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Abstract

A space tether is a long cable used to couple satellites, probes or spacecrafts to each other

or to other masses, such as a spent booster rocket, space station, or an asteroid. Space

tethers are usually made of thin strands of high-strength fibres or conducting wires, which

range from a few hundred metres to several kilometres and have a relatively small diameter.

Space tethers can provide a mechanical connection between two space objects that enables

a transfer of energy and momentum from one object to the other, and as a result they can be

used to provide space propulsion without consuming propellant. Additionally, conductive

space tethers can interact with the Earth’s magnetic field and ionospheric plasma to generate

thrust or drag forces without expending propellant.

The motorised momentum exchange tether (MMET) was first proposed by Cartmell in

1996 and published in 1998. The system comprises a specially designed tether connecting

two payload modules, with a central launcher motor. For the purposes of fundamental dy-

namical modelling the launcher mass can be regarded as a two part assembly, where the

rotor is attached to one end of each tether subspan, and the other side is the stator, which is

attached to the rotor by means of suitable bearings. Both the launcher and the payload can

be attached to the tether by means of suitable clamps or bearing assemblies, dependent on

the requirements of the design.

The further chapters in this thesis focus on a series of dynamical models of the symmetri-

cal MMET syste, including the dumbbell MMET system, the solid massless MMET system,

the flexible massless MMET system, the solid MMET system and the discretised flexible

MMET system. The models in this context have shown that including axial, torsional and

pendular elasticity, the MMET systems have a significant bearing on overall performance

and that this effect should not be ignored in future, particularly for control studies. All

subsequent analyses for control applications should henceforth include flexible compliance

within the modelling procedure.

Numerical simulations have been given for all types of MMET models, in which, accu-

rate and stable periodic behaviours are observed, including the rigid body motions, the tether
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spin-up and the flexible motions, with proper parameter settings. The MMET system’s spin-

up control methods design and analysis will henceforth be referenced on the results.

For the non-linear dynamics and complex control problem, it was decided to investigate

fuzzy logic based controllers to maintain the desired length and length deployment rate of

the tether. A standard two input and one output fuzzy logic control (FLC) is investigated

with numerical simulations, in which the control effects on the MMET system’s spin-up are

observed.

Furthermore, to make the necessary enhancement to the fuzzy sliding mode control, a

specialised hybrid control law, named FαSMC is proposed, which combines fuzzy logic

control with a SkyhookSMC control law together, then it is applied for the control of mo-

torised space tether spin-up coupled with an flexible oscillation phenomenon. It is easy to

switch the control effects between the SkyhookSMC and the FLC modes when a proper

value ofα is selected(0 < α < 1) to balance the weight of the fuzzy logic control to that of

the SkyhookSMC control, and the hybrid fuzzy sliding mode controller is thus generated.

Next, the simulations with the given initial conditions have been devised in a connecting

programme between the control code written inMATLAB and the dynamics simulation code

constructed withinMATHEMATICA. Both the FLC and the hybrid fuzzy sliding mode

control methods are designed for the control of spin-up of the discretised flexible MMET

system with tether-tube subspans, and the results have shown the validated effects of both

these control methods for the MMET system spin-up with included flexible oscillation.

To summarise, the objectives of this thesis are, firstly,to proposea series of new dynam-

ical models for the motorised momentum exchange tethers; secondly,to discusstwo types

of control methods for the spin-up behaviour of a flexible motorised momentum exchange

tether, whichinclude a fuzzy logic control and a hybrid fuzzy sliding mode control. By

the weight factorα, fuzzy logic control and SkyhookSMC controllers can be balanced from

one to each other, and there is observed difference for each of the elastic behaviour in the

MMET system involving these MMET systems with different controllers - FLC(α = 1),

FαSMC(α = 0.5) and SkyhookSMC(α = 0.0). The results state the control effects for FLC,

FαSMC and FLC, which lead to stable spin-up behaviour with flexible oscillations.
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Chapter 1

Introduction to Space Tethers

1.1 Introduction

A space tether is a long cable, constructed from thin strands of high-strength fibre used to

couple spacecraft to each other or to other masses, and it provides a mechanical connection

which enables the transfer of energy and momentum from one object to the other. Tethers

are typically very long structures ranging from a few hundred metres to many kilometres,

and have a relatively small diametre. Basically, there are two general categories of tethers

[1] [2]:

〈1〉momentum exchange tethers, which allow momentum and energy to be transferred

between objects in space;

〈2〉 electrodynamic tethers, which interact with the Earth’s magnetosphere to generate

power or provide propulsion.

Space tethers can be used in a diverse range of applications, which include the study of

plasma physics and electrical generation in the upper atmosphere, the orbiting or deorbiting

of space vehicles and payloads, for inter-planetary propulsion, and potentially for specialised

missions, such as asteroid rendezvous, or in extreme form as the well publicised space ele-

vator. In the century since their conception, space tethers have not yet been fully utilised. As

the convergence of materials and technology continues, however, there should be numerous

opportunities to use tethers in space [2].

An orbiting satellite follows an elliptical path around the body being orbited, frequently

called the primary, and located at one of the two foci. As shown in Figure 1.1, which is

adopted from Curtis 2004 [3], an elliptical orbit is defined as a curve with the property that

for each point on an ellipse, the sum of its distances from the two fixed foci is constant. The
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longest and shortest lines which can be drawn through the centre of an ellipse are the major

axis and the minor axis, respectively. The semi-major axis is one-half of the major axis

and represents a satellite’s mean distance from its primary. Eccentricity (e) is the distance

between the foci divided by the length of the major axis, and is a number between zero and

one,as defined in equation (1.1.1), an zero eccentricity indicates a circle orbit.

Periapsis is the point on an orbit closest to the primary. The opposite of periapsis, the

furthest point on an orbit, is called the apoapsis. Periapsis and apoapsis are usually modified

to apply to the body being orbited, such as the perihelion and the aphelion for the Sun,

the perigee and the apogee for Earth, the perijove and the apojove for Jupiter, and perilune

and apolune for the Moon. The argument of periapsis is the angular distance between the

ascending node and the point of periapsis. The time of periapsis passage is the time in which

a satellite moves through its point of periapsis.

e =
rapo − rper

rapo + rper
(1.1.1)

a =
rapo + rper

2
=
h2

μ

1

1− e2
(1.1.2)

rapo = a (1+ e) =
h2

μ

1

1− e
(1.1.3)

rper = a (1− e) (1.1.4)

rper

rapo
=
1− e

1+ e
(1.1.5)

As shown in Figure 1.1,θ is the true anomaly, which is the angle between the eccentricity

vector and the position vectorR. a is the semimajor axis of the ellipse in equation (1.1.2).

rapo is the apogee radius in equation (1.1.3),rper is the perigee radius in equation (1.1.4).

Givene = 0.2 andrper = 6.89×106, thenrapo = 1.0335×107, as shown in equation (1.1.5).

p is the semilatus rectum in equation (1.1.6).β is the true anomaly of pointB, the radial

coordinaterB is given in equation (1.1.7). The projection ofrB onto the apseline isae, as

given in equation (1.1.8).

p = a(1− e2) = b2/a = rper(1+ e) = rapo(1− e) (1.1.6)
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Figure 1.1: Elliptical orbit [3] [4]

rB = a
1− e2

1+ e cosβ
(1.1.7)

ae = rB cos(180− β) = −

(

a
1− e2

1+ e cosβ

)

cosβ (1.1.8)

T =
2πab

h
=
2π

μ2

(
h

√
1− e2

)3
=
2π
√
μ
a
3
2 (1.1.9)

h =
√
μa (1− e2) (1.1.10)

As defined in equation (1.1.9),T is the orbital period of a space tether travelling along an

elliptic orbit, h is an orbital parameter, as defined in equation (1.1.10),μ is the product of

the universal gravitational constantG = 6.6742× 1011 m3/kg.s2 with the Earth’s mass [3]

[4] [5] [6]. When T = 1, it means that the space tether goes around the Earth on the elliptical

orbit for one cycle.

t = Tn × T (1.1.11)

As defined in equation (1.1.11), the space tether’s simulation timet can be expressed

as a gain factorTn times a specific orbital periodT on an elliptical orbit with a specific

eccentricitye, in whichTn is the number of cycles of period (NCP, or for short, cycle number)

and will be taken as the timing index for the simulations in this thesis. As listed in Appendix

C, whene = 0.2 andrper = 6.890× 106 m,

◦ if Tn = 4.01, the simulation timet is 3.1899× 104 seconds;
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◦ if Tn = 40.01, the simulation timet is 3.18183× 105 seconds;

◦ if Tn = 400.01, the simulation timet is 3.1811× 106 seconds.

As shown in Figures 1.1 and 1.2, according to the orbital theory [3] [4] , in the orbital

plane,R represents the radius vector to the orbiting tether’s centre of mass. The true anomaly,

θ, defines the angle in the direction of motion from the perigee to the tether’s centre of mass.

These parameters, together with the orbit eccentricity,e, and the mean anomaly, are sufficient

to define completely the position of the tether’s centre of mass in space. The mean anomaly is

defined as the orbital mean motion multiplied by the time elapsed since passing the perigee.

Again, as seen in Figures 1.1 and 1.2,a is the semimajor axis (orb is the semiminor

axis), which specifies the size of the orbit;e is the eccentricity, specifying the shape of the

elliptical orbit; i is the inclination, which is the angle between the orbital plane and the

Earth’s equatorial plane.ω is the argument of periapsis, an angle of an orbiting body’s

periapsis relative to its ascending node.θ is the true anomaly, and is an angular parameter

which defines the position of a body moving along a Keplerian orbit and is the angle between

the direction of periapsis and the current position of the body, as seen from the main focus

of the ellipse (the point around which the object orbits).Ω is the longitude of the ascending

node, the angle from the origin of longitude to the direction of the ascending node [3] [4].

To describe an orbit mathematically, one needs to define a minimum of six quantities.

Traditionally, the set of orbital elements commonly used is called the set of Keplerian ele-

ments. This comprises [7] [8]:

a the semimajor axis

e the eccentricity

i the inclination

ω the argument of periapsis

θ the true anomaly

Ω the longitude of the ascending node

As shown in Figure 1.2, the nodes are the points where an orbit crosses on orbital plane,

such as are shown here, where a satellite is crossing the Earth’s equatorial plane. If the

satellite crosses the plane going from south to north, the node is defined as the ascending

node; if moving from north to south, it is called the descending node. The longitude of the

ascending node is the node’s celestial longitude. Celestial longitude is analogous to longitude

on Earth and is measured in degrees counter-clockwise from zero, with zero longitude being
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Figure 1.2:Geocentric inertial coordinate system [3] [4] [5]

in the direction of the vernal equinox [3] [4] [5].

The plane of the tether’s orbit about the Earth can be inclined to the Earth’s equatorial

plane by the anglei, the inclination of the orbit, defined where the intersection of the two

planes occurs at the node line. An inclination of zero degrees indicates an orbit about the

primary’s equator in the same direction as the primary’s rotation, a direction called prograde.

An inclination of 90 degrees indicates a polar orbit. An inclination of 180 degrees indicates a

retrograde equatorial orbit. A retrograde orbit is one in which a satellite moves in a direction

opposite to the rotation of its primary. The right ascension ofΩ measures the angle in the

plane of the equator from the vernal equinox eastward to the ascending node. The angle

formed in the orbit plane in the direction of motion from the ascending node to the perigee

is the argument of perigee,ω [5] [6] [7].

The coordinate system used to describe Earth orbits in three dimensions is defined in

terms of the Earth’s equatorial plane - the ecliptic plane, and the Earth’s axis of rotation.

The ecliptic is the plane of the Earth’s orbit around the sun, and is illustrated in Figures

1.1 and 1.2. The Earth’s axis of rotation, passing through the North and South Poles, is

not perpendicular to the ecliptic. It is tilted away by an angle known as the obliquity of

5



Figure 1.3:Heliocentric ecliptic coordinate system defining vernal equinox direction [7] [8]

the ecliptic -ε. For the Earthε is approximately 23.4 degrees, as shown in Figure 1.3.

Therefore, the Earth’s equatorial plane and the ecliptic intersect along a line, known as the

vernal equinox line. On the calendar, the ‘vernal equinox’ is the first day of spring in the

northern hemisphere, when the noontime Sun crosses the equator from South to North. The

position of the Sun at that instant defines the location of a point in the sky called the vernal

equinox. On the day of the vernal equinox, the number of hours of daylight and darkness

is equal - hence the word ‘equinox’. The other equinox occurs precisely one-half year later,

when the Sun crosses back over the equator from North to South, thereby defining the first

day of autumn [7] [8] [9].

The geocentric coordinate system, where the Earth’s centre of mass is treated as the

origin, is used to provide an inertial system in space. In this system the governing equations

of motion can be derived for a tether orbiting the Earth. As shown in Figure 1.2, theZE axis

points in the direction of the Earth’s north pole and represents the Earth’s axis of rotation in

a positive direction. TheXE − YE − ZE system is non-rotating with respect to the stars, and

the Earth rotates relative to that coordinate system. TheXE−YE plane is coplanar within the

Earth’s equator, which is inclined by about 23.4 degrees to the ecliptic plane of the Earth’s

orbit about the Sun, as in Figure 1.3. On the first day of the northern hemisphere’s spring the

ecliptic and theXE − YE plane intersect along a line, which is coincidental with theXE axis,

pointing to the first point of the Aries constellation, or the vernal equinox direction [11].

In reality, the geocentric system is not a true inertial system, the Earth orbits the Sun on

an almost circular orbit and in turn the Sun orbits the centre of the Milky Way on an approx-

imately circular orbit. The geocentric system is continuously experiencing an acceleration
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and, therefore, cannot be considered as a proper inertial reference frame. Furthermore, the

direction of the Earth’s axis of rotation does not remain constant, because of the preces-

sional motion due to the Sun with a period of 25,800 years together with a nutational motion

due to the Moon with a period of 18.6 years. Both the equatorial and ecliptic plane move

with respect to the stars, since the planets affect the orientation of the ecliptic plane in the

slow rotational motion of planetary precession. Consequently, the geocentric system moves

slowly relative to the stars, and when extreme precision is required, the coordinates of an

object based on the vernal equinox direction of a particular year or epoch have to be speci-

fied. However, the accelerations are relatively small and for practical purposes the geocentric

system can be accepted as being inertial [7] [8] [9] [10] [11] [14] [15].

For a spacecraft to achieve Earth orbit, it must be launched to an elevation above the

Earth’s atmosphere and accelerated to orbital velocity. The most energy efficient orbit, which

requires the least amount of propellant, is a direct low inclination orbit. To achieve such an

orbit, a spacecraft is launched in an eastward direction from a site near the Earth’s equator.

High inclination orbits are less able to take advantage of the initial speed provided by the

Earth’s rotation, thus the launch vehicle can provide a greater part, or all, of the energy

required to attain orbital velocity. Although high inclination orbits are less energy efficient,

they do have advantages over equatorial orbits for certain applications. Below we describe

several types of orbits and the advantages of each: [3] [4] [5] [7] [8] [9] [10] [11]:

� A Low Earth Orbit (LEO) is generally defined as an orbit within the locus extending

from the Earth’s surface up to an altitude of 2000 km. Given the rapid orbital decay

of objects below approximately 200 km, the commonly accepted definition for LEO is

between 160 - 2000 km above the Earth’s surface.

� Geosynchronous orbit (GEO) is circular orbit around the Earth and has a period of

24 hours. A GEO with an inclination of zero degrees is called a geostationary orbit. A

spacecraft in a geostationary orbit (GSO) appears to hang motionless above one posi-

tion on the Earth’s equator. For this reason, it is ideal for some types of communication

or meteorological satellites. A spacecraft in an inclined geosynchronous orbit appears

to follow a regular pattern in the sky, once every orbit. To attain geosynchronous or-

bit, a spacecraft is first launched into an elliptical orbit with an apogee of 35,786 km,

called a geosynchronous transfer orbit (GTO). The orbit is then circularised by firing

the spacecraft’s engine at apogee.

� A polar orbit (PO) is an orbit in which a satellite passes above or nearly above both

poles of the body, such as the Earth, or the Sun, which is orbited on each revolution.
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Usually it has an inclination of 90 degrees. The PO is useful for satellites which carry

out mapping or surveillance operations, because as the planet rotates the spacecraft is

able to access virtually every point on the planet’s surface.

� A walking orbit of an orbiting satellite is subjected to a great many gravitational

influences. First, planets are not perfectly spherical, and they have slightly uneven

mass distribution. These fluctuations have an effect on a spacecraft’s trajectory. Also,

the Sun, the Moon, and the planets contribute a gravitational influence on an orbiting

satellite. With proper planning, it is possible to design an orbit which takes advantage

of these influences to induce a precession in the satellite’s orbital plane. The resulting

orbit is called a walking orbit, or precessing orbit.

� A Sun synchronous orbit (SSO) is a walking orbit whose orbital plane precesses

with the same period as the planet’s solar orbit period. In such an orbit, a satellite

crosses periapsis at about the same local time every orbit. This is useful if a satellite

is carrying instruments which depend on a certain angle of solar illumination on the

planet’s surface. In order to maintain an exact synchronous timing, it may be necessary

to conduct occasional propulsive maneuvers in order to adjust the orbit.

�Molniya orbits were named after a series of Soviet/Russian Molniya (Russian: “Light-

ning”) communications satellites, which have been using this type of orbit since the

mid 1960s. A Molniya orbit is a type of highly elliptical orbit with an orbital period of

about 12 hours (2 revolutions per day). The orbital inclination is chosen so the rate of

change of perigee is zero, thus both apogee and perigee can be maintained over fixed

latitudes. This condition occurs at inclinations of 63.4 degrees and 116.6 degrees. For

these orbits the argument of perigee is typically placed in the southern hemisphere, so

the satellite remains above the northern hemisphere near apogee for approximately 11

hours per orbit. This orientation can provide good ground coverage at high northern

latitudes.

� Hohmann transfer orbits are interplanetary trajectories. Their advantage is that they

consume the least possible amount of propellant. A Hohmann transfer orbit to an outer

planet, such as Mars, is achieved by launching a spacecraft and accelerating it in the

direction of Earth’s revolution around the Sun, until it breaks free of the Earth’s gravity

and reaches a velocity which places it in a Sun orbit with an aphelion equal to the orbit

of the outer planet. Upon reaching its destination, the spacecraft must decelerate so

that the planet’s gravity can capture it into a planetary orbit.
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1.1.1 History of the Tether Concept

The idea of an orbital tower was first originally conceived by Konstantin Tsiolkovsky in

1895 [12] [13]. He looked at the Eiffel Tower in Paris and imagined a giant tower reach-

ing into space with a “celestial castle” at the top, and the free-floating spindle-shaped tower -

“Tsiolkovsky” tower - reaching from the surface of Earth to GSO. His proposal of a ‘Shuttle-

borne Skyhook’ for low orbital altitude research marked the advent of tethered satellite sys-

tems (TSS). It would be supported in tension by excess centrifugal force on the part of the

tower beyond geosynchronous altitude. These were the first of a series of “space elevator”

or “beanstalk” concepts having a tether in a synchronous orbit reaching all the way down to

the ground. Payloads would be transported up and down the tether without the use of any

propellant. This structure would be held in tension between Earth and the counterweight in

space, like a guitar string held taut. Space elevators have also sometimes been referred to

as beanstalks, space bridges, space lifts, space ladders, skyhook, orbital towers, or orbital

elevators [16] [17] [18].

Yuri Artsutanov, another Russian scientist, wrote on some of the first modern concepts

about space elevators as a non-technical story in 1960 [19]. Artsutanov suggested using a

geostationary satellite as the base from which to deploy the structure downward. By using

a counterweight, a cable would be lowered from geostationary orbit to the surface of Earth,

while the counterweight was extended from the satellite away from Earth, keeping the cen-

tre of gravity of the cable motionless relative to Earth. Artsutanov’s idea was introduced to

the Russian-speaking public in an interview published in the Sunday supplement of Kom-

somolskaya Pravda (usually translated as Komsomol Truth in English) in 1960, but was not

available in English until much later. He also proposed tapering the cable thickness so that

the tension in the cable was constant, this gives a thin cable at ground level, thickening up

towards GSO [20] [21] [22].

In 1966, Isaacs, Vine, Bradner and Bachus, four American engineers, reinvented the

concept, naming it a “Sky-hook”, and published their analysis in the journal Science [23].

They decided to determine what type of material would be required to build a space elevator,

assuming it would be a straight cable with no variations in its cross section, and found that

the strength required would be twice that of any existing material including graphite, quartz,

and diamond [22] [24].

Colombo et al. provided an idea for a shuttle-borne skyhook for low-orbital altitude

research in 1974 [25]. The concept finally came to the attention of the space flight engineer-

ing community through a technical paper written in 1975 by Jerome Pearson [26] of the air

9



force research laboratory. He designed a tapered cross section which would be better suited

to building the elevator. The completed cable would be thickest at the geostationary orbit,

where the tension was greatest, and would be narrowest at the tips so as to reduce the amount

of weight per unit area of cross section that any point on the cable would have to bear. He

suggested using a counterweight that would be slowly extended out to 144,000 kilometres as

the lower section of the elevator was built. Without a large counterweight, the upper portion

of the cable would have to be longer than the lower, due to the way in which gravitational

and centrifugal forces change with distance from Earth. His analysis included disturbances

such as the gravitation of the Moon, wind and moving payloads up and down the cable. The

weight of the material needed to build the elevator would have required thousands of space

Shuttle trips, although part of the material could be transported up the elevator when a mini-

mum strength strand reached the ground, or it could be manufactured in space from asteroids

[13].

In 1977, Hans Moravec published an article called “A Non-Synchronous Orbital Sky-

hook” [27], in which he proposed an alternative space elevator concept, using a rotating

cable, in which the rotation speed exactly matches the orbital speed in such a way that the

instantaneous velocity, at the point where the cable was at the closest point to the Earth, was

zero. This concept was an early version of a space tether transportation system.

In 1979, Jerome Pearson discussed the concept of anchored lunar satellites in The Journal

of the Astronautical Sciences, in which it was observed of anchored lunar satellites that they

balanced about the collinear libration points of the Earth-moon system and attached to the

lunar surface [28].

Also in 1979, space elevators were introduced to a broader audience with the simulta-

neous publication of Arthur C. Clarke’s novel, “The Fountains of Paradise”, in which engi-

neers constructed a space elevator on top of a mountain peak in the fictional island country

of Taprobane.

In 1984, Georg von Tiesenhausen wrote a history of these concepts and their more modest

derivatives [29]. Joseph A. Carroll conducted some studies on the advantages of swinging

and barely spinning systems [30] [31].

Since then, a series of interesting space tether applications have been proposed and anal-

ysed. In the last decade, the study of space tether has received significant attention from

researchers covering a broad range of applications. Some examples of applications which

have considerable promise include: the deployment and retrieval of subsatellites, aerobrak-

ing, electrodynamic boost, deorbit of satellites and momentum-transfer with libration and

rotation analysis. Control research on space tether applications was one of the most impor-
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tant aspects of space tether study, and each control method suited each application or mission

requirement, such as: liberation, oscillation, attitute, motion and deployment [1].

1.1.2 Tether Missions

Over the past forty years, a series of missions have been delivered for aerospace application

using tethered satellite systems. These proposals include scientific experiments in the micro-

gravity environment, upper atmospheric research, the generation of electricity, cargo transfer

between orbiting bodies, collections of planetary dust, and the expansion of the geostation-

ary orbit resource by tethered chain satellites. For example, NASA has been developing

tether technology for space applications since the 1960s, and these include electrodynamic

tether propulsion, the Propulsive Small Expendable Deployer system (ProSEDS) flight ex-

periment, “Hanging” momentum exchange tethers, rotating momentum exchange tethers,

and tethers supporting scientific space research. A number of such tethers have already been

flown on missions, these include: the Small Expendable-tether Deployer System (SEDS), the

Tether Satellite System (TSS), the Tether Physics and Survivability experiment (TiPS), and

the Space Technology Experiments (STEX). Table 1.1 gives a brief tether mission history

and shows the status of each one [2] [13] [17] [30] [32] [33] [34] [35] [36] [37] [38] [39]

[40].

The Gemini XI was a manned spaceflight in NASA’s Gemini program, launched on

September 12, 1966 [36]. It was the 9th manned Gemini flight, the 17th manned Ameri-

can flight, and the 25th spaceflight of all time, including X-15 flights, at altitudes of over 100

km. The Gemini XI mission’s main objectives were: (1) rendezvous with the Gemini Agena

Target Vehicle (GATV); (2) to conduct docking practice and extravehicular activity (EVA);

(3) to conduct the eight scientific experiments: the synergistic effect of zero-g and radiation

on white blood cells, the synoptic terrain photography, the synoptic weather photography,

the nuclear emulsions, the airglow horizon photography, the UV astronomical photography,

the Gemini ion wake measurement, and the dim sky photography;(4) synoptic terrain pho-

tography and a tethered vehicle test; (5) demonstrating automatic re-entry and parking the

GATV. All the Gemini XI mission’s objectives were achieved, except the evaluation of the

minimum reaction power tool, which was not performed, because the umbilical EVA was

terminated prematurely.

The Gemini XII was a manned spaceflight in NASA’s Gemini program launched on

November 11, 1966.The major objectives were: (1) rendezvous, docking and evaluation

for the EVA; (2) tethered vehicle evaluation and experiments; (3) revolution rendezvous,
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Table 1.1: Tether mission history [2] [13] [17] [30] [32] [33] [34] [36] [37]

Mission Year Sponsor Orbit Length Status
Gemini XI 1967 NASA LEO 50 m Launched
Gemini XII 1967 NASA LEO 30 m Launched
TPE-1 1980 NASA/ISAS suborbital 400 m Launched
TPE-2 1981 NASA/ISAS suborbital 500 m Launched
TPE-3(CHARGE-1) 1983 NASA/ISAS suborbital 500 m Launched
CHARGE-2 1985 NASA/ISAS suborbital 500 m Launched
MAIMIK 1986 NASA/NDRE LEO 400 m Launched
ECHO-7 1988 USAF suborbital - Launched
OEDIPUS-A 1989 NRC/NASA/CRC/CSA suborbital 958 m Launched
CHARGE-2B 1992 NASA/ISAS suborbital 500 m Launched
TSS-1(STS-46) 1992 NASA/ASI LEO 267 m Launched
SEDS-1 1993 NASA LEO 20 m Launched
PMG 1993 NASA LEO 500 m Launched
SEDS-2 1994 NASA LEO 20 m Launched
OEDIPUS-C 1995 NASA/NRC/CRC/CSA suborbital 1 km Launched
TSS-1R(STS-75) 1996 NASA/ASI LEO 19.6 kmLaunched
TSS-2(STS-75) 1996 NASA LEO 100 m Cancelled
TiPS 1996 NRO/NRL LEO 4 km Launched
YES 1997 ESA/Delta-Utec LEO 35 m Launched
ATEx 1999 NRO/NRL LEO 22 m Launched
PICOSATs 2000 Aerospace Corporation LEO 30 m Launched
MEPSI 2002 Aerospace Corporation LEO 15.2 mLaunched
ProSEDS 2003 NASA LEO 15 m Cancelled
MAST 2007 NASA/TUI/Stanford LEO 1 km Launched
YES2 2007 ESA/Delta-Utec LEO 31.7 m Launched

docking and automatic re-entry demonstration; (4) docked maneuvering for a high-apogee

excursion, docking practice, system tests and GATV parking. All the other objectives were

achieved except the high-apogee excursion, because an anomaly was noted in the GATV pri-

mary propulsion system during insertion, and then the GATV’s parking was not attempted

because its attitude control gas was depleted [35] [37].

After the Gemini experiments, the first two experiments of the early 1980s were in 1980

and 1981, which were part of a joint program involving the Institute of Space and Astronau-

tical Science (ISAS) in Japan and the Centre for Atmospheric and Space Science of Utah

State University. The project was called the Tethered Payload Experiment (TPE); the mis-

sions TPE-1 and TPE-2 were launched using two types of Japanese rocket, Kappa 9M (flight

H-9M-69) and S-520 (flight S-520-2).From the Japanese Kagoshima Space Centre, the

TPE-1 mission was launched via Kappa 9M rocket on January 16, 1980. Its plan was to

deploy 400 metres of cable, but its deployed cable was about 38 metres. The TPE-2 mission

was launched on 29 January, 1981, and its tether was deployed to a distance about 65 metres

[13] [34].
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In 1983, the TPE-3 was planned by ISAS and Utah State University, which was also

called CHARGE-1, and the tether length was about 500 m.As the deployment system was

improved, the tether deployed to its full length of 418 meters, and the tether was also found

to act as a radio antenna for the electrical current through the cable.After that, CHARGE-

2 was carried out as an international program between Japan and the USA using a NASA

sounding rocket at White Sands Missile Range, in December 1985,its tether deployed to a

length of 426 metres [13] [38].

The MAIMIK experiment was a joint mission by NASA and NDRE in 1986, for which

the tether length was about 400 m. This mission was designed to study the charging of an

electron-beam emitting payload using a tethered mother-daughter payload configuration [39]

[40].

In 1988, the U.S. Air Force Geophysics Laboratory launched the Echo-7, which was de-

signed to study the artificial electron beam propagation along magnetic field lines in space.

The mission was designed to study how the artificial electron beam progagates along mag-

netic field lines in space [13] [41].

In 1989, the mission OEDIPUS-A was organised by the National Research Council of

Canada(NRC), NASA and some other partners, in which a conducting tether was deployed

over 958 metres during the flight of a Black Brant sounding rocket into the auroral iono-

sphere. [42] [13].

With similar equipment to that on CHARGE-2, the CHARGE-2B tethered rocket mission

was launched in 1992 by NASA with a Black Brant V rocket.The mission was to generate

electromagnetic waves by modulating the electron beam. The tether was fully deployed over

400 meteres and the experiments all worked as planned [43] [13].

The following OEDIPUS mission was the OEDIPUS-C tethered payload mission, which

was launched in 1995 with an 1174 metres deployed tether, and a Tether Dynamics Experi-

ment (TDE) was also included as a part of the OEDIPUS-C [13] [44].

The first orbital flight experiment with a long tether was the Tethered Satellite System

(TSS) mission, launched on the Space Shuttle in July 1992. The Tethered Satellite System-

1 (TSS-1) was flown during STS-46, aboard the Space Shuttle Atlantis, from July 31 to

August 8, 1992. The TSS-1 mission discovered a lot about the dynamics of the tethered

system. Although the satellite was deployed only 260 metres, it was able to show that the

tether could be deployed, controlled, and retrieved, and that the TSS was easy to control,

and even more stable than predicted. The TSS was an electrodynamic tether, its deployment

mechanism jammed resulting in tether sever and less than 1000 metres of deployment.The

objectives of TSS-1 were: (1) to verify the performance of the TSS equipment; (2) to study
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the electromagnetic interaction between the tether and the ambient space plasma; (3) to

investigate the dynamical forces acting on a tethered satellite. In the first tether deployment,

when the satellite was moving excessively side to side, the deployment was aborted. The

second trial of deployment was unreeled to a length of 260 metres [45] [46] [47] [48] [49]

[13].

The Shuttle Electrodynamic Tether System (SETS) experiment formed part of the sci-

entific experiments comprising the first flight of the NASA/ASI Tethered-Satellite System

flown at an altitude of 300 km and at an orbital inclination of 28.5 degrees in July/August

1992. The SETS experiment was designed to study the electrodynamic behaviour of the

Orbiter-Tether-Satellite system, as well as to provide background measurements of the iono-

spheric environment near the Orbiter. The SETS experiment was able to operate continu-

ously during the mission thereby providing a large data set. Details of the SETS objectives,

its instrumentation, and initial results from the mission highlighting voltage, current, and

charging measurements were presented [50].

The Small Expendable Deployer System-1 (SEDS-1) was launched from Cape Canaveral

Air Force Station as a Delta/GPS secondary payload in 1993. As a secondary payload on

a Delta II launch vehicle, SEDS-1 was the first successful 20-kilometre space-tether exper-

iment. When 1 km of tether remained, active braking was applied by wrapping the tether

around a ‘barber pole’ brake. Finally, the braking system and sensors did not work as pre-

dicted, resulting in hard stop/endmass recoil at deployment completion [1].

In 1996, the Plasma Motor Generator (PMG) was launched by NASA. This was an elec-

trodynamic tether, which could assess the effectiveness of using hollow cathode assemblies

to deploy an ionised gas, and to ‘ground’ electrical currents by discharging the energy to

space. An early experiment used a 500 metre conducting tether. When the tether was fully

deployed during this test, it generated a potential of 3,500 volts. This conducting single-

line tether was severed after five hours of deployment. It was believed that the failure was

caused by an electric arc generated by the conductive tether’s movement through the Earth’s

magnetic field. The PMG flight demonstration proved the ability of the proposed Space

Station plasma grounding techniques in maintaining the electrostatic potential between the

Space Station and the surrounding plasma medium. The PMG also demonstrated the abil-

ity to use electrostatic tethers to provide thrust to offset drag in LEO space systems, and it

demonstrated the use of direct magnetic (non-rocket) propulsion for orbital maneuvering [1].

The Small Expendable Deployer System-2 (SEDS-2) was launched on the last GPS

Block 2 satellite in 1994. The SEDS-2 used feedback braking, which started early in de-

ployment. This limited the residual swing after deployment to 4 degrees. Mission success
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was defined as deployment of at least 18 km, plus a residual swing angle of less than 15

degrees. The SEDS-2 had an improved braking system compared to SEDS-1, which was a

feed-back control system and applied braking force as a function of the measured speed of

the unrolling tether. This was to ensure the satellite stopped flying out just when the whole

tether was deployed, and to prevent the bounces experienced during the previous mission

[13].

In 1996, the Tethered Satellite System Reflight (TSS-1R) was carried by using U.S space

shuttle STS-75 succesfully. The primary objective of STS-75 was to carry the Tethered Satel-

lite System Reflight (TSS-1R) into orbit and to deploy it spacewards on a conducting tether.

The mission also flew the United States Microgravity Payload (USMP-3), designed to inves-

tigate materials science and condensed matter physics.The TSS1-R mission objectives were:

(1) to characterise the current-voltage response of the TSS-orbiter system; (2) to characterise

the satellite’s high-voltage sheath structure and current collection process; (3) to demonstrate

electric power generation; (4) to verify tether control laws and basic tether dynamics; (5) to

demonstrate the effect of neutral gas on the plasma sheath and current collection; (6) to char-

acterise the TSS radio frequency and plasma wave emissions; (7) to characterise the TSS

dynamic-electrodynamic coupling [51] [52].

The Tether Physics and Survivability Experiment (TiPS) was deployed on 20 June 1996

at an altitude of 1,022 kilometres as a project of the US Naval Research Laboratory. The

satellite was a tether physics experiment consisting of two end masses connected by a 4 km

non-conducting tether, for which the two tethered objects were called “Ralph” and “Norton”.

This experiment was designed to increase knowledge about gravity-gradient tether dynamics

and the survivability of tethers in space [53].

The first Young Engineers’ Satellite (YES-1) programme was completed on 3rd Novem-

ber 1997. It was designed to operate with a 35 km tether deployment, but the mission was

cancelled before the flight when the launch authority changed the nominal Ariane orbit. In

the new orbit configuration a deployed 35 km tether would have constituted a hazard to

satellites in LEO [54].

The Advanced Tether Experiment (ATEx) was launched into orbit aboard the National

Reconnaissance Office (NRO) sponsored Space Technology Experiment spacecraft (STEX)

on October 3, 1998. ATEx was intended to demonstrate the deployment and survivability

of a novel tether design, as well being used for controlled libration maneuvres. On January

16, 1999, after a deployment of only 22 m of tether, ATEx was jettisoned from STEX due to

an out-of-limit condition sent by the experiment’s tether angle sensor. The ATEx lower end

mass was jettisoned from the host spacecraft and the tethered upper and lower end masses
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freely orbited the Earth in a demonstration of long term tether survivability.The ATEx

was a tethered satellite experiment with the following mission objectives: (1) deployment

of a novel, nonconductive polyethylene tape tether; (2) verification of dynamical models of

deployment and orbital libration; (3) ejection of the ATEx lower end mass from the host

spacecraft [55].

The PICOSAT mission was launched on September 30, 2001. It was a real time track-

ing satellite of the miniaturised picosatellite satellite series. The name “PICO” combined

the first letters of all four of its experiments, which were the Polymer Battery Experiment

(PBEX), the Ionospheric Occultation Experiment (IOX), the Coherent Electromagnetic Ra-

dio Tomography (CERTO), and the On Orbit Mission Control (OOMC) [56]. A pair of 0.25

kg MEMS picosatellites with an intersatellite communications experiment were included in

this mission, and were connected by a 30 metre tether [56].

The MEPSI series (Micro Electro-Mechanical Systems-based PicoSat Inspector) was a

pair of tethered picosatellites, based on the CubeSat design, launched by a custom deployer

aboard the STS-113 Endeavour mission on 2nd December 2002. The spacecraft were man-

ufactured for the Defense Advanced Research Projects Agency (DARPA) by the Aerospace

corporation in collaboration with NASA’s Jet Propulsion Laboratory (JPL). The two space-

craft were cubic in shape, of mass 1 kg each, and were connected via a 15.2 m tether in order

to facilitate detection and tracking via ground-based radar [56].

The Propulsive Small Expendable Deployer System (ProSEDS) was a NASA space tether

propulsion experiment intended to be a follow-up to SEDS. It was originally intended to be

flown along with a launch of a Global Positioning System (GPS) satellite in the spring of

2003, but was cancelled at the last moment, due to concerns that the tether might collide

with the international space station [57].

The Multi-Application Survivable Tether (MAST) experiment was launched into LEO on

17th April 2007, in which the 1 km multi-strand interconnected tether (Hoytether) was in-

tended to test and prove the long-term survivability of tethers in space, but the tether failed to

deploy. The experiment hardware was designed under a NASA Small Business Technology

Transfer (STTR) collaboration between Tethers Unlimited Inc (TUI) and Stanford Univer-

sity, with TUI developing the tether, the tether deployer, the tether inspection subsystem,

the satellite avionics, and the software system, and Stanford students developing the satellite

structures and assisting with the avionics design [58].

The second Young Engineers Satellite (YES2) was launched on 14th September 2007.

It was a technology demonstration project designed to test and produce data for the “Space

Mail” concept, wherein a tether was used to return material from space to Earth, instead of
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by conventional chemical propulsion. YES2 aimed to demonstrate a tether-assisted re-entry

concept, whereby the payload would be returned to Earth using momentum provided from a

swinging tether. Deployment was intended to take place in two phases: (1) deployment of 3.5

km of tether to the local vertical and hold, and (2) deployment to 30 km for a swinging cut.

The measured altitude gain of the Fonton-M3 corresponded with what simulations showed

would happen if 31.7 km of tether were extended, another strong indication that the YES-2

tether had in fact been fully depolyed.

The YES-2 mission was very nearly a complete success: (1) the entire record-breaking

length of tether has been deployed; (2) Fotino rocket seemed to have been de-orbited by using

momentum exchange; (3) plentiful data has been gathered on tether deployment, dynamics

and de-orbiting, which may lead to an operational way of returning capsules without any

form of propulsion. [13] [59] [60].

The Fortissimo is a developing space tether experiment which is proposed to be used for

deploying a 300 m bare electrodynamic tether tape, with a width of 25 mm, and a thickness

of 0.05 mm, in order to conduct two scientific experiments, as the first ever attempt in the

world by an international team consisting of Japanese, European, American, and Australian

tether enthusiasts. A S-520 sounding rocket will be prepared by ISAS/JAXA and has been

intended to be launched in the summer of 2009 [61].

1.1.3 Momentum Exchange Tethers

Figure 1.4: Momentum exchange tether system for payload transfer [13] [62] [65]

A momentum exchange (MX) tether is a long thin cable used to couple or connect two
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space objects in space, so that the tether can provide a mechanical connection between two

space objects, which enables the transfer of energy and momentum from one object to the

other, and as a result they can be used to provide space propulsion without consuming pro-

pellant.

As shown in Figure 1.4, a pure momentum exchange tether does not create orbital energy

by itself, but rather exchanges momentum and energy with others. The exchange of momen-

tum can take place quickly, and increase the orbital energy of the payload dramatically. As

it catches and throws a payload, its orbital energy is reduced, and it assumes a lower orbit.

Without reboost, it will soon lose enough orbital energy to burn up in the atmosphere. Hence,

without reboost, the momentum exchange tether would soon be useless. Any type of propul-

sion system, in theory, could be used to reboost a momentum exchange tether - chemical,

physical and nuclear are all options - but if rocket reboost is used, the momentum exchange

tether station will need to be refuelled regularly, and the entire tether system will be no more

efficient than the reboost rocket [2] [13] [66] [67].

1.1.4 Electrodynamic Tethers

The electrodynamic tethers can work as the generators, by converting their kinetic energy

to electrical energy. Electric energy is generated across a conductive tether when moving

through the Earth’s magnetic field. The choice of the metal conductor to be used in an

electrodynamic tether is determined by a variety of factors, which include high electrical

conductivity, low density, cost, strength, and melting point [13] [73] [74].

Typically, as shown in Figure 1.5, an electric field of about 0.2 V/m develops as a con-

sequence of the motion in the Earth’s magnetic field. For most satellites and structures this

field has little effect, but for an electrodynamic (ED) tether with lengthL crossing the mag-

netic field lines at velocity~v0, the potential difference is defined in equation (1.1.12) [75]

[76], the tether acts as a unipolar generator depending on the relative geometry of the three

intervening vectors of~v0, ~B and~L, assuming a rectilinear tether, the potential difference may

amount to several kilovolt for lengths of the order of 10-20 km, and what matters is the

relative velocity between the orbiting conductor and the magnetic field lines [77] [78] [79]

[80].

4V =
∫L

0

(
~v0 × ~B

)
∙ d~l (1.1.12)

~FED =

∫L

0

i (l)
(
d~l× ~B

)
(1.1.13)
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Figure 1.5:Electrodynamic tether system [13] [76] [82]

where~FED is the force,i a scalar current value,d~l is the tether vector,L is the length of

tether, and~B is the magnetic field vector [82].

Most of the technological interest in electrodynamic tethers arises from their possible

utilisation for space propulsion. The interaction of the current with the Earth’s magnetic

field results in the ED force given in equation (1.1.13) [76] [82]. Propulsion and drag by

means of electrodynamic tethers were generated by the interaction of the conductive wire

with the Earth’s magnetic field.

If the tether is moving across electrical fields with the surrounding ionised medium,

charge is collected and an electrical current flows along the tether. As already pointed out in

the introduction, the effectiveness of tethers for propulsion and de-orbiting depends crucially

on the magnitude of this current. The thrust or drag is generated by the interaction of the

current with the local magnetic field, according to the Lorentz law [81] [82].

As this ED force is continuous, its action can result in large momentum transfer and

significant changes in the orbital elements. To be effective, however, the magnetic field must

not be parallel either to~v0 or ~B, a condition which makes such tethers much less efficient in

polar orbits [83] [84].

1.2 Objectives

The are two primary objectives for this thesis,
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. To propose a series of dynamical models for motorised momentum exchange tethers;

. To discuss two control methods for a flexible motorised momentum exchange tether’s

spin-up behaviour, which include a fuzzy logic control method and a hybrid fuzzy

sliding mode control method.

1.3 Contributions

The primary contributions of this thesis are listed below,

. a series of new dynamical models for motorised momentum exchange tethers were

obtained, which include the rigid body models, the massless tether subspan models,

and the flexible body motorised momentum exchange tethers;

. a fuzzy logic control method for a flexible motorised momentum exchange tether

spin-up was proposed;

. a hybrid fuzzy sliding mode control method for a flexible motorised momentum

exchange tether spin-up was proposed based on the fuzzy logic control method men-

tioned above;

. SMATLINK - a co-simulation toolbox, which allows easy data exchange and ma-

nipulation, implementation of existingMATLAB or MATHEMATICA codes, was

developed. This toolbox can connect the controllers inMATLAB with the dynamical

models of space tethers inMATHEMATICA.

1.4 Thesis Structure

There are 10 chapters in this dissertation. In order to demonstrate the structure in a quick and

clear way, Figure 1.6 lists the structure of this dissertation by chapter order, showing how the

chapters are organised one by one. Figure 1.7 plots the dissertation’s structure by MMET

modelsorder, indicating how the chapters are laid out by the types of dynamical models;

then two control methods are discussed.

• Chapter 1 - Introduction to space tethers - this chapter gives an introduction to space

tether history, missions related to space tethers, and basic concepts for the electrody-

namic tethers .
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• Chapter 2 - Literature review on space tethers and tethered system control - this is a

literature review regarding the control of space tethers; this chapter highlights relevant

control research and its related application to space tethers from a series of reference

papers.

• Chapter 3 - The motorised momentum exchange tether - this chapter addresses back-

ground information on the momentum exchange tether and the motorised momentum

exchange tether.

• Chapter 4 - Dynamical modelling of a flexible massless MMET system - this chapter

provides a modelling process for the motorised momentum exchange tether system

with axial, torsional and pendular elasticity, using Lagrangian dynamics.

• Chapter 5 - Discretised Axially MMET Elastic System - this chapter discusses the

dynamical modelling of the motorised momentum exchange tether system with axial

elasticity by discretising the tether subspans into a series of mass points, and then con-

nected these mass points by groups of ‘spring-dampers’ along each tether subspan.

• Chapter 6 - Discretised MMET system involving axial and torsional elasticity - based

on Chapter 5, this chapter summarises the dynamical modelling for the motorised mo-

mentum exchange tether system with axial and torsional elasticity by means of a sim-

ilar modelling process.

• Chapter 7 - Dynamical modelling for a discretised flexible MMET system - based on

Chapter 6, this chapter explains the dynamical modelling for the motorised momentum

exchange tether system with axial, torsional and pendular elasticity, using a consistent

process.

• Chapter 8 - Fuzzy logic control for MMET spin-up - this chapter discusses the design

process for a fuzzy logic controller with two inputs and one output as used for the

spin-up of the flexible MMET system, and as defined in Chapter 7.
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• Chapter 9 - Hybrid fuzzy sliding mode control for the MMET spin-up - a hybrid fuzzy

sliding mode control method is proposed in this chapter, combining together the fuzzy

logic control method and the skyhook surface sliding mode control method, and bal-

anced by a switching factor. Then, this hybrid control method is applied to the spin-up

control for the flexible MMET system in Chapter 7.

• Chapter 10 - Conclusions and future work - this chapter lists the conclusions to all

previous chapters and suggests a few future research targets for the control of space

tethers.

In particular here, as will be discussed in chapter 4, the dynamical modelling for the

flexible massless MMET is discussed by the following steps, which helps to show the flexible

massless MMET system modelling process clearly.

• Section 4.2 the massless MMET system: axial elasticity modelling

• Section 4.3 the massless MMET system: axial and torsional elasticity modelling

• Section 4.4 the flexible massless MMET system: axial, torsional and pendular elastic-

ity modelling

In order to distinguish the third modelling from the previous two models, the term ‘flex-

ible’ in this dissertation only means that this MMET system incorporates the axial, torsional

and pendular elasticity. Similarly, this modelling process is also applied to the models of

discretised MMET systems in the further chapters, that is,

• Chapter 5 the discretised MMET system: axial elasticity modelling

• Chapter 6 the discretised MMET system: axial and torsional elasticity modelling

• Chapter 7 the flexible discretised MMET system: axial, torsional and pendular elastic-

ity modelling
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Figure 1.6: Thesis structure by chapters
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Figure 1.7: Thesis structure by models
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Chapter 2

Literature Review on Space Tethers and

Tethered System Control

2.1 Introduction

A typical tether system related mission always involves tether deployment and payload trans-

fer, tether retrieval, trajectory navigation, attitude control, and motion and vibration control.

This may involve three dimensional rigid or flexible dynamics, swinging in-plane or out-of-

plane vibrational motion of the space tether system,and longitudinal and transverse vibra-

tions of the space tether system.

Space tether system dynamics are quite complex because they are governed by a set of

ordinary or partial nonlinear equations and coupled differential equations, aspects of which

can affect space tether system behaviour, and can possibly cause control problems, which

could be coupled with others problems.

Generally, Momentum exchange (MX) tethers and Electrodynamic (ED) tethers are the

two principal categories of a practical tether system. There are many kinds of tether applica-

tions, such as: Hybrid of Momentum eXchange/Electrodynamic Reboost (MXER) tethers;

and Electrostatic Tethers [85]. The research on dynamics and control are the two fundamen-

tally important aspects of all tether concepts, designs, and mission architectures [2] [86] [87]

[64] [88].

This literature review chapter focuses mainly on five topics regarding the control of space

tether:

◦ tether deployment and retrieval;

◦ trajectory generation and orbit control;
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◦ tether attitude and motion control;

◦ tether vibration control and dynamical simulations;

◦ space tether dynamical models.

With the basic aim of establishing useful sources of fundamental theory in the literature,

as well as highlighting the previous control methods developed, this chapter attempts to

provide a useful contextualised source of references for further space tether control studies.

2.2 Tether Deployment and Retrieval

A typical TSS mission launch involves both deployment and retrieval, besides other opera-

tional phases. Tether deployment and retrieval are two of the most important steps in space

tether applications [89] - [101].

A general formulation of the deployment dynamics of tether-connected two-body sys-

tems was introduced by Modi and Misra in 1979 [102]. It took into account three-dimensional

librational motion, and longitudinal and transverse vibrations. Three simple deployment pro-

cedures were considered, in the beginning analytical solutions were obtained for the degen-

erate case of negligible vibrations on a circular orbit, which helped to establish trends for the

more general situation.

In 1994, Bergamaschi et al. published a research paper, comparing the results of mathe-

matical models implemented in two different general purpose computer codes in the analysis

of the spectra of an accelerometric package mounted onboard TSS-1. The main characteris-

tics of the codes were presented, and a test case outlined the cross-check activity performed

for simulator validation. The simulated reconstruction of the dynamics during the on-station

period at 256 m was depicted and discussed, then a short review was made of instrument

performance and data quality, after which computed and experimental spectra, along with

data from a station-keeping phase during tether deployment, were compared and discussed

[103].

The motion of a tethered system during the retrieval process was investigated, using a

simple nonlinear model, by Chernousko in 1995 [104]. The unique motion was described

for the system at a constant tether retrieval rate in which the angle of deviation of the tether

vanished at the end of the retrieval. A method of controlling the retrieval process was pro-

posed, which prevented the amplitude of oscillation increasing.

An analysis of the exponential deployment of a tether was carried out by Pelaez in 1995

[105] [106]. It was shown that it was possible to dispense with tether alignment along the

26



vertical without later libration. There was a two-stage deployment process: the first stage

in which the tension was controlled indirectly in order to get a constant radial velocity of

the end mass; and the second stage in which the tension was controlled indirectly in order

to achieve a constant ratio. In both phases the tether unwound from a reel whose angular

velocity could be controlled. The essentially stable character of deployment gave robustness

to this open loop strategy, resulting in a residual, negligible libration. Moreover, the proposed

deployment scheme could be taken as a starting point for more elaborate strategies.

Koss described the tether deployment mechanism development for the ATEx mission in

1997, giving some design iterations. These included: energetic(spring) deployment, a DC

brush motor driven deployment mechanism and a stepper motor driven deployment mecha-

nism [55].

In 1997, a tethered system deployment control by fuzzy logic feedback was proposed

by Licata [107]. The feedback control was based on a simple fuzzy-logic rule and minimal

measurements for in-plane tether deployment control problems; tethered end-mass terminal

deployment position and phasing time constraints, such as tether initiated waste-disposal and

capsule re-entry applications, were all illustrated. The fuzzy logic law, for the proposed rate

feedback control solution to the in-plane deployed tether terminal position-only problem,

has been associated with the tether length-angle state plane, instead of its full state space, or

the physical deployment trajectory plane. Simulation results showed the robust characteris-

tics for the numerically implemented terminal angle-length control solution to main system

parameter changes, and uncertainty for a nominal tethered system model with a specified

deployer configuration design. Solutions to the more complex space-time tether deployment

control problem with terminal deployment angle-length-time constraints, associated with a

tether initiated capsule re-entry application, have also been formulated and were presented

as extensions of the previously stated deployment terminal position control, together with

numerical simulation results for the nominal tethered system model and deployer configura-

tion.

Carter and Greene studied the simulation of the retrieval and deployment characteristics

for the Getaway Tether Experiment (GATE) in 1998 [108]. The GATE was a single-tether

satellite system for the study of tether dynamics and electrodynamic technology. One goal

of GATE was to measure and control tether disturbances, such as those induced by micro

meteorite impact, using an active reel type deployer which was able to retrieve and deploy the

tether. A close-loop controller for the tethered system was given. This allowed the tether to

be actively reeled in (retrieval) or passively reeled out (deployment), to and from the mother

subsatellite. Their simulation results were presented and showed the effects of retrieval and
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deployment on the system. Three cases were considered: an exponential retrieval rate; a

constant retrieval rate; and a pulsed deployment.

A linear tension control law was provided by Kumar and Pradeep in 1998 [109]. In this

paper they provided a procedure used for determining a control law which could be used to

solve new problems. The approach was applied to the problem of three- dimensional tether

deployment considering both in-plane and out-of plane librations.

An adaptive neural control concept for the deployment of a tethered re-entry capsule was

provided by Glabel et al. in 2004 [110]. The control concept applied an indirect neural

controller, which combined two neural networks, a controller network and a plant model

network. While the controller network was initialised by means of multiple conventional

linear quadratic regulator designs, the plant model network was trained to predict future

states, and thus deviated from an optimised reference path. System inputs were found by

means of an online optimisation process, which minimised a user-defined cost function.

That was shown to influence the performance of the neural controller. Due to the special

structure of the controller network, stability investigations of the closed control loop were

possible. After introducing the tether deployment scenario, assumptions and simplifications

were applied to the mathematical system model. The numerical simulations focused on the

effects of perturbations concerning the initial states and the plant model. The simulation

results allowed a performance comparison of the linear quadratic regulator and the neural

control concept.

The dynamical behaviour of tether-connected satellite systems during the deployment

and retrieval process was considered by Djebli et al. [111] [112] in 1999 and 2002. The

system consisted of a space-station connected to a subsatellite by means of a tether of vari-

able length. A simplified model was given in which the space-station and the subsatellite

were reduced to material points and the system mass centre moved along a circular orbit

with three-dimensional transverse and longitudinal oscillations. Strategies for retrieval were

obtained in order to increase the tension in the tether at the final stage of retrieval. These

laws of retrieval were deduced from the laws obtained in a previous paper for the particular

case of a massless tether. Some particular laws of deployment retrieval, leading to analytical

solutions for the small in plane and out of plane motions of the system, were obtained. An-

other application of the method was the so-called “crawler system” in which the subsatellite

crawls towards the space-station along a tether of fixed length, previously deployed.

An in-depth analysis was presented by Campbell [113] regarding the closed-loop results

and insights from the on-orbit control experiments of the Mid-deck Active Control Exper-

iment (MACE). MACE was flown in the Shuttle mid-deck on STS-67 in March 1995 to
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investigate issues associated with a change in operational environment from ground to space

for a payload pointing spacecraft. This cannot be tested in a realistic ground simulation.

These closed-loop results provided insight into how future on-orbit closed-loop experiments

could be improved, and they also helped to build confidence in the on-orbit capabilities of

future multi-payload spacecraft. This practical control design for flexible systems involved

many issues, such as the selection of effective control topologies, the validation of robust

control designs and techniques, the development of robust control design methodologies for

both finite element and identified models, and the development of effective tools for system

analysis. The MACE was designed to be a reusable dynamics and control laboratory which

could be used to investigate many of these issues during both ground- and space-based op-

erations. The paper presented an in-depth analysis of the extensive set of modelling and

closed-loop control experiments performed on the MACE test during 14 days of on-orbit

operations on STS-67.

In 2003 and 2005, Barkow et al. published three papers on various methods used for

controlling the deployment of tethered satellites [114] [115] [116]. The deployment of a

tethered satellite system is one of the most critical phases in a tether mission, due to its com-

plicated dynamics. High amplitude oscillations are likely to arise in such systems, and it can

take a long time to reach the desired stable radial equilibrium state. Based on a viscoelastic

space billiard model [115], a targeting strategy was developed which made use of the sys-

tem’s chaotic nature and allowed the system to be steered into its equilibrium faster and more

efficiently, when compared to conventional strategies. Also, the deployment of a subsatel-

lite from a mother spaceship moving on a circular orbit would be a delicate operation for a

tethered satellite system, because this process could lead to unstable motion with respect to

the stable radial relative equilibrium of such a system if the tether length was constant. An

optimal control strategy to simulate the force controlled deployment of a tethered satellite

from a spaceship was proposed. The authors compared this strategy with free deployment,

deployment controlled by Kissel’s law [117] and an approach which made use of the con-

cept of targeting which is used in the controlling chaos approach. Both deployment time and

energy input were computed and compared to other deployment strategies.

In 2003, Steindl and Troger proposed their thesis that the optimal control of deployment

of a tethered subsatellite moving on a circular orbit around the Earth. An optimal control

of deployment and retrieval of a tethered subsatellite from a main satellite was treated by

Steindl in [118] and [119]. Therefore, they introduced an optimal control strategy, using the

Maximum Principle [120] to achieve a force controlled deployment of the tethered subsatel-

lite from the radial relative equilibrium position close to the spacecraft to the radial relative
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equilibrium position far away from the spacecraft. Since a straightforward application of the

mathematical methods of optimal control theory could be easily formulated only for a finite

dimensional system, they considered a simplified system model in which the tether was as-

sumed to be massless. Meanwhile, the main problem during retrieval was that it resulted in

an unstable motion concerning the radial relative equilibrium which was stable for a tether

of constant length. The uncontrolled retrieval resulted in a strong oscillatory motion.

In 2006, Williams published a paper on the optimal deployment and retrieval for a teth-

ered formation with spinning in the orbital plane [121]. The tethered formation was modelled

by point mass satellites, which were connected via inelastic tethers. The optimal deployment

and retrieval trajectories using tension control were determined for different spinning condi-

tions. Deployment and retrieval trajectories were obtained which could maintain the tether

spin at the desired rate and keep the system in a desired physical arrangement at the end

of deployment and retrieval. The parametric studies of the effect of system spin-rate and

maneuver time were performed, and it was necessary to constrain the relative tether geom-

etry to prevent any two tethers crossing each other. The results also showed that the tether

spin rate tended to decrease during deployment but could be restored to the desired value by

over-deploying the tethers and then reeling in rapidly.

In 2007, Mantri’s research [122] aimed to model and understand the deployment of space

systems with long and short tethers. This research was divided into two parts. In the first part,

a model for short and medium length tether systems was developed and simulated by solving

equations of motion. A detailed parametric study was conducted after identifying important

parameters affecting the deployment, and after studying the effect of each parameter for the

deployment performance. A simulation tool was developed to assist mission planners in pre-

dicting the deployment performance of a space tether system with a given set of parameters.

The second part of the research was motivated by Space Elevator (SE). SE was a futuris-

tic and highly challenging technologywhich was based on the idea of connecting Earth and

Space by an approximately 100,000 km long tether, which would be deployed from GEO.

With this motivation, the short tether analysis from the previous section was extended to the

analysis of long tethers. A model for the long tether deployment was developed and gov-

erning equations of motion were formulated. The critical parameters were identified, and

then the problems involved in SE deployment were investigated. Tether mass was initially

included in the model, but it was found that that the mass of the tether has little effect on

the overall qualitative dynamics of the system. Hence, for further analysis, a massless tether

model was adopted. Upon simulating the system, it was found that the long tether could

be highly unstable during deployment, and it could crash onto the Earth. However, a con-
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siderable fraction of the tether could be deployed successfully without any external control

mechanism before the instability manifested itself.

2.3 Trajectory Generation and Orbit Control

In 1995, Modi’s paper reviewed the attitude dynamics and trajectory mechanics of spacecraft

in the environmental forces, with particular emphasis on the solar radiation induced pressure

and thermal effects on attitude dynamics [144]. Several semi-passive controllers were pro-

posed which could use the environmental forces to advantage in stabilizing the system. The

solar radiation-induced forces could be put to advantage for propulsion and trajectory trans-

fer. The examples given of contemporary interest illustrated the effectiveness of the concepts

in achieving the desired attitude and trajectory.The results suggested that the gravity gradi-

ent torque could be put to advantage in stabilising spacecraft by the appropriate distribution

of inertias.

In 1996, Nohmi et al. proposed a “tethered robot system”, in which a robot attached

through a tether to the spacecraft [123]. For its position control of the centre of mass of

the robot, tether tension was used to control the position, by taking into account the gravity

gradient and the centrifugal force. The motion of the tethered robot system was simulated on

the trajectories planed, in which the feedforward control strategy was applied. The results

from the trajectory planning procedure suggested that the shape of the path depends both

on the direction to the destination point, and the time taken to accomplish the mission,but

did not depend on the distance. The motion of the robot centre of mass could be controlled

on trajectories away from the equilibrium point. Translation on planned trajectories would

be possible in case the destination point was close to the initial point or in case the time of

accomplishment of the mission was longer.

A research paper which focused on a novel ground-based prototype manipulator was

proposed by Cao et al. in 2003 [124]. The system had two identical modules connected in

a chain topology. Each module consisted of two links: one free to slew, while the other was

permitted to deploy. Construction and integration of the manipulator were explained, and

this was followed by the development of a mathematical model for the manipulator using the

Lagrangian procedure. Finally, a series of trajectories were tracked, using the proportional

integral derivative (PID) control and feedback linearisation technique (FLT). The objective

was the real-time implementation of the control algorithms, developed for the unique space

manipulator on an Earth-based prototype system.

In 2003, Milam developed a computationally efficient Nonlinear Trajectory Generation
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(NTG) algorithm, and also described its software implementation in order to solve real-time

nonlinear optimal trajectory generation problems for constrained systems [125]. NTG was a

nonlinear trajectory generation software package which combined nonlinear control theory,

B-spline basis functions, and nonlinear programming. This paper compared NTG with other

numerical optimal control problem solution techniques, such as direct collocation, shooting,

adjoints, and differential inclusions, and then demonstrated the performance of NTG on

the Caltech Ducted Fan test-bed. Aggressively, the constrained optimal control problems

were solved in real-time for hover-to-hover, forward flight, and terrain avoidance test cases.

Then, the real-time trajectory generation results were shown for both the two degrees of

freedom and the receding horizon control designs. Further experimental demonstration was

provided with the station-keeping, reconfiguration, and de-configuration of micro-satellite

formation, with complex nonlinear constraints. Successful applications of NTG in these

cases demonstrated the reliable real-time trajectory generation, both for highly nonlinear

and non-convex systems. The results were among the first to apply receding horizon control

techniques for agile flight in an experimental setting, using representative dynamics and

computation.

In 2006, Padgett proposed a tethered satellite system for many space mission applica-

tions, due to the useful dynamics that could be generated in null-cline analysis systems [126].

For instance, tethered satellite systems could be used to increase the orbital radius of LEO

payloads, using angular momentum transfer. Another tethered satellite system proposal in-

volved the use of a variable length, spinning tethered system to produce specific levels of

artificial gravity in LEO. An analytic method of qualitatively describing the possible dynam-

ics of a tethered satellite system was presented. This analysis centred on the study of the sets

of states in which at least one of the non-dimensional time derivatives of the state variables

was zero, and these sets were known as the null-clines of a system, and they bound regions

of the phase plane, in which tethered satellite behaviour was similar. The qualitative analysis

of the null-clines provided an explanation, and suggested the controllability of many types of

tethered satellite behaviour. A Tethered Artificial Gravity (TAG) satellite system was used as

a canonical tethered system, and the derived results were applied to this system. The utility

of the described analytical method was demonstrated by using the method to characterise

two different tethered satellite missions.

In 2007 Sharma et al. presented a study on global path planning algorithms for the Titan

aerobot, based on user defined way points in 2D and 3D space [127]. The algorithms were

implemented using information obtained through a planner user interface, and the trajectory

planning algorithms were designed to accurately represent the Titan aerobot’s characteris-
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tics, such as its minimum turning radius. Additionally, trajectory planning techniques were

implemented so as to allow for the surveying of a planar area based solely on camera fields

of view, airship altitude and the location of the planar area’s perimeter. The developed paths

allowed for planar navigation and three dimensional path planning. These calculated tra-

jectories were optimised to produce the shortest possible path, while still remaining within

realistic bounds of airship dynamics.

In 2005, Kim proposed a low-thrust system operated for significant periods of the mission

time [128], and as a result the solution approached requires continuous optimisation, and the

associated optimal control problems were in general numerically ill-conditioned. The objec-

tive was to design an efficient optimal control algorithm and then apply it to the minimum

time transfer problem of low-thrust spacecraft. It devised a cascaded computational scheme

based on numerical and analytical methods. Whereas other conventional optimisation pack-

ages relied on numerical solution approaches, it employed analytical and semi-analytical

techniques, such as symmetry and homotopy methods, to assist in the solution-finding pro-

cess. The first objective was to obtain a single optimised trajectory which satisfied some

given boundary conditions. The initialisation phase for this first trajectory included a global,

stochastic search based on an adaptive simulated annealing algorithm, and the fine tuning

of optimisation parameters - the local search - was accomplished via Quasi-Newtonian and

Newtonian methods. Once an optimised trajectory was obtained, then, the author could use

system symmetry and homotopy techniques in order to generate additional optimal control

solutions efficiently. It obtained optimal trajectories for several interrelated problem families

that were described as multi-point boundary value problems. It presented and proved two the-

orems by describing system symmetries for solar sail spacecraft, and then discussed symme-

try properties and symmetry breaking for electric spacecraft system models. It demonstrated

how these symmetry properties could be used to significantly simplify the solution-finding

process.

A balloon trajectory control system was discussed that was under development for use

on NASA’s Ultra Long Duration Balloon Project [129]. The trajectory control system ex-

ploited the natural wind field variation with altitude to generate passive pendular control

forces on a balloon, using a tether-deployed aerodynamic surface below the balloon. The

model confirmed many aspects of trajectory control system performance.

In 2003, Sakamoto and Yasaka addressed the motion of orbital objects, which followed

Kepler’s law, and then an orbit determination system in ground stations algorithm for analysing

the Kepler’s motion was derived [130]. A tethered satellite system was the representative fu-

ture space system, and did not follow the conventional space dynamics. The following three
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problems were considered: first, the sensitivity of the length of tether and the librational

motion influence observations, which were range, range rate, and direction. Secondly, the

filtering algorithm was proposed for the orbit determination of a TSS. Thirdly, the initial

orbit determination of a TSS was discussed - the observations of range and range rate could

reflect the motion of a TSS, whilst on the other hand observations of direction were not

effective for the detection of a TSS motion.

In 2004, Takeichi studied the periodic solution of the librational motion of a tethered

system in elliptic orbit, and clarified its mechanical characteristics [131]. The basic libration

control toward the periodic solution was also presented, and a tethered system was modelled

as a rigid body, and in addition a set of nonlinear equations of motion for the librational

and the orbital motions was formulated. An approximated analytical solution was obtained

through the Lindstedt perturbation method. The total mechanical energy was formulated,

and it showed the minimum value when the librational and orbital motions coincide with the

periodic solution. The periodic solution was the minimum energy solution, and the periodic

solution in an elliptic orbit had the same significance as the equilibrium state in a circular

orbit from the mechanical point of view. A libration control towards the periodic solution

was also investigated, and the effectiveness of this control strategy was demonstrated by

using the periodic on-off control through a thruster installed on the subsatellite.

In 2005, a survivability analysis was carried out to support the design of a tether system

by Anselmo [132].Various tether configurations were analysed, and a numerical simulation

was obtained to assess the survival probability of an electrodynamic tether system for end-of-

life de-orbiting. In addition, the collision risk with large, intact space objects was analysed

as well in its implications, in order to guarantee a sufficiently short de-orbiting time for

relatively massive payloads.

In 2009, Williams put forward his work which discussed a control system for the YES-2

mission [60]. This mission was intended to demonstrate the ability to deploy a payload via

a tether, so that it could return the payload to the Earth using momentum-transfer. By de-

ploying the tether in an appropriate manner, the tether could gain sufficient swing velocity,

so that when the tether passed through the local vertical it could be severed. This effectively

removed momentum from the payload and allowed it to re-enter the atmosphere. Optimal

trajectories were determined for both phases after comparing the effect of different cost func-

tions on the deployment dynamics. The controllers were tested in a flexible tether model with

large disturbances to the hardware model and environmental variables. Closed-loop simula-

tions showed that the system could be controlled quite well using only feedback of length

and length rate.
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2.4 Tether Attitude and Motion Control

In 1975, a paper on the flexural-rotational coupled motion of three identical flexible cylin-

drical cantilevers was written by Modi and Misra [133]; it joined symmetrically to a central

head. The effects of the tensile follower forces and inertia parameters on the natural frequen-

cies of the system were studied. The analysis suggested two types of in-plane motion and

three sets of eigenvalues govern the out-of-plane motion. For in-plane motion, one corre-

sponding to the oscillation of the cantilevers without any rotation of the central body, while

the other involves coupled motion of the array. The repeated eigenvalues were identical to

those of a single cantilever having the same axial tension parameter. Three sets of eigenval-

ues govern the out-of-plane motion: (a) the central head remaining stationary with no rolling

motion of the array; (b) vertical motion of the central body without any rolling motion of

the array; and (c) rigid body rolling motion without any vertical motion of the central head.

There was a possibility of dynamic instability for small inertia parameters and large axial

tension.

An alternative control law based on the linear regulator problem was developed by Bainum

et at in 1980 [134], which could be used in the operation of the Shuttle Tethered Subsatellite

system. This control law was assumed to be provided only by modulating the tension level in

the tether as a function of the difference between actual and commanded tether line length,

length rate, in orbital plane swing angle, and swing angle rate. Necessary and sufficient con-

ditions for stability of the linear system motion in the vicinity of its nominal local vertical

orientation were also developed. By proper selection of the state and control penalty ma-

trices, it was possible to obtain faster responses with no increase in maximum power levels

for use in station keeping, when compared with alternate control strategies. The weighting

matrices were adjusted in a piecewise adaptive manner to provide control law gains in order

to achieve a smooth deployment history.

A spatial dynamics of the space shuttle based tethered satellite system was investigated

[135], by using a nonlinear model which accounted for the aerodynamic drag in a rotating

oblate atmosphere, by Modi. The result showed that the normally unstable retrieval manoeu-

ver could be stabilised satisfactorily using a nonlinear tether tension control strategy, which

depends on the tether length, its variation with time, and pitch rate. Effectiveness of the

control was illustrated through an example involving a 100 km tether supporting a proposed

satellite for charting the Earth’s magnetic field.

The dynamics of a tether-connected three-body system was investigated by Misra, Amier
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and Modi in 1988 [136]. The system was treated as a double-pendulum, and the motion in

the orbital plane was considered for the two cases of fixed-length tethers and variable-length

tethers. For the fixed-length tethers, there were four possible equilibrium configurations:

both tethers aligned along the local vertical; both tethers horizontal; and for certain combi-

nations of parameters, two other configurations where one tether was along the local vertical,

while the other was inclined to the local vertical. Only the vertical equilibrium configuration

was stable. Frequencies of oscillations around the stable configuration and corresponding

modes were given, the dynamic response of the system during deployment of the three-body

constellation was obtained. Dynamical behaviour during transportation of a cargo from one

end-body to the other was also studied.

In 1990, Modi published a paper which provided brief reviews on complex interactions,

between flexibility, deployment, environmental forces and attitude dynamics, during both

steady state and transient phases. Parametric studies suggested that critical combinations

of system variables could drive the spacecraft to be unstable, and if provided with suitable

control strategies, it could be available to restore equilibrium. The paper’s emphasis was

on the methodology of an approach to complex dynamical systems and analysis of results,

which helped to gain better physical appreciation as to their response behaviours [137].

In 1992, Lea et al. developed a fuzzy logic based tether length controller into the TSS-

1 simulation, which investigated the usefulness and robustness that could be achieved with

fuzzy control. They reported the performance of the controller with the bead dynamics

model, also known as the finite element model. The tether mass was represented as a lumped

mass in a head and the entire tether length was divided into several segments, thus making

several beads with three degrees of freedom motion in the orbital environment. The control

algorithm based on fuzzy logic for controlling tether length was described, and details were

provided of the membership functions and rule-base. The results comparing the performance

in terms of length error, tension error, and librational oscillations were presented [138].

In 1992, Modi and Lakshmanan proposed a mathematical model for the study of the

dynamics of the tethered satellite system consisting of a plate-type space station, from which

a tether supported subsatellite was deployed or retrieved [139]. The rigid body dynamics of

the tether, subsatellite and space station were analysed, by accounting for the mass of the

tether as well as a three-dimensional offset of its point of attachment. Controllability of the

linearised equations was established numerically, and a comparative study of three different

control strategies was conducted. The strategies employed the thrusters, the tension in the

tether line, or the offset motion of the attachment, which helped to achieve control for the

system subjected to relatively large initial disturbances. The offset control proved to be the
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most efficient in terms of energy consumption, but the response to disturbance persisted over

a longer duration. In addition, the performance of the thruster control, tension control, and

offset control strategies, as well as their combinations, were analysed during retrieval of the

tether.

A mathematical model of a platform based flexible tethered satellite system in an ar-

bitrary orbit, undergoing planar motion, was obtained using the Lagrangian procedure by

Modia and Pidgeon in 1994 [140]. The governing equations of motion accounted for the plat-

form and tether pitch, longitudinal tether oscillations, offset of the tether attachment point,

as well as deployment and retrieval of the tether. Themodelsof the interactions, involving

system librations, tether flexibility, eccentricity and retrieval maneuverswere modelled.The

simulation response showed high frequency modulations corresponding to the longitudinal

tether oscillations, and the system was found to be unstable during retrieval. The Linear

Quadratic Regulator based offset control strategy, in conjunction with the platform mounted

momentum gyros, was proposed to alleviate the situation. The results showed that a strat-

egy involving independent parallel control of low and high frequency responses could damp

rather severe disturbances in a fraction of an orbit.

A three-axis attitude control system based on the integration of a reaction wheel, and a

mobile tether attachment point on board of each platform of a two-mass tethered system, was

analysed by Grassi et al. in 1994 [141]. An abrupt stop of the mobile attachment point of

one platform was simulated, and a control law to limit the two-platform angular differences

was derived considering the other platform mobile attachment point. The control laws were

derived by making use of analytical attitude models, and were then implemented in a three-

dimensional numerical code, which simultaneously integrated the system orbital and attitude

dynamics. Final results showed that the proposed control laws allowed to limit the angular

differences between the two platforms within values adequate for microwave remote sensing

applications. Moreover, the attitude high frequency oscillations were effectively damped.

In 1995, Grassi and Cosmo’s studies were conducted on SEDS attitude dynamics and

stability [142]. The SEDS system provided a low-cost facility for deploying tethered pay-

loads in space. Among various objectives, the SEDS mission’s first flight would assess the

capability of tethered platforms to carry out measurements in the upper atmosphere. The per-

formance of onboard instruments was seriously affected by the payload’s attitude dynamics.

This mission’s attitude dynamics and stability were analytically and numerically analysed

for the nominal mission. It was shown that although a passive damper could be used to re-

duce the amplitudes of the attitude angles, appropriate control techniques were required for

scientific instrumented platforms.
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Furthermore, another mathematical model was developed for studying the dynamics and

control of the tethered satellite systems undergoing planar motion in a Keplerian orbit, by

Modi, Pradhan and Misra in 1995 [143]. The system consisted of a rigid platform, from

which a point mass subsatellite was deployed or retrieved by a flexible tether. The model

incorporated the offset of the tether attachment point from the platform centre of mass and

its time-dependent variation. The governing equations of motion were obtained by using

the Lagrangian formulation. The offset control strategy, which involves movement of the

attachment point, was used to regulate the tether swing, and the platform dynamics were

controlled by a momentum gyro. The offset control was implemented using a manipulator,

which moves the tether attachment point as required. Their simulation results showed that

the control procedure regulated the system dynamics, and the state feedback controller for

the system was designed using graph theoretic approach, which had computational advantage

particularly for higher order systems.

In 1996, Modi et al. [145] proposed a paper on ground based experiments of the OEDIPUS-

C sounding rocket mission. The ground based experiments were conducted as a part of the

OEDIPUS-C. The OEDIPUS-C configuration consisted of two spinning bodies connected

by a long tether, the spin axis was nominally along the tether line. The objective was to as-

sess the dynamic behaviour of the tether and the payload. The test configuration consisted of

an end-body supported by a tether. The test procedure involved slow spin-up of the system

and identifying the speeds corresponding to onset of the tether modes or the large amplitude

end-body coning. Experimental results were obtained for four different bodies to study the

system stability over a wide range of mass and geometric parameters. Effect of offset of

the tether attachment from the end-body centre of mass was also investigated. The observed

critical speeds were compared with those given by the linear theory. The several transient

phenomena observed during the test suggest that system nonlinearities could not be ignored

when modelling such a complex system.

In 1997, Pascal’s paper [146] studied a tethered satellite system in a relatively dense at-

mosphere. The relevant dynamic problem was characterised by strong nonlinearities, mainly

due to aerodynamic effects. Two mechanical models with different degrees of fidelity were

developed to analyse the static equilibrium of the system. A rigid tether model and a flexible

tether model were discussed. Both of the models for the tether were taken as an elastic con-

tinuum with mass, and aerodynamic forces were distributed along the system. The results

of the rigid tether model, with an approximation of the system behaviour, were used as a

starting point for the numerical procedure, which adopted for computing more accurately

the tether shape with the flexible model.
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In 1999, Pradhan, Modi and Misra [147] presented a paper which studied several appli-

cations of the offset scheme in controlling the tethered systems, in which planar equations of

motion of a space platform based TSS were derived by the Lagrangian procedure. Simula-

tion results aimed at the offset control of platform pitch, tether attitude and vibration motions.

The offset scheme was used for the simultaneous control of platform and tether pitch motion.

Finally attention was directed towards the simultaneous regulation of the platform pitch and

longitudinal tether vibration. The numerical results showed considerable promise for the

offset control scheme in regulating tether, platform and combined tether-platform dynamics.

The equations of motion for a class of TSS undergoing planar motion in a Keplerian or-

bit were derived using the Lagrangian procedure by Modi et al. in 1997 [148]. The system

consisted of a rigid platform from which a point mass subsatellite could be deployed or re-

trieved by a flexible tether. The model incorporated an offset of the tethered attachment point

from the platform centre of mass and its time dependent variation. The feedback linearisa-

tion technique was used to design the attitude regulator. A hybrid strategy, using thruster

and offset schemes, was used for regulating the tether swing, and momentum gyros were

employed for the platform control. The offset strategy was also used for active control of

the tether flexibility during station-keeping, in conjunction with the thruster-based attitude

controller. Finally, the effectiveness of the offset-based attitude controller was demonstrated

through ground-based experiments, thus substantiating the trends predicted by the numerical

simulations.

In 2000, Yu’s paper discussed a TSS with two-dimensional motion, in which the tether

was assumed to be massless [149]. The equations of motion were given in a spherical co-

ordinate system to describe the magnitude (tether length) and direction angle of the position

vector between the satellites. A length rate control algorithm was adopted and the controlled

motion of the directional angle by the algorithm would have a stable equilibrium state. The

equilibrium state was a fixed point if the orbit of the base-satellite was circular and a limit

cycle if the orbit was elliptic. According to the results, the stability of the equilibrium state

was determined by the parameters of the control algorithm, and the bifurcation analysis was

also given.

An advantage of combining a crisp algorithmic controller and a soft knowledge-based

controller was introduced by Goulet et al. in 2001 [150], which was in the specific context

of controlling a space-based manipulator with flexible deployable and slewing links. A hier-

archical control structure with a high-speed conventional controller at the bottom layer, and

an intelligent tuner at an upper layer, was developed. The top-level intelligent tuner used a

valid set of linguistic rules for adjusting proportional-derivative servos based on fuzzy sys-
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tem concepts. The performance of the hierarchical control system was evaluated on the basis

of the space-based simulation results. Based on the analysis, it could be concluded that

initial tuning of the parameters of a conventional low-level controller together with tuning

during operation could improve the positioning accuracy of the manipulator. The hierarchi-

cal control structure permitted desirable combination of a conventional high-bandwidth and

knowledge-based low-bandwidth controllers.

A paper on the use of dual satellite platforms connected through a tether was proposed by

Kumar et al. in 2001 [151]. The feasibility of suitably varying tether offsets for achieving de-

sired maneuvers of both the platforms was explored. The Lagrangian formulation approach

was utilised to develop the governing system of nonlinear ordinary differential equations for

the constrained system. A simple open-loop strategy was developed for the tether offset vari-

ations, which ensured judiciously controlled changes in the orientation of satellite platforms.

The numerical simulation of the nonlinear governing equations of motion for these tether

offset variations established the feasibility of achieving desired attitude maneuvers. The

nearly passive nature of the proposed orientation control strategy could make it particularly

attractive for future space missions.

In 2004, Kim and Hall [152] investigated a mathematical model for a tether system,

in which the effects of the smoothness and non-smoothness of desired mission trajectories

on control performance was discussed. The equations of motion were derived by the use

of Lagrange equations, and several mission scenarios for a proposed NASA mission which

consider the operation of an infrared telescope were introduced. Techniques were devel-

oped to control the motion of a tethered satellite system comprisingN point masses and

interconnected arbitrarily bym idealised tethers; specifically, the control problem of a tri-

angular and symmetrical TSS with 3 point masses and 3 tethers was discussed. Asymptotic

tracking laws based on input-state feedback linearisation were developed, and the effects of

the smoothness and non-smoothness of desired mission trajectories on control performance

were discussed. It was asserted that required thrust levels could be decreased by the use of

additional tether length control, to keep the TSS in a state corresponding to an instantaneous

relative equilibrium, at any point in time during the mission.

In 2004, Williams and his colleagues [95] [96] presented their research on deployment of

a payload on a spinning tether in a hyperbolic orbit with a sufficient velocity change, while it

was captured in an elliptical orbit at the destination planet. Due to conservation of momen-

tum, the main spacecraft gained a “momentum-enhanced gravity-assist”, which used tethers

for planetary capture. In planetary exploration and payload transfer, it was investigated by

conducting numerical simulations of a simplified tether system, the tether mass required to
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prevent rupture of the tether was optimised using numerical and iterative techniques for each

of the major planets in the solar system. It was demonstrated that mass savings could be

achieved when compared to the requirements for chemical propulsion. Finally, it was shown

that controlling the tether length during the maneuver could be done in order to correct er-

rors in the system trajectory for both spinning and non-spinning capture cases. Meanwhile,

another paper proposed utilising the distributed Lorentz forces that were induced in an elec-

tromagnetic tether as a control actuator for controlling the tether motion [97]. The control

input governing the magnitude of the applied actuator force was the current being conducted

within the tether. A wave-absorbing controller was also proposed to suppress the unstable

high-order modes which tended to be initiated by electromagnetic forces. The absorption

of travelling waves along the tether could be achieved by proper movement of the tether

attachment point on the main satellite. A mission function control law was presented for

controlling the tether length and in- and out-of-plane librations, derived from a model that

treats the tether as an inextensible rigid rod.

In 2004, Lovera and Astolfib [153] discussed the problem of inertial attitude regulation

for a small spacecraft using only magnetic coils as actuators, and a global solution to the

problem was proposed based on static attitude and rate feedback. A local solution based on

dynamic attitude feedback was also presented, that attitude regulation could be achieved even

in the absence of additional active or passive attitude control actuators such as momentum

wheels or gravity gradient booms.

In 2005, Modi et al. presented their studies on the development and implementation of

an intelligent hierarchical controller for the vibration control of a deployable manipulator

[154]. The emphasis was on the use of knowledge-based tuning of the low-level controller

to improve the performance of the system. To this end, a fuzzy inference system (FIS) was

developed. The FIS was then combined with a conventional modal controller to construct a

hierarchical control system. Specifically, a knowledge-based fuzzy system was used to tune

the parameters of the modal controller. The effectiveness of the hierarchical control system

was investigated through numerical simulation. Realistic examples were considered where

the system experiences vibrations due to initial disturbances at the flexible revolute joint or

due to maneuvers of a deployable manipulator.

An adaptive fuzzy sliding mode control was applied onto the attitude stabilization control

of a flexible satellite by Guan in 2005 [155], in which the detailed design procedure of the

fuzzy sliding mode control system was presented. The adaptive fuzzy control was utilised

to approach an equivalentmethodof sliding mode control, and then the adaptive law was

derived. A hitting control, which guaranteed the stability of the control system, was devel-
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oped. In order to attenuate the chattering phenomena, fuzzy rules were employed to smooth

the hitting control. Simulation results showed that precise attitude control was accomplished

based on the proposed method.

In 2006, Zhou’s paper discussed the stability control of equilibrium positions, and a

complete model of a tethered satellite system was considered [156], in which a main satellite

and a subsatellite were connected by a conductive tether, with mass distributed along it. To

regulate both the in-plane and out-of-plane motions of the tether, the current and the rate of

change in tether length were employed as two control parameters. A feedback control law

was proposed to maintain the radial equilibrium position of the system. It was found that this

control law was not applicable for the equatorial plane because no out-of-plane force was

available there. For each inclined orbit, it was shown that there were two singularity points.

To avoid these points, and by considering some other practical restrictions, the proposed

control law was divided into four conditional parts. Numerical cases were provided and the

results validated the applicability of the control law.

The dynamics and control of spinning tethers in elliptical orbits for payload rendezvous

were studied by Williams in 2006 [100]. The required rendezvous conditions for the tether

tip were derived for the case where the tether system centre of mass and payloads were in

coplanar elliptic orbits. It was proposed that rendezvous control could be achieved by track-

ing the unique tip trajectory, which was generated by propagating the rendezvous conditions

backwards in time. The range of suitable combinations of tether system orbit eccentricity,

tether length, and payload orbit eccentricity, were studied numerically. It was proved that

certain combinations of parameters leaded to non-spinning capture requirements and slack

tethers. Control of the tether motion through tether reeling was examined by using a nonlin-

ear model predictive control strategy.

The control problems of two different configurations of tethered satellite systems for

NASA’s Submillimetre Probe of the Evolution of Cosmic Structure (SPECS) mission were

studied by Kim in 2007 [157]. The configuration of the main focus was the TetraStar model,

which was composed of three controlled spacecraft and three uncontrolled counterweights.

This system was compared with a triangular tethered satellite system consisting of three con-

trolled spacecraft. The equations of motion were derived using Lagrange equation. Several

mission scenarios for the SPECS mission considering the operation of an infrared telescope

were introduced and asymptotic tracking laws based on Lyapunov control were developed.

In 2007, a tethered satellite cluster system, which consisted of a cluster of satellites con-

nected by tethers, was discussed by Mori and Matunaga [158]. An active control law, which

could maintain and change formation of the tether tension and length, was introduced, with
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the aim of saving thruster fuel and improving control accuracy. This concept could be ap-

plied to tethered multisatellites for in-orbit servicing, which could perform various missions,

including inspection, casting, capture, recovery, moorage, and deorbiting of an uncontrolled

satellite. The rotational motions of such a system, in which the satellites were in formation

flying, were required to rotate about the centre of mass of the system on the same desired

plane. The equilibrium conditions that the tether tension imposes on the rotational motion

were given, and a coordinated control method for the thrusters, the reaction wheels, and

the tether tension or torque was proposed. Numerical simulations and ground experiments

showed that the control of the tether tension and torque could not only save thruster fuel, but

also improves the position and attitude accuracy of formation flying.

In 2007, Chung, Slotine and Miller [159] published a paper which aimed to investigate

a fully decentralised nonlinear control law for spinning tethered formation flight, which was

based on exploiting geometric symmetries to reduce the original nonlinear dynamics into

simpler stable dynamics. Motivated by oscillation synchronization in biological systems,

they used contraction theory to prove that a control law stabilising a single-tethered space-

craft could also stabilise arbitrary large circular arrays of spacecraft, as well as the three

inline configuration.

In 2008, Chung, Slotine and Miller also introduced a decentralised attitude control strat-

egy which could dramatically reduce the usage of propellant, by taking full advantage of the

physical coupling of the tether [160] [161]. In the first paper [160], they reported propellant-

free underactuated control results for tethered formation flying spacecraft, and also described

the hardware development and experimental validation of the proposed method using the

synchronised position hold, engage and reorient experimental satellites test bed. In particu-

lar, a new relative sensing mechanism that uses six-degree-of-freedom force-torque sensors

and rate gyroscopes was introduced, which was validated in the closed-loop control experi-

ments. In the second paper [161], they exploited the physical coupling of tethered spacecraft

to derive a propellant-free spin-up and attitude control strategy, and then took a nonlinear

control approach to under-actuated tethered formation flying spacecraft, whose lack of full

state feedback linearisability, along with their complex nonholonomic behaviour, charac-

terises the difficult nonlinear control problem. This article also illustrated the potential of the

proposed strategy, by providing a new momentum dumping method that did not use torque-

generating thrusters.

Misra presented a paper on dynamics and control of two-body and n-body tethered satel-

lites in 2008 [162]. The multi-tethered systems were initially related to the deployment of

multiple probes from a spacecraft to the upper atmosphere and for microgravity applica-

43



tions, which were modeled as an open chain of tether-connected bodies. At first, nonlinear

roll and pitch motions of two-body systems were examined, then the effects of aerodynamic

and electrodynamic forces on the stability of a tethered satellite were discussed. Various

control schemes to stabilise the dynamics during retrieval of the subsatellite were described,

and some dynamics and stability results for n-body tethered satellites were proposed.

2.5 Tether Vibration Control and Dynamical Simulations

In 1971, Tschann’s paper on the stability of planar librational motion of an undamped rigid

satellite in eccentric orbit was studied through an analog simulation of the governing, non-

linear, non-autonomous equations of motion. The method was extended to investigate the

effect of damping on stability and the response of such a system in circular orbit [163].

In 1978, Lips [164] presented a paper on a general formulation for librational dynam-

ics of satellites with an arbitrary number, types, and orientation of deploying flexible ap-

pendages. The generalised force term was incorporated making the formulation applicable

to a wide variety of situations, where aerodynamic forces, solar radiation, Earth’s magnetic

field, etc. became significant. In particular, the case of a beam-type flexible appendage de-

ploying from a satellite in an arbitrary orbit was considered. The corresponding nonlinear,

non-autonomous equations for in-plane and out-of-plane vibrations were derived, allowing

for the variation of mass density, and flexural rigidity along the length with time dependent

deployment velocity and spin rate. The linearised analysis of the in-plane vibrational equa-

tion using the assumed-mode method and its substantiation through numerical integration

were also considered. Simulations for both steady-state and transient attitude behaviour for

a representative gravity gradient configuration for a range of initial conditions and system

parameters were performed. The results showed the combined effect of flexibility and de-

ployment on the dynamics of the system to be substantial. Disturbance of the appendage

could excite large amplitude librations, furthermore, coriolis loading, induced by the extend-

ing appendages could become a limiting factor in arriving at a deployment strategy.

A research paper on vibrations of orbiting tethers was proposed by Misra, Xu and Modi

in 1986 [165]. It considered three dimensional transverse and longitudinal oscillations of a

tether connecting a subsatellite to the shuttle, and also, it focused on the dynamics during the

terminal phase of retrieval of the subsatellite. Nonlinearity in the strain-displacement rela-

tion was taken into account, since it was important and helpful during this phase. Retrieval

schemes that could assist in arresting the growth of vibrations were obtained by simplified

analysis and validated through numerical solution of the original equations.
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A simulation of an orbiting single tether system composed of two subsatellites and a

connecting tether was developed by Carter and Greene in 1992 [166]. The dynamics of the

tethered system was modelled by using a series of mass beads inter-connected by springs and

dash pots. The bead model allowed the tether to become slack (no tension) and to deform to

an arbitrary shape. Simulation results were presented and discussed for two types of motion:

(1) tether vibrations and (2) end mass retrieval.

In 1997, Pasca and Monica [72] investigated a tethered satellite system to be flown in

the relatively dense atmosphere, which is characterised by strong nonlinearities due to aero-

dynamic effects. Two mechanical models with different degrees of fidelity, were developed

for analysing the systems’ static equilibrium. The first model was assumed as a straight

tether, and the second tether model was treats a perfectly flexible continuum, and in both of

the models, the aerodynamic forces distributed along the system. Simulation results of the

first model were used as a starting point for the numerical procedure adopted for computing.

The flexible tether model gave a more detailed description of the system mechanics, which

was able to deal with an elastic tether with variable diameter and provided amore accurate

solution of the static problem. The effectiveness of the proposed control laws was shown by

means of both analytical arguments and simulation runs.

The equations of motion for a multi-body tethered satellite system in a three dimensional

Keplerian orbit were derived by Kalantzis, Modi, Pradhan and Misra in 1998 [167], which

considered a multi-satellite systems, which were connected in series by flexible tethers, both

tethers and subsatellites were free to undergo three dimensional attitude motion together with

longitudinal and transverse vibration for the tether. The elastic deformations of the tethers

were discretised using the assumed-mode method. In addition, the tether attachment points to

the subsatellites were kept arbitrary, and time varying with deployment and retrieval degrees

of freedom. The governing equations of motion were derived using an order-N Lagrangian

formulation. Two independent controllers, an attitude and vibration controller, were designed

to regulate the rigid and flexible motion present in the system, which excited from various

maneuvres performed during the course of a mission.

In 2000, a tethered satellite system was modelled by the method of multi-body systems

using symbolic equations of motion, and a method of damping structural vibrations using

optimisation techniques was presented, and then applied to a tethered satellite system by

Dignath and Schiehlen [168]. The system showed large displacements and require active

and passive damping mechanisms. Active damping was provided by an actuator between the

main body and the tether. The control parameters were optimised, the energy decay of the

system was used as the performance criterion. The complex dynamics of the motion of this
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system were demonstrated in simulations with different initial conditions including struc-

tural vibrations. It was concluded that an optimisation process enables the control param-

eters could be improved with respect to the dissipation of energy of longitudinal structural

vibrations.

Dynamic simulations were performed by Leamy et al. in 2001 [169] for the NASA

planned ProSEDS space tether mission using two finite element analysis codes. The first

was a specialised code for simulating tethered space systems. The second was an in-house

flexible multi-body dynamics code adapted herein for modelling tethered satellites. The

simulation of the ProSEDS mission was divided into two operations: a tether deployment

operation and an electrodynamic operation. The specialised code used a fixed number of

nodes and finite elements in simulating the deployment operation, while the in-house code

used a variable number of nodes and elements. A fuzzy-set technique was used in conjunc-

tion with the two codes to assess the effect of parameter variations on the deployment and

electrodynamic operation of the ProSEDS tether. Detailed numerical simulations revealled

that the deployment operation was not sensitive to variations in material parameters, but was

sensitive to variations in the initial tether ejection momentum and to controller parameters.

The electrodynamic operation was found to be highly sensitive to variations in Earth’s mag-

netic field, and variations in material and plasma parameters.

A tether-mediated rendezvous between a noncooperative payload and a maneuverable

tether was considered by Williams in 2005 [170]. The practical scenarios were derived,

in which the tether system orbit and payload were inclined relative to each other, and it

meant that capture was no longer limited to the orbital plane. The necessary conditions for

achieving a zero position and zero velocity rendezvous when the tether system and payload

in arbitrary orbits were derived. Three case studies were given, in which, the payload was

inclined relative to the tether system by 0.5, 1.0, and 1.5 degree. Two direct transcription

methods were used to obtain minimum reel acceleration trajectories for the system. It was

inferred that significant manipulation of the three-dimensional dynamics could be achieved

under two orbits, using only tension control with smooth variations in tether length. A non-

linear receding horizon feedback controller was used to simulate numerically the control of

the system with large disturbances to the initial conditions and with changes to the system

mass distribution.

In 2006, Krupa et al. [171] presented a paper on tethered satellite systems, which posed

quite challenging problems concerning the modelling. Equations of motion and numerical

simulations were derived on stability of relative equilibria, provided the system moves on a

circular orbit around the Earth and the occurrence of chaotic dynamics. Moreover, for the
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processes of deployment, and the retrieval of one satellite from or to another satellite, certain

control strategies were studied, which included time and energy optimal control.

A control of an aerial-towed flexible cable system for precision rendezvous and snatch

pickup of payloads was considered by Williams et al. in 2006 [172]. Optimal trajectories

were determined assuming that the cable remained straight. However, aerodynamic drag and

deployment forces could cause bowing of the cable, that could significantly alter the position

of the cable tip relative to the aircraft. To account for this, the cable was modelled using

lumped masses, connected via rigid links. Multiple rendezvous sequences using only cable

winch control and including features, such as collision avoidance and variable winds, were

obtained by multiple-phase direct transcription methods. Numerical results showed that for

some multiple rendezvous scenarios, it was necessary to use the cable pendular dynamics

and swing motion to avoid impact with elevated terrain. The effect of different wind speeds

and directions were also studied.

In 2006, Williams [173] discussed a strategy for the control of the librations for a teth-

ered satellite system in elliptic orbits, which using tether length control. For simplicity, only

the in-plane motion of the system was considered. The results were obtained with the con-

trolled periodic libration trajectories. He proposed that there was a range of eccentricities

up to about 0.4453, for which no length variations were needed for the system to follow

the periodic trajectory. Above this eccentricity, it was necessary to vary the length of tether

to maintain a periodic trajectory. The method for finding these trajectories to minimise the

control input utilised a collocation solution, in which the closed-loop stability was observed

by a linear feedback control law, whose feedback gains were also periodic.

A novel concept for the remote delivery of payloads from a fixed wing aircraft was inves-

tigated by Williams and Trivailo in 2006 [101]. The concept used taut cable deployed from a

circling aircraft as a support structure for sliding payloads from high altitude to the ground.

Anchoring the cable tip guaranteed accurate positioning of the cable tip on the ground. Sim-

ulations of the cable dynamics suggested that it was necessary to use some form of braking

to slow the descent of the payload. If the payload speed was too excessive, then the cable

dynamics could become unstable and the peak tension could reach high levels.

A detailed geometrically exact bifurcation analysis was performed by Valverde et al.

in 2006 [174], for a model of a power-generating tethered device of interest to the space

industries. The structure, a short electrodynamic tether, comprised of a thin, long rod that

was spun in a horizontal configuration from a satellite in low Earth orbit with a massive

electrically conducting disk at its free end. The system was modelled by using a Cosserat

formulation, leading to a system of Kirchhoff equations for the rod’s shape as a function of
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position and time. Moving to a rotating frame, incorporating the effects of internal damping,

intrinsic curvature due to the deployment method and novel force and moment boundary

conditions at the contactor, the problem for steady rotating solutions was formulated as a

two-point boundary value problem. Using numerical continuation methods, a bifurcation

analysis was carried out varying rotation speeds up to many times the critical resonance

frequency. Spatial finite differences were used to formulate the stability problem for each

steady state and the corresponding eigenvalues were computed. The results showed excellent

agreement with earlier multi-body dynamics simulations of the same problem.

In 2007, Williams and Trivailo proposed two papers for the study of the dynamics of

circularly towed cable systems [175] [176]. In the paper [175], when a long cable was towed

in a circular flight path, the system could exhibit quasi-stationary solutions, for which the

cable tip appeared to remain stationary relative to the orbiting aircraft. For applications

involving pickup and delivery of payloads, tighter turned at high speeds, which led to nearly

stationary motion of the cable tip in an inertial frame. This work studied the dynamics

of the cable system, and focused on the stability and equilibria of solutions. A numerical

analysis of the system was carried out by using a discretised lumped mass model of the

cable. With constrained numerical optimisation, practical towing solutions that achieve small

motion of the towed body were obtained. In the second paper[176], when the tow point of an

aerial cable system moving in a tight circular path, the drogue at the cable tip would move

towards the centre of the circle, and its altitude decreased relative to its equilibrium position

in forward flight. Such a system would has both military and civilian applications, including

remote pickup and delivery of payloads. This work studied the transitional dynamics of

such a system as the aircraft changed from straight flight to circular flight. The system

dynamics were modelled using a discretised cable model, allowing the cable to take on zero

tension values. Numerical simulation results showed that the cable became slack during the

transition if the aircraft turns too rapidly. Parametric studies of the towpath were performed

for both tow-in and tow-out maneuvers. Tension waves could be reduced by appropriate

control of the tow point. Simulated annealing method was used to optimise some parameters

used to specify the tow-in maneuver. Alternatively, a deployment controller was developed

using fuzzy logic, that avoided some of these problems by deploying the cable, while the

aircraft orbiting. Instability of deployment for certain combinations of cable length and

length rate were observed.
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2.6 Space Tether Dynamical Models

Dumbbell tether is one of the most important tether systems, and a lot of tether systems

can be considered as some form of dumb-bell system, in which two massive bodies, not

necessarily of the same mass or size, are coupled together by a low-mass tether by which

momentum is exchanged between them [1] [2] [177] [178]. In the implication of the general

dumb-bell model, the tether is treated as a rigid body. The rigid dumb-bell tether can provide

not only for gaining an understanding of general global motions of a tether in space, but also

as a fundamental tool for mission conceptualisation. In practice, the elastic tether models

will be needed, particularly when very high accuracies are required, both in predicting the

tether location and orientation, but also in properly understanding the deformation of a tether

in cases where the application is particularly demanding.

In 1989, DeCou [179] discussed the case of the orbiting stellar interferometer with planar

deformation of a spinning system comprising three collimating telescopes. The tethers were

broken down into segments and an iterative procedure was used to calculate the static shape,

in which, axial stretch was mentioned as a parameter. The tether’s static shape with finite

mass density was determined under the influence of the centrifugal forces, which caused by

the rotation, and in the absence of any disturbing dynamic forces, such as gravity gradients,

solar radiation pressure, and thermal expansion forces.These forces’ dynamic effects were

addressed next as perturbations from the static shape.The static problem was solved by

first deriving nonlinear differential equations relating the position of each tether point to the

tension at each point. A numerical solution to these equations was then outlined, and the

results of a computer program based on this method were summarised.

In 1992, Kumar, Kumar and Misra [180] presented their work on the effect of deploy-

ment rate and librations on tethered payload raising. A special rule for planar librations

and circular pre-release orbits was introduced, it showed clear general relationships between

apogee altitude gain as a function of deployment rate and explains how suitable deployment

rates could be selected for optimising altitude gain, for a given system.

In 1997, Vigneron et al. [181] discussed a dumb-bell tether(up to 1 km) for the OEDI-

PUS ionospheric plasma test mission.A mathematical model of the laboratory system was

derived, including the terrestrial effects as well as the in-flight phenomena. It was shown

that the model was able to reduce to a linear, vibratory, damped, and gyroscopic system, for

which an eigenfunction analysis was used to obtain the damped gyroscopic modes shapes,

stability, and natural frequencies for various physical configurations. Meanwhile, this work
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also showed that linear modelling could be used to represent modal frequencies and payload

attitude stability quite well, however, it obviously did not cover all the possible dynamical

phenomena in the system, and would overlook certain regions of convergent attitude motion

and limit cycle behaviour.

In 1998, Cartmell [67] presented a motorised momentum exchange tether system, which

showed that forced, motor driven spin could be generated for a large symmetrical dumb-bell

tether, and that complicated non-planar motions of the tether could also be initiated. Based

on this preliminary model, in this thesis, a series of new motorised momentum exchange

tether models will be discussed.

A general stability and control problem which exists with long tethers in space was ex-

amined in 2000 by Kumar and Kumar [182]. A stability criterion was evolved for a sim-

plified situation using first order perturbation equations around the nominal equilibrium

configuration. The set of complicated ordinary nonlinear differential equations was non-

dimensionalised and the reduced parameter space was numerically explored.

Mazzoleni and Hoffman investigated the non-planar spin-up dynamics of the advanced

safety tether operation and reliability (ASTOR) satellite in [183] and showed that this spin-

up manoeuvre was an example of artificial gravity, which could perhaps be harnessed within

human-based missions in the future. If tethers were to be used successfully for artificial

gravity generation then attitude control of the end bodies was also required during spin-up.

Tether retrieval is the opposite of deployment and is equally important in dynamical

terms. Retrieval of a sub-satellite to a larger vehicle, specifically a space station, was ex-

amined by Djebli et al. [112] in 2002, which concentrated on laws for retrieval and also

deployment, specifically combining ‘simple’ linear or exponential retrieval and ‘fast’ laws,

and specific acceleration profiles were also proposed. This would be applicable to passive

momentum exchange tethers and potentially to ED tethers.

An artificial gravity system was discussed by Mazzoleni and Hoffman in 2003 [184],

which comprised two tethered satellites and included tether elasticity within the so-called

tethered artificial gravity satellite. The so-called ‘g-force’ was generated by the tether, which

could maximise ther and minimise theω within the rω2. The spin-up phase was also

examined in particular and it was found that an initial out-of-plane angle of the system and

the location of the tether attachment point could both significantly affect the dynamics of the

end-body motion of a tethered satellite system during spin-up.

As one objective and new idea for this thesis, it will discuss the spin-up performance for

the motorised momentum exchange tether system, which incorporating axial, torsional and

pendular elastic effects.
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2.7 Conclusions

In this chapter, the literature review work focuses on fivetopics which are related to the

space tether control researches:〈1〉 tether deployment and retrieval;〈2〉 trajectory genera-

tion and orbit control;〈3〉 tether attitude and motion control;〈4〉 tether vibration control and

dynamical simulations;〈5〉 space tether dynamical models. With the basic aim of establish-

ing useful sources of fundamental researches in the literature, and highlighting the previous

control methods developed, this chapter attempts to provide a useful contextualised source

of references for the further space tether control studies.

The momentum exchange tether is a one of the most important key technology offering

major potential applications for reductions in space transportation costs, and a wide potential

range of space missions. An indepth review of mechanical tether system performance was

conducted by Ziegler and Cartmell [62], who showed conclusively that motorised spinning

momentum exchange tethers demonstrate the best performance and also potentially the most

efficient performance. The motorised momentum exchange tether (MMET) has received ex-

tensive modelling effort, both for circular and elliptical orbital contexts [62][67], since then,

the MMET has been one of the most important subjects of momentum exchange tether de-

velopment, and in this thesis a series of new MMET systems will be investigated in Chapter

3 to Chapter 7.

In 2004, Mouterde, Cartmell and Wang [185] presented a paper to investigate the gen-

eral problem of unexpected changes to two example system parameters in the motorised

momentum exchange tether context with spin-up control applied specifically by means of

conventional feedback linearisation with adaptive gains. To compare the feedback linearised

control for a rigid body motorised momentum exchange tether on an elliptical Earth orbit,

two control methods for a flexible motorised momentum exchange tether spin-up behaviour,

which include a fuzzy logic control method and a hybrid fuzzy sliding mode control method,

will be discussed in this thesis, and the control objective of MMET’s spin-up is one of the

last potential applications.
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Chapter 3

The Motorised Momentum Exchange

Tether

3.1 Introduction

This chapter introduces the basic concepts in momentum exchange modelling and the con-

ceptual modelling of the symmetrical motorised momentum exchange tether (MMET), which

includes dumbbell tether systems, a rigid massless MMET system, and a solid tether-tube

subspan MMET system, all using the Lagrangian procedure. The Lagrange equation is given

in the form of equation (3.1.1) [186].

d

dt

[
∂T

∂q̇i

]

−
∂T

∂qi
+
∂U

∂qi
= Qi

i = 1, 2, ...,N

(3.1.1)

Where theQi is the generalised force for the corresponding generalised coordinateqi,U

is the potential energy, andT is the kinetic energy.

The Lagrange equation is taken as the modelling tool for all the MMET systems, as

shown in Figure 3.1, which includes generalised coordinates, generalised forces and energy

components [187]; this also helps to organise the chapters.

Environmental effects such as solar radiation, aerodynamic drag and electrodynamic

forces, which can influence the tether modelling, are all assumed to be negligible in the space

tether modelling context. In addition to the assumptions made in deriving the equations of

motion for all types of the MMET modelling, the bearing connecting the motor’s rotor and

stator is assumed to be perfect and to cause no significant frictional losses. This assumption

implies that the outrigger will behave qualitatively identically to the propulsion side but will
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Figure 3.1:Mathematical components for Lagrange equation [187]

rotate in the opposite direction and, thus, this potentially requires only the propulsion side

to be modelled. The power supplies, control systems, and communication equipment are

assumed to be fitted within the surrounding stator assembly in a practical installation. The

stator provides the necessary reaction, through coupling across the motor, which is required

for the rotor to spin-up in a friction-free environment. Unless stated otherwise, all of the

modelling is based on the conditions stated above. All the dynamicalmodelsfor MMET

systems are processed under these environmental conditions without further declaration.

Because of the similarity of the tether and the outrigger in the system, only the modelling

and simulations of the tether will be discussed in the following chapters. The outrigger

modelling can be discussed in a similar way and will not be described in full detail in this

context.

3.2 Dumbbell Tether

A dumbbell tether system is a type of momentum exchange tether system, as shown in Fig-

ure 3.2, in which there are two generalised coordinate systems. One is an Earth centred

global coordinate system -{X, Y, Z}, and the other is the relative rotating coordinate system

- {x0, y0, z0}. The centre of the Earth is denoted byE(Ex, Ey, Ez), which is defined as the

origin of the{X, Y, Z} system, where,Ex,Ey, Ez are set to(0, 0, 0), that is,E(0, 0, 0) [3] [65].

The dumbbell tether system consists of two end masses,M1 andM2, connected by the

tether subspans, where the distance from the dumbbell tether’s base point to each end mass is

denoted byL1 andL2. The dumbbell tether subspans are assumed to be massless relative to

the masses of the two end bodies. These are treated as point masses with no mass moments

of inertia. R is the distance fromE(0, 0, 0) to the dumbbell tether’s base pointP0, which is
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Figure 3.2:The dumbbell tether dynamical model [3] [65]

shown in equation (3.2.1) [3].R1 andR2 are the distances fromE(0, 0, 0) to mass points

M1(x1, y1, z1) andM2(x2, y2, z2), respectively, which are shown in equations (3.2.2) and

(3.2.3). Equations (3.2.4), (3.2.5) and (3.2.6) define the location for the base point and two

payloads at each end of the tether [65].

R =
rp (1+ e)

1+ e cosθ
(3.2.1)

where,rp is the radius at periapsis,e is the eccentricity,θ is the true anomaly.

R1 =

√
x21 + y

2
1 + z

2
1 =

√
L21 + R

2 + 2L1R cosα cosψ (3.2.2)

R2 =

√
x22 + y

2
2 + z

2
2 =

√
L22 + R

2 − 2L2R cosα cosψ (3.2.3)

Figure 3.3 is the counter-Z-direction view of Figure 3.2. TheX, Y plane and thex0, y0

plane lie coplanar to the orbit plane, where theZ andz0 axes are perpendicular to the orbit

54



Figure 3.3:The dumbbell tether dynamical model - top view

plane. TheX axis is aligned along the direction of the perigee of the orbit, and thex0 axis

is an extension ofR. ψ is the in-plane pitch angle, and this denotes the angle from thex0

axis to the projection of the tether onto the orbit plane.α is the out-of-plane angle, from the

projection of the tether onto the orbit plane to the tether, and is always within a plane normal

to the orbit plane.θ is the circular or elliptical orbit angular position, effectively the true

anomaly.R, θ, α, ψ are independent generalised coordinates and are functions of time. In

the case of a planar circular orbit, theR andθ̇ are constants.

As shown in in Figures 3.2 and 3.3, the Cartesian components of the base pointP0 and

the end masses ofM1 andM2 are given in equations (3.2.4), (3.2.5) and (3.2.6) [65].






x0 = R cosθ

y0 = R sinθ

z0 = 0

(3.2.4)






x1 = x0 + L1 cosαcos (θ+ψ)

y1 = y0 + L1 cosαsin (θ+ψ)

z1 = z0 + L1 sinα

(3.2.5)

55








x2 = x0 − L2 cosαcos (θ+ψ)

y2 = y0 − L2 cosαsin (θ+ψ)

z2 = z0 − L2 sinα

(3.2.6)

3.2.1 Kinetic Energy

As the end masses are treated as point masses without mass moment of inertia measurements,

the kinetic energy of the system comprises solely the translation of the end payloads, and is

given in equation (3.2.7). The prime denotes differentiation with respect to time.

T =
1

2
M1

(
ẋ21 + ẏ

2
1 + ż

2
1

)
+
1

2
M2

(
ẋ22 + ẏ

2
2 + ż

2
2

)
(3.2.7)

where, assuming the moment equilibrium in equation 3.2.8 [3] [65].

M1L1 =M2L2 (3.2.8)

3.2.2 Potential Energy

The gravitational potential energy is obtained by implementing Newton’s gravitational law

[3] and by convention defining one of the states of the evaluated integral to be zero at infinity.

Thus, the tether’s potential energy is given in equation (3.2.9),μ is the product of the uni-

versal gravitational constantG with the Earth’s mass,L1 andL2 are the two tether subspan

lengths.

U = −
μM1

R1
−
μM2

R2

= −
μM1√

L21 + R
2 + 2L1R cosα cosψ

−
μM2√

L22 + R
2 − 2L2R cosα cosψ

(3.2.9)

3.2.3 Generalised Coordinates

The preferred choice of generalised coordinates depends on what is required of the analysis

as well as on algebraic considerations. It is known that in orbital system there can be ten-

dencies for unwanted singularities if the choice of coordinates is not optimal. Based on this

basic requirement, in the case of dumbbell modelling, it is decided to represent the system

dynamics by means of three angular coordinates (ψ, θ, α) and one translational coordinate

(R).
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Table 3.1: The dumbbell tether generalised coordinates and generalisedforces

i qi Qi T U Equations ofMotion
1 ψ 0 (3.2.7) (3.2.9) (3.2.10)
2 θ 0 (3.2.11)
3 α 0 (3.2.12)
4 R 0 (3.2.13)

As given in Table 3.1, the selection of the generalised coordinatesqi are as following:

1) ψ is the in-plane pitch angle, and this denotes the angle from thex0 axis to the

projection of the tether onto the orbit plane.

2) θ is the elliptical orbit angular position, effectively, the true anomaly.

3) α is the out-of-plane angle, from the projection of the tether onto the orbit plane to

the tether, and it is always within a plane normal to the orbit plane.

4) R is the space tether’s position generalised coordinate, which indicates the distance

from the EarthE(0, 0, 0) to the base pointP0(x0, y0, z0).

3.2.4 Generalised Forces

The generalised forcesQi, i = 1 to 4, are all zeros, since no non-conservative forces are

acting on this system, in which the generalised coordinates areq1 = ψ, q2 = θ, q3 = α,

q4 = R.

3.2.5 Governing Equations of Motion

According to the Lagrange equation (3.1.1), the following motion equations for generalised

coordinatesqi are derived and stated in equations (3.2.10) to (3.2.13).

−
μM1L1R cosα sinψ

(
R2 + 2RL1 cosα cosψ+ L21

)3/2 +
μM2L2R cosα sinψ

(
R2 − 2RL2 cosα cosψ+ L22

)3/2

+
(
M1L

2
1 +M2L

2
2

) (
cos2 α

(
θ̈+ ψ̈

)
− α̇ sin2α

(
θ̇+ ψ̇

))

+2 cos2 α
(
θ̇+ ψ̇

) (
M1L1L̇1 +M2L2L̇2

)
= Qψ

(3.2.10)

(
R2θ̈+ 2RṘθ̇

)
(M1 +M2) +

(
M1L

2
1 +M2L

2
2

) (
cos2 α

(
θ̈+ ψ̈

)
− α̇ sin2α

(
θ̇+ ψ̇

))

+2 cos2 α
(
θ̇+ ψ̇

) (
M1L1L̇1 +M2L2L̇2

)
= Qθ

(3.2.11)
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−
μM1L1R cosψ sinα

(
R2 + 2RL1 cosα cosψ+ L21

)3/2 +
μM2L2R cosψ sinα

(
R2 − 2RL2 cosα cosψ+ L22

)3/2

+
(
M1L

2
1 +M2L

2
2

)
(

α̈+
1

2
sin2α

(
θ̇+ ψ̇

)2
)

+2α̇
(
M1L1L̇1 +M2L2L̇2

)
= Qα

(3.2.12)

μM1 (R+ L1 cosα cosψ)
(
R2 + 2RL1 cosα cosψ+ L21

)3/2 +
μM2 (R− L2 cosα cosψ)

(
R2 − 2RL2 cosα cosψ+ L22

)3/2

+(M1 +M2)
(
R̈− Rθ̇2

)
= QR

(3.2.13)

3.2.6 Simulations and Discussions

Numerical results are obtained usingMATHEMATICA for the selected generalised coor-

dinatesψ, θ, α andR, as listed in Table 3.1. The parameters for the dumbbell tether system

simulations are given in Appendix C. Unless stated, all the MMET simulation results in

the following chapters are generated by the parameters in Appendix C.Tn is the number of

cycles of period, as defined in Chapter 1 equation (1.1.11), in this case ofe = 0.2, whenTn =

4.01, the simulation timet is 0 to 3.1899× 104 seconds; whenTn = 400.01, the simulation

time t is 0 to 3.1811× 106 seconds.
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Figure 3.4: Dumbbell tether spin-up, angular displacementψ (Tn = 400.01)

. The spin-up generalised coordinate isψ, which denotes the angle from thex0 axis to

the projection of the tether onto the orbit plane, as shown in Figure 3.2. With the given
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Figure 3.5:Dumbbell tether spin-up, angular displacementψ (Tn = 40.01)
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Figure 3.6:Dumbbell tether spin-up, angular displacementψ (Tn = 4.01)

parameters in AppendixC, theψ response’s amplitude goes between -0.325 to 0.325

rad, periodically, as shown inFigures 3.4, 3.5 and 3.6, which describe the dumbbell

tether’s periodic spin-up (the period is about 180,000 seconds) behaviour during the

simulation time with the number of cycles of periodTn = 400.01, 40.01 and 4.01.

Figure3.6 states the dumbbell tether’s periodic spin-up behaviour during NCPTn =

4.01, which is the first 10 percent of Figure3.4with Tn = 400.01.

. Figures3.7and3.8describe the stable increasingθ angle of orbit position with slight
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Figure 3.7:Dumbbell tether true anomaly on elliptical orbit, angleθ (Tn = 400.01)
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Figure 3.8:Dumbbell tether true anomaly on elliptical orbit, angleθ (Tn = 4.01)

fluctuation around the Earth duringTn = 4.01 andTn = 400.01 simulation time.

. Figures3.9and3.10state the dumbbell tether’s position changing around the Earth

periodically, together with Figures3.4and3.8, they can express the specific trajectory

and position for the dumbbell tether during the full simulation time for the NCPTn =

400.01 andTn = 4.01, within the amplitude range fromrp to ra.

. The out-of-plane angleα for the dumbbell tether is staying in a planar status, whose
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Figure 3.9: Dumbbell tether distance R (Tn = 400.01)
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Figure 3.10:Dumbbell tether distance R (Tn = 4.01)

response is zero over simulation time, with zero initial conditions (α(0) = 0 rad and

α̇(0) = 0 rad/s). With the non-zero intial values, as shown in Figure3.11, α(0) = 0.001

rad andα̇(0) = 0.001 rad/s, the out-of-plane angleα is acting periodically around the

reference plane.
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Figure 3.11: Dumbbell tether out-of-plane angleα (Tn = 4.01)
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3.3 The Motorised Momentum Exchange Tether

The concept of the motorised momentum exchange tether (MMET) was first proposed by

Cartmell [67], and its modelling and conceptual design were developed further, in particular

the modelling of the MMET system as a rigid body was developed by Ziegler and Cartmell

[62], and the modelling of the MMET system with axial elasticity was developed by Chen

and Cartmell [71].

The basic conceptual schematic of the MMET system is shown in Figure 3.12. The

system is composed of the following parts: a pair of propulsion tether subspans (]A and

]B in Figure 3.12), a corresponding pair of outrigger tether subspans (]C and]D in Figure

3.12), the launcher motor mass within the rotor and the launcher motor mass within the

stator (]J and]I in Figure 3.12), the outrigger masses (]H and]G in Figure 3.12), and the

two payload masses (]E and]F in Figure 3.12), as also shown in Table 3.2. The MMET

system is excited by means of a motor, and the dynamical model using angular generalised

coordinates to represent spin and tilt, together with the true anomaly for circular orbital

motion, or the true anomaly and a variable radius coordinate for elliptical orbits. Another

angular coordinate defines the backspin of the propulsion motor’s stator components. The

payload masses are fitted to each end of the tether subspans, and the system orbits a source

of gravity in space, in this case the Earth. The use of a tether generally means that all

constituent parts of the system have the same angular velocity as the overall centre of mass

(COM). As implied in Figure 3.12, the symmetrical double-ended motorised spinning tether

can be applied as an orbital transfer system, in order to exploit momentum exchange for

propelling and transferring payloads in space. A series of terrestrial scale model tests of the

MMET system were carried out on ice by Cartmell and Ziegler in 2001 [68] and 2003 [69],

as shown in Figure 3.13.

Table 3.2: The components of the basic conceptual schematic of the MMETsystem

Position Component
] A Braided propulsion tether subspan
] B Braided propulsion tether subspan
] C Braided outrigger tether subspan
] D Braided outrigger tether subspan
] E Payload mass
] F Payload mass
] G Outrigger mass
] H Outrigger mass
] I Launcher mass (stator)
] J Launcher mass(rotor)
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Figure 3.12:The conceptual schematic of the motorised momentum exchange tether [67]

Figure 3.13: The scale model of the MMET experiment on ice [68] [69]

This novel concept is of a long tethered system with a mass at each end, where one mass

can be regarded as a launcher, essentially consisting of an electric motor, and the other as the

payload. The tether is a long line of appropriate cross section and material properties. The

principle of operation is that once the tether is deployed the launcher motor is energised with

the result that the whole system starts to spin in a circle about its overall centre of mass. The

system is then allowed to accelerate until the tangential velocity of the payload reaches the

required level. The main aims of these studies for MMET system are as follows [2] [67] :

〈1〉 To limit the use of electrical (solar) power in order to build up rotational energy

over time;

〈2〉 To achieve velocity increments (tangential to the payload spin-circle) necessary for

inter-planetary launch of sizeable payloads;
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〈3〉 To build in as much system re-use as possible;

〈4〉 To exploit new tether technologies for long-term, reliable deployment.

The basic capabilities of mechanical tethers for space transportation could be related to

scenarios, which involve transport from ground to Earth orbit, transfer from low Earth orbit

to geostationary orbit, and injection into interplanetary trajectories. Additionally, with these

basic lift capabilities, they offered also propulsionless de-orbiting of satellites, de-orbiting

of re-entry capsules, and orbit injection and descent initiation at other planetary bodies. The

mechanical tethers all exploited the concept of momentum exchange in one way or another

and tend to fall into one of three operational categories based on hanging orientations, sys-

tems exhibiting librating motions, and spinning systems. Librating mechanical and electro-

dynamic tethers and their possible technical feasibility have received the most attention so

far.

In 2001, Ziegler and Cartmell’s paper [62] demonstrated a symmetrically laid out system,

in which the driving motor facility is attached half way along a tether. It has two identical

payloads at either end, it could be made to spin-up by means of a controlled counter-inertia

attached to the motor stator. An in-depth treatment of the rigid body dynamics of tethers in

space was given, in which the dumb-bell tether was modelled at various levels of accuracy,

and approximate analytical solutions were obtained by means of the method of multiple

scales for periodic solutions. Comprehensive dynamical systems analyses were summarised

for different configurations and models, and global stability criteria for a rigid body dumb-

bell tether, in both passive and motorised forms, were also defined and investigated. Further

treatment of the spin-up criterion was also provided.

Gravity gradient stabilisation is an important underpinning phenomenon when consider-

ing spacecraft stability, and this is particularly the case for long momentum exchange tethers.

The work in 2003 by Cartmell et al. [69] considered dumb-bell models for momentum ex-

change tethers. Offshoots and developments made after this work had shown conclusively

that hanging, librating, and spinning tether motions were intimately connected to this funda-

mental phenomenon.

In 2003, Eiden and Cartmell discussed the tether systems roadmap for space transporta-

tion applications [64], in which some potential applications for continuation of the staged

MMET system research were discussed, as shown below:

〈1〉 There will be colonisation of the Moon in the future and regular two-way freight

transportation will then be a necessity;
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〈2〉 Staged MMET based systems will provide extremely low cost regular payload

exchange between two planetary bodies;

〈3〉 Staged MMET transportation offers reusable environmentally acceptable trans-

portation of bulk material on the basis that computers and sensors, plus the necessary

orbital maintenance, are considerably cheaper and cleaner than burning large quanti-

ties of toxic rocket fuel;

From this section on, all the MMETmodelsare based on the motorised momentum

exchange tether conceptual schematic. Figure 3.13 is the scale MMET model experiment on

ice in 2001 and 2003 [68] [69].

3.4 The Dumbbell MMET

As shown in Figure 3.14, the dumbbell MMET system consists of two end payload masses

MP at each end, are connected by a massless tether with the same length of subspans

from the tether’s centre of massMM, denoted byL. R is the distance fromE(0, 0, 0) to

MM(x0, y0, z0), which is the same as introduced in section 3.2.

Figure 3.14: The conceptual schematic of the dumbbell motorised momentum exchange
tether

R1 =

√
x21 + y

2
1 + z

2
1 =

√
L2 + R2 + 2LR cosα cosψ (3.4.1)
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R2 =

√
x22 + y

2
2 + z

2
2 =

√
L2 + R2 − 2LR cosα cosψ (3.4.2)

As shown in Figure 3.15,R1 andR2 are the distances fromE(0, 0, 0) toM1(x1, y1, z1)

andM2(x2, y2, z2), respectively, withM1 = M2 = MP, which are shown in equations

(3.4.1), (3.4.2). Equations (3.2.4), (3.4.3) and (3.4.4) defined the location for the base point

and two payloads at each end of the tether.

Figure 3.15:The model for dumbbell MMET system

67








x1 = x0 + L cosαcos (θ+ψ)

y1 = y0 + L cosαsin (θ+ψ)

z1 = z0 + L sinα

(3.4.3)






x2 = x0 − L cosαcos (θ+ψ)

y2 = y0 − L cosαsin (θ+ψ)

z2 = z0 − L sinα

(3.4.4)

3.4.1 Kinetic Energy

The equations of the dumbbell MMET system with massless subspans are obtained via the

Lagrangian formulation. Figure 3.16 is the z-oriented view which is looking to the origin of

Figure 3.15. As the end masses are treated as point masses, the kinetic energy of the system

comprises solely the translation of the end bodies in equation (3.4.5), withM0 =MM.

T =
1

2
M1

(
ẋ1
2 + ẏ1

2 + ż1
2
)
+
1

2
M2

(
ẋ2
2 + ẏ2

2 + ż2
2
)
+
1

2
M0

(
ẋ0
2 + ẏ0

2 + ż0
2
)

(3.4.5)

Figure 3.16:The model for the dumbbell MMET system - top view
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3.4.2 Potential Energy

The gravitational potential energy is obtained by implementing Newton’s gravitational law.

Thus, the tether’s potential energy is given in equation (3.4.6),μ is the product of the uni-

versal gravitational constantG with the Earth’s Mass,L is the symmetrical tether subspan

length.

U = −
μM1

R1
−
μM2

R2
−
μM0

R

= −
μM1√

L2 + R2 + 2LR cosα cosψ
−

μM2√
L2 + R2 − 2LR cosα cosψ

−
μM0

R

(3.4.6)

3.4.3 Generalised Coordinates

In the case of the dumbbell MMET system with massless subspans, it has been decided upon

to represent the system dynamics by means of three angular coordinates (ψ, θ, α) and one

translational coordinate (R), in which theψ, θ, α andR are the same generalised coordinates

as in section 3.2.3, as shown in Table 3.3.

Table 3.3: The dumbbell tether generalised coordinates and generalisedforces

i qi Qi T U Equations ofMotion
1 ψ (3.4.7) (3.4.5) (3.4.6) (3.4.8)
2 θ 0 (3.4.9)
3 α 0 (3.4.10)
4 R 0 (3.4.11)

3.4.4 Generalised Forces

The generalised forceQ1 is for the generalised coordinateψ, which is given in equation

(3.4.7), and the rest of the generalised forces inQi {i = 2, 3, 4} are all zeros since no other

non-conservative forces are acting on this system, in which the generalised coordinates are

q1 = ψ, q2 = θ, q3 = α, q4 = R.

Qψ = τ (3.4.7)

where,τ is the driving torque generated by the motor installed in the COM of the dumb-

bell MMET.
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3.4.5 Governing Equations of Motion

According to the Lagrange equation (3.1.1), the following governing equations are derived

and stated in equations (3.4.8) to (3.4.11).

−
μMPLR cosα sinψ

(R2 + 2RL cosα cosψ+ L2)3/2
+

μMPLR cosα sinψ

(R2 − 2R cosα cosψ+ L2)3/2

+2MPL
2 cos2 α

(
θ̈+ ψ̈

)
+ 2MPL

(
2L̇ cos2 α− L sin2αα̇

) (
θ̇+ ψ̇

)

= Qψ

(3.4.8)

(
R2θ̈+ 2RṘθ

)
(2MP +M0) + 2MPL

2 cos2 α
(
θ̈+ ψ̈

)

+2MPL
(
2L̇ cos2 α− L sin2αα̇

) (
θ̇+ ψ̇

)
= Qθ

(3.4.9)

−
μMPLR cosψ sinα

(R2 + 2RL cosα cosψ+ L2)3/2
+

μMPLR cosψ sinα

(R2 − 2RL cosα cosψ+ L2)3/2

+2MPL
2

(

α̈+
1

2
sin2α

(
θ̇+ ψ̇

)2
)

+4MPLL̇α̇ = Qα

(3.4.10)

μMP (R+ L cosα cosψ)

(R2 + 2RL cosα cosψ+ L2)3/2
+

μMP (R− L cosα cosψ)

(R2 − 2RL cosα cosψ+ L2)3/2
+
μM0

R2

+(2MP +M0)
(
R̈− Rθ̇2

)
= QR

(3.4.11)

3.4.6 Simulations and Discussions

Figures 3.17 to 3.24 are the numerical results obtained byMATHEMATICA for the selected

generalised coordinatesψ, θ,α andR, as listed in Table 3.3. The parameters for the dumbbell

tether system simulations are given in Appendix C,Tn is the number of cycles of period, and

is the same as is discussed in section 3.2.6.

. Figures 3.17 and 3.18 express the dumbbell MMET tether’s steady spin-up be-

haviour, which is every close to the spin-up behaviour of dumbbell tether in Figures 3.4

and 3.6; they show the dumbbell MMET tether’s periodic spin-up behaviour around

the Earth inTn = 4.01 andTn = 400.01 simulation time, with the range of -0.325 to

0.325 rad.

. Figures 3.19 and 3.20 give the true anomaly for the dumbbell MMET system inTn

= 4.01 andTn = 400.01 simulation time with slight ups and downs along theθ curve’s

rising process.

70



. With zero initial conditions,α(0) = 0 rad andα̇(0) = 0 rad/s, the the out-of-plane

angleα performs a stable zero response, as listed in Appendix C. Figure 3.21 shows

the simulation response with non-zero initial conditionsα(0) = 0.001 rad anḋα(0) =

0.001 rad/s, which is with similar behaviour as the dumbbell tether in the previous

section.

. Figures 3.22, 3.23 and 3.24 give the position generalised coordinateR, which mea-

sure the distance from the EarthE to the dumbbell MMET system’s COMP0, within

the rangerp to ra, in this case, givene = 0.2 andrp = 6.89×106 metre, thenra =

1.0335×107 metre.
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Figure 3.17: Dumbbell MMET tether spin-up, angular displacementψ (Tn = 400.01)
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Figure 3.18: Dumbbell MMET tether spin-up, angular displacementψ (Tn = 4.01)
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Figure 3.19: Dumbbell MMET tether elliptical orbit angular positionθ (Tn = 400.01)
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Figure 3.20: Dumbbell MMET tether elliptical orbit angular positionθ (Tn = 4.01)
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Figure 3.21: Dumbbell MMET tether out-of-plane angleα (Tn = 4.01)
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Figure 3.22: Dumbbell MMET distance R (Tn = 400.01)
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Figure 3.23:Dumbbell MMET distance R (Tn = 40.01)
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Figure 3.24:Dumbbell MMET distance R (Tn = 4.01)
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3.5 The Dumbbell MMET with Cylindrical Payloads and a

Motor Facility

Figure 3.25:The MMET system with cylindrical payloads and a motor facility

Based on the massless dumbbell MMET modelling in section 3.4, and as shown in Figure

3.25, there are two generalised coordinate systems. One is an Earth centred global coordinate
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system -{X, Y, Z}, and the other is the relative rotating coordinate system -{x0, y0, z0}.

The tether system consists of two end masses,M1 andM2, connected by a tether with

the same distance from the tether’s centre of massM0 to each end mass, denoted byL. R is

the distance fromE(0, 0, 0) toMM(x0, y0, z0), which is shown in equation (3.2.1).R1 and

R2 are the distances fromE(0, 0, 0) toM1(x1, y1, z1) andM2(x2, y2, z2), respectively, with

M1 =M2 =MP, andM0 =MM, which are shown in equations (3.4.1), (3.4.2). Equations

(3.2.4), (3.4.3) and (3.4.4) define the location of the base point and two payloads in each end

of the tether.

Figure 3.26:The MMET system with cylindrical payloads and a motor facility - top view

The MMET tether with massless subspans is assumed to be rigid, and also is not able

to longitudinally extend or twist in any direction, in Figure 3.25, and its counter-Z-direction

view is presented in Figure 3.26.

The main mass components of the motor consist of a central rotor attached to the propul-

sion tethers, and a stator which locates the rotor by means of a suitable bearing. The motor

torque in the MMET tether with massless subspans acts about the motor drive axis, and it

is assumed that the motor drive axis stays normal to the spin plane of the propulsive tethers

and payloads. The connection between the tether and the motor will be regarded as a rigid

connection, hence when the tether moves out of the orbital plane the motor will similarly

rotate about its centre of mass.
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3.5.1 Payload Mass Moment of Inertias

The definition of the local axes for the two cylindrical payloads is shown in Figure 3.27,

and the payloads are denoted byMP1 andMP2. Equations (3.5.1) and (3.5.2) are the mass

moments of inertia for payloadsMP1 andMP2.

Figure 3.27:The definition of local axes for two cylindrical payloads





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2
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2
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2
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2
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2
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(3.5.1)






IxP2 =
1

12
MP2(3r

2
P + h

2
P)

IyP2 =
1

12
MP2(3r

2
P + h

2
P)

IzP2 =
1

2
MP2r

2
P

(3.5.2)

As shown in Figure 3.27,

rP is the radius of the payload,hP is the height of the cylindrical payload,

IxP1 is theM1 mass moment of inertia about the local axisxP1,

IyP1 is theM1 mass moment of inertia about the local axisyP1,

IzP1 is theM1 mass moment of inertia about the local axiszP1,
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IxP2 is theM2 mass moment of inertia about the local axisxP2,

IyP2 is theM2 mass moment of inertia about the local axisyP2,

IzP2 is theM2 mass moment of inertia about the local axiszP2.

3.5.2 Motor Facility Mass Moment of Inertias

The cylindrical motor facility local axis definition is in Figure 3.28, and equation (3.5.3) is

the mass moment of inertia for the cylindrical motor facilityMM.

Figure 3.28:The definition of local axes for the cylindrical motor facility



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(3.5.3)

With definitions as in Figure 3.28,

rM is the radius of the motor,

hM is the height of the cylindrical facility of motor,

IxM is the mass moment of inertia about the local axisxM,

IyM is the mass moment of inertia about the local axisyM,

IzM is the mass moment of inertia about the local axiszM.
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3.5.3 Torque Plane

The components of the propulsive forceF is given in equations (3.5.4), and thex0, y0, z0

components of the torque plane are shown in Figure 3.29, adopted from Ziegler’s work in

2003 [65].

Figure 3.29:Thex0, y0, z0 components of the ‘torque-plane’ (planeO−Q−B) - not parallel
to the ‘tether-spin-plane’ (planex0 −Q− Fx1) and adapted from [65]

−→
F =

−→
Fx +

−→
Fy +

−→
Fz =

−→
τ

L
(3.5.4)

where,
−→
Fx,
−→
Fy and

−→
Fz are the Cartesian components of the forceF, which are given in

equation (3.5.5). As shown in Figure 3.29, the components ofFx andFy areFx = Fx1 + Fx2,

Fy = Fy1 + Fy2.






Fx = −F cosγ sinψ− F sinγ sinα cosψ

Fy = F cosγ cosψ− F sinγ sinα sinψ

Fz = F sinγ cosα

(3.5.5)

3.5.4 Generalised Coordinates

In the dumbbell MMET system with cylindrical payloads and centralised motor facility,

there are six generalised coordinates, in which four rotational coordinates (ψ, θ, α, γ) and

two translational coordinates (L, R) are selected as the generalised coordinates.
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Theψ, θ, α, L andR are the same generalised coordinates as in section 3.4.5.γ is the

rolling angle, which is an angle between the torque-plane (where the torque is generated by

the motor) and the ‘tether-spin-plane’, Figure 3.29 shows the definition of this angleγ. When

the torque-plane [65] is not parallel to the ‘tether-spin-plane’,γ 6= 0. And, if the torque-

plane is parallel to the ‘tether-spin-plane’,γ = 0. The rolling angleγ needs to be included,

because the torque axis is free to rotate about the longitudinal axis of the tethers. Note that,

γ does not alter the location of the end masses’ COM, and the generalised coordinates are

independent functions of time.

3.5.5 Kinetic Energy

The kinetic energy of the dumbbell MMET system is composed of its translational motion

in the inertial frame and its rotation about its centre of mass, as shown in Figure 3.25. As

the payload and motor facility masses are connected by massless solid tether subspans, the

kinetic energy of the system is given in equation (3.5.6).

T =
1

2
MP1

(
ẋ2P1 + ẏ

2
P1 + ż

2
P1

)
+
1

2
MP2

(
ẋ2P2 + ẏ

2
P2 + ż

2
P2

)
+
1

2
MM

(
ẋ20 + ẏ

2
0 + ż

2
0

)
+

1

2
[IzP1 + IzP2 + IzM ]

(
ψ̇+ θ̇

)2
+

1

2
[IxP1 + IxP2 + IxM ] α̇

2+

1

2
[IyP1 + IyP2 + IyM ] γ̇

2

(3.5.6)

3.5.6 Potential Energy

The gravitational potential energy is defined by equation (3.5.7) using Newton’s gravitational

law, in whichμ is the product of the universal gravitational constantGwith the Earth’s Mass.

U = −
μM1

R1
−
μM2

R2
−
μMM

R

= −
μM1√

L2 + R2 + 2LR cosα cosψ
−

μM2√
L2 + R2 − 2LR cosα cosψ

−
μMM

R

(3.5.7)
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3.5.7 Generalised Forces

According to the theory of virtual work, the generalised torque exerted by the motor for

the MMET system is as defined in equation (3.5.8). Considering the virtual work done by

all non-conservative forces through a virtual displacement, leads to equations (3.5.8) and

(3.5.9), in whichQqi is the generalised force for the generalised coordinateqi, as defined in

equation (3.5.10).

δW = Fxδx+ Fyδy+ Fzδz (3.5.8)

δWqi = Qqiδqi (3.5.9)

Qqi = Fx
∂x

∂qi
+ Fy

∂y

∂qi
+ Fz

∂z

∂qi
(3.5.10)

where,Fx, Fy andFz are obtained in equation (3.5.5). The Cartesian componentsx, y andz

are shown in equation (3.5.11).






x = L cosα cos(θ+ψ)

y = L cosα sin(θ+ψ)

z = L sinα

(3.5.11)

I The partial derivatives of equation (3.5.11) with respect to each generalised coordi-

natesψ, θ, α, γ, R andL are given inAppendix A.

Note that the true anomalyθ does not affect the generalised force, so the principle of

virtual work, as used here, only considers the virtual displacements relating to the applied

non-conservative forces, then equation (3.5.11) for the Cartesian componentsx, y andz can

be re-formed as equation (3.5.12) [62].

I The partial derivatives of equation (3.5.12) with respect to each generalised coordi-

natesψ, θ, α, γ, R andL are given inAppendix B.






x = L cosα cosψ

y = L cosα sinψ

z = L sinα

(3.5.12)
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Subsequently, the generalised forces for this solid massless MMET system, as expressed

in equations (A.0.7) to equation (A.0.11), can also be transformed as in equations (3.5.13) to

(3.5.16).

Qψ = FL cosγ cosα = τ cosγ cosα (3.5.13)

Qθ = 0 (3.5.14)

Qα = τ sinγ (3.5.15)

QR = 0 (3.5.16)

Qγ = 0 (3.5.17)

3.5.8 Governing Equations of Motion

Since no non-conservative forces are acting on the generalised coordinatesqi {i = 2, 4, 5},

their generalised forcesQi {i = 2, 4, 5} are all zeros, that is,Q2 = Qθ = 0, Q4 = QR = 0

andQ5 = Qγ = 0. The generalised forcesQ1 = Qψ andQ3 = Qα are given in equations

(3.5.13) and (3.5.15). The following governing equations for generalised coordinatesqi are

given in equations (3.5.18) to (3.5.22), forq1 = ψ, q2 = θ, q3 = α, q4 = R andq5 = γ,

and are also as listed in Table 3.4.

Table 3.4: The dumbbell MMET with cylindrical payload and motor facility generalised
coordinates and generalisedforces

i qi Qi T U Equations ofMotion
1 ψ (3.5.13) (3.5.6) (3.5.7) (3.5.18)
2 θ (3.5.14) (3.5.19)
3 α (3.5.15) (3.5.20)
4 R (3.5.16) (3.5.21)
5 γ (3.5.17) (3.5.22)
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)
+

cosα
(
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1

12

(
MM

(
h2M + 3r

2
M

)
+ (MP1 +MP2)

(
h2P + 3r

2
P

))
γ̈ = Qγ (3.5.22)
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3.5.9 Simulations and Discussions

Figures 3.30 to 3.35 are the numerical results obtained byMATHEMATICA for the se-

lected generalised coordinatesψ, θ, α, R andγ, as listed in Table 3.4. The results show the

dumbbell MMET with cylindrical payloads’ periodic behaviour on elliptical orbit duringTn

= 4.01 andTn = 400.01 simulation time with zero initial conditions.
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Figure 3.30:The dumbbell MMET with cylindrical payloads spin-up, angular displacement
ψ (Tn = 400.01)

. In simulation timeTn = 4.01 andTn = 400.01, Figures 3.30 and 3.31 describe the

tether’s steady spin-up behaviour, which show the MMET tether’s periodic perfor-

mance around the Earth with the range of -0.325 to 0.325 rad.

. In this case, when givene = 0.2 andrp = 6.89×106 metre, thenra = 1.0335×107

metre, the position generalised coordinate R is stated in Figures 3.32 and 3.33, which

indicate the distance from the EarthE to the MMET system’s COMM0 with the range

of rp to ra, as shown in Figures 3.32 and 3.33.

. Figures 3.34 and 3.35 give the true anomalyθ for the MMET system inTn = 4.01 and

Tn = 400.01 simulation time with slight ups and downs along the data rising responses.

. As mentioned in sections 3.2.6 and 3.4.5, with zero initial conditionsα(0) = 0 rad

andα̇(0) = 0 rad/s, the out-of-plane angleα response is staying in zero over simulation

process. Theα response with non-zero initial conditionsα(0) = 0.001 rad anḋα(0) =

0.001 rad/s is shown in Figure 3.36, whose peroidic range is [-0.0032, 0.0032] rad.
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Figure 3.31: The dumbbell MMET with cylindrical payloads spin-up, displacementψ (Tn
= 4.01)
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Figure 3.32: The dumbbell MMET with cylindrical payloads distance R (Tn = 400.01)

. γ is the rolling angle, which is an angle between the torque-plane, with zero initial

conditionsγ(0) = 0 rad andγ̇(0) = 0 rad/s, the response for the tether’s rigid rolling

angle shows the steady zero rolling angle output for the tether system. Withγ(0) =

0.001 rad anḋγ(0) = 0.001 rad/s, Figure 3.37 expresses the periodic activities about

the balanced position.
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Figure 3.33:The dumbbell MMET with cylindrical payloads distance R (Tn = 4.01)
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Figure 3.34:The dumbbell MMET with cylindrical payloads elliptical orbit angular position
θ (Tn = 400.01)
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Figure 3.35:The dumbbell MMET with cylindrical payloads elliptical orbit angular position
of θ (Tn = 4.01)
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Figure 3.36: The dumbbell MMET with cylindrical payloads, out-of-plane angleα (Tn =
4.01)
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Figure 3.37: The dumbbell MMET with cylindrical payloads, rolling angleγ (Tn = 4.01)
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3.6 The MMET as a Rigid Body

To obtain accurate quantitative statements, a rigid body MMET system is investigated in this

section, which incorporates the tether’s mass and mass moment of inertia. The environmental

conditions are the same as in section 3.2. Figure 3.38 describes the conceptual model of

this MMET with solid tether-tube subspans. This MMET system comprises a symmetrical

double cylindrical payload configuration,M1 andM2, a cylindrical motor facilityMM, and

two tubular tether subspans with the lengthL.

Figure 3.38:The MMET with solid tether-tube generalised coordinates and defined on orbit
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3.6.1 Tether-Tube Mass Moments of Inertia

The local axis definitions for the tether-tube subspans are demonstrated in Figures 3.39 and

3.40, which state the mass component ofMT for the MMET dynamical modelling. Equation

(3.6.1) is the mass moment of inertia for each tether-tube subspan, equation (3.6.2) states

the cross-sectional-area of the tether tube, and equation (3.6.3) provides the mass for each

tether-tube subspan.

Figure 3.39:The definition of local axes for tether mass components

Figure 3.40:The definition of local axes for the tether subspan






IxT =
1

12
MT

[
3
(
r2T inner + r

2
T outer

)
+ L2

]

IyT =
1

2
MT

(
r2T inner + r

2
T outer

)

IzT =
1

12
MT

[
3
(
r2T inner + r

2
T outer

)
+ L2

]

(3.6.1)
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A = Aouter −Ainner = π
(
r2T outer − r

2
T inner

)
(3.6.2)

MT = (Aouter −Ainner)Lρ = π
(
r2T outer − r

2
T inner

)
Lρ (3.6.3)

where,

A is the tether-tube’s cross-sectional area,

rT outer is the outer radius of the tether-tube,

rT inner is the inner radius of the tether-tube,

IxT is the mass moment of inertia about the local axisxT ,

IyT is the mass moment of inertia about the local axisyT ,

IzT is the mass moment of inertia about the local axiszT , as in Figure 3.40.

3.6.2 Tether-Tube Discretisation

The validation of the feasibility of the tether-tube discretisation is obtained by Ziegler [65],

considering the MMET system’s potential energy, the main advantage for the discretisation

process is to avoid the sigularity in the MMET numerical simulation. The potential energy of

the solid tether-tube subspan is given in equation (3.6.4), in which the function ln() appears

in the equation, showing a numerical singularity atψ = π in Figure 3.41, and also in Figure

3.42, atψ = Ωπ, whereΩ is an integer. The numerical singularity will be encountered when

the MMET system is numerically integrated. To avoid this singularity due to the calculation

for ln(), an alternative description of the potential energy of the tether-tube was derived,

which discretised the tether mass into point masses, in equation (3.6.5) [65].

UT = −μρA

L∫

−L

(
R2 + l2 + 2lR cosψ

)−1
2 dl

= μρA ln

(
R cosψ− L+

√
R2 + L2 − 2LR cosψ

R cosψ+ L+
√
R2 + L2 + 2LR cosψ

)
(3.6.4)
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UT = −

N∑

i=1

μρAL

N

√

R2 +

(
(2i− 1)L

2N

)2
+
2 (2i− 1)RL

2N
cosψ

−

N∑

i=1

μρAL

N

√

R2 +

(
(2i− 1)L

2N

)2
−
2 (2i− 1)RL

2N
cosψ

(3.6.5)
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Figure 3.41: ln(θ) function singularity whenθ ∈ [0, π]

The full length of the two tether subspans isLT in Figure 3.43, which is given in equation

(3.6.6).L0 is the original length of each subspan of the tether when balanced symmetrically.

Figure 3.43 shows the mass point locations within the full-lengthLT , and the values of

N in the mass points scheme are the scaled locations of the point masses along the full length

LT . An example forN = 2 is given in Figure 3.44, whereN = 2 means there are 2 point

masses in the tether, which are located at0.25LT and0.75LT , respectively. Figure 3.45 lists

a 1 to 20 point mass location scheme.

Equation (3.6.7) defines the discrete mass points’ location scheme along the tether tube

subspans. For example, in a case of mass pointsN = 2, thel1 = 0.5 andl2 = 0.5, respectively.

LT = 2L0 (3.6.6)
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Figure 3.42: ln(θ) function singularity whenθ ∈ [0, 20π]

li = L0 −
(2i− 1)L0

2N
(3.6.7)

3.6.3 Discrete Mass Point Mass Moments of Inertia

As shown in Figure 3.46, the mass points are notionally very small, and by taking the same

definition of the local axes as for the motor facility in Figure 3.40, it is assumed that there is

no significant mass moment of inertia in the mass pointsmi (i = 1, 2, ...N),N is the number

of the mass points.

In order to study the torsional elastic behaviours, the mass moment of inertiaIymi for

each mass pointmi is derived from the tether-tube’s mass moments of inertia in this mod-

elling context. Numerically, the mass moment of inertia of the mass points are defined in

equation (3.6.8), which can connect the torsional elastic motions of each mass point with the

tether subspan’s rigid body rolling motion.ε is the factor for the mass moment of inertia of

each mass point,ε ≥ N.
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
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

Ixmi =
IxT
ε

Iymi =
IyT
ε

Izmi =
IzT
ε

(3.6.8)

3.6.4 Potential Energy

This solid tether-tube MMET system’s potential energy is given in equation (3.6.9), andμ

is the product of the universal gravitational constantG with the Earth’s Mass. According to

the solid tether-tube subspan’s discrete equations (3.6.4) and (3.6.5), equation (3.6.9) can be

re-stated as equation (3.6.10) [65].

U = −
μMP√

L2 + R2 + 2LR cosψ
−

μMP√
L2 + R2 − 2LR cosψ

−
μMM

R

−μρA

L∫

−L

(
R2 + l2 + 2lR cosψ

)−1
2 dl

= −
μMP√

L2 + R2 + 2LR cosψ
−

μMP√
L2 + R2 − 2LR cosψ

−
μMM

R

+μρA ln

(
R cosψ− L+

√
R2 + L2 − 2LR cosψ

R cosψ+ L+
√
R2 + L2 + 2LR cosψ

)

(3.6.9)
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μMP√
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−

μMP√
L2 + R2 − 2LR cosψ

−
μMM

R

−

N∑

i=1

μρAL

N

√

R2 +

(
(2i− 1) L

2N

)2
+
2 (2i− 1)RL

2N
cosψ

−

N∑

i=1

μρAL

N

√

R2 +

(
(2i− 1) L

2N

)2
−
2 (2i− 1)RL

2N
cosψ

(3.6.10)

Figure 3.47 is a comparison of the potential energy for a full solid tether subspan and

a discrete tether subspan, with given initial conditions. Figure 3.48 compares the error of
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the potential energy for the full tether subspan and the discrete tether subspan energies, with

the same initial conditions. Both Figures prove how many discrete masses are needed to

approximate the full tether’s potential energy satisfactorily, and it may be seen that there

should be at least 15 masses to approximate adequately the full tether-tube subspan.

3.6.5 Kinetic Energy

Taking into account the translation and rotation of each component, the kinetic energy of this

MMET system is addressed in equation (3.6.11), in which,MT1(x1, y1, z1) andMT2(x2, y2, z2)

in equations (3.6.12) and (3.6.13) are the tether subspans’ centre of mass, as also declared in

Figure 3.38.

T =
1

2
MP1

(
ẋ2P1 + ẏ

2
P1 + ż

2
P1

)
+
1

2
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2
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)
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1

2
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2
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2
M

)
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1

2
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1
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1
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]
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+
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α̇2

+
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1

2
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1

2
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1

2
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]

γ̇2

(3.6.11)

where,






xT1 = x0 +
1

2
Lcosαcos (θ+ψ)

yT1 = y0 +
1

2
Lcosαsin (θ+ψ)

zT1 = z0 +
1

2
Lsinα

(3.6.12)
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1

2
Lcosαcos (θ+ψ)

yT1 = y0 −
1

2
Lcosαsin (θ+ψ)
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1

2
Lsinα

(3.6.13)

3.6.6 Generalised Coordinates

In the case of this solid MMET modelling, it has been decided to represent the system dy-

namics by means of four angular coordinates (ψ, θ, α, γ) and one translational coordinate

(R), in which,q1 = ψ, q2 = θ, q3 = α, q4 = R, q5 = γ, which are the same generalised

coordinates as used in section 3.5.4.

3.6.7 Generalised Forces

The generalised forces are same as which stated in section 3.5.7.

3.6.8 Governing Equations of Motion

The following motion governing equations for the generalised coordinatesqi are given in

equations (3.6.14) to (3.6.18) by the Lagrange equation, which are also listed in Table 3.5.

Table 3.5: MMET with discrete tether-tube subspans generalised coordinates and generalised
forces

i qi Qi T U Motion GoverningEquation
1 ψ (3.5.13) (3.6.11) (3.6.10) (3.6.14)
2 θ (3.5.14) (3.6.15)
3 α (3.5.15) (3.6.16)
4 R (3.5.16) (3.6.17)
5 γ (3.5.17) (3.6.18)
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))
+

cosα
(
sinψ

(
Rθ̇ψ̇+ R̈

)
− cosψRθ̈

)



+

2 cosαL̇
(
sinψṘ− cosψ Rθ̇+ 2 cosαL

(
θ̇+ ψ̇

))
+ r2P

(
θ̈+ ψ̈

)














































































= Qψ

(3.6.14)
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(
2AρL̇θ̇+ (2Aρ L+MM +MP1 +MP2) θ̈

)
R2+









2 (2AρL+MM +MP1 +MP2) Ṙθ̇− sinψ (MP1 −MP2)

(
cosα

(
L
(
α̇2 + ψ̇

(
2θ̇+ ψ̇

))
− L̈
)
+ sin(α(t))

(
2L̇α̇+ Lα̈

))
+

cosψ (MP1 −MP2)
(
2 cosαL̇

(
θ̇+ ψ̇

)
+ L

(
cosα

(
2 θ̈+ ψ̈

)
− 2 sinαα̇

(
θ̇+ ψ̇

)))








R+

1

12























AρL3
(
(3 cos2α+ 5)

(
θ̈+ ψ̈

)
− 6 sin2αα̇

(
θ̇+ ψ̇

))
+

3L2




Aρ(3 cos2α+ 5)L̇

(
θ̇+ ψ̇

)
+

4 cosα (MP1 +MP2)
(
cosα

(
θ̈+ ψ̈

)
− 2 sinαα̇

(
θ̇+ ψ̇

))



+

6L









2 cosα




2 cosα (MP1 +MP2) L̇

(
θ̇+ ψ̇

)
+

(MP1 −MP2)
(
2 cosψṘθ̇− sinψR̈

)





+Aρ
(
r2einner+ r

2
eouter

) (
θ̈+ ψ̈

)









+6
(
Aρ

(
r2einner + r

2
eouter

)
L̇
(
θ̇+ ψ̇

)
+
(
MM r

2
M + (MP1 +MP2) r

2
P

) (
θ̈+ ψ̈

))























= Qθ

(3.6.15)
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−μMP1LR sinα cosψ

(R2 + L2 + 2LR cosα cosψ)3/2
+

μMP2LR sinα cosψ

(R2 + L2 − 2LR cosα cosψ)3/2
+

N∑

i=1

A(2i− 1)μρ sinα cosψL2R

2N2
(
(2i− 1)2L2

4N2
−
(2i− 1) cosα cosψRL

N
+ R2

)3/2−

N∑

i=1

A(2i− 1)μ ρ sinα cosψL2R

2n2
(
(2 i− 1)2L2

4n2
+
(2i− 1) cosα cosψR L

N
+ R2

)3/2−

1

4












−L2 sin2α (AρL+ 2 (MP1 +MP2))
(
θ̇+ ψ̇

)2
−

4 cosαL (MP1 −MP2) α̇
(
cos(ψ) Ṙ+ R sin(ψ)θ̇

)
−

4 sinα (MP1 −MP2)




L̇
(
cos(ψ) Ṙ+ R sin(ψ)θ̇

)
−

L
(
sin(ψ) Ṙ− cos(ψ)Rθ̇

) (
θ̇+ ψ̇

)
















+

1

12



















8Aρα̈L3 + 24AρL̇α̇L2 + 12 MP1α̈L
2 + 12MP2α̈L

2 + 24 MP1L̇α̇L+

24MP2L̇α̇ L− 12 cosα (MP1 −MP2) α̇
(
cos(ψ)Ṙ+ R sin(ψ)θ̇

)
L+

6Aρr2einnerα̈L+ 6 Aρr
2
eouterα̈L+ 6A ρr

2
einnerL̇α̇+ 6Aρ r

2
eouterL̇α̇+

3MMr
2
Mα̈+ 3 MP1r

2
Pα̈+ 3MP2r

2
Pα̈+ h

2
MMMα̈+ h

2
PMP1α̈+ h

2
PMP2α̈−

12 sinα (MP1 −MP2)




L̇
(
cos(ψ)Ṙ+ R sin(ψ)θ̇

)
+

L
(
sin(ψ)Ṙ

(
θ̇− ψ̇

)
+ cos(ψ)

(
Rθ̇ψ̇+ R̈

)
+ R sin(ψ)θ̈

)























= Qα

(3.6.16)
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μMM

R2
+

μMP1 (R+ L cosα cosψ)

(R2 + L2 + 2LR cosα cosψ)3/2
+

μMP2 (R− L cosα cosψ)

(R2 + L2 − 2LR cosα cosψ)3/2
+

N∑

i=1

AμρL

(

2R−
(2i− 1) cosα cosψL

N

)

2N

(
(2i− 1)2L2

4N2
−
(2i− 1) cosα cosψRL

N
+ R2

)3/2+

N∑

i=1

AμρL

(

2R+
(2i− 1) cosα cosψL

N

)

2N

(
(2i− 1)2L2

4N2
+
(2i− 1) cosα cosψRL

N
+ R2

)3/2−

θ̇




sinψ (MP1 −MP2)

(
cosαL̇− L sinαα̇

)
+ R (2AρL+MM +MP1 +MP2) θ̇+

cosα cosψL (MP1 −MP2)
(
θ̇+ ψ̇

)



+












L̇
(
2Acrossρ Ṙ− (MP1 −MP2)

(
2 cosψ sinαα̇+ cosα sinψ

(
θ̇+ 2ψ̇

)))

+(2AρL+MM +MP1 +MP2) R̈−

cosψ (MP1 −MP2)
(
cosα

(
L
(
α̇2 + ψ̇

(
θ̇+ ψ̇

))
− L̈
)
+ L sinαα̈

)
+

L sinψ (MP1 −MP2)
(
sinαα̇

(
θ̇+ 2ψ̇

)
− cosα

(
θ̈+ ψ̈

))












= QR

(3.6.17)

1

12
γ̈
[
MM(3r

2
M + h

2
M) + (MP1 +MP2)

(
3r2p + h

2
p

)
+ 12Aρ

(
r2T inner + r

2
T outer

)
L
]
+

γ̇L̇Aρ
(
r2T inner + r

2
T outer

)
= Qγ

(3.6.18)
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Figure 3.43:The discretisation for axial elasticity for motorised momentum exchange tether
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Figure 3.44:The point mass location scheme

104



Figure 3.45:The point mass locations as percentage

Figure 3.46:The definition of local axes for mass pointmi
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Figure 3.47: The discrete and full tether potential energies [65]
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Figure 3.48: The potential energy error of discrete and full tether
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3.6.9 Simulations and Discussions

Figures 3.49 to 3.55 are the numerical results obtained byMATHEMATICA for the selected

generalised coordinatesψ, θ, α, R andγ, as listed in Table 3.5. The results show the rigid

body MMET’s periodic behaviour on orbit, with zero initial conditions as listed in Appendix

C.
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Figure 3.49:The rigid body MMET spin-up displacementψ (Tn = 400.01)
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Figure 3.50: The rigid body MMET spin-up displacementψ (Tn = 4.01)
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Figure 3.51:The rigid body MMET elliptical orbit angular position ofθ (Tn = 400.01)
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Figure 3.52:The rigid body MMET elliptical orbit angular position ofθ (Tn = 4.01)

. The tether system’s spin-up performance is expressed by Figures 3.49 and 3.50, over

the the number of cycles of periodTn = 4.01 and 400.01, respectively, with the angular

dispacement range of -0.325 to 0.325 rad,

. θ is the true anomaly, as shown in Figure 3.51, the curve is in a linear rising trend

from 0 to 2500 rad with small fluctuation spread (0 to 0.5 rad), which can be seen in

Figure 3.52.
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Figure 3.53: The rigid body MMET out-of-plane angleα (Tn = 4.01)
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Figure 3.54:The rigid body MMET base point distance of R (Tn = 400.01)

. R is the distance from the Earth to the tether COM, whose numerical responses go

periodically within the rangerp to ra. In this case,e = 0.2,rp = 6.89×106 metre and

ra = 1.0335×107 metre, as shown in Figures3.54and3.55.

. Figure 3.53 is the response for the out-of-plane angleα with initial conditionsα(0)

= 0.001 rad anḋα(0) = 0.001 rad/s, which is the projection of the tether onto the orbit

plane. If given the zero initial conditionsα(0) = 0 rad andα̇(0) = 0 rad/s,α stays in

zero over the full simulation time.

.With zero initial conditionsγ(0) = 0 rad anḋγ(0) = 0 rad/s, the rigid rolling angleγ
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Figure 3.55:The rigid body MMET base point distance of R (Tn = 4.01)
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Figure 3.56: The rigid body MMET rolling angleγ (Tn = 4.01)

keep staying in zero over the full simulation time. Givenγ(0) = 0.001 rad anḋγ(0) =

0.001 rad/s, Figure3.56states a rising response for the rolling angle.

3.7 Conclusions

Firstly, the dumbbell tether is discussed, then, this chapter has given an introduction to the

concept of the motorised momentum exchange tether. A series of MMET concept based

Lagrangian dynamical models are proposed, which include the dumbbell tether, the dumbbell
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MMET, the dumbbell MMET with cylindrical payloads and centralised motor facility, and

the rigid body MMET with discrete tether-tube subspans.

A discretisation methodology has been proposed and validated for the MMET system

with discrete tether-tube subspans, and this will also be applied to each of the further stages

of MMET systems.

Numerical results are given in sections 3.2.6, 3.4.6, 3.5.9 and 3.6.9 for a series of the

MMET concept based tether systems. These results show that the dynamical models can

provide stable, accurate and periodic outputs with similar behavioural shapes but tiny dif-

ferences generated by their similar components in the governing equations, which include

the spin-up performance for each MMET model and indications of their connections to each

other. Furthermore, the numerical results will also be taken as the reference for the MMET

systems in following chapters.

Table 3.6: Figures for spin-upψ in Chapter 3

Tether Type Figure No. (Tn = 400.01) Figure No. (Tn = 4.01)
Dumbbell tether 3.4 3.6
Dumbbell MMET 3.17 3.18
Dumbbell MMET (Cylindrical Payloads) 3.30 3.31
Rigid MMET 3.49 3.50

Table 3.7: Figures forR in Chapter 3

Tether Type Figure No. (Tn = 400.01) Figure No. (Tn = 4.01)
Dumbbell tether 3.9 3.10
Dumbbell MMET 3.22 3.24
Dumbbell MMET (Cylindrical Payloads) 3.32 3.33
Rigid MMET 3.54 3.55

Table 3.8: Figures forθ in Chapter 3

Tether Type Figure No. (Tn = 400.01) Figure No. (Tn = 4.01)
Dumbbell tether 3.7 3.8
Dumbbell MMET 3.19 3.20
Dumbbell MMET (Cylindrical Payloads) 3.34 3.35
Rigid MMET 3.51 3.52

Table3.6gives theψ plots for the tether systems,ψ is the generalised coordinate for the

tether’s spin-up, which is the angle from thex0 axis to the projection of the tether onto the

orbit plane. With the given parameters in AppendixC, the spin-up responses are changing

periodically between -0.325 to 0.325 rad over the the number of cycles of periodTn = 400.01

and 4.01.
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Table3.7 lists theR, which is the tether’s position generalised coordinate and measures

the distance from the EarthE to the dumbbell MMET system’s COM. In this case, givene =

0.2,rp = 6.89×106 metre andra = 1.0335×107 metre, it goes within the range ofrp to ra.

The out-of-plane angleα with zero initial conditions are also discussed, all the numerical

responses are staying in zero, which indicate the stable response forα during simulation NCP

Tn = 400.01.

Table 3.8 is for the true anomalyθ, which is in a linear up-changing trend from 0 to 2500

rad coupling range of 0 to 0.5 rad fluctuation spread, over the the number of cycles of period

Tn = 400.01, which indicate the tether systems go around the Earth in an elliptical orbit.

There are two types of tether systems incorporated with the rigid rolling angleγ, which

keep staying in zero output with zero initial conditionsγ(0) = 0 rad anḋγ(0) = 0 rad/s. Their

responses are sensitive to their initial conditions, which can have direct effects on the tether

system’s outputs ofα andγ.
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Chapter 4

Dynamical Modelling of a Flexible

Massless MMETSystem

4.1 Introduction

A dynamical modelling analysis for a flexible massless MMET system, which implies that

there is no mass for the tether subspans, is given in this chapter. The use of the word ‘flexible’

means that this MMET system model only contains axial, torsional and pendular elasticity.

The modelling process is based on the dumbbell MMET with cylindrical payloads and motor

facility, as discussed in section 3.5, because the environmental assumptions are the same as

were discussed in chapter 3.

On the supporting assumption that tether mass can be neglected at this level of modelling,

with the potential for inclusion later, this flexible massless MMET system is henceforth

considered to possess significant elasticity in the axial, torsional and pendular motions, and

these will all be referred to ‘elasticity’ from this point onwards.

The tether subspan is assumed as a continuum but is also considered to be massless

in the current approach to modelling, and is made up of homogeneous, isotropic elastic

material - linear elastic material. The axial, torsional and pendular elasticity of the massless

MMET tether system are assumed to be independent of each other, so that a motion, or a

compression, or a dissipation, in one element for one of the discretisations, will not affect

a motion, or a compression, or a dissipation in another element corresponding to either of

the other discretisations. This discretisation methodology is the same as that used in section

3.6.2. This is clearly hypothetical but serves as a starting point.

The assumptions for the massless elasticity modelling process are listed below, and seven
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assumptions are numbered asA1 toA6.

• A1 - The tether is massless;

• A2 - The tether is made of homogeneous isotropic material;

• A3 - The MMET system’s dissipation function is assumed to be based on the Rayleigh

damping theory;

• A4 - The MMET system is in a friction free environment;

• A5 - Every axial ‘spring-damper’ group is connected to another, in series;

• A6 - Every torsional ‘spring-damper’ group is connected to another, in series;

Figure 4.1:The MMET pendular elasticity plane definition

In order to describe the torsional and pendular elasticity more clearly, three ‘reference’

planes are defined in Figures 4.1 and 4.2. There are three orthogonal reference planes:x0 −

O − y0, x0 − O − z0 andz0 − O − y0, which are located at the MMET COM ‘O’. The

modelling for the torsional elasticity is referenced onto the planex0 −O − z0, the pendular

motion of the tether is referenced onto two orthogonal planes:x0−O−y0 andz0−O−y0.

Two view points are also defined in Figure 4.1, one is a ‘top view’, which is a perpen-

dicular point to the planex0 − O − y0. The other is a ‘side view’, and it is a perpendicular
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point to the planez0 − O − y0. The two view points, together with the reference planes,

help in investigating the modelling for the pendular elasticity later on. In Figure 4.2, three

‘torsional’ planes are defined on the right side, which are associated with three reference

planes on the left side, and each of the torsional planes contain a torsional ‘spring-damper’

group, which will be utilised in detail in the following sections.

Figure 4.2: Reference plane definition for MMET torsional and pendular elasticity

The models incorporating axial, torsional and pendular elasticity will be discussed in

sections 4.2, 4.3 and 4.4 respectively, and then a massless flexible MMET system will be

introduced based on the models above.

4.2 Dynamical Modelling incorporating Axial Elasticity

The conceptual schematic of a massless MMET system with axial elasticity is shown in

Figure 4.3, and its generalised coordinates are shown in Figure 4.4. As implied in Figure

4.4, the symmetrical double-ended motorised spinning tether is applied as an orbital transfer

system. In order to exploit momentum exchange for propelling and transferring payloads in

space, the Cartesian components of the masses ofMM ,M1 andM2 are given in equations

(3.2.4), (3.2.5) and (3.2.6).
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Figure 4.3:The conceptual schematic of the massless MMET with axially elastic tether
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Figure 4.4:The massless MMET system with axial elasticity on orbit
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The discretisation methodology is proposed for the following approach, as given in Fig-

ure 4.5, in which the basic idea is to discretise the massless tether subspan into massless

pointspi (i = 1, 2, ...n), n is the number of the massless pointspi, as shown in Figure 4.6,

connected by an idealised and hypothetical series of axial ‘spring-damper’ groups along the

tether subspans.

Figure 4.5:The MMET system with axially elastic massless tether subspan

Figure 4.6: The massless point at each end of a ‘spring-damper’ group

In Figure 4.5, the motor massMM and payload massMP are connected by a series

of ‘spring-damper’ groups, as given in Figure 4.6, thus the axial elasticity is described by

a series of ‘spring-damper’ groups with an axial deformation ofLx, in equation (4.2.1),

whereL0 is the static tether length, andLx is the axially elastic deformation along the tether

subspans.

L = L0 + Lx (4.2.1)

Compared with the rigid massless MMET system in section 3.6, the massless tether

subspan was replaced by a few ‘spring-damper’ groups which are connected in series;ki

andci (i = 1, 2, ...n + 1) are the spring stiffness and damping coefficients in every ‘spring-

damper’ group, respectively.
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In summary, the axial elasticity is expressed by a string of ‘spring-damper’ groups (ki,

ci), which connect the massless pointspi in series withk1 = . . . = kn+1 , c1 = . . . = cn+1,

wherei = 1, 2, . . . , n+1. They are attached in series along the tether subspans, which can be

expressed as an equivalent spring stiffnesskeq and an equivalent damping coefficientceq in

equations (4.2.2) and (4.2.3). The generalised coordinateLx represents the equivalent motion

for the axial elasticity in equation (4.2.1), which is additional to the rigid body generalised

coordinateL.

Thus, the equivalent spring stiffnesskeq and damping coefficientceq of the series of

‘spring-damper’ groups are given in equations (4.2.2) and (4.2.3). The generalised coordi-

nateLx represents the equivalent axial elasticity.

1

keq
=
1

k1
+
1

k2
+ ...+

1

kn+1
(4.2.2)

1

ceq
=
1

c1
+
1

c2
+ ...+

1

cn+1
(4.2.3)

Primarily, it must be pointed out that the MMET modelling for axial, torsional and pendu-

lar elasticity, including massless tether discretisation and ‘spring-damper’ group connections

for each of the massless points, is a mathematical modelling process, the axial and torsional

‘spring-damper’ groups and massless points do not really exist as such physically.

The massless MMET model with axial, torsional and pendular elasticity, using such

mathematical elements, potentially leads to enhanced accuracy of the prediction perfor-

mance, and a useful departure from the usual rigid body MMET modelling, particularly

for accurate payload positioning at strategic points, therefore, unless further notice is given,

all the modelling processes are under these assumptions and mathematical elements.

I The detail modelling process is attached in Appendix D.

4.2.1 Governing Equations of Motion

The generalised forcesQi {i = 2, 4, 5} are all zeros, that is,Q2 = Qθ = 0, Q4 = QR = 0

andQ5 = Qγ = 0, and the generalised forcesQ1 = Qψ, Q3 = Qα andQ6 = QLx are

stated in equations (3.5.13), (3.5.15) and (D.4.5). The following governing equations for

generalised coordinatesqi (i = 1, 2, ...n) are given in equations (4.2.4) to (4.2.9) forq1 = ψ,

q2 = θ, q3 = α, q4 = R, q5 = γ andq6 = Lx, as summarised in Table 4.1.
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Table 4.1: The axial elastic massless MMET generalised coordinates and generalisedforces

i qi Qi T U Equations ofMotion
1 ψ (3.5.13) (D.2.1) (D.1.1) (4.2.4)
2 θ (3.5.14) (4.2.5)
3 α (3.5.15) (4.2.6)
4 R (3.5.16) (4.2.7)
5 γ (3.5.17) (4.2.8)
6 Lx (D.4.5) (4.2.9)










μ cosαR sinψMP2 (L0 + Lx)
(
R2 − 2 cosα cosψ (L0 + Lx)R+ (L0 + Lx)

2
)3/2

−
μ cosαR sinψMP1 (L0 + Lx)

(
R2 + 2 cosα cosψ (L0 + Lx)R+ (L0 + Lx)

2
)3/2









− (MP1 −MP2)









(L0 + Lx)




sinαα̇

(
sinψṘ− cosψRθ̇

)
−

cosα
(
cosψṘ+ R sinψθ̇

) (
θ̇+ ψ̇

)



+

cosα
(
cosψRdotθ− sinψṘ

)
L̇x








+

1

2


























MM

(
θ̈+ ψ̈

)
r2M+

2 sinα (MP1 −MP2) (L0 + Lx) α̇
(
sinψṘ− cosψRθ̇

)
−

2 sin2α (MP1 +MP2) (L0 + Lx)
2
α̇
(
θ̇+ ψ̇

)
−

2 cosα (MP1 −MP2)
(
sinψṘ− cosψRθ̇

)
L̇x+

2 cos2α (MP1 +MP2) (L0 + Lx)
(
θ̇+ ψ̇

)
L̇x+

2 cosα (MP1 −MP2) (L0 + Lx)
(
cosψ

(
Ṙ
(
dotθ− ψ̇

)
+ Rθ̈

)
− sinψ

(
Rθ̇ψ̇+ R̈

))
+

cos2α (MP1 +MP2) (L0 + Lx)
2
(
θ̈+ ψ̈

)
+

(MP1 +MP2)
(
2 (L0 + Lx) L̇x

(
θ̇+ ψ̇

)
+ r2P

(
θ̈+ ψ̈

)
+ (L0 + Lx)

2
(
θ̈+ ψ̈

))


























= Qψ
(4.2.4)
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1

2


















































2 (MM +MP1 +MP2) θ̈R
2+

2
















2 (MM +MP1 +MP2) Ṙθ̇+

cosψ (MP1 −MP2)




cosα

(
2
(
θ̇+ ψ̇

)
L̇x + (L0 + Lx)

(
2θ̈+ ψ̈

))

−2 sinα (L0 + Lx) α̇
(
θ̇+ ψ̇

)



+

sinψ (MP1 −MP2)




cosα

(
L̈x − (L0 + Lx)

(
α̇2 + ψ̇

(
2 θ̇+ ψ̇

)))
−

sin(α)
(
2α̇L̇x + (L0 + Lx) α̈

)




















R

+4 cosα cosψ (MP1 −MP2)LxṘθ̇+ 2 cosα sinψ (MP2 −MP1)LxR̈+

MMr
2
M

(
θ̈+ ψ̈

)
−

2 cosαL20 (MP1 +MP2)
(
2 sinαα̇

(
θ̇+ ψ̇

)
− cosα

(
θ̈+ ψ̈

))
+

2 cosαL0









−4 sinα (MP1 +MP2)Lxα̇
(
θ̇+ ψ̇

)
+

(MP1 −MP2)
(
2 cosψṘθ̇− sinψR̈

)
+

2 cosα (MP1 +MP2)
((
θ̇+ ψ̇

)
L̇x + Lx

(
θ̈+ ψ̈

))








+

(MP1 +MP2)









(
θ̈+ ψ̈

)
r2P+

2 cosαLx




2 cosα

(
θ̇+ ψ̇

)
L̇x+

Lx
(
cosα

(
θ̈+ ψ̈

)
− 2 sin(α )α̇

(
θ̇+ ψ̇

))






























































= Qθ
(4.2.5)

121












μ cosψR sinαMP2 (L0 + Lx)
(
R2 − 2 cosα cosψ (L0 + Lx)R+ (L0 + Lx)

2
)3/2−

μ cosψR sinαMP1 (L0 + Lx)
(
R2 + 2 cosα cosψ (L0 + Lx)R+ (L0 + Lx)

2
)3/2










−
1

24












−12 sin2α (MP1 +MP2) (L0 + Lx)
2
(
θ̇+ ψ̇

)2
−

24 cosα (MP1 −MP2) (L0 + Lx) α̇
(
cosψṘ+ R sinψθ̇

)
−

24 sinα (MP1 −MP2)





(
cosψṘ+ R sinψθ̇

)
L̇x−

(L0 + Lx)
(
sinψṘ− cosψRθ̇

) (
θ̇+ ψ̇

)
















+
1

24
















−24 cosα (MP1 −MP2) (L0 + Lx) α̇
(
cosψṘ+ R sinψθ̇

)
−

24 sin α (MP1 −MP2) L̇x
(
cosψṘ+ R sinψθ̇

)
+

2MM

(
h2M + 3r

2
M

)
α̈+

2 (MP1 +MP2)
(
24 (L0 + Lx) α̇L̇x +

(
h2P + 3

(
r2P + 4 (L0 + Lx)

2
))
α̈
)
−

24 sinα (MP1 −MP2) (L0 + Lx)
(
sinψṘ

(
θ̇− ψ̇

)
+ cosψ

(
Rθ̇ψ̇+ R̈

)
+ R sinψθ̈

)
















= Qα
(4.2.6)










μMM

R2
+

μMP2 (R− cosα cosψ (L0 + Lx))
(
R2 − 2 cosα cosψ (L0 + Lx)R+ (L0 + Lx)

2
)3/2+

μMP1 (R+ cosα cosψ (L0 + Lx))
(
R2 + 2 cosα cosψ (L0 + Lx)R+ (L0 + Lx)

2
)3/2









−

θ̇




− sinα sinψ (MP1 −MP2) (L0 + Lx) α̇+ RMMθ̇+ R (MP1 +MP2) θ̇+

cosα (MP1 −MP2)
(
cosψ (L0 + Lx)

(
θ̇+ ψ̇

)
+ sinψL̇x

)



+












MMR̈+ (MP1 +MP2) R̈+

sinα (MP1 −MP2)
(
sinψ (L0 + Lx) α̇

(
θ̇+ 2ψ̇

)
− cosψ

(
2α̇L̇x + (L0 + Lx) α̈

))
+

cosα (MP1 −MP2)




cosψ

(
L̈x − (L0 + Lx)

(
α̇2 + ψ̇

(
θ̇+ ψ̇

)))
−

sinψ
((
θ̇+ 2ψ̇

)
L̇x + (L0 + Lx)

(
θ̈+ ψ̈

))
















= QR
(4.2.7)

1

12

(
MM

(
h2M + 3 r

2
M

)
+ (MP1 +MP2)

(
h2P + 3 r

2
P

))
γ̈ = Qγ (4.2.8)
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








2k0Lx

n+ 1
+

μMP2 (− cosα cosψR+ L0 + Lx)
(
R2 − 2 cosα cosψ (L0 + Lx)R+ (L0 + Lx)

2
)3/2+

μMP1 (cosα cosψR+ L0 + Lx)
(
R2 + 2 cosα cosψ (L0 + Lx)R+ (L0 + Lx)

2
)3/2









−

1

8












4 cos2α (MP1 +MP2) (L0 + Lx)
(
θ̇+ ψ̇

)2
−

8 cosalpha (MP1 −MP2)
(
sinψṘ− cosψRθ̇

) (
θ̇+ ψ̇

)
−

8 sinα (MP1 −MP2) α̇
(
cosψṘ+ R sinψθ̇

)
+

4 (MP1 +MP2) (L0 + Lx)
(
2α̇2 +

(
θ̇+ ψ̇

)2)












+




− sinα (MP1 −MP2) α̇

(
cosψṘ+ R sinψθ̇

)
+ (MP1 +MP2) L̈x

cosα (MP1 −MP2)
(
sinψṘ

(
θ̇− ψ̇

)
+ cosψ

(
Rθ̇ψ̇+ R̈

)
+ R sinψθ̈

)





= QLx

(4.2.9)

4.2.2 Simulations and Discussions

Figures 4.7 to 4.16 are the numerical results obtained byMATHEMATICA for the selected

generalised coordinatesψ, θ,α, R, γ andLx, as listed in Table 4.1 with zero initial conditions

and other parameters in Appendix C, inTn = 4.01 andTn = 400.01 simulation time.
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Figure 4.7:Massless axial elastic MMET spin-up, angular displacementψ (Tn = 400.01)
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Figure 4.8: Massless axial elastic MMET spin-up, angular displacementψ (Tn = 4.01)
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Figure 4.9:Massless axial elastic MMET elliptical orbit angular position ofθ (Tn = 400.01)

. Figures4.7and4.8show the massless axial elastic MMET system’s periodic spin-up

behaviourψ on an elliptical orbit (e = 0.2) around the Earth with the angular dispace-

ment range of -0.325 to 0.325 rad.

. The results for the true anomalyθ are shown in Figures4.9and4.10for the number

of cycles of periodTn = 4.01 and 400.01 simulation time, respectively. The curves are

rising in a linear trend from 0 to 25 (Tn = 4.01) or 2500 (Tn = 400.01) rad with slight

fluctuation spread (0 to 0.5 rad).
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Figure 4.10:Massless axial elastic MMET elliptical orbit angular position ofθ (Tn = 4.01)
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Figure 4.11:Massless axial elastic MMET out-of-plane angleα (Tn = 4.01)

.With zero initial conditionsα(0) = 0 rad anḋα(0) = 0 rad/s, the responses for the out-

of-plane angleα keeps in zero amplitude during the full simulation time. As shown in

Figure4.11, theα response goes periodically in the range [-0.003, 0.003] rad.

. The distanceR from the Earth to the tether COM is changing periodically, as can be

seen in Figures4.12and4.13, which behave within the distance range ofrp (6.89×106

m) to ra (1.0335×107 m) with givene = 0.2 in this case.

. Figure 4.14 is the plot for the rigid rolling angleγ with initial conditionsγ(0) =
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Figure 4.12:Massless axial elastic MMET base point distance R to the Earth (Tn = 400.01)
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Figure 4.13:Massless axial elastic MMET base point distance R to the Earth (Tn = 4.01)

0.001 rad anḋγ(0) = 0.001 rad/s. The rigid rolling angleγ stays in zeros output with

zero initial conditionsγ(0) = 0 rad andγ̇(0) = 0 rad/s, which indicate that the rigid

rolling angleγ is sensitive to its initial values.

. Figures4.15and4.16have shown the periodic axial elastic behaviour along tether

subspan in 1 - 31899 seconds simulation time (NCP,Tn = 4.01), which are based on the

tether system’s parameter setting in AppendixC. The tether subspan’s axial oscillation

Lx goes within 12.5 to 21.5 m in Figure4.15, and the ratio ofLx to L0 varies 2.25% to
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Figure 4.14:Massless axial elastic MMET rolling angleγ (Tn = 4.01)
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Figure 4.15: Axial displacement along tether subspan ofLx (Tn = 4.01)

4.15% in Figure4.16.
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Figure 4.16: Axial elastic length vs. static length ratio along tether subspan of
Lx

L0
(Tn =

4.01)
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4.3 Dynamical Modelling including Axial and Torsional Elas-

ticity

Based on the axial massless elastic MMET system in section 4.2, a massless MMET system

with axial and torsional elasticity and its generalised coordinate selections are all presented

in Figure 4.17.

As implied in Figure 4.17, the symmetrical double-ended motorised spinning tether is

applied as an orbital transfer system, in order to exploit momentum exchange for propelling

and transferring payloads in space, noting that the Cartesian components of the end masses

ofMM ,M1 andM2 are the same as in equations (3.2.4), (3.2.5) and (3.2.6).

As shown in Figure 4.18, besides a few axial ‘spring-damper’ groups for the axial elas-

ticity definition, as discussed in section 4.2, there are a series of torsional ‘spring-damper’

groups (kti - cti) also attached to the massless pointspi (i = 1, 2, ...n) for the torsional elas-

ticity representation. These are referenced onto the planex0−O−z0 in Figures 4.1 and 4.19

equivalently.

As shown in Figure 4.18, the torsional ‘spring-damper’ groups connect the massless

pointspi in series withkt1 = . . . = kt(n+1) , ct1 = . . . = ct(n+1), wheren is the number of

massless points.

For the torsional ‘spring-damper’ groups which are attached in series along the tether

subspans, stiffness can be expressed as an equivalent spring stiffnesskteq and damping as

an equivalent damping coefficientcteq in equations (4.3.1) and (4.3.2), wheret in the sub-

script means the torsional elastic parameter, then the generalised coordinateγx expresses the

equivalent torsional elasticity as shown in Figure 4.18, which is additional to the rigid body

rolling generalised coordinateγ.

1

kteq
=

1

kt1
+
1

kt2
+ . . .+

1

kt(n+1)
(4.3.1)

1

cteq
=
1

ct1
+
1

ct2
+ . . .+

1

ct(n+1)
(4.3.2)
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Figure 4.17:The MMET model generalised coordinates defined on orbit
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Figure 4.18: The Axial and torsional elasticity model referenced onto planex0 −O− z0

Figure 4.19: Reference onto the planex0 −O− z0 for MMET torsional elasticity

I The detail modelling process is attached in Appendix E.

4.3.1 Governing Equations of Motion

The governing equations in terms of generalised coordinatesq1 = ψ, q2 = θ, q3 = α,

q4 = R, q5 = Lx andq6 = γx are given in equations (4.3.3) to (4.3.8), as shown in Table

4.2, according to the Lagrangian procedure.
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Table 4.2: The axial and torsional elastic massless MMET generalised coordinates and gen-
eralised Forces

i qi Qi T U Equations ofMotion
1 ψ (3.5.13) (E.2.1) (E.1.5) (4.3.3)
2 θ (3.5.14) (4.3.4)
3 α (3.5.15) (4.3.5)
4 R (3.5.16) (4.3.6)
5 Lx (D.4.5) (4.3.7)
6 γx (E.4.4) (4.3.8)



























μMP2




cosα sin(θ+ψ) (L0 + Lx) (cosθR− cosα cos(θ+ψ) (L0 + Lx))−

cosα cos(θ+ψ) (L0 + Lx) (R sinθ− cosα sin(θ+ψ) (L0 + Lx))








(cosθR− cosα cos(θ+ψ) (L0 + Lx))

2
+ (− sinα (L0 + Lx))

2
+

(R sinθ− cosα sin(θ+ψ) (L0 + Lx))
2





3/2
+

μMP1




cosα cos(θ+ψ) (L0 + Lx) (R sinθ+ cosα sin(θ+ψ) (L0 + Lx))−

cosα sin(θ+ψ) (L0 + Lx) (cosθR+ cosα cos(θ+ψ) (L0 + Lx))








(cosθR+ cosα cos(θ+ψ) (L0 + Lx))

2
+

(sinα (L0 + Lx))
2
+ (R sinθ+ cosα sin(θ+ψ) (L0 + Lx))

2





3/2



























−

(MP1 −MP2)









(L0 + Lx)




sinαα̇

(
sinψṘ− cosψRθ̇

)
−

cosα
(
cosψṘ+ R sinψθ̇

) (
θ̇+ ψ̇

)





+ cosα
(
cosψRθ̇− sinψṘ

)
L̇x









+
1

2




































−2 cosα (MP1 +MP2)
(
2 sinαα̇

(
θ̇+ ψ̇

)
− cosα

(
θ̈+ ψ̈

))
L20+

2L0












sinψ (MP1 −MP2)
(
sinαṘα̇− cosα

(
Rθ̇ψ̇+ R̈

))

+ cosψ (MP1 −MP2)
(
cosαṘ

(
θ̇− ψ̇

)
+ R

(
cosαθ̈− sinαα̇θ̇

))
−

2 cosα (MP1 +MP2)




Lx
(
2 sinαα̇

(
θ̇+ ψ̇

)
− cosα

(
θ̈+ ψ̈

))
−

cosα
(
θ̇+ ψ̇

)
L̇x
















+

2 sinα (MP1 −MP2)Lxα̇
(
sinψṘ− cosψRθ̇

)
−

2 sin2α (MP1 +MP2)L
2
xα̇
(
θ̇+ ψ̇

)
+

2 cosα (MP1 −MP2)





(
cosψRθ̇− sinψṘ

)
L̇x+

Lx
(
cosψ

(
Ṙ
(
θ̇− ψ̇

)
+ Rθ̈

)
− sinψ

(
Rθ̇ψ̇+ R̈

))



+

MMr
2
M

(
θ̈+ ψ̈

)
+ cos2α (MP1 +MP2)Lx

(
2
(
θ̇+ ψ̇

)
L̇x + Lx

(
θ̈+ ψ̈

))
+

(MP1 +MP2)
((
θ̈+ ψ̈

)
r2P + 2Lx

(
θ̇+ ψ̇

)
L̇x + L

2
x

(
θ̈+ ψ̈

))




































= Qψ
(4.3.3)
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


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

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
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
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




















2 (MM +MP1 +MP2) θ̈R
2+

2R
















2 (MM +MP1 +MP2) Ṙθ̇+

cosψ (MP1 −MP2)




cosα

(
2
(
θ̇+ ψ̇

)
L̇x + (L0 + Lx)

(
2θ̈+ ψ̈

))
−

2 sinα (L0 + Lx) α̇
(
θ̇+ ψ̇

)



+

sinψ (MP1 −MP2)




cosα

(
L̈x − (L0 + Lx)

(
α̇2 + ψ̇

(
2θ̇+ ψ̇

)))
−

sinα
(
2α̇L̇x + (L0 + Lx) α̈

)




















+4 cosα cosψ (MP1 −MP2)LxṘθ̇+ 2 cosα sinψ (MP2 −MP1)LxR̈+

MMr
2
M

(
θ̈+ ψ̈

)
− 2 cosαL20 (MP1 +MP2)

(
2 sinαα̇

(
θ̇+ ψ̇

)
− cosα

(
θ̈+ ψ̈

))
+

2 cosαL0









−4 sinα (MP1 +MP2)Lxα̇
(
θ̇+ ψ̇

)
+

(MP1 −MP2)
(
2 cosψṘθ̇− sinψR̈

)
+

2 cosα (MP1 +MP2)
((
θ̇+ ψ̇

)
L̇x + Lx

(
θ̈+ ψ̈

))








+

(MP1 +MP2)




(
θ̈+ ψ̈

)
r2P + 2 cosαLx




2 cosα

(
θ̇+ ψ̈

)
L̇x+

Lx
(
cosα

(
θ̈+ ψ̈

)
− 2 sinαα̇

(
θ̇+ ψ̈

))



















































= Qθ
(4.3.4)
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

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
















μMP2









2 cos(θ+ψ) sinα (L0 + Lx) (cosθR− cosα cos(θ+ψ) (L0 + Lx))−

2 cosα (L0 + Lx) (− sinα (L0 + Lx))+

2 sinα sin(θ+ψ) (L0 + Lx) (R sinθ− cosα sin(θ+ψ) (L0 + Lx))









2




(cosθR− cosα cos(θ+ψ) (L0 + Lx))

2
+

(− sinα (L0 + Lx))
2
+ (R sinθ− cosα sin(θ+ψ) (L0 + Lx))

2





3/2
+

μMP1









−2 cos(θ+ψ) sinα (L0 + Lx) (cosθR+ cosα cos(θ+ψ) (L0 + Lx))+

2 cosα (L0 + Lx) (sinα (L0 + Lx))−

2 sinα sin(θ+ψ) (L0 + Lx) (R sinθ+ cosα sin(θ+ψ) (L0 + Lx))









2




(cosθR+ cosα cos(θ+ψ) (L0 + Lx))

2
+

(sinα (L0 + Lx))
2
+ (R sinθ+ cosα sin(θ+ψ) (L0 + Lx))

2





3/2


































−









−
1

2
sin2α (MP1 +MP2) (L0 + Lx)

2
(
θ̇+ ψ̇

)2
+

cosψ (MP1 −MP2)
(
−(L0 + Lx)

(
cosαṘα̇+ R sinαθ̇

(
θ̇+ ψ̇

))
− sinαṘL̇x

)
+

sinψ (MP1 −MP2)
(
(L0 + Lx)

(
sinαṘ

(
θ̇+ ψ̇

)
− cosαRα̇θ̇

)
− R sinαθ̇dotLx

)








+

1

12























MMα̈h
2
M − 12 cosα (MP1 −MP2) (L0 + Lx) α̇

(
cosψṘ+ R sinψθ̇

)
+

24L0MP1α̇L̇x + 24L0MP2α̇L̇x + 24MP1Lxα̇L̇x + 24MP2Lxα̇L̇x+

3MMr
2
Mα̈+ 3MP1r

2
Pα̈+ 3MP2r

2
Pα̈+ 12MP1L

2
xα̈+ 12MP2L

2
xα̈+

h2PMP1α̈+ 12L
2
0MP1α̈+ h

2
PMP2α̈+ 12L

2
0MP2α̈+ 24L0MP1Lxα̈+ 24L0MP2Lxα̈−

12 sinα (MP1 −MP2)









(
cosψṘ+ R sinψθ̇

)
L̇x+

L0
(
sinψṘ

(
θ̇− ψ̇

)
+ cosψ

(
Rθ̇ ˙psi+ R̈

)
+ R sinψθ̈

)
+

Lx
(
sinψṘ

(
θ̇− ψ̇

)
+ cos(ψ )

(
Rθ̇ψ̇+ R̈

)
+ R sinψθ̈

)































= Qα
(4.3.5)
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μMM

R2
+

μMP2




2 cosθ (cosθR− cosα cos(θ+ψ) (L0 + Lx))+

2 sinθ (R sinθ− cosα sin(θ+ψ) (L0 + Lx))





2




(cosθR− cosα cos(θ+ψ) (L0 + Lx))

2
+ (− sinα (L0 + Lx))

2
+

(R sinθ− cosα sin(θ+ψ) (L0 + Lx))
2





3/2
+

μMP1




2 cosθ (cosθR+ cosα cos(θ+ψ) (L0 + Lx))+

2 sinθ (R sinθ+ cosα sin(θ+ψ) (L0 + Lx))





2




(cosθR+ cosα cos(θ+ψ) (L0 + Lx))

2
+ (sinα (L0 + Lx))

2
+

(R sinθ+ cosα sin(θ+ψ) (L0 + Lx))
2





3/2































−

θ̇




R (MM +MP1 +MP2) θ̇+ cosα cosψ (MP1 −MP2) (L0 + Lx)

(
θ̇+ ψ̇

)
+

sinψ (MP2 −MP1)
(
sinα (L0 + Lx) α̇− cosαL̇x

)



+












(MM +MP1 +MP2) R̈+

sinα (MP1 −MP2)
(
sinψ (L0 + Lx) α̇

(
θ̇+ 2ψ̇

)
− cosψ

(
2α̇L̇x + (L0 + Lx) α̈

))
+

cosα (MP1 −MP2)




cosψ

(
L̈x − (L0 + Lx)

(
α̇2 + ψ̇

(
θ̇+ ψ̇

)))
−

sinψ
((
θ̇+ 2ψ̇

)
L̇x + (L0 + Lx)

(
θ̈+ ψ̈

))
















= QR
(4.3.6)
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2k0Lx

n+ 1
+

μMP2
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−2 cosα cos(θ+ψ) (cosθR− cosα cos(θ+ψ) (L0 + Lx))−
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


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


2









(cosθR− cosα cos(θ+ψ) (L0 + Lx))
2
+

(− sinα (L0 + Lx))
2
+

(R sinθ− cosα sin(θ+ψ) (L0 + Lx))
2









3/2
+

μMP1







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2 cosα cos(θ+ψ) (cosθR+ cosα cos(θ+ψ) (L0 + Lx))+

2 sinα (sinα (L0 + Lx))+

2 cosα sin(θ+ψ) (R sinθ+ cosα sin(θ+ψ) (L0 + Lx))









2




(cosθR+ cosα cos(θ+ψ) (L0 + Lx))

2
+

(sinα (L0 + Lx))
2
+ (R sinθ+ cosα sin(θ+ψ) (L0 + Lx))

2





3/2










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
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

−













1

2
cos2α (MP1 +MP2) (L0 + Lx)

(
θ̇+ ψ̇

)2
+

cosα (MP2 −MP1)
(
sinψṘ− cosψRθ̇

) (
θ̇+ ψ̇

)
+

sinα (MP2 −MP1) α̇
(
cosψṘ+ R sinψθ̇

)
+

1

2
(MP1 +MP2) (L0 + Lx)

(
2α̇2 +

(
θ̇+ ψ̇

)2)













+









− sinα (MP1 −MP2) α̇
(
cosψṘ+ R sinψθ̇

)
+

cosα (MP1 −MP2)
(
sinψṘ

(
θ̇− ψ̇

)
+ cosψ

(
Rθ̇ψ̇+ R̈

)
+ R sinψθ̈

)

+(MP1 +MP2) L̈x









= QLx
(4.3.7)

2kt0γx

n+ 1
+
1

12
(MP1 +MP2)

(
h2P + 3r

2
P

)
γ̈x = Qγx (4.3.8)
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4.3.2 Simulations and Discussions

Figures 4.20 to 4.30 are the numerical results obtained byMATHEMATICA for the selected

generalised coordinatesψ, θ, α, R, γ, Lx andγx, as listed in Table 4.2. The results show the

massless axial and torsional elastic MMET system’s periodic behaviours on orbit.
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Figure 4.20:Massless axial and torsional elastic MMET spin-up angular displacementψ (Tn
= 400.01)
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Figure 4.21:Massless axial and torsional elastic MMET spin-up angular displacementψ (Tn
= 4.01)
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Figure 4.22:Massless axial and torsional elastic MMET elliptical orbit angular position of
θ (Tn = 400.01)
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Figure 4.23:Massless axial and torsional elastic MMET elliptical orbit angular position of
θ (Tn = 4.01)

. Figures4.20and4.21show the massless axial and torsional elastic MMET system’s

periodic spin-up behaviourψ on an elliptical orbit (e = 0.2) with the angular dispace-

ment range of -0.325 to 0.325 rad.

. The results for the true anomalyθ are shown in Figures4.22and4.23for the number

of cycles of periodTn = 4.01 and 400.01 simulation time, respectively. The curves are
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Figure 4.24:Massless axial and torsional elastic MMET out-of-plane angleα (Tn = 4.01)
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Figure 4.25:Massless axial and torsional elastic MMET base point distance R to the Earth
(Tn = 400.01)

rising in a linear trend from 0 to 25 (Tn = 4.01) or 2500 (Tn = 400.01) rad with slight

fluctuation spread (0 to 0.5 rad).

. With zero initial conditionsα(0) = 0 rad andα̇(0) = 0 rad/s, the responses for the

out-of-plane angleα stay in zero amplitude over the full simulation time. Figure 4.24

shows theα’s response with the period about 8000 seconds ifα(0) = 0.001 rad and

α̇(0) = 0.001 rad/s are provided.

. The distanceR from the Earth to the tether COM is changing periodically, as can

139



0 5000 10 000 15 000 20 000 25 000 30 000

7. 106

7.5 106

8. 106

8.5 106

9. 106

9.5 106

1. 107

time Sec.

R
t

m

R t time

Figure 4.26:Massless axial and torsional elastic MMET base point distance R to the Earth
(Tn = 4.01)
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Figure 4.27:Massless axial and torsional elastic MMET rolling angle ofγ (Tn = 4.01)

be seen in the Figures4.25 and4.26, which behave within the distance range ofrp

(6.89×106 m) to ra (1.0335×107 m) with givene = 0.2 in this case.

. Same as it has been discussed in section 4.2.2, given initial conditionsγ(0) = 0 rad

andγ̇(0) = 0 rad/s, the rigid rolling angleγ response stays in zero over full simulation

time, which matches the equation (4.2.8).

. The tether subspan’s axial oscillationLx goes within 12.5 to 21.5 m in Figure4.28,
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Figure 4.28: Axial displacement along tether subspan ofLx (Tn = 4.01)
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Figure 4.29: Axial elastic length vs. static length ratio along tether subspan of
Lx

L0
(Tn =

4.01)

and the ratio ofLx to L0 varies 2.25% to 4.15% in Figure4.29.

. Figure 4.30 states the torsional elastic angular displacementγx for each tether sub-

span with the range - 0.000075 to 0.000075 rad, which shows that the convergence of

the torsional elastic behaviour can be observed clearly at aboutt = 9500 seconds (with

tiny convergent response overt from 0 to 9500 seconds), and it is approaching to zero

status in the end of simulation time.
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Figure 4.30: Torsional displacementγx (Tn = 4.01)
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4.4 Dynamical Modelling with the inclusion of Axial, Tor-

sional and Pendular Elasticity

Based on section 4.3, pendular elasticity is also included in the MMET modelling in this

section. The modelling of the massless MMET with axial, torsional and pendular elasticity

is proposed as in Figure 4.33, and this is also known as the flexible massless MMET system.

As implied in Figure 4.33, the generalised coordinates for the flexible MMET system are

defined on orbit, and the Cartesian components of the end masses ofMM ,M1 andM2 are

given in equations (3.2.4), (3.2.5) and (3.2.6).

Similar to the previous sections, besides the axial and torsional ‘spring-damper’ groups

for the axial elasticity and torsional elasticity in Figure 4.19, another two types of torsional

‘spring-damper’ groups (kli - cli groups), as shown in Figures 4.31 and 4.35, are added into

the modelling for the pendular elasticity. There are two parts of the pendular elasticity, which

are stated on the planex0 −O− y0 and the planez0 −O− y0, respectively,

B On the planex0 −O− y0

As shown in Figure 4.31, thex0−O−y0 plane based pendular elasticity is represented

by a string of torsional ‘spring-damper’ groups, which connect the massless points of

pi in series. All the torsional ‘spring-damper’ groups are referenced onto the plane

x0 − O − y0, as shown in Figure 4.32. Thel in the subscript means the pendular

elastic parameter, so the generalised coordinateψx states the equivalent behaviour for

the pendular elasticity on the planex0 −O− y0.

B On the planez0 −O− y0

As shown in Figure 4.34, thez0−O−y0 plane based pendular elasticity is represented

by a string of torsional ‘spring-damper’ groups{kli, cli}, which connect the massless

pointspi in series, and all the torsional ‘spring-damper’ groups are referenced onto the

planez0 −O− y0, as shown in Figure 4.35. The generalised coordinateαx states the

equivalent behaviour for the pendular elasticity on the planez0 −O− y0.

1

kleq
=
1

kl1
+
1

kl2
+ . . .+

1

kl(n+1)
(4.4.1)

1

cleq
=
1

cl1
+
1

cl2
+ . . .+

1

cl(n+1)
(4.4.2)
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Figure 4.31: Reference onto the planex0 −O− y0 for MMET pendular elasticity

Figure 4.32:The MMET pendular elasticity modelling referenced onto the planex0−O−y0

144



Figure 4.33: The flexible massless MMET system generalised coordinate definitions on
orbit
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Figure 4.34:The MMET pendular elasticity modelling reference on the planez0 −O− y0

Figure 4.35: Reference on the planez0 −O− y0 for MMET pendular elasticity

Therefore, the pendular elasticity is obtained by a string of torsional ‘spring-damper’

groups{kli, cli}, in which kl1 = . . . = kl(n+1) , cl1 = . . . = cl(n+1). They are attached in

series along the tether subspans, and can be expressed as equivalent spring stiffnesskleq and

equivalent damping coefficientcleq, which are provided by equations (4.4.1) and (4.4.2).

As shown in Figure 4.36, the axial, torsional and pendular elasticity terms are represented

by the generalised coordinatesLx, γx,ψx andαx, in which the subscript ‘x’ means the elas-

tic generalised coordinate. The equivalent spring stiffness and damping coefficients for ax-

ial, torsional and pendular elasticity are expressed as{keq, ceq}, {kteq, cteq} and{kleq, cleq}.

Based on the serial springs and dampers assumptionA5 in section 4.1, it can be summarised

that,
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〈1〉 for accommodating axial elasticity,k0 = k1 = k2 = . . . = kn+1, c0 = c1 =

c2 = . . . = cn+1, where thek0 andc0 are the default stiffness and damping coefficient

values for numerical simulation, the equivalent axial stiffness and damping coefficient

are given in equations (D.1.4), (D.1.5);

〈2〉 in the case of torsional elasticity,kt0 = kt1 = kt2 = . . . = kt(n+1), ct0 = ct1 =

ct2 = . . . = ct(n+1), where thekt0 andct0 are the default stiffness and damping coef-

ficient values for numerical simulation, the equivalent torsional stiffness and damping

coefficients are presented by equations (E.1.3), (E.1.4);

〈3〉 finally, to include pendular elasticity terms in both the planex0 −O − y0 and the

planez0 −O− y0, kl0 = kl1 = kl2 = . . . = kl(n+1), cl0 = cl1 = cl2 = . . . = cl(n+1),

where thekl0 and cl0 are the default stiffness and damping coefficient values, the

equivalent torsional stiffness and damping coefficients in equations (4.4.1) and (4.4.2)

can be reformed as equations (4.4.3), (4.4.4).

Figure 4.36:The equivalent axial, torsional and pendular elasticity

kleq =
kl0

n+ 1
(4.4.3)

cleq =
cl0

n+ 1
(4.4.4)

I The detail modelling process is attached in Appendix F.
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4.4.1 Governing Equations of Motion

According to the Lagrangian procedure, the following governing equations for the gener-

alised coordinatesqi are given in equations (4.4.5) to (4.4.13), forq1 = ψ, q2 = ψx,

q3 = θ, q4 = α, q5 = αx, q6 = γ, q7 = γx, q8 = Lx andq9 = R, respectively, and are also

listed in Table 4.3.

Table 4.3: The flexible massless MMET generalised coordinates and generalisedforces

i qi Qi T U Equations ofMotion
1 ψ (3.5.13) (F.2.1) (F.3.1) (4.4.5)
2 ψx (F.4.7) (4.4.6)
3 θ (3.5.14) (4.4.7)
4 α (3.5.15) (4.4.8)
5 αx (F.4.8) (4.4.9)
6 γ (3.5.17) (4.4.10)
7 γx (E.4.4) (4.4.11)
8 Lx (D.4.5) (4.4.12)
9 R (3.5.16) (4.4.13)
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cosψṘ+ R sinψθ̇

) (
θ̇+ ψ̇

)



+

cosα
(
cosψRθ̇− sinψṘ
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+4 cosα cosψ (MP1 −MP2)LxṘθ̇+ 2 cosα sinψ (MP2 −MP1)LxR̈

+MMr
2
M

(
θ̈+ ψ̈

)
− 2 cosαL20 (MP1 +MP2)




2 sinαα̇

(
θ̇+ ψ̇

)

− cosα
(
θ̈+ ψ̈

)





+2 cosαL0









−4 sinα (MP1 +MP2)Lxα̇
(
θ̇+ ψ̇

)

+(MP1 −MP2)
(
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)

+ sinψ (MP1 −MP2)



 (L0 + Lx)




sinαṘ
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cosψṘ+ R sinψθ̇

)

+
1

2
(MP1 +MP2) (L0 + Lx)

(
2α̇2 +

(
θ̇+ ψ̇

)2
+ 2

(
α̇x
2 + ϕ̇x

2
))













+









− sinα (MP1 −MP2) α̇
(
cosψṘ+ R sinψθ̇

)

+ cosα (MP1 −MP2)
(
sinψṘ

(
θ̇− ψ̇

)
+ cosψ

(
Rθ̇ψ̇+ R̈

)
+ R sinψθ̈

)

+2 (MP1 +MP2) L̈x








= QLx

(4.4.12)
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
































μMM

R2
+

μMP2




2 cosθ (cosθR− cosα cos(θ+ψ) (L0 + Lx))

+2 sinθ (R sinθ− cosα sin(θ+ψ) (L0 + Lx))





2









(cosθR− cosα cos(θ+ψ) (L0 + Lx))
2

+(− sinα (L0 + Lx))
2

+(R sinθ− cosα sin(θ+ψ) (L0 + Lx))
2









3/2

+

μMP1




2 cosθ (cosθR+ cosα cos(θ+ψ) (L0 + Lx))

+2 sinθ (R sinθ+ cosα sin(θ+ψ) (L0 + Lx))





2









(cosθR+ cosα cos(θ+ψ) (L0 + Lx))
2

+(sinα (L0 + Lx))
2

+(R sinθ+ cosα sin(θ+ψ) (L0 + Lx))
2









3/2


































−θ̇









R (MM +MP1 +MP2) θ̇

+ cosα cosψ (MP1 −MP2) (L0 + Lx)
(
θ̇+ ψ̇

)

+ sinψ (MP2 −MP1)
(
sinα (L0 + Lx) α̇− cosαL̇x

)









+
















(MM +MP1 +MP2) R̈

+ sinα (MP1 −MP2)




sinψ (L0 + Lx) α̇

(
θ̇+ 2ψ̇

)

− cosψ
(
2α̇L̇x + (L0 + Lx) α̈

)





+ cosα (MP1 −MP2)






cosψ
(
L̈x − (L0 + Lx)

(
α̇2 + ψ̇

(
θ̇+ ψ̇

)))

− sinψ
( (
θ̇+ 2ψ̇

)
L̇x + (L0 + Lx)

(
θ̈+ ψ̈

))





















= QR

(4.4.13)
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4.4.2 Simulations and Discussions

Figures 4.37 to 4.49 are the numerical results obtained byMATHEMATICA for the selected

generalised coordinatesψ, θ, α, R, γ, Lx, γx, ψx andαx, as listed in Table 4.3. The results

show the massless flexible elastic MMET system’s periodic behaviour on elliptical orbit in

simulation timeTn = 4.01 andTn = 400.01.
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Figure 4.37:Massless flexible MMET spin-up, angular displacementψ (Tn = 400.01)
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Figure 4.38:Massless flexible MMET spin-up, angular displacementψ (Tn = 4.01)
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Figure 4.39:Massless flexible MMET elliptical orbit angular position ofθ (Tn = 400.01)
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Figure 4.40:Massless flexible MMET elliptical orbit angular position ofθ (Tn = 4.01)

. Figures 4.37 and 4.38 show the flexible massless MMET system’s periodic spin-up

behaviourψ on an elliptical orbit (e = 0.2) with the angular dispacement range of

-0.325 to 0.325 rad. Their shapes contain more ups and downs, which are slightly

different from the spin-up output of the axial and torsional elastic massless MMET

systems. Its ODE coupled more connections with lateral elastic behaviours (αx and

ϕx), as shown in equation (4.4.5).

. The results for the true anomalyθ are shown in Figures4.39and4.40for the number
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Figure 4.41: Massless flexible MMET out-of-plane angleα (Tn = 4.01)
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Figure 4.42:Massless flexible MMET base point distance R to the Earth (Tn = 400.01)

of cycles of periodTn = 4.01 and 400.01 simulation time, respectively. The curves are

rising in a linear trend from 0 to 25 (Tn = 4.01) or 2500 (Tn = 400.01) rad with slight

fluctuation spread (0 to 0.5 rad).

. Figure 4.41 is the response forα whenα(0) = 0.001 rad anḋα(0) = 0.001 rad/s.

If give the initial conditionsα(0) = 0 rad andα̇(0) = 0 rad/s, the responses for the

out-of-plane angleα are with zero amplitude over the full simulation time.

. The distanceR from the Earth to the tether COM is changing periodically, as can

be seen in the Figures4.42 and4.43, which behave within the distance range ofrp
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Figure 4.43:Massless flexible MMET base point distance R to the Earth (Tn = 4.01)
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Figure 4.44:Massless flexible MMET rolling angleγ (Tn = 400.01)

(6.89×106 m) to ra (1.0335×107 m) with givene = 0.2 in this case.

. The rigid rolling angleγ results stay in zero if given initial conditionsγ(0) = 0 rad

andγ̇(0) = 0 rad/s with the same ODE as given in equation (4.2.8). As shown in Figure

4.44, the rigid rolling angleγ is going up over the simulation time withγ(0) = 0.001

rad andγ̇(0) = 0.001 rad/s.

. The tether subspan’s axial oscillationLx goes 13.5 to 19 m in Figure4.45, and the

ratio ofLx to L0 varies 2.8% to 3.8% in Figure4.46.
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Figure 4.45: Massless flexible MMET axial displacement along tether subspan ofLx (Tn =
4.01)
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Figure 4.46:Massless flexible MMET axial elastic length vs. static length ratio along tether

subspan of
Lx

L0
(Tn = 4.01)

. Figure4.47states the torsional elastic angular displacementγx for each tether sub-

span with the range -0.000075 to 0.000075 rad, which shows that the convergence of

the torsional elastic behaviour is approaching to zero status in the end of simulation

time.

. Figures 4.48 and 4.49 are the pendular elastic angular displacements on planex0 −
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Figure 4.47: Massless flexible MMET torsional displacementγx (Tn = 4.01)
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Figure 4.48:Massless flexible MMET, on planex0−O−y0, pendular displacementψx (Tn
= 4.01)

O−y0 and planez0−O−y0 respectively, and in the beginning their motions are within

the range - 0.00014 to 0.00014 rad, and then the curves with convergent pendular

elastic behaviours are observed with reducing amplitude of oscillation till to about

t = 9500 seconds, and then with obviously approaching to zero. According to the

equations (4.4.6) and (4.4.9) for ψx andαx, the responses ofψx andαx perform alike

with slightly different mass moment of inertia.
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Figure 4.49:Massless flexible MMET, on planez0 −O− y0, pendular displacementαx (Tn
= 4.01)

4.5 Conclusions

To address the modelling process for the flexible massless MMET clearly, the axial, torsional

and pendular elastic components are investigated simultaneously, and then integrated as one

flexible MMET system. There are seven rotational generalised coordinates (ψ, ψx, θ, α,

αx, γ, γx) and two translational coordinates (Lx, R) which were chosen as the generalised

coordinates for the flexible massless MMET system, in which the rigid body generalised

coordinates (ψ, θ, α, γ, R) are not duplicating any of the motions of the elastic generalised

coordinates (ψx, αx, γx, Lx).

Using the parameters in Appendix C, the numerical results for the selected generalised

coordinates in section 4.2.2, section 4.3.2 and section 4.4.2 expressed the periodic motions

on orbit, with reducing amplitude of axial, torsional and pendular elastic oscillation for three

MMET models in sections 4.2, 4.3 and 4.4 respectively, whose similar spin-up behaviours

are also noted.

Meanwhile, this chapter also established a guiding modelling procedure for studies on

the discretised flexible MMET system in further chapters, which indicate the models coupled

with the flexible behaviours.

Table 4.4 gives theψ plots for the massless tether systems, andψ is the generalised

coordinate for the tether’s spin-up, which is the angle from thex0 axis to the projection of the

tether onto the orbit plane. With the given parameters in Appendix C, the spin-up responses

change periodically between -0.325 to 0.325 rad over the number of cycles of periodTn =
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Table 4.4: Figures for spin-upψ in Chapter 4

Tether Type Figure No. (Tn = 400.01) Figure No. (Tn = 4.01)
Axial Elastic 4.7 4.8
Axial and Torsional Elastic 4.20 4.21
Flexible 4.37 4.38

Table 4.5: Figures forR in Chapter 4

Tether Type Figure No. (Tn = 400.01) Figure No. (Tn = 4.01)
Axial Elastic 4.12 4.13
Axial and Torsional Elastic 4.25 4.26
Flexible 4.42 4.43

Table 4.6: Figures forα in Chapter 4

Tether Type Figure No. (Tn = 400.01) Figure No. (Tn = 4.01)
Axial Elastic - 4.11
Axial and Torsional Elastic - 4.24
Flexible - 4.41

Table 4.7: Figures forθ in Chapter 4

Tether Type Figure No. (Tn = 400.01) Figure No. (Tn = 4.01)
Axial Elastic 4.9 4.10
Axial and Torsional Elastic 4.22 4.23
Flexible 4.39 4.40

Table 4.8: Figures forγ in Chapter 4

Tether Type Figure No. (Tn = 400.01) Figure No. (Tn = 4.01)
Axial Elastic - 4.14
Axial and Torsional Elastic - 4.27
Flexible - 4.44

Table 4.9: Figures forLx in Chapter 4

Tether Type Figure No. (Tn = 400.01) Figure No. (Tn = 4.01)
Axial Elastic 4.15 -
Axial and Torsional Elastic 4.28 -
Flexible 4.45 -

Table 4.10: Figures forγx in Chapter 4

Tether Type Figure No. (Tn = 400.01) Figure No. (Tn = 4.01)
Axial Elastic - -
Axial and Torsional Elastic 4.30 -
Flexible 4.47 -

400.01 and 4.01; the spin-up response for the flexible massless tether is slightly different

from the other MMET tether systems with more ups and downs during full simulation time,

which cased by the pendular behaviours and coupled with tether system’s others motions.

Table4.5is for theR, which is the tether’s position generalised coordinate and determines
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Table 4.11: Figures forψx in Chapter 4

Tether Type Figure No. (Tn = 400.01) Figure No. (Tn = 4.01)
Axial Elastic - -
Axial and Torsional Elastic - -
Flexible - 4.48

Table 4.12: Figures forαx in Chapter 4

Tether Type Figure No. (Tn = 400.01) Figure No. (Tn = 4.01)
Axial Elastic - -
Axial and Torsional Elastic - -
Flexible - 4.49

the distance from the EarthE to the dumbbell MMET system’s COM. In this case, givene =

0.2,rp = 6.89×106 m andra = 1.0335×107 m, it goes within the range ofrp to ra.

Table4.6 is for the out-of-plane angleα with zero initial conditions; all the figures stay

at zero, which indicates the stable response forα over simulation the number of cycles of

periodTn = 400.01.

Table4.7is for the true anomalyθ, which is in a linear up-changing trend from 0 to 2500

rad coupling range of 0 to 0.5 rad fluctuation spread, over the number of cycles of periodTn

= 400.01, which state that the tether systems go around the Earth in an elliptical orbit.

Table4.8 is for the rigid rolling angleγ, which keep staying in zeros output with zero

initial conditionsγ(0) = 0 rad anḋγ(0) = 0 rad/s.

Table4.9 is for the axial elastic generalised coordinate along tether subspan with stable

axial oscillation during full simulation time.

Table4.10 is for the torsional elastic generalised coordinateγx, which are shown the

stable torsional elastic behaviours for massless MMET systems

Table4.11is for the pendular elastic generalised coordinateψx referenced on planex0−

O− y0. Table4.12is for the pendular elastic generalised coordinateαx referenced on plane

z0−O−y0, both of them are with convergent pendular elastic behaviours, which are observed

with reducing amplitude of oscillation and approaching to zero.
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Chapter 5

Discretised Axially MMET Elastic

System

5.1 Introduction

This chapter presents a discretised MMET system with axial elasticity, based on the rigid

MMET system in section 3.6, in which the discrete mass points are connected by elastic

elements.

All the environmental conditions, the Earth centred global coordinate system{X, Y, Z},

and the relative rotating coordinate system{x0, y0, z0} are the same as in previous chapters.

As it differs from the assumptionsA1 to A6 in section 4.1, the assumptions for the

discretised MMET modelling are listed below, asB1 toB6 :

• B1 - The tether is made of homogeneous isotropic material;

• B2 - The MMET system’s dissipation function is assumed to be based on Rayleigh

damping;

• B3 - The MMET is in a friction free environment;

• B4 - Every axial ‘spring-damper’ group is connected to another, in series;

• B5 - Every torsional ‘spring-damper’ group is connected to another, in series;

• B6 - The axial, torsional and pendular elastic oscillations’ effects on the rigid body

behavoiurs can be ignored, for the elastic oscillations are much less than the Cartesian

coordinates for the mass payloads and the discrete mass points;
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Figure 5.1:Axial elastic MMET tether with 10 discrete mass points
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• B7 - The axial and torsional ‘spring-damper’ groups have no masses and mass mo-

ments of inertia;

Figure 5.2: The spring-damper groups

As shown in Figure5.2, axial elasticity is represented by a string of ‘spring-damper’

groups (ki, ci), which connect the mass points ofmi in series withk1 = . . . = kN+2,

c1 = . . . = cN+2, wherei = 1, 2, . . . ,N + 2.

As discussed in section (3.6.2), the MMET system’s subspans can be discretised intoN

point masses. In this case, the MMET system with an arbitrary choice ofN = 10 mass points

will be discussed in this chapter. Because it is different from the massless MMET system.

From this chapter on the dynamical model for the discretised MMET system includes the

tether masses and mass moments of inertia, by using Lagrange’s equations.

An axial elastic MMET system is shown in Figure5.1 with 10 discrete mass points.

That is, there are 5 discrete mass points for each tether subspan, in which the generalised

coordinatesηi (i = 1 to 10) define relative axial motions of the 10 discrete mass points,ηP1

andηP2 are the generalised relative axial coordinates for the mass payloadsMP1 andMP2.

The positive direction for axial elastic motion is defined as being in the direction fromMP1

toMP2.

5.2 The Cartesian Coordinates for the Motor Facility and

the Payloads

The Cartesian coordinates for the motor facilityM0(x0, y0, z0) are given in equation (3.2.4).

The Cartesian coordinates for the payloadsMP1 andMP2 are given in equations (5.2.1) and

(5.2.2). L0 is the static length from COM of the tether to each payload.






x1 = x0 + (ηP1 + η1 + η2 + η3 + η4 + η5 + L0) cosαcos (θ+ψ)

y1 = y0 + (ηP1 + η1 + η2 + η3 + η4 + η5 + L0) cosαsin (θ+ψ)

z1 = (ηP1 + η1 + η2 + η3 + η4 + η5 + L0) sinα

(5.2.1)

165








x2 = x0 − (η6 + η7 + η8 + η9 + η10 + ηP2 + L0) cosαcos (θ+ψ)

y2 = y0 − (η6 + η7 + η8 + η9 + η10 + ηP2 + L0) cosαsin (θ+ψ)

z2 = −(η6 + η7 + η8 + η9 + η10 + ηP2 + L0) sinα

(5.2.2)

5.3 The Cartesian Components for the Mass Pointsm1 to

m10

The Cartesian components for the discrete mass pointsm1 to m10 are given in equations

(5.3.1) to (5.3.10). The static length from the tether COM to each mass pointmi is defined

in equation (3.6.7), and for the case of discrete mass pointsN = 10, theli (i=1, . . . , 10) can

be looked-up and transformed from Figure3.44.






xm1 = x0 +

(

η1 + η2 + η3 + η4 + η5 +
9L0

10

)

cosαcos (θ+ψ)

ym1 = y0 +

(

η1 + η2 + η3 + η4 + η5 +
9L0

10

)

cosαsin (θ+ψ)

zm1 =

(

η1 + η2 + η3 + η4 + η5 +
9L0

10

)

sinα

(5.3.1)






xm2 = x0 +

(

η2 + η3 + η4 + η5 +
7L0

10

)

cosαcos (θ+ψ)

ym2 = y0 +

(

η2 + η3 + η4 + η5 +
7L0

10

)

cosαsin (θ+ψ)

zm2 =

(

η2 + η3 + η4 + η5 +
7L0

10

)

sinα

(5.3.2)






xm3 = x0 +

(

η3 + η4 + η5 +
L0

2

)

cosαcos (θ+ψ)

ym3 = y0 +

(

η3 + η4 + η5 +
L0

2

)

cosαsin (θ+ψ)

zm3 =

(

η3 + η4 + η5 +
L0

2

)

sinα

(5.3.3)






xm4 = x0 +

(

η4 + η5 +
3L0

10

)

cosαcos (θ+ψ)

ym4 = y0 +

(

η4 + η5 +
3L0

10

)

cosαsin (θ+ψ)

zm4 =

(

η4 + η5 +
3L0

10

)

sinα

(5.3.4)






xm5 = x0 +

(

η5 +
L0

10

)

cosαcos (θ+ψ)

ym5 = y0 +

(

η5 +
L0

10

)

cosαsin (θ+ψ)

zm5 =

(

η5 +
L0

10

)

sinα

(5.3.5)
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




xm6 = x0 −

(

η6 +
L0

10

)

cosαcos (θ+ψ)

ym6 = y0 −

(

η6 +
L0

10

)

cosαsin (θ+ψ)

zm6 = −

(

η6 +
L0

10

)

sinα

(5.3.6)






xm7 = x0 −

(

η6 + η7 +
3L0

10

)

cosαcos (θ+ψ)

ym7 = y0 −

(

η6 + η7 +
3L0

10

)

cosαsin (θ+ψ)

zm7 = −

(

η6 + η7 +
3L0

10

)

sinα

(5.3.7)






xm8 = x0 −

(

η6 + η7 + η8 +
L0

2

)

cosαcos (θ+ψ)

ym8 = y0 −

(

η6 + η7 + η8 +
L0

2

)

cosαsin (θ+ψ)

zm8 = −

(

η6 + η7 + η8 +
L0

2

)

sinα

(5.3.8)






xm9 = x0 −

(

η6 + η7 + η8 + η9 +
7L0

10

)

cosαcos (θ+ψ)

ym9 = y0 −

(

η6 + η7 + η8 + η9 +
7L0

10

)

cosαsin (θ+ψ)

zm9 = −

(

η6 + η7 ++η8 + η9 +
7L0

10

)

sinα

(5.3.9)






xm10 = x0 −

(

η6 + η7 ++η8 + η9 + η10 +
9L0

10

)

cosαcos (θ+ψ)

ym10 = y0 −

(

η6 + η7 ++η8 + η9 + η10 +
9L0

10

)

cosαsin (θ+ψ)

zm10 = −

(

η6 + η7 ++η8 + η9 + η10 +
9L0

10

)

sinα

(5.3.10)

Similar to the equations (3.2.2) and (3.2.3), the distance from EarthE(0, 0, 0) to each

of the discrete mass points along each sub-span is represented byRmi , as given in equation

(5.3.11).

Rmi =
√
x2mi + y

2
mi
+ z2mi (5.3.11)

5.4 Potential Energy

The tether’s potential energy is given in equation (5.4.1), whereμ is the product of the

universal gravitational constantG with the Earth’s mass.
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U = −
μMP1

R1
−
μMP2

R2
−
μM0

R
−
μm1

Rm1
−
μm2

Rm2
− ∙ ∙ ∙−

μm10

Rm10

+ SE|axial

(5.4.1)

Where, theSE|axial term is the strain energy of the two tether subspans taking axial

elasticity into account, as stated in equation (5.4.2). If it is assumed thatk0 = k1 = . . . =

k12, and thek0 is a default stiffness value, then equation (5.4.2) can be re-written as equation

(5.4.3).

SE|axial =
1

2
k1(ηP1 − η1)

2 +
1

2
k2(η1 − η2)

2 + ∙ ∙ ∙+
1

2
k6η

2
5

+
1

2
k7η

2
6 + ∙ ∙ ∙+

1

2
k12(η10 − ηP2)

2

(5.4.2)

SE|axial =
1

2
k0
(
(ηP1 − η1)

2 + (η1 − η2)
2 + ∙ ∙ ∙+ η25 + η

2
6 + ∙ ∙ ∙+ (η10 − ηP2)

2
)

(5.4.3)

TheCE|axial quantity is an assumed dissipation function, and the damping coefficient in

each group’s elastic element is assumed to be in the form of classical linear viscous damping,

in which it assumesc0 = c1 = c2 = . . . = c12, where thec0 is a default damping coefficient

value, so then equation (5.4.4) can be reformed as equation (5.4.5).

CE|axial =
1

2
c1(η̇P1 − η̇1)

2 +
1

2
c2(η̇1 − η̇2)

2 + ∙ ∙ ∙+
1

2
c6η̇

2
5+

1

2
c7η̇

2
6 + ∙ ∙ ∙+

1

2
c12(η̇10 − η̇P2)

2

(5.4.4)

CE|axial =
1

2
c0
(
(η̇P1 − η̇1)

2 + (η̇1 − η̇2)
2 + ∙ ∙ ∙+ η̇25η̇

2
6 ∙ ∙ ∙+ (η̇10 − η̇P2)

2
)

(5.4.5)

5.5 Kinetic Energy

The kinetic energy of the MMET system is given in equation (5.5.1).
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2
m1
+ ż2m1
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2
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[
1

2
IyP1 +

1

2
IyP2 + IyT +

1

2
IyM

]

γ̇2

(5.5.1)

5.6 Generalised Coordinates

[1] As shown in Figure5.3, ψ is the generalised coordinate representing the in-plane

pitch angle of the overall tether, and this denotes the angle from thex0 axis to the pro-

jection of the tether axis onto the orbit plane.

[2] θ is the generalised coordinate representing the orbital angular position, and is the

true anomaly, a formal orbital element.

[3] α is the generalised coordinate denoting the out-of-plane angle of the overall tether,

from the projection of the tether axis onto the orbit plane to the tether, and is assumed

always to be within a plane normal to the orbit plane.

[4] γ is the generalised coordinate depicting the rolling angle of the overall theter. It

does not alter the location of the end masses’ centre of mass, and needs to be included

because the torque axis is potentially free to rotate about the longitudinal axis of the

tether.
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[5] The generalised coordinateR is the distance from the EarthE(0, 0, 0) to the COM

MM(x0, y0, z0).

[6] The generalised coordinateηi is for each mass pointmi. For this case, the mass

point number is arbitrarily set here to 10, that is,mi (i = 1,2,...,10), andηP1 andηP2

are the generalised coordinates for theMP1 andMP1, which are listed in Table (5.1).

Figure 5.3:The MMET system with axial elasticity definition on orbit
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5.7 Generalised Forces

The generalised forcesQi (i = 1 to 5 ) are given in equations (3.5.13) to (3.5.17), andQmi

(i = 6 to 17) are the generalised forces for the mass pointmi, as listed in Table (5.1), which

comes from an assumed dissipation function based on Rayleigh damping.

5.8 Governing Equations of Motion

Lagrange’s equations are used to generate the governing equations of motion, the full equa-

tions are to be found in the path CD-ROM/axial/N10/, as listed in Table5.1.

Table 5.1: Generalised coordinates and equations of motion (CD-ROM/axial/N10/)

i qi Qi T U Equations ofMotion
1 ψ (3.5.13) (5.5.1) (5.4.1) Chapter5-1-N10-psi.pdf
2 θ (3.5.14) Chapter5-2-N10-theta.pdf
3 α (3.5.15) Chapter5-3-N10-alpha.pdf
4 γ (3.5.17) Chapter5-4-N10-gamma.pdf
5 R (3.5.16) Chapter5-5-N10-R.pdf
6 ηP1 −c0(η̇P1 − η̇1) Chapter5-6-N10-etaP1.pdf
7 ηP2 −c0(η̇10 − η̇P2) Chapter5-7-N10-etaP2.pdf
8 η1 c0(η̇P1 − η̇1) − c0(η̇1 − η̇2) Chapter5-8-N10-eta1.pdf
9 η2 c0(η̇1 − η̇2) − c0(η̇2 − η̇3) Chapter5-9-N10-eta2.pdf
10 η3 c0(η̇2 − η̇3) − c0(η̇3 − η̇4) Chapter5-10-N10-eta3.pdf
11 η4 c0(η̇3 − η̇4) − c0(η̇4 − η̇5) Chapter5-11-N10-eta4.pdf
12 η5 c0(η̇4 − η̇5) − c0η̇5 Chapter5-12-N10-eta5.pdf
13 η6 c0(η̇7 − η̇6) − c0η̇6 Chapter5-13-N10-eta6.pdf
14 η7 c0(η̇6 − η̇7) − c0(η̇7 − η̇8) Chapter5-14-N10-eta7.pdf
15 η8 c0(η̇7 − η̇8) − c0(η̇8 − η̇9) Chapter5-15-N10-eta8.pdf
16 η9 c0(η̇8 − η̇9) − c0(η̇9 − η̇10) Chapter5-16-N10-eta9.pdf
17 η10 c0(η̇9 − η̇10) − c0(η̇10 − η̇P2) Chapter5-17-N10-eta10.pdf

As shown in Table 5.1, there are 17 nonlinear equations for 17 generalised coordinates

with a strong nonlinear coupling, which are listed in the files with hundreds of lines of ODE

and lead to the high computationally difficult set of ODEs.

The solution procedure is implemented in code written by the author inMATHEMATICA

using the routineNDSolve, theNDSolve function can adapt its step size so that the esti-

mated error in the solution is just within the tolerances.

Practically, it is difficult for theNDSolve to solve the MMET system of coupled dif-

ferential equations as long as each variable has the appropriate number of conditions by

the following simulation trials, in which the number of cycles of periodTn, as defined in

equation (1.1.11), is a concise alternative to determine the simulation time.
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(1) The first trial’s simulation time isTn = 4.01 (3.1899× 104 seconds), and an ‘out

of memory’ error message occurs with the time consumption of about 24 hours, and

theNDSolve procedure is terminated automatically without any numerical outputs.

(2) With the Tn = 4.01× 10−4 (3.1899 seconds); there is also an ‘out of memory’

error message occurs with the time consumption of about 24 hours, and theNDSolve

procedure can not generate any numerical outputs, either.

To summarise, in the first trial and second trial test the MMET system simulations were

in a long (3.1899× 104 seconds) and short (3.1899 seconds) simulation time respectively,

and the ‘out of memory’ error shows that the ODE equations for the MMET system are

too complex for the current computing system to handle. The ‘out of memory’ error occurs

when the nonlinear equations of the MMET system are sent to theNDSolve procedure,

which indicates that current computer cluster cannot provide enough hardware support for

this MMET system simulation, and the computer is not able to load any additional data into

memory during execution, and these will cease to function correctly. This occurs because

all available memory including disk swap space has been fully allocated, which is caused by

the high computational difficulty of the set of ODEs.

In order to deal with this problem and to explore the interaction of the axial elastic MMET

system, we have reduced the discretisation scheme right down to one discrete tether mass

point per subspan, that is,N = 2, and Lagrange’s equations have been used to derive a

reduced set of nonlinear governing equations of motion for a simplified MMET system, as

shown in AppendixG, and the generalised coordinates for the simplified MMET system

with two discrete mass points are given in Table5.2. This decision is based on a compromise

between modelling fidelity and likely computational tractability.

I The detail modelling steps for axial elastic MMET system with two discretised mass

points is attached in AppendixG.

Table 5.2: Generalised coordinates and equations of motion (CD-ROM/axial/N2/)

i qi Qi T U Equations ofMotion
1 ψ (3.5.13) (G.4.1) (G.3.1) Chapter5-1-N2-psi.pdf
2 θ (3.5.14) Chapter5-2-N2-theta.pdf
3 α (3.5.15) Chapter5-3-N2-alpha.pdf
4 γ (3.5.17) Chapter5-4-N2-gamma.pdf
5 R (3.5.16) Chapter5-5-N2-R.pdf
6 ηP1 −c0(η̇P1 − η̇1) Chapter5-6-N2-etaP1.pdf
7 ηP2 −c0(η̇2 − η̇P2) Chapter5-7-N2-etaP2.pdf
8 η1 c0(η̇P1 − η̇1) − c0η̇1 Chapter5-8-N2-eta1.pdf
9 η2 c0(η̇P2 − η̇2) − c0η̇2 Chapter5-9-N2-eta2.pdf
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5.9 Simulations and Discussions

Based on the axial elastic MMET system with two discrete mass points, Figures5.4 to 5.17

are the numerical results obtained byMATHEMATICA for the selected generalised coordi-

natesqi (i = 1 to 9) as listed in Table5.2. In this case ofe = 0.2, it was decided to evaluateTn

= 4.01 and 400.01, that is, the simulation timet is 0 to 3.1899× 104 seconds and 0 to 3.1811

× 106 seconds, respectively, which can help to describe both of the micro (short simulation

time) and the macro (long simulation time) behaviours for every generalised coordinate.
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t
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Figure 5.4:Axial elastic MMET system spin-up, angular displacementψ (Tn = 4.01)

. The results show the discretised axial elastic MMET system’s periodic behaviour on

an elliptical orbit (e = 0.2) with the angular dispacement range of -0.35 to 0.35 rad,

in which Figures5.4and5.5depict the spin-up behaviour for the axial elastic MMET

system over a short simulation time (NCP,Tn = 4.01) and for a long simulation time

(NCP,Tn = 400.01), respectively.

. The distanceR from the Earth to the tether COM is changing periodically, as can

be seen in the Figures5.6 and 5.7, which behave within the distance range ofrp

(6.89×106 metre) tora (1.0335×107 metre ) with givene = 0.2 in this case.

. The results for the true anomalyθ are shown in Figures5.8and5.9 for the number

of cycles of periodTn = 4.01 and 400.01 simulation time, respectively. The curves are

rising in a linear trend from 0 to 25 (Tn = 4.01) or 2500 (Tn = 400.01) rad with slight

173



0 500 000 1. 106 1.5 106 2. 106 2.5 106 3. 106

0.3

0.2

0.1

0.0

0.1

0.2

0.3

time Sec.

t
ra

d

t time

Figure 5.5:Axial elastic MMET system spin-up, angular displacementψ (Tn = 400.01)
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Figure 5.6:Axial elastic MMET system base point distance R (Tn = 4.01)

fluctuation spread (0 to 0.5 rad), this angular parameter describes the position of the

MMET system moving along the elliptical orbit.

.With given non-zero initial conditionsα(0) = 0.001 rad anḋα(0) = 0.001 rad/s, the

responses for the out-of-plane angleα are given in Figures5.10and5.11. This shows

that, with small initial angular displacementα(0) and velocityα̇(0) disturbances, the

out-of-plane angleα’s curve travels steadily within a -0.7 to 0.7 radian periodic fluc-

tuation.
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Figure 5.7:Axial elastic MMET system base point distance R (Tn = 400.01)
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Figure 5.8:Axial elastic MMET system elliptical orbit angular position ofθ (Tn = 4.01)

In order to compare the results with different initial values, in Chapters5, 6 and7, all

the initial values for theα(0) andα̇(0) are set to 0.001, as given in AppendixC.

.During the full simulation time, the rigid rolling angleγ keeps in linear rising process

with given non-zero initial conditionsγ(0) = 0.001 rad anḋγ(0) = 0.001 rad/s, as

shown in Figure5.12. Similar to the initial values setting forα, in Chapters5, 6 and

7, all the initial values for theγ(0) andγ̇(0) are set to 0.001 rad, as given in Appendix

C. The linear rising phenomenon is caused by its non-zero initial value, the rigid body
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Figure 5.9:Axial elastic MMET system elliptical orbit angular position ofθ (Tn = 400.01)
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Figure 5.10: Axial elastic MMET system out-of-plane angleα (Tn = 4.01)

rolling behaviour can be started or stopped by giving a proper zero or non-zero initial

conditions.

. Figure 5.13 is a part of Figure5.14, which shows the axial elastic motions over

simulation timeTn = 4.01, as also shown in Figure5.15. Figure5.14is the response

for the axial elastic motions over simulation timeTn = 400.01. For the simulation time

in Figure5.13is shorter than Figure5.14, η1’s curve in Figure5.13seems a monotonic

decreasing line, and as can be observed in Figure5.14, it is also an oscillating curve
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Figure 5.11:Axial elastic MMET system out-of-plane angleα (Tn = 400.01)
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Figure 5.12:Axial elastic MMET system rolling angleγ (Tn = 4.01)

with larger period thanηP1’s response.

Figures5.13and5.14state the axial elastic motions forη1 andηP1 along tether sub-

span, in which the period forη1 is larger than the period forηP1, and theη1’s responses

go steadily within the range -3.2 to -4.6 metre and theηP1’s responses are within the

range -5 to -11 metre.

. Similar toη1 andηP1, Figures5.16and5.17are the plots forη2 andηP2 over the
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Figure 5.13:Axial displacement responsesη1 andηP1 (Tn = 4.01)

0 0.5 1 1.5 2 2.5 3

x 10
6

-4.4

-4.2

-4

-3.8

-3.6

-3.4

time(sec)

et
a1

[t]
(m

)

0 0.5 1 1.5 2 2.5 3

x 10
6

-10

-9

-8

-7

-6

time(sec)

et
aP

1[
t](

m
)

Figure 5.14:Axial displacement responsesη1 andηP1 (Tn = 400.01)

178



Figure 5.15:Axial displacement responsesη1 andηP1, Tn = 4.01 vs. 400.01

simulation timeTn = 4.01 and 400.01, as also shown in Figure5.18, which show the

η2 andηP2 curves moving steadily within the range 3.2 to 4.6 metre and 5 to 11 metre,

and indicate theη2 andηP2’s behaviours are symmetric toη1 andηP1’s behaviours

with respect to the MMET system COM.
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Figure 5.16:Axial displacement responsesη2 andηP2 (Tn = 4.01)
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Figure 5.17:Axial displacement responsesη2 andηP2 (Tn = 400.01)
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Figure 5.18:Axial displacement responsesη2 andηP2, Tn = 4.01 vs. 400.01
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5.10 Conclusions

The work in this chaper has shown a model of a constantly excited MMET tether on an

elliptical Earth orbit with multiple degrees of freedom (MDOF) for axial elastic motions,

which can be reformulated into an excited axial elastic oscillation. This analysis represents

the tether under the influence of a gravitational field and a directly applied exciting torque

from the motor drive.

A MMET system with an arbitrary choice ofN = 10 mass points was discussed in this

Chapter for the MDOF axial elastic MMET system, which includes the tether masses and

mass moments of inertia. Then in order to handle the numerical simulation time-consuming

difficulties on the current computational system, an axial elastic MMET system withN = 2

mass points is proposed to reduce the number of the nonlinear ordinary differential equations

(ODEs), which can balance the numerical performance and MDOF discretisation scheme for

the MMET system.

Numerical results for the MMET system with two discrete mass points are given in sec-

tion 5.9, in which accurate and periodic behaviour including the spin-up and the axial elastic

performance for this MMET model are obtained.

Compared with the spin-up behaviours for the dumbbell MMET systems, the rigid body

MMET tethers and the flexible massless MMET systems in Chapters3 and4, the spin-up

for the discretised axial elastic MMET system are also changing with periodic fluctuations

steadily, but with slightly smaller amplitudes and smoother curve shape. When involving the

tether’s mass and mass moment of inertia, the amplitudes and shapes for the spin-up and the

axial elastic behaviours are different with same parameter settings in AppendixC.

The results of the true anomalyθ and the distanceR for the tether systmes in Chapters

3, 4 and5 are the position generalised coordinates to locate the tether system’s location on

the orbit, which are of stability numerical outputs with the other generalised coordinates’

different initial values.

The numerical results for the out-of-plane angleα and the rigid rolling angleγ are sen-

sitive to their initial value settings. In Chapters 3 and 4, their initial value is zero, and their

outputs are zero over full simulation time; In this Chapter, by setting to non-zero initial

values, they have non-zero outputs over the same simulation time as previous Chapters.

The responses forη1 andηP1 are with different periodic motions for the different mass

and mass moment of inertia values along each tether subspan.

The numerical results forη1, ηP1, η2 andηP2 express that the axial motions in the two
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tether subspans are moving in an opposite direction with same local relative direction defi-

nition, also, this difference validates that the MMET tether system is a symmetrical system

with respect to the MMET system COM.
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Chapter 6

Discretised MMET System involving

Axial and Torsional Elasticity

6.1 Introduction

Based on the discretised axial MMET system with an arbitrary choice ofN = 10 mass points

in Chapter 5, a discretised MMET system involving both axial and torsional elasticity is

proposed in this chapter, in which the torsional elasticity modelling process will be discussed,

and the axial elasticity modelling process is the same as was discussed in Chapter 5 so it will

not be discussed in this chapter.

With the same modelling conditions and assumptions as declared in Chapter 5, the Carte-

sian coordinates for the motor facilityM0 and the payloadsMP1 andMP2 are given in equa-

tions (3.2.4), (5.2.1) and (5.2.2). The Cartesian components for the discrete mass pointsm1

tom10 are given in equations (5.3.1) to (5.3.10).

As shown in Figure 6.1, with 10 discrete mass points, the generalised relative torsional

coordinatesϕi (i = 1 to 10) define the relative torsional motions of the 10 discrete mass

points.ϕP1 andϕP2 are the generalised relative torsional coordinates for the mass payloads

MP1 andMP2. The directions for the torsional elastic motions, by following the right-hand

rule with the thumb pointing to the -y0 direction, are defined as positive direction.

All the torsional ‘spring-damper’ groups (kti, cti) are defined on the reference plane

x0 −O − z0 as shown in Figure 6.2. The ‘t’ in the subscript designates the torsional elastic

parameter, and the mass points ofmi are connected by the torsional ‘spring-damper’ groups

in series.
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Figure 6.1: Torsional elastic MMET tether with 10 discrete mass points

185



Figure 6.2: Reference on the planex0 −O− z0 for MMET torsional elasticity

6.2 Potential Energy

The tether’s potential energy is given in equation (6.2.1), whereμ is the product of the

universal gravitational constantG with the Earth’s mass.R1, R2 andRmi (i = 1 to 10) are

same as that defined in Chapter5.

U = −
μMP1

R1
−
μMP2

R2
−
μM0

R
−
μm1

Rm1
−
μm2

Rm2
− ∙ ∙ ∙−

μm10

Rm10

+ SE|axial + SE|torsional

(6.2.1)

Where, theSE|axial term is given in equation (5.4.2), SE|torsional term is the strain energy

of the two tether subspans, taking torsional elasticity into account, as stated in equation

(6.2.2).

TheCE|torsional quantity is an assumed dissipation function, and the damping coeffi-

cient in each group’s elastic element is assumed to be in the form of classical linear viscous

damping.

SE|torsional =
1

2
kt1(ϕP1 −ϕ1)

2 +
1

2
kt2(ϕ1 −ϕ2)

2 + ∙ ∙ ∙+
1

2
kt6ϕ

2
5

+
1

2
kt7ϕ

2
6 + ∙ ∙ ∙+

1

2
kt12(ϕ10 −ϕP2)

2

(6.2.2)
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CE|torsional =
1

2
ct1(ϕ̇P1 − ϕ̇1)

2 +
1

2
ct2(ϕ̇1 − ϕ̇2)

2 + ∙ ∙ ∙+
1

2
ct6ϕ̇

2
5+

1

2
ct7ϕ̇

2
6 + ∙ ∙ ∙+

1

2
ct12(ϕ̇10 − ϕ̇P2)

2

(6.2.3)

With kt0 = kt1 = . . . = kt(N+2), ct0 = ct1 = . . . = ct(N+2), wherei = 1, 2, . . . ,N + 2, the

kt0 andct0 are the default stiffness and damping coefficient values,N = 10 is the number

of the discrete mass points in this case, then equation (6.2.2) can be re-written as equation

(6.2.4), and equation (6.2.3) can be reformed as equation (6.2.5).

SE|torsional =
1

2
kt0
(
(ϕP1 −ϕ1)

2 + (ϕ1 −ϕ2)
2 + ∙ ∙ ∙+ϕ25 +ϕ

2
6 + ∙ ∙ ∙+ (ϕ10 −ϕP2)

2
)

(6.2.4)

CE|torsional =
1

2
ct0
(
(ϕ̇P1 − ϕ̇1)

2 + (ϕ̇1 − ϕ̇2)
2 + ∙ ∙ ∙+ ϕ̇25ϕ̇

2
6 ∙ ∙ ∙+ (ϕ̇10 − ϕ̇P2)

2
)

(6.2.5)

6.3 Kinetic Energy

The kinetic energy of the MMET system withN = 10 mass points is given in equation (6.3.1).

T =
1

2
MP1

(
ẋ21 + ẏ

2
1 + ż

2
1

)
+
1

2
MP2

(
ẋ22 + ẏ

2
2 + ż

2
2

)
+
1

2
M0

(
ẋ20 + ẏ

2
0 + ż

2
0

)
+










1

2
m1

(
ẋ2m1 + ẏ

2
m1
+ ż2m1

)
+
1

2
m2

(
ẋ2m2 + ẏ

2
m2
+ ż2m2

)
+ . . .

+
1

2
m10

(
ẋ2m10 + ẏ

2
m10
+ ż2m10

)









+

[
1

2
IzP1 +

1

2
IzP2 + IzT +

1

2
IzM

]
(
ψ̇+ θ̇

)2
+

[
1

2
IxP1 +

1

2
IxP2 + IxT +

1

2
IxM

]

α̇2 +

[
1

2
IyP1 +

1

2
IyP2 + IyT +

1

2
IyM

]

γ̇2+

[
1

2
IyP1ϕ̇

2
P1 +

1

2
IyP2ϕ̇

2
P2 +

1

2
Iym1ϕ̇

2
1 + . . .+

1

2
Iym10ϕ̇

2
10

]

(6.3.1)
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6.4 Generalised Coordinates

Besides the generalised coordinatesq1 to q17 are discussed in section5.6, the generalised

relative torsional coordinatesϕi (i = 1,. . . ,10) are for the relative torsional motion of the

10 discrete mass points,ϕP1 andϕP2 are for the relative torsional motion of mass payloads

MP1 andMP2, as given in Table6.1, which are defined asq18 to q29.

6.5 Generalised Forces

The generalised forcesQ1 toQ17 are the same as in section5.7, and the generalised forces

Q18 to Q29 are the torsional generalised forces for mass pointsmi and payloadsMP1 and

MP2, as listed in Table (6.1), which comes from an assumed dissipation function based on

Rayleigh damping.

6.6 Governing Equations of Motion

Lagrange’s equations are used to generate the governing equations of motion, the full equa-

tions are to be found in the path CD-ROM/axial-torsional/N10/, as listed in Table6.1.

Similar to Chapter5, there are 29 nonlinear equations for 29 generalised coordinates

of this MMET system, and it is still difficult in the solution procedure to use the routine

NDSolve with the ‘out of memory’ problem, as discussed in section5.8.

In order to handle this problem and to explore the interaction of the axial and torsional

elastic MMET system, we have reduced the discretisation scheme right down toN = 2, then

used Lagrange’s equations to derive a reduced set of nonlinear governing equations of motion

for a simplified MMET system, as shown in AppendixH, and the generalised coordinates

for the MMET system with two discrete mass points are given in Table6.2.

I The detail modelling steps for axial and torsional elastic MMET system with two

discretised mass points are attached in AppendixH.

6.7 Simulations and Discussions

Based on the axial and torsional elastic MMET system with two discrete mass points, Figures

6.3 to 6.19 are the numerical results obtained byMATHEMATICA for the number of cycles

of periodTn = 4.01 and 400.01, in which the MMET system’s short simulation time and long

simulation time behaviours can be observed with the given parameters in Appendix C.
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Table 6.1: Generalised coordinates and equations of motion (CD-ROM/axial-
torsional/N10/)

i qi Qi T U Equations ofMotion
1 ψ (3.5.13) (6.3.1) (6.2.1) Chapter6-1-N10-psi.pdf
2 θ (3.5.14) Chapter6-2-N10-theta.pdf
3 α (3.5.15) Chapter6-3-N10-alpha.pdf
4 γ (3.5.17) Chapter6-4-N10-gamma.pdf
5 R (3.5.16) Chapter6-5-N10-R.pdf
6 ηP1 −c0(η̇P1 − η̇1) Chapter6-6-N10-etaP1.pdf
7 ηP2 −c0(η̇10 − η̇P2) Chapter6-7-N10-etaP2.pdf
8 η1 c0(η̇P1 − η̇1) − c0(η̇1 − η̇2) Chapter6-8-N10-eta1.pdf
9 η2 c0(η̇1 − η̇2) − c0(η̇2 − η̇3) Chapter6-9-N10-eta2.pdf
10 η3 c0(η̇2 − η̇3) − c0(η̇3 − η̇4) Chapter6-10-N10-eta3.pdf
11 η4 c0(η̇3 − η̇4) − c0(η̇4 − η̇5) Chapter6-11-N10-eta4.pdf
12 η5 c0(η̇4 − η̇5) − c0η̇5 Chapter6-12-N10-eta5.pdf
13 η6 c0(η̇7 − η̇6) − c0η̇6 Chapter6-13-N10-eta6.pdf
14 η7 c0(η̇6 − η̇7) − c0(η̇7 − η̇8) Chapter6-14-N10-eta7.pdf
15 η8 c0(η̇7 − η̇8) − c0(η̇8 − η̇9) Chapter6-15-N10-eta8.pdf
16 η9 c0(η̇8 − η̇9) − c0(η̇9 − η̇10) Chapter6-16-N10-eta9.pdf
17 η10 c0(η̇9 − η̇10) − c0(η̇10 − η̇P2) Chapter6-17-N10-eta10.pdf
18 ϕP1 −ct0(ϕ̇P1 − ϕ̇1) Chapter6-18-N10-phiP1.pdf
19 ϕP2 −ct0(ϕ̇10 − ϕ̇P2) Chapter6-19-N10-phiP2.pdf
20 ϕ1 ct0(ϕ̇P1 − ϕ̇1) − ct0(ϕ̇1 − ϕ̇2) Chapter6-20-N10-phi1.pdf
21 ϕ2 ct0(ϕ̇1 − ϕ̇2) − ct0(ϕ̇2 − ϕ̇3) Chapter6-21-N10-phi2.pdf
22 ϕ3 ct0(ϕ̇2 − ϕ̇3) − ct0(ϕ̇3 − ϕ̇4) Chapter6-22-N10-phi3.pdf
23 ϕ4 ct0(ϕ̇3 − ϕ̇4) − ct0(ϕ̇4 − ϕ̇5) Chapter6-23-N10-phi4.pdf
24 ϕ5 ct0(ϕ̇4 − ϕ̇5) − ct0ϕ̇5 Chapter6-34-N10-phi5.pdf
25 ϕ6 ct0(ϕ̇7 − ϕ̇6) − ct0ϕ̇6 Chapter6-25-N10-phi6.pdf
26 ϕ7 ct0(ϕ̇6 − ϕ̇7) − ct0(ϕ̇7 − ϕ̇8) Chapter6-26-N10-phi7.pdf
27 ϕ8 ct0(ϕ̇7 − ϕ̇8) − ct0(ϕ̇8 − ϕ̇9) Chapter6-27-N10-phi8.pdf
28 ϕ9 ct0(ϕ̇8 − ϕ̇9) − ct0(ϕ̇9 − ϕ̇10) Chapter6-28-N10-phi9.pdf
29 ϕ10 ct0(ϕ̇9 − ϕ̇10) − ct0(ϕ̇10 − ϕ̇P2) Chapter6-29-N10-phi10.pdf

Table 6.2: Generalised coordinates and equations of motion (CD-ROM/axial-torsional/N2/)

i qi Qi T U Equations ofMotion
1 ψ (3.5.13) (H.2.1) (H.1.1) Chapter6-1-N2-psi.pdf
2 θ (3.5.14) Chapter6-2-N2-theta.pdf
3 α (3.5.15) Chapter6-3-N2-alpha.pdf
4 γ (3.5.17) Chapter6-4-N2-gamma.pdf
5 R (3.5.16) Chapter6-5-N2-R.pdf
6 ηP1 −c0(η̇P1 − η̇1) Chapter6-6-N2-etaP1.pdf
7 ηP2 −c0(η̇2 − η̇P2) Chapter6-7-N2-etaP2.pdf
8 η1 c0(η̇P1 − η̇1) − c0η̇1 Chapter6-8-N2-eta1.pdf
9 η2 c0(η̇P2 − η̇2) − c0η̇2 Chapter6-9-N2-eta2.pdf
10 ϕP1 −ct0(ϕ̇P1 − ϕ̇1) Chapter6-10-N2-phiP1.pdf
11 ϕP2 −ct0(ϕ̇2 − ϕ̇P2) Chapter6-11-N2-phiP2.pdf
12 ϕ1 ct0(ϕ̇P1 − ϕ̇1) − ct0ϕ̇1 Chapter6-12-N2-phi1.pdf
13 ϕ2 ct0(ϕ̇P2 − ϕ̇2) − ct0ϕ̇2 Chapter6-13-N2-phi2.pdf
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Figure 6.3: Axial and torsional elastic MMET system spin-up, angular displacement ofψ

(Tn = 4.01)
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Figure 6.4: Axial and torsional elastic MMET system spin-up displacement ofψ (Tn =
400.01)
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Figure 6.5: Axial and torsional elastic MMET system elliptical orbit angular position ofθ

(Tn = 4.01)
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Figure 6.6:Axial and torsional elastic MMET system elliptical orbit angular position ofθ

(Tn = 400.01)
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Figure 6.7: Axial and torsional elastic MMET system base point distance R (Tn = 4.01)
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Figure 6.8:Axial and torsional elastic MMET system base point distance R (Tn = 400.01)
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Figure 6.9: Axial and torsional elastic MMET system out-of-plane angle ofα (Tn = 4.01)
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Figure 6.10:Axial and torsional elastic MMET system out-of-plane angle ofα (Tn = 400.01)

. Figures6.3 to 6.4are the numerical results for the MMET system’s spin-upψ. The

results show the discretised MMET system with axial and torsional elasticity perfor-

mance periodically on Earth orbit within the range -0.32 to 0.32 rad over the number

of cycles of periodTn = 4.01 and 400.01.

. θ andR are the position generalised coordinates, whose responses are given in Fig-

ures6.5, 6.6 and6.7, 6.8 for the short (Tn = 4.01) and long (Tn = 400.01) simulation
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Figure 6.11: Axial and torsional elastic MMET system rolling angle ofγ (Tn = 4.01)

0 0.5 1 1.5 2 2.5 3

x 10
4

-4.15

-4.1

-4.05

-4

-3.95

-3.9

time(sec)

et
a1

[t]
(m

)

0 0.5 1 1.5 2 2.5 3

x 10
4

-10

-9

-8

-7

-6

time(sec)

et
aP

1[
t](

m
)

Figure 6.12:Axial displacement responsesη1 andηP1 (Tn = 4.01)

times, respectively, and the MMET system can be located via the position coordinates

on an elliptical orbit, which are same as they were discussed in Chapter5.

. The out-of-plane angleα, as shown in Figures6.9and6.10, the fluctuant plots depict

the steady motion within - 0.7 to 0.7 rad, with the non-zero initial conditionsα(0) =
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Figure 6.13:Axial displacement responsesη1 andηP1 (Tn = 400.01)
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Figure 6.14:Axial displacement responsesη2 andηP2 (Tn = 4.01)
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Figure 6.15:Axial displacement responsesη2 andηP2 (Tn = 400.01)
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Figure 6.16:Torsional displacement responseϕP1 (Tn = 400.01)
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Figure 6.17:Torsional displacement responseϕ1 (Tn = 400.01)
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Figure 6.18:Torsional displacement responseϕP2 (Tn = 400.01)

197



0.5 1 1.5 2 2.5 3

x 10
6

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
x 10

-3

time(sec)

ph
i2

(r
ad

)

Figure 6.19:Torsional displacement responseϕ2 (Tn = 400.01)

0.001 rad anḋα(0) = 0.001 rad/s

. Figure6.11states the tether subspan’s rigid rolling angular displacement, with given

non-zero initial conditionsγ(0) = 0.001 rad anḋγ(0) = 0.001 rad/s; its response moves

up in a linear way over the simulation time.

. Figures6.12to 6.15are the MMET system’s axial elastic motion over the simulation

timeTn = 4.01 and 400.01 for the discrete mass pointsMP1,m1 andMP2,m2, respec-

tively, which are same as the axial motions in Chapter5, as it has been discussed in

section5.9.

. The torsional motions can be observed in Figures 6.16, 6.17, 6.18 and 6.19 for the

payloads and mass points -MP1, m1 andMP2, m2, which express the convergent

torsional behaviours forϕ1, ϕ2, ϕP1 andϕP2. with their initial values 0.001. On the

other hand, with zero initial values, all the torsional motions remain zero valued, which

is the one of the most common situations for the MMET system application. For the

torsional elastic motions are independent of the other elastic motions, the numerical

results should be same in Chapters 6 and 7.

Similar to the rigid body rolling motions, the torsional elastic motion is independent of
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the other elastic motions, whose simulation results can be effected by its initial values,

if given non-zero initial values, the torsional elatic behaviour can be start or stop by

giving a proper zero or non-zero initial conditions, numerically.
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6.8 Conclusions

With an arbitrary choice ofN = 10 mass points, by using the Lagrange’s procedure, a discre-

tised MDOF MMET system has been proposed for the axial and torsional elastic behaviours.

To deal with the numerical time-consuming simulation difficulties, this MMET system

has been reduced to aN = 2 mass points MMET system with the same discretisation scheme,

and a reduced set of nonlinear ODEs and its numerical results have been obtained, which

show that the MMET system’s torsional elastic motions are decoupling from axial elastic

motions and other rigid body motions, and the rigid body and axial elastic behaviours are

same as the MMET system in Chapter 5.

The torsional elastic motions are sensitive to the initial values for the torsional gener-

alised coordinatesϕ1,ϕ2,ϕP1 andϕP2, and are decoupling from the MMET system’s other

motions.

This chapter is the second stage in the modelling for the discretised MMET system, by

using the Lagrangian dynamics, which will be taken as the basic model for the pendular

modelling in the chapter which follows.
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Chapter 7

Dynamical Modelling for a Discretised

Flexible MMET System

7.1 Introduction

Based on the MMET model in Chapter 6, a MDOF discretised flexible MMET system with

an arbitrary choice ofN = 10 mass points is investigated by involving pendular elasticity in

this chapter. As mentioned in section 1.4, the word ‘flexible’ means that this MMET system

incorporates axial, torsional and pendular elasticity. It must be clear that the ‘pendular’

elasticity in this Chapter means a set ofN coupled pendulums whenN equals the number of

elements between each mass element in each of the tether sub-span.

As shown in Figures 7.1 and 7.2, there are two parts of the pendular elasticity, which are

expressed on the planex0 −O− y0 and the planez0 −O− y0, respectively,

〈1〉 As shown in Figure 7.1, for the pendular elasticity referenced on the planex0−O−

y0, it is represented by a string of torsional ‘spring-damper’ groups{kli, cli}, which

connect the mass points ofmi in series. With the assumption ofkl1 = . . . = kl12 ,

cl1 = . . . = cl12, all the torsional ‘spring-damper’ groups are referenced onto the plane

x0−O− y0, as shown in Figure 7.3. Thel in the subscript means the pendular elastic

parameter, and the generalised coordinatesχi describe the motions for mass pointsmi

(i = 1,...,10) of the pendular elasticity on the planex0 −O− y0.
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Figure 7.1:Pendular elastic MMET tether with 10 discrete mass points -x0 −O− y0
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Figure 7.2:Pendular elastic MMET tether with 10 discrete mass points -z0 −O− y0
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〈2〉 Meanwhile, as shown in Figure7.2, for the pendular elasticity referenced on the

planez0 − O − y0, a string of torsional ‘spring-damper’ groups{kli, cli} connect the

discrete mass pointsmi, with the assumptionkl1 = . . . = kl12, cl1 = . . . = cl12, all the

torsional ‘spring-damper’ groups are referenced onto the planez0−O− y0, as shown

in Figure7.4. The generalised coordinatesζi describe the behaviours for mass points

mi (i = 1,...,10) of the pendular elasticity on the planez0 −O− y0.

Figure 7.3: Reference onto the planex0 −O− y0 for MMET pendular elasticity

Figure 7.4: Reference onto the planez0 −O− y0 for MMET pendular elasticity

To summarise the flexible MMET modelling process, based on the serial spring and

damper assumptionsB4 andB5, it can be listed,

〈1〉 for axial elasticity,k0 = k1 = k2 = . . . = k12, c0 = c1 = c2 = . . . = c12, where

thek0 andc0 are the default stiffness and damping coefficient values;
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〈2〉 for torsional elasticity,kt0 = kt1 = kt2 = . . . = kt12, ct0 = ct1 = ct2 = . . . =

ct12, where thekt0 andct0 are the default stiffness and damping coefficient values;

〈3〉 for pendular elasticity both on the planex0 −O − y0 and the planez0 −O − y0,

kl0 = kl1 = kl2 = . . . = kl12, cl0 = cl1 = cl2 = . . . = cl12, where thekl0 andcl0

are the default stiffness and damping coefficient values. The discretised mass points

m0 = m1 = m2 = . . . = m10, where them0 is the default mass value;

7.2 Potential Energy

The tether’s potential energy is given in equation (7.2.1), whereμ is the product of the

universal gravitational constantG with the Earth’s mass.R1, R2 andRmi (i = 1 to 10) are the

same as that defined in Chapter5.

U = −
μMP1

R1
−
μMP2

R2
−
μM0

R
−
μm1

Rm1
−
μm2

Rm2
− ∙ ∙ ∙−

μm10

Rm10

+ SE|axial + SE|torsional + SE|pendular

(7.2.1)

Where theSE|axial and SE|torsional terms are given in equations (5.4.2) and (6.2.2),

SE|pendular term is the strain energy of the two subspans taking pendular elasticity into

account, as stated in equation (7.2.2).

TheCE|pendular quantity is an assumed pendular dissipation function, and the damping

coefficient in each group’s elastic element is assumed to be in the form of classical linear

viscous damping.

SE|pendular =
1

2
kl1(χP1 − χ1)

2 +
1

2
kl2(χ1 − χ2)

2 + ∙ ∙ ∙+
1

2
kl6χ

2
5

+
1

2
kl7χ

2
6 + ∙ ∙ ∙+

1

2
kl12(χ10 − χP2)

2+

1

2
kl1(ζP1 − ζ1)

2 +
1

2
kl2(ζ1 − ζ2)

2 + ∙ ∙ ∙+
1

2
kl6ζ

2
5

+
1

2
kl7ζ

2
6 + ∙ ∙ ∙+

1

2
kl12(ζ10 − ζP2)

2

(7.2.2)
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CE|pendular =
1
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(7.2.3)

With kl0 = kl1 = . . . = kl12, cl0 = cl1 = . . . = cl12, equation (7.2.2) can be re-written as

equation (7.2.4), and equation (7.2.3) can be reformed as equation (7.2.5), wherekl0 andcl0

are the default stiffness and damping coefficient values.

SE|pendular =
1

2
kl0
(
(χP1 − χ1)

2 + (χ1 − χ2)
2 + ∙ ∙ ∙+ χ25 + χ

2
6 + ∙ ∙ ∙+ (χ10 − χP2)

2
)
+

1

2
kl0
(
(ζP1 − ζ1)

2 + (ζ1 − ζ2)
2 + ∙ ∙ ∙+ ζ25 + ζ

2
6 + ∙ ∙ ∙+ (ζ10 − ζP2)

2
)

(7.2.4)

CE|pendular =
1

2
cl0
(
(χ̇P1 − χ̇1)

2 + (χ̇1 − χ̇2)
2 + ∙ ∙ ∙+ χ̇25χ̇

2
6 ∙ ∙ ∙+ (χ̇10 − χ̇P2)

2
)
+

1

2
cl0
(
(ζ̇P1 − ζ̇1)

2 + (ζ̇1 − ζ̇2)
2 + ∙ ∙ ∙+ ζ̇25ζ̇

2
6 ∙ ∙ ∙+ (ζ̇10 − ζ̇P2)

2
)

(7.2.5)

7.3 Kinetic Energy

The kinetic energy of the MMET system is given in equation (7.3.1).
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2
1 + ż
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2
2 + ż
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ẋ2m2 + ẏ
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(7.3.1)

7.4 Generalised Coordinates

Besides the generalised coordinatesq1 to q29, which are the rigid body, axial and torsional

generalised coordinates, as discussed in section6.4, the relative pendular generalised coor-

dinatesχi andζi are included in this chapter, in which

. The generalised coordinates for the rigid body, axial elastic and torsional elastic

motions have been discussed in sections5.6and6.4, in whichq1 to q29.

. The generalised relative pendular coordinatesχi are for the relative pendular motions

referenced on planex0 − O − y0, χP1 andχP2 are for the pendular motions of mass

payloadsMP1 andMP2, χ1 to χ10 are for the pendular motions of discrete mass points

m1 tom10, in whichq30 to q41.

207



. The generalised relative pendular coordinatesζi are for the relative pendular motions

referenced on planez0 − O − y0, ζP1 andζP2 are for the pendular motions of mass

payloadsMP1 andMP2, ζ1 to ζ10 are for the pendular motions of discrete mass points

m1 tom10, in whichq42 to q53.

7.5 Generalised Forces

. The generalised forcesQ1 toQ29 are the rigid body, axial and torsional generalised

coordinates, as listed in Table7.1.

. The generalised forcesQ30 toQ53 are the pendular generalised forces for mass points

mi and payloadsMP1 andMP2, as listed in Table7.2, which comes from an assumed

dissipation function based on Rayleigh damping.

7.6 Governing Equations of Motion

Lagrange’s equations are used to generate the governing equations of motion, the full equa-

tions are to be found in the path CD-ROM/axial-torsional-pendular/N10/, as listed in Tables

7.1and7.2.

Similar to Chapter5, there are 53 nonlinear equations for 53 generalised coordinates of

the flexible MMET system,and it has been found that the ‘out of memory’ problem solves the

MMET system of coupled differential equations, as long as each variable has the appropriate

number of conditions, as discussed in section5.8.

To handle this problem and to speculate the interaction of the flexible MMET system, it

has reduced discretisation scheme right down toN = 2, then we use Lagrange’s equations

to derive a reduced set of nonlinear governing equations for a simplified flexible MMET

system, as shown in AppendixI, and the generalised coordinates for the MMET system with

two discrete mass points are given in Table7.3.

I The detail modelling procedure for a flexible MMET system with two discretised

mass points are attached in AppendixI.
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Table 7.1: Generalised coordinates and equations of motion (CD-ROM/axial-
torsional/N10/)

i qi Qi T U Equations ofMotion
1 ψ (3.5.13) (7.3.1) (7.2.1) Chapter7-1-N10-psi.pdf
2 θ (3.5.14) Chapter7-2-N10-theta.pdf
3 α (3.5.15) Chapter7-3-N10-alpha.pdf
4 γ (3.5.17) Chapter7-4-N10-gamma.pdf
5 R (3.5.16) Chapter7-5-N10-R.pdf
6 ηP1 −c0(η̇P1 − η̇1) Chapter7-6-N10-etaP1.pdf
7 ηP2 −c0(η̇10 − η̇P2) Chapter7-7-N10-etaP2.pdf
8 η1 c0(η̇P1 − η̇1) − c0(η̇1 − η̇2) Chapter7-8-N10-eta1.pdf
9 η2 c0(η̇1 − η̇2) − c0(η̇2 − η̇3) Chapter7-9-N10-eta2.pdf
10 η3 c0(η̇2 − η̇3) − c0(η̇3 − η̇4) Chapter7-10-N10-eta3.pdf
11 η4 c0(η̇3 − η̇4) − c0(η̇4 − η̇5) Chapter7-11-N10-eta4.pdf
12 η5 c0(η̇4 − η̇5) − c0η̇5 Chapter7-12-N10-eta5.pdf
13 η6 c0(η̇7 − η̇6) − c0η̇6 Chapter7-13-N10-eta6.pdf
14 η7 c0(η̇6 − η̇7) − c0(η̇7 − η̇8) Chapter7-14-N10-eta7.pdf
15 η8 c0(η̇7 − η̇8) − c0(η̇8 − η̇9) Chapter7-15-N10-eta8.pdf
16 η9 c0(η̇8 − η̇9) − c0(η̇9 − η̇10) Chapter7-16-N10-eta9.pdf
17 η10 c0(η̇9 − η̇10) − c0(η̇10 − η̇P2) Chapter7-17-N10-eta10.pdf
18 ϕP1 −ct0(ϕ̇P1 − ϕ̇1) Chapter7-18-N10-phiP1.pdf
19 ϕP2 −ct0(ϕ̇10 − ϕ̇P2) Chapter7-19-N10-phiP2.pdf
20 ϕ1 ct0(ϕ̇P1 − ϕ̇1) − ct0(ϕ̇1 − ϕ̇2) Chapter7-20-N10-phi1.pdf
21 ϕ2 ct0(ϕ̇1 − ϕ̇2) − ct0(ϕ̇2 − ϕ̇3) Chapter7-21-N10-phi2.pdf
22 ϕ3 ct0(ϕ̇2 − ϕ̇3) − ct0(ϕ̇3 − ϕ̇4) Chapter7-22-N10-phi3.pdf
23 ϕ4 ct0(ϕ̇3 − ϕ̇4) − ct0(ϕ̇4 − ϕ̇5) Chapter7-23-N10-phi4.pdf
24 ϕ5 ct0(ϕ̇4 − ϕ̇5) − ct0ϕ̇5 Chapter7-34-N10-phi5.pdf
25 ϕ6 ct0(ϕ̇7 − ϕ̇6) − ct0ϕ̇6 Chapter7-25-N10-phi6.pdf
26 ϕ7 ct0(ϕ̇6 − ϕ̇7) − ct0(ϕ̇7 − ϕ̇8) Chapter7-26-N10-phi7.pdf
27 ϕ8 ct0(ϕ̇7 − ϕ̇8) − ct0(ϕ̇8 − ϕ̇9) Chapter7-27-N10-phi8.pdf
28 ϕ9 ct0(ϕ̇8 − ϕ̇9) − ct0(ϕ̇9 − ϕ̇10) Chapter7-28-N10-phi9.pdf
29 ϕ10 ct0(ϕ̇9 − ϕ̇10) − ct0(ϕ̇10 − ϕ̇P2) Chapter7-29-N10-phi10.pdf
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Table 7.2: Generalised coordinates and equations of motion (CD-ROM/axial-
torsional/N10/) (continue)

i qi Qi T U Equations ofMotion
30 χP1 −cl0(χ̇P1 − χ̇1) Chapter7-30-N10-chiP1.pdf
31 χP2 −cl0(χ̇10 − χ̇P2) Chapter7-31-N10-chiP2.pdf
32 χ1 cl0(χ̇P1 − χ̇1) − cl0(χ̇1 − χ̇2) Chapter7-32-N10-chi1.pdf
33 χ2 cl0(χ̇1 − χ̇2) − cl0(χ̇2 − χ̇3) Chapter7-33-N10-chi2.pdf
34 χ3 cl0(χ̇2 − χ̇3) − cl0(χ̇3 − χ̇4) Chapter7-34-N10-chi3.pdf
35 χ4 cl0(χ̇3 − χ̇4) − cl0(χ̇4 − χ̇5) Chapter7-35-N10-chi4.pdf
36 χ5 cl0(χ̇4 − χ̇5) − cl0χ̇5 Chapter7-36-N10-chi5.pdf
37 χ6 cl0(χ̇7 − χ̇6) − cl0χ̇6 Chapter7-37-N10-chi6.pdf
38 χ7 cl0(χ̇6 − χ̇7) − cl0(χ̇7 − χ̇8) Chapter7-38-N10-chi7.pdf
39 χ8 cl0(χ̇7 − χ̇8) − cl0(χ̇8 − χ̇9) Chapter7-39-N10-chi8.pdf
40 χ9 cl0(χ̇8 − χ̇9) − cl0(χ̇9 − χ̇10) Chapter7-40-N10-chi9.pdf
41 χ10 cl0(χ̇9 − χ̇10) − cl0(χ̇10 − χ̇P2) Chapter7-41-N10-chi10.pdf
42 ζP1 −cl0(ζ̇P1 − ζ̇1) Chapter7-42-N10-zetaP1.pdf
43 ζP2 −cl0(ζ̇10 − ζ̇P2) Chapter7-43-N10-zetaP2.pdf
44 ζ1 cl0(ζ̇P1 − ζ̇1) − cl0(ζ̇1 − ζ̇2) Chapter7-44-N10-zeta1.pdf
45 ζ2 cl0(ζ̇1 − ζ̇2) − cl0(ζ̇2 − ζ̇3) Chapter7-45-N10-zeta2.pdf
46 ζ3 cl0(ζ̇2 − ζ̇3) − cl0(ζ̇3 − ζ̇4) Chapter7-46-N10-zeta3.pdf
47 ζ4 cl0(ζ̇3 − ζ̇4) − cl0(ζ̇4 − ζ̇5) Chapter7-47-N10-zeta4.pdf
48 ζ5 cl0(ζ̇4 − ζ̇5) − cl0ζ̇5 Chapter7-48-N10-zeta5.pdf
49 ζ6 cl0(ζ̇7 − ζ̇6) − cl0ζ̇6 Chapter7-49-N10-zeta6.pdf
50 ζ7 cl0(ζ̇6 − ζ̇7) − cl0(ζ̇7 − ζ̇8) Chapter7-50-N10-zeta7.pdf
51 ζ8 cl0(ζ̇7 − ζ̇8) − cl0(ζ̇8 − ζ̇9) Chapter7-51-N10-zeta8.pdf
52 ζ9 cl0(ζ̇8 − ζ̇9) − cl0(ζ̇9 − ζ̇10) Chapter7-52-N10-zeta9.pdf
53 ζ10 cl0(ζ̇9 − ζ̇10) − cl0(ζ̇10 − ζ̇P2) Chapter7-53-N10-zeta10.pdf

210



Table 7.3: Generalised coordinates and equations of motion (CD-ROM/axial-torsional/N2/)

i qi Qi T U Equations ofMotion
1 ψ (3.5.13) (I.2.1) (I.1.1) Chapter7-1-N2-psi.pdf
2 θ (3.5.14) Chapter7-2-N2-theta.pdf
3 α (3.5.15) Chapter7-3-N2-alpha.pdf
4 γ (3.5.17) Chapter7-4-N2-gamma.pdf
5 R (3.5.16) Chapter7-5-N2-R.pdf
6 ηP1 −c0(η̇P1 − η̇1) Chapter7-6-N2-etaP1.pdf
7 ηP2 −c0(η̇2 − η̇P2) Chapter7-7-N2-etaP2.pdf
8 η1 c0(η̇P1 − η̇1) − c0η̇1 Chapter7-8-N2-eta1.pdf
9 η2 c0(η̇P2 − η̇2) − c0η̇2 Chapter7-9-N2-eta2.pdf
10 ϕP1 −ct0(ϕ̇P1 − ϕ̇1) Chapter7-10-N2-phiP1.pdf
11 ϕP2 −ct0(ϕ̇2 − ϕ̇P2) Chapter7-11-N2-phiP2.pdf
12 ϕ1 ct0(ϕ̇P1 − ϕ̇1) − ct0ϕ̇1 Chapter7-12-N2-phi1.pdf
13 ϕ2 ct0(ϕ̇P2 − ϕ̇2) − ct0ϕ̇2 Chapter7-13-N2-phi2.pdf
14 χP1 −cl0(χ̇P1 − χ̇1) Chapter7-10-N2-chiP1.pdf
15 χP2 −cl0(χ̇2 − χ̇P2) Chapter7-11-N2-chiP2.pdf
16 χ1 cl0(χ̇P1 − χ̇1) − cl0χ̇1 Chapter7-12-N2-chi1.pdf
17 χ2 cl0(χ̇P2 − χ̇2) − cl0χ̇2 Chapter7-13-N2-chi2.pdf
18 ζP1 −cl0(ζ̇P1 − ζ̇1) Chapter7-10-N2-zetaP1.pdf
19 ζP2 −cl0(ζ̇2 − ζ̇P2) Chapter7-11-N2-zetaP2.pdf
20 ζ1 cl0(ζ̇P1 − ζ̇1) − cl0ζ̇1 Chapter7-12-N2-zeta1.pdf
21 ζ2 cl0(ζ̇P2 − ζ̇2) − cl0ζ̇2 Chapter7-13-N2-zeta2.pdf
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7.7 Simulations and Discussions

Figures 7.5 to 7.25 are the numerical results obtained byMATHEMATICA for the flexible

MMET system with two discrete mass points, and the motion equations are listed in Table

7.3. The figures in this section are the selected numerical results for the flexible MMET

system over a short simulation time (the number of cycles of period,Tn = 4.01) and long

simulation time (the number of cycles of period,Tn = 400.01), respectively, as given in

Appendix C.
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Figure 7.5: The flexible MMET system spin-upψ (Tn = 4.01)
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Figure 7.6:The flexible MMET system spin-upψ (Tn = 400.01)
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Figure 7.7: The flexible MMET system base point distance R (Tn = 4.01)
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Figure 7.8:The flexible MMET system base point distance of R (Tn = 400.01)
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Figure 7.9: The flexible MMET system elliptical orbit angular position ofθ (Tn = 4.01)
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Figure 7.10:The flexible MMET system elliptical orbit angular position ofθ (Tn = 400.01)
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Figure 7.11: The flexible MMET system out-of-plane angleα (Tn = 4.01)
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Figure 7.12: The flexible MMET system out-of-plane angleα (Tn = 400.01)
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Figure 7.13: The flexible MMET system rolling angleγ (Tn = 4.01)
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Figure 7.14:Axial displacement responsesη1 andηP1 (Tn = 4.01)
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Figure 7.15:Axial displacement responsesη1 andηP1 (Tn = 400.01)
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Figure 7.16:Axial displacement responsesη2 andηP2 (Tn = 4.01)
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Figure 7.17:Axial displacement responsesη2 andηP2 (Tn = 400.01)
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Figure 7.18:Pendular displacement responseχP1 (Tn = 4.01)
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Figure 7.19:Pendular displacement responseχ1 (Tn = 4.01)

. Figures7.5 and7.6 are the plots for the flexible MMET system spin-up behaviour,

which varies within the range -0.32 to 0.32 rad, and their shapes are different from the

responses for the MMET systems with axial or torsional elasticity.

. As shown in Figures7.7 and7.8, R is the distance from the Earth to the MMET

system COM over simulation timeTn = 4.01 and 400.01, which varies within the

range ofrp to ra, and together with Figures7.9and7.10for the true anomalyθ, which

indicate that the MMET system goes around the Earth periodically on an elliptical

orbit.
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Figure 7.20:Pendular displacement responseχP2 (Tn = 4.01)
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Figure 7.21:Pendular displacement responseχ2 (Tn = 4.01)

. Figures7.11and7.12are out-of-plane angleα responses, which are changing within

-0.6 to 0.6 rad fluctuatedly.

. As shown in Figure7.13, the rigid rolling angleγ stays in a steady linear increasing

trend, with given non-zero initial conditionsγ(0) = 0.001 rad anḋγ(0) = 0.001 rad/s.

As also discussed in sections6.7and5.9, since the motion ofγ is independent of the

other motions, the zero initial value setting can help to control this rigid body rolling

motion.

. Figures7.14and7.15are the axial elastic plots for the discrete mass pointm1 and

payloadMP1, Figures7.16and7.17are the axial elastic plots for the discrete mass
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Figure 7.22:Pendular displacement responseζP1 (Tn = 4.01)
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Figure 7.23:Pendular displacement responseζ1 (Tn = 4.01)

pointm2 and payloadMP2, which express the MMET system’s axial elastic motions

along each of the tether subspans over the simulation timeTn = 4.01 and 400.01,

symmetrically.

The η1’s response keeps steadily within the range -3.4 to -4.4 metre and theηP1’s

response are within the range -6 to -10.5 metre, meanwhie,η2 andηP2’s motions are

symmetric toη1 andηP1’s motions with respect to the MMET system COM, whose

ranges are 3.4 to 4.4 metre and 6 to 10.5 metre, respectively.

Similar to sections5.9and6.7, the curves ofη1 andη2 are with larger period thanηP1

andηP2’s responses respectively. Besides, they are also carrying some tiny oscillations
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Figure 7.24:Pendular displacement responseζP2 (Tn = 4.01)
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Figure 7.25:Pendular displacement responseζ2 (Tn = 4.01)

atηP1 andηP2’s peaks and bottoms, as can be observed in Figures7.14and7.16.

. The torsional motions are the same as Chapters5 and6, for the rigid body rolling

angel is a stand-along variable in the MMET system, which is decoupled from other

generalised coordinates, and the torsional motions have been discussed in Chapters5

and6.

. For the pendular motions referenced on planex0−O−y0, Figures7.18and7.19are

the pendular responses forMP1 andm1, and Figures7.20and7.21are the pendular

responses forMP2 andm2 over the simulation timeTn = 4.01.

The pendular motionsχP1 andχP2 for the payloadsMP1 andMP2 move with ups and
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downs within the range of -0.00045 and 0.00045 rad, and the pendular motionsχ1 and

χ2 for the discrete mass pointsm1 andm2 move within -0.000045 and 0.000045 rad.

. Similarily, for the pendular motions referenced on planez0 −O − y0, Figures7.22

and7.23are the pendular responses for payloadMP1 and mass pointm1, and Figures

7.24and7.25are the pendular responses for payloadMP2 and mass pointm2. The

pendular motionsζP1 andζP2 move within the range -0.00045 and 0.00045 rad and

with reducing oscillations for payloadsMP1 andMP2, and the pendular motionsζ1

andζ2 go within a range of -0.000045 and 0.000045 rad for mass pointsm1 andm2.

Figures7.18to 7.25are the pendular elastic angular displacement on planex0−O−y0

and planez0−O−y0, respectively, which indicate that the convergent pendular elastic

behaviours are also observed with reducing amplitude of oscillation and approaching

to zero. By involving the tether’s mass and mass moment of inertia, their amplitude

and shape are smaller and different from massless flexible MMET system’s response.

7.8 Conclusions

A MDOF discretised flexible MMET system with an arbitrary choice ofN = 10 mass points

on elliptical orbit has been discussed in this chapter, in which, which includes not only axial

and torsinal elasticity, but also the pendular elasticity as well.

As there were two parts of the pendular elasticity, referenced on the planex0 − O −

y0 and the planez0 − O − y0, χi andζi were selected as the generalised coordinates for

the two parts of motions related to pendular elasticity, respectively. By using Lagrange’s

equations, aN = 10 flexible MMET system has been built, then, in order to handle the

numerical simulation time-consuming difficulties on the current computational system, a

flexible MMET system withN = 2 mass points has been proposed to reduce the number of

the nonlinear ordinary differential equations, which can balance the numerical performance

and the MDOF discretisation scheme for the MMET system, as shown in Appendix I.

Table 7.4: Figures for spin-upψ in Chapters 5,6 and 7

Tether Type Figure No. (Tn = 400.01) Figure No. (Tn = 4.01)
Axial Elastic 5.4 5.5
Axial and Torsional Elastic 6.3 6.4
Flexible 7.5 7.6

To summarise, the numerical results in Chapters 5, 6 and 7 are listed in Tables 7.4 to

7.13.
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Table 7.5: Figures forR in Chapters 5,6 and 7

Tether Type Figure No. (Tn = 400.01) Figure No. (Tn = 4.01)
Axial Elastic 5.6 5.7
Axial and Torsional Elastic 6.7 6.8
Flexible 7.7 7.8

Table 7.6: Figures forθ in Chapters 5,6 and 7

Tether Type Figure No. (Tn = 400.01) Figure No. (Tn = 4.01)
Axial Elastic 5.9 5.8
Axial and Torsional Elastic 6.6 6.5
Flexible 7.10 7.9

Table 7.7: Figures forα in Chapters 5,6 and 7

Tether Type Figure No. (Tn = 400.01) Figure No. (Tn = 4.01)
Axial Elastic 5.11 5.10
Axial and Torsional Elastic 6.10 6.9
Flexible 7.12 7.11

Table 7.8: Figures forγ in Chapters 5,6 and 7

Tether Type Figure No. (Tn = 400.01) Figure No. (Tn = 4.01)
Axial Elastic - 5.12
Axial and Torsional Elastic - 6.11
Flexible - 7.13

Table 7.9: Figures forη1 andηP1 in Chapters 5,6 and 7

Tether Type Figure No. (Tn = 400.01) Figure No. (Tn = 4.01)
Axial Elastic 5.14 5.13
Axial and Torsional Elastic 6.13 6.12
Flexible 7.15 7.14

Table 7.10: Figures forη2 andηP2 Chapters 5,6 and 7

Tether Type Figure No. (Tn = 400.01) Figure No. (Tn = 4.01)
Axial Elastic 5.17 5.16
Axial and Torsional Elastic 6.15 6.14
Flexible 7.15 7.16

Table 7.11: Torsional elastic motions figures for Chapters 6 and 7

Tether Type Figure No. (Tn = 400.01) Figure No. (Tn = 4.01)
ϕP1 6.16 -
ϕ1 6.17 -
ϕP2 6.18 -
ϕ2 6.19 -

• Table7.4gives the spin-upψ plots for the MMET tether systems with discrete mass

points, with the given parameters in AppendixC. Theψ results in Chatpers5 and6

are with same range -0.325 to 0.325 rad, theψ results in Chapter7 are with smaller
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Table 7.12: Figures for pendular elasticity in Chapter 7 - planex0 −O− y0

Tether Type Figure No. (Tn = 400.01) Figure No. (Tn = 4.01)
χP1 - 7.20
χ1 - 7.19
χP2 - 7.20
χ2 - 7.21

Table 7.13: Figures for pendular elasticity in Chapter 7 - planez0 −O− y0

Tether Type Figure No. (Tn = 400.01) Figure No. (Tn = 4.01)
ζP1 - 7.24
ζ1 - 7.23
ζP2 - 7.24
ζ2 - 7.25

range -0.32 and 0.32 rad, which indicate that

. Including different quantity of mass moments of inertia, the MMET system’s

spin-up response in Chapter7 is different from the spin-up responses in Chapters

5 and6.

. The MMET system’s axial and pendular elastic motions are coupled to each

other, and the torsional elastic motion is decoupled from them.

• Table7.5 is for the tether’s position generalised coordinateR, which determines the

distance from the EarthE to the MMET system’s COM. In this case, givene = 0.2,rp

= 6.89×106 metre and thenra = 1.0335×107 metre, it goes within the range ofrp to

ra.

• Table7.6 is for the true anomalyθ, which is in a linear up-changing trend from 0 to

2500 rad coupling range of 0 to 0.5 rad fluctuation spread, over the number of cycles

of periodTn = 400.01, together with the position generalised coordinateR, which state

the tether systems go around the Earth in an elliptical orbit.

• Table7.7 is for the out-of-plane angleα with same initial conditions, theα curve

in Chapter7 is with smaller range -0.6 to 0.6 rad thanα curves in Chapters5 and6,

which state that the out-of-plane angleα’s motion can be effected by tether’s axial and

pendular elastic motions.

• Table7.8 is for the rigid rolling angleγ, which keep moving up in a linear way

over the full simulation time, it is a stand-alone generalised coordinate to the MMET

system’s generalised coordinates.
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• Tables7.9 and7.10are the figure list for the axial elastic motions for the MMET

systems withN = 2 discrete mass points, in which,

. The numerical results forη2 andηP2 are positive and the results forη1 andηP1

are negative, which indicate that the axial motions in the two tether subspans are

moving in an opposite direction with same local relative direction definition.

. Also, this different axial motions validate that the MMET tether system is a

symmetrical system with respect to the MMET system COM.

. The axial elastic motions can be effected by the pendular elastic motions by

including more mass moments of inertia.

• Table7.11are the list for the torsional elastic motions in Chapters6 and7, whose

motion is independent of the MMET systems’ other motions.

• Tables7.12and7.13are the list for the pendular elastic motions referenced on plane

x0 −O− y0 and planez0 −O− y0, which indicate that,

. The pendular elasticity for two tether subspans, referenced on the same plane

(x0 −O− y0 or z0 −O− y0), are with same behaviours to the other.

. The pendular elasticity for the same tether subspan, referenced on the different

planes (x0 −O− y0 andz0 −O− y0), are with similar curve shapes but slightly

smaller amplitudes.

. The pendular elastic motions can be effected by the axial elastic motions.

. The numerical simulation results have shown the convergence of the pendular

elastic behaviours, which are approaching to zero during given simulation time.

All subsequent analysis for control applications will henceforth include axial, torsional

and pendular elasticity within the MMET system.

With unsuitable parameter settings, such as too much masses difference between pay-

loads and tether subspans, too big or small stiffness, or damping coefficients, the numerical

simulations cannot be carried out to the end of the full simulation time, and integration error

occurs. Currently, this MMET model cannot generate a loop in the tether subspans; this

could be investigated in further studies.
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Chapter 8

Fuzzy Logic Control for MMET Spin-up

8.1 Introduction

Fuzzy logic theory was first proposed by Zadeh in 1965 [188], and was based on the con-

cept of fuzzy sets. Over recent years, fuzzy logic control (FLC) has been used in a wide

variety of applications in engineering, such as: in aircraft/spacecraft; in automated highway

systems; in autonomous vehicles; in washing machines; in process control; in robotics con-

trol; in decision-support systems; and in portfolio selection. Practically speaking, it is not

always possible to obtain a precise mathematical model for nonlinear, complex or ill-defined

systems. For example, in a complex industrial system, a skilled human operator can learn

from his own experience by observing the inputs and outputs of a process and adjusting the

inputs to obtain the desired outputs.

It is difficult to process the modelling for a complex system and the control system de-

velopment, and even if a relatively accurate model of a dynamic system can be developed,

it is often too complex to use for controller development, especially for many conventional

control design procedures which require restrictive assumptions for the plant.

It is necessary to know system’s mathematical model or to make some experiments for

tuning conventional proportional-integral-derivative (PID) parameters. However, it is known

that conventional PID controllers do not generally work well for nonlinear systems, and

particularly for complex and vague systems which have no precise mathematical models.

When compared to the conventional controller, the main advantage of fuzzy logic is that no

mathematical modelling is required. Since the controller rules are based on the knowledge

of the system behaviour and the experience of the control engineer, the FLC requires less

complex mathematical modelling than the classical controller does.
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Conventional control methods provide a different way of approaching the construction

of nonlinear MMET systems, such as feedback-linearisation control and PID control, even

when a reasonably good model of the plant is available which satisfies the necessary assump-

tions. According to the previous chapters4 to 7, the MMET system’s nonlinear behaviours

can hardly be controlled by the conventional controllers, which can offer quite a poor solu-

tion to the MMET spin-up control problem.

The FLC is a practical alternative for a variety of challenging control applications since it

can provide a convenient method for constructing nonlinear controllers via the use of heuris-

tic information. The heuristic information may come from an operator, which acts as a

‘human-in-the-loop’ controller and from which experiential data is obtained.

Generally, in the FLC design methodology, the human operator needs to write down a

set of rules which establish how to control the process. This is called the rule-base and

thenceforth a fuzzy controller can emulate the decision-making process of the human by

following the rule-base. In other cases, the heuristic information may come from a control

engineer who has performed extensive mathematical modelling, analysis, and development

of control algorithms for a given process. Again, such expertise is loaded into the fuzzy con-

troller to automate the reasoning processes and actions of the expert. Regardless of where the

heuristic control knowledge comes from, fuzzy control provides a user-friendly formalism

which can be used for representing and implementing the ideas which can help to achieve

high-performance control [189] [190] [221] [222].

Basically, the fuzzy controller block diagram is given in Figure8.1, and is taken from

Passino [190] [221] [222], which shows the architecture of a fuzzy controller in a closed-

loop control system. The plant outputs are denoted byy(t), its inputs are denoted byu(t),

the reference input to the fuzzy controller is denoted byr(t), and the error betweeny(t)

andr(t) is denoted bye(t). Generally, the fuzzy controller gathers plant output datay(t),

compares it to the reference inputr(t), and then decides what the plant inputu(t) should be

in order to ensure that the performance objectives will be required.

As shown in Figure8.1, the fuzzy controller has four main components:

• A ‘rule-base’ or a set of ‘IF-THEN’ rules, which contains a fuzzy logic quantification

of the expert’s linguistic description of how to achieve good control;

• An ‘inference mechanism’, which emulates the expert’s decision making in the inter-

pretation and application of knowledge about how best to control the plant. A set of

such ‘IF-THEN’ rules is loaded into the rule-base, and an inference strategy is chosen.
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Figure 8.1: Fuzzy logic controller architecture, cited from [190] [221] [222]

Thenceforth the system is ready to be tested to see if the closed-loop specifications are

needed;

• A ‘fuzzification’ interface, which converts ‘crisp’ inputs into ‘fuzzy’ information that

the inference mechanism can be interpreted and compared to the rules in the rule-base;

• A ‘defuzzification’ interface, converts the conclusions by the inference mechanism

into crisp(actual) inputs for the plant.

Briefly, fuzzy control system can be designed in the following steps:

〈1〉 Choosing the fuzzy controller inputs and outputs;
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Figure 8.2: The FLC control loop for the MMET spin-up [221] [222]

〈2〉 Choosing the preprocessing that is needed for the controller inputs and possibly

postprocessing that is needed for the outputs;

〈3〉 Designing each of the four components of the fuzzy controller, as shown in Figure

8.1, which including fuzzification, inference mechanism, rule-base and defuzzifica-

tion;

8.2 Control Objective

The primary objective of this fuzzy logic control design is to develop a FLC controller that

makes the MMET spin-up performance -ψ(t) and ψ̇(t) - move to its desired position as
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quickly as possible, with little or no endpoint oscillation. The MMET system with axial,

torsional and pendular elasticity has complex, nonlinear dynamical flexible behaviour, as

shown in chapter7, and the behaviour’s characteristics will change as the parameters are

changed, such as when the payload has been transferred from the tether. A 2-in-1-out FLC

for MMET system spin-up will be discussed in this chapter, whose structure is given in

Figure8.2[221] [222].

8.3 Linguistic Descriptions

Suppose that the human expert shown in Figure8.3 provides a description of how best to

control the plant in some natural language (e.g. English). The linguistic description pro-

vided by the expert can generally be broken into several parts. There will be ‘linguistic

variables’ which describe each of the time varying fuzzy controller inputs and outputs, the

linguistic description will be loaded into the fuzzy controller, for the MMET system FLC,

and is indicated in Table8.1.

As shown in Figure8.2, the plant is the MMET modelling with axial, torsional and

pendular elasticity, which is explored in chapter7. The plant outputs are denoted byΨ(t), its

inputs are denoted byL(t), the reference input to the fuzzy controller is denoted byΨRef(t),

and the error betweenΨ(t) andΨRef(t) is denoted bye(t). Generally, the ‘crisp’ error

and change-in-error are denotede(t) andec(t), the fuzzified error and change-in-error are

denoted byE andEC. The FLC gathers plant output dataΨ(t), compares it to the reference

input ΨRef(t), and then decides what the plant inputL(t) should be to generate that the

MMET spin-up performance objectives will be required.

Table 8.1: Inputs and output linguisticdescription

Input-1 ‘error’ e(t)

Input-2 ‘change-in-error’ ec(t)
Output-1 ‘length’ L(t)

8.4 Inputs and Outputs

Consider a FLC with human-in-the-loop, whose responsibility is to control the MMET sys-

tem, as shown in Figure8.2. There are two inputs and one output in this FLC, and it can be

referred to as a ‘2-in-1-out’ FLC, in which the error and change-in-error between the spin-up

angular velocityψ̇(t) and the spin-up angular accelerationψ̈(t) with the reference signals

ψ̇Ref(t) and ψ̈Ref(t) are selected as the inputs, as given in equations (8.4.1) and (8.4.2).
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Figure 8.3: The Human control loop for the MMET spin-up

Meanwhile, the tether subspan lengthL(t) is the output from the FLC and the input to the

MMET system. For the MMET spin-up control, only the tether lengthL(t) is allowed as

the input control signal, as given in Table8.1. More about the FLC work process will be

discussed in section8.6.

e (t) =‖ ψ̇(t) − ψ̇Ref(t) ‖ (8.4.1)

ec (t) =‖ ψ̈(t) − ψ̈Ref(t) ‖ (8.4.2)

Once the fuzzy controller inputs and outputs are chosen, the next step is to determine

what the reference inputs are. For the MMET system, the choice of the reference inputs

areψ̇Ref(t) = 0 andψ̈Ref(t) = 0, then equations (8.4.3) and (8.4.4), where‖ ∗ ‖ is the

normalisation operation, which will be discussed in section8.5.1.

e (t) =‖ ψ̇(t) ‖ (8.4.3)
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ec (t) =‖ ψ̈(t) ‖ (8.4.4)

8.5 Fuzzification

A process of fuzzification converts its numeric or crisp inputs (e(t) and ec(t)) to input

fuzzified inputs (E andEC), so they will be used by the fuzzy inference system. The fuzzified

inputs are used to quantify the information in the rule-base, and the inference mechanism

operates on fuzzy sets (E andEC) to produce output fuzzy sets (U ). Basically, the fuzzy

set is a different representation for the crisp numbers, in this context, and it has utilised the

scaling gains or factors to perform the fuzzification process, as given in equations (8.5.1)

and (8.5.2), whereE andEC are the fuzzified input values,e(t) and ec(t) are the crisp

input values,Ki = {Ke, Kec} is the scaling factor as defined in equation(8.5.6). Equations

(8.5.1) and (8.5.2) are the fuzzification fore(t) andec(t), in which,e(t) andec(t) are the

normalised inputs by the normalisation process given in section 8.5.1.

E = Ke × e(t) (8.5.1)

EC = Kec × ec(t) (8.5.2)

8.5.1 Normalisation

Fuzzification is an actual normalisation process which decomposes the system inputs into

the fuzzy sets. That is, it is used to map variables from practical value range[xmin, xmax]

to fuzzy value range[−1, 1], as shown in Figures8.4, 8.5 and8.6. Briefly, in the FLC nor-

malisation designing process for the MMET system, there are 3 steps for the normalisation

process:

〈1〉 Scale factor generation, as shown in Figure 8.4. This step is to calculate the scale

factor according to the input range[xmin, xmax] of the raw dataxi, as given in equation

(8.5.3);

norm xi|[0,1] =
xi − xmin

xmax − xmin
(8.5.3)

〈2〉 Scale operation, as shown in Figure 8.5, all the input data are scaled to the range

of [lower, upper], which are[−1, 1] in this case, as given in equation (8.5.4);

norm xi|scaled = (upper− lower)× norm xi|[0,1] (8.5.4)
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〈3〉 Shift operation, as shown in Figure8.6, the data are shifted to the new range

[lower, upper], as given in equation (8.5.5);

norm xi|[lower,upper] = lower+ norm xi|scaled (8.5.5)

Figure 8.4: Normalisation step 1: scale factor generation

Figure 8.5: Normalisation step 2: scale operation

Figure 8.6: Normalisation step 3: shift operation

The scale factorKi can be defined in equation (8.5.6), which can be generated from the

input data sourcexi, and the max and min values of the input data are denoted byxmax and

xmin. For the MMET spin-up control FLC, the scale factors fore(t) andec(t) are denoted

byKe andKec, and are given in equations (8.5.7) and (8.5.8).

Ki =
xi − xmin

xi (xmax − xmin)
(8.5.6)
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In Figure8.4, the data range[xmin, xmax] comes from the practical inputṡψ andψ̈ of

the FLC for the MMET system spin-up control, the outputs of the normalisation aree(t) and

ec(t).

Ke =
ei(t) − emin(t)

ei(t) (emax(t) − emin(t))
(8.5.7)

Kec =
eci(t) − ecmin(t)

eci(t) (ecmax(t) − ecmin(t))
(8.5.8)

8.5.2 Membership functions

A membership function (MF) is a curve which defines how each point in the input space

is mapped to a membership value between 0 and 1. The function itself can be an arbitrary

curve whose shape can be defined as a function that suits us from the point of view of

simplicity, convenience, speed, and efficiency. The MF for the MMET system is a Gaussian

combination membership function, which is given in equation (8.5.9) [191] and in Figure

8.7, thec defines the position of the MF curve, and theσ defines the scale of the MF curve.

The inputs of error(E) and change-in-error (EC) and the fuzzified control signal output (U)

are interpreted from this fuzzy set, and the appropriate degree of membership is obtained.

μ (x) = exp

(

−
(x− c)

2

2σ2

)

(8.5.9)

Figure 8.7: Gaussian combination membership function definition

The process of fuzzification allows the system inputs and outputs to be expressed in

linguistic terms such that rules can be applied in a simple manner to express the complicated

system. In the FLC for the MMET system, there are 9 values of linguistic variables in the

fuzzy sets:
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Figure 8.9: The membership function for EC
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〈1〉 For 2 inputs of E and EC, which are:〈 NB , NM , NS , NZS , ZE , PZS , PS ,

PM , PB 〉 or 〈 −5 ,−4 ,−3 ,−2 , 0 , 2 , 3 , 4 , 5 〉.

〈2〉 For 1 output of U are〈NB ,NM ,NS ,NZS , ZE , PZS , PS , PM , PB 〉 or 〈 −2

,−1.5 ,−1 ,−0.5 , 0 , 0.5 , 1 , 1.5 , 2 〉.

The fuzzy linguistic values are also listed in Appendix M. When applied in the numerical

calculation, the mapping process are shown in Figures8.8, 8.9 and 8.13.

8.6 Rule-base and Inference Mechanisms

The FLC ‘IF-THEN’ rule base is then applied to describe the expert’s knowledge, the 2-in-1-

out FLC rule-base for the spin-up of the MMET system is characterised by a set of linguistic

description rules based on conceptual expertise which arises from typical human situational

experience. In particular, for the MMET spin-up control, the rule-base is given in Table

8.2, with two inputs and nine linguistic values for each of those, there are at most92 = 81

possible rules as following list:

〈1〉 IF E = NB, AND EC = NB, THEN U = NB;

〈2〉 IF E = NB, AND EC = NM, THEN U = NM;

〈3〉 IF E = NB, AND EC = NS, THEN U = NS;

...

〈81〉 IF E = PB, AND EC = PB, THEN U = NB;

Table 8.2:The ‘2-in-1-out’ FLC rule table for MMET system

U EC
NB NM NS NZS ZE PZS PS PM PB

NB NB NM NS NZS PZS PZS PS PM PB
NM NM NM NZS NZS PZS PZS PZS PM PM
NS NS NS NZS NZS PZS PZS PZS PS PS

NZS NZS NZS NZS NZS ZE PZS PZS PZS PZS
E ZE PZS PZS PZS ZE ZE ZE PZS PZSPZS

PZS PZS PZS PZS PZS ZE NZS NZS NZSNZS
PS PS PS PZS PZS PZS NZS NZS NS NS
PM PM PM PS PZS PZS NZS NS NM NM
PB PB PM PS PZS PZS NZS NS NM NB

The full rule-base is also given in Figure 8.10 as a rule-base 3D plot, which defines the

relationship between 2 FLC inputs of the Error (E) and the Change-in-Error (EC) with 1

237



FLC output(U). Table8.2is also the 2-in-1-out FLC rule-base table which can drive the FLC

inference mechanism, and this came from the previous experience gained from examining

dynamic simulations for tether length changes during angular velocity control. Briefly, the

main linguistic control rules are:

〈1〉 the larger the angular velocity input, the shorter the length tether output; Con-

versely, the smaller the angular velocity input, the longer the tether length output.

〈2〉 the larger the angular acceleration, the longer the tether length output; Otherwise,

the smaller the angular acceleration, the shorter the tether length output.
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Figure 8.10: The control surface of the fuzzy controller for MMET spin-up

Fuzzy inference is the process of formulating the mapping from a given input to an output

using fuzzy logic. The mapping then provides a basis from which decisions can be made,

or patterns can be discerned. The process of fuzzy inference involves all of the pieces that

are described in the previous sections: Membership Functions; Logical Operations; and

‘IF-THEN’ Rules. Mamdani’s fuzzy inference method [193] [194] [195] [191] is the most

commonly witnessed fuzzy methodology, it was among the first control systems built using

fuzzy set theory. It was proposed in 1975 by Mamdani as an attempt to control a steam

engine and boiler combination by synthesizing a set of linguistic control rules obtained from

experienced human operators. Mamdani’s effort was based on Zadeh’s research [196] on
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fuzzy algorithms for complex systems and decision processes in 1973. The Fuzzy Inference

System (FIS) of Mamdani-type inference for the 2-in-1-out FLC is shown Figure8.11.

Figure 8.11: The fuzzy inference system for MMET system spin-up

As shown in Figure 8.12, because output is based on the operation of all of the rules in

the FIS, the rules need to be combined in a certain manner in order to make a decision. Ag-

gregation is the process by which the fuzzy sets which represent the outputs of each rule are

combined into a single fuzzy set before the defuzzification step. The input of the aggregation

process is the list of truncated output functions returned by the implication process for each

rule, the output of the aggregation process is one fuzzy set for each output variable.
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Figure 8.12:The fuzzy logic controller work process [190] [191] [192]
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8.7 Defuzzification

Defuzzification is the process of producing a quantifiable result, typically a fuzzy system will

have a number of rules which transform a number of variables into a fuzzy result. The result

is described in terms of membership in fuzzy sets. Defuzzification is the opposite process

of fuzzification and is used to map fuzzified variables to practical crisp variables. There are

many different methods of defuzzification available [190] [191] [192], for the Mamdani-style

inference, it can be choosed centroid with gainKL as the defuzzification method, as shown

in Figure 8.12.

Defuzzification is the opposite process of fuzzification and is used to map fuzzified vari-

ables to practical crisp variables. Similar to the discussion in section8.5, in this context

the scaling gain or factor has been decided upon to perform the defuzzification process, as

given in equation (8.7.1), whereL(t) is the crisp tether length to control the MMET spin-up

performance,U is the fuzzy conclusion from FIS,FL is the membership function output for

U, andKL is the scaling gain. The max-min reasoning and the centre of gravity (COG) de-

fuzzification method are utilised in this FLC, which are frequently used in the FLC design

[190] [191], as shown in Figure8.12.

L(t) = KL × μ (U) = KL × FL (8.7.1)

8.8 Simulations and Discussions

Numerical results are obtained using a specially devised co-simulation toolkit ofMATLAB

andMATHEMATICA functions in an integrated program to provide a new toolbox, known

henceforth as ‘SMATLINK’, which integrates control inMATLAB/SIMULINKwith MMET

modelling inMATHEMATICA. The velocity and acceleration ofψ(t) are selected ase(t)

andec(t) feedback signals for the MMET spin-up control. Figure8.14shows the control

loop for the simulation process, and unless stated otherwise all the results are generated using

the parameters for the MMET systems and the controllers, as in AppendixC.

. The solid lines are theψ(t) outputs with FLC, the dot lines are theψ(t) outputs

without any control effects, as shown in Figures8.15to 8.20, the angular displacement,

angular velocity and acceleration responses of the MMET spin-upψ(t) are indicated,

which showing the FLC method has an effect on the spin-up control for the MMET
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Figure 8.14: MMET spin-up control simulation loop

system with the given initial conditions. The controller spin-up outputψ(t), ψ̇(t) and

ψ̈(t) are all closer to the reference signals, which are the dash data in the Figures.

. Figures8.15and8.16are the spin-up angular displacement responses in simulation

timeTn = 4.01 andTn = 400.01, which show the FLC controlledψ output is approach-

ing to a stable status with reducing amplitude.

. Figures8.17and8.18are the response plots for the angular velocityψ̇, Figures8.19

and8.20are the angular acceleration response plots for theψ̈ in simulation timeTn =

4.01 andTn = 400.01, with similar convergent behaviours.

. The phase plots in Figures8.21 and8.22 are shown as limit cycles, whose shape

describes the stable behaviour of the spin-up coordinateψ(t) in simulation timeTn =

4.01 andTn = 400.01, and it is clear that the FLC controlled MMET system corrobo-
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Figure 8.15: The angular displacementψ for MMET spin-up response (Tn = 4.01)
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Figure 8.16: The angular displacementψ for MMET spin-up response (Tn = 400.01)
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Figure 8.17: The angular velocityψ for MMET spin-up response (Tn = 4.01)
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Figure 8.18: The angular velocityψ for MMET spin-up response (Tn = 400.01)
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Figure 8.19: The angular accelerationψ for MMET spin-up response (Tn = 4.01)

0 0.5 1 1.5 2 2.5 3

x 10
6

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x 10
-7

time ( sec.)

ps
i''

   
(r

ad
/s

ec
2 )

psi'' - time

 

 
psi''
psi'' with FLC
psi'' reference

Figure 8.20: The angular accelerationψ for MMET spin-up response (Tn = 400.01)
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Figure 8.21: The MMET spin-up phase portrait (Tn = 4.01)
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Figure 8.22: The MMET spin-up phase portrait (Tn = 400.01)

rates interpretation of steady-state.
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Figure 8.23: The FLC controlled tether subspan length for the MMET spin-up (Tn = 4.01)
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Figure 8.24: The FLC controlled tether subspan length for the MMET spin-up (Tn = 400.01)
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. Figures8.23and8.24show the tether subspan length variation for the MMET spin-

up control in simulation timeTn = 4.01 andTn = 400.0, which are generated by the

FLC controlled MMET system.

I The figures for the axial, torsional and pendular elastic motions are attached in

AppendixJ.

8.9 Conclusions

The fuzzy logic control is a practical alternative which can be used for a variety of challeng-

ing control applications since it can provide a convenient method for constructing nonlinear

controllers via the use of heuristic information. Because of the nonlinear dynamics and their

complexity, the MMET system’s spin-up control problem was decided upon to be used to

investigate a fuzzy logic based controller in order to maintain the desired length and length

rate of the tether. In this chapter, a ‘2-in-1-out’ fuzzy logic controller has been discussed and

then applied in the MMET system spin-up control.

Numerical results are obtained usingSMATLINK, which integrates control inMATLAB

with MMET modelling inMATHEMATICA. More information aboutSMATLINK is

given in Appendix L. The velocity and acceleration ofψ(t) are selected ase(t) andec(t)

feedback signals for the MMET spin-up control.

The simulations show the robustness and usefulness which can be achieved from the

fuzzy logic control for the MMET spin-up behaviour, and the stability of the MMET system

spin-up response for certain combinations of the tether length and the length rate are observed

in simulation timeTn = 4.01 andTn = 400.0.

. The FLC controlled spin-up motions are changing with a reducing oscillation down

to a stable status, which expressed the FLC’s effects on the spin-up and satisfied the

control objective.

. The axial elastic motions are moving stablely with the smaller amplitudes.

. The torsional elastic motions can not be effected by tether length control strategy.

. The pendular elastic motions decline with convergent reaction with reducing oscil-

lation, then to a zero status in the end.
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Chapter 9

Hybrid Fuzzy Sliding Mode Control for

Spin-up of theMMET

9.1 Introduction

Variable structure control (VSC) with sliding mode was introduced in the early 1950s by

Emelyanov, and subsequently published in the 1960s [197]; it was further developed by sev-

eral other researchers [198] [199] [200] [201] [202]. Sliding mode control (SMC) has been

recognised as a robust and efficient control method for complex, high order or nonlinear

dynamical systems. The major advantage of sliding mode control is its low sensitivity to

a system’s parameter changes under various uncertainty conditions. Another advantage is

that it can decouple system motion into independent partial components of lower dimension,

which reduces the complexity of the system control and feedback design. However, a major

drawback of traditional SMC is its propensity for chattering, which is generally disadvanta-

geous within control systems [203] [204] [205] [206].

It has been widely recognised that fuzzy logic control is an effective control method for

various diverse applications, being a model free, universal approximation theorem, and be-

ing rule-based, as discussed in chapter8, where the fuzzy logic control rule-base is generally

based on practical human experience. However, the intrinsic linguistic format expression

required to construct the FLC rule-base makes it difficult to guarantee the stability and ro-

bustness of the control system, and the huge amount of fuzzy rules required for a high-order

system makes the analysis complex [207] [200] [208] [209] [210].

The involvement of FLC in the design of a fuzzy sliding mode control (FSMC) based

controller can be harnessed to help to avoid the chattering problem. In recent years, a lot of
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literature has been generated in the area of FSMC, and this has also covered the chattering

phenomenon. The smooth control feature of fuzzy logic can be helpful in overcoming the

disadvantages of chattering. This is why it can be useful to combine FLC with SMC to create

the FSMC [200] [209] [211] [212] [213] [214] [215] [216] [217] [218] [219] [220].

A hybrid fuzzy sliding mode control method is proposed and applied into the tether

subspan length, changing for the spin-up control of the MMET system. This hybrid fuzzy

sliding mode control is defined as FαSMC [221] [222], which involves a skyhook surface

sliding mode control (SkyhookSMC) method which is applied here to control the tether

subspan length for spin-up control of the discretised flexible MMET system, as discussed in

chapter7.

9.2 Ideal Skyhook Damping

A widely known (and used) control scheme for controlling the vibration of a vehicle body

is skyhook damping, presented by D.C. Karnopp et al. in 1974 [223]. The term ‘skyhook’

is derived from the point that there is a passive or semi-active damper which has hooked

the vehicle body to an imaginary stationary reference frame - ideal ‘sky’, the damper is

‘skyhook damper’, as shown in Figure9.1, which can then reduce vertical vibrations due to

all kinds of road disturbance.m is the vehicle suspension mass,k is the tyre stiffness,q is

the displacement of road profile disturbance.

Figure 9.1: Ideal skyhook damper definition, adopted from [223]

Skyhook control can reduce the resonant peak of the sprung mass quite significantly and

thus achieves a good ride quality in the vehicle suspension system. Equation (9.2.1) gives
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the ideal skyhook control force for the vehicle suspension system, wherecsky is the damping

coefficient,z is the vehicle body displacement.

fskyhook =






−cskyż ż ≥ 0

0 ż < 0
(9.2.1)

By borrowing the idea of skyhook damping in section9.2, the SkyhookSMC is intro-

duced to reduce the sliding chattering phenomenon[221] [222].

9.3 Skyhook Surface Definition for Sliding Mode Control

Sliding mode control is fundamentally a consequence of discontinuous control. The real mo-

tion near the surface can be seen as the superposition of a ‘slow’ movement, along the sur-

face, and the ‘fast’ movement, perpendicular to this surface, is the chattering phenomenon.

The chattering phenomenon is an acknowledged drawback of sliding mode control, and is

usually caused by unmodelled system dynamics. In traditional SMC design, a signum func-

tion is conventionally applied but this can lead to chattering in practice [200] [225].

Therefore, a skyhook surface sliding mode controller (SkyhookSMC)[221] [222] is in-

troduced here to reduce the chattering phenomenon . The objective of the SkyhookSMC is

to consider the nonlinear tether system as the controlled plant, and therefore as defined by

the general state-space in equation (9.3.1) [200] [224].

Figure 9.2: Sliding surface definition with skyhook surface [200] [221] [222] [224]
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




ẋ = F (x, u, t)

y = H (x, u, t)
(9.3.1)

where,

x ∈ Rn is the state vector;

n is the order of the nonlinear system, for the MMET system is a second-order system,

n = 2;

u ∈ Rm is the input vector,

m is the number of inputs;F () andH () are the analytic functions.

s (e(t), t) =

(
d

dt
+ λ

)n−1
e(t) (9.3.2)

where,

s(e(t), t) is the sliding surface of the hyperplane, as given in equation9.3.2and shown

in Figure9.2, which defines by the position errore(t) and velocity erroṙe(t) in equation

(9.3.3);

λ is a positive constant that defines the slope of the sliding surface;

s = ė(t) + λe(t) (9.3.3)

Figure 9.3: The sliding skyhook surface generation

From equations (9.3.2) and (9.3.3), the second-order tracking problem is replaced by a

first-order stabilisation problem, in which the scalars is kept at zero by means of a governing
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condition. Therefore, the second-order system behaves like a first-order system, with time

constantλ, and the trajectory will slide alongs = 0 to the origin, thuss = 0 is also called the

sliding surface or ideal slide mode.

V (s) =
1

2
s2 (9.3.4)

V̇ (s) = sṡ = λ2e(t)ė(t) + λ
(
ė2(t) + e(t)ë(t)

)
+ ė(t)ë(t) < 0 (9.3.5)

Obtained from the use of the Lyapunov stability theorem, the Lyapunov function is given

in equation (9.3.4), and it states that the origin is a globally asymptotically stable equilibrium

point for the control system. Equation (9.3.4) is positive definite and its time derivative is

given in inequality (9.3.5), to satisfy the negative definite condition, that the system should

satisfy the inequality in (9.3.5).

As shown in Figures9.3 and9.4, a soft switching control law is designed for the major

sliding surface switching activity in equation9.3.6, in which the sliding surface (s = 0) is

taken as the ideal stationary ‘sky’ in the SkyhookSMC.

uSkyhookSMC =






−csky tanh
(s
δ

)
sṡ > 0

0 sṡ ≤ 0
(9.3.6)

Figure 9.4: Tanh function definition

tanh(x) =
sinh(x)

cosh(x)
=
ex − e−x

ex + e−x
(9.3.7)

where, tanh is the hyperbolic tangent function, as given in equation (9.3.7) and its graph

over the domain [-1,1] is given in Figure9.4. csky is an assumed positive damping ratio for

the switching control law.

253



Figure 9.5: The FαSMC control strategy definition
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This law needs to be chosen in such a way that the existence and the reachability of

the sliding-mode are both guaranteed, therefore a special boundary layer around the sliding

surface is introduced to solve the chattering problem [224], noting thatδ is an assumed

positive constant which defines the thickness of the sliding mode boundary layer.

9.4 Hybrid Fuzzy Sliding Mode Control Design

To make the necessary enhancement to the FSMC method, a hybrid control law is intro-

duced here to combine fuzzy logic control with a SkyhookSMC control law, which is named

FαSMC [221] [222]. The hybrid control effects of FLC and SkyhookSMC are combined in

equation (9.4.1), the flow diagram of the FαSMC approach is given in Figure9.5, the FLC

designing process for the MMET spin-up is given in chapter8.

uFαSMC = αuFLC + (1− α)uSkyhookSMC (9.4.1)

whereα is a proportionality factor, included to balance the weight of the fuzzy logic

control to that of the SkyhookSMC control. Clearly,α = 0 represents the SkyhookSMC

control, andα = 1 represents fuzzy logic control,α ∈ [0,1]. TheuFLC design is given in

equation (8.7.1), anduSkyhookSMC is given in equation (9.3.6).

9.5 Simulations and Discussions

It is easy to switch the controller between the SkyhookSMC and the FLC modes when a

proper value ofα is selected(0 < α < 1), and the hybrid fuzzy sliding mode controller is

generated, by combining FLC with a soft continuous switching SkyhookSMC law based on

equation (9.3.6). All the control methods have an effect on the spin-up of the MMET system

from the given initial conditions.

The FαSMC hybrid fuzzy sliding mode control system parameters require a judicious

choice of the FLC scaling gains of{Ke, Kec} for fuzzification,Ku is the defuzzification

gain factor which is used to map the control force to the range that actuators can generate

practically.

Similarly, the SkyhookSMC damping coefficientc0 is required to expand the normalised

controller output force into a practical range. The thickness of the sliding mode boundary

layer is given byδ, and the slope of the sliding surfaceλ. In this simulation, the FαSMC is

used, withα = 0.5 to balance the control weight between the FLC and the SkyhookSMC
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modes. Different values ofα = {0.0, 0.5, 1.0} can be used for{SkyhookSMC, FαSMC,

FLC} control of the MMET system, respectively.
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Figure 9.6: The MMET spin-up displacement ofψ, with different values ofα (Tn = 4.01)

. With the given initial conditions in AppendixC, Figures9.6 to 9.8 and Figures9.9

to 9.11 giving the MMET system’s spin-up behaviour by the time responses of the

displacementψ and velocityψ̇ with different values ofα.

. To compare the spin-up displacement plots’ difference for the three controllers clearly,

Figures9.7 and9.8 express the FLC, SkyhookSMC and FαSMC controlled spin-up

displacement plots in simulation timeTn = 400.01, which indicate that the FLC’s spin-

up displacement is bigger than the other two controllers.

. Figure9.9is the spin-up velocity response for theSkyhookSMC, FαSMC and FLC

controlled MMET system in simulation timeTn = 4.01, Figures9.10and9.11are the

spin-up velocity in simulation timeTn = 400.01.

. Figure9.6 is the spin-up displacement response for theSkyhookSMC, FαSMC

and FLC controlled MMET system in simulation timeTn = 4.01, which shows the

SkyhookSMC and FαSMC controlled spin-up displacement plots are close to each

other, and both of them are smaller than FLC controlled spin-up displacement plot.
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Figure 9.7:The MMET spin-up displacement ofψ, with different values ofα (Tn = 400.01),
FLC vs. SkyhookSMC

Furthermore, together with Figures8.15 and8.16, the control effects by FLC, Sky-

hookSMC and FαSMC can be directly observed. These results indicate that all the

control methods have effects on the spin-up of the MMET system. TheSkyhookSMC

control provides better control effects than for the MMET spin-up theFLC; andFαSMC

stays in between the two control methods above by setting the factorα = 0.5 in be-

tween theα = 0.0 andα = 1.0.

. Figure9.12is the phase portrait in simulation timeTn = 4.01 and Figure9.13is the

same phase portrait in simulation timeTn = 400.01. The phase plane plots with differ-

ent values ofα are shown as limit cycles, whose behaviour for the spin-up coordinate

ψ clearly corroborates interpretations of steady-state with the FαSMC control method

for the MMET system.

. In Figures9.14and9.15, the MMET spin-up error phase plane plots with different

α are given, and these show that all the control methods offer limit cycles. The FLC

caused generally faster response behaviour than the two other control methods for the

spin-up coordinateψ, in simulation timeTn = 4.01 andTn = 400.01.

. Figure9.16is the controlled tether length plots by three control methods in simula-
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Figure 9.8:The MMET spin-up displacement ofψ, with different values ofα (Tn = 400.01),
FαSMC vs. SkyhookSMC
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Figure 9.9: The MMET spin-up velocity ofψ, with different values ofα (Tn = 4.01)
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Figure 9.10:The MMET spin-up velocity ofψ, with different values ofα (Tn = 400.01),
FLC vs. SkyhookSMC

tion timeTn = 4.01, in which the FLC controlled tether length is longer than the two

others. SkyhookSMC generated the shortest controlled tether length among the three

of them. In the longer simulation time, all the tether length responses are given in

Figure9.17, which is related to Figure8.24.

. Figures9.18and9.20show the plots for the Lyapunov function and their derivative

in simulation timeTn = 4.01, which indicate the effect of FαSMC control for different

values ofα. SkyhookSMC has higher energy activities than the two other control

methods, and FLC has the lower associated energy aroundV ′ = 0, with the FαSMC’s

energy in the middle of the three. FαSMC can balance the control effects of FLC

and SkyhookSMC for stable MMET 9-DOF spin-up outputs and associated energy

activities. Similarly, Figures9.19and9.21are the the Lyapunov functions and their

derivative functions in simulation timeTn = 400.01.

I The figures for the axial, torsional and pendular elastic motions are attached in

AppendixK.
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Figure 9.11:The MMET spin-up velocity ofψ, with different values ofα (Tn = 400.01),
FαSMC vs. SkyhookSMC
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Figure 9.12: The MMET spin-up phase plane portrait with different values ofα (Tn = 4.01)
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Figure 9.13:The MMET spin-up phase plane portrait with different values ofα (Tn = 400.01)
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Figure 9.14: The MMET spin-up error phase plane portrait with different values ofα (Tn =
4.01)
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Figure 9.15:The MMET spin-up error phase plane portrait with different values ofα (Tn =
400.01)

264



0.5 1 1.5 2 2.5 3

x 10
4

2.53

2.54

2.55

2.56

2.57

2.58

2.59

2.6

2.61

2.62

2.63

x 10
4

time (sec.) 

Le
ng

th
 o

f T
et

he
r 

(m
)

 

 

FLC
SkyhookSMC
FalphaSMC

Figure 9.16:Tether length with control (Tn = 4.01)
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Figure 9.17:Tether length with control (Tn = 400.01)
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Figure 9.18: The Lyapunov function for the MMET spin-up control (Tn = 4.01)
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Figure 9.19:The Lyapunov function for the MMET spin-up control (Tn = 400.01)
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Figure 9.20: The time derivative of the Lyapunov function for the MMET spin-up control
(Tn = 4.01)

0.5 1 1.5 2 2.5 3

x 10
6

-8

-6

-4

-2

0

2

4

6

8

10

x 10
-11

Time(sec.)

V
'

 

 

alpha = 1 FLC
alpha = 0.5 FalphaSMC
alpha = 0 SkyhookSMC

Figure 9.21:The time derivative of the Lyapunov function for the MMET spin-up control
(Tn = 400.01)
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9.6 Conclusions

A specialised hybrid control law, named FαSMC, has been proposed and discussed in this

chapter. This combines fuzzy logic control with a SkyhookSMC control law together in

equation (9.4.1), then it is applied for the control of motorised space tether spin-up coupled

with an flexible oscillation phenomenon.

The FLC is given in chapter 8, and for the SkyhookSMC, by borrowing the idea of

skyhook damping, it reduces the sliding chattering phenomenon, in which a soft switching

control law is presented for the major sliding surface switching activity, as shown in equation

9.3.6.

The simulations with given initial condition data have been devised in a connecting pro-

gramme between control code written inMATLAB and dynamics simulation code con-

structed withinMATHEMATICA.

. The results state the control effects for FLC, FαSMC and FLC, which lead to stable

spin-up behaviour with torsional and pendular motions. It is concluded that there is an

enhanced level of spin-up control for the MMET system using the specialised hybrid

controller.

. With the weight factorα, it can balance the weight of the fuzzy logic control to

that of the SkyhookSMC control. There is an observed difference for each of the

elastic behaviours in the MMET system involving these MMET systems with different

controllers - FLC, FαSMC and SkyhookSMC, in which the control effects of FαSMC

and SkyhookSMC are better than FLC.

. The FalphaSMC controlled spin-up motions are reducing down with oscillation to

a stable status, which state the control effects on the spin-up and reached the control

objective.

. The axial elastic motions are moving stablely with the smaller amplitudes.

. The torsional elastic motions can not be effected by tether length control strategy,

for it is decoupling to other generalised coordinates.

. The pendular elastic motions decline with convergent reaction with reducing oscil-

lation, then reach to a zero status in the end.
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Chapter 10

Conclusions and Future Work

10.1 Work Summary

Space tethers are typically very long structures ranging in length from a few hundred metres

to many kilometres, with a relatively small diametre. Space tethers can be applied to swing

spacecraft from one orbit to another, or even from one planet to another, without using rocket

propellant. Generally speaking, there are two general categories of tethers:〈1〉 momentum

exchange tethers, which provide a mechanical connection which enables the transfer of en-

ergy and momentum from one object to the other;〈2〉 electrodynamic tethers, which interact

with the Earth’s magnetosphere to generate power or provide propulsion for space objects

connected with them. Space tethers can be used for a diverse range of applications, which

include formation flying, safety tethers, artificial gravity generation, probe towing, and aer-

obraking.

This thesis has discussed various dynamical models for a series of MMET systems, and

has proposed two control methods for the discretised flexible MMET system spin-up in the

presence of disturbances and parameter conditions. This chapter summarises the models and

results, and indicates further research paths which might be of future interest.

Figure 10.1 indicates the MMET systems modelling road-map, helps to organise the

structure of this thesis, in which a series of elastic MMET systems are defined, based on

this road-map, in Chapters3 to 7. As shown in Figure10.1, this thesis addresses some of

the models for momentum exchange tethers by using the Lagrangian procedure with proper

environmental conditions.

• Chapter1: This chapter introduces the basic concept of space tether, space tether

missions and applications, and thesis’s structure is also presented in the end.
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Figure 10.1: Thesis structure for flexible MMET models

• Chapter2: With the aim of establishing useful sources from fundamental researches

in the literature available, and highlighting the previous control methods developed,

this chapter attempts to provide a useful contextualised source of references for further

space tether control studies, which includes five of the following space tether related

research topics:〈1〉 tether deployment and retrieval;〈2〉 trajectory generation and

orbit control; 〈3〉 tether attitude and motion control;〈4〉 tether vibration control and

dynamical simulations;〈5〉 space tether dynamical models.

• Chapter3: The dumbbell tether, the basic conceptual schematic of the MMET, the

dumbbell MMET system, the dumbbell MMET with cylindrical payloads and a motor

facility, and the rigid MMET system;

. There are two generalised coordinate systems which are defined; all the MMET

system models are modelled within these two coordinate systems. The first one

is an Earth centred global coordinate system -{X, Y, Z}; the second one is the rel-

ative rotating coordinate system -{x0, y0, z0}. The centre of the Earth is denoted

by E(Ex, Ey, Ez), which is defined as the origin of the{X, Y, Z} system, where,

Ex,Ey, Ez are set to(0, 0, 0), which isE(0, 0, 0).
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. The dumbbell tether system consists of two end masses,M1 andM2, connected

by the tether subspans, where the distance from the dumbbell tether’s base point

to each end mass is denoted byL1 andL2. The dumbbell tether subspans are

assumed to be massless relative to the masses of the two end bodies, as shown in

Figure3.2.

. The concept of the motorised momentum exchange tether and its following re-

search aspects are introduced, as shown in Figure3.12.

. As shown in Figure3.14, the dumbbell MMET system consists of two end

masses,M1 andM2, connected by a massless tether with the same length of sub-

spans from the tether’s centre of massM0 (orMM) to each end mass, denoted

by L.

. Based on the massless dumbbell MMET modelling, the dumbbell MMET with

cylindrical payloads and a motor facility is proposed, in which the payload mass

moment of inertias, the motor facility mass moment of inertias, and the torque

plane, are included in the model, as shown in Figure3.14.

. The tether-tube mass moments of inertia and a tether discretisation methodol-

ogy are utilised in the rigid body MMET system modelling process, as shown in

Figure3.25.

• Chapter4: the massless elastic MMET system is investigated, in which, there is no

appreciable mass in the tether subspans;

. A dynamical modelling analysis for a flexible massless MMET system, which

implies that there is no mass for the tether subspans, the use of the word ‘flexible’

means that this MMET system model only contains axial, torsional and pendu-

lar elasticity. Themodelsfor axial, torsional and pendular elasticity are given in

sections4.2, 4.3and4.4, respectively.

. The assumptions for the massless elasticity modelling process are provided,

which numbered asA1 toA7 in section4.1.
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. Three ‘reference’ planes are proposed to describe the torsional and pendular

elastic motions, as given in Figures4.1 and4.2, which include three orthogonal

reference planes:x0 −O− y0, x0 −O− z0 andz0 −O− y0.

. The modelling for the torsional elasticity is referenced onto the planex0−O−

z0, the pendular motion of the tether is referenced onto two orthogonal planes:

x0 −O− y0 andz0 −O− y0.

. There are seven rotational generalised coordinates (ψ, ψx, θ, α, αx, γ, γx)

and two translational coordinates (Lx, R) which were chosen as the generalised

coordinates for the flexible massless MMET system, in which the rigid body

generalised coordinates (ψ, θ, α, γ, R) are not duplicating any of the motions of

the elastic generalised coordinates (ψx, αx, γx, Lx).

• Chapters5, 6 and7: These chapters have discussed MMET systems with axial, tor-

sional and pendular elasticity, sequentially;

. As opposed to the assumptionsA1 to A7 in section4.1, the assumptions for

the discretised MMET modelling are proposed asB1 toB8, in section5.1.

. The modelling for the discretised axially elastic MMET system was undertaken

by the Lagrangian process in Chapter5, as shown in Figure5.1. With an arbi-

trary choice ofN = 10 mass points, the generalised coordinatesηi (i = 1 to 10)

define relative axial motion of the 10 discretised mass points,ηP1 andηP1 are the

generalised relative axial coordinates for the mass payloadsMP1 andMP2.

. The discretised MMET system which involves both axial and torsional elastic-

ity is proposed in Chapter6, as shown in Figure6.1. All the torsional ‘spring-

damper’ groups are defined on the reference planex0−O−z0 as shown in Figure

4.19. With 10 discretised mass points, the generalised relative torsional coordi-

natesϕi (i = 1 to 10) define the relative torsional motion of the 10 discretised

mass points.ϕP1 andϕP2 are the generalised relative torsional coordinates for
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the mass payloadsMP1 andMP2.

. Based on the MMET modelling in the previous chapters, a discretised flexible

MMET system is investigated by involving pendular elasticity in this chapter. As

shown in Figures7.1and7.2, there are two parts of the pendular elasticity, which

are defined on the planex0 −O− y0 and the planez0 −O− y0, respectively. In

the case of this modelling, the generalised coordinatesχi describe the motions for

mass pointsmi (i = 1,...,10) of the pendular elasticity on the planex0 −O− y0.

The generalised coordinatesζi describe the behaviours for mass pointsmi (i =

1,...,10) of the pendular elasticity on the planez0 −O− y0.

. To deal with the numerical time-consuming simulation difficulties, we have re-

duced the discretisation scheme right down toN = 2, then used Lagrange’s equa-

tions to derive a reduced set of nonlinear governing equations for the simplified

axial, torsional and pendular elastic MMET systems, as discussed in Appendices

G, H and I, respectively. Then, based on the simplified MMET systems, the

numerical results are generated for the simulations and discussions.

• Chapters8 and9: A ‘2-in-1-out’ FLC and a FαSMC control methods have been in-

vestigated and designed for the discretised flexible MMET system’s spin-up behaviour

control;

. FLC is a practical alternative for a variety of challenging control applications.

For the nonlinear dynamics and complex MMET system’s spin-up control prob-

lem, we investigated a fuzzy logic based controller to maintain the desired length

and length rate of the tether in Chapter8.

. In Chapter8, the velocity and acceleration ofψ are selected ase andec feed-

back signals for the MMET spin-up control. The simulation shows the robustness

and usefulness which can be achieved from the fuzzy logic control for the MMET

spin-up behaviour; the stability of the MMET system spin-up response for cer-

tain combinations of the tether length and the length rate are observed.

. In Chapter9, a hybrid fuzzy sliding mode control method is proposed and ap-

plied into the tether subspan length changes for the spin-up control of the MMET
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system, which involved a skyhook surface sliding mode control (SkyhookSMC)

method, which is applied here to control the tether subspan length for spin-up

control of the discretised flexible MMET system.

10.2 Conclusions

• Chapter 3: The numerical results are given in section 3.2.6, section 3.4.6, section

3.5.9 and section 3.6.9, which provide stable and accurate numerical behaviours in-

cluding the spin-up performance, and also indicate their connections to each other.

Meanwhile, the numerical results have been taken as the reference for following MMET

model development. The results show the MMET systems’ periodic spin-up behaviour

on orbit, with zero initial conditions as listed in Appendix C. For the rigid body mo-

tion control, the MMET models provided in Chapter 3 are good choices for their highly

efficienct computation.

• Chapter 4: Using the parameters in Appendix C, the numerical results for the se-

lected generalised coordinates in section 4.2.2, section 4.3.2 and section 4.4.2 ex-

pressed the periodic motions on orbit, with reducing amplitude of axial, torsional and

pendular elastic oscillation for three massless MMET models in sections 4.2, 4.3 and

4.4, respectively, whose similar spin-up behaviours and rigid body behaviours are also

noted, and the stable MMET system rigid body motions are observed.

The dynamical modelling process in this context has shown that by including axial, tor-

sional and pendular elasticity, the flexible MMET model proposed a significant bear-

ing on overall performance, involving the tether-tube mass by using a discretisation

methodology.

• Chapter 5: The numerical results are given in section 5.9, in which periodic be-

haviour, including the spin-up and the axial elastic performance for this MMET model,

are obtained.

Compared with section 4.4.2, when involving the tether’s mass and mass moment of

inertia, the amplitudes and shapes for the spin-up and the axial elastic behaviours are

different, with the same parameter settings as in Appendix C.

• Chapter 6: The numerical simulations have shown the convergence of the torsional

elastic behaviour by the torsional elastic angular displacement, which is approaching

to zero during full simulation time, and the amplitude and shape are slightly different
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from massless MMET system’s behaviours, by involving the tether’s mass and mass

moment of inertia.

Together with Chapters5 and 6, Chapter 7, the numerical simulations have expressed

the reducing flexible behaviour, which are approaching to zero during full simulation

time, and the amplitudes and shapes are different from massless flexible MMET sys-

tem’s behaviours by involving the tether-tube mass and mass moment of inertia, which

means, the initial values for numerical parameters, related to mass and mass moments

of inertia, take sensitive effects on the results.

•Chapter 8: The simulations show the robustness and usefulness which can be achieved

from the fuzzy logic control for the MMET spin-up behaviour, and the stability of the

MMET system spin-up response for certain combinations of the tether length and the

length rate were observed in simulation timeTn = 4.01 andTn = 400.0, and the flexible

behaviours showed a similar convergent reaction with reducing oscillation.

• Chapters 8and9: The skyhook surface sliding mode control can reduce the resonant

peak of the sprung mass quite significantly and thus can achieve a good ride quality. By

borrowing the idea of skyhook damping in section 9.2, the SkyhookSMC is introduced

in order to reduce the sliding chattering phenomenon. As shown in Figure 9.3, a soft

switching control law is designed for the major sliding surface switching activity in

equation 9.3.6.

A simulation with a given initial condition data has been devised in a connecting pro-

gramme between control code written inMATLAB and dynamics simulation code

constructed withinMATHEMATICA, both in Chapters 8 and 9.

• Chapter 9: The results state the control effects for FLC, FαSMC and FLC, which

led to stable spin-up behaviour with torsional and pendular motions. It is concluded

that there is an enhanced level of spin-up control for the MMET system which uses

the specialised hybrid controller.

The hybrid control effects of FLC and SkyhookSMC are combined in equation (9.4.1),

the flow diagram of the FαSMC approach is given in Figure 9.5, the FLC designing

process for the MMET spin-up is given in Chapter 8, in which,α is a proportionality

factor, included to balance the weight of the fuzzy logic control to that of the hyper-

bolic tangent control. Clearly,α = 0 represents the SkyhookSMC control, andα = 1

represents fuzzy logic control,α ∈ [0,1].
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The FαSMC hybrid fuzzy sliding mode control system parameters require a judicious

choice of the FLC scaling gains of{Ke, Kec} for fuzzification,Ku is the defuzzification

gain factor which is used to map the control force to the range that actuators can

generate practically. It is easy to switch the controller between the SkyhookSMC and

the FLC modes when a proper value ofα is selected(0 < α < 1).

TheSkyhookSMC leads to better control effects than theFLC for the MMET spin-

up, andFαSMC stays in between the two control methods above by setting the factor

α = 0.5 in between theα = 0.0 andα = 1.0. FαSMC can balance the control effects

of FLC and SkyhookSMC for stable MMET system spin-up outputs and associated

energy activities.

Lyapunov function analysis shows the effect of FαSMC control for different values of

α. SkyhookSMC has higher energy activities than the two other control methods, and

FLC has the lower associated energy aroundV ′ = 0, with the FαSMC’s energy in the

middle of the three, as shown in Figures 9.18 and 9.20.

• The two research objectives for this thesis are fully achieved.Firstly, as discussed in

Chapter 3 to Chapter 7, a series of new dynamical models for motorised momentum

exchange tethers have been proposed.Secondly, a fuzzy logic control and a hybrid

fuzzy sliding mode control for a flexible MMET system spin-up have been discussed,

and the effectiveness of both of the FLC and FαSMC control systems has been in-

vestigated through numerical simulation bySMATLINK. The numerical results have

shown that the MMET system’s spin-up behaviour are fully controllable by both of

the FLC and the FαSMC. The Lyapunov stability theory was used to show the global

asymptotic stability of the spin-up phase of the MMET system, subjected to either

control law.
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10.3 Future Work

• The parameter settings for the FαSMC need further consideration because the cur-

rent simulation results come from manual parameter tests. In order to enhance the

parameter selection process and validation, some computational intelligence (CI) opti-

misation tools, such as genetic algorithms (GA) and artificial neural networks (ANN),

could be applied into the parameter selection for the FLC, SMC and FαSMC. This

would give some useful reference sets for parameter settings. A GA case has already

been used as an optimisation tool for parameter selection of the MMET system when

applied to payload transfer from low Earth orbit to geostationary Earth orbit, and the

GA’s optimisation ability has, in that case, been reasonably demonstrated [70].

• The reliability of the control strategies for tether’s rigid body motions, coupling with

the flexible motions, should be more focused, for formation flying, aeroassisted orbital

maneuveringn, orbit transfer and other applications.
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Appendix A

Partial Derivatives for Equation 3.5.11

The partial derivatives of equations (3.5.11) with respect to the selected generalised co-

ordinatesψ, θ, α, γ, R andL are given in equations (A.0.1) to (A.0.6).






∂x

∂ψ
= −L cosα sin(θ+ψ)

∂y

∂ψ
= L cosα cos(θ+ψ)

∂z

∂ψ
= 0

(A.0.1)






∂x

∂θ
= −L cosα sin(θ+ψ)

∂y

∂θ
= L cosα cos(θ+ψ)

∂z

∂θ
= 0

(A.0.2)






∂x

∂α
= −L sinα cos(θ+ψ)

∂y

∂α
= −L sinα sin(θ+ψ)

∂z

∂α
= L cosα

(A.0.3)
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




∂x

∂γ
= 0

∂y

∂γ
= 0

∂z

∂γ
= 0

(A.0.4)






∂x

∂R
= 0

∂y

∂R
= 0

∂z

∂R
= 0

(A.0.5)






∂x

∂L
= cosα cos(θ+ψ)

∂y

∂L
= cosα sin(θ+ψ)

∂z

∂L
= sinα

(A.0.6)

According to equation (3.5.10), the generalised forces for the selected generalised coor-

dinates of this solid massless MMET system can be stated in equations (A.0.7) to (A.0.12).

Qψ = Fx
∂x

∂ψ
+ Fy

∂y

∂ψ
+ Fz

∂z

∂ψ
(A.0.7)

Qθ = Fx
∂x

∂θ
+ Fy

∂y

∂θ
+ Fz

∂z

∂θ
(A.0.8)

Qα = Fx
∂x

∂α
+ Fy

∂y

∂α
+ Fz

∂z

∂α
(A.0.9)

QR = Fx
∂x

∂R
+ Fy

∂y

∂R
+ Fz

∂z

∂R
(A.0.10)

Qγ = Fx
∂x

∂γ
+ Fy

∂y

∂γ
+ Fz

∂z

∂γ
(A.0.11)

QL = Fx
∂x

∂L
+ Fy

∂y

∂L
+ Fz

∂z

∂L
(A.0.12)
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Appendix B

Partial Derivatives for Equation 3.5.12

Then, the partial derivatives of the Cartesian componentsx, y andz in equations (A.0.1)

to (A.0.6) can also be stated as in equations (B.0.1) to (B.0.6).






∂x

∂ψ
= −L cosα sinψ

∂y

∂ψ
= L cosα cosψ

∂z

∂ψ
= 0

(B.0.1)






∂x

∂θ
= 0

∂y

∂θ
= 0

∂z

∂θ
= 0

(B.0.2)






∂x

∂α
= −L sinα cosψ

∂y

∂α
= −L sinα sinψ

∂z

∂α
= L cosα

(B.0.3)
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




∂x

∂γ
= 0

∂y

∂γ
= 0

∂z

∂γ
= 0

(B.0.4)






∂x

∂R
= 0

∂y

∂R
= 0

∂z

∂R
= 0

(B.0.5)






∂x

∂L
= cosα cosψ

∂y

∂L
= cosα sinψ

∂z

∂L
= sinα

(B.0.6)
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Appendix C

Simulation ParameterSettings

Table C.1: MMET systemparameters

Symbol Parameter Value Unit
μ gravitational constant 3.9877848× 1014 m3s−2

MP propulsion tether payload mass 10000 Kg

MM mass of motor facility 5000 Kg

rTinner radius of tether inner tube 0.08 m

rTouter radius of tether outer tube 0.1 m

rM radius of motor facility 0.5 m

rP radius of payload 0.5 m

rper periapsis distance 6.890× 106 m

rapo apoapsis distance 1.0335× 107 m

L0 static length tether sub-span 50000 m

A undeformed tether tube cross-sectional
area

1.13097× 10−2 m2

ρ tether density 970 kg/m3

e circular orbit with eccentricity 0.2

τ motor torque 2.5× 106 Nm

c0 tether sub-span axial damping coefficient2× 106 Ns/m

k0 tether sub-span axial stiffness 2× 107 N/m

ct0 tether sub-span torsional damping coeffi-
cient

2× 106 Ns/m

kt0 tether sub-span torsional stiffness 2× 107 N/m

cl0 tether sub-span pendular damping coeffi-
cient

2× 106 Ns/m

kl0 tether sub-span pendular stiffness 2× 107 N/m

Ke FLC scaling gains fore 1

Kec FLC scaling gains forec 1

Ku FLC scaling gains foru 21000

α FαSMC switching factor {0, 0.5, 1}
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Table C.2: MMET system parameters -(Continued)

Symbol Parameter Value Unit
csky SkyhookSMC damping coefficient −3000

δ thickness of the sliding mode boundary
layer

0.8

λ slope of the sliding surface 0.0014

A Tether tube cross-sectional area m2

N Number of mass points 10,2
ε Factor for the mass point mass moment of

inertia
10,2

n Number of massless points 20
ρ Tether density 970 kg/m3

Lx Dynamic length of propulsion tether m

L Length of propulsion tether branch Lx + L0 m

IP Mass moment of inertia of the payload kgm2

IT Mass moment of inertia of the tether kgm2

IM Mass moment of inertia of the motor kgm2

hP Height of the cylinder payload 0.5 m

hM Height of cylinder the motor facility 0.5 m

Tn The number for periodic cycles 4.01 or 400.01
t Simulation time equation (1.1.11)s
g Acceleration of gravity 9.81 m/s2

T The period of orbit s

304



Table C.3: MMET system parameters -(Continued)

Symbol Parameter Value Unit
ψ(0) Initial value ofψ 0.0 or 0.001 rad

ψ̇(0) Initial value ofψ̇ 0.0 or 0.001 rad/s

η1(0) Initial value ofη1 0.0 m

η2(0) Initial value ofη2 0.0 m

ηP1(0) Initial value ofηP1 0.0 m

ηP2(0) Initial value ofηP2 0.0 m

ϕ1(0) Initial value ofϕ1 0.0 or 0.001 rad

ϕ2(0) Initial value ofϕ2 0.0 or 0.001 rad

ϕP1(0) Initial value ofϕP1 0.0 or 0.001 rad

ϕP2(0) Initial value ofϕP2 0.0 or 0.001 rad

χ1(0) Initial value ofχ1 0.0 rad

χ2(0) Initial value ofχ2 0.0 rad

χP1(0) Initial value ofχP1 0.0 rad

χP2(0) Initial value ofχP2 0.0 rad

ζ1(0) Initial value ofζ1 0.0 rad

ζ2(0) Initial value ofζ2 0.0 rad

ζP1(0) Initial value ofζP1 0.0 rad

ζP2(0) Initial value ofζP2 0.0 rad

θ(0) Initial value ofθ 0.0 or 0.001 rad

θ̇(0) Initial value ofθ̇ (C.0.1) rad/s

α(0) Initial value ofα 0.0 or 0.001 rad

α̇(0) Initial value ofα̇ 0.0 or 0.001 rad/s

αx(0) Initial value ofαx 0.0 or 0.001 rad

α̇x(0) Initial value ofα̇x 0.0 or 0.001 rad/s

γ(0) Initial value ofγ 0.0 or 0.001 rad

γ̇(0) Initial value ofγ̇ 0.0 or 0.001 rad/s

γx(0) Initial value ofγx 0.0 or 0.001 rad

γ̇x(0) Initial value ofγ̇x 0.0 or 0.001 rad/s

Lx(0) Initial value ofLx 0.0 m

L̇x(0) Initial value ofL̇x 0.0 m/s

θ̇ =

√
μ (1+ e cosθ)

R3
(C.0.1)
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Appendix D

Lagrange Equation Components for

Section4.2

D.1 Potential Energy

The potential energy for the axially elastic massless MMET system is provided in equation

(D.1.1), in which the strain energy stores in the assumed spring elements defined in equation

(D.1.2). The damping in each group elastic element is assumed to be classical linear viscous

in form and is expressed by equation (D.1.3).

U = −
μM1

R1
−
μM2

R2
−
μMM

R
+ 2SE0|axial

= −
μM1√

L2 + R2 + 2LR cosα cosψ
−

μM2√
L2 + R2 − 2LR cosα cosψ

−
μMM

R
+ 2SE0|axial

(D.1.1)

Where, theSE0|axial term is the strain energy of each massless tether subspan with axial

elasticity, as stated in equation (D.1.2). That is, for the symmetrical double-ended MMET

system, the total strain energy is2SE0|axial, as shown in equation (D.1.1). TheCE0|axial

quantity is an assumed dissipation function based on Rayleigh damping and is stated in

equation (D.1.3).

SE0|axial =
1

2
keqL

2
x (D.1.2)

CE0|axial =
1

2
ceqL̇x

2
(D.1.3)
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For the serial ‘spring-damper’ group, it is assumed,k0 = k1 = k2 = . . . = kn+1,

c0 = c1 = c2 = . . . = cn+1, where thek0 andc0 are the default stiffness and damping

coefficient values when they are applied in the numerical calculation. Equations (4.2.2) and

(4.2.3) for the equivalent spring and damper can be transformed into equations (D.1.4) and

(D.1.5).

keq =
k0

n+ 1
(D.1.4)

ceq =
c0

n+ 1
(D.1.5)

D.2 Kinetic Energy

As the payload and motor facility masses are connected by axially elastic massless tether

subspans, the kinetic energy of the system is provided by equation (D.2.1), where (x0, y0,

z0) is given in equation (3.2.4), (x1, y1, z1) is given in equation (3.4.3), and (x2, y2, z2) is

given in equation (3.4.4).

T =
1

2
MP1

(
ẋ2P1 + ẏ

2
P1 + ż

2
P1

)
+
1

2
MP2

(
ẋ2P2 + ẏ

2
P2 + ż

2
P2

)
+
1

2
MM

(
ẋ20 + ẏ

2
0 + ż

2
0

)
+

1

2
[IzP1 + IzP2 + IzM ]

(
ψ̇+ θ̇

)2
+

1

2
[IxP1 + IxP2 + IxM ] α̇

2+

1

2
[IyP1 + IyP2 + IyM ] γ̇

2

(D.2.1)

D.3 Generalised Coordinates

In the case of this modelling, it has been decided to represent the system dynamics by means

of four angular coordinates (ψ, θ, α, γ) and two translational coordinates (R, Lx), in which,

the selection ofψ, θ, α, R andγ are the same generalised coordinates as discussed in section

3.6.8, Table3.5. Lx is the generalised coordinate for axially elastic motion.
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D.4 Generalised Forces

According to the previous discussion in section3.5.7, the generalised force generated by the

motor on the system needs to be derived, from the principle of virtual work, and is defined

in equation (3.5.8).

As stated in equation (4.2.1), L0 is the static tether length, andLx is the axially elastic

length along the tether subspans, then the virtual displacements in equation (3.5.12) can be

re-stated as equation (D.4.1).






x = (L0 + Lx) cosα cosψ

y = (L0 + Lx) cosα sinψ

z = (L0 + Lx) sinα

(D.4.1)

Considering the virtual work done by all non-conservative forces through a virtual dis-

placement, according to equation (3.5.9) and equation (3.5.10), the virtual work of the axial

effect generalised coordinateLx is given in equation (D.4.2), and the generalised force ofLx

leads to equation (D.4.3), whose derivation process is similar to that of equation (A.0.12).

The generalised forces for coordinatesψ, θ,α, γ, andR are the same as in equations (3.5.13)

to (3.5.17).

δWLx = QLx (t) δLx (D.4.2)

QLx (t) = Fx
∂x

∂Lx
+ Fy

∂y

∂Lx
+ Fz

∂z

∂Lx
− ceqL̇x (D.4.3)

Where,Fx, Fy andFz are the Cartesian components ofF, which have been discussed for

equation (3.5.5).






∂x

∂Lx
= cosα cosψ

∂y

∂Lx
= cosα sinψ

∂z

∂Lx
= sinα

(D.4.4)

According to equation (D.4.4), equation (D.4.3) can be transformed into equation (D.4.5).

QLx = −ceqL̇x (D.4.5)
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Appendix E

Lagrange Equation Components for

Section4.3

E.1 Potential Energy

In this axially and torsionally elastic massless MMET system, the axial and torsional elastic

potential energy is stored as the strain energy in the elastic elements - the axial and torsional

‘spring-damper’ groups. The strain energy terms for the tether axial and torsional elasticity

are given in equation (D.1.2) and (E.1.1), in which it is assumedkt0 = kt1 = kt2 = . . . =

ktn, where thekt0 is the default stiffness value when applied in the numerical simulation.

The damper in each group elastic element is assumed to be classical linear viscous, which

is stated in equation (E.1.2), similarly, it is assumedct0 = ct1 = ct2 = . . . = ctn, where the

ct0 is the default damping coefficient value for the numerical simulation.

Based on thekt0 andct0 settings, equations (4.3.1) and (4.3.2) can be re-written as (E.1.3)

and (E.1.4).

SE0|torsional =
1

2
kteqγ

2
x (E.1.1)

CE0|torsional =
1

2
cteqγ̇x

2 (E.1.2)

Where,

kteq =
kt0

n+ 1
(E.1.3)

cteq =
ct0

n+ 1
(E.1.4)
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The tether’s potential energy is given in equation (E.1.5), andμ is the product of the

universal gravitational constantG with the Earth’s Mass.

U = −
μM1

R1
−
μM2

R2
−
μMM

R
+ 2SE

= −
μM1√

L2 + R2 + 2LR cosα cosψ
−

μM2√
L2 + R2 − 2LR cosα cosψ

−
μMM

R
+ 2SE

(E.1.5)

where,

SE = SE0|axial + SE0|torsional (E.1.6)

Equation (E.1.6) gives the strain energy of this axially and torsionally elastic massless

MMET system, in which for the symmetrical double-ended MMET system, the total strain

energy is2SE, as provided by equation (E.1.6).

TheSE0|axial term is the axially elastic strain energy of each tether subspan and is defined

in equation (D.1.2). TheSE0|torsional term is the torsionally elastic strain energy of each

tether subspan and is defined in equation (E.1.1).

TheCE0|axial term is an assumed dissipation function of the axial elasticity modelling,

based on Rayleigh damping and defined in equation (D.1.3). TheCE0|torsional term is an

assumed dissipation function of the torsional elasticity modelling, based on the Rayleigh

damping as expressed in equation (E.1.2).

E.2 Kinetic Energy

The kinetic energy of this MMET system is given in equation (E.2.1), where (x0, y0, z0), (x1,

y1, z1) and (x2, y2, z2) are the same as are given in sectionD.2, andL is given in equation

(4.2.1). The mass moments of inertia for the two cylindrical payloads and the motor facility

are declared in section3.5.1and3.5.2.
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T =
1

2
MP1

(
ẋ2P1 + ẏ

2
P1 + ż

2
P1

)
+
1

2
MP2

(
ẋ2P2 + ẏ

2
P2 + ż

2
P2

)
+
1

2
MM

(
ẋ20 + ẏ

2
0 + ż

2
0

)
+

1

2
[IzP1 + IzP2 + IzM ]

(
ψ̇+ θ̇

)2
+
1

2
[IxP1 + IxP2 + IxM ] α̇

2+

1

2
[IyP1 + IyP2 + IyM ] γ̇

2 +
1

2
[IyP1 + IyP2 ] γ̇x

2

(E.2.1)

E.3 Generalised Coordinates

In the case of this modelling, it has been decided to represent the system dynamics by means

of five angular coordinates (ψ, θ, α, γ, γx) and two translational coordinates (R, Lx), in

which theψ, θ, α, γ, R andLx are the same generalised coordinates as discussed in section

D.3, andγx is the generalised coordinate for motion accommodating torsional elasticity.

E.4 Generalised Forces

The virtual work for the torsional effect generalised coordinateγx is derived in equation

(E.4.1), and the generalised force ofγx is expressed in equation (E.4.2). The generalised

forces for coordinatesψ, θ, α, R andLx are reported in equations (3.5.13) to (3.5.17) and

(D.4.5).

δWγx = Qγx (t) δγx (E.4.1)

where,

Qγx (t) = Fx
∂x

∂γx
+ Fy

∂y

∂γx
+ Fz

∂z

∂γx
− cteqγ̇x (E.4.2)

The quantityγx states the torsional effect for this MMET system. The generalised force

of γx can also be reformed as equation (E.4.4) by substituting equation (E.4.3) into equation

(E.4.2).






∂x

∂γx
= 0

∂y

∂γx
= 0

∂z

∂γx
= 0

(E.4.3)
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Qγx = −cteqγ̇x (E.4.4)
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Appendix F

Lagrange Equation Components for

Section4.4

F.1 Generalised Coordinates

In order to describe the kinematic behaviour of the flexible massless MMET system, there

are seven rotational generalised coordinates (ψ, ψx, θ, α, αx, γ, γx) and two translational

coordinates (Lx,R) as shown in Figure4.33. Note that, the rigid body generalised coordinates

(ψ, θ, α, γ, R) are not duplicating any of the motions of the elastic generalised coordinates

(ψx, αx, γx, Lx).

The coordinatesψ, θ, α, γ, R, Lx andγx are the same generalised coordinates as given

sectionE.3, andψx is the generalised coordinate required for showing the effects of the

equivalent motion of the pendular elasticity on the planex0 − O − y0, as shown in Figure

4.32. αx is the generalised coordinate relating to the equivalent motion of the pendular

elasticity on the planez0 −O− y0, as shown in Figure4.34.

F.2 Kinetic Energy

As the payloads (MP1, MP2) and motor facility (MM) masses are connected by flexible

massless tether subspans, the kinetic energy of this MMET system is given in equation

(F.2.1).
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T =
1

2
MP1

(
ẋ21 + ẏ

2
1 + ż

2
1

)
+
1

2
MP2

(
ẋ22 + ẏ

2
2 + ż

2
2

)
+

1

2
MM

(
ẋ20 + ẏ

2
0 + ż

2
0

)
+
1

2
(MP1 +MP2) L̇

2
x+

1

2
[IzP1 + IzP2 + IzM ]

(
ψ̇+ θ̇

)2
+
1

2
[IxP1 + IxP2 + IxM ] α̇

2+

1

2
[IyP1 + IyP2 + IyM ] γ̇

2 +
1

2
[IyP1 + IyP2 ] γ̇x

2+

1

2

[
IzP1 + IzP2 + (MP1 +MP2)L

2
]
ψ̇x

2
+

1

2

[
IxP1 + IxP2 + (MP1 +MP2)L

2
]
α̇x
2

(F.2.1)

F.3 Potential Energy

The gravitational potential energy is obtained by implementing Newton’s gravitational law,

and is stated in equation (F.3.1), whereμ is the product of the universal gravitational constant

G with the Earth’s Mass.

U = −
μM1

R1
−
μM2

R2
−
μMM

R
+ 2SE

= −
μM1√

L2 + R2 + 2LR cosα cosψ
−

μM2√
L2 + R2 − 2LR cosα cosψ

−
μMM

R
+ 2SE

(F.3.1)

Where, equation (F.3.2) gives the strain energy along each tether subspan, so, for the

symmetrical double-ended MMET system, the total strain energy is2SE, as obtained in

equation (F.3.1).

As has been noted, equations (D.1.2), (E.1.1) and (F.3.3) express the strain energy relat-

ing to the axial, torsional and pendular elasticity, respectively. Equations (D.1.3), (E.1.2) and

(F.3.4) defined the assumed dissipation function based on Rayleigh damping for including

axial, torsional and pendular elastic effects, correspondingly.
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SE = SE0|axial + SE0|torsional + SE0|pendular (F.3.2)

SE0|pendular =
1

2
kleq

(
ψ2x + α

2
x

)
(F.3.3)

CE0|pendular =
1

2
cleq

(
ψ̇x

2
+ α̇x

2
)

(F.3.4)

F.4 Generalised Forces

The virtual work for the pendular effect generalised coordinatesψx andαx is given in equa-

tions (F.4.1) and (F.4.2), in which the generalised forces forψx andαx are reported in equa-

tions (F.4.7) and (F.4.8). The generalised forces for coordinatesψ, θ, α, γ, R, Lx andγx are

the same as stated in sectionE.3.

δWψx = Qψx (t) δψx (F.4.1)

δWαx = Qαx (t) δαx (F.4.2)

Qψx = Fx
∂x

∂ψx
+ Fy

∂y

∂ψx
+ Fz

∂z

∂ψx
− cleqψ̇x = −cleqψ̇x (F.4.3)

Qαx = Fx
∂x

∂αx
+ Fy

∂y

∂αx
+ Fz

∂z

∂αx
− cleqα̇x = −cleqα̇x (F.4.4)

By substituting equations (F.4.5) and (F.4.6) into equations (F.4.3) and (F.4.4), the gen-

eralised forces forψx andαx can then be simplified into equations (F.4.7) and (F.4.8).






∂x

∂ψx
= 0

∂y

∂ψx
= 0

∂z

∂ψx
= 0

(F.4.5)
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




∂x

∂αx
= 0

∂y

∂αx
= 0

∂z

∂αx
= 0

(F.4.6)

Qψx = −cleqψ̇x (F.4.7)

Qαx = −cleqα̇x (F.4.8)
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Appendix G

Dynamical Modelling for Axial Elastic

MMET System with Two Discretised

Mass Points

In this chapter, a simplified MMET system by following the same discretisation scheme is

proposed withN = 2 discretised mass points. As shown in FigureG.1, the axial elastic

MMET system with 2 discretised mass points for two tether subspans, in which the gener-

alised coordinatesηi (i = 1 to 2) are for the 2 discretised mass points.ηP1 andηP2 are the

generalised coordinates for the mass payloadsMP1 andMP2, the Cartesian coordinate for

the motor facilityM0 is given in section5.2, and FigureG.1 is a simplified case for Figure

5.1.

G.1 The Cartesian Coordinates for PayloadsMP1 andMP2

The Cartesian coordinates for the payloadsMP1 andMP2 are given in equations (G.1.1) and

(G.1.2).






x1 = x0 + (ηP1 + η1 + L0) cosαcos (θ+ψ)

y1 = y0 + (ηP1 + η1 + L0) cosαsin (θ+ψ)

z1 = (ηP1 + η1 + L0) sinα

(G.1.1)
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Figure G.1: Axial elastic MMET tether with 2 mass points
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




x2 = x0 − (η2 + ηP2 + L0) cosα cos(θ+ψ)

y2 = y0 − (η2 + ηP2 + L0) cosα sin(θ+ψ)

z2 = −(η2 + ηP2 + L0) sinα

(G.1.2)

G.2 The Cartesian Coordinates for Mass Pointsm1 tom2

The Cartesian coordinates for the discretised mass pointsm1 tom2 are given in equations

(G.2.1) and (G.2.2).






xm1 = x0 +

(

η1 +
L0

2

)

cosα cos(θ+ψ)

ym1 = y0 +

(

η1 +
L0

2

)

cosα sin(θ+ψ)

zm1 =

(

η1 +
L0

2

)

sinα

(G.2.1)






xm2 = x0 −

(

η2 +
L0

2

)

cosα cos(θ+ψ)

ym2 = y0 −

(

η2 +
L0

2

)

cosα sin(θ+ψ)

zm2 = −

(

η2 +
L0

2

)

sinα

(G.2.2)

Similarly, the distance from EarthE(0, 0, 0) to each of the discretised mass point is rep-

resented byRmi , as given in equation (5.3.11).

G.3 Potential Energy

The tether’s potential energy is given in equation (G.3.1), whereμ is the product of the

universal gravitational constantG with the Earth’s mass.

U = −
μMP1

R1
−
μMP2

R2
−
μM0

R
−
μm1

Rm1
−
μm2

Rm2
+ SE|axial (G.3.1)

Where, theSE|axial term is a strain energy of the axial elasticity, as stated in equation

(G.3.2) with the assumptionk0 = k1 = k2 = k3 = k4, wherek0 is the default stiffness value.

SE|axial =
1

2
k0
(
(ηP1 − η1)

2 + η21 + η
2
2 + (η2 − ηP2)

2
)

(G.3.2)

TheCE|axial term is an assumed dissipation function, as given in equation (G.3.3) with

the assumptionc0 = c1 = c2 = c3 = c4, where thec0 is the default damping coefficient value.
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CE|axial =
1

2
c0
(
(η̇P1 − η̇1)

2 + η̇21 + η̇
2
2 + (η̇2 − η̇P2)

2
)

(G.3.3)

G.4 Kinetic Energy

The kinetic energy of this MMET system with 2 discretised mass points is stated in equation

(G.4.1).

T =
1

2
MP1

(
ẋ21 + ẏ

2
1 + ż

2
1

)
+
1

2
MP2

(
ẋ22 + ẏ

2
2 + ż

2
2

)
+
1

2
M0

(
ẋ20 + ẏ

2
0 + ż

2
0

)
+

[
1

2
m1

(
ẋ2m1 + ẏ

2
m1
+ ż2m1

)
+
1

2
m2

(
ẋ2m2 + ẏ

2
m2
+ ż2m2

)
]

+

[
1

2
IzP1 +

1

2
IzP2 + IzT +

1

2
IzM

]
(
ψ̇+ θ̇

)2
+

[
1

2
IxP1 +

1

2
IxP2 + IxT +

1

2
IxM

]

α̇2+

[
1

2
IyP1 +

1

2
IyP2 + IyT +

1

2
IyM

]

γ̇2

(G.4.1)

G.5 Governing Equations of Motion

In the case of this model, the selected generalised coordinates are four angular coordinates

(ψ, θ, α, γ) and five translational coordinates (R, η1, ηP1, η2 andηP2), in which the gen-

eralised coordinatesη1, ηP1, η2 andηP2 are to express the equivalent behaviour due to its

axial elasticity. The generalised coordinatesqi and the generalised forcesQi (i = 1 - 9) are

a reduced set of those quoted for the case ofN = 10.

Lagrange’s equations are used to generate the governing equations of motion, the full

equations are to be found in the path CD-ROM/axial/N2/, as listed in Table5.2.
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Appendix H

Dynamical Modelling for Axial and

Torsional Elastic MMET System with

Two Discretised Mass Points

Based on the axial elastic MMET system in AppendixG, in this chapter, a simplified axial

and torsional MMET system with two discretised mass points is proposed.

As shown in FigureH.1, the torsional generalised coordinatesϕ1 andϕ2 are for the 2

discretised mass pointsm1 andm2, ϕP1 andϕP2 are the torsional generalised coordinates

for the mass payloadsMP1 andMP2, the Cartesian coordinates for the motor facilityM0,

payloadsMP1 andMP2 are given by equations (3.2.4), (G.1.1) and (G.1.2), and the Cartesian

coordinates for mass pointsm1 tom2 are given by equations (G.2.1) and (G.2.2).

For the axial elasticity modelling process is same as it has been discussed in Appendix

G, so it will not be discussed in this appendix.

H.1 Potential Energy

The tether’s potential energy is given in equation (H.1), whereμ is the product of the uni-

versal gravitational constantG with the Earth’s mass. The distance from EarthE(0, 0, 0) to

each of the discretised mass point is represented byRmi , as given in equation (5.3.11).

U = −
μMP1

R1
−
μMP2

R2
−
μM0

R
−
μm1

Rm1
−
μm2

Rm2
+ SE|axial + SE|torsional (H.1.1)

Where, theSE|axial andSE|torsional are the strain energy terms for axial and torsional

elasticity, as stated in equation (G.3.2) and (H.1.2) with the assumptionk0 = k1 = k2 and

kt0 = kt1 = kt2, wherek0 andkt0 are the default axial and torsional stiffness values.
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Figure H.1:Axial and torsional elastic MMET tether with 2 mass points

SE|torsional =
1

2
kt0
(
(ϕP1 −ϕ1)

2 +ϕ21 +ϕ
2
2 + (ϕ2 −ϕP2)

2
)

(H.1.2)

TheCE|torsional term is an assumed torsional dissipation function, as given in equation
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(H.1.3), with the assumption ofct0 = ct1 = ct2, where thect0 is the default torsional

damping coefficient value.

CE|torsional =
1

2
ct0
(
(ϕ̇P1 − ϕ̇1)

2 + ϕ̇21 + ϕ̇
2
2 + (ϕ̇2 − ϕ̇P2)

2
)

(H.1.3)

H.2 Kinetic Energy

The kinetic energy of the MMET system with 2 discretised mass points is stated in equation

(H.2.1).

T =
1

2
MP1
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ẋ21 + ẏ

2
1 + ż

2
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+
1

2
MP2
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2
2 + ż
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+
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2
m1
+ ż2m1
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+

[
1

2
IzP1 +

1

2
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+
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1
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1
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IxP2 + IxT +

1
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IxM
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α̇2+

[
1

2
IyP1 +

1

2
IyP2 + IyT +

1

2
IyM

]

γ̇2+

[
1

2
IyP1ϕ̇

2
P1 +

1

2
IyP2ϕ̇

2
P2 +

1

2
Iym1ϕ̇

2
1 +

1

2
Iym2ϕ̇

2
2

]

(H.2.1)

H.3 Governing Equations of Motion

In the case of this model, the selected generalised coordinates are eight angular coordinates

(ψ, θ, α, γ, ϕ1, ϕP1, ϕ2 andϕP2) and five translational coordinates (R, η1, ηP1, η2 and

ηP2), in which the generalised coordinateϕ1, ϕP1, ϕ2 andϕP2 are to express the torsional

behaviours due to the torsional elasticity.

Lagrange’s equations are used to generate the governing equations of motionas, the full

equations are to be found in the path CD-ROM/axial-torsional/N2/, as listed in Table6.2
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Appendix I

Dynamical Modelling for Axial, Torsional

and Pendular Elastic MMET System

with Two Discretised Mass Points

In this chapter, based on the axial and torsional elastic MMET system in AppendixH, a

simplified flexible MMET system with two discretised mass points is introduced by follow-

ing the same discretisation scheme as mentioned in Chapter7. Again, the word ‘flexible’

means that this MMET system is incorporating axial, torsional and pendular elasticity, and

the ‘pendular’ elasticity means a set ofN = 2 coupled pendulums withN equals the number

of elements between each mass element in each of the tether sub-span.

As shown in FigureI.1, the pendular generalised coordinatesχ1 andχ2 are for the 2

discretised mass pointsm1 andm2.

χP1 andχP2 are the pendular generalised coordinates for the mass payloadsMP1 and

MP2, referenced on planex0 − O − y0, it is a simplified MMET system of the original

MMET system as given Figure7.1.

As shown in FigureI.2, the pendular generalised coordinatesζ1 andζ2 are for the 2

discretised mass pointsm1 andm2.

ζP1 andζP2 are the pendular generalised coordinates for the mass payloadsMP1 andMP2,

referenced on planez0 − O − y0, it is a simplified MMET system of the original MMET

system as given Figure7.2.
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Figure I.1:Pendular elastic MMET tether with 2 discretised mass points -x0 −O− y0
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Figure I.2:Pendular elastic MMET tether with 2 discretised mass points -z0 −O− y0
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I.1 Potential Energy

The tether’s potential energy is given in equation (I.1.1), whereμ is the product of the univer-

sal gravitational constantG with the Earth’s mass. The Cartesian coordinates for the motor

facility M0, payloadsMP1 andMP2 are given by equations (3.2.4), (G.1.1) and (G.1.2),

and the Cartesian coordinates for mass pointsm1 tom2 are given by equations (G.2.1) and

(G.2.2). The distance from EarthE(0, 0, 0) to each of the discretised mass point is repre-

sented byRmi , as given in equation (5.3.11).

U = −
μMP1

R1
−
μMP2

R2
−
μM0

R
−
μm1

Rm1
−
μm2

Rm2
+ SE|axial + SE|torsional + SE|pendular

(I.1.1)

Where, theSE|axial, SE|torsional andSE|pendular are the strain energy terms of axial,

torsional and pendular elasticity, as stated in equation (G.3.2), (H.1.2) and (I.1.2) with the

assumptionk0 = k1 = k2, kt0 = kt1 = kt2 andkl0 = kl1 = kl2, wherek0, kt0 andkl0 are the

default axial, torsional and pendular stiffness values.

SE|pendular =
1

2
kl0
(
(χP1 − χ1)

2 + χ21 + χ
2
2 + (χ2 − χP2)

2
)
+

1

2
kl0
(
(ζP1 − ζ1)

2 + ζ21 + ζ
2
2 + (ζ2 − ζP2)

2
)

(I.1.2)

TheCE|pendular term is an assumed torsional dissipation function, as given in equation

(I.1.3), with the assumptioncl0 = cl1 = cl2, where thecl0 is the default torsional damping

coefficient value.

CE|pendular =
1

2
cl0
(
(χ̇P1 − χ̇1)

2 + χ̇21 + χ̇
2
2 + (χ̇2 − χ̇P2)

2
)
+

1

2
cl0
(
(ζ̇P1 − ζ̇1)

2 + ζ̇21 + ζ̇
2
2 + (ζ̇2 − ζ̇P2)

2
)

(I.1.3)

I.2 Kinetic Energy

The kinetic energy of the MMET system with 2 discretised mass points is stated in equation

(I.2.1).
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




(I.2.1)

I.3 Governing Equations of Motion

Besides the rigid body, axial and torsional elastic generalised coordinates as discussed in

AppendixH, in this section:

. The generalised coordinatesχ1, χP1, χ2 andχP2 are selected for the torsional be-

haviours, referenced on planex0 −O− y0.

. The generalised coordinatesζ1, ζP1, ζ2 andζP2 are selected for the torsional be-

haviours, referenced on planez0 −O− y0.

Lagrange’s equations are used to generate the governing equations of motionas, the full

equations are to be found in the path CD-ROM/axial-torsional-pendular/N2/, as listed in

Table7.3
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Appendix J

Elastic Motion Figures for Chapter 8
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Figure J.1: Axial elastic behaviour with FLC -η1(Tn = 4.01)

. FiguresJ.1andJ.2state the FLC controlled axial elastic behaviour for the discretised

mass pointm1 over a short simulation time (number of periodic cycles,Tn = 4.01) and

long simulation time (number of periodic cycles,Tn = 400.01), respectively. In the

beginning (0 to 2.5×104 seconds), the controlled axial elastic motion is changing with

a reducing frequency oscillations within the range -3.0 to -4.0 rad.

. FiguresJ.3andJ.4are the axial elastic responses for the payloadMP1 over a simu-
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Figure J.2: Axial elastic behaviour with FLC -η1(Tn = 400.01)
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Figure J.3: Axial elastic behaviour with FLC -ηP1(Tn = 4.01)
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Figure J.4: Axial elastic behaviour with FLC -ηP1(Tn = 400.01)
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Figure J.5: Axial elastic behaviour with FLC -η2 (Tn = 4.01)

331



0 0.5 1 1.5 2 2.5 3

x 10
6

3.4

3.6

3.8

4

4.2

time(sec)

et
a2

[t]
(m

)

0 0.5 1 1.5 2 2.5 3

x 10
6

3.2

3.4

3.6

3.8

time(sec)

et
a2

[t]
 w

ith
 F

LC
 (

m
)

Figure J.6: Axial elastic behaviour with FLC -η2 (Tn = 400.01)
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Figure J.7: Axial elastic behaviour with FLC -ηP2(Tn = 4.01)
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Figure J.8: Axial elastic behaviour with FLC -ηP2(Tn = 400.01)
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Figure J.9: Pendular elastic behaviour with FLC -χ1(Tn = 4.01)

lation timeTn = 4.01 and 400.01, which are moving with a higher frequency than the

axial elastic behaviour for the discretised mass pointm1 with the range -5.0 to -9.5 rad

. FiguresJ.5andJ.6are the axial elastic motions for the discretised mass pointm2

with the range 3.0 to 4.0 rad, FiguresJ.7andJ.8are the axial elastic motions for the

payloadMP2 with the range 5.0 to 9.5 rad, which are in the symmetrical location with
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Figure J.10: Pendular elastic behaviour with FLC -χP1(Tn = 4.01)
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Figure J.11: Pendular elastic behaviour with FLC -χ2 (Tn = 400.01)

respect to the MMET system COM.

.Reference on planex0−O−y0, FiguresJ.9andJ.10are the pendular elastic motions

for the discretised mass pointm1 within -0.000045 to 0.000045 rad and payloadMP1

within -0.00045 to 0.00045 rad.

.Meanwhile, FiguresJ.11andJ.12are for the pendular elastic motions for the discre-

tised mass pointm2 and payloadMP2, in the symmetrical location with respect to the

MMET system COM, reference on planex0 −O− y0.

. Reference on planez0 − O − y0, FiguresJ.13and J.14are the pendular elastic

motions for the discretised mass pointm1 within -0.00004 to 0.00004 rad and payload
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Figure J.12: Pendular elastic behaviour with FLC -χP2(Tn = 4.01)
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Figure J.13: Pendular elastic behaviour with FLC -ζ1(Tn = 4.01)

MP1 within -0.0004 to 0.0004 rad.

. Symmetrically, FiguresJ.15andJ.16are for the pendular elastic motions for the

discretised mass pointm2 and payloadMP2, reference on planez0 −O− y0.
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Figure J.14: Pendular elastic behaviour with FLC -ζP1(Tn = 4.01)
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Figure J.15: Pendular elastic behaviour with FLC -ζ2 (Tn = 400.01)
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Figure J.16: Pendular elastic behaviour with FLC -ζP2(Tn = 4.01)
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Appendix K

Elastic Motion Figures for Chapter 9

. FiguresK.1 to K.4 are the axial elastic motions for the discretised pointsm1 andm2

over the simulation timeTn = 4.01 and 400.01, in which the FαSMC and SkyhookSMC

controlled MMET system’s axial elastic motions are with similar oscillation frequen-

cies to each other, and smaller amplitudes than the axially elastic behaviour in the

MMET system with the FLC.

Also, them1 andm2 are in the symmetrical position with respect to the MMET COM,

in the beginning part of the figures, the FLC controlled axial elastic motion start with

shorter reducing frequency oscillation than the other controllers’, and all of the three

controlled MMET system axial elastic outputs are changing with similar periodic be-

haviours in the later simulation time.

. FiguresK.5 to K.8 are the axial elastic motions for the payloadsMP1 andMP2 over

the simulation timeTn = 4.01 and 400.01 with larger amplitudes than them1 andm2’s.

The FαSMC controlledη1, η2, ηP1, andηP2, their responses are slightly larger than

SkyhookSMC, and FLC has the max amlitude of the three controllers.

As can be seen from FiguresK.5 andK.7, theMP1 andMP2’s responses are the high

freqency oscillations carried by the periodic wave, in which the FαSMC and Sky-

hookSMC controlled MMET system’s outputs are with slightly longer obvious high

freqency oscillations than the FLC’s output. And then, as shown in FiguresK.6 and

K.8, all the controlled outputs stays in a stable periodic waves, whose active frequen-

cies are higher than the axial elastic motions form1 andm2.

. FiguresK.9 andK.10 are the pendular elastic motions for discretised mass pointm1

referenced on planex0 − O − y0, by comparing the control effects of FLC, FαSMC
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and SkyhookSMC, which indicate theχ1 responses amplitude: FLC> FαSMC >

SkyhookSMC.

. Similarily, FiguresK.11 andK.12 are the responses for the discretised mass point

m2’s pendular elastic motion on planex0 − O − y0, the FαSMC’s plotχ2 is slightly

larger than SkyhookSMC’s plot.

. FiguresK.13 to K.16 compare the pendular elastic behaviours for the payloadsMP1

andMP2 with three controllers, which state theχP1 andχP2 responses amplitude: FLC

> FαSMC> SkyhookSMC, referenced on both planesx0 −O− y0.

. FiguresK.17 to K.20are the pendular elastic behavioursζ1 andζ2 for the discretised

mass pointsm1 andm2, referenced on the planez0 −O− y0 with three controllers.

. FiguresK.21 to K.24 are the pendular elastic behavioursζP1 andζP2 or the payloads

MP1 andMP2 referenced on the planez0 − O − y0. All the pendular behaviours are

with the appearance of stable oscillation performance and reducing to a zero status.
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Figure K.1: Axial elastic behaviour with control -η1(Tn = 4.01)
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Figure K.2:Axial elastic behaviour with control -η1(Tn = 400.01)

341



0 0.5 1 1.5 2 2.5 3

x 10
4

3.5

3.55

3.6

3.65

3.7

time(sec)

et
a2

[t]
 (

m
)

 

 

alpha = 1 FLC

0 0.5 1 1.5 2 2.5 3

x 10
4

3.3

3.35

3.4

3.45

3.5

time(sec)

et
a2

[t]
 (

m
)

 

 

alpha = 0 ShyhookSMC

0 0.5 1 1.5 2 2.5 3

x 10
4

3.35

3.4

3.45

3.5

3.55

time(sec)

et
a2

[t]
 (

m
)

 

 

alpha = 0.5 FalphaSMC

Figure K.3:Axial elastic behaviour with control -η2(Tn = 4.01)
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Figure K.4:Axial elastic behaviour with control -η2(Tn = 400.01)
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Figure K.5:Axial elastic behaviour with control -ηP1 (Tn = 4.01)
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Figure K.6:Axial elastic behaviour with control -ηP1 (Tn = 400.01)
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Figure K.7:Axial elastic behaviour with control -ηP2 (Tn = 4.01)
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Figure K.8:Axial elastic behaviour with control -ηP2 (Tn = 400.01)
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Figure K.9: Torsional elastic behaviour with control -χ1, FLC vs. SkyhookSMC (Tn = 4.01)
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Figure K.10: Torsional elastic behaviour with control -χ1, FalphaSMC vs. SkyhookSMC
(Tn = 4.01)
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Figure K.11: Torsional elastic behaviour with control -χ2, FLC vs. SkyhookSMC (Tn =
4.01)
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Figure K.12: Torsional elastic behaviour with control -χ2, FalphaSMC vs. SkyhookSMC
(Tn = 4.01)
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Figure K.13: Torsional elastic behaviour with control -χP1, FLC vs. SkyhookSMC (Tn =
4.01)
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Figure K.14: Torsional elastic behaviour with control -χP1, FalphaSMC vs. SkyhookSMC
(Tn = 4.01)
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Figure K.15: Torsional elastic behaviour with control -χP2, FLC vs. SkyhookSMC (Tn =
4.01)

0 5000 10 000 15 000 20 000 25 000 30 000

0.0004

0.0002

0.0000

0.0002

0.0004

time Sec.

ch
iP

2
ra

d SkyhookSMC

FalphaSMC

Figure K.16: Torsional elastic behaviour with control -χP2, FalphaSMC vs. SkyhookSMC
(Tn = 4.01)
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Figure K.17: Torsional elastic behaviour with control -ζ1, FLC vs. SkyhookSMC (Tn =
4.01)
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Figure K.18: Torsional elastic behaviour with control -ζ1, FalphaSMC vs. SkyhookSMC
(Tn = 4.01)
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Figure K.19: Torsional elastic behaviour with control -ζ2, FLC vs. SkyhookSMC (Tn =
4.01)
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Figure K.20: Torsional elastic behaviour with control -ζ2, FalphaSMC vs. SkyhookSMC
(Tn = 4.01)
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Figure K.21: Torsional elastic behaviour with control -ζP1, FLC vs. SkyhookSMC (Tn =
4.01)
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Figure K.22: Torsional elastic behaviour with control -ζP1, FalphaSMC vs. SkyhookSMC
(Tn = 4.01)
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Figure K.23: Torsional elastic behaviour with control -ζP2, FLC vs. SkyhookSMC (Tn =
4.01)
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Figure K.24: Torsional elastic behaviour with control -ζP2, FalphaSMC vs. SkyhookSMC
(Tn = 4.01)
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Appendix L

SMATLINK - How to integrate

MATLAB with MATHEMA TICA

L.1 Introduction

Simple MATLAB and MATHEMATICA link laboratory toolbox (SMATLINK) is a toolbox

to connect MATLAB and MATHEMATICA, it allows easy data exchange and manipulation,

implementation of existing MATLAB or MATHEMATICA codes. There are two parts in

SMATLINK package:

〈1〉 SMATLINK::matlabcall

. This part can do ‘MATLAB call MATHEMATICA’, in which, MATLAB is the

Front-End and MATHEMATICA is the Calculating Engine, as shown in FigureL.1.

〈2〉 SMATLINK :: mathematicacall

. This part can do ‘MATHEMATICA call MATLAB’, in which, Mathemaitca is the

Front-End and MATLAB is the Calculating Engine, as shown in FigureL.2.

L.2 Why SMATLINK

The main reasons to use SMATLINK are:

〈1〉 Mobilise mathematical and computational resources;

〈2〉 Access leverage from limited mathematical and computational resources;

〈3〉 Economise the mathematical and computational resource requirements;
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Figure L.1: SMATLINK::matlabcall work loop

Figure L.2: SMATLINK::mathematicacall work loop

L.3 MMET spin-up control co-simulation

As mentioned in sections8.8 and 9.5, the numerical simulations for the MMET system

spin-up control are obtained by using the toolkit ofSMATLINK, which can integrate con-

trol in MATLAB/SIMULINK with the MMET model inMATHEMATICA. FigureL.3

shows the overall work loop for this simulations, in which theMATLAB/SIMULINK is

the front-end to accept user’s inputs and parameter settings, and control the ‘master’ tim-

ing for all the simulation process. On the other hand,MATHEMATICA represents the

dynamical models for the MMET systems, which is waiting for the control signals from

MATLAB/SIMULINK via SMATLINK, and generate the MMET systems’ feedback then
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send the feedback signals back toMATLAB/SIMULINK via SMATLINK. FigureL.5

presents the co-simulation timing control process, in which, theMATLAB controller is

the ‘master’ timer, theMATHEMATICA MMET model is waiting for the control sig-

nals fromMATLAB, it solves the controlled dynamical equations for the MMET system

byNDSover[] with proper parameters, then the results has been sent back toMATLAB via

SMATLINK.

Figure L.3: The MMET system spin-up control co-simulation via SMATLINK

A simple case is given in FigureL.4, which shows how to call aMATHEMATICA

function fromMATLAB command window.

Figure L.4: How to call MATHEMATICA function from MATLAB
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Figure L.5: SMATLINK timing control
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Appendix M

Fuzzy Logic Control Terminology

Table M.1:Fuzzy Linguistic Values

Fuzzy Linguistic Value Description E EC U
NB Negative Big -5 -5 -2
NM Negative Middle -4 -4 -1.5
NS Negative Small -3 -3 -1
NZS Negative Zero Small -2 -2 -0.5
ZE Zero 0 0 0
PZS Positive Zero Small 2 2 0.5
PS Positive Small 3 3 1
PM Positive Middle 4 4 1.5
PB Positive Big 5 5 2

360


	Introduction to Space Tethers
	Introduction

	 Literature Review on Space Tethers and Tethered System Control 
	The Motorised Momentum Exchange Tether (MMET)
	Dumbbell Tether
	The Dumbbell MMET
	The Dumbbell MMET with Cylindrical Payloads and a Motor Facility
	The MMET as a Rigid Body

	 Dynamical Modelling of a Flexible Massless MMET System 
	Dynamical Modelling incorporating Axial Elasticity
	Dynamical Modelling including Axial and Torsional Elasticity
	Dynamical Modelling for the Flexible Massless MMET

	 Discretised Axially MMET Elastic System 
	 Discretised MMET System involving Axial and Torsional Elasticity
	 Dynamical Modelling for a Discretised Flexible MMET System 
	 Fuzzy Logic Control for MMET Spin-up 
	Fuzzification 

	Hybrid Fuzzy Sliding Mode Control for Spin-up of the MMET 
	Conclusions and Future Work 
	Lagrange Equation Components for Section 4.2
	Lagrange Equation Components for Section 4.3
	Lagrange Equation Components for Section 4.4
	Axial Elastic MMET System with Two Discretised Mass Points
	Axial and Torsional Elastic MMET System with Two Discretised Mass Points
	Flexible MMET System with Two Discretised Mass Points
	SMATLINK - How to integrate MATLAB with MATHEMATICA 
	Introduction to Space Tethers
	Introduction

	 Literature Review on Space Tethers and Tethered System Control 
	The Motorised Momentum Exchange Tether (MMET)
	Dumbbell Tether
	The Dumbbell MMET
	The Dumbbell MMET with Cylindrical Payloads and a Motor Facility
	The MMET as a Rigid Body

	 Dynamical Modelling of a Flexible Massless MMET System 
	Dynamical Modelling incorporating Axial Elasticity
	Dynamical Modelling including Axial and Torsional Elasticity
	Dynamical Modelling for the Flexible Massless MMET

	 Discretised Axially MMET Elastic System 
	 Discretised MMET System involving Axial and Torsional Elasticity
	 Dynamical Modelling for a Discretised Flexible MMET System 
	 Fuzzy Logic Control for MMET Spin-up 
	Fuzzification 

	Hybrid Fuzzy Sliding Mode Control for Spin-up of the MMET 
	Conclusions and Future Work 
	Lagrange Equation Components for Section 4.2
	Lagrange Equation Components for Section 4.3
	Lagrange Equation Components for Section 4.4
	Axial Elastic MMET System with Two Discretised Mass Points
	Axial and Torsional Elastic MMET System with Two Discretised Mass Points
	Flexible MMET System with Two Discretised Mass Points
	SMATLINK - How to integrate MATLAB with MATHEMATICA 
	Introduction to Space Tethers
	Introduction

	 Literature Review on Space Tethers and Tethered System Control 
	The Motorised Momentum Exchange Tether (MMET)
	Dumbbell Tether
	The Dumbbell MMET
	The Dumbbell MMET with Cylindrical Payloads and a Motor Facility
	The MMET as a Rigid Body

	 Dynamical Modelling of a Flexible Massless MMET System 
	Dynamical Modelling incorporating Axial Elasticity
	Dynamical Modelling including Axial and Torsional Elasticity
	Dynamical Modelling for the Flexible Massless MMET

	 Discretised Axially MMET Elastic System 
	 Discretised MMET System involving Axial and Torsional Elasticity
	 Dynamical Modelling for a Discretised Flexible MMET System 
	 Fuzzy Logic Control for MMET Spin-up 
	Fuzzification 

	Hybrid Fuzzy Sliding Mode Control for Spin-up of the MMET 
	Conclusions and Future Work 
	Lagrange Equation Components for Section 4.2
	Lagrange Equation Components for Section 4.3
	Lagrange Equation Components for Section 4.4
	Axial Elastic MMET System with Two Discretised Mass Points
	Axial and Torsional Elastic MMET System with Two Discretised Mass Points
	Flexible MMET System with Two Discretised Mass Points
	SMATLINK - How to integrate MATLAB with MATHEMATICA 
	Introduction to Space Tethers
	Introduction

	 Literature Review on Space Tethers and Tethered System Control 
	The Motorised Momentum Exchange Tether (MMET)
	Dumbbell Tether
	The Dumbbell MMET
	The Dumbbell MMET with Cylindrical Payloads and a Motor Facility
	The MMET as a Rigid Body

	 Dynamical Modelling of a Flexible Massless MMET System 
	Dynamical Modelling incorporating Axial Elasticity
	Dynamical Modelling including Axial and Torsional Elasticity
	Dynamical Modelling for the Flexible Massless MMET

	 Discretised Axially MMET Elastic System 
	 Discretised MMET System involving Axial and Torsional Elasticity
	 Dynamical Modelling for a Discretised Flexible MMET System 
	 Fuzzy Logic Control for MMET Spin-up 
	Fuzzification 

	Hybrid Fuzzy Sliding Mode Control for Spin-up of the MMET 
	Conclusions and Future Work 
	Lagrange Equation Components for Section 4.2
	Lagrange Equation Components for Section 4.3
	Lagrange Equation Components for Section 4.4
	Axial Elastic MMET System with Two Discretised Mass Points
	Axial and Torsional Elastic MMET System with Two Discretised Mass Points
	Flexible MMET System with Two Discretised Mass Points
	SMATLINK - How to integrate MATLAB with MATHEMATICA 
	Introduction to Space Tethers
	Introduction

	 Literature Review on Space Tethers and Tethered System Control 
	The Motorised Momentum Exchange Tether (MMET)
	Dumbbell Tether
	The Dumbbell MMET
	The Dumbbell MMET with Cylindrical Payloads and a Motor Facility
	The MMET as a Rigid Body

	 Dynamical Modelling of a Flexible Massless MMET System 
	Dynamical Modelling incorporating Axial Elasticity
	Dynamical Modelling including Axial and Torsional Elasticity
	Dynamical Modelling for the Flexible Massless MMET

	 Discretised Axially MMET Elastic System 
	 Discretised MMET System involving Axial and Torsional Elasticity
	 Dynamical Modelling for a Discretised Flexible MMET System 
	 Fuzzy Logic Control for MMET Spin-up 
	Fuzzification 

	Hybrid Fuzzy Sliding Mode Control for Spin-up of the MMET 
	Conclusions and Future Work 
	Lagrange Equation Components for Section 4.2
	Lagrange Equation Components for Section 4.3
	Lagrange Equation Components for Section 4.4
	Axial Elastic MMET System with Two Discretised Mass Points
	Axial and Torsional Elastic MMET System with Two Discretised Mass Points
	Flexible MMET System with Two Discretised Mass Points
	SMATLINK - How to integrate MATLAB with MATHEMATICA 
	Introduction to Space Tethers
	Introduction

	 Literature Review on Space Tethers and Tethered System Control 
	The Motorised Momentum Exchange Tether (MMET)
	Dumbbell Tether
	The Dumbbell MMET
	The Dumbbell MMET with Cylindrical Payloads and a Motor Facility
	The MMET as a Rigid Body

	 Dynamical Modelling of a Flexible Massless MMET System 
	Dynamical Modelling incorporating Axial Elasticity
	Dynamical Modelling including Axial and Torsional Elasticity
	Dynamical Modelling for the Flexible Massless MMET

	 Discretised Axially MMET Elastic System 
	 Discretised MMET System involving Axial and Torsional Elasticity
	 Dynamical Modelling for a Discretised Flexible MMET System 
	 Fuzzy Logic Control for MMET Spin-up 
	Fuzzification 

	Hybrid Fuzzy Sliding Mode Control for Spin-up of the MMET 
	Conclusions and Future Work 
	Lagrange Equation Components for Section 4.2
	Lagrange Equation Components for Section 4.3
	Lagrange Equation Components for Section 4.4
	Axial Elastic MMET System with Two Discretised Mass Points
	Axial and Torsional Elastic MMET System with Two Discretised Mass Points
	Flexible MMET System with Two Discretised Mass Points
	SMATLINK - How to integrate MATLAB with MATHEMATICA 
	Introduction to Space Tethers
	Introduction

	 Literature Review on Space Tethers and Tethered System Control 
	The Motorised Momentum Exchange Tether (MMET)
	Dumbbell Tether
	The Dumbbell MMET
	The Dumbbell MMET with Cylindrical Payloads and a Motor Facility
	The MMET as a Rigid Body

	 Dynamical Modelling of a Flexible Massless MMET System 
	Dynamical Modelling incorporating Axial Elasticity
	Dynamical Modelling including Axial and Torsional Elasticity
	Dynamical Modelling for the Flexible Massless MMET

	 Discretised Axially MMET Elastic System 
	 Discretised MMET System involving Axial and Torsional Elasticity
	 Dynamical Modelling for a Discretised Flexible MMET System 
	 Fuzzy Logic Control for MMET Spin-up 
	Fuzzification 

	Hybrid Fuzzy Sliding Mode Control for Spin-up of the MMET 
	Conclusions and Future Work 
	Lagrange Equation Components for Section 4.2
	Lagrange Equation Components for Section 4.3
	Lagrange Equation Components for Section 4.4
	Axial Elastic MMET System with Two Discretised Mass Points
	Axial and Torsional Elastic MMET System with Two Discretised Mass Points
	Flexible MMET System with Two Discretised Mass Points
	SMATLINK - How to integrate MATLAB with MATHEMATICA 

