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Abstract

A space tether is a long cable used to couple satellites, probes or spacecrafts to each othe
or to other masses, such as a spent booster rocket, space station, or an asteroid. Spa
tethers are usually made of thin strands of high-strength fibres or conducting wires, which
range from a few hundred metres to several kilometres and have a relatively small diameter.
Space tethers can provide a mechanical connection between two space objects that enable
a transfer of energy and momentum from one object to the other, and as a result they can be
used to provide space propulsion without consuming propellant. Additionally, conductive
space tethers can interact with the Earth’s magnetic field and ionospheric plasma to generate
thrust or drag forces without expending propellant.

The motorised momentum exchange tether (MMET) was first proposed by Cartmell in
1996 and published in 1998. The system comprises a specially designed tether connecting
two payload modules, with a central launcher motor. For the purposes of fundamental dy-
namical modelling the launcher mass can be regarded as a two part assembly, where the
rotor is attached to one end of each tether subspan, and the other side is the stator, which i
attached to the rotor by means of suitable bearings. Both the launcher and the payload car
be attached to the tether by means of suitable clamps or bearing assemblies, dependent o
the requirements of the design.

The further chapters in this thesis focus on a series of dynamical models of the symmetri-
cal MMET syste, including the dumbbell MMET system, the solid massless MMET system,
the flexible massless MMET system, the solid MMET system and the discretised flexible
MMET system. The models in this context have shown that including axial, torsional and
pendular elasticity, the MMET systems have a significant bearing on overall performance
and that this effect should not be ignored in future, particularly for control studies. All
subsequent analyses for control applications should henceforth include flexible compliance
within the modelling procedure.

Numerical simulations have been given for all types of MMET models, in which, accu-

rate and stable periodic behaviours are observed, including the rigid body motions, the tether



spin-up and the flexible motions, with proper parameter settings. The MMET system’s spin-
up control methods design and analysis will henceforth be referenced on the results.

For the non-linear dynamics and complex control problem, it was decided to investigate
fuzzy logic based controllers to maintain the desired length and length deployment rate of
the tether. A standard two input and one output fuzzy logic control (FLC) is investigated
with numerical simulations, in which the control effects on the MMET system’s spin-up are
observed.

Furthermore, to make the necessary enhancement to the fuzzy sliding mode control, a
specialised hybrid control law, named&8&MC is proposed, which combines fuzzy logic
control with a SkyhookSMC control law together, then it is applied for the control of mo-
torised space tether spin-up coupled with an flexible oscillation phenomenon. It is easy to
switch the control effects between the SkyhookSMC and the FLC modes when a proper
value ofx is selected0 < « < 1) to balance the weight of the fuzzy logic control to that of
the SkyhookSMC control, and the hybrid fuzzy sliding mode controller is thus generated.

Next, the simulations with the given initial conditions have been devised in a connecting
programme between the control code writteMA TLAB and the dynamics simulation code
constructed withiMATHEMATICA. Both the FLC and the hybrid fuzzy sliding mode
control methods are designed for the control of spin-up of the discretised flexible MMET
system with tether-tube subspans, and the results have shown the validated effects of bott
these control methods for the MMET system spin-up with included flexible oscillation.

To summarise, the objectives of this thesis are, firgtlyproposea series of new dynam-
ical models for the motorised momentum exchange tethers; secondligcusswo types
of control methods for the spin-up behaviour of a flexible motorised momentum exchange
tether, whichinclude a fuzzy logic control and a hybrid fuzzy sliding mode control. By
the weight factokx, fuzzy logic control and SkyhookSMC controllers can be balanced from
one to each other, and there is observed difference for each of the elastic behaviour in the
MMET system involving these MMET systems with different controllers - FkC£ 1),
FaSMC(x = 0.5) and SkyhookSMG{ = 0.0). The results state the control effects for FLC,

FaSMC and FLC, which lead to stable spin-up behaviour with flexible oscillations.
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Chapter 1

Introduction to Space Tethers

1.1 Introduction

A space tether is a long cable, constructed from thin strands of high-strength fibre used to
couple spacecraft to each other or to other masses, and it provides a mechanical connectiol
which enables the transfer of energy and momentum from one object to the other. Tethers
are typically very long structures ranging from a few hundred metres to many kilometres,

and have a relatively small diametre. Basically, there are two general categories of tethers
[1][2]:

(1) momentum exchange tethers, which allow momentum and energy to be transferred
between objects in space;

(2) electrodynamic tethers, which interact with the Earth’'s magnetosphere to generate
power or provide propulsion.

Space tethers can be used in a diverse range of applications, which include the study of
plasma physics and electrical generation in the upper atmosphere, the orbiting or deorbiting
of space vehicles and payloads, for inter-planetary propulsion, and potentially for specialised
missions, such as asteroid rendezvous, or in extreme form as the well publicised space ele
vator. In the century since their conception, space tethers have not yet been fully utilised. As
the convergence of materials and technology continues, however, there should be numerou:
opportunities to use tethers in space [2].

An orbiting satellite follows an elliptical path around the body being orbited, frequently
called the primary, and located at one of the two foci. As shown in Figure 1.1, which is
adopted from Curtis 2004 [3], an elliptical orbit is defined as a curve with the property that

for each point on an ellipse, the sum of its distances from the two fixed foci is constant. The



longest and shortest lines which can be drawn through the centre of an ellipse are the major
axis and the minor axis, respectively. The semi-major axis is one-half of the major axis
and represents a satellite’s mean distance from its primary. Eccentelity the distance
between the foci divided by the length of the major axis, and is a number between zero and
one,as defined in equation (1.1,8n zero eccentricity indicates a circle orbit.

Periapsis is the point on an orbit closest to the primary. The opposite of periapsis, the
furthest point on an orbit, is called the apoapsis. Periapsis and apoapsis are usually modifiec
to apply to the body being orbited, such as the perihelion and the aphelion for the Sun,
the perigee and the apogee for Earth, the perijove and the apojove for Jupiter, and perilune
and apolune for the Moon. The argument of periapsis is the angular distance between the
ascending node and the point of periapsis. The time of periapsis passage is the time in which

a satellite moves through its point of periapsis.

_ Tapo — Tper (1.1.1)
Tapo + Tper

2
_ Tapo + Tper h 1

= — 1.1.2
2 wl—e? ( )
h? 1
Tapo:a(]+e)zi1—e (1.1.3)
Tper =a (1 —e) (1.1.49)
er ] -
Tper _ 1€ (1.1.5)

Tapo 1+e
As shown in Figure 1.19 is the true anomaly, which is the angle between the eccentricity
vector and the position vect®. a is the semimajor axis of the ellipse in equation (1.1.2)
Tapo 1S the apogee radius in equation (1.113),, is the perigee radius in equation (1.1.4).
Givene = 0.2 andr,, = 6.89x 1(°, thenr,,,, = 1.0335< 10/, as shown in equation (1.1.5).
p is the semilatus rectum in equation (1.1.8)is the true anomaly of poir, the radial
coordinaterg is given in equation (1.1.7). The projectionaf onto the apseline iae, as

given in equation (1.1.8).

p=a(l—e?)=b%*/a= Tper(1 +€) = Tapo(1 —€) (1.1.6)
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Figure 1.1: Elliptical orbit [3] [4]
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As defined in equation (1.1.97, is the orbital period of a space tether travelling along an
elliptic orbit, h is an orbital parameter, as defined in equation (1.1.10%,the product of

the universal gravitational consta@t= 6.6742x 10'" m3/kg.s? with the Earth’s mass [3]

[4] [5] [6]. When T =1, it means that the space tether goes around the Earth on the elliptical

orbit for one cycle.

t=T,xT (1.1.11)

As defined in equation (1.1.11), the space tether’'s simulation ticen be expressed
as a gain factor,, times a specific orbital period on an elliptical orbit with a specific
eccentricitye, in whichT,, is the number of cycles of period (NCP, or for short, cycle number)
and will be taken as the timing index for the simulations in this thesis. As listed in Appendix
C, whene = 0.2 andr,, = 6.890 x 10° m,

o if T, = 4.01, the simulation timeis 3.1899x 10* seconds;

3



o if T,, = 40.01, the simulation timeis 3.18183x 10° seconds;

o if T, =400.01, the simulation timeis 3.1811x 10 seconds.

As shown in Figures 1.1 and 1.2, according to the orbital theory [3] [4] , in the orbital
plane R represents the radius vector to the orbiting tether’s centre of mass. The true anomaly,
0, defines the angle in the direction of motion from the perigee to the tether’s centre of mass.
These parameters, together with the orbit eccentrigjignd the mean anomaly, are sufficient
to define completely the position of the tether’s centre of mass in space. The mean anomaly is
defined as the orbital mean motion multiplied by the time elapsed since passing the perigee.

Again, as seen in Figures 1.1 and 1a2is the semimajor axis (b is the semiminor
axis), which specifies the size of the orhitis the eccentricity, specifying the shape of the
elliptical orbit; i is the inclination, which is the angle between the orbital plane and the
Earth’s equatorial planew is the argument of periapsis, an angle of an orbiting body’s
periapsis relative to its ascending nodgeis the true anomaly, and is an angular parameter
which defines the position of a body moving along a Keplerian orbit and is the angle between
the direction of periapsis and the current position of the body, as seen from the main focus
of the ellipse (the point around which the object orbifQ)is the longitude of the ascending
node, the angle from the origin of longitude to the direction of the ascending node [3] [4].

To describe an orbit mathematically, one needs to define a minimum of six quantities.
Traditionally, the set of orbital elements commonly used is called the set of Keplerian ele-

ments. This comprises [7] [8]:

a the semimajor axis
e the eccentricity

the inclination

=

the argument of periapsis

the true anomaly

o P €

the longitude of the ascending node

As shown in Figure 1.2, the nodes are the points where an orbit crosses on orbital plane,
such as are shown here, where a satellite is crossing the Earth’s equatorial plane. If the
satellite crosses the plane going from south to north, the node is defined as the ascending
node; if moving from north to south, it is called the descending node. The longitude of the
ascending node is the node’s celestial longitude. Celestial longitude is analogous to longitude

on Earth and is measured in degrees counter-clockwise from zero, with zero longitude being
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Figure 1.2:Geocentric inertial coordinate system [3] [4] [5]

in the direction of the vernal equinox [3] [4] [5].

The plane of the tether’s orbit about the Earth can be inclined to the Earth’s equatorial
plane by the anglé, the inclination of the orbit, defined where the intersection of the two
planes occurs at the node line. An inclination of zero degrees indicates an orbit about the
primary’s equator in the same direction as the primary’s rotation, a direction called prograde.
An inclination of 90 degrees indicates a polar orbit. An inclination of 180 degrees indicates a
retrograde equatorial orbit. A retrograde orbit is one in which a satellite moves in a direction
opposite to the rotation of its primary. The right ascensiof)aieasures the angle in the
plane of the equator from the vernal equinox eastward to the ascending node. The angle
formed in the orbit plane in the direction of motion from the ascending node to the perigee
is the argument of perigeey [5] [6] [7].

The coordinate system used to describe Earth orbits in three dimensions is defined in
terms of the Earth’s equatorial plane - the ecliptic plane, and the Earth’s axis of rotation.
The ecliptic is the plane of the Earth’s orbit around the sun, and is illustrated in Figures
1.1 and 1.2. The Earth’s axis of rotation, passing through the North and South Poles, is

not perpendicular to the ecliptic. It is tilted away by an angle known as the obliquity of
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Figure 1.3:Heliocentric ecliptic coordinate system defining vernal equinox direction [7] [8]

the ecliptic -¢. For the Earthe is approximately 23.4 degrees, as shown in Figure 1.3.
Therefore, the Earth’s equatorial plane and the ecliptic intersect along a line, known as the
vernal equinox line. On the calendar, the ‘vernal equinox’ is the first day of spring in the
northern hemisphere, when the noontime Sun crosses the equator from South to North. The
position of the Sun at that instant defines the location of a point in the sky called the vernal
equinox. On the day of the vernal equinox, the number of hours of daylight and darkness
is equal - hence the word ‘equinox’. The other equinox occurs precisely one-half year later,
when the Sun crosses back over the equator from North to South, thereby defining the first
day of autumn [7] [8] [9].

The geocentric coordinate system, where the Earth’s centre of mass is treated as the
origin, is used to provide an inertial system in space. In this system the governing equations
of motion can be derived for a tether orbiting the Earth. As shown in Figure 1.Zth&is
points in the direction of the Earth’s north pole and represents the Earth’s axis of rotation in
a positive direction. Th&g — Yg — Zg system is non-rotating with respect to the stars, and
the Earth rotates relative to that coordinate system.Xhe Yg plane is coplanar within the
Earth’s equator, which is inclined by about 23.4 degrees to the ecliptic plane of the Earth’s
orbit about the Sun, as in Figure 1.3. On the first day of the northern hemisphere’s spring the
ecliptic and theXg — Yg plane intersect along a line, which is coincidental with Xpeaxis,
pointing to the first point of the Aries constellation, or the vernal equinox direction [11].

In reality, the geocentric system is not a true inertial system, the Earth orbits the Sun on
an almost circular orbit and in turn the Sun orbits the centre of the Milky Way on an approx-

imately circular orbit. The geocentric system is continuously experiencing an acceleration



and, therefore, cannot be considered as a proper inertial reference frame. Furthermore, the
direction of the Earth’s axis of rotation does not remain constant, because of the preces-
sional motion due to the Sun with a period of 25,800 years together with a nutational motion
due to the Moon with a period of 18.6 years. Both the equatorial and ecliptic plane move
with respect to the stars, since the planets affect the orientation of the ecliptic plane in the
slow rotational motion of planetary precession. Consequently, the geocentric system moves
slowly relative to the stars, and when extreme precision is required, the coordinates of an
object based on the vernal equinox direction of a particular year or epoch have to be speci-
fied. However, the accelerations are relatively small and for practical purposes the geocentric
system can be accepted as being inertial [7] [8] [9] [10] [11] [14] [15].

For a spacecraft to achieve Earth orbit, it must be launched to an elevation above the
Earth’s atmosphere and accelerated to orbital velocity. The most energy efficient orbit, which
requires the least amount of propellant, is a direct low inclination orbit. To achieve such an
orbit, a spacecratft is launched in an eastward direction from a site near the Earth’s equator.
High inclination orbits are less able to take advantage of the initial speed provided by the
Earth’s rotation, thus the launch vehicle can provide a greater part, or all, of the energy
required to attain orbital velocity. Although high inclination orbits are less energy efficient,
they do have advantages over equatorial orbits for certain applications. Below we describe
several types of orbits and the advantages of each: [3] [4] [5] [7] [8] [9] [10] [11]:

© A Low Earth Orbit (LEO) is generally defined as an orbit within the locus extending
from the Earth’s surface up to an altitude of 2000 km. Given the rapid orbital decay
of objects below approximately 200 km, the commonly accepted definition for LEO is
between 160 - 2000 km above the Earth’s surface.

o Geosynchronous orbit (GEO) is circular orbit around the Earth and has a period of
24 hours. A GEO with an inclination of zero degrees is called a geostationary orbit. A
spacecraft in a geostationary orbit (GSO) appears to hang motionless above one posi-
tion on the Earth’s equator. For this reason, itis ideal for some types of communication
or meteorological satellites. A spacecraft in an inclined geosynchronous orbit appears
to follow a regular pattern in the sky, once every orbit. To attain geosynchronous or-
bit, a spacecratft is first launched into an elliptical orbit with an apogee of 35,786 km,
called a geosynchronous transfer orbit (GTO). The orbit is then circularised by firing

the spacecraft’s engine at apogee.

o A polar orbit (PO) is an orbit in which a satellite passes above or nearly above both

poles of the body, such as the Earth, or the Sun, which is orbited on each revolution.
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Usually it has an inclination of 90 degrees. The PO is useful for satellites which carry
out mapping or surveillance operations, because as the planet rotates the spacecratft i

able to access virtually every point on the planet’s surface.

o A walking orbit of an orbiting satellite is subjected to a great many gravitational

influences. First, planets are not perfectly spherical, and they have slightly uneven
mass distribution. These fluctuations have an effect on a spacecraft’s trajectory. Also,
the Sun, the Moon, and the planets contribute a gravitational influence on an orbiting
satellite. With proper planning, it is possible to design an orbit which takes advantage
of these influences to induce a precession in the satellite’s orbital plane. The resulting

orbit is called a walking orbit, or precessing orbit.

© A Sun synchronous orbit (SSO) is a walking orbit whose orbital plane precesses
with the same period as the planet’s solar orbit period. In such an orbit, a satellite
crosses periapsis at about the same local time every orbit. This is useful if a satellite
is carrying instruments which depend on a certain angle of solar illumination on the
planet’s surface. In order to maintain an exact synchronous timing, it may be necessary

to conduct occasional propulsive maneuvers in order to adjust the orbit.

© Molniya orbits were named after a series of Soviet/Russian Molniya (Russian: “Light-
ning”) communications satellites, which have been using this type of orbit since the
mid 1960s. A Molniya orbit is a type of highly elliptical orbit with an orbital period of
about 12 hours (2 revolutions per day). The orbital inclination is chosen so the rate of
change of perigee is zero, thus both apogee and perigee can be maintained over fixec
latitudes. This condition occurs at inclinations of 63.4 degrees and 116.6 degrees. For
these orbits the argument of perigee is typically placed in the southern hemisphere, so
the satellite remains above the northern hemisphere near apogee for approximately 11
hours per orbit. This orientation can provide good ground coverage at high northern

latitudes.

© Hohmann transfer orbits are interplanetary trajectories. Their advantage is that they
consume the least possible amount of propellant. A Hohmann transfer orbit to an outer
planet, such as Mars, is achieved by launching a spacecraft and accelerating it in the
direction of Earth’s revolution around the Sun, until it breaks free of the Earth’s gravity
and reaches a velocity which places it in a Sun orbit with an aphelion equal to the orbit
of the outer planet. Upon reaching its destination, the spacecraft must decelerate so

that the planet’s gravity can capture it into a planetary orbit.
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1.1.1 History of the Tether Concept

The idea of an orbital tower was first originally conceived by Konstantin Tsiolkovsky in
1895 [12] [13]. He looked at the Eiffel Tower in Paris and imagined a giant tower reach-
ing into space with a “celestial castle” at the top, and the free-floating spindle-shaped tower -
“Tsiolkovsky” tower - reaching from the surface of Earth to GSO. His proposal of a ‘Shuttle-
borne Skyhook’ for low orbital altitude research marked the advent of tethered satellite sys-
tems (TSS). It would be supported in tension by excess centrifugal force on the part of the
tower beyond geosynchronous altitude. These were the first of a series of “space elevator”
or “beanstalk” concepts having a tether in a synchronous orbit reaching all the way down to
the ground. Payloads would be transported up and down the tether without the use of any
propellant. This structure would be held in tension between Earth and the counterweight in
space, like a guitar string held taut. Space elevators have also sometimes been referred t
as beanstalks, space bridges, space lifts, space ladders, skyhook, orbital towers, or orbita
elevators [16] [17] [18].

Yuri Artsutanov, another Russian scientist, wrote on some of the first modern concepts
about space elevators as a non-technical story in 1960 [19]. Artsutanov suggested using ¢
geostationary satellite as the base from which to deploy the structure downward. By using
a counterweight, a cable would be lowered from geostationary orbit to the surface of Earth,
while the counterweight was extended from the satellite away from Earth, keeping the cen-
tre of gravity of the cable motionless relative to Earth. Artsutanov’s idea was introduced to
the Russian-speaking public in an interview published in the Sunday supplement of Kom-
somolskaya Pravda (usually translated as Komsomol Truth in English) in 1960, but was not
available in English until much later. He also proposed tapering the cable thickness so that
the tension in the cable was constant, this gives a thin cable at ground level, thickening up
towards GSO [20] [21] [22].

In 1966, Isaacs, Vine, Bradner and Bachus, four American engineers, reinvented the
concept, naming it a “Sky-hook”, and published their analysis in the journal Science [23].
They decided to determine what type of material would be required to build a space elevator,
assuming it would be a straight cable with no variations in its cross section, and found that
the strength required would be twice that of any existing material including graphite, quartz,
and diamond [22] [24].

Colombo et al. provided an idea for a shuttle-borne skyhook for low-orbital altitude
research in 1974 [25]. The concept finally came to the attention of the space flight engineer-

ing community through a technical paper written in 1975 by Jerome Pearson [26] of the air



force research laboratory. He designed a tapered cross section which would be better suitec
to building the elevator. The completed cable would be thickest at the geostationary orbit,
where the tension was greatest, and would be narrowest at the tips so as to reduce the amoui
of weight per unit area of cross section that any point on the cable would have to bear. He
suggested using a counterweight that would be slowly extended out to 144,000 kilometres as
the lower section of the elevator was built. Without a large counterweight, the upper portion
of the cable would have to be longer than the lower, due to the way in which gravitational
and centrifugal forces change with distance from Earth. His analysis included disturbances
such as the gravitation of the Moon, wind and moving payloads up and down the cable. The
weight of the material needed to build the elevator would have required thousands of space
Shuttle trips, although part of the material could be transported up the elevator when a mini-
mum strength strand reached the ground, or it could be manufactured in space from asteroid:s
[13].

In 1977, Hans Moravec published an article called “A Non-Synchronous Orbital Sky-
hook” [27], in which he proposed an alternative space elevator concept, using a rotating
cable, in which the rotation speed exactly matches the orbital speed in such a way that the
instantaneous velocity, at the point where the cable was at the closest point to the Earth, was
zero. This concept was an early version of a space tether transportation system.

In 1979, Jerome Pearson discussed the concept of anchored lunar satellites in The Journe
of the Astronautical Sciences, in which it was observed of anchored lunar satellites that they
balanced about the collinear libration points of the Earth-moon system and attached to the
lunar surface [28].

Also in 1979, space elevators were introduced to a broader audience with the simulta-
neous publication of Arthur C. Clarke’s novel, “The Fountains of Paradise”, in which engi-
neers constructed a space elevator on top of a mountain peak in the fictional island country
of Taprobane.

In 1984, Georg von Tiesenhausen wrote a history of these concepts and their more modes
derivatives [29]. Joseph A. Carroll conducted some studies on the advantages of swinging
and barely spinning systems [30] [31].

Since then, a series of interesting space tether applications have been proposed and ana
ysed. In the last decade, the study of space tether has received significant attention from
researchers covering a broad range of applications. Some examples of applications which
have considerable promise include: the deployment and retrieval of subsatellites, aerobrak-
ing, electrodynamic boost, deorbit of satellites and momentum-transfer with libration and

rotation analysis. Control research on space tether applications was one of the most impor-
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tant aspects of space tether study, and each control method suited each application or missio

requirement, such as: liberation, oscillation, attitute, motion and deployment [1].

1.1.2 Tether Missions

Over the past forty years, a series of missions have been delivered for aerospace applicatiot
using tethered satellite systems. These proposals include scientific experiments in the micro-
gravity environment, upper atmospheric research, the generation of electricity, cargo transfer
between orbiting bodies, collections of planetary dust, and the expansion of the geostation-
ary orbit resource by tethered chain satellites. For example, NASA has been developing
tether technology for space applications since the 1960s, and these include electrodynamic
tether propulsion, the Propulsive Small Expendable Deployer system (ProSEDS) flight ex-
periment, “Hanging” momentum exchange tethers, rotating momentum exchange tethers,
and tethers supporting scientific space research. A number of such tethers have already bee
flown on missions, these include: the Small Expendable-tether Deployer System (SEDS), the
Tether Satellite System (TSS), the Tether Physics and Survivability experiment (TiPS), and
the Space Technology Experiments (STEX). Table 1.1 gives a brief tether mission history
and shows the status of each one [2] [13] [17] [30] [32] [33] [34] [35] [36] [37] [38] [39]
[40].

The Gemini XI was a manned spaceflight in NASAs Gemini program, launched on
September 12, 1966 [36]. It was the 9th manned Gemini flight, the 17th manned Ameri-
can flight, and the 25th spaceflight of all time, including X-15 flights, at altitudes of over 100
km. The Gemini XI mission’s main objectives were: (1) rendezvous with the Gemini Agena
Target Vehicle (GATV); (2) to conduct docking practice and extravehicular activity (EVA);
(3) to conduct the eight scientific experiments: the synergistic effect of zero-g and radiation
on white blood cells, the synoptic terrain photography, the synoptic weather photography,
the nuclear emulsions, the airglow horizon photography, the UV astronomical photography,
the Gemini ion wake measurement, and the dim sky photogrgghgynoptic terrain pho-
tography and a tethered vehicle test; (5) demonstrating automatic re-entry and parking the
GATV. All the Gemini XI mission’s objectives were achieved, except the evaluation of the
minimum reaction power tool, which was not performed, because the umbilical EVA was
terminated prematurely.

The Gemini XIl was a manned spaceflight in NASAs Gemini program launched on
November 11, 1966.The major objectives were: (1) rendezvous, docking and evaluation

for the EVA; (2) tethered vehicle evaluation and experiments; (3) revolution rendezvous,
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Table 1.1: Tether mission history [2] [13] [17] [30] [32] [33] [34] [36] [B7

Mission Year Sponsor Orbit Length Status

Gemini XI 1967 NASA LEO 50 m Launched
Gemini XII 1967 NASA LEO 30m Launched
TPE-1 1980 NASA/ISAS suborbital 400 m Launched
TPE-2 1981 NASAJ/ISAS suborbital 500 m Launched
TPE-3(CHARGE-1) 1983 NASA/ISAS suborbital 500 m Launched
CHARGE-2 1985 NASA/ISAS suborbital 500 m Launched
MAIMIK 1986 NASA/NDRE LEO 400m Launched
ECHO-7 1988 USAF suborbital - Launched
OEDIPUS-A 1989 NRC/NASA/CRC/CSA suborbital 958 m Launched
CHARGE-2B 1992 NASA/ISAS suborbital 500 m Launched
TSS-1(STS-46) 1992 NASA/ASI LEO 267 m Launched
SEDS-1 1993 NASA LEO 20m Launched
PMG 1993 NASA LEO 500 m Launched
SEDS-2 1994 NASA LEO 20m Launched
OEDIPUS-C 1995 NASA/NRC/CRC/CSA suborbital 1 km Launched
TSS-1R(STS-75) 1996 NASA/ASI LEO 19.6 km_aunched
TSS-2(STS-75) 1996 NASA LEO 100 m Cancelled
TiPS 1996 NRO/NRL LEO 4km  Launched
YES 1997 ESA/Delta-Utec LEO 35m Launched
ATEX 1999 NRO/NRL LEO 22m Launched
PICOSATs 2000 Aerospace Corporation LEO 30 m Launched
MEPSI 2002 Aerospace Corporation LEO 15.2 mLaunched
ProSEDS 2003 NASA LEO 15m Cancelled
MAST 2007 NASA/TUI/Stanford LEO 1km Launched
YES2 2007 ESA/Delta-Utec LEO 31.7 m Launched

docking and automatic re-entry demonstration; (4) docked maneuvering for a high-apogee
excursion, docking practice, system tests and GATV parking. All the other objectives were
achieved except the high-apogee excursion, because an anomaly was noted in the GATV pri-
mary propulsion system during insertion, and then the GATV'’s parking was not attempted
because its attitude control gas was depleB&fi[[37].

After the Gemini experiments, the first two experiments of the early 1980s were in 1980
and 1981, which were part of a joint program involving the Institute of Space and Astronau-
tical Science (ISAS) in Japan and the Centre for Atmospheric and Space Science of Utah
State University. The project was called the Tethered Payload Experiment (TPE); the mis-
sions TPE-1 and TPE-2 were launched using two types of Japanese rocket, Kappa 9M (flight
H-9M-69) and S-520 (flight S-520-2)From the Japanese Kagoshima Space Centre, the
TPE-1 mission was launched via Kappa 9M rocket on January 16, 1980. Its plan was to
deploy 400 metres of cable, but its deployed cable was about 38 metres. The TPE-2 mission
was launched on 29 January, 1981, and its tether was deployed to a distance about 65 metre

[13] [34].
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In 1983, the TPE-3 was planned by ISAS and Utah State University, which was also
called CHARGE-1, and the tether length was about 50sthe deployment system was
improved, the tether deployed to its full length of 418 meters, and the tether was also found
to act as a radio antenna for the electrical current through the cAfikr. that, CHARGE-

2 was carried out as an international program between Japan and the USA using a NASA
sounding rocket at White Sands Missile Range, in December 188®&ther deployed to a
length of 426 metres [13] [38].

The MAIMIK experiment was a joint mission by NASA and NDRE in 1986, for which
the tether length was about 400 m. This mission was designed to study the charging of an
electron-beam emitting payload using a tethered mother-daughter payload configuration [39]
[40].

In 1988, the U.S. Air Force Geophysics Laboratory launched the Echo-7, which was de-
signed to study the artificial electron beam propagation along magnetic field lines in space.
The mission was designed to study how the artificial electron beam progagates along mag-
netic field lines in space [13] [41].

In 1989, the mission OEDIPUS-A was organised by the National Research Council of
Canada(NRC), NASA and some other partners, in which a conducting tether was deployed
over 958 metres during the flight of a Black Brant sounding rocket into the auroral iono-
sphere. [42] [13].

With similar equipment to that on CHARGE-2, the CHARGE-2B tethered rocket mission
was launched in 1992 by NASA with a Black Brant V rock&he mission was to generate
electromagnetic waves by modulating the electron beam. The tether was fully deployed over
400 meteres and the experiments all worked as planned [43] [13].

The following OEDIPUS mission was the OEDIPUS-C tethered payload mission, which
was launched in 1995 with an 1174 metres deployed tether, and a Tether Dynamics Experi-
ment (TDE) was also included as a part of the OEDIPUS-C [13] [44].

The first orbital flight experiment with a long tether was the Tethered Satellite System
(TSS) mission, launched on the Space Shuttle in July 1992. The Tethered Satellite System-
1 (TSS-1) was flown during STS-46, aboard the Space Shuttle Atlantis, from July 31 to
August 8, 1992. The TSS-1 mission discovered a lot about the dynamics of the tethered
system. Although the satellite was deployed only 260 metres, it was able to show that the
tether could be deployed, controlled, and retrieved, and that the TSS was easy to control,
and even more stable than predicted. The TSS was an electrodynamic tether, its deploymen
mechanism jammed resulting in tether sever and less than 1000 metres of deployngent.

objectives of TSS-1 were: (1) to verify the performance of the TSS equipment; (2) to study
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the electromagnetic interaction between the tether and the ambient space plasma; (3) tc
investigate the dynamical forces acting on a tethered satellite. In the first tether deployment,
when the satellite was moving excessively side to side, the deployment was aborted. The
second trial of deployment was unreeled to a length of 260 mett#$46] [47] [48] [49]

[13].

The Shuttle Electrodynamic Tether System (SETS) experiment formed part of the sci-
entific experiments comprising the first flight of the NASA/ASI Tethered-Satellite System
flown at an altitude of 300 km and at an orbital inclination of 28.5 degrees in July/August
1992. The SETS experiment was designed to study the electrodynamic behaviour of the
Orbiter-Tether-Satellite system, as well as to provide background measurements of the iono-
spheric environment near the Orbiter. The SETS experiment was able to operate continu-
ously during the mission thereby providing a large data set. Details of the SETS objectives,
its instrumentation, and initial results from the mission highlighting voltage, current, and
charging measurements were presented [50].

The Small Expendable Deployer System-1 (SEDS-1) was launched from Cape Canaveral
Air Force Station as a Delta/GPS secondary payload in 1993. As a secondary payload on
a Delta Il launch vehicle, SEDS-1 was the first successful 20-kilometre space-tether exper-
iment. When 1 km of tether remained, active braking was applied by wrapping the tether
around a ‘barber pole’ brake. Finally, the braking system and sensors did not work as pre-
dicted, resulting in hard stop/endmass recoil at deployment completion [1].

In 1996, the Plasma Motor Generator (PMG) was launched by NASA. This was an elec-
trodynamic tether, which could assess the effectiveness of using hollow cathode assemblies
to deploy an ionised gas, and to ‘ground’ electrical currents by discharging the energy to
space. An early experiment used a 500 metre conducting tether. When the tether was fully
deployed during this test, it generated a potential of 3,500 volts. This conducting single-
line tether was severed after five hours of deployment. It was believed that the failure was
caused by an electric arc generated by the conductive tether's movement through the Earth’s
magnetic field. The PMG flight demonstration proved the ability of the proposed Space
Station plasma grounding techniques in maintaining the electrostatic potential between the
Space Station and the surrounding plasma medium. The PMG also demonstrated the abil-
ity to use electrostatic tethers to provide thrust to offset drag in LEO space systems, and it
demonstrated the use of direct magnetic (non-rocket) propulsion for orbital maneuvering [1].

The Small Expendable Deployer System-2 (SEDS-2) was launched on the last GPS
Block 2 satellite in 1994. The SEDS-2 used feedback braking, which started early in de-

ployment. This limited the residual swing after deployment to 4 degrees. Mission success
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was defined as deployment of at least 18 km, plus a residual swing angle of less than 15
degrees. The SEDS-2 had an improved braking system compared to SEDS-1, which was &
feed-back control system and applied braking force as a function of the measured speed of
the unrolling tether. This was to ensure the satellite stopped flying out just when the whole
tether was deployed, and to prevent the bounces experienced during the previous missior
[13].

In 1996, the Tethered Satellite System Reflight (TSS-1R) was carried by using U.S space
shuttle STS-75 succesfully. The primary objective of STS-75 was to carry the Tethered Satel-
lite System Reflight (TSS-1R) into orbit and to deploy it spacewards on a conducting tether.
The mission also flew the United States Microgravity Payload (USMP-3), designed to inves-
tigate materials science and condensed matter phydiesT SS1-R mission objectives were:

(1) to characterise the current-voltage response of the TSS-orbiter system; (2) to characterise
the satellite’s high-voltage sheath structure and current collection process; (3) to demonstrate
electric power generation; (4) to verify tether control laws and basic tether dynamics; (5) to
demonstrate the effect of neutral gas on the plasma sheath and current collection; (6) to char-
acterise the TSS radio frequency and plasma wave emissions; (7) to characterise the TSS
dynamic-electrodynamic coupling [51] [52].

The Tether Physics and Survivability Experiment (TiPS) was deployed on 20 June 1996
at an altitude of 1,022 kilometres as a project of the US Naval Research Laboratory. The
satellite was a tether physics experiment consisting of two end masses connected by a 4 ki
non-conducting tether, for which the two tethered objects were called “Ralph” and “Norton”.
This experiment was designed to increase knowledge about gravity-gradient tether dynamics
and the survivability of tethers in space [53].

The first Young Engineers’ Satellite (YES-1) programme was completed on 3rd Novem-
ber 1997. It was designed to operate with a 35 km tether deployment, but the mission was
cancelled before the flight when the launch authority changed the nominal Ariane orbit. In
the new orbit configuration a deployed 35 km tether would have constituted a hazard to
satellites in LEO [54].

The Advanced Tether Experiment (ATEx) was launched into orbit aboard the National
Reconnaissance Office (NRO) sponsored Space Technology Experiment spacecraft (STEX
on October 3, 1998. ATEx was intended to demonstrate the deployment and survivability
of a novel tether design, as well being used for controlled libration maneuvres. On January
16, 1999, after a deployment of only 22 m of tether, ATEx was jettisoned from STEX due to
an out-of-limit condition sent by the experiment’s tether angle sensor. The ATEx lower end

mass was jettisoned from the host spacecraft and the tethered upper and lower end masse
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freely orbited the Earth in a demonstration of long term tether survivabilltye ATEX

was a tethered satellite experiment with the following mission objectives: (1) deployment
of a novel, nonconductive polyethylene tape tether; (2) verification of dynamical models of
deployment and orbital libration; (3) ejection of the ATEx lower end mass from the host
spacecraft [55]

The PICOSAT mission was launched on September 30, 2001. It was a real time track-
ing satellite of the miniaturised picosatellite satellite series. The name “PICO” combined
the first letters of all four of its experiments, which were the Polymer Battery Experiment
(PBEX), the lonospheric Occultation Experiment (I0X), the Coherent Electromagnetic Ra-
dio Tomography (CERTO), and the On Orbit Mission Control (OOMC) [56]. A pair of 0.25
kg MEMS picosatellites with an intersatellite communications experiment were included in
this mission, and were connected by a 30 metre tether [56].

The MEPSI series (Micro Electro-Mechanical Systems-based PicoSat Inspector) was a
pair of tethered picosatellites, based on the CubeSat design, launched by a custom deploye
aboard the STS-113 Endeavour mission on 2nd December 2002. The spacecraft were man
ufactured for the Defense Advanced Research Projects Agency (DARPA) by the Aerospace
corporation in collaboration with NASA's Jet Propulsion Laboratory (JPL). The two space-
craft were cubic in shape, of mass 1 kg each, and were connected via a 15.2 m tether in orde
to facilitate detection and tracking via ground-based radar [56].

The Propulsive Small Expendable Deployer System (ProSEDS) was a NASA space tether
propulsion experiment intended to be a follow-up to SEDS. It was originally intended to be
flown along with a launch of a Global Positioning System (GPS) satellite in the spring of
2003, but was cancelled at the last moment, due to concerns that the tether might collide
with the international space station [57].

The Multi-Application Survivable Tether (MAST) experiment was launched into LEO on
17th April 2007, in which the 1 km multi-strand interconnected tether (Hoytether) was in-
tended to test and prove the long-term survivability of tethers in space, but the tether failed to
deploy. The experiment hardware was designed under a NASA Small Business Technology
Transfer (STTR) collaboration between Tethers Unlimited Inc (TUI) and Stanford Univer-
sity, with TUI developing the tether, the tether deployer, the tether inspection subsystem,
the satellite avionics, and the software system, and Stanford students developing the satellite
structures and assisting with the avionics design [58].

The second Young Engineers Satellite (YES2) was launched on 14th September 2007.
It was a technology demonstration project designed to test and produce data for the “Space

Mail” concept, wherein a tether was used to return material from space to Earth, instead of
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by conventional chemical propulsion. YES2 aimed to demonstrate a tether-assisted re-entry
concept, whereby the payload would be returned to Earth using momentum provided from a
swinging tether. Deployment was intended to take place in two phases: (1) deployment of 3.5
km of tether to the local vertical and hold, and (2) deployment to 30 km for a swinging cut.
The measured altitude gain of the Fonton-M3 corresponded with what simulations showed
would happen if 31.7 km of tether were extended, another strong indication that the YES-2
tether had in fact been fully depolyed.

The YES-2 mission was very nearly a complete success: (1) the entire record-breaking
length of tether has been deployed; (2) Fotino rocket seemed to have been de-orbited by using
momentum exchange; (3) plentiful data has been gathered on tether deployment, dynamics
and de-orbiting, which may lead to an operational way of returning capsules without any
form of propulsion. [13] [59] [60].

The Fortissimo is a developing space tether experiment which is proposed to be used for
deploying a 300 m bare electrodynamic tether tape, with a width of 25 mm, and a thickness
of 0.05 mm, in order to conduct two scientific experiments, as the first ever attempt in the
world by an international team consisting of Japanese, European, American, and Australian
tether enthusiasts. A S-520 sounding rocket will be prepared by ISAS/JAXA and has been

intended to be launched in the summer of 2009 [61].

1.1.3 Momentum Exchange Tethers

Path of upper
mass after releas

Path of lower mass
and tether after
release

Upper\mass

Yz = Vapogee

Circular orbit of COM prior to release -

Figure 1.4: Momentum exchange tether system for payload transfer [13] [62] [65]

A momentum exchange (MX) tether is a long thin cable used to couple or connect two
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space objects in space, so that the tether can provide a mechanical connection between tw
space objects, which enables the transfer of energy and momentum from one object to the
other, and as a result they can be used to provide space propulsion without consuming pro-
pellant.

As shown in Figure 1.4, a pure momentum exchange tether does not create orbital energy
by itself, but rather exchanges momentum and energy with others. The exchange of momen-
tum can take place quickly, and increase the orbital energy of the payload dramatically. As
it catches and throws a payload, its orbital energy is reduced, and it assumes a lower orbit.
Without reboost, it will soon lose enough orbital energy to burn up in the atmosphere. Hence,
without reboost, the momentum exchange tether would soon be useless. Any type of propul-
sion system, in theory, could be used to reboost a momentum exchange tether - chemical
physical and nuclear are all options - but if rocket reboost is used, the momentum exchange
tether station will need to be refuelled regularly, and the entire tether system will be no more

efficient than the reboost rocket [2] [13] [66] [67].

1.1.4 Electrodynamic Tethers

The electrodynamic tethers can work as the generators, by converting their kinetic energy
to electrical energy. Electric energy is generated across a conductive tether when moving
through the Earth’s magnetic field. The choice of the metal conductor to be used in an
electrodynamic tether is determined by a variety of factors, which include high electrical
conductivity, low density, cost, strength, and melting point [13] [73] [74].

Typically, as shown in Figure 1.5, an electric field of about 0.2 V/m develops as a con-
sequence of the motion in the Earth’s magnetic field. For most satellites and structures this
field has little effect, but for an electrodynamic (ED) tether with lengtirossing the mag-
netic field lines at velocityy, the potential difference is defined in equation (1.1.12) [75]
[76], the tether acts as a unipolar generator depending on the relative geometry of the three
intervening vectors of,, B andL, assuming a rectilinear tether, the potential difference may
amount to several kilovolt for lengths of the order of 10-20 km, and what matters is the
relative velocity between the orbiting conductor and the magnetic field lines [77] [78] [79]
[80].

(\70 x B’) -dl (1.1.12)

Fep = JLi(t) (dfx E) (1.1.13)
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Figure 1.5:Electrodynamic tether system [13] [76] [82]

Where?ED is the forcei a scalar current valugll is the tether vectol, is the length of
tether, andB is the magnetic field vector [82].

Most of the technological interest in electrodynamic tethers arises from their possible
utilisation for space propulsion. The interaction of the current with the Earth’s magnetic
field results in the ED force given in equation (1.1.13) [76] [82]. Propulsion and drag by
means of electrodynamic tethers were generated by the interaction of the conductive wire
with the Earth’s magnetic field.

If the tether is moving across electrical fields with the surrounding ionised medium,
charge is collected and an electrical current flows along the tether. As already pointed out in
the introduction, the effectiveness of tethers for propulsion and de-orbiting depends crucially
on the magnitude of this current. The thrust or drag is generated by the interaction of the
current with the local magnetic field, according to the Lorentz law [81] [82].

As this ED force is continuous, its action can result in large momentum transfer and
significant changes in the orbital elements. To be effective, however, the magnetic field must
not be parallel either tg, or B, a condition which makes such tethers much less efficient in

polar orbits [83] [84].

1.2 Objectives

The are two primary objectives for this thesis,
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> To propose a series of dynamical models for motorised momentum exchange tethers;

> To discuss two control methods for a flexible motorised momentum exchange tether’s
spin-up behaviour, which include a fuzzy logic control method and a hybrid fuzzy

sliding mode control method.

1.3 Contributions

The primary contributions of this thesis are listed below,

> a series of new dynamical models for motorised momentum exchange tethers were
obtained, which include the rigid body models, the massless tether subspan models,

and the flexible body motorised momentum exchange tethers;

> a fuzzy logic control method for a flexible motorised momentum exchange tether

spin-up was proposed;

> a hybrid fuzzy sliding mode control method for a flexible motorised momentum
exchange tether spin-up was proposed based on the fuzzy logic control method men-

tioned above;

> SMATLINK - a co-simulation toolbox, which allows easy data exchange and ma-
nipulation, implementation of existinftATLAB or MATHEMATICA codes, was
developed. This toolbox can connect the controlleriATLAB with the dynamical
models of space tethers MATHEMATICA.

1.4 Thesis Structure

There are 10 chapters in this dissertation. In order to demonstrate the structure in a quick anc
clear way, Figure 1.6 lists the structure of this dissertation by chapter order, showing how the
chapters are organised one by one. Figure 1.7 plots the dissertation’s structure by MMET
modelsorder, indicating how the chapters are laid out by the types of dynamical models;

then two control methods are discussed.

e Chapter 1 - Introduction to space tethers - this chapter gives an introduction to space
tether history, missions related to space tethers, and basic concepts for the electrody-

namic tethers .
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Chapter 2 - Literature review on space tethers and tethered system control - this is a
literature review regarding the control of space tethers; this chapter highlights relevant
control research and its related application to space tethers from a series of reference

papers.

Chapter 3 - The motorised momentum exchange tether - this chapter addresses back
ground information on the momentum exchange tether and the motorised momentum

exchange tether.

Chapter 4 - Dynamical modelling of a flexible massless MMET system - this chapter
provides a modelling process for the motorised momentum exchange tether system

with axial, torsional and pendular elasticity, using Lagrangian dynamics.

Chapter 5 - Discretised Axially MMET Elastic System - this chapter discusses the
dynamical modelling of the motorised momentum exchange tether system with axial
elasticity by discretising the tether subspans into a series of mass points, and then con-

nected these mass points by groups of ‘spring-dampers’ along each tether subspan.

Chapter 6 - Discretised MMET system involving axial and torsional elasticity - based
on Chapter 5, this chapter summarises the dynamical modelling for the motorised mo-
mentum exchange tether system with axial and torsional elasticity by means of a sim-

ilar modelling process.

Chapter 7 - Dynamical modelling for a discretised flexible MMET system - based on
Chapter 6, this chapter explains the dynamical modelling for the motorised momentum
exchange tether system with axial, torsional and pendular elasticity, using a consistent

process.

Chapter 8 - Fuzzy logic control for MMET spin-up - this chapter discusses the design
process for a fuzzy logic controller with two inputs and one output as used for the

spin-up of the flexible MMET system, and as defined in Chapter 7.
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e Chapter 9 - Hybrid fuzzy sliding mode control for the MMET spin-up - a hybrid fuzzy
sliding mode control method is proposed in this chapter, combining together the fuzzy
logic control method and the skyhook surface sliding mode control method, and bal-
anced by a switching factor. Then, this hybrid control method is applied to the spin-up

control for the flexible MMET system in Chapter 7.

e Chapter 10 - Conclusions and future work - this chapter lists the conclusions to all
previous chapters and suggests a few future research targets for the control of space

tethers.

In particular here, as will be discussed in chapter 4, the dynamical modelling for the
flexible massless MMET is discussed by the following steps, which helps to show the flexible

massless MMET system modelling process clearly.

e Section 4.2 the massless MMET system: axial elasticity modelling
e Section 4.3 the massless MMET system: axial and torsional elasticity modelling

e Section 4.4 the flexible massless MMET system: axial, torsional and pendular elastic-

ity modelling

In order to distinguish the third modelling from the previous two models, the term ‘flex-
ible’ in this dissertation only means that this MMET system incorporates the axial, torsional
and pendular elasticity. Similarly, this modelling process is also applied to the models of

discretised MMET systems in the further chapters, that is,

e Chapter 5 the discretised MMET system: axial elasticity modelling
e Chapter 6 the discretised MMET system: axial and torsional elasticity modelling

e Chapter 7 the flexible discretised MMET system: axial, torsional and pendular elastic-

ity modelling
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Chapter 2

Literature Review on Space Tethers and

Tethered System Contol

2.1 Introduction

A typical tether system related mission always involves tether deployment and payload trans-
fer, tether retrieval, trajectory navigation, attitude control, and motion and vibration control.
This may involve three dimensional rigid or flexible dynamics, swinging in-plane or out-of-
plane vibrational motion of the space tether system,and longitudinal and transverse vibra-
tions of the space tether system.

Space tether system dynamics are quite complex because they are governed by a set c
ordinary or partial nonlinear equations and coupled differential equations, aspects of which
can affect space tether system behaviour, and can possibly cause control problems, whict
could be coupled with others problems.

Generally, Momentum exchange (MX) tethers and Electrodynamic (ED) tethers are the
two principal categories of a practical tether system. There are many kinds of tether applica-
tions, such as: Hybrid of Momentum eXchange/Electrodynamic Reboost (MXER) tethers;
and Electrostatic Tethers [85]. The research on dynamics and control are the two fundamen-
tally important aspects of all tether concepts, designs, and mission architectures [2] [86] [87]
[64] [88].

This literature review chapter focuses mainly on five topics regarding the control of space

tether:

o tether deployment and retrieval;

o trajectory generation and orbit control,
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o tether attitude and motion control;
o tether vibration control and dynamical simulations;

o space tether dynamical models.
With the basic aim of establishing useful sources of fundamental theory in the literature,
as well as highlighting the previous control methods developed, this chapter attempts to

provide a useful contextualised source of references for further space tether control studies.

2.2 Tether Deployment and Retrieval

A typical TSS mission launch involves both deployment and retrieval, besides other opera-
tional phases. Tether deployment and retrieval are two of the most important steps in space
tether applications [89] - [101].

A general formulation of the deployment dynamics of tether-connected two-body sys-
tems was introduced by Modi and Misra in 1979 [102]. It took into account three-dimensional
librational motion, and longitudinal and transverse vibrations. Three simple deployment pro-
cedures were considered, in the beginning analytical solutions were obtained for the degen-
erate case of negligible vibrations on a circular orbit, which helped to establish trends for the
more general situation.

In 1994, Bergamaschi et al. published a research paper, comparing the results of mathe-
matical models implemented in two different general purpose computer codes in the analysis
of the spectra of an accelerometric package mounted onboard TSS-1. The main characteris
tics of the codes were presented, and a test case outlined the cross-check activity performet
for simulator validation. The simulated reconstruction of the dynamics during the on-station
period at 256 m was depicted and discussed, then a short review was made of instrumen
performance and data quality, after which computed and experimental spectra, along with
data from a station-keeping phase during tether deployment, were compared and discusse
[103].

The motion of a tethered system during the retrieval process was investigated, using a
simple nonlinear model, by Chernousko in 1995 [104]. The unique motion was described
for the system at a constant tether retrieval rate in which the angle of deviation of the tether
vanished at the end of the retrieval. A method of controlling the retrieval process was pro-
posed, which prevented the amplitude of oscillation increasing.

An analysis of the exponential deployment of a tether was carried out by Pelaez in 1995

[105] [106]. It was shown that it was possible to dispense with tether alignment along the
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vertical without later libration. There was a two-stage deployment process: the first stage
in which the tension was controlled indirectly in order to get a constant radial velocity of
the end mass; and the second stage in which the tension was controlled indirectly in order
to achieve a constant ratio. In both phases the tether unwound from a reel whose angular
velocity could be controlled. The essentially stable character of deployment gave robustness
to this open loop strategy, resulting in a residual, negligible libration. Moreover, the proposed
deployment scheme could be taken as a starting point for more elaborate strategies.

Koss described the tether deployment mechanism development for the ATEx mission in
1997, giving some design iterations. These included: energetic(spring) deployment, a DC
brush motor driven deployment mechanism and a stepper motor driven deployment mecha-
nism [55].

In 1997, a tethered system deployment control by fuzzy logic feedback was proposed
by Licata [107]. The feedback control was based on a simple fuzzy-logic rule and minimal
measurements for in-plane tether deployment control problems; tethered end-mass termina
deployment position and phasing time constraints, such as tether initiated waste-disposal anc
capsule re-entry applications, were all illustrated. The fuzzy logic law, for the proposed rate
feedback control solution to the in-plane deployed tether terminal position-only problem,
has been associated with the tether length-angle state plane, instead of its full state space, c
the physical deployment trajectory plane. Simulation results showed the robust characteris-
tics for the numerically implemented terminal angle-length control solution to main system
parameter changes, and uncertainty for a nominal tethered system model with a specifiec
deployer configuration design. Solutions to the more complex space-time tether deployment
control problem with terminal deployment angle-length-time constraints, associated with a
tether initiated capsule re-entry application, have also been formulated and were presentec
as extensions of the previously stated deployment terminal position control, together with
numerical simulation results for the nominal tethered system model and deployer configura-
tion.

Carter and Greene studied the simulation of the retrieval and deployment characteristics
for the Getaway Tether Experiment (GATE) in 1998 [108]. The GATE was a single-tether
satellite system for the study of tether dynamics and electrodynamic technology. One goal
of GATE was to measure and control tether disturbances, such as those induced by micro
meteorite impact, using an active reel type deployer which was able to retrieve and deploy the
tether. A close-loop controller for the tethered system was given. This allowed the tether to
be actively reeled in (retrieval) or passively reeled out (deployment), to and from the mother

subsatellite. Their simulation results were presented and showed the effects of retrieval and
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deployment on the system. Three cases were considered: an exponential retrieval rate; :
constant retrieval rate; and a pulsed deployment.

A linear tension control law was provided by Kumar and Pradeep in 1998 [109]. In this
paper they provided a procedure used for determining a control law which could be used to
solve new problems. The approach was applied to the problem of three- dimensional tether
deployment considering both in-plane and out-of plane librations.

An adaptive neural control concept for the deployment of a tethered re-entry capsule was
provided by Glabel et al. in 2004 [110]. The control concept applied an indirect neural
controller, which combined two neural networks, a controller network and a plant model
network. While the controller network was initialised by means of multiple conventional
linear quadratic regulator designs, the plant model network was trained to predict future
states, and thus deviated from an optimised reference path. System inputs were found by
means of an online optimisation process, which minimised a user-defined cost function.
That was shown to influence the performance of the neural controller. Due to the special
structure of the controller network, stability investigations of the closed control loop were
possible. After introducing the tether deployment scenario, assumptions and simplifications
were applied to the mathematical system model. The numerical simulations focused on the
effects of perturbations concerning the initial states and the plant model. The simulation
results allowed a performance comparison of the linear quadratic regulator and the neural
control concept.

The dynamical behaviour of tether-connected satellite systems during the deployment
and retrieval process was considered by Djebli et al. [111] [112] in 1999 and 2002. The
system consisted of a space-station connected to a subsatellite by means of a tether of vari
able length. A simplified model was given in which the space-station and the subsatellite
were reduced to material points and the system mass centre moved along a circular orbit
with three-dimensional transverse and longitudinal oscillations. Strategies for retrieval were
obtained in order to increase the tension in the tether at the final stage of retrieval. These
laws of retrieval were deduced from the laws obtained in a previous paper for the particular
case of a massless tether. Some particular laws of deployment retrieval, leading to analytical
solutions for the small in plane and out of plane motions of the system, were obtained. An-
other application of the method was the so-called “crawler system” in which the subsatellite
crawls towards the space-station along a tether of fixed length, previously deployed.

An in-depth analysis was presented by Campbell [113] regarding the closed-loop results
and insights from the on-orbit control experiments of the Mid-deck Active Control Exper-
iment (MACE). MACE was flown in the Shuttle mid-deck on STS-67 in March 1995 to
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investigate issues associated with a change in operational environment from ground to space
for a payload pointing spacecraft. This cannot be tested in a realistic ground simulation.
These closed-loop results provided insight into how future on-orbit closed-loop experiments
could be improved, and they also helped to build confidence in the on-orbit capabilities of
future multi-payload spacecraft. This practical control design for flexible systems involved
many issues, such as the selection of effective control topologies, the validation of robust
control designs and techniques, the development of robust control design methodologies for
both finite element and identified models, and the development of effective tools for system
analysis. The MACE was designed to be a reusable dynamics and control laboratory which
could be used to investigate many of these issues during both ground- and space-based or:
erations. The paper presented an in-depth analysis of the extensive set of modelling anc
closed-loop control experiments performed on the MACE test during 14 days of on-orbit
operations on STS-67.

In 2003 and 2005, Barkow et al. published three papers on various methods used for
controlling the deployment of tethered satellites [114] [115] [116]. The deployment of a
tethered satellite system is one of the most critical phases in a tether mission, due to its com-
plicated dynamics. High amplitude oscillations are likely to arise in such systems, and it can
take a long time to reach the desired stable radial equilibrium state. Based on a viscoelastic
space billiard model [115], a targeting strategy was developed which made use of the sys-
tem’s chaotic nature and allowed the system to be steered into its equilibrium faster and more
efficiently, when compared to conventional strategies. Also, the deployment of a subsatel-
lite from a mother spaceship moving on a circular orbit would be a delicate operation for a
tethered satellite system, because this process could lead to unstable motion with respect t
the stable radial relative equilibrium of such a system if the tether length was constant. An
optimal control strategy to simulate the force controlled deployment of a tethered satellite
from a spaceship was proposed. The authors compared this strategy with free deployment
deployment controlled by Kissel's law [117] and an approach which made use of the con-
cept of targeting which is used in the controlling chaos approach. Both deployment time and
energy input were computed and compared to other deployment strategies.

In 2003, Steindl and Troger proposed their thesis that the optimal control of deployment
of a tethered subsatellite moving on a circular orbit around the Earth. An optimal control
of deployment and retrieval of a tethered subsatellite from a main satellite was treated by
Steindl in [118] and [119]. Therefore, they introduced an optimal control strategy, using the
Maximum Principle [120] to achieve a force controlled deployment of the tethered subsatel-

lite from the radial relative equilibrium position close to the spacecraft to the radial relative
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equilibrium position far away from the spacecraft. Since a straightforward application of the
mathematical methods of optimal control theory could be easily formulated only for a finite
dimensional system, they considered a simplified system model in which the tether was as-
sumed to be massless. Meanwhile, the main problem during retrieval was that it resulted in
an unstable motion concerning the radial relative equilibrium which was stable for a tether
of constant length. The uncontrolled retrieval resulted in a strong oscillatory motion.

In 2006, Williams published a paper on the optimal deployment and retrieval for a teth-
ered formation with spinning in the orbital plane [121]. The tethered formation was modelled
by point mass satellites, which were connected via inelastic tethers. The optimal deployment
and retrieval trajectories using tension control were determined for different spinning condi-
tions. Deployment and retrieval trajectories were obtained which could maintain the tether
spin at the desired rate and keep the system in a desired physical arrangement at the en
of deployment and retrieval. The parametric studies of the effect of system spin-rate and
maneuver time were performed, and it was necessary to constrain the relative tether geom-
etry to prevent any two tethers crossing each other. The results also showed that the tethe
spin rate tended to decrease during deployment but could be restored to the desired value b
over-deploying the tethers and then reeling in rapidly.

In 2007, Mantri’s research [122] aimed to model and understand the deployment of space
systems with long and short tethers. This research was divided into two parts. In the first part,
a model for short and medium length tether systems was developed and simulated by solving
equations of motion. A detailed parametric study was conducted after identifying important
parameters affecting the deployment, and after studying the effect of each parameter for the
deployment performance. A simulation tool was developed to assist mission planners in pre-
dicting the deployment performance of a space tether system with a given set of parameters
The second part of the research was motivated by Space Elevator (SE). SE was a futuris-
tic and highly challenging technologywhich was based on the idea of connecting Earth and
Space by an approximately 100,000 km long tether, which would be deployed from GEO.
With this motivation, the short tether analysis from the previous section was extended to the
analysis of long tethers. A model for the long tether deployment was developed and gov-
erning equations of motion were formulated. The critical parameters were identified, and
then the problems involved in SE deployment were investigated. Tether mass was initially
included in the model, but it was found that that the mass of the tether has little effect on
the overall qualitative dynamics of the system. Hence, for further analysis, a massless tether
model was adopted. Upon simulating the system, it was found that the long tether could

be highly unstable during deployment, and it could crash onto the Earth. However, a con-
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siderable fraction of the tether could be deployed successfully without any external control

mechanism before the instability manifested itself.

2.3 Trajectory Generation and Orbit Control

In 1995, Modi’s paper reviewed the attitude dynamics and trajectory mechanics of spacecraft
in the environmental forces, with particular emphasis on the solar radiation induced pressure
and thermal effects on attitude dynamics [144]. Several semi-passive controllers were pro-
posed which could use the environmental forces to advantage in stabilizing the system. The
solar radiation-induced forces could be put to advantage for propulsion and trajectory trans-
fer. The examples given of contemporary interest illustrated the effectiveness of the concepts
in achieving the desired attitude and trajectdriie results suggested that the gravity gradi-

ent torque could be put to advantage in stabilising spacecraft by the appropriate distribution
of inertias.

In 1996, Nohmi et al. proposed a “tethered robot system”, in which a robot attached
through a tether to the spacecraft [123]. For its position control of the centre of mass of
the robot, tether tension was used to control the position, by taking into account the gravity
gradient and the centrifugal force. The motion of the tethered robot system was simulated on
the trajectories planed, in which the feedforward control strategy was applied. The results
from the trajectory planning procedure suggested that the shape of the path depends bott
on the direction to the destination point, and the time taken to accomplish the mission,but
did not depend on the distance. The motion of the robot centre of mass could be controlled
on trajectories away from the equilibrium point. Translation on planned trajectories would
be possible in case the destination point was close to the initial point or in case the time of
accomplishment of the mission was longer.

A research paper which focused on a novel ground-based prototype manipulator was
proposed by Cao et al. in 2003 [124]. The system had two identical modules connected in
a chain topology. Each module consisted of two links: one free to slew, while the other was
permitted to deploy. Construction and integration of the manipulator were explained, and
this was followed by the development of a mathematical model for the manipulator using the
Lagrangian procedure. Finally, a series of trajectories were tracked, using the proportional
integral derivative (PID) control and feedback linearisation technique (FLT). The objective
was the real-time implementation of the control algorithms, developed for the unique space
manipulator on an Earth-based prototype system.

In 2003, Milam developed a computationally efficient Nonlinear Trajectory Generation
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(NTG) algorithm, and also described its software implementation in order to solve real-time
nonlinear optimal trajectory generation problems for constrained systems [125]. NTG was a
nonlinear trajectory generation software package which combined nonlinear control theory,
B-spline basis functions, and nonlinear programming. This paper compared NTG with other
numerical optimal control problem solution techniques, such as direct collocation, shooting,
adjoints, and differential inclusions, and then demonstrated the performance of NTG on
the Caltech Ducted Fan test-bed. Aggressively, the constrained optimal control problems
were solved in real-time for hover-to-hover, forward flight, and terrain avoidance test cases.
Then, the real-time trajectory generation results were shown for both the two degrees of
freedom and the receding horizon control designs. Further experimental demonstration was
provided with the station-keeping, reconfiguration, and de-configuration of micro-satellite
formation, with complex nonlinear constraints. Successful applications of NTG in these
cases demonstrated the reliable real-time trajectory generation, both for highly nonlinear
and non-convex systems. The results were among the first to apply receding horizon control
techniques for agile flight in an experimental setting, using representative dynamics and
computation.

In 2006, Padgett proposed a tethered satellite system for many space mission applica-
tions, due to the useful dynamics that could be generated in null-cline analysis systems [126].
For instance, tethered satellite systems could be used to increase the orbital radius of LEO
payloads, using angular momentum transfer. Another tethered satellite system proposal in-
volved the use of a variable length, spinning tethered system to produce specific levels of
artificial gravity in LEO. An analytic method of qualitatively describing the possible dynam-
ics of a tethered satellite system was presented. This analysis centred on the study of the set
of states in which at least one of the non-dimensional time derivatives of the state variables
was zero, and these sets were known as the null-clines of a system, and they bound region:
of the phase plane, in which tethered satellite behaviour was similar. The qualitative analysis
of the null-clines provided an explanation, and suggested the controllability of many types of
tethered satellite behaviour. A Tethered Artificial Gravity (TAG) satellite system was used as
a canonical tethered system, and the derived results were applied to this system. The utility
of the described analytical method was demonstrated by using the method to characterise
two different tethered satellite missions.

In 2007 Sharma et al. presented a study on global path planning algorithms for the Titan
aerobot, based on user defined way points in 2D and 3D space [127]. The algorithms were
implemented using information obtained through a planner user interface, and the trajectory

planning algorithms were designed to accurately represent the Titan aerobot’s characteris-
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tics, such as its minimum turning radius. Additionally, trajectory planning techniques were
implemented so as to allow for the surveying of a planar area based solely on camera fields
of view, airship altitude and the location of the planar area’s perimeter. The developed paths
allowed for planar navigation and three dimensional path planning. These calculated tra-
jectories were optimised to produce the shortest possible path, while still remaining within
realistic bounds of airship dynamics.

In 2005, Kim proposed a low-thrust system operated for significant periods of the mission
time [128], and as a result the solution approached requires continuous optimisation, and the
associated optimal control problems were in general numerically ill-conditioned. The objec-
tive was to design an efficient optimal control algorithm and then apply it to the minimum
time transfer problem of low-thrust spacecratft. It devised a cascaded computational scheme
based on numerical and analytical methods. Whereas other conventional optimisation pack-
ages relied on numerical solution approaches, it employed analytical and semi-analytical
techniques, such as symmetry and homotopy methods, to assist in the solution-finding pro-
cess. The first objective was to obtain a single optimised trajectory which satisfied some
given boundary conditions. The initialisation phase for this first trajectory included a global,
stochastic search based on an adaptive simulated annealing algorithm, and the fine tuning
of optimisation parameters - the local search - was accomplished via Quasi-Newtonian and
Newtonian methods. Once an optimised trajectory was obtained, then, the author could use
system symmetry and homotopy techniques in order to generate additional optimal control
solutions efficiently. It obtained optimal trajectories for several interrelated problem families
that were described as multi-point boundary value problems. It presented and proved two the-
orems by describing system symmetries for solar sail spacecraft, and then discussed symme
try properties and symmetry breaking for electric spacecraft system models. It demonstrated
how these symmetry properties could be used to significantly simplify the solution-finding
process.

A balloon trajectory control system was discussed that was under development for use
on NASA's Ultra Long Duration Balloon Project [129]. The trajectory control system ex-
ploited the natural wind field variation with altitude to generate passive pendular control
forces on a balloon, using a tether-deployed aerodynamic surface below the balloon. The
model confirmed many aspects of trajectory control system performance.

In 2003, Sakamoto and Yasaka addressed the motion of orbital objects, which followed
Kepler’s law, and then an orbit determination system in ground stations algorithm for analysing
the Kepler's motion was derived [130]. A tethered satellite system was the representative fu-

ture space system, and did not follow the conventional space dynamics. The following three
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problems were considered: first, the sensitivity of the length of tether and the librational
motion influence observations, which were range, range rate, and direction. Secondly, the
filtering algorithm was proposed for the orbit determination of a TSS. Thirdly, the initial
orbit determination of a TSS was discussed - the observations of range and range rate coulc
reflect the motion of a TSS, whilst on the other hand observations of direction were not
effective for the detection of a TSS motion.

In 2004, Takeichi studied the periodic solution of the librational motion of a tethered
system in elliptic orbit, and clarified its mechanical characteristics [131]. The basic libration
control toward the periodic solution was also presented, and a tethered system was modellec
as a rigid body, and in addition a set of nonlinear equations of motion for the librational
and the orbital motions was formulated. An approximated analytical solution was obtained
through the Lindstedt perturbation method. The total mechanical energy was formulated,
and it showed the minimum value when the librational and orbital motions coincide with the
periodic solution. The periodic solution was the minimum energy solution, and the periodic
solution in an elliptic orbit had the same significance as the equilibrium state in a circular
orbit from the mechanical point of view. A libration control towards the periodic solution
was also investigated, and the effectiveness of this control strategy was demonstrated by
using the periodic on-off control through a thruster installed on the subsatellite.

In 2005, a survivability analysis was carried out to support the design of a tether system
by Anselmo [132].Various tether configurations were analysed, and a numerical simulation
was obtained to assess the survival probability of an electrodynamic tether system for end-of-
life de-orbiting. In addition, the collision risk with large, intact space objects was analysed
as well in its implications, in order to guarantee a sufficiently short de-orbiting time for
relatively massive payloads.

In 2009, Williams put forward his work which discussed a control system for the YES-2
mission [60]. This mission was intended to demonstrate the ability to deploy a payload via
a tether, so that it could return the payload to the Earth using momentum-transfer. By de-
ploying the tether in an appropriate manner, the tether could gain sufficient swing velocity,
so that when the tether passed through the local vertical it could be severed. This effectively
removed momentum from the payload and allowed it to re-enter the atmosphere. Optimal
trajectories were determined for both phases after comparing the effect of different cost func-
tions on the deployment dynamics. The controllers were tested in a flexible tether model with
large disturbances to the hardware model and environmental variables. Closed-loop simula-
tions showed that the system could be controlled quite well using only feedback of length

and length rate.
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2.4 Tether Attitude and Motion Control

In 1975, a paper on the flexural-rotational coupled motion of three identical flexible cylin-
drical cantilevers was written by Modi and Misra [133]; it joined symmetrically to a central
head. The effects of the tensile follower forces and inertia parameters on the natural frequen-
cies of the system were studied. The analysis suggested two types of in-plane motion and
three sets of eigenvalues govern the out-of-plane motion. For in-plane motion, one corre-
sponding to the oscillation of the cantilevers without any rotation of the central body, while
the other involves coupled motion of the array. The repeated eigenvalues were identical to
those of a single cantilever having the same axial tension parameter. Three sets of eigenval
ues govern the out-of-plane motion: (a) the central head remaining stationary with no rolling
motion of the array; (b) vertical motion of the central body without any rolling motion of
the array; and (c) rigid body rolling motion without any vertical motion of the central head.
There was a possibility of dynamic instability for small inertia parameters and large axial
tension.

An alternative control law based on the linear regulator problem was developed by Bainum
et at in 1980 [134], which could be used in the operation of the Shuttle Tethered Subsatellite
system. This control law was assumed to be provided only by modulating the tension level in
the tether as a function of the difference between actual and commanded tether line length,
length rate, in orbital plane swing angle, and swing angle rate. Necessary and sufficient con-
ditions for stability of the linear system motion in the vicinity of its nominal local vertical
orientation were also developed. By proper selection of the state and control penalty ma-
trices, it was possible to obtain faster responses with no increase in maximum power levels
for use in station keeping, when compared with alternate control strategies. The weighting
matrices were adjusted in a piecewise adaptive manner to provide control law gains in order
to achieve a smooth deployment history.

A spatial dynamics of the space shuttle based tethered satellite system was investigatec
[135], by using a nonlinear model which accounted for the aerodynamic drag in a rotating
oblate atmosphere, by Modi. The result showed that the normally unstable retrieval manoeu-
ver could be stabilised satisfactorily using a nonlinear tether tension control strategy, which
depends on the tether length, its variation with time, and pitch rate. Effectiveness of the
control was illustrated through an example involving a 100 km tether supporting a proposed
satellite for charting the Earth’s magnetic field.

The dynamics of a tether-connected three-body system was investigated by Misra, Amier
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and Modi in 1988 [136]. The system was treated as a double-pendulum, and the motion in
the orbital plane was considered for the two cases of fixed-length tethers and variable-length
tethers. For the fixed-length tethers, there were four possible equilibrium configurations:
both tethers aligned along the local vertical; both tethers horizontal; and for certain combi-
nations of parameters, two other configurations where one tether was along the local vertical,
while the other was inclined to the local vertical. Only the vertical equilibrium configuration
was stable. Frequencies of oscillations around the stable configuration and corresponding
modes were given, the dynamic response of the system during deployment of the three-body
constellation was obtained. Dynamical behaviour during transportation of a cargo from one
end-body to the other was also studied.

In 1990, Modi published a paper which provided brief reviews on complex interactions,
between flexibility, deployment, environmental forces and attitude dynamics, during both
steady state and transient phases. Parametric studies suggested that critical combinatior
of system variables could drive the spacecraft to be unstable, and if provided with suitable
control strategies, it could be available to restore equilibrium. The paper’s emphasis was
on the methodology of an approach to complex dynamical systems and analysis of results,
which helped to gain better physical appreciation as to their response behaviours [137].

In 1992, Lea et al. developed a fuzzy logic based tether length controller into the TSS-
1 simulation, which investigated the usefulness and robustness that could be achieved with
fuzzy control. They reported the performance of the controller with the bead dynamics
model, also known as the finite element model. The tether mass was represented as a lumpe
mass in a head and the entire tether length was divided into several segments, thus making
several beads with three degrees of freedom motion in the orbital environment. The control
algorithm based on fuzzy logic for controlling tether length was described, and details were
provided of the membership functions and rule-base. The results comparing the performance
in terms of length error, tension error, and librational oscillations were presented [138].

In 1992, Modi and Lakshmanan proposed a mathematical model for the study of the
dynamics of the tethered satellite system consisting of a plate-type space station, from which
a tether supported subsatellite was deployed or retrieved [139]. The rigid body dynamics of
the tether, subsatellite and space station were analysed, by accounting for the mass of the
tether as well as a three-dimensional offset of its point of attachment. Controllability of the
linearised equations was established numerically, and a comparative study of three different
control strategies was conducted. The strategies employed the thrusters, the tension in the
tether line, or the offset motion of the attachment, which helped to achieve control for the

system subjected to relatively large initial disturbances. The offset control proved to be the
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most efficient in terms of energy consumption, but the response to disturbance persisted ovel
a longer duration. In addition, the performance of the thruster control, tension control, and
offset control strategies, as well as their combinations, were analysed during retrieval of the
tether.

A mathematical model of a platform based flexible tethered satellite system in an ar-
bitrary orbit, undergoing planar motion, was obtained using the Lagrangian procedure by
Modia and Pidgeon in 1994 [140]. The governing equations of motion accounted for the plat-
form and tether pitch, longitudinal tether oscillations, offset of the tether attachment point,
as well as deployment and retrieval of the tether. Tiwlelsof the interactions, involving
system librations, tether flexibility, eccentricity and retrieval maneuwers modelledThe
simulation response showed high frequency modulations corresponding to the longitudinal
tether oscillations, and the system was found to be unstable during retrieval. The Linear
Quadratic Regulator based offset control strategy, in conjunction with the platform mounted
momentum gyros, was proposed to alleviate the situation. The results showed that a strat-
egy involving independent parallel control of low and high frequency responses could damp
rather severe disturbances in a fraction of an orbit.

A three-axis attitude control system based on the integration of a reaction wheel, and a
mobile tether attachment point on board of each platform of a two-mass tethered system, was
analysed by Grassi et al. in 1994 [141]. An abrupt stop of the mobile attachment point of
one platform was simulated, and a control law to limit the two-platform angular differences
was derived considering the other platform mobile attachment point. The control laws were
derived by making use of analytical attitude models, and were then implemented in a three-
dimensional numerical code, which simultaneously integrated the system orbital and attitude
dynamics. Final results showed that the proposed control laws allowed to limit the angular
differences between the two platforms within values adequate for microwave remote sensing
applications. Moreover, the attitude high frequency oscillations were effectively damped.

In 1995, Grassi and Cosmo’s studies were conducted on SEDS attitude dynamics and
stability [142]. The SEDS system provided a low-cost facility for deploying tethered pay-
loads in space. Among various objectives, the SEDS mission’s first flight would assess the
capability of tethered platforms to carry out measurements in the upper atmosphere. The per-
formance of onboard instruments was seriously affected by the payload’s attitude dynamics.
This mission’s attitude dynamics and stability were analytically and numerically analysed
for the nominal mission. It was shown that although a passive damper could be used to re-
duce the amplitudes of the attitude angles, appropriate control techniques were required for

scientific instrumented platforms.
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Furthermore, another mathematical model was developed for studying the dynamics and
control of the tethered satellite systems undergoing planar motion in a Keplerian orbit, by
Modi, Pradhan and Misra in 1995 [143]. The system consisted of a rigid platform, from
which a point mass subsatellite was deployed or retrieved by a flexible tether. The model
incorporated the offset of the tether attachment point from the platform centre of mass and
its time-dependent variation. The governing equations of motion were obtained by using
the Lagrangian formulation. The offset control strategy, which involves movement of the
attachment point, was used to regulate the tether swing, and the platform dynamics were
controlled by a momentum gyro. The offset control was implemented using a manipulator,
which moves the tether attachment point as required. Their simulation results showed that
the control procedure regulated the system dynamics, and the state feedback controller for
the system was designed using graph theoretic approach, which had computational advantag
particularly for higher order systems.

In 1996, Modi et al. [145] proposed a paper on ground based experiments of the OEDIPUS
C sounding rocket mission. The ground based experiments were conducted as a part of the
OEDIPUS-C. The OEDIPUS-C configuration consisted of two spinning bodies connected
by a long tether, the spin axis was nominally along the tether line. The objective was to as-
sess the dynamic behaviour of the tether and the payload. The test configuration consisted o
an end-body supported by a tether. The test procedure involved slow spin-up of the system
and identifying the speeds corresponding to onset of the tether modes or the large amplitude
end-body coning. Experimental results were obtained for four different bodies to study the
system stability over a wide range of mass and geometric parameters. Effect of offset of
the tether attachment from the end-body centre of mass was also investigated. The observe:
critical speeds were compared with those given by the linear theory. The several transient
phenomena observed during the test suggest that system nonlinearities could not be ignore
when modelling such a complex system.

In 1997, Pascal’s paper [146] studied a tethered satellite system in a relatively dense at-
mosphere. The relevant dynamic problem was characterised by strong nonlinearities, mainly
due to aerodynamic effects. Two mechanical models with different degrees of fidelity were
developed to analyse the static equilibrium of the system. A rigid tether model and a flexible
tether model were discussed. Both of the models for the tether were taken as an elastic con:
tinuum with mass, and aerodynamic forces were distributed along the system. The results
of the rigid tether model, with an approximation of the system behaviour, were used as a
starting point for the numerical procedure, which adopted for computing more accurately

the tether shape with the flexible model.
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In 1999, Pradhan, Modi and Misra [147] presented a paper which studied several appli-
cations of the offset scheme in controlling the tethered systems, in which planar equations of
motion of a space platform based TSS were derived by the Lagrangian procedure. Simula-
tion results aimed at the offset control of platform pitch, tether attitude and vibration motions.
The offset scheme was used for the simultaneous control of platform and tether pitch motion.
Finally attention was directed towards the simultaneous regulation of the platform pitch and
longitudinal tether vibration. The numerical results showed considerable promise for the
offset control scheme in regulating tether, platform and combined tether-platform dynamics.

The equations of motion for a class of TSS undergoing planar motion in a Keplerian or-
bit were derived using the Lagrangian procedure by Modi et al. in 1997 [148]. The system
consisted of a rigid platform from which a point mass subsatellite could be deployed or re-
trieved by a flexible tether. The model incorporated an offset of the tethered attachment point
from the platform centre of mass and its time dependent variation. The feedback linearisa-
tion technique was used to design the attitude regulator. A hybrid strategy, using thruster
and offset schemes, was used for regulating the tether swing, and momentum gyros were
employed for the platform control. The offset strategy was also used for active control of
the tether flexibility during station-keeping, in conjunction with the thruster-based attitude
controller. Finally, the effectiveness of the offset-based attitude controller was demonstrated
through ground-based experiments, thus substantiating the trends predicted by the numerica
simulations.

In 2000, Yu’s paper discussed a TSS with two-dimensional motion, in which the tether
was assumed to be massless [149]. The equations of motion were given in a spherical co-
ordinate system to describe the magnitude (tether length) and direction angle of the position
vector between the satellites. A length rate control algorithm was adopted and the controlled
motion of the directional angle by the algorithm would have a stable equilibrium state. The
equilibrium state was a fixed point if the orbit of the base-satellite was circular and a limit
cycle if the orbit was elliptic. According to the results, the stability of the equilibrium state
was determined by the parameters of the control algorithm, and the bifurcation analysis was
also given.

An advantage of combining a crisp algorithmic controller and a soft knowledge-based
controller was introduced by Goulet et al. in 2001 [150], which was in the specific context
of controlling a space-based manipulator with flexible deployable and slewing links. A hier-
archical control structure with a high-speed conventional controller at the bottom layer, and
an intelligent tuner at an upper layer, was developed. The top-level intelligent tuner used a

valid set of linguistic rules for adjusting proportional-derivative servos based on fuzzy sys-
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tem concepts. The performance of the hierarchical control system was evaluated on the basi:
of the space-based simulation results. Based on the analysis, it could be concluded thal
initial tuning of the parameters of a conventional low-level controller together with tuning
during operation could improve the positioning accuracy of the manipulator. The hierarchi-
cal control structure permitted desirable combination of a conventional high-bandwidth and
knowledge-based low-bandwidth controllers.

A paper on the use of dual satellite platforms connected through a tether was proposed by
Kumar et al. in 2001 [151]. The feasibility of suitably varying tether offsets for achieving de-
sired maneuvers of both the platforms was explored. The Lagrangian formulation approach
was utilised to develop the governing system of nonlinear ordinary differential equations for
the constrained system. A simple open-loop strategy was developed for the tether offset vari-
ations, which ensured judiciously controlled changes in the orientation of satellite platforms.
The numerical simulation of the nonlinear governing equations of motion for these tether
offset variations established the feasibility of achieving desired attitude maneuvers. The
nearly passive nature of the proposed orientation control strategy could make it particularly
attractive for future space missions.

In 2004, Kim and Hall [152] investigated a mathematical model for a tether system,
in which the effects of the smoothness and non-smoothness of desired mission trajectories
on control performance was discussed. The equations of motion were derived by the use
of Lagrange equations, and several mission scenarios for a proposed NASA mission which
consider the operation of an infrared telescope were introduced. Techniques were devel-
oped to control the motion of a tethered satellite system comprisimpint masses and
interconnected arbitrarily byh idealised tethers; specifically, the control problem of a tri-
angular and symmetrical TSS with 3 point masses and 3 tethers was discussed. Asymptotic
tracking laws based on input-state feedback linearisation were developed, and the effects of
the smoothness and non-smoothness of desired mission trajectories on control performanct
were discussed. It was asserted that required thrust levels could be decreased by the use ¢
additional tether length control, to keep the TSS in a state corresponding to an instantaneous
relative equilibrium, at any point in time during the mission.

In 2004, Williams and his colleagues [95] [96] presented their research on deployment of
a payload on a spinning tether in a hyperbolic orbit with a sufficient velocity change, while it
was captured in an elliptical orbit at the destination planet. Due to conservation of momen-
tum, the main spacecraft gained a “momentum-enhanced gravity-assist”, which used tethers
for planetary capture. In planetary exploration and payload transfer, it was investigated by

conducting numerical simulations of a simplified tether system, the tether mass required to
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prevent rupture of the tether was optimised using numerical and iterative techniques for each
of the major planets in the solar system. It was demonstrated that mass savings could be
achieved when compared to the requirements for chemical propulsion. Finally, it was shown
that controlling the tether length during the maneuver could be done in order to correct er-
rors in the system trajectory for both spinning and non-spinning capture cases. Meanwhile,
another paper proposed utilising the distributed Lorentz forces that were induced in an elec-
tromagnetic tether as a control actuator for controlling the tether motion [97]. The control
input governing the magnitude of the applied actuator force was the current being conducted
within the tether. A wave-absorbing controller was also proposed to suppress the unstable
high-order modes which tended to be initiated by electromagnetic forces. The absorption
of travelling waves along the tether could be achieved by proper movement of the tether
attachment point on the main satellite. A mission function control law was presented for
controlling the tether length and in- and out-of-plane librations, derived from a model that
treats the tether as an inextensible rigid rod.

In 2004, Lovera and Astolfib [153] discussed the problem of inertial attitude regulation
for a small spacecraft using only magnetic coils as actuators, and a global solution to the
problem was proposed based on static attitude and rate feedback. A local solution based or
dynamic attitude feedback was also presented, that attitude regulation could be achieved evel
in the absence of additional active or passive attitude control actuators such as momentum
wheels or gravity gradient booms.

In 2005, Modi et al. presented their studies on the development and implementation of
an intelligent hierarchical controller for the vibration control of a deployable manipulator
[154]. The emphasis was on the use of knowledge-based tuning of the low-level controller
to improve the performance of the system. To this end, a fuzzy inference system (FIS) was
developed. The FIS was then combined with a conventional modal controller to construct a
hierarchical control system. Specifically, a knowledge-based fuzzy system was used to tune
the parameters of the modal controller. The effectiveness of the hierarchical control system
was investigated through numerical simulation. Realistic examples were considered where
the system experiences vibrations due to initial disturbances at the flexible revolute joint or
due to maneuvers of a deployable manipulator.

An adaptive fuzzy sliding mode control was applied onto the attitude stabilization control
of a flexible satellite by Guan in 2005 [155], in which the detailed design procedure of the
fuzzy sliding mode control system was presented. The adaptive fuzzy control was utilised
to approach an equivalentethodof sliding mode control, and then the adaptive law was

derived. A hitting control, which guaranteed the stability of the control system, was devel-
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oped. In order to attenuate the chattering phenomena, fuzzy rules were employed to smoott
the hitting control. Simulation results showed that precise attitude control was accomplished
based on the proposed method.

In 2006, Zhou's paper discussed the stability control of equilibrium positions, and a
complete model of a tethered satellite system was considered [156], in which a main satellite
and a subsatellite were connected by a conductive tether, with mass distributed along it. To
regulate both the in-plane and out-of-plane motions of the tether, the current and the rate of
change in tether length were employed as two control parameters. A feedback control law
was proposed to maintain the radial equilibrium position of the system. It was found that this
control law was not applicable for the equatorial plane because no out-of-plane force was
available there. For each inclined orbit, it was shown that there were two singularity points.
To avoid these points, and by considering some other practical restrictions, the proposed
control law was divided into four conditional parts. Numerical cases were provided and the
results validated the applicability of the control law.

The dynamics and control of spinning tethers in elliptical orbits for payload rendezvous
were studied by Williams in 2006 [100]. The required rendezvous conditions for the tether
tip were derived for the case where the tether system centre of mass and payloads were ir
coplanar elliptic orbits. It was proposed that rendezvous control could be achieved by track-
ing the unique tip trajectory, which was generated by propagating the rendezvous conditions
backwards in time. The range of suitable combinations of tether system orbit eccentricity,
tether length, and payload orbit eccentricity, were studied numerically. It was proved that
certain combinations of parameters leaded to non-spinning capture requirements and slacl
tethers. Control of the tether motion through tether reeling was examined by using a nonlin-
ear model predictive control strategy.

The control problems of two different configurations of tethered satellite systems for
NASA's Submillimetre Probe of the Evolution of Cosmic Structure (SPECS) mission were
studied by Kim in 2007 [157]. The configuration of the main focus was the TetraStar model,
which was composed of three controlled spacecraft and three uncontrolled counterweights.
This system was compared with a triangular tethered satellite system consisting of three con-
trolled spacecraft. The equations of motion were derived using Lagrange equation. Several
mission scenarios for the SPECS mission considering the operation of an infrared telescope
were introduced and asymptotic tracking laws based on Lyapunov control were developed.

In 2007, a tethered satellite cluster system, which consisted of a cluster of satellites con-
nected by tethers, was discussed by Mori and Matunaga [158]. An active control law, which

could maintain and change formation of the tether tension and length, was introduced, with
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the aim of saving thruster fuel and improving control accuracy. This concept could be ap-
plied to tethered multisatellites for in-orbit servicing, which could perform various missions,
including inspection, casting, capture, recovery, moorage, and deorbiting of an uncontrolled
satellite. The rotational motions of such a system, in which the satellites were in formation
flying, were required to rotate about the centre of mass of the system on the same desirec
plane. The equilibrium conditions that the tether tension imposes on the rotational motion
were given, and a coordinated control method for the thrusters, the reaction wheels, and
the tether tension or torque was proposed. Numerical simulations and ground experiments
showed that the control of the tether tension and torque could not only save thruster fuel, but
also improves the position and attitude accuracy of formation flying.

In 2007, Chung, Slotine and Miller [159] published a paper which aimed to investigate
a fully decentralised nonlinear control law for spinning tethered formation flight, which was
based on exploiting geometric symmetries to reduce the original nonlinear dynamics into
simpler stable dynamics. Motivated by oscillation synchronization in biological systems,
they used contraction theory to prove that a control law stabilising a single-tethered space-
craft could also stabilise arbitrary large circular arrays of spacecraft, as well as the three
inline configuration.

In 2008, Chung, Slotine and Miller also introduced a decentralised attitude control strat-
egy which could dramatically reduce the usage of propellant, by taking full advantage of the
physical coupling of the tether [160] [161]. In the first paper [160], they reported propellant-
free underactuated control results for tethered formation flying spacecraft, and also described
the hardware development and experimental validation of the proposed method using the
synchronised position hold, engage and reorient experimental satellites test bed. In particu-
lar, a new relative sensing mechanism that uses six-degree-of-freedom force-torque sensor
and rate gyroscopes was introduced, which was validated in the closed-loop control experi-
ments. In the second paper [161], they exploited the physical coupling of tethered spacecraft
to derive a propellant-free spin-up and attitude control strategy, and then took a nonlinear
control approach to under-actuated tethered formation flying spacecraft, whose lack of full
state feedback linearisability, along with their complex nonholonomic behaviour, charac-
terises the difficult nonlinear control problem. This article also illustrated the potential of the
proposed strategy, by providing a new momentum dumping method that did not use torque-
generating thrusters.

Misra presented a paper on dynamics and control of two-body and n-body tethered satel-
lites in 2008 [162]. The multi-tethered systems were initially related to the deployment of

multiple probes from a spacecraft to the upper atmosphere and for microgravity applica-
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tions, which were modeled as an open chain of tether-connected bodies. At first, nonlinear
roll and pitch motions of two-body systems were examined, then the effects of aerodynamic
and electrodynamic forces on the stability of a tethered satellite were discussed. Various
control schemes to stabilise the dynamics during retrieval of the subsatellite were described,

and some dynamics and stability results for n-body tethered satellites were proposed.

2.5 Tether Vibration Control and Dynamical Simulations

In 1971, Tschann'’s paper on the stability of planar librational motion of an undamped rigid
satellite in eccentric orbit was studied through an analog simulation of the governing, non-
linear, non-autonomous equations of motion. The method was extended to investigate the
effect of damping on stability and the response of such a system in circular orbit [163].

In 1978, Lips [164] presented a paper on a general formulation for librational dynam-
ics of satellites with an arbitrary number, types, and orientation of deploying flexible ap-
pendages. The generalised force term was incorporated making the formulation applicable
to a wide variety of situations, where aerodynamic forces, solar radiation, Earth’s magnetic
field, etc. became significant. In particular, the case of a beam-type flexible appendage de-
ploying from a satellite in an arbitrary orbit was considered. The corresponding nonlinear,
non-autonomous equations for in-plane and out-of-plane vibrations were derived, allowing
for the variation of mass density, and flexural rigidity along the length with time dependent
deployment velocity and spin rate. The linearised analysis of the in-plane vibrational equa-
tion using the assumed-mode method and its substantiation through numerical integration
were also considered. Simulations for both steady-state and transient attitude behaviour for
a representative gravity gradient configuration for a range of initial conditions and system
parameters were performed. The results showed the combined effect of flexibility and de-
ployment on the dynamics of the system to be substantial. Disturbance of the appendage
could excite large amplitude librations, furthermore, coriolis loading, induced by the extend-
ing appendages could become a limiting factor in arriving at a deployment strategy.

A research paper on vibrations of orbiting tethers was proposed by Misra, Xu and Modi
in 1986 [165]. It considered three dimensional transverse and longitudinal oscillations of a
tether connecting a subsatellite to the shuttle, and also, it focused on the dynamics during the
terminal phase of retrieval of the subsatellite. Nonlinearity in the strain-displacement rela-
tion was taken into account, since it was important and helpful during this phase. Retrieval
schemes that could assist in arresting the growth of vibrations were obtained by simplified

analysis and validated through numerical solution of the original equations.
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A simulation of an orbiting single tether system composed of two subsatellites and a
connecting tether was developed by Carter and Greene in 1992 [166]. The dynamics of the
tethered system was modelled by using a series of mass beads inter-connected by springs ar
dash pots. The bead model allowed the tether to become slack (no tension) and to deform tc
an arbitrary shape. Simulation results were presented and discussed for two types of motion:
(1) tether vibrations and (2) end mass retrieval.

In 1997, Pasca and Monica [72] investigated a tethered satellite system to be flown in
the relatively dense atmosphere, which is characterised by strong nonlinearities due to aero-
dynamic effects. Two mechanical models with different degrees of fidelity, were developed
for analysing the systems’ static equilibrium. The first model was assumed as a straight
tether, and the second tether model was treats a perfectly flexible continuum, and in both of
the models, the aerodynamic forces distributed along the system. Simulation results of the
first model were used as a starting point for the numerical procedure adopted for computing.
The flexible tether model gave a more detailed description of the system mechanics, which
was able to deal with an elastic tether with variable diameter and provided amore accurate
solution of the static problem. The effectiveness of the proposed control laws was shown by
means of both analytical arguments and simulation runs.

The equations of motion for a multi-body tethered satellite system in a three dimensional
Keplerian orbit were derived by Kalantzis, Modi, Pradhan and Misra in 1998 [167], which
considered a multi-satellite systems, which were connected in series by flexible tethers, both
tethers and subsatellites were free to undergo three dimensional attitude motion together with
longitudinal and transverse vibration for the tether. The elastic deformations of the tethers
were discretised using the assumed-mode method. In addition, the tether attachment points t
the subsatellites were kept arbitrary, and time varying with deployment and retrieval degrees
of freedom. The governing equations of motion were derived using an order-N Lagrangian
formulation. Two independent controllers, an attitude and vibration controller, were designed
to regulate the rigid and flexible motion present in the system, which excited from various
maneuvres performed during the course of a mission.

In 2000, a tethered satellite system was modelled by the method of multi-body systems
using symbolic equations of motion, and a method of damping structural vibrations using
optimisation techniques was presented, and then applied to a tethered satellite system by
Dignath and Schiehlen [168]. The system showed large displacements and require active
and passive damping mechanisms. Active damping was provided by an actuator between the
main body and the tether. The control parameters were optimised, the energy decay of the

system was used as the performance criterion. The complex dynamics of the motion of this
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system were demonstrated in simulations with different initial conditions including struc-
tural vibrations. It was concluded that an optimisation process enables the control param-
eters could be improved with respect to the dissipation of energy of longitudinal structural
vibrations.

Dynamic simulations were performed by Leamy et al. in 2001 [169] for the NASA
planned ProSEDS space tether mission using two finite element analysis codes. The first
was a specialised code for simulating tethered space systems. The second was an in-hous
flexible multi-body dynamics code adapted herein for modelling tethered satellites. The
simulation of the ProSEDS mission was divided into two operations: a tether deployment
operation and an electrodynamic operation. The specialised code used a fixed number of
nodes and finite elements in simulating the deployment operation, while the in-house code
used a variable number of nodes and elements. A fuzzy-set technique was used in conjunc
tion with the two codes to assess the effect of parameter variations on the deployment and
electrodynamic operation of the ProSEDS tether. Detailed numerical simulations revealled
that the deployment operation was not sensitive to variations in material parameters, but was
sensitive to variations in the initial tether ejection momentum and to controller parameters.
The electrodynamic operation was found to be highly sensitive to variations in Earth’s mag-
netic field, and variations in material and plasma parameters.

A tether-mediated rendezvous between a noncooperative payload and a maneuverablc
tether was considered by Williams in 2005 [170]. The practical scenarios were derived,
in which the tether system orbit and payload were inclined relative to each other, and it
meant that capture was no longer limited to the orbital plane. The necessary conditions for
achieving a zero position and zero velocity rendezvous when the tether system and payload
in arbitrary orbits were derived. Three case studies were given, in which, the payload was
inclined relative to the tether system by 0.5, 1.0, and 1.5 degree. Two direct transcription
methods were used to obtain minimum reel acceleration trajectories for the system. It was
inferred that significant manipulation of the three-dimensional dynamics could be achieved
under two orbits, using only tension control with smooth variations in tether length. A non-
linear receding horizon feedback controller was used to simulate numerically the control of
the system with large disturbances to the initial conditions and with changes to the system
mass distribution.

In 2006, Krupa et al. [171] presented a paper on tethered satellite systems, which posed
quite challenging problems concerning the modelling. Equations of motion and numerical
simulations were derived on stability of relative equilibria, provided the system moves on a

circular orbit around the Earth and the occurrence of chaotic dynamics. Moreover, for the
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processes of deployment, and the retrieval of one satellite from or to another satellite, certain
control strategies were studied, which included time and energy optimal control.

A control of an aerial-towed flexible cable system for precision rendezvous and snatch
pickup of payloads was considered by Williams et al. in 2006 [172]. Optimal trajectories
were determined assuming that the cable remained straight. However, aerodynamic drag anc
deployment forces could cause bowing of the cable, that could significantly alter the position
of the cable tip relative to the aircraft. To account for this, the cable was modelled using
lumped masses, connected via rigid links. Multiple rendezvous sequences using only cable
winch control and including features, such as collision avoidance and variable winds, were
obtained by multiple-phase direct transcription methods. Numerical results showed that for
some multiple rendezvous scenarios, it was necessary to use the cable pendular dynamic
and swing motion to avoid impact with elevated terrain. The effect of different wind speeds
and directions were also studied.

In 2006, Williams [173] discussed a strategy for the control of the librations for a teth-
ered satellite system in elliptic orbits, which using tether length control. For simplicity, only
the in-plane motion of the system was considered. The results were obtained with the con-
trolled periodic libration trajectories. He proposed that there was a range of eccentricities
up to about 0.4453, for which no length variations were needed for the system to follow
the periodic trajectory. Above this eccentricity, it was necessary to vary the length of tether
to maintain a periodic trajectory. The method for finding these trajectories to minimise the
control input utilised a collocation solution, in which the closed-loop stability was observed
by a linear feedback control law, whose feedback gains were also periodic.

A novel concept for the remote delivery of payloads from a fixed wing aircraft was inves-
tigated by Williams and Trivailo in 2006 [101]. The concept used taut cable deployed from a
circling aircraft as a support structure for sliding payloads from high altitude to the ground.
Anchoring the cable tip guaranteed accurate positioning of the cable tip on the ground. Sim-
ulations of the cable dynamics suggested that it was necessary to use some form of braking
to slow the descent of the payload. If the payload speed was too excessive, then the cable
dynamics could become unstable and the peak tension could reach high levels.

A detailed geometrically exact bifurcation analysis was performed by Valverde et al.
in 2006 [174], for a model of a power-generating tethered device of interest to the space
industries. The structure, a short electrodynamic tether, comprised of a thin, long rod that
was spun in a horizontal configuration from a satellite in low Earth orbit with a massive
electrically conducting disk at its free end. The system was modelled by using a Cosserat

formulation, leading to a system of Kirchhoff equations for the rod’s shape as a function of
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position and time. Moving to a rotating frame, incorporating the effects of internal damping,
intrinsic curvature due to the deployment method and novel force and moment boundary
conditions at the contactor, the problem for steady rotating solutions was formulated as a
two-point boundary value problem. Using numerical continuation methods, a bifurcation
analysis was carried out varying rotation speeds up to many times the critical resonance
frequency. Spatial finite differences were used to formulate the stability problem for each
steady state and the corresponding eigenvalues were computed. The results showed excellel
agreement with earlier multi-body dynamics simulations of the same problem.

In 2007, Williams and Trivailo proposed two papers for the study of the dynamics of
circularly towed cable systems [175] [176]. In the paper [175], when a long cable was towed
in a circular flight path, the system could exhibit quasi-stationary solutions, for which the
cable tip appeared to remain stationary relative to the orbiting aircraft. For applications
involving pickup and delivery of payloads, tighter turned at high speeds, which led to nearly
stationary motion of the cable tip in an inertial frame. This work studied the dynamics
of the cable system, and focused on the stability and equilibria of solutions. A numerical
analysis of the system was carried out by using a discretised lumped mass model of the
cable. With constrained numerical optimisation, practical towing solutions that achieve small
motion of the towed body were obtained. In the second paper[176], when the tow point of an
aerial cable system moving in a tight circular path, the drogue at the cable tip would move
towards the centre of the circle, and its altitude decreased relative to its equilibrium position
in forward flight. Such a system would has both military and civilian applications, including
remote pickup and delivery of payloads. This work studied the transitional dynamics of
such a system as the aircraft changed from straight flight to circular flight. The system
dynamics were modelled using a discretised cable model, allowing the cable to take on zero
tension values. Numerical simulation results showed that the cable became slack during the
transition if the aircraft turns too rapidly. Parametric studies of the towpath were performed
for both tow-in and tow-out maneuvers. Tension waves could be reduced by appropriate
control of the tow point. Simulated annealing method was used to optimise some parameters
used to specify the tow-in maneuver. Alternatively, a deployment controller was developed
using fuzzy logic, that avoided some of these problems by deploying the cable, while the
aircraft orbiting. Instability of deployment for certain combinations of cable length and

length rate were observed.
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2.6 Space Tether Dynamical Models

Dumbbell tether is one of the most important tether systems, and a lot of tether systems
can be considered as some form of dumb-bell system, in which two massive bodies, not
necessarily of the same mass or size, are coupled together by a low-mass tether by whick
momentum is exchanged between them [1] [2] [177] [178]. In the implication of the general
dumb-bell model, the tether is treated as a rigid body. The rigid dumb-bell tether can provide
not only for gaining an understanding of general global motions of a tether in space, but also
as a fundamental tool for mission conceptualisation. In practice, the elastic tether models
will be needed, particularly when very high accuracies are required, both in predicting the
tether location and orientation, but also in properly understanding the deformation of a tether
in cases where the application is particularly demanding.

In 1989, DeCou [179] discussed the case of the orbiting stellar interferometer with planar
deformation of a spinning system comprising three collimating telescopes. The tethers were
broken down into segments and an iterative procedure was used to calculate the static shape
in which, axial stretch was mentioned as a parameter. The tether’s static shape with finite
mass density was determined under the influence of the centrifugal forces, which caused by
the rotation, and in the absence of any disturbing dynamic forces, such as gravity gradients,
solar radiation pressure, and thermal expansion fortesse forces’ dynamic effects were
addressed next as perturbations from the static shd@pe. static problem was solved by
first deriving nonlinear differential equations relating the position of each tether point to the
tension at each point. A numerical solution to these equations was then outlined, and the
results of a computer program based on this method were summarised.

In 1992, Kumar, Kumar and Misra [180] presented their work on the effect of deploy-
ment rate and librations on tethered payload raising. A special rule for planar librations
and circular pre-release orbits was introduced, it showed clear general relationships betweer
apogee altitude gain as a function of deployment rate and explains how suitable deployment
rates could be selected for optimising altitude gain, for a given system.

In 1997, Vigneron et al. [181] discussed a dumb-bell tether(up to 1 km) for the OEDI-
PUS ionospheric plasma test missigximathematical model of the laboratory system was
derived, including the terrestrial effects as well as the in-flight phenomena. It was shown
that the model was able to reduce to a linear, vibratory, damped, and gyroscopic system, for
which an eigenfunction analysis was used to obtain the damped gyroscopic modes shapes

stability, and natural frequencies for various physical configurations. Meanwhile, this work
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also showed that linear modelling could be used to represent modal frequencies and payloac
attitude stability quite well, however, it obviously did not cover all the possible dynamical
phenomena in the system, and would overlook certain regions of convergent attitude motion
and limit cycle behaviour.

In 1998, Cartmell [67] presented a motorised momentum exchange tether system, which
showed that forced, motor driven spin could be generated for a large symmetrical dumb-bell
tether, and that complicated non-planar motions of the tether could also be initiated. Based
on this preliminary model, in this thesis, a series of new motorised momentum exchange
tether models will be discussed.

A general stability and control problem which exists with long tethers in space was ex-
amined in 2000 by Kumar and Kumar [182]. A stability criterion was evolved for a sim-
plified situation using first order perturbation equations around the nominal equilibrium
configuration. The set of complicated ordinary nonlinear differential equations was non-
dimensionalised and the reduced parameter space was numerically explored.

Mazzoleni and Hoffman investigated the non-planar spin-up dynamics of the advanced
safety tether operation and reliability (ASTOR) satellite in [183] and showed that this spin-
up manoeuvre was an example of artificial gravity, which could perhaps be harnessed within
human-based missions in the future. If tethers were to be used successfully for artificial
gravity generation then attitude control of the end bodies was also required during spin-up.

Tether retrieval is the opposite of deployment and is equally important in dynamical
terms. Retrieval of a sub-satellite to a larger vehicle, specifically a space station, was ex-
amined by Djebli et al. [112] in 2002, which concentrated on laws for retrieval and also
deployment, specifically combining ‘simple’ linear or exponential retrieval and ‘fast’ laws,
and specific acceleration profiles were also proposed. This would be applicable to passive
momentum exchange tethers and potentially to ED tethers.

An artificial gravity system was discussed by Mazzoleni and Hoffman in 2003 [184],
which comprised two tethered satellites and included tether elasticity within the so-called
tethered artificial gravity satellite. The so-called ‘g-force’ was generated by the tether, which
could maximise the and minimise thew within the rw?. The spin-up phase was also
examined in particular and it was found that an initial out-of-plane angle of the system and
the location of the tether attachment point could both significantly affect the dynamics of the
end-body motion of a tethered satellite system during spin-up.

As one objective and new idea for this thesis, it will discuss the spin-up performance for
the motorised momentum exchange tether system, which incorporating axial, torsional and

pendular elastic effects.

50



2.7 Conclusions

In this chapter, the literature review work focuses on tepics which are related to the
space tether control researches) tether deployment and retrievdl) trajectory genera-

tion and orbit control{3) tether attitude and motion contr@}) tether vibration control and
dynamical simulationg5) space tether dynamical models. With the basic aim of establish-
ing useful sources of fundamental researches in the literature, and highlighting the previous
control methods developed, this chapter attempts to provide a useful contextualised source
of references for the further space tether control studies.

The momentum exchange tether is a one of the most important key technology offering
major potential applications for reductions in space transportation costs, and a wide potential
range of space missions. An indepth review of mechanical tether system performance was
conducted by Ziegler and Cartmell [62], who showed conclusively that motorised spinning
momentum exchange tethers demonstrate the best performance and also potentially the mos
efficient performance. The motorised momentum exchange tether (MMET) has received ex-
tensive modelling effort, both for circular and elliptical orbital contexts [62][67], since then,
the MMET has been one of the most important subjects of momentum exchange tether de-
velopment, and in this thesis a series of new MMET systems will be investigated in Chapter
3 to Chapter 7.

In 2004, Mouterde, Cartmell and Wang [185] presented a paper to investigate the gen-
eral problem of unexpected changes to two example system parameters in the motorisec
momentum exchange tether context with spin-up control applied specifically by means of
conventional feedback linearisation with adaptive gains. To compare the feedback linearised
control for a rigid body motorised momentum exchange tether on an elliptical Earth orbit,
two control methods for a flexible motorised momentum exchange tether spin-up behaviour,
which include a fuzzy logic control method and a hybrid fuzzy sliding mode control method,
will be discussed in this thesis, and the control objective of MMET'’s spin-up is one of the

last potential applications.
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Chapter 3

The Motorised Momentum Exchange

Tether

3.1 Introduction

This chapter introduces the basic concepts in momentum exchange modelling and the con-
ceptual modelling of the symmetrical motorised momentum exchange tether (MMET), which

includes dumbbell tether systems, a rigid massless MMET system, and a solid tether-tube
subspan MMET system, all using the Lagrangian procedure. The Lagrange equation is given

in the form of equation (3.1.1) [186].

d [oT] oT , au
B o

dt [9di) 0q; ' dqi
(3.1.2)
i=1,2,..,N

Where theQ); is the generalised force for the corresponding generalised coordinate
is the potential energy, andis the kinetic energy.

The Lagrange equation is taken as the modelling tool for all the MMET systems, as
shown in Figure 3.1, which includes generalised coordinates, generalised forces and energy
components [187]; this also helps to organise the chapters.

Environmental effects such as solar radiation, aerodynamic drag and electrodynamic
forces, which can influence the tether modelling, are all assumed to be negligible in the space
tether modelling context. In addition to the assumptions made in deriving the equations of
motion for all types of the MMET modelling, the bearing connecting the motor’s rotor and
stator is assumed to be perfect and to cause no significant frictional losses. This assumptior

implies that the outrigger will behave qualitatively identically to the propulsion side but will
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Figure 3.1:Mathematical components for Lagrange equation [187]

rotate in the opposite direction and, thus, this potentially requires only the propulsion side
to be modelled. The power supplies, control systems, and communication equipment are
assumed to be fitted within the surrounding stator assembly in a practical installation. The
stator provides the necessary reaction, through coupling across the motor, which is required
for the rotor to spin-up in a friction-free environment. Unless stated otherwise, all of the
modelling is based on the conditions stated above. All the dynamiodkelsfor MMET
systems are processed under these environmental conditions without further declaration.
Because of the similarity of the tether and the outrigger in the system, only the modelling
and simulations of the tether will be discussed in the following chapters. The outrigger
modelling can be discussed in a similar way and will not be described in full detail in this

context.

3.2 Dumbbell Tether

A dumbbell tether system is a type of momentum exchange tether system, as shown in Fig-
ure 3.2, in which there are two generalised coordinate systems. One is an Earth centrec
global coordinate system({X, Y, Z}, and the other is the relative rotating coordinate system

- {X0,Y0,20}. The centre of the Earth is denoted byt,, E,, E.), which is defined as the
origin of the{X, Y, Z} system, wherek, ,E,, E, are set tq0, 0, 0), that is,E(0, 0,0) [3] [65].

The dumbbell tether system consists of two end maggesand M, connected by the
tether subspans, where the distance from the dumbbell tether’s base point to each end mass
denoted byl ; andL,. The dumbbell tether subspans are assumed to be massless relative to
the masses of the two end bodies. These are treated as point masses with no mass momer

of inertia. R is the distance fronk(0, 0, 0) to the dumbbell tether’s base poiRg, which is
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Figure 3.2:The dumbbell tether dynamical model [3] [65]

shown in equation (3.2.1) [3]R; andR; are the distances from(0,0,0) to mass points

M (x1,y1,21) andM;(x;,Y2,22), respectively, which are shown in equations (3.2.2) and
(3.2.3). Equations (3.2.4), (3.2.5) and (3.2.6) define the location for the base point and two
payloads at each end of the tether [65].

T (1 +e)
= 3.2.1
1 + ecoso ( )
where,r, is the radius at periapsis,is the eccentricity is the true anomaly.
Ry = \/xd +y? + 2} = /L3 + R2 + 2R cosacostp (3.2.2)
Ry = /x4 + v} +23 = /13 + R? — 2L, R cosax cosip (3.2.3)

Figure 3.3 is the countef-direction view of Figure 3.2. Th&,Y plane and the,, yo

plane lie coplanar to the orbit plane, where thandz, axes are perpendicular to the orbit
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Figure 3.3:The dumbbell tether dynamical model - top view

plane. TheX axis is aligned along the direction of the perigee of the orbit, ancghexis
is an extension oR. 1 is the in-plane pitch angle, and this denotes the angle fromxg¢he
axis to the projection of the tether onto the orbit plames the out-of-plane angle, from the
projection of the tether onto the orbit plane to the tether, and is always within a plane normal
to the orbit plane.O is the circular or elliptical orbit angular position, effectively the true
anomaly.R, 0, «, {} are independent generalised coordinates and are functions of time. In
the case of a planar circular orbit, tReand® are constants.

As shown in in Figures 3.2 and 3.3, the Cartesian components of the bas& paimd

the end masses ofl; andM, are given in equations (3.2.4), (3.2.5) and (3.2.6) [65].

xo = Rcoso
Yo = Rsind (3.2.4)
zo = 0
X1 = X+ Ljcosxcos (0 + )
Yy = Yo+ L;cosasin (0 + ) (3.2.5)
z1 = zo+ Lisinx
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X2 = Xo— L,cosxcos (e + 11))
Y2 = yo— Lrcosasin (0 + 1) (3.2.6)

z; = zo— Lysinx

3.2.1 Kinetic Energy

As the end masses are treated as point masses without mass moment of inertia measuremen
the kinetic energy of the system comprises solely the translation of the end payloads, and is

given in equation (3.2.7). The prime denotes differentiation with respect to time.

1 . 1 S
T = §M1 (X3 +u7+27) + zMz (%3 + U3+ 23) (3.2.7)

where, assuming the moment equilibrium in equation 3.2.8 [3] [65].
ML, = M,L, (3.2.8)

3.2.2 Potential Energy

The gravitational potential energy is obtained by implementing Newton’s gravitational law
[3] and by convention defining one of the states of the evaluated integral to be zero at infinity.
Thus, the tether’s potential energy is given in equation (3.2.93,the product of the uni-
versal gravitational consta with the Earth’s masd,; andL; are the two tether subspan

lengths.

pMy - M,
R; R,

u = —
(3.2.9)
B M, B HM,
VL2 +R2+ 2L Rcosxxcosyp /L3 + R2 — 21,R cosa cosy

3.2.3 Generalised Coordinates

The preferred choice of generalised coordinates depends on what is required of the analysis
as well as on algebraic considerations. It is known that in orbital system there can be ten-
dencies for unwanted singularities if the choice of coordinates is not optimal. Based on this

basic requirement, in the case of dumbbell modelling, it is decided to represent the system

dynamics by means of three angular coordinatig®( «) and one translational coordinate
(R).
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Table 3.1: The dumbbell tether generalised coordinates and genefalices!

i g Qi T u Equations oMotion
1 ¢y 0 (3.27) (3.29) (3.2.10)

2 06 0 (3.2.11)

3 a« 0 (3.2.12)

4 R O (3.2.13

As given in Table 3.1, the selection of the generalised coordingtase as following:

1) ¥ is the in-plane pitch angle, and this denotes the angle fromxdhexis to the

projection of the tether onto the orbit plane.

2) 0 is the elliptical orbit angular position, effectively, the true anomaly.

3) « is the out-of-plane angle, from the projection of the tether onto the orbit plane to

the tether, and it is always within a plane normal to the orbit plane.

4) R is the space tether’s position generalised coordinate, which indicates the distance

from the Earthe(0, 0, 0) to the base poink,(xo, Yo, zo)-

3.2.4 Generalised Forces

The generalised forceQ;, i = 1 to 4, are all zeros, since no non-conservative forces are
acting on this system, in which the generalised coordinategate 1\, q; = 6, q3 = «,

ds = R.

3.2.5 Governing Equations of Motion

According to the Lagrange equation (3.1.1), the following motion equations for generalised

coordinatesy; are derived and stated in equations (3.2.10) to (3.2.13).

B uM; LR cosa siny uM, ;R cosax siny
(R% 4 2RL; cosa cosy + L%)‘?’/2 (R? — 2RL, cosa cosy + L%)s/2
+ (M3 + M,13) (co8 o (8 + ) — asin2e (8 + 1))

+2c08 o (8 + 1) (MiLiLy + MyLoL,) = Qy

(3.2.10)

(R%0 + 2RRO) (M + M) + (MyL3 + M,L2) (cos o (8 + ) — asin2e (8 + 1))

+2c0g o (0 + 1) (MiLiLy + MyL,L;) = Qo
(3.2.11)
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uM; 1R cosp sinx uM, ;R cosyp sinx
(R% 4 2RL,; cosx cosy + L%)S/ ? (R — 2RL, cosa cosy + L§)3/ 2

+ (MyLf + M;L3) <6c - %sinZoc (é + 1|))Z> (3.2.12)

+2& (Mﬂ_]t] + Msztz) = Q«

uM; (R + L; cosx cosy) uM; (R — L, cosx cosy)
(R2 + 2RL; cosxcosy + 12)*?  (R2 — 2RL, cosax cosyh + 12)** (3.2.13)
+ (M + M) (R - Réz) =Qr

3.2.6 Simulations and Discussions

Numerical results are obtained usiMJATHEMATICA for the selected generalised coor-
dinatesy, 0, « andR, as listed in Table 3.1. The parameters for the dumbbell tether system
simulations are given in Appendix C. Unless stated, all the MMET simulation results in
the following chapters are generated by the parameters in Appendix 8.the number of
cycles of period, as defined in Chapter 1 equation (1.1.11), in this case @12, whenl,, =

4.01, the simulation timeis 0 to 3.1899x 10" seconds; wheifl,, = 400.01, the simulation
timetis 0 to 3.1811x 1(° seconds.

Y[t] — time

yltl(rad

I T I T R B T I T T T Ty T Y T B S
0 50000C 1.x10° 1.5x10° 2.x10° 25x10° 3.x10P
timgSec)

Figure 3.4: Dumbbell tether spin-up, angular displacemén(r,, = 400.01)

> The spin-up generalised coordinatepiswhich denotes the angle from tkgaxis to

the projection of the tether onto the orbit plane, as shown in Figure 3.2. With the given
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Figure 3.5:Dumbbell tether spin-up, angular displacemén(rl,, = 40.01)
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Figure 3.6:Dumbbell tether spin-up, angular displacemeén(rl,, = 4.01)

parameters in Appendik, they response’s amplitude goes between -0.325 to 0.325
rad, periodically, as shown iRigures 3.4, 3.5 and 3.6, which describe the dumbbell
tether’s periodic spin-up (the period is about 180,000 seconds) behaviour during the
simulation time with the number of cycles of peridd = 400.01, 40.01 and 4.01.
Figure 3.6 states the dumbbell tether’s periodic spin-up behaviour during NCP

4.01, which is the first 10 percent of Figuset with T,, = 400.01.

> Figures3.7and3.8describe the stable increasi@gngle of orbit position with slight
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Figure 3.7:Dumbbell tether true anomaly on elliptical orbit, angl€T,, = 400.01)
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Figure 3.8:Dumbbell tether true anomaly on elliptical orbit, angl€T,, = 4.01)

fluctuation around the Earth duriiig = 4.01 andl,, = 400.01 simulation time.

> Figures3.9 and3.10state the dumbbell tether’s position changing around the Earth
periodically, together with Figurés4 and3.8, they can express the specific trajectory
and position for the dumbbell tether during the full simulation time for the NCB

400.01 andr,, = 4.01, within the amplitude range from to r,.

> The out-of-plane angle: for the dumbbell tether is staying in a planar status, whose
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Figure 3.9: Dumbbell tether distance R,( = 400.01)
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Figure 3.10:Dumbbell tether distance Ry( = 4.01)

response is zero over simulation time, with zero initial conditian®) = 0 rad and
o (0) =0 rad/s). With the non-zero intial values, as shown in Figuid, «(0) = 0.001
rad andx(0) = 0.001 rad/s, the out-of-plane angtds acting periodically around the

reference plane.
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Figure 3.11: Dumbbell tether out-of-plane angée(T,, = 4.01)
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3.3 The Motorised Momentum Exchange Tether

The concept of the motorised momentum exchange tether (MMET) was first proposed by
Cartmell [67], and its modelling and conceptual design were developed further, in particular
the modelling of the MMET system as a rigid body was developed by Ziegler and Cartmell
[62], and the modelling of the MMET system with axial elasticity was developed by Chen
and Cartmell [71].

The basic conceptual schematic of the MMET system is shown in Figure 3.12. The
system is composed of the following parts: a pair of propulsion tether subsprarEd
B in Figure 3.12), a corresponding pair of outrigger tether subspg&har{dsD in Figure
3.12), the launcher motor mass within the rotor and the launcher motor mass within the
stator §J andil in Figure 3.12), the outrigger masse$i(and G in Figure 3.12), and the
two payload massesl andtF in Figure 3.12), as also shown in Table 3.2. The MMET
system is excited by means of a motor, and the dynamical model using angular generalisec
coordinates to represent spin and tilt, together with the true anomaly for circular orbital
motion, or the true anomaly and a variable radius coordinate for elliptical orbits. Another
angular coordinate defines the backspin of the propulsion motor’s stator components. The
payload masses are fitted to each end of the tether subspans, and the system orbits a sour
of gravity in space, in this case the Earth. The use of a tether generally means that all
constituent parts of the system have the same angular velocity as the overall centre of mas:
(COM). As implied in Figure 3.12, the symmetrical double-ended motorised spinning tether
can be applied as an orbital transfer system, in order to exploit momentum exchange for
propelling and transferring payloads in space. A series of terrestrial scale model tests of the
MMET system were carried out on ice by Cartmell and Ziegler in 2001 [68] and 2003 [69],

as shown in Figure 3.13.

Table 3.2: The components of the basic conceptual schematic of the Miyd&m

Position Component

A Braided propulsion tether subspan
B Braided propulsion tether subspan
tC Braided outrigger tether subspan
tD Braided outrigger tether subspan
tE Payload mass

tF Payload mass

G Outrigger mass

tH Outrigger mass

ul Launcher mass (stator)

£J Launcher masgotor)
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Payload mass #E

Braided propulsion tether-tube
— #A and #B

Launcher Mass(Rotor)#J Outrigger mass #G

Launcher Mass(Stator)#l

Outrigger mass #H

O Payload mass #F

#C and #D
Braided outrigger tether-tube

Figure 3.12:The conceptual schematic of the motorised momentum exchange tether [67]

Figure 3.13: The scale model of the MMET experiment on ice [68] [69]

This novel concept is of a long tethered system with a mass at each end, where one mas:
can be regarded as a launcher, essentially consisting of an electric motor, and the other as th
payload. The tether is a long line of appropriate cross section and material properties. The
principle of operation is that once the tether is deployed the launcher motor is energised with
the result that the whole system starts to spin in a circle about its overall centre of mass. The
system is then allowed to accelerate until the tangential velocity of the payload reaches the

required level. The main aims of these studies for MMET system are as follows [2] [67] :

(1) To limit the use of electrical (solar) power in order to build up rotational energy
over time;
(2) To achieve velocity increments (tangential to the payload spin-circle) necessary for

inter-planetary launch of sizeable payloads;
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(3) To build in as much system re-use as possible;

(4) To exploit new tether technologies for long-term, reliable deployment.

The basic capabilities of mechanical tethers for space transportation could be related to
scenarios, which involve transport from ground to Earth orbit, transfer from low Earth orbit
to geostationary orbit, and injection into interplanetary trajectories. Additionally, with these
basic lift capabilities, they offered also propulsionless de-orbiting of satellites, de-orbiting
of re-entry capsules, and orbit injection and descent initiation at other planetary bodies. The
mechanical tethers all exploited the concept of momentum exchange in one way or another
and tend to fall into one of three operational categories based on hanging orientations, sys-
tems exhibiting librating motions, and spinning systems. Librating mechanical and electro-
dynamic tethers and their possible technical feasibility have received the most attention so
far.

In 2001, Ziegler and Cartmell’s paper [62] demonstrated a symmetrically laid out system,
in which the driving motor facility is attached half way along a tether. It has two identical
payloads at either end, it could be made to spin-up by means of a controlled counter-inertia
attached to the motor stator. An in-depth treatment of the rigid body dynamics of tethers in
space was given, in which the dumb-bell tether was modelled at various levels of accuracy,
and approximate analytical solutions were obtained by means of the method of multiple
scales for periodic solutions. Comprehensive dynamical systems analyses were summarise
for different configurations and models, and global stability criteria for a rigid body dumb-
bell tether, in both passive and motorised forms, were also defined and investigated. Further
treatment of the spin-up criterion was also provided.

Gravity gradient stabilisation is an important underpinning phenomenon when consider-
ing spacecratft stability, and this is particularly the case for long momentum exchange tethers.
The work in 2003 by Cartmell et al. [69] considered dumb-bell models for momentum ex-
change tethers. Offshoots and developments made after this work had shown conclusively
that hanging, librating, and spinning tether motions were intimately connected to this funda-
mental phenomenon.

In 2003, Eiden and Cartmell discussed the tether systems roadmap for space transporta
tion applications [64], in which some potential applications for continuation of the staged

MMET system research were discussed, as shown below:

(1) There will be colonisation of the Moon in the future and regular two-way freight

transportation will then be a necessity;
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(2) Staged MMET based systems will provide extremely low cost regular payload

exchange between two planetary bodies;

(3) Staged MMET transportation offers reusable environmentally acceptable trans-
portation of bulk material on the basis that computers and sensors, plus the necessary
orbital maintenance, are considerably cheaper and cleaner than burning large quanti-
ties of toxic rocket fuel;
From this section on, all the MMETodelsare based on the motorised momentum
exchange tether conceptual schematic. Figure 3.13 is the scale MMET model experiment on

ice in 2001 and 2003 [68] [69].

3.4 The Dumbbell MMET

As shown in Figure 3.14, the dumbbell MMET system consists of two end payload masses
My at each end, are connected by a massless tether with the same length of subspan

from the tether's centre of maddy,, denoted byl.. R is the distance front(0,0,0) to

Muwm (%0, Yo, 20), Which is the same as introduced in section 3.2.

Figure 3.14: The conceptual schematic of the dumbbell motorised momentum exchange
tether

Ri = 1/x3 +y3 + 23 = /12 + R2 4 2LR cosx cosy (3.4.1)
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Ry = /X3 +y3 + 23 = /12 + R2 — 2LR cosx cosy (3.4.2)
As shown in Figure 3.15R; andR; are the distances from(0,0,0) to M;(x1,y1,21)
and M;(x;,Y32,2;), respectively, withM; = M, = Mp, which are shown in equations
(3.4.1), (3.4.2). Equations (3.2.4), (3.4.3) and (3.4.4) defined the location for the base point

and two payloads at each end of the tether.

X0
MzzMP(xz,y Zz)

ZMM(XO,)/O,ZO)//

orbit plane

,7"4’0

Normal to

\

M1:Mp(x1,y1,21)

E(E\ E, E.)
Centre of Earth

N
)
S =
- 3
~
S X
S =
S
2:\
S

Figure 3.15:The model for dumbbell MMET system
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X1 = X+ Lcosacos (0 + 1)
Y1 = Yo+ Lcosasin (0 + ) (3.4.3)
| z1 = zoF Lsina
( X2 = Xo— Lcosacos (0 +1))
Y2 = Yo— Lcosasin (0 + ) (3.4.4)
z; = zy—Lsinx

3.4.1 Kinetic Energy

The equations of the dumbbell MMET system with massless subspans are obtained via the
Lagrangian formulation. Figure 3.16 is the z-oriented view which is looking to the origin of
Figure 3.15. As the end masses are treated as point masses, the kinetic energy of the systel

comprises solely the translation of the end bodies in equation (3.4.5)Myth M.

1 ) ) : 1 i : ) 1 : i :
T = EM] (X]z —I—y12 + Z]2> + ZMZ (X22 +y22 + Zzz) + EMO (on +y02 + Zoz)

(3.4.5)
M, (xz,bel)

N s
[N - !
| N e |
| \\ // |
| ~. - |
| N - I
| . 4 / |
| \\ |
| < o |
| L |

Y i i 7 - MO (x():yO:ZO) !
. e A |

| ~. |

i \\ I

I ~o |

| it |

. 5 |

| Ty |

| ~_ |

> R; M5 (x2,y2,25)

E(E.=0,E=0,E.=0)
Centre of Earth

Figure 3.16:The model for the dumbbell MMET system - top view
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3.4.2 Potential Energy

The gravitational potential energy is obtained by implementing Newton'’s gravitational law.
Thus, the tether’s potential energy is given in equation (3.4163,the product of the uni-

versal gravitational constam@ with the Earth’s MassL is the symmetrical tether subspan

length.
U — L A
R; R, R
_ HM, B HM, Mo
V/[2 4+ RZ+ 2LRcosxcosp /L2 +R2—2[Rcosaxcosyp R

(3.4.6)

3.4.3 Generalised Coordinates

In the case of the dumbbell MMET system with massless subspans, it has been decided upor
to represent the system dynamics by means of three angular coordihatEss) and one
translational coordinateR], in which they, 08, x andR are the same generalised coordinates

as in section 3.2.3, as shown in Table 3.3.

Table 3.3: The dumbbell tether generalised coordinates and genefalices!

i q; Qi T u Equations oMotion
1 ¢ (3.4.7) (3.45) (3.4.6) (3.4.8

2 06 0 (3.4.9)

3 « 0 (3.4.10)

4 R O (3.4.12

3.4.4 Generalised Forces

The generalised forc®; is for the generalised coordinatie, which is given in equation
(3.4.7), and the rest of the generalised force®idi = 2, 3,4} are all zeros since no other

non-conservative forces are acting on this system, in which the generalised coordinates are

g1 =v,q2=6,q3 = &, q4 =R.

Qp=r1 (3.4.7)

where,t is the driving torque generated by the motor installed in the COM of the dumb-
bell MMET.
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3.4.5 Governing Equations of Motion

According to the Lagrange equation (3.1.1), the following governing equations are derived

and stated in equations (3.4.8) to (3.4.11).

B uMypLR cosa siny uMypLR cosa siny
(R2 4 2RL cosaccosy + [2)*%  (R2 — 2R cosx cosy + [2)*/2
+2Mpl2 cod (é - xl)) +2M,pL (Z'L cos & — Lsin2aix) (é + 1|)) (3.4.8)
= Qy
(R26 + 2RRO) (2Mp + Mo) + 2MpL? cos o (8 + 1)) (3.4.9)
+2MpL (Zf_ cos & — Lsin2a) (é + 11)) = Qo -
B uMpLR cosy sinax uMpLR cosyp sina
(R2 + 2RL cosaccosy + [2)*% ~ (R2 — 2RL cosx cosy + 12)*/2
1 ..
+2Mpl2 (oc +5 sin2« (6 + ¢)2> (3.4.10)

+4MpLL& = Qq

uMp (R + Lcosx cosy) uMp (R — Lcosx cosy) uM,
(R2 + 2RL cosaccosy + [2)*% ~ (R2 — 2RLcosxcosyp + 12)*%  R? (3.4.11)
+(2Mp + Mo) (R — R8?) = Qg

3.4.6 Simulations and Discussions

Figures 3.17 to 3.24 are the numerical results obtainedByfTHEMATICA for the selected
generalised coordinatgs 6, « andR, as listed in Table 3.3. The parameters for the dumbbell
tether system simulations are given in AppendiXiCis the number of cycles of period, and

is the same as is discussed in section 3.2.6.

> Figures 3.17 and 3.18 express the dumbbell MMET tether's steady spin-up be-
haviour, which is every close to the spin-up behaviour of dumbbell tether in Figures 3.4
and 3.6; they show the dumbbell MMET tether’s periodic spin-up behaviour around
the Earth inT,, = 4.01 andT,, = 400.01 simulation time, with the range of -0.325 to
0.325 rad.

> Figures 3.19 and 3.20 give the true anomaly for the dumbbell MMET systéim in

= 4.01 andl,, = 400.01 simulation time with slight ups and downs alonggloeirve’s

rising process.
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> With zero initial conditions,x(0) = 0 rad andx(0) = 0 rad/s, the the out-of-plane
anglex performs a stable zero response, as listed in Appendix C. Figure 3.21 shows
the simulation response with non-zero initial conditiei{®) = 0.001 rad and(0) =

0.001 rad/s, which is with similar behaviour as the dumbbell tether in the previous

section.

> Figures 3.22, 3.23 and 3.24 give the position generalised coordtnathich mea-
sure the distance from the Eaiihito the dumbbell MMET system’s COM,, within
the ranger,, to 1, in this case, giver = 0.2 andr, = 6.89x 10° metre, thenr, =

1.0335< 10’ metre.

Yt] — time

Yltl(rad

100 15x10° 2.x10° 25x10° 3.x10°
timgSec)

0 500000 1 x

Figure 3.17: Dumbbell MMET tether spin-up, angular displacemen(T,, = 400.01)
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Figure 3.18: Dumbbell MMET tether spin-up, angular displacemen{T,, = 4.01)
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Figure 3.19: Dumbbell MMET tether elliptical orbit angular positigh(T,, = 400.01)
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Figure 3.20: Dumbbell MMET tether elliptical orbit angular positigh(T,, = 4.01)
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Figure 3.21: Dumbbell MMET tether out-of-plane angl€T,, = 4.01)

73



R[t](m)

R[t] — time

1.x10" F

9.5x10° |

9.x1¢°
8.5x10° -
8.x10P -

7.5x10° -

7X106} \ Lo I !

0 50000C 1.x10° 1.5x10° 2.x10° 2.5x10° 3.x1¢°
timgSec)
Figure 3.22: Dumbbell MMET distance RT;, = 400.01)
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Figure 3.23:Dumbbell MMET distance RT;, = 40.01)
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Figure 3.24:.Dumbbell MMET distance RT, = 4.01)
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3.5 The Dumbbell MMET with Cylindrical Payloads and a
Motor Facility
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Figure 3.25:The MMET system with cylindrical payloads and a motor facility

Based on the massless dumbbell MMET modelling in section 3.4, and as shown in Figure

3.25, there are two generalised coordinate systems. One is an Earth centred global coordinat
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system {X, Y, Z}, and the other is the relative rotating coordinate systéxg, o, zo}.
The tether system consists of two end masdésandM,, connected by a tether with
the same distance from the tether’s centre of mMdggo each end mass, denotedlhyR is
the distance front (0, 0,0) to Mm (%0, Yo, zo), Which is shown in equation (3.2.1R; and
R, are the distances from(0, 0,0) to M;(x1,y1,2z7) andM;(x2, Y2, z2), respectively, with
M; = M; = Mp, andM, = My, Which are shown in equations (3.4.1), (3.4.2). Equations
(3.2.4), (3.4.3) and (3.4.4) define the location of the base point and two payloads in each end
of the tether.
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Figure 3.26:.The MMET system with cylindrical payloads and a motor facility - top view

The MMET tether with massless subspans is assumed to be rigid, and also is not able
to longitudinally extend or twist in any direction, in Figure 3.25, and its coufteirection
view is presented in Figure 3.26.

The main mass components of the motor consist of a central rotor attached to the propul-
sion tethers, and a stator which locates the rotor by means of a suitable bearing. The motor
torque in the MMET tether with massless subspans acts about the motor drive axis, and it
is assumed that the motor drive axis stays normal to the spin plane of the propulsive tethers
and payloads. The connection between the tether and the motor will be regarded as a rigid
connection, hence when the tether moves out of the orbital plane the motor will similarly

rotate about its centre of mass.
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3.5.1 Payload Mass Moment of Inertias

The definition of the local axes for the two cylindrical payloads is shown in Figure 3.27,
and the payloads are denotedMls; andMp;. Equations (3.5.1) and (3.5.2) are the mass

moments of inertia for payloadelp; andMp;.

zPI sz
4 A
rp
— Mp; - Payload 1 Mp; - Payload 2

----- - Sy

Yp1 Yp2
L Z Massless Tether < Sg .
Xp1 — o2

Figure 3.27:The definition of local axes for two cylindrical payloads

\/

/

1
IXP] — EMP] (31‘% + h]23)
1
Lypy = 75 Mpr (375 + h3) (3.5.1)
1 2
L IZP] = EMF’]TP
1 2 2
IXPZ = 1—2Mp2(3Tp + hp)
1 2 2 3.5.2
Ly, = 73Mp2(375 + 13) (3.5.2)
1 2
| Lo = EMPZTP

As shown in Figure 3.27,

Tp is the radius of the payloadl, is the height of the cylindrical payload,

Lp1 Is theM; mass moment of inertia about the local axgs,
Iyp1 is theM; mass moment of inertia about the local axis,

I,p7 is theM; mass moment of inertia about the local axis,
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Lp2 Is theM, mass moment of inertia about the local axgs,
Iyp2 is theM, mass moment of inertia about the local axis,

Lp; Is theM, mass moment of inertia about the local axis.

3.5.2 Motor Facility Mass Moment of Inertias

The cylindrical motor facility local axis definition is in Figure 3.28, and equation (3.5.3) is

the mass moment of inertia for the cylindrical motor facii, .

AZM

M, - Motor

el )

Massless Tether

XM

Figure 3.28:The definition of local axes for the cylindrical motor facility

1
L = 3MmBry + hy)
1 2 2
| 2

With definitions as in Figure 3.28,

™ IS the radius of the motor,

hm is the height of the cylindrical facility of motor,
L.m is the mass moment of inertia about the local axjs
I,m is the mass moment of inertia about the local axis

I.m is the mass moment of inertia about the local axis
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3.5.3 Torque Plane

The components of the propulsive forEas given in equations (3.5.4), and tke, yo, zo
components of the torque plane are shown in Figure 3.29, adopted from Ziegler's work in

2003 [65].
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Figure 3.29:Thex,, yo, zo cOmponents of the ‘torque-plane’ (pla@e- Q — B) - not parallel
to the ‘tether-spin-plane’ (plang — Q — F,;) and adapted from [65]

?=Fi+ﬁ+€=? (3.5.4)
whereF,, F, and F, are the Cartesian components of the foFcevhich are given in
equation (3.5.5). As shown in Figure 3.29, the componenks ahdF, areF, = F,; + Fyo,

Fy = Fyi + Fyo.

F, = —Fcosy siny — Fsiny sinx cosy
F, = Fcosy cosyp — Fsiny sina sinp (3.5.5)

F, = Fsiny cosx

3.5.4 Generalised Coordinates

In the dumbbell MMET system with cylindrical payloads and centralised motor facility,
there are six generalised coordinates, in which four rotational coordinpaiés &, v) and

two translational coordinate§ (R) are selected as the generalised coordinates.
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The, 0, «, L andR are the same generalised coordinates as in section 3.4s5the
rolling angle, which is an angle between the torque-plane (where the torque is generated by
the motor) and the ‘tether-spin-plane’, Figure 3.29 shows the definition of thisangiaen
the torque-plane [65] is not parallel to the ‘tether-spin-playe% 0. And, if the torque-
plane is parallel to the ‘tether-spin-plang’= 0. The rolling angley needs to be included,
because the torque axis is free to rotate about the longitudinal axis of the tethers. Note that,
v does not alter the location of the end masses’ COM, and the generalised coordinates are

independent functions of time.

3.5.5 Kinetic Energy

The kinetic energy of the dumbbell MMET system is composed of its translational motion
in the inertial frame and its rotation about its centre of mass, as shown in Figure 3.25. As
the payload and motor facility masses are connected by massless solid tether subspans, th

kinetic energy of the system is given in equation (3.5.6).

1 ) : ) 1 : : ) 1 : ) )
T = Moy (%1 + U1 +251) + 5Me2 (o + Upa + 252) + 5 M (55 + 05 + %) +
] - 0 2
z [IZP1 + IZPZ + IZM] (II) + e) +
1 "
z HXP] + IXPz + IXM] X"+
1 "
z [Iym + Isz + IUM]Y
(3.5.6)

3.5.6 Potential Energy

The gravitational potential energy is defined by equation (3.5.7) using Newton’s gravitational

law, in whichy is the product of the universal gravitational const@ntith the Earth’s Mass.

u — pMy uMy pMp
R, R, R

uM; uM; uMm

I+ R2+ 2LRcosacosp /L2 + RZ—2LRcosxcosp R
(3.5.7)
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3.5.7 Generalised Forces

According to the theory of virtual work, the generalised torque exerted by the motor for
the MMET system is as defined in equation (3.5.8). Considering the virtual work done by
all non-conservative forces through a virtual displacement, leads to equations (3.5.8) and
(3.5.9), in whichQ, is the generalised force for the generalised coordigatas defined in

equation (3.5.10).

dW = Fox + Fyoy + F,0z (3.5.8)
dWy, = Qq, 00 (3.5.9
0x oy 0z

Qqi = an_q + F‘Ja—q. + an_q~ (3.5.10)

where,F,, F, andF, are obtained in equation (3.5.5). The Cartesian componemtsindz

are shown in equation (3.5.11).

x = Lcosx cos(0 + )
y = Lcosasin(0 + 1) (3.5.11)

z=Lsinx

» The partial derivatives of equation (3.5.11) with respect to each generalised coordi-
natesy, 0, «, vy, R andL are given inAppendix A
Note that the true anomaly does not affect the generalised force, so the principle of
virtual work, as used here, only considers the virtual displacements relating to the applied
non-conservative forces, then equation (3.5.11) for the Cartesian compengrasdz can

be re-formed as equation (3.5.12) [62].
» The partial derivatives of equation (3.5.12) with respect to each generalised coordi-

natesy, 0, «, vy, R andL are given inAppendix B

x = L cosx cosy
y = Lcosasin (3.5.12)

z=Lsinx
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Subsequently, the generalised forces for this solid massless MMET system, as expresse
in equations (A.0.7) to equation (A.0.11), can also be transformed as in equations (3.5.13) to
(3.5.16).

Qy = FLcosy coso = T COSy CoSo (3.5.13)
Qo =0 (3.5.14)

Qu = Tsiny (3.5.15)

Qr=0 (3.5.16)

Qy=0 (3.5.17)

3.5.8 Governing Equations of Motion

Since no non-conservative forces are acting on the generalised coordjpétes 2,4, 5},
their generalised forceQ; {i = 2,4,5} are all zeros, thati€); = Qe =0, Qs = Qr =0
andQs = Q, = 0. The generalised forc&d; = Q,, andQ; = Q, are given in equations
(3.5.13) and (3.5.15). The following governing equations for generalised coordinaes
given in equations (3.5.18) to (3.5.22), for =V, q; = 0, 93 = «, q4 = Randqgs =,

and are also as listed in Table 3.4.

Table 3.4: The dumbbell MMET with cylindrical payload and motor facility generalised
coordinates and generalisknces

i g Qi T u Equations oMotion
1 ¢ (3.5.13) (3.5.6) (3.5.7) (3.5.18)

2 8 (3.5.14) (3.5.19)

3 « (3.5.15) (3.5.20)

4 R (3.5.16) (3.5.21)

5 v (3.5.17) (3.5.22
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uMpLR cosa siny uMpLR cosa sin
(R2 4+ 2RL cosx cosy + 12)*?  (R2 — 2R cosx cosy + [2)¥/2
cosal (sinpR — cospR(t)0) +

— (Mpz — Mp1) . (sinou'x (cospRO — sinPR) + )
cosx (cospR + Rsin0) (0 + 1)

M (0 + ) 13, +
2 (cog o (8 + 1) — sin2aéx (0 + 1)) L2+
, (sin auée (SiNPR — cosPRA) + ) )

cosa (cosy (R (6 — ) + RE) —siny (ROY + R))
+= +2cosal (—sinYR + cosPpRO + 2cosaL (8 + 1)) + 15 (6 + 1)
2 (coS o (8 + 1) — sin2aix (0 + 1)) 1>~
v | 2 (Sinoc(x (sinyR — cosPRE) +

L+
cosa (cosy (R (6 — ) + RE) — siny (ROY + R)))
2cosal (sinPR — cosPRO + 2 cosal (0 + 1)) + 13 (8 + )

(3.5.18)

—2cosa (Mpr + Mpy) (2sinai (0 +1p) — cose (8 + 1)) L2+
2 cosx (2 cosa (Mp + Mp;) L (é + ll)) + (Mp1 — Mp3) (2 cosRO — simpR)) L
+2R? (M + Mp1 + Mp) 8 + (Mthy + (Mpr + M) 13) (8 + ) +
1 2 (Mm + Mp; + Mp,) RO—

cosa (L (&% + (20 +9)) — L) +)

sin (Mp; — Mp;,) _
sinoc (2Lé + L&)

2R

2cosal (0 +1) + )

+ cosp (Mp; — Mp;) L o
L (cosx (20 + ) — 2sinaix (6 + 1))

(3.5.19)
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uMpLR cosy sinx uMpLR cos sinx

(R2 4 2RL cosaccosy + 12)*?  (R2 — 2RL cosx cosy + [2)*/?

—12sin2a (Mp; + Mpy) (6 +1b)° —
2cosal (Mp; — Mp,) & (COSYR + Rsinp8) —

(3.5.20)

2
2sina (Mpr — Mpy) (L (cospR + Rsinp@) — L (sinpR — cospRE) (0 + 1))
24MpiL&L + 24Mp,LAL — 12 coSa (Mpr — M) & (COSYR + Rsinp@) L+
[ 12Mpi L% + 12MpyL? + 3Mmtiy + 3Mpi1h + 3MpoT3
1|« -
13 +hi,Mm + hiMp; + haMp,
_ L (cosyR + Rsiny0) +
12sinoc (Mp; — Mp,) T . .
L (sinpR (6 —1p) + cosp (ROY + R) + Rsino)
= Qu«
uMp (R + Lcosx cosy) uMp (R — Lcosx cosy) 2uM,

(R2 + 2RL cosaccosy + [2)*% ~ (R2 — 2RLcosxcosy + 12)*2  R?
; (simp (Mp1 — Mpy) (cosad — Lsinai) + R (Mt + Mpr + Mpy) é+)

coso cospL (Mp; — Mp,) (é + 1]))
(Mm + Mp; + Mp,) R—
sinax (Mp1 — Mp;,) (cosy (2Ux + L&) — Lsinpx (é - 21|))) —

(3.5.21)

_I_
L(e2 4+ (0+9))—L
cosx (Mp; — Mp;) cosh ( ((x +1|)_( +¢)__) __)+
simp (L (6 +2¢) +L (8 +))
= Qr
1 (Mm (hiq +3134) + (Mpr + Mp) (hf +313)) ¥ = Qy (3.5.22)

12
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3.5.9 Simulations and Discussions

Figures 3.30 to 3.35 are the numerical results obtainedMldyTHEMATICA for the se-
lected generalised coordinatés 6, «, R andvy, as listed in Table 3.4. The results show the
dumbbell MMET with cylindrical payloads’ periodic behaviour on elliptical orbit during

= 4.01 andl,, = 400.01 simulation time with zero initial conditions.

Y[t] — time

ylti(rad

I T I I I I T T TR I S R T R TR S S N
0 50000C 1.x10° 1.5x10° 2.x10° 25x10° 3.x10°

timgSec)

Figure 3.30: The dumbbell MMET with cylindrical payloads spin-up, angular displacement
P (T,, =400.01)

> In simulation timeT,, = 4.01 andT,, = 400.01, Figures 3.30 and 3.31 describe the
tether’'s steady spin-up behaviour, which show the MMET tether’s periodic perfor-
mance around the Earth with the range of -0.325 to 0.325 rad.

> In this case, when givea = 0.2 andr,, = 6.89x10° metre, therr, = 1.0335¢<10

metre, the position generalised coordinate R is stated in Figures 3.32 and 3.33, which
indicate the distance from the Eafilio the MMET system’s COMV1, with the range

of r, torq, as shown in Figures 3.32 and 3.33.

> Figures 3.34 and 3.35 give the true anontafgr the MMET system inl,, =4.01 and

T, =400.01 simulation time with slight ups and downs along the data rising responses.

> As mentioned in sections 3.2.6 and 3.4.5, with zero initial conditiefty = O rad
andx(0) = 0 rad/s, the out-of-plane angieresponse is staying in zero over simulation
process. Thex response with non-zero initial conditiong0) = 0.001 rad and(0) =

0.001 rad/s is shown in Figure 3.36, whose peroidic range is [-0.0032, 0.0032] rad.
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Figure 3.31: The dumbbell MMET with cylindrical payloads spin-up, displacemeérir,,
=4.01)

R[t] — time

1.x10" F
9.5x10° -

9.x1Cf -

R[t](m)

8.5x 10°
8.x10° |

7.5x10° -

7.x10°

0 50000C 1.x10° 1.5x1C° 2.x10° 25x10® 3.x10°
timgSec)

Figure 3.32: The dumbbell MMET with cylindrical payloads distance R, € 400.01)

> 7y is the rolling angle, which is an angle between the torque-plane, with zero initial
conditionsy(0) = 0 rad andy(0) = 0 rad/s, the response for the tether’s rigid rolling
angle shows the steady zero rolling angle output for the tether system.Noixh=
0.001 rad and/(0) = 0.001 rad/s, Figure 3.37 expresses the periodic activities about

the balanced position.
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R[t] — time

1.x107
9.5x 100

9.x100 |

R{t](m)

8.5x 108 |
8.><106}
7.5x 100t

7.x100 ¢

0 5000 1000c 1500C 2000C 2500C 3000C
time(Sec)

Figure 3.33:.The dumbbell MMET with cylindrical payloads distance R € 4.01)
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Figure 3.34: The dumbbell MMET with cylindrical payloads elliptical orbit angular position
0 (T,, =400.01)
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0[t] — Time
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20r
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Figure 3.35: The dumbbell MMET with cylindrical payloads elliptical orbit angular position
of 0 (T,, =4.01)

0.003+ ]
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Figure 3.36: The dumbbell MMET with cylindrical payloads, out-of-plane angl€T,, =
4.01)
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v[t] — time
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Figure 3.37: The dumbbell MMET with cylindrical payloads, rolling angje(T,, = 4.01)
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3.6 The MMET as a Rigid Body

To obtain accurate quantitative statements, a rigid body MMET system is investigated in this
section, which incorporates the tether's mass and mass moment of inertia. The environmenta
conditions are the same as in section 3.2. Figure 3.38 describes the conceptual model o
this MMET with solid tether-tube subspans. This MMET system comprises a symmetrical
double cylindrical payload configuratiolW]; andM;, a cylindrical motor facilityM,, and

two tubular tether subspans with the length

2
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Figure 3.38.The MMET with solid tether-tube generalised coordinates and defined on orbit
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3.6.1 Tether-Tube Mass Moments of Inertia

The local axis definitions for the tether-tube subspans are demonstrated in Figures 3.39 anc
3.40, which state the mass componenwbf for the MMET dynamical modelling. Equation

(3.6.1) is the mass moment of inertia for each tether-tube subspan, equation (3.6.2) state:
the cross-sectional-area of the tether tube, and equation (3.6.3) provides the mass for eacl

tether-tube subspan.

X0

Mp; - Payload 1 M, - Motor Mp, - Payload 2

O

L Zy i L2

X0

hp[ @ Yo §h1\/l @ 1}1])

Figure 3.39:The definition of local axes for tether mass components

A outer

YT inner
.

\
.
¥'T outer

A _inner
Figure 3.40:The definition of local axes for the tether subspan
( 1 2 2 2
IXT = EMT [3 (T‘T,inner + T‘T,outer) + L }
1
IyT = _MT (r%,inner + r%,outer) (361)

2

1
IZT - EMT [3 (T'Zl',inner + T"ZI',outer) + Lz]
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A = Aouter — Ainner = T (T%,outer - r'zl',inner) (362)

MT = (Aouter - Ainner) Lp =T (T%,outer - r%,inner) Lp (363)
where,

A is the tether-tube’s cross-sectional area,

TT outer IS the outer radius of the tether-tube,
TT.inner 1S the inner radius of the tether-tube,
L7 is the mass moment of inertia about the local axis
L7 is the mass moment of inertia about the local axis

Lt is the mass moment of inertia about the local axisas in Figure 3.40.

3.6.2 Tether-Tube Discretisation

The validation of the feasibility of the tether-tube discretisation is obtained by Ziegler [65],
considering the MMET system’s potential energy, the main advantage for the discretisation
process is to avoid the sigularity in the MMET numerical simulation. The potential energy of
the solid tether-tube subspan is given in equation (3.6.4), in which the functipappears

in the equation, showing a numerical singularityjat 7t in Figure 3.41, and also in Figure
3.42, atp = Qm, whereQ is an integer. The numerical singularity will be encountered when
the MMET system is numerically integrated. To avoid this singularity due to the calculation
for In(), an alternative description of the potential energy of the tether-tube was derived,

which discretised the tether mass into point masses, in equation (3.6.5) [65]

L
_1
Uy = —upAJ (R*+ 1%+ 2IRcosyp) 2 dl
—L

(3.6.4)

WAl Rcosyp — L + y/R2 + 12 — 2LR cosyp
Rcosp + L+ /R2 4+ L2 4 2LR cosp
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- (2i—1)L\* 2(2i—1)RL
N\/R2+< ) + N cosy

(3.6.5)

B Z upAL

. . 2 .
_ N\/R2+<(21—1)L) 2R

2N

X 10'4 0~2 pl
-2.9028

-2.9028

-2.9028

-2.9028

Ln()

-2.9028

-2.9028

-2.9028

_2.9028 1 1 1 1 1 1 1 1 J
0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2

theta ( pi)

Figure 3.41: In0) function singularity whem < [0, 7]

The full length of the two tether subspand.isin Figure 3.43, which is given in equation
(3.6.6).L, is the original length of each subspan of the tether when balanced symmetrically.
Figure 3.43 shows the mass point locations within the full-lefigth and the values of
N in the mass points scheme are the scaled locations of the point masses along the full lengtt
Lt. An example forN = 2 is given in Figure 3.44, wherdl = 2 means there are 2 point
masses in the tether, which are located.25L and0.75Ly, respectively. Figure 3.45 lists
a 1 to 20 point mass location scheme.
Equation (3.6.7) defines the discrete mass points’ location scheme along the tether tube

subspans. For example, in a case of mass pbint, thel; = 0.5 andl, = 0.5, respectively.

L = 2L, (3.6.6)
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Figure 3.42: I0) function singularity whem < [0, 207]

(3.6.7)

3.6.3 Discrete Mass Point Mass Moments of Inertia

As shown in Figure 3.46, the mass points are notionally very small, and by taking the same
definition of the local axes as for the motor facility in Figure 3.40, it is assumed that there is
no significant mass moment of inertia in the mass paint¢i =1, 2,...N), N is the number
of the mass points.

In order to study the torsional elastic behaviours, the mass moment of ifigtidor
each mass point; is derived from the tether-tube’s mass moments of inertia in this mod-
elling context. Numerically, the mass moment of inertia of the mass points are defined in
equation (3.6.8), which can connect the torsional elastic motions of each mass point with the
tether subspan'’s rigid body rolling motion.is the factor for the mass moment of inertia of

each mass pointg, > N.
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I, —ur (3.6.8)
t €
[

3.6.4 Potential Energy

This solid tether-tube MMET system'’s potential energy is given in equation (3.6.9)tand

is the product of the universal gravitational const@nwith the Earth’s Mass. According to

the solid tether-tube subspan’s discrete equations (3.6.4) and (3.6.5), equation (3.6.9) can be
re-stated as equation (3.6.10) [65].

u — — uMp B uMp _ EMm
VI2+R2+2[Rcosp /12 +R2—2LRcosp R
L
_1
—upA J (R?* + 1%+ 2IRcosp) 2 dl
—L
(3.6.9)
L HMp B HMp UMM
VI2+R242LRcosp /12 + R2 — 2[R cosy R
R —L R2Z+12—2LR
FupAln cosp — L+ /R2 + cosy
Rcosp + L + y/R2 + 12 + 2L R cosy
u = — HMp _ HMp . HMm
V/I2+R2+2LRcosp /L2 + R2—2LRcosy R
B . HpAL
- 2i—1L\* 2(2i—1)RL
Ny /R2
\/ N < = > + 25 costy (3.6.10)
N

B Z upAL

X . 2 .
= N\/R2+<(21—1)L> 2R

2N 2N

Figure 3.47 is a comparison of the potential energy for a full solid tether subspan and

a discrete tether subspan, with given initial conditions. Figure 3.48 compares the error of
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the potential energy for the full tether subspan and the discrete tether subspan energies, witt
the same initial conditions. Both Figures prove how many discrete masses are needed to
approximate the full tether’'s potential energy satisfactorily, and it may be seen that there

should be at least 15 masses to approximate adequately the full tether-tube subspan.

3.6.5 Kinetic Energy

Taking into account the translation and rotation of each component, the kinetic energy of this
MMET system is addressed in equation (3.6.11), in whidk, (x1, Y1, z1) andMm(x2, Yz, 22)

in equations (3.6.12) and (3.6.13) are the tether subspans’ centre of mass, as also declared i
Figure 3.38.

1 : : : 1 : : : 1 : : :
T = SMer (b1 + U + 201) + 5Me2 (%2 + Vo2 + 22) + 5 M (K + Ui+ 24)

1 ) i ) 1 ) ) )
+§Apl_ (X +Uh +25h) + zApL (x5, + V% +25)

[1 1 1 - 12
+ _EIZP1 + EIZPZ + IZT + EIZM:| (lb + e)

1 1 1 .
+ EIXP1 + EIXPZ + I><T + EIXM:| (XZ

1 1 1 :
13T + 3 lue + Ly +—IyM] v’

2 Ypr1 2 2
' (3.6.11)
where,
( 1
XTI = X0 + chosoccos (0+1)
1
Yy =Yo + ELcosocsin (0 +) (3.6.12)
1. .
zn = zo + zLsinax
\ 2
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( 1
XT1 = Xo — chosoccos (0 +)

1
ynm =Yo — ZLcosocsin (0+) (3.6.13)

ZT1 = Zo — —Lsinax
\ 2

3.6.6 Generalised Coordinates

In the case of this solid MMET modelling, it has been decided to represent the system dy-
namics by means of four angular coordinatés €, «, y) and one translational coordinate
(R), in which,q; =1V, q2 =6, q3 = «, q4 = R, g5 = v, which are the same generalised

coordinates as used in section 3.5.4.

3.6.7 Generalised Forces

The generalised forces are same as which stated in section 3.5.7.

3.6.8 Governing Equations of Motion

The following motion governing equations for the generalised coordingtese given in

equations (3.6.14) to (3.6.18) by the Lagrange equation, which are also listed in Table 3.5.

Table 3.5: MMET with discrete tether-tube subspans generalised coordinates and generalisec
forces

1 qi Qi T u Motion Governingequation
1 ¢y (3513 (3.6.11) (3.6.10) (3.6.14)

2 0 (35.14) (3.6.15)

3 « (3.5.15) (3.6.16)

4 R (3.5.16) (3.6.17)

5 v (3.5.17) (3.6.18
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—uMp; LR cosa siny uMp, LR cosax sin

2 2 3/2 2 2 3/2+
(R? 4 L2 4+ 2LR cosx cosy) (R? 4+ L? — 2LR cosx cosy)
i Acrosg2i — 1)pup cosalR siny
- 11272 . 32

=1 900 (21—1)° L B (21 1)cosv¢cos¢RL+R2

4n? n
i Acrosg2i — 1)u p cosaL?R sin N
- 2i—1)212  (2i—1)cosaxcospR L 32
= ZnZ(( k 2) +(1 ) cosacosy +R2)

In n

cosaL (sinypR — cosy RO) +
(Mp1 — Mp;) . (sinocc'x (cos RO — sinPR) + ) +
cosx (cospR + Rsinpd) (6 +1)
Ap ((3cos2e+5) (6 +1p) — 6sin2a)éx (8 +1p)) L3+
3Ap (3cos2a+5) L (0 +1) L2+
6AD (Tnnert Tooue) (6 +0) L+

6 (MM (9 + ll)) T‘ZM + Ap (réinner+ T%outel) L (e + 1J))) +

2cosa (cose (8 + 1) — 2sinai (0 + 1)) L2+
1 sinai (SiNpR — cosPRA) +
= 6Mp; | 2L oL ) AU B e
12 cosa (cosyp (R (6 —1p) + RO) — sin 1 (ROY + R))
2cosal (—sinpR + cosyp RO + 2 cosal (0 + 1)) + 13 (8 + )
2 (cog o (6 + ) — sin2aix (0 + 1)) L2+
R&0 cosp sina — R (sinasinpé + cosaccosy (6 — 1)) +
6Mpz | 2L .. . . +
cosa (sin (ROY 4 R) — cosipRO)
2 cosaL (SinYR — cosp RO + 2 cosal (0 + 1)) + 13 (6 + 1)
= Qy

(3.6.14)
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(2ApLO + (2Ap L+ Mum + Mpr + Mp;) 8) R*+
2 (2ApL + Myt + Mpy + Mpy) RO — sin (Mpr — Mpy)
(cosa (L (6 + (20 +9)) — L) + sin((t)) (2La+ Lé)) +
cosy (Mp1 — Mp;) (Zcosocf_ (0 +1) + L (cosa (2 6 +p) — 2sincix (0 +1|)))>
ApL? ((3cos2a +5) (6 + ) — 6sin20i (8 + 1)) +
Ap(3cos2a + 5)L (9 + tl)) +
3L . e
4 coso (Mpy + Mp;) (cosee (8 41p) —2sinai (6 +1))

2cosa (Mpr + Mp) L (8 + 1) +
2 cosx . )
6L (Mp1 — Mp,) (2 cospRO — sinR)

p—
N|“‘

+Ap (réinner'i' T‘éouter) (e + 1I))

+6 (Ap (2inner + Toowter) L (@ + 1) + (Ma 134 + (Mpr + Mp2) 13) (6 + 1))

= Qo

(3.6.15)
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—uMp LR sinx cosy uMp; LR sina cosy

(R2 + L2 4 2LRcosxcosp)*?  (R2 + [2 — 2LR cosax cosy)>’?
N

+

Z A(2i — 1)upsinoccosPpL?R
. . 32
N2 (2i —1)%L? _ (2i—1)cosxcosyRL LR
4N2 N
i A(2i — 1)u psinxcosPpL?R
. B 3/2
T 52 (2i—1)%12 N (2i — 1) cosx cosyR L LR
4n? N

—1?sin2x (ApL +2 (Mp; + Mp,)) (9 +l-l))2—
1| 4cosal (Mp1 — Mpy) & (cogp) R + Rsin(y)8) —

1 . . . +
1 L (cosp) R+ Rsin(1h)@) —
4S|n06(Mp1 —Mpz) . . . .
L (sin() R — cogp)RO) (6 + 1)
8APKL® + 24ApL&L? + 12 Mpi &L2 + 12Mpy&L2 4 24 MpjLaL+
24MpLac L — 12 cosa (Mpr — Mpy) & (cos)R + Rsin(1)0) L+
1 6Apréinner (XL + 6 Apréouter Od— + 6A priinneri—‘lx + 6Ap T%outeri—éﬂ_

12

' L (co)R + Rsin(1)6) +
12sin (Mp; — Mp3)

:ro
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3MmTa & + 3 Mpi1p i + 3MppTp i + hyy M + hsMpy & + hi Mpo d—

L (sin(y)R (6 — ) + cogp) (R8P + R) + Rsin()é)

(3.6.16)



UMm N uMp; (R + L cosx cosy) uMp; (R — L cosx cosy)
R? " (R24 12+ 2LRcosacosp)*’*  (R2+ 12— 2LRcosacosp)*’?

+

AppL (ZR _2i- UC](:JSoccosq)L)

_|_
. 1212 o 32
PN ((21 1)L (21— 1)cosxcosypRL +R2>

4N2 N

AppL (ZR I G ])COSoccosq)L)

) L -
N (2i —1)%L? N (21 — 1) cosax cosRL LR 32
4N2 N

5 (smxp Mp; — Mp3) (cosoci —L sin occ'x) + R(2ApL + Mm + Mp1 + Mp;) é+>
_|_

cosacospL (Mpr — Mp2) (8 + 1)
L (2Acros® R — (Mp; — Mp;) (2 cosp sinaix + cosacsing (6 + 2)))
+ (2ApL + Mm + Mpy + Mp;) R—
cosp (Mp1 — Mpy) (cosa (L (62 + 1 (8 + 1)) — L) + Lsinad) +
Lsiny (Mp; — Mp) (sinacie (6 + 21p) — cosa (8 + 1))

= Qr
(3.6.17)

1
Ey [MM(3T]2\A + h%/l) + (MP] + MPZ) (31’12) + hqz;) + ]ZAp (r%inner + 1’%',outer) L} +

YLAp (T'Zl',inner + 1”'ZI',outer) = QY
(3.6.18)

102



O\N O\N
NZ NG
———— =0T =" 0 —1
07(1 — 1) 3 1(1-%)
.N\N ---¢ O ”.N
ssoul (4030IS) SO 110D, - Ny
233110 - Oy ﬂv
T i O
e e —— - &0 ——-@———-
S—— N O e
A
(1010Y)SSPJT 4111100, — VU
ST S £ AT A A S T 7L A S Sy -
ssou CD w w > w
projing - py |

Figure 3.43:The discretisation for axial elasticity for motorised momentum exchange tether
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Figure 3.47: The discrete and full tether potential energies [65]
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Figure 3.48: The potential energy error of discrete and full tether
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3.6.9 Simulations and Discussions

Figures 3.49 to 3.55 are the numerical results obtaindd BfiHEMATICA for the selected
generalised coordinatels, 06, «, R andy, as listed in Table 3.5. The results show the rigid

body MMET's periodic behaviour on orbit, with zero initial conditions as listed in Appendix

C.
Y[t] — time

Yltl(rad

100 15x10® 2.x10° 25x10° 3.x10°
timgSec)

0 500000 1 x
Figure 3.49:The rigid body MMET spin-up displacemett(T,, = 400.01)

Y[t] — time

TN
Zi\/ \ v

Yltl(rad

-0.3F

| S St S
2500C 3000C

0 5000 1000C 1500C 2000C
timgSec)

Figure 3.50: The rigid body MMET spin-up displacemet(T,, = 4.01)

107



2500F

2000

tj(rad

= 1000

500

oL

T S T T [ T S S A T T S T SN S Y ST NN NN SO SO N S E B
0 500000 1.x10° 1.5x10°F 2.x10° 25x10® 3.x10°

timgSec)

Figure 3.51:The rigid body MMET elliptical orbit angular position &f(T,, = 400.01)
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Figure 3.52:The rigid body MMET elliptical orbit angular position &f(T,, = 4.01)

> The tether system’s spin-up performance is expressed by Figures 3.49 and 3.50, over
the the number of cycles of peridg = 4.01 and 400.01, respectively, with the angular
dispacement range of -0.325 to 0.325 rad,

> 0 is the true anomaly, as shown in Figure 3.51, the curve is in a linear rising trend
from 0 to 2500 rad with small fluctuation spread (0 to 0.5 rad), which can be seen in

Figure 3.52.
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Figure 3.53: The rigid body MMET out-of-plane angle (T,, = 4.01)
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Figure 3.54:The rigid body MMET base point distance of R,(= 400.01)

> R is the distance from the Earth to the tether COM, whose numerical responses go
periodically within the range, to r,. In this caseg¢ = 0.2,1, = 6.89x10° metre and
T« = 1.0335<10" metre, as shown in Figuré&s54and3.55

> Figure 3.53 is the response for the out-of-plane angkgth initial conditions(0)
= 0.001 rad and(0) = 0.001 rad/s, which is the projection of the tether onto the orbit
plane. If given the zero initial conditions(0) = 0 rad andx(0) = 0 rad/sx stays in

zero over the full simulation time.

> With zero initial conditionsy(0) = 0 rad andy(0) = 0 rad/s, the rigid rolling anglg
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Figure 3.55:The rigid body MMET base point distance of R,(= 4.01)
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Figure 3.56: The rigid body MMET rolling angley (T, = 4.01)

keep staying in zero over the full simulation time. Givg®) = 0.001 rad and/(0) =

0.001 rad/s, Figurd.56states a rising response for the rolling angle.

3.7 Conclusions

Firstly, the dumbbell tether is discussed, then, this chapter has given an introduction to the
concept of the motorised momentum exchange tether. A series of MMET concept based

Lagrangian dynamical models are proposed, which include the dumbbell tether, the dumbbell
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MMET, the dumbbell MMET with cylindrical payloads and centralised motor facility, and
the rigid body MMET with discrete tether-tube subspans.

A discretisation methodology has been proposed and validated for the MMET system
with discrete tether-tube subspans, and this will also be applied to each of the further stages
of MMET systems.

Numerical results are given in sections 3.2.6, 3.4.6, 3.5.9 and 3.6.9 for a series of the
MMET concept based tether systems. These results show that the dynamical models car
provide stable, accurate and periodic outputs with similar behavioural shapes but tiny dif-
ferences generated by their similar components in the governing equations, which include
the spin-up performance for each MMET model and indications of their connections to each
other. Furthermore, the numerical results will also be taken as the reference for the MMET

systems in following chapters.

Table 3.6: Figures for spin-up in Chapter 3

Tether Type Figure No.T{, = 400.01) Figure No.T;, =4.01)
Dumbbell tether 3.4 3.6

Dumbbell MMET 3.17 3.18

Dumbbell MMET (Cylindrical Payloads) 3.30 3.31

Rigid MMET 3.49 3.50

Table 3.7: Figures foR in Chapter 3

Tether Type Figure No.T(, = 400.01) Figure No.T;, =4.01)
Dumbbell tether 3.9 3.10

Dumbbell MMET 3.22 3.24

Dumbbell MMET (Cylindrical Payloads) 3.32 3.33

Rigid MMET 3.54 3.55

Table 3.8: Figures fo in Chapter 3

Tether Type Figure No.T{, = 400.01) Figure No.T,, =4.01)
Dumbbell tether 3.7 3.8

Dumbbell MMET 3.19 3.20

Dumbbell MMET (Cylindrical Payloads) 3.34 3.35

Rigid MMET 3.51 3.52

Table3.6 gives they plots for the tether systems, is the generalised coordinate for the
tether’s spin-up, which is the angle from tkgaxis to the projection of the tether onto the
orbit plane. With the given parameters in Appen@ixthe spin-up responses are changing
periodically between -0.325 to 0.325 rad over the the number of cycles of perrod00.01
and 4.01.
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Table 3.7 lists theR, which is the tether’s position generalised coordinate and measures
the distance from the Earthto the dumbbell MMET system’s COM. In this case, given
0.2,7, = 6.89x 1(° metre and-, = 1.0335<10/ metre, it goes within the range of to .

The out-of-plane angle with zero initial conditions are also discussed, all the numerical
responses are staying in zero, which indicate the stable responsdidong simulation NCP
T, =400.01.

Table 3.8 is for the true anomafy which is in a linear up-changing trend from 0 to 2500
rad coupling range of 0 to 0.5 rad fluctuation spread, over the the number of cycles of period
T, =400.01, which indicate the tether systems go around the Earth in an elliptical orbit.

There are two types of tether systems incorporated with the rigid rolling angidich
keep staying in zero output with zero initial conditiop®) = 0 rad andy(0) = 0 rad/s. Their
responses are sensitive to their initial conditions, which can have direct effects on the tether

system’s outputs ok andy.
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Chapter 4

Dynamical Modelling of a Flexible

Massless MMET System

4.1 Introduction

A dynamical modelling analysis for a flexible massless MMET system, which implies that
there is no mass for the tether subspans, is given in this chapter. The use of the word ‘flexible’
means that this MMET system model only contains axial, torsional and pendular elasticity.
The modelling process is based on the dumbbell MMET with cylindrical payloads and motor
facility, as discussed in section 3.5, because the environmental assumptions are the same &
were discussed in chapter 3.

On the supporting assumption that tether mass can be neglected at this level of modelling,
with the potential for inclusion later, this flexible massless MMET system is henceforth
considered to possess significant elasticity in the axial, torsional and pendular motions, and
these will all be referred to ‘elasticity’ from this point onwards.

The tether subspan is assumed as a continuum but is also considered to be massles
in the current approach to modelling, and is made up of homogeneous, isotropic elastic
material - linear elastic material. The axial, torsional and pendular elasticity of the massless
MMET tether system are assumed to be independent of each other, so that a motion, or &
compression, or a dissipation, in one element for one of the discretisations, will not affect
a motion, or a compression, or a dissipation in another element corresponding to either of
the other discretisations. This discretisation methodology is the same as that used in sectior
3.6.2. This is clearly hypothetical but serves as a starting point.

The assumptions for the massless elasticity modelling process are listed below, and sever
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assumptions are numbered/ab to A6.

A1l - The tether is massless;

A2 - The tether is made of homogeneous isotropic material;

A3 - The MMET system’s dissipation function is assumed to be based on the Rayleigh

damping theory;

A4 - The MMET system is in a friction free environment;

A5 - Every axial ‘spring-damper’ group is connected to another, in series;

A6 - Every torsional ‘spring-damper’ group is connected to another, in series;

Top view — perpendicular to x,-O-y, plane

Zg

v

oy inzy-O-y, plane

i\lpnl l:’ pZéjllilﬁ‘ L4 Yo

k;n kZZ/ kt]
Pendular spring-damper group

W in x9-0-yy plane

X0 Side view — perpendicular to zy-O-y, plane

Figure 4.1.The MMET pendular elasticity plane definition

In order to describe the torsional and pendular elasticity more clearly, three ‘reference
planes are defined in Figures 4.1 and 4.2. There are three orthogonal referencexglanes:
O —yo, xo — O — zo andzy — O — y,, Which are located at the MMET COM ‘O’. The
modelling for the torsional elasticity is referenced onto the plane O — z,, the pendular
motion of the tether is referenced onto two orthogonal plakgs: O —y, andzy — O — yo.

Two view points are also defined in Figure 4.1, one is a ‘top view’, which is a perpen-

dicular point to the plane, — O — yo. The other is a ‘side view’, and it is a perpendicular
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point to the plane, — O — yo. The two view points, together with the reference planes,
help in investigating the modelling for the pendular elasticity later on. In Figure 4.2, three
‘torsional’ planes are defined on the right side, which are associated with three reference
planes on the left side, and each of the torsional planes contain a torsional ‘spring-damper’

group, which will be utilised in detail in the following sections.

Zg

Figure 4.2: Reference plane definition for MMET torsional and pendular elasticity

The models incorporating axial, torsional and pendular elasticity will be discussed in
sections 4.2, 4.3 and 4.4 respectively, and then a massless flexible MMET system will be

introduced based on the models above.

4.2 Dynamical Modelling incorporating Axial Elasticity

The conceptual schematic of a massless MMET system with axial elasticity is shown in
Figure 4.3, and its generalised coordinates are shown in Figure 4.4. As implied in Figure
4.4, the symmetrical double-ended motorised spinning tether is applied as an orbital transfer
system. In order to exploit momentum exchange for propelling and transferring payloads in
space, the Cartesian components of the massktwf M; andM, are given in equations
(3.2.4), (3.2.5) and (3.2.6).
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Figure 4.3:The conceptual schematic of the massless MMET with axially elastic tether
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Figure 4.4:The massless MMET system with axial elasticity on orbit
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The discretisation methodology is proposed for the following approach, as given in Fig-
ure 4.5, in which the basic idea is to discretise the massless tether subspan into massles
pointsp; (i =1,2,...n), n is the number of the massless poiptsas shown in Figure 4.6,
connected by an idealised and hypothetical series of axial ‘spring-damper’ groups along the

tether subspans.

— —— — — — — — — — ———

L}

c
Axial spring-damper group

MM - Facility Mass(Rotor)

L____________________,,,__
- keg

=) -

| L]
D Ceq

Equivalent Axial spring-damper group

Figure 4.5:The MMET system with axially elastic massless tether subspan

Massless point

L

Figure 4.6: The massless point at each end of a ‘spring-damper’ group

In Figure 4.5, the motor massly, and payload masbl, are connected by a series
of ‘spring-damper’ groups, as given in Figure 4.6, thus the axial elasticity is described by
a series of ‘spring-damper’ groups with an axial deformatiorl_gfin equation (4.2.1),
wherel, is the static tether length, arid is the axially elastic deformation along the tether

subspans.

L=Lo+L, (4.2.1)

Compared with the rigid massless MMET system in section 3.6, the massless tether
subspan was replaced by a few ‘spring-damper’ groups which are connected in kgries;
andc; (i=1,2,..n + 1) are the spring stiffness and damping coefficients in every ‘spring-

damper’ group, respectively.
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In summary, the axial elasticity is expressed by a string of ‘spring-damper’ gréps (
ci), which connect the massless poiptsin series withk; = ... = k.1 ,¢1 = ... = Cny1s
wherei=1,2,...,n+1. They are attached in series along the tether subspans, which can be
expressed as an equivalent spring stiffiegsand an equivalent damping coefficient, in
equations (4.2.2) and (4.2.3). The generalised coordinatepresents the equivalent motion
for the axial elasticity in equation (4.2.1), which is additional to the rigid body generalised
coordinatel.

Thus, the equivalent spring stiffneks, and damping coefficient., of the series of
‘spring-damper’ groups are given in equations (4.2.2) and (4.2.3). The generalised coordi-

natel, represents the equivalent axial elasticity.

(4.2.2)

(4.2.3)

Ceq C1 C2 Cn+1

Primarily, it must be pointed out that the MMET modelling for axial, torsional and pendu-
lar elasticity, including massless tether discretisation and ‘spring-damper’ group connections
for each of the massless points, is a mathematical modelling process, the axial and torsional
‘spring-damper’ groups and massless points do not really exist as such physically.

The massless MMET model with axial, torsional and pendular elasticity, using such
mathematical elements, potentially leads to enhanced accuracy of the prediction perfor-
mance, and a useful departure from the usual rigid body MMET modelling, particularly
for accurate payload positioning at strategic points, therefore, unless further notice is given,

all the modelling processes are under these assumptions and mathematical elements.

» The detail modelling process is attached in Appendix D.

4.2.1 Governing Equations of Motion

The generalised forca3; {i = 2,4,5} are all zeros, thatig); = Qg =0,Q4s = Qr =0
andQs = Q, = 0, and the generalised forc€® = Q, Q3 = Qy andQs = Qr, are
stated in equations (3.5.13), (3.5.15) and (D.4.5). The following governing equations for
generalised coordinates (i=1, 2,...n) are given in equations (4.2.4) to (4.2.9) tpr= 1,

q; =0,q3 = «, q4 = R, g5 =y andqs = L,, as summarised in Table 4.1.
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Table 4.1: The axial elastic massless MMET generalised coordinates and gendoatissd

i g Qi T u Equations oMotion
1 ¢ (35.13) (D.2.1) (D.1.1) (4.2.4)

2 0 (35.14) (4.2.5)

3 « (3.5.15) (4.2.6)

4 R (3.5.16) (4.2.7)

5 v (3.5.17) (4.2.8)

6 L. (D.4.5) (4.2.9

ncosaR sinpMyp; (Lo + Ly)

3/2
<R2 —2cosacosy (Ly+ L) R+ (Lo + LX)Z)
incosaR sinPpMp; (Lo + Ly)

(RZ + 2cosxcosy (Lo + L) R+ (Lo + LX)Z)

sinac (SiNYR — cosPRO) —
(LO + Lx) . . . . +
cosx (cospR + Rsin0) (6 + 1)

— (Mp1 — Mp3)

32

cosa (cosypRdotd — simpR) L,
M (0 + ) T4+
2sina (Mp1 — Mpy) (Lo + L) & (SinpR — cospRE) —
2sin2a (Mp1 + Mpy) (Lo + L)* & (8 + ) —
1 | 2cosa (Mp1 — Mp,) (siml)R — cosxbRé) L+
2 | 2c0820 (Mp1 + Mpy) (Lo + L) (6 + ) T+
2cosa (Mpr — Mpy) (Lo + Ly) (cosp (R (dot® — 1) + R6) — siny (ROY + R)) +
cos2a (Mp1 + Mp2) (Lo + L)* (8 + ) +

(Mp1 + M) (2 (Lo+ L)L (B +1) +13 (8 +0) + (Lo + L) (8 +{1}))

= Qy
(4.2.4)
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2 (M + Mpr + Mp,) OR*+
2 (M + Mpr + Mpy) RO+
cosa (2 (8 +1b) Ly + (Lo + Ly) (26 + ‘l)))) n
—2sina (Lo + L) & (8 + 1)
cosa (L — (Lo + L) (& + 9 (20 +1))) —
sin(a) (2&L, + (Lo + Ly) &) )

cosy (Mp; — Mp;) (

sinp (Mp; — Mp,) (

+4 cosax cosyp (Mp; — Mp,) LeRO + 2 cosacsin (Mp, — Mp;) LR+
Mg (8 +0) —
2cosal? (Mpr + Mpy) (2sinocie (8 + 1) — cosac (6 + 1)) +

—4sino (Mpr + Mpy) Lo (8 + ) +
2cosalo | (Mpr — Mpy) (2cosPRO — sinpR) + +

2cosa (Mpr + Mp2) ((0 + ) L + L (6 + 1))

(6 +) rp+
(Mp1 + Mp,) 2 cosad. (2 cose (0 + 1) L+ )
L (cosa (6 + ) — 2sin(oc )& (8 + 1))

Qe
(4.2.5)
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ncospRsinaMyp; (Lo + Ly)

(RZ —2cosxcosy (Lo + L) R+ (Lo + Lx)z)
wcosPRsina Mpy (Ly + Ly)

(RZ + 2cosaccosy (Lo + L) R+ (Lo + LX)Z)
—125sin20 (Mp1 + Mpy) (Lo + L)? (6 + 1) —

3/2

32

1 | 24cosa (Mp; — Mp2) (Lo + L) & (COSYR + Rsinp@) —
24 (COSLI)R +R simj)é) L—

(Lo + Ly) (SinyR — cosyRr) (6 + {p))
—24 cosac (Mp1 — Mpy) (Lo + L) & (COSYR + Rsinpd) —

24SinOC(Mp1 — Mpz) (

24sin o (Mp; — Mpy) Ly (COS YR + Rsinp@) +
+55 | 2Mm (hiy +37%y) 6+

24
2 (Mp1 + Mp2) (24 (Lo + L) &L + (h%, +3 (r%, 44 (Ly+ LX)2>) oc) -
24sina (Mpr — Mp) (Lo + L) (SINYR (8 — ) + cosyp (ROY + R) + Rsinyé)

= Qu

(4.2.6)
HMm n #Mp; (R — cosaccos (Lo + Ly)) n

Re (R2 —2cosxcosyp (Lo + L) R+ (Lo + Lx)2)3/2
uMp; (R + cosaccosy (Lo + L))
(RZ +2cosxcosy (Lo + L) R+ (Lo + Lx)2)3/2
; (sinocsiml) (Mp1 — Mpa) (Lo + L) & + RMpm8 + R (Mpr + M) é+) N
cosa (Mp1 — Mpy) (cosp (Lo + Ly) (6 + ) + sinpLy)
MMmR + (Mpy + Mpy) R+

sino (Mpy — Mepa) (sim (Lo + L) & (0 + 20) — cosip (2&Ly + (Lo + L) &)) +
costp (L — (Lo + L) (62 + 1 (6 +1))) —
sin ((0+2¢) Lo + (Lo + L) (6 + 1))

cosx (Mp; — Mp;) (

= Qr
4.2.7)

1
73 (M (R +3730) + (M1 + M) (5 +373)) 7 = Q (4.2.8)
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2kol uMp; (—cosxcospR + Ly + L)
n+1 + 2\ 3/2
(RZ — 2cosxcos (Lo + L) R+ (Lo + Ly) )
uMp; (cosx cosPR + Ly + L)
3/2
(RZ + 2 cosoccosy (Lo + L) R+ (Lo + Lx)z)
4c0S20 (Mp1 + Mpa) (Lo + L) (6 + ) —

_|_

1 | 8cosalpha (Mp; — Ms;y) (sinR — cosipRo) (6 + 1) — (4.2.9)
8sina (Mpy — Mpy) & (COSYR + Rsin0) +
4 (Mp1 + Mpy) (Lo + Ly) (2<'>c2 + (0 + ‘i))z)

—sina (Mp1 — Mpy) & (COSPR + Rsind) + (Mpy + Mpy) Ly

cosa (Mp1 — Mp3) (SINYR (8 — 1) + cosp (ROY + R) + Rsiny8)
= QL,

4.2.2 Simulations and Discussions

Figures 4.7 to 4.16 are the numerical results obtaineslByTHEMATICA for the selected
generalised coordinatds 0, «, R,y andL,, as listed in Table 4.1 with zero initial conditions

and other parameters in Appendix C,Tin=4.01 andl,, = 400.01 simulation time.

Y[t] — time

Yltl(rad

100 15x10° 2.x10° 25x10° 3.x10°
timgSec)

0 500000 1 x

Figure 4.7:Massless axial elastic MMET spin-up, angular displacenje(i, = 400.01)
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Figure 4.8: Massless axial elastic MMET spin-up, angular displacende(i, = 4.01)
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Figure 4.9:Massless axial elastic MMET elliptical orbit angular positiorodfT,, = 400.01)

> Figures4.7and4.8show the massless axial elastic MMET system’s periodic spin-up
behaviounp on an elliptical orbit ¢ = 0.2) around the Earth with the angular dispace-
ment range of -0.325 to 0.325 rad.

> The results for the true anomadyare shown in Figure4.9and4.10for the number

of cycles of periodl,, =4.01 and 400.01 simulation time, respectively. The curves are
rising in a linear trend from O to 25{ = 4.01) or 2500 T,, = 400.01) rad with slight
fluctuation spread (0 to 0.5 rad).
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Figure 4.10:Massless axial elastic MMET elliptical orbit angular positiorodfT,, = 4.01)
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time(Sec)

a[t](rad)

Figure 4.11:Massless axial elastic MMET out-of-plane angléT,, = 4.01)

> With zero initial conditionsx(0) = 0 rad andx(0) = 0 rad/s, the responses for the out-
of-plane anglex keeps in zero amplitude during the full simulation time. As shown in

Figure4.11, the x response goes periodically in the range [-0.003, 0.003] rad.

> The distance from the Earth to the tether COM is changing periodically, as can be
seen in Figured.12and4.13 which behave within the distance rangerp{6.89x 10°
m) tor, (1.0335<10” m) with givene = 0.2 in this case.

> Figure 4.14 is the plot for the rigid rolling anghe with initial conditionsy(0) =
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Figure 4.12:Massless axial elastic MMET base point distance R to the Edstk 400.01)
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Figure 4.13:Massless axial elastic MMET base point distance R to the Edstk @¢.01)

0.001 rad and/(0) = 0.001 rad/s. The rigid rolling anghestays in zeros output with
zero initial conditionsy(0) = 0 rad andy(0) = 0 rad/s, which indicate that the rigid

rolling angley is sensitive to its initial values.

> Figures4.15and4.16 have shown the periodic axial elastic behaviour along tether
subspanin 1 - 31899 seconds simulation time (NGB 4.01), which are based on the
tether system’s parameter setting in Apperdix he tether subspan’s axial oscillation

L. goes within 12.5t0 21.5 m in Figu#e15 and the ratio ot , to L, varies 2.25% to
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Figure 4.14:Massless axial elastic MMET rolling angle(T,, = 4.01)

Ly[t] — time
20¢
15+
E
= 10+
-
5 L
0 500C 1000C 1500C 2000cC 2500C 3000C
time(Sec)

Figure 4.15: Axial displacement along tether subspariof(T,, = 4.01)

4.15% in Figuret.16

127



Lx[tl/Lo

0.04r

0.03¢

0.02-

Lx[tl/Lg (%)

0.01r

0.00t

0 500C 1000cC 1500cC 2000C 2500C 3000C
time(Sec)

. : . : . L,
Figure 4.16: Axial elastic length vs. static length ratio along tether subspaﬁ—oﬂn =
0
4.01)
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4.3 Dynamical Modelling including Axial and Torsional Elas-
ticity

Based on the axial massless elastic MMET system in section 4.2, a massless MMET system

with axial and torsional elasticity and its generalised coordinate selections are all presented

in Figure 4.17.

As implied in Figure 4.17, the symmetrical double-ended motorised spinning tether is
applied as an orbital transfer system, in order to exploit momentum exchange for propelling
and transferring payloads in space, noting that the Cartesian components of the end masse
of Mm , My andM,;, are the same as in equations (3.2.4), (3.2.5) and (3.2.6).

As shown in Figure 4.18, besides a few axial ‘spring-damper’ groups for the axial elas-
ticity definition, as discussed in section 4.2, there are a series of torsional ‘spring-damper’
groups k. - ;i) also attached to the massless pontéi = 1, 2, ...n) for the torsional elas-
ticity representation. These are referenced onto the plgre —z, in Figures 4.1 and 4.19
equivalently.

As shown in Figure 4.18, the torsional ‘spring-damper’ groups connect the massless
pointsp; in series withkyy = ... = Kynt1), €1 = ... = Cyns1), Wheren is the number of
massless points.

For the torsional ‘spring-damper’ groups which are attached in series along the tether
subspans, stiffness can be expressed as an equivalent spring stffneasd damping as
an equivalent damping coefficieat., in equations (4.3.1) and (4.3.2), whetren the sub-
script means the torsional elastic parameter, then the generalised cooydiraesses the
equivalent torsional elasticity as shown in Figure 4.18, which is additional to the rigid body

rolling generalised coordinate

= .. 43.1
k’ceq kt] ktZ kt(n+1 ) ( )

- (4.3.2)
Cteq Ct1 Ct2 Ct(n+1)
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Figure 4.17.The MMET model generalised coordinates defined on orbit
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Figure 4.18: The Axial and torsional elasticity model referenced onto pbane O — z,
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Figure 4.19: Reference onto the plane— O — z, for MMET torsional elasticity

» The detail modelling process is attached in Appendix E.

4.3.1 Governing Equations of Motion

The governing equations in terms of generalised coordingtes 1V, q; = 0, q3 = «,
ds = R, g5 = L, andqgg = v, are given in equations (4.3.3) to (4.3.8), as shown in Table

4.2, according to the Lagrangian procedure.
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Table 4.2: The axial and torsional elastic massless MMET generalised coordinates and gen-
eralised lerces

i g Qi T u Equations oMotion
1 ¢ (35.13) (E.2.1) (E.1.5) (4.3.3)

2 0 (3.5.14) (4.3.4)

3 « (3.5.15) (4.3.5)

4 R (3.5.16) (4.3.6)

5 L, (D.4.5) (4.3.7)

6 v« (E.4.4) (4.3.3

" cosasin(0 +1p) (Lo + L) (cosOR — coseccog 0 + 1) (Lo + L)) —
L
" cosxcog0 + ) (Lo + L) (Rsin® — cosasin(0 + ) (Lo + L))

3/2 +

(cosBR — cosa cog 0 + 1) (Lo + Ly))* + (—sina (Lo + L)) > +
(Rsin® — cosasin(8 + ) (Lo + Ly))?

cosxco90 + ) (Lo + L,) (Rsin® + cosasin(® + V) (Ly + Ly)) —
uMp; ( )

cosasin(® + 1) (Ly + L,) (cosOR + cosxcog0 + ) (Ly + Ly))

3/2

(coSOR 4 cosxcos 0 + ) (Lo + L)) +
(sinec (Lo + Ly))? + (Rsin® + cosasin(0 + ) (Ly + Ly))?
sinac (SiNPR — cosPRO) —
(Lo + L) . L
(Mp1 — Mp2) cosa (CosPR + Rsiny0) (6 + 1)
+ cosx (cosmbRé — sim])R) L

—2coso (Mp1 + Mp;) (2sinaix (é + ll)) — cosa (0 +1)) L3+
siny (Mp1 — Mp) (SinaRé — cosac (R8P + R))

. +cosyp (Mpr — Mp;) (cosaR (8 — ) + R (cosad — sinaad)) —
0 +

L. (2sinax (é —|—1|)) —cosa (0 + 1)) —
2cosx (Mpy + Mp;) A
cosa (8 + 1) Ly

+5 | 2sina (Mp; — Mpy) L& (SinpR — cospRE) —
2sin20 (Mp1 + Mpp) L26 (0 + 1) +
(cospré — siml)R) '
ZCOSO((M]:] — Mpz)
L. (cosy (R (6 —) +Re) —siny (ROY + R))
MMT‘M (9 + 11)) + CcoS2«x (Mp] + Mpz) ( (9 + 1])) 9 + ll)
(Mp1 + Mp2) (6 +9) 15 + 2L, (6 + ) L + L (e +1|)))

(4.3.3)
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2 (M 4 Mpp + Mp,) OR?+
2(Mm + Mp; + Mpy) RO+
cosa (2 (8 + ) L + (Lo + L) (26 + 1)) )
_|_

2sina (Lo + L) & (8 + )

cosy (Mp1 — Mp;) (
2R

i (Mpy — Mpo] (cosoc (L — (Lo + L) (&2 + ¥ (20 + 1)) )

sino (2&Ly + (Lo + Ly) &)
+4 cose cosp (Mp; — Mpy) L,RO + 2 cosasin (Mp; — Mpp) LR+
M3 (6 + ) — 2cosal? (Mpr + Mpy) (2sinaie (8 + ) — cosa (8 + 1)) +
—4sina (Mp + Mpy) L& (6 + 1) +
2cosalo | (Mpr — Mpy) (2coSPRO — sinR) + +
2cosa (Mpr + Mp2) ((0 +9) L + Ly (8 + 1))
2cosa (0 + ) L+ ) )

L, (cosa (6 + ) — 2sino (8 + 1))

(Mm + Mpz) ( (9 +'L|)) 1‘]2> + ZCOSOCLX (

Qe
(4.3.4)
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2co90 +P)sina (Ly + L) (cosOR — coscccod0 + 1) (Lo + Ly)) —

UMpz | 2cosa (Lo + L) (—sina (Lo + L)) +

2sinasin(® + V) (Lo + Ly) (Rsin® — cosacsin(0 + ) (Lo + L))

+

3/2

(cosOR — cosacog 0 + ) (Lo + Ly))* +
(—sina (Lo 4 Ly))* + (Rsin® — cosasin(0 + ¥) (Lo + Ly))?

—2c090 +1)sinax (Ly + L,) (cosOR + cosxcog0 + 1) (Lo + L,)) +

uMp1 | 2cosa (Lo + L) (sina (Lo + Ly)) —

2sinacsin(® + ) (Lo + L) (Rsin® 4 cosacsin(0 + ) (Lo + Ly))

Qu

3/2

, (COSOR + cosacos 0 + ) (Lo + L)) +
(sin (Lo + Ly ))* + (Rsin® + cosasin(0 + V) (Lo + Ly))*

2 sin2oc (Mpn + Maa) (Lo + Lo? (8 +19)" +
cosP (Mpr — Mp2) (— (Lo + Ly) (cosaRéx + Rsinad (8 +1p)) — sinaRL,) +

sinp (Mp1 — Mpy) ((Lo + L) (SinaR (8 + 1) — cosaR&0) — RsinaddotL,)

Mmah3, — 12 cose (Mpr — Mp2) (Lo + L) & (COSUR + Rsin8) +
24LoMpr &L, + 24LoMpa &L, + 24Mpi L &L, + 24Mpy L &L, +

3MuTE& + 3Mp1 A& + 3Mpatd & + 12Mip 126 + 12Mpp L2+

haMp1 & + 12L5Mp1 & + haMpo e+ 12L5Mpp & + 24LoMp L + 241LoMp L s—

(cosx])R - Rsimbé) L+

12sina (Mp1 — Mp2) | Lo (SinpR (8 — 1) + cosyp (ROpsi + R) + Rsinpé) +
L, (SinpR (8 — ) + cosp ) (ROY + R) + Rsinyh)
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2c0sP (cosOR — cosxxcog0 + ) (Lo + L)) +
LLMPz

2sin® (Rsin® — cosasin(0 + ) (Lo + Ly))
+

5 ( (cOSOR — cosaccog 0 + 1) (Lo + Ly))* + (—sina (Lo + Ly))? +) i

(Rsin® — cosasin(0 + 1) (Lo + L))

2c0s0 (cosOR + cosxcog 0 + 1) (Lo + L)) +
HMp;
2sinB (Rsin® + cosasin(0 + V) (Lo + L))

3/2

5 (cosOR + cosxcog 0 + V) (Lo + Ly))* + (sine (Lo + Ly))* +
(R'sin® + cosasin(0 + ) (Lo + Ly))?

; (R (M + Mp1 4+ Mpy) 6 + cosacosp (Mpy — Mypy) (Lo + L) (6 +1) +

sinp (Mp, — Mpr) (sinec (Lo + L) & — cosaly)
(Mm + Mp1 + Mp) R+
sino (Mpr — Mpy) (sin (Lo + L) & (8 + 2¢) — cosp (2&L, + (Lo + Ly)
[ — (Lo+ L) (62 + (6 +))) —
cosx (Mp; — Mp;) cos . | O.+. (o +1|))))
sin ((64+2) Ly + (Lo + L) (8 + 1))

Qr
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2koLy
n+1

—2cosxcog0 + 1) (cosOR — cosxxcoq0 + ) (Lo + L)) —
uMpz | 2sina (—sina (Lo + Ly)) —

2 cosasin(® + ) (Rsin® — cosasin(0 + ) (Lo + L))

3/2
(cosOR — cosx cog 0 + ) (Lo + Ly))* +

2| (=sina (Lo + L)) +
(Rsin® — cosasin(0 + 1) (Lo + Ly))?
2 cosxcog0 + ) (cosOR + cosxcoq0 + 1) (Lo + L)) +
uMpr | 2sine (sina (Ly + Ly)) +

2 cosasin(® + 1) (Rsin® 4 cosasin(0 + V) (Lo + Ly))

/2
5 ((cos@R+coswcos{e+ll)) (Lo + L))"+ )3

(sino (Lo + L)) + (Rsin® + cosasin(@ + V) (Lo + L,))?
% c0S2o (Mp1 + Mp2) (Lo + L) (é + 1|))2 +

cosa (Mpz — Mp;) (SiNpR — cospR) (8 + ) +

sina (Mpz — Mpr) & (COSLI)R + Rsiml)é) +
% (Mp1 + Mp,) (Lo + Ly) (Z(XZ + (9 + 11))2>

—sino (Mp — Mp,) & (COSYR + Rsiny0) +

cosa (Mp; — Mp) (SiNPR (8 — ) + cosp (ROY + R) + Rsin)

+ (Mp1 + Mp,) Ly

= QL.

Zk 0Yx 1 .-
n:— i + iR (Mp1 + Mp,) (h]ZD —|-31‘]2;) Yx = Qy,
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4.3.2 Simulations and Discussions

Figures 4.20 to 4.30 are the numerical results obtaindd BfiHEMATICA for the selected
generalised coordinatds 0, «, R, v, L, andy,, as listed in Table 4.2. The results show the

massless axial and torsional elastic MMET system’s periodic behaviours on orbit.

[t] - time
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Figure 4.20:Massless axial and torsional elastic MMET spin-up angular displaceinéhnt
= 400.01)
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Figure 4.21:Massless axial and torsional elastic MMET spin-up angular displaceinéht
=4.01)
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Figure 4.22:Massless axial and torsional elastic MMET elliptical orbit angular position of
0 (T,, =400.01)
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Figure 4.23:Massless axial and torsional elastic MMET elliptical orbit angular position of
0 (T, =4.01)

> Figures4.20and4.21show the massless axial and torsional elastic MMET system’s
periodic spin-up behavioup on an elliptical orbit ¢ = 0.2) with the angular dispace-
ment range of -0.325 to 0.325 rad.

> The results for the true anomalyare shown in Figure4.22and4.23for the number

of cycles of periodrl,, = 4.01 and 400.01 simulation time, respectively. The curves are
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Figure 4.24:Massless axial and torsional elastic MMET out-of-plane ang(&, = 4.01)
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Figure 4.25:Massless axial and torsional elastic MMET base point distance R to the Earth
(T, =400.01)

rising in a linear trend from 0 to 25{ = 4.01) or 2500 T,, = 400.01) rad with slight
fluctuation spread (0 to 0.5 rad).

> With zero initial conditionsx(0) = 0 rad andx(0) = 0 rad/s, the responses for the
out-of-plane anglex stay in zero amplitude over the full simulation time. Figure 4.24
shows thex’s response with the period about 8000 secondg(@) = 0.001 rad and
«(0) = 0.001 rad/s are provided.

> The distance from the Earth to the tether COM is changing periodically, as can
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Figure 4.26:Massless axial and torsional elastic MMET base point distance R to the Earth
(T, =4.01)
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Figure 4.27:Massless axial and torsional elastic MMET rolling angleydfl,, = 4.01)
be seen in the Figures25and4.26 which behave within the distance rangergf
(6.89x10° m) tor, (1.0335¢10" m) with givene = 0.2 in this case.

> Same as it has been discussed in section 4.2.2, given initial condy{ohs O rad
andy(0) = 0 rad/s, the rigid rolling anglg response stays in zero over full simulation

time, which matches the equation (4.2.8).

> The tether subspan’s axial oscillatibp goes within 12.5 to 21.5 m in Figu#e28
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Figure 4.28: Axial displacement along tether subspariof(T,, = 4.01)
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Figure 4.29: Axial elastic length vs. static length ratio along tether subspaﬁ—oﬂn =
0
4.01)

and the ratio ot to L, varies 2.25% to 4.15% in Figure29

> Figure 4.30 states the torsional elastic angular displacemefar each tether sub-

span with the range - 0.000075 to 0.000075 rad, which shows that the convergence of
the torsional elastic behaviour can be observed clearly at abo9500 seconds (with

tiny convergent response oviefrom 0 to 9500 seconds), and it is approaching to zero

status in the end of simulation time.
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Figure 4.30: Torsional displacement, (T, = 4.01)
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4.4 Dynamical Modelling with the inclusion of Axial, Tor-
sional and Pendular Elasticity

Based on section 4.3, pendular elasticity is also included in the MMET modelling in this
section. The modelling of the massless MMET with axial, torsional and pendular elasticity
is proposed as in Figure 4.33, and this is also known as the flexible massless MMET system.

As implied in Figure 4.33, the generalised coordinates for the flexible MMET system are
defined on orbit, and the Cartesian components of the end masbég 0fM; andM,, are
given in equations (3.2.4), (3.2.5) and (3.2.6).

Similar to the previous sections, besides the axial and torsional ‘spring-damper’ groups
for the axial elasticity and torsional elasticity in Figure 4.19, another two types of torsional
‘spring-damper’ groupsk(; - c;; groups), as shown in Figures 4.31 and 4.35, are added into
the modelling for the pendular elasticity. There are two parts of the pendular elasticity, which

are stated on the plang — O — y, and the plane, — O — y,, respectively,

> On the plane, — O — yy

As shown in Figure 4.31, they,— O —y, plane based pendular elasticity is represented
by a string of torsional ‘spring-damper’ groups, which connect the massless points of
p: in series. All the torsional ‘spring-damper’ groups are referenced onto the plane
xo — O — yo, as shown in Figure 4.32. THein the subscript means the pendular
elastic parameter, so the generalised coordipatstates the equivalent behaviour for

the pendular elasticity on the plarng— O — yo.

> On the plane, — O — yp

As shown in Figure 4.34, thgy— O —y, plane based pendular elasticity is represented
by a string of torsional ‘spring-damper’ grougk;;, ci; }, which connect the massless
pointsp; in series, and all the torsional ‘spring-damper’ groups are referenced onto the
planezy, — O — yo, as shown in Figure 4.35. The generalised coordinatstates the

equivalent behaviour for the pendular elasticity on the plane O — y,.

(4.4.1)

(4.4.2)
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Figure 4.31: Reference onto the plage— O — y, for MMET pendular elasticity
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Figure 4.32.The MMET pendular elasticity modelling referenced onto the plareO —y,
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Figure 4.34: The MMET pendular elasticity modelling reference on the plane O — y,

Figure 4.35: Reference on the planye— O — yo for MMET pendular elasticity

Therefore, the pendular elasticity is obtained by a string of torsional ‘spring-damper’
groups{kuy, ci}, in whichky = ... = Kymns1), cu = ... = cymsn). They are attached in
series along the tether subspans, and can be expressed as equivalent springkstiffaass
equivalent damping coefficient.4, which are provided by equations (4.4.1) and (4.4.2).

As shown in Figure 4.36, the axial, torsional and pendular elasticity terms are represented
by the generalised coordinateg v, 1x andc,, in which the subscript ‘X’ means the elas-
tic generalised coordinate. The equivalent spring stiffness and damping coefficients for ax-
ial, torsional and pendular elasticity are expressekas Ceql, {Kteq, Cteq) @aNA{Kieq, Cleq-

Based on the serial springs and dampers assumpfdn section 4.1, it can be summarised
that,
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(1) for accommodating axial elasticitty = k1 = k3 = ... = Kny1, ¢o = ¢ =
c2 =...=cny1, Where thek, andc, are the default stiffness and damping coefficient
values for numerical simulation, the equivalent axial stiffness and damping coefficient

are given in equations (D.1.4), (D.1.5);

(2) in the case of torsional elasticitiy = ky1 = ko = ... = Kint1), Cro = ¢ =
Ci2 = ... = Cyny1), Where thek,, andcy are the default stiffness and damping coef-
ficient values for numerical simulation, the equivalent torsional stiffness and damping

coefficients are presented by equations (E.1.3), (E.1.4);

(3) finally, to include pendular elasticity terms in both the plage- O — y, and the
planezo — O —yo, kio = ku =k = ... = Kyn41, Clo = Cii = C2 = ... = Cynt1)s

where thek,, andc,, are the default stiffness and damping coefficient values, the
equivalent torsional stiffness and damping coefficients in equations (4.4.1) and (4.4.2)

can be reformed as equations (4.4.3), (4.4.4).

EquivalentAxial
springfdamper

20
(=m»)

Yo | |

X()/”_-_
Nz

Figure 4.36:The equivalent axial, torsional and pendular elasticity

koo
Kieq = — (4.4.3)
Clo
Cleq = TL——|—] (444)

» The detail modelling process is attached in Appendix F.
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4.4.1 Governing Equations of Motion

According to the Lagrangian procedure, the following governing equations for the gener-
alised coordinateg; are given in equations (4.4.5) to (4.4.13), for = V, q2 = ,,

g3 =0,q4 = &, qs = &, ds =Y, 47 = Yx» ds = L, andqge = R, respectively, and are also
listed in Table 4.3.

Table 4.3: The flexible massless MMET generalised coordinates and genefaissl

i q Qi T u Equations oMotion
1 ¢y (3513) (F2.1) (F3.1) (4.4.5)

2 V¥, (F4.7) (4.4.6)

3 6 (3514 (4.4.7)

4 « (3.5.15) (4.4.8)

5 «, (F.4.8) (4.4.9)

6 v (3.5.17) (4.4.10)

7 v« (E.4.4) (4.4.11)

8 L, (D.4.5) (4.4.12)

9 R (3.5.16) (4.4.18

148



(sin(e + 1) (Rcos® — cosxcoq 0 + 1) (Lo + Ly)) )
uMp; (Lo + Ly ) cosax

cog0 + ) (Rsin® — cosasin(0 + ) (Lo + L))

3/2 +

(cosBR — cosx cos 0 + ) (Lo + Ly))* +
(—sina (Lo + Ly))* + (Rsin® — cosasin(0 + ) (Lo + Ly))*

(cos(e + 1) (Rsind + cosasin(d + ) (Lo + L)) )
cosouMpy (Lo + Ly)

sin(0 4+ ) (Rcos + cosacog 0 + ) (Lo + Ly))

3/2

(RcosO + cosacog0 + ) (Lo + L)) + (sinec (Lo + Ly))* +
(Rsin® + cosasin(® + ) (Lo + Ly))?
sinac (SiNYR — cosPRO) —
(LO + LX) . . . . +
(Mp1 — Mp2) coso (COSYR + Rsinpd) (6 + 1) -
CoSa (cospré — simbk) L,

—2cosa (Mp; + Mp,) <Zsinoc(x (6 +1) — cosa (8 + 11))) L3
sin (Mp; — Mp;) (sin aR& — cosa (Ré{l) + R)) +

cosaR (6 — ) + )

cosy (Mp; — Mp;,) ; .
R (cosx® — sinax&d)
+2 Lo

2L, sinaéx (é + 1|)) —
—2coso (Mp; + Mpy) | L, cosx (é + 1b) —

L, cosa (8 + 1)

+2sina (Mp; — Mp;) Lo (SiNpR — cospRO) — = Qy

N —

28in2a (Mp1 + Mpy) L2& (6 + ) + 12 (o + @)
(cospRO — sinPR) L+
2005 (M1 —Mp2) | (cosq) (R (6 —1) + R) )
siny (ROY + R)
+Mumriy (0 +9) +
cos2a (Mp1 + Mp2) L (2 (0 +9) L, + L, (6 + 1)) +
(Mp1 + Mp2) (6 +9) 13 + 2L (6 +9) L + L2 (6 + 1))

(4.4.5)

ZklO ((Xx + (px) +
1 n+1 (4.4.6)

5 (Mp1 +Mp2) (4 (Lo + L) L+ (75 +2 (Lo + L)) 64) = Qu,

149



2 (M + Mpr + Mpy) GR2+

2 (Mm + Mp1 + Mp,) RO

cosa (2 (8 +1) Ly + (Lo + L) (26 +1)) —
2sinac (Lo + L) & (6 + 1)

cosa (L, — (Lo + Ly) (& +1p (26 + lb))))

+cosyp (Mp1 — Mp3) (
2R

+siny (Mp; — Mp;y) .
—sina (2L, + (Lo + Ly) &)
+4 cosacosyp (Mp; — Mp,) LRO + 2 cosasin (Mp; — Mp) LR
. 2sinoi (0 +
+Mmriq (0 + 1) — 2cosal (Mp; + Mp;) (,_ i )
—cosa (0 + 1)
—4sinx (Mm + Mpz) LXOC (6 + II))
+2c0salo | + (Mp; — Mp;) (2 cospRE — sinPR)
+2c0osa (Mp + Mpz) (8 + ) Ly + L (8 + 1))
(é + 1|)) 5
2 cosx (é + 11)) L
+2 cosxl, COSx (é + 1p) _
+L« o
2sinax (6 +1)

+ (Mp] + MPZ)

150

|

(4.4.7)



2co90 + ) sine (Lo + L) (coseR — cosxcog0 + ) (Lo + LX))
HMpz | —2cosx (Lo + L) (—sino (Lo + Ly)) +

2sinacsin(® + ) (Lo + L) (Rsin® — cosacsin(0 + ) (Lo + Ly))

32 +

5 ((coseRcosoccosie +) (Lo + L)) + )
(—sina (Lo 4+ Ly))* + (Rsin® — cosasin(® + ¥) (Lo + Ly))?
—2c090 +1p)sinax (Ly + L,) (cosOR + cosxcog0 + ) (Lo + L))
UMpr | +2cosx (Ly + Ly) (sine (Lo + Ly)) —

2sinasin(® + ) (Lo + L) (Rsin® + cosasin(0 + 1) (Lo + Ly))
3/2

5 (coSOR 4 cosacos 0 + ) (Lo + L)) +
(sinec (Lo + Ly))? + (Rsin® + cosasin(0 + ) (Ly + Ly))?

2 sin2oc (Mor + My (Lo + Lo (6 4+10)" +
cosyp (Mp; — Mp,) (— (Lo + L) (COSocR(x—i— Rsinad (9 —|—1I))) — Sinod'QL-X)

sinaR (9 + ll)) —

_ — RsinadL,
COSxRx0O

—|—Sinlb (Mp] — Mpz) ( (L() + I—x) (

Mmah3, — 12 cose (Mpr — Mp2) (Lo + L) & (COSYR + Rsinp6) +
24LoMp1 &Ly 4 24LoMpraLy + 24Mpy LeaLy + 24Mpy L XL+
3MmTE, 8 4 3Mp1Ta& + 3Mpara & + 12Mp  L2& + 12Mp, L2 64

haMp1é& + 12L5Mp1 & + hsMpp & + 1205Mpa & + 24LoMpy L+

24LoMpo L
(cospR + Rsinyd) L,
+— L = Q«
12 sinpR (6 — ) +
+Lo | cosy (ROY +R) + | +
—12sin (Mp; — Mp3) Rsiny0

SinPR (6 — ) +
Le | cosy (ROY + R) +

R sinf
(4.4.8)

151



2kio (0t + @)

n+1 +
! t 2 2 2 ..
75 (Me1+ M) (24 (Lo + L) Ledix + (hp +3 (rp +4(Lo+ 1) )) ocx) = Q..
(4.4.9)
1 i}
75 (M (R +314) + (Me1 + M) (5 +313)) ¥ = Qy (4.4.10)
Zk*t()'Yx 1 .
T + IR (Mp1 + Mp2) (hf +313) ¥ = Q,, (4.4.11)
2koLy
n—+1

—2cosx cog0 + ) (cosOR — cosx cog0 + 1) (Ly + L))
UMp | —2sino (—sine (Lo + Ly))
—2cosasin(® + 1) (Rsin® — cosacsin(0 + V) (Lo + Ly))

5 ( (cosOR — cosx cog0 + ) (Lo 4 Ly))* + (—sina (Lo + LX))Z) 7

+ (Rsin® — cosacsin(0 + V) (Lo + Ly))?
2 cosxcog0 + 1) (cosOR + cosaxcog 0 + V) (Lo + Ly))
UMpr | +2sina (sina (Lo + L))

+2cosasin(@ + 1) (Rsin® + cosasin(® + V) (Lo + Ly))
+ 3/2
(cosOR + cosaxcog0 + ) (Lo + L,))?

2| +(sinx (Lo + Ly))?

+ (Rsin® + cosacsin(® + ) (Lo + LX))2
% COS2«x (Mp1 + Mpz) (Lo + Lx) (9 + 11))2
+cosa (Mpz — Mpp) (SinpR — cospR8) (6 + 1)

+sina (Mpz — Mpr) & (COSPR + Rsin0
1 ) L : .
5 (Mpr + Me2) (Lo + L) (262 + (0 +D)" +2 (62 + 6.2) )

—sinx (Mp; — Mpy) & (cosq)R +R siml)é)

+ | +cosa (Mp1 — Mpy) (SinpR (6 — 1) + cosyp (RO + R) + Rsingf) | = Qu,

+2 (Mp1 + Mp,) L

(4.4.12)

152



2c0sP (cosOR — coscccod 0 + ) (Lo + Ly))
uMp;
UMm +25sin® (Rsin® — cosasin(0 + ) (Lo + L))

Rz + S\ 32
(cosOR — cosax cog 0 + ) (Lo + Ly))

2| +(=sina(Ly+Ly))*
+ (Rsin® — cosasin(8 + ) (Lo + Ly))*

2cosP (cosOR + cosxcog0 + ) (Lo + L))
wMpy

+25sin0 (Rsin® + cosasin(® + V) (Ly + Ly))
_I_

3/2
(cOSOR + cosa cos 8 + 1) (Lo + Ly))*

2| +(sina (Lo + Ly))?

+ (Rsin® + cosacsin(0 + V) (Lo + LX))2

R (Mm + Mp1 + Mp;) 0
-0 +cosoccosy (Mp; — Mpa) (Lo + Ly) (é +1|))
+sinP (Mpz — Mpy) (sine (Lo + Ly) & — cosaly)

(Mm + Mp1 + Mpz) R

| (siml)(Lo—i—Lx)éc(é—i—le)) )
+sinx (Mp; — Mp;)

—cos (2&Ly + (Lo + L) &)

cosp (L~ (Lo + L) (62 + 1 6+ 1))

+cosa (Mp; — Mp;) (

153

— siny ( (04 20) L, + (Lo +1L,) (6 +il3)>

(4.4.13)



4.4.2 Simulations and Discussions

Figures 4.37 to 4.49 are the numerical results obtaindd ByfiHEMATICA for the selected

generalised coordinatas, 0, «, R, v, L, vx, Wx andw,, as listed in Table 4.3. The results
show the massless flexible elastic MMET system'’s periodic behaviour on elliptical orbit in
simulation timeT,, = 4.01 andTl,, = 400.01.

[t] - time

Yltl(rad

L L L L L L L L L L L L L L | L L L L | L L L L | L L
0 500000 1.x10° 15x10° 2.x10® 25x1¢f 3.x10°
timgSec)

Figure 4.37:Massless flexible MMET spin-up, angular displacemer{ii,, = 400.01)

A N
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0 5000 1000c 1500C 2000c 2500C 3000C
time(Sec)

Figure 4.38:Massless flexible MMET spin-up, angular displacemer{t,, = 4.01)
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Figure 4.39:Massless flexible MMET elliptical orbit angular position®{T,, = 400.01)
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Figure 4.40:Massless flexible MMET elliptical orbit angular position®{T,, = 4.01)

> Figures 4.37 and 4.38 show the flexible massless MMET system’s periodic spin-up
behaviounp on an elliptical orbit ¢ = 0.2) with the angular dispacement range of
-0.325 to 0.325 rad. Their shapes contain more ups and downs, which are slightly
different from the spin-up output of the axial and torsional elastic massless MMET
systems. Its ODE coupled more connections with lateral elastic behaviouen(l

@), @s shown in equation (4.4.5).

> The results for the true anomadyare shown in Figure$.39and4.40for the number
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Figure 4.41: Massless flexible MMET out-of-plane angle(T,, = 4.01)
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Figure 4.42:Massless flexible MMET base point distance R to the Ealith=(400.01)

of cycles of periodrl,, = 4.01 and 400.01 simulation time, respectively. The curves are
rising in a linear trend from 0 to 25{ = 4.01) or 2500 ,, = 400.01) rad with slight
fluctuation spread (0 to 0.5 rad).

> Figure 4.41 is the response farwhen «(0) = 0.001 rad andx(0) = 0.001 rad/s.
If give the initial conditionsx(0) = 0 rad andx(0) = O rad/s, the responses for the

out-of-plane anglex are with zero amplitude over the full simulation time.

> The distance from the Earth to the tether COM is changing periodically, as can

be seen in the Figure&42and4.43 which behave within the distance rangergf
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Figure 4.43:Massless flexible MMET base point distance R to the Edrth=4.01)
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Figure 4.44:Massless flexible MMET rolling angle (T,, = 400.01)

(6.89x10° m) tor, (1.0335¢<10" m) with givene = 0.2 in this case.

> The rigid rolling angley results stay in zero if given initial conditiong0) = 0 rad
andy(0) = 0 rad/s with the same ODE as given in equation (4.2.8). As shown in Figure
4.44, the rigid rolling angley is going up over the simulation time wity(0) = 0.001

rad andy(0) = 0.001 rad/s.

> The tether subspan’s axial oscillatibp goes 13.5 to 19 m in Figuré¢.45 and the
ratio of L, to L, varies 2.8% to 3.8% in Figur4.46

157



Ly[t] — time

18

16+

14+

Lx[tl(m)

12+

10r

0 500C 1000C 1500C 2000c 2500C 3000C
time(Sec)

Figure 4.45: Massless flexible MMET axial displacement along tether subspag ©f,, =
4.01)
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Figure 4.46:Massless flexible MMET axial elastic length vs. static length ratio along tether
subspan ott—" (T, =4.01)
0

> Figure4.47 states the torsional elastic angular displacemgrfor each tether sub-
span with the range -0.000075 to 0.000075 rad, which shows that the convergence of
the torsional elastic behaviour is approaching to zero status in the end of simulation

time.
> Figures 4.48 and 4.49 are the pendular elastic angular displacements or{tane
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Figure 4.47: Massless flexible MMET torsional displacemeant(T,, = 4.01)
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Figure 4.48:Massless flexible MMET, on plang — O — y,, pendular displacemedt, (T,
=4.01)

O—yo and plane,— O —y, respectively, and in the beginning their motions are within
the range - 0.00014 to 0.00014 rad, and then the curves with convergent pendular
elastic behaviours are observed with reducing amplitude of oscillation till to about
t = 9500 seconds, and then with obviously approaching to zero. According to the

equations4.4.9 and ¢@.4.9 for 1, andx,, the responses aff, and«, perform alike

with slightly different mass moment of inertia.
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Figure 4.49:Massless flexible MMET, on plang — O — y,, pendular displacement, (T,
=4.01)

4.5 Conclusions

To address the modelling process for the flexible massless MMET clearly, the axial, torsional
and pendular elastic components are investigated simultaneously, and then integrated as on
flexible MMET system. There are seven rotational generalised coordinates,( 0, «,

&y, Y, Yx) @and two translational coordinatek, ( R) which were chosen as the generalised
coordinates for the flexible massless MMET system, in which the rigid body generalised
coordinates, 0, «, v, R) are not duplicating any of the motions of the elastic generalised
coordinatesw,, o, Yx, Lx)-

Using the parameters in Appendix C, the numerical results for the selected generalised
coordinates in section 4.2.2, section 4.3.2 and section 4.4.2 expressed the periodic motion:
on orbit, with reducing amplitude of axial, torsional and pendular elastic oscillation for three
MMET models in sections 4.2, 4.3 and 4.4 respectively, whose similar spin-up behaviours
are also noted.

Meanwhile, this chapter also established a guiding modelling procedure for studies on
the discretised flexible MMET system in further chapters, which indicate the models coupled
with the flexible behaviours.

Table 4.4 gives the) plots for the massless tether systems, andg the generalised
coordinate for the tether’s spin-up, which is the angle fromxthaxis to the projection of the
tether onto the orbit plane. With the given parameters in Appendix C, the spin-up responses

change periodically between -0.325 to 0.325 rad over the number of cycles of pgriod
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Table 4.4: Figures for spin-up in Chapter 4

Tether Type Figure No.T{, = 400.01) Figure No.T;,, =4.01)
Axial Elastic 4.7 4.8

Axial and Torsional Elastic 4.20 4.21

Flexible 4.37 4.38

Table 4.5: Figures foR in Chapter 4

Tether Type Figure No.T{, = 400.01) Figure No.T;, =4.01)
Axial Elastic 4,12 4.13

Axial and Torsional Elastic 4.25 4.26

Flexible 4.42 4.43

Table 4.6: Figures fow in Chapter 4

Tether Type Figure No.T{, = 400.01) Figure No.T;, =4.01)
Axial Elastic - 4.11

Axial and Torsional Elastic - 4.24

Flexible - 4.41

Table 4.7: Figures fo@ in Chapter 4

Tether Type Figure No.T{, = 400.01) Figure No.T;, =4.01)
Axial Elastic 4.9 4,10

Axial and Torsional Elastic 4.22 4.23

Flexible 4.39 4.40

Table 4.8: Figures foy in Chapter 4

Tether Type Figure No.T(, = 400.01) Figure No.T, =4.01)
Axial Elastic - 4.14

Axial and Torsional Elastic - 4.27

Flexible - 4.44

Table 4.9: Figures fok, in Chapter 4

Tether Type Figure No.T{, = 400.01) Figure No.T,, =4.01)
Axial Elastic 4.15 -

Axial and Torsional Elastic 4.28 -

Flexible 4.45 -

Table 4.10: Figures foy, in Chapter 4

Tether Type Figure No.T(, = 400.01) Figure No.T, =4.01)
Axial Elastic - -

Axial and Torsional Elastic 4.30 -

Flexible 4.47 -

400.01 and 4.01; the spin-up response for the flexible massless tether is slightly different
from the other MMET tether systems with more ups and downs during full simulation time,
which cased by the pendular behaviours and coupled with tether system’s others motions.

Table4.5is for theR, which is the tether’s position generalised coordinate and determines
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Table 4.11: Figures fop, in Chapter 4

Tether Type Figure No.T{, = 400.01) Figure No.T;,, =4.01)
Axial Elastic - -

Axial and Torsional Elastic - -

Flexible - 4.48

Table 4.12: Figures fox, in Chapter 4

Tether Type Figure No.T{, = 400.01) Figure No.T;, =4.01)
Axial Elastic - -

Axial and Torsional Elastic - -

Flexible - 4.49

the distance from the Earthto the dumbbell MMET system’s COM. In this case, given
0.2,m, =6.89x10° m andr, = 1.0335<10' m, it goes within the range of, to r,.

Table4.6is for the out-of-plane angle with zero initial conditions; all the figures stay
at zero, which indicates the stable responsexf@mver simulation the number of cycles of
periodT, = 400.01.

Table4.7is for the true anomalg, which is in a linear up-changing trend from 0 to 2500
rad coupling range of 0 to 0.5 rad fluctuation spread, over the number of cycles of period
= 400.01, which state that the tether systems go around the Earth in an elliptical orbit.

Table4.8is for the rigid rolling angley, which keep staying in zeros output with zero
initial conditionsy(0) = 0 rad andy(0) = 0 rad/s.

Table4.9is for the axial elastic generalised coordinate along tether subspan with stable
axial oscillation during full simulation time.

Table 4.10is for the torsional elastic generalised coordinate which are shown the
stable torsional elastic behaviours for massless MMET systems

Table4.11is for the pendular elastic generalised coordinpateeferenced on plane, —
O —yo. Table4.12is for the pendular elastic generalised coordingteeferenced on plane
zo—0O—yo, both of them are with convergent pendular elastic behaviours, which are observed

with reducing amplitude of oscillation and approaching to zero.
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Chapter 5

Discretised Axially MMET Elastic
System

5.1 Introduction

This chapter presents a discretised MMET system with axial elasticity, based on the rigid
MMET system in section 3.6, in which the discrete mass points are connected by elastic
elements.

All the environmental conditions, the Earth centred global coordinate systewZ},
and the relative rotating coordinate systewm) yo, zo} are the same as in previous chapters.

As it differs from the assumptiond1 to A6 in section 4.1, the assumptions for the

discretised MMET modelling are listed below, B$to B6 :
e B1 - The tether is made of homogeneous isotropic material;

e B2 - The MMET system’s dissipation function is assumed to be based on Rayleigh

damping;
e B3 - The MMET is in a friction free environment;
e B4 - Every axial ‘spring-damper’ group is connected to another, in series;
e B5 - Every torsional ‘spring-damper’ group is connected to another, in series;

e B6 - The axial, torsional and pendular elastic oscillations’ effects on the rigid body
behavoiurs can be ignored, for the elastic oscillations are much less than the Cartesian

coordinates for the mass payloads and the discrete mass points;
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e B7 - The axial and torsional ‘spring-damper’ groups have no masses and mass mo-
ments of inertia;
kl kg

m;j mj

Mp
Cl (63

Figure 5.2: The spring-damper groups

As shown in Figureb.2, axial elasticity is represented by a string of ‘spring-damper’
groups ki, ci), which connect the mass pointsaf; in series withk; = ... = kn2,

C1=...=cCny2,Wherei=12 ... N+2.

As discussed in sectio3 6.9, the MMET system’s subspans can be discretisedto
point masses. In this case, the MMET system with an arbitrary choibe=010 mass points
will be discussed in this chapter. Because it is different from the massless MMET system.
From this chapter on the dynamical model for the discretised MMET system includes the
tether masses and mass moments of inertia, by using Lagrange’s equations.

An axial elastic MMET system is shown in FiguEel with 10 discrete mass points.
That is, there are 5 discrete mass points for each tether subspan, in which the generalisec
coordinates); (i = 1 to 10) define relative axial motions of the 10 discrete mass pojpts,
andnp, are the generalised relative axial coordinates for the mass payMadand Mp;.
The positive direction for axial elastic motion is defined as being in the direction i

to Mp;.

5.2 The Cartesian Coordinates for the Motor Facility and
the Payloads

The Cartesian coordinates for the motor faciltyy (xo, yo, zo) are given in equatior(2.4.
The Cartesian coordinates for the payloadds;, andMyp, are given in equation$(2.7) and

(5.2.2. L, is the static length from COM of the tether to each payload.

X1 = Xo+ (Mp1 +11 +M2+1n3+ns +1s5 + Lo) cosxcos (0 + 1)
Yr = Yo+ Mp1 +m +n2+M3+n4 +1n5+ L) cosasin (0 + 1) (5.2.1)
zi = Mp+m+n2+n3+1M +1s5 + Lo) sinx
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X2 = Xo— (Me +M7+Mg+Me+Mio+npz2 + Lo) cosacos (0 + 1)
Y2 = Yo— (Me+M7+ms+Mno+ni0+np2+ Lo) cOSasin (6 + 1) (5.2.2)
z; = —Me+m7+mng+me+n10+mnp2+ Lo)sine

5.3 The Cartesian Components for the Mass Pointsn, to

Mo

The Cartesian components for the discrete mass paijtéo m,o are given in equations
(5.3.) to (5.3.1Q. The static length from the tether COM to each mass painis defined
in equation B.6.7), and for the case of discrete mass poiNts 10, thel; (i=1,..., 10) can

be looked-up and transformed from Fig&d4

( 9L,
Xm, = Xo+ |Mm+nN2+N3+M4+Mn5+ 70 cosxcos (0 + )
9L, )
Yn, = Yo+ |m+m2+n3+n4 +n5—l—w cosasin (0 + V) (5.3.1)
Lo\ .
Zm;, = |M +M2+M3+M+15+ T sino
7L,
Xm, = Xo+ (M2+MN3+Ma+1s5+ 10 cosocos (0 + 1)
7L
Um, = Yo+ <n2 +MN3+M4+Ms5 + 1_00> cosasin (0 + V) (5.3.2)
7o\ .
Zm, = |M2+M3+Ma+Ms5+ T0 sinx
\
( L
Xmg = Xo+ (M3+Ma+ms+ 5 | cOSxcos (0 +1)
L
Ym; = Yo+ (TB +1n4+m5+ 70> cosasin (0 + ) (5.3.3)
Lo\ .
Zmy = (Ms+m+ns+ 5 ) sina
\
( 3L,
Xm, = Xo+ [Ma+ms5+ 0 cosxcos (0 + )
3L .
Yms = Yo+ <n4 + 15 + 1—00) cosasin (0 + 1) (5.3.4)
3L\ .
Zmy, = T4 +T]5+_ Sinx
L 10
Lo
Xms = X0+ n5—|—ﬁ coswcos (0 + )
L
Ums = Yo+ (n5 + %) cosasin (0 + ) (5.3.5)

= + Lo sin
Zm5 - T]S ]0 (06
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L
Xmeg = Xo—(m—l—%) coswxcos (0 + )
L
Yme = yo—(T]G‘I‘%) cosasin (0 + ) (5.3.6)
z = — +L° sin
\ me M6 10 (08
( 3L
Xm, = Xo— (n6 +n7+]—00) cosxcos (0 + 1)
3L
Ym, = UO_<n6+T]7+1—OO) cosasin (0 + 1) (5.3.7)
3L\ .
Zm, = —|(Me+m7+ - |sinx
L 10
Lo
Xms = Xo— n6+n7—|—n3+7 cosocos (0 + 1)
L .
Yms = Uo—(ﬂ6+ﬂ7+ﬂ8+?0> cosasin (0 + 1) (5.3.8)
Lo .
Zmg = — n6+n7+ng+7 sinx
\
( 7Lo
Xmy = Xo— n6+n7+n3+n9+w cosocos (0 + 1)
7L .
Ym, = yo—(n6+n7+ng+n9+1—oo> cosasin (0 + 1) (5.3.9)
7o\ .
Zmy = — n6+n7+-|-ng+n9+w sinx
( 9L,
Xmyy = Xo— T]6+T]7++T]8‘|‘T]9+T]10+ﬂ cosocos (0 + 1)
9L .
Ymye = Yo— (116 +1M7 ++Msg +MNo + M0 + 1_00) cosasin (0 + 1) (5.3.10)
915\ .
Zmy = — n6+ﬂ7++ﬂ8+n9+mo+ﬁ sinx

Similar to the equations3(2.2 and @3.2.3, the distance from Eartk(0,0,0) to each
of the discrete mass points along each sub-span is represenked Jgs given in equation
(5.3.1).

R, = \/x%m +y2 + 25, (5.3.11)

5.4 Potential Energy

The tether’'s potential energy is given in equati@(l), wherepu is the product of the

universal gravitational consta@t with the Earth’s mass.
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(5.4.1)
+ SE|axial

Where, theSE|..iq1 term is the strain energy of the two tether subspans taking axial
elasticity into account, as stated in equatidrd(3d. If it is assumed thaky = k; =... =

kq2, and thek, is a default stiffness value, then equatidv(2 can be re-written as equation

(5.4.3.

1 1 1
SElaxiat = ski(mpr —M1)2 4+ ska(mi —m2)* + -+ + sken3
2 2 2

(5.4.2)

1 1
+§k7ﬂé +-+ 5ka(mo —1p2)?

SElaxiat = %ko (e =)+ =m2)* + -+ n5 +mg + -+ + (Mo —nr2)?)
(5.4.3)

The CE|4iq1 quantity is an assumed dissipation function, and the damping coefficient in
each group’s elastic element is assumed to be in the form of classical linear viscous damping,
in which it assumes, = c¢; = ¢, = ... = ¢y2, Where the, is a default damping coefficient
value, so then equatiob .@.4 can be reformed as equatidn4.5.

1 ) ) 1 ) ) 1 .
CElaxiat = €1 (Mpr —11)* + ECz(m —M) P+ ZceﬂéﬂL

(5.4.4)

L 1 : :
zcmé +oeee §C1z(n1o —fp2)?

CElaxiat = 7¢0 (e —1)? 4+ (M —12)* + - - +Mm3ng - - + (Mo —ne2)?)  (5:4.5)

5.5 Kinetic Energy

The kinetic energy of the MMET system is given in equatibrb(l).

168



T = %Mm (3 +U7+27) + %Mpz (Z+ 0% +23) + %MO (Z+u3+2)+

) . ) 1 . ) )
my (%, + U, 2o, )+ oma (3G, +Un, F25,) + -

I
2 2

1 ) . )
+§m]o (X%mo +y%‘110 + Z31110)

1 1 1 - 12
ZIZPl + zIsz + IZT + EIZM} (q) + 9) +

1 1 1 .
EIXPI + zIsz + IXT + EIXM:| O£2+

1 1 1 )
ZIUP] + zIsz + IyT + zIyM:| ’YZ

(5.5.1)

5.6 Generalised Coordinates

[1] As shown in Figurés.3 1 is the generalised coordinate representing the in-plane
pitch angle of the overall tether, and this denotes the angle fromythris to the pro-

jection of the tether axis onto the orbit plane.

(2] O is the generalised coordinate representing the orbital angular position, and is the

true anomaly, a formal orbital element.

(3] acis the generalised coordinate denoting the out-of-plane angle of the overall tether,
from the projection of the tether axis onto the orbit plane to the tether, and is assumed

always to be within a plane normal to the orbit plane.

[4] v is the generalised coordinate depicting the rolling angle of the overall theter. It
does not alter the location of the end masses’ centre of mass, and needs to be includec
because the torque axis is potentially free to rotate about the longitudinal axis of the

tether.
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[5] The generalised coordinakeis the distance from the Earth(0, 0,0) to the COM
M (%0, Yo, zo)-

[6] The generalised coordinatg is for each mass pointi;. For this case, the mass
point number is arbitrarily set here to 10, thatus, (i = 1,2,...,10), anehp; andnp;

are the generalised coordinates for M@; andMp;, which are listed in Tablex(1).
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Figure 5.3:The MMET system with axial elasticity definition on orbit

170



5.7 Generalised Forces

The generalised forced; (i = 1 to 5) are given in equation8.6.13 to (3.5.17, andQ.,,
(i=61to 17) are the generalised forces for the mass paings listed in TableX.1), which

comes from an assumed dissipation function based on Rayleigh damping.

5.8 Governing Equations of Motion

Lagrange’s equations are used to generate the governing equations of motion, the full equa-
tions are to be found in the path CD-ROM/axial/N10/, as listed in Talle

Table 5.1: Generalised coordinates and equations of ma@liBaRROM/axial/N10)

i q Qi T u Equations oMotion

1 v (3513 (5.5.1) (5.4.1) Chapter5-1-N10-psi.pdf
2 0 (3.5.14) Chapter5-2-N10-theta.pdf
3 « (3.5.15) Chapter5-3-N10-alpha.pdf
4 v (35.17) Chapter5-4-N10-gamma.pdf
5 R (3.5.16) Chapterb-N10-R.pdf

6 mnpr —co(mpr —Mi) Chapter5-6-N10-etaP1.pdf
7 mnp2 —co(Mo—1np2) Chapter57-N10-etaP2.pdf
8 m co(ﬁm 1'11) —co(m1 —1M2) Chapter5-8-N10-etal.pdf
9 12 coMmr—mM2) —co(m2—m3) Chapter5-9-N10-eta2.pdf
10 N3 Co (T]z — T]3) — Co (T'l3 — T]4) Ch&ptGl’S-lO-NlO-eta?).pdf
11 n4  co(nz —1M4) —co(Ms —Ms) Chapter5-11-N10-eta4.pdf
12 15  co(nsa —1Ms) — cons Chapter5-12-N10-eta5.pdf
13 nsg co(M7 —mMs) — coMe Chapter5-13-N10-eta6.pdf
14 ny Co (1’]6 — 1’]7) — Co (1’]7 — T]g) Chapter5-14-N10-eta7.pdf
15 ng co(ny —ms) — co(ng —Mo9) Chapter5-15-N10-eta8.pdf
16 19 co(ng —mMe) — co(Mo —Mio) Chapter5-16-N10-eta9.pdf
17 N1o Co(ﬂ9 — T]]o) — Co(ﬁm — ﬁpz) ChapterSl?-NlO-etalO.pdf

As shown in Table 5.1, there are 17 nonlinear equations for 17 generalised coordinates
with a strong nonlinear coupling, which are listed in the files with hundreds of lines of ODE
and lead to the high computationally difficult set of ODEs.

The solution procedure is implemented in code written by the autitrdrATHEMATICA
using the routineNDSolve, the NDSolve function can adapt its step size so that the esti-
mated error in the solution is just within the tolerances.

Practically, it is difficult for theNDSolve to solve the MMET system of coupled dif-
ferential equations as long as each variable has the appropriate number of conditions by
the following simulation trials, in which the number of cycles of peripd as defined in

equation (1.1.11), is a concise alternative to determine the simulation time.
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(1) The first trial’s simulation time iF;, = 4.01 (3.1899x 10' seconds), and an ‘out
of memory’ error message occurs with the time consumption of about 24 hours, and

theNDSolve procedure is terminated automatically without any numerical outputs.

(2) With the T,, = 4.01 x 10 (3.1899 seconds); there is also an ‘out of memory’
error message occurs with the time consumption of about 24 hours, ahdx&elve
procedure can not generate any numerical outputs, either.

To summarise, in the first trial and second trial test the MMET system simulations were
in a long (3.1899x 10" seconds) and short (3.1899 seconds) simulation time respectively,
and the ‘out of memory’ error shows that the ODE equations for the MMET system are
too complex for the current computing system to handle. The ‘out of memory’ error occurs
when the nonlinear equations of the MMET system are sent toNth&olve procedure,
which indicates that current computer cluster cannot provide enough hardware support for
this MMET system simulation, and the computer is not able to load any additional data into
memory during execution, and these will cease to function correctly. This occurs because
all available memory including disk swap space has been fully allocated, which is caused by
the high computational difficulty of the set of ODEs.

In order to deal with this problem and to explore the interaction of the axial elastic MMET
system, we have reduced the discretisation scheme right down to one discrete tether mas.
point per subspan, that iy = 2, and Lagrange’s equations have been used to derive a
reduced set of nonlinear governing equations of motion for a simplified MMET system, as
shown in AppendixG, and the generalised coordinates for the simplified MMET system
with two discrete mass points are given in Tablg This decision is based on a compromise

between modelling fidelity and likely computational tractability.

» The detail modelling steps for axial elastic MMET system with two discretised mass

points is attached in Append(®.

Table 5.2: Generalised coordinates and equations of maliDAROM/axial/N2/)

i q0 Q T u Equations oMotion

1 ¢y (3.5.13) (G.4.1) (G.3.1) Chapter5-1-N2-psi.pdf

2 0 (3.5.14) Chapter5-2-N2-theta.pdf

3 a (3.5.15) Chapter5-3-N2-alpha.pdf

4 v (3.5.17) Chapter5-4-N2-gamma.pdf
5 R (3.5.16) Chapter’h-N2-R.pdf

6 mpr —co(Mpr — M) Chapter5-6-N2-etaP1.pdf

7 Mnp2 —co(n2 —1Mp2) Chapter5-7-N2-etaP2.pdf

8 m coMpr —M1) —com Chapter5-8-N2-etal.pdf

9 1o coMp2—12) — com Chapter59-N2-eta2.pdf
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5.9 Simulations and Discussions

Based on the axial elastic MMET system with two discrete mass points, Figures5.17

are the numerical results obtainedMATHEMATICA for the selected generalised coordi-
natesq; (i=1to9) as listed in TablB.2 In this case ot = 0.2, it was decided to evaluaig
=4.01 and 400.01, that is, the simulation titie 0 to 3.1899x 10" seconds and 0to 3.1811

x 10° seconds, respectively, which can help to describe both of the micro (short simulation

time) and the macro (long simulation time) behaviours for every generalised coordinate.
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Figure 5.4:Axial elastic MMET system spin-up, angular displacemér(,, = 4.01)

> The results show the discretised axial elastic MMET system’s periodic behaviour on
an elliptical orbit ¢ = 0.2) with the angular dispacement range of -0.35 to 0.35 rad,
in which Figuress.4and5.5depict the spin-up behaviour for the axial elastic MMET
system over a short simulation time (NAOR, = 4.01) and for a long simulation time
(NCP,T,, =400.01), respectively.

> The distanc® from the Earth to the tether COM is changing periodically, as can
be seen in the Figures.6 and5.7, which behave within the distance range mf

(6.89x 10° metre) tor, (1.0335<10" metre ) with givere = 0.2 in this case.

> The results for the true anomatlyare shown in FigureS.8 and5.9 for the number
of cycles of periodl,, =4.01 and 400.01 simulation time, respectively. The curves are

rising in a linear trend from O to 25{ = 4.01) or 2500 T,, = 400.01) rad with slight
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Figure 5.5:Axial elastic MMET system spin-up, angular displacemén(l,, = 400.01)
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Figure 5.6:Axial elastic MMET system base point distanceR € 4.01)

fluctuation spread (0 to 0.5 rad), this angular parameter describes the position of the
MMET system moving along the elliptical orbit.

> With given non-zero initial conditions(0) = 0.001 rad and(0) = 0.001 rad/s, the
responses for the out-of-plane angl@are given in Figure5.10and5.11 This shows
that, with small initial angular displaceme{0) and velocityx(0) disturbances, the

out-of-plane anglex’s curve travels steadily within a -0.7 to 0.7 radian periodic fluc-
tuation.
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Figure 5.8:Axial elastic MMET system elliptical orbit angular position ®{T,, = 4.01)

In order to compare the results with different initial values, in Chagieésand7, all

the initial values for thex(0) andx(0) are set to 0.001, as given in Appendix

> During the full simulation time, the rigid rolling anglekeeps in linear rising process
with given non-zero initial conditiong(0) = 0.001 rad and/(0) = 0.001 rad/s, as
shown in Figures.12 Similar to the initial values setting fax, in Chapters, 6 and

7, all the initial values for they(0) andy(0) are set to 0.001 rad, as given in Appendix

C. The linear rising phenomenon is caused by its non-zero initial value, the rigid body
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Figure 5.10: Axial elastic MMET system out-of-plane angle(T,, = 4.01)

rolling behaviour can be started or stopped by giving a proper zero or non-zero initial

conditions.

> Figure5.13is a part of Figures.14 which shows the axial elastic motions over
simulation timeT,, = 4.01, as also shown in Figukel5 Figure5.14is the response
for the axial elastic motions over simulation tirhe=400.01. For the simulation time
in Figure5.13is shorter than Figurg.14 n;’s curve in Figures.13seems a monotonic

decreasing line, and as can be observed in Fi§ur4 it is also an oscillating curve
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Figure 5.11:Axial elastic MMET system out-of-plane angde(T,, = 400.01)
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Figure 5.12:Axial elastic MMET system rolling anglg (T,, = 4.01)

with larger period thamp;’s response.

Figures5.13and5.14 state the axial elastic motions fq§ andnp; along tether sub-
span, in which the period far; is larger than the period forp;, and they;’s responses

go steadily within the range -3.2 to -4.6 metre andihgs responses are within the
range -5 to -11 metre.

> Similar ton; andnp,, Figures5.16and5.17 are the plots fof, andnp, over the
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Figure 5.13:Axial displacement responsgs andnp; (T,, = 4.01)
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Figure 5.15:Axial displacement responsgs andnp;, T,, = 4.01 vs. 400.01

simulation timeT,, = 4.01 and 400.01, as also shown in FigGr&8 which show the
12 andnp, curves moving steadily within the range 3.2 to 4.6 metre and 5 to 11 metre,
and indicate the); andnp,’s behaviours are symmetric t¢ andnp;’s behaviours

with respect to the MMET system COM.
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5.10 Conclusions

The work in this chaper has shown a model of a constantly excited MMET tether on an
elliptical Earth orbit with multiple degrees of freedom (MDOF) for axial elastic motions,
which can be reformulated into an excited axial elastic oscillation. This analysis represents
the tether under the influence of a gravitational field and a directly applied exciting torque
from the motor drive.

A MMET system with an arbitrary choice @ = 10 mass points was discussed in this
Chapter for the MDOF axial elastic MMET system, which includes the tether masses and
mass moments of inertia. Then in order to handle the numerical simulation time-consuming
difficulties on the current computational system, an axial elastic MMET systemNviti2
mass points is proposed to reduce the number of the nonlinear ordinary differential equations
(ODESs), which can balance the numerical performance and MDOF discretisation scheme for
the MMET system.

Numerical results for the MMET system with two discrete mass points are given in sec-
tion 5.9, in which accurate and periodic behaviour including the spin-up and the axial elastic
performance for this MMET model are obtained.

Compared with the spin-up behaviours for the dumbbell MMET systems, the rigid body
MMET tethers and the flexible massless MMET systems in Chagtarsd4, the spin-up
for the discretised axial elastic MMET system are also changing with periodic fluctuations
steadily, but with slightly smaller amplitudes and smoother curve shape. When involving the
tether's mass and mass moment of inertia, the amplitudes and shapes for the spin-up and th
axial elastic behaviours are different with same parameter settings in Appéndix

The results of the true anomalyand the distanc® for the tether systmes in Chapters
3, 4 and5 are the position generalised coordinates to locate the tether system’s location on
the orbit, which are of stability numerical outputs with the other generalised coordinates’
different initial values.

The numerical results for the out-of-plane angland the rigid rolling angles are sen-
sitive to their initial value settings. In Chapters 3 and 4, their initial value is zero, and their
outputs are zero over full simulation time; In this Chapter, by setting to non-zero initial
values, they have non-zero outputs over the same simulation time as previous Chapters.

The responses faf; andnp; are with different periodic motions for the different mass
and mass moment of inertia values along each tether subspan.

The numerical results fat;, npq, 12 andnp, express that the axial motions in the two
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tether subspans are moving in an opposite direction with same local relative direction defi-
nition, also, this difference validates that the MMET tether system is a symmetrical system

with respect to the MMET system COM.
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Chapter 6

Discretised MMET System involving

Axial and Torsional Elasticity

6.1 Introduction

Based on the discretised axial MMET system with an arbitrary choidéofL0 mass points

in Chapter 5, a discretised MMET system involving both axial and torsional elasticity is
proposed in this chapter, in which the torsional elasticity modelling process will be discussed,
and the axial elasticity modelling process is the same as was discussed in Chapter 5 so it will
not be discussed in this chapter.

With the same modelling conditions and assumptions as declared in Chapter 5, the Carte-
sian coordinates for the motor facilitvl, and the payloads,; andMp, are given in equa-
tions (3.2.4), (5.2.1) and (5.2.2). The Cartesian components for the discrete massmoints
to m,o are given in equations (5.3.1) to (5.3.10).

As shown in Figure 6.1, with 10 discrete mass points, the generalised relative torsional
coordinatesp; (i = 1 to 10) define the relative torsional motions of the 10 discrete mass
points. @p; andp, are the generalised relative torsional coordinates for the mass payloads
Mp; andMyp;,. The directions for the torsional elastic motions, by following the right-hand
rule with the thumb pointing to they, direction, are defined as positive direction.

All the torsional ‘spring-damper’ groupk(, c;) are defined on the reference plane
xo — O — z5 as shown in Figure 6.2. The'‘in the subscript designates the torsional elastic
parameter, and the mass pointswfare connected by the torsional ‘spring-damper’ groups

in series.
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Figure 6.1: Torsional elastic MMET tether with 10 discrete mass points
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Figure 6.2: Reference on the plang— O — z, for MMET torsional elasticity

6.2 Potential Energy

The tether’'s potential energy is given in equati@i2(1), wherepu is the product of the
universal gravitational consta@ with the Earth’s massR;, R, andR,,. (i =1 to 10) are

same as that defined in Chap%er

_HMM _ uMp, - uMo  pmy pmy o kMo
R] Rz R Rm1 Rmz leo

u =
(6.2.1)

+ SE|axial + SE|t0Tsional

Where, theSE| i1 term is given in equatiort(4.2, SE|orsionar t€rm is the strain energy
of the two tether subspans, taking torsional elasticity into account, as stated in equation
(6.2.2.

The CEliorsionar quantity is an assumed dissipation function, and the damping coeffi-

cient in each group’s elastic element is assumed to be in the form of classical linear viscous
damping.

1 1 1

SElorsional = Zktl (@p1 — @1)* + Ektz((m — @)+ + zkte@é

(6.2.2)

1 1
+§kt7(Pé +-- 4+ zkﬂz((Pw — op)?
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CE|t0r5i0nal

With ktO = kt‘] =..

1 . . 1 . ) 1 .
7 Cu (@p1 — @1)* + thz((m — @) 4+ Ect6@§+
(6.2.3)
) 1 . )
ZC’J(Pé il o zCﬂz(@m — op2)?

. :kt(N+Z)1 Cto = Ct1 = ... = C¢(N42)» wherei=1,2,...,N + 2, the

ki andcyo are the default stiffness and damping coefficient valiees; 10 is the number

of the discrete mass points in this case, then equa@ichZj can be re-written as equation

(6.2.9, and equatio

ng.2.3 can be reformed as equatidhZ.5.

1
SE|torsional zkto (((pP1 - (91)2 + ((P1 - (92)2 + - (pé + (pé + ((p10 - (pPZ)z)
(6.2.4)
CEliorstonal = 3¢ ((@p1 = @1+ (1= @22+ + §30F -+ + (@10 — Pr2)’)

(6.2.5)

6.3 Kinetic Energy

The kinetic energy

1
= Mp;

T
2

—my

2

1
EIZIN

1
EIXN

2

IUP1

(%3 + 07 +27)

of the MMET system witth= 10 mass points is given in equatidh3.1).

1
+ My

5 (x5 + U5+ 25) +

1 : . :
+ 5Mea (53 + 03 + 23)

1
+ =-my

5™ (X, Ui, + Zm,) + -+

(e, + Uiy + 2))

1
+§m10

02 -2 22
(Xmm + ymm + Zmyo

)

1
+ 51

2 zZp2 + IZT +

1 - (2
EIZM} (W+08) +

1

2

1 1 ) 1 1 )
+ _IXPz + IXT + IXM:| 0(2 + |: Iym + EIUPZ + IyT + EIUM:| YZ_"

2 2

1 :
2 Iynﬂ 0 (p%0:|

1 :
Iy P2 (9!2’2 +

1 .
> Iymlcp%+...+

.2 _
(pP1+ 2

(6.3.1)
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6.4 Generalised Coordinates

Besides the generalised coordinatgsto g7 are discussed in sectidn6, the generalised
relative torsional coordinateg; (i = 1....,10) are for the relative torsional motion of the
10 discrete mass pointg,p; and @p, are for the relative torsional motion of mass payloads

Mp; andMp,, as given in Tabl&.1, which are defined ag;s to qs.

6.5 Generalised Forces

The generalised forceg3, to Q;7 are the same as in sectidti7, and the generalised forces
Q15 to Qo are the torsional generalised forces for mass paint@nd payloadsvip; and
Mp,, as listed in Table@.1), which comes from an assumed dissipation function based on

Rayleigh damping.

6.6 Governing Equations of Motion

Lagrange’s equations are used to generate the governing equations of motion, the full equa-
tions are to be found in the path CD-ROM/axial-torsional/N10/, as listed in Takle

Similar to Chaptel5, there are 29 nonlinear equations for 29 generalised coordinates
of this MMET system, and it is still difficult in the solution procedure to use the routine
NDSolve with the ‘out of memory’ problem, as discussed in sectof

In order to handle this problem and to explore the interaction of the axial and torsional
elastic MMET system, we have reduced the discretisation scheme right dowr & then
used Lagrange’s equations to derive a reduced set of nonlinear governing equations of motior
for a simplified MMET system, as shown in Appendix and the generalised coordinates

for the MMET system with two discrete mass points are given in Télile

» The detail modelling steps for axial and torsional elastic MMET system with two

discretised mass points are attached in Appehidix

6.7 Simulations and Discussions

Based on the axial and torsional elastic MMET system with two discrete mass points, Figures
6.3 10 6.19 are the numerical results obtainedbx THEMATICA for the number of cycles
of periodT,, =4.01 and 400.01, in which the MMET system'’s short simulation time and long

simulation time behaviours can be observed with the given parameters in Appendix C.
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Table 6.1: Generalised coordinates and equations of motiGD-ROM/axial-

torsional/N10)
i qi Q; T u Equations oMotion
1 (3.5.13) (6.3.1) (6.2.1) Chapter6-1-N10-psi.pdf
2 0 (3.5.14) Chapter6-2-N10-theta.pdf
3 « (3.5.15) Chapter6-3-N10-alpha.pdf
4 v (3.5.17) Chapter6-4-N10-gamma.pdf
5 R (3.5.16) Chapters-N10-R.pdf
6 np —co(Mpr —M) Chapter6-6-N10-etaP1.pdf
7 mp2 —coMo—mp2) Chapter67-N10-etaP2.pdf
8 m Co (f]p] 1:]1 ) —¢o (T]] — T]z) Chapter6-8-N10-etal.pdf
9 mn2  com —M2) —co(nz—mn3) Chapter6-9-N10-eta2.pdf
10 n3 Co(nz — 113) —co(M3 —M4) Chapter6-10-N10-eta3.pdf
11 N4 Co (T]3 — T]4) — Co (1’]4 — T]5) Chapter6-11-N10-eta4.pdf
12 ns  co(ng —ms) — cons Chapter6-12-N10-eta5.pdf
13 ns co(n7 —Me) — Cons Chapter6-13-N10-eta6.pdf
14 n7;  co(ne —1M7) — co(m7 —Ms) Chapter6-14-N10-eta7.pdf
15 ng co(M7 —Mg) — co(ng — MNo) Chapter6-15-N10-eta8.pdf
16 No Co (T]g — T]9) — Co (1’]9 — T-]1o) Chapter6-16-N10-eta9.pdf
17 Mo Co (T]g — T]]o) — Co (ﬁm — f]pz) Chapter@l?-NlO-etalOpdf
18 @p1 —cuol@pr — @1) Chapter6-18-N10-phiP1.pdf
19 @p2 —co(@i0 — @p2) Chapter619-N10-phiP2.pdf
20 @ CtO((bPl @1) —cwol(@1 — @2) Chapter6-20-N10-phil.pdf
21 @2 cpl@r— @2) — crolP2 — @3) Chapter6-21-N10-phi2.pdf
22 (OF] CtO((PZ — (Pg) — Cto((b3 — (p4) Chapter6-22-N10-ph|3pdf
23 @4 cipol@3z — (p4) — Cio( P4 — @s5) Chapter6-23-N10-phi4.pdf
24 @5 Ccio(@4— @©5) — CoP5 Chapter6-34-N10-phi5.pdf
25 (1S Cto((p7 — ([36) — CtO(bG Chapter6-25-N10-ph|6pdf
26 Q7 Cto((pg — (p7) — Cto((b7 — (pg) Chapter6-26-N10-ph|7pdf
27 (OF CtO((P7 — (pg) — Cto((bg — (p9) Chapter6-27-N10-phl8pdf
28 @9  CiolPs — P9) — cro(Po — @10) Chapter6-28-N10-phi9.pdf
29 @10 CiolP9— @10) — cro( P10 — @p2) Chapter629-N10-phil0.pdf

Table 6.2: Generalised coordinates and equations of malibrRROM/axial-torsional/N2)

i 4 Qs T u Equations oMotion

1 (3.5.13) (H.2.1) (H.1.1) Chapter6-1-N2-psi.pdf

2 0 (3.5.14) Chapter6-2-N2-theta.pdf
3 « (3.5.15) Chapter6-3-N2-alpha.pdf
4 v (3.5.17) Chapter6-4-N2-gamma.pdf
5 R (3.5.16) Chapters-N2-R.pdf

6 mpr —colMpr —M1) Chapter6-6-N2-etaP1.pdf
7 mp2  —Co(M2—Tp2) Chapteré7-N2-etaP2.pdf

8 m  coMp —m) —com Chapter6-8-N2-etal.pdf

9 m  coMpz—M2) —com2 Chapter€9d-N2-eta2.pdf

10 @p1 —Cwl(@p — ¢1) Chapter6-10-N2-phiP1.pdf
11 @p2 —cro(P2 — @p2) Chapteré11-N2-phiP2.pdf
12 @1 crol@pr — @1) — Cro@r Chapter6-12-N2-phil.pdf
13 @2  col@p2— @2) — co®2 Chapter613-N2-phi2.pdf
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Figure 6.3: Axial and torsional elastic MMET system spin-up, angular displacemept of
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Y[t] — time

Y(t](rad)

0 500000 1.x10°% 15x10P 2.x108 25x10°% 3.x10P
time(Sec)

Figure 6.4:
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Axial and torsional elastic MMET system spin-up displacementpofT,,
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Figure 6.5: Axial and torsional elastic MMET system elliptical orbit angular positio® of
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Figure 6.6:Axial and torsional elastic MMET system elliptical orbit angular positiord of
(T, =400.01)
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Figure 6.8:Axial and torsional elastic MMET system base point distancé R=400.01)
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Figure 6.9: Axial and torsional elastic MMET system out-of-plane angte @f, = 4.01)
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Figure 6.10:Axial and torsional elastic MMET system out-of-plane anglecdf,, = 400.01)

> Figures6.3to 6.4 are the numerical results for the MMET system'’s spinduplhe
results show the discretised MMET system with axial and torsional elasticity perfor-
mance periodically on Earth orbit within the range -0.32 to 0.32 rad over the number
of cycles of periodrl,, = 4.01 and 400.01.

> 0 andR are the position generalised coordinates, whose responses are given in Fig-

ures6.5, 6.6 and6.7, 6.8for the short {,, = 4.01) and longT,, = 400.01) simulation
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Figure 6.11: Axial and torsional elastic MMET system rolling angle/ ¢T,, = 4.01)
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Figure 6.12:Axial displacement responsgs andnp; (T,, = 4.01)

times, respectively, and the MMET system can be located via the position coordinates

on an elliptical orbit, which are same as they were discussed in CHapter

> The out-of-plane angle, as shown in Figure8.9and6.1Q, the fluctuant plots depict

the steady motion within - 0.7 to 0.7 rad, with the non-zero initial conditi®(@® =
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Figure 6.17:Torsional displacement responge (T, = 400.01)
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Figure 6.18:Torsional displacement responge, (T,, = 400.01)
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Figure 6.19:Torsional displacement responge (T, = 400.01)

0.001 rad and(0) = 0.001 rad/s

> Figure6.11states the tether subspan’s rigid rolling angular displacement, with given
non-zero initial conditiony(0) = 0.001 rad angt(0) = 0.001 rad/s; its response moves

up in a linear way over the simulation time.

> Figures6.12to 6.15are the MMET system’s axial elastic motion over the simulation
timeT,, =4.01 and 400.01 for the discrete mass poMis, m; andMp;, m,, respec-
tively, which are same as the axial motions in Chapteas it has been discussed in

section5.9.

> The torsional motions can be observed in Figures 6.16, 6.17, 6.18 and 6.19 for the
payloads and mass pointsMp;, m; and Mp,, m,, which express the convergent
torsional behaviours fop+, @2, @p; andp,. with their initial values 0.001. On the
other hand, with zero initial values, all the torsional motions remain zero valued, which
is the one of the most common situations for the MMET system application. For the
torsional elastic motions are independent of the other elastic motions, the numerical

results should be same in Chapters 6 and 7.

Similar to the rigid body rolling motions, the torsional elastic motion is independent of
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the other elastic motions, whose simulation results can be effected by its initial values,
if given non-zero initial values, the torsional elatic behaviour can be start or stop by

giving a proper zero or non-zero initial conditions, numerically.
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6.8 Conclusions

With an arbitrary choice oN = 10 mass points, by using the Lagrange’s procedure, a discre-
tised MDOF MMET system has been proposed for the axial and torsional elastic behaviours.
To deal with the numerical time-consuming simulation difficulties, this MMET system

has been reduced td\a= 2 mass points MMET system with the same discretisation scheme,
and a reduced set of nonlinear ODEs and its numerical results have been obtained, which
show that the MMET system'’s torsional elastic motions are decoupling from axial elastic
motions and other rigid body motions, and the rigid body and axial elastic behaviours are
same as the MMET system in Chapter 5.

The torsional elastic motions are sensitive to the initial values for the torsional gener-
alised coordinate®, @2, @p; andep,, and are decoupling from the MMET system’s other
motions.

This chapter is the second stage in the modelling for the discretised MMET system, by
using the Lagrangian dynamics, which will be taken as the basic model for the pendular

modelling in the chapter which follows.
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Chapter 7

Dynamical Modelling for a Discretised

Flexible MMET System

7.1 Introduction

Based on the MMET model in Chapter 6, a MDOF discretised flexible MMET system with
an arbitrary choice oN = 10 mass points is investigated by involving pendular elasticity in
this chapter. As mentioned in section 1.4, the word ‘flexible’ means that this MMET system
incorporates axial, torsional and pendular elasticity. It must be clear that the ‘pendular’
elasticity in this Chapter means a seftoupled pendulums whex equals the number of
elements between each mass element in each of the tether sub-span.

As shown in Figures 7.1 and 7.2, there are two parts of the pendular elasticity, which are

expressed on the plamg — O — y, and the planey, — O — yo, respectively,

(1) As shown in Figure 7.1, for the pendular elasticity referenced on the plan® —

Yo, It is represented by a string of torsional ‘spring-damper’ groigs cy;}, which
connect the mass points ai; in series. With the assumption &f; = ... = k2,

cu1 =... =cy2, all the torsional ‘spring-damper’ groups are referenced onto the plane
xo — O —yo, as shown in Figure 7.3. THan the subscript means the pendular elastic
parameter, and the generalised coordingtetescribe the motions for mass poimts

(i=1,...,10) of the pendular elasticity on the plaae- O — yo.
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(2) Meanwhile, as shown in Figurg2, for the pendular elasticity referenced on the
planez, — O — yy, a string of torsional ‘spring-damper’ groufls;, c;} connect the
discrete mass points.;, with the assumptiok;; =... = k12, ¢y =... =cup, all the
torsional ‘spring-damper’ groups are referenced onto the plareO — y,, as shown
in Figure7.4. The generalised coordinatésdescribe the behaviours for mass points

m; (i =1,...,10) of the pendular elasticity on the plage- O — y,.

Z9

Yo

Figure 7.3: Reference onto the plange— O — y, for MMET pendular elasticity

Figure 7.4: Reference onto the plane— O — y, for MMET pendular elasticity

To summarise the flexible MMET modelling process, based on the serial spring and

damper assumptiori® andB5, it can be listed,

<1> for axial elasticity,ko =ki=ky=...=kyz3,co=¢c1 =¢C2 =...=Cqz, where

thek, andc, are the default stiffness and damping coefficient values;
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(2) for torsional elasticityky = ki1 = kiz = ... = Ky2,Co = Ciy = Ca = ... =

ci12, Where thek,, andcy, are the default stiffness and damping coefficient values;

(3) for pendular elasticity both on the plarg — O — y, and the plane, — O — yj,

klO =kypy=kpg=...=Kkyuz,co=cyy=c¢C2 =... = Cuyz, where thd(lo andcm

are the default stiffness and damping coefficient values. The discretised mass points

my=m; = m; =...= Mo, Where them, is the default mass value;

7.2 Potential Energy

The tether’'s potential energy is given in equatidn2(l), wherepu is the product of the
universal gravitational consta@twith the Earth’s masR;, R, andR,,, (i =1 to 10) are the

same as that defined in Chapfer

_HMpr pMpy My pmy opmy  pImyo
R R, R Rm, Rm, Rinio

u =

(7.2.1)
+ SE|axial + SE|t0rsional + SE|pendulaT

Where theSE| a1 and SE|iorsionar t€rMs are given in equation$.4.2 and 6.2.2,

SElpenautar term is the strain energy of the two subspans taking pendular elasticity into

account, as stated in equatiohZ.2.

The CE[,enautar quantity is an assumed pendular dissipation function, and the damping

coefficient in each group’s elastic element is assumed to be in the form of classical linear

viscous damping.

1 1 1
SElpendutar = zku (xp1 —X1)* + zhz(X] —x2) + o+ zkw)é

1 1
+zk17Xé +--- 4 zkuz(Xm —xp2)*+

(7.2.2)
1

1 1
zku (Cp1 — C1)* + Zklz(Q — O+ zklsCé

1 1
+zkl7Cé +e 4 zkuz(Cm —pm)?
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1 ) ) 1 . ) 1 .
CElpendutar = Scu (xp1 —x1)* + zCu(X1 —xX2)P 4+ ZCL6X§+

1 . 1 ) .
—017Xé + - 4 scua(Xio — xp2)

2 2
(7.2.3)
1 : SO . L 1,
scul(Cpr — Gi) + scul(l — Q)"+ - + scl5+
2 2 2
w2t el — m)?
2017 6 20112 10 P2
With kyg = ki =... =kyz, cio =cy =... =cuz, €quation 7.2.2 can be re-written as

equation 7.2.4), and equationq.2.3 can be reformed as equatiohZ.5, wherek,, andcy

are the default stiffness and damping coefficient values.

1
SElpendutar = ka ((Xm — )(1)2 +(x1 — Xz)2 + .- +X§ + Xé + -+ (X0 —XPz)z) +

1
Skio ((Gp1— G2+ (G — Q)P+ + G+ G+ 4 (Go— Cp2)?)

2
(7.2.4)

CElpenawtar = 510 ((kp1 = X1)* + (k1 = X2)" + -+ +%65X6 -+ + (10 — Xp2)*) +

7C1w0 ((CP] — OGP (G =P+ GG+ (Go— sz)z)

(7.2.5)

7.3 Kinetic Energy

The kinetic energy of the MMET system is given in equatidérs(J).
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1 2 gy ] O P
T = SMp (3 + U7+ 2) + 5Mea (3G +03 +23) + 5Mo (5§ + 03 +23) +

1 ) : ) 1 . ) :
zm] (X%m +y%n1 + ng) + Zmz (Xfﬂz +y12112 + 212112) +...

1 ) ) )
o (4 0, + 2,

1 1 1 N
ZIZIN + EIZPZ + IZT + EIZM:| (ll) + e) +

1 1 1 : 1 1 1 :
EIXN + EIXPZ + IXT + EIXM:| 0(2 + |:§Iyp1 + EIUPZ + IyT + zlym} YZ_"

1 . 1 : 1 : 1 :
5 Tup @bt + 3Ty P2 + 3Ty @1 - F zlymmcp%o} +

1 : 1 :
2 (Izm + Mp]X%) X|231 + z (Izm] + TTHX%m ) X% +...+

1 ) 1 )
7 (Izmm + mmxfnm) Xio + 7 (IZPZ + Mszé) Xp2

(7.3.1)

1 o] -
3 (Lepy + Mpix?) Gy + 5 (L, +MuX7) Gy + ... +

1 : 1 .
E (Ixmm + TTL]oXilm) Cil]o + z (IXPZ + MPZX%) C%’Z

7.4 Generalised Coordinates

Besides the generalised coordinatgd0o q,9, Which are the rigid body, axial and torsional
generalised coordinates, as discussed in se6tifyrthe relative pendular generalised coor-

dinatesy; and(; are included in this chapter, in which

> The generalised coordinates for the rigid body, axial elastic and torsional elastic
motions have been discussed in sectibiisand6.4, in which q; to qyo.

> The generalised relative pendular coordingtesre for the relative pendular motions
referenced on plane, — O — yo, xp1 andxp, are for the pendular motions of mass
payloadsMp; andMp,, X1 t0 X710 are for the pendular motions of discrete mass points

m, to myo, In Which d30 10 q41.
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> The generalised relative pendular coordindtesre for the relative pendular motions
referenced on plangy — O — y,, (p; and(p; are for the pendular motions of mass
payloadsMp; andMp;, (; to (o are for the pendular motions of discrete mass points

m, to myo, in Which d42 10 g53.

7.5 Generalised Forces

> The generalised force3; to Q,o are the rigid body, axial and torsional generalised

coordinates, as listed in Tablel

> The generalised forcé3s, to Qs; are the pendular generalised forces for mass points
m,; and payload®p; andMsp,, as listed in Tabl&.2, which comes from an assumed

dissipation function based on Rayleigh damping.

7.6 Governing Equations of Motion

Lagrange’s equations are used to generate the governing equations of motion, the full equa-
tions are to be found in the path CD-ROM/axial-torsional-pendular/N10/, as listed in Tables
7.1and7.2

Similar to Chapteb, there are 53 nonlinear equations for 53 generalised coordinates of
the flexible MMET system,and it has been found that the ‘out of memory’ problem solves the
MMET system of coupled differential equations, as long as each variable has the appropriate
number of conditions, as discussed in secidh

To handle this problem and to speculate the interaction of the flexible MMET system, it
has reduced discretisation scheme right dowiNte 2, then we use Lagrange’s equations
to derive a reduced set of nonlinear governing equations for a simplified flexible MMET
system, as shown in Appendixand the generalised coordinates for the MMET system with

two discrete mass points are given in Tabla

» The detail modelling procedure for a flexible MMET system with two discretised

mass points are attached in Appentix
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Table 7.1: Generalised coordinates and equations of motiGD-ROM/axial-

torsional/N10J)
i q Q: T u Equations oMotion
1 Y (3.5.13) (7.3.1) (7.2.1) Chapter7-1-N10-psi.pdf
2 0 (3.5.14) Chapter7-2-N10-theta.pdf
3 « (3.5.15) Chapter7-3-N10-alpha.pdf
4 v (3.5.17) Chapter7-4-N10-gamma.pdf
5 R (3.5.16) Chapterb-N10-R.pdf
6 mnpr —coMpr —m) Chapter7-6-N10-etaP1.pdf
7 mp2  —co(Nio —Mp2) Chapter?7-N10-etaP2.pdf
8 m co(ﬁm 1'11) —co(m —M2) Chapter7-8-N10-etal.pdf
9 mn2  colm —m2) —co(m2 —m3) Chapter7-9-N10-eta2.pdf
10 3 Co (T]z — T]3) — Co (1’]3 — T]4) Chapter?-lO-NlO-eta3.pdf
11 ns  co(Mz —M4) — co(Mg —Ms) Chapter7-11-N10-eta4.pdf
12 15 co(mg —Ms) — coms Chapter7-12-N10-eta5.pdf
13 16 co(M7 —Me) — cons Chapter7-13-N10-eta6.pdf
14 n7 Co (T]6 — 1’]7) — Co (1’]7 — T]g) Chapter7-14-N10-eta7.pdf
15 s Co (T]7 — T]g) — Co (T]g — T]q) Chapter?-lS-NlO-etaS.pdf
16 Mo Co (T]g — T]9) — Co (T]g — 1:]10) Chapter?-lG-NlO-etaQ.pdf
17 Mo co(Me —M10) — co(M10 — Mp2) Chapter?17-N10-etal0.pdf
18 ¢p1 —crol(@pr — @1) Chapter7-18-N10-phiP1.pdf
19 op2 —Crol@r0— @p2) Chapter?19-N10-phiP2.pdf
20 (O] Cto((bp] (01) — Cto((m — (pz) Chﬁpt@f?-ZO-NlO-phil.pdf
21 @2  cple ©2) — col@2 — @3) Chapter7-21-N10-phi2.pdf
22 Q3 Cto((pz — (93) — Cto((-pg — (p4) Chapter7-22-N10-phl3pdf
23 ©4 Cto((pg — (p4) — Cto((-p4 — (05) Chapter7-23-N10-phl4pdf
24 @5  Ccipo(Ps— @5) — CoPs Chapter7-34-N10-phi5.pdf
25 @  CwlP7 — @s) — CoPs Chapter7-25-N10-phi6.pdf
26 ()4 Cto((p6 — (P7) — Cto((b7 — (pg) Chapter7-26-N10-phl7pdf
27 (OF Cto((p7 — (pg) — Cto((-pg — (p9) Chapter7-27-N10-phl8pdf
28 @9 culPs— @9) — cro(P9 — @10) Chapter7-28-N10-phi9.pdf
29 @10 cwl@s — @10) — crol@10 — Pp2) Chapter729-N10-phil0.pdf
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Table 7.2:
torsional/N10J) (continue)

Generalised coordinates and equations of motiGD-ROM/axial-

i g Qi T U Equations oMotion

30 xp1 —culXe —X1) Chapter7-30-N10-chiP1.pdf
31 xp2 —ciolxio —xr2) Chapter?#31-N10-chiP2.pdf
32 X1 ClO(XP] — X]) — ClO(X] — Xz) Chapter7-32-N10-ChI1pdf
33 X2 ClO(X] Xz) — Cw().(z — Xg) Chapter7-33-N10-Ch|2pdf
34 X3 ClO(XZ — X3) — Clo()'(g — X4) Chapter7-34-N10-Chi3.pdf
35 X4 ClO( ) — CLO().(4 — X5) Chapter7-35-N10-Ch|4pdf
36 X5 ClO(X4 — 5) — C10X5 Chapter7-36-N10-Ch|5pdf
37 X6 CIO(X7 — 6) — C[o).(g Chapter7-37-N10-chi6.pdf
38 X7 ClO(XG — 7) — C[()().(7 — Xg) Chapter7-38-N10-Chl7pdf
39 xs co(x7 — Xxs) — cro(xs — Xo9) Chapter7-39-N10-chi8.pdf
40 X9 ClO(XS Xg) — Clo()'(g — X]o) Chapter7-40-N10-chi9.pdf
41 x10 colxe — X10) — co(x10 — Xp2) Chapter741-N10-chi10.pdf
42 Cpr —cpl(lp — &) Chapter7-42-N10-zetaP1.pdf
43 (p; _CIO(C1O — (p2) Chapter743-N10—zetaP2pdf
44 C] ClO(CP] C]) — CLO(C] — Cz) Chapter7-44-N10-zetal.pdf
45 ¢ clG — Cz) —co(C2 — Cg) Chapter7-45-N10-zeta2.pdf
46 (3 Clo(Cz — _Cg,) — cm((;3 §4) Chapter7-46-N10-zeta3.pdf
47 & Clo(Cg, — C4) — Clo(_C4 — C5) Chapter7-47-N10-Zeta4.pdf
48 (5 ol — Gs) — cuols Chapter7-48-N10-zeta5.pdf
49 (s cwollr— Ge) — ciole Chapter7-49-N10-zeta6.pdf
50 ¢ cwlls— ) —collr — Cs) Chapter7-50-N10-zeta7.pdf
51 Z,S CIO(C7 - Cg) — Clo(gg — Cg) Chapter7-51-N10-zeta8.pdf
52 Gy colls— Co) — co(Co — Cip) Chapter7-52-N10-zeta9.pdf
53 C]o Clo(Ccy — C]o) — Cw(C]o — sz) Chapter?SB-NlO-zetalO.pdf
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Table 7.3: Generalised coordinates and equations of maliDrRROM/axial-torsional/N2)

g Qi T Equations oMotion

1 (3.5.13) (1.2.1) (1.1.1) Chapter7-1-N2-psi.pdf

2 0 (3.5.14) Chapter7-2-N2-theta.pdf
3 « (3.5.15) Chapter7-3-N2-alpha.pdf
4 v (3.5.17) Chapter7-4-N2-gamma.pdf
5 R (3.5.16) Chapterb-N2-R.pdf

6 mnpr —coMpr —m) Chapter7-6-N2-etaP1.pdf
7 mMp2  —Co(M2—Mp2) Chapter77-N2-etaP2.pdf

8 m  coMpr —m) — comy Chapter7-8-N2-etal.pdf

9 M coMp2—12) —com2 Chapter79-N2-eta2.pdf

10 @p1 —col@pr — @1) Chapter7-10-N2-phiP1.pdf
11 @p2 —Ciol @2 — @p2) Chapter711-N2-phiP2.pdf
12 @1 cwol@pr — @1) — Co@r Chapter7-12-N2-phil.pdf
13 ¢  cwl@pr— @2) — CoP2 Chapter#13-N2-phi2.pdf
14 xp1 —cwol(Xpr —X1) Chapter7-10-N2-chiP1.pdf
15 xp2  —cwolx2 — Xpr2) Chapter?11-N2-chiP2.pdf
16 x1  cuolXpr —X1) — CoXi Chapter7-12-N2-chil.pdf
17 x2  cuolXrz —X2) — CoX2 Chapter713-N2-chi2.pdf
18 (py _CLQ(.CP] - (1) Chapter?-lO-NZ-zetaPl.pdf
19 Cpo  —co(Co— Cp2) Chapter711-N2-zetaP2.pdf
20 G cwllp —G1) —cwl Chapter7-12-N2-zetal.pdf
21 & cpl(Cpr — G) —cola Chapter713-N2-zeta2.pdf

211



7.7 Simulations and Discussions

Figures 7.5 to 7.25 are the numerical results obtaineMByTHEMATICA for the flexible
MMET system with two discrete mass points, and the motion equations are listed in Table
7.3. The figures in this section are the selected numerical results for the flexible MMET
system over a short simulation time (the number of cycles of pefligd; 4.01) and long

simulation time (the number of cycles of periofl, = 400.01), respectively, as given in
Appendix C.

N

Yltl(rad)

-0.2¢

0 500C 1000cC 1500C 2000C 2500C 3000¢
time(Sec)

Figure 7.5: The flexible MMET system spin-up(T,, = 4.01)
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Figure 7.6:The flexible MMET system spin-ug (T, = 400.01)
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Figure 7.7: The flexible MMET system base point distancd,R«4.01)
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R[t] — time
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Figure 7.8:The flexible MMET system base point distance ofIR € 400.01)
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Figure 7.9: The flexible MMET system elliptical orbit angular positiorodil,, = 4.01)
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Figure 7.10:The flexible MMET system elliptical orbit angular position®{T,, = 400.01)
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Figure 7.11: The flexible MMET system out-of-plane angl€l,, = 4.01)
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Figure 7.12: The flexible MMET system out-of-plane anglg(T,, = 400.01)
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Figure 7.13: The flexible MMET system rolling angygT,, = 4.01)
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Figure 7.14:Axial displacement responsgs andnp; (T, = 4.01)
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Figure 7.15:Axial displacement responsgs andnp; (T,, = 400.01)
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Figure 7.16:Axial displacement responsgs andnp; (T,, = 4.01)
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Figure 7.17:Axial displacement responsgg andnp; (T,, = 400.01)
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Figure 7.18:Pendular displacement responge (T,, = 4.01)
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Figure 7.19:Pendular displacement respongg T, = 4.01)

> Figures7.5and7.6 are the plots for the flexible MMET system spin-up behaviour,

which varies within the range -0.32 to 0.32 rad, and their shapes are different from the

responses for the MMET systems with axial or torsional elasticity.

> As shown in Figureg.7 and7.8, R is the distance from the Earth to the MMET

system COM over simulation timé&, = 4.01 and 400.01, which varies within the

range ofr,, tor,, and together with Figures9and7.10for the true anomaly, which

indicate that the MMET system goes around the Earth periodically on an elliptical

orbit.
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Figure 7.20:Pendular displacement responge (T,, = 4.01)
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Figure 7.21:Pendular displacement resporsgT, = 4.01)

> Figures7.11and7.12are out-of-plane angle responses, which are changing within

-0.6 to 0.6 rad fluctuatedly.

> As shown in FigureZ.13 the rigid rolling angley stays in a steady linear increasing
trend, with given non-zero initial conditiong0) = 0.001 rad and/(0) = 0.001 rad/s.

As also discussed in sectiofis7 and5.9, since the motion of is independent of the
other motions, the zero initial value setting can help to control this rigid body rolling

motion.

> Figures7.14and7.15are the axial elastic plots for the discrete mass pointand

payloadMp;, Figures7.16and7.17 are the axial elastic plots for the discrete mass
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Figure 7.22:Pendular displacement resporise (T, = 4.01)
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Figure 7.23:Pendular displacement resporis€T,, = 4.01)

point m, and payloadVp,, which express the MMET system'’s axial elastic motions
along each of the tether subspans over the simulation Time 4.01 and 400.01,

symmetrically.

Then;’s response keeps steadily within the range -3.4 to -4.4 metre anqptfee
response are within the range -6 to -10.5 metre, meanwhiandnp,’s motions are
symmetric ton; andnp;’s motions with respect to the MMET system COM, whose

ranges are 3.4 to 4.4 metre and 6 to 10.5 metre, respectively.

Similar to section®.9and6.7, the curves ofj; andn;, are with larger period thaip,

andnp,’s responses respectively. Besides, they are also carrying some tiny oscillations
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Figure 7.24:Pendular displacement resporise (T, = 4.01)
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Figure 7.25:Pendular displacement resporis€T,, = 4.01)

atnp; andnp;’s peaks and bottoms, as can be observed in Figufdekand7.16

> The torsional motions are the same as Chadieasd6, for the rigid body rolling
angel is a stand-along variable in the MMET system, which is decoupled from other
generalised coordinates, and the torsional motions have been discussed in Ghapters
ando.

> For the pendular motions referenced on plane O —y,, Figures7/.18and7.19are
the pendular responses fdtp; andm,, and Figures.20and7.21are the pendular

responses foMyp, andm,; over the simulation timé, = 4.01.

The pendular motiongp; andyp, for the payloadsvip; andMp, move with ups and
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downs within the range of -0.00045 and 0.00045 rad, and the pendular mgtians
X2 for the discrete mass points; andm, move within -0.000045 and 0.000045 rad.

> Similarily, for the pendular motions referenced on plape- O — y,, Figures7.22
and7.23are the pendular responses for paylddg; and mass poinin;, and Figures
7.24and7.25are the pendular responses for paylddd, and mass pointn,. The
pendular motiongp; and (p, move within the range -0.00045 and 0.00045 rad and
with reducing oscillations for payloadsly; and Mp,, and the pendular motiong

and(, go within a range of -0.000045 and 0.000045 rad for mass peintandm,.

Figures7.18to 7.25are the pendular elastic angular displacement on plagre€ —y,

and planez, — O —yo, respectively, which indicate that the convergent pendular elastic
behaviours are also observed with reducing amplitude of oscillation and approaching
to zero. By involving the tether’s mass and mass moment of inertia, their amplitude

and shape are smaller and different from massless flexible MMET system’s response.

7.8 Conclusions

A MDOF discretised flexible MMET system with an arbitrary choicéNof 10 mass points
on elliptical orbit has been discussed in this chapter, in which, which includes not only axial
and torsinal elasticity, but also the pendular elasticity as well.

As there were two parts of the pendular elasticity, referenced on the pjareO —
Yo and the plane, — O — yo, x; and (; were selected as the generalised coordinates for
the two parts of motions related to pendular elasticity, respectively. By using Lagrange’s
equations, aN = 10 flexible MMET system has been built, then, in order to handle the
numerical simulation time-consuming difficulties on the current computational system, a
flexible MMET system withN = 2 mass points has been proposed to reduce the number of
the nonlinear ordinary differential equations, which can balance the numerical performance

and the MDOF discretisation scheme for the MMET system, as shown in Appendix I.

Table 7.4: Figures for spin-up in Chapters 5,6 and 7

Tether Type Figure No.T{, = 400.01) Figure No.T;,, =4.01)
Axial Elastic 54 55

Axial and Torsional Elastic 6.3 6.4

Flexible 7.5 7.6

To summarise, the numerical results in Chapters 5, 6 and 7 are listed in Tables 7.4 to

7.13.
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Table 7.5: Figures foR in Chapters 5,6 and 7

Tether Type Figure No.T{, = 400.01) Figure No.T;,, =4.01)
Axial Elastic 5.6 5.7

Axial and Torsional Elastic 6.7 6.8

Flexible 7.7 7.8

Table 7.6: Figures fo in Chapters 5,6 and 7

Tether Type Figure No.T{, = 400.01) Figure No.T;, =4.01)
Axial Elastic 5.9 5.8

Axial and Torsional Elastic 6.6 6.5

Flexible 7.10 7.9

Table 7.7: Figures fo& in Chapters 5,6 and 7

Tether Type Figure No.T{, = 400.01) Figure No.T;, =4.01)
Axial Elastic 5.11 5.10
Axial and Torsional Elastic 6.10 6.9
Flexible 7.12 7.11

Table 7.8: Figures foy in Chapters 5,6 and 7

Tether Type Figure No.T{, = 400.01) Figure No.T;, =4.01)
Axial Elastic - 5.12

Axial and Torsional Elastic - 6.11

Flexible - 7.13

Table 7.9: Figures fon; andnp; in Chapters 5,6 and 7

Tether Type Figure No.T(, = 400.01) Figure No.T, =4.01)
Axial Elastic 5.14 5.13

Axial and Torsional Elastic 6.13 6.12

Flexible 7.15 7.14

Table 7.10: Figures fot; andnp, Chapters 5,6 and 7

Tether Type Figure No.T{, = 400.01) Figure No.T,, =4.01)
Axial Elastic 5.17 5.16

Axial and Torsional Elastic 6.15 6.14

Flexible 7.15 7.16

Table 7.11: Torsional elastic motions figures for Chapters 6 and 7

Tether Type Figure No.T =400.01) Figure No. T, =4.01)

©p1 6.16

o 6.17 -
©p2 6.18 -
(05 6.19 -

e Table7.4gives the spin-uph plots for the MMET tether systems with discrete mass
points, with the given parameters in Appendix The results in ChatperS and6

are with same range -0.325 to 0.325 rad, dheesults in Chapter are with smaller
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Table 7.12: Figures for pendular elasticity in Chapter 7 - pbayie O — yo
Tether Type Figure No.T{, = 400.01) Figure No.T;, =4.01)

XP1 - 7.20
X1 - 7.19
Xp2 - 7.20
X2 - 7.21

Table 7.13: Figures for pendular elasticity in Chapter 7 - plane O — y,
Tether Type Figure No.T =400.01) Figure No. T, =4.01)

Cp1 - 7.24
O - 7.23
(py ; 7.24
G - 7.25

range -0.32 and 0.32 rad, which indicate that
> Including different quantity of mass moments of inertia, the MMET system’s

spin-up response in Chaptérs different from the spin-up responses in Chapters
5 and6.

> The MMET system’s axial and pendular elastic motions are coupled to each

other, and the torsional elastic motion is decoupled from them.

e Table7.5is for the tether’s position generalised coordinRtevhich determines the
distance from the Earth to the MMET system’s COM. In this case, giver¥ 0.2,7,
= 6.89< 10° metre and them, = 1.0335<10' metre, it goes within the range of to

Ta-

e Table7.6is for the true anomalg, which is in a linear up-changing trend from 0 to
2500 rad coupling range of 0 to 0.5 rad fluctuation spread, over the number of cycles
of periodT,, = 400.01, together with the position generalised coordiRatehich state

the tether systems go around the Earth in an elliptical orbit.

e Table7.7is for the out-of-plane angle with same initial conditions, the: curve
in Chapter7 is with smaller range -0.6 to 0.6 rad thancurves in ChapterS and®6,
which state that the out-of-plane anglis motion can be effected by tether’s axial and

pendular elastic motions.

e Table 7.8 is for the rigid rolling angley, which keep moving up in a linear way
over the full simulation time, it is a stand-alone generalised coordinate to the MMET

system’s generalised coordinates.
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e Tables7.9 and7.10are the figure list for the axial elastic motions for the MMET

systems withN = 2 discrete mass points, in which,

> The numerical results fay, andnp, are positive and the results fqy andnp,
are negative, which indicate that the axial motions in the two tether subspans are

moving in an opposite direction with same local relative direction definition.

> Also, this different axial motions validate that the MMET tether system is a

symmetrical system with respect to the MMET system COM.

> The axial elastic motions can be effected by the pendular elastic motions by

including more mass moments of inertia.

e Table7.11are the list for the torsional elastic motions in Chapt&end7, whose

motion is independent of the MMET systems’ other motions.

e Tables7.12and7.13are the list for the pendular elastic motions referenced on plane

xo — O —yp and planez, — O — yo, wWhich indicate that,

> The pendular elasticity for two tether subspans, referenced on the same plane

(xo — O —yp orzo — O — yy), are with same behaviours to the other.

> The pendular elasticity for the same tether subspan, referenced on the different
planes £, — O —yo andzy — O — y,), are with similar curve shapes but slightly

smaller amplitudes.
> The pendular elastic motions can be effected by the axial elastic motions.

> The numerical simulation results have shown the convergence of the pendular
elastic behaviours, which are approaching to zero during given simulation time.

All subsequent analysis for control applications will henceforth include axial, torsional
and pendular elasticity within the MMET system.

With unsuitable parameter settings, such as too much masses difference between pay
loads and tether subspans, too big or small stiffness, or damping coefficients, the numerical
simulations cannot be carried out to the end of the full simulation time, and integration error
occurs. Currently, this MMET model cannot generate a loop in the tether subspans; this

could be investigated in further studies.
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Chapter 8

Fuzzy Logic Control for MMET Spin-up

8.1 Introduction

Fuzzy logic theory was first proposed by Zadeh in 1965g, and was based on the con-
cept of fuzzy sets. Over recent years, fuzzy logic control (FLC) has been used in a wide
variety of applications in engineering, such as: in aircraft/spacecraft; in automated highway
systems; in autonomous vehicles; in washing machines; in process control; in robotics con-
trol; in decision-support systems; and in portfolio selection. Practically speaking, it is not
always possible to obtain a precise mathematical model for nonlinear, complex or ill-defined
systems. For example, in a complex industrial system, a skilled human operator can learn
from his own experience by observing the inputs and outputs of a process and adjusting the
inputs to obtain the desired outputs.

It is difficult to process the modelling for a complex system and the control system de-
velopment, and even if a relatively accurate model of a dynamic system can be developed,
it is often too complex to use for controller development, especially for many conventional
control design procedures which require restrictive assumptions for the plant.

It is necessary to know system’s mathematical model or to make some experiments for
tuning conventional proportional-integral-derivative (P1D) parameters. However, it is known
that conventional PID controllers do not generally work well for nonlinear systems, and
particularly for complex and vague systems which have no precise mathematical models.
When compared to the conventional controller, the main advantage of fuzzy logic is that no
mathematical modelling is required. Since the controller rules are based on the knowledge
of the system behaviour and the experience of the control engineer, the FLC requires less

complex mathematical modelling than the classical controller does.
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Conventional control methods provide a different way of approaching the construction
of nonlinear MMET systems, such as feedback-linearisation control and PID control, even
when a reasonably good model of the plant is available which satisfies the necessary assump
tions. According to the previous chapterso 7, the MMET system’s nonlinear behaviours
can hardly be controlled by the conventional controllers, which can offer quite a poor solu-
tion to the MMET spin-up control problem.

The FLC is a practical alternative for a variety of challenging control applications since it
can provide a convenient method for constructing nonlinear controllers via the use of heuris-
tic information. The heuristic information may come from an operator, which acts as a
‘human-in-the-loop’ controller and from which experiential data is obtained.

Generally, in the FLC design methodology, the human operator needs to write down a
set of rules which establish how to control the process. This is called the rule-base and
thenceforth a fuzzy controller can emulate the decision-making process of the human by
following the rule-base. In other cases, the heuristic information may come from a control
engineer who has performed extensive mathematical modelling, analysis, and development
of control algorithms for a given process. Again, such expertise is loaded into the fuzzy con-
troller to automate the reasoning processes and actions of the expert. Regardless of where th
heuristic control knowledge comes from, fuzzy control provides a user-friendly formalism
which can be used for representing and implementing the ideas which can help to achieve
high-performance controllBY [19Q [221] [227).

Basically, the fuzzy controller block diagram is given in Fig&&, and is taken from
Passino 190 [221]] [227, which shows the architecture of a fuzzy controller in a closed-
loop control system. The plant outputs are denoted {1y, its inputs are denoted hy(t),
the reference input to the fuzzy controller is denotedrfty, and the error between(t)
andr(t) is denoted by (t). Generally, the fuzzy controller gathers plant output dgta,
compares it to the reference inpyt), and then decides what the plant input) should be
in order to ensure that the performance objectives will be required.

As shown in Figure8.1, the fuzzy controller has four main components:

e A‘rule-base’ or a set of ‘IF-THEN'’ rules, which contains a fuzzy logic quantification

of the expert’s linguistic description of how to achieve good control;

e An ‘inference mechanism’, which emulates the expert’s decision making in the inter-
pretation and application of knowledge about how best to control the plant. A set of

such ‘IF-THEN' rules is loaded into the rule-base, and an inference strategy is chosen.
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Figure 8.1: Fuzzy logic controller architecture, cited from [190] [221] [222]
Thenceforth the system is ready to be tested to see if the closed-loop specifications are
needed,;

e A ‘fuzzification’ interface, which converts ‘crisp’ inputs into ‘fuzzy’ information that

the inference mechanism can be interpreted and compared to the rules in the rule-base

e A ‘defuzzification’ interface, converts the conclusions by the inference mechanism

into crisp(actual) inputs for the plant.

Briefly, fuzzy control system can be designed in the following steps:

(1) Choosing the fuzzy controller inputs and outputs;
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Figure 8.2: The FLC control loop for the MMET spin-up [221] [222]
(2) Choosing the preprocessing that is needed for the controller inputs and possibly
postprocessing that is needed for the outputs;

(3) Designing each of the four components of the fuzzy controller, as shown in Figure
8.1, which including fuzzification, inference mechanism, rule-base and defuzzifica-

tion;

8.2 Control Objective

The primary objective of this fuzzy logic control design is to develop a FLC controller that

makes the MMET spin-up performancep{t) andxj)(t) - move to its desired position as
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quickly as possible, with little or no endpoint oscillation. The MMET system with axial,
torsional and pendular elasticity has complex, nonlinear dynamical flexible behaviour, as
shown in chaptei7, and the behaviour’s characteristics will change as the parameters are
changed, such as when the payload has been transferred from the tether. A 2-in-1-out FLC
for MMET system spin-up will be discussed in this chapter, whose structure is given in
Figure8.2[221] [227.

8.3 Linguistic Descriptions

Suppose that the human expert shown in Figisprovides a description of how best to
control the plant in some natural language (e.g. English). The linguistic description pro-
vided by the expert can generally be broken into several parts. There will be ‘linguistic
variables’ which describe each of the time varying fuzzy controller inputs and outputs, the
linguistic description will be loaded into the fuzzy controller, for the MMET system FLC,
and is indicated in Tabl8.1

As shown in Figure8.2, the plant is the MMET modelling with axial, torsional and
pendular elasticity, which is explored in chapfeihe plant outputs are denoted ¥yt ), its
inputs are denoted biy(t), the reference input to the fuzzy controller is denotedhy;(t),
and the error betweet(t) and Wg.¢(t) is denoted bye(t). Generally, the ‘crisp’ error
and change-in-error are denoted) andec(t), the fuzzified error and change-in-error are
denoted byt andEC. The FLC gathers plant output datat), compares it to the reference
input Wre(t), and then decides what the plant indut) should be to generate that the

MMET spin-up performance objectives will be required.

Table 8.1: Inputs and output linguistilescription

Input-1  ‘error’ e(t)
Input-2  ‘change-in-error’ ec(t)
Output-1 ‘length’ L(t)

8.4 Inputs and Outputs

Consider a FLC with human-in-the-loop, whose responsibility is to control the MMET sys-
tem, as shown in Figur@.2 There are two inputs and one output in this FLC, and it can be
referred to as a ‘2-in-1-out’ FLC, in which the error and change-in-error between the spin-up
angular velocitylj)(t) and the spin-up angular acceleratipnt) with the reference signals

{pRef(t) andg.¢(t) are selected as the inputs, as given in equati8ns ) and 8.4.2.
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Figure 8.3: The Human control loop for the MMET spin-up

Meanwhile, the tether subspan lendttt) is the output from the FLC and the input to the
MMET system. For the MMET spin-up control, only the tether lenfth) is allowed as
the input control signal, as given in Tallel. More about the FLC work process will be

discussed in sectioB.6.

e (t) =] P(t) — Prer(t) | (8.4.1)

ec (t) =| P(t) — Prer(t) | (8.4.2)

Once the fuzzy controller inputs and outputs are chosen, the next step is to determine
what the reference inputs are. For the MMET system, the choice of the reference inputs
arexl)Ref(t) =0 andx]}Ref(t) = 0, then equationsg(4.3 and @.4.4, where|| x | is the

normalisation operation, which will be discussed in sec8dnl

e(t) =[ (1) | (8.4.3)
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ec (t) =[] (1) || (8.4.4)

8.5 Fuzzification

A process of fuzzification converts its numeric or crisp inputgt and ec(t)) to input
fuzzified inputs E andEC), so they will be used by the fuzzy inference system. The fuzzified
inputs are used to quantify the information in the rule-base, and the inference mechanism
operates on fuzzy set§ @ndEC) to produce output fuzzy setsl( ). Basically, the fuzzy

set is a different representation for the crisp numbers, in this context, and it has utilised the
scaling gains or factors to perform the fuzzification process, as given in equations (8.5.1)
and (8.5.2), wher& and EC are the fuzzified input valueg(t) andec(t) are the crisp

input values K; = {K,, K.} is the scaling factor as defined in equation(8.5.6). Equations
(8.5.1) and (8.5.2) are the fuzzification feft) andec(t), in which, e(t) andec(t) are the

normalised inputs by the normalisation process given in section.8.5.1

E =K., x e(t) (8.5.1)

EC = Kee X ec(t) (8.5.2)

8.5.1 Normalisation

Fuzzification is an actual normalisation process which decomposes the system inputs into
the fuzzy sets. That is, it is used to map variables from practical value faRge Xmax]

to fuzzy value rangé—1, 1], as shown in Figure8.4, 8.5and8.6. Briefly, in the FLC nor-
malisation designing process for the MMET system, there are 3 steps for the normalisation

process:

(1) Scale factor generation, as shown in Figure 8.4. This step is to calculate the scale
factor according to the input range.i,,, xmax Of the raw data;, as given in equation
(8.5.3);

Xi — Xmin

norm-xiljp 1} = ™ . (8.5.3)
max mn

(2) Scale operation, as shown in Figure 8.5, all the input data are scaled to the range

of [lower, upper], which are[—1, 1] in this case, as given in equation (8.5.4);

NOTM Xi|scatea = (UpPer — lower) x norm_xilj 1 (8.5.4)
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(3) Shift operation, as shown in Figu&6, the data are shifted to the new range

[lower, upper], as given in equatior8(5.5;

NOTM Xil[lower upper] = LOWET + NOTM Xi|scaled (8.5.5)
A 0 ]
>
P xmax - xmm o
. xi _xmin g
2N L.
_4 -/ ?
Xmin Xi Xmax

Figure 8.4: Normalisation step 1: scale factor generation

upper - lower

A
v

0 I

Y

lower upper

Figure 8.5: Normalisation step 2: scale operation

A
shift upper - lower
>
()i > [
lower ' upper

Figure 8.6: Normalisation step 3: shift operation

The scale factoK; can be defined in equatioB.6.9, which can be generated from the
input data source;, and the max and min values of the input data are denoted,pyand
Xmin. FOr the MMET spin-up control FLC, the scale factors &6t) andec(t) are denoted

by K. andK,., and are given in equation8.6.7) and @.5.9.

K, = — & Xmin (8.5.6)

X{ (Xmax - Xmin)
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In Figure 8.4, the data rangé€«in, Xmax] COMes from the practical inputis and{b of
the FLC for the MMET system spin-up control, the outputs of the normalisatioa(&reand

ec(t).

ei(t) B emin(t)

Ke = 0 (eman(t) — emn(t))

(8.5.7)

- CCi(t) - ecmin(t)
B eci(t) (ecmax(t) - ecmin(t))

Kee (8.5.8)

8.5.2 Membership functions

A membership function (MF) is a curve which defines how each point in the input space
is mapped to a membership value between 0 and 1. The function itself can be an arbitrary
curve whose shape can be defined as a function that suits us from the point of view of
simplicity, convenience, speed, and efficiency. The MF for the MMET system is a Gaussian
combination membership function, which is given in equati®.© [19]] and in Figure

8.7, thec defines the position of the MF curve, and theefines the scale of the MF curve.

The inputs of error(E) and change-in-error (EC) and the fuzzified control signal output (U)

are interpreted from this fuzzy set, and the appropriate degree of membership is obtained.

(x —c)?
u(x) =exp| — 702 (8.5.9)
]A ,LL(ZL') :
|20
¢ i
0o —7 i
N > 4

Figure 8.7: Gaussian combination membership function definition

The process of fuzzification allows the system inputs and outputs to be expressed in
linguistic terms such that rules can be applied in a simple manner to express the complicated
system. In the FLC for the MMET system, there are 9 values of linguistic variables in the

fuzzy sets:
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Degree of membership

Degree of membership

NB NM NS NZS ZE PZS PS PM P

-5 0 5
FLC Input Error(E)

Figure 8.8: The membership function for E

NB NM NS NZS ZE PZS PS PM P

-5 0 S
FLC Input Change-in-Error(EC)

Figure 8.9: The membership function for EC
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(1) For 2 inputs of E and EC, which ar¢:NB , NM , NS, NZS, ZE , PZS , PS
PM,PB)or(-5,—4,-3,-2,0,2,3,4,5).
(2) For 1 output of U aré NB, NM , NS ,NZS , ZE ,PZS,PS,PM,PB ) or ( —2
,—1.5,-1,-05,0,05,1,15,2).

The fuzzy linguistic values are also listed in Appendix M. When applied in the numerical

calculation, the mapping process are shown in Figures8.8, 8.9 and 8.13

8.6 Rule-base and Inference Mechanisms

The FLC ‘IF-THEN’ rule base is then applied to describe the expert’s knowledge, the 2-in-1-
out FLC rule-base for the spin-up of the MMET system is characterised by a set of linguistic
description rules based on conceptual expertise which arises from typical human situational
experience. In particular, for the MMET spin-up control, the rule-base is given in Table
8.2, with two inputs and nine linguistic values for each of those, there are at$hest81

possible rules as following list:

(1) IF E=NB, AND EC = NB, THEN U = NB;
(2) IF E=NB, AND EC =NM, THEN U = NM;

(3) IF E=NB, AND EC =NS, THENU = NS,

(81) IF E =PB, AND EC = PB, THEN U = NB;

Table 8.2:The ‘2-in-1-out’ FLC rule table for MMET system

U EC
NB NM NS NzZS ZE PZS PS PM PB

NB | NB NM NS NZS PZS PZS PS PM PB
NM | NM NM NZS NzZS PZS PZS PZS PM PM
NS | NS NS NZS NZS PZS PZS PZS PS PS
NZS | NZS NZS NZS NZS ZE PZS PZS PZS PZS
E ZE | PZS PZS PZS ZE ZE ZE PZS PZSPZS
PZS | PZS PZS PZS PZS ZE NZS NZS NZINZS
PS | PS PS PZS PZS PZS NZS NZS NSNS
PM | PM PM PS PZS PZS NZS NS NM NM
PB | PB PM PS PZS PZS NZS NS NM NB

The full rule-base is also given in Figure 8.10 as a rule-base 3D plot, which defines the

relationship between 2 FLC inputs of the Error (E) and the Change-in-Error (EC) with 1
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FLC output(U). Table3.2is also the 2-in-1-out FLC rule-base table which can drive the FLC
inference mechanism, and this came from the previous experience gained from examining
dynamic simulations for tether length changes during angular velocity control. Briefly, the

main linguistic control rules are:

(1) the larger the angular velocity input, the shorter the length tether output; Con-

versely, the smaller the angular velocity input, the longer the tether length output.

(2) the larger the angular acceleration, the longer the tether length output; Otherwise,

the smaller the angular acceleration, the shorter the tether length output.

0.6
0.4 4

0.2 4

-0.2

FLC Output(U)
o
/

-0.4 -

-0.6

0
FLC Input Change-in-Error(EC) -5 5 FLC Input Error(E)

Figure 8.10: The control surface of the fuzzy controller for MMET spin-up

Fuzzy inference is the process of formulating the mapping from a given input to an output
using fuzzy logic. The mapping then provides a basis from which decisions can be made,
or patterns can be discerned. The process of fuzzy inference involves all of the pieces that
are described in the previous sections: Membership Functions; Logical Operations; and
‘IF-THEN’ Rules. Mamdani’s fuzzy inference methotlg3 [194] [195 [19]] is the most
commonly witnessed fuzzy methodology, it was among the first control systems built using
fuzzy set theory. It was proposed in 1975 by Mamdani as an attempt to control a steam
engine and boiler combination by synthesizing a set of linguistic control rules obtained from

experienced human operators. Mamdani’s effort was based on Zadeh's rese&sabn|
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fuzzy algorithms for complex systems and decision processes in 1973. The Fuzzy Inference

System (FIS) of Mamdani-type inference for the 2-in-1-out FLC is shown Figure

e N

Degree of membership

2-in-1-out
FLC FIS

\.

E(9) Mamdani
) method

81 rules

- U (9)

4 3 =2 4 0 1 2 3 4
Change-in-Errer(EC)

EC (9)

Figure 8.11: The fuzzy inference system for MMET system spin-up

As shown in Figure 8.12, because output is based on the operation of all of the rules in
the FIS, the rules need to be combined in a certain manner in order to make a decision. Ag-
gregation is the process by which the fuzzy sets which represent the outputs of each rule are
combined into a single fuzzy set before the defuzzification step. The input of the aggregation
process is the list of truncated output functions returned by the implication process for each

rule, the output of the aggregation process is one fuzzy set for each output variable.
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Figure 8.12:The fuzzy logic controller work process [190] [191] [192]
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8.7 Defuzzification

Defuzzification is the process of producing a quantifiable result, typically a fuzzy system will
have a number of rules which transform a number of variables into a fuzzy result. The result
Is described in terms of membership in fuzzy sets. Defuzzification is the opposite process
of fuzzification and is used to map fuzzified variables to practical crisp variables. There are
many different methods of defuzzification available [190] [191] [192], for the Mamdani-style
inference, it can be choosed centroid with gkinas the defuzzification method, as shown
in Figure 8.12.

Defuzzification is the opposite process of fuzzification and is used to map fuzzified vari-
ables to practical crisp variables. Similar to the discussion in seétignn this context
the scaling gain or factor has been decided upon to perform the defuzzification process, as
given in equation§.7.1), whereL (t) is the crisp tether length to control the MMET spin-up
performancell is the fuzzy conclusion from FIFL is the membership function output for
U, andK; is the scaling gain. The max-min reasoning and the centre of gravity (COG) de-
fuzzification method are utilised in this FLC, which are frequently used in the FLC design
[190] [191], as shown in Figur8&.12

L(t) = Ky X LL(U) =K x FL (871)

8.8 Simulations and Discussions

Numerical results are obtained using a specially devised co-simulation tooMiAGFLA B
andMATHEMATICA functions in an integrated program to provide a new toolbox, known
henceforth asSMATLINK’, which integrates control iMATLAB/SIMULINK with MMET
modelling iInMATHEMATICA. The velocity and acceleration ¢f(t) are selected ast)
andec(t) feedback signals for the MMET spin-up control. Fig@&4 shows the control

loop for the simulation process, and unless stated otherwise all the results are generated usin

the parameters for the MMET systems and the controllers, as in Appéndix

> The solid lines are thé (t) outputs with FLC, the dot lines are thi(t) outputs
without any control effects, as shown in FiguBe$5to 8.20 the angular displacement,
angular velocity and acceleration responses of the MMET spit{up are indicated,

which showing the FLC method has an effect on the spin-up control for the MMET
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Figure 8.13:The membership function for U

Control 1 Dynamical System

+ in via SMATLINK _[ in M -

Figure 8.14: MMET spin-up control simulation loop

system with the given initial conditions. The controller spin-up outp(it), ¥(t) and

() are all closer to the reference signals, which are the dash data in the Figures.

> Figures8.15and8.16are the spin-up angular displacement responses in simulation
timeT,, =4.01 andl,, = 400.01, which show the FLC controll@doutput is approach-

ing to a stable status with reducing amplitude.

> Figures8.17and8.18are the response plots for the angular veIodit;FiguresS.lQ
and8.20are the angular acceleration response plots fortire simulation timeT,, =

4.01 andl,, =400.01, with similar convergent behaviours.

> The phase plots in Figurés21 and8.22 are shown as limit cycles, whose shape
describes the stable behaviour of the spin-up coordipéte in simulation timeT,, =

4.01 andT,, = 400.01, and it is clear that the FLC controlled MMET system corrobo-
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> Figures8.23and8.24show the tether subspan length variation for the MMET spin-
up control in simulation timd,, = 4.01 andT,, = 400.0, which are generated by the

FLC controlled MMET system.

» The figures for the axial, torsional and pendular elastic motions are attached in

AppendixJ.

8.9 Conclusions

The fuzzy logic control is a practical alternative which can be used for a variety of challeng-
ing control applications since it can provide a convenient method for constructing nonlinear
controllers via the use of heuristic information. Because of the nonlinear dynamics and their
complexity, the MMET system’s spin-up control problem was decided upon to be used to
investigate a fuzzy logic based controller in order to maintain the desired length and length
rate of the tether. In this chapter, a ‘2-in-1-out’ fuzzy logic controller has been discussed and
then applied in the MMET system spin-up control.

Numerical results are obtained usis@yl ATLINK, which integrates control iMATLAB
with MMET modelling in MATHEMATICA. More information abouSMATLINK is
given in Appendix L. The velocity and acceleratiompft) are selected as(t) andec(t)
feedback signals for the MMET spin-up control.

The simulations show the robustness and usefulness which can be achieved from the
fuzzy logic control for the MMET spin-up behaviour, and the stability of the MMET system
spin-up response for certain combinations of the tether length and the length rate are observet
in simulation timeT,, = 4.01 andT,, = 400.0.

> The FLC controlled spin-up motions are changing with a reducing oscillation down
to a stable status, which expressed the FLC'’s effects on the spin-up and satisfied the
control objective.

> The axial elastic motions are moving stablely with the smaller amplitudes.
> The torsional elastic motions can not be effected by tether length control strategy.

> The pendular elastic motions decline with convergent reaction with reducing oscil-

lation, then to a zero status in the end.
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Chapter 9

Hybrid Fuzzy Sliding Mode Control for
Spin-up of the MMET

9.1 Introduction

Variable structure control (VSC) with sliding mode was introduced in the early 1950s by
Emelyanov, and subsequently published in the 19694] it was further developed by sev-

eral other researcher$9g [199 [200 [201 [207. Sliding mode control (SMC) has been
recognised as a robust and efficient control method for complex, high order or nonlinear
dynamical systems. The major advantage of sliding mode control is its low sensitivity to
a system’s parameter changes under various uncertainty conditions. Another advantage is
that it can decouple system motion into independent partial components of lower dimension,
which reduces the complexity of the system control and feedback design. However, a major
drawback of traditional SMC is its propensity for chattering, which is generally disadvanta-
geous within control system2(03 [204] [205 [204.

It has been widely recognised that fuzzy logic control is an effective control method for
various diverse applications, being a model free, universal approximation theorem, and be-
ing rule-based, as discussed in chagtarhere the fuzzy logic control rule-base is generally
based on practical human experience. However, the intrinsic linguistic format expression
required to construct the FLC rule-base makes it difficult to guarantee the stability and ro-
bustness of the control system, and the huge amount of fuzzy rules required for a high-order
system makes the analysis compl2RT] [20Q [20g [209 [210.

The involvement of FLC in the design of a fuzzy sliding mode control (FSMC) based

controller can be harnessed to help to avoid the chattering problem. In recent years, a lot of
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literature has been generated in the area of FSMC, and this has also covered the chatterin
phenomenon. The smooth control feature of fuzzy logic can be helpful in overcoming the
disadvantages of chattering. This is why it can be useful to combine FLC with SMC to create
the FSMC P0(] [209 [211] [212[213[214[215[216[217[21g [219 [220.

A hybrid fuzzy sliding mode control method is proposed and applied into the tether
subspan length, changing for the spin-up control of the MMET system. This hybrid fuzzy
sliding mode control is defined asxBMC [221] [222, which involves a skyhook surface
sliding mode control (SkyhookSMC) method which is applied here to control the tether
subspan length for spin-up control of the discretised flexible MMET system, as discussed in

chapter7.

9.2 Ideal Skyhook Damping

A widely known (and used) control scheme for controlling the vibration of a vehicle body
is skyhook damping, presented by D.C. Karnopp et al. in 1224[ The term ‘skyhook’

is derived from the point that there is a passive or semi-active damper which has hooked
the vehicle body to an imaginary stationary reference frame - ideal ‘sky’, the damper is
‘skyhook damper’, as shown in Figugel, which can then reduce vertical vibrations due to

all kinds of road disturbancen is the vehicle suspension magsis the tyre stiffnessg is

the displacement of road profile disturbance.

S
co

Figure 9.1: Ideal skyhook damper definition, adopted from [223]

Skyhook control can reduce the resonant peak of the sprung mass quite significantly and

thus achieves a good ride quality in the vehicle suspension system. Equafidl gives
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the ideal skyhook control force for the vehicle suspension system, whgres the damping

coefficient,z is the vehicle body displacement.

—csky'z z > 0
fskyhook = ) (921)
0 z<0

By borrowing the idea of skyhook damping in secti®r, the SkyhookSMC is intro-
duced to reduce the sliding chattering phenomd@ai] [222].

9.3 Skyhook Surface Definition for Sliding Mode Control

Sliding mode control is fundamentally a consequence of discontinuous control. The real mo-
tion near the surface can be seen as the superposition of a ‘slow’ movement, along the sur-
face, and the ‘fast’ movement, perpendicular to this surface, is the chattering phenomenon.
The chattering phenomenon is an acknowledged drawback of sliding mode control, and is
usually caused by unmodelled system dynamics. In traditional SMC design, a signum func-
tion is conventionally applied but this can lead to chattering in prac#iog [225.

Therefore, a skyhook surface sliding mode controller (SkyhookSME)] [222]is in-
troduced here to reduce the chattering phenomenon . The objective of the SkyhookSMC is
to consider the nonlinear tether system as the controlled plant, and therefore as defined by
the general state-space in equati®rd(l) [20Q [224].

e(1)
Sliding surface \ é(t) _ —ie(l) e

Slope is 1

Figure 9.2: Sliding surface definition with skyhook surface [200] [221] [222] [224]
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{x ~ Fxwt)
9.3.1)
y = H(x,ut)

where,

x € R" is the state vector;

n is the order of the nonlinear system, for the MMET system is a second-order system,

n=2;
u € R™ is the input vector,

m is the number of inputg; () andH () are the analytic functions.

d n—1
s(e(t),t) = (— + )\) e(t) (9.3.2)
where,

s(e(t), t) is the sliding surface of the hyperplane, as given in equ&i8rand shown

in Figure9.2, which defines by the position erreft) and velocity erroe(t) in equation
(9.3.3;

A is a positive constant that defines the slope of the sliding surface;

s =e(t) + Ae(t) (9.3.3)
0
S
s>0
USkyhookSMC
s=0
s <0 USkyhookSMC S
-0

Figure 9.3: The sliding skyhook surface generation

From equations9.3.2 and 0.3.3, the second-order tracking problem is replaced by a

first-order stabilisation problem, in which the scalas kept at zero by means of a governing
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condition. Therefore, the second-order system behaves like a first-order system, with time
constanf\, and the trajectory will slide along= 0 to the origin, thus = 0 is also called the

sliding surface or ideal slide mode.

V(s) = 252 (9.3.4)
V(s) = s8 = Ae(t)e(t) + A (e2(t) + e(t)é(t)) + e(t)é(t) < 0 (9.3.5)
Obtained from the use of the Lyapunov stability theorem, the Lyapunov function is given
in equation 9.3.4), and it states that the origin is a globally asymptotically stable equilibrium
point for the control system. Equatiof.8.9 is positive definite and its time derivative is
given in inequality 9.3.9, to satisfy the negative definite condition, that the system should
satisfy the inequality ing.3.5.
As shown in Figure®.3 and9.4, a soft switching control law is designed for the major
sliding surface switching activity in equatic¢h3.§ in which the sliding surfaces(= 0) is

taken as the ideal stationary ‘sky’ in the SkyhookSMC.

c tanh(s) ss >0
—Cu 2
USkyhookSMC = o 5 _ (9.3.6)
0 ss <0
Yy
1
-1 0
,
-1
Figure 9.4: Tanh function definition
tanh(x) = sinhix) _ €*—e” (9.3.7)

~ cosh(x) ex4e>
where, tanh is the hyperbolic tangent function, as given in equadi@i7( and its graph

over the domain [-1,1] is given in Figu4. cq, is an assumed positive damping ratio for

the switching control law.
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This law needs to be chosen in such a way that the existence and the reachability of
the sliding-mode are both guaranteed, therefore a special boundary layer around the sliding
surface is introduced to solve the chattering probl@24], noting thaté is an assumed

positive constant which defines the thickness of the sliding mode boundary layer.

9.4 Hybrid Fuzzy Sliding Mode Control Design

To make the necessary enhancement to the FSMC method, a hybrid control law is intro-
duced here to combine fuzzy logic control with a SkyhookSMC control law, which is named
FaSMC [22]] [222. The hybrid control effects of FLC and SkyhookSMC are combined in
equation 9.4.1), the flow diagram of the ESMC approach is given in Figu@5, the FLC

designing process for the MMET spin-up is given in chapter

Urasmc = XUrrc + (1 — &) Uskyhooksme (9.4.1)

where x is a proportionality factor, included to balance the weight of the fuzzy logic
control to that of the SkyhookSMC control. Clearty,= 0 represents the SkyhookSMC
control, andx = 1 represents fuzzy logic contrak € [0,1]. Theug ¢ design is given in

equation 8.7.1), andusiyhooksmc IS given in equationy.3.6.

9.5 Simulations and Discussions

It is easy to switch the controller between the SkyhookSMC and the FLC modes when a
proper value otx is selected0 < « < 1), and the hybrid fuzzy sliding mode controller is
generated, by combining FLC with a soft continuous switching SkyhookSMC law based on
equation (9.3.6). All the control methods have an effect on the spin-up of the MMET system
from the given initial conditions.

The FeSMC hybrid fuzzy sliding mode control system parameters require a judicious
choice of the FLC scaling gains ¢Ke, Kec} for fuzzification, Ku is the defuzzification
gain factor which is used to map the control force to the range that actuators can generate
practically.

Similarly, the SkyhookSMC damping coefficientis required to expand the normalised
controller output force into a practical range. The thickness of the sliding mode boundary
layer is given byd, and the slope of the sliding surfage In this simulation, the 8SMC is
used, withoe = 0.5 to balance the control weight between the FLC and the SkyhookSMC
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modes. Different values at = {0.0,0.5,1.0} can be used fofSkyhookSMC, FaSMC,
FLC} control of the MMET system, respectively.

alpha=1FLC
02F - —. alpha = 0.5 FalphaSMC
....... alpha = 0 SkyhookSMC

0.15

0.1

0.05

psi (rad)

-0.05
-0.1
-0.15
0i5 :IL 1.5 2 25 3
time (sec.) % 10*

Figure 9.6: The MMET spin-up displacementpf with different values ot (T,, = 4.01)

> With the given initial conditions in Appendi&, Figures9.6to 9.8 and Figure®.9

to 9.11 giving the MMET system’s spin-up behaviour by the time responses of the
displacementp and velocity(p with different values ofx.

> To compare the spin-up displacement plots’ difference for the three controllers clearly,
Figures9.7 and 9.8 express the FLC, SkyhookSMC and&MC controlled spin-up
displacement plots in simulation tinfg = 400.01, which indicate that the FLC’s spin-

up displacement is bigger than the other two controllers.

> Figure9.9is the spin-up velocity response for thkeyhookSMC, FeSMC and FLC
controlled MMET system in simulation timg, = 4.01, Figure®.10and9.11are the

spin-up velocity in simulation timé&,, = 400.01.

> Figure 9.6 is the spin-up displacement response for $fighookSMC, FaSMC
and FLC controlled MMET system in simulation timg = 4.01, which shows the
SkyhookSMC and FeSMC controlled spin-up displacement plots are close to each

other, and both of them are smaller than FLC controlled spin-up displacement plot.
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-0.25

Figure 9.7:The MMET spin-up displacement df, with different values otx (T,, = 400.01),
FLC vs. SkyhookSMC

Furthermore, together with Figur&l15and8.16 the control effects by FLC, Sky-
hookSMC and &SMC can be directly observed. These results indicate that all the
control methods have effects on the spin-up of the MMET systemSkbh&ookSMC
control provides better control effects than for the MMET spin-ugHih@; andFaSMC
stays in between the two control methods above by setting the facte0.5 in be-

tween thex = 0.0 ando = 1.0.

> Figure9.12is the phase portrait in simulation tinfg = 4.01 and Figur®.13is the
same phase portrait in simulation tinhg = 400.01. The phase plane plots with differ-
ent values ofx are shown as limit cycles, whose behaviour for the spin-up coordinate
1 clearly corroborates interpretations of steady-state with ttfeNFC control method

for the MMET system.

> In Figures9.14and9.15 the MMET spin-up error phase plane plots with different
« are given, and these show that all the control methods offer limit cycles. The FLC
caused generally faster response behaviour than the two other control methods for the

spin-up coordinate, in simulation timerl,, = 4.01 andl,, = 400.01.

> Figure9.16is the controlled tether length plots by three control methods in simula-
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Figure 9.8:The MMET spin-up displacement df, with different values otx (T,, = 400.01),
FaSMC vs. SkyhookSMC
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Figure 9.9: The MMET spin-up velocity ap, with different values otx (T, = 4.01)
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Figure 9.10:The MMET spin-up velocity ofp, with different values otx (T,, = 400.01),
FLC vs. SkyhookSMC

tion timeT,, = 4.01, in which the FLC controlled tether length is longer than the two
others. SkyhookSMC generated the shortest controlled tether length among the three
of them. In the longer simulation time, all the tether length responses are given in
Figure9.17, which is related to Figur8.24

> Figures9.18and9.20show the plots for the Lyapunov function and their derivative

in simulation timeT,, = 4.01, which indicate the effect offiSMC control for different
values ofx. SkyhookSMC has higher energy activities than the two other control
methods, and FLC has the lower associated energy argurdo0, with the FxSMC'’s
energy in the middle of the three.«lSMC can balance the control effects of FLC
and SkyhookSMC for stable MMET 9-DOF spin-up outputs and associated energy
activities. Similarly, Figure®.19and9.21are the the Lyapunov functions and their

derivative functions in simulation tim&, = 400.01.

» The figures for the axial, torsional and pendular elastic motions are attached in

AppendixK.
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Figure 9.11:The MMET spin-up velocity of», with different values otx (T,, = 400.01),
FaSMC vs. SkyhookSMC

260



x 10

alpha=1FLC
alpha = 0.5 FalphaSMC
alpha = 0 SkyhookSMC

psi' (rad/sec)

psi (rad)

Figure 9.12: The MMET spin-up phase plane portrait with different values(@f, = 4.01)
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Figure 9.14: The MMET spin-up error phase plane portrait with different values(®f, =
4.01)
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Figure 9.18: The Lyapunov function for the MMET spin-up conti € 4.01)
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Figure 9.19:The Lyapunov function for the MMET spin-up contrdl(= 400.01)
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Figure 9.20: The time derivative of the Lyapunov function for the MMET spin-up control
(T, =4.01)
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Figure 9.21:The time derivative of the Lyapunov function for the MMET spin-up control
(T, =400.01)
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9.6 Conclusions

A specialised hybrid control law, named&BMC, has been proposed and discussed in this
chapter. This combines fuzzy logic control with a SkyhookSMC control law together in
equation (9.4.1), then it is applied for the control of motorised space tether spin-up coupled
with an flexible oscillation phenomenon.

The FLC is given in chapter 8, and for the SkyhookSMC, by borrowing the idea of
skyhook damping, it reduces the sliding chattering phenomenon, in which a soft switching
control law is presented for the major sliding surface switching activity, as shown in equation
9.3.6.

The simulations with given initial condition data have been devised in a connecting pro-
gramme between control code written MATLAB and dynamics simulation code con-

structed withinMATHEMATICA..

> The results state the control effects for FL&IFMC and FLC, which lead to stable
spin-up behaviour with torsional and pendular motions. Itis concluded that there is an
enhanced level of spin-up control for the MMET system using the specialised hybrid

controller.

> With the weight factorx, it can balance the weight of the fuzzy logic control to
that of the SkyhookSMC control. There is an observed difference for each of the
elastic behaviours in the MMET system involving these MMET systems with different
controllers - FLC, &kSMC and SkyhookSMC, in which the control effects ofFMC

and SkyhookSMC are better than FLC.

> The FalphaSMC controlled spin-up motions are reducing down with oscillation to
a stable status, which state the control effects on the spin-up and reached the control

objective.
> The axial elastic motions are moving stablely with the smaller amplitudes.

> The torsional elastic motions can not be effected by tether length control strategy,

for it is decoupling to other generalised coordinates.

> The pendular elastic motions decline with convergent reaction with reducing oscil-

lation, then reach to a zero status in the end.
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Chapter 10

Conclusions and Future Work

10.1 Work Summary

Space tethers are typically very long structures ranging in length from a few hundred metres
to many kilometres, with a relatively small diametre. Space tethers can be applied to swing
spacecraft from one orbit to another, or even from one planet to another, without using rocket
propellant. Generally speaking, there are two general categories of tethersomentum
exchange tethers, which provide a mechanical connection which enables the transfer of en-
ergy and momentum from one object to the otl{e};electrodynamic tethers, which interact

with the Earth’s magnetosphere to generate power or provide propulsion for space objects
connected with them. Space tethers can be used for a diverse range of applications, whict
include formation flying, safety tethers, artificial gravity generation, probe towing, and aer-
obraking.

This thesis has discussed various dynamical models for a series of MMET systems, and
has proposed two control methods for the discretised flexible MMET system spin-up in the
presence of disturbances and parameter conditions. This chapter summarises the models ar
results, and indicates further research paths which might be of future interest.

Figure 10.1 indicates the MMET systems modelling road-map, helps to organise the
structure of this thesis, in which a series of elastic MMET systems are defined, based on
this road-map, in Chaptefsto 7. As shown in Figurel0.1, this thesis addresses some of
the models for momentum exchange tethers by using the Lagrangian procedure with proper

environmental conditions.

e Chapterl: This chapter introduces the basic concept of space tether, space tether

missions and applications, and thesis’s structure is also presented in the end.
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Flexible MMET Models >

1

[C’kapter 3 : Basic MMET System

Section 3.4 The Dumbbell MMET

Section 3.5 The Dumbbell MMET with Cylindrical
Payloads and a Motor Facility
Section 3.6 The MMET as a Rigid Body

[Chapzer 4 Flexible Massless MMET S}’SI(’}?IJ
Section 4.2 Axial Elasticity

Section 4.3 Axial + Torsional Elasticitye """
Section 4.4 Axial + Torsional + Pendular Elasticity

Chapter 5 Discretised

MMET System. Axial
Elasticity

Chapter 6 Discretised MMET g e
Svstem: Axial + Torsional
Elasticity

-
| Chapter 7 Discretised MMET

Svstem: Axial + Torsional +
Pendular Elasticity

Figure 10.1: Thesis structure for flexible MMET models

e Chapter2: With the aim of establishing useful sources from fundamental researches
in the literature available, and highlighting the previous control methods developed,
this chapter attempts to provide a useful contextualised source of references for further
space tether control studies, which includes five of the following space tether related
research topics(1) tether deployment and retrieval?) trajectory generation and
orbit control; (3) tether attitude and motion contral) tether vibration control and

dynamical simulations;5) space tether dynamical models.

e Chapter3: The dumbbell tether, the basic conceptual schematic of the MMET, the
dumbbell MMET system, the dumbbell MMET with cylindrical payloads and a motor
facility, and the rigid MMET system;

> There are two generalised coordinate systems which are defined; all the MMET
system models are modelled within these two coordinate systems. The first one
is an Earth centred global coordinate syst€iX,-Y, Z}; the second one is the rel-
ative rotating coordinate systenix,, yo, zo}. The centre of the Earth is denoted

by E(E., Ey, E;), which is defined as the origin of tH&X, Y, Z} system, where,
E..Ey, E; are set tq0, 0,0), which isg(0, 0, 0).
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> The dumbbell tether system consists of two end masdesndM,, connected

by the tether subspans, where the distance from the dumbbell tether’s base point
to each end mass is denoted byand,. The dumbbell tether subspans are
assumed to be massless relative to the masses of the two end bodies, as shown i
Figure3.2

> The concept of the motorised momentum exchange tether and its following re-

search aspects are introduced, as shown in Figur2

> As shown in Figure3.14 the dumbbell MMET system consists of two end
massesiM; andM;, connected by a massless tether with the same length of sub-
spans from the tether’s centre of mads (or My,) to each end mass, denoted

by L.

> Based on the massless dumbbell MMET modelling, the dumbbell MMET with
cylindrical payloads and a motor facility is proposed, in which the payload mass
moment of inertias, the motor facility mass moment of inertias, and the torque

plane, are included in the model, as shown in Fidlifel

> The tether-tube mass moments of inertia and a tether discretisation methodol-
ogy are utilised in the rigid body MMET system modelling process, as shown in
Figure3.25

e Chapter4: the massless elastic MMET system is investigated, in which, there is no

appreciable mass in the tether subspans;

> A dynamical modelling analysis for a flexible massless MMET system, which
implies that there is no mass for the tether subspans, the use of the word ‘flexible’
means that this MMET system model only contains axial, torsional and pendu-
lar elasticity. Themodelsfor axial, torsional and pendular elasticity are given in

sectionst.2, 4.3and4.4, respectively.

> The assumptions for the massless elasticity modelling process are provided,
which numbered ad 1 to A7 in section4.1
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> Three ‘reference’ planes are proposed to describe the torsional and pendular
elastic motions, as given in Figurdsl and4.2, which include three orthogonal

reference planes; — O — yo, xo — O — zg andzy — O — yo.

> The modelling for the torsional elasticity is referenced onto the ptareO —
z9, the pendular motion of the tether is referenced onto two orthogonal planes:

Xo—o—yo andzo—O—yo.

> There are seven rotational generalised coordinapesbi, 0, &, o, Y, Yx)

and two translational coordinatek,( R) which were chosen as the generalised
coordinates for the flexible massless MMET system, in which the rigid body
generalised coordinates (0, «, v, R) are not duplicating any of the motions of

the elastic generalised coordinatés (., vx, Ly)-

e Chaptersb, 6 and7: These chapters have discussed MMET systems with axial, tor-

sional and pendular elasticity, sequentially;

> As opposed to the assumptioAd to A7 in section4.l, the assumptions for

the discretised MMET modelling are proposedsdsto B8, in section5.1

> The modelling for the discretised axially elastic MMET system was undertaken
by the Lagrangian process in Chapfgras shown in Figur&.1 With an arbi-
trary choice ofN = 10 mass points, the generalised coordingte@ = 1 to 10)
define relative axial motion of the 10 discretised mass poiptsandnp; are the

generalised relative axial coordinates for the mass paylbagsand Mp;.

> The discretised MMET system which involves both axial and torsional elastic-
ity is proposed in Chapted, as shown in Figuré.1l All the torsional ‘spring-
damper’ groups are defined on the reference piareO —z, as shown in Figure
4.19 With 10 discretised mass points, the generalised relative torsional coordi-
natese; (i = 1 to 10) define the relative torsional motion of the 10 discretised

mass points.op; and @p; are the generalised relative torsional coordinates for
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the mass payloadslp; andMp;.

> Based on the MMET modelling in the previous chapters, a discretised flexible
MMET system is investigated by involving pendular elasticity in this chapter. As
shown in Figure§.1and7.2 there are two parts of the pendular elasticity, which
are defined on the plang — O — y, and the plane, — O — y,, respectively. In

the case of this modelling, the generalised coordingteescribe the motions for
mass pointsn; (i = 1,...,10) of the pendular elasticity on the plage- O — yo.

The generalised coordinatésdescribe the behaviours for mass points(i =

1,...,10) of the pendular elasticity on the plage- O — yo.

> To deal with the numerical time-consuming simulation difficulties, we have re-
duced the discretisation scheme right dowiNte 2, then used Lagrange’s equa-
tions to derive a reduced set of nonlinear governing equations for the simplified
axial, torsional and pendular elastic MMET systems, as discussed in Appendices
G, H and|, respectively. Then, based on the simplified MMET systems, the

numerical results are generated for the simulations and discussions.

e Chapters8 and9: A ‘2-in-1-out’ FLC and a FexSMC control methods have been in-
vestigated and designed for the discretised flexible MMET system’s spin-up behaviour

control;

> FLC is a practical alternative for a variety of challenging control applications.
For the nonlinear dynamics and complex MMET system’s spin-up control prob-
lem, we investigated a fuzzy logic based controller to maintain the desired length
and length rate of the tether in Chap8er

> In Chapter8, the velocity and acceleration df are selected asandec feed-

back signals for the MMET spin-up control. The simulation shows the robustness
and usefulness which can be achieved from the fuzzy logic control for the MMET
spin-up behaviour; the stability of the MMET system spin-up response for cer-

tain combinations of the tether length and the length rate are observed.

> In Chapter9, a hybrid fuzzy sliding mode control method is proposed and ap-

plied into the tether subspan length changes for the spin-up control of the MMET
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system, which involved a skyhook surface sliding mode control (SkyhookSMC)
method, which is applied here to control the tether subspan length for spin-up

control of the discretised flexible MMET system.

10.2 Conclusions

e Chapter 3 The numerical results are given in section 3.2.6, section 3.4.6, section
3.5.9 and section 3.6.9, which provide stable and accurate numerical behaviours in-
cluding the spin-up performance, and also indicate their connections to each other.
Meanwhile, the numerical results have been taken as the reference for following MMET
model development. The results show the MMET systems’ periodic spin-up behaviour
on orbit, with zero initial conditions as listed in Appendix C. For the rigid body mo-
tion control, the MMET models provided in Chapter 3 are good choices for their highly
efficienct computation.

e Chapter 4 Using the parameters in Appendix C, the numerical results for the se-
lected generalised coordinates in section 4.2.2, section 4.3.2 and section 4.4.2 ex-
pressed the periodic motions on orbit, with reducing amplitude of axial, torsional and
pendular elastic oscillation for three massless MMET models in sections 4.2, 4.3 and
4.4, respectively, whose similar spin-up behaviours and rigid body behaviours are also

noted, and the stable MMET system rigid body motions are observed.

The dynamical modelling process in this context has shown that by including axial, tor-
sional and pendular elasticity, the flexible MMET model proposed a significant bear-
ing on overall performance, involving the tether-tube mass by using a discretisation

methodology.

e Chapter 5 The numerical results are given in section 5.9, in which periodic be-
haviour, including the spin-up and the axial elastic performance for this MMET model,

are obtained.

Compared with section 4.4.2, when involving the tether’s mass and mass moment of
inertia, the amplitudes and shapes for the spin-up and the axial elastic behaviours are

different, with the same parameter settings as in Appendix C.

e Chapter 6 The numerical simulations have shown the convergence of the torsional
elastic behaviour by the torsional elastic angular displacement, which is approaching

to zero during full simulation time, and the amplitude and shape are slightly different
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from massless MMET system’s behaviours, by involving the tether's mass and mass

moment of inertia.

Together with Chapters and 6, Chapter 7, the numerical simulations have expressed
the reducing flexible behaviour, which are approaching to zero during full simulation
time, and the amplitudes and shapes are different from massless flexible MMET sys-
tem’s behaviours by involving the tether-tube mass and mass moment of inertia, which
means, the initial values for numerical parameters, related to mass and mass moments

of inertia, take sensitive effects on the results.

e Chapter 8 The simulations show the robustness and usefulness which can be achievec
from the fuzzy logic control for the MMET spin-up behaviour, and the stability of the
MMET system spin-up response for certain combinations of the tether length and the
length rate were observed in simulation tilje= 4.01 andl,, = 400.0, and the flexible

behaviours showed a similar convergent reaction with reducing oscillation.

e Chapters 8&and9: The skyhook surface sliding mode control can reduce the resonant
peak of the sprung mass quite significantly and thus can achieve a good ride quality. By
borrowing the idea of skyhook damping in section 9.2, the SkyhookSMC is introduced
in order to reduce the sliding chattering phenomenon. As shown in Figure 9.3, a soft
switching control law is designed for the major sliding surface switching activity in

equation 9.3.6.

A simulation with a given initial condition data has been devised in a connecting pro-
gramme between control code written MATLAB and dynamics simulation code
constructed withfMATHEMATICA, both in Chapters 8 and 9.

e Chapter 9 The results state the control effects for FL&xIMC and FLC, which
led to stable spin-up behaviour with torsional and pendular motions. It is concluded
that there is an enhanced level of spin-up control for the MMET system which uses

the specialised hybrid controller.

The hybrid control effects of FLC and SkyhookSMC are combined in equation (9.4.1),
the flow diagram of the &SMC approach is given in Figure 9.5, the FLC designing
process for the MMET spin-up is given in Chapter 8, in whighs a proportionality
factor, included to balance the weight of the fuzzy logic control to that of the hyper-
bolic tangent control. Clearlyx = 0 represents the SkyhookSMC control, and 1

represents fuzzy logic contrak, € [0,1].
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The FeSMC hybrid fuzzy sliding mode control system parameters require a judicious
choice of the FLC scaling gains e, Kec} for fuzzification,Ku is the defuzzification

gain factor which is used to map the control force to the range that actuators can
generate practically. It is easy to switch the controller between the SkyhookSMC and

the FLC modes when a proper valuecois selected0 < « < 1).

The SkyhookSMC leads to better control effects than thleC for the MMET spin-

up, andFaSMC stays in between the two control methods above by setting the factor
« = 0.5 in between thex = 0.0 andx = 1.0. FkSMC can balance the control effects

of FLC and SkyhookSMC for stable MMET system spin-up outputs and associated

energy activities.

Lyapunov function analysis shows the effect of$MC control for different values of
. SkyhookSMC has higher energy activities than the two other control methods, and
FLC has the lower associated energy arowa= 0, with the Fx"SMC'’s energy in the

middle of the three, as shown in Figures 9.18 and 9.20.

e The two research objectives for this thesis are fully achieledtly, as discussed in
Chapter 3 to Chapter 7, a series of new dynamical models for motorised momentum
exchange tethers have been propos8dcondly a fuzzy logic control and a hybrid
fuzzy sliding mode control for a flexible MMET system spin-up have been discussed,
and the effectiveness of both of the FLC and3MC control systems has been in-
vestigated through numerical simulation $1ATLINK. The numerical results have
shown that the MMET system'’s spin-up behaviour are fully controllable by both of
the FLC and the 8SMC. The Lyapunov stability theory was used to show the global
asymptotic stability of the spin-up phase of the MMET system, subjected to either

control law.
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10.3 Future Work

e The parameter settings for the«EMC need further consideration because the cur-
rent simulation results come from manual parameter tests. In order to enhance the
parameter selection process and validation, some computational intelligence (ClI) opti-
misation tools, such as genetic algorithms (GA) and artificial neural networks (ANN),
could be applied into the parameter selection for the FLC, SMC axt8lMC. This

would give some useful reference sets for parameter settings. A GA case has already
been used as an optimisation tool for parameter selection of the MMET system when
applied to payload transfer from low Earth orbit to geostationary Earth orbit, and the
GA's optimisation ability has, in that case, been reasonably demonstrated [70].

¢ The reliability of the control strategies for tether’s rigid body motions, coupling with
the flexible motions, should be more focused, for formation flying, aeroassisted orbital

maneuveringn, orbit transfer and other applications.
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Appendix A

Partial Derivatives for Equation 3.5.11

The partial derivatives of equation3.5.11) with respect to the selected generalised co-

ordinates), 6, «, v, R andL are given in equation#\(0.1) to (A.0.6).

( 0Xx

3= —L cosasin(0 + )

%y = Lcosxcos(0 + ) (A.0.2)

oy

0z
[ oy ~°
( 0x

3% = —Lcosasin(0 + )

g—g = L cosa cos(0 + 1) (A.0.2)

0
2 _,

2
(
9% _ I sinacos(d + 1)
ox

0 . .
%( = —Lsinasin(0 + ) (A.0.3)

z
— = Lcosx
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( 0X
—Z 0
oy
Y _y (A.0.4)
ay
0z
= _0
\ a’Y
( 0Xx
— =0
oR
oy
Y _) A.0.5
R ( )
0z
L g =0
( 0X
3 = cosx cos(0 + )
0 )
% — cosasin(6 + 1) (A.0.6)
% = Sinx
(oL

According to equation3.5.10, the generalised forces for the selected generalised coor-

dinates of this solid massless MMET system can be stated in equatidhg)(to (A.0.12).

ox oy 0z

Qy = Fxﬁ + Fyﬁ + Fzﬁ (A.0.7)
Qo = FX% + Fyg—g + Fzg—g (A.0.8)
Qu = Fx% + Fyg—i + FZS—; (A.0.9)
Qu=F X 4R,V (A.0.10)
Qy = Fxg—z + Fy% + g—i (A.0.11)
QL= Fx% + Fy% - Fzg—i (A.0.12)
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Appendix B

Partial Derivatives for Equation 3.5.12

Then, the partial derivatives of the Cartesian componenjsandz in equationsA.0.1)

to (A.0.6) can also be stated as in equatioB)(1) to (B.0.6).

(0 .
ﬁ = —L cosa siny
dy
b
I COSx CoSy
0z
—~ =0

L oY

0x

Z =0

00

oy

—~Z =0

00

0z

—~Z =0
\ 00

(
% = —Lsinx cosy
o
0 : .
D _ —Lsinasiny
ox
0z

\ a = L cosx
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( 0Xx
=0
oy
a—y =0 (B.0.4)
oy
0z
=0
\ a’Y
( 0x
= =0
oR
dy
2 0 B.0.5
3R ( )
0z
[ 3R ~°
ox
i COSx COSY
0 .
a—]i = cosa siny (B.0.6)
% =sinx
oL
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Appendix C

Simulation Parameter Settings

Table C.1: MMET systerparameters

Symbol Parameter Value Unit

m gravitational constant 3.9877848 x 10" m3s?

Mp propulsion tether payload mass 10000 Kg

Mm mass of motor facility 5000 Kg

Trinner  radius of tether inner tube 0.08 m

TTouter  Fadius of tether outer tube 0.1 m

™ radius of motor facility 0.5 m

Tp radius of payload 0.5 m

Tper periapsis distance 6.890 x 10° m

Tapo apoapsis distance 1.0335 x 107 m

Lo static length tether sub-span 50000 m

A undeformed tether tube cross-section&l13097 x 102 m?
area

0 tether density 970 kg/m?

e circular orbit with eccentricity 0.2

T motor torque 2.5 % 10° Nm

Co tether sub-span axial damping coefficien x 10° Ns/m

ko tether sub-span axial stiffness 2 x 107 N/m

Ct0 tether sub-span torsional damping coeffz x 10° Ns/m
cient

Ko tether sub-span torsional stiffness 2 x 107 N/m

Clo tether sub-span pendular damping coeff-x 10° Ns/m
cient

k1o tether sub-span pendular stiffness 2 x 107 N/m

Ke FLC scaling gains foe 1

Kec FLC scaling gains foec 1

Ku FLC scaling gains for 21000

x FaSMC switching factor {0,0.5,1}
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Table C.2: MMET system parameter§Gontinued)

Symbol Parameter Value Unit
Csky SkyhookSMC damping coefficient —3000
5 thickness of the sliding mode boundary.8

layer
A slope of the sliding surface 0.0014
A Tether tube cross-sectional area m?
N Number of mass points 10,2
€ Factor for the mass point mass moment df0,2

inertia
n Number of massless points 20
0 Tether density 970 kg/m3
L Dynamic length of propulsion tether m
L Length of propulsion tether branch Ly + Lo m
Ip Mass moment of inertia of the payload kgm?
It Mass moment of inertia of the tether kgm?
Im Mass moment of inertia of the motor kgm?
hp Height of the cylinder payload 0.5 m
hm Height of cylinder the motor facility 0.5 m
Th The number for periodic cycles 4.01 or 400.01
t Simulation time equation (1.1.11)s
g Acceleration of gravity 9.81 m/s?
T The period of orbit s
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Table C.3: MMET system parameter§Gontinued)

Symbol Parameter Value Unit

P(0) Initial value of 0.00r0.001 rad
P(0) Initial value ofy 0.00r0.001 rad/s

n1(0) Initial value ofn; 0.0 m
12(0) Initial value ofn, 0.0 m
ne1(0)  Initial value ofnp; 0.0 m
nr2(0)  Initial value ofnp, 0.0 m

©1(0) Initial value of@; 0.0 0r0.001 rad
®>(0) Initial value of @, 0.0 0r0.001 rad
@p1(0) Initial value of p; 0.0 0r0.001 rad
@p2(0) Initial value of p, 0.0 0r0.001 rad
)
)

x1(0 Initial value ofy; 0.0 rad
x2(0 Initial value ofx, 0.0 rad
xp1(0) Initial value ofxp; 0.0 rad
xp2(0)  Initial value ofxp, 0.0 rad
C1(0) Initial value of ¢; 0.0 rad
(>(0) Initial value of(; 0.0 rad
Cp1(0)  Initial value of(p; 0.0 rad
Cp2(0)  Initial value of (p, 0.0 rad
0(0) Initial value of© 0.00r0.001 rad
0(0) Initial value ofo (C.0.0 rad/s
o (0) Initial value of x 0.00r0.001 rad
o (0) Initial value of x 0.00r0.001 rad/s

o (0) Initial value of, 0.0 0r0.001 rad
o (0) Initial value ofx, 0.0 or0.001 rad/s
v(0) Initial value ofy 0.00r0.001 rad
v(0) Initial value ofy 0.00r0.001 rad/s

Y« (0) Initial value ofy, 0.0 0r0.001 rad
Yx(0) Initial value ofy, 0.0 0r0.001 rad/s
L.(0) Initial value of L, 0.0 m
L.(0) Initial value of L, 0.0 m/s

: _\/u(1+ecose) (€.0.1)

= =3
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Appendix D

Lagrange Equation Components for

Section4.2

D.1 Potential Energy

The potential energy for the axially elastic massless MMET system is provided in equation
(D.1.12), in which the strain energy stores in the assumed spring elements defined in equation

(D.1.2). The damping in each group elastic element is assumed to be classical linear viscous

in form and is expressed by equatidn {.3).

My uM; M

u = - - - M 2SE axia
R, R = + 2SEoaxiat
_ HM, B HM, (D.1.1)
V12 +R2 + 2IRcosxcosp  +/L2 + R2 — 2LR cosx cosy o
M
_HTM + 23E0|axial

Where, theSE,|.cia1 term is the strain energy of each massless tether subspan with axial
elasticity, as stated in equatioD.(L.2). That is, for the symmetrical double-ended MMET
system, the total strain energyaSEy|. i1, as shown in equatiorD(1.1). The CEolaxial

guantity is an assumed dissipation function based on Rayleigh damping and is stated in

equation D.1.3).

1

SEO|axial = 2kqu—>2< (D12)
1 )
CEO‘axial = zceql—x (Dl3)
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For the serial ‘spring-damper’ group, it is assumig,= k; = k; = ... = k1,

Co=¢C =C2 = ... = Cn:1, Where thek, andc, are the default stiffness and damping

coefficient values when they are applied in the numerical calculation. Equadiéhg @nd

(4.2.3 for the equivalent spring and damper can be transformed into equaiiohg)(and

(D.1.5).

ko

Keq = D.1.4
C

Coq = n+°] (D.1.5)

D.2 Kinetic Energy

As the payload and motor facility masses are connected by axially elastic massless tether

subspans, the kinetic energy of the system is provided by equ&i@nl), where §,, yo,
z0) IS given in equation3.2.4, (x1, y1, z1) IS given in equation3.4.3, and &3, yz, z2) IS

given in equation3.4.4.

1 } . ) 1 . . ) 1 . } )
T = EMP] (X]231 +y]231 +Z]231) + ZMPZ (X]ZJZ +y]z>2 +Z]2;2) + ZMM (Xg ‘}'Ué +Z(2)) +

1 .
5 Ly Loy + L] (b +0) "+
1 "
z HXP] + IXPz + IXM] X+
1 =
E [Iym + IUPZ + IUM]Y

(D.2.1)

D.3 Generalised Coordinates

In the case of this modelling, it has been decided to represent the system dynamics by mean:

of four angular coordinates)y, 6, «, y) and two translational coordinate®, (), in which,

the selection ofp, 0, «, R andy are the same generalised coordinates as discussed in section

3.6.8 Table3.5. L, is the generalised coordinate for axially elastic motion.
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D.4 Generalised Forces

According to the previous discussion in sect®B.7, the generalised force generated by the
motor on the system needs to be derived, from the principle of virtual work, and is defined
in equation 8.5.8.

As stated in equationd(2.]), L, is the static tether length, arig is the axially elastic
length along the tether subspans, then the virtual displacements in equafidi)(can be

re-stated as equatio®@.1).

x = (Lo 4+ L) cosx cosy

y = (Lo + Ly) cosacsiny (D.4.1)

z = (Lo + Ly)sinx

Considering the virtual work done by all non-conservative forces through a virtual dis-

placement, according to equatidh§.9 and equation3.5.10, the virtual work of the axial
effect generalised coordinalg is given in equationd.4.2), and the generalised force bf
leads to equation}.4.3), whose derivation process is similar to that of equatird (12).
The generalised forces for coordinatie®, «, v, andR are the same as in equatioBsy.13
to (3.5.17.

dWr, = Qr, (t) 6L, (D.4.2)

0x 0 0z .
Qu. (1) = Fez +F, af +Fo —ceals (D.4.3)

Where,F,, F, andF, are the Cartesian componentsrofvhich have been discussed for

equation 8.5.5.

( 0x
oL COoSx cosy
oy .
= D.4.4
oL cosa siny ( )
0z _ sinx
( 0L

According to equationd.4.4), equationD.4.3) can be transformed into equatid.g.5).

QL = _Ceql—.x (D.4.5)
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Appendix E

Lagrange Equation Components for

Section4.3

E.1 Potential Energy

In this axially and torsionally elastic massless MMET system, the axial and torsional elastic
potential energy is stored as the strain energy in the elastic elements - the axial and torsiona
‘spring-damper’ groups. The strain energy terms for the tether axial and torsional elasticity
are given in equation.1.2 and €.1.1), in which it is assumedt,, = ky; = kp = ... =
kin, Where thek, is the default stiffness value when applied in the numerical simulation.

The damper in each group elastic element is assumed to be classical linear viscous, whick
is stated in equatiorE( 1.2, similarly, it is assumed;y = ¢y = ¢t = ... = cn, Where the
Cyo IS the default damping coefficient value for the numerical simulation.

Based on th&, andc,, settings, equationg(3.1) and @.3.2 can be re-written a€{(1.3
and E.1.9.

1

SEO|torsional — zktein (Ell)

1,
CEO‘torsional - zcteq’Yx (ElZ)
Where,

Ko

Kiog = —20_ E.13

teq n-+ ] ( )
Cto

eq = E.1.4

Ctea = 1 ( )
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The tether’s potential energy is given in equati@l(9, and u is the product of the

universal gravitational constat with the Earth’s Mass.

B uM, _ uM;
v/[2 +R2 +2[Rcosxcosp /L2 + Rz — 2LR cosx cosy (E.1.5)

—”MTM +2SE

where,

SE = SEO|axial + SE0|t0Tsional (E16)

Equation E.1.6 gives the strain energy of this axially and torsionally elastic massless
MMET system, in which for the symmetrical double-ended MMET system, the total strain
energy iS2SE, as provided by equatioriE(1.9.

TheSEy|axial term is the axially elastic strain energy of each tether subspan and is defined
in equation D.1.2). The SEo|iorsionar t€rm is the torsionally elastic strain energy of each
tether subspan and is defined in equatiari.(1).

The CEy|uxia1 term is an assumed dissipation function of the axial elasticity modelling,
based on Rayleigh damping and defined in equati®d.f). The CEgliorsional t€rm is an
assumed dissipation function of the torsional elasticity modelling, based on the Rayleigh

damping as expressed in equati@ni(.?.

E.2 Kinetic Energy

The kinetic energy of this MMET system is given in equati&r 1), where &o, yo, zo0), (X1,
Y1, z1) and &2, yz, z2) are the same as are given in sectio?, andL is given in equation
(4.2.1). The mass moments of inertia for the two cylindrical payloads and the motor facility

are declared in sectidh5.1and3.5.2
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1 : : ) 1 : : ) 1 : ) )
T = SMp (Xp1 +Upy +21) + M2 (Xpy + Ups + 255) + SMm (x§+Us+25) +

1

L 1 .
z [IZP1 + IZPZ + IZM] (q) + e)2 + 5 [IXP] + IXPZ + IXM] O('z—{_

2

1
2

. 1 .
(Lyp, + Lyp, + IyM]YZ - 2 [Ly,, + Iypz]yxz
(E.2.1)

E.3 Generalised Coordinates

In the case of this modelling, it has been decided to represent the system dynamics by mean:
of five angular coordinates)y, 0, «, vy, vx) and two translational coordinateR,(,), in
which the, 6, «, v, R andL, are the same generalised coordinates as discussed in section

D.3, andy, is the generalised coordinate for motion accommodating torsional elasticity.

E.4 Generalised Forces

The virtual work for the torsional effect generalised coordinates derived in equation
(E.4.7), and the generalised force 9f is expressed in equatioi@4.2. The generalised

forces for coordinateg, 0, «, R andL, are reported in equation8.6.13 to (3.5.17% and

(D.4.5.

SW,, = Q. (t) vy (E.4.1)

where,

ox oy 0z .
t) = FX F FZ — CteqYx E.4.2

The quantityy, states the torsional effect for this MMET system. The generalised force

of v, can also be reformed as equati&4.4 by substituting equatior(4.3 into equation

(E.4.9.

)
X _0
0Yx
dy
-0 E.4.3
0Yx ( )
)
z :O
\ aYX
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ny = _CteqYX (E44)
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Appendix F

Lagrange Equation Components for

Section4.4

F.1 Generalised Coordinates

In order to describe the kinematic behaviour of the flexible massless MMET system, there
are seven rotational generalised coordinatigsif,, 0, «, &, v, Yx) and two translational
coordinatesl(,, R) as shown in Figuré.33 Note that, the rigid body generalised coordinates
(W, 6, «, vy, R) are not duplicating any of the motions of the elastic generalised coordinates
(W % Yoo L)

The coordinates), 0, «, v, R, L, andvy, are the same generalised coordinates as given
sectionE.3 and, is the generalised coordinate required for showing the effects of the
equivalent motion of the pendular elasticity on the plape- O — y,, as shown in Figure
4.32 «, is the generalised coordinate relating to the equivalent motion of the pendular

elasticity on the plang, — O — yo, as shown in Figuré.34

F.2 Kinetic Energy

As the payloadsMp;, Mp;) and motor facility Ma.) masses are connected by flexible

massless tether subspans, the kinetic energy of this MMET system is given in equation

(F.2.3).
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T = %Mm (3 +ui+27) + %Mpz (3 +v3+23) +

1 ) . . 1 -
EMM (x5 + U5+ 25) + 5 (Mp1 4+ Mpp) L2+

1

. . 1
7 Mapy Loy + Ly (+6)* + =

5 Lo, + Lep, + Ly J 6+

(F.2.1)
1

. 1 .
E [IUPl + IyPZ + IUM]YZ +35 [IUPl + Iypz]yxz_f—

2

1

z |:IZP1 + IZPZ + (MP1 —I_ MPZ) I—zj| ll)Xz—i_

1

z [Ixm + IXPZ + (MP1 + MPZ) LZ} o.(xz

F.3 Potential Energy

The gravitational potential energy is obtained by implementing Newton'’s gravitational law,
and is stated in equatiof.3.1), wherep is the product of the universal gravitational constant

G with the Earth’'s Mass.

B },LM] - HMZ
VL2 +R2 4+ 2LRcosaxcosp /L2 + R2 — 21 R cosx cosy (F.3.1)

—”MTM 4+ 2SE

Where, equationH:3.2 gives the strain energy along each tether subspan, so, for the
symmetrical double-ended MMET system, the total strain ener@)sts as obtained in
equation E.3.1).

As has been noted, equatiois 1.2), (E.1.]) and §.3.3 express the strain energy relat-
ing to the axial, torsional and pendular elasticity, respectively. Equatiois3), (E.1.2 and
(F.3.4 defined the assumed dissipation function based on Rayleigh damping for including

axial, torsional and pendular elastic effects, correspondingly.
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SE = SEO’axial + SEO’torsional + SEO|pendular (F32)

1
SEO’pendular = zkleq (Il)i + (X,Zc) (F33)

1 2.
CE0|pendular = cheq (q)x + o‘x2> (F34)

F.4 Generalised Forces

The virtual work for the pendular effect generalised coordindgteand«x, is given in equa-
tions F.4.1) and F.4.2, in which the generalised forces fo¢r, and«, are reported in equa-
tions (F.4.7 and ¢.4.9. The generalised forces for coordinates9, «, v, R, L, andy, are

the same as stated in sectiers.

SWi., = Qu, (t) 81 (F.4.1)
dWe, = Qu, (1) doxx (F.4.2)
ox oy 0z

Que =Fgp Thay. T gy, ~ Cleqlx = —Creqib (F.4.3)

d d d . .
Qu. = ano’: +F, aolj n an;‘ — CleqOx = —CreqOix (F.4.4)

By substituting equationg=(4.95 and ¢.4.9 into equationsK.4.3 and §.4.4, the gen-

eralised forces fotp, ando, can then be simplified into equatiorts4.7 and ¢.4.8.

( 0x
oy, °
oy
= F.4.
30, 0 (F.4.5)
0z
L a9, 0
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( 0x
3o 0
Y _, (F.4.6)
00,
0z
L 0o 0
Q. = —Creqbx (F4.7)
rox :_Cleqo-(x (F48)
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Appendix G

Dynamical Modelling for Axial Elastic
MMET System with Two Discretised

Mass Roints

In this chapter, a simplified MMET system by following the same discretisation scheme is
proposed withN = 2 discretised mass points. As shown in Fig@d, the axial elastic
MMET system with 2 discretised mass points for two tether subspans, in which the gener-
alised coordinates; (i = 1 to 2) are for the 2 discretised mass poinigs; andnp, are the
generalised coordinates for the mass payldelds and Mp;, the Cartesian coordinate for

the motor facilityM, is given in sectiorb.2, and FigureG.1lis a simplified case for Figure

5.1

G.1 The Cartesian Coordinates for PayloadsMp; and Mp,

The Cartesian coordinates for the payloadis; andMyp, are given in equations3.1.7) and

(G.1.2.

X1 = Xo+ (Mp1 + 11 + Lo) cosxcos (6 + )
Y1 = Yo+ (Mp1 +m + L) cosasin (6 + ) (G.1.1)
zi = (Mpr+m + Lo)sinx
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Figure G.1: Axial elastic MMET tether with 2 mass points
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X2 = Xo— (N2 +mnp2+ Lo) cosxcos(6 + 1)
Y2 = Yo— (M2 +mp2+ Lo)cosasin(0 + 1) (G.1.2)
z; = —M2+mp2+ Lo)sinx

G.2 The Cartesian Coordinates for Mass Pointan; to m,

The Cartesian coordinates for the discretised mass point® m, are given in equations

(G.2.) and G.2.2.

( L
Xm, = X0+ (m + 70) cosx cos(0 + )
L .
Ym; = Yot (m + 70) cosa sin(0 + ) (G.2.1)
Lo\ .
Zm, = |M+ 5 sinx

( L
Xm, = Xo— <nz + ?()) cosx cos(0 + 1)
L .
Ym, = VYo— (T]z + 70) cosasin( + 1) (G.2.2)
< L0> )
Zm, = —|M2+ = |SINx
\ 2

Similarly, the distance from Earth(0, 0,0) to each of the discretised mass point is rep-

resented bR,,,, as given in equatiorb(3.17).

G.3 Potential Energy

The tether’s potential energy is given in equati@h3.1), wherepu is the product of the
universal gravitational consta@t with the Earth’s mass.
_uMpr uMp, Mo pmy

mp
u = - - SE axia .O.
R R, R Rm, R, + SElaxian (G.3.1)

Where, theSE|.,ia term is a strain energy of the axial elasticity, as stated in equation

(G.3.2 with the assumptioky = ky = k; = k3 = kg4, Wherek, is the default stiffness value.

1
SBlaxiat = ko (M1 =M1 417 +13 + (N2 —np2)?) (G.3.2)
The CE|q.iq1 term is an assumed dissipation function, as given in equaod.§ with

the assumptiony = c; = c; = c3 = ¢4, Where thec is the default damping coefficient value.
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1 : : : : : :
CE|axia1 = ZCO ((T]Pl — M )2 ‘I’n% + T]% + (T]z — T]pz)z) (633)

G.4 Kinetic Energy

The kinetic energy of this MMET system with 2 discretised mass points is stated in equation
(G.4.2.

1 2 gy ] T P
T = SMp (5 + U7+ 2) + 5Mea (3G +03 +23) + 5Mo (% + 03 + %) +

1 : . . 1 . : .
7 5, 48, + 28+ gma (6, + i+ 22| ¢

1 1 1 . )
EIZPl + EIZPZ + IZT + ZIZM} (11) + 9) +

1 1 1 )
EIXN + EIXPZ + IXT + zIXM:| (XZ_{_

1 1 1 )
ZIUPl + zIsz + IUT + ZIUM:| ,YZ

(G.4.1)

G.5 Governing Equations of Motion

In the case of this model, the selected generalised coordinates are four angular coordinate:
(W, 0, «, v) and five translational coordinateR, (1, np1, 12 andnp;), in which the gen-
eralised coordinates;, np1, 12 andnp, are to express the equivalent behaviour due to its
axial elasticity. The generalised coordinatgsand the generalised forc€) (i=1 - 9) are
a reduced set of those quoted for the cask ef 10.

Lagrange’s equations are used to generate the governing equations of motion, the full

equations are to be found in the path CD-ROM/axial/N2/, as listed in TaBle
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Appendix H

Dynamical Modelling for Axial and
Torsional Elastic MMET System with

Two Discretised Mass Bints

Based on the axial elastic MMET system in Appen@ixin this chapter, a simplified axial
and torsional MMET system with two discretised mass points is proposed.

As shown in FigureH.1, the torsional generalised coordinatgs and ¢, are for the 2
discretised mass pointa; andm,;, @p; and @p;, are the torsional generalised coordinates
for the mass payloadslp; and Mp,, the Cartesian coordinates for the motor faciliy,
payloadsMp; andMp; are given by equation8(2.4, (G.1.1) and G.1.9, and the Cartesian
coordinates for mass points; to m, are given by equation$x(2.1) and G.2.9.

For the axial elasticity modelling process is same as it has been discussed in Appendix

G, so it will not be discussed in this appendix.

H.1 Potential Energy

The tether’s potential energy is given in equatiéhl), wherep is the product of the uni-
versal gravitational constaft with the Earth’s mass. The distance from E&ktid, 0,0) to

each of the discretised mass point is representekl,pyas given in equatiorb(3.17).

uMp;  uMp;  pMo  pmy pmp
u = — - - - - SE axia SE orsiona L.
R, R, R Rm, R, + SElaxiat + SEl v (H1D)

Where, theSE|.,iq1 and SE|iorsionat are the strain energy terms for axial and torsional

elasticity, as stated in equatio®.3.2 and {H.1.2 with the assumptiok, = k; = k, and

ki = ki1 = k2, Wherek, andk,, are the default axial and torsional stiffness values.
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Figure H.1:Axial and torsional elastic MMET tether with 2 mass points

1
SE’torsionaL = Ekw (((pPl — O )2 + (P% + (P% + ((Pz — (sz)z) (H12)
The CEliorsional t€rm is an assumed torsional dissipation function, as given in equation
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(H.1.3), with the assumption o,y = cy;1 = c2, Where thecy, is the default torsional

damping coefficient value.

1 : : : : . .
CE‘torsional = zcto (((pP1 — M )2 + (P% + (P% + ((Pz - (sz)z) (Hl3)

H.2 Kinetic Energy

The kinetic energy of the MMET system with 2 discretised mass points is stated in equation
(H.2.7).

T = %Mm (a+01+2) + %Mm (G +u3+23) + %Mo (@ + 03 +23) +

) . ) 1 . ) .
5 My (XTZTH —I_ysz + me) + zmz (Xilz +yilz + Zilz) +

1 1 . -2
ZIZP1 + ZIZPZ + IZT + ZIZM} (lb + e) +

1 1 1 )
ZIXP1 + EIXPZ + IXT + ZIXM:| (xz+

[1 1 1 }
EIUPl + zIsz + IUT + zIyM:| YZ—I_

1 . . 1 . 1 )
EIUPl (012’1 + EIUPZ (91292 + Zlym (P% + zIymZ (p§:|

(H.2.1)

H.3 Governing Equations of Motion

In the case of this model, the selected generalised coordinates are eight angular coordinate
W, 9, «, v, ©1, ©p1, ©2 and @p;) and five translational coordinater, (n;, np1, N2 and
Np2), in which the generalised coordinatg, @1, @2 andep;, are to express the torsional
behaviours due to the torsional elasticity.

Lagrange’s equations are used to generate the governing equations of motionas, the full

equations are to be found in the path CD-ROM/axial-torsional/N2/, as listed in Gable
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Appendix |

Dynamical Modelling for Axial, Torsional
and Pendular Elastic MMET System

with Two Discretised Mass Pints

In this chapter, based on the axial and torsional elastic MMET system in Appéhdax
simplified flexible MMET system with two discretised mass points is introduced by follow-
ing the same discretisation scheme as mentioned in Ch@apt&gain, the word ‘flexible’
means that this MMET system is incorporating axial, torsional and pendular elasticity, and
the ‘pendular’ elasticity means a setdf= 2 coupled pendulums witN equals the number
of elements between each mass element in each of the tether sub-span.

As shown in Figurd.1, the pendular generalised coordinaggsandx, are for the 2
discretised mass points; andm,.

xp1 andyxp; are the pendular generalised coordinates for the mass paylMadsnd
Mp,, referenced on plang, — O — vy, it is a simplified MMET system of the original
MMET system as given Figuré.1

As shown in Figurd.2, the pendular generalised coordinafgsand ¢, are for the 2
discretised mass pointa; andm,.

(p1 and(p; are the pendular generalised coordinates for the mass papbacdsndMep;,
referenced on plang, — O — yo, it is a simplified MMET system of the original MMET

system as given Figuré2.
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|.1 Potential Energy

The tether’s potential energy is given in equatibf.(), wherep is the product of the univer-

sal gravitational constar@ with the Earth’s mass. The Cartesian coordinates for the motor
facility M,, payloadsMp; and Mp, are given by equations3(2.4, (G.1.1) and G.1.2,

and the Cartesian coordinates for mass painigo m, are given by equation$x2.1) and
(G.2.2. The distance from Earth(0,0,0) to each of the discretised mass point is repre-

sented byR,,,, as given in equatiorb(3.17).

uMp;  uMpz  uMo  pmy pmy
u = - - - - - SE axia SE orsiona SE ndular
R R, R R, R, + SE|axial + SEft 1 + SElpendut
(1.1.1)

Where, theSE|qxiat, SEltorsionar @Nd SEfpenauiar are the strain energy terms of axial,
torsional and pendular elasticity, as stated in equati®i.9Q), (H.1.2 and (.1.2) with the
assumptiorky, = ky = k3, ko = ki = kiz andkyg = kyy = ky2, Whereky, ko andky, are the

default axial, torsional and pendular stiffness values.

1
SElpendutar = zklo ((xp1 —x1)? +X3 + X3+ (x2 — xp2)?) +

(1.1.2)

1
Skio ((Gp1 — G2+ G+ G+ (G — &p2)?)

2
The CEl,enaular term is an assumed torsional dissipation function, as given in equation
(1.1.3), with the assumption,y, = c;1 = ci2, Where thecy, is the default torsional damping

coefficient value.

1 : : : : : :
CE‘pendular - ZCLO ((XP] — X1 )2 + X% + X% + (XZ - sz)z) +

(1.1.3)

1 . : . . . )
500 (G = Q)P+ G+ G+ (G — Gn)?)

1.2 Kinetic Energy

The kinetic energy of the MMET system with 2 discretised mass points is stated in equation
(1.2.2).
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. 1
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2 2

(Izmz + mzxmz) XZ +

: 1
(IXM + MP]X%) Clzﬂ +

(Ixmz + mZXTZ“z) Cilz +
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1

2

1
=Mbp;

1
+ -my

1 )
IXM:| (XZ + |:_Iy|>1 +

2

1
2

2

Iym] (p% +

5 (

(x3+U5+235) +

2

hm] (b+0)+

1

2 2

2

(IZm1 + m]xi‘w) X%—l_

(Izp, + Mp2X3) X3,

(Ixm] + TTMX%) -anrf‘

IXPZ + MPZX%) CIZDZ

1.3 Governing Equations of Motion

1
M
7Vl

1
_Isz + IyT +

1 .
_Iymz (p%:| +

(x§+U5+25) +

(x5, + U5, + z;z)] +

1 :

(1.2.1)

Besides the rigid body, axial and torsional elastic generalised coordinates as discussed ir

AppendixH, in this section:

> The generalised coordinatgs, xp1, X2 andxp, are selected for the torsional be-

haviours, referenced on plarg— O — y,.

> The generalised coordinatés, (p;, (; and (p, are selected for the torsional be-

haviours, referenced on plang— O — yo.

Lagrange’s equations are used to generate the governing equations of motionas, the full

equations are to be found in the path CD-ROM/axial-torsional-pendular/N2/, as listed in

Table7.3
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Appendix J

Elastic Motion Figures for Chapter 8
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Figure J.1: Axial elastic behaviour with FLG)(T,, = 4.01)

> FiguresJ.1landJ.2state the FLC controlled axial elastic behaviour for the discretised
mass poinin; over a short simulation time (number of periodic cyclgs= 4.01) and
long simulation time (number of periodic cycleg, = 400.01), respectively. In the
beginning (0 to 2.5 10" seconds), the controlled axial elastic motion is changing with

a reducing frequency oscillations within the range -3.0 to -4.0 rad.

> FiguresJ.3andJ.4are the axial elastic responses for the paylbég over a simu-
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Figure J.3: Axial elastic behaviour with FLGyp;(T,, = 4.01)
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Figure J.5: Axial elastic behaviour with FLGy, (T,, = 4.01)
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Figure J.8: Axial elastic behaviour with FLGyp,(T,, = 400.01)
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Figure J.9: Pendular elastic behaviour with FL&; €T,, = 4.01)
lation timeT,, = 4.01 and 400.01, which are moving with a higher frequency than the
axial elastic behaviour for the discretised mass pwoiptith the range -5.0to -9.5 rad

> FiguresJ.5andJ.6 are the axial elastic motions for the discretised mass paint
with the range 3.0 to 4.0 rad, Figur@és andJ.8are the axial elastic motions for the

payloadMp, with the range 5.0 to 9.5 rad, which are in the symmetrical location with
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chiP1(rad)

chi2(rad)

tised mass pointn, and payloadVp,, in the symmetrical location with respect to the

motions for the discretised mass point within -0.00004 to 0.00004 rad and payload
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Figure J.10: Pendular elastic behaviour with FLr(T,, = 4.01)
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Figure J.11: Pendular elastic behaviour with FLG {T,, = 400.01)

respect to the MMET system COM.

> Reference on plane,— O —y,, Figures].9andJ.10are the pendular elastic motions
for the discretised mass point; within -0.000045 to 0.000045 rad and paylosid,
within -0.00045 to 0.00045 rad.

> Meanwhile, Figures.11andJ.12are for the pendular elastic motions for the discre-

MMET system COM, reference on plarg — O — yo.

> Reference on plang, — O — y,, FiguresJ.13and J.14 are the pendular elastic
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Mp; within -0.0004 to 0.0004 rad.

> Symmetrically, Figures.15andJ.16are for the pendular elastic motions for the

discretised mass poimt, and payloadVp,, reference on plang — O — yp.
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Figure J.14: Pendular elastic behaviour with FLG(T,, = 4.01)
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Appendix K

Elastic Motion Figures for Chapter 9

> FiguresK.1 to K.4 are the axial elastic motions for the discretised poinisandm,

over the simulation tim&,, =4.01 and 400.01, in which thextSMC and SkyhookSMC
controlled MMET system'’s axial elastic motions are with similar oscillation frequen-
cies to each other, and smaller amplitudes than the axially elastic behaviour in the
MMET system with the FLC.

Also, them; andm, are in the symmetrical position with respect to the MMET COM,

in the beginning part of the figures, the FLC controlled axial elastic motion start with
shorter reducing frequency oscillation than the other controllers’, and all of the three
controlled MMET system axial elastic outputs are changing with similar periodic be-
haviours in the later simulation time.

> FiguresK.5 to K.8 are the axial elastic motions for the payloads; andMp, over

the simulation timd,, = 4.01 and 400.01 with larger amplitudes thantiyeandm,’s.

The FaSMC controlledn;, n;, np1, andnp,, their responses are slightly larger than
SkyhookSMC, and FLC has the max amlitude of the three controllers.

As can be seen from Figuré&s5 andK.7, the Mp; andMp;’s responses are the high
fregency oscillations carried by the periodic wave, in which th&SMC and Sky-
hookSMC controlled MMET system’s outputs are with slightly longer obvious high
fregency oscillations than the FLC’s output. And then, as shown in FigQu@and

K.8, all the controlled outputs stays in a stable periodic waves, whose active frequen-

cies are higher than the axial elastic motionsiforandm,.

> FiguresK.9 andK.10 are the pendular elastic motions for discretised mass pojnt

referenced on plane, — O — yo, by comparing the control effects of FLCxSEMC
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and SkyhookSMC, which indicate thg responses amplitude: FLS FaSMC >
SkyhookSMC.

> Similarily, Figuresk.11 andK.12 are the responses for the discretised mass point
m;’s pendular elastic motion on plang — O — y,, the FxSMC'’s plotx; is slightly
larger than SkyhookSMC's plot.

> FiguresK.13to K.16 compare the pendular elastic behaviours for the payldags
andMp; with three controllers, which state tlgg; andyp, responses amplitude: FLC

> FaSMC > SkyhookSMC, referenced on both plangs—- O — yo.

> Figuresk.17to K.20 are the pendular elastic behaviodssand(, for the discretised

mass pointsn; andm;, referenced on the plang — O — y, with three controllers.

> Figuresk.21to K.24 are the pendular elastic behaviodgs and(p, or the payloads
Mp; andMp, referenced on the plang — O — y,. All the pendular behaviours are

with the appearance of stable oscillation performance and reducing to a zero status.
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Figure K.1: Axial elastic behaviour with controh+ (T, = 4.01)
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342



eta2[t] (m)

eta2[t] (m)

eta2[t] (m)

3.8

3.6

3.4

3.2

3.6

3.4

3.2

3.8

3.6

T T 7\ N\ L
aIpha 1 FLC
0 0.5 1 2
time(sec) X 106
T T JAY N T
alpha 0 ShyhookSMC|
0 0.5 1
tlme(sec) X 106
= T T JA N T T
alpha 0.5 FaIphaSMC|
0 0.5 1 25
tlme(sec) % 10°

Figure K.4:Axial elastic behaviour with controlr,(T,, = 400.01)

343



etaP1[t] (m) etaP1[t] (m)

etaP1[t] (m)

T T N T

alpha=1FLC|]

15
time(sec)

X 104

A L

|

alpha = 0 ShyhookSMC

15
time(sec)

At

x 10"

A L

o

alpha = 0.5 FalphaSMC | |

0 0.5

[N

15
time(sec)

At

X 104

Figure K.5: Axial elastic behaviour with controlnp; (T,, =4.01)
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Figure K.7:Axial elastic behaviour with controlnp, (T,, = 4.01)
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Figure K.8:Axial elastic behaviour with controlrp, (T,, = 400.01)
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Figure K.10: Torsional elastic behaviour with controtr, FalphaSMC vs. SkyhookSMC
(T, = 4.01)
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Figure K.11: Torsional elastic behaviour with contro,, FLC vs. SkyhookSMCT, =
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Figure K.12: Torsional elastic behaviour with controtr, FalphaSMC vs. SkyhookSMC
(T, = 4.01)
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Figure K.14: Torsional elastic behaviour with contrgtp, FalphaSMC vs. SkyhookSMC
(T, =4.01)
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Figure K.15: Torsional elastic behaviour with controty,, FLC vs. SkyhookSMCT, =
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Figure K.16: Torsional elastic behaviour with contro{p,, FalphaSMC vs. SkyhookSMC
(T, =4.01)
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Figure K.17: Torsional elastic behaviour with control;, FLC vs. SkyhookSMCT, =
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Figure K.18: Torsional elastic behaviour with contral;; FalphaSMC vs. SkyhookSMC
(T, =4.01)
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Figure K.19: Torsional elastic behaviour with contraly, FLC vs. SkyhookSMCT, =
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Figure K.20: Torsional elastic behaviour with contral;, FalphaSMC vs. SkyhookSMC
(T, =4.01)
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Figure K.22: Torsional elastic behaviour with contrdly, FalphaSMC vs. SkyhookSMC
(T, =4.01)
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Figure K.24: Torsional elastic behaviour with contrdly,, FalphaSMC vs. SkyhookSMC
(T, =4.01)
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Appendix L

SMATLINK - How to integrate
MATLAB with MATHEMA TICA

L.1 Introduction

Simple MATLAB and MATHEMATICA link laboratory toolbox (SMATLINK) is a toolbox

to connect MATLAB and MATHEMATICA, it allows easy data exchange and manipulation,
implementation of existing MATLAB or MATHEMATICA codes. There are two parts in
SMATLINK package:

(1) SMATLINK::matlabcall

> This part can do ‘MATLAB call MATHEMATICA, in which, MATLAB is the
Front-End and MATHEMATICA is the Calculating Engine, as shown in Figude
(2) SMATLINK :: mathematicacall

> This part can do ‘MATHEMATICA call MATLAB’, in which, Mathemaitca is the
Front-End and MATLAB is the Calculating Engine, as shown in Figug

L.2 Why SMATLINK

The main reasons to use SMATLINK are:

(1) Mobilise mathematical and computational resources;

(2) Access leverage from limited mathematical and computational resources;

(3) Economise the mathematical and computational resource requirements;
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Figure L.1: SMATLINK::matlabcall work loop
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Figure L.2: SMATLINK::mathematicacall work loop

L.3 MMET spin-up control co-simulation

As mentioned in section8.8 and 9.5, the numerical simulations for the MMET system
spin-up control are obtained by using the toolkitS&"l ATLINK, which can integrate con-

trol in MATLAB/SIMULINK with the MMET model inMATHEMATICA. FigurelL.3

shows the overall work loop for this simulations, in which tMATLAB/SIMULINK is

the front-end to accept user’s inputs and parameter settings, and control the ‘master’ tim-
ing for all the simulation process. On the other haMIATHEMATICA represents the
dynamical models for the MMET systems, which is waiting for the control signals from

MATLAB/SIMULINK viaSMATLINK, and generate the MMET systems’ feedback then
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send the feedback signals backNbATLAB/SIMULINK via SMATLINK. FigureL.5
presents the co-simulation timing control process, in which, Nb&TLAB controller is
the ‘master’ timer, theMIATHEMATICA MMET model is waiting for the control sig-
nals fromMATLAB, it solves the controlled dynamical equations for the MMET system
by NDSover[] with proper parameters, then the results has been sent bA¢RI3.AB via
SMATLINK.

MATLAB command window
User data inputs{ M file

é MAT file and Other data source
MATLAB command window

Front-end
[‘\ MATLAB/SIMULINK ]—” Result data inputs { Plots

MAT file and Other data pool

Kernel
[% MATHEMATICA Kernel ]

Figure L.3: The MMET system spin-up control co-simulation via SMATLINK

-

A simple case is given in Figure.4, which shows how to call MATHEMATICA

function fromMATLAB command window.

SMAT matlabcall ('NIntegrate[Exp[-x"2], {x, 0, Infinityl}]")

Mathematica command string - in Mathematica Syntax

Matlab command string - in Matlab Syntax

Figure L.4: How to call MATHEMATICA function from MATLAB
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Master Timing

( ) Advanced Numerical Differential Equation Solving:
NDSolve[ ty, t,... ] t,- starttime , t;— current time
, Inputs from MATLAB/SIMULINK
) via SMATLINK

-

A

NDSolve ProcessEquation
->Create NDSolve'StateData

Need to be Re-initialized ?

NDSolve Reinitialize
- set different initial conditions to same
differential equation

\ 4

NDSolve’lterate

->Generate Numerical Data from
NDSolve StateData

\ 4
' )

NDSolve ProcessSolutions
- Convert Numerical Data into
InterpolatingFunction to generate output
solution

. J

Outputs to MATLAB/SIMULINK
via SMATLINK

. J

Figure L.5: SMATLINK timing control
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Appendix M

Fuzzy Logic Control Terminology

Table M.1:Fuzzy Linguistic Values

Fuzzy Linguistic Value Description E ECU
NB Negative Big 5 5 -2
NM Negative Middle -4 -4 -15
NS Negative Small -3 -3 -1
NZS Negative Zero Small -2 -2 -0.5
ZE Zero 0O O 0
PZS Positive ZeroSmall 2 2 0.5
PS Positive Small 3 3 1
PM Positive Middle 4 4 15
PB Positive Big 5 5 2
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