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Abstract 

This thesis is concerned with the analysis, control and identification of hybrid dynamical sys- 

tems. The main focus is on a paxticulax class of hybrid systems consisting of linear subsystems. 

The discrete dynamic, i. e., the change between subsystems, is unknown or nondeterministic 

and cannot be influenced, i. e. controlled, directly. However changes in the discrete dynamic 

can be detected immediately, such that the current dynamic (subsystem) is known. 

In order to motivate the study of hybrid systems and show the merits of hybrid control the- 

ory, an example is given. It is shown that real world systems like Anti Locking Brakes (ABS) 

are naturally modelled by such a class of linear hybrid systems. It is shown that purely 

continuous feedback is not suitable since it cannot achieve maximum braking performance. 
A hybrid control strategy, which overcomes this problem, is presented. 
For this class of lineax hybrid system with unknown discrete dynamic, a framework for ro- 
bust control is established. The analysis methodology developed gives a robustness radius 

such that the stability under parameter variations can be analyzed. The controller synthesis 

procedure is illustrated in a practical example where the control for an active suspension of 

a cax is designed. 

Optimal control for this class of hybrid system is introduced. It is shown how a control 
law is obtained which minimizes a quadratic performance index. The synthesis procedure is 

stated in terms of a convex optimization problem using linear matrix inequalities (LMI). The 

solution of the LMI not only returns the controller but also the performance bound. 

Since the proposed controller structures require knowledge of the continuous state, an ob- 

server design is proposed. It is shown that the estimation error converges quadratically while 

minimizing the covariance of the estimation error. This is similar to the Kalman filter for 

discrete or continuous time systems. Purther, we show that the synthesis of the observer can 
be cast into an LMI, which conveniently solves the synthesis problem. 
In order to obtain lineax hybrid models in the first place, system identification techniques 

are used. Theoretical issues are discussed in the last section of the thesis. To support the 

methodology, convergence conditions axe derived. Conditions under which the classification 

problem can be solved are given. These are conditions on noise level and paxameters under 
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which input/output data can be grouped such that only data which is generated by the same 

subsystem is collected. 
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1 Introduction 

This chapter gives an introduction to a class of dynamical systems known as hybrid systems. 
A survey covering current research results in the field of hybrid dynamical systems is given. 
This survey contains an overview of current modelling frameworks as wen as analysis, con- 
troller designs and identification methods. The survey shows that many areas in the field of 
hybrid systems are quite mature and covered very well. However, little has been found about 
hybrid systems with unknown discrete dynamic, especially in context of robustness analysis 

and robust controller design. Also haxdly any contributions are found for the optimal control 

of hybrid systems with unknown discrete dynamics. This is also true for identification of 
hybrid systems, where nearly no results have been found. 

This thesis tries to close some of these gaps in theory and makes contributions to robustness 

analysis and controller design, optimal control, state estimation and identification with the 

focus on hybrid systems with unknown discrete dynamics. 

1.1 The notion of hybrid dynamical systems 

In recent years hybrid dynamical systems have been an increasingly popular subject. One 

of the reasons is that conventional methods were limited and failed to model, analyze and 

control such systems. In order to strive for higher accuracy and better performance it has 

been necessary to pursue research work in the area of hybrid dynamical systems. In this 

introduction we shall explain the properties of hybrid dynamical systems, usually referred 
to as hybrid systems, and give the history of the research work carried out. E'urthermore, 

we show the cleax advantages of using hybrid systems theory in comparison to the limited 

possibilities of conventional, purely continuous or purely discrete, theory. Since this is rather 
a complex topic and its impact is broad, we can only cover some of the current and previous 

achievements in the field of hybrid systems research. However before we start we need to get 

some notion of what hybrid systems are. 
What is a hybrid system? Roughly speaking, hybrid systems combine two basic dynamic 
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1 Introduction 

notions, namely continuous dynamics and discrete dynamics. Systems like computers, au- 
tomata, switches etc., are considered systems with discrete dynamics since their states assume 

only distinct values. The set of values which can be assumed is often finite. For example a 

switch can be off or on, i. e. the discrete state can assume two distinct values, while systems 
like the weather, the motion of planets and the flow of water are considered continuous sys- 

tems, since their states change continuously. For instance the temperature of our weather 
does not change from 10 C* to 20 C' discontinuously, it changes continuously and probably 

smoothly as well, such that all temperatures between 10 C* to 20 C* are assumed, although 

each temperature might be assumed only for an infinitesimally short time. Research work 

of previous decades and centuries has focused on describing such systems. This was usually 
done using differential equations. Later, especially with the invention of digital computers 

and automation, discrete time systems came into focus. Such systems were then described 

by difference equations or by logic statements (if, then, else, or, and etc. ). For many systems 
however it is not immediately obvious to which class they should belong, since the decision 

whether a system should be classified as continuous or discrete depends strongly on the level 

of abstraction. This is often the case with continuous systems being controlled by discrete 

inputs, where the continuous dynamics are fast. One simple example is a desk-light, which 

can be switched on or off. For an observer the system might appear to be discrete, since 
by his observation the light is on, when switched on and off otherwise. Of course, in be- 

tween, fast continuous transients take place. In other systems the discrete dynamics are as 

obvious as the continuous dynamics. A popular example of ; uch systems is the often used 

electrical radiator. The heating is switched on if the temperature is below a certain threshold 

and switched off again if it reaches above a specified threshold. The continuous part of the 

radiator is given by the equation of the electric circuit 

L 
di 

V, Tt 

and the equation for the temperature T 

dT =1 dQ LQ 
= i2. R c dt 

The equations above form the continuous part of the system. The discrete part is formed by 

a thermostat that could switch the voltage on and off according to some inequalities. 

0 T>Tl 

V T<T2 
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1 Introduction 

With this system involving discrete dynamics (off-on switching) well as the continuous dy- 

namics, the increase or decrease of the temperature can be observed. This is the case since 
the continuous dynamics are slow and the system admits a hysteresis. It is now clear that 

there are systems which exhibit discrete as well as continuous dynamics; such systems are 

called hybrid systems. If we take a closer look we will find many such systems in our homes: 

washing machines, electric food processors, cars etc.. The hybrid phenomenon is not only 
limited to technical systems, it can be observed in other physical systems such as mechanical 

systems with mode transition between slip and stick phases, and in systems with impacts 

or constraints etc.. This immediately raises the question of how to describe (model) such 

systems in order to analyze them. Models are desirable for various reasons: one is to capture 
the behaviour in order to analyze it, another is to make predictions of the behaviour for 

cases where the real system would be endangered or for situations where it is costly to do 

experiments. Properties like stability can be assessed, or it can be checked if certain states 

can be reached, reachability analysis. Often we would like to influence such systems so that 

they show a desired behaviour, i. e. we would like to control the system. Therefore we need 
the right methodology which is supported by theory. 

In the following we will give a short overview of some frameworks for hybrid systems. It has 

to be mentioned that there are vaxious frameworks which admit modelling different classes 

of hybrid systems. Since hybrid systems are a very rich class of dynamical system, which 
includes linear, nonlinear, constrained, non-constrained, continuous, discrete and logical sys- 
tems and all kinds of overlaps between these classes, it is clear that it makes sense to focus on 

various subclasses of hybrid systems. In order to get sensible results, the subclass needs to be 

small enough to carry additional structure, facilitating detailed analysis of its behavior and 

controller design. The class needs to be laxge enough to contain real applications which are 

of interest. The areas of interest are diverse, since applications come from computer science 

and control engineering. Therefore frameworks have different foci. 

1.2 Survey over hybrid systems 

1.2.1 Modelling hybrid systems 

Models: 
There are various models for hybrid systems; all have in common that they describe contin- 

uous as well as discrete dynamics. However the emphasis is different; while some are more 

concerned with the logical or discrete part, others are more focused on the continuous dy- 

namics. Some classes admit broad analysis but real applications which belong to these classes 
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I Introduction 

are rarely found. One such example is the batch integrator system by Tittus (75). Tittus 

models batch processes. The batch processes consist of continuous flows of material and 

energy with discrete actuators and sensors. The modelling is done with integrator processes. 

The class of hybrid systems is very limited but these models are important for the control of 

batch processes. Using such simple models he is able to derive results showing stability and 

controllability of the systems. The framework by Branicky (22), on the other hand, admits 

a very broad class of hybrid systems, such that many other frameworks are contained within 

it. However in terms of analysis and controller design only very general statements can be 

made. 
Many of the available frameworks for modelling hybrid systems have their origin either in the 

discrete event community or stem from the dynamic systems community. These frameworks 

were basically only extended to incorporate the additional dynamic. Examples for modified 
frameworks from the discrete event community are timed or hybrid Petri-nets (26), hybrid au- 

tomata (22) etc., while examples of modified frameworks with origin in the dynamic systems 

community are switched bond graphs (27), etc.. However there are also frameworks which do 

not result from direct modifications of existing frameworks, such as mixed logical dynamic 

systems (MLD) (17), (18), or complementarity systems (39). Looking at the numbers of 
different frameworks, it is not surprising that some frameworks are only capable of modelling 

a subset of others and this is shown in (22). It was also shown that some frameworks are 

equivalent (40), such that models from one framework can be transferred into another. This 

has the advantage that analysis results, which have been derived for one class, might apply 

to the other as well. 
In the following we will briefly review some frameworks; for the interested reader references 

are given. 

Piecewise affine systems: 

Piecewise affine systems are without doubt among the earliest classes of systems in the 

literature which admit the properties of hybrid systems (47), although they are often not 

directly mentioned in the hybrid systems literature. Since each affine dynamic is valid only 

on a certain domain Xq (or for a certain time), we have the mixture of continuous dynamics 

and discrete dynamics, which form a hybrid dynamical system. 

i=AqX+aq for xEXq qEQ={1,2, ---, N} (1.4) 

where XEU Xq C: RI is the continuous state of the N affine dynamics :t=A, x + a. and 

qEQ= {1,2, ---, N} C Z+ is the discrete state. The q th affine dynamic is valid as long as 

xE Xq. Piecewise affine systems often stem from linearization of complex nonlinear systems, 
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1 Introduction 

therefore their affine dynamics are state dependent, i. e. . Usually piecewise affine systems 
describe systems with static nonlinearities like relays, diodes, saturations, etc. In these cases 

it is easy to write the nonlinearity as a piecewise affine dynamic. First attempts have already 
been made by Kalman (49). 

Complementarity systems: 

Complementarity systems were first used by van der Schaft and Schumacher (78) to de- 

scribe hybrid systems. The complementarity conditions axe similar to the complementarity 

conditions which have been used in mathematical programming. Heemels shows various ap- 

plications of linear complementarity systems in his PhD thesis (39). Electric circuits and 

constrained mechanical systems are modelled with complementarity systems. The linear 

complementarity system consists of a linear dynamical part 

:i= Ax + Bu 

Cx+Du 

and the complementarity condition 

lyi =0 or ui = 01, yi ý: 0, ui k0 

It is obvious that electrical components like diodes transform naturally into this framework. In 

the forward direction there is no voltage at the diode, only current flow, and in the backward 

direction there is no current, only voltage. It has been shown that linear complementarity 

systems are equivalent to MLD systems and piecewise affine systems (40). This makes analysis 

results like well posedness (39) interesting since they can be transferred to the equivalent 

classes. 

Mixed logical dynamic systems 
MLD systems were introduced by Bemporad and Morari (17), (18). The MLD system consists 

of linear dynamic equations in discrete time subject to linear inequalities involving real and 
integer variables. 
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1 Introduction 

xt+l = Atxt + Bitut + B2t8t + B3tZt 

yt = Ctxt + Ditut + D2tJt + D3tZt 

E2tJt + E3tzt :5 Eltut + E4txt + E5t 

It is in effect a switched linear system, which is governed by logical conditions expressed 
by linear inequalities. This framework is capable of describing piecewise linear systems, 
linear hybrid systems, constrained linear systems, automata driven by dynamical systems, 
dynamic systems which incorporate nonlinearities that can be approximated by piecewise 
linear functions, and systems with discrete inputs and qualitative outputs. 

Branicky 

Branicky's (22) framework is given as a hybrid automaton. He makes a formal definition 

of a controlled hybrid dynamical system CHDS, Hc = IQ, E, A, G, V, C, F} where V con- 
tains the discrete controls, C is the collection of controlled jump sets and F the collection 

of controlled jump destination maps. Under some conditions this is a hybrid dynamical sys- 
tem HDS, H= IQ, E, A, G} where Q is the collection of discrete states, E the continuous 
dynamics, A the autonomous jump sets and G the autonomous jump transition map. 

1.2.2 Analysis of hybrid systems 

Once a system is described by a mathematical model, analysis of the model can give answers 
to various questions. One of the most profound questions is: given initial conditions; does 

there exist a solution and is this solution unique? The existence and uniqueness of solutions 
is usually referred to as well posedness. 

Well posedness: 
Little work has been done to give answers for hybrid systems. Results are given in the PhD 
thesis of Heemels (39), who studied linear complementarity systems and gave conditions for 
the existence and uniqueness of solutions. A study of existence and uniqueness of solutions 
of hybrid automata is given by Lygeros (53). Also, Bemporad and Morari state conditions 
under which the solutions for their MLD framework are well posed (18). Closely related with 
well posedness is a topic called verification. 
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I Introduction 

Verification: 
The term verification or formal verification stems from the computing science community. 
Their interest was usually to show the correctness of their programs, which is certainly not 

a trivial matter for most software packages. Some general conditions can be given for finite 

automata, while in comparison with dynamic systems the class is too broad to derive general 

conditions. This is mainly because the number of states is finite. Therefore the correctness 

can be verified by checking each state. In addition methods like theorem proving can be 

applied. This is usually carried out by applying a set of rules. In this way finite automata 

can be verified. However in the case of hybrid automata, the verification is much harder, 

since the continuous evolution of the state has to be considered in order to take discrete tran- 

sitions. Therefore the verification problem is usually formulated into a reachability problem 
(50). That is, given initial conditions does there exist a path leading to the desirable final 

(terminal) states? As one can imagine, it is much harder to derive conditions, therefore it is 

no wonder that only general statements can be made. Some conditions are given for timed 

automata (13), such as the reachability problem is decidable. 

However for more complex hybrid systems there are no useful conditions, so one has to rely 

on simulation. In many cases one starts with the terminal state and integrates backwards in 

time, taking discontinuous transitions and obtaining in this way the set of initial conditions 
from which the terminal state can be reached. 
Besides properties like well posedness and verification, stability of the hybrid system is one 

of the most fundamental properties that needs to be assessed. That is, are there stable equi- 
libria or not? 

Stability analysis 
The majority of analysis publications deal with stability analysis. Before one carries out any 

stability analysis it has to be defined what one means by stability. For continuous systems we 

axe already aware that there axe different notions of stability: asymptotic stability, bounded 

input bounded output stability, quadratic (Lyapunov) stability, etc.. Since hybrid systems 

consist of continuous as well as discrete dynamics, the notion of stability should contain both 

dynamics analyzed. However, quite often only the continuous dynamic is analyzed, which in 

some cases might cause a problem, since the stability of the continuous dynamic does not 
imply stability of the discrete dynamic and vice versa. A hybrid system can have stable 

continuous dynamic and exhibit sliding modes or Zeno executions, which axe both unstable 
discrete dynamics. The other way around, it is also quite obvious that stability of the discrete 

part does not imply stability of the continuous part. A simple example is a hybrid system 

consisting of only one unstable continuous dynamic. Hence the discrete dynamic is stable, 

since it is invaxiant, but the continuous dynamic, i. e. the continuous states will grow beyond 
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1 Introduction 

all bounds. 
A further point which makes the stability analysis of hybrid systems complicated is that 

stability of all individual subsystems does not imply stability of the hybrid systems. This 

can be shown by this simple example (21), (67), given the two stable subsystems 

Al ý» 
[- 001 12 ] 

A2 -` 
[011 

0.0 -0.2 -0.01 

in controller canonical form with eigenvalues in the open left hand side of the complex plane. 
Thus, both subsystems are individually asymptotically stable. For the hybrid system, dy- 

namic 1 is valid in the first quadrant of the state space and dynamic 2 is valid elsewhere. 
Simulating the system reveals that it is unstable as depicted in the figure below. The result 

40- system 1 

20 - iti alue 

0- 

to 

40 

so - system 2 

501 150 100 so 0 50 it 150 20 

Figure 1.1: Trajectory of hybrid system 

is that the trajectory tends to infinity. Hence the system is unstable. 

To show stability of the hybrid system, researchers analyzed different classes of hybrid sys- 
tems and used and developed different methods. 
Various results are given for hybrid systems which admit arbitrary switching among sta- 

ble linear dynamics. One result is that given a set of linear and stable system matri- 

ces Aq, qEQ, the hybrid system is stable if the system matrices commute pairwise, i. e. 

ApAq = AqAp, Vq, p C- Q. This is easy to verify; take Q= {1,21 we can write the solution 

e Altie A2t2e A2 t2 ... eA2t2X(0) =e Ai(t1+t3'-tk-1)e A2(t2+t3***tk) thus x(O) -"* 0 as tl +t2 *'* tk --ý oo. 
A different condition was given by (71), (70) for a pair of second order asymptotically stable 

linear systems. Given two matrices Ap, Aq, then every switching sequence is stable, if and 

only if the matrix pencils -y,, (Aq, Ap), y,, (Aq, AP 1) are stable. In an extension of Shorten's 
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1 Introduction 

work it is shown that his method is less conservative than finding a common quadratic Lya, 

punov function (72). 

However, the most commonly used approach is to construct a Lyapunov function for the 

hybrid system. If a Lyapunov function can be constructed or if its existence can be proven 
it shows that the continuous dynamic of the hybrid system is stable. Note that nothing is 

said about the discrete dynamic. For many classes of hybrid systems, like piecewise affine 

systems and MLD systems, quadratic Lyapunov functions 

V(X) = xTpX p= pT >0 ATp + PAq <0 (1.6) 
q 

are obtained as solutions of convex optimization problems. The search of a Lyapunov function 

is formulated into a linear matrix inequality (LMI) which can be conveniently solved. Note 

that there are also other methods to compute common quadratic Lyapunov functions as shown 
by (58). A useful extension to quadratic Lyapunov functions was presented by Johansson 

(47), (48) and Pettersson (59) and others (21). Two changes can be made to reduce the 

conservativeness of a quadratic Lyapunov function for the hybrid system. The first relaxation 

was to introduce the S procedure. Whenever the discrete state q of the hybrid system is a 
function of the continuous state x, such that one subsystem is valid only in a domain Xq, the 

Lyapunov inequality can be written as 

V(X) = XTpX p= pT >0 ATp + PA qq+ 
Sq <0 (1.7) 

such that X TSX >0 when xE Xq and x TSX <0 elsewhere. This makes it in general easier 
to satisfy (1.7). The second relaxation is, in addition, to use piecewise quadratic Lyapunov 

qX 
> XTp functions. This Lyapunov function might be discontinuous but decreasing XTp - q+X 

fT 
+X = 0, 

at switching times 
q,, 

TR X Tpq V(x) =xq Pq 
= 

PqT >0 Aq + PgAq + Sq <0 

tT +T Pq - Pq+ + fq, 
q+ q, q+ 

+ tq, 
q 

fqj, 
q+ 

>0 

T 
where q is the predecessor of q+ and fq, 

q+ 
describes the switching surface between system q 

and q+. 

Besides the use of Lyapunov functions, various other methods exist. For an overview, one 

might read the lecture notes by Liberzon and Morse (51). 

10 



1 Introduction 

Zeno executions 
A phenomenon which can be only observed in hybrid systems are the so called Zeno execu- 

tions. The observed phenomenon is similar to the paradox of the Greek philosopher Zeno 

(545 BC), who stated the famous paradox with Achilles and the tortoise. In this paradox 
Achilles, who is a fast runner, wants to catch a tortoise, which is one metre in front of him. 

Achilles runs twice as fast as the tortoise. Zeno argues that Achilles cannot catch the tor- 

toise. He says every time Achilles reaches the spot where the tortoise was, the tortoise has 

moved by .1 of the distance Achilles has moved. It seems that Achilles cannot catch the 2 
tortoise. Indeed, whenever Achilles reaches the spot where the tortoise was, it has already 

moved. However, both the distance that Achilles travels and the time that elapses before he 

reaches the tortoise can be expressed as an infinite geometric series. So, Achilles traverses an 
infinite number of "distance intervals" before catching the tortoise, but because the "distance 

intervals" are decreasing geometrically, the total distance that he traverses before catching 
the tortoise is not infinite. Similarly, it takes an infinite number of time intervals for Achilles 

to catch the tortoise, but the sum of these time intervals is a finite amount of time. 

In hybrid systems, similarly as in the paradox of Zeno, infinite discrete transitions (execu- 

tions) can occur in finite time. This is undesirable since such models are difficult to simulate. 
In some cases Zenoness seems to be avoidable when choosing a different model. Take for 

instance the paradox and write x=2-t for the distance covered by Achilles and x= it +1 
for the tortoise. Then the solution is quite obvious, t=1. A popular example of Zeno 

executions is the bouncing ball. (46) . The bouncing ball is described in terms of a hybrid 

X1 =0 X2 = -CX2 

il ` X2 

i2 " 

XI ý! 

Figure 1.2: Bouncing ball example for Zeno executions 

automaton. Inside the bubble (vertex) a second order system is described in form of a dif- 

ferential inclusion. The transition is taken when the ball touches the ground. In case of a 
transition the state X2 is set to a value X2 ý- -CX2, where c= (0,1). This is to model the 
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energy dissipation of the system at the moment when the ball touches the ground. 
This phenomenon and especially its detection has been discussed by only a small group of 
researchers (45). In most publications that deal with hybrid systems this phenomenon is 

simply neglected. 

Controllability 

The analysis of controllability for hybrid systems is usually handled in the context of reach- 

ability analysis. The hybrid system is controllable with respect to certain terminal states if 

they can be reached. The proposed methods are of a numerical nature. Bemporad, Ferrari- 

Trecate and Moraxi (16) propose tests based on mixed-integer linear programming to show 

controllability. 

Observability 
The observability analysis (29) is much simpler since usually one is interested in observing the 

continuous state. Hence it is sufficient to show that each subsystem is observable. Many of the 
frameworks admit modelling only linear dynamics in each subsystem. Hence the observability 
tests derived for linear systems theory apply. 

The observer design can be seen as the dual to the state feedback controller design. Therefore 

the synthesis methods used for controller design can be translated to the observer design. 

One idea is to find a common quadratic Lyapunov function for all dynamics such that the 

estimation error converges quadratically. Sometimes a single observer gain can satisfy this 

requirement. If not, multiple gains are used; in this case the observer gain depends on the 
discrete state which has to be measured. 
Similarly the idea of "Model Predictive Control" (MPC) for hybrid systems can be stated as 
a dual for observers. Ferrari-Trecate and Mignone (30) propose a state smoothing algorithm 
for hybrid systems based on Moving Horizon Estimation (MHE). Arguments are made for 

piecewise affine systems, where sufficient conditions on the time horizon and the penalties 
on the state at the beginning of the estimation horizon are given to guarantee asymptotic 
convergence. The MHE is then implemented by solving a Mixed-Integer Quadratic Program. 

1.2.3 Control of hybrid systems and hybrid control 

Hybrid control does not always involve hybrid dynamics which have to be controlled. In 

many cases continuous dynamics are considered, which are controlled by a hybrid controller. 

12 
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There are many reasons for this. One is that the dynamic which is to be controlled might 
be nonlinear and contains uncertainties. For such systems sliding mode control is very often 
used. Another reason to use hybrid controllers is that the plant cannot be stabilized by 

a continuous control law. One such example is the nonholonomic integrator. The term 

nonholonomic is used for systems which are linear (separately) in the states and in control 
variables. 

Lbi = ul 

'ý2 = U2 11 (Uli U2) 11'5 1 

ýb3 ---: XIU2 - X2U1 

The control is closed in a unit ball in 112. It was shown that the system is globally asymp- 
totically controllable. However, no continuous feedback law u= k(x) exists to stabilize the 

system (even locally around the origin, as shown by Brockett in 1983). Brockett (24) also 

gave a condition for dynamic systems -ý =f (x, u) which admit a continuous stabilizing feed- 

back. For every neighbourhood n of 0, the set f (Q, U) is also a neighbourhood of 0. It is 

easy to show that no continuous controller exists to stabilize the nonholonomic integrator 

by using Brockett's condition. For fl (0,0, E) it is easy to see that' there is no f00. Hence 

Brockett's condition rules out the existence of a continuous feedback. 

A further reason to apply hybrid control strategies to continuous systems is that it might 
be desirable to pursue different objectives during the operation of the system. In such cases 
heterogenous hybrid controllers are applied. 
In some cases where hybrid systems are controlled it does not mean that hybrid control 

strategies are involved. Some hybrid dynamics can be controlled with purely continuous or 
discrete control laws. Even then hybrid system theory is needed, since the controlled closed 
loop system will still be of a hybrid nature. 

Sliding mode 

Sliding mode control is probably one of the oldest hybrid control strategies. Differential equa- 
tions with discontinuous right hand sides (hybrid systems) have been studied for a long time. 
Researchers like Filippov and Utkin developed solution concepts for piecewise continuous dy- 

namics. Their research work was more focused on analysis. However, it was straightforward 
to use this solution concept for controller synthesis. These days sliding mode control is taught 
in undergraduate courses where books such as the one by Slotine and Lee (73) are used. The 

notion of a sliding mode is quite simple. On the boundary of at least two different dynam- 
ics, the vector fields point towards the boundary. In this way the trajectory cannot leave 

the boundary, since whenever it might leave the boundary it is pushed back. The principle 
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of the sliding mode controller is now to define a sliding surface, which is the boundary of 
two dynamics with vector fields pointing towards the boundary, for the dynamic we want to 

control. In this way each trajectory for every possible initial condition will go to the sliding 
surface since the vector fields point towards the sliding surface. Once the sliding surface is 

reached the trajectory will slide along the surface. Here the solution concept of Filippov is 

used and the sliding dynamic is described by the differential inclusion of the dynamics which 

are valid on the neighbour domains. The sliding mode control is often implemented as a state 
feedback controller with two different state feedback gains. Dependent on the domain, the 

current state feedback gain is valid. 

State feedback control 
A lot of work has been done in this area. However, most of the work is only applicable to 
hybrid systems which admit piecewise linear or piecewise affine dynamics (37). The synthesis 
is usually based on finding a common quadratic Lyapunov function, i. e. V(X) = XTpX. The 

synthesis procedure is then cast into a Linear Matrix Inequality (LMI)(20) (62), which are 

conveniently solved by commonly available tool boxes. Using the Lyapunov inequality 

(Aq _B qKq 
)Tp + P(Aq - BqKq) <0 Vq 

two things have to be found simultaneously. One is the common performance P and K, 

which satisfies this inequality. 

The solution of an optimal control problem, finding a control input which minimizes a given 

objective function, is also usually given as a function of the states and results therefore in 

state feedback. 

Optimal control 

Optimal control for hybrid systems is closely related to optimal control of continuous or 
discrete time systems. Sometimes, the popular quadratic objective function used in linear 

systems is taken (60), (23). Usually small modifications to the standard quadratic objective 
function are made. In many cases it makes sense to penalize a change of the discrete state, 
therefore a penalty for mode changes is added. This prevents the system from taking Zeno 

executions, since infinite mode changes in finite time would mean infinite cost. 
In some cases it is suggested to use the suboptimal solutions (43), (44) for the actual imple- 

mentation, since the optimal solution is hard to obtain. A different approach is to compute 
upper and lower bounds on the optimal cost (38). By optimizing both, the gap can be reduced 

and possibly closed such that the optimal input (cost) is found. 
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Model predictive control 
Model predictive control for hybrid systems is quite similax to that of continuous or discrete 

systems. A performance index is minimized over a finite horizon, subject to the dynamics 

and constraints of the hybrid model. The performance index is usually 2-norm (quadratic) 

or infinity norm or mixtures of both. Only the first step of the optimal sequence is applied 

at time t. At time t+1a new sequence is evaluated to replace the previous one. This online 

re-planning provides the desired feedback control. The solution of this optimization process 

is found by solving the mixed integer linear program MILP, for linear performance index, 

or a mixed integer quadratic program MIQP for quadratic performance. Results have been 

reported by Bemporad and Morari which use MPC for their MLD systems. 

For finite time optimal control of lineax hybrid systems with constraints, the optimal control 

law can be stated as a piecewise linear state feedback controller. Bemporad and Borrelli (15) 

(14) have shown some results for the MLD systems. The advantage of this approach is that 

the control law can be stated explicitly as a function of the state space. In this way the state 

feedback gains can be computed off-line. This allows application of MPC to systems with 

fast dynamics. An example is the slip control of a car by Borrelli (19). 

Scheduling stable switching strategies 

This area is concerned with strategies showing how to switch from one mode (subsystem) to 

another in order to stabilize the system or maintain stability, Malmborg (57) considers the 

scheduler design for a finite number of linear stable subsystems. It is then easy to compute a 

Lyapunov function for each subsystem. The scheduler chooses the current system depending 

on which Lyapunov function achieves the lowest value. In this way it can be guaranteed that 

the continuous dynamics of the hybrid system are stable. 

Another approach is to restrict the time between consecutive switches. A minimum time, 

referred to as the dwell time, is computed for which a stable subsystem has to be active. 

Note that this prevents the system from Zeno executions. Michel (84) also develops various 

switching laws. He shows that for hybrid systems consisting of stable and unstable subsys- 

tems, stability can be guaranteed if stable subsystems are active for a minimum time, and 

unstable subsystems axe active for a maximum time. 

A more difficult problem is addressed in the scheduler design where the hybrid system consists 

only of unstable subsystems (83). Wicks, Peletis and DeCaxlo (82) considered the problem 

of two unstable linear subsystems. The only assumption made, but an important one, is that 

the matrix pencil, -y,, (Al, A2), contains a stable matrix. Let al E (0,1) be the value which 

renders this convex combination A= ajAj + (1 - al)A2 to be stable. Then there exists a 

Lyapunov function for the switched system. 
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a(A Tp + PA1) + (1 - a)(ATp + PA2) <0 12 

This implies that for a nonzero xE R' either 1: XT(ATp + PAI)x <0 or 2: XT Tp + (A2 

PA2)X < 0. Hence the switching strategy is to select the subsystem 1 or 2 dependent on 

which inequality, i. e. 1,2, is negative. 

Simultaneous stabilization problem 
The simultaneous stabilization problem and strong simultaneous stabilization problem (81) 

is the problem of stabilizing a number of dynamics with one and the same controller. The 

requirement of strong simultaneous stabilization (SSSP) is the same but in addition the 

controller needs to be stable as well. Note that this approach only stabilizes each dynamic 

individually. It is not guaranteed that changing between the specified dynamics will lead to 

a stable dynamic. However, with additional arguments like dwell times (see above) stability 

under switching can also be guaranteed. Results have been presented for state feedback and 

output feedback (79), (80). The approach is promising for changes that occur only once. 
One application is safe control in the presence of folds. Possible fold scenarios are modelled 

and each fold dynamic can be stabilized by the same controller. In this way safety critical 

systems can be operated in emergency conditions. 

Heterogeneous Hybrid Control 

One of the most recent developments in hybrid systems is in the area of heterogeneous hybrid 

control. The word heterogeneous is used to indicate that the control structure changes. With 

this type of hybrid controller not only the parameters of the controller will change dependent 

on state, time or input, but also the structure of the controller might change. It is easy to 

see that such controllers make sense since we might change the objective depending on the 

situation. Under some operation conditions it might be desirable to be stable and robust no 
matter how conservative the controller is. In other cases where we do not have to take care of 
resources, we are only interested in driving the system at maximum throttle. For such cases 
not only the parameters or weights will change, the whole controller structure will change. 
One example from the process industry is the use of a time optimal controller together with 
a PID controller (57). The time optimal controller is used to change from one set point to a 
different set point as quickly as possible. The objective is to reach the new desired operation 
condition in minimum time. During the transition from one operating condition to the next 
we are not concerned with stabilizing the process. As soon as we reach the new operation 
condition the objective changes. We want to stay in this operating point. In order to achieve 
the new objective we will switch to the PID controller, which stabilizes the process at this 
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operation point. This example clearly demonstrates that for some processes the objective 

changes. The controllers which render such requirements have different structures as well as 
parameters, i. e. hybrid heterogeneous controHers. 

Controller synthesis as Game 

The idea of this approach is to treat the controller synthesis as a game between the controller 

and the disturbance (54). In this approach the controller tries to prevent the trajectory from 
leaving a desired region of the hybrid state space, sometimes called good states, under all 
possible interferences from the disturbance (55). In this context the notion of controlled 
invariance is derived. A subset of the hybrid state space W is called controlled invariant if 
for all states in W there exists a control such that the trajectory stays in W. To derive the 

notion of maximal controlled invariance the operator controllable predecessor is derived. The 

controllable predecessor, Pre. (K), are the states that can be forced to jump into K by some 
control u. Pred(K) axe the states that may jump out of K for some disturbance d, while 
Reach(Q, 0) are the states which can be continuously driven into Q avoiding 0. With these 

operators it is then possible by iterative exclusion to find the set of states which can never be 
left for any action of the disturbance. This set is then referred to as the maximal controlled 
invariant set. 
Applications to aircraft collision avoidance are reported in (61). This is the problem of 

computing the distance where the aircrafts should change flight mode and fly a circle to 

avoid collision, given a set of disturbances. 

1.2.4 Identification of hybrid systems 

Identification of hybrid systems is an emerging topic. Only a few results have been pub- 
lished so far; some pioneer work can be found by Ferrari-Trecate (31), (34), (33). The main 
achievements so far are in the class of piecewise affine systems. The problem of identifying 

a piecewise affine system is threefold. One task is to group the identification data such that 

only data belonging to the same affine map is collected. The second task is to identify the 

parameters of each affine map, and the third task is to identify the domain on which each 
affine map is valid. This is already a much more complicated problem than identifying the 

parameters of only one affine map. 
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1.3 Summary 

Over the last 2 decades, much research work in the area of hybrid systems has been carried 

out. It has been shown that there are many dynamical systems which incorporate continuous 

as well as discrete dynamics. Various modelling frameworks have been developed. Some 

frameworks are able to model vaxious classes of hybrid systems, while limiting the possibility 

of exploiting structure to derive general conditions for analysis or controller design. Other 

frameworks have limited applicability but facilitate a lot of structure which makes it easier to 

derive conditions for stability, reachability etc.. It is fair to say that most hybrid systems are 

well modelled in the current frameworks. However, not much work has been done modelling 
hybrid systems incorporating uncertainties or parameter variations. 
In terms of analysis most areas have been covered. However, the main focal point has been 

hybrid systems which consist of linear subsystems. A lot of work has still to be done for 

hybrid systems incorporating nonlinear dynamics. Only a few attempts have been made to 

analyze robustness of hybrid systems, with respect to variations in switching or parameter 

variations. 
Control of hybrid systems, and especially hybrid control, has boosted a lot of reseaxch. Lim- 

itations of continuous feedback were shown neaxly 2 decades ago when Brockett showed that 

for systems like the nonholonomic integrator there does not exist a continuous feedback law 

which stabilizes the system. This certainly triggered a lot of research work investigating 

hybrid control strategies. Also, the control of hybrid systems is a quite mature area ranging 

from sliding mode control to model predictive control of hybrid systems. But again, robust 

control seems to be neglected and is far away from the maturity that it has for continuous 

systems. There also seems to be a lack of robust scheduling strategies. The observer synthe- 

sis is rarely discussed, which leaves more room for research. Separation principles, between 

controller and observer, have to be shown for many classes of hybrid systems. 

Identifying hybrid systems is definitely an emerging area. A fundamental procedure for iden- 

tification of hybrid systems, particularly linear hybrid systems, has been established, however 

many details have to be worked out. 

We have seen that the theory of hybrid systems is quite mature with respect to modelling 
frarneworks. However, in terms of analysis, controller and observer design as well as iden- 

tification, there are still some major gaps to be closed. Robustness issues especially have 

to be examined, since the control of physical systems usually makes handling of parameter 

uncertainties and variations inevitable. This thesis tries to develop new methodologies to an- 

alyze robustness of hybrid systems with respect to parameter variations. In addition robust 

controller synthesis for hybrid systems will be investigated. 

Many controllers use state feedback which requires knowledge of the current state. In some 

cases the states axe online measurable. However, if that is not possible an observer has to be 

18 



1 Introduction 

incorporated, which provides the controller with an estimate of the states. There is a lack of 
observers, which do not only make the estimation error converge, but are also optimal with 
respect to minimizing the covariance of the estimation error. It would be nice to have such 
a dual to the Kalman filter for hybrid systems also. In this thesis we will propose such an 
optimal observer for hybrid systems to overcome this gap in the theory. 

Many contributions need to be made in the field of identifying hybrid systems. In particular 
theory needs to be developed which supports the proposed methodology. It is also unclear if 

there are better ways to identify hybrid systems like the currently proposed ones. 
The thesis tries to close some of the gaps in hybrid control theory. Especially we are con- 
cerned with a usually neglected class of hybrid system, the nondeterministic hybrid system 
in piecewise linear form. This class of hybrid system consists of linear or affine subsystems 

and has unknown or nondeterministic discrete dynamic. In this thesis we will be concerned 

with robust control and optimal control of this class of hybrid system. Since these controllers 
apply state feedback an optimal observer design is proposed for the case that not all contin- 
uous states are measurable. An outline of the work and contributions of the thesis is given 
in the next chapter. 

19 



2 Outline of the thesis: 

The thesis is concerned with hybrid systems in piecewise lineax or affine form, where the 
discrete dynamic is unknown. It is shown how such a class of hybrid system can be obtained 
from time variant nonlinear systems. In an introduction example the performance advances 

of hybrid feedback over purely continuous feedback is shown. 
In order to assess robustness of such hybrid systems an analysis framework is developed. A 

robust controller design is proposed which can cope with parameter variations. 
The thesis shows that optimal control for this class of hybrid system is not straightforward. 
Since there is no influence on the discrete dynamic, only upper and lower bounds on the 

optimal cost can be computed. The upper bound is used to design an optimal control law 

which limits the cost by the upper bound and guarantees stability. Since the robust control 

as well as the optimal control depends on state feedback, an observer design for this class of 
hybrid system is proposed. 
For analysis and controller design models are needed. In the event that the equations to 

model the hybrid system are not known they need to be identified. The identification steps 

are shown together with sufficient conditions under which these results can be obtained. 

2.1 Overview of thesis contents 

The thesis is structured in 6 main sections, containing in total, 9 chapters. 

Section 1: Introduction 

The first section consists of chapters 1-3 and contains the introduction to hybrid systems 
including a survey of previous research work. An example of hybrid control is given. The 

example shows how a linear hybrid system is obtained form a nonlinear time variant system. 
Analysis shows that no continuous feedback exists which renders the controlled system to 
have the desired performance. Consequently a hybrid controller is designed, which stabilizes 
the dynamics by using a discontinuous feedback. The merits of this discontinuous feedback 

20 



2 Outline of the thesis: 

are displayed in an illustrative example. After this example the second main section follows. 

Section 2: Controller design for hybrid systems 
This section is concerned with the control of hybrid systems in piecewise linear (affine) form 

with unknown discrete dynamic. The section contains 3 chapters (chapters 4-6). The first 

chapter is concerned with robust control of this class of hybrid system. Robustness analysis 

and robust control are important since almost all models contain inaccuracies, like parameter 

variations. Therefore it is important to have robustness analysis and robust controllers for 
hybrid systems too. 

Chapter 4: Robust control of hybrid systems 
This chapter introduces a method for controller design of uncertain and parameter-variant 
linear hybrid systems. The idea is to specify a desired performance, which is represented by 

a nominal system. Around this nominal system a compact set of systems is obtained which 

will be robustly stable against switching among members of this set: such a set of systems 
is then called the stable switched set. It is shown that obtaining the stable switched set is a 

signomial program. Upper bounds on signornial programs can be easily obtained, which are 

used to compute the stable switched set. A sufficient condition is given for the existence of a 

common state feedback controller that stabilizes an uncertain and parameter-variant linear 

hybrid system on a stable switched set. Further, a synthesis procedure is proposed in terms of 

a constrained convex optimization problem that places the uncertain and parameter-variant 
linear subsystems optimally close to the desired nominal system, using one common state 
feedback controller. An extension is shown for the case that no common state feedback con- 
troller exists. The synthesis framework is then applied to a simple example to demonstrate 

the procedure. It is shown that real systems, like the control of active suspension, transform 

naturally into uncertain and parameter-variant linear hybrid systems. 

Besides robust control, optimal control for hybrid systems is of broad interest. Chapter 5 

shows that systems with variations in sampling rate, where the variation is decided by a 

scheduler, are an example of linear hybrid systems in discrete time. Using this particular 

set-up it is shown how optimal controllers can be designed. 

Chapter 5: Optimal control of hybrid systems In discrete time r 
This chapter addresses a class of hybrid systems with linear dynamic as they occur in real-time 

systems with varying sampling rate. In such a set-up the subsystems are obtained by sampling 
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a continuous system at different sampling rates. The switching between the sampling rates 
is decided by a scheduler. Fast sampling is chosen if enough computational resources are 

available, and slow sampling otherwise. In order to motivate, an example is given in which 

a stable continuous system is sampled at two different sampling rates. Two controllers are 
designed minimizing the same continuous quadratic loss function with the same weights. It 

is shown that although the design leads to stable controlled closed loop systems, for both 

discretizations, the resulting system can be unstable due to variations in sampling rate. To 

avoid that problem two solutions are suggested. The first solution shows how restrictions 

on variations in sampling rate can be imposed such that only stable sequences are chosen. 

The second solution presents an optimal controller design in which a bound on the cost, for 

all possible sampling rate variations, is computed. This results in a piecewise constant state 
feedback control law and is robustly stable for all vaxiations in sampling rate. The controller 

synthesis is cast into an LMI, which conveniently solves the synthesis problem. To illustrate 

the procedure, the introduction example is repeated with the proposed LMI synthesis method 

and the control law is given, which is robustly stable against variations in sampling rate. 

In the following chapter optimal control for linear hybrid systems with unknown discrete 

dynamic is proposed. This chapter is similar to the previous chapter. The main difference is 

that derivations are made for hybrid systems in continuous time. 

Chapter 6: Optimal control of linear hybrid systems in continuous time 

This chapter is concerned with optimal control of linear hybrid systems in continuous time. 

As in the previous chapters there is no control about the discrete dynamic, i. e. whichever 

current subsystem is active cannot be influenced by the control action. Further, the discrete 

dynamic is unknown or nondeterministic but changes can be detected immediately. For this 

class of system a control input is sought which minimizes the standard quadratic performance 
index. Since the discrete dynamic is arbitrary, only bounds on the optimal cost can be derived. 

For the worst case switching sequence an upper bound on the cost can be derived, while a 
lower bound is found using the best case switching strategy. In order to obtain the lower and 

upper bound, an LMI is derived which gives the solution by solving a convex optimization 

problem. It is shown that together with the upper bound a control law is found which is 

robustly stable for all possible switching sequences, while limiting the cost. 

The section controller design for hybrid systems ends with chapter 6. All controllers proposed 
in this section are for the class of linear hybrid systems with unknown discrete dynamic, and 
rely on state feedback. In various cases it is not possible to measure all states. Therefore 

observers are needed, which estimate the current continuous states. Unfortunately there are 

not many results for hybrid observers in the current literature. The next section tries to 
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overcome this deficit and proposes an optimal observer design for linear hybrid systems. 

Section 3: Observer design for hybrid systems 
In the previous section controller synthesis methods have been described, which stabilize the 
hybrid system robustly or where the control input minimizes a quadratic performance index. 
All those controllers have in common that the control input is given as a function of the states. 
Some of the controllers depend only on the continuous states while others also depend on the 
discrete state. For this reason the states need to be available. In some cases the states can 
be measured as shown in the ABS examples. However, there are vaXious situations where it 
is impossible to measure the states. In these cases, observers have to be built which give an 
estimate of the current state. Due to the separation principle of observer and controller, as 
shown in (56) (29), it can be guaranteed that both converge. 

Chapter 7: Observer design for hybrid systems 
In this chapter we are concerned with building such an observer. It is first shown that it is not 

straightforward to design such an observer, and examples demonstrate that the asymptotic 
Kalman filters can fail. Our design overcomes this problem. It converges robustly under all 

admissible mode changes. The proposed observer is given by a piecewise linear observer gain. 
It is further optimal in the sense that it minimizes the covariance of the estimation error. 
This is similar to the Kalman filter for discrete or continuous time systems. Further, we show 
that the synthesis of the observer can be cast into an LMI, which conveniently solves the 

synthesis problem. To demonstrate the synthesis procedure, an example is given. 

Analysis and controller design depends on models. These models describe the system's be- 
haviour. In some cases it is possible to obtain such a model from equations, i. e. laws of 
physics. If this is not possible, models are identified from input-output data. This is usually 
done by solving an optimization problem, which finds the optimal mathematical model that 
describes the input-output data best. 

Unfortunately there are not many results for identification of hybrid systems. Even for linear 
hybrid systems there is hardly any work. The next section will address some fundamental 

questions for identifying linear hybrid systems. 

Section 4: Identification of hybrid systems 
In this section the identification of hybrid systems in piecewise affine form is discussed. The 

problem of identifying such systems is threefold: the classification problem, which input- 

output data belongs to which affine dynamic. The regression problem is to identify the 

parameters of each affine dynamic and the domain reconstruction problem, reconstructing 
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the area where each dynamic is valid. 
Chapter 8: Identification of hybrid systems in discrete time 

The problem is solved in a multistage optimization problem. In the first stage the input- 

output data pairs are collected. In this way local data sets (LD) are generated containing the 

c nearest neighbors. A model for each LD is fitted. This is done by the least squaxes: method. 
The model is described by the local paxameter vectors (LPV). Dependent on the LD, we get 

pure LPV if the LD contains data only from the same dynamic. If the LI)s contain data from 

different dynamics we obtain outliers. In the next stage the LPVs which describe the same 

model are clustered. Clusters which contain LPVs from only one dynamic are called perfect 

clusters, and clusters which also collect outliers are called mixed clusters. For each cluster 

one parameter vector is found. The clustering and the identification of the single parameter 

vector are done in a single optimization procedure. 
Conditions are given under which the optimization procedure produces perfect clusters. It is 

shown that this elementary problem is not trivial. Based on this result methods are proposed 
to detect outliers. The procedure is explained in an example. 

Section 5: Conclusions 

A summary of the thesis is given here. Future research directions and open problems are 
discussed. 

2.2 Thesis contributions 

The thesis is concerned with analysis, controller and observer design as well as with the iden- 

tification of hybrid systems in piecewise linear/affine form. The contributions of the thesis 

are fivefold: 

- It was shown how nonlinear systems can be transformed into a class of state dependent 

uncertain and time-variant piecewise linear systems (chapter 4). For stability analysis 
a framework was proposed for this class of hybrid system. For fast computation of the 

stability radius analytical expressions of the upper bound on signomial programmes 
were given. This work has been published in (67), (68). 

- It was shown that sampled data systems with varying sampling time can be viewed as 
linear hybrid systems (chapter 5). A novel example was given where a continuous system 
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was sampled at two different sampling rates. A controller was obtained minimizing the 

same continuous loss function for both sampling rates, which led to a piecewise constant 

state feedback. Although it was assumed widely that such a control law would guarantee 

stability, it was found that this is not necessarily true. This work has been published 
in (66), (64). 

- For the class of hybrid systems consisting of switched linear dynamics, where the switch- 
ing logic is unknown but the discrete state is measurable or observable, an optimal con- 
troller synthesis was proposed (chapter 5). It was shown that the proposed controller 
is robustly stable against all possible switching sequences. 
To obtain a performance bound and state feedback gains a Linear Matrix Inequality 
(LMI) was derived (chapter 5-6). This work has been published in (64). 

- The duality between controller design and observer was exploited to design an observer 
for linear hybrid systems (chapter 7). An observer design was proposed similar to the 

observer design for purely continuous or purely discrete systems as stated by Kalman. 

The design does not only guarantee that the estimation error converges quadratically, 
it also minimizes the covariance of the estimation error. For observer synthesis an LMI 

has been derived. 

- Open problems in identification of hybrid systems in piecewise affine form have been 

solved (chapter 8). Sufficient conditions have been derived under which the optimization 

problem of clustering and identification produces non-mixed clusters. Based on this 

result, methods for outlier detection have been proposed. This work has been submitted 
in (35). 

2.2.1 Publications 

In terms of publications the work in this thesis has led to 

- two journal papers (68; 80) 

- eight refereed conference papers (67; 66; 81; 63; 79; 65; 64; 41) 

- one book chapter (42) 
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3 Control of Anti-Lock Brake with 
heterogenous hybrid controller 

In this chapter we will give an introduction to hybrid control systems. First the modelling 

aspect is covered. Using an example it is shown how physical laws, which incorporate con- 
tinuous as well as discrete dynamics, axe modelled in a hybrid system framework. Analysis is 

carried out to show that there exists no continuous feedback law which achieves the desired 

performance. Motivated by this a hybrid controller is designed. 

As an example an Anti-Lock Brake (ABS) controller is derived. The dynamics of a braking 

car need to be viewed as a hybrid system, since discontinuous changes in road condition make 
the friction coefficient jump. It is shown that the dynamics of an ABS can be conveniently 

modelled by a lineax uncertain hybrid system. The hybrid syst7em consists of linear uncertain 

subsystems, which are state dependent, i. e. their validity depends on the continuous state. 
Analysis is carried out to show the highest possible braking performance. It is shown that 

a continuous feedback law will not achieve the maximum braking performance. Hence, a 
heterogenous hybrid control law is derived. The controller has similarity with a sliding mode 

controller. For laxge control errors the trajectory is brought back to the desired surface with 
large gains. Around the desired operating point the dynamic is stabilized with a PI controller. 
The merits of this controller are shown in an example. 

Before starting with the braking dynamics a brief history of the design of ABS is given where 

the advantages of ABS are explained. This chapter has been published in (65), and serves 

as an illustrative introductory application of hybrid control, it also gives a novel approach to 

ABS control. 

3.1 History of ABS 

The origin of anti-lock brake controllers (ABS) lies in the design of the so called anti-skid 
braking controller. The first anti-skid braking controllers were designed for trains in 1908. 
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3 Control of Anti-Lock Brake with heterogenous hybrid controller 

After Bosch received a patent in 1936 for an electro-hydraulic anti-lock system such systems 

were build into aircraft in the 1940's before their introduction to passenger cars in 1969 when 
Ford built such a system into their motor-cars. The implemented system was marketed under 
the name "Sure-Track7 and due to shortcomings in performance and poor reliability as well 

as high price it was taken off the market again. After Bosch managed to overcome these 

shortcomings with a more sophisticated electronic controller design in 1978 the ABS was 

again put into a car, this time it was a 1979 Mercedes-Benz. After 1984 the ABS was also 

reintroduced on the American market. Today ABS comes as a standard in nearly every new 

car. 
The advantages of an ABS can be clearly seen when comparing the emergency braking sit- 

uation of cars with and without ABS. In emergency braking situations the driver wants to 

reduce the speed of the car as fast as possible, therefore the driver presses the brake pedal 

as hard as possible. In cars without ABS the wheels will lock and the car win start sliding. 
This has undesirable effects. Since the car is sliding the friction between tyre and road will 
have decreased. Hence the distance after which the car will come to a standstill will increase. 

The tyre wear is not equally distributed over the whole tyre, since the wheel is locked and 

the tyre is sliding on the very same tyre part. Another undesired effect is that as soon as the 

wheels lock the car becomes unsteerable. This might be quite dangerous in the case when the 

driver wants to avoid an obstacle during the braking manoeuvre. In a car with ABS sensors 

monitor the rotation of the wheels and as soon as the wheels are about to lock the brake 

pressure is reduced. Therefore the ABS prevents the wheels from locking. Since the wheels 

are still rolling steerability is maintained, and a higher friction between street and tyre is 

achieved which leads to a shorter braking distance. 

In the following a nonlinear longitudinal car model is presented. It is shown that the dynam- 

ics can be described by a linear uncertain hybrid system. The analysis will assess maximum 
braking performance and stability issues. It is shown that a continuous feedback law can- 

not achieve the maximum braking performance considering the uncertainty with which the 

friction/slip curves are given. To overcome this problem a heterogenous hybrid controller is 

suggested. 

3.2 Modelling of the longitudinal dynamics 

In this section we derive the time-varying nonlinear equations of a quarter car model (81). 
We simplify and linearize them such that we obtain a suitable hybrid representation to carry 
out linear analysis and controller design. 

For the control design we describe the quarter car model as shown in figure 3.1 The equations 
of motion for the quarter car are given by Newton's second law and the sum of the momenta 
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Figure 3.1: Quarter car slip model 

at the Wheel 

7n7) =-F, (: 1.1) 

Jcý = rF., - T,, sign(w) (3.2) 

where v: V(IlIiCle SlWCd, M: VChiCle rnLss, J: wheel inertia, r: wheel radius, A: tyre slip, p: 

friction finiction between tyre and road, F.,: tyre friction force, FZ: Vertical fOrce (dyllalllic 

load), 1'1,: brake torque. 

'I'lle differciice between wheel velocity and car body velocity determines the wlicel slip 

A 

The tyre friction coefficient is given ws the ratio of tyre friction force and verticiLl foy(v 

F, 
= /t(A, p1j, a, 1ý) (: 1.4) F, 

With these equations we can derive the dynamics of the uncontrolled braking quarter car. 
Using equation (3.1) and substituting for F., with (3.4) we get 

(3.5) 

, ifter solving for i). Solving the slip equation (3.3) for u) itn(l (jiffe, -(ý, jt, i; tt, ijjg wit, 11 t to r 

time, we get 
i) -0- vA Lj 

SIII)stitlithig (3.6) into (3.2) and solving for A, we get 

(: i. (i) 

i) (I -- A 1.2 1' 
F, - + -- TI, (3.7) 

h) . . 171 
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3 Control of Anti-Lock Brake with heterogenous hybrid controller 

Using the equation for the friction coefficient (3.4) we obtain 

1[1 
(1 _ X) + r2] 

, ;, tz(A) +1r Tb (3.8) 
vmivJ 

Thus, the time-varying nonlinear equations of a quaxter car are: 

1r 
A= _1 

[1(1_, 
)+r2 

] 
Fý. p(A) + --Tb VMVJ 

1 Fý. (A) 
M 

The friction coefficient can vary in a very wide range, depending on factors like a) road surface 

conditions (dry, wet or icy), b) tyre side slip angle, and c) tyre brand (summer tyre, winter 

tyre). 
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Figure 3.2: jL(A) for wet and dry surfaces and winter tyres 

The qualitative dependence of A on surface conditions and tyre brand is shown in figure 

3.2. The task of the ABS controller is to robustly stabilize the system around the maximum 
friction, such that minimum braking time, i. e. distance, is needed and the car's steerability 
is maintained. Before we start with the analysis and controller design we cast the nonlinear 

equations into piecewise linear equations. This is done by approximating the friction/slip 

curves by piecewise linear functions. After we have found a piecewise linear representation 
for the friction/slip curves the non-linear model of the braking quarter cax is linearized. 

In order to cover all possible dynamics we will approximate the 1L(, \) with two piecewise linear 
functions 

aA for A<0.1 (3.9) 
13 

-ZA+ý±0.2 for A>O. l (3.10) 
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3 Control of Anti-Lock Brake with heterogenous hybrid controller 

where aE [5.75,9.751 and the notation ±0.2 means that any arbitrary, not necessarily fixed, 

value can be assumed in the interval (-0.2,0.2). With this approximation we cover most 

values of p. The approximation is shown in figure 3.3. 

mon 

I0 

....... . .... . .... .... ............... .... ... 
Unco: rtainty Interval 

0.1 IV ----I.. 11.11 .I... 

0.1 ei 03 0.4 0.6 0.6 0.7 

wh" silp 

Figure 3.3: Approximation of jL(A) with uncertain piecewise linear functions 

Since road surfaces can change arbitrarily we need to cope with discontinuous jumps of p, 

which may take place at arbitrary times. These unpredictable changes of /4 are covered by 

the affine uncertainty term. 

We note that since the mass m of a car is quite large, the term [-I(l - A)] Fý, II(A) I< 
VM 

r2] F ZJJ(A) v 
[7 

. 
1, such that we will neglect it. For linearization we approximate the system 

by the first terms of the Taylor series f (A, v) czý f (A,,, p, V"P) + df I xvp, v. p 
(A - Awp) +1J. \wP, vu, P IX 'au 

(v - vwp), such that if we do not use a change of coordinates we will get a linear (affine) system 
description 

:b=A, x + Eq + Bu* 

Y= CqX (3.11) 

'q=fW 
where x(t) EUXC R', qEQ= 11,2, ---, M, ---, N} C Z+ are the continuous and dis- 

crete states, respectively (Note: that the linearization can be arbitrarily dense, which will 
influence the number of subsystems N, where N>M. However, this has no influence on the 
following analysis nor on the controller synthesis since we use only the analytic representa- 
tion). u(t) EUC R+ is the control input and A., B, Cq are the system, input and output 
matrices, respectively, of the subsystems. Eq are the affine terms and f: X -ý Q is the 
function indicating which subsystem is valid. For each subsystem qE {1,2,..., M}, which 
are subsystems where A: 5 0.1 we have 

- a--F Aq 
F 

-. r2, \. 
M (3.12) 

a u'p 
-a 

P rl 
VWPJ 

0 
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3 Control of Anti-Lock Brake with heterogenous hybrid controller 

Eq =[ 
02A 

(3.13) 
-a 

Fzr 
VWPJ 

and for subsystems qE {M + 1, M+2,..., N}, which axe subsystems where A>0.1 we have 

Fz 0 
4m Aq 

frJ2 §r2 F ýr2 
(3.14) 

4+V. pj 4v. pJ 4 0.2- - 

0.2) F 

(3.15) Eq 4 Tn 
4 eF-2 '±O 

7- .7 2P .P 

and BT= [0, r 1, U* =u-v, xT = [v,, \] for qE 11,2,..., N}. We have now cast the time- 7 
varying nonlinear system into a linear hybrid system with uncertainty. In the next section 

we will analyze the dynamics of the braking car by using its hybrid representation. 

3.3 Analysis of the ABS dynamics 

3.3.1 Stability analysis 

For the stability analysis we transform the system matrices into controller canonical form 
Aq = TAqT-1 with Tj Vq: ý, M and T2 Vq >M 

2 Tl =[]T 
aFz 

01 

such that we get 
012 

2Fr 
-a -avwpl 

where A<0.1 and 

+ 
F2., 

=2 
f2,2 �2 

Aq = A-p 

1 

wv j 
3: 0.2 4 ; v., j 4;. p 4 

where A>0.1. Since the system matrices are now given in controller canonical form it is easy 

to see whether or not the systems are stable. A system is Hurwitz stable if and only if all 

coefficients in the lowest row of the system matrix in controller canonical form are negative. 
We now immediately see that the subsystems qE {1,2,..., M}, i. e. subsystems where 
A<0.1, are stable since the coefficients in the lower row of the system matrices are negative 
for all possible parameter variations. However, the subsystems qE {M + 1, M+2, 

-. .' 
NJ, 

i. e. systems where A>0.1, are not globally stable. However, we should not forget that none 

32 



3 Control of Anti-Lock Brake with heterogenous hybrid controller 

of the subsystems are valid on the whole state space. So we need to check if the subsystems 
for A>0.1 converge for 0.1 <A <- 1 and 0<v. Taking the first equation for i) 

. 
F, -\ 3 
im +i ±O. 2 

m<0 
VA 

we see that the right hand-side of this differential equation remains negative since the maxi- 

mum value of ý occurs at A=1, which reduces the equation to 

1D =1±0.2 1 --: ý 0 (3.18) 
m 

and it is easy to see that it is negative for all possible values. Hence for all values of A and 

v the differential equation (DE) converges to values which belong to subsystems (3.12). The 

second differential equation for A 

z 
22 3z+ Fr A 

0.2) 
vj 4vJ <0 VA, v (3.19) 

has a right hand-side which is also negative for all admissible A and v. This can be easily 

seen if we substitute for the A which would make the equation as least negative as possible. 
This is A=1 which brings the equation into this form: 

2 
'tý 0.2 z<0 Vv (3.20) 
vj 

It is easy to see that this equation is also negative for all admissible velocities v. Hence also 

this DE converges (tends) to A which belong to subsystems (3.12), for all admissible values 

of the states. We have seen that the subsystems (3.12), (3.14) converge individually, for all 

admissible initial states, to x -= 0. In general this does not mean that the whole system is 

stable. However since the states converge for any initial condition from subsystems (3.14) to 

states which belong to the subsystems (3.12) and (3.12) converges to zero, x -4 0 as t --+ 00. 

Hence the system is stable. 

We have seen that the system is stable. It is further desirable to analyze the performance 

such that we know the maximum deceleration. 

3.3.2 Computation of the maximum deceleration 

We would like to compute the maximum deceleration. It is expected that the maximum 
deceleration is 1D ,:: z% -g if the air resistance is neglected. Remark: in general the air resistance 

should not be neglected since its contribution especially at higher velocities is considerable 

particularly when the vehicle is equipped with spoilers. 

If we look at the friction/slip curve the highest friction occurs at 0.1. The models 

which are valid for A=0.1 are the ones described by (3.12). We take the first row of (3.12) 
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3 Control of Anti-Lock Brake with heterogenous hybrid controller 

-a-F -A and equate it at A=0.1, hence we obtain ii -29 since F.. =g-m. For the 
M 10 

best possible friction at A=0.1 we obtain i) = -0.975 - gzt; -g. 
In the next section we proceed with designing a controller, which will achieve this maximum 
deceleration. 

3.4 Controller design 

The objective is to design a controller which decelerates the vehicle as fast as possible and 

maintains steerability. We have seen that the maximum deceleration is reached at a slip of 
A=0.1. At such a slip the wheel is far away from being locked, such that we maintain the 

steerability of the car. We have also seen that it is sensible to approximate the nonlinear 

car dynamics by (3.12) and (3.14). For (3.12), i. e. subsystems where A: 5 0.1, we would like 

to increase or maintain A, i. e. we would like ý >- 0. For (3.14) we would like to reduce A 

such that we get better steerability and braking performance, i. e. we would like < 0. We 

compute now the control input space in dependence of the state space. Taking 

(1 
'X) + r2] F 

zJI(A) +1r ý=-v 
M7v 7Tb (3.21) 

for A<0.1 and v>0 we want to have > 0. Therefore we take 

0 :ý -1 
1 

(1 + 
r2 

aF,. A +1r Tb (3.22) 
v 

IM 
il vj 

hence, 
j1 

(1 r2 Tb '2t ýýJ- 
M 

-, i Fý. A (3.23) 
r[I 

Using the simplification as before we obtain 

Tb arFA (3.24) 

For the maximum value of A, A=0.1 

Tb r F,. (3.25) 

For subsystems (3.14) we desire a negative i. e. ý<0, hence 

0- 
1 

(1 _ \) +r2 a -i -] Fp(A) + 
"Tb 

(3.26) 
VIM iVJ 

Simplifying we obtain 11 Tb < For F... (3.27) 

for values of A which axe close to 0.1. It is easy to see that there exists no continuous state 
feedback controller that achieves the desired performance if it is assumed that the friction can 
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vary arbitrarily. This does not mean that there exists no continuous feedback which stabilizes 
the system. There are of course continuous controllers which stabilize the system. It can be 

shown that admissible control inputs are 0 
-< 

Tb < UrF, which stabilize the system for any 
initial condition. Tb >0 is a technical requirement since the wheels during braking cannot 
be accelerated. Tb < 0.3rF.. is necessary to ensure that the wheels will not lock. 

One possibility is to design a sliding mode controller (77) (73), where the sliding surface is 

S= (d +K) ted7-with e= A-Ad, i. e. h =6+Ke. Thus, Tt fo, 

2F tl(, \) r. 1r 
S=- vj 

+ 
V"j 

Tb + Ke (3.28) 

To stay on the surface b=0 is required. Solving for Tb and adding the term which forces the 

trajectory to stay on the surface we get the control input 

tb = rF,, ti(A) - 
VJKe (3.29) 
r 

The control input is a function of the friction which is unknown. To overcome this an observer 

can be designed. However it is known that friction observers have poor performance therefore 

we would like to pursue a modified strategy. 

We suggest a heterogeneous hybrid controller, which has a similar structure as the sliding 

mode controller. The controller use 3 different control strategies (3.30), (3.31), (3.32): the 
first one (3.30) is active for A smaller 0.1 and aims to increase A. 

vj Tb = lOrF,, A -r Ke (3.30) 

The second one (3-31) stabilize A;: t: 0.1 

iib " _sKp 
+ Ki_ 

(3.31) 
5 

while the third one (3.32) is active for A larger 0.1 and reduce A. 

tb 
-' 

1A+3_0.2 
rF� - 

vj Ke (3.32) (-i 
i) 

A hysteresis is introduce such that strategy (3.31) become active as soon as strategy (3.30) 

or (3.32) bring A=0.1. Once the control strategy (3.31) is active it remains active for 

0.08 <A<0.12. In this way we get vector fields that point towards A=0.1 and in directions 

of smaller velocities v. To avoid chattering the PI controller stabilizes the dynamics around 
the desired slip Ad = 0-1- It can further handle smaller variations in the friction coefficient. 
For larger variations controller (3.30) and (3.32) pushes the trajectory back to Ad = 0.1 where 
the PI controller takes over again. 
It needs to be mentioned that such a discontinuous control law, besides the advantages of 
being robust to vaxiations and uncertainty and achieving high braking performance, has the 
drawback that it might excite unmodelled dynamics such as suspension dynamics. This is 

undesirable since it reduces passenger comfort. 

To illustrate the controller's performance a simulation example is presented. 
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3.5 Simulation 

In the example two discontinuous changes to the nominal friction coefficient 0.8 are made. 
At t=0.5s the friction is lowered by 0.3 and at t=1.2s the friction is increased by 0.28. 

Figure 3.4 shows the velocity of the cax and of its wheel. 

Velocity fmts] 

I Ime jsj 

Figure 3.4: Velocity of the car body and the wheel w*r 

Due to the slip the velocity of the wheel is lower than the 'Velocity of the car body. It can 

also be seen that the variations in slip result in variations of the wheel velocity. Figure 3.5 

shows the slip A, and Figure 3.6 shows the brake torque Tb. 

lambda 

Time is) 

Figure 3.5: Wheel slip A 
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In the first instance controller (3-30) is active and brings the slip towards \=0.1 by applying 

maximum torque. Then the PI controller takes over and stabilizes the slip. At t=0.5 

the friction is decreased and the slip increases. Controller (3.32) takes over immediately as 

A=0.12 and pushes it back where the PI controller takes over again. At time t=1.2 the 

friction is increased and controller (3.32) brings the slip back. 
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Figure 3.6: Brake torque 'P6 

For tuning the controller needs to be implemented in a real car where its performance can be 

evaluated, since the final trade off between performance and comfort can only be achieved 

in the real environment. For tuning we suggest varying the coefficient K. With larger K we 

will get faster dynamics, such that IýI will be larger. For smoother control action K needs 

to be reduced, such that suspension dynainics are excited less. 

3.6 Conclusions 

After a brief introduction to the history of ABS a nonlinear car model was introduced which 

captured the longitudinal braking dynamics. It was shown that the dynamics of a braking 

car can be cast into a linear hybrid system with uncertainty. The uncertainties captured the 

unpredictable changes in road friction due to changes in surface conditions (wet, dry). It was 

shown that the dynamics axe stable and that the maximum braking performance occurs at 

,\=0.1. The control input space was computed and it was shown that for, \ :50.1 the slip has 

to be increased in order to increase the friction, i. e. ý>0. For slips \>0.1, the slip has to 

be reduced to increase the friction and maintain steerability. It was shown that a continuous 
feedback could not achieve the maximum braking performance given the range of uncertainty. 
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3 Control of Anti-Lock Brake with heterogenous hybrid controller 

Therefore it was suggested to design a heterogenous hybrid controller in sliding mode form. 

In order to avoid the excitation of unmodelled suspension dynamics the controller was chosen 

such that a relatively smooth transition is possible. The controller can now be tuned towards 

better performance, i. e. increase the bang bang control, or greater passenger comfort. 
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Part II 

Controller design for Hybrid Systems 
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4 Robust control of hybrid systerns 

This chapter introduces a new method for controller design of uncertain and parameter- 

variant linear hybrid systems. The idea is to specify a desired performance, which is rep. 

resented by a nominal system. Around this nominal system a compact set of systems is 

obtained which will be robustly stable against switching among members of this set: such 

a set of systems is then called the stable switched set. The chapter shows that obtaining 
the stable switched set is a signornial program. It is shown that upper bounds on signo- 

mial programs can be easily obtained, which axe used to compute the stable switched set. 
A sufficient condition is given for the existence of a common state feedback controller that 

stabilizes the uncertain and parameter-vaxiant linear hybrid systems on a stable switched set. 
The chapter proposes a synthesis procedure in terms of a constrained convex optimization 

problem that places the uncertain and parameter-variant subsystems optimally close to the 
desired nominal system, using one common state feedback controller. An extension is shown 
for the case that there exists no common state feedback controller for all subsystems. The 

synthesis framework is then applied to a simple example to demonstrate the procedure. 
The contributions of this chapter are the robustness analysis framework, as well as the ro- 
bust controller design for uncertain and parameter-variant lineax hybrid systems. This novel 

robustness analysis framework for uncertain and parameter-variant linear hybrid systems, 
together with the robust controller synthesis procedure, has been published in (67), (68). 

4.1 Introduction 

Hybrid systems in piecewise linear form axe often used in practice, since in many cases they 

stem from linearization of complex nonlinear systems. The controller synthesis is carried 

out for the linearization, and the stability and performance is verified by linear analysis or 
simulation. This procedure is justified for nonlinear systems where the nonlinearities can be 

described by piecewise linear systems (18) or systems with weak nonlinearities where param- 

eter variations are negligible in the operating vicinity of the linearization. However, for a 
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large class of systems, like systems with uncertainty or paxameter variations, or systems with 

strong nonlinearities, it is impractical to carry out analysis or controller synthesis with the 

linearized systems. In these cases parameter variations have to be considered, or the number 

of linearizations needs to be increased, which is not practical in many cases. Therefore it is 

important to use the class of uncertain and parameter-vaxiant linear hybrid systems. 

The form of hybrid system that we will use incorporates bounded paxametric uncertainties 

and variations. In this way we can enlarge the validity region around the linearization point 

and deal with uncertain and time-variant, systems. The system is assumed to be in the form: 

i= AA, 
qX + B. u 
Cqx 

.q=f 
(x) 

x(t) c= UXq C R', u(t) EUCR are state and input respectively. The matrices AA, q, 
Bq and Cq are according to the dimensions and the parameters of A, &, q belong to Sq = 

aq, J}. The function f: Rn Jaq, i ER laq, i E [aq- + __+ Z+ which governs the discrete state 

qQ= 11,2, NJ C Z+ is a function of the continuous state. Note that we do not as- 

sume, as in LPV control (69), that parameters and possibly their rate of variations are on-line 

measurable. However, for simplicity we assume that A, &, q is given or can be transformed by 

similarity transformation A= TAT-' into controller canonical form. For parameter-invariant 

systems this is less restrictive than for parameter-variant systems. The controller canonical 

form is not a real requirement, since any general form of uncertain and parameter-variant 

piecewise linear system can be handled in our analysis framework while some restrictions 

apply to the controller synthesis. However, derivations are easier in this way and make the 

controllability discussion redundant, as well as giving a nice geometric interpretation in par 

rameter space. 

In the following we will show how a set of systems is obtained that is robustly stable against 

switching between members of its set. This is the set of systems which we will refer to as the 

stable switched set (S3). It is described by a polyhedral region SSS in the corresponding 

parameter space. It is shown that finding the S3 by using quadratic or piecewise quadratic 
Lyapunov functions corresponds to solving a signomial programming problem. 

.1 
xl_ý' is called a signornial function. A signornial program- Definition: g(x) =±E! =' . 7, 

i' 

ming is then min., g(x) subject to constraints. Since signornial programs are non-convex, we 
take the upper bound to this problem which can be stated analytically. Using this method 

and increasing the parameter region, usually around a nominal system, gives us an iterative 

procedure to obtain the stable switched set. Such a set of systems is then used for the con- 
troller design of uncertain and parameter-vaxiant linear hybrid systems where we give the 

sufficient condition for the existence of a common state feedback controller that stabilizes all 
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subsystems of the hybrid system on S'. If there exists a common state feedback controller we 
introduce a method that places the parameters optimally close to a specified nominal system, 
which is an element of the S3. The controller synthesis is formulated in terms of a constrained 
convex optimization problem. In cases where a common state feedback law does not exist 
we introduce a method that finds the minimum number of controllers. To demonstrate the 

procedures we use a simple uncertain and parameter-variant lineax hybrid system, such that 
it is easy to follow the design steps. 

4.2 Calculation of the stable switched set 

The aim is to find a set of stable systems around a nominal system, such that stability 
is maintained under switching among members of the set. The parameters of the normal- 
ized systems form a compact set in R1. Such a set of systems could be viewed as a single 

parameter-vaxiant system, where the parameter-variant system is stable for all its parameter 

variations. 
In the following we will describe how the stable switched set S3 is obtained. The proce- 
dure starts with an arbitrary stable system, however in the case of analysis of uncertain and 

parameter-variant hybrid systems the nominal system might be chosen, while in the synthesis 

case performance requirements might be translated into a nominal system which we will then 

use. A quadratic Lyapunov function is then computed by solving the Lyapunov inequality for 

the nominal system. The set of systems is extended by extending the parameter set around 
the nominal parameters, the Lemmas below are then used to check whether the extended 

set still belongs to the stable switched set. This will give an iterative procedure to compute 
larger and larger subsets of the stable switched set. We will now state two lemmas, which 

will be needed in the sequel. 

Lemma 1: Given a signornial function f, (a,, a2 , .... an), fj : Rn --* R, which is a product of 
its variables and their powers fj =± rjin- 1 ajP' with pi E N, Vi E {1,2,.. ., n} on the polyhe- 
dral set S= {ai ERI ai E [ai-, ai'], sign(a, -) = sign(ai+)). Define di = max(jai 1) and iiS 

min (I ai 1). Then maxai ES fj (al, a2, .... an) =h 011 d2 i-i Zin) is the unique maximum 
on the set S if fj is positive, max,, jEs h (al, a2, .... an) : -- fI(Rjtfl2, ---12n)) otherwise. 

Proof. Assume otherwise, then for a positive fj there is at least one fixed point fj (a,, a2s..., an) 

> fl (dIid2)--- 
I dn) in the image off,, that is rIn > rIn 

j=1 af' S j=1 aj+P4. By comparison of the 
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coefficients we obtain ai < di, V ai 54 di, so that we arrive at a contradiction. Hence 

h (dl) d21 ... i an) is the unique maximum on the set S if the function is positive. If f, is 

negative, there is at least one fixed point -fl (a,, a2 , .... an) :5 By com- 

parison of the coefficients ai > gi, V ai O! aj, so that we arrive at contradiction again. Hence 

h (!! I, f12, ---, 9n)) is the unique maximum on S if fj negative. 

0 

Lemma 2: Given the signomial function fn(al, a21 an), fn : Rn --+ R, with fm 

FTI 
I 

rIn 
, 

Pjji 
_"nP2 '31= j= ai Ej211 rIi-I aij 

17 
Pjli)Pj2i E N, and MI + M2 = m, defined on the poly- 32= $= I 

hedral set S= fai ERI ai E [ai-, ai+], sign(ai-) = sign(ai+)). Then maxaiESfm 

Mi 
1 

rl! t 
1 dýjli - 

EM2 
I 

rl! t 
1 

Phi 
jj= I= 1 j2= %= 1i 

Proof 2: By Lemma 1 Jj" < rl,! ' -p Phi <_ 
=Iaij" and -11, ý=Iaj 

= ai 
- FE I 

Pj2i V il 9 j2 On 

, ai - FT2 
I 

rl! the set S. Hence 1=1 rjý 1 
dj" 

- ET2 
I 

rjý 
I 

Phi < ETI t PJ2 i 
32= 

4j" 

'32 

on S. 

11 

According to Sylvester's theorem a symmetric matrix M= MT is positive definite if all 

its principal minors Mil, MlIM22 - M12M21, 
... 

det (M) axe strictly positive (73). Hence 

we get n inequalities which we need to check, to verify that the Lyapunov inequality -M = 

A Tp + PAq <0 is satisfied. Taking the left hand side of the n inequalities to be the signomial q 
flnk, k(al, a2v .... an) with k=1,2,..., n we have to check that max(LEs fm*, A: < 0, V k, which 

is a signornial program. If maxaiES fmk, k < 0, V k, then the quadratic Lyapunov function 

holds on the polyhedral set S= (ai ERI ai E [a, -, ai+], sign(a, -) = sign(ai+)) for a 

given P. 

We can now use Lemma 2 to replace MaXa, ESfmt, k <0 by its upper bound. In this way 

we reduce the number of checks to n, to check if all systems which have their parameters 

entirely in S belong to the set of stable switched systems. The set of systems that have all 

their parameters in S will therefore be a subset of the stable switched set, S C- SSS, such 

that switching between members of this subset will lead to a stable switched system. As we 

can further increase S and repeatedly check if maxa, Es fmt, /, <0 is satisfied for all k we will 

enlarge the set of systems such that we come closer and closer to cover the complete set of 

stable switched systems. 

With this method we have found an iterative procedure to compute a subset of tile stable 

switched set. Figure 4.1 shows the procedure after the second iteration for a third order 
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4 Robust control of hybrid systems 

system. Each system is represented by one point in the parameter space An. All the points 
inside the quarter correspond to systems which belong to the stable switched set. 

5ystem 

c 

Figure 4.1: Computing the stable switched set 

Note that this method is not restricted to common quadratic Lyapunov functions. Whenever 

the discrete state q of the uncertain and parameter-variant linear hybrid system is a function 

of the continuous state x, such that one subsystem is valid only in a region Xq, we can make 

use of the S-procedure as described in (47) (21). The Lyapunov inequality 

V(X) = XTpX p= pT >0 ATp + PAq <0 
q 

has to hold only for XE Xq- Using the S-procedure relaxes the inequality since S>0 when 

xE Xq and S<0 elsewhere. This makes it in general easier to satisfy 

V(X) = XTpX p= pT Tp + >0 Aq PAq + Sq < 0. 

The method can also be applied to piecewise quadratic Lyapunov functions V(x) = xTpgx 

,X> (60) (59), where the Lyapunov function might be discontinuous but decreasing XTp q 
Tp x q+x at switching times fT 

+x = 0. 
q, g 

TR 
qx 

TR V(X) =xP, =PqT>O A. 
q+PqAq+Sq<o 

tT Pq - Pq+ + fq, 
q+ q, q+ 

+ tq, 
q+ 

fqT 
, 9+ 

>0 

fT 
where q is the predecessor of q+ and q, q+ 

describes the switching surface between system q 

and q+. The approach can also handle uncertain and parameter-variant affine hybrid systems 

:ý= AA, qX + EA, q + Bu. Here, 

V(X) =. iTpl p= pT >0 jTp 
q 

where we write 
ýiT = [x, 11, Aq 

Aq Eq 
Olxn 0 
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4 Robust control of hybrid systems 

This translates into n+1 signomial programs. 

Roughly speaking the extension from quadratic to piecewise quadratic Lyapunov functions is 

just a matter of handling more inequalities, but remains a signomial programing problem, as 

shown above. Therefore this matter is not further discussed here since it extends naturally. 
A different method to obtain the SSS is given in (20). An iterative procedure is proposed 

to compute a subset of the stable switched set. Instead of evaluating an explicit algebraic 

expression an convex optimization problem is solved at each iteration step. 

In the following section the problem of existence of a common state feedback controller, which 

shifts the uncertain and parameter varying subsystems into the SSS, is discussed. 

4.3 On existence of a common state feedback controller 

In this . section the synthesis problem is discussed, to determine whether there exists a single 

state feedback controller which stabilizes a number of uncertain and parameter-variant sub- 

systems simultaneously. That is, given a finite number N of uncertain and parameter-variant 

subsystems with parameter uncertainties or variations in the sets Sq = {aq, i ER laq, i E 

[a-i, a+i] 1, qE {1,2, NJ 
,iE 

{1,2,. 
. ., n} does there exist a single state feedback con- 

q, q, 
troller which stabilizes all systems robustly on a given stable switched set? 
We will now give the sufficient condition for the existence of a common state feedback con- 

troller (Note: the condition is necessary and sufficient if we have obtained the complete S 3, 

in our case we have just obtained a subset). Let N denote the number of uncertain and 

parameter-variant systems. Let the elements R,, q of the matrix R be the sets that contain 

the feasible intervals for a state feedback controller u= -Dx, D= [d, 
... d,, ]. 

Rij = (a-, - a,,,, a, - a,,, ) ... RI, N = (a-, - aN-, l, a, aN,, ) 

R 

Rnj = (a; - a-n, a+ - a+ + 
n 1, n 1, n) ... 

Rn, N = (an - aN, n, an aN n) 

where aj-, a, t, iE 11,2, ..., nj are the lower and upper bound respectively of parameters in 

the previously computed subset of the stable switched set SSS, and a, -i, a+ q'i, qE 11,2,..., N) 

denote the lower and upper bound of the ith parameter in the q th subsystem. 
The matrix R has a very nice geometric interpretation. It consists of the sets which contain 

all state feedback controllers that translate each Sq such that it is entirely contained in SSS, 

the stable switched set. 
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a2 

state feedbacks 

al 

Figure 4.2: Set of state feedbacks which bring the subsystem into SSS 

The figure 4.2 sketches how the various state feedbacks bring the parameters Sq of a subsystem 

q into the parameter region SSS of the S3. Having obtained the set of all possible state 
feedback controllers for each subsystem q we now have to intersect these sets to see if there 

exists a common state feedback controller. 

Let Checki denote the sets that contain the intersection of the sets in each row of R. 

Checkl = Rj,, nn Ri, N 

Check2 = R2, i nn R2, N 
(4.2) 

Check. nnR., N 

Hence there exists a control law that uses a single state feedback controller if, and only if (in 

case we obtained the complete S3), all sets Checki are non empty. 

a2 
subsystems 

state feedback 

SS 

pp- 
al 

Figure 4.3: Common state feedback brings subsystems into SSS 
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4 Robust control of hybrid systems 

Assuming that such a controller exists (see figure 4.3), we can design the state feedback 

controller u= -Dx, where dj... d,, are the coefficients of D, in an optimal manner such that 

we minimize 

min J= min IT GIN (4.3) 
DDn 

subject to 
di E Rij ... di E RI, N 

(4.4) 
dn E Rn, l ... 

dn E Rn, N 

where are the unit vectors of length n, N respectively. G is defined as follows: 

Ila,,., l - aij - dill ... 
Ilanorn, l - aN, I - dill 

G= 

Ilanom, n - al, n - dnll ... 
Ilanon, n - aN, n - dnlI 

where anarn, i is the it4 parameter of the nominal system and aq, j = a,,, _ + a,,, + 
2 
a,,, - is the 

mean value of the ith parameter in the qth subsystem. This problem is a constrained convex 

optimization and can be solved with linear programming. Hence we have formulated the 

controller design as a convex optimization problem. 

4.4 Extension to Multiple State Feedback Control 

In some cases is is not possible to find a common state feedback controller that will achieve 
the required specifications. In other words, at least one set Check, will be empty. In such 

cases the number of controllers has to be increased. Extending the design procedure for such 

a case we find that 
N-1 N-2 

W n. (EN-i+EN-1-i+... 
i=l i=l 
N-N+2 

N-N+2-i) (4.5) 

checks need to be carried out in the worst case, where N is the number of subsystems and n 
is the order of the controlled system, in order to find the minimum number of controllers. 
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4 Robust control of hybrid systems 

These checks will be carried out as follows: we need to check that Rja nRI, 2, .... R.., nRn, 2 

are all not empty. If that is the case then there exists a common state feedback controller for 

these two subsystems. If at least one set is empty then there does not exist such a common 

state feedback controller that shifts the two subsystems simultaneously into the S3. After 

performing the n(EN-' N- i) checks we may find pairs of subsystems which have a common 

state feedback controller. If we have not found a single pair we can stop and conclude that we 

need N state feedback controllers. Otherwise we continue with the pairs that we have found 

and look for triples while carrying out the next n(EIV-2 N-1- i) checks. Continuing this 

procedure leads finally to the combination with the least number of state feedback controllers. 

Example 

The framework that was developed in the previous sections is now applied to a simple ex- 

ample in order to demonstrate the design procedure. We would like to control the following 

uncertain and parameter-variant piecewise linear system, which consists of the following sub- 

systems: 

0 
AA, o 

-1.9 ± 0.2 -4.6 0.1 

0 1 

-0.4 ± 0.1 -4 0.2 
0 

AA, 2 
-2.6 ± 0.2 -5 0.1 

0 1 AA, 3 
0.3±0.1 -4.5±0.3 

We also have B= [0,1]T and the state feedback vector is D= [dj, d2]T. Definition: ±c 

means that an arbitrary and possibly not fixed element c is added, which belongs to the 

interval [-c, c], i. e. cE [-c, c]. Due to our specifications the performance of the nominal 

system should be such that it has two poles at -2.5. Hence our nominal system in controller 

canonical form is 

Anorn 
0 

(4.6) 
[ 

-6.25 -5 

1 

To compute the stable switched set we will use a common quadratic Lyapunov function for 
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simplicity, i. e. 

1 1.5 
(4.7) 

which fulfills AT P+ PA ..... < 0, p= pT > 0. 
nom 

Using the upper bounds for the two 

signomial programs we get S= fal E [4.7,7.1], a2 E [4.7,7.111. Now we can test if there 

exists a common state feedback controller that satisfies our specifications. We have 

R 
Ri, cl = (3.0,5.0) Rij = (4.4,6.6) RI, 2 = (2.3,4.3) R1,3 = (5.1,7.3) 

R2,0 = (0.2,2.4) R2,1 = (0.9,2.9) R2,2 = (-0.2,2) R2,3 = (0.5,2.3) 

Applying the formalism for checking we see that Checki = [} and Check2 = (0.9,2). Since 

Checkl is empty there exist no common state feedback controller. Thus we have to look 

for the intersections of the sets that axe not empty and therefore we need to perform W 

(E4-1 i+ F4-2 2- i=1 4- 'i=1 
4-1- i) = 18 checks. The intersections that are not empty belong to 

the following subsystems: (Ao, At), (Ao, A2); (At, Ao), (At, A3); (A2, Ao); (A3, At). In order 
to find the minimal number of controllers we need to analyze 4 different possibilities, since we 
have two times the choice of two possible combinations. We find that the minimum number of 

controllers that are necessary is 2, for the following non empty sets (Ao, A2)9 (A 1, A3) - Since 

there is just one solution that gives us the minimum of 2 controllers we can now proceed to 

design the 2 state feedback controllers according to our optimal procedure. Thus, 

G[ 
r 116.25-1.9-dill 116.25-2.6-dill 

(4.8) I[ 115 - 4.6 - d2ll 115 -5- d2li 

I 

with the following constraint 
di E Ri, o di E RI, 2 (4.9) 
d2 E R2,0 d2 E R2,2 

For the first state feedback controller we find a control law with d, =4 and d2 = 0.2. The 

second cost function is given as follows: 

G2 
116.25-0.4-dlll 116.25+0.3-dill 

(4.10) 
115 - 4.0 - d2ll 115 - 4.5 - d2ll 

I 

with the following constraint 
di E Rij di E RI, 3 

d2 E R2,1 d2 E R2,3 

For the second state feedback controller we find a control law with di = 6.2 and d2 = 0.75. 

49 



4 Robust control of h. Yhrid sYstems 

4.5 Active suspension control 

For over iL century designers have developed vehicle suspension S. vstclll, ý. M()st ýsjlspvllsioll 

systems are passive and employ some type of spring in combination with hydraulic or pliell- 

inatic shock absorbers. Duspite the level of sophistication, pussive suspensions (: all oillY stor(ý 

and dissipate energy in a pre-deterinined manner. Therefore it will always be a compromise 

between passenger ride comfort, handling, and suspension stroke. 

The aim of active suspension is to improve passenger comfort while enhancing handling qual- 

ities and avoiding suspension strokes. Various controllers have been I)r0j)OSCd in I-CCCIA YVar. s, 

including LQR, fuzzy controllers etc. (76), (52). No matter which controller strategy is 

used each design has to be robust to parameter variations as nonlinear spring charact, vi-ist, ics 

cliange due to aging and fabrication differences. Also, large variations in vchich, ni; L-;. s have 

to be taken into account. Therefore one objective of the controller is to be i0bust, to linge 

I)aranieter variations. In addition, passenger ride comfort should be improved. 'I'llis js (Imi, 

by reducing the car's vertical body acceleration, usually referred to ws "sky-hook" damping. 

Another obJective is to meet the suspension deflection constraints. ill older to pr(welit the 

travel Iii-nits of the suspension being reached the suspension needs to bV Stiff(T nVal' its traVC1 

linlits. This is done by feeding back the vehicle suspension deflection to avOi(l reaching the 

dcfiection constraints. 

w(ý will low show how the suspension dynarnics are modelled by all 1111CCItaill and I)aYallicter- 

variant piecewise linear system. For our purposes we ussunic a (plart(T Car With 

connected electric servo drive. The schematics of this setup are displaýycd ill ligill-c 11 111-1 r, 

Figure 4.4: Active suspension of a quarter car 

NJ, c [400,450]kg is the iymss of the quarter car. The sprilig ; 11-, 1). v A., 
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and k2. kj == 25000N, while the characteristic of k2 is given by figure 4.5. The damper In 

Force IM 

Xs-Xa (CM) 

Figure 4.5: Spring coefficient 

coefficient is denoted by dE [1400,1500] ýmls. The suspension travel X. - Xa E [-4cm, 4cm]. 

The deflection x,, - xa is measured by a strain gauge on the spring or by a potentiometer at 

the hinge. To derive the dynamics we write the equation of the forces: 

is -«-'2 -d (is - -ia) - 
k2 

(Xa - Xa) - 
ýl- 1 (X"a Xx) (4.12) 
m 

Using new state variables we take xj = X, - X., X2 = ýb. - i. and the relation x. = x. +u 

where u is the control input (distance change by the servo), we get 

d ki + k2 ki 
X8 : -- --X2 - -XI - -U (4.13) 

mmm 

We can now write the state space equation observing that X2 and k2 = k2(XI) depend 

on the deflection 

00 
+k 

][ 
(4.14) 

'1: 1 
]+[k]U 

_kl+k2(XI) X2 _&I MM 

Taking the uncertainties and parameter variations into account we can derive two different 

uncertain parameter variant linear systems, i. e. 

Ao =01 
[ 

-98.19 ± 9.30 -3.43 ±0.32 

0 
Bo 

-59.03 ± 3.47 
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for I x, j< 3cm and 

A01 
-101.94: L 13.05 -3.43 ± 0.32 

Bi =[ 
-59.030± 3.47 

] 

for I x1 J> 3cm. The notation ±c means that any arbitrary and not necessarily fixed value 

can be assumed in the interval [-c, cl. The first objective is to keep the vertical acceleration 

of the car body at a minimum, i. e. I: i. l <- for some small e>0. This means in terms of 
the closed loop system that the coefficients in the lowest row of A,,,,,,, o should be very small. 
Thus, 

0 

-10 

12 

for I xi 1< 2cm. This softening of the suspension also achieves the second objective, which is 

to keep good contact between wheels and road, which increases handling performance. The 

third objective is to prevent the suspension from hitting the travel limits. Therefore the 

control needs to stiffen up the suspension before travel limits are hit. Thus, we choose 

0 Anorn, l 
-200 

17 

for IxI 2cm. Computing P= pT > 0, AT P+ PA,, o,, <0 we use Ano, 
" = 

A.. ý, o+Anoin, I 
nom 

and obtain 
4.5432 0.0620 

0.0620 0.0413 

Note that the choice of P is not unique. Dependent on F he stable switched set may change. 

Thus for some P it is easier to fulfill objectives one and two, while for others objective three 

is easier. Therefore the choice of P is a trade off. 

Using the upper bounds of the two signomial programs we get S= {a IE [79,14 11, a2 E [3,5]). 

We can already see that there exists a common state feedback which stabilizes the system, 

since the coefficients aij and ai, 2 for iE1,2 of both systems Ao, Al are already entirely 

contained in the S. Computing R as 

R 
Rj, o = (-9.89,33.51) Rij = (-9.89,26.01) 

R2,0 = (-0.11,1.25) R2,1 = (-0.11,1.25) 

] 

and intersecting, we find that all Checki, iE1,2 are non empty. Hence, there exists a common 
state feedback which robustly stabilizes the dynamics for the given parameter uncertainties 
and under all parameter variations. However, this is not the only objective. We want to find 

the state feedback which renders the closed loop system to have similar performance to the 
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desired nominal closed loop dynamics given by A,,,,, O and A,,,,,, i. To find a controller which 

achieves objectives one and two we minimize 

Gi =[ 1110 - 98.19 - dill 112 - 3.43 - d2 11 ]T 

subject to 
di E Ri, o d2 E R2,0 

This gives us the state feedback controHer dl = -9.89 and d2 = -0-11. To achieve the third 

objective we minimize 

G2 
11200-98.19-dill 11200- 101.94 -dill 
117 - 3.43 - d2ll 117 - 3.43 - d2ll 

I 

subject to 
di E Ri, o di E Rij 

d2 E R2,0 d2 E R2,1 

This gives us the state feedback controller d, = 26.01 and d2 = 1.25. To obtain the final state 
feedback we need to take into account the gain and the uncertainties of the input matrix. 
We obtain the state feedback controller by I di I= - max I bi I -ji, iE1,2. Hence, we get 
for xj j< 2cm, ji = 0.158 and j2 = 0.00176. For I xi 1ý: 2cm we get j, = -0.4161 and 
j2 -0.002. We have now found the state dependent piecewise linear state feedback gains. 

Conclusion 

The chapter developed a framework for stability analysis and controller design of uncertain 

parameter variant piecewise lineax systems. The computation of a set of systems, around a 

nominal system, was proposed, which are robustly stable against switching among members 

of its set. Such a set of systems was referred to as the stable switched set. It has been 

shown that using quadratic or piecewise quadratic Lyapunov functions with or without the 

S-procedure to obtain the stable switched set is a signornial program. Using the upper bounds 

of signomial programs led to a convenient method to verify that a set of systems belongs to 

the stable switched set. This gave an iterative procedure to compute larger and larger sets. 

Since it is desirable to stabilize a piecewise linear system with as few state feedback controllers 

as possible, we gave the sufficient conditions for the existence of a common state feedback 

controller to achieve this. For cases where there exists no common state feedback controller 

we proposed a method to find the minimum number of controllers. 

To show the synthesis steps involved, the procedure was applied to a simple uncertain and 

parameter-variant piecewise linear system. As an example for real systems the control of 

active suspension was considered. It was shown how the suspension dynamics translate into 
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an uncertain parameter-variant piecewise linear system. Variations in mass and spring as well 

as damper coefficients made handling of uncertainties and parameter variations inevitable. 

To improve passenger ride comfort and enhance wheel to surface contact the suspension was 

softened by the controller for small deviations. To avoid hitting suspension travel limits 

the control stiffened the suspension for larger deviations. This was achieved by two state 
dependent linear state feedback controllers which also robustly stabilize the dynamics under 

all admissible parameter variations. 
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discrete time 

In this chapter it is shown that linear hybrid systems in discrete time result from real-time 

systems with varying sampling rate. A linear discrete time dynamic is obtained for each sam- 

pling rate. The change between sampling rates is decided by a scheduler, which determines 

the discrete dynamic. 

To motivate, an example is given in which a stable continuous system is sampled at two 

different sampling rates. In this way a hybrid system with two subsystems is obtained. 
Two controllers are designed minimizing the same continuous quadratic loss function with 

the same weights. It is shown that the resulting hybrid system can be unstable for some 

switching sequences, although each individual subsystem is stable. To avoid this problem 

two solutions are suggested. The first solution shows how restrictions on switching sequences 

can be imposed such that only stable sequences are chosen. The second solution presents an 

optimal controller design in which a bound on the cost, for all possible switching sequences, 

is computed. This results in a piecewise constant state feedback control law and guarantees 

stability regardless of the switching sequence. The controller synthesis is cast into an LMI, 

which conveniently solves the synthesis problem. To illustrate the procedure, the introduc- 

tion example is revisited using the proposed LMI synthesis method and the stable control 

law is given, which is robustly stable to all switching sequences while limiting the cost. 

The contributions of this chapter lie in the instability example and scheduling strategies as 

well as in the LMI condition for the upper bound on the optimal cost and optimal controller 

synthesis. This novel example of instability has been published in (66). Solutions by schedul- 

ing have been presented in (66), while solutions using the upper bound on the cost for state 

feedback are published in (66) and (64). 
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5.1 Introduction 

In the previous chapter, analysis and controller design have been investigated under the focus 

of robustness. In general this is very important since most dynamics incorporate uncertainties. 
Also, most models approximate reality only up to a curtain accuracy. Therefore controllers 

need to work for slightly different parameters and setups. Besides the need of robustness a 
further desire is to have optimality. This is the search for a control law which minimizes a 

given performance index. In the present chapter we focus on optimal control of linear hybrid 

systems. In this class of hybrid systems the discrete dynamic, the switching between different 

continuous dynamics, is not a priori known but can be measured or determined online. From 

this perspective the class of hybrid systems considered in this chapter is similar to the class 

considered in the previous chapter but without uncertainties or parameter variations. Further, 

the continuous dynamics are given in discrete time. Thus, we get a hybrid system as 

Xk+l 4ýqXk + rqUk 

Yk CqXk 

q+ f (. ) 

where xEXC R' is the continuous state in discrete time and qEQ= {1,2,..., NJ c Z+ 

is the discrete state. q is the current discrete state and q+ denotes its successor. -rD,, r,, c', 

denote the system, input and output matrices of the discrete time system respectively, which 
depend on the current discrete state q. f (-) denotes the discrete dynamics, which is decided 

by a scheduler. 

Optimal control of linear hybrid systems is of general interest. In this chapter, however, we 

pick a particular example of linear hybrid system with continuous dynamic described in dis- 

crete time. The example that we take to motivate stems from the area of embedded systems 

which is of broad interest. In particular we are concerned with the control of sampled data 

systems which have variations in sampling rate. It is easy to see that such dynamics can 
be viewed as hybrid systems in discrete time. Each subsystem is given as the discretization 

of a continuous dynamic at the current sampling rate. The sampling rate, i. e. the discrete 

dynamic, is decided by a scheduler, which decides whether the system is sampled fast or slow. 
Sampled data systems with varying sampling rate arise for different reasons. One of them is 

the optimal usage of central processing unit (CPU) resources (28), (25). Roughly speaking, 

several tasks are caxried out on the same CPU, one of them is to compute the control law. 

When enough computational resourses are available, the control law is computed more fre- 

quently than when the resourses are used for other computations. This leads to variations in 

sampling rate. Previously, variations in sampling rate were often neglected. In other cases it 

was assumed that designing a piecewise continuous controller consisting of controllers which 

are optimal for the current sampling rate would lead to reasonable results. This chapter shows 
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5 Optimal control of hybrid systems in discrete time 

that such assumptions are not justified. Purther it is shown that such a control strategy does 

not guarantee stability. 
In the following we will give an example of how variations in sampling time can lead to insta- 

bility. We proceed by proposing a controller design which results in a piecewise linear state 

feedback control law and is robustly stable to variations among the prescribed sampling rates. 

We show how such state feedback controllers can be found using linear matrix inequalities 

(LMI). We illustrate the design procedure by revisiting the introductory example, where a 

linear quadratic design approach leads to instability. In the next chapter it is shown that 

solution concepts derived here, for hybrid systems in discrete time, translate quite naturally 
into solution concepts for hybrid systems described in continuous time. 

5.1.1 Example 1: Two different sampling times, same continuous loss function 

in both 

As an example of instability by scheduling, the real-time control of the following linear con- 

tinuous system 
i= Ax + bu 

Cx 

is considered, where 

01 b=[()] C=[l 0] 
-10000 -0 . 11 1 

(5.2) 

(5.3) 

are the system, input and output matrices. The continuous system is stable with poles in 

the left hand-side of the complex plane, P1,2 -0.05 ± 100i. In the following, a hybrid 

system consisting of two discrete time systems is derived from this continuous system. The 

continuous system is discretized with two different zero order hold circuits, where the sampling 

rates axe hi = 0.002s, h2 = 0.094s respectively. The two discretizations, i. e. subsystems, are 

represented by 
Xk+l 4)q-Tk + rUk 

(5.4) 
Yk CqZk 

E 11,21 

q0qe Ahq =fh 
AsBds and q denotes the discretized system obtained with where (Pq =er 

sampling time hq. Both discretizations lead to stable discrete systems with the spectral radius 

p(4)1) < 1, P(4)2) <1 respectively, where P((Dq) gives the largest eigenvalue Of 'rPq- It should 
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5 Optimal control of hybrid systems in discrete time 

be clear now, that sampled data system with varying sampling time can be represented as a 
hybrid system in discrete time. Therefore, and for the sake of compactness, is is understood 
that each time we refer to "discretization" we also mean "subsystern" and with "variations 

in sampling rate" we also mean "switching between subsystems" and vice versa. 
A discrete linear quadratic optimal controller is designed for both discretizations, minimizing 
the continuous loss function 

j= 
foo(X(t)TQCX(t) 

+ U(t)TRu(t))dt (5.5) 
0 

subject to system (5.3) sampled at hl, h2, where 

20000 0] 
R=50 

0 20000 

The resulting gain matrices are found by discretizing the loss function (5.5) 

khq+hq 
((DT Ql, 

q 
Jkhq 

. 
(s, khq)QcDq(s, khq))ds 

khg+hg 
(4)T Q12, 

q 
fA: 

hq q 
(s, khq)Qcr, (s, khq))ds 

A; hq+hq 
T Q2, 

q 
fichq 

(r. (s, khq)Qr, (s, khq) + R)ds 

and solving the discrete algebraic Riccati equation. 

p CDTpq (4)T TS Tp T 43'q + Ql, q - Pqrq + Q12, q)(r 
(k + 1)rq + Q2, 

q)-I(r . 4)q + Q12, 
,qqqqq, q) 

The state feedback law u= -Kq -x is then given by 

such that we get 

+ ]pT ITT Kq (Q2, 
q q 

Pr, )- (r, Pq4)q + Q12, 
q) 

195.401 ] -1296.6 Ki 
19.4121 

K2 =[ 
-8.826 

For both discretizations the controlled closed loop systems is stable, Le p(ýDi - r, K, ) < 1, 

P(4ý2 - 172K2) <1 respectively. However in the case where the system is sampled with h, 

for 1 sampling interval and then the system is sampled with h2 for 2 sampling intervals re- 

peatedly we find that this sequence is unstable. This can be seen by looking at figure 5.1 or 

at the spectral radius of the resulting system P(((I)2 - r2 1, ( 2 )2(4), - riKi)') > 1. We obtain 

the spectral radius of the resulting system by writing the solution for sampling at hl once, 

Xh, = (4), + r, Kl)xo and sampling at h2 twice, X2ha+hl = ('1)2 + r2K2)2 
-Th, . 

We can now 

substitute into each other and obtain Xh2+3h, = ((D2 + r2 K 2)2(4), + rýK, )xo. Since this is 

done repeatedly we can think of it as the new system description and take the spectral radius 
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X2 

...... .... .... ........ ... ...... ...... . ... . ..... ........ ..... 
second sample 

....... ........ .... .......... 

........ . .... ................. : ............ ................. . ..................... ...... third sample 

. ...... . ..... ............ ...... ...... . ....... . ....... .... . 

-first sampllq 

.... 
Inifial* condition 

'a, 

th 240 sample 
-0.3 -0.2 -0.1 0 0.1 0.2 0.3 

xi 0.4 

Figure 5.1: Unstable sequence 

of it, in this case it is larger than one, hence the resulting system is unstable. The figure 5.1 

shows the samples (the discrete points of the continuous trajectory) for the unstable system 
in the phase-plane. The system 5.3 is sampled for one sampling interval with hl, i. e. small 
distance between initial and first sample, and twice with h2, i. e. larger distance between first, 

second and third sample. It can be seen that the trajectory enlarges and it gets further away 
from the origin, i. e. sample 240 is much further away from the origin than the initial sample. 
It turns out that this is not the only sequence which destabilizes the system. Table 5.1 shows 
further sequences for which the resulting system is unstable. Figure 5.2 shows another unstaý 

P((4D2 - r2 K2)mh2 (Jý, - r, K, )-hi) > 

n-hl 1-hi 1-hl 2-hl 2-hl 2-hi 
m-h2 2-h2 3-h2 4-h2 5-h2 6-h2 

Table 5.1: Unstable sequences 

ble sequence. The system is sampled once at hl and three times at h2, It is now interesting to 

check which scheduling sequence lead to unstable scheduled systems. Fortunately the number 
of possibilities as shown in table 5.1 are limited. 

Theorem 1: Given two exponentially stable discrete time closed loop systems, the number of 

possibly unstable scheduling sequences using repeatedly (P2 - r2K2)i (4)1 - rl KI)l are limited 
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-201 

60 
% 

4ý X2 

40 

201 

ol 

Initial condition 

-0,3 -0.2 -0 10 01 02 03 04 
xi 

Figure 5.2-. Unstable sequence 

by 1) = (m - 1) - (n - 1), where mi and n are sufficiently large positive jilt, (, g(, I. s sjLt 

(, I,, + r, K, ) P, (III, + r, K1 )71 P2 

((1)2 + r2K2Y"'l'Pl ((1)2 + I'21ý2) ... 
... 1'2 < 

0 

itild P, 
I 

P2 >0 are the associated Lyapilll" fllll(-tiOll"', 1)()Sit iV(' 

tlUtt, (1, Pl > P2- 

Proof: To show that a sequence is stable it is suffici(ýIjt to find a Ly; Ll)llll()V 11111('t, j()II. 

each discrete closed loop system is exponentially stable thel-c exists a Ly; Ll)llli()V 

cach 'Systelli, 

q+ 
rqIA: (, 

)P(, (4)q + rqK,, ) - I) "' :,. 0 (I <0 Pq -- P, 
1 (5.6) 

E (1,21 

For Pi 
, 

P2 > 0, there exists a scalar a C- R' StIch that (II'l -` 
P2. XVC C; Lll f ; dW 

. 1" (1 / 'I. 1', 

:,: ']'p2.,,: >0 as a piecewise quadratic Lyapunov function. Ifence the Jýyapjlllov III,, (. t, ioIi (I(-- 

cl, (-, ases while switching from system I to system 2 and wilile staying ill (ýa, cjl ,. yst. 1.11( w( v )- el 

switching from system 2 to 1 there is an energy inci-case, therefol-e w, 11,1,1 

slIffici(q, fly long with system I 

(4), + FIKI)"'Pl(4)i + rjKl) 
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5 Optimal control of hybrid systems in discrete time 

or with system 2 before switching to system 1 

('D2 + r2K2)m T Pl((D2 + r2K2)m - 
IP2 

<0 
a 

Then the Lyapunov function decreases between three executive sampling rate changes. Hence 

all sequences where system I is active for at least n cycles or system 2 is active for at 
least m cycles are stable. Therefore unstable sequences can only consist of the remaining 

p= (m - 1) - (n - 1) combinations. 

11 

By Theorem 1 the number of sequences that axe possibly unstable are limited by p= 

(m - 1) - (n - 1). Hence we need to check the spectral radius of the p combinations 

P(('CP2 - r2K2)i(1ýI - r, Kl)l) >1iE 11, m- 11,1 E {1,. n- J} to find all se- 

quences which are unstable. 

We have seen that even when two stable discrete systems are obtained from a Stable continu- 

ous system with state feedbacks minimizing the same continuous loss function, that variation 
in sampling rate (switching between these two discrete systems) can lead to instability. 

In the next sections we will propose scheduling strategies and controller synthesis procedures 

which will overcome this problem. We will be first concerned to find sensible scheduling 

strategies which avoid using unstable sequences. 

5.2 Stable scheduling strategies 

In many cases a hybrid system can not only be controlled by continuous control. It is often also 

possible to control the discrete dynamics. If this is the case one might choose a performance 

index which penalizes continuous as well as discrete dynamics. In particular discrete mode 

changes need to be penalized to avoid Zeno executions. Dealing with hybrid systems where 

the continuous dynamics are described in discrete time this is of course not an issue. 

Unfortunately our application does not allow choice of the discrete dynamic freely since we 

need to take into account that computational resource changes are anticipated, which require 

reduction in the sampling rate immediately, i. e. we need to be able to switch from fast to 

slow sampling at any sampling time. The opposite is of course not required, i. e. we can stay 

as long as we want with the slower sampling rate. Even if the scheduler decides to sample 
faster, information can be neglected, such that effectively the system is still sampled slow. 
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5 Optimal control of hybrid systems in discrete time 

However, it is desirable for better performance to switch back to faster sampling as soon as 

possible. This fact is exploited for opposing sensible restrictions on the scheduling strategy. 
We proceeded in computing a minimum time for sampling slow, after switching from fast to 

slow sampling, before we can sample fast again if computational resources allow it. We show 

that if such a scheduling strategy is applied the scheduled system is stable. 

Theorem 1 implies that if we restrict all possible scheduling sequences such that when slow 

sampling is chosen we sample slow for at least a minimum time, all sequences are stable. In 

general a number of different sampling rates is specified such that we can compute a minimum 

time for each. Let Pi be associated with hl which is the fastest sampling time. Then the 

minimum sampling times are computed as follows. Pick an aE R+ such that aPI ý! P. for 

all qE 11,2,..., N} then solve iteratively for each Mq which satisfies 

)MTpl )Mq (4Pq + rqKq 9 ((Dq + rqKq 
'Pq 

<0 (5.7) 
a 

Hence the minimum times for each sampling rate are given by Mqhq. 
In some cases it is not possible to impose restrictions on the scheduling strategies. For these 

cases the controller design has to be changed such that it is robustly stable against variations 
in sampling rate. In the next section an optimal controller design is stated which minimizes 
the loss function over one sampling time and has a terminal penalty, which is greater or equal 
than the cost of bringing the states to the origin for the worst case variations in sampling 

rate. We show that this design is stable for all variations in sampling rate and results in a 

piecewise constant state feedback controller. 

5.3 Controller design 

For cases where restrictions on sampling rate variations are not desirable a controller h&,; to be 

found which is robustly stable to variations in sampling rate. One way to achieve this is to find 

a controller which renders the closed loop systems to have a common Lyapunov function. A 

state feedback controller can then be constructed using the necessary and sufficient condition 
for quadratic Lyapunov function for discrete systems: 

((Pq + rqKq )Tp('I)q+]PqKq)-P<O 4ý* ("Pq+r, Kq)Q(4)q+rqKq)T-Q<0 Q=P-1 
(5.8) 

with p= pT > 0. Extending the inequality with IQ* Q-1 we get 

(4)q + rqKq)QQ-IQ(4Dq + rq Kq )T _ Q,,: C 0 (5.9) 
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5 Optimal control of hybrid systems in discrete time 

Applying Schur's complement to the above expression we obtain 

Q 
Q ('I)q + r. Kq 

(eq + r. K. )Q 
>o Q>o 

Q1 
Substituting Wq = KqQ we obtain 

Q 
Q, cDT +T 

I. 

wqTrq 
, DqQ + r. w. 

>O Q>o (5.11) 

Note that the above inequality is an LMI with the variables Q, Wq. If the above LMI is 

feasible we will find our state feedback law Uk = KqXk with K. = WqQ-1 so that we can 

write our closed loop system 

Xk+l = (, Dq + rqWqQ-l) * Xk (5.12) 

A different way to write (5.8) is 

"qT 
[1,0] mT >o m>O (5.13) 

rq 

where 
M= 

P PKT [ 

KP KPKT 

In this way we can find a state feedback controller which robustly stabilizes the system for 

the specified variations in sampling rate. However, we do not only seek to stabilize the 
hybrid system for all possible switching strategies, we further want to minimize the quadratic 
performance index. The introductory example showed that this might cause problems. To 

overcome this problem we suggest that instead of minimizing a continuous objective function 

over the infinite horizon, we minimize only over one sampling period. To compensate for 

the remaining cost we add a terminal penalty. Minimizing over only one sampling period 
is more sensible since the sampling rate may change after one sampling period anyway, i. e. 
after a sampling interval a different subsystem of the hybrid system can be chosen. Since 
the terminal penalty has to be at least as big as the remaining worst case cost we write the 
following inequality 

kh+h 

x(kh)TpX(kh) '2! min 
fk 

h 
(XTQcX + UT Ru)dt + x(kh + h)TpX(kh + h) (5.15) 

VhEH= {hl, h2s .... hN} 

The solution gives an optimal, piecewise constant state feedback controller for the hybrid 

system, which is stable regardless of the scheduling. 
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5 Optimal control of hybrid systems in discrete time 

The first step in solving (5.15) is to discretize the objective function. This is done similarly as 
in (74). The discretized objective function over one sampling interval with terminal penalty 
is 

kh 

u x(kh)TpX(kh) ý: min 1: (X(i)TQI, qX(i) + 2x(i)TQ12, qU(i) + U(i)T Q2, 
qU(i))+ 

i=kh 

+ x(kh + h)TpX(kh + h) (5.16) 

VqE {1,2,..., N} 

where 
khq+hq 

(4, T Ql, q 
Jkhq 

q (s, khq) Q,, 'I)q (s, khq))ds (5.17) 

khq+hq 
((pT Q12, 

q 

Jkhq 

q (s, khq)Q, rq(s, khq))ds (5.18) 

Q2, 
q 

khq+hq 
(r T (s, khq)Qcrq(s, khq) + R)ds (5.19) 

Jkhq 

q 

Ahq, hq 'Bds is the fundamental, or the input matrix, of a subsystem. and (Pq =e rq = fo eA 

Theorem 2: If there exists p= pT > *0, Kq, qE {1,2,..., N} such that 

((Dq + rqKq )Tp( olýq + rqK, ) 
-P+ (Ql, q + 2Ql2, 

qKq + KqTQ2, 
qICq) :50 (5.20) 

V qEll, 2,..., N} 

then the hybrid system is stable for all scheduling (i. e. switching) strategies among its 

subsystems and its performance is bounded by XTpX. 

Proof. Reaxranging (5.16) and taking xj, +, ý4ýqXk + ru,, uA; = ICqxk we obtain 

('Dq + r. Kq )T p(, pq + r, Kq) -P+ (Ql, q + 2Q12, 
qKq + I! CqTQ2, 

ql'Cq) 5 0. (5.21) 

V(X) = XTpX serves as a Lyapunov function since p= pT >0 and 

Av(x) (4,, + r, K, )Tp(4p, + rx. ) -p 

[IKq]Qq [IK 
q 
IT (5.22) 

with 
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Qq 
Ql, q Q12, q V qEQ={1,2,..., Nl 
QT, 12 q 

Q2, q 

where Qq are positive definite for all q and [IKql axe full rank, therefore -[IKq]Qq[ ;CI is 11 
q 

negative definite and hence AV(x) < 0. Hence the hybrid system is stable for all possible 
scheduling strategies. To show that the performance is bounded by XTpX we use the fact 

that x(kh)TpX(kh) is expressed in terms of x(kh + hq)Tpx(kh + hq). Hence 

kh 

x(kh)TpX(kh) : -: f min E (X(i)TQI, 
qX(i) + 2x(i)TQ12, qU(i) + U(i)T Q2, qU(i))+ u i=kh 

x(kh + h)TpX (kh + h) 

and x(kh + h)TpX(kh + h) can be expressed in terms of x(kh +h+ h)TpX(kh +h+ h) as 
kh+h 

x(kh + h)TpX(kh + h) > min E (X(i)TQI, qX(j) + 2x(i)TQ12, 
qU(i) + U(i)T Q2, 

qU(i))+ u i=kh+h 

+ x(kh +h+ h)TpX(kh +h+ h) 

etc.. Substituting recursively we obtain 

00 
x(kh)TpX(kh) k min 1: (X(i)TQI, qX(i) + 2x(i)TQ + U(i)T u i=kh 

12, qU(i) Q2, 
qU(i» 

Hence the performance is bounded by XTp_,. 

11 

We have seen that if we manage to find a controller which satisfies (5.15) and therefore also 
(5.20), then we can guarantee that the controlled closed loop system is stable for all variations 
among hq, qE(1,2, ..., N}. We will now show how we can formulate the controller synthesis 
into an LMI, such that we obtain P and Kq. 

5.4 Controller synthesis using LM I 

We have seen that a system in form (7.2) with its discretizations (7.4) are robustly stable 
for variations among the prescribed sampling rates hq, VqE {1,2,..., NJ and its cost is 
bounded by p= pT > 0, when we find the state feedback gains K,, qE {1,2,. N) which 
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satisfy (7.15). The remaining problem is to obtain P and Kq. 

One possibility is to solve the corresponding Riccati inequalities 

p ýý, ffpj) 
_ (, pT T+ QT, 

qq+ 
Ql, q . 

Pr, + Q12, q)(ffq 
Prq + Q2, q)-I(rq P41)q 12 q) 

(5.23) 

V qEll, 2,..., N} 

With the solution P the state feedback gains 

Kq ý-- (Q2, 
q + rTprq)-'(rT PDq + QT, (5.24) 

qq 12 q) 

can be obtained. Unfortunately, this has the drawback that (5.23) is not convex. Hence a 

solution can not be obtained conveniently by solving an LML However, we can make use of 

the following fact 

(4)T + XT(r Tp + QT + XT(rTprq + Q2, q)X q 
Prq + Q12, q)X q 'Pq 12, q) q 

(4, DTprq +Q 12, q) 
(r T Prq + Q2, q)- 

I (r T 
q 

Qq(I)q + QT 
qq 12, q) 

(5.25) 

and write (5.23) as a bilinear matrix inequality (BMI) 

p ý,.,, DT (, pT +XT Tp(pq+QT )+XT T 
qP'I)q+Ql,, 

+ qPrq+Q12, q)X 
(rq 12, q 

(r 
q 

Prq+Q2, 
q)X 

(5.26) 

I 
in X and P. The BMI formulation still has the drawback of a non-convex optimization 

problem. 
One way to obtain a convex problem is to use (5.16), and setting u(kh) =- 0V k- the equation 

reduces to 

x(kh)TpX(kh) ý: XT(kh)Ql, qx(kh) + x(kh + hq)TpX(kh + hq) (5.27) 

VqE {1,2,..., N) 

Since u(kh) -= 0Vk, xk+l ='ckqXk + rqUk reduces to xA: +, = 4)qxA: which is substituted into 

(5.27) to get 
, I)Tpl) qq+ 

Ql, q -P <- 0 (5.28) 

V qE{1,2,..., N} 

so that we obtained an LMI in P= pT > 0. The solution to this LMI gives P, which together 

with (5.24) gives the piecewise constant state feedback law. Thus the controlled closed loop 

system is robustly stable to arbitrary variation among the prescribed sampling times. This 
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solution has the disadvantage that it is highly restrictive and resorting to suboptimal solutions 
is also not desirable. One reason why this LMI is restrictive is that the LMI is only feasible 

for stable open loop dynamics. This is the consequence of the fact that a necessary condition 
for the LMI to be feasible is q)Tp(b q-P -< 

0. In order to overcome this problem we show q 
how P and the Kq axe obtained by solving LMIs which do not require open loop stability. 
We take (5.20) 

K )Tp(41)q T (4)q + lpq q+ 
rKq) -P+ (Ql, 

q + 2QI2, 
qKq + Kq Q2, 

qKq) 
0 

which we can write as 

4)q + r, Kq 
Tp00 

4)q + rqKq 

Ix0 Ql, q Q12, q XP<0 (5.29) 

10 

QT Kq 12, q 
Q2, 

q 
I(q 

V qE{1,2,..., N) 

Applying Schur's complement to the above expression we obtain 

P (4Pq + r. If q 
)T II 

KT I" 

((Dq + rqK, ) P-1 0>0 

Kq 9 -1 
IIIQi 

V qEfl, 2,..., N) 

where 
Qq 

QI, q Q12, q 
QT 

[ 

12, q 
Q2, q 

Multiplying the above inequality from left and right Wj L 

P-1 0o 
010 

00 il 

and setting Wo = P-1, Wq = KqP-1 we obtain the controller synthesis BlIs 
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0 WT] )T [W 
g wo ('DqWl) + rw. 

q 
e, wo + rqWq wo 0>0 

(5.30) [w0q 

wq Q 

V qE{1,2,..., N} 

in Wo = WoT >0 and W.. The solution of the LMI (5.30) gives the state feedback gains 
Kq = WqW6-1 VqEf1,2,..., N). Applying the state feedbacks gives a stable closed loop 

system which is robust against variations among the sampling times hV qE{1,2,..., N). 

However, we would not only like to stabilize the system we would further like to minimize 

the cost for driving the states to the origin for a given objective function (5.15). Therefore 

we would like to minimize the trace of W(T'. Unfortunately this is a non-convex optimization 

problem. Instead of minimizing Trace(Wj-1) we minimize 

log det Wj- 1 

subject to (5.30) which is a convex optimization problem. 

In this section it was shown how the state feedback synthesis problem which robustly sta- 
bilizes a hybrid system for all possible scheduling strategies, while minimizing a quadratic 

performance index, is cast into an LML The solution of the LMI also provides the perfor- 

mance bound for the worst scheduling strategy. It is now interesting to see which performance 

could be achieved for the best scheduling strategy. Therefore we proceed by computing the 

lower bound on the optimal cost for driving the states to zero for the best case scheduling 

strategy. 

5.4.1 Computations of lower bounds on the optimal cost 

In the previous section we showed how an upper bound on the optimal cost, for driving the 

states to zero under the worst case scheduling strategy, given initial conditions, is obtained. 
The interpretation was that no matter which scheduling (switching) strategy is chosen for 

the hybrid system the performance is better than the computed upper bound. In this section 

we answer the opposite question: compute the performance bound which is less than the 

performance given by the best case scheduling strategy. This is the computation of the lower 

bound of the optimal cost. Note, we compute the lower bound not for controllcr synthesis, 

since it does not lead to a stable control strategy, we compute the lower bound for comparison 

with the upper bound. In this way we can asses how far away we are from optimality. The 
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computation of the lower bound should not be mistaken with computations of the dual of 
the upper bound, which is a different problem. We take the inverse of the inequality 

kh+h 

x(kh)TpX(kh): 5 min (XTQCX + uTRu)dt + x(kh + h)TpX(kh + h) (5.31) 
U 

Ikh 

V hEH={hl, h2, .... hN} 

and sample the objective function such that we obtain 

kh 

x(kh)TpX(kh): 5 min E (X(i)TQI, qX(i) + 2x(i)TQ12, qu(i) + U(i)T Q2, 
qU(i))+ 

u i=kh 

+ x(kh + h)TPx(kh + h) (5.32) 

V qE{1,2,..., N} 

where QI, q) Q12, q and Q2, q are obtained by (5-17)-(5.19) as before. Taking (5.32) and replacing 

x(kh +hý 4)qX(kh) + rqU(kh) we obtain 

(4)qX(kh) + r, u(kh))Tp(41)qX(kh) + rqU(kh)) - x(kh)TpX(kh)+ 
+ (x(kh)TQI, qX(kh) + 2XTQ12, qU(kh) + u(kh)T Q2, qU(kh)) ý! 0 

The quadratic from can be written 

)T ]T[ (pTp, ý) x(kh qq-P+ 
Ql, q Q12, q + Pr, x(kh)T 0 

)T Tpr, + Q2, q JL u(kh)T u(kh Q12, q + Prq rq 

such that we obtain the LMI 

qpTp(p qqP+ 
Ql, q Q12, q + Prq 

>0 
T Q12, q + Prq rq Prq + Q2, q 

q {1,2,..., NJ 
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5 Optimal control of hybrid systems in discrete time 

in P= pT > 0. We have seen how a lower bound on the optimal cost for the best case 
scheduling strategy is computed by solving a convex optimization problem. In the following 

we will revisit the introductory example and compute the optimal gains which are robust 
against scheduling. 

5.5 Example 

We will now demonstrate the synthesis procedure by controlling system (5.2) again. However, 

since we use the synthesis procedure above we will be certain that the controlled closed loop 

system is stable and robust against variations among all h.. We sample the system again 

with the same sampling rates h, = 0.002s, h2 Ahq Iq A = 0.094s. Using 4). =e rq = fo" e 'Bds 

VqE {1,2} we obtain 
Xk+I = 4(bxk+r, Uk 

Yk = Cqxk 

qE {1,21 

where 

(D 
0.9801 ' 0.0020 

rl 
0.000 

[ -19.8649 0.979 j 0.020 

qý2 =[ 
-""' 0,0112 

r2 
0.0001995 1 

2.4660 -0.9950 0.0002466 j 

For the controller design we want to satisfy 

kh+h 

x(kh)TpX (kh) > min (XTQcX + UTRu)dt + x(kh + h)TpX(kh + h) 
u 

Ikh 

V hEH={hl, h2} 

we take the same weights as in the introductory example 

Q 
20000 01R= 

50. 
0 2000 

We then obtain Qj, q, Q2, q and Q3, q by solving (5.17)-(5-19), such that we can write 

Qq 
Ql, q Q12, q 
QT, 12 q 

Q2, q 
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V qEll, 2} 

5329.5 -394.6 -0.529 
Q1 -394.6 39.5 0.0395 

-0.529 0.0395 0.1001 

9381400 -6.0714 -938.1423 
Q2 -6.0714 933.2359 0.0010 

-938.1423 0.0010 4.7938 

We can now solve the state feedback synthesis LMI 

«DqW0 + riW, )T [W WT] wo 0q 

(PqW0 + rqW, wo 00 

Wq q 
[ wo 10 

V qE{1,2} 

and obtain Wo = WOT >0 and W1, W2, which gives the state feedback gains IC,, = TVqTV(T1 

V qE(1,21 

KI =[0.5784 
] 

K2 =[ 
1765.5 

-0.0570 0.0109 

Applying these state feedback gains guarantees stability and robustness against variations in 

sampling between hi and h2. Further, the cost is bounded by P= Wj" 

P 
2870500 12.812 1 

12.812 286.9774 

5.6 Conclusion 

The chapter was concerned with optimal control of linear hybrid systems where the continuous 
dynamic is described in discrete time. It was shown that sampling a continuous time system at 
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5 Optimal control of hybrid systems in discrete time 

different sampling rates could be viewed as such a class of hybrid system. The subsystems of 
the hybrid system are determined by the continuous dynamic and the specific sampling rate, 
such that there is a subsystem associated with each sampling rate. The discrete dynamic, i. e. 
the choice of sampling rate, is decided by a scheduler. The scheduler manages computational 

resourses. When resourses are short the control law cannot be computed so frequently. The 

consequence is that the system is sampled more slowly. However, when resources become 

available the control law can be computed more frequently, which results in faster sampling. 
Using this particular example it was shown that problems might occur by applying standard 

optimal control laws to hybrid systems. To illustrate the problem of stability a controller 

was designed minimizing the same continuous loss function for two subsystems of a hybrid 

system. This lead to two stable closed loop systems. However, it was shown that for various 

switching sequences the hybrid system was unstable. 
In order to overcome this shortcoming two solutions where presented. It was shown that 

restrictions on switching (scheduling) strategy can be imposed which guarantee stability. For 

cases where such restrictions cannot be imposed a different controller design was proposed. 
It was suggested that the objective function had to be minimized only over one sampling 

period instead of minimizing over the infinite horizon. It was shown that when a terminal 

penalty was added which is greater than or equal to the remaining cost for the worst case 

variations in sampling rate, the system is robustly stable against these variations. 
The synthesis procedure was then formulated in terms of an LML In a second example the 

synthesis procedure using the proposed LMI was carried out on the introductory example. 
The state feedback gains, which are the solutions of the LMI, were given as well as the 

performance bound. 
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continuous time 

As in the previous chapter we address the problem of optimal control for a class of hybrid 

systems. This class of hybrid systems consists of linear dynamics in continuous time, referred 
to as subsystems, and an unknown or nondeterministic discrete dynamic. Since the discrete 

dynamic cannot be controlled we are interested in computing upper bounds on the optimal 

cost for the worst case switching strategy. For best case switching strategies a lower bound 

on the cost is computed. It is shown that for this class of hybrid system the upper and 
lower bounds on the cost, for the worst and the best switching strategies respectively, can be 

obtained conveniently by solving convex optimization problems in the form of a linear matrix 
inequality (LMI). The chapter shows that obtaining a controller from the upper bound gives 

a stable control law. 

The contributions of this chapter are the LMI conditions for computing the upper bound on 
the optimal cost for driving the continuous states of a linear hybrid system with unknown 
discrete dynamic to zero. 

6.1 Intro uction 

In this chapter we consider the optimal control of a class of hybrid system. The hybrid system 
is given as a finite collection of linear dynamics in continuous time where a discrete function 

decides which linear dynamic is valid. The hybrid dynamics are described as follows: 

:t= A(q)x + D(q)u 

C(q)x 

f (q, X, t) 

where xEXC: Rn is the continuous state and qEQ= {1,2,..., NJ C Z+ is the discrete 
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6 Optimal control of hybrid systems in continuous time 

state. q is the current discrete state and q+ denotes its successor. A(q), B(q), C(q) denote the 

system, input and output matrices respectively, which depend on the current discrete state q. 
f (q, x, t) denotes the discrete dynamics, which in general can depend on the continuous state 
and the current discrete state as well as on time. It is assumed that f (q, x, t) is unknown, 

which is the case for many real systems. One example is the model of a braking car where 
the braking dynamics depend strongly on road surface conditions (dry, wet, icy), which 

vary arbitrarily. These vaxiations are modelled by a hybrid system where linear dynamics 

are derived for different road surface conditions. The fact that changes in road surface 

conditions are not predictable and occur discontinuously is captured by the unknown or 
non-deterministic discrete function f (q, x, t). The only assumption that is made on f (q, x, t) 
in the following, is that some time t>0 elapses between consecutive transitions from the 

current discrete state q to a new discrete state q+. The assumption is of a technical nature 
such that we do not exhibit Zeno executions (45). In general this assumption is satisfied by 

almost every real system and is therefore not restrictive. 
For controller synthesis we want to find a controller which minimizes the following quadratic 

objective function 

00 
XTpX = min XTQX + uTRu dt (6.2) 

u 

Jo 

subject to our hybrid system (6.1). Since the discrete state cannot be influenced we can only 

obtain bounds on the optimal cost. For the worst case switching strategy we can compute 
the upper bound on the optimal cost, which we would like to minimize. While for the best 

case switching strategy we can obtain a lower bound on the optimal cost. It is shown that 
the upper and lower bound can be obtained by solving an LML Obtaining the upper bound 

gives a piecewise linear state feedback controller, which is stable for all discontinuous changes 

among the finite collection of linear dynamics that axe assumed by the hybrid system. 

6.2 Optimal control of hybrid systems in continuous time 

6.2.1 Computation of upper bounds on the optimal cost 

With this class of hybrid system it is not possible to control the discrete dynamic, i. e. there is 

no possibility to influence which subsystem is active. Due to this fact we have to consider all 

possible switching strategies. For the optimal control problem, which is driving the continuous 

state to zero from an initial condition while minimizing a performance index, we are interested 
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6 Optimal control of hybrid systems in continuous time 

in finding an upper bound on the cost for the worst case switching strategy. That is, there 

exists no switching strategy which has higher cost than the upper bound. Since the upper 
bound is a cost which is greater or equal than the optimal cost (6.2) we write 

00 
x TpX > min 

I 
XTQX + UTRu dt. (6.3) 

0 u0 

where Q and R are positive definite weights. Assume that the optimal feedback is given by 

u= Kqx, so that we replace u by Kqx 

00 
xTpX > XTQX + XTKqTRKqx dt. (G. 4) 

- 
fo 

Differentiating with respect to time we obtain 

_. iTpX _ XTpi > XTQX + XTKTRK x (6.5) 
qq 

and replacing i= (Aq + B, K, )x we obtain 

T(Aq + BqKq )TpX _ XTP(Aq + BqKq)x > XTQX + XTI, (qTRIiýqx. (6.6) 

We can now write the matrix inequality 

-(Aq + Bq Kq )Tp _ p(Aq + BqKq) ý! Q+ IfqTRIC, (G. 7) 

Since it is desirable to obtain the Kq for all q and P by solving a convex optimization problem 

we aim to transform the matrix inequality (6.7) into a linear matrix inequality (LMI), which 

can then be solved conveniently by standaxd tools like the MATLAB LMI-toolbox. It is easy 
to see that the inequality (6.7) is not convex. In the following, steps are carried out to obtain 

convexity. We first replace P by multiplying from left and right with P-1, to obtain 

-'(Aq +B K)T_ -1 > P-IQP-l + P-1 -1 -P qq 
(Aq + BqKq)P 

- 
lfqT R Kq P 

To recover convexity we make a change of variables and replace M= P-1, TVq = KqP-1. 

Hence 
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-MA 
T TB T- AqM - 

BqWq ý: MQM + WTRWq q 
Wq 

q 

Reaxranging the inequality we get 

O>MA T+ WqTBq + AqM + BqWq + 
MT Q0MI 

q[ WqT 

I[0R 

Wq 

Applying Schur's complement to the above expression we obtain 

MAT + WqTBq + AqM + BqWq MT WT 
qq 

M 
-Q-1 0 (6.8) 

wi 0 -R-1 

which is an LMI in M= MT >0 and W. VqE(1,2,..., N}. In order to minimize the 

upper bound we want to minimize P subject to (6-8) by minimizing the trace of P. However, 

minimizing the trace of P subject to (6.8) is not a convex optimization problem. Fortunately, 

we can make use of a trick (20) to overcome this problem and regain convexity. Instead of 

minimizing the trace of P we minimize 

log det M-1 

subject to the LMI (6.8) (remember M-1 = P). The solution of the LMI (6.8) then givCs 
the state feedback gains K. = WqM-1 VqE 11,2,..., N}. 

Theorem: If there exists p= pT > 0, Kq, qE {1,2,..., NJ such that 

( +B K)Tp+ Aq qq P(Aq + BqKq) +Q+ KqTRICq :50 (6.9) 

qG {1,2,..., N} 

then the hybrid system (6.1) is stable and its performance is bounded by xTPx. 

76 



6 Optimal control of hybrid systems in continuous time 

Proof. It is easy to show that V(x) = XTpX serves as a Lyapunov function for the hybrid 

system (6.1) since p= pT >0 and 

ýr(X) = XT (Aq + BqK q 
)TpX + XTP(Aq + BqKq)x 

:5 -x 
T[IK 

q 
]0[IK 

q 
]TX 

V qEfl, 2,..., N} O= 
Q0 [0 

R] 

where 0 is positive definite and [IK. ] are full rank, therefore -[IK, ]O[II qT is negative ,C 
definite and hence 1ý < 0. 

Since u= Kx we replace Kqx by u in (6.10) and integrate 

00 00 
V(X(0» - V(X(00» =- 

10 
lý (x) dt > min 

10 
XTQX + uTRu dt. 

Since the system is asymptotically stable we know x --+ 0 as t --+ oo. Hence we see that the 

cost for driving the hybrid system (6.1) from an initial state x= x(O) to x=0 is bounded 

from above by 

00 
V(X) = XTpX > min XTQX + uTRu dt. 

u 
10 

11 

In the following we want to get a bound on the best case switching strategy. 

6.2.2 Computations of lower bounds on the optimal cost 

The lower bound is now computed. This lower bound is a cost which is lower than any cost for 

any switching sequence. Note, we compute the lower bound not for controller synthesis, since 

it does not lead to a stable control strategy, we compute the lower bound for comparison with 

the upper bound. In this way we can asses how close we are to optimality. The computation 

of the lower bound should be not mistaken for the dual of the upper bound since for the 
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upper bound we consider the worst switching sequence and for the lower bound we consider 
the best switching sequence. For computation of the lower bound the inequality is reversed 

00 
XTpX < min XTQX + UTRu dt 

u 

Jo 
(6.11) 

Following the steps as above we derive what is known as the Harnilton-Jacobi-BeUman in- 

equality 

< 'Vf (x, u) + L(x, u) ax 
(6.12) 

where L(x, u) is the time derivative of our objective function L(x, u) = XTQX + UTRu and 
Ovf (x, u) is the time derivative of the cost (loss) function -007v. -f (x, u) (Aqx + Jx- 
BqU)TpX + XTP(AqX+ Bu), such we can write 

0< (AqX + BqU)TpX + XT P(A, x + Bu) + XTQX + UTRU 

Bringing the inequality above into a quadratic form we get 

T Tp + PAq +Q PBq T Aq 

uT BqTP R 

][XU]>-o [x 11 

which gives us an LMI 

ATp + PAq +Q PBq 

BqTP R]ý! 
0 

in p == pT > 0. Solving the above LMI gives then the desired lower bound on the cost. 

6.3 Conclusion 

This chapter was concerned with the optimal control of a class of hybrid system. This class 

of hybrid system consists of linear subsystems, describing the continuous dynamics. The 
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6 Optimal control of hybrid systems in continuous time 

discrete dynamic, however, is unknown. Although the discrete dynamic is unknown, the 

active subsystem can can be immediately detected. The hybrid system can be controlled by 

a continuous input only. This hybrid framework is of importance since it describes various 

relevant systems. For optimal control, a quadratic performance index is minimized consisting 

of the continuous state and the continuous control input. Changes of the discrete state are not 

penalized since the discrete state cannot be influenced directly. Since the discrete behaviour 

cannot be influenced, only a bound on the optimal cost (the cost for driving the states from 

initial conditions to zero) can be attained. Rom the worst case switching strategy we obtain 

an upper bound on the optimal cost. While for the best case switching sequence we obtain a 
lower bound on the optimal cost. The procedure to obtain the upper and lower bounds was 
formulated into a linear matrix inequality (LMI) which is a convex optimization problem and 

can be solved with various commonly available tool boxes. It was shown that together with 
the upper bound we can obtain a piecewise linear state feedback law which is robustly stable 

against all possible switching sequences. 
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The chapter illustrates problems involving state estimation of hybrid systems. The problems 

of state estimation are discussed for the class of linear hybrid system where the continuous 
dynamic is described in discrete time. Such systems play an important role as they occur in 

many computer control applications using sampled-data control, as we have shown in chapter 

5. For many such systems it is not possible to take state measurements at equidistant time 

intervals. This results ultimately in a hybrid system where the current dynamic (subsystem) 

is determined by the current sampling rate. It is shown that the state estimate might diverge if 

an observer is designed, minimizing the covariance of the estimation error for each subsystem 
(i. e. sampling rate) individually. An observer synthesis is proposed which overcomes this 

problem. This observer is piecewise linear and converges for all switching sequences, i. e. 

under all sampling rate variations. The design of the observer is cast into an LMI and gives 

piecewise linear observer gains. The procedure is then illustrated in an example. 

The contributions of this chapter lies in the novel LMI observer synthesis for optimal statc 

observers of linear hybrid systems. 

7.1 Introduction 

The previous chapters were concerned with the control of hybrid systems. For most of 
these approaches state feedback was used. This control strategy requires that the states arc 

available. Sometimes it is possible to measure states but generally, of course, this is not the 

case. Also, sometimes it is considered too expensive to get additional sensors measuring the 

states. In other cases it is impractical to equip the process with such sensors. Therefore 

estimates of the states need to be obtained. For this purpose observers are designed. An 

observer is a dynamic system which has similar structure and parameters to the dynamic 

which is observed, preferably they are the same. The observer can be viewed as a dynamical 

system with input and output. The input to the observer is the output of the dynamic 

usually referred to as y(t), where the t indicates that the output of the dynamic is a function 
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of time. The output of the observer is the estimate 1(t) of the state x(t). Observers with 

such structure are called Luenberger observers. The estimates of such observers convergence 

asymptotically, i. e. the estimation error e(t) = x(t) - -B(t) vanishes as time goes to infinity, 

t- 00. 
In this chapter we are concerned with the design of observers for a special class of hybrid 

systems. This class has been introduced in chapter 5. The class of hybrid system consists 

of linear subsystems describing the continuous dynamic in discrete time. The change of 

subsystem is not a priori known but can be detected immediately. Thus the hybrid system 
is described by 

Xk+1 4ýqXk + rqUk + %Pqwdk 

A CqXk + vdk (7.1) 

q+ f (-) 

where xEXC R' is the continuous state in discrete time and qEQ= {1,2,..., NJ C Z+ 

is the discrete state. q is the current discrete state and q+ denotes its successor. (Pq, rq, 

Cq denote the system, input and output matrices of the discrete time system, respectively, 

which depend on the current discrete state q. %Pqwdk is the process noise and vdk is the 

measurement noise, its properties are discussed later. f denotes the discrete dynamics. 

This class of hybrid system seems to be important since most control applications involve 

computer control where the control output is computed on a computer and then applied'to 
the control process. Measurements are taken from the process with sensors and sent back 

to the computer where the new control output is computed. Since computers operate with 
discrete quantities these continuous signals are sampled. Discrete time models which are 

equivalent to the continuous time models can be obtained to represent the sampled signals. 
A hybrid system of such form arises then for many reasons, one is the variation of sampling 

rate due to computational resource changes as described in chapter 5. Another reason is that 

measurements are sent via bus systems to controllers. At instances where the measurement 

should be sent the bus might be busy and the measurement cannot be sent. The measurement 
is then taken at a later instance where it can be sent. In such a setup variations in sampling 

can be detected immediately, since the time between the arrival of different measurements 

can be measured. Hence the change between different subsystems of the hybrid system are 
detected immediately. 

Using this particular example where variations in sampling rate generate a hybrid system, we 

show how observers can be constructed. It is shown that such configurations cannot be treated 

directly with methods used for continuous systems. This fact is illustrated by an example 

which shows that the estimate might diverge when switching between commonly designed 

asymptotic observers. An observer is proposed which overcomes this problem. The observer is 

asymptotic such that no on-line inversions are needed to compute the observer gain, which is 

otherwise a high computational burden. Similar to the Kalman filter, the observer minimizes 
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the covariance of the estimation error asymptotically. Hence the estimate converges for all 

switching sequences of the hybrid system. The observer has piecewise constant observer gain 
that depends on the current subsystem, i. e. sampling rate. The observer synthesis is stated 

as an LMI which gives the desired gains. In an example the synthesis procedure is illustrated. 

7.2 Example 1: Two different sampling rates, asymptotic observer 
for each sampling rate 

In this section observer synthesis for sampled data systems is explained. Following the stan- 
dard procedure of observer synthesis a discrete asymptotic Kalman filter is derived. In an 

example it is shown that applying such observers to a hybrid system causes problems. For 

our example the following continuous system is observed 

i= Ax+bu+Gw 
(7.2) 

Cx +v 

where 
A= 

[01] 
b= 

[0] 
(7.3) 

-1000 -0.1 1 

C=[l 1] G= 

are the system, input, output and process noise matrices. The noise is expected to havc zero 

mean, i. e. E[wk] = E[Vkl =0 and the covariance of the noise is given by 

E[GwkwjTG T] Qn k=j 
0k 34j 

Tj Rn k=j E[VkVk 
0 kg&j 

Moreover, the noise is uncorrelated, E[WkvjT] =0Vk, j. The continuous system is stable 

with poles in the left hand-side of the complex plane P1,2 = -0.05 ± 31.6i. In this example 

we assume that the measurements can be taken at two different sampling rates hi = 0.004 

and h2 = 0.08. For each sampling rate we obtain a discretization by zero order hold, where 
Ahi, f h, 

eAsBds. In this way we obtain a hybrid system with two Subsystems. 4)i =e0 
The two discrete subsystems are represented by 

Xk+l 4)qXk + r, uk + %Pqwdk 
(7.4) 

Yk CXk + vdk 
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E 

The covariance of the discrete subsystems are denoted by Qdqv Rdq. We proceed by designing 

an asymptotic observer for each subsystem, Le. for each sampling rate, minimizing the 

covariance of the estimation error asymptotically. The equations of the observer are given 
by, (for simplicity we set u= 0) 

4+1 -ýqlk + Lq [Yk 

Pk Clk 
(7.5) 

where the hat denotes the estimate. We can now write the equation for the estimation error 

ek+l ý Xk+l - 4+1 =-4)jxk + llqwdk - 
4)q-; 

k - Lq [CXk 
+ Vdk - 

64] (7.6) 

Since we take 4)q = 4)ql C=6 we get 

ek+l ý-- ((Dq - LqC)ek + XPqwdk - Lqvdk (7.7) 

The objective of the Kalman filter is to generate the optimal estimate from the measured 

Output Yk of the observed system and the previous estimateIk-1. This is done by minimizing 

the covariance of the estimation error. This objective is expressed by 

T] Pk =E [ekek (7.8) 

Replacing the estimation error by (7.7) we obtain 

Pk =E LqC)ek-I + %Pqwdk-l - 
Livdk-, ), ((4)q - LqC)ek-I + %Pqwdk-l - L, vdk-, )T] 

(7.9) 
Using the fact that the expectation operator is linear we write 

T C)T] T C)T] Pk =E 
[((Dq 

- LqC)ek-leA; 
-, 

((Dq - Lq +E [TgwdA; 
-Iek-, 

((Dq - Lq 

T C)T] qT] + E [Lqvdk-jeA; 
-j(4ýq - Lq +E [(4Dq 

- LgC)eA: -IwdTA: -, q 

%pT T 
I%pT] + E ['Pqwdk-lWdTk-1 

qI-E 
[Lqvdk-lwdk- 

q 

E [('Dq 
- LqC)ek-lvd T 

1L 
T+E [%Pqwdl, 

-IvdkT-IL 
T] +E [Lqvdl, 

-IvdT ILT k- q] q k- q] 

Since the mixed terms are uncorrelated the expression above can be reduced by using 

, pT] = 
Qdq k=j E[TqwdkWdjT qf0 kOj 

E[vdkvd'kj = 
Rdq k=j 10k 

96 j 
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to 
Pk =E [eke T] 

= (-(D, 
7 - 

LqC)Pk-1(4Dq - Lq C)T + Qdq + LqRdL T (7.10) k9 

For the asymptotic Kalman filter, which is also referred to as stationary or steady state 
Kalman filter, Pk =- Pk-j. The advantage of the asymptotic Kalman filter compared to 

the recursive Kalman filter is that the gain can be computed off-line, which eliminates the 

online matrix inversion. In order to find the state update gains Lq and the covariance of the 

estimation error P we have to solve the corresponding algebraic Riccati equation 

q=4, 
TR (CTR )T(IM + CTR 

qC)-I(CTR Rq ql)q + Qdq -q 'cDq qq 4)q) (7.11) 

The state update gain Lq is then given by 

qCT) qCT)-l Lq : -- (ýDq R (Rdq + CR (7.12) 

In general it is easy to check if the estimates converge. We only have to check that the 

spectral radius Of P(ýDq - LqC) is smaller than one. 
In our example we take the covariances to be 

Qn 
0.5 0] 

Rn = 0.5 (7.13) 
0 0.5 

Solving the Riccati equations we obtain the state update gains 

0.0077 ] 
Li -0*0010 L2 =[ (7.14) 

0.1149 -0.8752 

Both observers converge individually, i. e. p((DI - LjC) = 0.9439 < 19 PR2 - L2C) ý-- 0.5056 < 
1. However, if we use the observers for sequences where the sampling rate changes, we find 

that there are sequences which do not converge. One of these sequences results if tile system 
is sampled with 4X hl and then 1x h2 repeatedly. Figure 7.1 shows this sequence. Hence 

such an observer cannot be applied to a hybrid system, since any possible switching sequence 
has to be anticipated. For our example this means all possible sampling rate variations 
between hi and h2 have to be considered. The above sequence shows one sequence where tile 

estimates do not converge. It turns out that there are a number of such sequences which do 

not converge. Table 7.1 shows these sequences In this section we have seen that problems can 

P(((D2 - L2 C)mh2(j), - LIC)nhi) >1 

n-hi 4-hi 5-hi 6-hl 7-hl 

_M-h2 
1-h2 1-h2 1-h2 1-h2 

Table 7.1: Sequences which do not converge 
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Figure 7.1: Divergent sequence of the estimation error 

occur observing the states of a hybrid system using conventional Inet'llod". A-, ýtjl cXampli. 

of a hybrid system with two subsystems it continuous process WWS id. two diltvicut 

sallipling rates. The variations in sampling rate led to it hybrid system where tbe (Iiscloo, 

(lynalnic (thc change between subsystems) was not, it priori known Imt, cmild be det, ccted 

il,, llle(Ii; Lte1Iy. It was shown that the estimates could diverge when SWitChing I)OWCV11 K; L1111MI 

filters which where designed for each subslyst, cill individually Therefore We nel-d h) find ;L 

(lesign which is robust to switching among subsystems, i. c. which is roblist, to Variations ill 

s, tillpling rate, such that the estinlatCS (10 COl1VCrgC. In tll(, next, section We :, 11ch a 

(lesign which overcomes this problem. , I'llis Observer CM) be Viewed WS L KidlIM11 tiltv] 101. 

hybrid systems, since it minimizes the covariance of' the estimation error. Nfi)rc in1p), lalit IN' 

this observer will be robustly stable to switching between siibs. VStClllS, SM-11 t hid t 111NOVS* 

itre guaranteed to converge asymptotically. 

7.3 Observer for systems with varying sampling rate 

W(ý. will now give the conditimis under which the ol)s(-. rv(,. i- is i0bustIN, st; Ll, l(. 1, 

1)(ýtweeri subsystenis of the hybrid system. 

Theorem 1: If there exists P= P"' > 0, Lq, qCf1,2,.. -, 
NI stich 111,0, 

(4)q - LqC)P(4q - LqC)7'_ P+ (Qdq i L, 
11? (I,, 

L"') < () (7 15) q 
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7 Observer design for hybrid systems 

q 11,2,..., N} 

then the observer converges for all switching sequences among the q subsystems, qE 11,2,... 
' N} 

and the covariance of the estimation error is bounded by P. 

Proof. V(e) = eT Pe serves as a Lyapunov function since p= pT >0 and 

with 

C)T _p< LT AV (qýq 
- LqC)P('Dq - Lq 

- -[ILq]Qq[I q]T (7.16) 

Qq 
Qdq 0V 

qEQ=[1,2,..., N) 
0 Rdq 

I 

where Qq are positive definite for all q and [ILqj are full rank, therefore -[ILq]Qq[ILTIT is 
q 

negative definite and hence AV(e) < 0. 

From (7.10) we know that the covariance of the estimation error is given by 

T] C)T + Qdq T. E[eA; ek =(41)q-LqC)Pk-1(41)q-Lq + LqRdqL, (7.17) 

Since 

P ý: E [eke T 
---: 

(4)q - LqC)Pk-1(4)q - Lq C)T + Qdq + LqRdgLT (7.18) k] q 

the covariance of the estimation error is bounded by P. 

11 

We have seen if we manage to find an observer which satisfies (7.15), we can guarantee that 
the observation converges despite switching among q, qE {1,2,. .. ' N}, subsystems, We will 
now show how we can formulate the observer synthesis into an LMI, such that we obtain P 

and Lq. 

7.4 Observer synthesis using LMI 

We have seen that the estimate converges for all switching sequences among the specified 
subsystems qE 11,2,..., N}, if we find the Lq and P that satisfy the conditions of Theorem 
1. The remaining problem is to find the Lq and P. The difficulty is that this condition cannot 
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be used directly since it is not convex. 
The following steps aim to transform the condition such that we obtain a convex problem. 
We have 

C)T _ p+ T) 50 L, C)P((Dq - Lq + (Qdq + LqRdqLq 

which we can write as 

4)q - LqC 
TP00 

(Dq - LqC)T 

Ix0 Qdq 0xIp<0 (7.19) 
T Lq 00 Qdq Lq 

qE{1,2,..., N) 

Applying Schur's complement to the above expression we obtain 

P ('I)q - LqC) II 
Lq 

(4)q - Lq C)T P-1 0> 

LT 
0Qq 

q 

-1 

V qE{1,2,..., N} 

where 
Qq Qdq 0] 

0 Qdq 
Multiplying from left and right with 

P-1 00 
010 
00 Il 

and setting Mo = P-1, Mq = P-lLq we obtain the observer synthesis LMIs 

mo MO(Dq 
- mqc [Mo Mqj 

(MO(Pq 
_M q 

C)T mo 00 

mo 
oQ 

Mq 

NJ 

(7.20) 
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7 Observer design for hybrid systems 

in Mo = MO' >0 and Mq. The solution of the LMI (7.20) gives the observer gains Lq = 
Mj-'Mq VqE {1,2,..., N}. With these observer gains the estimation error converges 
robustly for all switching sequences, i. e. under all variations among the sampling times hq 
VqE {1,2,..., N}. However, we would not only like to have an estimate that converges for 

all switching sequences, we would further like to minimize the covariance of the estimation 
error, which is P (7.8). Therefore we could minimize the trace of Mý' = P. Unfortunately 

this is a non-convex optimization problem. Instead of minimizing Trace(Afj") we minimize 

log det Mý" 

subject to (7.20) which is a convex optimization problem ((20)). 

We have shown how the observer synthesis problem is cast into an LML We will now demon- 

strate the procedure on the introductory example and give the piecewise linear observer gain 
for which the estimates converge for all switching sequences, i. e. under all possible variations 
in sampling rate. 

7.5 Example 

We will now demonstrate the observer synthesis procedure by building an observer for the 

system (7.2) again. However, since we use the synthesis procedure above we will be certain 

that the estimate will converge for all possible switching sequences, i. e. for all variations 

among all specified sampling rates. We sample the system again with the same sampling 
r0 rates hi = 0.004s, h2 = 0.08s. Using -1). = eAh9 q=hA 

f( 9e -Bds VqE {1,2) we obtain 

the hybrid system with the two subsystems described by 

Xk+l (DqXk + ruA, + %Pqwdk 

Yk CXA: + v4 

E 11,21 

where 
1 0.9920 0.0040 0.000 

I r, 
[ 

[ 
-3.9885 0.9916 0.004 

-0.8145 0.0181 0.0018 
(P2 =[ r2 

[ 

-18.0891 -0.8163 0.0181 

For the observer design we want to satisfy 

)T_p+ T): 5 0 ('CDq 
- LqC)P(4ýq - LqC (Qdq + LiRdqLq 
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V hEH={hl, h2l 

We take the same weights as in the introductory example 

Qn 
0.5 0] 

Rn = 0.5 
0 0.5 

such that we can write 

Qq 
Qdq 0 

0 Rdq 

V qE(1,2} 

0.0020 -0.0020 0 0.0165 -0-0914 0 
Q1 -0.0020 0.0067 0Q2 -0-0914 23.4723 0 

00 125 006.25 

We can now solve the observer synthesis LMI 

mo M04q - MqC [MO Mqj 

(MO4>q 
_M q 

C)T mo 0> 

mo 
oQ 

Mq 

V qE(1,21 

and obtain Mo = MOT >0 and MI, M2, which gives the observer gains Lq= MIT IM9 

VqE 11,2}: 

LI = 
0.0018 

L2=[0.0193 
] [ 

0.7199 -0.9310 

Applying these observer gains guarantees convergence of the tate estimate for all possi. 
ble switching sequences, i. e. robustness against variations in sampling between hi and 112 
Further the covariance of the estimation error is bounded by P= Wj'I, 

[ 0.1275 -0.4959 
1 

-0.4959 289.1227 j 

The spectral radius of the observer is p(ýýj - LIC) = 0.9756 < lt P(4ý2 - L2C) = 0.854G < 1. 
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7 Observer design for hybrid systems 

7.6 Conclusion 

This chapter was concerned with observer design for a class of hybrid system. In this class 
of hybrid system the linear continuous dynamic is described in discrete time. The discrete 
dynamic, i. e. the switching between subsystems, is not a priori known but can be detected 

immediately. Hybrid systems of such a class axise in sampled-data control with varying sam- 
pling time. Many control schemes require knowledge of the current state. Often it is not 
possible to measure all required states. In these cases observers are used, which give an 
estimate of the states. Designing such observers, one could proceed with the methodology 
applied to continuous or discrete time systems. An example showed that applying such ap- 
proaches directly to a hybrid system is not suitable. In this example an observer was designed 
for a stable continuous system which is sampled at two different sampling rates. In this way a 
hybrid system with two subsystems in discrete time was derived. An asymptotic observer was 
designed, minimizing the covariance of the estimation error for both subsystems individually. 
It was shown that although the estimates converged individually for each subsystem, i. e. for 

each sampling rate, it did not for various sequences where the sampling rate was changed 
repeatedly, i. e. for switching among the two subsystems. 
In order to overcome this shortcoming an observer design was presented which converged 
robustly for all possible switching sequences, Le for all variations in sampling rate. This 

observer uses a piecewise linear observer gain, which depends on*the current sampling rate, 
i. e. subsystem. By measuring the time between consecutive output samples it is straight 
forward to detect the current sampling rate (subsystem). 

The observer synthesis was cast into an LML The solution of the LMI gives the observer 
gains as well as the bound on the covariance of the estimation error. In a second example the 

synthesis procedure using the proposed LMI was carried out on the introductory example. 
The observer gains, which axe the solutions to the LMI, were given, as well as the performance 
bound. 
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8 Identification of hybrid systems in discrete 

time 

This chapter is concerned with identification of piecewise linear (affine) maps as they occur in 

linear hybrid systems. The identification is performed by a series of optimizations. The first 

step is to build local data sets for each input/output data pair containing the c-1 nearest 
data pairs. An affine map is fit to each local data set minimizing the least squares error. This 

creates two types of estimate, the pure one that is obtained from local data sets which contain 
data from only one map and the outliers containing data from different maps. In the second 

step the estimates, obtained from the local data sets, are grouped in clusters such that each 

cluster collects the pure estimates and possibly outliers as well. Such clusters are referred to 

as perfect clusters and non-mixed clusters, respectively. The parameters of each affine map 

are computed simultaneously by minimizing the weighted distance between the members of 

each cluster. The chapter gives the conditions under which perfect and non-mixed clusters 

are obtained. Further conditions are given for detection of the outliers. It is shown that 

removing outliers improves the identified affine maps considerably. 

The main contribution of this chapter lies in the conditions under which perfect and non- 

mixed clusters are obtained as well as in the a posteriori detection of outliers. This chapter 

has been submitted for publication (35). 

8.1 Introduction 

Previously we have been concerned with the analysis and control of linear hybrid systems. 
One requirement to carry out such analysis was that a model of the process is available. 
The design of controllers also requires models. There are basically two different possibilities 
to obtain such dynamical models. One possibility is to derive a white box model by writing 
down the equations which govern the process. Laws of physics are used to model real systems 

which usually involves differential equations, possibly in combination with logical statements. 

93 



8 Identification of hybrid systems in discrete time 

In the case where no such knowledge is available a model is found by black box identification. 
This involves the stimulation of the process and measuring the response. With the input 

and output data a model can be found which describes the system. The difference between 

model predictions and measured data is minimized in a suitable metric in order to find the 

model which describes the input/output data as closely as possible. This involves solving an 
optimization problem. The solution of the optimization problem comprises the parameters 

and possibly also the structure of the model. 
In this chapter we axe concerned with the identification of a class of linear hybrid system, 
as considered in previous chapters. Since in general implementations are done on computers 
we focus only on hybrid systems where the continuous dynamic is described in discrete time. 
Thus, we are concerned with hybrid systems modelled by 

Xk+l 'DqXk + r. Uk 

Yk cqxk 

q+ f (x) 

where xEXC R' is the continuous state in discrete time and qEQ= {1,2,..., NJ is the 

discrete state. We denote q as the current discrete state-and q+ denotes its successor. (I),, r, 

C. denote the system, input and output matrices of the discrete time system, respectively, 

which depend on the current discrete state q. f (x) denotes the discrete dynamics. 

The icrentification of such a hybrid system aims to reconstruct the piecewise linear, - or affine, 

functions of the hybrid system (32). In addition, the domain of each function, i. e. the area 

where the individual function is valid, has to be identified. This makes the identification of 

hybrid systems a challenging problem, since it is not immediately obvious which input/output 

data pair belongs to which affine map. Therefore three problems have to be solved, The first 

problem is the classification problem, i. e. which input/output data pair belongs to which 

function. The second problem is the regression problem, i. e. reconstructing the individual 

function from the input/output data. The third problem is to reconstruct the domain of each 

map. A general procedure for solving the identification problem was proposed in (34) (33) 

and consists of a series of steps. The first step is to group the M input-output data pairs inM 

local data sets, such that each local data set is labelled by a different input/output data pair 

and contains the c-1 closest input/output data points. In the second step, linear regression 

is applied to each local data set such that M parameter vectors are obtained. Some local 

parameter vectors will provide an estimate of the true sub-models. However, it can happen 

that data points generated from different sub-models are collected in the same local data 

set. In this case, the corresponding parameter vectors are termed outliers since they do not 

represent any of the true sub-models. Therefore, together with each parameter vector, there 

is a measure of confidence one should have on the fact that the parameter vector is not an 
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outlier. In the third step a clustering technique is used. The parameter vectors previously 

obtained are grouped on the basis of a similarity measure such that there is a cluster of 

parameter vectors associated with each affine sub-model. Since a local data set is associated 

to each parameter vector and each local data set is labelled by a single input/output data 

point, the clusters of parameter vectors can be used to partition the original data points in 

N sets, one for each sub-model. In the ideal case, each set should then embrace all the data 

points generated by a single sub-model. In the last step each sub-model is identified by using 

the final sets of input/output data. The same data sets can be used for estimating the region 

of validity of each sub-model. It is obvious that the crucial point of the procedure is the 

clustering step. In the ideal case all the parameter vectors which provide an estimate of the 

same sub-model should be collected in the same cluster. In this case, we say that perfect 

clustering is achieved. However, clustering is done through an optimization procedure whose 

results can be spoiled either by the noise affecting the data points or by the presence of out- 
liers. In the first part of the chapter we summarize the identification procedure proposed in 

(34). Next, we focus on the clustering step and characterize the cases when perfect clustering 

is achieved. First, in section 8.3 we prove that in the absence of outliers, if the noise level 

is sufficiently small perfect clustering results from optimization. Second, in section 8.4, we 

generalize the previous results to the case when outliers are present. 

Finally, based on these result, we present an easy computational method for detecting outliers 

a posteriori. We demonstrate, through an example, that by using the detection procedure 

and by removing outliers in the clustering step, the quality of the identification procedure 

improves considerably. 

8.2 The identification algorithm 

We now summarize the identification algorithm proposed in (34) and introduce the notation 

that will be used throughout the chapter. The starting point is to derive an input/output 

representation of system (8.1). This is necessary since input/output data are used for iden. 

tification. Thus, consider the N affine maps 

fq (x (k» = 
x(k) 

] 
öq (8.2) 

11 

where x(k) denotes the vector of regressors made of past inputs u and outputs y 

x(k) = [y(k - 1)T y(k -ý2)T ... y(k - n)T u(k - I)T ... u(k _ 7n)T]T (8.3) 

95 



8 Identification of hybrid systems in discrete time 

and Oq denotes the parameter vector 
TTTT Tm 

gq] 
T 

q 
[aq, 

l aq, 2 ... aq, n 
bq, l ... bq, (8.4) 

In this chapter we consider, for data generation, the general piecewise affine model 

y(k) =f (x(k)) + 77(k) (8.5) 

f(x(k)) = fq(x(k)) if x(k)EX., kE{1,..., M) (8.6) 

where {Xq, q=1, ..., N} is a polyhedral partition of the set X of possible regressors, that is 

assumed polyhedral and bounded. Moreover, 77(k) are the noise samples which are assumed 
to be independent and identically distributed in a Gaussian way with E[77(k)] =0 and 
Var[, q(k)] =a2. The maps fq(-), each one together with its region of validity q, are referred X 

to as sub-models. 
We denote the collection of data points by R= {(x(k), y(k)), kE{1,..., M}}. 

The problem of identifying the PWA map is threefold, since the number N of affine maps 

and the polyhedral domains X. as well as the PWA map itself has to be identified. In many 

cases the number of affine maps is known, which makes the problem easier. If we further 

know from which affine map which data point is generated the problem becomes trivial. 
We can now present the identification algorithm proposed in (34). The method consists of 
four steps. In the first step local data sets are built. 

Local Data sets (LDs): For each data point (x(j), y(j)) there is an LD C1, containing the 
data point and its c-1 nearest neighbours. More preciselythe LD Cj collects (x(j), y(j)) 

and the c-1 distinct datapoints (:!, ý) that satisfy 
IIX(j) _ i112 < IIX(j) _ n112, V(: ý, 9) E Sl\Cj. (8.7) 

Note, that c is a parameter of the algorithm satisfying c>n+m+1. We refer to Cj as pure 
LD if it collects only data points obtained from a single affine map. An LD is called mixed if 

not all data points are from the same affine map. Note that the distinction between pure and 

mixed LDs is conceptual and cannot be done a priori since the regions of the true piccewise 

affine model are unknown. 

Local parameter vectors (LPVs): From each LD a local parameter vector is estimated 

on the basis of 
Y1 XI ... 

Yj (Pj (8.8) 

YC XC ... 

]Rcx(n+m-1) where 4)j consists of all Xk : (Xk 
t yk) E Cj and Yj E Rc of all yk : (Xk 

i Yk) E Cj 

For later purposes, we also define 

(x- «1» TO) 

f (x (c» 
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In other words, Yjý is the vector containing the noise free outputs characterizing the data 

points in Yj (see (8.5)) and ej E R' is the corresponding noise vector. The local parameter 

vector is denoted by Oj and obtained by using least squares estimation, 

61i = Qjyj 

where Qj = The LPV 0 can be obtained from a pure or mixed LD. In view 73i 

of the bijective correspondence between LDs and LPVs, an LPV is called pure LPV if it is 

obtained from a pure LD and mixed LPV (or outlier) otherwise. 

Local confidence measure: For every LPV its covariance matrix is estimated, as standard 
in least squares theory, through the formula 

Vi = 
SSRj 

SSRi=YjT(I-4)j(4)IT4)j)-llýjT)Yj (8.11) 
c- (n+m+ 1 

Note that, intuitively, if Vj is the covariance of a pure LPV and Vi is the covariance of a 

mixed LPV, we expect Vi > Vj, since Vi accounts also for the modelling error which increases 

SSJ?,. Therefore we can use V, -' as a measure of the confidence about LPV Oj being pure. 
Clustering step: The next step aims to partition all LPV in N clusters. In the ideal case 

each cluster should contain all pure LPVs generated by the same sub-model. The clusters are 
denoted by (Dqjqlýl and are disjoint sets that collect all LPV Oj, i. e. (01'... 

'0 f) = UN 1-D A qm q- 

As usual in clustering theory, we find the clusters by solving an-optimization problem, i. e. 
by minimizing the clustering cost 

N 
j QD IN IN 1) 110j _ jjqjj2 q q= Ii 

{Jlq 
q= V_l 

qml jE! a'Dq i 

where jLq are the centres of the clusters and the operator !a acting on the Set Vq giVCS the 

collection of indices of the elements belonging to Vq. For instance, if V1 = (01 
t 03 1 08) 1 We get 

! aD, = {1,3,8}. The clusters that minimize J will be denoted as 7), *. Note that the distances 

between centres and LPVs depends on the confidence measures. Intuitively, this means that 

the clustering results will depend mainly on the LPVs with associated "high" confidence. 

Since we assume that the number N of affine sub-models is known, then a proper version of 
the X-means algorithm can be used for minimizing the cost (8.12). If the number of affine 
maps is unknown then other clustering technique such as "Growing Neural Cas" (36) can be 

employed to cluster the LPV and estimate N at the same time. 

A cluster f)q is said to be exact if it collects all and only the pure LPVs estimated on the 
basis of pure LDs collecting data points generated by a single sub-model. Without loss of 
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generality we assume that f)q collects all pure LPVs associated to the q'h SUb-model. Note 

that exact clusters can be defined independently of the optimization results. 

)exact = UN The collection of exact clusters is called i. e. 
f 

q=lf)q. Let tmixed be the set 

of all mixed LPVs- Hence {01, ---, OM) = UN I-D qU -Z) axed. q= 

Definition: The clusters {. I)q*)N 
q=1 are perfect if Vq* ;? 15q, Vq E N). 

We note that if tmixed 0 perfect clustering implies that Dq* = Vq, Vq E (1,..., N). In 

the case that mixed LPVs are present (i. e. f),,, ixa ý'- 0) perfect clustering means that the 

presence of outliers does not spoil the correct clustering of pure LPVs. 

Identification of the sub-models: Note that the following bijective maps hold 

(x(j), Y(A) ao cj - oj 

Therefore, once the LPVs have been clustered, we can cluster the original data points in the 

s{ 'r ets q)N I by using (8.13). Then, we can use the points in each final set Fq for estimating q= 
th {Xg)N 

I the parameters of the q sub-model through least squares. Also the regions q. can 
be estimated on the basis of the final sets by resorting to multicategory pattern recognition 

algorithms. For further details we defer the reader to (34). 

We will now staxt to derive the conditions under which perfect clustering can be achieved. 
For the sake of clarity the derivations are split in two sections. We start considering the 

case tmixd =0 that is easier and simpler to follow. Then, in section 8.4 this assumption is 

relaxed. In section 8.5 conditions for detection of outhers are given based on the results of 

section 8.4. An example illustrating the benefits of a posteriori outlier detection is given in 

section 8.6. 

8.3 Perfect clustering without outliers 

In this section we will derive conditions under which perfect clustering can be achieved. Some 

Lemmas are needed in order to derive the main result of this section, presented in Theorem 1. 

It will be easier to follow these Lemmas if one is aware of their nice geometrical interpretation. 

Lemma 1 shows that the LPVs from pure LDs lie in a ball centred around the true LPV (we 

denote a ball by B(j, p) where j is the center and p is the radius). 
Upper bounds for finding the optimal LPV which assume minimum weigh" distance to 

all LPVs in the ball are given in Lemma 3. The geometrical interpretation is that an upper 
bound is attained if estimates form groups, which lie opposite each other on the circumference 
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of the ball. 

In Lemma 4a lower bound is derived for the case where mixed clusters are considered. Since 

the LPVs belong to different maps they belong to different balls as well. A lower bound is 

attained if we neglect all LPVs of each ball but one, which gives a lower bound by Lemma 

2. Then the lowest value for this configuration is attained, for non intersecting balls, if the 

LPVs lie on the circumference of the ball at the point where a line connecting the two centres 

of the ball intersect with the circumference of the ball. 

In Theorem 1 we then give the condition under which perfect clustering can be achieved. The 

condition is an upper bound on the noise. Roughly speaking, perfect clustering is attained 

when the conditions from Lemma 3 yield a lower value than the conditions of Lemma 4. 

Let us first assume that there are no estimates based on mixed LD. 

We will now show that all pure LPVs characterizing the same sub-model are contained in a 
ball centered at the true LPV. 

Lemma 1: For each Oj E Dq it holds that Oj E Bq (jq, pq) where Pq ý MaXjEiaVq 11 Qj-Ej 11. 

Proof: The proof follows directly from the fact that Vj E! FA'I)q 

Oj Qjyj ý-- Qjpj + Qj-j -` jq + QjCj (8.14) 

In view of the definition Of Pq the result follows. 

11 

In Lemma 2 we recall the fact that we can obtain a lower bound to the optimal clustering 

cost by neglecting one LPV and solving again the clustering problem. 
Lemma 2: Consider the optimization problem 

min J' min E 11 ýj - AAi: CiEE 
(8.15) 

where ýi E Rn and --E is a finite collection of vectors Ci. Consider also the optimization 

problem 
j2 

= min j2(tl) =min E IlCi-1411 
14 14 

CGEE"Vio 

where ýj- is an arbitrary vector in E-E. Then, the following fact holds 

jl > j2 

(8.16) 

(8.17) 
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Proof: Denote with Al the minimizer of (8.15). It follows directly from optimality that 

jl > j2(Al) ý: j2 (8.18) 

0 

Before proceeding we need to introduce some further notation. For a perfect cluster V-q, 

let Aq denote the maximum eigenvalue of all maximum eigenvalues in the set of matrices 
{Vj-1 :jE ! ýIDq}, i. e. ýq = maxjEla-b. A11=(Vj71) where, for a square matrix A, 

denotes its maximum eigenvalue. Analogously, Aq denotes the minimum eigenvalue of all 

minimum eigenvalues in the set {Vj7l :jE! Z1'f)q} i. e. Aq = minje! at9 A,, i,, (Vj-1). 

In Lemma 3 we will derive an upper bound on the optimal clustering cost, in the case of 

perfect clustering and in the absence of mixed LPVs 

Assumption 1: Anixed is empty. 

Lemma 3: Let Assumption I hold and consider the optimization problem 

} 
qN min J(Itq}qIV=I, {lLq 

=l) (8.19) 
.1 

(jAq)9N 

Then, the following upper bound holds 

N 

m j(ltq}N N2 in 
q= 

{lLq} 
q=, 

): 5 Enq ýqp (8.20) 
I"q}N 

Iq q= q=l 

where nq denotes the cardinality of 15.. 

Proof. By using the fact that 11 Oj - Lq 21< ýq 112, 
Vj7 - 

11 0i - jAq we get 

N 

m j(if) IN 1,112 in q q= 
fi-lq}qIV=l) :5 min ýq 11 Oj - ILq 

lLq 'Lq 
q=IjEof)q 

From optimality we get 

NN 

112< 0 < minE ýq 11 Oj - jAq jq 112 (8.22) 
Aq 

q=l jOtq q=l jE! a*bq 
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where the last inequality follow from the choice ji, 7 = Oq. Lemma 1 implies that if Oj E Dq, 

we have 110 j_jq 112< p2 
. Hence 

-q 
NN 

m j(lp IN IN 110 112< P2 in q q= 
{jLq 

q= 
ýq 

q nqýq q 
(8.23) 

fit )N q q=l q=l jElal5q q=l 

0 

The next aim is to derive a lower bound on the optimal cost in the case of non perfect 

clustering. A clustering error is committed if two parameter vectors, say Ok E f)k and 
OT, E Vh, k0h, are grouped together in the same cluster D, *, found through optimization. 
The error mentioned above can be represented through the pair of indices (k, h) meaning 
that Ok and Oh axe grouped in the same cluster. The set of possible errors is then given by 

46 ýI (k, h) : Vk E 2'Dki Vh E lathi Vk, hE N}, k 3A h) (8.24) 

In the next Lemma we derive a lower bound for the optimal clustering cost if at least one 

error is committed. 

Assumption 2: All true parameter vectors are different, i. e. 0, * 0 Oqj Vq, q* E {1, 
... ' N} 

such that q* j4 q. 

A lower bound for the case of mixed clusters is given by Lemma 4. Geometrically we can view 
this as saying there exists at least one cluster collecting LPVs which belong to two different 

balls. By Lemma 2 we reduce the problem to two LPVs of the mixed cluster, such that one 
is in each ball. As stated by Lemma 2 this yields a lower bound. For such a configuration 

the lowest value of the optimization problem is attained, when the two LPVs lie at the point 

where a line connecting the two centres of the balls intersect the circumference of the balls. 

Lemma 4: Let Assumption 2 hold and let the clusters jVq}q'Ll be such that at least the 

clustering error (k, h) is committed, where Ok E Vk and VOh E th. Then, there exists Ok, T, >0 

such that if 177 (j) I< fik'h, Vj E{1, ..., M}, the following inequality holds 

NN 
+, \ 

IT (8.25) J({Vqlq=l, fg*q}q=l) ýAh (Pk + P. ) 

where p* is the minimizer and Tj,;, j,. =11 jk 
- denotes the distance between the corre- q 

sponding true LPV and pk, pn are defined in Lemma 1. 
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Proof: Without loss of generality, assume that Ok and Oh, are grouped together in the cluster 
Dq Then we have 

ilq)qN j(lDq}qN min min Oj - pq (8.26) 
I IN IAI 

VT 
liq q=l jE! aVq 

> min jjoý_, 14112 1+110ý_IL4112 1 (8.27) 
144 

1 

Vi Vý 

I 

where the last inequality follows from Lemma 2, applied repeatedly. By using the fact that 

110ý-ýU, 112 >, \ 110ý-111112andjjoý-tL4112 >A 110ý-IL4112, 
vc - -k vh- -h we obtain 

where 

min 
[11 

OÄ - lij ii' ,+ 11 Oh - pl 11' , ýý min J(pl) (8.28) 
Al vi- Vi 

1 

pl - 

l(M1) ý [-Ak 11 ok _ pq 112 + +Ah 11 OÄ _ t, 1 112] (8.29) 

We proceed by computing the minimum of J(lLq). J(pq) is convex and the minimizer A*q 

satisfies = 0. Hence, the minimum is given by 
q 

AkAh 
11 0ý _ 0ý 112 I(AP = Ak + Ah (8.30) 

From Lemma 1 it follows that Ok EB (jk, pA: ) and Oh EB (gh, Ph) - Consider Tj, k- 

that is strictly positive in view of Assumption 2. Then, if 

Ti§Jh - (Pk + Ph) >0 (8.31) 

we get the following relation, 11 0ý_Oý 112>1 Tý, 
'j,, -W +Ph) 12 from which (8.25) follows. The 

condition (8.31) represents the fact that the balls B(jk, Pk) and B(jh, Ph) do not intersect. 

Since both Pk and Ph tend to zero if the bound on the noise Pk, T, goes to zero, we conclude 

that there exists a positive 3k, h for which condition (8.31) holds. 

13 

We combine now the results from Lemmas 3 and 4 in order to guarantee that if the noise is 

sufficiently small, perfect clustering is achieved. 

Theorem 1: Under Assumptions 1 and 2, there exists 3>0 such that if 0 >1 77(j) I 
{, D*)N I Vj E {1,2,. .., M}, the clusters q q= that are the optimizers of 

j({, D IN 1, }N 1) min q q= 
{Jlq 

q= (8.32) 
{Dq)t4 1,111q)N q= q=l 

are perfect. 
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Proof. From Lemma 3 we get an upper bound on the cost by considering perfect clusters 

and from Lemma 4 we get a lower bound on the cost when an error (k-, h-) is committed. 

Therefore the global minimum is attained for perfect clusters if the following inequality holds 

N 

nqýqP 2< min 
AkAh 

12 (8.33) Eq-I Tdk, jh - (Pk + Ph) 

q=l 
(k, R)GE Ak + Ah 

where, without loss of generality, we assumed that Ok EA and Oh E The next goal is to 

get an explicit dependence of (8.33) on 0. This is done in four steps. 

Step 1. Prove that, V, 3 > 0, if 171(j) I<0, Vj E 11, 
... ' 

M}, then 

-y., 62 < SSRj :5; ?j #2 (8.34) 
'3 

where 7yj > 0,2j >0 are suitable constants. 
Let Hj = (I - By direct calculation it is easy to verify that Hjf7j = 0. 

Therefore, by recalling that Yj = Yj + ej, we have SSRj = YTHjYj = cjTHjc from which we 3 
get 

, SSR :5 C02'\ffu'. C, 32Am, n(H 
jj2: (Hj) (8.35) 

The inequality (8.34) directly follows from (8.35). 

Step 2. Prove that, VO > 0, if 177(j) I <, 3, Vi E M}, then Vq EN 

Jq 0-2 .q 0-2 (8.36) 

p 
'3-2 ývq, 

3-2 
q 

ýq (8.37) 

where Jq > 0, Jq > 0, vq >0 and Pq >0 are suitable constants. 

Consider the matrix Vp Then 

=, \. i. (. IjT. I)j) c- (n+m+ 
(8.38) SSRj 

and, from step 1, we get 

c- (n +m+ (n +M+ 1) Tc- (n +m+ 1) 
Amin('1)7"I)j) ý' Amin (4)jT4'j) C Amin ((Dj (Dj) 

2 2j fl2 SSRj ryj#2 
(8.39) 

Since, by definition, 
-Aq = M'njEal5q Amin(Vj-l)t we have 

min Ani,, RT4ýj) c- (n +m+ 1) 
> min A,,, in(Vj7l) min \M, 

n((DT 
c- (n+m+ 

jeat, p2 
(Dj)----ý 

2j jE! aI59 jE! af)q 
j Yj p2 

(8.40) 

from which the inequality (8.36) follows. For proving inequality (8.37), start again considering 

the matrix Vj. Then, 

3- 
1) 

= Amax ('ýPjT(I)j) C- (n+m+l) 
Amax(V: 

SSRj 
(8.41) 
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and, from step 1, we get 

e- (n+m+ 1) 
> c- (n+m+ 1) 

> (eTei) c- (n+m+ 1) 
ß2 SSRJ ii ß2 

(8.42) 
Since, by definition, ýq : -- MaXjEQfl5qAmax(Vi7I), we have 

max T (Dj) c- (n+m+ 1) 
> max (Vj- ýa max A,,.. (-,, T(,, ) c- (n+m+ 1) 

jeab, 
i 2i 02 - jEU15q jE! atg ij, 62 

(8.43) 

from which the inequality (8.37) follows. 

Step 3. Prove that, Vp > 0, if 177(j)l < 0, Vi E fl,..., Ml then 

Pq :5 KqJ6 (8.44) 

where Kq >0 is a suitable constant. This inequality immediately follows from the definition 

Of Pq 
Pq ---: Ma-X 11 Qj6j 11: 5 MaX 11 Qj 1111 -vi 11: 5 MaX 11 Qj 11 VICZP (8.45) 

jEla'Dq jEla-D, jE! aDq 

Step 4. We now analyze both sides of (8.33) by combining the results of the previous steps. 
Consider the term ýk, h associated with the error (k, h) defined as 

AkAh 
) 12 ý-o I Tjk, jh - (Pk + Ph (8.46) Ak + Ah 

Since, under Assumption 2, T&, j,, > 0, it is immediate to verify that 

lim +00 
OýO 

(8.47) 

S 0-2 >\j -2 In fact, for qE we have q- -Iq 
ý: 

-LqO 
(from step 2) and Pq :5n, fl (from step 3). 

Then, VU >0 it is possible to choose 0 small enough such that min(k, h), e 
ýk, h > U. Consider 

now the term 
-2 ýq --'ý nqAqPq (8.48) 

:ý 1ý90-2 From the fact that p,, 3-2 ýq 
- 

(step 2) and Pq '. 5 KqP (step 3) we can conclude 
that C remains bounded for 6-0. Then, the I. h. s. of (8.33) is bounded because it can be 

: Lq 
N 

written as F, 
9=1 

Therefore, for 0>0 sufficiently small, inequality (8.33) can be verified 

since, for 6-0 the I. h. s is bounded while the r. h. s. diverges. 

E) 

Theorem 1 states that there exists a bound on the noise for obtaining perfect clusters in 

the absence of outliers. However, outliers can occur in many real identification problems. 
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8 Identification of hybrid systems in discrete time 

Therefore we relax Assumption 1 and consider the case where outliers are present in the 
following section. The aim is to show that, if the noise level is small enough, the presence of 
mixed LPVs does not spoil the accuracy in clustering the pure LPVs. 

8.4 Perfect clustering with outliers 

We will consider the case of mixed LDs. Mixed LDs contain data from at least two different 

affine maps. 

Lemma 5: Let Assumption 2 hold and consider the mixed LD Cj. Then, the sum of the 

squared residuals 
SSRj = YT(I - 3 .7 

(8.49) 

is strictly positive, even in the noiseless case. 

Proof. A mixed LD Cj contains data points from at least two different sub-models, say the 

q-th and the q*-th. Under Assumption 2, we have jq, 0 jq, therefore a single affine map 
fitting all the data points in Cj does not exist, even for noiseless datapoints. 

11 

Theorem 2: Let Assumption 2 hold and assume that Vq E(1..., NJ, 15,1 74 0. Then, there 

exists #>0 such that if P >1 77(j) I Vj E {1,2,..., M}, the clusters {7)*}N 1 q q= 
that are the 

minimizers of 

are perfect. 

NN min J({7)qlq=lt jjLq)q=l) (8.50) 
1, D )N 

1, 
{Izq)N 

q q= q=l 

N Proof. Consider the clusters {7)qlq=l and assume that at least the clustering error 

Ok E Dki Oh E Dh has been committed. Then, the lower bound on the cost given by Lemma 

4 

}N IN 
1) 

AkAh 
12 min J(I'Dq 

q= 
JAq 

q= 
I Tjt, jh - (Pk + Ph) (8.51) 

{pq}N I+A q= -k -4, 
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still holds. The key point, detailed in the proof of Lemma 4, is to observe that the lower 

bound is obtained by considering only the contribution of Ok and Oh to the cost functional. 

, )q 
q= 

by using As an upper bound to the cost functional in the case of perfect clusters {T }N 
1, 

the same rationale employed for proving Lemma 2, we get 
NN 

j({I)qlN 1, 
IN 1) nqýqý2q + 116 j_jq 112 (8.52) min q= 

IlIq 
q= VT ftlq)qN=l q=l q=l jG! a(VqnD. j., dl 

The global minimum of the clustering cost is then attained for perfect clusters, if the following 

inequality holds 

NN 
P2 12 nqýq q+ 

11 jq 112 1., ý: Min 
AkAh 

I Tjk, jh - (Pk + Ph) (8.53) 

q=1 q=1 jEý(vqn-Dnj,,, d) 
Vj7 (U)EC Ak + Ah 

In the proof of Theorem 1 we have shown that the r. h. s of (8.53) goes to infinity as 0 decreases. 

p2 Moreover, we proved that the term Eq'=, n. ý, 
q remains bounded, for 0. Therefore, if 

we show that the term 
N 

EE 11 ý_j 112 

q=1 jE! a{-Dn-D .. ized )jqV; 
- 

(8.54) 

remains bounded, as 8 decreases, the result follows. Note that 

110 _j 112 =(O _j)T(I)T(pC-(n+m+l) jq VT jq3 SSRj q) (8.55) 

From Lemma 5 we have that, for mixed LPVs, the sum of the squaxed residuals SSRj is 

strictly positive even in the absence of noise. Moreover 

Oj 
- jq11 = IPA + Qj-'j - OJ :5 11Qj? j - Od + Wicill :5 11Qj? j - jqj1 + JjQj11V/c-fl (8-56) 

thus proving that the quantity (8.54) is bounded, for every finite value of 0. 

11 

We have seen that in the presence of outliers the optimal clusters are also perfect if the noise 
is sufficiently small. Based on this result we state a method which can detect outliers a 

posteriori. 

8.5 Mixed LDs: a posteriori detection 

We will now show that under certain conditions it is possible to detect mixed LDs a posteriori. 

For this purpose we define the following operators. 
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8 Identification of hybrid systems in discrete time 

Definition The operator In acting on LD returns the collection of all input data points in 

a LD, In(Cj) = {x(k) : (x(k), y(k)) E Cj}. The operator class acting on a LD returns the 

index 1 of the cluster which collects the LPV identified from the LD, class(Cj) =I if Oj E V1. 

Definition The cardinality operator # acting on a set returns the number of elements con- 

tained in this set. 

Lemma 6: If there is a set of indices I, #I > 2, such that 3 x(k) E njEIIn(Cj) with 

class(C,,, ) 34 class(Cp), for at least two indices w, pEI, and the noise satisfies the assumptions 

of Theorem 2, then at least one Ci, jEI, is mixed. 

Proof. By contradiction, assume that all Cj, jEI are pure. Under the assumptions of 

Theorem 2 all pure LPVs are correctly classified. Consider the indices W, p EI as defined 

above. Then, both Ow, Op are pure and the fact that x(k) E njEiIn(Cj) implies class(Ow) = 

class(Op). But this contradicts the assumption that c1ass(C,,, ) 54 class(Cp). Therefore, at 

least one Cj, jEI, is mixed. 

13 

The procedure of Lemma 6 allows determination of a set of LDs Cj, jEI that are suspected 

of being mixed. Therefore all the data points in UjEI In(Cj) are suspected of having been 

misclassified. Usually, we can detect the misclassified data points by looking at the errors 

between the true and predicted outputs. In fact big errors are likely to be generated from such 

points. After detecting a misclassified data point we can use different strategies to improve 

the quality of the identified affine maps. Probably the simplest way is to neglect the point. 

It seems to be immediately obvious that this will improve the quality of the estimated sub- 

models. However, for reconstructing the regions of the affine maps, the points x(k) belonging 

to mixed LI)s contain useful information. This is clear in view of the fact that if Ck is a 

mixed LD, In(Ck) contains input data points belonging to different sub-models. Therefore it 

is expected that x(k) is close to the true boundary between different regions. Hence, it will 

make sense to remove the outliers, reconstruct the affine maps and re-attribute the outliers 

to the models that most likely generated them, before reconstructing the regions. 
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8.6 Example 

The example demonstrates the outlier detection procedure through the identification of two 

affine maps. The true LPV of the maps are given by j, = [0.6,0.6,5] and j2 = [-0.6, -0.6,0]. 
The variance of the noise is given by 0,2 = 0.04. Input/output data are generated with 

25 input/output data points, and the LI)s are created, by collecting the c= 12 nearest 

neighbours. The LPVs are obtained for each LD by using least squares. Then, the LPVs are 

clustered into two clusters and the coefficients of each affine map is reconstructed. Figure 8.1 

shows the LPVs. LPVs which have been clustered as LPVs belonging to the first affine map 

are depicted by a diamond o, while LPVs belonging to the second affine map are depicted 

by a triangle, L The LPVs which shaxe input-output data, although having been clustered 
differently, are marked with a light cross +. This was done by using the procedure described 

in Lemma 6 for a posteriori outlier detection. 

Figure 8.1: Clustered LPV containing an outlier 

Comparing the distances between the output samples revealed the misclassified data points. 
Figure 8.2 gives the result obtained by removing the misclassified data points. Note that 

the corresponding outlier also disappeared. The identified parameters of the affine map 
are 01 = [0.6,0.55,5.0] and 02 = [-1.3, -0.4,0.7] when the whole data set is used and 
01 = [0.6,0.55,5.0] and 02 = [-0.7, -0.45,0] when the misclassified data point has been 

removed. By comparing the parameters, we can see that neglecting the misclassified data 

points considerably improves the identification results. 
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6, 

4, 

2 

Parameterol 

-2) 
0.5 

0.5 Rrameter 1 

0 "P 

0.5 -0. Parameter 20 

-0.5 -1.5 

Figure 8.2: Clustered LPV after removing the misclassified data points 

The projections of LPVs portrayed 8.1 and 8.2 are given in figures 8.3-8.4. First we display 

the projections into 1st, 2nd parameter plane 8.3. The first projection contains the outlier 

while the second projection shows the LPVs obtained after remo'ving the misclassified data 

points (and then the outlier). 

............. . ........... .......... ........ ......... 
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46 A 
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with outlier without outlier 
Figure 8.3: Projection with and without outlier into 1st and 2nd parameter plane 

The two figures below show the projections of the LPVs into 2nd and 3rd parameter plane. 
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The left figure is the projection with outlier and the right figure is the projection after removal 

of the outlier. 
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Ia .5 Oq 1 0.5 0 -0.5 
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with outlier without outlier 
Figure 8A Projection with and without outlier into 2nd and 3rd parameter plane 

8.7 Conclusions 

This chapter was concerned with the identification of linear hybrid systems. Identifying such 

a hybrid system aims to reconstruct the piecewise linear, or affine, functions of the hybrid 

system. In addition, the domain of each function, i. e. the area where the individual function 

is valid, has to be identified. This is done in a sequence of steps. In the first step, input- 

output data pairs are grouped into local data sets. In the second step, linear regression is 

applied to each local data set such that local parameter vectors axe obtained. An outlier is 

obtained if data points which are generated from different sub-models are collected in the 

same local data set. In the third step, a clustering technique is used which obtains a local 

parameter vector for each sub-model by grouping all local parameter vectors which belong 

to the same subsystem. In the last step the domains of each subsystem are obtained. 

The main focus of this chapter was to chaxacterize the cases for which perfect clustering is 

achieved. First, in section 8.3 we proved that in the absence of outliers, if the noise level 

is sufficiently small perfect clustering results from optimization. Second, in section 8.4, we 

generalize the previous results to the case where outliers are present. 
Finally, based on these results, we present an easy computational method for detecting outliers 

a posteriori. We demonstrated this through an example by using the detection procedure and 
by removing the outlier in the clustering step. The quality of the identification procedure 
improves considerably. 
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9 Summary and Conclusions 

In this chapter we summarize previous achievements in the field of hybrid systems. After this 

general overview over hybrid systems we summarize the contents and contributions of this 

thesis. At the end of this chapter an outlook over future research is given. 

9.1 Overview 

The past decades and centuries treated dynamical systems as systems with either contin- 

uous dynamic or discrete dynamics. Presently, researchers focus on systems, called hybrid 

systems, combining continuous and discrete dynamics. Whether a dynamic is modelled as 

continuous, discrete or hybrid often depends on the level of abstraction. For some applica- 

tions it is certainly sufficient to have a rough approximation of a hybrid dynamic and model 

it purely continuous or purely discrete. However, not all hybrid dynamics can be treated 

like this. At the latest this becomes cleax when carrying out analysis of such systems. One 

quickly realizes that analyzing, for instance, the stability of a hybrid system one can draw 

no conclusions by looking at the purely continuous or purely discrete dynamics only, since 

stability of the continuous dynamic and stability of the discrete dynamic does not imply 

stability of the overall hybrid dynamic. This makes it clear that it is necessary to derive 

hybrid models. An overview of some hybrid frameworks was given in the introduction of this 

thesis. The frameworks range from very specific ones, which are only capable of modelling 

a very limited class of systems, to frameworks which encompass a vast number of classes. 

Frameworks which axe restricted to fewer classes, however, are able to exploit the structure 

in order to give precise conditions for analysis and controller design. On the other hand, 

frameworks which encompass many classes usually give only poor answers in terms of analy- 

sis and controller design. In general, after an intensive literature review, it became clear that 

there are many different hybrid frameworks around. Some are extensions from continuous 

systems or from automata and incorporate the additional dynamic. Those classes seem to 

be fairly good when one dynamic is more dominant than the other. Some other frameworks 

112 



9 Summary and Conclusions 

cannot be linked back to purely continuous or discrete systems. These classes are generally 

current developments and both dynamics are treated in a more balanced way. Certainly, 

there is still some improvement needed, however most current applications are well covered 
by the current frameworks. 

In terms of analysis, a lot of research was carried out for hybrid systems consisting of linear 

subsystems. This seems to be quite natural since linear theory of continuous or discrete sys- 
tems is better developed than the theory of nonlinear systems. In particular, a lot of research 

work deals with stability analysis. Conditions are derived for hybrid systems consisting of 

purely stable, unstable or a mixture of both for lineax subsystems. Usually Lyapunov type 

of arguments axe used to show stability. 
As it is already difficult to derive specific conditions for nonlinear continuous or discrete sys- 
tems it is even more difficult for nonlinear hybrid systems. Therefore hardly any results are 
found for hybrid systems incorporating general nonlinearities. 
Robustness analysis is hardly developed for hybrid systems. This area is quite strong in the 
field of continuous systems where often frequency methods (Bode, Nyquist etc. ) axe used. 
Some results are found for verification and reachability, which are closely related, since often 
the verification problem can be stated as a reachabiltiy problem. Algorithms in tools like 

HyTECH, KRONOS, have been implemented to tackle this problem. However, answers to 

such problems are by no means trivial and it seems there is room for more research work in 

this area. 
There are some results in other analysis areas like controlablility and observability. However, 

most results are limited to linear hybrid systems. 

The control of systems using hybrid control strategies is already quite mature. Nowadays, it 

is clear that purely discrete or purely continuous feedback is limited. Results like the one by 

Brockett (24), showing that nonholonomic integrators can only be stabilized by using hybrid 

feedback, are more than 2 decades old. Many people are aware by now of hybrid control 

strategies and their advantages, like robustness in the case of sliding mode control. Recent 

developments are concerned with heterogenous hybrid control. These controllers make it 

possible to pursue different objectives for different operating conditions. This is needed for 

complex tasks like flight control, where controllers pursue different objectives, like take off, 
hovering and landing. Especially the increase of such complex systems and their automation 

made the usage of hybrid control indispensable. 

Controlling hybrid systems does not necessarily mean that hybrid controllers are involved, but 

it certainly demands knowledge of hybrid systems theory. Applying continuous control to a 
hybrid system ultimately raises the questions: does there exist a single, continuous, controller 

which stabilizes the hybrid system? The area of simultaneous stabilization problem (SSP) 
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(80) deals with this problem. However, for many hybrid systems which have continuous as 
well as discrete control inputs it is desirable to use both. Results for such systems are mainly 
found in the area of optimal hybrid control. Here, a performance index penalizing continuous 
as well as discrete dynamics is used in order to find the continuous and discrete control inputs 

which minimizes this index. Unfortunately, solutions are not easy to obtain. However, in 

cases where the underlying dynamic is linear, solutions axe found by mixed integer linear or 

quadratic programs (MILP), (MIQP). But even in these cases solutions are difficult to obtain 

since the optimization problems remains non-convex. 

9.2 Contributions 

The literature survey made cleax that there are many open problems and axeas which are 
hardly touched. One of them is the robustness analysis and robust controller design for hy- 

brid systems. Also hardly any results are found in the area of state estimation for hybrid 

systems, although it plays an important role in practice. An emerging topic is identification 

of hybrid systems. In this area only few results can be found and they are limited to linear 

hybrid systems. This thesis makes contributions exactly in these fields, while focusing on a 

particular class of linear hybrid system with unknown discrete dynamic. 

The thesis shows that many real systems can be modelled in this class of linear hybrid system 

with unknown discrete dynamic. Such systems occur for example through human interaction 

influencing the discrete behavior of a hybrid system, i. e. on or off switching, gear chang- 
ing, turning dials etc.. In all these cases the discrete states can be detected immediately 

but modelling the discrete dynamic is impossible. For such a class of linear hybrid system 

we derived conditions for robustness analysis and robust controller design in the presence of 

parameter uncertainties and variations. Since in most models parameters are only known 

with a certain precision it is inevitable to deal with parameter uncertainties. Parameters can 

also vary dependent on the operating condition, in addition most systems are actually time 

variant due to effects of ageing. Therefore, it is important to have an analysis framework 

in which the uncertainties and variations can be assessed. An iterative procedure has been 

presented in this thesis to compute robustness intervals by solving signornial programs. If 

the uncertain and time variant parameters of the hybrid system lie entirely in the robustness 
interval the system is stable for all possible parameter configurations. Taking this a step 
further a controller synthesis procedure was presented using this analysis framework. It was 

suggested that specifications and performance requirements are translated into a nominal 

system. Around this nominal system a robustness interval is computed using the analysis 
framework. It is then possible to check if there exists a common state feedback controller 

which shifts the subsystems of the hybrid system into the robustness interval. An extension 
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to multiple controllers was made for the case that it is impossible to achieve this with a single 

controller. 
Besides robustness to paxameter variations the thesis is also concerned with optimal control 
of lineax hybrid systems having unknown discrete dynamics. It is shown how an optimal con- 
troller can be constructed which is robustly stable to switching among the subsystems and 
limiting the cost at the same time. Looking at our class of hybrid system it is immediately 

clear that there is not an associated cost given an initial condition. This is due to the fact 

that an infinite number of different switching sequences can be chosen. Therefore, only a 
bound on the optimal cost can be computed. It is shown that computing an upper bound, 
implying the worst case switching sequence, can be cast into a convex optimization problem 
in form of an LMI. Solving the LMI gives the performance bound as well as a controller which 
is robustly stable against all switching sequences. While implying the best case switching 
sequence which yields a lower bound on the performance. It has been shown that the lower 
bound can be obtained by solving an LMI as well. Since most controllers are implemented 

on computers it is important to have discrete time realizations. Therefore, the synthesis pro- 
cedure was not only stated for hybrid systems in continuous time but also for hybrid systems 
in discrete time. In this way, a direct implementation on a computer is possible. Since all 
the proposed control laws require knowledge of the states an observer design was proposed 
for this class of hybrid systems. This observer converged for all possible switching strategies 
while minimizing the covariance of the estimation error. To obtain the observer-gains in a 
convenient way, the observer synthesis was cast into. an LMI. In týis way, an observer can be 

obtained which is the hybrid version of the Kalman filter. 

The last section of the thesis was concerned with the identification of linear hybrid systems. 
Identification is necessary to obtain models for analysis and controller design in cases where 
no analytic model can be derived. In such a case, the system is excited with an input signal 
and the output is measured. After sufficient input/output data is collected, models are fit 

using optimization. 
Identification of hybrid systems has to solve three problems. The first problem is the classi- 
fication problem, i. e. which input/output data pair belongs to which subsystem. The second 
problem is the regression problem, reconstructing the individual dynamic of each subsystem 
from the input/output data. The third problem is to reconstruct the domain of each subsys- 
tem. In chapter 8 these steps are discussed in detail and theory is developed to support this 

methodology. 

9.3 Open problems 

In this section we discuss some open problems, which appear to be interesting. 
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9 Summary and Conclusions 

There are various robustness issues which remain open. Besides the robustness analysis in this 

thesis which is mainly concerned with robustness to parameter uncertainties and variations 

or with robustness to arbitrary switching there are still open questions: what is the effect of 

measurement noise and errors in hybrid systems? Can we use switching to suppress noise or 
detect errors? 
In this thesis it was assumed that changes of subsystems can be detected immediately. If 

this is not the case, what are the consequences of delayed detection? Are hybrid systems 

sensitive to delayed detection of subsystem changes? It would be certainly useful to compute 

maximal delays for subsystem change detection which still guarantees stability. Perhaps a 

ratio between delayed detection and the active time of a subsystem could be derived. 

It would be also sensible to extend the class of linear hybrid system with unknown or nondeter- 

ministic discrete dynamic, to cases where distributions of the active times of each subsystem 

can be obtained. Various applications could be modelled in such a framework, gear changes 
in a car for example. For such a class of hybrid system with stochastic discrete dynamic 

one could hope to reduce the conservativeness of the current approaches. For instance, less 

conservative stability results could be obtained, this could also lead to laxger robustness radii 
etc.. In the field of optimal control for hybrid systems with stochastic discrete dynamics one 

could obtain less conservative bounds than we obtained in chapters 5 and 6 for hybrid systems 

with unknown discrete dynamics. It seems sensible to investigate such hybrid systems with 

stochastic behaviour in general, since there are only few contributions in this field. 

It was shown in chapter 7 that the asymptotic Kalman filters cannot handle hybrid systems 
in general. However, it remains open if the time-varying Kalman filter can overcome such 

problems or if it will diverge for some periodic switching sequences too. If it does not guar- 

antee convergence of the estimate it might have a big impact on many current applications 

which use time-varying Kalman filters. 

In the field of identification there seem to be many interesting problems open. One might 
investigate how to generate suitable stimuli for hybrid identification, in order to simulate all 
domains sufficiently. The proposed procedure relies on various parameters like c (chapter 

8), the number of input/output data pairs collected in a local data set. One might find a 

procedure to determine optimal quantities for these parameters. It also seems to be sensible 
to investigate different methods for obtaining the number of subsystems. Also the order of 

each subsystem needs to be detected. 
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