
Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

 
 
 
 
 
Farah, Abdiqani Ahmed (2010) The development of a commercially-
available Neem seed kernel extract as a soil-applied systemic granular 
plant protection product. PhD thesis. 
 
 
 
http://theses.gla.ac.uk/1849/ 
 
 
 
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

 

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/1849/


The Development of a Commercially-available Neem Seed
 
Kernel Extract as a Soil-applied Systemic Granular Plant
 

Protection Product.
 

By
 

Abdiqani Ahmed Farah BSc., MSc., MSc
 

Thesis submitted for the Degree of Doctor of Philosophy 

December 2009 

Division of Biochemistry and Molecular Biology
 

Institute of Biomedical & Life Sciences
 

University of Glasgow
 



 

                                                                       I 
 
 
 
 

 

Abstract 
 
Crude extracts of the seed kernels of the neem tree (Azadirachta indica) are widely used as plant protection 
products. The active ingredient (a.i.) of these extracts is azadirachtin A (aza A). aza A is a phytochemical  
(botanical)  complex secondary metabolite which, with it is multiple toxic effects on insects,  protects the 
plant against  predation. Aza A is present in only low concentration in neem oil, but makes up 20-50% in the 
NSKEs extracted by polar solvents from the kernels. However, when used as foliar sprays it is rapidly 
destroyed by sunlight, and might be more effective if it is used systemically. Therefore the aim of the project 
was to extend previous work and to prepare a pelleted version of the main commercially-available neem-
seed kernel extract, NeemAzal®-Technical (NAT) produced by Trifolio GmbH, in preparation for the 
expected registration of the product in the UK in 2011. 
 
It was first necessary to   purify a quantity of aza A for quantification of the a.i. pelleted material and in soil 
and plants in the rest of the project. In achieving high purity (over 98%) aza A, reverse phase 
chromatographic methods were used, and mass spectrometery was used to confirm purity and identification. 
A final quantity of 6.2 mg of azadirachtin A was obtained from 4 gm of NAT, a yield of 0.15%.  
 
If aza A and the other neem terpenoids are to be used to plant protection, they must have a low phytotoxicity. 
Effect of NAT on the germination and its ensuing seedling development of two commercially important 
crops, sugar beet and cabbage was examined. NAT did have an inhibitory effect on seedling growth at 10-3 
M aza A. In order to explore the inhibitory affect of aza A, the second part of the chapter was to examine 
effect of aza A on mitosis of onion root tips. The limonoids in concentration of 10-3 M adversely affected the 
mitotic activity of onion root tip cells. This could be failure of microtubules polymerisation into 
microtubules, or some other biochemical effect. From the findings in this part of the project, it can be 
concluded that only at a concentration of 10-3 M is aza A toxic to plant young seedlings, but in practice this 
is unlikely to be a significant problem. 
 
The first part of Chapter 4 of the project was to lay the foundations for the behaviour of aza A in soil 
environment in both powder form and in 2 types of granular formulations. The half-life of azadirachtin in 
soil from this work was found to be 1.6 days which is consistent with the previous reports. This short half-
life of aza A may be problematic in use as a PPP. The short persistence might be overcome by formulating 
neem materials in granules to achieve environmental stability and biological efficacy of application. The 
granular formulations used in the project showed controlled release characteristics. The release of 
azadirachtin into the soil water was in fact delayed by encapsulating it in pellets. Systemic uptake of aza A 
by roots and subsequent presence in the vascular system of plants was assessed. Aza A was transported and 
was more stable in the leaf areas of cabbage and sugar beet plants than in the soil, as the half-life was found 
to be 9 days. The concentration of aza A in the leaf-water was less than 10% of the solution bathing the 
roots.   
 
The final part of the project, the application  of the pelleted NSKE to protect cabbage,  in both glass house 
and field conditions, demonstrated that neem products in pelleted formulations could be used as effective, 
systemically applied PPP to control pests of cabbage. In the field tests, the protective effect of the neem 
extract could be shown over a period of at least 5 weeks after addition of the pellets to the soil. 
 
In conclusion, the short soil half-life of the neem a.i., aza A, in PPP could be overcome by a pelleted 
formulation, the composition of which can delay release of the a.i. The technology allows protection of crops 
from soil-borne, as well as foliar sucking and biting pest damage by controlled release into the soil to allow 
uptake into plant vascular system.  
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Chapter I: General Introduction and Literature Review. 
 
1.1 Introduction. 
 
Although no neem-based plant protection product has yet been registered for use in the 

UK, the company, NeemCo., sponsoring the research reported here, hope to achieve 

registration in 2011 (R. Strang, personal communication). The research therefore aimed 

at being very much applied. For that reason the test plants for the work, cabbage and 

sugar beet, were chosen as being an important crop grown throughout the UK, and 

elsewhere in the world. 

An estimate of the value of the brassica crop in the UK in 2004 was over £150 million 

(Hancock, J, Market Survey for NeemCo Ltd, 2004). Both crops are attacked by a range 

of insect pests, biting and sucking. As will be described later, azadirachtin A (aza A), the 

active ingredient of neem-based pesticides, is water-soluble and can act systemically in 

plants. This may be of importance in protecting plants against both soil pests and foliar 

pests. Cabbage is much affected by Cabbage Root Fly. The particular shape of the 

cabbage plant means that it cannot be easily protected by spraying (Figure 1.1), and is 

best protected by a systemic insecticide. Finally, the plants chosen were suitable for both 

indoor and field cultivation.  

The next sections describe the plants and their main insect pests. 
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1.2 Brassicas. 
 

Brassicas are geographically widespread throughout the world. The genus has a huge 

commercial importance, as indicated above for the UK, and contains a number of major 

vegetables for human consumption, animal fodder and oil seeds. (Lunn, 1988). It’s also 

attacked by wide range of pests (Evans, 2003.). 

 

1.2.1 Taxonomy 

Brassica is the Latin name for cabbage. It is a genus of about 300 species of annual, 

biennial and occasionally perennial herbs with yellow or white flowers. The genus 

Brassica belongs to family Brassicaceae (alt. Cruciferae), subfamily Brassicoideae 

(Hayman, 1995). 

 Most botanists agree that almost all of the modern Brassicas were developed from a wild 

sea kale (Brassica oleracea L. subsp. oleracea ) indigenous to the coastal areas of 

Western Europe including Great Britain. Several distinct vegetables have been developed 

from it and are collectively known as “cole crops”, including cabbage, cauliflower, 

broccoli, Brussels sprouts, kale, collard and kohlarabi (Martin, 1997; Phillips, 1993). The 

traditional methods of determining plant relationships has depended on plant structures. 

(Vaughan, 1977), but the advent of modern molecular methods has meant that organisms 

can now be categorised at the fundamental level of their genes. In the following 

descriptions, based on both classical plant structure methods (Vaughan, 1977) and 

modern molecular systemics, such as restriction fragment length polymorphisms (RFLPs) 

(Song et al., 1990; ) and random amplified polymorpkic DNA (RAPD) (Ananga et al., 
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2008) taxonomic methods are some of the important Brassica species and their varieties 

that are more or less grouped together in the Brassica phylogenetic trees (Warwick and 

Black, 1990).  

 

1.2.2 Brassica oleracea 

 
a) Cabbage  
 
Cabbage is an anglicised word of the French term caboche, meaning head. It has been 

used to refer to loose-heading (or even no-heading) forms of Brassica oleracea as well as 

to the modern hard-heading type classified as B. oleracea subspecies capitata (Figure 

1.1).  Infolding of leaves forms a head, which is demanded by consumers.  They are 

externally green and white internally.   

                                   

Figure 1.1:  Winter Cabbage (Brassica oleracea, capitata). (Gardenaction.co.Uk/fruit, 
2005). 
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b) Broccoli and cauliflower   

These are two more kinds of Brassica oleracea, and because of their similarity both are 

designated as botanical variety botrytis, from a Greek word meaning a cluster like a 

bunch of grapes. Broccoli is an Italian word taken from the Latin brachium, meaning an 

arm or branch. Cauliflower comes from the Latin terms caulis (cabbage) and floris 

(flower). These cabbages are grown for their thickened, profuse, undeveloped flowers 

and flower stalks instead of for their leaves. “Clarke” and “Armado” cauliflower (Figure 

1.2) are very adaptable varieties popular in the UK. They produce high quality, very deep 

and heavy curds. The two varieties shown below are the main ones produced 

commercially in UK. 

                                

                          a: Clarke                                    b: Armado 

 Figure 1.2 a and b: Two popular varieties of cauliflowers widely grown in UK.  
(Gardenaction.co.Uk/fruit, 2005). 
 

Broccoli has two distinct forms. One makes a dense, white curd like that of cauliflower 

and is called “heading broccoli” or “cauliflower broccoli”. The other makes a somewhat 

branching cluster of green flower buds atop a thick, green flower stalk about 50 cm tall 

and smaller clusters that arise like sprouts from the stems at the attachments of the leaves. 
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This form is called “sprouting broccoli”. 

The words “broccoli” and “calabrese” describe different varieties of the same vegetable. 

In general terms, calabrese produces green heads, whereas broccoli produces purple or 

white heads. One of the most popular and common varieties of broccoli in UK is 

calabrese, which confusingly is sold in the supermarkets as “broccoli”.  

               

           a)  Calabrese                                  b) Purple sprouting broccoli  

Figure 1.3 a and b: Two popular varieties of broccoli available in the UK. 
(Gardenaction.co.Uk/fruit, 2005). 

c) Kale and collards:   

Resemble each other in many respects, but are distinguished one from the other by the 

forms of their leaves. They are, in effect, primitive cabbages that have been retained 

unchanged through thousands of years of cultivation. Although more highly developed 

forms, such as cauliflower, broccoli, and head cabbage, have been developed in the last 

two thousand years or so, the kales and collards have persisted, although primitive, 

because of their merits (vigour, hardiness and adoptability) as garden vegetables. 

These leafy no-heading cabbages bear the Latin name Brassica oleracea var. acephala, 

the last term meaning "without a head." They have many names in many languages, as a 
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result of their great antiquity and widespread use. 

Kale is often called “borecole”, and in some places sometimes called “sprouts”. Kale is a 

Scottish word derived from coles or caulis, terms used by the Greeks and Romans in 

referring to the whole cabbage-like group of plants. The German word Kohl has the same 

origin. 

“Collards” is a distortion of coleworts or colewyrts, Anglo-Saxon terms literally meaning 

"cabbage plants." They are native to the eastern Mediterranean or to Asia Minor. They 

have been in cultivation for so long, and have been so widely distributed by prehistoric 

traders and migrating tribes, that it is not certain which of those two regions is the origin 

of the species. 

d) Kohlrabi and Brussels sprouts  

Although kohlrabi (Brassica oleracea var. caulo-rapa) and Brussels sprouts (B. oleracea 

variety gemmifera) appear radically different from each other, they are merely different 

horticultural forms or races of the same species, Brassica oleracea, to which common 

cabbage, kale, broccoli, and cauliflower belong. They all came from a common parent, 

"wild cabbage". Kohlrabi Means "cabbage turnip". Kohlrabi is a German word adopted 

without change into English language, kohl meaning cabbage and rabi meaning turnip. 

This cabbage with a turnip-like enlargement of the stem above ground was apparently 

developed in northern Europe not long before the 16th century. The marrow cabbage 

from which it probably came is a cold-tender, non-heading plant with a thick succulent 

stem, while kohlrabi as we know it is a hardy vegetable, evidently developed in a cool 

climate. 
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e) Brussels sprouts:  

Brussels sprouts require cool climate. This variant of the cabbage has been known for 

about 400 years. The first rough description of it was in 1587, and some famous botanists 

as late as the 17th century referred to it only as something they had heard about but had 

never seen. The Brussels sprouts plant is really a tall stemmed cabbage in which many tiny 

heads ("sprouts") form along the stem at the bases of the leaves instead of making one 

large head at the top of a short stem (Figure 1.4). After a head of common cabbage is cut 

from the plant, numerous tiny heads often will grow from the remaining stem. Brussels 

sprouts need a long, cool growing season, like that of northern Europe and the British Isles. 

It’s ideally suited to the UK's frosty winters, and Brussels sprouts produce their crops from 

October to March. By 1800 it was commonly grown in Belgium and France, and by 1850 it 

was becoming popular in England, where it is in high favour today. 

                 

Figure 1.4 a and b: Brussels sprouts. (Gardenaction.co.Uk/fruit, 2005).  
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1.2.3 Brassica campestris. 

a) Chinese cabbage (Brassica pekinensis) and Chinese mustard (Brassica chinensis): 

These are similar in their origin, history, and plant characters. These common names are 

simply modern terms that indicate our impressions of what these two plants are. They are  

often called by Chinese name pe-tsai (cabbage). Both vegetables, in effect, are mild-

flavoured mustards. Chinese cabbage has been inaccurately called "celery cabbage" 

because of the fancied similarity of shape of the head to a bunch of celery, but it is not 

related to celery in any way. 

Some varieties of Chinese mustard have neat leaf blades that are somewhat spoon-shaped, 

with long, white, erect leaf stalks, all forming a clump so dense that they were long 

confused with pe-tsai by Americans. This type is only one of the remarkable diversity of 

leaf shapes and growth habits found within the species of Chinese mustard. 

1.2.4 Brassica napus. 

 a)   Turnip and Rutabagas (Swedes):  

Turnip belongs to subspecies of B. napus and rutabagas/swedes to napobrassica. Much 

confusion surrounded the origins, and even the identity, of turnips and rutabagas, or 

swedes, for a long time. They are distinctly different species. Most varieties of turnip are 

white-fleshed and most varieties of rutabaga/swedes are yellow-fleshed, but there are 

also white-fleshed rutabagas and yellow-fleshed turnips. Rutabaga leaves are smooth like 

cabbage leaves, while those of the turnip are somewhat rough, with sparse, stiff hairs 

over them. 
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The most significant difference between them, however, is in the make-up of their 

mechanisms of heredity and the structures of their individual cells. The turnip has 20 

chromosomes, while the rutabaga/swedes has 38 (Martin, 1997; Wray, 2005).  

1.3 Sugar Beet (Beta vulgaris L.). 

1.3.1 Biology of Sugar Beet. 

Sugar beet (Beta vulgaris L.), (Figure 1.5), is a member of the Chinopodiaceae family. 

There are more than 1300 species in a 105 genus of the family (Watson, 1998). The 

family belongs to order of Cryophyllates and class of Magnoliopsida. They are 

dicototyledonous and herbaceous in nature. Sugar beet, and spinach, (Spinacia olarecea), 

are the two major economically important species of the family. 

Sugar beet is a large, pale brown root crop, and is a biennial species. However, under 

certain conditions it can act as an annual (Smith, 1987). Right now, sugar beet constitutes 

the main sugar crop in temperate regions of the world. Sugar beet market in Europe is 

determined by European council regulation EC No. 1260 ⁄ 2001.  All member states are 

expected to adopt relevant environmental measures in the sugar sector. 

(Märländer, 2003). In the United Kingdom, sugar beet supplies over half of the sugar 

demands. It is usually grown as a part of rotation with other crops.  
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Figure 1.5a and b: a) Sugar beet (Beta vulgaris L.) b) Seed fascicles each with  
two to four seeds (FOOD_INFO, 2009). 
 
 
1.4 Some of the important pests of brassicas and sugar beet in the UK. 
 
a) Sugar beet. 

There are about 150 species of insects for which sugar beet is their host, and out of these 

40 to 50 can cause economic injury. Among the 50 or so of economic importance, there 

are a few key ones that are called “primary” or “critically main” pests which occur 

ubiquitously with high numbers throughout the world. Among them are green peach 

aphid, (Myzus persicae L.), the cabbage root fly (Delia radicum L.), the beet fly, 

(Pegomyia betae), the flea beetles, (Chaetocnema tibialis and Phyllotrata nemorum L.) 

(Godfrey and Mauk. 1993; Lange, 1987; Hills et al., 1982). In general, since sugar beet 

and cabbages share common pests, and the main focus of this work is on cabbage, 

cabbage pests are discussed in greater detail in the following sections. 
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b) Cabbage. 

 
1.4.1 Cabbage root fly. 

The cabbage root fly (Delia radicum L.) (Figure 1.6) is an important pest of swedes and 

turnips, as well as cabbage.  The larvae feed on the root, causing wilting and death of 

plants. After overwintering in the soil, a small housefly-like adult emerges. After landing 

on the plant it lays oval, 1mm, white eggs at the base of the plant. When hatched, the 

larvae feed on the roots 2 to 3 cm beneath the soil surface. As a result, the plant secondary 

roots are severely damaged, leaving a spindle tap-root that is poor at taking up water and 

nutrients. In most cases the spindle tap-root itself is damaged and that results in wilting or 

even death. Sometimes the damage caused allows pathogens to set in, leading to soft rots, 

which downgrades the quality of the harvest/crop. Another species, the turnip root fly (D. 

floratis. Fall) is common in Scotland and appears in August in between the two generations 

of cabbage root fly. This fly feeds on the heart of the root by burying itself deep into the 

soil. 

                              

Figure 1.6 a and b: a) Adult and Larvae of cabbage root fly (Delia radicum L.), b) 
Maggots. (Gardenaction.co.Uk/fruit, 2005).  
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1.4.2 Flea beetles (Phyllotrata spp.). 

As their common name implies, they have very powerful hind legs that enable them to 

jump like fleas if disturbed. There are two distinct types of them: striped wing, for example 

P. nemorum L. (Figure 1.7), and collared: P. cruciferae Goeze. It’s the adult of 1.5 - 3mm 

in size that causes damage to the crops. In April and May, when the warm weather comes, 

the adult moves to the crop and feeds on recently germinated plant leaves and shoots, 

resulting in “shot holding”. When the adult lays eggs in soil from the end of May onwards, 

the hatched larvae feed on either roots or leaf. Nevertheless, larval damage is not so severe 

as that of the adults (Evans, 2003.; Gardenaction.co.Uk/fruit, 2005). 

                                  

Figure 1.7: Striped wing flea beetle (Phyllotreta nemorum L).                        
infos.blanquefort.net/blog/agenda/wp-content (Bio, 2007). 
 
 
 
1.4.3 Butterflies and Moths. 

Although the caterpillars of moths and butterflies feed on swedes and turnips they are not 

as important as they are to the leafy brassicas crop such as cabbages. Large and small 

cabbage white butterflies (Pieris brassicae L. and P. rapae L) (Figure 1.8), often feed on 

the leaves of crops. Unless there is a  large outbreak, their feeding on leaves does not cause 



 

                                                                       13 
 
 
 
 

 

any important damage to the crops. 

                             

                           a) Larvae                          b) Adult   

Figure 1.8: Cabbage white butterflies a) larvae and b) adult (Pieris brassica L.). 
(Gardenaction.co.Uk/fruit, 2005). www.lepidoptera.ch/.../ PierisBrassicae_W.gif. 

 

The damage caused by diamond back moth (Plutalla xylostella L.) (Figure 1. 9) is so 

severe that  they can reduce the young seedlings into bare skeleton, thus almost destroying 

the crop. The larvae, “cutworms”, for example turnip moth (Agrotis segetum, Den & 

Schiff), feed on the roots and lower stems. The damage they cause to the root may not be 

detected until the harvest, when the large holes as a result of their feeding on it became 

apparent (Evans, 2003.; Gardenaction.co.Uk/fruit, 2005). 

                                         

Figure 1.9: The larvae of diamond back moth (Plutalla xylostella  
L.).www.jpmoth.org/.../ L2Plutella_xylostella.jpg. 
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1.4.4 Aphids. 

Aphids are not only serious pest on a large number of crops (arable and horticultural) 

including brassica plants. As well as affecting the vitality of growing plants by feeding on 

them, they are also important vectors of plant virus transmission among crops. Peach-

potato aphid (Myzus persicae, Sulzer) and the cabbage aphid (Brevicoryne brassicae L.) 

(Figure 1.10), are the most  widespread and extensively studied aphid species (Scri, 2009; 

Nisbet et al, 1992; Kasprowicza, 2008). The cabbage aphid (Brevicoryne brassicae L.) get 

their name due to distinctive grey-white wax covering their body. Aphids over-winter as 

eggs on the brassicas weeds or crops. After they hatch in May, they move to the newly 

planted crops. Bleaching and yellowing of leaves are the first symptoms of aphid 

infestation (Evans, 2003.). These two species, particularly peach-potato aphid are the most 

adaptable and are major contributors of spread of potato leafroll virus (PLRV) among the 

major crops such as potato, sugar beet and tobacco (Nisbet et al, 1992; Kasprowicza et al., 

2008). Intensive application of insecticides has rendered them resistant, to at least three 

classes of chemical insecticides, as reported by  Kasprowicza et al, (2008). 

 .                                     

Figure 1.10: Cabbage aphid (Brevicoryne brassicae L.). ipm.ncsu.edu/vegetables/ 
pamphlets/crucifer/ca.jpg. 
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1.5 Insecticides. 
 
Almost all plants grown either as food crop or ornamental are attacked by insect pests, 

which destroy approximately one third of the world's food crop during growth, harvest, 

and storage (Jacobson, 1988). The brunt of insect damage occurs in tropical countries 

(Iqbal, 1999). Losses are considerably higher in many countries of Asia and Africa than 

developed (western) world. The monetary loss due to feeding by larvae and adults of pest 

insects amounts to billions of dollars each year (Copping, 1998; Jacobson, 1988). It was 

estimated that there are almost 9000 species of insect and mites that infest crops, and 

most of these are insects that have moved from native vegetation on to the introduced 

crop. Out of these at least 600 cause crop damage that warrants use of some control 

measures, either chemical or physical (Klassen, 1981). 

From the earliest times, there are references to various means of protecting cultivated 

plants from insect predators. For at least two thousand years, until the 20th century, the 

materials used fell into two broad categories: inorganic poisons and plant extracts. 

Elemental sulphur appears to have been used to dust crops in ancient Greece and 

Sumaria, and by the later Middle Ages salts of arsenic, lead, mercury and fluorine were 

all applied to crops. It was the use of Paris Green, an arsenical compound, in the USA in 

the late 19th century, which led to the first legislation to control the application of toxic 

compounds to crop plants. Most of the inorganic compounds are too toxic for modern 

use, but there is still some commercial application of fluoride salts for crop protection. 

Much more relevant to this work is the use of phytochemicals (botanicals), as crude 

extracts. It is likely that most plants in the course of evolution have developed protective 

mechanisms against their principal enemies: the insects. These phytochemicals are 
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usually secondary metabolites, and are often very complex in structure. In the case of a 

few plants, these are so effective as insect poisons that they have been used, first locally 

for many hundreds of years, and, more recently, throughout the world.  These are 

summarised in Table 1.1 below. The botanicals have been used over a long period of 

time. For the sake of completeness, also included in the table are a recently developed 

group of secondary metabolites which are not produced from plants, but which come 

from microorganisms, fungal or bacterial. Some of active ingredients listed such as 

pyrethrin and rotenone, have a long history of use as insecticides, and supported a 

considerable world trade until recently. Eserine was probably not used as an insecticide 

until it gave rise to a range of derivates as will be discussed later. Aza A, the main subject 

of this thesis, has been largely restricted to use in India until relatively recently. 
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Type 
Active 

Compound Source Mode of Action Point of action 
Plant- Azadirachtin A Azadirachta Growth inhibitor/ Uncertain 
Derived   indica antifeedant   
  Eserine Physostigma Neurotoxin Acetylcholine 
  (Phystostigmine) venenosum   estertase inhib. 
  Nicotine Nicotiana Neurotoxin nACh receptor 
    tabacum   Agonist 
  Pyrethrin Chrysanthemum Neurotoxin Na+ channel 
    cinerariaefolium   Blocker 
  Rotenone Derris Metabolic  Electron  

    
(Lonchocarpus) 
spp. Poison transport chain 

  Ryanodine Ryania speciosa Muscle poison Ca++ channels 
  Veratridine Veratrum album Neurotoxin Na+ channel 
        Blocker 

Plant Protease inhibitors Plant proteins 

Inhibition of  
insect digestive  
proteases 

Proteolytic 
enzymes/midgut 

Defence 

Non-protein 
amino acids of 
plants 

Intermediate/end 
product of primary 
metabolism Poisoning/deterrent 

Possibly affect 
lysozyme 
activity 

compounds Lectins Plant proteins  

Retard rate of 
development and 
reproduction 

Multiple 
binding sites 

Micro- Avermectin Streptomyces Neurotoxin Cl- channel  
Organism-   avermitilis   Agonist 

Derived “Cry” toxins 
Bacillus 
thuringiensis Stomach poison Ion channels 

  Spinosad Saccharphyspora Neurotoxin nACh receptor 
    spinosa   Agonist 

 
Table 1.1: A list of the main active compounds from plants and microbial sources used 
as insecticides (Rockstein, 1978; Peumans and Damme, 1995; Birch et al., 1999; Brown, 
2005; Schmutterer, 2002; Bell, 2003; Amirhusin et al., 2007; ). 
 

It is clear from the table that the majority and the most widely used of the phytochemicals 

act as neurotoxins. This fact explains their success. They have an immediate effect on the 

insect, by paralysing it. Rotenone is not primarily a neurotoxin, but as an inhibitor of 
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oxidative phosphorylation, it still acts rapidly. Azadirachtin differs from the rest, as its 

action is much slower, and had not been fully determined, as will be discussed in a later 

section.   

Recently, less well-known plant defence compounds, such as protease inhibitors, non-

protein amino acids and lectins, are being explored as novel pesticides. Plant protease 

inhibitors (PIs) are proteins that inhibit phytophgous insect midgut digestive proteases, 

reducing the supply of amino acids important for their growth and development thus 

leading to insect death (Leo et al., 2002; Lawrence and Koundal, 2002; Pilon et al., 2006; 

Amirhusin et al., 2007). Plant lectins are proteins that have at least one catalytic domain 

which reversibly binds to particular mono- or oligo-saccharides (Peumans and Damme, 

1995). They are considered to have a role in plant defence against phytophgous insects 

and thus have become possible means of producing resistance by transgenic methods 

(Birch et al., 1999). At the moment, it is not clear whether or not the growth and 

development effect is actually related to carbohydrate-binding activity of the lectin 

(Sadeghi et al., 2006). Non-protein amino acids, mainly from various legume seeds, were 

reported to act as antifeedants, and also being toxic to insects which do consume them, by 

inhibition of lysozyme activity (Bell et al., 1996; Bell, 2003).  The loss of this enzyme’s 

activity might be expected to make the insects more liable to bacterial infection.  

With the discovery of the first synthetic insecticide DDT (dichlorodiphenyltricholoro 

ethane) in 1938, the whole crop protection scene was changed. For at least 25 years from 

the mid-1940s, there was a huge burst of synthetic activity, producing neurotoxic 

compounds which more or less eliminated all the previously used ones. The main classes 

of the compound produced were the organochlorines and, later, the organophosphates. It 
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is estimated that over 500,000 organophosphates have been evaluated as insecticides 

(Sales et al., 2000). Although the organochlorines have largely been phased out, the 

organophosphates still have an important role in plant protection.  However, as these two 

huge classes of compounds are not derived from phytochemicals, they are not strictly 

relevant to this review. 

Some of the botanicals listed in Table 1.1 have a relatively simple structure, which 

allowed their synthesis, and which has allowed the development of new classes of 

insecticides derived from a plant or other natural source. These are listed in Table 1.2. 

 

 

Natural 
Compound Synthetic Derivatives 
Eserine Carbamates 
Pyrethrin Pyrethroids 
Nicotine Neonicotinoids 
Juvenile 
hormone Analogues 
Nereis toxin  Analogues 

 
Table 1.2: The natural compounds which have given rise to synthetic derivatives. 
(The last two sets of compounds are not from plant sources, but are included for  
completeness.)  
 
 
1.5.1 Carbamates. 

Carbamates are ester derivatives of methyl and dimethylcarbamic acid, CH3HNC(O)OH 

(CH3)2NC(O)OH and synthetic derivatives of physostigmine (eserine), which is an 

alkaloid isolated from the calabar bean, Physostigma venenosum (Casida, 1963; Coats, 

1994). But all the above carbamates were not toxicologically effective on insects since 
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they are ionisable. The Geigy company of Switzerland first produced the first insecticidal 

carbamates- N-dmethyl, such as Carbaryl (Sevin), and N-dimetyl, Pyrolan and Isolan, 

compounds of which the latter became most popular and effective insecticides. The most 

widely used carbamate is Aldicarb. These compounds almost all are aromatic (naphtholic 

and phenolic) and highly effective insecticides used in numerous soil or plant treatments 

(Sánchez-Brunete and Tadeo, 2003). Members of the group (some such as Carbaryl act 

systemically in plants) are extensively applied in agricultural. Others are non-systemic 

such as m-ethoxy. Along with organophosphates, carbamates represented approximately 

50%, up until the EU directive 91/414 EEC was enacted in 1991, of the total insecticide 

and acaricide usage worldwide (Galloway et al., 2002 and Villatte & Bachmann, 2002).  

The insecticidal mode of action of carbamates like that of the OPs, is well understood and 

is due to their structural resemblance to ACh . They act as inhibitors of AChE, resulting 

in nervous system disruption (Casida and Quistad, 1998; Sanchez-Hernandez and 

Walker, 2000); Yerushalmi and Cohen, 2002). However, unlike organophosphate 

compounds, the deacylation or hydrolysis is faster with carbamates than OPs, thus 

inhibition in this instance is of shorter duration and  more reversible than OPs (Aprea et 

al., 2002). Nevertheless, according to dissociation constant, Kd ,of carbamates, it’s more 

than enough to inhibit AChE and cause repetitive nerve action and paralysis to insects 

(Rockstein, 1978). As carbamates are less toxic to humans than the OPs their use has 

been growing in recent years. 
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1.5.2 Synthetic Pyrethroids. 

The synthetic pyrethroids, the derivatives of one of the oldest organic insecticides 

(pyrethrin found in pyrethrum flowers of various species of genus Chrysanthemum of 

which species cinerariaefolium found most potent) have become one of the most 

important classes of insecticide, contributing to over 25% of the world insecticide market 

due to low toxicity to mammals and birds and rapid knockdown effect on insects 

(O'Brien, 1967; Horia Vais, 2001). Certain of these synthetic analogue compounds such 

as, Allethrin, Tetramethrin and Resmethrin  have found numerous uses in agriculture, 

veterinary and in urban situations, and in combination with the OPs, have largely 

replaced the phased out organochlorine insecticide class (Soderlund and Bloomquist, 

1989; Best.  and Ruthren, 1995 and Fakata et al., 1998; Coats, 1990).  

Synthetic analogues of the natural insecticide pyrethrum were developed in order to over- 

come the  photolabile nature of the natural pyrethrin by addition of  single or multiple 

halogen atoms within the molecular structure (Coats, 1990; Plapp (Jr), 1981; Ascher, 

1986). The class may be divided into two groups. These are the type I pyrethroids (e.g. 

Permethrin), which lack a cyano moiety in the α-benzylic position, and type II 

pyrethroids (e.g. Deltamethrin)  which have this α-cyano group  (Narahashi, 2000).  

The generally accepted mode of action of pyrethroids is that they are axonic and act upon 

sodium channels.  They delay or prevent sodium channel from closing, or opening the 

potassium gate, thus the repolarisation or falling phase action potential is delayed. This 

results in  repetitive or continuous excitation or impulse transmission, convulsion and 

death (Coats, 1990; (Narahashi, 2000; Plapp (Jr)1981; Toth et al., 1990; Brown, 2005).  
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1.5.3 Non-neurotoxic insecticides. 

 
Although the highly successful neurotoxic insecticides are generally more effective 

against insects than humans, they attack features of the nerve cells which are common to 

all nervous systems. They certainly affect other, often beneficial, organisms, and are seen 

as generally harmful to the environment. Thus for the last two or three decades there has 

been a push to try to develop insecticides which specifically attack aspects of biology and 

biochemistry which are unique to insects. These can be classed as insect growth 

regulators. They have their action by various means such as primary or secondary 

antifeedant effects, reducing the insect immune response, or interfering with the complex 

hormonal control of insect growth and development.   Part of the action of aza A is to 

interfere with the development of insects, and so it can be said to fall into this category.  

1.5.3.1 Insecticides that target the insect’s growth and development 

As they are growing in size and developing to adult, insects must shed their hard cuticle 

periodically in a process called molting. There are neurosecretory hormones that are 

important in molting processes, and disruption of any of these hormonal cascades cause 

inactivation of the process. There are some classes of chemicals that target the insect’s 

growth and development processes through either disrupting the hormones or blocking 

the production of a structural chemical component necessary for exoskeleton.  (Brown, 

2005; Marx, 1977; SU and Scheffrahn, 1993). 
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1.5.3.2 Insect Growth Regulators (IGRs)  

Insect Growth regulators (IGRs) interfere with the insect’s endocrine system in order to 

inhibit the production of hormones, such as prothoracicotropic hormone (PTTH), juvenile 

hormone (JH) and eclosion hormones.  

Many of the currently available IGRs, such as Fenoxycarb and Hydroprene, mimic JH 

and a high titer of it in insect body prevents the insect reaching adulthood. (Brown, 2005; 

Leighton, Marks, and Leighton, 1981; Marx, 1977;  Su and Scheffrahn, 1993). 

Tebufenozide disrupts the production of the steroid molting hormone, ecdysone, by 

prothoracic glands. This causes the ecdysone level in the body to drop, which in turn 

prevents the insect developing into adulthood (Figure 1.11). 

 

                 

Figure 1.11: Hormonal control of insect growth and development.                          
    (cas.bellarmine.edu/.../Hormone&NS.htm.)  
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1.5.3.3 Chitin Synthesis Inhibitors (CSIs) 

Chitin is a polysaccharide component of the outer tough waxy cuticle of insects. The 

discovery of compounds, the benzoylphenylureas, that inhibit the production of chitin led 

to a group of insecticides. Treated insects cannot develop the new cuticle required to pass 

from one instar to the next and so die. (Su and Scheffrhan, 1993; Brown, 2005).  

Bistrifluron is among several CSIs in the market.  Although higher animals which do not 

synthesize chitin are unaffected, it is toxic to all chitin-making animals, such as 

crustaceans. 

The growth regulatory nature of azadirachtin A will be discussed in a later section (1.6). 

 

1.5.4 Problems associated with pesticide use. 

All the most successful insecticides, whether phytochemicals or synthetic compounds, are 

neurotoxins. Their widespread use over the last 50 years has revolutionised agriculture. 

Although their problems were obvious from the earliest days of their use, the advantages 

were considered to outweigh the drawbacks. Their quick knock-down effect particularly 

appealed to farmers, who found them very cost-effective, and who were generally not 

concerned with the wider effects (Colosio and Maroni, 2003; Pimentel et al., 1992). It 

was not until 20 years of extensive use of insecticides, that their long-term risk for health 

and environment become apparent, and public opinion become suspicious of their severe 

drawbacks. It became more and more clear that  a large number of them proved to have 

been persistent and harmful to non-target animals and beneficial insects (Casida and 

Quistad, 1998). The drawbacks, such as impact on human and animal health and non- 

target, beneficial insects, environmental problems and pesticide resistance, then began to 
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outweigh the advantages. 

 

1.5.5 Impact on public health  

Large numbers of synthetic insecticides were registered in the decades following the 

Second World War, as their registration cost was not difficult and health risk assessment 

was based only on acute oral and dermal toxicity data. Suddenly there was a fear of 

pesticides being carcinogenic or producing long-term neurotoxic effects such as 

Parkinson’s Disease, and stringent test methods were introduced to monitor their toxicity, 

with risk assessment leading  to increasing safety requirement, resulting in  huge 

expenditures of money and time, (Casida and Quistad, 1998; Coats, 1994).   

Different insecticides’ toxicity (acute and chronic exposure) varies according to their 

mode of actions. Toxicity is mainly dose-dependent, type of chemical and its metabolites 

in relation to its impact on humans (Skinner et al., 1997).  According to WHO-UNDP 

(1989) report there has been about 1 million, mainly occupational, incidents of pesticide 

poisoning. Even though the long-term health implications associated with exposure to 

pesticides and their residues are not as severe for the general public, the main source of 

exposure is either residues in contaminated food (fruit and vegetables.), from drinking 

water, physical contact or through respiration (Coats, 1994; Ramos et al., 2000; van der 

Werf, 1996; Skinner et al., 1997).  There is now a widespread alarm among the general 

public, rightly or wrongly, about the possible effects of exposure to pesticides. These 

include: neurotoxic disorders, immunodisfunction, mutagenesis, teratogenesis and 

carcinogenesis (Ballantyne and Marrs, 2004; Banerjee, 1999; Williams, Bernard, and 

Krieger, 2003; Bolognesi and Morasso, 2000; Colosio et al., 1999; Gómez-Arroyo et al., 
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2000; Laden et al., 2001; Longnecker, Rogan, and Lucier, 1997; Marcello Lotti, 2002; 

Nishioka et al., 1999; van der Werf, 1996; Laura Settimi, 2003; Webster, McKenzie, and 

Moriarty, 2002; Vale et al., 2003). These fears have, of course, had their impact on 

legislation concerning pesticides. 

 

1.5.6  Environmental impact of pesticides  

In addition to the importance of the impact on human health, pesticides have profound 

ecological effects. Pollution of pesticides in the  environment is assessed through three 

main criteria according to European procedures: soil pollution (result of direct 

application), water pollution (such as spray drift) and ground water pollution (associated 

with leaching through soil column), (Ramos et al., 2000).  

When  insecticides are applied to control pests, a considerable amount of it reaches to the 

soil and affects soil–borne, beneficial fauna and flora. Though the environmental 

consequence of pesticide depends on the degree of exposure (i.e. dispersion and resulting 

environmental concentration) and on the toxicological properties of the chemical 

concerned, there are  always potential adverse effects on soil microflora and fauna 

(Russell, 1973 ref. by van der Werf, 1996).  

Pesticides are also harmful to insect predators of target pests, i.e. beneficial insects. 

Intensive usage of insecticides means that each year around 2.5 million tons of pesticides 

are applied to agricultural field crops, with only a small proportion reaching the target 

pests.  This has resulted in a dramatic reduction of non-target insect populations and other 

beneficial invertebrates (EPPO 1994; van der Werf, 1996).  

Around the 1950s it was very common to see large numbers of birds dying in field 
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sprayed with DDT. Seed treatment with pesticides, or eating insects or fish contaminated 

with insecticides were two factors contributing to the death of birds in the fields. And for 

those birds which didn’t die by the consumption of pesticides, sub-lethal effects such as 

birth defects and thin egg shells were evident (Hart, 1990; LeBlanc, 1995; Metcalf, 

1989). These effects were the main reasons for the banning of DDT throughout most of 

the world. 

Effects to aquatic life were widespread, with fish death as the major indicator. Pesticide 

contamination and toxicity is now measured in effects to algae, crustaceans and fish 

toxicity as representative of food chain tropic levels  (LeBlanc, 1995; van der Werf, 

1996).  

 

1.5.7 Resistance to pesticides  

Insects becoming resistant to insecticides have been a problem ever since synthetic 

insecticides have been introduced and was evident before 1950. According to (Brattston, 

1989), in 1988 there were almost 500 insect species resistant to various pesticides, with a 

large number of them cross-resistant to more than one type. The response of producers to 

resistance is to increased application rates. This elevates the risk to applicators, increase 

pesticides residues, hence risk to consumers and to the environment (Brattston, 1989; 

Heimbach et al., 2002; Rotteveel et al.,  1997; Daly, 2004; Salehzadeh et al., 2003; Scott 

et al., 2000). Cross-resistance occurs, for instance, when a single enzyme has mutated to 

a form resistant to more than one type of pesticide sharing a common detoxification 

process. Multiple resistance occurs through the co-occurrence of several resistance 

mechanisms involving several enzymes. Clearly, acetylcholine esterase is the target of 
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OPs and carbamates, and is a likely candidate for such effects. (Brattston, 1989); 

(Metcalf, 1989).  

Resistance in a population of insects will depend on variants in crucial genes coding for 

target or detoxification proteins. The axonal sodium channel (target of DDT and the 

pyrethroids) is an example which has been observed. As insects can undergo rapid 

generation, the continued use of a particular insecticide will ensure that rapid rise of a 

resistant population. (Hemmingway et al., 2002) 

So far there is no general consensus on uniform strategy to prevent  resistance occurring 

(James, 1997). There is a growing realisation that the way forward is the use of  

integrated pest management programs which aim at long term sustainability through a 

combination of control regimes, including biological,  thereby optimising the efficiency 

and profitability of crop production, and avoiding the continued use of a single type of 

insecticide (Council directive, 1991; Metcalf, 1989; Richard, 2000).  

 

1.5.8 The regulation of pesticides and plant protection products  

Public attitude and awareness regarding possible effects of pesticide use forced the 

development of rigorous and comprehensive legislative control to protect human safety 

and health and the environment and to ensure that products are sold, supplied, stored and 

used correctly and efficiently  (Mike, 2000), and its EU Council Directive 91/414/EEC 

(adopted in July 1991) which sets out a community-harmonised framework for 

authorisation, use and control of these products (ECPA, 2000a); (ECPA, 2000b). The 

basic principle of the directive is the development of a positive list (Annex 1) of active 

substances through a review program. The basic principle of the review is to protect 
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human health, wildlife and the environment than the enhancement of  crop productivity 

(ECPA, 1998a; Toyofuku, 2006). The target has been to conduct an appraisal of over 800 

existing active substances during a 12- year period (due for completion in July 2003, 

although now extended until at least 2010) while simultaneously assessing new active 

substances (ECPA, 2001a).  

as a result, it has been forecasted that there might be a discrepancies between the 

available plant protection products and that which is obtainable (SANCO, 2001). It is a 

source of great concern to producers, that there will be “gaps” in the pesticides available 

for specific pests in specific crops. An example of particular relevance to this work is 

cabbage root fly in Brassicas, which depend on OPs at the moment (Thompson, 2002). 

 

1.6 The potential for neem-seed kernel extracts as plant protection products. 
 
As has been outlined in the previous sections, the current situation is that by 2010, many 

previously available synthetic insecticides will no longer be available for producers. The 

public is generally suspicious of the widespread use of pesticides, especially of 

neurotoxins. Many producers are turning to “organic” methods which almost completely 

exclude the use of pesticides, except those from the neem tree.(Hammond, and Fuchs, 

2000; Peterson and Coats, 2000). 

 This is the background which should be hopeful for the use of plant extracts, including 

those from the neem tree. The tree and its active compounds will be described in the 

following sections. 
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1.6.1 The Neem Tree. 

The Neem Tree, (Azadirachta indica L.) is a member of mahogany family (Meliaceae). 

Individual plants can grow to a height of 40 to 80 feet. The leaves are dark green and 

slender. The tree is a drought-tolerant and thrives in tropics with extended dry season. It 

copes with long dry seasons by shedding its leaves (Puri, 1999; Schmutterer, 1990a). 

Flowers are whitish pink. Neem usually flowers from January through April with fruits 

ripen in June through August, but occasionally second minor flowering may occur from 

July to October (Puri, 1999; Raju, 1998). Neem produces an ovoid drupe with thin 

mucilaginous sweet pulp. When matured, the green fruits produced per tree varies, but is 

estimated between 11-50 kg (Puri, 1999; Schmutterer, 1990a). It is probably indigenous 

to the Indian sub-continent, but is now widespead   in tropical and subtropical areas of 

Asia, Africa, Australia and South America, and the Pacific Islands. Neem is a traditional 

source of a wide variety of products including beauty aids, fertilizers, herbs, lumber, 

pesticides and numerous pharmaceuticals. They are all derived from different parts of the 

tree such as leaves, bark and the seeds (Puri, 1999; Schmutterer, 1990a; Schmutterer, 

2002).  

a) Insecticidal Components of Neem. 

It was Chopra, (1928), who first drew attention to neem for its insecticidal and insect 

repellent properties, although they had long been known to the Indian people as a whole.  

It has taken a long time to investigate the specific components which give that quality. 

Even though a large part of the investigation focused on its seeds, neem leaves and bark 

also yield number of active components (Fagoonee, 1986) There was  quite a number of 
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components that have been extracted from the seeds of the neem tree and of the well-

characterised compounds below to the complex phytochemicals called limonoids, and 

more strictly as  tetranortriterpenoids (basically C26 compounds; Govindachari, 1992).  

Among a very large number of such compounds produced by the tree, the one most 

investigated is azadirachtin A. This is the compound with the clearest anti-insect effect, 

and is the one defined as the active ingredient of neem-based plant protection products. 

Much of the work reported in this thesis was concerned with the analysis of azadirachtin 

A in crude neem-seed extracts, pellets, soil and plants, and with its effect on insect pests. 

Its physical and chemical characteristics are important in getting the best out of the 

limonoid as a plant protection agent. 

b) The chemistry of Azadirachtin. 

Azadirachtin A is the most important of  a mixture of congeners (compounds with a 

common basic precursor) which are called the azadirachtoids: these are structurally 

related tetranortriterpinoids classified arbitrarily as azadirachtin A to azadirachtin G         

( Deota et al., 1999; Rembold et al., 1983). Of those azadirachtin A (C35 H44 O16,), Mr 

720 (Fig.1.12) , is the major active component, almost 80% of the total azadirachtoids 

(Mordue, 1997; Mulla, 1999; Rembold, 1989; Mulla & Su, 1999). Studies made on the 

functional groups of azadirachtin A have shown that it is highly a oxidized compound 

containing no fewer than 16 chiral centres and a strong oxygen functionality. The 

molecule  includes an enol ether, an acetone hemiacetal and tetra-substituted oxirane and 

a variety of carboxylic esters. Furthermore, both secondary and tertiary hydroxyl group 

and tetrahydrofuran moiety are present (Durand-Reville et al., 2001; Ley et al., 1989). 
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Due to the large number of oxygen groups, it is a highly polar compound, soluble in 

water.  It hydrolyses in water, the rate of hydrolysis depending on the pH of the medium. 

It rapidly breaks down in sunlight. It is rapidly biodegradable in soil, with a half-life of a 

few days. It doesn’t easily penetrate into the cuticles of insects ( Deota et al., 1999), and 

is not a good contact poison.  The extreme complexity of its structure has meant that 

determining the structure took 17 years (Morgan, 2008). Attempts to synthesize aza A 

have taken even longer, almost 25 years. Only in 2007 was this finally accomplished by 

the group headed by Professor Ley et al., (2008). Due to its (azadirachtin A) being highly 

oxidised polar molecule and being highly complex compound (with 16 chiral centres) it 

has not been possible to develop more potential compounds based on azadirachtin ( 

Deota et al., 1999).  

Crude extracts of the neem seeds contain many other compounds related to azadirachtin. 

They do not seem to have much effect on insects, and have not been studied in detail.  

One is  termed Nimbin (C30 H36 O9), Mr 540 (Fig. 10). And another is Salannin (C34 H44 

O90 ) Mr 596 (Fig. 11), and was characterized by the presence of two oxygen bridges at 

C-6/28 and C-7/14 (Kraus, 2002 ref. by Schmutterer, 2002). 

 

 

 

 

 

 



 

                                                                       33 
 
 
 
 

 

 

 

                                        

a) 

                                              

b) 

                         

c) 

Figure 1.12: Major limonoids present in the seed kernels of  A. indica: a) azadirachtin 
A b) nimbin, and c) salannin 
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c) The Mode of Action. 

Like the well-known plant protection products discussed previously, aza A is a 

phytochemical or botanical: a complex secondary metabolite whose function is to protect 

the plant against insect predation. Unlike most of the widely used compounds, however, 

it is not a neurotoxin. At the moment, it is not certain how the limonoid has its effect on 

insects. It does not seem to have a single well-defined target. Again, unlike the 

neurotoxins, aza A is generally slow to take effect, i.e. hours and days, rather than 

minutes. Azadirachtin has multiple modes of action in its activity on insects, and the 

importance of each can vary between insect orders and even species. There have been 

several reviews published which outline the use of aza A as a botanical pesticide. Most of 

them are the results of experiments involving neem use as an insecticide for arthropod 

pests. Even though the insecticidal efficacy /performance of neem products against most 

insects is much less immediate than that of synthetic insecticides, in general it has a 

comparable performance to the other botanical products in terms of reducing pest insect 

infestations. 

The effects of azadirachtin on whole insects may be summarised as follows: 

 

1. Primary antifeedant: some insects make no attempt to feed on plant material 

treated with aza A, and may starve to death. This sensitivity varies between 

species. For instance, the desert locust (Sch. gregaria)  is highly sensitive, but 

other locusts such as L. migratoria are much less sensitive. (It was the observation 

of the desert locust did not touch neem trees in the Sudan, which started the recent 

interest in the science of azadirachtin (Schmutterer et al., 1984)). 
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2. Developmental failure. 

Immature insects fail to make the transition from one instar to the next. This suggests 

an effect on hormonal secretion or action (Schmutterer, 2002). 

3. Loss of fertility. 

This effects mature insects, both male and female, and might be another effect on 

hormones (Schmutterer, 2002). 

4. Secondary anti-feedant effect. 

The insect digestive system fails to function properly, and it ceases feeding. 

5. General loss of biological fitness . 

This may be represented by, for instance, the failure to fly due to poor muscle 

development, and general loss of resistance to infection (Schmutterer, 2002). 

It is not clear if there is a single target which might cause such a range of effects, but 

it might be associated with protein synthesis (Paranagama et al., 1993), or the 

formation and secretion of hormones (Mordue and Blackwell, 1993), or cell 

duplication (Schluter, 1987).  

At the moment, two possible protein targets have been tentatively identified: tubulin 

(Salehzadeh at al., 2003), and a heat-shock protein from Drosophila melanogaster : 

hsp60 (Robertson et al., 2007). 

i) Tubulin.  

A number of publications have identified an anti-mitotic and anti-meiotic effect of 

azadirachtin A in various insects (Schluter, 1987; Shimizu, 1998; Linton et al 1997).  

These studies were consistent with the possibility that azadirachtin A interferes with the 

process of spindle formation and assembly which is essential for cell division. The 



 

                                                                       36 
 
 
 
 

 

protein responsible for spindle formation is tubulin. Tubulin is a highly conserved protein 

present in all eukaryotic cells, which is part of the cytoskeleton on the cell, and whose 

rapid polymerisation and depolymerisation is responsible for cell division, cell movement 

and axonal transport. Salehzadeh et al., (2003) showed that azadirachtin prevented the 

polymerisation of mammalian tubulin in the same way, but less effectively, than 

colchicine.  They also showed that azadirachtin appeared to displace colchicine from a 

cellular binding site, which can be presumed to be tubulin.  

Many of the observed effects of azadirachtin on insects, listed above, could be accounted 

for by interfering with the polymerisation of tubulin. By preventing meisis and mitosis, it 

could cause the loss of fertility and developmental problems. Also, as tubulin is essential 

for neurosecretion, it could disrupt all the processes which require hormonal control. 

ii) Hsp 60.  

 In 2007 evidence was presented that the heat-shock protein hsp 60 in cultured 

Drosophila Kc 167 cells could bind to azadirachtin A (Robertson et al., 2007). Hsp 60 is 

a ubiquitous “chaperone” protein. It is not clear what role it might play in the action of 

azadirachtin, but it might certainly associated with a failure of protein synthesis and 

release, which could account for some of the effects of aza A. 

 

1.6.2 The formation of microtubules and its inhibitors. 

 
During the life cycle of higher plant cell there is reversible polymerization process of 

tubulin into microtubules (MT) at a specific times at a specific locations in the cell. This 

process is, dynamic instability of MT, can be summarized into four distinct stages: stage 

of polymerization, depolymerization, transition from polymerization-depolymerization 
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and the reverse phase (Belmont and Mitchison, 1996,). The process, which occurs in 

different occasions of the cell – polymerization/depolymerization - is controlled by 

microtubular organizing centers (MTOCs). In vitro polymerization of animal microtubule 

showed that it has a quite a number of binding sites for different purposes one for 

different antitubulin, such as colchicines and vinblastine; one for GTP and one for lateral 

and longitudinal binding required during the formation of microtubules (Dieter and 

Marme, 1980; Van Eldik, 1988). 

 

1.7 Compounds that induce morphological and cytological effects with the                                                                                 
          microtubules. 
 
1.7.1 Natural ones. 

 
The loss or disruption of microtubule function should have a severe impact on the 

individual plant cell division thus growth of the plant as whole. For example, spindle 

microtubules play a significant role in the cell division and their lose affects nuclear 

division and the separation of chromosomes. Likewise, lack of cortical microtubules 

affects the morphogenesis of the cells and tissues (Delye et al., 2004; Itoh, 1976)   

Apart from the known anti-microtubule herbicides, there are some other compounds that 

have as the same effect, at least on animal cell, to the microtubules. Colchicine binds to 

the tubulin dimer and as result inhibits the formation process of microtubules, but only at 

high concentrations, while Taxol stabilizes microtubules from depolymerization back to 

individual tubules (Hart and Sabnis, 1976; Montague and Ikuma, 1975.; Salehzadeh et 

al., 2003). And, of course Plant growth inhibitor ancymidol (Montague and Ikuma, 

1975.). 
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1.7.2 Anti-mitotic Herbicides. 

Dinitroanalines and Carbamides are the two structural series that interfere with the 

microtubular systems that has been known for a long time, Phosphoric amides, although 

structurally dissimilar to the mentioned ones, also show interference with the assembly 

and function of microtubules (Anthony and Hussey, 1999; Ellis, Taylor, and Hussey, 

1994; Fedtke, 1982).   

a) Dinitroanalines. 

Dinitroaniline herbicides act by inhibiting cell division (mitosis). Specifically, they 

inhibit microtubulin synthesis necessary in the formation of cell walls and in 

chromosome movement to daughter cells during mitosis. The cell does not complete 

division and affected cells remain as single cells with multiple nuclear chromosomes: 

multi-nucleated cells (Ahrens, 1994). Disruption of cell division process, nucleic acid 

metabolism and protein synthesis is the main mechanism of action of herbicides (Fedtke, 

1982). 

b) Phosphoric amides. 

Work has been done on the molecular mode action of Amiprophos-methyl on algae. After 

treatment microtubules were virtually absent in the cell, and the cell wall organization 

was abnormal (Fedtke, 1982). Extensive study was made on the correlations between 

cellulose microfibril and cortical microtubule using Colchicine, Amiprophos-methyl 

(APM) and protein synthesis inhibitor cycloheximide. Amiprophos-methyl showed that it 

neither interferes with the in vitro brain tubulin polymerisation, even if the concentration 

is increased (Wagenbreth and Robinson, 1978). Study showed that after the tubulin 

synthesis has already started Amiprophos-methyl is still capable of degrading tubulin 
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mRNA or inhibit the synthesis of ones (Fedtke, 1982).   

APM, a phosphoric amide herbicide, was previously reported to inhibit the in vitro 

polymerisation of isolated plant tubulin. APM inhibits competitively the binding of 

oryzalin to tubulin, indicating the formation of a moderate affinity tubulin-APM complex 

that may interact with the ends of microtubules. APM concentrations inhibiting tobacco 

cell growth were within the threshold range of AMP concentrations that depolymerised 

cellular microtubules, indicating that growth inhibition is caused by microtubules 

depolymerisation. APM had no apparent effect on microtubules in mouse 3T3 fibroblasts. 

Because cellular microtubules were depolymerised at APM and oryzalin concentrations 

below their respective Ki and Kd values, both herbicides are proposed to depolymerise 

microtubules by a substoichiometric endwise mechanism (Murthy et al., 1994).  

 
1.8 Effects of azadirachtin on plants. 
 
Both the potential targets for azadirachtin binding which have been identified, tubulin 

and hsp 60, are highly conserved in eukaryotic cells. Tubulin at least has well-defined 

and essential role in many cellular functions. It would seem possible that it would have an 

antimitotic effect in plants as it does in insects. In fact, azadirachtin has been shown to 

have a phytotoxic effect, particularly in young plants, which might be due to prevention 

of cell division.  The monomers α- and β-tubulin from plants cells are not the same as 

those of the animal cells as far as their molecular weight and to the colchicine-binding 

ability is concerned (Filner and Yadav, 1979). However, as described above, there is a 

class of herbicides, which act as antimitotic compounds in plants, due to their effect on 
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tubulin. These will be described in greater detail in Chapter 3 of this thesis. If 

azadirachtin is to be used systemically on growing plants, it is important to discover if the 

compound does have an antimitotic effect, and at what concentrations this effect might 

occur. 

 

1.8.1 Effects of Azadirachtin on the Environment, Animal and Human health. 

 
The main point of the  work reported in this thesis was to study the effect of aza A added 

to soil, and then taken up by plants  to act systemically. Being an oxygenated and thus 

polar compound, aza A, unlike most insecticides, is moderately soluble in water (1-2g. 

L-1, Daly, 2004, Kleeberg, H, (unpublished results)) and relatively mobile in soil. There is 

an obvious risk of ground-water contamination, but this  is being offset by its rapid 

biodegradability in soil: azadirachtin has a reported average half-life of 2.3 days (Daly, 

2004) in field soil. 

 Azadirachtin is regarded as being non-toxic to higher animals.  In so far as the human 

health effects of azadirachtin products are concerned, studies of azadirachtin 

mutagenicity and acute toxicity have shown that it’s likely not to pose a significant risk to 

human health. However, some people have exhibited skin and mucous membrane 

irritation from neem seed dust (Weinzierl and Henn, 1991). 

Rat oral LD50 of azadirachtin is >5000 mg/kg. (Miller and Uetz, 1998), placing it in the 

lowest category of toxicity (IV) of the Pesticide Manual.   

Azadirachtin’s toxicity towards fish is moderate and is not expected to kill fish under 

normal use.  
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Azadirachtin has little or no negative effect on adult beneficial insects. It is reported to be 

relatively harmless to bees, spiders, ladybirds, parasitoid wasps, and adult butterflies, 

although  in a few trials, negative effects have been noted on immature stages of 

beneficial species exposed to neem (Banken and Stark, 1997). Neem products are 

generally thought to be suitable for inclusion into integrated pest management (IPM) 

programs (Lowery and Isman, 1994a). With other non-target organisms such as birds and 

fish, azadirachtin is considered to be generally non-toxic (Grunert. 1996; Johnson, 1996a, 

b; Wan et al, 1996; Elangovan et al, 2000; Schmutterer , 2002).  

 

1.8.2 Systemic effect of Neem Products. 

 
Gill and Lewis, (1971); Nisbet et al., (1993); Osman and Port, (1990), have at different 

times reported that plants can absorb active neem constituents through roots allow the 

terpenoid to systemically move upward through the plant through xylem tissues. As 

Hummel. E and Kleeberg, (2003) and Daly, (2004),  reinforced later on, this works best 

when sufficient quantities are applied to the root zone. At the moment most use of neem 

formulations are for foliar sprays, but as the limonoid is rapidly destroyed by sunlight, it 

may be that most of its effect is systemic, even although it is absorbed poorly through the 

plant cuticle. Daly (2004) showed that the half-life of azadirachtin A was much longer in 

the leaf water than in the soil. The  systemic properties of aza A suggest that applying it 

to transplants just before planting to the field could be an effective and inexpensive way 

to control certain pests. Similarly, applying neem with relatively large amounts of water, 

in directed sprays over the rows of small seedlings, could be a very efficient method of 
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application. In one study, neem applied through a drip irrigation system significantly 

reduced lettuce aphids on lettuce by over 50% (Palumbo et al., 2001) 

In another finding, a newly standardised powder formulation, NeemAzal-PC,  intended 

for hydroponic use, has been used successfully to control aphids (Aphis fabae) and 

bollworm moth (Heliothis armigera) on beans (Phaseolus vulgaris) (Hummel and 

Kleeberg, (2003). As much of the intensive growing of high value vegetables such as 

peppers is done uinder glass in hydroponic systems, this may suggest an important future 

market for azadirachtin-containing plant protection products. 

 

1.8.3 Practical Problems of Neem  Application. 

One reason for the slow acceptance of neem PPP is the delayed effect of neem 

derivatives may irritate the farmers who are used to synthetic neurotoxins/pesticides with 

immediate knockdown efficacy. Pests such as aphids continue to feed on the treated 

plants for a considerably time, even though the amount of food ingested by insect is 

considerable reduced due to the primary and secondary antifeedant effect by neem 

derivatives (Schmutterer, 1990b) 

The effect or field performance of Neem pesticides is indirectly influenced by 

environmental factors such as temperature. In comparing the pure compound of neem to 

the commercial formulations, Copping and Menn, (2000) concluded that due to a 

photodegredation, the commercial formulations of azadirachtin was five times faster than 

pure compound in breaking down after application. 

The application of neem-based pesticides against adult insect does not normally lead to 
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mortality, but may reduce substantially fecundity of the target insects. As a result, the 

following generation mass may be reduced below economic threshold level. 

(Schmutterer, 1987).  

As already discussed, the problems of resistance have been present almost from the first 

years of the use of synthetic insecticides. The misuses of neem pesticides may lead to the 

target insects develop adaptation after some time and insects will be capable of 

differentiating between the treated and untreated parts of their host plant (Daly, 2004). 

Resistance is due to the overuse of a single pesticide with whose action depends on a 

single molecular target; thus all other pesticides that possess the same mode of action will 

also fail to be effective (Daborn et al., 2002). This is an argument for using a mixture of 

the azadirachtinoids, rather than pure azadirachtin A. Despite 20 years of use in Europe 

and USA, there are no reports of resistance to neem-based plant protection products. 

If azadirachtin is applied to the soil as a drench, the short half-life will mean that it will 

disappear rapidly, possibly before being taken up by the plant. The advantage of the 

pelleted version should be to prolong the active life of the terpenoid in the soil. 
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1.9 Conclusion. 
 
Although neem-seed extracts with azadirachtin A as their active ingredient are registered 

in many countries in Europe and in the USA, and have been used for about 20 years, 

outside India, they remain a niche-product. Although azadirachtin A has many 

advantages, it has some disadvantages as well. These have been discussed in this 

Introduction, and are summarised below.  Will these products ever be widely used? 

1.9.1 Advantages of azadirachtin as a plant protection product: 

● Affects almost all pest insect species yet tested 

● Non-neurotoxic 

● Non-toxic to mammals 

● Compatible with beneficial and IPM 

● No resistance yet reported 

● Short soil half-life (no threat to ground-water) 

● Acceptable to organic producers and Soil Association 

● Large industry in India to supply extracts 

1.9.2 Disadvantages of azadirachtin as a plant protection product: 

● Slow in action 

● Poor contact insecticide 

● Sensitive to lysis by light and water 

● No possibility of economic synthesis 

● More expensive than synthetic insecticides 

● Not registered in UK 

● Some phytotoxicity 
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At the moment there are three developments which are working in favour of greater use 

of neem extracts with a high level of azadirachtin A.  One is the fact that a huge revision 

of pesticides has been taking place in Europe over the last decade. This has seen the 

removal of 60% of the previously-employed synthetic insecticides, leaving many crops 

without adequate insecticidal protection. The other is the growth of organic farming, born 

to some extent out of a fear of neurotoxic insectides such as the organohosphates. Neem, 

with no toxicity towards mammals, is well-placed to cater for this growing market. The 

final point is that with the encouragement of the Pesticide Safety Directorate in York and 

the collaboration of the leading German neem company, Trifolio GmbH, the CASE-

sponsoring company NeemCo, intends to register neem as a benign insecticide in the UK 

next year (2010). 

The relatively high water-solubility of azadirachtin, which allows it to move in the soil, 

and within plants, is not being exploited by the foliar sprays which currently dominate the 

market. A drawback of azadirachtin is that it has a very short half-life in soil. It is, 

however, broken down much more slowly in plants. The work of (Daly, 2004) has shown 

that a slow-release pellet incorporating neem extracts can be used in soil. It is hoped that 

this means of delivery can extend the soil half-life and give protection to both soil and 

foliar pests. 
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1.10 Aims. 
 
The main aim of the project was to extend the previous work by Daly (2004) and to try to 

prepare a pelleted version of the main commercially-available neem-seed kernel extract, 

NeemAzal®-T produced by Trifolio GmbH, in preparation for the expected registration of 

the product in the UK in 2011. 

The previous work had shown that aza A could be applied to soil in pellet form, and was 

taken up by plants. It did not show how successful this approach was in plant protection. 

The pellets were made in the laboratory by Daly (2004), not by a commercial specialist. 

The plants used, nasturtium, were not of any commercial significance.  

The aim of the present work was to use commercially-made pellets, and to use plants of 

commercial significance: cabbages and sugar-beet. 

The immediate aims of the project can be outlined in this way: 

 
1. To purify aza A from NeemAzal®-T to greater than 98% w/w purity to act as a 

quantitative standard to quantify the terpenoid extracted from pellets, plants and 

soil in the rest of the project. 

2. To determine the level of phytotoxicity to germinating and growing plants due to 

NeemAzal®-T, and to try to determine if the phytotoxicity was due to an 

antimitotic effect. 

3. To use a hydroponic system with known concentrations of aza A in the medium, 

to follow the uptake of the terpenoid into plants, and the half-life in the plants. 

4. To get NeemAzal®-T incorporated into standard commercial pellets by Germains 

Technology Group (Kings Lynn).  
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5. To characterise the pellets in terms of their content of aza A, and the release of the 

terpenoid into soil in laboratory experiments, and, by varying the content of the 

pellets, to try to delay the release of the active ingredient. 

6. To follow the uptake of aza A in the leaves of plants grown in soil containing the 

pellets. 

7. To use the results obtained to examine, in green-house experiments, the effects of 

the systemic treatment in controlling the main pests of cabbage: aphids, 

caterpillars, flea beetles, and cabbage root fly. 

8. To repeat the above with field experiments on a large scale. 
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Chapter 2: Quantitative analysis of azadirachtin A. 
 

2. Aims 
 
Much of the work reported here depended on the quantification of aza A, which is the a.i. 

in the various neem-based PPP available in those countries in which the extracts are 

registered. It is best estimated by the standard method adopted by CIPAC in 2005 

(www.cipac.org) which uses UV absorption at 217 nm in an HPLC method which will be 

described later. An alternative  colorimetric method (Dai et al., 1999; Daly, 2004) is not 

sensitive or specific. 

A pure standard of aza A must be obtained to act as a reference. Although available 

commercially, pure aza A is very expensive (£ 95 per mg; Sigma-Aldrich) and so the first 

part of this work was to prepare a sample of aza A of the highest purity. 

It was first necessary to purify, to a high level, aza A, so that a standard curve could be 

obtained for subsequent quantitative analyses. It has always been considered difficult and 

tedious process in isolating and purifying aza A due to its structural similarity to its 

related limonoids (Strang, R.,  personal communication; Turner et al., (1987); Daly, 

(2004); Deota et al., (2000).  

There are two stages in isolating aza A from seed kernels. Even though semi-purified 

azadirachtin is used as the starting material, it worth stating the two stages it takes to 

reach the final aza A purity. The preliminary stage is preparative clean up one: It is the 

stage in which triglycerides, water soluble proteins, and sugars are removed by polar 

solvents to reach finely-powdered neem seed kernel extract, which contains 20-40% aza 

A. The second stage (Figure 1.2) is the one employed here and various chromatographic 
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methods were used. It separates aza A from its congeners, (the other azadirachtoids)  such 

as azadirachtin B which has the almost the same polarity as aza A, to reach refined aza A 

isolation (Barnby and Klocke, 1987; Morgan and Jarvis, 2001; Schroeder and Nakanishi, 

1987; Deota et al., 2000).  

It is important to mention that both processes are time-consuming and yield only small 

amount of pure aza A. (Hien & Humme, 2000). There are other chromatographic and 

non-chromatographic methods such as multilayer counter current chromatography, 

supercritical fluid extraction that have been reported but they suffer the same 

disadvantages of being arduously time-consuming and giving a low yield  (Dai et al., 

2000; Morgan, and Jarvis, 2001; Ambrosino et al, 1999).   
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Figure 2.1: Flow Chart of Procedure for Pure Azadirachtin A Isolation. 

The flow chart showing the outline of the method developed to purify aza A to > 95% 

purity from crude NSKE using flash column and preparative reverse-phased HPLC 

chromatography. 
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Stage three 
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2.1 Purification of Aza A. 
 

2.1.1 Solvents. 

All the organic solutions (Fisher Scientific UK) were either AR grade or HPLC grade as 

appropriate. Distilled water was filtered through a 0.2 µm filter before use. The process 

of purification of aza A is being separated in to three stages: 

 

2.2 Stage One: 
 

2.2.1 Flash chromatography.  

a) NeemAzal®- Technical (NAT) 

The starting material for preparation of aza A was NAT supplied by Trifolio GmbH, 

Lahnau, Germany. This yellow powder contained about 40% aza A by weight. 

A quantity (4g) of this material was dissolved in 10ml of AR methanol by stirring with a 

magnetic stirrer at room temperature for 30 min. It was then filtered through a 0.2 µm 

filter (Sartorious, Sweden) before its injection on to a C18 reverse phase flash 

chromatography column (Biotage Ltd, Hertfordshire, UK. 150x40 mm, 35-70 micron 

particle size, average pore size of 60 Å) 

The material was then eluted with methanol/water, 45/55 (v/v), under a pressure of 1793 

mbar from a cylinder of nitrogen gas. This allowed a solvent flow of about 15ml.min-1. 

15 separate fractions of 200ml were collected. A sample (approx. 50µl) of each fraction 

was spotted onto aluminium-backed silica gel (see on 2.2.2) and stained for the presence 

of terpenoid compounds by means of the vanillin stain (see 2.2.2.1). 

Those fractions showing the presence of high concentrations of material were analysed 
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by TLC. 

2.2.2 Thin-layer chromatography. 

Aluminium-backed, 0.02mm silica gel plates, 5x10cm (Macherey-Nagel GmbH, Dőren, 

Germany) were used for normal adsorption chromatography. Extracts were resolved in 

light petroleum/ethyl acetate (30/70, v/v) before drying and visualising the terpenoids by 

means of the vanillin stain. 

2.2.2.1 Vanillin stain. 

In order to monitor process of purification, vanillin stain, acidified methanol solution of 

vanillin, was used to give rough indication of quantification (Eweig and Shermer, 1972). 

The stain consisted of 3g of vanillin (4-hydroxy-3-methoxybenz-aldehyde), (Sigma-

Aldrich, Pool, Dorset, UK) dissolved in 160ml of 95% ethanol, to which 40ml of 2M 

H2S04 were carefully added. The stain was kept in a brown bottle. The aluminium-backed 

plates were dipped in the vanillin stain, and then heated by means of a hair-dryer, until 

the spots became visible. The pure standard of aza A developed a blue-purple colour, 

which helped identification of the compound in mixtures (Figure 2.2). 

 

2.3 Stage Two:  
 
2.3.1 Concentration by phase separation 

The fractions from the flash chromatography described above found to contain most of 

the azadirachtin (Fractions 8 and 9 dissolved in methanol/water) were combined in a 

separating funnel, to which 100ml of dichloromethane (DCM) was added. An equal 

volume of water was then added and the funnel vigorously shaken, to drive the polar 
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terpenoids into the DCM. After the two layers had separated, the hypophase of DCM was 

retained and the epiphase of aqueous methanol re-extracted twice with DCM. The DCM 

extracts were combined, and the water removed by means of adding approximately 10g 

of anhydrous sodium sulphate.  

The dry DCM solution was then taken to dryness in a rotary evaporator (Buchi 

Rotavapour) at reduced pressure (650 mbar) and lowered at a water-bath temperature of 

40oC. The yellow-white residue was dissolved in 5 ml of methanol, transferred to a 10 ml 

beaker, and the solvent allowed to evaporate at RT overnight.  The dry residue was then 

weighed and further purified by preparative HPLC. 

 

2.4 Stage Three: 
  
2.4.1 Preparative HPLC. 

Preparative HPLC was carried out with a large (21.7mm x 250mm) C-18 reverse-phase 

column (Phenomenex, model T5-430, Macclesfield, UK) maintained at a temperature of 

40oC to lower the solvent viscosity.  

The mobile solvent was acetonitrile/water (35/65, v/v), and peak detection was by 

absorption at 217nm. The column eluate was collected in 10 ml samples by means of a 

fraction collector (Gilson FC 204 by Gilson Engineering Ltd., Newbury, UK).  

The partially purified azadirachtin from the previous stage was dissolved in 20%v/v 

methanol (100mg in 100 ml of 20% methanol) This solution was further diluted in 1/10 

in water, and 10 ml volumes injected onto the column. The rate of eluant flow was 

5ml.min-1. and the each run was 45 min in length. The column eluant was collected in 

10ml samples by means of a fraction collector. This procedure was repeated until all the 
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partially purified material had been passed through the column. 

2.4.2 Analytical High Performance Liquid Chromatography. 

This was carried out in three locations (Davidson Bld., Graham-Kerr Bld. of Glasgow 

University and at NeemCo Ltd. Irvine), and on three different HPLC systems: Perkin-

Elmer HPLC system,  Surveyor HPLC system and Beckman HPLC system.  

In each case the basic method was, however, the same. Analysis was carried out using a 

C-18 reverse phase column (4.6mm x 25 mm) and an eluant of 35/65 acetonitrile/water 

(v/v) with an isocratic elution. The terpenoids were located and quantified by their 

absorbance at 217 nm.  These are the conditions which have been provisionally adopted, 

at the 49th council meeting (Utrecht, 2005), by Collaborative International Pesticides 

Analytical Council (CIPAC) CIPAC/4545 /P (CIPAC/4429, 2006) as the internationally 

agreed method for analysis of aza A. 

 

2.4.3 Identity of azadirachtin by molecular weight. 

This is was done by HPLC coupled to mass spectrometry with the kind assistance of Dr 

Bill Gemmell of the Division of Plant Sciences, Institute of Biomedical and Life 

Sciences. The solvent system (methanol/water) in this case routinely contained formic 

acid (10%) (Mr. 44), as it was used for analyses of a wide range of phytochemicals, 

including those with carboxyl and other acid groups. 

The column (4.6mm x 25mm, Phenomenex, Macclesfield, UK) was maintained at 40oC. 

The eluant was formic acid/ acetonitrile/ water 10/20/70 (v/v). The eluate was split after 

passage through the flow-cell of the diode array detector, and 0.3ml.min-1 was directed to 

an LCD DecaXP ion trap mass spectrometer fitted with and electro-spray interface 
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(Thermo Finnegan, San Jose, USA) the sample was analysed in a negative ion mode.  

 

2.5 Quantitative Analysis of Aza A. 
 
2.5.1 The Aim. 

Once the standard curve has been achieved, few preliminary analyses of some 

commercial crude neem kernel extracts  were done. Two methods were compared, HPLC 

and Vanillin Assay, in the quantification aza A in these extracts. The methods developed 

in these preliminary analyses were used in the rest of the project. 

2.5.2 The Methods.  

2.5.2.1 HPLC. 

The main method of analysis that agreed by CIPAC, as already mentioned, employing 

reverse phase HPLC. 

The HPLC used was a Perkin-Elmer HPLC system with a Perkin-Elmer series 200 pump, 

785 UV/Vis detector and degasser. The data were collected and processed on a Perkin 

Elmer 1022 integrator. The column was a C18 reverse-phase analytical column (3 µm 

particle size). The eluants used were those set out in the CIPAC method: 

a) Isocratic solvent: 35:65, (v/v) acetonitrile/water. 

b) Gradient solvent: from 20:80 to 100:0 (v/v) acetonitrile/water.  

(Only isocratic elution was used in the work reported here.) 

Location and determination of aza A and other terpenoids was done by absorbance at 

217nm. Flow rate was 1ml.min-1. The same volume (20µl) of sample was injected in each 

case. 
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In the purification process, the relative proportions of Aza A and the other azadirachtoids 

were quantified by a) estimating the area of the elution profile of the compounds and b) 

the peak height of each compound. The final purity of aza A obtained after preparative 

HPLC was also determined by MS analysis, comparing the peaks obtained with a 

standard supplied by Trifolio GmbH (Ruch, B, personal communication), and by TLC on 

silica gel, with repeated development of the chromatogram and staining by the vanillin 

stain, which if heated sufficiently, would be expected to show all carbon compounds 

present by charring. 

2.5.2.2 Vanillin Assay. 

The second method used for quantification of  the limonoid was a fast colorimetric  

technique  (Dai et al., 1999). This is a modification of the acidified methanol solutions of 

vanillin that has been used for the visualization of  aza A presence in the limonoids by 

TLC (Allan, 1994). This Vanillin Assay was used to develop a colorimetric method for 

the quantification of aza A in the prilled NSKE pellets. The two methods were compared 

in terms of sensitivity. 

2.5.2.2.1  Preparation of Standard Curve of Pure Aza A. 

Aza A previously purified by flash and preparative HPLC to more than 95% purity, was 

dissolved in methanol and made up to 25ml using a volumetric flask.  A sample of this 

solution (250 µgml-1) was then serially diluted in methanol to give a range of 

concentrations down to 32 µgml-1. These were used to construct a standard curve of aza A 

concentration against peak height and peak area. 
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2.5.3 Determination of aza A in crude neem extracts and pellets. 

2.5.3.1 Commercial samples enriched for aza A 

a) Crude Neem Seed Kernel Extracts (NSKEs).  

Five commercially available samples of NSKE were compared. They were sourced as 

follows: 

1) Sri Dhisha Biotech (Hydrabad, India). 

2) Nickla Agricultural Industries(Mumbai, India) 

3) Rym Exports (Mumbai, India) 

4) Ascott (Mumbai, India) 

5) NeemAzal® -Technical (Trifolio GmbH, Germany).  

In each case, 30mg of the yellow powder was dissolved in 50ml of methanol using 

volumetric glassware. All were filtered through a 0.2 µm Sartorius Minisart single use 

syringe filter (Vivascience AG 30625, Hanover) before their application to the HPLC 

column. 

b) Neem seed oil.   

The aza A content in two neem seed oils, one from Trifolio GmbH., and the other from 

an unknown Ghanian source, were examined.  50 ml (1mg/10ml, v/v) of solution of each 

one was prepared; 5 ml of each neem seed oil was weighed into 50 ml volumetric flask 

and filled up with methanol.  

c) Prilled NSKE Pellets.  

A trial sample of pelleted material had been prepared by Germain’s Technology Group 

(King’s Lynn, UK), using NAT supplied by Trifolio GMbH.  The amount of total  
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azadirachtoids and aza A in the pelleted materials were determined i) by reverse-phase 

HPLC and ii) Vanillin Assay.  

i) reverse-phase HPLC.   

 A sample (0.5g) of the pellets were extracted into 5 ml methanol in 30 ml glass 

centrifuge tube using an Ultra Turrax bladed homogeniser. The homogenate was 

centrifuged at 2000g for 3 minutes, and the supernant poured off into a 50ml volumetric 

flask. The extraction process was twice repeated, and the supernants combined, and then 

made up to 50 ml, and well mixed, before filtration through 0.2µm Sartorius Minisart 

single use syringe filter by Vivascience, Hanover, Germany. Aliquots (20µl) were 

injected into the HPLC column for analysis. This was compared to standards according to 

their peak heights. Simultaneously this was authenticated by carrying out a vanillin assay 

as follows. 

ii) Vanillin Assay.  

A solution of 0.7 ml of methanol containing 1mg NAT with a known concentration of aza 

A, was prepared as a standard. Vanillin (0.02g/ml) in a solution of 0.2ml of methanol was 

added and shaken for 5 seconds. The mixture was left at room temperature for 2 minutes. 

A 0.1 ml of 20M sulphuric acid was, then shaken for 5 seconds. The solution was 

allowed to stand at room temperature for 5 minutes for the colour to stabilise. Finally the 

absorbance was measured at 574nm using a spectrophotometer equipped with tungsten 

lamp. Also, 0.5mg of pelleted material was prepared and read its absorbance as above 

standard. The test solutions were replaced by with an equal volume of methanol in above 

procedure. Quantification of pelleted materials was achieved by correlating its 

absorbance by that of a standard curve of NAT derived from a solution in methanol. 
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2.6 Results. 
 
2.6.1 Thin-layer chromatography.  

After collection of 14 fractions eluted from the Biotage 40 column, the fractions were 

tested for the presence of aza A by TLC on Aluminium-backed, 0.02mm silica gel plates, 

5x10cm and visualised in the vanillin stain. A typical result is shown in Figure 2.2. 

 

 

 

 
Figure 2.2: Identification of fractions from flash chromatography containing aza A. 
The result of TLC test to identify the fractions containing the highest concentration of  
aza A. in here fractions 8 and 9 contain the maximum amount of aza A with minimal 
impurities. The spot at the extreme right (C) is a standard of pure aza A.  
 
 
 
 
2.6.2 Purification of aza A from the starting NSKE (NAT). 

 
The process of purifying aza A to a high level is summarised in Table 2.1 and illustrated 

by the HPLC traces in Figures 2.4 a,b and c. 
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Neem material Weight of  Yield (%) Aza A  

 material (mg)  purity (%) 
NAT 4000 100 42 

Stage 1    
(Flash chrom.) 300 7.5 75 

Stage 2    
(Prep. HPLC) 6.3 0.15 98 

Table 2.1 Summary of purification of aza A. 

 

The starting material was NeemAzal®-Technical (NAT) 

The starting material for the purification, NAT, was already enriched in aza A, the purity 

of which was 42%. Choosing the aza A-rich fractions from the initial flash 

chromatography (Stage 1) raised this purity to 75%. The final stage of preparative HPLC 

(Stage 3) raised the purity of aza A to 98%, as determined by the methods described in 

section 2.5.2.1.  The final yield of this pure material was, however, very low, at 0.15% of 

the weight of starting material. 
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Figure 2.3a:  HPLC analysis of the starting material, NeemAzal®-Technical (NAT). 
A sample (20µl at 1mg.ml-1) was analysed by HPLC under the standard CIPAC 
conditions of reverse phase (C18) chromatography with an isocratic elution: 
acetonitrile/water; 35/65 v/v. Flow rate was 1ml.min-1. Detection by light absorption at 
217 nm. The large peak at 0 min is an injection artefact. A) aza A; B) aza B. 
 

As the HPLC trace in Fig. 2.3a shows, the CIPAC method, now adopted as the 

internationally-agreed method of quantifying aza A, is very successful in separating the 

limonoids in the semi-pure mixture. Aza A which runs with an RT of 19.1 min. is 

adequately separated from aza B (RT: 20.1 min.). The minor peaks are presumed to be 

other azadirachtoids, but were not identified. 

 

 

 

 

 

A 
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Figure 2.3b: HPLC analysis of material after Stage 1 (flash chromatography) of 
purification of aza A.  
The material was that in Fractions 8 and 9: those containing most of the aza A. 

Conditions as in 2.3a. A) aza A; B) aza B.  
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2.6.3 Purified aza A 

The aza A purified in a preparative HPLC.  The result, as shown here, was a clear single 

peak of over 98% purity of aza A.  

 

 

 

 

 

 
Figure 2.3c: HPLC analysis of material after Stage 3 (prep. HPLC) of purification 
of aza A. 
Conditions as in Fig. 2.3a. A) aza A. 

 

The HPLC trace in Fig. 2.3c shows that a high level of purity of aza A was achieved after 

two stages of reverse-phase chromatography. The final yield of about 6 mg of aza A was 

low, but sufficient to allow quantification of the limonoid in the rest of the project. 

A 
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2.6.4 Confirmation of identity of aza A by MS. 

The chromatogram (figure 2.3d) shown the suitability of the reverse- phase HPLC 

methods (HPLC and HPLC coupled to mass spectrometry) adopted here for the 

quantification of aza A in neem seed kernel extracts (NSKE’s) and the purification to a 

single peak purity using flash and then preparative HPLC.  
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Figure 2.3d: HPLC-MS analysis of purified aza A. 
 
The main peak is at 764.4. This represents an adduct of formic acid (Mr 44) and aza A. 
764.2-44= 720.4: the Mr of aza A. 
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2.6.5 Standard curves of azadirachtin by peak areas and peak height. 

 

2.6.5.1 The standard curve.  

The standard curve, plotting the known concentrations of aza A against peak area (Figure 

2.4a) and peak height (Figure 2.4b), show that there is an excellent correlation  with the 

line passing through the origin. It was clear that both peak height and area can be used to 

quantify aza A by HPLC. These curves were therefore used to calculate the 

concentrations of the tetranortriterpinoid in various extracts throughout the remainder of 

the project.  

The dilutions of purified aza A used to establish the standard curves, were retained, and 

run routinely in the quantification of aza A in plant and soil which will be described in 

Chapter 4. The solutions in methanol, stored at -20oC, showed no deterioration over a 

period of a year, consistent with previous experience (R. Strang, personal 

communication). 

From the results in Fig 2.4 were calculated the Limit of Detection (LOD) and Limit of 

Quantification (LOQ) for aza A.  The LOD was found to be 7.5 µgml-1 and the LOQ was 

25 µgml-1. Under the standard conditions of HPLC analysis used in determining aza A in 

the later parts of the study in 20µl samples, this meant that the minimum amount of aza A 

that could be determined with confidence was 6.0 x10-8 g.  
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y = 1.3014x

R2 = 0.9993

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300

Azadirachtin A Concentration (ugml-1)

P
ea

k 
A

re
a 

(a
rb

itr
ar

y 
u

n
it

)

Calibration Curve for Azadirachtin A

y = 0.4535x

R2 = 0.9978

0

20

40

60

80

100

120

0 50 100 150 200 250 300

Azadirachtin A Concentration (ugml-1)

p
ea

kh
ei

g
h

t 
(a

rb
it

ra
ry

 u
n

it
)

Figure 2.4 a and b: Aza A calibration curves. Standard curves of pure aza A showing 
excellent correlations (R2) between the concentrations and the peak areas and height 
respectively with the line passing through the origin. A solution purified azadirachtin 
(98%) was made up to 25ml by dissolving in methanol. Samples of this solution 
(250µg.ml-1) were then serially diluted down to 32µgml-1. Samples of 20µl were run in 
duplicate and standard curve was drawn from the mean of duplicates.  
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2.6.6 Determination of aza A in commercial samples of NSKE, neem oil, and pellets. 
 
The results of the analysis of the content of aza A in various commercial neem extracts  
 
and the pellets made for the project by Germains Technology Group are shown in Table  
 
2.2. 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2.2 Aza A content of commercial neem extracts and pellets. 

 
 

It was clear that the commercially-available NSKE all derived from various Indian 

manufacturers varied a lot in their content of the a.i. They range from almost 50% to 16% 

by weight. The Trifolio product NAT was shown to have a content of 42%. As expected, 

the two samples of neem oil had very little aza A.  

The total azadirachtoid content of the pellets containing NAT was estimated by the 

vanillin method as well as by HPLC. The vanillin estimate was that the pellets contained 

34±1.5 % total azadirachtoids. This is exactly consistent with the known amount added 

by Germains in making the pellets, and also with the 14% w/w aza A, which makes up 

42% of the NAT (14/34=41%). 

 
 

Product Source Aza A  
 Content 

  (% w/w or 
  w/v) 

NSKE Sri Disha Biotech 47 
 Trifolio (A.I.D.Parry) 42 
 Ascott 26 
 Rym Exports 20 
 Nickla Ag. Ind. 16 

Neem oil Ghana 0.43 
 Trifolio 0.082 

Pellets Germains Tech. Gp. 14 
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2.7 Discussion. 
 

Several chromatographic methods have been reported for the isolation of aza A and its 

purification from neem seed kernels. The final separation are achieved by either high 

performance liquid chromatography (HPLC) (Schroeder and Nakanishi, 1987; 

Govindachari et al., 1992) and supercritical fluid chromatography (SCF) (Morgan and 

Johnson, 1997; Morgan and Jarvis, 2001; Morgan, 2008). Quantitative determination is 

usually by light absorption at a low UV wavelength, although there is also a colorimetric 

method based on vanillin assay in determination of azadirachtin- related limonoids in 

NSKE was reported (Daly, 2004; Dai et al., 1999).  

For the isolation and quantitation of aza A by chromatographic methods, it is the polarity 

of the compound that is key to the process. Being highly polar compound and water 

soluble, aza A, in a normal absorptive chromatography with silica, is highly absorbed and 

eluted last. This made the isolation process slow and expensive in solvents.  With the 

development of reverse-phased chromatography, however, the polar compounds such as 

the azadirachtoids are eluted quite rapidly.  

The use of crude NSKE, in this case NAT with 42% aza A eliminated the problem of 

isolating from the kernels themselves. Schematic representation of the extraction of aza A 

from NSKE is shown in Figure 2.1.  This speeded up the isolation of pure aza A, and 

allowed it to be achieved by two stages of reverse phase chromatography. Also, a mass 

spectrometer was used for purity and identification. Finally, the pure material obtained 

was used for the quantifications of number of commercially available semi-purified neem 

seed kernel extracts and prilled materials used for the application part of the project.  
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The initial 4g of NAT contained about 1680mg of aza A. The yield after the initial flash 

chromatography gave of yield of 300mg (21%) of material with a purity of aza A of 75%. 

Acidified vanillin dissolved in methanol was found effective method in visualising the 

presence of the terpenoid (Eweig and Shermer, 1972, Yamasaki et al., 1986; Allan et al., 

1994) on aluminium-packed silica plates (Figure 2.2).  

The purity of aza A at different stages of the isolation process was determined by the 

absorbance at 217 nm, by both peak height and the area under the peak produced by the 

HPLC method. On this basis the final product was estimated to be 98% pure. It can be 

argued that the purified aza A may be contaminated by compound(s) with no absorbance 

at 217 nm. However, the MS trace does not support the presence of any material other 

than aza A, and multiple development by TLC, staining with the non-specific vanillin 

stain also failed to show the presence of other compounds.   

The yield from preparative reverse-phase HPLC was successful in isolating aza A to level 

of purity of 98%, but the yield was only 6.3mg (0.15%) of the estimated starting material. 

This contrasts with the results of Daly (2004) who developed the separation by flash 

chromatography, who reported a recovery of 8% aza A at a lower purity of 95%. The 

higher purity achieved here by the additional step of preparative HPLC, was at the cost of 

quantity of product. This explains the expensiveness of pure aza A commercially, as 

mentioned in the introduction to this chapter. It seems unlikely that aza A could ever be 

used as a PPP in pure form. 

Determining the concentration of aza A depends on either light absorption in the low UV 

(usually 217nm) or the colorimetric method based on the vanillin stain used to monitor 

column fractions. Absorption at 217 nm is more sensitive than the second method. Used 
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here in conjunction with HPLC analysis, it was still accurate at a minimum concentration 

of  30µg.ml-1. The vanillin method was also found to be non-specific, and the colour 

developed unstable. Its only advantage would be the estimation of a large number of 

samples simultaneously. 

The preliminary analysis of a range of commercial samples of NSKE indicated the 

variability of the extracts available on the market at the moment. The very low content of 

aza A in the two samples of neem oil was consistent with the fact that the polarity of aza 

A which makes it almost insoluble in the non-polar oil (Schmutterer, 2002). It also 

suggests that PPP based on the oil, although cheaper than NSKE, would have a low level 

of effectiveness against insects. 

Analysis of the content of NAT in the pellets prepared for this project by Germains 

Technology Group indicated a concentration of aza A at 14% with a total azadirachtoid 

content of 34%, consistent with the specifications indicated by the manufacturer. The 

estimates made by the colorimetric and HPLC methods were also consistent with each 

other. Tests made throughout the project proved that the NAT in the pellets, stored at 4oC 

remained constant over 2 years. 
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Chapter 3: Phytotoxicity of NeemAzal to seed germination and 
early growth. 
 
3.1 Introduction.  
 

Even though the systemic insecticides show greater retention in plant systems thus ability 

of protecting plants from insect attack, like residual herbicides they could affect the 

germination and following seedling development. Even though there are some other 

physical chemistry characteristics of respected pesticides like persistence in soil, 

leaching, solubility in soil, rate of evaporation and adsorption to soil particles that effect 

their influence, still some systemic pesticides like Cholropyrivous and Oxymal have 

shown some in vitro toxicity effect on germination and development of plants 

(Olofinboba, and Kozlowski, 1982).       

As discussed in the Chapter 1, there is evidence from both in vivo and in vitro work that 

azadirachtin A inhibits the division of plant cells and the restricts the growth of whole 

plants. (Nisbet, 1991; Nisbet, et al 1993, 1996). Some herbicides act in this fashion. 

(Fedtke, 1982; Moreland, 1980; Gunning & Hardhan, 1982; Waldin et al., 1992; 

Binarova and Dolezel, 1993; Ellis et al, 1994; Mitrofanova et al, 2003; Morrissette et al., 

2004) This might limit the amount of the terpepenoid which may be applied to plants 

either at the stage of germination or later. This might prevent the use of NeemAzal as a 

seed treatment. 

Recent studies have shown that aza A behaves in insect cells as an antimitotic agent, 

acting in a similar fashion to colchicine by interfering with the polymerization of tubulin, 

and thus preventing cell division (Salehzadeh et al, 2003). As tubulin is found in all 
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eukaryotic cells, and is highly conserved, this would suggest that aza A should be able to 

prevent mitosis in all sorts of dividing cells, including plant cells.  

The aim of this study was to test the phytotoxicity of NAT, of which aza A is the active 

ingredient, to germinating seeds, and their subsequent early growth.  Experiments were 

set up in vitro to examine the effect of the terpenoid on the two plant species: cabbage 

(Brassica oleracea, capitata, Var. PrimoII), and sugar beet (Beta vulgaris L., Var. 

Roberta). Two antimitotic herbicides, Trifluralin and Amiprophos-methyl, which are 

known to act as antimitotic agents, were used as comparators. (Fedtke, 1982; Moreland, 

1980; Vaughan and Lehmen, 1991; Ellis et al, 1994; Tanaka et al,. 1999). 

Both the germination and very early growth of both plant species seeds were looked at.  

A separate experiment examined the slightly later stages growth; measuring parameters 

such as plant fresh weight, whole plant growth and root growth.   
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3.2 Methods and Materials. 
 

3.2.1 Preparation of Growth Medium. 

 
Growth medium, (2.2L per batch), was made up by dissolving or 0.96g/120ml (0.8% 

w/v) micro-agarose (Duchefa Biochemie, Haarlem, The Netherlands). This was mixed 

with an equal volume of Murashige & Skoog (MS) basal salt (2.2g/L) (Murashige and 

Skoog, 1962). (Sigma-Aldrich Ltd., Poole, UK). They were mixed thoroughly with a 

magnetic stirrer while simultaneously adjusting pH to 6.8 with 0.1 M KOH solution, then 

autoclaved. The medium was allowed to cool, in 120ml aliquots, and kept sterile until 

required. Before pouring, it was reheated in microwave oven to liquefy the agar.   

 

3.2.2 Stock solutions of NAT and herbicides. 

The NSKE, NAT, and two herbicides, Trifluralin (Sigma-Aldrich, Laborchemikalien, 

GmbH, Seelze, Germany) and Amiprophos-methyl (Duchefa Biochemie, Haarlem, The 

Netherlands), were dissolved in dimethylsulphoxide (DMSO) (Sigma-Aldrich Cheme 

GmbH, steiheim, Germany) as they have a negligible water solubility. All materials were 

made initially to a concentration of 10-1M and then each one further serially diluted in 

DMSO to give a range of concentrations from 10-1 M to 10-4 M. All were filter-sterilised 

in a flowhood. Volumes (1.2 ml) of each concentration were then added to 118.5 ml 

volumes of remelted basic medium to give a x100 dilution.  This ensured that the final 

concentration of DMSO was 1% (v/v), a concentration which had been shown to be non-

toxic to the plants, and giving a final range of concentrations of the active ingredients 

from  10-3 M to 10-6 M. Control plates contained only 1% (v/v) DMSO. Finally, 40ml 
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volumes of the various media were poured into three 140mm square Petri dishes, under 

sterile conditions, and allowed set, so that each test was done in triplicate.   

 

3.2.3 Seed preparation for germination and growth bioassays. 

3.2.3.1 Sterilisation 

Cabbage (Brassica oleracea, capitata, Var. PrimoII,) and sugar beet (Beta vulgaris L., 

Var. Roberta), seeds were sterilised by soaking them with 5% (v/v) commercial bleach 

for 10 minutes, occasionally mixing by gentle inversion.  Then the liquid and the floating 

debris were decanted. Seeds were then serially washed five times with sterilised distilled 

water. By leaving the seeds in the final wash, they were allowed to imbibe for 48 hours at 

4 0C. 

3.2.3.2 Germination and Preliminary Development Assay. 

36 sterilised seeds (four rows of nine seeds each) were placed in each Petri dish. Seeds of 

similar sizes were selected. Plates were then sealed with plastic film, to prevent moisture 

from escaping and avoid contamination, and left in the germination chamber to incubate 

at 210C in the dark. This process (each concentration of either  NeemAzal, two herbicides 

or controls) was replicated three times. Germination, as judged by radical emergence and 

preliminary development (root and shoot) were evaluated in 8 days for cabbage and 14 

days for sugar beet by counting number of geminated seeds, and measuring whole plant 

length.  
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3.2.3.3 Assay of Seedling Growth. 

Filter paper (Anachem Ltd, Luton, UK) was cut to size to fit a 24 x 36cm plastic tray. 

The filter paper was put inside the tray and soaked with sterilised water. Seeds of either 

sugar beet or cabbage, sterilised and imbibed as above, were evenly set on the wet filter 

paper. The trays were sealed with plastic foil, to avoid water-loss. Also, trays were 

carefully wrapped with aluminium foil so that seeds were not exposed to light, thus 

mimicking germination mode of seeds in soil, and then left in the growth room at 21oC to 

germinate. Seeds were examined twice daily for signs of germination.  Newly germinated 

seeds were transferred in groups of 8 seeds to one Petri dish, onto all the media described 

above  (3.1.2). As before, control plates contained only 1% DMSO. Seeds were placed in 

a row in the middle of the plates. Plates were then set in a vertical position and left to 

grow for a further 8 days for cabbage and 14 days for sugar beet. Temperature and 

humidity were kept at 200C and 60% respectively, and a light/dark cycle of 16 hours/ 8 

hours. After 8 or 14 days plants were removed from the medium and measures were 

made of basic growth parameters:  

a) plant fresh weight. 

b)  plant whole length. 

c)  root length.  
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3.2.3.4 Statistical Analysis. 

Statistical comparisons were made on the basis of the averages (± SE) of the fresh weight 

(mg), whole plant length (cm) and root length (cm). One way and two ways (general 

linear model) analysis of variance (ANOVA) was used in analysing the collected data in 

Minitab statistical package.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

                                                                       79 
 
 
 
 

 

3.3 Results. 
 

3.3.1 The effect of two herbicides and NAT on germination and preliminary seedling 

growth of cabbage and sugar beet. 

3.3.1.1 Cabbage. 

a) Germination. 

Cabbage seeds grown on control plates containing only 1% DMSO germinated before 8 

days, and all seeds germinated. None of the possible inhibitors used: Trifluralin, 

Amiprophos-methyl (AMP) or NAT, showed any inhibitory effect on the   emergence of 

the radical. (Results not shown) 

The first growth occurring between radical emergence and 8 days, was, however, affected 

by the two herbicides.  As is shown in Figure 3.1, both Trifluralin and AMP severely 

inhibited growth at concentrations above 10-6 M, with the former reducing the fresh 

weight by a maximum of 40% and the latter by a maximum of 55%. Both effects were  

statistically significant. The seedlings became swollen and stunted at those 

concentrations. In contrast, however, NAT, had no effect the germination and the ensuing 

radical elongation except at the highest concentration, 10-3 M.  

An unexpected result was that the lowest concentration of the two herbicides seemed to 

slightly enhance the growth of the newly germinated plants, although this was not 

statistically significant. 
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Figure 3.1: The effect of the herbicides and NAT on the early growth of cabbage seedlings. 
The results represent the fresh weights of the newly germinated plants by 8 days of incubation in 
a range of concentrations of test materials. Values are the averages ± SE of 3 plates each of 36 
seeds. The compounds used were a) trifluralin; b) amiprophos-methyl; and c) NAT. Control 
plates (C) contained only 1% v/v DMSO.  The letters indicate statistical significance: Those with 
different letters are significantly different at p ≤0.01.  

a) 

b) 

c) 
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3.3.1.1.1. The effect of trifluralin on the growth of cabbage seedlings.  

Fresh weight, total plantlet length and root length were measured at 12 days after first 

signs of germination of seedlings which were carefully time-matched to ensure that they 

were all at the same stage of development. 

 

Trifluralin (Figure 3.2) reduced all three growth parameters, compared to controls, at all 

the concentrations used and in a concentration-dependent fashion, although this was only 

statistically significant at p=0.01 at concentrations of 10-5 M and greater. The effect of the 

compound was particularly marked on root and total plant length, reducing the former by 

a maximum of 80% at the highest concentration, and latter by 87%.  The root growth 

which took place at concentrations of the herbicide greater than 10-5 M was stunted and 

abnormal. 
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Figure 3.2: Effect of trifluralin on the growth of cabbage seedlings. 
The results represent the averages ± SE of 3 replicate plates each of 8 germinated seeds after 12 
days of growth on media containing different concentrations of the herbicide. The parameters 
measured were: a) fresh weight; b) total plant length; c) root length. Control (C) plates contained 
only 1% v/v DMSO. The letters indicate statistical significance: those with different letters are 
significantly different at p≤0.01. 

a) 
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3.3.1.1.2 The effect of amiprophos-methyl (AMP) on growth of cabbage seedlings. 

 
The effects of the herbicide on the growth of cabbage seedlings up to 16 days is almost 

identical to that of trifluralin (Figure 3.3). There was a concentration-related reduction in 

the three parameters of growth, which is statistically significant at either 10-6 M or 10-5 

M. The most sensitive indicators, total plant length and root length, are both reduced by 

more than 80% compared to the controls, a result almost exactly the same as that found 

with trifluralin. 

One anomalous result is that the herbicide appeared to increase root growth at  10-6 M. 
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Figure. 3.3: The effect of AMP on the growth of cabbage seedlings. 
The values are the averages ± SE of 3 replicate plates, each of 8 germinated seeds after 
12 days on media containing different concentrations of the herbicide. The parameters 
measured were: a) fresh weight; b) total plant length; c) root length. Control (C) plates 
contained 1% v/v DMSO. The letters indicate statistical significance: those with different 
letters are significantly different at p≤0.01. 
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3.3.1.1.3  The effect of NAT on the growth of cabbage seedlings. 

 
The effects on growth of a range of concentrations of NAT are shown in Figure 3.4. 

Although the averages of the parameters measured show a slight concentration-related 

decline, it is small compared to the antimitotic herbicides. At the maximum concentration 

of 10-3 M the reductions in the various measurements compared to the control are: fresh 

weight: 6%; total plant length: 19%; and root length: 17%. Only in the case of the total 

length is this reduction statistically significant (p=0.01). 
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Figure 3.4: The effect of NAT on the growth of cabbage seedlings. 
The results represent the averages ±SE of 3 replicate plates each of 8 germinated seeds 
after 12 days of growth on media containing different concentrations of the terpenoid 
extract. The parameters measured were: a) fresh weight; b) total plant length; c) root 
length. Control (C) plates contained only 1% DMSO. The letters indicate statistical significance: 
those with different letters are significantly different at p≤0.01. 
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3.3.1.2 Sugar Beet. 

Sugar beet germination took longer than cabbage, and never reached 100% even on 

control plates, averaging 90% in the absence of the antimitotic compounds. A period of 8 

days was required to achieve the maximum level of germination.  Growth of the sugar 

beet seedlings was then much slower than the cabbage seedlings. The subsequent further 

period of early growth was thus set also at 8 days. Even after this longer period, the rate 

of growth as measured by fresh weight, total and root length, was  generally less than half 

that of the cabbage seedlings. 

 
3.3.1.2.1 The effect of Trifluralin on germination. 

 
The sugar beet seeds were also much more sensitive to the presence of the antimitotic 

herbicides.  As Figure 3.5 shows, both germination and early growth are inhibited by 

Trifluralin in a concentration-dependent manner. At the highest concentration of 10-3 M 

the herbicide reduced the rate of germination from the control level of 91% to 52%, a 

highly statistically significant reduction of 43% compared to the control  value.  

The effect of the herbicide was even more marked in restricting early growth. By 16 days 

after germination the fresh weight of the plants on medium containing 10-3 M was 

reduced by 70% compared to the controls. 
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Figure 3.5: The effect of trifluralin on the germination and early growth of sugar 
beet. The results represent the averages ± SE of 3 plates, each containing 36 seeds on 
media containing a range of concentrations of the herbicide. The parameters measured 
were: a) germination (radical emergence) and b) growth as measured by fresh weight of 
seedlings. Control (C) plates contained only 1%v/v DMSO. 
The letters indicate statistical significance: those with different letters are significantly different at 
p≤0.01. 
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3.3.1.2.2 The effects of AMP on germination of sugar beet. 

 
The effects of the herbicide AMP on the germination and first growth of the sugar beet 

seeds (Figure 3.6) is almost exactly the same as that found with trifluralin. Both 

germination and early growth are severely disrupted in a concentration-dependent 

manner. At 10-3 M AMP, germination is reduced to 56% of the control (c), and early 

growth to 19%.  
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Figure 3.6: The effect of AMP on the germination and early growth of sugar beet. 
The results represent the averages ± SE of 3 plates each of 36 seeds after 14 days of incubation, in 
the presence of a range of concentrations of the herbicide. The measured parameters were:  
a) radical emergence, b) fresh weight of seedlings. Control plates (C) contained only DMSO. The 
letters indicate statistical significance: those with different letters are significantly different at 
p≤0.01. 
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3.3.1.2.3 The effect of NeemAzal on germination of sugar beet.  

 
The results in Figure 3.7 show that NeemAzal had no negative effect on either the 

germination or early growth of the sugar beet. 
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Figure 3.7: The effect of NAT on the germination and early growth of sugar beet. 
The results represent the averages ± SE of 3 plates each of 36 seeds 14 days after the start 
of incubation. The parameters measured were: a) radical emergence, b) fresh weight of 
seedlings. Control plates (C) contained only 1% v/v DMSO. The letters indicate 
statistical significance at p≤0.01: There are no significant differences between the 
different concentrations.  
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3.3.1.3 Sugar beet growth. 

3.3.1.3.1 Effect of trifluralin on growth. 
 
The effect of trifluralin was to inhibit the growth of the sugar beet seedlings between 

germination and 16 days (Figure 3.8). Total fresh weight of the plants was reduced by 

36% compared to the controls. The amount of concentration dependence was not clear, as 

the effects of 10-6 M were not significantly different from 10-3 M. 

The effects on the root and shoot length were more marked, being respectively reduced 

by 79% and 63% compared to the control values at the highest concentration of 10-3 M. 
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Figure 3.8: The effects of Trifluralin on the growth of sugar beet seedlings. 
The results represent the averages ± SE of 3 replicate plates, each of 8 germinated seeds 
16 days after radical emergence.  The parameters measured are: a) fresh weight of 
seedlings; b) total plant length; c) root length. Control (C) plates contained only 1% v/v 
DMSO. The letters indicate statistical significance: those with different letters are 
significantly different at p≤0.01. 
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3.3.1.3.2 The effects of AMP on growth of sugar beet. 

 
The effect of AMP on the growth of sugar beet seedlings is shown in Figure 3.9. As the 

case with trifluralin there is not a clear concentration dependence of the inhibition of 

growth. The lowest concentration of 10-6 M had no effect on the parameters measured, 

and higher concentrations all reduced growth to the same extent. This reduction was 

highly statistically significant, and was greatest with root length, which was only 33% of 

the control values. 
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Figure 3.9: The effect of AMP on the growth of sugar beet seedlings. The results represent the 
averages ± SE of 3 replicate plates each of 8 germinated seeds 16 day after germination on 
growth media containing different concentrations of AMP. The control (C) plate contained only 
1% v/v DMSO. The parameters measured were: a) fresh weight of seedlings; b) total plant length; 
c) root length. The letters indicate statistical significance: those with different letters are 
significantly different at p≤0.01. 
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3.3.1.3.3 The effects of NeemAzal on growth of sugar beet. 

 
The effect of NeemAzal on the growth of sugar beet is shown in Figure 3.10. Throughout 

the range of concentrations used, the terpenoids had no effect on growth. 
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Figure 3.10: Effects of NAT on the growth of sugar beet seedlings. The results are the 
averages ±SE of 3 replicate plates each of 8 germinated seeds 16 days after germination on media 
containing different concentrations of the neem extract. Control (C) plates contained only 1% v/v 
DMSO. The parameters measured were: a) fresh weight; b) total plant length; c) root length. The 
letters indicate statistical significance at p≤0.01: There are no significant differences between the 
different concentrations.  
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3.4 The effect of aza A on Mitosis of Plant Cells. 
 
There are several publications that have been done regarding aza A’s effect on insect and 

mammalian cells (Elizabeth et al, 2003 ref. by Chapman, 2003; Rembold and Annadurai, 

1993) at concentrations varying from 10-4 to 10-10 M. It was found that the limonoid had 

no affect on range of mammalian cells at concentrations up to 10-5 M, but Akundugu et al 

(2001) showed that azadirachtin affected the human glioma cells at these concentrations, 

and if that is true, it would cast doubt on its suitability as a safe PPP. Salehzadeh et al 

(2003) found that aza A has an antimitotic effect on insect cells, in the same way as the 

antimitotic plant metabolite, Colchicine, by interfering with the polymerization of 

tubulin, at a concentration of   5 x 10-6 M, and cells get stuck at G2/M phase of the cell 

cycle, but on that of mammalian cell it was found azadirachtin showed cytotoxic effects 

and inhibit proliferation, only in concentration over 10-4 M. This would suggest that 

azadirachtin might be able to prevent mitosis in all sorts of dividing cells, including plant 

cells (Nisbet, 1991; Nisbet, et al, 1993 and 1996). This might be problematic if the 

terpenoid was applied to growing plants. A number of commercially available herbicides 

act by preventing plant-cell division. The following study was intended to establish if the 

terpenoid did have an effect on mitosis in plant cells. 

Those findings raised the question of if aza A has negative effect on plants on its 

application in controlling insects, particularly when applied systemically. There is little or 

no work that has been done on Azadirachtin’s cytotoxic effect on plant cells.  

The literature on the application of neem-based plant protection products has reports of 

examples of phytotoxicity (Freiswinkel, 1989 ref. by Schmutterer, 2002), the basis of 

which is unknown. Earlier work in this project showed that the development of cabbage 
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and sugar beet seedlings was in fact inhibited by high concentrations of Azadirachtin A.  

The effect of Azadirachtin A on cell division was studied using onion (Allium cepa, 

Bedford) root tips. Armburster et al., 1991; Singh et al., 2005) squash technique, with 

slight modifications, was used. After a few unsuccessful preliminary tests using cabbage 

and sugar beet roots, onion root tips were chosen as they have comparatively large cells 

and stain well. 

 

3.4.1 The phytotoxic effect of Aza A due to anti-mitosis. 

3.4.1.1 Materials and methods 

a) Growth Medium and Stock solutions. 

The Growth medium and stock solutions of azadirachtin A and herbicides was prepared 

as that of germination and growth bioassay of cabbage (Brassicae oleracea, capitata, 

Var. PrimoII), and sugar beet (Beta vulgaris L., Var. Roberta) (see 3.2.1 and 3.2.2). 

Onion (Allium cepa, Var: Bedford, home base, UK) seeds were germinated as reported 

for seedling growth assay, Schiff’s reagent were used as a staining reagent, glacial acetic 

acid,  1N HCL, ethanol were used as a fixative reagents,  

3.4.1.2 Methods.  

Onion seeds were germinated as reported for seedling growth assay, and transferred into 

agarose growth medium (8 germinated seeds in each dish) containing two concentrations 

(10-3 M and 10-4 M) of Azadirachtin A. The antimitotic herbicide Trifluralin was used, at 

10-4 M, as a comparison.  Both compounds were added to the final medium in the solvent 

DMSO, to give a final concentration of the solvent of 1%. The control seedlings were 
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cultured on medium containing only 1% (v/v) DMSO. Root tips (5mm) were excised 

from onion seedlings at 24, 48 and 72 hours after treatment. They were fixed with acetic 

acid: HCL (1:3 v/v for 24 hours) and then rinsed with distilled water three times, then 

hydrolyzed with 1N HCL for 1 minute, and stained with Schiff’s reagent (Sigma-Aldrich 

Ltd., England, UK) for 30 minutes. Finally the root tip was macerated in a drop of 

mounting agent, (Aquamount, Verebetered, BDH Laboratory, BH15 Ltd., England, UK) 

on slide, and covered with cover slip.   They were examined microscopically at X40 

under confocal microscope. The mitotic index (number of cells showing mitotic figures 

as a % of total cells in a sample of 150 cells), was determined in at least 4 microscopic 

fields for each treatment. 
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3.4.1.3 Results. 

Mitotic indices of the onion root tips for three days after exposure to the phytotoxic 

compounds are shown in Figure 3.11.  Control plants exposed only to DMSO, as 

expected, showed no change in mitotic index throughout the period of exposure. It 

remained steady at about 5%. The same was true of those exposed to 10-4 M Aza A.  The 

plants exposed to 10-3 M aza A and 10-4 M trifluralin showed a dramatic, and highly 

statistically significant, (p<0.01), increase in mitotic index after 24 hours of exposure to 

the compounds, the former to 9.6% and the latter to 12%. After 48 hours exposure, both 

of these cultures showed a sharp fall in mitotic index to below the steady control level. 

This too was highly signicant (p<0.01) compared to the control value. This was 

accompanied by gross cell distortions and the appearance of multinucleate cells as normal 

cell replication ceased at 72 hours (Fig 3.13). 
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3.4.1.3.1 Effects of compounds on Mitotic figures of Onion Cells. 
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Figure 3.11: Effect of Aza A and Trifluralin on mitotic index on  onion root tip. The 
seedlings were exposed to possible antimitotic compounds over a three day period as 
follows: ▲: Aza10-3M; x: Aza10-4M; ■:Trif. 10-4M; ♦:DMSO (control). Values are the 
averages mitotic indices for at least 4 microscopic fields of 150. One-way analysis 
(unstacked) of variance (ANOVA) was carried in determining the statistical difference of 
mitotic index among the antimitotic compounds and control (♦DMSO). Those with different 
Asterisk (**) are significantly different from the control at p ≤ 0.05. n=3.  
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3.4.1.3.2 The Average Mitotic Stages of Onion cells through 72 hours of exposure.  

The average mitotic figures in squashed cells of controls, and those treated with aza A at 

the concentration of 10-4 showing in a steady state of dividing cells in different stages of 

mitotic stages on an average between 1 to 3. on the contrary, those treated with higher 

concentration of aza A and Trifluralin, at 10-3 M and 10-4 M respectively, the number of 

cells in prophase and metaphase stages increased, by over two-fold  compared with the 

untreated for the first 24 hours, (Figure 3.12). After 48 hours those values remarkably 

decreased by lower than half of the original values, and after 72 hours there were hardly 

any cells in any stages of mitosis.  

Fig. 3.14 shows the effect on the growing germinated plants after 7 days. While control 

seedlings and those growing in the presence of 10-4 M aza A have well-developed rooting 

systems, and have grown to an average of about 5 cm, those in the herbicide and 10-3 M 

aza A have failed to develop roots and show only stunted growth. 
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Figure 3.12: The average mitotic index of each mitotic stages onion rot tip cells. Each 
bar represents the mean ± SD of 3 replications of dividing cells of 150 cells per root tip  
a) 24 hours, b) 48 hrs, c) 72 hrs. ■ Control (DMSO), ■ Aza A 10-4M, ■ Aza A 10-3M ■ 
Trifluralin 10-3M. Asterisks (*) indicate statistically significant differences (p≤ 0.01) of 
each mitotic stages of the treated cells compared to the control. 
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Figure 3.13: Photomicrography of root tip squashes. Root tips quashes at low 
magnification micrography (x400) of a) AzaA10-3M the cells, b) Trifluralin 10-4M with 
numerous arrested mitotic figures at metaphase and anaphase stages and c) aza A 10-4M 
and d) DMSO with cells at different mitotic stages. (Scale: 1cm=25µm) 
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a)                                                  b) 
 

 
 
c)                                             d) 
 
Figure 3.14: Onion seeds grown on agarose medium containing different 
concentrations of aza A, known antimitotic herbicide triflorulin and control for 7 
days. a) 10-3M concentration of aza A, b) 10-4 M concentration of Trifluralin. c) 10-4M 
concentration of aza A and d) control (DMSO). To scale 1:1. 
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3.5 Discussion. 

One of the advantages of using neem extracts as plant protection products, in which aza 

A is the active ingredient, is that they are said to be highly specific in their effects 

towards insects, while apparently having no effect on mammals, including Man 

(Salehzadeh et al., 2003).  

There are, however, a number of reports that both crude neem-seed extracts and pure aza 

A have shown some phytotoxicity (Schmutterer, 2002). This is acknowledged by Trifolio 

GmbH in their “instructions for use” of formulated plant protection products based on 

NAT.  

Nisbet (1991) found  that azadirachtin at 500ppm (0.7 x10-3 M) inhibited the early growth 

of tobacco (Nicotiana sylvestris) plants. Bittum et al., (2004) demonstrated that an 

inhibitory effect of azadirachtin A could be found using newly germinated plants of 

Arabdopsis thaliana. These authors showed that there was also an inhibitory effect on 

cell multiplication of the limonoid on Arabdopsis cells in liquid culture indicating that the 

effect was at the individual cells. 

Aza A affects wide range of insects and its mode of action has been described in Chapter 

1. Many of these may be attributed to the antimitotic effect on insect cells shown by 

(Salehzadeh et al., 2003). These authors showed that aza A bound to tubulin in the same 

way as the classical antimitotic colchicine, and apparently at the same site as colchicine, 

to prevent polymerization of the tubulin. This prevents the formation of the microtubules 

essential for cell division.  
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As tubulin is present in all eukaryotic cells, there is an obvious possibility that the 

phytotoxicity of aza A is due to the same sort of mechanism in plant cells as is found in 

insect cells.  

As discussed in Chapter 1, a number of herbicides are known to act in this way. Two 

antimitotic herbicides, trifluralin and amiprophos-methyl were used as comparators. 

Trifluralin belongs to dinitroanalines: class of pre-emergency that cause severe 

morphological abnormalities root (meristematic) tips in plants (Morejohn et al., 1987). 

AMP is organophosphorus, phosphorothioamidate herbicide. AMP , though different 

chemical class, act similarly and cause similar injury symptoms like that of dinitroanalins 

(Ellis, Taylor, and Hussey, 1994; Gunning and Hardham, 1982; Kiermayer and Fedtke, 

1977; Morrissette et al., 2004). Both have been shown to have a clear antimitotic effect 

on plant cells.  

The germination and early growth of plants, as was shown by the work reported here, are 

easily measured, and provide clear effects. This is likely to be the time when plants will 

be most sensitive to anti-mitotic effects. From a practical point of view, it will give an 

indication of how early a plant protection product can be applied. 

Although there were some differences between the two plants used, (sugar beet seeds 

germinating later and less effectively than cabbage, for instance) both plants showed the 

same effects of the compounds used. 

None affected germination of the seeds. As expected, the two antimitotic herbicides 

strongly inhibited root and shoot growth at low concentrations (10-5 M and higher). The 
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roots of affected plants became swollen and bulbous. At high concentrations, the leaves 

of the seedlings became curled and brittle. Root growth was severely inhibited. This is 

consistent with earlier findings (Kiermayer and Fedtke 1977; Gunning & Hardhan, 1982; 

Morejohn et al., 1987). 

In contrast, although NAT did have an inhibitory effect on seedling growth, this was only 

found at the highest concentration used: 10-3 M. This concentration is in line with 

previous results which showed that azadirachtin A had a negative effect on growth of 

onion plant at a concentration of 10-3 M (Freiswinkel, 1989: Hilton and Nomura, 1964), 

and with Nisbet, 1992; Blake, 2002 and Betum et al., 2004). 

The microscopic studies were carried out to see if the inhibitory effect of the 

azadirachtins was in fact due to an antimitotic effect. Such effects in plants are 

traditionally best seen in effects on the meristem of young plant roots, which are 

undergoing rapid cell division. Initial attempts to do this with cabbage and sugar beet 

roots were unsuccessful, and so the results here were with the “classical” tissue of onion 

roots. The results showed that the concentrations of tested compounds required for 

disruption of normal cell division processes coincided with the effects on the growing 

plants. At 10-3 M of aza A of NAT the root cells were abnormal and distorted. Many cells 

seemed to be stuck in anaphase and failed to reach prophase.   No such effect was shown 

at 10-4 M. The same type of effect was shown by much lower concentrations of the 

herbicides used. 

Several types of herbicides have their effect by antimitosis. The two used here, the 
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dinitroaniline trifluralin, and the phosphoric amide AMP, are known to prevent 

polymerisation of tubulin (Kiermayer and Fedtke, 1977; Morejohn et al., 1987; 

Morrissette et al., 2004). On the basis of the present results it is impossible to be sure that 

the phytotoxic effects shown by NAT are in fact due to the inhibition of polymerisation 

of tubulin, but the similarities with the herbicides, taken with the results of Salezadeh et 

al., (2002) on insect cells, strongly suggests that this is the case. Further work at the 

molecular level would be required to confirm that aza A inhibits plant microtubule 

polymerization by binding to individual tubulin monomers (α- or β-tubulin) as has been 

shown for insect cells.   

In summary, the results presented in this chapter show that NAT with aza A as its main 

component is phytotoxic to newly germinated cabbage and sugar beet seedlings, but only 

at a concentration of 10-3 M, apparently by acting as an antimitotic agent.  

What are the practical implications of these findings for the use of the crude extract as a 

plant protection product?  In practice, the concentration of 10-3 M is unlikely to be ever 

achieved around plant roots, as it is represents the maximum solubility of aza A in water 

at normal temperatures. It would also be too expensive to be practical. It might however, 

prevent, the use of the neem extract in a seed pellet, although other pesticides also 

showing phytotoxic effects used in this way (B. Brown, personal communication). 
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Chapter 4: Persistence of aza A in soil and plants. 
 
4.1 Introduction. 
 
4.1.1 Use of appropriate pesticide formulations. 

 
 Since active ingredients (a.i.), are seldom used in pure form, pesticides come into the 

market in a wide range of different formulations: aerosols, dusts, baits, granules, ready-

to-use, emulsifiable concentrates (EC), flowables (Rotteveel et al., 1997 ), wetable or 

soluble powders (WP or SP) and fumigants. Each one has its advantages and 

disadvantages which have already been outlined in Chapter 1.  These formulations enable 

the a.i. to be easily handled as well as better delivery to its target (Devisetty, Chasin, and 

Berger, 1991; Matthews, 2008).  

One of the important characteristics of aza A and its congeners (also called 

azadirachtoids) is that they are moderately water-soluble (Daly, 2004). This places aza A 

in a small group of plant protection products (See Table 4.1 in the discussion section for 

this chapter) which can move easily in soil water, and enter plants to act systemically 

against pests. The problem with such a.is. is that they may easily enter and pollute ground 

water, especially if they are used in excess, and have long half-lives in the soil  (Pimentel 

et al., 1993; Pimentel et al., 1980; Wen and Pimentel, 1992).  

In contrast, however, to the persistent synthetic pesticides, most botanical bio-pesticides, 

including the azadirachtins, disappear rapidly in the environment, and so they are 

considered less polluting than synthetic ones (Arnason, 1989). As aza A is the principal 

one of this group, it is the active ingredient in neem plant protection products, with 

multifaceted insecticidal effect on a wide range of insects (Isman, 1991; Saxena, 1986; 
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Schmutterer and Singh, 1995; Asher, 1993) and also discussed in Chapter 1.  Several 

authors have suggested the use of aza A as a soil-applied systemic insecticide (Nisbet et 

al., 1993; Sundaram et al., 1995; 1996; Thoeming and Poehling, 2006). Since 

azadirachtin, applied to plants or to soil, is likely to be rapidly destroyed by light, water 

and soil micro-organisms, and hence have a short half-life, an alternative way with better 

efficiency became desirable: development of a controlled release granular (pelleted) 

formulations of the terpenoids. This should make it possible for the pesticide to be 

delivered gradually to its target over a period of time thus reducing loss of pesticide in the 

soil, due to  run off, leaching and biological breakdown. Also, unlike spraying of 

pesticides, this method of delivery should reduce the number of applications for the 

pesticide, and so increase its cost-effectiveness (Corbin et al., 2006, NAFTA report;  

Barlow, 1985; Collins et al.,1973 ref. by Daly, 2004).  

 

4.1.2. Granular Formulations of Pesticides (GFP)  

 
GFP is one of many options to deliver pesticides to target. Granules range in size between 

200 µm to 2360 µm. Unlike liquid formulations which are usually sprayed directly on to 

the plant and pest, they are applied to the field as free flows and are delivered to the 

target indirectly by movement through soil and plant system, at a rate depending on the 

nature of the pellet material (Bowman, 1992; Matthews, 2008; Sawyer, 1983; Banks et 

al, 1990; Barlow, 1985).   

Standard formulations of a typical granular are: carrier (70 to 98%), pesticide (2 to 30%), 

solvent or binder (0 to 10%), deactivator (0 to 7%) (Kalley et al., 1992; Goss et al., 

1994).  As already reported in Chapter 2, analysis of the granules used in this work found 
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34% w/w total azadirachtins, which puts the material at the top end of the range quoted 

above.  

There are two main categories in granular carriers: mineral and organic.  Most of those 

classed as organic are polymers, both synthetic and natural. Examples of synthetic ones 

are poly-ε-caprolactone, polyethylene and poly-phenyl chloride. The common natural 

ones include starch, alginate and lignins (Flores et al., 2007; Goss, Taylor, and Kallay, 

1994); Boyston, 1992; Choudary et al., 1989; Solvey, 1998). 

The use of granules opens the possibility of controlling and delaying the release of the a.i. 

so as to increase the effectiveness of the product. (Cryer and Laskowski, 1998; Kenaway, 

1998; Kenaway, and Sakran, 1996). To achieve the desired controlled release, 

consideration of physical properties of the granular type such as mesh size, absorptive 

capacity of carrier, rate of breakdown, and hydrophilicity are important. The water-

solubility and persistence of the a.i. are also important in determining the effectiveness of 

this method of delivery. 

 

4.1.3. Previous work on release of aza A from granules 

Daly (2004), whose work preceded this project, studied the basic physical parameters of 

aza A. He showed that it was moderately soluble in water (1900 mgL-1 at 22oC), and 

should therefore be readily mobile in soil, and systemic in plants. Using a tritiated tracer 

of azadirachtin A, ([22, 23 3H2] dihydroazadirachtin A) he was able to confirm that it was 

in fact mobile in both soil and the trial plant used: nasturtium (Trepaeolum majus). By 

using laboratory-made pellets loaded with the radio-active tracer, Daly (2004) was able 

also to show that rate of release of the terpenoid into an aqueous medium was dependent 
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on the nature of the pellets. Lack of time, however, prevented him applying these results 

in actual plant protection. 

The work reported in this and the following chapter was undertaken to extend, and make 

more commercially relevant, the preceding work. The plants used were commercially 

important cabbage (Brassica oleracea, capitata) and sugar beet (Beta vulgaris L.), which 

are attacked by a wide range of pests encountered in Scotland, and which are described in 

the Chapters 1 and 5.  Pellets, loaded with NAT (Trifolio GmbH) were prepared by 

Germains Technology Group, Kings Lynn, UK, who specialise in making pellets for 

application of plant protection products for agriculture. Daly’s results with the tracer 

derivative meant that no estimates of the actual concentration of aza A were made either 

in soil or leaf material. For practical purposes, it was important to determine the 

concentration of the terpenoid in soil and plants, so that realistic estimates of usage could 

be determined.  

4.1.4. The release of aza A from granules, and its persistence in soil and plants 

The aim of this part of the project was to examine the behaviour of aza A in soil and plant 

environment by quantitative analysis of the terpenoid. It can be broken down into three 

parts: 

The first part was to determine the limonoid’s mobility and stability in soil and thus its 

half-life (DT50).  

The second part followed the release of aza A from the pellet formulations, with the aim 

of determining the degree of delayed release which could be achieved. 

The third part looked at systemic plant uptake of the limonoid and its persistence inside 

the plant after its uptake from both a hydroponic medium and from soil.  
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4.2. Materials and Methods 
 

4.2.1. Soil 

 
The soil used throughout the work reported here was from a single batch of 

commercially-available “top soil” purchased from B and Q Ltd, UK. This is classed as a 

sandy loam type with a 3.2% carbon content and a pH of 7.0, the best of four main types 

of soil found in the UK. It’s considered the best  for broad range of plants as it has the 

advantages of sandy and clay soil and none of their disadvantages:  the sandy part of it 

allows the plant root to easily penetrate into the soil, where the clay is beneficial for its 

nutrient and prevents quick loss of water (easy.net, 2004; gardeningdata.co.uk, 2003).  

4.2.2. Maintaining a constant soil moisture content 

Studies on the behaviour of aza A in soil depended on extracting the terpenoid from the 

soil water, as this represents the fraction available to the plant for uptake. As this work 

was done in pots, over many days, it was important to maintain a constant level of 

saturation of water in the soil. This was done by means of the system called “Osmogro 

Self-watering System®” (Aquagel Technologies Ltd, Scotland). The key component of 

this system is a semi-permeable membrane placed under the pot containing the soil, fed 

by a reservoir of water, which keeps  the water content of the potted soil constant (Fig. 

4.1). 

After soaking with tap-water, the soil was transferred into a 12.7cm x 11.5cm flat-

bottomed specially-designed pot of Osmogro Self-watering System®, the membranes put 

in place, the reservoir filled with water, and then the pots left for 2 days to equilibrate. 

Samples of soil were collected in triplicate from each pot, over a period of 3 days by 
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using a 1cm diameter coring tube, which removed a vertical column of soil from top to 

bottom of the pot.  

The soil samples were placed in individual weighed 25ml Pyrex beakers, and dried in an 

oven at 100oC, until constant weight (12 hours). The weight of water in the soil was 

determined by weighing before and after drying. Soil cores were taken as above from 4 

pots, and the results averaged.  A figure of 25 ± 1.2 % (w/w) for water in soil was 

obtained. The sampling over 3 days proved that the osmotic watering system could 

maintain this figure within 1% throughout the experiments. 

 

 

 

 

 

                        

 
Figure 4.1: Osmogro Self-watering System®. 
The figure shows in diagrammatic form the system used to maintain constant water 
content in soil. The water is drawn up into the soil through the osmotic membrane to 
maintain a constant osmolarity of the soil water, thus keeping its volume constant. 
 
 
 
 

a) Osmogro reservoir 
b) Soil 

c) Water 

e) Pad 

d) Pot 

f) Semi-permeable 
membrane 
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4.2.3. Persistence of aza A in soil   

In order to investigate the basic behaviour of aza A in soil, NAT powder supplied by 

Triflolio-M GmbH, Germany, was used. This material contains 42% (w/w) aza A, as 

already indicated in Chapter 2.  It was decided to add sufficient of the material to the soil 

in pots to achieve a theoretical maximum concentration of 10-4M for aza A in the soil 

water. The results reported in Chapter 3 indicated that at this concentration, there should 

be no risk of phytotoxicity.  To achieve this theoretical concentration the NeemAzal®-

Technical was added to the prepared soil at a concentration of 43mg.kg-1.   

Equilibrated soil, in 1 kg batches, was thoroughly mixed with 43 mg of the crude 

terpenoid. Soil was then returned to the osmotic self-watering system and pots were left 

for 4 hours at room temperature (22±1oC). Soil cores were collected as above, and each 

one extruded into a 10ml sterile plastic syringe, into which a 25mm glass-fibre filter 

(Whatman, UK), had been placed.  At the tip of the syringe was fitted a Whatman’s 

Spartan 3 syringe filter, pore size 0.2µm (Whatman, UK). The syringe was then 

suspended in a Corex 35ml centrifuge tube and centrifuged for 3 minutes at 3000rpm to 

remove and filter the water from the soil core (Fig. 4.2). About 200µl of water was 

collected consistently from each soil sample. An aliquot of this, (20-50µl), was injected 

into the reverse-phase HPLC for quantitative analysis of aza A in the soil by the standard 

CIPAC method as described in Chapter 2. (The normal aliquot volume for analysis was 

20µl, but for very low concentrations, larger volumes were occasionally used to ensure 

that the amount of aza A was greater than the LOD, found to be 6x10-8 g (section 2.6.5.1) 

To ensure consistency, two standards of purified aza A from those used to establish the 

standard curves in Fig 2.4 were run with each batch of soil-water samples. These were 



 

                                                                       118 
 
 
 
 

 

32µgml-1 and 250µgml-1. Soil samples were taken every 24 hours for four days.  (Beyond 

this time quantities of aza A had fallen below the LOD: 7.5x10-6 g.ml-1)    

 

                                                

 
 
Figure 4.2: Recovery of water from soil samples. 

The method used to extract and filter the water from a standard core of soil is shown 
diagrammatically. The water recovered after centrifugation was used to estimate the 
dissolved aza A. 

 

4.2.4. Azadirachtin A release from the granules into the soil 

 4.2.4.1. The composition of the granules 

Granules containing NAT were prepared for this project by Germains Technology Group, 

Kings Lynn, UK. Although some aspects of the nature of the pellets must remain 

confidential, they were composed of “wood flour” with carboxymethyl cellulose as 
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binder. As well as the basic pellet, which took up water, and disintegrated quite rapidly in 

the soil, a second type contained a hydrophobic polymer to delay release of the terpenoid. 

These will be respectively called “hydrophilic” (“Neem 1”) granules and “hydrophobic” 

(“Neem2”) granules. 

4.2.4.2. Theoretical maximum concentration of azadirachtin A in soil 

As stated previously in Chapter 2 the NAT content of both these types of pellet was 

shown to be 34±2% w/w. This meant, as aza A is 42% of the semi-purified extract, that 

the content of azadirachtin in the pellets was 140gkg-1 of pellets. To achieve the required 

theoretical maximum concentration of aza A of 10-4 M, 130 mg of the pellets were mixed 

with 1kg wet soil.  

As described in 4.2.3 after the pellets had been incorporated into the soil in pots, they 

were left for 24 hours at room temperature, and the samples taken for estimates of aza A 

at daily intervals, until the concentration of azadirachtin had fallen below the level of 

detectability. Aza A in soil- and leaf-water was analysed by the CIPAC HPLC methods 

previously described.  Concentrations were determined by peak height/area with regard 

to standards of known concentrations run at the same time.  

4.2.5. Systemic uptake and persistence of aza A in plants 

Systemic plant uptake and its persistence in the leaf  of aza A was tested on plants which 

had been allowed to grow in soil for 21 days ( 4th leaf stage ) before loading them 

hydroponically in growth solutions containing known concentrations of the terpenoids  

( Figure 4.3). 

Cabbage and sugar beet (Brassica oleraceaea Var. PrimoII, Beta vulgaris ) plants were 
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grown from seed as described in above section. After 3 weeks, plants were gently 

uprooted, the roots washed in tap water  and then placed in half-strength Hoaglands 

solution, which contained the following nutrients:  KNO3, 6 mM; Ca(NO3)2, 4 mM; 

NH4H2PO4, 2 mM; MgSO4, 2 mM; H3BO3, 50 µM; MnCl2, 10 µM; ZnSO4, 0.77 µM; 

CuSO4, 0.36 µM; Na2MoO4, 0.37 µM; Fe3+–EDTA, 4.5 µM . The nutrient solution was 

put into 50x20cm porcelain troughs. The plants, supported by polystyrene sheets and 

cotton wool, were then placed with their roots immersed in the nutrient. The polystyrene 

sheets were wrapped in black polythene to exclude light from the medium.  The system is 

shown in Figure 4.3. The troughs were put in the hydroponics growth room with a long 

day (light/dark, 16h/8h) set-up, to make them grow faster. They were maintained at 20 °C 

with humidity of 60%. The troughs were topped up every few days with water and the 

Hoagland’s solution changed completely every week.  The medium was constantly 

aerated by means of an air pump. Plants were let to grow on the aerated nutrients media 

for a week to recover from the shock. On the second week NAT as dissolved in the 

Hoaglands medium at two different concentrations of aza A, 10-3 M and 10-4 M, and the 

plant roots exposed to limonoids for 24 hours. After 24 hours the media was replaced by 

fresh Hoaglands, and the plants allowed to grow for a further 4 weeks. Throughout this 

time, individual leaves were taken for analysis of aza A. 
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a)   
 

              
              
             b)  
 
Figure 4.3a and b: Plants growing in the hydroponic system.  
The photograph shows a) cabbage and b) sugar beet plants growing in Hoaglands 
medium. They are supported by polystyrene sheets, covered with black plastic to mimic 
soil conditions and prevent algal growth. 
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4.2.5.1. Extraction of aza A from leaf tissue. 

Harvested leaves were freeze-dried with LSL Secroio SR 1111 Aclens,  Switzerland.,  at 

-59oC for 24 hours. (Preliminary tests showed that they had reached constant weight by 

that time.) Then the dried leaves were weighed, and reduced to powder   with a 

multispeed stirrer. Weighed samples of powder were suspended in methanol (1ml), 

shaken for 5 min. and centrifuged at 1000rp. for 3 minutes. The supernatants were 

collected. The process was repeated three times.  The pooled supernatants were taken to 

dryness in stream of air and then redissolved in 1ml methanol.  Aliquots of 50µl were 

analysed by the standard HPLC method (Chapter 2) to determine the concentration of aza 

A in the leaf tissue. 

In order to calculate the concentration of aza A in the leaf water, preliminary experiments 

were done in which fresh leaves were freeze dried as above, weighing before and after to 

determine the water-content. It was found to be 88 ± 2% w/w. This figure was then used 

to calculate the concentration of azadirachtin in the leaf water. 
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4.3. Results 

4.3.1. Mobility and disappearance 

After the NAT had been mixed with soil to give a theoretical maximum concentration of 

10-4 M aza A, the first sample of soil water, taken 4 hours later,  gave a concentration of 

aza A of 8.11(±2.0) x 10-5 M. This mean value represents more than 80% of the expected 

maximum if all the aza A dissolved in the soil water. This suggests that azadirachtin is 

highly water-soluble, as expected from its known solubility.  

The rate of disappearance of the terpenoid over the following 4 days is shown in Fig. 4.4. 

When the concentrations are presented in logarithmic form, it gives a half-life for aza A 

of 1.6 days. 
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Figure 4.4a and b Disappearance of aza A in soil. 
Figures represent the concentration of aza A in the soil water after mixing NeemAzal®-
Technical. a) The first sample (0 time) was taken at 4 hours. b) In the lower graph, the 
results are expressed in logarithmic form as a % of the first measurement. Each point is 
the mean ± SD of 3 samples from different pots. 
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4.3.2. Aza A release from the pellet into the soil. 

 

a)   Hydrophilic (“Neem 1”) granules. 

The release of aza A into the soil is shown in Fig. 4.5. No aza A could be estimated for 

the first 3 days of sampling. The concentration of the terpenoid reached its maximum 

after 5 days. The maximum concentration was found to be 4.2 (±0.18) X10-5 M. This is 

42% of the theoretical concentration which might have been achieved from the known 

terpenoid content of the granules. After 144 hours (6 days) the azadirachtin in the soil 

water declined steeply and was not measurable after 7 days. 
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Figure 4.5: The release of aza A from hydrophilic granules.  

Figures represent the mean concentration (n=6) of the terpenoid in soil water. The figures 
are the mean concentration (n=6) of aza A in soil water. Tukey’s H.S.D 5% Analysis 
between the means was carried out and those with same letters are not significantly different at  
p ≤0.05. 
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b) Hydrophobic (“Neem 2”) granules 

These granules contained an undisclosed hydrophobic polymer to delay their 

disintegration in water.  The effects of this on the release of aza A are shown in Fig. 4.5. 

No terpenoid could be measured before the 9th day, and the concentration then rose 

slowly to its maximum on the 13th day. The maximum concentration was 2.5 (± 0.12) 

X10-5 M. This was 25% of the possible theoretical maximum expected. Then the 

azadirachtin declined slowly. After 17 days, it could no longer be estimated. 
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Figure 4.6: The release of aza A from the hydrophobic granules. The figures are the 
mean concentration (n=6) of aza A in soil water. Tukey’s H.S.D 5% Analysis between 
the means was carried out and those with same letters are not significantly different at p ≤0.05.   
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4.3.3 Systemic uptake and disappearance of aza A in plants  

4.3.3.1 Hydroponic uptake 

As described in the Materials and Methods section, both cabbage and sugar beet were 

loaded with aza A for 24 hours, from a medium containing either 10-3 M or 10-4 M, and 

the concentration of the limonoid measured in the leaves over 3 weeks. 

a) Cabbage 

The concentration of aza A in leaf water measured at zero time (i.e. immediately after the 

24 hour exposure to the terpenoid in the growth medium) was much lower than the 

concentration in the hydroponic medium.   When the medium concentration was 10-3 M, 

the concentration in leaf water was 1.0 (± 0.67) x 10-4 M, and when it was 10-4 M, the 

leaf water concentration was 1.0(±0.5) x 10-5 M. In both cases, the leaf concentration was 

only 10% that in the bathing medium. 

The disappearance of aza A from cabbage leaves is shown in Fig. 4.7 (a, b, c and d). The 

pattern was the same for the two concentrations of the terpenoid. The concentration of 

aza A declined exponentially and could not be measured after 17 days. The half-life of 

the terpenoid was 9 days. 
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             b) 

Figure 4.7a and b: Systemic uptake, and persistence of aza A inside cabbage plant. 
Plants were placed in hydroponic medium containing 10-3 M aza A for 24 hours, and then 
allowed to grow in medium without the terpenoid for 3 weeks, while leaves were taken in 
order to estimate the concentration of the terpenoid in leaf water. Points are the mean ± 
SD of 3 samples. Results in a) are the concentrations found and in b) a logarithmic 
representation based on % of the original concentration. 
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            d) 

 
Figure 4.7c and d: Systemic uptake, and persistence of aza A inside Cabbage plant 
over time. c) The amount of aza A in the leaf water of cabbage at 10-4M concentration 
after 1, 9 and 17 days respectively. Its shows aza A disappears exponential from leaf-
water. Bars represent on standard errors of the mean values. d) log% of the original 
concentration as percentage of initial concentration plotted against time in days. 
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b) Sugar beet 

The results for sugar beet were similar to those for cabbage. After loading the plants with 

the a.i. for 24 hours, the concentration in the leaf-water was found to be 1.2(±0.2) x10-4 

M, when the concentration in the hydroponic medium was 10-3 M, and 9.2(±2.0) x 10 -5 

M when the concentration in the medium was 10-4 M. The concentration of the a.i. then 

decreased in the plants in an exponential way, giving a half-life of 10 days. 
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Figures 4.8a and b: Systemic uptake and persistence of aza A inside sugar beet plant 
over time. a) The amount of Aza A recovered from sugar Beet leaf water according to 
the original one (10-3M) b) Log % of the original concentration.    
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                d) 

Figures 4.8c and d: Systemic uptake and persistence of aza A inside sugar beet plant 
over time. c) The concentration of aza A in the leaf water of cabbage after 24 hours in 
relation to the original conc. Applied (10-4M). d) Log % of the original concentration. 
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4.3.3.2. Aza A release from pellets and its subsequent uptake by plants 

The results reported in section 4.3.2 a and b of this chapter showed that the delivery of 

the a.i. into the soil could be delayed by the use of pelleted material, and that the delay 

time could be modified by the inclusion of hydrophobic material. It was important to 

discover how this delay affected the appearance of aza A in the leaves of plants grown in 

soil treated with the pelleted material. 

Both model plants were used: cabbage and sugar beet, and enough pelleted material 

included in the soil to give theoretical maximum concentrations of the a.i. of 10-3 M and 

10-4 M in soil water. 

After the addition of the pellets to the soil, the plants were allowed to grow for periods of 

up to a month. Leaves were removed, and the concentration of aza A in leaf water 

measured. 

Due to lack of time and material, only the hydrophilic (“Neem 1”) pellets could be used.  

The results are shown in Figure 4.11.  The results for the two types of plant were 

generally similar, but there were some differences between them in terms of the time 

course of the presence of aza A in the leaves. In the case of sugar beet the highest 

concentration of the a.i. was after 10 days, while it was not until 15 days in cabbage.  

Except for the cabbage exposed to the higher concentration of the terpenoid, no 

azadirachtin could be measured after three weeks. 

In the case of both plants the concentration of the a.i. in the leaf water was lower than 
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might have been expected. The maximum concentration when the larger amount of 

pellets was used was 5.1(±0.3) x 10-5 M for cabbage and 8.0(±0.9) x 10-5 M for sugar 

beet.  At the lower concentration of the a.i. the maxima were proportionately reduced. 

                       

 
 
Figure 4.9a, b, c and d: Aza A concentration in leaves of cabbage and sugar beet. The figures 
represent the mean concentration of aza A (± SD; n=3) in the leaf-water of cabbage plants (a and b) and 
sugar beet (c and d), grown in soil treated with sufficient pelleted a.i. to give theoretical concentrations 
in soil water of a) and c): 10-3 M, and b) and d): 10-4 M.   
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4.4 Discussion . 

It has been shown by previous studies (R.Strang, unpublished, 2000; Daly, 2004; Ruche, 

personal communication, 2005) that aza A breaks down in soil and artificial growth 

media in an exponential manner (1st order kinetics).  This is illustrated in Table 4.1.  

which records the results previously obtained in this laboratory (Daly, 2004). In order to 

minimize the number of analyses, fewer time points were used in the work reported here. 

This was probably a mistake, as it is not entirely clear from results presented in Figure 

4.4 that the decay of the terpenoid is in fact exponential. If the rate of breakdown of aza 

A is a zero order reaction, it would suggest that the rate would be constant and thus 

independent of the concentration of the terpenoid. In the light of previous results, 

however, it seems reasonable to assume that disappearance of aza A is exponential, and 

to derive a DT50 of 1.6 days.  
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Table 4.1: Disappearance of Aza A in soil. 
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One of the important physical characteristics of aza A is that it is moderately water-

soluble. Solubility at 22 o C has been previously determined as: 1.29g.L-1 (Daly, 2004), 

2.9g.L-1 Kleeberg, H (personal communication, 2004). This means that a maximum 

concentration of more than 10-3 M should be possible, although, as shown in Chapter 3, at 

this concentration it might be phytotoxic. 

This water-solubility means that the a.i. should be highly mobile in soil, and systemic in 

plants. The characteristics of aza A are compared to other systemic insecticides in Table 

4.1. It also suggests that it should be well-suited for use in hydroponic systems of 

production, which are increasingly important for the production of high-value salad crops 

such as tomatoes and peppers (Abdul et al., 1989; Asher and Zur, 1993; Gill and Lewis, 

1971; Osman and Port, 1990; Nisbet, 1991; Sundaram et al., 1995). Several authors have 

suggested that, although most neem plant protection products are foliar sprays, its effect 

on insects is due almost entirely to its systemic action (Ahmad and Basedow 2003; 

Pavela et al, 2004). 

 

 

 

 

 

 



 

                                                                       137 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.2. Characteristics of some soil-applied/systemic pesticides (Daly, 2004; 
Tomlin, 2003).  

One of the characteristics of a plant protection product which determines its mobility in 

soil is the log Kow, representing the partition between oil and water. The log Kow for aza 

A is 0.85 (Daly, 2004),  reflecting its high water-solubility. Of the 500 pesticides whose 

physical characteristics have been reviewed recently (Wauchope et al., 2002; Tice, 2001) 

only 10% have log Pow values less than 1.0. The terpenoid should be highly mobile in the 

soil water. The results reported in this chapter confirm this. 4 hours after mixing the 

crude terpenoid mixture in soil with 25% w/w water content, more than 80% of the total 

azadirachtin added was dissolved in the water which could be recovered from the soil. 

This suggests that in normal top-soil with a low organic carbon content (3-4 % is a 

Pesticide  Log  
         Kow 

Water 
solubility 
(mgl-1)   

Soil DT50 
(days) 

Soil 
applied 

Systemic  

Aldicarb  
 

0.05  4930  2-9  Yes  Yes  

Pirimicarb 
  

1.70  3000  7-234  Yes  Yes  

Ethiofencarb 
  

2.04  1800  -  Yes  Yes  

Carbofuran 
  

1.50  320  30-60  Yes  Yes  

Diazinon 
  

3.30  60  -  Yes  No  

Chlorpyrifos 
  

4.70  1  60-120  Yes  No  

Imidicloprid 
  

0.57  610  -  Yes  Yes  

Azadirachtin 
A  
 

0.85  1300  2-4  
Under 
trial 

Yes  
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typical result (Daly, 2004), aza A should be rapidly available for uptake by plants. The 

other parameter which will determine the ease of movement of an a.i. in soil is the log 

Koc, the measure of affinity for organic carbon. In the case of aza A this is 1.5 (Kleeberg, 

H., unpublished results). Very few pesticides have such a low value.  

The problem which arises from this high soil-mobility is that the a.i. may leach into 

ground-water.  Any compound can be rated in this respect by the Groundwater Ubiquity 

Score (GUS), (Gustafson, 1989). This states: 

         GUS= logDT50 x (4-log Koc) 

This indicates the importance of the rate of disappearance of the a.i. from the soil. The 

figure for the half-life of azadirachtin in soil from this work was 1.6 days. This is 

consistent with the previous findings of Daly (2004): 1.2 to 2.7 days, and (Kleeberg, H, 

personal communication): 1.9 to 3.8 days, depending on the soil type. If the figure of 1.6 

is substituted in the above equation it gives a result of 1.2 for the GUS. Any pesticide 

with a GUS of less than 1.8 will pose no threat to ground-water despite its high mobility 

in soil (Pussemier, 1998). 

Breakdown of azadirachtin in the soil is probably mainly due to its spontaneous 

hydrolysis in water, and to microbial action. As the half-life in pure water at slightly acid 

pH has been recorded as 19 days (Daly, 2004), it is likely that most of the breakdown is 

due to microbial activity. This means that the half-life will vary with temperature and 

nature of the soil. Proof of this is shown by the much longer DT50 figures found by 

Thoeming et al., 2006; and Sundaram et al., 1995, 1996). These authors reported DT50 
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times of between 6-26 days. The key to these differences is the proportion of organic 

matter in the growing medium. It is clear that a high amount of organic matter increases 

the DT50. This might be important in practice, as neem plant protection products applied 

to the to an artificial growth medium with a lot of peat etc. will remain available to the 

plant for a longer time.  

The soil used in this project was a commercial soil, and was stored throughout the project 

in the plastic bag in which it was supplied. It is possible that this will have altered the 

level and type of microorganisms present in the soil, as the conditions may have become 

anaerobic, and possibly drier.  However, the rate of breakdown of the active ingredient 

recorded here corresponds well with previous work done with soils which were taken 

freshly from the field or more carefully prepared (Daly, 2004, B. Ruch, (unpublished 

results)).  

A practical problem which might result from the short half-life of azadirachtin applied to 

field soil with a low organic content is that it might require repeated application to 

achieve pest control. One of the potential advantages of a pellet version is that it may 

help to limit the number of applications by prolonging the effective presence in the soil 

(Darvari and Hasirci, 1996). Others have commented that the formulation of pesticides is 

important in determining their persistence (Bowman, 1992; Matthew, 2000, 2008).  The 

main aim of using a pelleted formulation in this work was to prolong the life of the a.i. in 

the soil, and thus, hopefully, the plant. 

For reasons which are not clear, the estimates of aza A in leaf water are much more 
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precise (i.e. low coefficient of variation, see below) than those which were obtained in 

soil-water, which are much higher.  This makes statistical evaluation of the soil results 

difficult. This is particularly marked in following the release of a.i. from the hydrophobic 

(“Neem 2”) granules, where the concentrations are very low. Despite this, however, all 

the recorded measurements were well above the LOQ, and the highest concentrations 

found were statistically significantly higher than the lowest, indicating that the general 

pattern of release was valid. 

Bearing in mind the lack of precision of the individual estimates, the results confirm that 

the release of azadirachtin into the soil water was in fact delayed by encapsulating it in 

pellets. When NAT was simply added to soil, all trace of azadirachtin had gone by 4 

days. In contrast, when the hydrophilic granules were used, the maximum concentration 

in the soil water was not achieved until 5 days, and the terpenoid could still be measured 

at 7 days. The addition of a hydrophobic polymer to the pellet medium resulted in a slow 

release of detectable azadirachtin over a period of up to 17 days, with a peak at 13 days. 

The pellet formulations also seem to protect the azadirachtin from the catabolic factors in 

the soil. The maximum concentration at 5 days of the a.i. is 42% of the maximum 

theoretical release when the hydrophilic granules were used and 25% at 13 days for the 

hydrophobic granules. 

The behaviour of the terpenoid in the plant is more important than in the soil. Uptake 

from soil into both cabbage and sugar beet resulted in a concentration in the leaf water on 

about 10% that in the soil water (Table 1 in the Appendix). These figures are similar to 

those of the authors reported above, who also found that the concentration in the leaf was 
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less than 10% of that in the growing medium (Theoming et al, 2006; Sundaram et al, 

1995, 1996). These results suggest that uptake into various plants is poor, even although 

there is evidence of systemic movement in plants. Daly (2004) in contrast, using the 

tracer 22,23-[3H2]dihydroazadirachtin A, in hydroponic conditions, found the same 

concentration of the compound in the leaves, as in the liquid medium. It is likely that 

uptake will vary with the plant used, but all the authors quoted were able to demonstrate 

systemic movement of aza A in the plants used: beans (Thoeming et al., 2006), aspen 

(Sundaram et al., 1995,1996) and nasturtium (Daly, 2004). 

Using radio-labelled dihydroaza A, Daly (2004) showed a clear exponential decline of 

the amount of the terpenoid, due to catabolism, after it had been taken up into leaf tissue. 

To lessen the number of analyses involved, only three times points were used in 

following the decay of aza A in the work presented here. The analyses showed a high 

degree of precision, with a low coefficient of variation (with an overall average of 

4±1%).  All the results presented in Figures 4.7 and 4.8, show the same pattern, 

suggesting high degree of accuracy of the analysis also. Thus there is no reason to doubt 

that the disappearance of aza A from the leaf tissue also follows 1st order kinetics, as 

would be expected. 

The results presented here indicate that the aza A disappears more slowly once it is in the 

plant, than it does in the soil. The DT50 was 9 days. This is in general agreement with 

Thoeming et al., 2006, who could find no measurable amount of the terpenoid after 14 

days. Some work has reported a slower rate of disappearance from plant tissues. 

Sundaram (1996) found no decline of aza A in spruce over a three week period, and 
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Duthie-Holt et al., (1999) found biological activity in pine trees over a 6 week period. 

Some of these differences may be due to the different species used. At the moment there 

is no information available about the breakdown of azadirachtin in plant tissues. From a 

practical point of view, the persistence of the a.i. in the plant will affect the time of 

application before harvest. 
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Chapter 5: Control of Pests with Soil Applied NAT 
Pellets. 
 

5.1 Introduction. 
 
Controlling soil-borne pests such as nematodes and some insects, like cabbage root flies 

(Delia radicum), is more difficult than foliar pests, but was helped by the discovery of 

synthetic insecticides, mainly the organophosphates and carbamates. But effective control 

of such soil-borne pests with these synthetic pesticides required their application at high 

rates, which had an adverse effect on soil, ground water contamination and development 

of resistance by pests. This has prompted a renewed search for other biological plant 

protection products mainly from plants and other sources, with greater specificity towards 

insects. This has led to a growth in interest in the extracts of  neem tree (Azadirachtia 

indica), ((Pavela, Barnet, and Kocourek, 2004; Nisbet et al., 1996; Lowery and Isman, 

1994b; El-Wakeil and Saleh and, 2007; Frounier and Brodeur, 2000; Hummel & 

Kleeberg, 2003; Arpaia & Loon, 1993; Grisakova et al., 2006; Sayah, 2006; Mordue, 

1996; Weintraub and Horowitz, 1997; Javed et al., 2007; Thoeming et al., 2003; Schulte 

et al., 2006; Lowery et al., 1997; Kumar and poehlingn, 2006; Thoeming and Poehling, 

2rnet, 2006; Pavela and Barnet, 2005; Schmutterer, 2002) 

Until recently, the only reported use of neem extracts applied to the soil has been for the 

control of plant-parasitic nematodes (Mojumder, 2000b; Mojumder and Mishara, 1997a, 

b); Akhtar, 2000; Javed et al., 2008). There are several reports that neem formulations 

cause 70 to 100% mortality on root-knot nematodes (Akhtar, 2000; Aziz et al ref by 

Javed et al., 2008). However, purified azadirachtin failed to control infestations, or to 
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show a nematicidal effect. This indicates the the effect of the crude materials is probably 

due either to secondary metabolites released during its decomposition or to other 

unknown terpenoids in the extracts (Blake, 2002; Javed et al., 2008), No claim is made 

by Trifolio-M GmbH is made about any nematocidal effect of NeemAzal®-T.     

However, there have been several studies demonstrating that aza A can get into plant 

vascular system systemically (see Chapter 4) and have an effect in controlling 

phytophagous insects (Nisbet et al 1993; Blake, 2002; Thoeming et al., 2003; 2006; 

Daly, 2004; Pavela et al., 2004; Pavela  and Bárnet, 2005; Grišakova et al., 2006). 

NAT/S was tested on 140 different insects and mites by spraying applications, and 

exhibited excellent control of feeding and sucking pests (Kleeberg and Hummel, 1999). 

Also Kleeberg and Hummel showed that NAT/S has an insecticidal effect in controlling 

black bean aphids (Aphis fabae) when applied hydroponically to the roots of bean plant 

Phaseolus vulgaris. 

According to Guidelines to Good Plant Protection Practice (GPP) by the European and 

Mediterranean Plant Protection Organisation (EPPO, 1998), peach-potato aphid (Myzus 

persicae L.)  and cabbage aphid (Bervicoryne brassicae L.) are very serious pests of 

brassicas such as cabbage, brussel sprouts, swedes and cauliflowers. Even small 

infestations of aphids can reduce the quality of the crop, while heavy infestations severely 

inhibit the growth of plants at younger stages, and so reduce the final yield. The most 

effective and prolonged control by insecticides was found to be granular application of 

aphicides to the soil. In some areas dual-component granular insecticides for control of 

aphids as well as cabbage root fly was reported (EPPO, 1998).  

Lepidopteran pests of cabbage, such as diamondback moth and cabbage white butterfly, 
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are reported to have developed resistance to main-stream pesticides (Schmutterer, 2002), 

thus replacement insecticides become ever more important. Neem-based plant products 

have been reported to have antifeedant and growth disruption effect on Plutella xylostella 

and Pieris brassicae L. (Ruscoe, 1972 referenced by Osman and Port, 1990; Grisakova et 

al., 2006). High concentrations (between 12.5g/L to 50g/L) of neem extracts, when 

sprayed weekly, showed good control of the moth (Dreyer, 1986; Schmutterer, 1990). All 

these reports are foliar spray application of NSKE, and the reports on specific systemic 

use of neem extracts by soil application are very sparse. Osman and Port, (1990) 

reported, however, that application of neem-seed powder to soil reduced damage due to  

P. brassicae.     

 

5.1.2 Aim. 

All the work reported in the previous chapters on the characteristics of release of aza A 

from the pellets, was a preparation for the work reported in this final chapter: the effect of 

the pellets applied to the soil around plants to control infestations of the major pests of 

brassicas. The overall aim was first to do the tests in pots in the glasshouse in the 

winter/spring, and then in a large field-test in the summer of 2008. For simplicity, the 

only plants used were cabbage (Brassica oleracea, capitata, Var: PrimoII). 

The aim was to observe the effects of systemic aza A on the following insect pests of 

cabbage: 

• Cabbage root fly (Delia radicum L.). Glasshouse and field-tested. 

• Flea beetle (Phyllotreta nemorum L). Field-tested only. 

• Cabbage white butterflies (Pieris brassicae L.). Glasshouse- and field-tested. 
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• Diamond Back Moth (Plutella xylostella L.). Field-tested only. 

• Cabbage aphid (Brevicoryne brassicae L.). Field-tested only. 

• Peach-potato aphid (Myzus persicae L). Glasshouse- and field-tested. 

•  

5.2 Materials and Methods  
 
 
5.2.1 Experimental site 

All experiments, both in glasshouse and field, were conducted at the Scottish  
 
Agricultural College (SAC) in Edinburgh.  
 

5.2.2 Glass house Experiments  

5.2.2.1 Insects and cultural conditions.  

Peach-potato aphids (Myzus persicae) were obtained from the Scottish Crop Research 

Institute (SCRI) in Dundee, and cabbage root fly (CRF) (Delia radicum L.) were reared 

from eggs supplied by Warwick HRI, Wellesbourne. Cabbage white butterflies eggs were 

purchased from Blades Biological Ltd, Cowden, Edenbridge, Kent.  Cultures of peach-

potato aphid and CRF were maintained at a constant temperature of 20oC with a 16 hour 

photoperiod. All insects were kept in plastic tanks approximately 40cm. square with a 

nylon netting front. Eggs of Delia radicum L. and Cabbage white  were hatched and fed 

on cabbage before were used in the experiment. 

5.2.2.2 Cabbage root fly (CRF). 

The female CRF used for the experiment were 5 to 6 days old. (CRF mate between 4 to 7 

days after hatching). Two concentrations of aza A (10-4 M and 5x10-5 M) were tested on 
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CRF. The amount aza A in milligrams was 19mg. and 9.5mgkg-1 soil in respective 

concentrations.   

 

a) CRF Oviposition (Choice test). 

Four pots, 2 pots with neem-treated soil, and 2 untreated (control) pots were placed per 

cage. The pots were evenly spaced without touching and treatments randomly arranged. 

10 gravid females were released into each cage. The flies were provided with water-

saturated cotton wool in a Petri dish, and a dish of 10% sucrose also soaked onto cotton 

wool. They also received a dish smeared with a thin layer of honey to provide the females 

with the protein and vitamins they require for oviposition.  

After 3 days, one treated and one untreated pot were carefully removed to count eggs and 

the remaining two pots were left for further 7 days (10 days in total after introduction of 

insects). Throughout this time if the plants required watering this was done sparingly 

from below. 

The laid eggs (hatched and un-hatched), were retrieved by removing the top 4 cm of the 

top soil and washed through a 2mm sieve in a Fenwick can and the residue caught in a 

355 µm sieve. This was then washed onto filter paper, held in a funnel, using a saturated 

solution of MgSO4. A drop of diluted detergent was added and excess liquid was allowed 

to drain. The filter paper was then pierced at the bottom to allow any liquid and detritus 

to escape. The filter paper was then removed from the funnel and placed on a metal disc. 

This was placed on turntable and the number of eggs counted using a stereo microscope. 

For the plants that had been left 10 days, the roots of the plants were checked for larvae, 

and the numbers recorded and the level of root damage of CRF was compared between 
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the treated and untreated. Also the number of eggs (hatched and un-hatched) was 

counted, to determine total number of eggs laid.  

b) CRF Oviposition (No-choice test). 

Four pots of cabbage plants with soil of same the concentration of aza A (either 10-4M or 

5X10-5M: 19mg. and 9.5mgkg-1 respectively) and 4 untreated pots were prepared as for 

the oviposition experiment above. In this case, a cage contained only untreated or treated 

pots. As for the oviposition preference test, 2 pots were removed from each cage after 3 

days. After a further 7 days (10 days altogether) eggs and larvae were checked. 

5.2.2.3 Peach-potato aphids (Myzus persicae L.)  

The aim was to investigate if the presence of systemic aza A in plants affects: a)  number 

of nymphs produced by young adults, and b) survival of those nymphs over the following 

5 days to ensure that the nymphs are the offsprings of the selected adult aphid. Also 

simultaneously the effect of aza A on aphids was examined. 
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5.2.2.3.1 Methods.  

Cabbage plants at the 1 to 3 true-leaf stage were transplanted into soil containing neem 

granules with different concentrations (10-4M, 5X10-5M or 10-5M: 19mgkg-1, 9.5mgkg-1     

and 1.9mgkg-1 respectively) of aza A. The treated plants were left for 5 days or 10 days 

after the transplanting, before introducing the aphids. (as was shown in Chapter 4 the 

release of aza A into soil water reached its maximum after 5 days in the soil. The 5 day 

period was to coincide with this maximum, and the longer, 10 day period, was to see if 

the effect had started to decline.) By using a small brush, an adult M. persicae that had 

been removed from culture was transferred to a specially designed clip cage (Figure. 5.1). 

The clip cages, each with a single aphid, were attached to either upper or lower sides of 

the leaves of each test plant. There were at least 20 aphids in each treatment. After 5 days 

on the plants, survival and number of nymphs produced by adults were counted on 

control and treated plants. 
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Clip cages for insect rearing experiments. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. 1: Especially designed clip cage for tethering individual aphids on either the 
upper or lower surface of a leaf. 
 
                                      
 
 
 
 

Figure 5. 1: Especially designed clip cage for tethering individual aphids on either            
top or bottom surface of the leaf.  

  

5.2.2.4 Cabbage white Butterflies (Pieris brassicae L.). 

a) Hatching and survival of 1st instar larvae. 

The egg clutches (20 eggs per cage) of P. brassicae were placed onto cabbage plants 

grown on soil treated with granular formulations of NAT with aza A concentrations of 

10-3 M, 10-4 M, 190mg. and 19mgkg-1 soil in respective concentrations, and untreated 

controls in a mesh cage. Each cage containing 5 plants at 3 to 4 true leaf-stage. The 

hatching rate, feeding and subsequent survival were observed.  
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b) Larval Survival and Development in later instars. 

Egg clutches of  P. brassicae were allowed to hatch onto an untreated cabbage in similar 

experimental conditions as that of hatching and survival. After hatching, the larvae were 

sorted according to their larval stages (2/3rd, 4th and 5th instars), removed, then transferred 

onto plants (6 plants in each cage) grown in soil treated with pellets, as that of the 

hatching experiment. The feeding behaviour, survival and development were observed 

over time. 

 

5.2.3 Field experiment   

a) Study site.   

A field trial was carried out at a field leased by SAC near Penicuik, Midlothian, during 

the growing season of 2008.  

5. 2. 3.1 Experimental design.   

The trial site was set out in a randomised block design (RBD) with evenly distributed 

treatments (Table 5.2) according to EPPO guidelines (1990). The field was prepared, 

ploughed, harrowed and laid out, before transplanting 2 to 3 leaf stage cabbage plants 

which had been grown in a glasshouse from seed. The pelleted neem materials were 

incorporated into soil using a tractor-mounted rotavator to a depth of approximately 5cm. 

1936g (± 64g), which is equivalent of 10-4M aza A (1pot of 1kg soil (77pots = 1m2 area) 

contains 250ml H2O, that is 18mg aza A/42mg of N/A/130mg pellet) in  plot area of 2m2 

(0.4m x 5m). The total replication per treatment was: “Neem 1” (hydrophilic pellets): 

n=5; “Neem2” (hydrophobic pellets): n=1; “Neem3” (spray): n=5; “Control”  (No 
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treatment): n=5. The total plot number was 16. There was a 1m gap between plots. There 

were 10 plants per row per plot, making 40 plants per plot. There was a 45cm gap 

between each plant in a row.  

 

 

 

Neem1 

 

 

Control Neem3 Control 

Control 

 

 

Neem1 Neem2 Neem3 

Neem1 

 

 

Control Neem3 Neem1  

Neem3 

 

 

Neem1 Control Neem3 

  

Table 5.1: The design of the field trial experimental site (not to scale).  
The area  per plot is 2m2  (0.4m x 5m) , and the whole block is 20m2. Treatments 
were as follows “Neem1”: Hydrophilic pellets; “Neem 2”: Hydrophobic pellets; 
“Neem3”: Spray; “Control”: untreated. 
 

5m 

20m 

0.4m 
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5. 2. 3.2 Sampling 

 Plants were left for a week before sampling, to allow the release of the azadirachtin from 

the pellets into the plant system. Ten plants per plot were randomly selected and marked 

with canes. These plants were assessed for the presence of pest and beneficial insects on 

a weekly basis. The overall growth stage of the crop was recorded on each visit.  

 

5. 2.3.3 Pest Species   

The target species were cabbage aphid (Brevicoryne brassicae) and peach potato aphid 

(Myzus persicae), cabbage white butterfly (Pieris brassicae), diamond back moth 

(Plutella xylostella), CRF (Delia radicum). The whole plant was checked for the 

presence of those pests, except for CRF. The number and species per plant was recorded 

on an appropriate data sheet (Appendix A). If large colonies were present where the 

individual aphids were difficult to count, then an estimation of colony size was made.  

Identification was carried out in the field where possible. However, a sample was 

returned to the laboratory for identification when necessary. If this was the case, aphids 

were removed from the plants using a fine artist's brush dipped in aphid preserving fluid 

(2 parts 90% industrial methylated spirit to 1 part 75% v/v lactic acid). They were 

transferred to a phial of aphid-preserving fluid which was labelled with the study 

number, plot number, plant number and date.  

Field sampling of CRF was based on the collection of eggs to estimate the activity in the 

field, based on the predicted second generation 50% egg laying peak, which was forecast 

on 6th July (Figure 5.11: CRF forecast egg-lying 2008 in Midlothian, Scotland). Using a 
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dessert spoon, soil was carefully removed from around the stem of the plants to a distance 

of 2.5 cm and to the same depth. The soil was placed in a plastic bag labelled with the 

study number and date sampled. Soil from between the drills was used to replace the soil 

removed around the stems. The soil sample was stored at 4°C on return to the laboratory 

before processing, as previously described in Section 5.2.2.2. One way and two ways  

(un-stacked) ANOVA and Chi square statistical tests were used in the analysis of the 

data. 

5.2.3.4 Rates of application of pelleted NAT to soil in glass house and field 

experiments. 

In the preliminary work reported in Chapter 2 and in the hydroponic experiments, it was 

possible to make up exact concentrations of aza A in the growing media. As a result of 

these experiments, the optimal concentrations of aza A in the medium around the plant 

roots was determined to be between 10-5 M and 10-4 M. In the preliminary experiments to 

define the characteristics of release from pelleted NAT, the quantities of pellet added to 

soil was based on a theoretical maximum concentration of aza A, if all the a.i. had been 

immediately released into the soil water. In fact, of course, release of a.i. is over a period 

of days, and could never reach this theoretical or nominal maximum. For consistency, 

however, the weight of pellets added to soil was based on these figures. (The actual 

figures for the concentrations of aza A throughout the project are summarised in 

Appendix A). As listed in this appendix the amounts of pellet added to soil were between 

13mgkg-1 soil and 130mgkg-1 soil in pot experiments, and 10g.m2 in the field experiment, 

to give concentrations of aza A from 1.9mg. to 19mgkg-1 soil respectively. 
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5.3 Results.  
 
5.3.1 Cabbage root fly  

a) Oviposition and larval hatching (Choice experiment).  

Although the numbers are relatively small, there was a statistically significant (p< 0.01) 

difference between the number of CRF eggs and larvae retrieved from the pots of treated 

soil compared to untreated soil, indicating that female CRF have ovipositional preference 

for soil without neem compounds (Table 5.1). At the lower concentration of the NSKE 

the number of eggs laid was half that of the controls, and was only 33% in the higher 

concentration. This effect of the presence of neem terpenoids was even more marked 

when larvae were counted at 10 days. In the control pots, almost 80% of larvae had 

survived, but where the soil had been treated, there were no surviving larvae at the higher 

concentration, and only 2 at the lower. Thus, over 91% of larvae were from the untreated 

soil.  
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Total number of larvae                          
  

Cage No.  Aza A conc. 
(mgkg-1 soil) 

Total eggs laid 

Living Dead 

19 5* 0* 1*  1 
 

0 (Control) 15 12 2 

9.5 7* 2* 1*  2 
 

0 (Control)  13 10 2 

 
 
 
Table 5.2: The effect of treatment with NAT pellets on the ovipositional preference 
of CRF females (Choice test).  
The number of eggs and larvae (living and dead) retrieved from soil treated with pellets 
containing two concentrations of aza A, 19mgkg-1 and 9.5mgkg-1 soil, and that of 
untreated (controls) soil. Eggs were counted at 3 and again at 10 days, and the number of 
larvae were counted at 10 days. Chi square test was carried out to compare the neem 
treated and control. Results indicated (*) were highly significantly different from the 
control values at p=0.01. 
 
 

b) Oviposition (No choice test).   

 One way analysis of variance (ANOVA) was carried out to establish the effect of aza A 

will have on the number of eggs laid and larvae after 10 days when there was no 

untreated soil available. The data of eggs collected from no-choice experiment showed  a 

significant difference (p<0.01) between the number of eggs laid by female CRF of 5 to 6 

days old, collected from the soil of pots treated with pellets containing two concentrations 

of aza A and (10-4M &  5X10-5M, which is equivalent to 130mg (19mg aza A) and 65mg 

(9.5 aza A) of pellets respectively). (See explanation in Appendix B). The average 
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number of eggs retrieved from the untreated was 15 ± 1SE, that is, over 76% of all 

retrieved eggs (figure 5.3). While those from the treated ones were 5±1SE and 2±1SE for 

19mg aza A and 9.5 aza A (10-4 & 5X10-5) respectively. Although the numbers for the 

lower concentration are unexpectedly lower, there was no significant difference found 

between the treated ones.    
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Figure 5.2: The effect of treatment with NAT pellets on oviposition and larval 
survival of CRF (No-choice Test). 
Figures represent the averages of eggs and larvae retrieved from 4 of either treated or 
untreated (Control) pots. There is a significant different (p<0.01) between the control and 
the treatments, but no statistical significant difference between treatments.    
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a) 

                
b) 
Figure 5.3: Effect of NAT pellets NSKE on survival of cabbage plants infected with 
CRF. 
  Examples of plants treated with pellets containing aza A (a), and that of untreated (b). 
Root damage by CRF maggot resulting in plant death.  
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5.3.2 Aphids (Glasshouse experiment). 

a)  Fecundity of aphids on cabbages loaded systemically with NAT. 

As described in the Methods section, the pellets loaded with NeemAzal®-T were 

introduced into the soil in the pots either 10 or 5 days before individual aphids were 

tethered in cages to either the upper or lower face of cabbage leaves. The insects were left 

for 5 days before counting the number of aphids in each cage. The results are shown in 

Figure 5.5.  

Aphids on untreated plants showed an increase in numbers, which was the same for both 

experiments. In one case the individual females on the upper side of the leaf had 

increased to an average of 5.8 ± 0.3, and in the second experiment the number was 6.0 ± 

0.5, i.e. the same level of population increase in both cases.  

Where plants had grown in treated soil for 5 days, the rate of reproduction by 

parthenogenesis was reduced. At the lowest concentration of aza A used, the reduction 

was only 20% compared to the controls and was not statistically significantly different, 

but at the two higher treatments replication was almost completely prevented. Both were 

highly statistically significantly different from the control (p> 0.01). Only in 1.9 mg/kg 

was there any population growth at all. There was no increase in numbers at the highest 

level of treatment and only a small average increase of 0.5 aphids/cage at the 

intermediate concentration, which was not statistically different from the highest 

concentration. 

When the plants had grown in soil for 10 days before the aphids had been introduced to 

the leaves, the results were almost identical (the lowest concentration was omitted). At 



 

                                                                       160 
 
 
 
 

 

the highest concentration, there was no population increase at all, and only a doubling to 

2.0 ± 0.2 aphids/cage in the intermediate concentration. 

Another result of possible significance from the practical point of view is that no 

differences were found between aphids caged on the upper or lower sides of leaves.  
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Figure 5.4a: The survival and fecundity of individual Myzus persicae on leaves of  
cabbage treated with NAT pellets. 
The numbers represent the averages (± SE) per cage 5 days after individual aphids were 
placed on either the upper side (“Upper”) or lower side (“Lower”) side of a leaf. Pellets 
had been added to the soil 5 days before the introduction of the aphids. Control plants (C) 
were not treated with pelleted neem extract.  The results marked (*) are significantly 
different from control values at p=0.01. 
 
 
 
 
 
 
 
 

*  *  
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Figure 5.4b:  The survival and fecundity of individual Myzus persicae on leaves of  
cabbage   treated with NAT pellets. 
The experimental conditions were almost the same as those in Fig. 5.5a, except that the 
pellets had been introduced into the soil 10 days before the aphids were placed in the 
cages. The lowest concentration of aza A (1.9 mgkg-1 soil) was omitted as ineffective. 
The results indicated (*) were significantly different from the control values at p=0.01. 
 
 
 
 
 
 
 
 
 
 
 
 

*  *  
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5.3.3- Cabbage white butterflies ( Pieris  brassicae). 

5.3.3.1- Glasshouse 

a) Hatching.  

Cabbage white butterfly eggs placed onto plants in soil treated with neem pellets 

containing two different concentrations of aza A, 20 per cage, all hatched, but, as per 

table 5.2, those on treated cabbage failed to proceed to the second instar. After 4 days all 

those exposed to treated cabbages died. 14, (70%) survived in the untreated ones.  

 

 

 

 

 
Aza A conc. 
(mgkg-1 soil) 

Time of exposure 
(Days) 

Number of living 
larvae 

Survival (%) 

3 20 100 0 (Control) 
7 14 70 
3 20 100 19 
7 0* 0* 
3 20 100 190 
7 0* 0* 

 
Table 5.3: The effect of treatment with NAT pellets on survival of newly hatched 
cabbage white caterpillars. 
40 eggs, 20 per cage were fed on 5 cabbage plants with or without soil treated with 
pellets containing NAT pellets, and control (untreated). The results indicated (*) were 
significantly different from the control values. 
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b) Survival and development. 

After hatching on an untreated (control) plant the larvae were allowed to feed on neem-free 

cabbage plants for 7 days. On the 7th day caterpillars were sorted into 2 groups according to 

their developmental stages – 2nd ,3rd, 4th instars. 22 of 4th in star were removed then 

transferred into plants (6 plants in each cage) grown into soil with neem pellets containing 

9.5 mgkg-1 aza A (5X10-5M) for 5 days as that of survival experiment. Second group (19) 

of 6 in 2nd and 13  in 3rd instar were transferred into cages with plants with neem pellets 

containing same amount of aza A concentration (9.5 mgkg-1) (5X10-5M). After 24 hours 

those in the 4th instars (figure 5.3, 18) moulted into 5th in star stage. 4 remained in the 4th in 

star. After 48 hours they stopped feeding and all of them all had fallen off on the floor. 

After 72 hours all died. For those of the smaller sizes, table 5.4, only 2 from 2nd in star 

group and 1 from 3rd in star stage remained in their previous stages. The rest moulted into 

next developmental stages. But after 72 hours all were dead.     

 

 

Aza A conc. 
(mgkg-1 soil) 

Time of 
exposure (days) 

Living larvae in instar:             
2nd/3rd   4th           5th    pupae            

Total survival 
rate (%) 

0 19 22 0 0 100 
1 3 16 18 0 86 

9.5 

3 0 0 0 0 0 
0 12 8 0 0 100 
1 4 12 4 0 100 

0 (Control) 

3 0 6 12 0 90 
 
Table 5.4: The effect of NAT pellets on the survival of large cabbage white P. 
barassicae L. caterpillars of 4th and 5th instar.  
 
 
 



 

                                                                       164 
 
 
 
 

 

5.3.4 Field Experiment. 

5.3.4.1 Cabbage Root Fly infestation.  

The forecasts in the graph of egg lying forecast (Figure 5.11) shows late emerging flies of 

second generation in the spring peaked in the 1st week of July. That is when 50% have 

emerged/laid eggs.  The plants were transferred into field in the second part of July to 

meet CRF at its peak emergence. 

a) Field Experiment. 

An extra plot was set up to estimate CRF migration into the trial plot. Soon after cabbage 

had been transplanted into the trials plots, CRF started to migrate in. The average number 

of CRF of soil sample collected from the site for 1st week was 2 (± SE). The number 

doubled for the 2nd week. From there it started to decline gradually. 
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Figure 5.5:  Oviposition by CRF. The figures are the means (± SE) recorded in 
untreated soil planted with cabbages at the test site, over the period of 23 July to 6th 
September. 
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 5.3.4.2 Aphid Infestation.   

After transplanting, the plants were allowed 7 days to become established, and to allow 

the release from the pellets of the a.i. By this time, aphid infestation was evident on 

cabbage plants. In sampling no preference was made on the species of aphids, though all 

of them were from either Cabbage aphid (Brevicoryne brassicae L.) or Peach potato 

aphid (Myzus persicae L). 

In addition, due to continuous wet weather during the 5 weeks of the experiment, the 

number of aphid was lower than might have been. The average number of aphids 

between the treated plants and the untreated (controls) were compared employing one 

way un-stacked ANOVA. There was no significant difference between the treated plants 

and the control for the first three weeks of the experiment (Figure 5.7). From the 4th week 

onwards the average numbers of aphid infestation in the untreated plants were 

significantly higher than the treated plants (p<0.01).  
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Aphid infestation on the cabbage over six weeks. 
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Figure 5.6: The effect of treatment with NAT pellets on aphid infestation of 
cabbage.  
The results represent the average (±SE) number of aphids on individual plants “Neem 1” 
indicates treatment with the hydrophilic pellets at 10g.m2.  Control plants received no 
pellets.  
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5.3.4.3 Flea beetle level of damage. 

The level of damage  (Figure 5.8) by flea beetle (Phyllotreta nemorum L) on the treated 

plants was not different from the control on the 1st two weeks, but there was a significant 

different between the feeding behaviour, according to the leaf damage, of flea beetle   

specie on the treated and untreated cabbages from 3rd week onwards. The beetle damage 

on treated plants was statistically lower (p<0.05) than the untreated ones.   

   

 
 

 
 
 
 
Figure 5.7: The Levels of Flea beetle damage  
The images above were used as a reference in assigning the severity of leaf damage due 
to flea beetles: A=Level 1; B=Level 2; C=Level 3; D=Level 4. 
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Figure 5.8: The effect of treatment with NAT pellets on the level of leaf-damage to 
cabbage by flea-beetle. 
The level of damages were categorised into 1: low damage; 2: medium damage; 3: high                          
damage; and 4: severe damage. (See Figure 5.8)  The plants were growing in soil treated 
with either the hydrophilic pellets (“Neem1”) or the hydrophobic pellets (“Neem 2”). 
Control plants were in soil which had received no pellets. The histogram gives exact 
means with ± SE. 
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5.3.4.4 Plant Growth.  

The growth trend of cabbage plant was based on the increase in leaf number per plant 

over six weeks (Figure 5.10). There was no significant different between the growth of 

treated and untreated plants over the first four weeks. On the 5th week the average 

number of leaves per 10 plants per plot of treated plants was 11 while those of untreated 

was 9 (Figure 5.10), and after performing an unstacked one way ANOVA statistical 

analysis was significant at p< 0.05 value. On the 6th week the difference in leaf number 

was also statistically significant p< 0.05.  
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Figure 5.9: The effect of treatment with NAT pellets on the growth of cabbage plants 
The figures are the average number of leaves (±SE) per plant (n=10). Plants were grown in soil 
treated with either hydrophilic (“Neem 1”) or hydrophobic (“Neem 2”) pellets. Control plants 
grew in untreated soil. 
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5.4 Discussion  

As stated in the Introduction to this final chapter, the work reported was the final test of 

the effectiveness of the NeemAzal®-T delivered in pellet form to protect cabbage plants 

against both soil and foliar pests. The strategy was to make preliminary green-house tests 

against the pests which were available in culture in SAC Edinburgh, or which could be 

easily obtained from other sources. The final experiment was a large field trial to see if 

the results obtained in the greenhouse could be reproduced under realistic conditions.  

The greenhouse trials were carried out and the results, as will be discussed below, were 

positive and showed a statistically-significant protective effect of aza A.  Unfortunately, 

all field trials depend on the weather, and the weather in July and August 2008, in the 

east of Scotland was poor. As the figures in Table 5.5 show, the rainfall in July was 60% 

higher than the long-term average, and in August it was almost twice the 30-year average 

for that month. This meant that the expected level infestation of most pests did not occur. 

It also meant that collecting data in the waterlogged conditions was almost impossible. 

Only aphids and the flea beetles showed any increase in numbers. No results were 

collected for the lepidopteran pests, and it was not possible to assess the effect of CRF. 

Limitations of time, finances and material meant that it was not possible to repeat this 

large scale trial. The conclusions for individual pests discussed below are mainly based 

on the greenhouse studies. 
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Month  Sunshine(h) Anomaly*(%) Rainfall (mm) Anomaly *(%) 

July 140 89 104 140 

August 90 60 162 194 

 
Table 5.5: Rainfall and sunshine data for the East of Scotland for July and August 
2008.  *The data are expressed as a % of the 30 year average. (Data from Meteorological 
Office: www.metoffice.gov.uk ). 
 

5.4.1 Cabbage root fly. 

 
The degree of deterrence of oviposition by the “choice” and “no choice” methods can be 

used to derive two coefficients of deterrence: “relative” (R) deterrence (choice), and 

“absolute” (A) deterrence (no choice). These are added together to give “total” (T) 

deterrence, (T=A+R) (Nawrot et al., 1982). According to these authors this gives an 

arbitrary classification of deterrence as follows: <50= weak; 51-100= moderate; 101-

150=good; and 151-200=very good. Total oviposition deterrence when the concentration 

of a.i. was 9.5 mg.kg-1 was 98, and that at 19mg.kg-1 was 100, i.e. the same degree of 

deterrence for both concentrations. This places aza A at the top of the “moderate” 

category, and just short of “good”.  The fact that both concentrations produce the same 

level of deterrence suggests that there is an upper threshold for level of deterrence.  

The choice and no-choice methods are most common laboratory based ways used to test 

the host preference. Papaj & Lewis (1993) showed that egg laying female of some 

phytophagous insect species gain experience when they lay their eggs for the first time. 

This might be true in CRF ovipositional preference. Kostal (1993) showed that 

combinations of physical and chemical stimuli greatly influence the oviposition of Delia 

radicum L. Also, when the period of depravation of natural (preferred) host is increased 
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heightens the chances of accepting available (presented) one: behavioral threshold 

(Barton-Browne and Withers, 2002). This is important point to consider in the CRF no-

choice experiment and probably required longer period of exposure, because, as 

mentioned earlier a chemical stimuli might deter graved female of CRF to oviposit on to 

neem treated soil for the shorter period. There is no previous work reported on neem 

effect on oviposition of CRF, but Hellpap and Mercado (1996); Ayyangar and Rao 

(1989) reported that NSKE inhibited female tobacco cutworm, S. litura, from oviposition.   

The neem-seed terpenoids in NAT in a pelleted version have shown strong systemic 

ovipositional effect on CRF. The number of eggs laid in the treated soil was only half of 

that of the control in the choice test, and even fewer in the no-choice test. The proportion 

of live larvae after 10 days shows an even greater difference, with very few in the treated 

soil, compared to a survival of almost 100% in the control. It is not clear if this is due to 

failure to hatch or to larval death, but the overall effect is to give a high level of 

protection to the plants. Almost all the plants from untreated pots were killed due to 

destruction of the roots, while all of the treated plants were all growing normally.  There 

are no previous reports on the effect of neem-seed extracts on CRF, but some other soil-

based pests have been studied. The results presented here are consistent with the earlier 

findings of Meadows et al., 1999) on the effect of NAT on turnip root fly, (Delia floralis 

Fabr.) larval development.  There are also several works on neem formulations applied as 

systemics on other plant insect pests (Hummel. E and Kleeberg, 2003; Kumar and 

Poehling, 2006; Pavela and BÃ¡rnet, 2005; Schulte, Martin, and Sauerborn, 2006; 

Sundaram et al., 1995; Thoeming et al., 2003; Thoeming and Poehling, 2006), and all 

strongly proved effective control potency. Thoeming, et al 2003 reported that NeemAzal- 
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U ( a formulation of NAT specially designed for soil and hydroponic use), when applied 

at 10mg/kg aza A systemically into soil, reached the feeding site of larvae of western 

flower thrips, Frankliniella occidentalis on bean plants with a maximum mortality of 

over 50%. Thoeming  et al., (2007) reported the same effect of 100% mortality on larvae 

of Liriomyza sativa Blanchard (Diptera: Agromyzidae) when  N/A U  containing17%  

aza A drenched in a potted soil. This suggestes that the 1st instar of CRF larvae is more 

susceptible in this stage.     

 

In the “no choice” experiment, when CRF was left to lay eggs on either treated or 

untreated plants over 10 days, the effect of CRF maggots feeding on roots led to the 

control plants were almost all dead  compared to the treated ones which were healthy and 

alive (Figure 5.4). This is an indication of severity of CRF feeding on young seedlings of 

3 to 4 leaf stages of Brassicae, such as cabbage, plants (Bligaard, 1999). In addition, the 

damage sustained by untreated plants points to the high number of eggs laid, pupated and 

feeding on the plant root. There are some suggestions that ovipositional preference of 

CRF to untreated soil is to do with insect’s gustatory system. In the process of locating its 

host, insects central and peripheral nervous system (CNS and PNS) may have a important 

role in CRF’s behaviour in avoiding neem treated soil (Chapman, 1999).   

 

On the experimental plot, the trend of egg laying by CRF over 5 weeks has been 

monitored and compared to that taken from other part of the Midlothian areas (Figure 

5.11). Even though the number of eggs retrieved from soil sample at the experimental site 

is not as high as that of the Chapel Farm, Haddington CRF egg count, still this confirms 



 

                                                                       174 
 
 
 
 

 

CRF migration to the experimental site. Both showed peaks of egg numbers during the  

2nd week of July Nevertheless, unlike the glass house, no significant symptoms of CRF 

feeding damage has been physically observed on the field cabbage. This might be due to 

eggs laid in the field did not hatch as conditions such as temperature were not favourable. 
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Figure 5.10: Chapel Farm, Haddington CRF egg count. From 11 Jun to 3 September 
2008. (Data courtesy of A. Evans SAC, Edinburgh.). 
 
 
5.4.2 Cabbage White Butterfly. 

In glass-house experiments, the pellets deterred P. brassicae larvae of different stages of 

development (from 2nd to 4th instar) from feeding, retarded development, and caused first 

instar 100% mortality. The results found in this work agreed with that of (Gill and Lewis, 

1971; Hummel and Kleeberg, 2003; Osman and Port, 1990; Seljasen and Meadow, 2006; 

Meadows et al., 1999). The work reported here suggests that neem components, of which 

aza A is the main active ingredient, applied in pelleted form to the soil, can be released 

and subsequently taken up by plant in an amount that acts as an antifeedant and growth 
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retardant five days after when first applied thus NAT was persistent in soil and resulted in 

100% mortality to the caterpillar. The effect of NAT, of which aza A is the main active 

ingredient, on P. brassicae is confirmed in an earlier findings of Pierid pests crucifers (P. 

rapae and P. brassicae) susceptibility to neem formulations. Chiu (1989) reported single 

foliar application NSKE protected cabbage from P. rapae for 21 days. This ensured that 

young cabbage plants could be protected from P. brassicae larvae for at least 3 weeks. 

Some authors have noted phytotoxicity at higher concentrations (Nisbet, 1992; Karelina 

et al., 1992). It’s important to note that cabbage white larvae fed on the treated cabbage 

seedlings for the first 12 hours caused some damage to the leaves, but plants recovered 

from this, and it did not affect their growth. 

 

In field conditions, the severe weather conditions of continuous rain and low temperature 

made adult cabbage white inactive.  No adults or caterpillars of P. brassicae were 

observed in the field area. 

 

5.4.3 Aphids. 

The clip cage has long been used to by entomologists and experimental ecologists to 

study plant-insect interactions, and to measure biological parameters such as 

development fecundity, fertility and mortality rates. It’s a way to secure individual insects  

to specific plant leaf part (Crafts-Brandner et al., 1999; Muñiz and Nombela 2001; Moore 

el al.,  2003).  It’s important to make sure that the clip cage does not affect the insects’, 

(here aphids’), life span and reproductive behavior (Muñiz and Nombela, 2001), and 

cages must be designed according to the size of individual insect pest under investigation. 
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However, there are some reports showing that the cage has confounding effect on the 

experimental results.  Crafts-Brandner et al., 1999 reported that insect clip cages caused 

physiological effects, such as up-regulation of chlorophyll content of the leaf tissues due 

to the shading effect of the cages that caused the selected areas of sample leaf to show 

symptoms of senescence. In another finding, Moore el al., 2003, found that the 

mechanical pressure produced long-lasting effects on leaf growth. This suggests, when 

observing insects behaviour such as fecundity under different treatments only same type 

of clip cages has to be comparatively used in all treatments. No such effects of the cages 

on leaf growth or appearance were observed in the work reported here. 

The systemic effect of azadirachtin on survival and reproduction behaviour of aphid was 

investigated, and in confirmation of previous reports, found to be effective in preventing 

infestation. Nisbet et al., (1993) found that azadirachtin was taken up systemically by the 

tobacco plant, and caused inhibition of feeding of M. persicae. They also found the 

confinement of the aphid in cage or tethered has little or no effect on the feeding 

behaviour of the insect, and found that initially insects imbibe phloem from treated 

plants, to produce a primary or secondary antifeedant effect (as explained on 1.6.1-C on 

page 33). Pavela and Barnet (2005) also found aza A in a concentration of from 0.5 to 

5mg aza AL-1, when applied systemically in soil can reduce the population of Bevicoryne 

brassicae up to 70%, and the effect was dose-dependent. The same result was found in 

the greenhouse experiment reported here, as aphids on treated plant leaves (upper or 

lower) failed to reproduce, and the majority of individuals were either dead or in dying at 

concentration of 5x10-5 M (9 mg aza Akg-1) and above. Islam (2005) also reported, in an 

experiment that a fortmulation of NAT applied into soil systemically, led to high 
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mortality and significant population reduction of A. fabae.   He also found the effect on 

the mortality rate of A. fabae was on younger nymphs more than older ones. The same is 

true in the work reported here, even though, during the selection period, aphids were not 

discriminated according to age. At the concentration of 1.9mg aza Akg-1 of soil, there 

was no effect found on the aphid fecundity and the rate of reproduction of M. persicae 

was almost same as that of untreated controls. Therefore, this suggests the application of 

concentration of active ingredient (aza A) that is 10-5 or below is not sufficient to control 

the aphid.  

The bad weather in the field experiments meant that there was no great infestation of 

aphids. Numbers observed were low. Nevertheless, there was an indication that adult 

aphids found in the untreated plots were significantly higher that treated ones for the last 

three weeks of the experiment. So, despite the low numbers, the field results tend to 

confirm the greenhouse experiments and the results of previous authors. There are certain 

things that need more work in order to achieve better level of protection. As this work has 

been only one trial, more work is to be done in field situation due to lots of rain 

experienced during field trial period neem leached away from the granules. Also, 

different formulations of the granules and different rates of application must be tested in 

the field situation. 

 

5.4.4 Flea beetle. 

A systemic effect of NAT was also shown in the level of flea beetle damage assessment 

on the treated cabbage plants. The damage due to P. nemorum L. was indiscriminate for 

the first 2 weeks, but the beetle, like aphids, then avoided the leaves of treated plants. 
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Also, due to the fewer infestations of flea beetle and aphids treated cabbage plants grew 

better than untreated ones only in the last two weeks. 

 

In deciding the rate of application of the pellets to soil in this Chapter, sufficient was 

added to give a purely nominal concentration in the soil water of between 10-5 M 

(1.9mgkg-1 soil) and 10-4 M aza A (19mgkg-1 soil). In fact the a.i. is slowly released and 

the actual concentrations measured in Chapter 3 were much lower, at their maximum 

about a factor of 10 lower. The concentration measured in the leaves was lower still, 

again by a factor of about 10. This means that the concentration of aza A in the leaves of 

plants growing in soil treated with the pellets is likely to be about 100 fold lower than 

might be expected, i.e. about 10-6 M. This still seems to give protection against insect 

attack. 

 

In conclusion, aza A release from the pellet matrix into the soil and its subsequent plant 

uptake has show a promising insecticidal effect in controlled glass-house and in field 

situations. The result in the field experiment would have much clearer under good 

weather conditions. This paves the way for a much larger scale of pelleted version of 

neem- based plant protection products applications. 
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5.4 Push-pull strategy. 
 

The work presented here has confirmed that aza A as formulated in NeemAzal®-T has 

antifeedant, repellent and anti-ovposition qualities on pest insects. This would make it a 

good candidate for use in “push-pull” strategies of insect control.  Push-pull is a way of 

manipulating insect pests through repellant/ attractive stimuli simultaneously to minimize 

their infestation on the target crops or animals (Blackwell et al., 2004). Certainly 

azadirachtin has  been suggested as a push component in such a strategy (Duraimurugan 

et al., 2005; Liu TX and Liu SS. 2006; Nisbet et al., 1992). Neem formulations are the 

most widely studied as an ovipositional deterrent among plant-derived products to 

reduce/prevent egg laying of species that cause damage through that or their 

maggots/larvae are pestiferous such as CRF, Delia radicum L., thus possible/important in 

push-pull strategy (Cook, et al., 2007). 
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Chapter 6 
 
6.1 Final Discussion. 
 

The work reported in this thesis was aimed at a commercial goal, and was intended to be 

part of a long-term project to develop a marketable product for plant protection in the UK 

and elsewhere. At the moment no neem plant protection product has been registered in 

the UK, but the company NeemCo., who have sponsored this work, intend to register 

neem-seed kernel extract in this country by the end of 2010. This project was part of the 

preparation for that registration, allowing experience and collaborations to be built up. 

Both of the other companies involved: Trifolio GmbH who supplied the NSKE, and 

Germains Technology Group, who did the pelleting of the NSKE have been very 

generous, and both will be involved in the long-term if the pelleted product is marketed in 

the UK. 

Although no neem plant protection product has yet been registered in the UK, such 

extracts are available in many other parts of the world. The plant protection products are 

extracted from the seed kernels and are of two types: either based on the oil which makes 

up 40% of the weight of the seeds, or on polar solvent extracts which are enriched in the 

limonoid aza A. This is the active ingredient and is present in only low concentration in 

the oil, but makes up 20-50% in the latter extracts. (The preliminary analyses of various 

enriched extracts reported in Chapter 2 confirmed these figures, and showed that the 

commercial products have a range of proportions of the a.i.). The NSKE used most 

throughout Europe is that produced by the German company Trifolio-M GmbH and, as 

stated throughout the thesis, is called NeemAzal®-T (NAT). Analysis showed that it 
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contained more than 40% w/w aza A. This was used throughout the reported work, as it is 

this extract that will be registered in the UK, and will be used in any PPP sold here. 

It is properties of aza A that decide the effectiveness of any PPP based on neem, and 

these have been investigated in this project. The analytical and purification work in 

Chapter 2 showed that it is not very easy to purify, although the development of reverse-

phase flash and high performance chromatography make it easier than was the case when 

only conventional silica chromatography was available, as the polarity of terpenoid 

means that it comes quickly off a reverse-phase column. A high level of purity was 

obtained with an efficiency of 0.002%. It is unlikely that azadirachtin A will ever be used 

as a PPP except in a crude mixture. Another route to obtaining pure aza A is by synthesis, 

but as this involves about 70 steps, this can never be economical. Large companies do not 

like pesticides from natural sources, and so it may be that NSKE will remain a niche 

product produced by small companies. 

One of the aims of this project was to obtain quantitative information about aza A at all 

stages in soil and leaves etc. Analysis of aza A is really only possible by reverse phase 

HPLC and this was used throughout the work, employing the recently accepted method 

by CIPAC, which worked well. No previous reports have been measured concentrations 

of the a.i. in soil and leaf water, so as to get a picture of the release and uptake of the 

compound.  

One of the most important characteristics of aza A is that it is non-toxic to vertebrates and 

“beneficials” (organisms used for biologogical control of pests) so is generally thought of 

as being “good for the environment”. 

There is no doubt of the lack of toxicity towards mammals. Various neem PPPs have 
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been registered in the USA and many of the countries of the EU for almost 20 years 

without any adverse effects being reported. In the course of the rigorous registration 

procedures, the acual and chronic effects on living mammals was so slight as to place 

azadirachtin in the least toxic category (IV) of pesticides. 

This in vivo work at the whole animal level has been more recently corroborated with in 

vitro work with cultured cells. Salehzadeh et al (2003) used mammalian cell lines derived 

from liver, lung and kidney and found that cell division was inhibited only when the 

concentration of aza A exceeded 10-4 M. A study using human glioma cell lines 

(Akudugu et al., 2001) found that cell replication was inhibited at 3-5x10-5 M. These 

findings contrast sharply with the observation that various insect-derived cell lines are 

inhibited at concentrations of aza A below 10-9 M (Salehzadeh et al, 2003). There seems 

no doubt that the large difference in sensitive to aza A between mammals and insects, lies 

at the cellular level. 

There are no toxicity test information of commercially used neem materials on birds, but 

when 10% NSKE were  incorporated with Japanese quail bird feed over 20 weeks, egg 

laying rate and its quality were not significantly affected (Elangovan et al, 2000). When 

Margosan-O was approved in USA as pesticide for food crops single oral dose of 

16ml/kg body weight to mallard duck did not cause inducement of any adverse effect 

(Schmutterer , 2002). Also, when a feed containing 1000 to 7000mg/kg of Margosan-O 

of the diet to the same bird for 5 days has not shown any adverse effect (Johnson, 1996a, 

b). 

 As for the fish LC50 in rainbow trout was determined and 160mg/L of NAT/S for 96hrs, 

was considered low acute toxicity (Grunert. 1996). Although neem based formulations 
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have greater margin of safety to fish (young salmon), its toxicity is mainly due to carriers 

or emulsifiers (Wan et al, 1996).  

In September, 2009, the EU Directive 91/414/EEC has become a Regulation (so far 

without an identifying number). In the Introduction, the Regulation states that 

“substances should only be included in plant protection products where it has been 

demonstrated that they present a clear benefit for plant production, and they are not 

expected to have any harmful effect on human and animal health, or any unacceptable 

effects on the environment.” Aza A should fit these criteria very well. 

One stated aim in the new Regulation is that as much as possible biological control and 

IPM should replace chemical control. Use of aza A in IPM depends on it having minimal 

toxicity towards beneficials. The results of semi-field and field trials have shown that 

neem products in which aza A is the a.i exhibit minimal side effect on non-targets 

including predatory insects and nematodes (Schmutterer, 1990). Saxena et al., (1981) 

showed that hymenopterous prasitoids are less sentitive to neem products than preditors. 

He also suggested azadirachtin application favours towards the parasitoid as it inhibits  

pupation in caterpillars. There is some evidence that oil formulations of neem product 

show stronger side effect to nontargets (Schmutterer, 2002) but this will not be relevant 

to semi-purified products such as NeemAzal®-T which contain high proportions of aza 

A.  

In light of the many reports of the plight of the honey bee, and the suspicion that the 

systemic neonicotinoid Imidacloprid may be involved in the problem, it is important that  

any future systemic PPP be non-toxic to bees. Larson (1989); Leyman et al., (2000) 

Schmuterer and Holts, (1987) reported azadirachtin doesn’t negatively effect the workers 
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of honey bee, A. mellifera, but repetitive applications of neem formulations may effect 

the nectar thus indirectly influence the honey they produce or cause some problem to the 

brood. This is an area which may require further study. 

Overall, it can be concluded that neem formulations are suitable for use in  IPM schemes, 

as their effect on non-targets and beneficials are minimal.   

However, as indicated in Chapter 3 there is evidence that aza A is slightly phytotoxic. 

When it was shown that one of the targets of the limonoid is likely to be tubulin, which 

means that it acts as an antimitotic, it might mean that it affected plant tubulin also. The 

results reported in that chapter proved that it did have an antimitotic effect on newly 

germinated plants, although there is no proof that it is due to an effect on tubulin. The 

effect was only shown at a high concentration of aza A, > 5X10-4, so in practice it may 

not be important. It might prevent the use of seed treatment with the NSKE, however.  

On the other hand, there is some evidence in Chapter 5 that over the growing season, 

treated plants grew slightly better than controls. Maybe lack of insect predation is more 

important than phytotoxicity. Imidacloprid, a neonicotinoid, also used systemically, 

inhibits germination and growth, but is widely used, presumably because its insecticidal 

effect outweighs this disadvantage. 

As far as this project is concerned, the most important characteristic of aza A is its 

solubility in water. This allows it to move easily in soil water, and enter plants 

systemically. Very few insecticides are able to work in this way. The threat to pollution 

of ground-water is prevented by the short half-life in the soil. The trouble with this is that 

if the limonoid is just drenched onto soil, it will not have long to kill soil pests and enter 

plants. It was hoped that pellets might give a slow-release mechanism to give longer 
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effect. This was proved to be true. Although the work with the “hydrophobic” pellets was 

not completed, it was clear that the release of the terpenoid into the soil could be delayed 

by the composition of the pellets. Any product might have different types of pellet to give 

protection over the whole growing season, which would be an improvement on repeated 

spraying. Further improvement of stability of formulations in soil enviroments is 

necessary in order optimise the delivery of the a.i.. This could be achieved by modifying 

the formulations, such as product that contains high a.i, and granular carrier polymer to 

meet required performance such as optimum release rate and profile. 

Although the terrible weather in the summer of 2008 meant that the results from the field 

trial were limited, the application of pellets to soil clearly gave protection to the cabbages 

from the pests. In the greenhouse trials, the NSKE was very successful against the CRF. 

This is the first time that such results have been reported against this soil-pest. It 

demonstrated that the pellet method can protect against both soil and foliar pests, and 

should be true of other soil pests also such as vine weevil. 

As discussed earlier in the thesis, the main use of polar NSKE as PPP is by spraying an 

emulsifiable formulation of NAT in sesame oil, called NeemAzal-T/S.  The work here 

and from other sources suggests that this may not be the most effective way to use the a.i. 

Added to the soil, it has the potential to protect the plant against soil-borne pests, as well 

as foliar. There are various ways of introducing the terpenoid to the soil, such as simple 

drenching, drip-irrigation etc. but the advantage of using pellets is that the presence of the 

active ingredient in the soil can be prolonged. The results here showed that with the 

hydrophobic pellets, the a.i. in soil peaked after 13 days, and was still 30% of the 

theoretical maximum concentration at this time. The field experiments, although limited 
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due to weather, indicated that azadirachtin A was still present in cabbage after 5 weeks.  

Another possible systemic use of NSKE is in hydroponic cultivation, which is becoming 

very important for producing high-value crops such as peppers for the UK and other 

markets. The great advantage of hydroponics is that the concentration of a.i. can be 

determined exactly, as was done here, and monitored regularly.  

At the moment, aza A is in the process of assessment for inclusion in Annex 1, which 

will allow its use for the foreseeable future. Assuming that it is included in the list of 

acceptable a.i. then it is likely to have a market in the UK similar to that in the countries 

where it is registered. The obvious market is the organic market. Currently this is in 

recession, but is likely to revive in the next few years.  

 
6.2 Ideas for further research. 
 

1. One obvious potential application of the pelleting technology is to use 

NeemAzal©-T in seed pellets to give the young plant immediate protection from 

insect attack. The problem with this is that the work in Chapter 3 indicated that 

the a.i. is phytotoxic at a high concentration. It is possible that there is a level of 

aza A which might be non-phytotoxic while still giving some protection to the 

plant. This is a development which might be further explored.  

2. While the work in Chapter 3 suggested that aza A might have its antimitotic affect 

by preventing tubulin polymerisation, this can only be proven by studies at the 

molecular level, using, for instance, the methods employed by Salehzadeh et al. 

(2003). This work would help to prove that the main action of aza A is against 

tubulin, which is present in all eucaryotic cells. It would be of interest to find why 



 

                                                                       187 
 
 
 
 

 

it is less effective than anti-mitotic herbicides, and if they bind at the same sites 

on the tubulin molecules. 

3. There are obvious areas of study which would examine the possible role of aza A 

in specific IPM, and push-pull strategies in particular. 

4. While aza A is generally thought not to affect nectar-gathering insects, including 

bees, this may not be true if the a.i. were to be employed as a systemic insecticide. 

This would be a very important study. 

5. The field work using different sorts of pellet was only of limited success, due to 

the weather. Clearly this would be an area which could be repeated and extended 

in the future. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

                                                                       188 
 
 
 
 

 

Appendix A. Summary of the concentrations of azadirachtin A applied in 
hydroponic media, and soil, and measured in soil and leaf water in the experiments 
reported in this project.  
 
 
 

Type of  Formulation Aza A added  Pellets added  Theoretical Actual max.  b/a  Actual max.  c/a(%) 
Exp. of Aza A to soil to soil max. conc.of  conc. of Aza A   (%) Conc. in   or 

    (mgkg-1 soil) (mgkg-1 soil) Aza A in  in soil water    leaf water  c/b*(%) 
        soil/leaf water Or hydroponic       
         medium        

Hydro- NeemAzal®-T n.a. n.a. n.a. 1.0x10-4   1.0±1x10-5 
 

10*  

ponic (powder)       1.0x10-3   1.0±1x10-4  
 

10* 

Pot NeemAzal®-T 19.0 n.a. 1x10-4 8.0±1.0x10-5 80 n.a. 
  
 

  (powder)             
  
 

  Hydrophilic    130 1x10-4  4.2±1.0x10-5 42 n.a. 
  
 

  Pellets             
  
 

  ("Neem 1")             
  
 

  Hydrophobic  19.0 130 1x10-4 3.0± 1.0x10-5 30 n.a. 
  
 

  Pellets             
  
 

  ("Neem 2")             
  
 

  "Neem 1" 1.9 13 1x10-5 n.a.   n.a. 
  
 

  Pellets 9.5 65 5x10-5 n.a.   n.a. 
  
 

    19.0 130 1x10-4 n.a.   4.0±2x10-6 
 
4 

    190.0 650 1x10-3 n.a.   6.5±2x10-5 
 
7 

Field "Neem 1" (g.m2)  (g.m2)           

  Pellets 1.5 10 approx.1x10-4 n.a.   3.1±3x10-6 
 
3 
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The concentrations of the a.i. azadirachtin A used in the work reported in Chapters 4 and 5 were 
based on the findings about the phytotoxicity of the limonoid in Chapter 3. These suggested that 
at 10-3M azadirachtin severely affected the growth of newly germinated cabbages and sugar 
beet.  
 
Consequently, the concentrations used after that were almost all aimed to produce a lower 
concentration in the soil water. The exception to that was a hydroponic experiment when a 
concentration of 10-3M was used to see if this concentration also affected plants at a later stage 
of growth. In soil-water most of the experiments aimed to produce a maximum theoretical 
concentration of 10-4.   
 
The calculations of maximum theoretical concentrations in soil water were based on the Know 
amount of aza A in the formulations used, and the known amounts of water in the Soil in pot 
experiments. When the pellets were used, this theoretical maximum could not be ac achieved, 
due to slow release and biological breakdown of the a.i. In fact, when the crude NSKE was 
simply added to the soil, and aza A measured after 24 hours, the concentration found was 80% 
of the possible, almost  what might be expected  with a rapid solution in the soil water and a 
half-life of 1.6 days.   
 
Unsurprisingly, the two pelleted formulations resulted in lower maximum soil concentrations 
although these were still quite high at 42% and 30%.   
The concentrations of the a.i. in the leaf-water are consistently only about a tenth or less of the 
concentration around the roots, and this is true for both hydroponic experiments and pot 
experiments.   
In the experiments with insects the quantities of pellets added to the soil in pots and field were 
intended to produce a maximum concentration in the soil of 10-4M or less. In fact, the soil 
concentration will have been at least a factor or two lower than the calculated maximum.   When 
the concentration in the leaves was measured, there was good consistency between the field and 
pot experiments. 
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Appendix B  Date     /       /             
FIELD DATA SHEET   
Title:-  

         
 

Week No:-    
 
No Green peach Cabbage aphid Cabbage white Cabbage root fly Flee 

beetle 
A Nymph Adult Winged Nymph Adult Winged Egg Larvae Adult Egg  Larvae Adult 1,2,3,4 

1              
2              
3              
4              
5              
6              
7              
8              
9              
10              
              
              
No Diamond back moth Other 

insects 
Slugs Damage of leaves (extent) Growth (No. leaves) 

 Egg Larvae Adult   1,2,3,4        
1              
2              
3              
4              
5              
6              
7              
8              
9              
10              
              
              
              
              
              

 
Comments:-  
  
  
 Signature:-                                                          . 
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