to controlling 

allochthonous detritus retention times. Fisher and Carpenter, (1976) showed that the 

export volume of detrital material from rivers was inversely correlated to the biomass 

of aquatic macrophytes within the system. Therefore, mechanisms which increase in-

stream macrophyte production, may have many benefits to resource availability 

within the in-stream environment. 

 

In relation to the present study, riparian trees can have significant effects on light 

availability to primary producers. Trees can reflect and absorb up to 95% of 

incoming photosynthetically active radiation (PAR) (Godshalk and Wetzel, 1978).  

The interception of solar radiation by riparian vegetation can often result in 

streambed irradiances that may average <20 µmol.m-2.s-1 in undisturbed forests (Hill 

et al., 1995). Primary producers are directly influenced by availability of PAR. 

Although photo-acclimation by primary producers can increase the efficiency by 

which light can be used to fix carbon, long-term light deficiency in many shaded 

streams cannot be compensated by increased photosynthetic efficiency alone (Hill et 

al., 1995). 

 

In deciduous forest streams PAR levels change with seasonal leaf growth and 

senescence. The significantly reduced canopy cover during winter months promotes 

increased primary (autochthonous) production during what is usually a relatively 

unproductive season. Coniferous forest stands, with the exception of deciduous 

conifers such as larch, however, have no such period of reduced canopy cover, 

resulting in year-round production reduction.  

5.2.4 Invertebrate Functional Feeding Groups 
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Functional Feeding Groups (FFG) are described and classified based on morpho-

behavioural mechanisms of food acquisition rather than taxonomic group. The same 

general morphological and behavioural mechanisms in different species can result in 

taxa converging in ecological characteristics related to the acquisition of energy, with 

such convergence often following very different evolutionary pathways (Merritt and 

Cummins, 1996a).  

 

The benefit of using the FFG approach is that instead of needing to consider 

potentially hundreds of different taxa individually, a small number of groups of 

organisms can be studied collectively, differentiated by the shared intra-group 

functional characteristics for processing energy in the stream ecosystem. Individuals 

are categorized based on their mechanisms for obtaining food and the particle size of 

the food. This approach links aquatic food resource categories (coarse particulate 

organic matter [CPOM, particles >1mm], fine particulate organic matter [FPOM, 

particles <1 mm and >0.45 µm], periphyton, and prey), to invertebrate adaptations 

for their exploitation.  

 

Functional Feeding Group analyses support the notion that linkages exist in riparian-

dominated headwater streams between CPOM and shredders, and FPOM and 

collectors, and between primary production (e.g., periphyton in midsized rivers) and 

scrapers. The feeding of shredders on riparian litter affects detrital processing in 

aquatic systems. About 30% of the conversion of CPOM leaf litter to FPOM has been 

attributed to shredder feeding (Petersen and Cummins, 1974). In addition, shredder 

feeding enhances the release of dissolved organic matter (DOM; Meyer and O'Hop 

1983). Thus we can use the assemblage of species and the associated functional 

feeding groups to link food resource categories and the predictable response of 

aquatic invertebrate assemblages in order to define to food resources prevalent 

under differing riparian conditions. The major Functional Feeding Groups, with their 

trophic and feeding characterizations, are described in Table 5-1. 
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Table 5-1. Functional Feeding Group categorization and food resources (from 
Merrit and Cummins 1996a). CPOM= Coarse Particulate Organic Matter; FPOM= 
Fine Particulate Organic Matter. 

Functional 
groups  Abbreviation Particle Size  

Dominant food 
resources 

Particle 
size 

    feeding mechanism   
Range of 
food (mm) 

     
Shredders SH Chew conditioned litter  CPOM-decomposing   > 1.0  
  or live vascular plant  (or living) hydrophytes             
  Tissue, or gouge wood  (vascular plants)            
     
Filtering  FC Suspension feeders- FPOM-decomposing 0.01-1.0   
Collectors  filter particles from detrital particles; algae,   
  the water column bacteria, and faeces   
     
Collector  CG Deposit feeders- FPOM-decomposing 0.05-1.0  
Gatherers  ingest sediment or detrital particles; algae,   
  gather loose particles bacteria, and faeces   
  in depositional areas    
     
Scrapers SC Graze rock and  Periphyton-attached         0.01-1.0  
  wood surfaces or non-filamentous algae   
  stems of rooted and associated detritus,   
  aquatic plants microflora and fauna,   
   and faeces  
     
Predators P Capture and  Prey-living animal             >0.5  
  engulf prey or  tissue   
    ingest body fluids     

 

5.2.5 Using Indicator Species for Biomonitoring/discerning biodiversity 
 
Biomonitoring is recognised as an essential tool for use in both routine monitoring of 

freshwater ecosystem biointegrity, and for assessment of impacts of pollution or 

other harmful pressures upon these systems. Because organisms and/or 

communities can display measurable reactions to the effects of habitat change or 

pollution, integrated over timescales ranging from days or less (e.g. microorganisms) 

to months or more (e.g. macrophytes), by using biomonitoring procedures based on 

differing groups of organisms, it is possible to detect changes occurring in a 

freshwater system over differing timescales of impacts. Currently, proposed 

measures for implementation of biomonitoring are primarily based upon assemblage-

change measures, assessed against pristine or low-impact reference conditions. 
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Invertebrate assemblage-change river biomonitoring techniques are already well-

established in the UK, and similar methodologies using macrophytes, diatoms, 

phytoplankton and fish are proposed or already in use here and elsewhere in Europe 

(e.g. the Swedish Environment Protection Agency River and Lake Biomonitoring 

Protocols; RIVPACS (River InVertebrate Prediction and Classification System: Wright 

1995)).  

 
These systems were developed in an attempt to classify aquatic systems using 

functional and taxonomic groupings of invertebrates, specifically benthic-

invertebrates in river systems. This type of predictive model also looks to quantify 

“biointegrity”, i.e. the degree to which a site supports its reference biota (the 

expected biota which would occur in the absence of human interference) and the 

overall diversity, evenness and abundance of populations and overall community 

composition. These studies and techniques have had mixed results. For example, 

reference sites have not always been representative, indicator species have often 

been hard to identify, or their tolerance/preference levels to different environmental 

factors were wrongly estimated (Norris and Hawkins 2000). However, these 

approaches (e.g. RIVPACS in the UK) are used by many of the current water 

protection agencies (including SEPA: Scottish Environmental Protection Agency) and 

so here, overall diversity (using diversity index scores), abundance of certain 

indicator species and overall macro-invertebrate assemblage structure will be used as 

an indication of river biointegrity.  

 

5.3 Methods 
 

Aquatic invertebrate samples were taken at the sites described in the introductory 

chapter (Chapter 1). Sampling was confined to the Cree catchment within the 

sampling year autumn 2003 to autumn 2004, and expanded to include Bladnoch 

catchment sites within the 2005 sampling season.  

 

Benthic invertebrates were sampled using a three-minute kick sample with a 0.5m 

depth net with a mouth diameter of 0.25 m following methods used by SEPA. The 

hand net was standard (250× 250 mm frame, mesh size 500 µm). Both a transverse 

and diagonal transect of the stream were kick sampled taking care to cover all 

habitats types within the 10m-site stretch. An additional one minute was spent 
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collecting invertebrates from both sides of the lateral areas of the streams as these 

species are not as susceptible to the kick sampling technique. 

 

The following physical/chemical parameters of the streams were measured at 

representative sample site locations within the 10m site stream-stretch (Table 5-2).  

 
Table 5-2. Variables measured as part of invertebrate sampling methodology and 
the sampling technique summery. 
Measure Measurement Technique 
Wet width (m) 3 replicate measures per visit 
Depth (cm) 3 replicate measures of stream centre per visit 
% Boulders/Cobbles (>64mm) visual estimation 
% Pebbles/Gravel (16-64mm) visual estimation 
% Sand (2 – 16mm) visual estimation 
% Silt/Clay (<2mm) visual estimation 
% Algal cover  visual estimation 
% Sewage/fungi cover visual estimation 
% Bryophyte cover  visual estimation 
Tree species richness visual identification 
% Overhanging vegetation visual estimation 
Corridor width (m) 3 replicate measures per visit 
Tree height (m) visual estimation 
Altitude (m) GPS reading 

Light (% PAR) 
2 x SKYE PAR light meter (simultaneous reading with 
open ref site) 

Conductivity (mS/m) Schott handylab pH/LF 12 probe conductivity electrode 
pH Schott handylab pH/LF 12 probe pH electrode 
 
 

5.3.1 Benthic invertebrate identification 

 

On completion of the three minute kick sample, 25ml of formaldehyde was added to 

each 150ml sample to stop biological activity. The treated samples were then stored 

in a cool box with ice packs until return to the lab. Samples were then frozen until 

identification, at which point, the sample was slowly defrosted to minimise damage 

to the tissue. Individuals were sorted from the debris also caught in the net. This 

was achieved by washing samples through consecutive stacked sieves of 2.0, 1.0 

and 0.5 mm diameter to remove debris. The cleaned samples were then placed in a 

large white, water-filled tray. Kick sample material was hand sorted for invertebrate 

individuals (this was not for a set time period, but rather until there was confidence 

that nothing remained in the sample).  The organisms from each sample were then 

stored in a 70% ethanol solution until identification. Invertebrates were identified to 
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family level, following Quigley (1977, Savage (1989), Macan (1973), Edington and 

Hildrew (1981), Elliott et al. (1988) and Holland (1972). 

 

Invertebrate taxa were assigned to Functional Feeding Groups following Merrit and 

Cummins (1996a). Additionally, to determine diversity (H) at each site, the Shannon-

Weiner Index was calculated (refer to Chapter 2, equation 1). 
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5.4 Results  
 

In total 42 aquatic macro-invertebrate taxa were recorded and identified (Table 5-3). 

The dominant taxa were Pleocoptera larvae: Leuctridae and Nemouridae as well as 

Dipteran larvae; Chironomidae and Simulidae. 

 
Table 5-3 Taxa sampled indicating mean and total individuals found at sites. 
Highlighted are the four dominant taxa. 
Species Mean Total Species Mean Total 
Ancylidae 0.113208 12 Isopoda 0.292453 31
Baetidae 8.924528 946 Leptoceridae 0.028302 3
Chironomidae 19.12264 2027 Leptophlebiidae 0.462264 49
Chloroperlidae 2.264151 240 Leuctridae 24.01887 2546
Cordulegasteridae 0.254717 27 Limniphilidae 1.990566 211
Corixidae 0.04717 5 Nemouridae 31.63208 3353
Dytiscidae adult 1.160377 123 Neuroptera 0.962264 102
Dytiscidae larvea 0.311321 33 Noteridae 0.028302 3
Elmidae adult 4.754717 504 Odontoceridae 0.018868 2
Elmidae larvae narrow 1.433962 152 Oligochaeta 2.783019 295
Elmidae Larvae wide 0.433962 46 Perlodidae 4.698113 498
Ephemerellidae 0.490566 52 Polycentropodae 3.584906 380
Gammarus 2.566038 272 Psidium 0.556604 59
Gerridae 0.179245 19 Rhyacophilidae 1.537736 163
Glossiphorudae 0.056604 6 Simulidae 11.30189 1198
Goeridae 0.056604 6 Siphlonuridae 0.018868 2
Hebridae 0.066038 7 Succinea 0.018868 2
Helodidae 0.896226 95 Tipulidae 2.764151 293
Heptegeniidae 2.216981 235 Valvatidae 0.056604 6
Hydropsychidae 2.584906 274 Veliidae 0.584906 62
Hygrobatidae 0.075472 8       

5.4.1 The role of inter-catchment variability 
 
Differences between the two catchments of the study (e.g. subtle geological changes 

or overall catchment land-use variability) may exert a greater influence on 

invertebrate assemblage structure than other stream-specific environmental 

parameters (corridor characteristics and specific energy source availability), of 

interest in this study.  

 

Analysis of catchments individually was undertaken to assess whether the 

invertebrate population response from each catchment could be pooled in respect to 

the environmental measures taken at each site. This approach was also used to 

explore both inter, and intra-catchment variation and reduce the impact to the 

analyses of potential confounding variables associated with large-scales variation 
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between catchments. This approach was taken to help highlight site specific 

variables, potentially overshadowed by the dual catchment analysis, yet still of 

importance to site-specific ecological relationships.  

 
Using the statistical package CANOCO (Ter Braak, 1990), multivariate analysis 

(Canonical Correspondence Analysis: CCA) produced two catchment-specific 

ordinations. TWINSPAN classification (Hill, 1979) was used to define statistically 

significant groups of samples and/ or species, and to explore correlations in species 

assemblage groups.  As there was significant variation in abundances of specific 

species, TWINSPAN analysis was modified from the default settings so that pseudo-

species cut points were defined as densities of 0-1.9, 2.0-9.9, 10.0 – 39.9 and ≥40.0 

to account for the variation in abundances. These cut points were used for all 

TWINSPAN analyses done within this chapter. 

 

5.5 Cree Catchment 
 
The outcomes of ordination analyses of the data for sites located within the Cree 

catchment are shown as CCA1 (Fig 5.1). Assemblage groups are defined using 

TWINSPAN. TWINSPAN groups are illustrated by sample dot colouration and 

identification of group membership can be found in Table 5-4 (for the Cree). 
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Fig 5.1. CCA1: species-environment ordination for samples located in the Cree 
catchment only. Colouration of dots indicates groupings as defined by TWINSPAN 
analysis. The contents of TWINSPAN groups are assigned in Table 5-4. A Monte 
Carlo test revealed the significance of the ordination (P = 0.005) with the 
majority of the variation explained within axis 1 (eigenvalue 0.648) and axis two 
(eigenvalue of 0.314). 
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Table 5-4. Species assemblage groupings as defined with TWINSPAN analysis 
associated with Cree-only CCA (Fig 5.1). Designation of groups 1 and 2 produced 
an eigenvalue of 0.361, and from groups 3 and 4, an eigenvalue of 0.423 was 
assigned. 

Group 1 (yellow) Group 2 (blue) Group 3 (red) Group 4 (light blue) 
Ancylidae Baetidae Hebridae Chironomidae 
Glossiphorudae Leuctridae Simulidae Odontoceridae 
Perlodidae Elmidae (larvae, narrow) Tipulidae Corixidae 
Chloroperlidae Helodidae   Dytiscidae (larvea) 
Cordulegasteridae Heptegeniidae   Ephemerellidae 
Dytiscidae (adult) Hydropsychidae   Gerridae 
Elmidae adult Leptophlebiidae   Neuroptera 
Elminthidae (larvae, wide) Limnephilidae   Oligochaeta 
Goeridae Polycentropodae   Veliidae 
Hygrobatidae       
Isopoda       
Leptoceridae       
Nemouridae       
Psidium       
Rhyacophilidae       
Valvatidae       

 

Few species appear to be highly influenced by a single environmental variable. 

Instead, the majority of these samples appear to be associated with a wide suite of 

variables causing taxa points to be orientated towards the centre, rather than set out 

in the extremities of the ordination.  

 
This analysis indicates that both Chironomidae and Corixidae occur positively 

correlated with axis one, and are associated with high values for attributes such as 

sewage fungi cover, silt/clay cover, conductivity, temperature, corridor width and 

percent riparian vegetation overhang. Isopoda and Simulidae are similarly positioned 

positively on axis two, which are associated with variables such as light, algae and 

bryophyte cover. Additionally, Hygrobatidae is negatively positioned away from these 

same variables and orientated more closely with increasing pH.  

 

Overall, however, the majority of taxa are situated close to the centre, with the 

majority of taxa also negatively positioned against axis one. Table 5-5 illustrates the 

correlations of environmental variables with ordination axes. From the table, it is 

possible to suggest that the majority of taxa have a negative association with axis 

one (therefore associated with increasing stream width, depth, pebble cover, sand 

cover, pH, corridor tree diversity, tree height and altitude). 
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Table 5-5. Inter-set correlations of environmental variables of the Cree catchment 
with the ordination axes of CCA 1 (Fig 5.1). Significance of correlations indicated 
by eigenvalues. Only axes one (horizontal) and two (vertical) are illustrated 
within the CCA ordination. 
      NAME     AX1       AX2       AX3       AX4    
  LIGHT     0.0074 0.0774 -0.0992 0.1121 
  TEMP      0.824 -0.0558 0.1487 -0.2305 
  COND      0.6341 0.1336 0.1086 -0.112 
  WIDTH     -0.1769 -0.1262 -0.1099 0.0759 
  DEPTH     -0.0761 0.0539 0.315 0.2689 
  BO.CO     0.078 0.1256 -0.2023 -0.3712 
  PEB       -0.5654 -0.0284 0.1771 0.2045 
  SAND      -0.1925 0.1234 0.328 0.3804 
  SIL.CL    0.8707 -0.1882 -0.148 0.0397 
  pH        -0.2699 -0.3765 0.1945 -0.0096 
  ALGAE     0.0914 0.5327 -0.245 0.223 
  SEWAGE    0.7233 0.2725 -0.2879 -0.0765 
  BRYO      0.1626 0.2594 -0.0902 -0.1296 
  NO.TREE   -0.1091 0.1091 0.1407 -0.3139 
  OVHANG    0.5512 -0.2662 -0.1433 -0.1264 
  CORW      0.2859 -0.1679 -0.1829 0.2024 
  TREEHT    -0.164 0.1949 0.1708 -0.1341 
  ALT       -0.1506 -0.0865 -0.6002 -0.2298 

 

5.6 Bladnoch Catchment 
 
A species ordination plot for the Bladnoch catchment is shown in Fig 5.2. This 

analysis was of particular interest as it allowed species/community variation to be 

explored without the confounding variable of altitude, as sites from the Cree 

catchment were generally of higher altitude then the Bladnoch.  
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Fig 5.2. CCA2 indicating the relationship of Bladnoch only species with associated 
environmental variables. Colouration signifies TWINSPAN groupings as classified 
in Table 5-6 Taxa positioned within circled area have been identified at the corner 
of the ordination for clarity. 
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Table 5-6 Species assemblage groups as defined by TWINSPAN. Significance of 
group 1 and 2 delineation created an eigenvalue of 0.420. Delineation of groups 3 
and 4 produced the eigenvalue of 0.595. 
Group 1 (blue) Group 2 (black) Group 3 (red) Group 4 (yellow) 
Chloroperlidae Baetidae Elmidae (larvae narrow) Ancylidae 
Glossiphorudae Nemouridae Ephemerellidae Gammarus 
Polycentropodae Chironomidae Hygrobatidae Isopoda 
Cordulegasteridae Dytiscidae (adult)   Leptoceridae 
Dytiscidae (larvea) Helodidae     
Elmidae adult Heptegeniidae     
Elminthidae (Larvae wide) Leuctridae     
Gerridae Neuroptera     
Hebridae Oligochaeta     
Hydropsychidae Psidium     
Limnephilidae Tipulidae     
Noteridae Velidae     
Perlodidae       
Rhyacophilidae       
Simulidae       
Siphlonuridae       
Physidae       
Valvatidae       
 
 
A Monte Carlo test revealed that the significance of the Bladnoch ordination was 

lower than for the Cree ordination (which yielded P = 0.005) with a P value of 0.01. 

The majority of the variation within the ordination was explained along axis one 

(eigenvalue 0.530) and axis two (eigenvalue 0.341). 

 

Consideration of the inter-set correlations (Table 5-7) indicates at the Bladnoch has a 

large number of environmental variables which influence the invertebrate community 

assemblage. For the purposes of this analysis, variables with an eigenvalue over 0.3 

(or – 0.3) were deemed significant. 
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Table 5-7 Inter-set correlations of environmental variables of the Bladnoch 
catchment with the ordination axes of CCA 2 (Error! Reference source not found.). 
Significance of correlations indicated by eigenvalues. Only axes one (horizontal) 
and two (vertical) are illustrated within the CCA ordination. 

  NAME     AX1       AX2       AX3       AX4    
  LIGHT     -0.3337 -0.1255 -0.0088 -0.091 
  TEMP      0.1042 0.7415 0.0592 -0.3756 
  COND      -0.0068 0.8119 0.3815 0.1024 
  WIDTH     0.048 -0.1002 -0.1323 0.3708 
  DEPTH     -0.1093 0.1083 -0.0151 0.5015 
  BO.CO     0.3639 0.349 -0.1432 0.0287 
  PEB       -0.1378 -0.3879 -0.3049 0.2171 
  SAND      -0.2502 -0.3685 0.4144 0.302 
  SIL.CL    -0.3496 0.061 0.4443 -0.4256 
  pH        0.3092 0.7416 0.2503 -0.1585 
  ALGAE     -0.0904 0.3248 -0.0005 0.2591 
  BRYO      0.1377 0.4637 -0.2946 -0.248 
  NO.TREE   0.707 0.2116 0.2362 0.123 
  OVHANG    -0.212 0.5146 0.2267 -0.2226 
  CORW      -0.5179 -0.1567 0.1195 -0.4862 
  TREEHT    -0.2455 -0.0653 -0.1599 -0.0648 
  ALT       -0.2688 -0.1046 0.0517 0.2411 

 
 
Using these analyses, it is possible to suggest that each of the groups defined 

through TWINSPAN appear to follow specific gradients of environmental variables. 

For example, group one, the largest of the groups, appears to follow a chemical 

gradient of conductivity, pH and water temperature. However, in addition, the 

majority of Group 1 taxa also seem situated close to increasing allochthonous and 

autochthonous energy sources (in the form of % algae and % overhanging 

vegetation). Group 2 is centrally located, and as such, much more likely to contain 

an assemblage with a generalist approach to both feeding and habitat requirements. 

However as a whole, group 2 is negatively associated with axis one, and thus more 

likely to be found in areas of increased tree height, increased cover of silt/clay and 

wider corridors with increased light. Groups three and four are much smaller in 

comparison to the previous two TWINSPAN groups and both are similarly positioned. 

These taxa follow a gradient dominated by increasing over-storey tree diversity.  

 
5.7 Dual catchment analysis 

5.7.1 Species-environmental variables ordination 

 
Error! Reference source not found. shows the species-environment ordination 

plot (CCA3) resulting from the ordination analysis of both catchments combined. This 

permits examination of the wider relationships between individual taxa against the 



Chapter 5. Benthic macro-invertebrates 

 - 183 -  

gradients of environmental variables over a wider spatial scale compared with those 

recorded at each site. Related taxa assemblages have been defined using TWINSPAN 

classification (Table 5-8) and this analysis has been combined with information on 

functional feeding groups for each taxon, in order to examine the question of 

whether environmental factors might be related to feeding behaviour of the species 

assemblages present in the target streams.  

 

 

Error! Reference source not found. 
Fig 5.3: CCA3 - Ordination of Species/Environmental Variables. TWINSPAN 
analysis of ordination assemblage has defined four groups. Coloration of dots 
indicates group classification. The defined contents of each group are detailed 
within Table 5-8. The majority of the variation in the ordination is explained in 
axes one and two. Axis one (horizontal) explained the greatest proportion of the 
variation in the ordination with an eigenvalue of 0.559. Axis two (vertical) has an 
eigenvalue of 0.303. Using the Monte Carlo permutation test, the ordination was 
found to be statistically significant (P= 0.005). Areas with closely positioned dots 
have been circled into groups (1, 2 and 3) and their contents labelled at the sides 
of the ordination to ease with identification taxa positioned within the centre of 
the ordination. 
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Table 5-8 TWINSPAN species classifications. The creation of groups 1 and 2 
produced and eigenvalue of 0.354. Creation of groups 3 and 4 produced an 
eigenvalue of 0.330. 

Group 1 
(black)   

Group 2 (light 
blue)   Group 3 (red)   

Group 4 
(yellow)   

Chloroperlidae P Baetidae CG Chironomidae CG Ancylidae SC 
Nemouridae SH Polycentropidae FC Oligochaeta CG Gerridae P 
Elmidae (adult) SC Dytiscidae (adult) P Corixidae P Siphlonuridae CG 

Goeridae SC Glossiphonidae P 
Dytiscidae 
(larvae) P Cordulegasteridae P 

Helodidae CG Heptegeniidae SC Hygrobatidae P 
Elmidae (larvae 
wide) SC 

Hydropsychidae FC Leuctridae SH Neuroptera P 
Elmidae (larvae 
narrow) SC 

Leptoceridae CG Limnephilidae SH Noteridae P Ephemerellidae CG 
Perlodidae P Simulidae FC Valvatidae SC Gammarus SH 
Rhyacophilidae P Tipulidae P Velidae P Hebridae P 
            Isopoda SH 
            Leptophlebiidae CG 
            Odontoceridae SC 
            Pisidium FC 
            Physidae SC 

 
The abiotic variables such as altitude, pH, conductivity, water temperature and 

proportion of small substrate size (specifically % silt/clay, % pebbles) have a greater 

importance in influencing assemblage structure as indicated by the increased length 

of the arrow. In addition, biotic factors such as percentage sewage cover and % 

algal cover show strong significance to invertebrate taxa variation.  

 

Combining the TWINSPAN groups with Functional Feeding Groups (FFGs) defines the 

type of feeding mechanisms dominant with each of the four TWINSPAN defined 

assemblage groups. By combining this information with the environmental data 

(through CCA), the specific community structure and associated morpho-behavioural 

feeding adaptations can be assessed against gradients of changing environmental 

variables.  

 

Table 5-9 shows all the taxa (mainly at family level, but with some genera included 

separately), and with life-cycle stages separately assigned, recorded during the 

project sampling period and their assigned FFGs. 

 

 

 



Chapter 5. Benthic macro-invertebrates 

 - 185 -  

 
Table 5-9. Taxa sampled and associated FFGs following Merrit and Cummins 
(1996). SH = Shredders, FC = Filtering Collectors, CG = Collector Gatherers, SC = 
Scrapers and P = Predators. Classes assigned using codes A = Arachnids, B= 
Bivalves, C = Crustaceans, G = Gastropods, H = Hirudinea, I = Insecta and O = 
Oligochaeta. 
Taxa FFG Class Code Taxa FFG Class Code 
Ancylidae SC G Isopoda SH C 
Baetidae CG I Leptoceridae CG I 
Chironomidae CG I Leptophlebiidae CG I 
Chloroperlidae P I Leuctridae SH I 
Cordulegasteridae P I Limnephilidae SH I 
Corixidae P I Nemouridae SH I 
Dytiscidae adult P I Neuroptera P I 
Dytiscidae larvae P I Noteridae P I 
Elmidae larvae narrow SC I Odontoceridae SC I 
Elmidae adult SC I Oligochaeta CG O 
Elmidae larvae wide SC I Perlodidae P I 
Ephemerellidae CG I Physidae SC G 
Gammarus SH C Polycentropidae FC I 
Gerridae P I Pisidium FC B 
Glossiphonidae P H Rhyacophilidae P I 
Goeridae SC I Simulidae FC I 
Hebridae P I Siphlonuridae CG I 
Helodidae CG I Tipulidae P I 
Heptegeniidae SC I Valvatidae SC G 
Hydropsychidae FC I Velidae P I 
Hygrobatidae P A     
 

Interestingly, the most obvious observation which can be made from this data is that 

despite some gradients in potential food sources (e.g. % algal cover and % sewage 

cover) being important (as defined though the relatively long arrow length), all 

TWINSPAN groups (Table 5-8) appear to have a wide range in FFGs represented. 

The lack of distinctly dominant feeding groups within any one TWINSPAN group 

suggests that a wide range of energy resources is available along the environmental 

gradients on which the groups are positioned. This is of particular interest and 

relevance when considering the measured corridor conditions associated with 

variation in corridor management strategies.  Increased light, corridor width or tree 

height does not appear to influence the community structure to the extent that any 

FFG becomes dominant. 

 

Addressing taxa FFGs; with the exception of Ancylidae (scraper) and Corixidae 

(Predator), all the outlying taxa of the CCA ordination are either shredders or 

collectors. This would suggest detrital energy sources (primarily associated with 
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these guilds) are also associated with these environmental gradients with which each 

of these taxa is correlated. Gammarus and Isopoda are most closely positively 

correlated with riparian tree species diversity. As both these taxa are shredders, not 

unexpectedly, it appears that CPOM is the key source of carbon available within 

diverse broadleaf dominated streams. However negatively correlated with that axis is 

the Simulidae; a filtering collector resulting in confusion as to why this taxon appears 

to have a close association with the increasing gradient of algal abundance.  

 

The lack of any dominant scraper feeding guilds present in the ordination diagram 

suggests that the algal cover is not the primary food resource assimilated. Instead, 

the remaining outlying taxa, positively correlated with axis one, are detritus based 

feeders, related to a set of variables which suggest more eutrophic conditions (as 

indicated by the higher levels of algal cover (ALGAE), sewage fungus cover 

(SEWAGE), temperature (TEMP) and conductivity (COND) as well as an association 

with sedimented substrates (SIL/CL) and a greater abundance of overhanging 

vegetation), yet none of the taxa appear from their FFG to utilise the autotrophic 

production often associated with eutrophic conditions.  

5.7.2 Site-environmental variables ordination 
 

Pooled catchment data was used to produce a CCA considering distribution of 

assemblages (as defined as the sites of which they were sampled from). Fig 5.4 

combined CCA ordination with TWINSPAN (Table 5-10) in order to define comparable 

sites according to the assemblage of species within them. CCA4 (Fig 5.4) illustrates 

evidence of separation (and low level of group mixing) of TWINSPAN groups along 

environmental gradients.  
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Fig 5.4. CCA 4 – Ordination of sites (as a function of the specific assemblages of 
species found at the site) with environmental variables. Colouration of site 
markers refers to TWINSPAN classification (Table 5-10) of invertebrate sample 
groups. Dark blue = Group1, yellow = Group 2, red = Group 3 and light blue = 
Group 4. For both the ordinations (CCA1 and CCA2), most of the variation in the 
ordination is explained in axes one and two. Axis one (horizontal) explained the 
greatest proportion of the variation in the ordination with an eigenvalue of 0.559. 
Axis two (vertical) has an eigenvalue of 0.303. Using the Monte Carlo permutation 
test, the ordination was found to be statistically significant (P= 0.005).  
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Table 5-10 Groups 1 – 4 (CCA1) defined by TWINSPAN analysis through 
differentiation of invertebrate species assemblages.  Seasonal sampling point 
defined though lettering of months (J = July, M= March, N = November, and S = 
September) and year indicated by numbering (3, 4 or 5 for 2003, 2004 and 2005 
respectively) Bladnoch catchment sites are highlighted in grey. 
Group 1 Group 2 Group 3   Group 4   
SPPBRJ5     BBBS5       BUTBRN3     PCF2S4       AIRS5       BUTBRM4     
SPPBRM5     BBMCFJ5     BUTOPN3     PCORN3      BBMCFM5     BUTOPM4     
SPPSHJ5  BBMCFS5     GT1BRN3     PCORS5       BBMCOS4     GT1BRM4  
SPPSHM5     BBMOPJ5     GT1BRS4     WOCS5 BBMOPM5     GT1COM4     
SPPBRS5     BBMOPS5  GT1COJ5     AIRM5      BBMOPS4     GT1COM5     
SPPSHS5     BBMSHJ5     GT1CON3      BBBM5       BBMSHM5     GT1SHM4     
T33CF1S5    BBMSHS5     GT1COS4     FILIM5      BBMSHS4     GT1SHM5     
T33SHS5  FILIS5      GT1SHN3     PCF2S5  BUTBRS4     LAGOPM4     
 GT1SHJ5     GT1SHS4  T33CF1M5   BUTOPS4     LAGSHN3     
 GT3J5    GT1SHS5     T33CF2M5   GT1COS5        PCF1M5      
 PCF1J5      GT2N3       T33CF2S5 LAGOPS4  PCF1S4  
 PCF2J5      GT2S4       T33SHM5     LAGSHM4     PCF2M4      
 PCORJ5      GT3M5       WOCM5  LAGSHS4        PCF2M5      
 PCORS4      GT3S5   PCF1N3      RBRJ5 PCORM5      
 RBRS5       HMBN3  PCF1S5       ROPJ5       RBRM5       
 ROPS5    HMBS4       PCF2N3      RBRS4     RBRN3       
 ROPS4     LAGOPN3       RSHS4     ROPM5    
 WOCJ5           RSHJ5       ROPN3       
 AIRJ5           RSHS5 RBRM4     
 BBBJ5           RSHN3       ROPM4     
 FILIJ5            
 T33CF1J5          
 T33CF2J5          
  T33SHJ5          

 
 
The CCA ordination of sites (Fig 5.4) suggests that the sites are grouped not by site 

type characteristic (i.e., open, corridor, shaded, clear-felled, or broadleaf) but 

primarily by river site location. ANOVA testing confirmed that there was no significant 

difference in overall taxa diversity in any of the site types (n = 106, P >0.05). 

However, there is some evidence of seasonal changes in assemblage structure. Sites 

sampled in mid-summer are found more commonly towards the top of the CCA 

ordination and included mainly sample dates/sites from TWINSPAN groups 1, 2 and 

3. Additionally, these assemblages also appear to be associated with low altitude, 

high over-storey tree diversity, higher pH, and higher conductivity.  

 

Spring and autumn samples are found more commonly in TWINSPAN group 4 

(situated towards the bottom left of CCA1). Group 4 is the largest of the groups and 

contains many of the sites within the upper Cree catchment. They therefore tend to 

be associated with greater altitude, and, interestingly, increased light. In addition the 
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occurrence of species associated with lower pH values is evidence for the presence 

of an indicator community characterised by acid tolerant taxa. TWINSPAN group 2 is 

interesting as it contains both Cree and Bladnoch sites. Group 2 sites are situated 

towards the right of the CCA ordination, and dominated by July and September 

samples. These species assemblages are therefore associated with increasing 

temperature, conductivity, and autochthonous/allochthonous production (% algae, 

% sewage and % overhanging riparian vegetation). Thus it can be inferred that 

these sites (and associated communities) have the highest level resource availability. 

The clear seasonal trends associated with the species composition ordinations 

suggest that seasonality is a confounding variable which needs to be considered 

when exploring relationships between invertebrate community composition and 

gradients of environmental change.  

 

It is noteworthy that light is shown on the ordination as a relatively short arrow, 

indicative of an environmental gradient which plays only a minor role in constraining 

the ordination analysis, and hence likely to be of little importance in predicting the 

positions of site-groups within the plot. Therefore, it seems inappropriate to relate 

light intensity directly to autochthonous resource availability despite many studies 

suggesting direct and measurable influences by light intensity variability on in-stream 

algal abundance (Hill et al., 1995), and the highly influential role associated in 

defining macro-invertebrate community composition. 

 

Overall analysis of the Cree and Bladnoch separately revealed that the Cree sites are 

of significantly greater altitude (P < 0.001) and have significantly lower mean pH (P 

< 0.001). In addition, overall diversity in terms of both species richness (P < 0.001) 

and Shannon-weiner index (H) (P < 0.001) was greater in the Bladnoch sites. 

Therefore, it appears that much of the variation in diversity across the two 

catchments was in response to chemical (pH) and physical (altitude) variables, on 

which corridor design modification cannot have a significant impact. The main drive 

of this study was to improve knowledge on forces driving diversity within corridor 

habitats and determination of optimal corridor design and management practices. 

Therefore, despite the need to increase sample size (and as a consequence, the 

applicability of the results to alternative geographical locations), analysis of each 

catchment in isolation, reduces the overall variance of any relationships and the 

effect of confounding variables (e.g. pH and altitude). As such, clearer information on 
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the role of more localised (corridor) physical variables is provided as the sites 

analysed collectively have similar chemical characteristics. 

5.7.3 Functional Feeding Groups 
 
Using invertebrate Functional Feeding Groups (FFGs) as indicators provides some 

information on the potential food sources available and the types of food sources 

being assimilated within each site. Overall abundances of individuals within the five 

main functional feeding groups (Groups and associated taxa are outlined in Table 

5-9) for both catchments is shown here in Fig 5.5. 
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Fig 5.5. Total abundance of individuals within the Functional Feeding Groups. CG 
= Collector Gatherer, FC = Filtering Collectors, P = Predators, SC = scrapers and 
SH = Shredders  
 
 
From Fig 5.5, shredders are significantly more abundant numerically than any other 

group (ANOVA, P < 0.001) with 7017 individuals caught in total and a mean per 

sample of 66.19 (± 0.6 S.E). The scraper guild shows the lowest mean relative 

representation (ANOVA, P < 0.001) compared with other guilds within the samples 

with a total abundance over both catchments and all sampling periods of only 473 

individuals and a mean of only 15.5 (± 0.02 S.E) individuals per sample.  
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Collector Gatherers (CG) 
 

Collector-gathers display a wide range of morphological and behavioural adaptations 

in order to collect and intake FPOM, predominantly from the terrestrial organic pool. 

The most numerically abundant taxa within this feeding group were the Baetidae and 

Chironomidae with 1072 and 2135 individuals respectively. The total abundance of 

these two taxa combined accounted for 86.1% of the individuals in the feeding guild. 

 

 

Filtering Collectors (FC) 
 
There were only four taxa present within this group, however, the group did include 

one of the most abundant of the taxa within the study; the Simulidae.  The larvae of 

the black fly accounted for 62.7% of individuals within the group, with a total of 

1234 larvae sampled. 

 

Predators (P) 
 
The predator group were, as expected for secondary consumers, higher up the food 

chain, numerically less abundant than primary consumer species. The most prevalent 

taxon was the Perlodidae with 534 individuals. Yet taxonomically, this group was the 

most diverse with a total of 15 taxa within the guild, as opposed to 8 taxa for CGs, 4 

for FCs, 8 for SCs and 6 for SHs.  

 
Scrapers (SC) 
 

Scrapers are predominantly herbivorous species, often feeding on epilithic and 

epiphytic algal growths and biofilm material. Their utilisation of these food resources 

means that the suite of environmental variables which may influence their diversity 

and relative success, is likely to be very different to many of the other feeding guilds 

present. 

 

In total 8 taxa were identified within the scraper guild, however, this was the least 

numerically abundant of the entire feeding guild with only 473 individuals found in 

total. The most abundant taxon represented within the guild was Heptegeniidae with 

a total of 244 individuals.  

 
Shredders (SH) 
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Abundance of individuals within the shredder guild was the highest with a total of 

7017. The two dominant taxa within this group were the Leuctridae and Nemouridae 

(Plecoptera) totalling 91.7 % of all of the individuals in this guild.  

 

5.7.4 Regression Analysis 
 
Multivariate ordination, as used above, allows us to establish testable hypotheses on 

the relationships between macro-invertebrate assemblage occurrences across 

environmental gradients. To explore these relationships in more detail, and to 

develop predictive models regarding the observed empirical relationships, regression 

analysis is an appropriate approach.  

 

In order to increase sample size and widen the scope for application of any 

relationships, data from both catchments were analysed through regression analysis. 

Yet the varying responses in community assemblage meant that in order to maximise 

predictive power, only the environmental variables significant and common to both 

catchments were considered. Thus by using variables identified in the CCA 

ordinations (from inter-set correlation eigenvalues) ( 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 5-11), the role played in influencing the diversity of taxa (measured by the 

Shannon-Weiner index, H) within all sites was explored using regression analysis. 

Best-fit trend-lines were applied to data. Both linear and polynomial trend-lines were 

explored; the specific one used below is determined by which yielded the greatest r2 

value. 
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Table 5-11. Environmental variable significances defined through individual 
catchment CCA ordination correlations of greater than 0.3/-0.3. Common 
significant variables are used in linear regression analysis below. 

NAME CREE   BLADNOCH   BOTH 
      AX1       AX2         AX1       AX2       
  LIGHT     0.0074 0.0774 -0.3337 -0.1255  
  TEMP      0.824 -0.0558 0.1042 0.7415 x 
  COND      0.6341 0.1336 -0.0068 0.8119 x 
  WIDTH     -0.1769 -0.1262 0.048 -0.1002  
  DEPTH     -0.0761 0.0539 -0.1093 0.1083  
  BO.CO     0.078 0.1256 0.3639 0.349  
  PEB       -0.5654 -0.0284 -0.1378 -0.3879 x 
  SAND      -0.1925 0.1234 -0.2502 -0.3685  
  SIL.CL    0.8707 -0.1882 -0.3496 0.061 x 
  pH        -0.2699 -0.3765 0.3092 0.7416 x 
  ALGAE     0.0914 0.5327 -0.0904 0.3248 x 
  SEWAGE    0.7233 0.2725      
  BRYO      0.1626 0.2594 0.1377 0.4637  
  NO.TREE   -0.1091 0.1091 0.707 0.2116  
  OVHANG    0.5512 -0.2662 -0.212 0.5146 x 
  CORW      0.2859 -0.1679 -0.5179 -0.1567  
  TREEHT    -0.164 0.1949 -0.2455 -0.0653  
  ALT       -0.1506 -0.0865 -0.2688 -0.1046  

 

Interestingly, none of the riparian zone environmental variables, easily influenced by 

modification of corridor design, were found to be significant for both catchments in 

determining invertebrate assemblage structure. However, algal cover as estimated 

visually during sample visits arguably provides the best biotic link to the corridor 

characteristics; specifically light availability (as influenced by corridor design), as 

required for maximum algal photosynthesis and production (e.g. Allan at al., 1995). 
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However as seen in Fig 5.6, there is a negative polynomial relationship between 

increasing algal cover and invertebrate diversity (H). This is consistent with the 

results from Fig 5.3, where the majority of taxa are positioned away from a gradient 

of increasing algal abundance. This would suggest that the increase in 

autochthonous autotrophic production does not increase invertebrate diversity. As 

such, management strategies which aim to open up corridors and maximise light 

availability, may have the opposite effect on invertebrate diversity. The greatest 

diversity of invertebrates across both catchments appears to be found between the 

range of 15 and 40 % PAR. However the low r2 value in the relationship indicates a 

large amount of variance in the relationship and relatively little power of 

predictability. This result may be due to the dual-catchment analysis approach. The 

low r2 value lessens the applicability of this result for management purposes. 

However, despite the variance, this data indicates that high diversity can be achieved 

with very low levels of visually apparent algal cover. The result could either be 

related to discrete algal cover (thus, inaccuracy of estimation method), or an 

uncoupling of invertebrates and autotrophic biomass. 

 

 
 

Fig 5.6. Polynomial curve describing relationship of estimated % algal cover and 
aquatic invertebrate taxa diversity (H). 
 
Considering this data in conjunction with the designation of functional feeding groups 

to taxa; specifically the consideration of the relatively significant low number of taxa 

from within the scraper feeding guild (which are primarily herbivorous), strengthens 
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the suggestion that autotrophic production is utilised minimally. Thus, despite 

significant variability of autotrophic resource availability, and the comparatively high 

nutritional value of algal biomass, compared with allochthonous detritus (Taylor and 

Roff, 1984), algal cover does not appear directly to influence diversity or distribution 

of herbivorous benthic invertebrate taxa.  

 

Therefore, it appears important to consider variables which will contribute to the 

quantity and quality of allochthonous resources (which appear to be the dominant 

resource utilised). As such, the functioning rate and capacity of many feeding groups 

will be dictated by the rate and efficiency of biological processing of the 

allochthonous material. Many breakdown processes are influenced by the abiotic 

conditions of the stream. The temperature of the system is important to processing 

rates (e.g. Hynes and Kaushik, 1969; Carpenter and Adams, 1979). Therefore, 

considering the role of stream temperature has obvious relevance to potential 

processing rate of all food groups and thus, potentially nutritional quality, and overall 

utilisation of allochthonous material (Rounick and Winterbourn, 1982; Bärlocher, 

1985). From Fig 5.7, there is a highly significant (P<0.001, n = 106) polynomial 

relationship between taxa diversity and stream temperature.  However the 

applicability of this data to reflect the corridor characterises and the role of shading 

on mean stream temperatures is questionable: such point samples are likely to be 

highly variable and potentially influenced by very short term temporal variability, not 

withstanding any season effects. However, despite this, many invertebrate taxa 

appear to be more prevalent in the more intermediate conditions (approximately 

15OC) rather than either extremity. 
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Fig 5.7. Polynomial relationship of invertebrate diversity (H) and water 
temperature (OC) as measured on site during seasonal sampling trips. 
 
From Fig 5.8, it is possible to see the positive linear relationship between 

conductivity and macro-invertebrate diversity (H). Although significant, the low r2 

value suggests that relatively little of the variation in this relationship is explained by 

the linear regression. Therefore, the predictive ability of any model produced using 

this relationship would be low. Further, it is likely that a number of alternative 

variables are influencing the diversity of invertebrate species across both 

catchments. The high variance of the relationship may be related to seasonal effects, 

as samples were taken throughout the year. However, the majority of invertebrate 

taxa have a life-cycle of at least one year (e.g. Lamouroux et al., 2004). Therefore, 

one would expect the community assemblage (and associated diversity) would 

reflect the mean habitat conditions present during the specific individual’s life cycle, 

and not just the conditions of the sample period. This characteristic is one of the key 

benefits of using invertebrate sampling for water quality assessment as an 

alternative to spot measures of physical and chemical variables.  
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Fig 5.8. Positive linear relationship of macro-invertebrate diversity (H) and 
conductivity (µS cm-1) 
 

Similarly, increasing pH appears to play a role in determining invertebrate diversity 

(Fig 5.9). The r2 again indicates that much of the variation is not explained by this 

linear relationship, but, the relationship is still significant, with most diverse 

communities being associated with streams with a mean pH greater than 6.5.  
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R2 = 0.0763, n = 106, P = 0.004
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Fig 5.9 Influence of pH on invertebrate diversity (H) 
 
 
Here Diversity of the invertebrate population was also found to have links with 

prevailing substrate size prevalence (Fig 5.10). A linear relationship derived for 

pebble cover (P < 0.001) suggests that there is a tendency for invertebrate diversity 

to increase with increasing prevalence of pebbles (16-64mm) in the substrate.  
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Fig 5.10 Positive linear relationship between estimated pebble substrate cover 
and benthic macro-invertebrate diversity. 
 

The other variables which were deemed to be significant for both catchments (% 

silt/clay and % overhanging vegetation) were not found to be significant in any 

regression analysis performed (P = 0.7357 and P = 0.82 respectively) and therefore, 

appear not significant on a wide-scale, but rather on individual catchment-scale 

effects. 
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5.8 Discussion 

5.8.1 The Cree Catchment 
 

Analysis of the Cree catchment individually, suggested that the most significant 

variables to benthic invertebrates were temperature, conductivity, small sediment 

size (pebble/silt/clay cover), pH, sewage fungus, overhanging riparian vegetation, 

corridor width and to a lesser extent altitude. However, there is relatively little 

comparable significance in the role of the basic corridor features in explaining 

variation in benthic macro-invertebrate species assemblages. The most significant of 

the physical variables which one could describe as easily manageable, as far a forest 

corridor design features are concerned, appears to be mean corridor width. However 

even this still produced a shorter CCA arrow than many other variables, with a 

relatively low first axis correlation of less than 0.3. However, consideration of the 

increased significance of overhanging vegetation combined with increasing corridor 

width and increasing algal cover suggests that there is an influence gained from 

increased bank-side and in-stream light levels (to allow for this high primary 

productivity). However, the axis correlation for light individually is very low (Table 

5-4). Therefore, the role of light in directly influencing invertebrate populations 

directly is questionable in the Cree catchment. This result is comparable to findings 

presented in Chapter 4; for autochthonous production: where corridor light levels 

could not always be used to predict autochthonous production. The results here 

suggest that on a catchment scale, the autochthonous production appears to be 

either light independent or not light limited. 

  

However, as discussed previously, the autotrophic component of periphyton biomass 

is hard to assess visually and thus, without wide-scale stoichiometric and chlorophyll 

measures across the catchment sites, it would be difficult to assess accurately the 

food resource availability and thus predict invertebrate community response. 

Environmental agency habitat assessment often includes visual inspection of the 

algal and sewage content. The results gained here could be used to argue that 

although physical/chemical measurements of the corridor habitat alone provide 

limited information about resource availability, they are also not subject to the same 

visual inspection inaccuracies as visual inspection of periphyton/algal cover.  
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Many studies have shown that resource limitation within afforested catchments is the 

overwhelming factor involved in limiting diversity within similar habitats (e.g. Dobson 

and Cariss, 1999). However, within ordinations carried out in this chapter, the 

majority of taxa tended to be positioned in the opposing direction to increasing 

autochthonous production (algae and sewage fungus cover).  However, in the case 

of the Cree and dual catchment ordinations, reduced correlation between diversity 

and autochthonous material may have been strongly influenced by the inclusion of 

the BB sites and the confounding effect of the felling event within the Black Burn 

sites in winter spring 2004/2005. Specifically, despite an increase of periphyton 

biomass (see Chapters 3 and 4) the potentially detrimental influence of habitat 

disturbance on community composition may have reduced coupling of autochthonous 

cover and invertebrate diversity, and skewed the ordination.  

 

The felling event resulted in an abundance of organic matter availability within the 

benthos. Further, biodiversity and evenness dropped within BB sites. This sharp shift 

in community composition, habitat characteristics and associated reduction in 

diversity may have resulted in a negative correlation between most taxa and the 

highest in-stream periphyton cover estimations. Consequently, it is likely that the less 

important variables within the ordination may have been overshadowed by this event 

and were, in fact, likely be playing a greater role in influencing community 

composition, than was suggested by the ordination.  

 

Although the Cree ordination may be of applicability at catchment-scale, invertebrate 

taxa diversity appears to correlate with increasing corridor width, tree diversity, 

increasing cover of intermediate sized substrates (pebbles), increasing pH, increasing 

stream width and increasing stream depth.  However, as the lengths of these arrows 

within the ordination are low, it is unlikely that any of these variables strongly 

influence the community composition. Further, the complexity of the ordination, the 

short length of these positive associated gradient arrows, and the lack of any single 

dominating environmental variable, suggests high variance in any positive 

relationship between any single habitat parameter and invertebrate community 

composition. This result means that the predictive power of any one of the 

environmental variables mentioned above is low. Further, utilisation of these 

variables in modelling the response of corridor design on in-stream diversity is likely 

to have low powers of prediction and high variance. 
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As the majority of Cree taxa were positioned on the opposing side of the ordination 

to the variables of greatest influence (as illustrated by the longer arrow lengths) 

there was the suggestion that the majority of invertebrate diversity was negatively 

influenced by gradients of either autochthonous biofilm production or ground-flora 

vegetation. However, as the cluster of taxa is positioned away from the increasing 

gradients of these variables, there does not appear to be a specific limitation of 

resources driving the position of the invertebrate taxa. Regression analysis of algal 

resource cover and taxa diversity, (Fig 5.6) although significant, shows a polynomial 

relationship which did not suggest a specific limitation of autotrophic resources. 

Additionally although overhanging vegetation produced significant correlations within 

both catchments, the regression analysis proved insignificant. Thus, the direct 

release of allochthonous material from overhanging ground flora vegetation does not 

appear to influence invertebrate diversity either. However from analyses described in 

Chapter 2, this result was contradicted as invertebrate diversity was positively 

correlated (P <0.001) with vegetation biomass from the bankside and 3 meter 

riparian zone sampling. This discrepancy between the two analyses strengthens the 

argument to suggest that the influence of the BB felling on the Cree ordination has 

confounded the relationships observed for the entire catchment. Therefore, 

consideration of the Bladnoch catchment in isolation may prove more useful in 

isolating the variables important to invertebrate community composition and 

diversity. 

5.8.2 The Bladnoch Catchment 
 
The isolated analysis of the Bladnoch catchment (CCA2 - Fig 5.2) indicated that the 

importance and influence of corridor features appears greater than was indicated in 

the Cree ordination. Focusing on the Bladnoch alone has revealed the importance of 

both corridor width and over-storey tree diversity in determining the community 

composition of benthic macro-invertebrates.  In addition, the comparable spread of 

taxa across the ordination suggests that there is a greater diversity in the specific 

preferences of taxa to environmental gradients. Many variables appear to be closely 

related, for example, the chemical parameters all follow a similar gradient along axis 

one of the ordination. Further, many of the taxa appeared to follow this gradient of 

increasing pH, conductivity and temperature.  
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Temperature regulates the assimilation, respiration and overall populations of 

microorganisms processing detrital food resources, as well as modifying 

photosynthetic rates by primary producers and exerting direct control over 

metabolism of macroinvertebrates (Cummins and Klug, 1979). Due to this, it is 

difficult to separate temperature and food quality as regulators of invertebrate 

growth, population abundance and diversity. Thus within this project, variables which 

have the potential to change water temperature have additional importance in 

respect to the delivery and quality of food resources available to the in-stream 

community. Possible variables influencing temperature which were considered within 

this study include; season, shading by over-storey canopies and altitude. However, 

as the water temperature readings were point source measures, they are potentially 

subject to extreme temporal variation independent of spatial differences dictated by 

corridor cover and shading. The widespread applicability of the measure in this case 

is questionable. Analysis of season-specific sample points indicates clear seasonal 

separation of temperatures (Fig 5.11). This result adds to the evidence to suggest 

that pooling seasonal data causes an increase to variance. Further, the ability of 

invertebrates to integrate the influence of physical variability over their life span 

(often months, even years) may not be applicable to this study, as there is clear 

seasonal variation in diversity (even within a single year).  

 
 

 
Fig 5.11.  Polynomial relationship of invertebrate diversity (H) and water 
temperature (ºC) as measured on site during seasonal sampling trips. Seasonal 
effect indicated through isolation of sampling visits (as indicated on legend). 
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By pooling the seasonal sample data, a polynomial curve of temperature describes 

approximately 10% of the variation in the diversity (H) of invertebrate assemblage 

structure. The data suggest that the greatest diversity of invertebrates is found in 

the temperature range of 10-15oC. Above this maximum, diversity drops, and 

therefore, despite the increased metabolism and food quality which would result 

from these higher temperatures, the optimal temperatures for supporting the highest 

invertebrate diversity were in fact, substantially lower than the maximum 

temperature of 27 ºC (from summer 2005). It is therefore suggested that the 

intermediate temperatures tend to support more communities based on both algal 

and detrital resources.  

 

The disassociation between light and algal production and summer month 

invertebrate samples may be a reflection of the role of deciduous tree canopies in 

shading stream during mid summer months. As a consequence, production and the 

reliance of algal feeding groups may be greater during leaf senescence, in autumn to 

spring (and at lower temperatures/conductivity levels). 

 
 
From the Bladnoch CCA (Fig 5.2), the importance of corridor features becomes 

apparent. Focusing on the Bladnoch reveals the importance of both corridor width 

and over-storey tree diversity in determining the community composition of benthic 

macro-invertebrates. These two variables are situated on opposing sides of the 

ordination, suggesting that the impact of forest diversity is increased with reduced 

corridor widths. There appears to be two main assemblages associated with 

increased tree diversity (namely TWINSPAN groups three and four and in particular 

the Crustacea taxa; Gammaridae and Isopoda). 

 

Unexpectedly, both allochthonous and autochthonous production appear to be 

directly related as indicated by the closely positioned arrows of both algal cover and 

% overhanging ground-flora vegetation, suggesting that the abundance of 

overhanging vegetation is not in exclusion of autochthonous algal production. Unlike 

the Cree catchment where invertebrate abundance does not appear to be positively 

associated with autotrophic or allochthonous resources (or their delivery routes; i.e. 

overhanging vegetation), the greatest diversity of taxa (TWINSPAN groups one and 
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two) appears to be clustered in close proximity to both the main energy resource 

arrows.  

 

Unlike the ordination produced with the Cree sites, most taxa appear to be positively 

correlated with increasing light and corridor width, thus, I can conclude that here 

there is evidence that algal resources are being utilised where available yet 

allochthonous resources are likely to be dominant overall as both algae and light 

have relatively short arrows and the majority of FFGs are not known for algal 

preferences.  

 

Therefore, there is the suggestion of two separate community types, those with a 

preference for narrow corridors and high diversity of over-storey tree species 

(characterised by shredder species such as Gammarus and Isopoda), and those 

areas with wider corridors and well-established riparian ground-flora communities. 

The former group benefit from allochthonous inputs from overhanging vegetation 

and light intensities, supporting high algal cover and production levels and as such, 

support the most complex and diverse invertebrate assemblage structure with all 

feeding guilds represented. However, as overall there is a substantial amount of 

variation in the specific preferences of each taxon (as taxa are not positioned closely 

clustered to the centre of the ordination), it is difficult to define an exact optimal 

habitat for producing the most diverse invertebrate community. Thus, to maintain 

and maximise stream invertebrate diversity within a forested catchment, a diversity 

of habitat types which incorporate both open (with productive bankside ground-flora) 

and species-rich forest shade is required. 

 

Substrate size and type has an influence on the type of invertebrate fauna supported 

and as a consequence, the relative diversity of substrate types (and associated 

microhabitats) available within a given area have substantial influence in determining 

the relative diversity and specific community composition of invertebrate fauna. Past 

studies have found a general correlation between increasing substrate size and 

higher diversity of invertebrate fauna (e.g. Allen, 1975). However, within this study, 

a significant linear relationship was found between increasing pebble cover within 

the stream and diversity (Fig 5.10). Additionally, the percentage cover of sand, 

silt/clay and pebbles all appeared to be positively associated with a large proportion 

of the taxa collected. Unlike past studies, % cover of boulders/cobbles cover was 
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orientated away from the majority of taxa of the Cree catchment. However, sampling 

error occurred here with the inclusion of bedrock in the boulders and cobbles 

category. Bedrock provides little shelter and is only important as a potential 

substrate for algal growth (Pennak and Van Gerpen 1947), thus confounding the 

results. 

5.8.3 Pooled catchment data 
 
Pooling the catchments revealed that the significant abiotic differences between the 

catchments appear to confound many of the small-scale corridor design variables 

which were highlighted in the Bladnoch ordination alone. The relative importance of 

these variables and specifically pH and altitude in dictating taxa diversity are 

highlighted in Fig 5.3.  

 

When catchments were pooled, the majority of species were situated towards the 

centre of the ordination and diagonally clustered along a gradient of both axis one 

and two. The orientation of the cluster suggests that species follow a gradient of 

stream width (although this variable has a shorter arrow), conductivity, pH, 

temperature and altitude. There are several distinct outlier taxa; to the right of the 

ordination, the dipteran taxa; Simulidae and Chironomidae, and the water boatmen 

(Corixidae) are all positioned such as to indicate associations with increasing levels of 

algae, sewage fungus, silt/clay cover and altitude. Referring to the site CCA (Fig 5.4), 

these species can be defined as primarily those of the Black Burn. All these taxa 

experienced a population explosion at BB, in 2005. The close association of these 

taxa with algal and sewage fungus abundance was likely to reflect a response to the 

felling event of the upper site in the chain BBCF (winter 2004/05) (described in 

greater detain in Chapter 7, clear-felling).  

 

TWINSPAN analysis split the pooled assemblages into four distinct groups which 

separated themselves along the same diagonal gradient. However, there was no 

such specific separation of the FFGs associated with TWINSPAN groups. Thus, it 

appears that the distribution and specific assemblage structures present in the 

catchments, as a whole, was not directly influenced by either the biotic or corridor 

parameter, which control food type and availability. Rather, at this larger scale, the 

overwhelming control factors appeared to be the physiochemical components of the 

ordination.  



Chapter 5. Benthic macro-invertebrates 

 - 205 -  

 
Fig 5.4 relates the specific assemblages of species at a site with associated 

environmental variables measured at all sites within the two catchments. Similar site 

groups within the CCA were assigned using TWINSPAN (according to the similarity of 

the assemblage present). This dual analysis allowed for the relative similarities 

between catchment sites to be explored and to indicate whether site type, stream, 

catchment or season was most responsible for variation in the invertebrate 

community composition. Four main groups were identified and indicated evidence for 

both catchment separation and also temporal variation. For example, group one was 

exclusively made up of Bladnoch sites, and was orientated towards high pH and 

over-storey tree diversity. Group 2 was dominated by Cree sites and also summer 

sampling visits and, the associated increased in water temperature, % overhanging 

vegetation, sewage cover and conductivity. Co-correlation of these variables 

indicates increased levels of productivity within summer sample sites (associated 

with TWINSPAN group 2). However, as the algal cover arrow is in an opposing 

direction to temperature and the majority of summer samples, it is unlikely that 

autotrophic biomass is significantly increased in summer, or significantly limited in 

winter. The fact that summer samples and increased temperature cannot be directly 

related to increased algal production suggests that despite the potential for greater 

algal production during summer months, these assemblages are more influenced by 

the greater detrital quality and conditioning.  

 

Group three was not separated by catchment location as sites of both catchments 

were grouped together. Instead, seasonal variation (only spring and autumn samples 

found) appeared to be more important in distinguishing the group from the rest of 

the ordination.  Group 4 was similarly made up of primarily spring/autumn samples. 

Yet, there was also catchment specific variation as samples were Cree only. The 

seasonal separation of the sites was unsurprising given the fact that both these latter 

groups were associated with low conductivity and low stream water temperature. 

Within all the TWINSPAN groups there is a general mix of all corridor site types. As 

site types are not obviously grouped within the ordination, it is suggested the nature 

of the short scale changes in corridor design and the nature of riparian vegetation, 

has substantially less importance in determining community assemblage structure 

than the wider scale differences between the physio-chemical characteristics of 

different streams, and more especially different catchments. Consideration of 
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Bladnoch alone (Fig 5.12), removed the confounding effects of altitude, pH and the 

felling event, associated with the Cree. This analysis indicated that although there is 

separation of sites towards inter-river groupings, the majority of sites were still not 

distinguished by their specific riparian characteristics/site type. Therefore, it was not 

possible to suggest that the larger catchment-scale variables were overshadowing 

site-specific variation. 

 
Error! Reference source not found.Fig 5.12 Isolated analysis of Bladnoch site 
assemblages (Monte Carlo test (95% confidence) reveals significance of ordination: 
– P = 0.04). 
 
 
The role of coniferous forestry in causing or intensifying acidification in freshwaters 

due to their ability to intercept atmospheric acidifying pollutants is well documented 

(e.g. Harriman and Morrison, 1982). However, none of the CCA ordinations clearly 

illustrate this effect. Specifically, there was no correlation between increasing acidity 

and proximity of forest (narrower corridors). Therefore, the role of conifers here, in 
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accentuating acidity appears to be a general trend and not one which can be related 

directly to the specific design of the coniferous corridor. Thus, it is concluded that 

the acidifying effect is wide ranging and may be more a consequence of upstream 

and/or upper catchment acid deposition. Further, there is no evidence to suggest 

that modification of corridor design could influence, control or improve levels of 

acidification, despite numerous studies indicating a beneficial effect from riparian 

buffer zones. 

 
The results obtained during this investigation are consistent with those of many 

other studies showing negative correlations between acidified streams and benthic 

macro-invertebrate biodiversity. Noteworthy, however, was that relatively high 

diversity was still found at remarkably low pH ranges. These results suggest an 

abundance of acid tolerant species are able to survive at pH levels down to 4.18. 

Sites where these low pH values were measured were all in the upper most parts of 

the Cree catchment.  The Simulidae, Corixidae and Chironomidae were generally the 

taxa associated with the lowest pH ranges, suggesting a greater tolerance to acidity. 

Past studies have shown similar effects invertebrate communities. For example, 

Sutcliffe and Carrick (1973) and Townsend et al. (1983) both found that in studies of 

acidified streams, samples were often dominated by Diptera and Plecoptera species 

but rarely characterised by abundant populations of grazing invertebrates such as 

Ephemeroptera. Here, the results suggest that although Plecoptera taxa were not 

found to be more associated with acidified streams than non-acidified streams, these 

taxa remained numerically abundant in almost all streams. This was particularly 

apparent with Leuctridae and Nemouridae which were numerically very important 

within the study and showed no relationship with either altitude or acidity, 

suggesting a tolerance for changing gradients in both variables. Further, the 

densities of the algal grazers and scraper invertebrate species (particularly 

Ephemeroptera), are often found to be lower in areas of heavy shading by riparian 

trees when compared to open and treeless areas: Newbold et al. (1980); Gurtz and 

Wallace (1984); Behmer and Hawkins (1986); Dudgeon (1988). This phenomenon is 

commonly thought to be due to the lower algal abundance found in shaded streams. 

However, in upland areas of the UK with forestry plantations, this change in the 

assemblage structure is more commonly associated with low pH or increasing 

concentrations of dissolved aluminium (Harriman and Morrison, 1982). 
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5.9 Conclusions  
 
Determining how corridor characteristics affect the biodiversity of in-stream biota is 

one of the key questions addressed by this study. ANOVAs of site types (i.e. corridor, 

open, clear-felled and broadleaf) against diversity proved insignificant. In addition, 

CCA ordinations separated sites in terms of catchment, season or a specific stream 

but not by site types within anyone stream system. In addition to this, the majority 

of variables related to corridor design (i.e. corridor width, tree height, tree diversity 

and % light) all had relatively shorter arrows than many of the other variables, with 

limited scope for large-scale manipulation. However secondary factors, often 

dependent on corridor design and associated with food availability and processing, 

were found to be of greater influence (e.g. % sewage fungus, % algae, % 

overhanging vegetation and temperature). Specifically, the results suggested that the 

variables which influence allochthonous production were the primary positive drivers 

of invertebrate community composition and distribution. Further, the variables which 

could be related to autotrophic production were negative drivers of diversity. 

Therefore, with reference to the functional feeding groups discussed previously, I 

suggest that species within these habitats have become adapted to energy resources 

dominated by detrital inputs. This shift in the community composition as a result of 

afforestation (either on site or upstream) has resulted in a relatively low dependence 

on autochthonous primary production. In addition to this, this survey and the results 

of the in-stream primary productivity studies (Chapters 3 and 4) have suggested that 

the availability of autotrophic resources is not significantly influenced by the 

immediate corridor characterises of the site. Therefore, one can conclude that even 

with modification to corridor design, the impact upon autotrophic resources is not 

predictable. In addition, even with a large range in algal availability within the sites 

measured, the utilisation of this resource appears low as the representation of 

grazing species within the community composition was minimal. Thus, to maximise 

biodiversity, the results mainly suggest that more benefit would be gained by 

maximising high quality allochthonous energy inputs, specifically with the increase of 

riparian over-story tree diversity.  
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6 Role of corridor characteristics in determining 
growth and survival of stocked Atlantic salmon 

(Salmo salar L.) and resident brown trout 
(Salmo trutta L.) populations within forested 

streams 
 
 
6.1 Abstract 
 
This chapter aims to investigate how aspects of conifer forestry riparian zone 

characteristics influence the survival of both stocked Atlantic salmon fry (Salmo salar 

L.) and resident trout populations (Salmo trutta L.). 

 

Salmonid populations are of key importance and a target species due to their local 

economic and conservational value. The River Bladnoch catchment has been 

designated as a Special Area of Conservation (SAC) due to the importance of the 

Atlantic salmon population present therein. As such, Atlantic salmon were recently 

designated a priority species in the Dumfries and Galloway Local Biodiversity Action 

Plan (LBAP)  

 

Within the spring and summer seasons of 2004 and 2005, a total of approximately 

13,500 Atlantic salmon fry were planted out into the selected streams of both the 

Rivers Cree and Bladnoch catchments. In addition, natural fish populations were 

surveyed at all project sites during 2005. In this chapter, I seek to infer relationships 

between the growth and population density of juvenile salmonids, with variation of 

the physical habitat and corridor variables associated with conifer afforested stream 

systems. During this survey, all caught fish were identified and their fork length 

(mm) and wet weight (g) was measured.  This allowed for the determination of 

growth and individual ‘fitness’.  

 

Low recapture success meant that statistical analysis of results was difficult. Light 

levels (PAR) were found to be the only factor which had a significant impact on the 

growth and fitness of both salmon and trout populations. Populations of both 

salmonid species appeared to fall into two population category scenarios: either 

comparatively more small fish within darker corridor habitats or fewer, but larger fish 

within lighter habitats. Significantly, although many chemical variables of forestry 
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streams have been found in the past to be the primary controls for buffer-poor 

catchments (for example pH and alkalinity; Dahl, 1927), these variables were not 

directly related to either population density of trout or the size class distribution of 

stocked salmon. Light-specific size-class separation is discussed in relation to 

individual and population fitness and the resulting potential consequences for the 

management and design of riparian zones. 
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6.2 Introduction 
 
Most aquatic systems within the British Isles have at least some degree of influence 

from anthropogenic sources. The degree of this influence varies, yet some are 

degraded to such an extent as to cause deterioration of native fish populations 

(Hendry et al., 2003). This project concentrates on the impact of extensive land 

management in the form of widespread conifer forestry plantations on native 

Scottish fish populations.  

 

Extensive investigation into the role of coniferous plantation has concentrated 

primarily on the role of increasing acidification within base-poor upland afforested 

catchments (Harriman et al., 1987). However, as management of forestry and forest 

streams is modified to reduce the impact of acid deposition (Forest and Water 

guidelines, 2003), this project considers how aspects of riparian design 

characteristics influence the survival of both stocked Atlantic salmon fry (Salmo salar 

L.) and resident trout populations (Salmo trutta L.). 

 

Within this project, the fish species are the largest consumers studied. However, in 

addition to their importance ecologically as a top-down predator, both of the native 

salmonid species, Atlantic salmon and Brown trout, are very commercially important 

for both national fishing stocks and also on a more local basis for tourism and 

conservation (personal communication). Additionally, wild Atlantic salmon is an 

example of one of our native fish species in population decline (DAFS, 1983-84). 

Within this study, Salmon constitutes a target species due to its local economic and 

conservational value (e.g. priority Local Biodiversity Action Plan species), and 

represents a protected species within the Bladnoch catchment (key species within 

the Bladnoch SAC (Special Area of Conservation)).  

6.2.1 Background  

 

Catches of Atlantic salmon in countries which border the North Atlantic Ocean have 

declined rapidly in recent years (DAFS 1983-84). Significantly, Egglishaw et al. 

(1986) suggested a relationship between catch decline (Fig 6.1) and forestry 

plantations (Fig 6.2); suggesting that a number of effects of forestry activities, such 

as sedimentation, deposition of pesticides, increased evapo-transpiration from the 
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trees (this leads to reduced flows, making waterfalls harder to pass), increased 

woody debris (causing obstructions which can impede fish migration), acidification, 

shading and the loss of associated fauna and flora, were responsible for the decline 

in fish populations. 

 
 

 
Fig 6.1. Trends in the catch by number by all methods (rod-and-line, net-and-
coble and fixed engine) of Salmon of all sea ages (i.e. grilse and salmon 
combined), for the period 1952-81 for the 54 statistical districts on the Scottish 
mainland. (DAFS, Edinburgh 1983-84). Note that much of the Cree catchment in 
particular is in ‘severe decline’. 
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Fig 6.2. The proportion of forest (over 80% coniferous) found in the upland areas 
(altitude at least 183m) within salmon producing catchments, for the 54 
statistical districts on the Scottish mainland in 1976. 
 
Although chemical variation has been shown to be the major factor determining 

salmonid densities between rivers (e.g. Hesthagen et al., 1998), this project seeks to 

infer relationships dependent on variation of the physical habitat and corridor 

variables which surround river corridor design. However, the underlying chemical 

variation and specifically, the issue of acidity, cannot be ignored while interpreting 

data in a catchment known for its base-poor, low buffering capacity (Edmunds and 

Kinniburgh, 1986). 

 

6.2.2 Acidification 

 
The harmful effects of acid water on fish have been known for many years (Dahl, 

1927). A pH range of 4.5-5.0 is likely to be harmful to the eggs and fry of salmonids 

(Alabaster and Lloyd, 1980). The decreased hatching success observed for Atlantic 

salmon eggs exposed to pH 4.5 and 5.0 in the present study has been reported 

previously (Runn et al., 1977; Peterson et al., 1980; Cleveland et al., 1986, Buckler 
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et al., 1995) and is related to reduced activity of the hatching enzyme chorionase 

(Haya and Waiwood, 1981).  Additionally, in surface waters, a range of 4.0 - 4.5 is 

likely to be harmful to adult salmonids which have not been acclimatised to low pH 

values. However, resistance to low pH ranges increases with size and age (Harrison 

and Morrison, 1982), but the survival of the different stages of the life cycle can be 

influenced by the concentration of other ions, in particular aluminum ions, which 

cause toxic effects on the gill membranes and disrupt ion exchange mechanisms.  

 
Freshwater fish, in unstressed environments, successfully regulate body fluid ion 

concentrations (Black, 1957; Evans, 1975), but as water acidity increases towards 

the lethal limit, the uptake of Na+ ions is strongly inhibited (Packer and Dunson, 

1970). The transepithelial potential across the gill membrane changes from positive 

to negative thus allowing preferential absorption of hydrogen ions (McWilliams and 

Potts, 1978). A reduction in the permeability of the gill membrane to Na+ and H+ 

ions can be effected by increasing the calcium content of the water (Cuthbert and 

Maetz, 1972; Eddy, 1975). In natural waters where the pH is consistently below pH 

4.5, it is likely that increasing mortality among eggs and fry will result in the 

reduction and eventual elimination of salmonid populations (Jensen, 1971; Carrick, 

1979).  

 
Consequently, studies exploring the effects of increased acidity of salmonid 

populations, suggest that population decline in acidified streams has been found to 

be primarily a consequence of recruitment failure of young (Hesthagen and 

Johnsson, 1998).  There is thus the specific need to keep the low-order nursery and 

spawning streams in pristine condition, to maintain overall populations and 

reproductive success. 

 

6.2.3 Riparian management 

 
The specific characteristics of the riparian zone and in particular, the aquatic-

terrestrial transitional zone (ATTZ), have been shown to have substantial influences 

on both the biodiversity and functioning of the aquatic and terrestrial habitats which 

it supports. Bankside vegetation influences not only the abundance and diversity of 

fish species, but also the success of differential life stages (Bilby and Bisson, 1992; 

O’Grady, 1993). Exploring work charting the relationship between riparian vegetation 
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and the aquatic zone highlights several important control factors including; food 

delivery, source and availability, cover for different fish species and different life 

stages, as well as temperature control.  

 

However there still remains significant debate on the specific relationship between 

the type and quantity of streamside vegetation and fish production. Early work by 

Mundie (1969) demonstrated the importance of riparian vegetation in providing a 

food source in the form of terrestrial insects for salmonids.  Leaf litter has also been 

shown to be an important habitat type for aquatic invertebrate production. However, 

Bilby and Bisson (1992), indicate that the fish populations in U.S. headwater streams 

are primarily supported by autochthonous production and so increasing incident light 

would increase fish stocks in affected streams. Therefore here, I address a number 

of differential habitat types within study streams in order to determine whether intra-

site variation in over-storey tree type and canopy cover influences fish survival and 

growth.  

 

O’Grady (1993) studied the effects of deciduous bank-side vegetation on salmonid 

stocks in Irish rivers. He found that the mean juvenile salmon density in shaded 

areas was only 19.4% of that found in areas of comparable habitat, which contained 

more open zones with dappled shade. Further, this reduction in mean density of 

salmon was attributed to the loss of aquatic plant cover such as epiphytic algae, 

mosses and aquatic macrophytes. However, O’Grady (1993) recommended only 

selective clearance of overgrown scrub, leaving partial shading to prevent over-

proliferation of aquatic macrophytes, which may choke rivers, particularly in lowland 

and chalk streams with elevated nutrient levels. This debate over the relative merit 

of different levels of cover, combined with alternative dominance of either 

allochthonous or autochthonous baseline resources, means that in respect to conifer 

forest corridor design, it is important to determine which sets of conditions are most 

likely to promote fish growth and survival. The present investigation also seeks to 

integrate data collected in the previous chapter to determine any direct relationships 

between fish and benthic macro-invertebrates. 

 

Hendry and Cragg-Hine (2003) suggest that riparian overhead cover is important in 

‘providing food and cover for juvenile salmon and other species’. They also 

emphasise the significance of riparian vegetation in maintaining bank integrity and as 
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a potential source of woody debris, which ‘contributes to overall stream diversity’. 

However, studies concentrated within conifer afforested streams (e.g. Mills, 1969) 

note that afforested areas lacked bankside stability, leading to erosion and 

sedimentation. 

 

Bjorn and Reiser (1991) warn against over-zealous removal of riparian vegetation 

cover, as this may result in excessive warming in summer by increased exposure to 

the sun, particularly in small streams. Indeed there have been many studies 

illustrating the use of bank-side riparian vegetation cover to reduce summer 

temperatures in streams reaching lethal levels for salmonids (e.g. Platts and Nelson, 

1989) although the majority of these studies are concentrated in generally warmer 

climates. 

 

Temperature is one of the main factors governing growth of juvenile salmon; it 

determines the date of emergence by fry as well as the length of the growing 

season, and as a consequence, determines the potential weight a salmon can 

achieve in any one year (Egglishaw and Shackley, 1985).  

 

Elliott (1991) constructed a thermal tolerance polygon for juvenile Atlantic salmon, in 

which the ultimate lethal level for salmon parr was found to be between 30 and 

33°C. This was found to be about 3°C higher than those of 26-30°C for brown trout 

(Elliott, 1981). In fact, the separation of the two salmonid species continues as 

brown trout are less affected by low temperatures because they cease feeding in the 

range 0-4°C whereas salmon cease feeding in the range 0-7°C depending upon the 

acclimation temperature (e.g. Gardiner and Geddes, 1980). In contrast, higher 

temperatures favour Atlantic salmon because they do not cease feeding until 21.6- 

22.5°C, whereas brown trout cease feeding at about 19°C (Elliott, 1981). 

 

6.3 Aims 
 
The primary aim of this chapter is to determine the factors influencing the survival of 

Atlantic salmon (Salmo salar) fry in selected afforested stream sites, in relation to 

habitat and corridor characteristics.  

 

In addition, this study will consider differential energy resources likely to be most 

influential under a variety of environmental and riparian conditions, and determine 
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whether allochthonous or autochthonous resources are more influential in both the 

survival and growth of the stocked salmon. 

 

Electrofishing surveys were used to examine native brown trout (Salmo trutta) 

populations in order to determine similar links with habitat and carbon source 

preferences as well as exploring any differences in these findings between the two 

key salmonid species. 

 

It is hypothesized that variations in the availability of incident light as well as the 

specific characteristics of the riparian bankside habitat may have impacts such as: 

 
• An increase in the volume of autochthonous production, which in turn might 

provide resources for invertebrates and therefore lead to an increase in the 

potential food available to salmonid predators 

 

• Changes to temperature levels, causing either detrimental effects to feeding and 

survival if too high, or may reduce growth rates if not high enough. Further, 

there may also be variability in the results between salmon fry and brown trout 

fry. 

 

• Variation in the population of terrestrial invertebrates contributing to the 

abundance of drift invertebrate resources available to fish populations.  

 

• Reduced feeding success with shading, as fry are visually orientated predators. 

 
6.4 Methods 
 
Co-operation with the Galloway Fisheries Trust (GFT) permitted salmon population 

survival to be assessed by means of stocking-out and recapture experiments. The 

experimental release of salmon fry in Year One (2004) was confined to specific sites 

within the River Cree catchment. However, in Year Two (2005), the study was 

expanded to include some sites within the River Bladnoch Catchment (Special Area 

of Conservation - SAC). 
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6.4.1 Stocking of Salmon Fry 

 
Approximately 13,500 Atlantic salmon fry were planted out over the two-year period 

into the selected streams of both catchments within the study area (Table 6-1). 

These sites were chosen on the basis that the study lengths were cut off from 

natural populations downstream by impassable obstacles in the river (waterfalls), 

thus excluding natural salmon populations from interfering or skewing the results of 

this stocking out experiment (Fig 6.3). Stocking was done in May 2004 and May 2005 

at a density of approximately five salmon fry per m2 at the locations indicated in  

 
 

 

 

 
 
 
 
 
 
 
 
Table 6-2. Salmon were evenly distributed at each of the sites and also an additional 

further 50m upstream and 20m downstream, to account for the affect of migration in 

and out of the site, as following methods described by GFT.  

 
Table 6-1. Stocking details for sites in years 1 (2004) and years 2 (2005) at a total 
of five streams and nine sites. 
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Table 6-2 . Locations of all the sites stocked in the Cree and Bladnoch in 2004 and 
2005. 
Cree Grid Reference 
Rowantree Broad NX 35248 90688 
Rowantree Open NX 35662 90678 
Rowantree Shaded NX 34882 90848 
Pulnagashel CF1 NX 37602 79738 
Pulnagashel CF2 NX 37522 79748 
Pulnagashel Cor NX 37352 79078 
Bladnoch   
Black Burn (B)  NX 28252 67292 
Airies shade NX 27527 67177 
Fili NX 28417 66347 

 
 
 
Electrofishing surveys were carried out in October 2004 and September 2005, in 

order to measure the survival rates of stocked Atlantic salmon and native brown 

trout populations.  The surveys were carried out following standard Scottish Fisheries 

Co-ordination Centre (SFCC) methodology. Stop nets (with a mesh size of 

approximately 20 mm) were placed at the upstream and downstream points of a 20 

m stretch.  This prevented any fish from escaping from the survey stretch.   Three 

consecutive runs of the site were fished using a single anode and a DC driven 

generator (at the accessible sites) or a DC battery operated backpack system (at the 

more remote locations).  The strength of electric current applied to the water varied 

depending on the conductivity of each individual tributary (which was measured on 

the day of the survey).  

 

Fish caught during the survey were quickly transferred to a fresh bucket in order to 

recover.  At the end of the survey, all fish were lightly anaesthetized, using a 0.1g L-1 

solution of Benzocaine.  Fish were then identified to species and their fork length (to 

nearest mm) and weight (0.1 g precision) was measured.  Parr (1+) were 
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differentiated from fry (0+) using differences in markings and size category 

separation. These distinctions were made by a fisheries biologist who had 

undertaken a SFCC electrofishing training course. Once fish had recovered from 

anesthesia, they were returned to the site at the approximate area they were 

originally found. 

 

 
Fig 6.3. Planting out Atlantic salmon into the Forested site on the Rowantree burn 
(May 2004) 
 
 

6.5 Results and Interpretation 
 

6.5.1 Environmental variables 

 
Environmental characteristics of each stocking site are outlined in Table 6-3. The 

minimum pH measurements gained are illustrated in Table 6-4. Values were obtained 

during fish and invertebrate sampling visits at each site within 2004 and 2005. This 

information is included to determine if fish survival is possible with water chemistry 

at site. 
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Table 6-3. Environmental measurements of the salmon stocked sites (mean ± 
S.E). Cree sites measured throughout 2004 and 2005 (thus, n = 6). Bladnoch sites 
(FILI, BBB and AIR) only measured in 2005 (thus, n = 3). 

 
 
Table 6-4. Minimum pH measurements of the salmon stocked sites. Cree sites 
measured throughout 2004 and 2005. Bladnoch sites (FILI, BBB and AIR) only 
measured in 2005. Lowest value obtained at Rowantree Broadleaf, during March 
2004. Alabaster and Lloyd, 1980 suggest that a range of 4.5 – 5 can be 
detrimental to salmonid fry if maintained for long periods. All Rowantree sites 
have suffered levels below 5, but this level is not reflected by mean values (Table 
6-3). 

AIR BBB FILI PCF1 PCF2 PCOR ROWBR ROWOP RSH 

6.43 6.57 6.47 5.89 5.90 5.99 4.45 4.95 4.97 

 
6.6 Basic population and growth analysis of 2004 fish  
 
A total of 68 fish were caught in the electrofishing surveys carried out in October 

2004 (Fig 6.4). The Atlantic salmon (Salmo salar L.) recovery totaled 54 fry, from the 

six stocked sites in 2004. In addition, 14 brown trout parr (Salmo trutta.) were also 

caught within the Pulnagashel sites. The highest single site abundances of both 

species were recorded in the Pulnagashel sites (Fig 6.4), with all trout and a total of 

43 of the salmon recovered compared to only eleven salmon recovered at Rowantree 

Burn. 
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Fig 6.4. Total number of Fish caught (trout) or recaptured (salmon) in the two 
streams; Rowantree (ROW) and Pulnagashel (P) within the six sites (BR, OP, SH, 
CF1, CF2 and COR). 
 
In order to provide some indication of the potential likelihood of salmon fry reaching 

a reproductive age (and thus potentially contributing to the overall health and 

biological functioning of the systems), it is important to consider factors other than 

simply the salmonid density.  In order to further identify the fitness and health of the 

stocked salmon fry at each site, information on growth characteristics was collected, 

as the size of the fish often determines the likelihood of survival (e.g. Parker 1971; 

Juanes 1994; Elliott 1989a, 1989b; Thorpe 1977, 1989; Wright et al. 1990).   

 

Salmon Fork Length 

 

The results from the electrofishing surveys revealed that there was a difference in 

the growth rates between fish captured at different sites.  It can clearly be seen (Fig 

6.5) that stocked salmon recovered from the Pulnagashel Burn were larger than 

those recovered from the Rowantree Burn (ANOVA: n = 54, P <0.001).  

 

Additionally, there appeared to be inter-site differences. Results from the limited 

inter and intra-site specific variation in fork lengths achieved by fry (Fig 6.5), 

suggested that preferential growth conditions were present at all Pulnagashel sites, 

but particularly at PCF2 (ANOVA, P <0.001). However with such low recapture rates, 

statistical analysis was limited to the sites with fish numbers = n >3. Therefore, the 

results from RBR have been removed from statistical analysis. 
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Fig 6.5. Mean fork lengths (mm) of salmon fry caught in October 2004 (± 95% 
confidence interval) at stocked sites. Differences in the letterings (a-c) indicate 
significant differences (Tukey test; P < 0.05) in salmon lengths of all sites minus 
ROWBR (where n = 1).  
 

There is some suggestion of density dependence at Pulnagashal as although the 

greatest number of fish survived in the corridor site of the Pulnagashel (over the two 

clear-felled sites (Fig 6.4)), individuals from the Pulnagashel corridor site (PCOR), 

had significantly reduced body lengths (ANOVA, P = 0.007) than those fish recovered 

from within the two clear felled sites (CF1 andCF2) (Fig 6.5). 

 

A total of only 11 fish (all Atlantic salmon) were recovered from all of the Rowantree 

sites (ROWSH, ROWOP and ROWBR). Fry appeared to survive best within the shaded 

site (which yielded a total of six fish) whereas only one fish was recovered at the 

broadleaf site.  Interestingly this fish was the largest (in terms of fork length) of all 

recovered. This may have been due to high intra-site competition for resources, or 

the presence of a waterfall at the lower end of the site stretch (influencing 

movement out of the site). However due to the low survival rates of the salmon fry 

on this river, it is difficult to successfully apply any meaningful statistical analyses. 

Only the individual from the broadleaf site was large enough to be comparable with 

the lengths of the fry recovered from the Pulnagashel clearfelled sites (as it is within 

the 95% confidence interval of CF1 and CF2) (Fig 6.5). Individuals from both the 
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open site (ROWOP) and the shaded site (ROWSH) were significantly shorter than any 

of the Pulnagashel site Atlantic salmon. Significantly, as light levels at ROWOP and 

PCF1/PCF2 were all similar (Table 6-4), survival and growth (in terms of fork length) 

differences between site populations, can not be attributed to variations in light 

availability. Therefore, it seems likely that in-stream habitat quality as well as 

variation in water chemistry (specifically pH) is likely to be responsible for the 

variation between sites.  

 
Salmon body weight 
 
Salmon from the Pulnagashel sites were significantly heavier (P <0.001) than those 

recovered from Rowantree Burn (Fig 6.6).  
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Fig 6.6. Mean wet weights (g) of salmon fry caught in October 2004 (± 95% 
confidence interval) at stocked sites. Differences in the letterings (a-c) indicate 
significant differences (Tukey test; P < 0.05) in salmon weights of all sites minus 
ROWBR (where n = 1).  
 
Again, there was a trend occurring, with fry of greater weight occurring in the 

Pulnagashel sites (similar to the fork length data) (Pooled stream data – ANOVA, P 

<0.001). However, in this analysis, both the results from the first clearfelled site 

(PCF1) and the corridor site (PCOR), of the Pulnagashel are comparable for the data 

range of fry recovered from the Rowantree open site (ROWOP), indicating that 

weight ranges of these populations are comparable. 

 

Weight gain is probably a better indication of overall salmon health, as it better 

demonstrates the feeding success of the fry (Elliott 1989a, 1989b). Further analysis 
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of the weight data from the individual sites indicates that within Rowantree Burn, fry 

found in the shaded Rowantree site were the lightest (Fig 6.6) and the shortest (Fig 

6.5) of all the fry to survive. RSH fish had a mean weight of 2.25 g and mean length 

of 54.1 mm (however, it is also important to consider that the highest densities of 

stocked salmon fry in the Rowantree Burn were collected from this site).  

 
2004 Brown trout data 
 
A total of 14 brown trout were captured in the sampling period of October 2004. All 

the brown trout were confined to the Pulnagashel sites. The presence of a large 

impassable waterfall at the bottom of the lower Rowantree site, may account for the 

lack of resident trout population. The waterfall obstructing the Pulnagashel although 

impassable for salmon populations, may have allowed for a resident trout population 

to colonize during past high flow events. 

 

The highest densities of brown trout were found in the uppermost clearfelled site 

(PCF1), with a total of eight caught. There were no trout fry (+0) caught; all 

individuals were identified as parr (1++). There was no significant difference 

between the fork lengths or weights of trout parr found at each of the Pulnagashel 

sites (ANOVA, n = 14, P = 0.998 and P = 0.919, respectively).  

 

6.7 2004 Discussion 
 

The presence of the brown trout combined with the significantly greater density, 

mean fork length and mean weight of the salmon reared in the Pulnagashel Burn, 

compared with Rowantree Burn (ANOVAS all, P < 0.001), all suggest that the 

conditions present at the Pulangashel were considerably more favourable than that 

of Rowantree Burn. The significant differences in both growth and overall survival of 

salmonids in the two stream systems suggest that there may be significant variation 

in either the in-stream or riparian zones influencing fish success. The reduced 

number of riffle habitat types as indicated by GFT staff, at Rowantree may have 

confounded any relationship between salmonids and riparian characteristics. The 

expansion of sites in 2005 and the removal of less suitable sites from 2004, was 

partly done to reduce this influence. 
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The unexpected presence of brown trout (although indicating the suitability of 

conditions for fish and providing a more long-term indication of favourable 

conditions), presented the potential for additional competition of resources at the 

Pulnagashel sites. In this respect, the results of Atlantic salmon density, fork length 

and weight are somewhat unexpected.  

 

Furthermore, a substantial area of riparian zone upstream of PCF1 (the uppermost 

site) was felled in mid-summer of 2004. Following this event, there was some 

suggestion for increased nutrient loading of the sites downstream (evidence was 

provided by the notable increase in the observed algal growth - author’s 

observations). This effect decreased noticeably at each downstream sampling station 

respectively (PCF2 and PCOR). However, during later sampling trips, there was 

evidence of large-scale and rapid decomposition (distinct, unpleasant smell – 

especially at the uppermost site (PCF1)). Similar incidents are described in a study by 

O’Connor (2002). Following a study in County Antrim, and review of the literature, 

O’Connor (2002) found that diatom frustules physically caused the thickening of the 

gill tissue and severe hyperplasia through the presence of diatoms within the gills of 

the young salmon. However, initial results do not suggest a hindrance to salmon 

survival or growth within this stream (or the site most proximate to the disturbance), 

as a result of forestry activities.  

 

However, the original hypothesis of this project was that an increase in levels of 

autochthonous primary productivity would produce beneficial results to survival and 

densities of salmon fry. Although the autochthonous algal increase present at 

Pulnagashel was not directly attributed to a specific increased light regime (but 

rather to an upstream felling event), the nutrient increase was nevertheless 

transformed into autochthonous energy, as a result of adequate light availability in-

stream at the two upstream clearfelled sites on the Pulnagashel Burn (PCF1 and 

PCF2). Consequently, despite the potentially detrimental influences of felling to the 

ratio of autochthonous to allochthonous carbon supply (chapter 4 and 7) and 

invertebrate consumer diversity (chapter 5), there was a clear increase in both the 

fork length (Fig 6.5) and bodyweight (Fig 6.6) of the salmon fry in the two clear-

felled sites compared to all of the Rowantree sites (and to a lesser extent PCOR). 

However, despite the initial results from both Rowantree and Pulnagashel streams 

suggesting that growth (both length and weight data) of salmon may potentially be 
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limited by reduced autochthonous resource availability (specifically algal growth), the 

survival data alone, was not consistent with this pattern. A significantly greater 

number of salmon were recovered and thus survived in the reduced light level 

conditions of both the Pulnagashel corridor site (PCOR) and the Rowantree Shaded 

site (RSH) in 2004, over the more open alternative sites (Fig 6.4). This suggests that 

although the open sites may provide the conditions favourable for the production of 

larger and ecologically fitter individuals, it is also possible that the canopy cover 

provided within the corridor/shaded sites increases overall survival by either 

providing cover from visually orientated predators (both in stream and external) or 

through the contribution of increased allochthonous carbon to the base of the food 

web. Thus, there appears to be a trade-off between survival and growth of salmon 

fry within their first season.  

 

There is debate over the comparative advantage to overall population survival with a 

scenario of either few larger fish or a greater number of small ones. It is generally 

thought that larger and faster growing juvenile fish are more likely to survive, with 

mortality being greater for smaller, slower growing fish. Smaller fish are more 

susceptible to starvation and predation due to their lower social status and predators 

of young fish are thought to preferentially seek out and consume smaller, more 

vulnerable prey (Parker 1971; Juanes 1994). 

 

Additionally, larger, faster growing fish occupy and defend the most profitable 

territories in the stream, while slower growing fish are forced into less suitable 

habitats and may eventually die (Elliott 1989a, 1989b). This process may not only 

influence mortality rates, but also the life history patterns of surviving fish.  

Individuals that are superior competitors and thus grow fastest, have the potential to 

migrate to sea after only one year in freshwater, while slower growing fish are more 

likely to delay migration, remaining in freshwater for at least a second year (Thorpe 

1977, 1989; Wright et al. 1990).  

 

On the other hand, predators (e.g. herons) may preferentially choose larger 

juveniles, possibly due to their higher visibility and the larger net energy gains 

associated with consuming larger prey (Pepin and Shears 1995; Gleason and 

Bengtson 1996a).  
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The data collected in 2004 provides some initial indications and hypotheses of 

possible trends relating fish survival to environmental conditions, however, with such 

a limited data set, the statistical power and answerable questions, are limited. 

Attempting to designate specific variables responsible for the survival and growth of 

fish species within such a limited pilot-study dataset would likely be misleading. 

Therefore, in order to better explore some of the issues and questions relating fish 

(specifically focusing on the conservational key salmonid species) to on-site 

conditions and specifically light levels and corridor characteristic, expansion of the 

data set (both area and timescale), should provide this study’s findings with greater 

confidence and applicability. 

 
6.8 Fish data from 2005 
 
 
In 2005, site locations were expanded and modified. From the sites stocked in 2004, 

two sites were removed (RBR and PCF2). This was due to the salmon stocking 

number restrictions combined with the requirement to include representative 

Bladnoch sites. RBR was excluded due to its proximity to a waterfall, whereas PCF2 

was closely replicated by PCF1 in 2004 and as such, it was felt that it was the most 

suitable to be sacrificed. A further three sites within the Bladnoch catchment were 

added to the stocking experiment (BBB, FILI and AIRIES). Within sites surveyed in 

2005 (Table 6-1), approximately 7,200 Atlantic salmon were planted out in May 

2005. From this initial stocking, only 73 salmon fry were recovered in October of the 

2005 season. In addition to the stocking results, all other 2005 sample sites 

(unstocked) were also surveyed in order to determine the diversity and abundance of 

naturally occurring fish populations. 

6.8.1 Salmon data 2005 

 

Fig 6.7 displays population density of salmon fry and parr recovery within the 2005 

sampling season. Again, the Pulnagashel sites had the highest recapture success. No 

fry from 2004 survived within the Rowantree burn to become parr. However as 

opposed to the 2004 initial discussion, the density of fry within Rowantree Burn was 

highest at the open site. Again, PCOR yielded the greatest population density of fry 

and significantly, yielded the greatest survival of fry stocked from 2004. 
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Fig 6.7. Recovery success of Salmon fry and parr at the stocked Cree and Minnoch 
sites from 2005. 
 

The appropriateness of applying salmon density variation data for measurement of 

habitat preferences is debatable. Sites were chosen due to their biological isolation 

and therefore, using the presence of salmon as an indicator of optimal salmon 

conditions is questionable as their positioning is not through natural reproduction 

and survival processes. Survival should provide some information on comparable 

preference of stocked habitat conditions. However, I felt that by concentrating on 

size data (fork length and wet weight), more information could be gained on the 

biotic variables associated with variation of fry size, and such as, the long term 

potential for survival and breeding success. Food availability is likely to be an 

important control parameter for growth and survival. Table 6-5, indicates the mean 

invertebrate diversity and abundance data for the stocking sites. 

 
Table 6-5. Mean ± SE diversity and abundance of invertebrate taxa within 
stocking sites for all sample visits (2003 – 2005). 

Site H No. Spp Total Abundance 
AIRIES 1.83 ± 0.12 14.66 ± 1.33 159 ± 48.64 
BBB 1.87 ± 0.13 13 ± 3.05 211 ± 103.17 
FILI 1.94 ± 0.14 11.66 ± 1.45 126.66 ± 35.09 
PCF1 1.86 ± 0.22 14 ± 1.01 115.2 ± 31.48 
PCF2 1.79 ± 0.16 11.33 ± 0.61 124.33 ± 28.51 
PCOR 1.83 ± 0.15 9.2 ± 1.31 37.6 ± 8.7 
RBR 1.35 ± 0.22 8.16 ± 0.60 63.66  ± 20.18 
ROP 1.37 ± 0.22 9 ± 0.77 130.33 ± 53.68 
RSH 1.39 ± 0.33 7.8 ± 0.96 70.8 ± 28.86 
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Fig 6.8. Boxplots of salmon fry fork lengths (mm) recovered from 2005 stocked 
fry. Plots illustrate median ± 1st and 3rd quartile and upper and lower limits. No 
significant differences between samples where n > 3 (ANOVA, P = 0.194). 
 
However, Fig 6.8 indicates that there was no significant difference in the fork lengths 

attained by salmon fry at ROWOP, PCF1 and PCOR sites in 2005. The greatest 

lengths were found at PCF1 sites, adding to the hypothesis of a trade-off between 

survival and growth of salmon fry within their first season. However as recovery of 

individuals from some of the sites was very low (n = 1 at AIR, BBB and RSH and n = 

3 at FILI), making reasonable conclusions about size-class distributions is difficult. 

This variation in growth between sites may be due to invertebrate food availability 

(Table 6-5). Low abundance of invertebrate individuals with PCOR and RSH may 

have contributed to the low fork lengths of low abundance found at these sites 

throughout 2004 and 2005. 

 
When wet weight is considered, a similar pattern occurs (Fig 6.9). Again there is no 

significant difference in the mean wet weights achieved from fry at any of the 

stocked sites where n > 3, within 2005 (ANOVA, P = 0.325). 
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Fig 6.9. Boxplots of salmon fry fork lengths (mm) recovered from 2005 stocked 
fry. Plots illustrate median ± 1st and 3rd quartile and upper and lower limits. No 
significant differences between samples (ANOVA, P = 0.325). 
 

Multivariate Analysis 

Canonical Correspondence Analysis (CCA) was utilized for analysis of the 2004 and 

2005 fish data. Salmon fry were separated into size classes in order to delineate the 

environmental variables responsible for different growth responses. Further, natural 

populations of trout (two size classes - above and below 100mm) and eel were 

included to determine any correlations with specific site variables or corridor 

characteristic preferences.   
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Fig 6.10. CCA ordination of data from both 2004 and 2005 stocking and recapture 
experiments combined with wide-scale sampling of natural populations. Salmon 
separated into size classes and parr category. Trout were more simply separated 
into +100mm and -100mm size categories. Eel abundance also included. 
Ordination significant (Monte-Carlo test, P < 0.05). Correlations of environmental 
variables with axis 1 – 4 defined in Table 6-6 with eigenvalues.  
 
From arrow lengths produced within the CCA of Fig 6.10 and the inter-set 

correlations shown in Table 6-6, environmental variables plotted along the horizontal 

axis (axis one), appear to be the primary controls over fish size and population 

distribution.  
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Table 6-6. Inter-set correlations of environmental variables with axes 1 to 4. 
Particularly influential correlations (as defined by high positive or negative 
values) highlighted in bold. 

    NAME     AX1       AX2       AX3       AX4    

  %LIGHT    -0.2717 -0.4039 -0.0206 0.2637 

  CONDUCTIVITY      0.5873 0.0613 0.3246 0.2311 

  DEPTH     -0.5949 -0.1839 -0.0033 0.402 

  pH        0.8372 0.0517 0.2074 0.1992 

  ALKALINITY       0.6282 0.1389 0.269 0.2443 

  %ALGAE      -0.3721 0.2537 -0.2237 0.1184 

  %BRYOPHYTE      -0.0711 0.0635 -0.0318 0.7268 

  %RIP OVERH   0.2452 -0.1041 0.1272 -0.234 

  ALTITUDE       -0.5861 0.128 0.1568 -0.0822 

  COR WIDTH     -0.0975 -0.2175 -0.078 0.0388 

  TR HEIGHT      0.209 0.2387 0.0418 0.1057 

  TR SPP RICH     0.1448 0.276 -0.1675 0.0043 

  DISCHARGE     -0.631 -0.337 -0.1901 -0.1668 

  INV SPP RICH  0.7468 -0.0141 0.0964 0.157 

  INV ABUND    0.5633 -0.0718 0.1272 0.3539 
      
 

From the species data, the main result is a gradient in the salmon fry size classes 

plotted vertically along axis 2. Increasing salmon fry fork length appears to most 

closely follow a gradient of increasing % light and also a widening of the corridor. 

This result confirms the initial hypothesis gained from the 2004 data set; increasing 

the availability of light within the stream appears to have a significant positive 

influence on the salmon fry lengths achieved within the first years growth. However, 

the abundance of salmon parr is more closely correlated with lower light conditions 

and a higher diversity of riparian tree species. Interestingly, there is no direct 

relationship between increasing light availability and algal cover (%). This could be 

an indication that the conditions within the shaded sites of the study were not light 

limited enough to reduce algal/bryophyte cover.  

         
Although stream temperature at each site was measured, these measurements were 

only taken three times a year and so it was felt that such spot measurements would 

be misleading as seasonal and daily fluxes of temperature ranges would be greater 

than site to site mean variation. Therefore, temperature data was not included within 

the CCA ordination. However, one possible reason for the increased growth rate of 

the salmon fry in open areas is the increased temperatures associated with greater 

solar flux.  

 

Temperature influences the date of emergence by fry as well as the length of the 

growing season; often it is these factors which are thought to increase the potential 
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weight that a salmon can achieve in any one year (Egglishaw and Shackley, 1985). 

However, as salmon stocking was done with approximately two-month old fed-fry, 

and the electrofishing survey of all sites was carried out within a one-week period, 

before stream temperatures dropped below feeding thresholds, the effective growing 

season for fry was the same. As a result, it is possible to discern that any changes in 

weight were as a consequence of the conditions, which the fry were under during 

stream-site location. Koskela et al. (1997) showed that growth rates of Salmo salar 

fry at 6oC were higher than those fry incubated at 2oC. Further, it was also shown 

that the lipid intake of fry at higher temperatures was significantly greater. 

6.8.2 Trout Data 2005 

 

Trout data used in this part of the study are from wild, unstocked populations. This 

may have implications on the comparable applicability of the trout results over 

salmon data. Trout have survived whole life cycles in the environment in question 

and have potentially been present at the site for longer than salmon fry of a single 

season, which were not spawned at site. Therefore, trout provide an amalgamated 

indication of condition suitability over a longer time period. Conversely, trout habitat 

requirements/preferences are often described as different from those of salmon, 

which makes the trout a poor proxy for indicating salmon survival potential. 

 

Both brown trout size classes and the eel population are comparatively centralized 

within the CCA ordination (Fig 6.10), suggesting that there are no extreme condition 

preferences. However, as these populations illustrate natural distribution patterns 

and not specific stocking requirements, the positioning of these species within the 

ordination better describes actual condition preferences. The eel and trout 

populations appear to be correlated with higher pH, conductivity, alkalinity, benthic 

invertebrate diversity and abundance. As all these parameters have relatively long 

arrow length, it is likely that their influence over the distribution of species is strong 

(Table 6-6). 

 

Linear regression reveals no significant relationship between trout population and pH 

(P = 0.059). No trout were found at mean pH levels at <6.1.There is no significant 

relationship between trout population and alkalinity (P = 0.373), conductivity (P = 

0.363), benthic invertebrate diversity (P = 0.095) or invertebrate abundance (P = 
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0.383). However, there is a significant negative linear relationship between % light 

and trout abundance at site (P = 0.016), but also a significant positive linear 

relationship between trout length and light levels (P = 0.044). Therefore, a similar 

trend to the salmon data is occurring whereby population density of trout is greatest 

in the shaded sites; however growth rates are increased in light intensive habitats. 

Unfortunately attempting to relate a trout density to specific corridor characteristics 

did not yield any direct significant relationships; corridor widths (P = 0.087), tree 

height (P = 0.311) or diversity of tree species (P = 0.13). 

 

Considering influential arrows on the left hand of the CCA ordination (Fig 6.10) and 

the inter-set correlations of the axes (Table 6-6), there is evidence to indicate that 

altitude, depth, discharge and algal cover are all important variables (negatively 

correlation with axis 1). Using linear regression, altitude was found to have a 

negative linear relationship with trout density increase, however, the r2 reveals that 

this trend is not significant (P = 0.056, r = 0.236). Additionally, water depth, was not 

an important variable (P = 0.335). Spot measurements of discharge also proved a 

poor predictor of trout densities despite the appearance of a negative linear 

relationship (P = 0.062). Even algal cover was not significantly related to trout 

density (P = 0.192), despite the potential carbon contribution this material makes to 

the base of the food chain. 

 
6.9 2005 discussion 
 
 
The fact that both the salmon and trout populations appeared to fall into two specific 

scenarios; many small fish or few large fish, seemed to speculatively point towards 

density dependent populations. However, the demonstration that it was light levels, 

which dictated which scenario was found at a specific site, has significant 

implications for habitat management. 

 

There is also some evidence that small fish are less affected by changes in cover 

than larger fish (Parkinson and Slaney, 1975). However, the mean reduction in fish 

size within shadier sites may be just a reflection of reduced growth rates in the 

cooler waters associated with reduced solar flux. However, Jenkins et al. (1999) 

found that larger, more competitive brown trout were less affected by increased 

density and generally these populations were less density dependent. Therefore, 
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having reduced mean population density within the open sites does not agree with 

the findings of Jenkins et al. (1999) as these trout/salmon had a greater mean 

weight and fork length. The increased predation risk accompanied with more open 

sites and larger prey (Pepin and Shears 1995; Gleason and Bengtson 1996a, 1996b) 

may have influenced fish survival at open sites. However as the overall survival 

likelihood is greater for larger fish (e.g. Parker 1971; Juanes 1994; Elliott 1989a, 

1989b, Thorpe 1977, 1989; Wright et al. 1990), using the limited results gained 

though this study, it is possible to tentatively suggest that through  promotion of  

open canopies, overall survival of salmonids, and population success may be 

increased. However, this suggestion is limited by water chemistry. Survival of trout 

and salmon was very low throughout the stocking experiment and, although mean 

pH at all sites was above, lethal limits suggested by a number of studies (see 

introduction), minimum levels (especially at Rowantree Burn) measured suggest that 

during precipitation events, pH levels may be damaging to young fry populations. 

These events may well have contributed to the low recovery success of salmon. 

Further, the greater success of trout was likely to reflect their greater overall 

tolerance to acidity. Therefore, any suggestions made for riparian modification come 

secondary to the confounding variables associated with water chemistry (especially 

pH).  

 



Chapter 7. Clear-felling 

 - 237 -  

7 Implications of clear-felling forestry activities on 
in-stream and riparian corridor integrity 

 
 
7.1 Abstract  
 
 
Unforeseen clear-felling occurred within the Cree catchment at the uppermost Black 

Burn site (BBCF) between the 11th of November 2004 and 8th of March 2005. The 

impact of clear-felling was examined through observation of the biological changes 

which occurred within one of the field sites. The effects of this event were assessed 

in terms of changes in the allochthonous contribution of carbon within stream 

biofilm. Energy source and availability were combined with community structure 

analysis of in-stream biota. Diversity of in-stream macro-invertebrate and algal taxa 

reduced. A bloom in Sphaerotilus spp. indicated a change to water nutrient status. 

Changes in the composition and biomass of the biofilm were considered in relation to 

downstream Total Organic Carbon (TOC) concentrations and related to possible 

changes in the functioning capacity of the stream biofilm. 

 

The buffering capacity of the riparian zone is discussed in relation to vegetation type 

with the aim to suggest optimal conditions to reduce the ecological impact of felling 

on in-stream biota. By considering the vegetation structure, I explore the optimal 

conditions by which the riparian zone can buffer nutrient discharge through nitrate 

removal and retention.  
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7.2 Introduction 
 
 
As a consequence of forest planting strategies during the 1960s and 70s, large areas 

of UK commercial forestry plantations are now approaching maturity or fully matured 

and ready for harvest. Harvesting is viewed as the most disruptive stage of the 

forestry cycle (Nisbet, 2001). Of foremost concern is exposure of soil through 

operations and an increase amount and velocity of run-off through plough furrows 

and drainage ditches (especially in the steep upland areas). Such effects increase the 

rate of sedimentation and nutrient input (Rounick and Winterbourn, 1982) to 

catchment streams.  

 

Soil organic matter, particularly the litter layer, is important in regulating errosion 

level of forest soils (Bormann et al., 1969). Accumulated litter protects soil from the 

erosive energy of raindrops, promotes soil particle aggregation, and accelerates 

rainwater percolation. Disturbances that remove the litter layer or compact forest 

soils promote overland flow and erosion of mineral soil (sediment) into stream 

channels. Sediment yields decrease as vegetation re-grows. However, in-stream 

redistribution and transport of sediment may continue for many years (Brown and 

Krygier, 1971). These effects are exacerbated when soils are easily erodable and 

periods of wet weather follow (Nisbet, 2001). In addition, a combination of heavy 

machinery on soft ground, a planting and drainage infrastructure based on old 

designs, many of which have little or no buffer strips, and often a poorly designed 

drainage system creates the risk of significant erosion and loss of sediments and 

carbon to streams when old-style plantations are felled and harvested (Guo, and 

Gifford, 2002; Turner and Lambert, 2000).  

 

The biological and ecological effect of soil/sediment losses to streams can be 

extensive, and represent the commonest concern from felling activities. Suspended 

sediments and increased turbidity (following a disturbance event), severely reduces 

in-stream diversity (Vuori and Joenssu, 1996) by smothering algae, invertebrates and 

fish eggs (Giller et al., 2002) and render traditional gravel spawning beds of 

salmonids unusable (Stretton, 1984). Siltation of spawning gravels is a particularly 

common risk from forestry activities (Herbert et al., 1961, Neill and Hey, 1992). 

Under natural conditions, most spawning rivers in the UK would have suspended 

concentrations of sand, fine silt and clay of less than 5 mg/l during low flows and 
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may be essentially clear-water rivers (Hendry and Cragg-Hine, 1997). High 

concentrations of suspended solids in the water may physically choke fish or disrupt 

feeding behaviour (Barrett et al., 1992). The fine particles released from forest 

drainage and surface runoff smother salmonid eggs by preventing intra-gravel 

currents (Moring 1982, Thibodeaux and Boyle, 1987), and reducing contact with 

dissolved oxygen in the flowing water. This prevents or disrupts alevin emergence 

(Phillips et al., 1975, Hausle and Coble, 1976) and reduces the fitness of the fry and 

parr, and hence their ability to cope with the natural pressures faced within the 

riverine environment (MacCrimmon and Gotts, 1986, Olsson and Persson, 1988). 

These effects have been found to persist for many years after the felling event 

(Yount and Niemi, 1990). 

 

In addition to short term disturbance related changes affecting sediment release and 

nutrient runoff, the long term impacts on potential food source availability and 

acquisition are likely to have severe implications to ecological communities whose 

structures are based upon a specific balance of allochthonous and autochthonous 

production. For example, clear-felling can cause an increase in incident light within 

the stream environment due to canopy removal (Rounick and Winterbourn, 1982). 

This can cause an increase in photosynthesis and autochthonous production (e.g. 

algae and/or macrophytes). However, the potential for increased production is also 

dependent on nutrient availability.  

 

Although short-term effects of clear-felling can increase the inputs of allochthonous 

energy sources (such as needles, twigs and branches) during the disturbance event, 

the long-term consequences may be either an overall reduction in allochthonous 

inputs with the removal or riparian over-storey trees, or increase in allochthonous 

material from increased ground vegetation biomass. Consequently, this uncertainty 

and potential variability in the production of allochthonous and autochthonous 

material has the potential to substantially alter the community dynamics dependent 

on these specific food sources. 

 

Increased algae growth following canopy removal can subsequently increase the 

productivity of macro-invertebrates and fish in the medium term (e.g. Behmer and 

Hawkins, 1986). However, this increase may be offset by the reduced inputs of 

allochthonous food sources which were previously available (e.g. Wallace, 1988). 
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Potential overall energy balance will be dependent on the physical, chemical and 

nutrient status of the stream and thus the ability of the autochthonous production to 

compensate fully for the loss of allochthonous production (OECD, 1982; Johnson et 

al., 2000).  However, excessive algal production can also cause detrimental effects 

upon the physical habitat of the stream, such as reduced dissolved oxygen during 

dark respiration in warm weather. O’Connor (2002) describes incidents in the 

literature, and within his own study in County Antrim, where diatom frustules have 

physically hindered the emergence of salmon alevins as they create a thick mat on 

the top of the gravel beds which have the potential to reduce the supply of oxygen 

to developing fish eggs within spawning gravels, where the eggs were laid. Also 

described were thickening of the gill tissue, severe hyperplasia and the presence of 

diatoms within the gills of the young salmon.                                                                                    

 

Other studies have also found shifts in functional feeding groups of macro-

invertebrates. For example, an increase in herbivorous macro-invertebrate species 

may follow increased algal production after clear-felling events (Behmer and 

Hawkins, 1986; Wallace and Gurtz, 1986), together with up to a 30% decrease in 

the densities of detritus-feeding invertebrates (e.g. Wallace, 1988). Benefits to fish 

populations may occur with the increased abundance of grazing macro-invertebrate 

populations by enriching the supply of food, enhanced by feeding efficiency (of the 

visually orientated predator fish species) due to increased incident light 

(Valdimarsson and Metcalfe, 2001).  

 

However, increases in light penetration following clear-felling are not always 

accompanied by increases of in-stream primary production (Johnson et al., 2000). 

This may be a result of limitations in nutrients (OECD, 1982) or a consequence of 

increased turbidity and the reduction in the associated light penetration (Johnson et 

al., 2000).  

 

There are also many cases where nutrient release has occurred. When land adjacent 

to streams is afforested, forest vegetation regulates nutrient inputs to streams by 

two primary mechanisms: through uptake of nutrients from soil solution and storage 

in biomass, and by decreasing water movement through soils (Bormann et al., 1969; 

Vitousek and Reiners, 1975; Vitousek, 1977). Following disturbance, vegetative 

nutrient uptake is reduced/halted and soil conditioning activities and changes to 
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drainage patterns accelerate organic matter movement. As a result, post-felling 

concentrations of Ca, K, Na, Mg, and NO3
2- are elevated in stream water (e.g. Swank, 

1988). Nutrients that are relatively mobile in soil solution or cycle biologically appear 

to be most affected. The nitrogen cycle of forested catchments is extremely sensitive 

to disturbance (Vitousek and Reiners, 1975; Vitousek, 1977). Changes to 

concentrations of the nitrogen species in stream water, within afforested catchments, 

occur most commonly through soil leaching post-felling (e.g. Staaf and Olsson, 

1994).   

 

Total nitrogen output following felling has been considered in a number of studies. 

Weis et al. (2006) estimated organic nitrogen losses post felling, and found that the 

organic N component can account for up to 70% of total N lost. However, from a 

review of catchments studied in Britain (Neal et al., 1998), higher concentrations in 

NO3- occurred only in the minority of felled sites, where aluminium leaching was also 

high. Concentrations declined several years after the felling events.  

 

In addition to nitrogen release, DOC levels can exhibit marked increases following 

felling events (e.g. Cummins and Farrel, 2003). This trend can be amplified by 

seasonal weather patterns (DOC is naturally higher in mid/late summer) and has 

been found to be associated with increases in monomeric aluminium concentrations 

(Cummins and Farrel, 2003). However, the presence of increased DOC in itself, tends 

to reduce the toxicity of the aluminium (Howells et al., 1990), and thus does not 

necessarily pose a threat to fish survival. 

 

Additionally, following clear-felling, soil temperatures and moisture levels usually 

increase due to removal of canopy cover and reduction in the water requirements 

from trees. From this, nutrient cycles within the soils of the riparian zone are 

modified leading to changes in biogeochemistry (Iseman et al., 1999). Changes to 

the water requirements and usage within the adjacent (now felled) area have 

significant implications to water availability. Evapotranspiration can account for 40-

60% of the annual water loss from forested catchments (Kovner, 1956). Therefore, 

vegetation is an important factor in regulating stream flow. Removal of forest 

vegetation generally decreases evapo-transpiration and increases stream flow (e.g. 

Dunford and Fletcher, 1947).  This effect has been found to be approximately 
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proportionate to the catchment area cleared (Hewlett and Hibbert, 1961; Hibbert, 

1966).  

 

In an attempt to minimize the impacts of such disturbance, the Forest and Water 

Guidelines were produced as a guide to best management practices (Forestry 

Commision, 1998, 1990, 1993, 2003). Following adherence to the guidelines, 

substantial modification to management of activities and planting design strategies 

has reduced the effects of forestry activities. Disturbance to soils was minimized 

though early modification of drainage systems (Thompson, 1979) and through the 

development of buffer strips (Mills, 1980). Emphasis on minimizing soil disturbance 

resulted in minimal forms of cultivation such as mounding or scarifying and the 

modification of drainage channel design in order to minimize soil disturbance and 

control water flows. 

 

There has been much recognition that although the guidelines are based around 

sound principles, they lacked scientific verification. As a consequence, confirmation 

of guideline effectiveness is important, and widespread scientific testing of FWG 

application is required. In a recent study of the impact of felling processes which 

followed a former version of Forest and Water Guidelines (published in 1993), Nisbet 

et al., (2002) describe how shallow ploughing combined with furrow-end buffer strips 

on steeper slopes (>5o) retained mobilized sediments, and the control of land 

drainage resulted in little disturbance of the freshwater environment. Samples of 

macro-invertebrates and trout suggested that the community compositions remained 

largely unaffected. Only one site appeared to show a decline in invertebrate diversity 

due to localized accumulation of silt and brash. 

 

Effective buffer zone function depends on a number of different characteristics of the 

soil, for example, drainage flow paths, vegetation, soil moisture content and soil 

temperatures. Excess nutrients, pollutants and acidic waters can be retained, 

transformed and/or cleansed from the system through mechanisms such as 

assimilation and biostorage by plants, denitrification, microbial assimilation, and 

mineralization in soils (Correll, 1997).  

 

Nitrate removal and retention is of key importance to the functioning requirements 

sought from a buffer zone. The specific mechanisms responsible for widely 
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documented cases of nitrate retention are often elusive (Correll, 1997). Many 

suggest a combination of denitrification, assimilation and retention by the vegetation 

as well as transformation to ammonium and organic nitrogen (and retention of this 

within soils) (e.g. Correll et al., 1997). However, what is clear from a number of 

studies is that nitrate does not simply transform into other more soluble forms of 

nitrogen and be discharged into the stream system (e.g. Lowrance et al., 1983; 

Correll et al., 1997). 

 

Many of the characteristics of the riparian zone, such as the species composition of 

the vegetation and rates of processes such as denitrification, require that the soils be 

anaerobic or of low oxidation/reduction potential (redox) for at least part of the year. 

The species composition of riparian vegetation is fundamental to maintaining this 

redox potential, as the organic matter production (through high photosynthetic 

rates) and mechanisms of delivery of organic matter to the soil’s activity drives and 

facilitates these biogeochemical reactions (e.g. Pinay et al., 1995). Thus in the long 

run, maintaining high rates of nitrogen processing and retention within soils requires 

a low redox potential to be maintained through high primary productivity. Thus, 

analysis of community composition, specifically plant functional types abundant 

within the community, allows predictions of the hydrology of soil, and ability of 

vegetation buffering capacity. Specifically, differences in community composition may 

vary rates of nutrient and pollutant (in this case, nitrate) to containment and 

transformation within the buffer zone.  

 

The efficiency of riparian buffer zones in removing pollutants from surface and 

ground water is highly dependent upon hydrology. For the effective removal of 

particulates and dissolved nutrients as well as toxic materials, surface flows must 

occur as sheet flow rather than highly focused flows, and ground water must flow at 

a shallow enough depth to be within the rooting zone of riparian vegetation. Overall, 

it appears that studies have found uncertainty in which riparian vegetation best 

promotes nitrate removal or retention, but that grass or dense herbaceous 

vegetation is more effective at trapping particulates from overland storm flows (e.g. 

Osborne and Kovacic, 1993). However woody vegetation with its relatively deeper 

root systems (more likely to intercept groundwater flows) may be more effective at 

removing nitrates from ground water through more effective release of organic 

matter at depth (e.g. Parsons et al., 1994). 
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It was not anticipated that Black Burn would be felled during the course of this 

research and as such, this investigation into the impact of felling on biodiversity and 

baseline energy dynamics can only be considered as pilot data. However, the design 

of the Black Burn corridor provided insight into both the potential impacts of modern 

felling approaches to ‘old design’ sites  (at one sub-site, BBSH) and in addition, to 

designs consistent with the current FWGs  (2004) (at the felled site –BBCF, and 

middle site, BBOP). Felling occurred on site from 11th October 2004. As the coup 

felled covered an area greater then the Black Burn catchment alone, it is not certain 

when exactly the disturbance event stopped in the catchment. However, the area 

was cleared prior to my arrival on-site on the 8th of March 2005. 

 

As a consequence, this study aims to discern the impact of felling within a single 

stream felled within the study period (Fig 7.1). Although chemical and nutrient 

variables were not analysed as part of this study, this focused, short-term study, 

infers changes to nutrient source and availability from the ecological status and 

community composition. Additionally, the riparian zone diversity is discussed with 

respect to the felling event and the possible limitations of the present buffer zones 

with respect to onsite and downstream ecological status. 

 

 
Fig 7.1. Upstream corridor site after clear-felling in the winter of 2004-2005 
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Additionally, I focus on biofilm composition and biomass and assessed post felling 

changes to measured characteristics in order to estimate variation in stream trophic 

status and biofilm material. Further, the specific composition of the biofilm can affect 

the retention and processing capacity of organic enrichment and non-organic 

pollutants. From consideration of the literature, it appears that this approach has not 

previously been applied in estimating carbon sources and availability following forest 

clearance activities.  

 

This chapter specifically addresses the influence of the felling, without the 

confounding influence of other variables associated with the remaining sites of both 

catchments. The chapter explores the results from each trophic level potentially 

influenced by the felling. The chapter integrates the response from multiple trophic 

levels within the Black Burn, in an attempt to indicate the ecological response to a 

disturbance event. Further, by combining all datasets within this chapter, the effect 

of the felling is explored as ecological conditions vary spatially and temporally. 

Further, there is the opportunity to determine how influential the event was to the 

overall patterns of abundance and diversity compared to that found in areas 

unaffected by disturbance and allow assessment of the impact to ecological status of 

modern felling techniques on both ‘old style’ and ‘modern’ riparian zone designs. 

 

7.3 Methods 
 
 
Routine measurements of primary productivity were on going throughout the project, 

as the felling event at Black Burn was unexpected; no additional measurements were 

taken to account for the full extent of physical, chemical and biological changes to 

the system. As a consequence this chapter addresses the changes to the three Black 

Burn sites within the constraints of the existing sampling protocol. The ecological 

sampling programme in place addressed diversity and productivity of in-stream 

biofilms, riparian vegetation, macro-invertebrates and fish, with ongoing 

measurements of basic water chemistry and corridor physical characteristics.  

 
This chapter uses data from other chapters and the methods corresponding to each 

component can be found as follows: riparian vegetation: Chapter 2; autotrophic 
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biofilm content: Chapter 3; autochthonous and allochthonous carbon, Chapter 4; and 

Invertebrate diversity, Chapter 5. 

 

7.4 Results  
 

7.4.1 Buffer widths 
 

The Forest and Water Guidelines (Forestry Commission, 2003) recommend a buffer 

width of 20 m on either side of the stream for watercourses with a channel width > 

2 m (including lakes and reservoirs). For smaller streams (1-2 m width) the minimum 

distance from the river edge for planting is 10 m, and 5 m for channels <1 m width, 

unless highlighted as important for fish spawning, when 10 m is required. Within this 

study, both the upstream and middle (BBCF and BBOP) sites are within the minimum 

requirements of the Forest and Water Guidelines (FWG), and although, there are few 

native deciduous tree species growing within the corridor as recommended in the 

FWGs, and the majority of riparian vegetation being in the form of coniferous 

seedlings and riparian ground-flora, the two sites still represent minimum buffer 

zones requirements. However, only the forestry adjacent to the upper-most site was 

cleared (BBCF).  The downstream site (BBSH) however, has very little buffer-zone, 

and below FWG minimum width requirements. Therefore, these sites provide an 

opportunity to consider in-stream and riparian response to felling at a site which falls 

within FWG requirements and to observe downstream influences of the event within 

a single system with different riparian zone characteristics (Table 7-1). 

 
Table 7-1. Stream and corridor widths (± S.E) for sites of the Black Burn (prior to 
felling activities at the upstream site). Samples are mean of 3 width 
measurements per visit, within the 10m site stretch. Each site (minus CF, which 
represents measurements of a single pre-felling visit) was sampled four times, 
totalling 12 replicate measurements. 
Black Burn       

Relative Position Site ID Stream Width (m) 
Corridor  Width 

(m) 
Upstream BBCO (pre-felling) 1.13 +/- 0.28 12.6 +/- 1.45 
Middle BBOP 1.86 +/- 0/18 17.5 +/- 2/88 
Downstream BBSH 1.83 +/- 0/12 4.6 +/- 1.2 

 

7.4.2 Biofilm characteristics and productivity 
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Following the felling event ( 

Fig 7.2.), several changes occurred to the visual characterisation of the biofilms 

collected in spring 2005 multiple visits, compared to samples taken in spring 2004. 

These changes to the biofilm material included a visible loss of green autotrophic 

algal, thickening and darkening of the material, and often a general peaty 

appearance. This was combined with a bloom of abundant grey gelatinous growths 

in spring, covering the entire benthos.  

 

 
Fig 7.2. Black Burn Corridor site before felling in summer 2004 (left) and after, in 
spring 2005 (right). 
 

Composition analysis indicated a significant increase (P <0.001) in biomass 

settlement within the stream benthos following the felling event (Fig 7.3). The 

biomass increase was reflected in both the carbon and nitrogen contributions to 

benthic energy sources, which were generally significantly greater (P < 0.001) in 

2005 sampling points (Fig 7.4 and Fig 7.5). However the contribution from carbon in 

mid-summer 2005 is substantially greater than that of nitrogen, reflected by the 

molar C:N (Fig 7.6), suggesting significant (P < 0.001) carbon loading of sites post 

felling. These results suggest substantial increase in nutrient availability within 2005 

season and especially during the July collection.  
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Fig 7.3. Significant differences (ANOVA, P < 0.001) of biofilm dry-weight biomass 
(mg). Differences in groups defined with Tukey Test (95% confidence) and 
signified with differential lettering (a, b, c and d). 
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Fig 7.4.  Significant differences (ANOVA, P < 0.001) of biofilm total carbon (mg). 
Differences in groups defined with Tukey Test (95% confidence) and signified 
with differential lettering (a, b, c and d). 
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Fig 7.5. Significant differences (ANOVA, P < 0.001) of biofilm total nitrogen (mg). 
Differences in groups defined with Tukey Test (95% confidence) and signified 
with differential lettering (a, b, c, d, e and f). 
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Fig 7.6. Significant differences (ANOVA, P < 0.001) of biofilm molar C:N. 
Differences in groups defined with Tukey Test (95% confidence) and signified 
with differential lettering (a, b, c and d). 
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Autotrophic biomass, as outlined in Chapter 3, is shown again here. The data 

illustrates that chlorophyll a production within the biofilm material reached levels 

comparable to 2004 data post felling by July 2005 (Fig 7.7). There was evidence for 

full autotrophic concentration recovery within 6 months of felling. However this 

autotrophic production was spatially variable. Chlorophyll standing stock was 

significantly (P<0.001) higher at the clear-felled site (BBCF) compared to the shaded 

site, with the narrowest corridor (BBSH). Therefore, it appears apparent that during 

disturbance and nutrient enrichment, corridor design parameters significantly 

influence autotrophic biomass within streams (Fig 7.8).  

 

 

0

1

2

3

4

5

6

7

8

Jun-03 Oct-03 Jan-04 Apr-04 Aug-04 Nov-04 Feb-05 May-05 Sep-05 Dec-05

Date

 C
hl

or
op

hy
ll 

a 
(m

g/
m

2 )

BBOP
BBCO/CF
BBSH

 
Fig 7.7. Chl a from Black Burn biofilms collected during 2004 and 2005 (mean ± 
SE). BBCO and BBCF constitute the same site, BBCO, represents pre-felling 
conditions. Gap in data is representative of unsampled, felling period at BBCO. 
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Fig 7.8. Mean Black Burn biofilm Chl a concentrations (± 95% confidence interval) 
from each sample site in 2005 (upstream, BBCF; middle, BBOP; downstream, 
BBSH). Tukey test reveals significant differences (indicated with differing letters: 
a or b) between BBCF and BBSH (P = 0.030); where chlorophyll production is 
reduced. 
 
 
Even with the delay of measurable autotrophic biomass within 2005, the overall 

levels of chlorophyll measured between the two years appeared to be approximately 

comparable. However, when chlorophyll is analysed in comparison to overall biofilm 

carbon mass, the concentration of autotrophic material within the biofilm material 

was low. Specifically, using C:Chl a (C:Chl) measurements as an indicator of % 

autochthonous autotroph concentration of the biofilm, suggests significant (ANOVA, 

P = 0.049) variation amongst groups for C:Chl content (Fig 7.9). The increased C:Chl 

in 2005 biofilms indicates a relatively low algal prevalence (<100 is generally 

regarded as high algal cellular content - Geider, 1987) and increased concentration 

of allochthonous material.  
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Fig 7.9. Comparison of site specific C:Chl (± 95% confidence interval). Kruskal-
Wallis analysis indicates significant differences between groups (P < 0.001) 
Distribution of means suggests all BB 2005 sites have significantly greater C:Chl. 
 
This result is confirmed through calculations of algal biomass (algal C mg/m2), 

transformed from chlorophyll a density using the algal conversion factor of 60 

following; Romani and Sabater, 2000 (Fig 7.10). From Chapters 3 and 4, it was 

shown that variation in the chlorophyll conversion factor (CF) has minimal 

implications to the algal content of the biofilm in comparison to the allochthonous 

and heterotrophic component. Therefore, the intermediate CF was used here for 

analysis. In general, the proportion of biofilm material which is autotrophic is much 

greater within 2004, before the felling event occurred. However biofilm chlorophyll 

content became comparable between 2004 and 2005, by July 2005 (Fig 7.7), 

suggesting that the autotrophic contribution here does not increase proportionally to 

the increase in overall biofilm biomass. Rather, the overall ratio of the autotrophic 

matter to heterotrophic and allochthonous organic matter is low within post-felling 

biofilms despite chlorophyll recovery comparable to pre-felling levels.  
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Fig 7.10. Proportion of biofilm biomass derived from autochthonous algae. 
Significant differences (Kruskal-Wallis, P <0.001) between BB sites in 2004 and 
BB 2005, indicated by distribution of means, suggests lower biofilm carbon 
derived from algae in BB 2005 biofilms. Also suggestion of reduced algal 
production in shaded BB 2004 site, indicating possible light limitation to PP.  
 
The high proportion of non-autotrophic material following the felling event and the 

relative proportional contribution of allochthonous material is likely to have a 

significant influence on both biofilm internal diversity and functioning as well as 

influencing the community composition dependent on biofilm material. However, in 

comparison to past studies (e.g. Romani and Sabater, 2000); the contribution of 

autotrophic material is low during both years with autotrophic ratios of ~1:9 for 2004 

and ~1:99 in 2005. 

7.4.3 Algal species assemblage 
 
Green algae (Chlorophyceae) dominate in the initial stages after felling (Fig 7.11), 

but only in the immediate area of the felling (BBCF), not downstream sites, despite 

the relatively close proximity to the felled area (~150 and 200m for open and shaded 

respectively). This suggests that community composition may respond to nutrient 

enrichment only on very small spatial scales or that nutrient availability may decline 

quickly over a short area. The latter suggestion supports the hypothesis that 

efficiency of biofilm processing and nutrient retention capacity at BB during 2005 was 
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high. Specifically, the processing and drawdown, and the resulting reduction in 

available nutrients limited the spatial advance of the taxon (Guasch et al., 1994) 

away from the enrichment source.  

 

  
Fig 7.11. Temporal variation in the dominant taxonomic groups in 2005 Black Burn 
biofilm samples, with all three sites displayed, post-felling. 
 
Additionally, diatoms show late summer increased abundance in all sites, Diatoms 

are a siliceous class of algae reputed for being very sensitive to chemical conditions. 

They usually account for the highest number of species (up to 80%) among the 

primary producers in aquatic systems (Pan et al., 1999). Yet in the samples 

immediately following felling, their prevalence is very low and not comparable with 

that of Chlorophyceae in BBCF. As diatoms have frequently been used as biological 

indicators of water quality (Kelly et al., 1998; Prygiel et al., 2002; Leira and Sabater, 

2005; Sabater, 2000), the temporal variation of abundance here, suggests both 

unfavourable conditions post-felling, but also recovery of conditions in late 
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summer/autumn 2005. The reduction of diatom abundance at all sites at the end of 

the sampling season is not clear but may reflect seasonal variation. 

 

Immediately following felling (March – May 2005) there was also notably abundant 

hetrotrophic growth of the colonial bacterium: Sphaerotilus natans (Fig 7.12). This 

population was most abundant at the two uppermost sites (BBCF and BBOP), but 

declined in all sites towards mid to late summer, 2005. 
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Fig 7.12. Abundance of Sphaerotilus natans at BB sites within 2005, following 
felling event. Abundances for 3 fields of view (x 10 magnifications). 
 

7.4.4 Chemical and physical data measurements 
 
Physical and chemical data for the Black Burn were limited to measurements taken 

on four sampling trips. The unexpected nature of the event, and limitations on 

project resources meant that only routine water chemistry samples were taken. 

These measures were only originally designed to aid in the general characterisation 

of differential sites and not to distinguish temporal variation within a site and as 

such, were not sufficient to infer changes to the chemical characteristics of the 

stream environment post felling. Limited data is included here as an illustration of 

the data ranges measured in order to provide background information on site 

characteristics. However this data is not repeated frequently enough to be able to 

infer impacts of felling activities. 
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pH data was only collected once prior to felling and three times over the following 

season. At each site, pH varied from a minimum of 4.18 to a maximum of 5.80. This 

maximum range of 1.62 pH units showed no significant spatial variation (ANOVA, n = 

12, P = 0.979). Although temporal variation was significant (ANOVA, n =12, P = 

0.003, with July 2005 having significantly higher pH than the pre-felling sample), it 

was felt that inferring chemical changes to the system from a data variability range 

which is smaller in comparison than that observed over 24 h variation arising from 

photosynthetic activity and/or precipitation (Tetzlaff et al., 2007), would not be 

meaningful.  

 
A similar situation arises with conductivity data. Here, n still = 12 and there is no 

significant spatial variation (ANOVA, P = 0.470). Temporal variation (ANOVA, P = 

0.049), over the four sampling points indicated a greater absolute conductivity in 

July 2005 compared to pre-felling conditions. However the range of data is still low 

(67 -100ms/cm), and as such, it was felt it was inappropriate to infer chemical 

changes to stream water from felling activities from these limited and low ranging 

data points which could be as much to do with natural variation in the system.  

 
There was an increase in light availability at the stream water surface immediately 

following felling of the clear-felled site at that site from 54% PAR in September, 2004 

to a mean of 81.1% for the 2005 sample season. However any accompanied 

variation in stream water temperatures are from spot point measurements which 

cannot be relied upon to reflect long term changes in corridor characteristics over 

those likely to occur due to seasonal or even hourly temperature variation. The 

addition of long term data-logging of the physical and chemical changes of the water 

may have contributed to the understanding of water chemical and nutrient level 

variation following felling. However, by using biological indicators such algal 

composition, bacterial colonisation and macro-invertebrate species composition, as 

studied here, it is hoped that some evidence for chemical change can be inferred and 

contribute to evidence suggesting a change in conditions.  

7.4.5 Benthic macro-invertebrates 
 
There were distinct changes in the invertebrate community composition following 

felling. However, as the sampling methodology comprised  a single kick sample per 

fieldwork visit, the total sample size for all visits and all sites on the Black Burn was 
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relatively small (n = 12), resulting in limitations of the statistical power of the data 

set.  

 
 
In total 20 taxa were found at the three sites of the Black Burn (for both before and 

after the felling event). The dominant taxa, present in almost all samples, were the 

Diptera (Chironomidae, Tipulidae and Simulidae), Plecoptera (Nemouridae and 

Leuctridae) and the Trichoptera, Polycentropidae (Table 7-2).  

 
Table 7-2 Results from invertebrate kick samples at the Black Burn (Sep-04 to 
Sep-05). 
Error! Reference source not found. 
 
 
The ability to detect any effects of forestry clearance may depend on the choice of 

response measures. In respect to benthic macro-invertebrates different 

characterisations of benthic communities, such as the biomass, taxonomic 

community structure or total abundance can emphasise different aspects of 

ecological responses (e.g. Rodrıguez and Magnan, 1993). Therefore, evaluation of a 

wide range of biological metrics is useful in detecting and understanding the impact 

of forestry, as well as the response and subsequent recovery of macro-invertebrate 

communities (Resh et al., 1988). Thus, here both multivariate analysis and spatial 

and temporal variation analysis of the differential measurement parameters (diversity 

index, species richness and numerical abundance of individuals) are used to assess 

the community and ecological response of macro-invertebrate taxa. 

 

The following ordination of Cree only sites (Fig 7.13) is a replicate of that of Chapter 

5 and has been repeated here for ease of discussion.  Due to the small sample size 

available, statistically, it was not possible to analyse BB alone. However, the 

ordination of the whole Cree catchment provides comparable influences of various 

environmental variables as well as evidence to suggest that the majority of taxa are 

negatively correlated with any environmental variable which could be associated with 

the felling event (i.e. increasing silt/clay, sewage fungi cover (as identified as 

Sphaerotilus spp.) and algal cover). The only taxa which were correlated with 

positive increases in these variables were Corixidae, Chironomidae, Ephemerellidae 

and Vellidae. 
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The ordination provides evidence of co-related variables associated with the felling 

event. From within the Cree catchment, sewage fungi were only detected within the 

Black Burn. Therefore, it is assumed that this variable can be directly associated with 

the felling event. As such it appears that associated with increased heterotrophic 

production (and as such the felling event) are the variables positively correlated with 

axis one: increased conductivity, water temperature, sedimentation (% silt/clay), 

overhanging vegetation and widening of corridors. 

 
There was some evidence of separation of a group influenced by the felling event 

using TWINSPAN (Hill, 1979) (group 4, Table 7-3) into a distinct ‘felling community’, 

suggesting that the response by the invertebrate community is marked enough to 

influence the entire Cree catchment ordination, causing a marked separation of those 

species associated with the felling and the rest of the catchment assemblage. 

Further, the community response was fast enough to be comparable with the rate of 

change in conditions. Additionally, this survey period, although short, was sufficient 

to detect higher trophic group affects of a consumer assemblage structure 

dominated by taxa dependent on detrital resources (e.g. collector gathers 

(Chironomidae) and collecting filterers (Simulidae)). 
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Fig 7.13.  CCA1 from invertebrate chapter: species-environment ordination for 
samples located in the Cree catchment only. Colouration of dots indicates 
groupings as defined by TWINSPAN analysis. The contents of TWINSPAN groups 
are assigned in Table 7-3. A Monte Carlo test revealed the significance of the 
ordination (P = 0.005) with the majority of the variation within the ordination 
explained within axis 1 (eigenvalue 0.648) and axis two (eigenvalue of 0.314). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 7. Clear-felling 

 - 260 -  

 
Table 7-3. Species assemblage groupings as defined with TWINSPAN analysis 
associated with Cree-only CCA (Fig 7.13). Designation of groups 1 and 2 produced 
an eigenvalue of 0.361, and from groups 3 and 4, an eigenvalue of 0.423 was 
assigned. 
Group 1 (yellow) Group 2 (blue) Group 3 (red) Group 4 (light blue) 

Ancylidae Baetidae Hebridae Chironomidae 
Glossiphonidae Leuctridae Simulidae Odonticeridae 
Perlodidae Elmidae (larvae, narrow) Tipulidae Corixidae 
Chloroperlidae Helodidae   Dytiscidae (larvae) 
Cordulegasteridae Heptegeniidae   Ephemerellidae 
Dytiscidae (adult) Hydropsychidae   Gerridae 
Elmidae (adult) Leptophlebiidae   Neuroptera 
Elminthidae (larvae, wide) Limniphilidae   Oligochaeta 
Goeridae Polycentropodae   Velidae 
Hygrobatidae       
Isopoda       
Leptoceridae       
Nemouridae       
Psidium       
Rhyacophilidae       
Valvatidae       
 

There was a reduction in diversity (H) at all sites immediately following felling (Fig 

7.14) in March 2005. The clear-felled site experienced the greatest loss in diversity 

following felling. That this reduction is spatially constrained supports the conclusion 

that the biological effects of felling were mainly limited to an area immediately 

adjacent of the felling activities (BBCF), and there were reduced impacts downstream 

(at BBOP and BBSH). However, there was a recovery in diversity at both the clear-

felled (CF) and shaded site (SH) (top and bottom sites), suggesting recovery of 

environmental conditions at these sites by the end of the sampling period (Sep 

2005). It is unclear why this response was not also apparent in the Open site 

(middle). It is possible that the proximity to the road and under-road tunnel 

downstream and deep, slow moving, depositional areas of waters upstream reduced 

facilitation of inter and intra site migration of individuals for repopulation. Further, 

using diversity indices to indicate temporal variation of diversity has potential 

limitations, as data is manipulated to the extent of possibly reducing the sensitivity of 

the overall diversity measure. However, species richness within sites, over a 

temporal scale is indicated in Table 7-2. Similar spatially-specific recovery rates were 

observed in macro-invertebrate communities in riffle and depositional habitats of 

mountain streams in North Carolina. Invertebrate assemblages of the above 

mentioned habitats took much longer to recover from logging disturbance than those 
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on moss-covered bedrock, a more stable habitat (Stone and Wallace, 1998). Clearly, 

environmental context should be considered when evaluating forestry impacts, which 

may otherwise be masked by natural variation among sites. 
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Fig 7.14 Changes in benthic macro-invertebrates Shannon-Wiener diversity 
indices post felling (2004-2005) at BB sites (BBCF – upstream, BBOP middle, and 
BBSH, downstream). 
 
Consistent with a number of previous studies concerning recently felled systems, 

high abundances of certain species has been reported to cause unevenness of 

populations (e.g. Bisson and Sedell, 1984; Wilzbach, 1985; Kiffney et al., 2003). At 

Black Burn there was a sharp increase in the number of individuals from the Dipteran 

taxa (Table 7-2). However consideration of Shannon-Weiner diversity indices which 

account for unevenness of populations, indicated that when all sites where pooled 

there was no significant temporal variation in overall diversity scores (H) (ANOVA, n 

= 12, P = 0.114). This result may increase scepticism in the appropriateness of using 

Shannon-Wiener indices within this system, where temporal variation is the main 

consideration. However with consideration of sites individually (Fig 7.14), there was 

the suggestion of both temporal and spatial species-specific shifts. Initially, there 

was an increase in abundance of Simulidae at BBOP (middle) and BBCF (upstream) 

(in March), closely followed by a spatial shift to abundance of Chironomidae in BBSH 

(downstream) (during the July sampling trip) (Table 7-2).  In addition, the presence 

of Sphaerotilus natans at sites following felling may have significantly damaged 

populations of invertebrate taxa. Sewage fungi have been noted to clog gills of 

invertebrates, as well as hindering movement and feeding success (Hynes, 1978). 
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Here, samples were discovered with severe infestation of bacterial colony growth 

(Fig 7.15). 

 

 
Fig 7.15. Nemouridae (Pleocoptera) sample from BBCF 2005, showing colonisation 
of Sphaerotilus natans. Field of view shown here = 1cm width. 

7.4.6 Allochthonous Vegetation  
 
As mentioned earlier, two out of the three Black Burn sites fell within the minimum 

width requirements of the forest and water guidelines. Consequently, it seems 

appropriate to explore the riparian vegetation at these sites in detail to determine 

possible reasons for the impacts to both the basal resource characteristics and 

invertebrate diversity and assemblage structure described in the previous sections. 

  

In a study by Nisbet et al., (2002), the use of the forest and water guidelines on 

forest clearance strategies was assessed. This study illustrated minimal impacts from 

clear-felling on macro-invertebrates and resident trout populations as well as water 

quality. Consequently, here, one must question why, when modern felling practices 

would have been used, such significant impacts occurred to invertebrate populations 

and biofilm characteristics/content within the short period of sampling following the 

event? Although the entire length of Black Burn does not strictly follow the ‘New 

Style’ planting regimes, in that the downstream site has a corridor width below the 
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minimal FWGs, the sites upstream, which fell within the FWGs, still showed 

significant disruption. 

 

Despite the close proximity of the BB sites, all three sites have very different riparian 

vegetation classifications. Of particular interest is the riparian vegetation at the clear-

felled site as it is important to define why this vegetation type did not contribute 

adequately to the buffering capacity of the clear-felling event. 

 

A total of 19 vegetation species were found during sampling at the Black Burn clear-

felled site (Table 7-4). From the species list, it is clear that the majority of species 

are grasses, reeds or Carex species and there are no large shrub species or 

deciduous trees. 

 
Table 7-4. Black Burn Clearfelled site (BBCF) mean riparian community 
composition for March (M5), July (J5) and September (S5) sample trips for both 
bankside (B) and three-meter from bank (3) sites, using the DOMIN scale of plant 
abundance assessment in accordance with Rodwell et al. (1991). 
Error! Reference source not found. 
 
Consequently, it is proposed that this riparian species assemblage will be best 

adapted to removing surface runoff organic particles (Osborne and Kovacic, 1993) 

and the ability of the vegetation to remove nitrate from ground water will depend on 

the flow path of water and the relative proximity to the roots of the vegetation 

(Correll, 1997). 

 

Anaerobic conditions are required to produce the redox potential required for 

denitrification, but as soil oxygen content was not measured, it is difficult to 

determine whether conditions are optimal for denitrification or not. However, as 

many studies have noted that the redox potential is not low enough in soils subject 

to dry periods or droughts (e.g. Weller et al., 1994); one can assume that the 

anaerobic conditions are produced within high soil moisture/waterlogged conditions. 

I did not measure soil moisture saturation, thus to estimate conditions, species 

assemblage at Black Burn CF site was used to assess the potential for optimal redox 

potential conditions through inference from the optimal soil moisture preferences of 

the specific plant community. 
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TABLEFIT was used to analyse the plant communities of each of the three Black Burn 

sites (Table 7-5). TABLEFIT automatically classifies vegetation groups according to 

the National Vegetation Classification (NVC) and identifies habitat types according to 

the EC CORINE system The program identifies vegetation types by means of an 

index of goodness-of-fit, which measures the degree of agreement between the 

sample under study and the association tables in British plant communities (Hill, 

1989). 

Table 7-5. TABLEFIT analysis of Black Burn sites for riparian vegetation types. 

 
Although the assigned goodness-to-fit score is poor for BBCF (47) the clear-felled 

site was categorised as Juncus effusus meadow (Corine – 37.217, NVC M23). Juncus 

effusus and many of the Carex species found in abundance at the clear-felled site 

represent a community structure adapted and associated with moist, even 

waterlogged soil conditions (Chittendon, 1956).  

 
7.5 Discussion 
 

7.5.1 Biofilms 
 
Biofilm biomass increased significantly following felling activities. This mass increase 

was assumed to be proportional to thickness of biofilm material. When biofilms are 

sufficiently thick, steep redox gradients occur, creating anoxic zones. This gradient 

can facilitate the cycling of certain elements, such as nitrate, which can be denitrified 

(Nielson et al., 1990; Triska et al., 1993; Claret et al., 1998). Denitrification causes a 

net loss of nitrogen to the atmosphere. Thus, this activity in the biofilm would lead to 

a net loss of nitrogen from the river system, aiding recovery of waters enriched by 

diffuse pollution events and activities such as felling. 

 

However, studies have illustrated a trade-off in functioning by biofilms with 

differential compositional characteristics. For example, nutrient uptake and 

consequently, the capacity of a biofilm to improve water quality decreases with 

increased thickness (Freeman and Lock, 1995). A thick biofilm becomes increasingly 

self-sufficient with increasing cycling of internally produced algal and bacterial 
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exudates and lysis products. However, increased thickness of biofilms also increases 

the ability to store organic nutrients from external sources (Romani and Sabater, 

2001). Further, the redox potential achieved with increased biofilm thickness 

promotes both denitrification of excess nitrates and allows the biofilm to be more 

resilient to the effect of inorganic pollutants (e.g. heavy metals). In a purely 

biological process, biofilm organisms (algae, bacteria and fungi) are responsible for 

the uptake of organic carbon (Kaplan and Bott, 1983) and inorganic nutrients 

(Portielje and Lijklema, 1994; Tate et al., 1995). Nutrient decline downstream has 

been observed elsewhere (e.g. Sabater et al., 1991) and has been tentatively 

attributed to biofilm activity. This hypothesis has been tested in artificial channels, 

and unambiguously related to biofilm uptake (Mulholland et al., 1995 Kaplan et al., 

1987; Mason and Jenkins, 1995). Autotrophs and heterotrophs in the biofilm use 

nitrogen and phosphorus from the river water, the former to build up their growing 

cells (Bothwell, 1988), and the latter during the degradative use of materials of high 

C:N and C:P (Mulholland, 1992). 

 

Using the stoichiometric mixing model developed in chapter four, the proportion of 

allochthonous material within the biofilm sampled over temporal and spatial scales is 

illustrated (Fig 7.16). During pre-felling sampling, approximately 80% of the biofilm 

material was defined as autochthonous in origin, following felling, this ratio changes 

to a dominance of allochthonous inputs (up to 70 %). The simplest interpretation 

here is that following felling; there was a substantial contribution of allochthonous 

carbon from the riparian zone to the stream which was then incorporated into the 

matrix of the biofilm material.  
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Fig 7.16. Assessment of proportional contribution of autochthonous carbon to the 
Black Burn biofilms using molar C:N based mixing model. 
 

Within this study, the thickest biofilms were found during July sampling (Fig 7.3). 

During this same period, biofilms also incorporated the greatest proportion of 

allochthonous material within the matrix (Fig 7.16). This drawdown and retention of 

organic material into the biofilm removes it from the water column and thus should 

aid recovery of the stream water biochemical composition. However, the active 

processing of this material within the biofilm is primarily accomplished through 

bacterial processing and decomposition (Freeman and Lock, 1995). The presence of 

autotrophs enhances the degradative capacity of the biofilm (Romani and Sabater 

2000), thus, increasing the capability of the biofilms to ameliorate water quality. 

Consequently, those biofilms present post-felling are likely to be negatively 

influenced by the low proportion of algal carbon associated with the biofilms present 

post felling (Fig 7.10). It is apparent that the conditions on-site which facilitate the 

maximum autotrophic production are likely positively to influence processing of 

excess allochthonous material.  

 

Riparian conditions were found to significantly influence autotrophic production (Fig 

7.8), resulting in the clear-felled and open sites having a greater production of 

chlorophyll a. Thus, it is suggested that a greater light availability in-stream at BBCF 

and downstream of the felling site BBOP facilitated the recovery of the stream 

environment from the nutrient enrichment effects of the felling event. 

 

However, maximum biofilm biomass during July 2005 could also reflect maximum 

retention of material during that point. Consequently, despite the dominance of 

allochthonous material and the depletion of autotrophic material (Fig 7.9 and Fig 

7.10), biofilm growth appears to retain much of the excess organic material released 

into the stream system. As such, biofilm activity removes organic nutrients from the 

water column and may reduce impacts to downstream areas even with low 

autotrophic content. This finding suggests that even heterotrophic allochthonous 

based biofilms are important in organic matter retention. However, this finding 

contradicts previous studies which note that although bacteria are important in the 

uptake and processing of nutrients (Caron, 1994), optimal retention and processing 

of organic pollutants requires biofilms to have a greater proportion of autotrophic 

material (Romani and Sabater, 2000) for optimal bacterial functioning. Within August 
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2005 sampling, chlorophyll content of the upper two sites (BBCF and BBOP) was 

comparable with maximum chlorophyll mass recorded during 2004. With primary 

production increase, it is unsurprising that the autochthonous proportional content of 

the biofilm (as calculated using molar C:N) showed signs of increase (Fig 7.16). 

 

One of the most visually conspicuous aspects of the felling event was the 

appearance in the stream of a greyish mucilaginous material which appeared to 

contribute significantly to the early 2005 biofilm biomass. This material was identified 

as a colonial bacterium species; Sphaerotilus natans. Samples with this species in 

abundance had low molar C:N measures and as such, were rightfully classified with 

the stoichiometric based mixing model as autochthonous material. Abundance of this 

material immediately following felling (Fig 7.12) may explain why autochthonous 

content of the biofilm remained high until July 2005 (when abundance of 

Sphaerotilus dropped), despite felling occurring during the winter months. The 

increase in autochthonous material following July sampling appears to be related to 

the shift to autotrophic production (Fig 7.7). 

 

Water nutrient concentrations were not measured as part of the original project 

design and with the unexpected nature of the felling event; the total data and 

associated conclusions possible are limited. Yet, the response of the baseline 

resources and higher consumer groups measured as part of the classification of 

stream and riparian zone ecological status have proved useful as indicators of the 

chemical and physical variations occurring in the sites. The biological impact provides 

evidence to support the theory that significant nutrient enrichment occurred post 

felling. For example, high concentration of organic matter (evidenced though biofilm 

biomass increase) within the stream system is likely to have resulted in an increased 

biological oxygen demand through increased heterotrophic respiration. These 

combined effects of felling were likely to have provided the conditions appropriate 

for high production of Sphaerotilus natans; a species which is commonly referred to 

as sewage fungus, and is often associated with organic pollution events (Curtis and 

Harrington, 1971). Therefore, much of the evidence for nutrient enrichment comes 

from the biological response. Yet without chemical analysis, this assumption is still 

somewhat speculative. However, further evidence of nutrient enrichment comes from 

data collected independently by the Scottish Environmental Protection Agency 

(SEPA). Measurements of total organic carbon (TOC) and dissolved organic carbon 
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(DOC) within the water are shown in Fig 7.17. Significant increase in carbon was 

identified within these analyses, during the period immediately following clear-felling 

at Black Burn. Although this increase may have been partly due to seasonal fluxes in 

nutrient release, such a sharp incline, corresponding with the period of BB 

disturbance, is suggestive of a direct correlation between BB and Minnoch TOC/DOC 

levels. This suggestion indicates that the release of organic material from the felling 

site caused a notable increase in carbon content at a point in the main Minnoch 

tributary approximately 7km downstream of Black Burn. 
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Fig 7.17. Total organic carbon (TOC) and dissolved organic carbon (DOC) (mg/L). 
Measurements taken by SEPA, at Minnoch Bridge location (NX 36220 74840). 
 

The temporary nature of the flux, and specifically, the sharp reduction in carbon 

concentration downstream from April 2005 (Fig 7.17) coincided with the mid-summer 

period of maximum biofilm biomass (Fig 7.3), and initial chlorophyll recovery (Fig 

7.7) This suggests that although the proportion of autotrophic (and autochthonous - 

Fig 7.16) material was low (Fig 7.10) within the thickened biofilms of summer 2005, 

the retention of organic material by biofilms on-site, may have contributed to the 

reduced downstream carbon loading. Thus allochthonous dominated biofilms may be 

playing a significant role in buffering organic enrichment release to downstream 

areas.  

 
Algal community composition and biofilm efficiency (as photosynthesis per unit 

chlorophyll) are related (Guasch et al., 1995). At BBCF, the community of stream 

biofilm algae changed from a green algae dominated community structure (reflecting 
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the high nutrient availability required by this taxa: Guasch et al., 1995) to a 

community diatom-dominated (at all sites), although with a lower photosynthetic 

efficiency per unit cell (Guasch et al., 1995). Yet consideration of the relative 

abundance of diatom cell units and the comparative restricted area utilised by the 

chlorophyceae, overall photosynthetic activity increased in latter summer months 

reflecting the increased efficiency to the biofilms during this period. 

 

However, there was evidence that diatoms could possibly be used as an indicator 

species for the forest clearance event. The reduced diatom population within the BB 

sites and the relative population recovery towards the end of 2005 suggests that this 

species was negatively affected by the felling event (Fig 7.11). This result also 

suggests that recovery from felling within the biofilm in terms of chlorophyll (Fig 7.7) 

production and algal species diversity assemblage only took one growing season 

(approximately 5 months) before results were comparable with pre-felling conditions. 

7.5.2 Benthic Macro-invertebrates 
 
Logging activities were linked to a decline in taxonomic richness, increase in 

numerical densities and shift in community structure of benthic macro-invertebrates. 

These changes primarily reflected marked increases in the abundance of chironomids 

and simulids  

 

Although there was some evidence of a ‘post-felling adapted’ community composition 

from the Cree catchment CCA (Fig 7.13), the rate of change of environmental 

conditions following the event and shifts in potential energy sources (e.g. Fig 7.10 

and Fig 7.16) was likely to be too rapid for all but those with the fastest reproductive 

rates (e.g. Chironomidae and Simulidae), to demonstrate a temporally adaptive 

response to the changing conditions.  

 
The shift in dominance from Simulidae in March to Chironomids in July could reflect 

both changes in food availability/form and the differential feeding mechanisms and 

behaviours of the two taxa. The larvae of the Black Fly (Simulidae) concentrate dilute 

sestonic carbon through filter-feeding, into benthic biomass. Food quality and 

quantity are amongst the strongest predictors of Black Fly larvae distribution 

(Richardson and Mackay, 1991). Larvae feed non-selectively (Chance, 1970), and 

individuals ingest differential particles in proportion to abundance rather than quality, 
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selective only that the particle is within a size range capable to be captured 

efficiently on their cephalic fans (Wotton, 1984). Thus, abundant presence of a 

filtering collector species during the early stages following the felling event, suggests 

that the highest proportion of carbon available during this phase, is most likely in the 

form of labile C, or suspended organic matter. During this early period, biofilm 

biomass was relatively low (Fig 7.3) and yet the high TOC/DOC release (Fig 7.17), 

suggested  that the majority of carbon available, during this stage, is mobile and 

suspended within the water column, available for filtering species. The Simulid fast 

reproductive rate combined with generalist feeding behaviours facilitates fast 

population increases associated with the favourable conditions (Chung Kim and 

Merritt, 1989).  

 

The dominance of chironomids within the shaded site during the July sampling trip 

could be a key indicator in the shift of carbon sources and availability. Chironomids 

are fast colonizers found in high densities in disturbed habitats. These attributes 

allow them to be among the few taxa able to exploit patchy, ephemeral food 

resources (Palmer et al., 2000). Biomass of the biofilm is at a maximum during July 

(Fig 7.3). Additionally, TOC runoff downstream dropped (Fig 7.17). Thus, I 

hypothesise that the quantity of carbon available as suspended particles is reduced 

and that the majority of organic food material is located in the form of a thick, 

allochthonous dominated biofilm (Fig 7.16). As the majority of chironomid species fall 

within the ‘Collector-Gatherer’ functional feeding group (Merritt and Cummins, 1996) 

and feed by collecting and consuming particulate organic matter from the benthos, 

this shift in biofilm characteristic favours the chironomid feeding 

morphology/functional feeding group (FFG). This group depends on allochthonous 

derived detritus in the form of coarse (CPOM) and fine particulate organic matter 

(FPOM) for both habitat and food (Richardson, 1991; Grubbs and Cummins, 1994), 

and thus the impact of felling is unsurprising in causing the community shift to one 

of chironomid dominance.  

 

Interestingly, two of the stream sites were bordered by buffer strips of a greater 

width than the minimum requirements of the Forestry Commission’s Forest and 

Water guidelines, yet the presence of buffer strips seemed insufficient to eliminate 

impacts of logging activities on macro-invertebrate communities. This provokes 

obvious questions concerning the appropriateness of the design, width and nature of 
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the riparian buffer zones currently being produced within the constraints of these 

most recent guidelines. 

 

7.5.3 Allochthonous Vegetation 
 
Although the vegetation types present in the survey suggest high soil moisture 

content, and as a consequence, the anaerobic conditions required for denitrification 

(e.g. Weller et al., 1994), the soil organic matter content and distribution in relation 

to ground water flows is not known. It is hypothesised therefore, that reduction in 

the buffering capacity of the riparian zone was as a consequence of increased redox 

potential at the depth of groundwater flows. Optimising conditions for nitrogen 

removal may therefore be a balance of maintaining high soil water content and 

providing the appropriate content and distribution of organic matter. It is suggested 

that this could be achieved through tree planting (as trees have deeper root systems, 

more likely to intercept groundwater flow paths). However as this may then pose a 

risk to soil moisture conditions due to increased evapo-transpiration from the riparian 

zone. 

 

Further research into vegetation types and optimising soil water and nutrient levels 

has the potential to aid in the design of buffer strips within riparian zones. It is 

suggested that soil moisture conditions should be considered when designing and 

managing riparian buffer strips. Further corridor design should consider more closely 

that the specific biological demand for nitrate matches the photosynthetic rate of the 

vegetation, and thus, allowing for adequate removal of excess nutrients from the 

soils. Further, it is it appears apparent that current Forest and Water guidelines do 

not adequately match the hydrological conditions of the ground flow at sites with the 

type of vegetation present, in order to ensure interaction between vegetation and 

soil-water is maximized. Therefore, despite the riparian zone design falling within the 

current Forest and Water guidelines, the ecological response following the event 

suggested significant alterations to the chemical and biological conditions present 

both at the felling site and downstream. Therefore, this chapter provides evidence 

through biological monitoring that increase in corridor width alone, does not appear 

to contribute sufficiently to amelioration of the water body adjacent to the felling 

activity.
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8 Conclusions  
 

In this study, conifer forestry stream corridor design was considered in relation to 

both in-stream and riparian zone biodiversity. Additionally, the contribution, 

availability and source of basal resources in forest stream systems have provided the 

primary focus of this project. Further, a substantial area of investigation 

concentrated specifically on, how these basal resources vary with variable site 

conditions, temporal scale and under the scenario of felling disturbance. These 

approaches have been combined to provide a data set which examines community 

diversity at key trophic scales in order to determine how the corridor characteristics 

and their associated resource availability, affects community structure and system 

functioning within the confines of current forestry management guidelines. Here I 

summarise the key findings of each chapter and comment on their relevance to 

stream corridor design. 

 

Chapter two considered riparian vegetation biomass and diversity. Riparian 

vegetation biomass, particularly proximate bank-side biomass, was assumed to be 

directly related to the delivery and quantity of allochthonous material available within 

the in-stream habitat. The correlation found between overhanging vegetation 

percent estimates and bank-side vegetation biomass supported the view that there 

was direct delivery of allochthonous material to the stream from bank-side 

vegetation sources. However, an attempt to quantify the volume and type of 

allochthonous material available within the water column (through detritus trapping: 

see appendix) failed due to the destruction of traps during spate events.  

 

However, previous studies have shown that overhanging material provides a direct 

source of allochthonous carbon as well as increasing the delivery of drift 

invertebrates, which can be essential components of consumer diets. Stream 

consumers, such as fish, depend on terrestrial invertebrates that fall into streams for 

up to half of their diet (Elliott 1967, 1973; Cloe and Garman, 1996; Johansen et al., 

2000; Kawaguchi and Nakano, 2001). In addition, overhanging areas of riparian 

vegetation can also act as refuges for invertebrates and fish (Eklöv and Greenberg 

1998), and are often utilised in the emergence of the adult forms of many aquatic 

invertebrates (see Sabo and Power 2002; Kato et al., 2003). The significant 

correlation observed between PAR intensity and riparian ground vegetation biomass, 
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although a foreseeable relationship, nevertheless reinforces the need to maximise 

light intensity within riparian zones to promote ground-flora and associated 

overhanging vegetation biomass.  However, both the correlation of vegetation 

biomass with light and % overhang had large variances and low associated r2 values. 

As such, the power of these relationships was poor and illustrated the importance of 

possible confounding variables. The primary variable which appeared to influence 

these relationships was thought to be seasonality. The increase of biomass 

production at all sites (irrespective of corridor light regime) within summer sampling 

points, increased the variance of the relationship. It was also likely that variation in 

the light requirements of specific vegetation types reduced confidence in the 

correlations found. However by using direct comparisons between the broad site-

type categories (i.e. ‘broadleaf’ ‘open’ and ‘corridor’ etc), found that the pooled data 

from those sites defined as ‘open’ had the greatest overall riparian vegetation ground 

flora biomass. 

 

Successful implementation of the detrital trapping experiments would have provided 

useful information on quantity and quality of allochthonous material available within 

the water column and to stream biota, within differing habitat types. In respect to 

the investigative route taken throughout chapters 3 and 4, improvements to project 

design would have benefited from prioritising the redesign of detrital trapping 

experimental equipment, so as to gain more information on resource availability and 

source. Information on this aspect may well have significantly added to, and 

complimented information gained on benthic biofilm carbon source and availability. 

However, consideration of secondary consumers (i.e. benthic macro-invertebrates) 

was used instead as a proxy for relative food type and availability, through analysis 

of functional feeding group abundances. The dominance of detrital feeding guilds 

confirmed the importance of allochthonous resources rather than autotrophic in-

stream production. Further, a significant direct linear relationship between riparian 

biomass and in-stream benthic macro-invertebrate diversity was observed. This 

result provided further evidence to suggest that allochthonous organic material was 

the most important resource promoting a diverse invertebrate community 

assemblage structure. However, the importance of over-storey tree diversity to 

benthic macro-invertebrates was more questionable as no direct relationship 

between over-storey tree diversity and invertebrate diversity was found. 
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A number of past studies have noted reduced diversity of ground-flora species within 

upland, open, moorland habitats, and specifically the domination of grass species 

such as Deschampsia flexuosa (e.g. Bokdam and Gleichman, 2000). However, the 

data presented in Chapter 2 suggested that although broadleaf sites overall yielded 

the highest riparian ground flora vegetation diversity scores (Fig 2.11), vegetation 

diversity was only significantly reduced at the conifer shaded sites, with all other site 

types yielding statistically similar diversity scores. Thus, the potential trade-off in 

vegetation diversity which one might expect to exist with the adoption of wide, light 

intensive corridors is in fact, minimal here. As such, corridor design aimed at 

optimising the promotion of both biomass and diversity of riparian vegetation, and 

through this, macro-invertebrate diversity, should consider orientating management 

towards more open, light intensive corridors. Vegetation biomass standing crop was 

greatest at higher altitude locations, within areas of greatest light availability. The 

Forest and Water Guidelines suggest that 50% of the riparian zone should be kept 

open. Yet, to promote greater ground vegetation biomass, important to benthic 

invertebrate populations, I suggest that this area could be increased, especially at 

the bank edge, where vegetation biomass is directly related to overhanging material. 

 

The analysis of in-stream basal resources was the focus of Chapters 3 and 4. Several 

different techniques were employed to determine the composition and characteristics 

of in-stream benthic biofilm growths. This focus was applied in order to determine 

the source, quantity and quality of in-stream resources, and to gain insight into the 

functioning of biofilms under varying corridor characteristics. With reference to 

studies in the literature, relating biofilm composition to functioning (chapters 3 and 

4), I considered the functioning of the biofilm in terms of the potential for nutrient 

drawdown, retention and processing of organic and inorganic pollutants. These 

chapters form a pilot data set exploring the idea that biofilm characteristics could be 

optimised to promote increased in-stream buffering and processing of excess 

nutrients. Although further development of this approach is clearly required, this is 

an area of stream functioning research which has not previously, to my knowledge, 

been considered in respect to forestry activities and the diffuse pollution which they 

may cause (Allan, 1997; Clenaghan et al., 1998, Maitland et al., 19990 and Ormerod 

et al., 1986). A large number of studies have explored the potential of riparian 

buffer-zones for reducing in-stream pollution impacts (e.g. Pinay et al., 1990; 

Naiman and Decamps, 1997; Giller and Malmqvist, 1998; Gordon et al., 1992). 
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However I have found none exploring the potential of optimising biofilm 

characteristics as an alternative or complementary approach to buffering 

downstream impacts of forestry activity. I feel that the research presented here 

forms the basis for further studies utilising in-stream primary resources as a 

secondary line of defence against excessive terrestrial nutrient run-off. 

 

The biofilm study of chapters 3 and 4 considered approaches to defining algal 

contribution to benthic biofilms and the source of carbon available to secondary 

consumers. Further, through delineation of basal resources, and determination of the 

variability of biofilm mass, the degree of variation in the proportion of allochthonous 

and autochthonous resources under a variety of corridor conditions could be 

identified. In addition, autotrophic contribution was considered in respect to past 

studies which have noted optimal processing and retention of pollutants within 

biofilms with high autotrophic proportion. Here, corridor characteristics, and 

specifically increased areas of light availability, were explored in relation to 

autotrophic proportion optimisation, and thus, biofilm functioning capacity.  

 

The development of a molar C:N two-source mixing model within Chapter 4 indicated 

that under normal, non-disturbed conditions, biofilm biomass is made up of ~ 70 – 

80% autochthonous material (Fig 4.24 to Fig 4.27). The confidence of this result 

was high as the result was consistent between both the streams studied (BB and 

T33). This result provides scope for the wider applicability of this approach in 

defining the source of carbon available within stream benthic habitats. Whilst this 

approach was unable to delineate the autotrophic to heterotrophic ratio, it 

contradicts a large number of findings which suggest that upland afforested streams 

have allochthonous based resource dominance (e.g. Vannote et al., 1980). The 

results gained in this study suggest that these low order systems, within afforested 

catchments are either based on autotrophic production, or extensive internal 

recycling of resources, but not directly on allochthonous material. As such, this 

questions the importance or even the relative availability (Dobson and Cariss, 1999) 

of allochthonous material within such systems. 

 

Relating biofilm characteristics to light (PAR) intensity had mixed results. There were 

few intra-site specific differences in chlorophyll production between the majority of 

the undisturbed sites (BB 2004 sites or T33, 2005), despite significant variation in 
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corridor conditions and light availability. However, T33 biofilms were generally more 

chlorophyll enriched than BB 2004. This result suggested that either chlorophyll 

production was not light limited by the specific light intensity provided by each site 

condition or that alternative factors were influencing algal productivity. Similar 

studies within the literature have found comparable patterns, noting that algal 

biomass in streams is as much a function of flow regime (Rounick and Gregory, 

1981; Tett et al., 1978) and invertebrate grazing (e.g. Steinman, 1996) as it is of 

growth rate. Additionally, the level of light required by algae is not only controlled by 

riparian shading, but also as a function of the turbidity and coloration of the water 

itself.  The methodology used in this study would be improved by paying more 

attention to the light attenuation within stream waters. This was not considered here 

as the mean depth of the streams was often less then 30cm and thus it was 

assumed that Zeu (photic zone cut-off depth) would not be reached within the 

shallow streams concerned.  

 

However, this raises the issue that corridor design and management must take into 

account not only the optimum light requirements of the in-stream biota but also the 

water quality of the specific water-course and specifically the light attenuation within 

the water column, and may require accounting for the greater light requirements of 

streams with naturally darker waters. Further, as studies predict a global increase in 

DOC concentrations in riverine run-off (Freeman et al., 2001; Worrall and Burt, 2004; 

Worrell and Burt, 2005b), corridor design which does not account for the variability 

in water colouration, turbidity or DOC concentrations, may need updating. 

 

Changes in the proportional contribution of carbon to chlorophyll a (C:Chl) has the 

potential to cause significant shifts in the biofilm functioning, providing information 

on the relative contribution of autotrophic carbon. The high C:Chl found at BB 2005 

suggested that there was significant input from C-rich allochthonous material.  

Conversion of chlorophyll a to algal cellular carbon (using the middle conversion 

factor of 60) was useful in determining biomass of algal material within the biofilms 

at each site. However, data presented here indicated that only a very small 

proportion of biofilm material is derived from algal cellular origin: approximately 

2.5% for T33, compared to 5.6 % for BB 2004 and 0.6 % for BB 2005. Although the 

conversion factor (CF) has been found to be variable under a number of common 

environmental variables (e.g. light, temperature, algal species and pH), exploration 
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of the potential variation in CF did not cause significant variation to relative algal 

concentrations compared to the remaining mass of organic matter. The low 

autotrophic proportion of biofilm found at these sites is similar to the findings of a 

number of previous studies (e.g. Frost and Elser, 2002; Bowman et al., 2005) where 

algal cells were a minor component of ‘periphyton’. However, there appears to be 

much variation in the literature, as equally Frost et al. (2005) and Hamilton et al. 

(2001), described a high algal component to periphyton.  This inconsistency between 

studies describing the proportion of autotrophic material within biofilms, indicates 

that it is not possible to make assumptions about biofilm content, specifically that 

periphyton is primarily autotrophic. The relative proportion of the autotrophic biofilm 

component significantly influences functioning of the biofilm and processing of 

potential pollutants (Sabater and Romani, 2000). Consequently, temporal and spatial 

variation in biofilm content should be considered as important an aspect of stream 

ecology to survey as other approaches to quantifying stream health, basal resource 

availability and potential vulnerability to habitat modification. However, the low 

autotrophic component to the stream biofilms indicated that biofilm functioning was 

only minimally reliant on algal production.  

 

As the autochthonous proportion was derived though a molar C:N mixing model, and 

the autotrophic component of that autochthonous material derived through 

chlorophyll conversion, this allowed for the remaining proportion to be defined as 

heterotrophic. With this information, it was possible to suggest that approximately 

25% of biofilms under non-felled conditions were allochthonous, ~5% was 

autotrophic and ~70 % of material was heterotrophic in character. This high 

heterotrophic proportion is surprising and suggests significant levels of internal 

processing from bacteria, fungi and protozoa. Further, this result also suggested that 

the biofilm at the sites studied was largely self-sufficient as there was little ‘raw 

material’ in the biofilm matrix in comparison to the heterotrophic component. 

However, in comparison to past studies, biofilms here had significantly lower 

autotrophic to heterotrophic component than the 3:1 described as optimal for 

functioning by Sabater and Romani (2000). Following the felling event at BB, in 

2005, the allochthonous component often reached closer to ~50 - 60% of the biofilm 

biomass. Further, the autotrophic component dropped to around 1% of the biofilm 

material.  
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The high proportion of heterotrophic material is largely derived due to the high 

autochthonous estimations (especially in undisturbed sites).  Confidence in this result 

is high due to the significant difference in molar C:N between terrestrial and aquatic 

material (and the consistency of these signatures across both spatial and temporal 

scales: Redfield, 1934). However, it was not clear how much the molar C:N of 

allochthonous material is altered when processed within the stream system. It is 

possible that with extensive transformation and processing of allochthonous material 

by aquatic organisms, the protein content of the material increases, and in doing so, 

the molar C:N decreases. As such, the material (originally allochthonous) resembles 

an autochthonous signature. As this transformed material cannot be defined as 

autotrophic, it was defined as heterotrophic, when it may, in fact, be highly 

processed material of allochthonous origin.  However, although this was a possible 

scenario, it also demonstrates the significant internal processing and recycling of 

material and the reduced requirement and utilisation of ‘raw’ allochthonous material. 

This further demonstrated the need to maximise retention of material within forest 

streams as unprocessed allochthonous material is a small component of biofilm 

biomass. 

 

Yet caution should be given towards the alternative approaches employed for 

surveys of biofilm characteristics. Although microscopic analysis was useful in this 

research in providing information on community composition, the technique has 

limitations in determining proportional contribution from algal cells. My comparison 

of techniques illustrated that quantities of autotrophic material are often greatly 

overestimated due to cells being relatively more conspicuous than homogeneous 

detrital material. Additionally, there is no viable way of determining the origin of 

unidentifiable detrital material.  

 

Felling at the uppermost Black Burn site (BBCF) within the winter of 2004/2005 had 

significant impacts on biofilm composition (and thus, potentially on functioning). This 

event was considered in greater detail in Chapter 7. Unfortunately, the unexpected 

nature of the event meant that data was limited in areas of water chemistry, and 

much of the work can consequently only be viewed as pilot data. 

 

The abundance of Sphaerotilus natans (a colonial bacterium, often referred to as 

‘sewage fungi’) immediately following felling proved a useful indicator of chemical 
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and physical modification of stream conditions post-felling, and specifically, 

significant nutrient enrichment. Detrimental effects of the sewage fungi bloom were 

observed on invertebrate individuals caught as part of the invertebrate sampling 

programme, which were encased in filamentous growths. Further, evidence from 

data collected independently by the Scottish Environmental Protection Agency (SEPA) 

indicated that total organic carbon (TOC) and dissolved organic carbon (DOC) 

showed significant increases within the main Minnoch tributary at a site 

approximately 7km downstream of Black Burn. Although other factors may have 

contributed to this peak (e.g. seasonal DOC flux), the relative consistency of DOC 

and TOC at all other times of the year, and the rapid increase coinciding with the 

felling event, is certainly suggestive of a correlation. This event illustrates the 

potential for carbon (and potentially other nutrients) to increase in downstream 

locations following felling. 

   

Despite a significant allochthonous contribution to biofilms post-felling, the very high 

biofilm biomass found at BB during July 2005 reflects high levels of in-stream 

retention of externally derived material. Consequently, even biofilms dominated by 

allochthonous material were found to be important in retaining much of the excess 

organic material released into the stream system. Retention of organic material 

within the biofilm removes material from the water column and may reduce impacts 

downstream. Further, retention of material within the benthos increases the 

opportunity of on-site processing and may make resources available within systems 

where inputs of coniferous needles mean that nutrient availability may be low 

(Dobson and Cariss, 1999).  

 

During felling, it appears that canopy cover and riparian characteristics become 

increasingly important in controlling biofilm character and thus autotrophic 

contribution and production. For example, using Chl a as a proxy, autotrophic 

production was higher at the clear-felled and open sites. The functionality of the 

biofilm, in terms of nutrient retention, was considered most efficient at BBCF due to: 

1) the greatest mean biomass (indicating organic matter retention in the benthos),  

2) high chlorophyll production (indicating a autotrophic proportion to aid in biofilm 

function), from low overall autotrophic biomass (suggesting that the algal growth 

was not significantly contributing to this increase in biofilm dry-weight), 3) the first of 

the sites to have a significant algal population recovery (Chlorophyeae),  and 4) the 
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site showing the fastest significant reduction in sewage fungus production (indicating 

relative nutrient depletion).  Thus, it is suggested that a greater light availability in-

stream at the clear-felled and open sites facilitated the recovery of the autotrophic 

component of the stream biofilm, which in turn, may have increased the functionality 

of the biofilm. From this, one might infer that increased light intensity may promote 

more effective autotrophic functioning of the biofilm and a faster period of recovery 

post-felling. 

 

However, although ‘opening’ of the canopy may promote biofilm functioning during 

all felling events; such benefits cannot be assumed to continue downstream if 

corridor design differs. BBSH, the lowermost site and the only site at BB, that did not 

fall within the minimum conditions described within the Forest and Water Guidelines 

(Forestry Commission, 2003), had limited autotrophic production. Further, despite 

being positioned at the greatest distance from the disturbance event, the shaded site 

demonstrated the slowest biotic recovery (as evidenced by chlorophyll recovery rates 

and the dominance of a nutrient enrichment, anoxic environment-adapted 

invertebrate species - chironomid bloom). This spatial variation in biofilm functioning 

reinforces the need to maintain corridors at a width to allow for autotrophic 

production in-stream and increase the buffering potential of biofilms, thus protecting 

water quality against pollution and disturbance events upstream as well as on-site. 

 

Chapter 5 considered the ability of benthic macro-invertebrates to indicate in-stream 

conditions, basal resource dominance, availability and utilisation. Further, measures 

of diversity within a variety of corridor conditions indicated relative optimal 

conditions. Specific site types (i.e. corridor, open, clear-felled and broadleaf) proved 

insignificant in predicting changes in diversity. Multivariate analysis also indicated 

that catchment, season and specific streams separated groups of assemblage type, 

but not by site types within any one stream system. Variables related to corridor 

design (i.e. corridor width, tree height, tree diversity and % light) all had relatively 

shorter arrows, in the CCA ordination. However, secondary factors which are often 

dependent on corridor design were found to be of greater influence (e.g. % sewage, 

% algae, % overhanging vegetation and temperature). This decoupling of the 

physical variables (light and corridor variables) with allochthonous and 

autochthonous production may have been due to confounding variables such as 

altitude, pH and season. Therefore, it is difficult to ascertain how very specific 
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alterations in corridor design will influence in-stream and riparian diversity without 

experimental manipulation of controlled sites, and reduction of confounding 

variables. Rather, it seems more appropriate, from the results presented here, that 

with the manipulation of general variable trends, it may be possible to improve in-

stream and riparian ecology while still being aware of the variance associated with 

multiple variables and an ecological approach.  

 

Invertebrate diversity was not found to be positively correlated with algal diversity or 

cover. Instead, the majority of invertebrate taxa were positively associated with 

riparian tree species diversity and overhanging vegetation cover. Thus, it is 

concluded that community composition as a result of afforestation (either on-site or 

upstream), has resulted in a relatively low dependence on autochthonous primary 

production. Significantly, despite wide-ranging availability of autotrophic production, 

the majority of invertebrate communities appear to rely on allochthonous resources. 

However, without more focused research on diet analysis (e.g. isotope or gut 

contents analysis), the nature of the consumer diet cannot be guaranteed and may 

be subject to variation of local autotrophic productivity. Further, the contribution of 

algal material to benthic periphytic material has already (chapters 3 and 4) been 

shown as variable. Despite the often high degree green colouration of the benthos 

(used as rapid estimates of algal cover at sites), the actual contribution (and 

therefore, overall availability of algae) cannot be assumed to be high. A more 

focussed future approach should consider both the actual content of algae within 

periphyton at all sites, and also take into account possible opportunistic variation in 

invertebrate diets and not just FFGs. 

 

Much of my research to characterise autochthonous resources indicated that the 

availability of autochthonous material is not always significantly influenced by the 

immediate corridor characterises of the site. There was evidence to suggest some 

spatial variation of chlorophyll production, with greater production at the two CF sites 

of T33, and the CF BB site of 2005. However, when data from all biofilms were 

pooled, the proportional contribution of the autotrophic component remained 

predominantly low at all sites of the entire sampling period. Only occasional samples 

from BBOP/CO, 2004 showed any significant autotrophic contributions, comparable 

with biofilm studies in the literature (e.g. Romani and Sabater, 2000). The reduced 

site-specific variation in autotrophic biomass (even with variation apparent in site 
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design) casts doubt on the direct coupling between light availability and algal 

biomass. Light does not alone influence algal productivity, and variables such as 

invertebrate grazing, flow and pH may also have influenced the standing crop of 

autotrophic material. Further, any direct relationship between corridor design and the 

in-stream algal biomass may have been masked by the influence of turbidity, and in-

stream nutrient availability. Therefore, one can conclude that even with modification 

to corridor design, the impact on autotrophic resources is not predictable and not 

necessarily reflected in community structure. Thus, to promote biodiversity of 

invertebrates and the abundance of native salmonids, a more predictable approach 

may be the maximisation of allochthonous energy inputs and quality. This could be 

achieved either through the increase of riparian over-story tree diversity, or through 

corridor widening and the promotion of riparian ground vegetation biomass.  

 

Chapter 6 considered salmonid population variation. Salmonids represented the most 

economically important taxa considered within this project. Both Atlantic salmon 

(Salmo salar) and brown trout (Salmo trutta) are considered to be of such high 

conservation value as to fall within the protection of several different conservation 

schemes, including Local Biodiversity Action Plans (LBAP), and the Bladnoch Special 

Area of Conservation (SAC). Yet despite this current focus of protection, these 

species populations are still vulnerable and show evidence of local population decline 

(SNH, 2007). Within the study, Atlantic salmon fry were stocked into a number of 

streams within the Cree (2004) and Bladnoch (2005).  

 

The recovery success, and associated survival rates were low for the salmon stocked. 

Due to this low recovery, meaningful conclusions about the effects of corridor 

characteristics and design on salmon fry survival was difficult to draw. In addition, 

the unexpected presence of brown trout within several sites (which had been chosen 

due to their apparent isolation from natural populations) confounded results. The 

differences in habitat preferences and tolerances to abiotic variation meant that it 

was not possible to use trout as a proxy for salmon survival. However, the presence 

of trout in a number of sites did not appear to cause additional reduction in salmon 

survival success (owing to the fact that the most successful of sites also included 

healthy trout populations).  
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Intra-stream variation in salmon growth and survival showed some relationship with 

in-stream macro-invertebrate distribution and relative population abundance. 

However, ordination analysis of habitat variables indicated that light availability was 

the strongest parameter influencing salmon size categories, with the largest salmon 

fry at the most light-intensive sites. Yet, although multivariate analysis indicated 

weak associations between salmon fry and corridor characteristics, using direct 

correlation analysis, it was not possible to relate salmon abundance directly to any of 

the corridor design parameters.  

 

The trout populations appeared to be positively influenced by higher pH, 

conductivity, alkalinity, benthic invertebrate diversity and abundance. Yet, direct 

linear regression analysis suggested that only light availability could be used to 

directly predict trout abundance (negative linear relationship). It was not possible to 

relate trout abundance directly to any other corridor design parameter. However, 

even using light (the strongest correlation variable), provided only very limited 

predictive powers as there was a high level of variance associated with the 

relationship. 

 

Salmon growth was greater within light intensive sites, whereas trout abundance 

was correlated with shadier areas. Abundance of salmon was very variable and could 

not be directly related to light regime, but rather stocking. Consequently, as the 

overall survival likelihood is greater for larger fish (e.g. Parker, 1971; Juanes, 1994; 

Elliott, 1989a, 1989b; Thorpe, 1977, 1989; Wright et al., 1990), the limited results 

here can be used to tentatively suggest that through promoting open canopies, a 

mean increase in the relative size of Atlantic salmon, and an increase in population 

survival, should occur. However this may reduce populations of trout. Whether this is 

an acceptable trade-off may be geographically subjective (area-specific), and thus 

local policies and species-specific priorities may also be important in corridor design.  

 

Other implications for management 

 

The primary objective of this project was to explore the aspects of riparian 

characteristics which would promote the greatest diversity and system functioning in 

forest streams in Scotland. Apparent in this consideration of different trophic levels, 

and of allochthonous and autochtonous production, is that maximising the benefits 
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to one trophic group may be to the detriment of others. Light regime was often 

fundamental in shaping production and community structure within these 

ecosystems. However, using light to directly predict the standing crop and 

characteristic of autochthonous material proved problematic. It is likely that the 

confounding effects of water colouration, shading by overhanging vegetation, 

invertebrate grazing, nutrient availability and allochthonous inputs, reduced the 

direct relationship between light and either autochthonous of autotrophic production. 

Autotrophic material appeared of little importance to the invertebrate community 

studied. Thus, it may not be considered a priority in respect to this trophic group. 

However, increased production of autotrophic material within benthic biofilms has in 

previous studies, been found to positively influence the functionality of biofilms. 

Autotrophic biomass has been found to aid retention of organic material, and hence 

the subsequent removal of that material from the water column. This activity may be 

an important pollution control mechanism and important in positively influencing the 

rate of recovery of sites post felling. However, here, estimated functioning of the 

biofilm material in relation with autotrophic content was variable. The considerable 

retention of allochthonous material post felling at BB sites, by chlorophyll depleted 

biofilms, indicated successful drawdown of C-rich material by biofilms, even with low 

algal contribution. However recovery of the stream as evidenced through biotic 

indicators provided evidence that sites with open canopies, and greater autotrophic 

mass, recovered at a greater speed than the downstream, shaded sites. Thus, the 

spatially specific increase in autotrophic content did appear to positively influence the 

stream ecological status. Therefore, I would suggest that maximisation of 

autotrophic material should be considered in corridor design as a route to 

contributing to pollution control and buffering. 

 

The production of riparian ground vegetation biomass was positively influenced by 

increased light availability. In addition, vegetation diversity was not detrimentally 

influenced by high light levels. Allochthonous material appeared to be the primary 

resource utilised by the majority of benthic invertebrate taxa. Therefore, I conclude 

that an increase in priority should be given to optimising conditions to riparian 

ground flora through canopy removal. It is likely that delivery of this resource to the 

stream, and the relative influence of riparian ground cover were positively related to 

direct bank-side biomass and specifically, the level of vegetation overhang. The high 

number of detritus associated macro-invertebrate species suggested that the 
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assemblages found were reliant on allochthonous material. However, the strong 

associations with overhanging vegetation and often corridor width, suggests that the 

preferential allochthonous resource, is derived from ground vegetation rather than 

riparian trees.  I suggest that this preference was responsible for detectable light-

associated community compositions, and that riparian biomass, rather than 

autotrophic production was responsible for much of the positive relationship which 

occurred between light and both invertebrate and salmon populations and growth. 

However, there remained a high level of variance in these relationships, making firm 

conclusions and predictions difficult. Much of the variance may have been due to a 

variable response and association between algal cover and light. Further, assigning 

the primary baseline resource to food chains of specific communities and trophic 

groups may have been complicated by the co-relatedness of autotrophic in-stream 

production, and riparian production. Additionally, seasonal variation was likely to 

confound any results from light intensities, water temperatures and autotrophic 

biomass estimates, independently of site type design. 

 

Although two out of the three sites at Black Burn were within the minimum 

requirements of the Forest and Water Guidelines (Forestry Commission, 2003), the 

lack of trees with deep rooting systems (e.g. broadleaf species, such as willows) may 

have contributed to the significant release of organic material post-felling. 

Stabilisation of the bank may have reduced in-stream delivery of POM, and other 

nutrients (as evidenced by the high allochthonous content of the biofilm and the 

ecological response from sewage fungi and dominant invertebrate taxa). Additionally, 

the highest vegetation diversity was found within broadleaf sites. As such, I feel that 

optimal corridor design should integrate broadleaf areas, in order to utilise these 

benefits. However, the often positive associations of invertebrate diversity, riparian 

biomass, salmon size, autotrophic in-stream cover estimates, with light (PAR) 

intensity, emphasises the need to also prioritise open, light intensive corridor 

designs. Therefore, I would recommend a combined approach to management and 

design of conifer corridors, which integrates both broadleaf and open unplanted 

areas. Specifically, the importance of riparian ground-flora which appeared within 

many of the analyses means that for the majority of sites, I would recommend 

planting broadleaf trees adjacent to coniferous plantations, in order to aid in bank 

stabilisation and ground water interception, post felling. Further, to maximise light 

availability, immediately adjacent to the stream channel and increase biomass of 
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riparian vegetation and aid in maximising autotrophic biofilm proportion (and thus in-

stream buffering by biofilms), I suggest the limitation of all tree growth near the 

stream edge and removal of coniferous species. This approach should result in high 

biomass production of riparian ground flora, within the aquatic – terrestrial transition 

zone, and in-stream autotrophic production within biofilms, two aspects that appear, 

from my research, fundamental to ecosystem functioning in a system where timber 

harvest occurs periodically.  
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10  Appendices 
 
 

 
Fig 10.1. Detrital trap results. Traps were lost, damaged and/or altered by flow, 
resulting in the dry-weight organic matter results being only a guide to the 
possible range in allochthonous material available within the catchment sites 
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Table 10-1 algal taxa classifications, identification codes and TWINSPAN group 
classifications. Where Chlorophyceae (f) = filamentous taxa. 
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Fig 10.2. Discharge measurements as back calculated from SEPA gauge on 
Minnoch with δ13C of BB 2004/2005 data, indicating a positive linear trend, yet r2 
indicates no significance to the relationship 

 
 
 

R2 = 0.1388, n = 6, P = 0.467

-29.5

-29

-28.5

-28

-27.5

-27

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Discharge (m3/sec)

δ
13

C
 (‰

)

 
Fig 10.3. Discharge measurements as back calculated from SEPA gauge on 
Bladnoch with δ13C of T33 2005 data, indicating a positive linear trend, yet r2 
indicates no significance to the relationship 
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