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Abstract 

Unlike fixed-wing aerodynamic design which incorporates significant Computational 

Fluid Dynamics (CFD), rotary-wing design utilises only a small fraction of the po- 
tential CFD has to offer. The main reason for this, is the nature of the flow near 
the lifting surfaces which is complex, unsteady and turbulent. The numerical mod- 

elling of such flows encounters two main problems due to a) the excessive CPU time 

required for computing and b) the lack of experimental data suitable for validation 

of the numerical computations. 
Focusing on helicopter aerodynamics, it is known that the aerodynamic perfor- 

mance of the retreating side of a rotor disk is mainly dictated by the stall character- 
istics of the blade. Stall under dynamic conditions (Dynamic Stall) is the dominant 

phenomenon encountered on heavily loaded fast-flying rotors, resulting in extra lift 

and excessive pitching moments. Dynamic stall (DS) can be idealised as the pitching 

motion of a finite wing and this is the focus of the present work which includes three 

main stages. 
At first, comparisons between available experimental data with CFD simulations 

were performed for 3D DS cases. This work is the first detailed CFD study of 3D 

Dynamic Stall and has produced results indicating that DS can be predicted and 

analysed using CFD- The CFD results were validated against all known experimental 
investigations. In addition, a comprehensive set of CFD results was generated and 

used to enhance our understanding of 3D DS. Straight, tapered and swept-tip wings 

of various aspect ratios were used at a range of Reynolds and Mach numbers and 
flow conditions. For all cases where experimental data were available effort was put 
to obtain the original data and process these in exactly the same way as the CFD 

results. Special care was put to represent exactly the motion of the lifting surfaces, 
its geometry and the boundary conditions of the problem. 

Secondly, the evolution of the Q-shaped DS vortex observed in experimental 

works as well as its interaction with the tip vortices were investigated. Both pitching 

and pitching/rotating blade conditions were considered. 
Finally, the potential of training a Neural Network as a model for DS was as- 

sessed in an attempt to reduce the required CPU time for modelling 3D DS. Neural 
Networks have a proven track record in applications involving pattern recognition 
but so far have seen little application in unsteady aerodynamics. In this work, two 
different NN models were developed and assessed in a vaxiety of conditions involving 
DS. Both experimental and CFD data were used during these investigations. The 
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dependence of the quality of the predictions of the NN on the choice of the training 
data was then assessed and thoughts towards the correct strategy behind this choice 

were laid out. 
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Chapter I 

Introduction 

1.1 Motivation 

The Dynamic Stall (DS) -of a lifting surface is one of the most interesting aerody- 

namic phenomena. It is encountered when a lifting surface is rapidly pitched beyond 

its static stall angle, resulting to an initial lift augmentation and its subsequent loss 

in a highly non-linear manner [1]. 

Rom an industrial point of view, the aerodynamics and the dynamic response of 
helicopter rotors, are two main unsteady flow phenomena appearing constantly in 

the industrial list of priorities. Helicopter rotor performance is limited by the effects 

of compressibility on the advancing blade and DS on the retreating blade. Figure 

1.1 shows the calculated contours of the local angle of attack for a helicopter rotor 

at 1L = 0.3, in three different flight conditions (a) level flight, (b) climb at 1,000 

fpm and (c) autorotation [2]. Figure 1.1 clearly shows that the rotor is very likely 

to encounter situations where the AoA of the retreating side blades may enter the 

DS regime. Consequently, the study and understanding of 3D DS flow phenomena 

will assist the rotorcraft industry in further pushing the design limits towards faster 

and more efficient rotors. Figure 1.2a shows the retreating side of a helicopter rotor 

with the shaded area where DS usually occurs. Figure 1-2b shows a schematic 

explaining the main aerodynamic constraints of a rotor during forward flight. High 

rotor loading conditions during helicopter flight, require high rotational speeds which 
in turn result to high advance ratios for a given forward flight speed. Thus, the high 

tip speeds on the advancing side of the rotor disk may result to shock formation 

and consequently, reduction of lift. On the other hand, the maximum loading of 
the helicopter during hover is compromised by the stalling of the blades on the 

1 
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retreating side of the rotor. The optimum operating area is below the txN, o m-eas 

shown in Figure 1.21). In particular, if high forward speed is required, the point 

where the two lines cross (Figure 1.21)) is the optinitim operating point. 

01) (b) (c) 

Figure I. I: Calculated contours of the local angle of attack for a helicopter rotor at 

It = 0.3, in three different flight conditions, (a) level flight, (h) clinib at 1,000 fpm ind (c) 

mitorotation. Picture taken from [2]. 

T! SýW 
L -t A- 

Design 

Stall 

ConiprussibilitN 

Advance Ratio 

(a) (b) 

Fignire 1.2: Schematics showing (a) the retreating side of a helicopter rotor with the 

shaded area where DS usually occurs and (h) the optiniiiiii design point for a rotor during 

forward flight. 

I. I. MOTIVATION 

Autorotation Level Flight Climb at 1,000 tpm 
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Figure 1.3: Normal force and pitching moment on NACA 0012 aerofoil during DS. (o n 
15" + 10". sin(u)t), k=0.15, Rc = 2.5 x 106) Picture taken from [1] 

DS is a process comprising a sequence of events that develop around rapidlY 

pitching aerofoils when the angle of attack is increased beyond a critical value. It. 

has been established that a predominant feature of DS is the shedding of a strong 

vorticýil (list tirbance from the lifting, surface [1]. This vortex passes over the upper 

surfýicc of the aerofoil, distorting the, chordwise pressure distribution and producing 

transient forces that are fundamentally different froin their static counterparts (Fig- 

ure 1.3, [1]). While the primary vortex is resident above the aerofoll, high vilues of 

lift are experienced which can be exploited for the design of highly maneuverable 

iiii-craft. The penalty, however, is that this priniary vortex eventually detaches from 

t lic surfii, cc and is slied downstream producing a sudden loss of lift and a consequent 

abrupt nose down pitching niollient. The phenomenon continues cither with the 

generation of weaker vortices if the body remains above its static angle of attack, or 

terminated if the body returns to an angle sufficiently sinall for flow reattacheinent. 
During DS the flow field is characterised by a number of flow phenomena such as 
boundary-layer growth, separation, unsteadiness, shock/boundary-laYer and invis- 

I. I. NIOTIVATION 



CHAPTER 1. INTRODUCTION 4 

cid/viscous interactions, vortex/body and vortex/vortex interactions, transition to 

turbulence and flow re-laminarisation. Such rich flow patterns are of primary im- 

portance both from theoretical and practical point of view. The phenomenon of 
DS appears in several applications including high maneuverable aircrafts and heli- 

copters. The maneuverability of fighters could be enhanced if the unsteady airloads 

generated by DS were utilised in a controlled manner. Effective stall control of the 

retreating blade of a helicopter rotor could increase the maximum flight speed by 

reducing rotor vibrations and power requirements. Maximum speed of wind power- 

generator rotors could result in higher electricity production and less rotor vibration, 

therefore the useful life of the generator could be extended. 
Due to the highly three-dimensional and unsteady nature of the DS phenomenon, 

an attempt to fully understand the sequence of events that lead to DS requires 

very detailed experimental analyses which can be difficult, expensive and frequently 

impossible to perform, due to the complication imposed by the nature of motion 

of the structures around which DS occurs. The obvious alternative is to perform 

numerical simulations using CFD which can be developed and assessed using exper- 
imental evidence available. However, the difficulties associated with CFD analyses 
for this particular application (computational cost, turbulence and transition mod- 

elling issues and scarcity of comprehensive three-dimensional data) makes such an 
investigation very demanding and also explains the fact why only one comprehensive 
three-dimensional computation has been undertaken to date [3]. 

Rom the viewpoint of applied aerodynamics, a comprehensive study of DS could 
lead to numerical models that comprise all its important flow characteristics but are 

much cheaper to compute. The additional lift that DS provides can be very useful 
in stretching the operating envelope of an aircraft or rotor/turbine. However, its 

catastrophic loss can potentially be disastrous, mainly due to structure fatigue. 

Therefore, computationally inexpensive methods that have the potential to predict 

such phenomena on-the-fly could provide the pilot with the ability to control his 

aircraft in a more efficient and safe way. 

1.2 Literature Survey 

This literature review has been structured in the following way: First an overview 

of DS is presented, detailing past efforts on 2D CFD simulations. This is followed 

by the experimental and computational works undertaken in 3D DS. As a result 

1.2. LITERATURE SURVEY 
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of the high computational cost involved in the numerical solutions of 3D geometries, 

several attempts towards cheaper reduced models have been performed. A brief 

summary of such efforts is then presented. Finally, the objectives and the outline 

of this work axe laid out. The findings of this survey have been sourced from the Web 

of Knowledge [4], the NASA Technical Reports Server [5] and the AIAA database 

[6]. 

Overview 

The DS process has been under investigation for about three decades, and significant 

progress has been made towards understanding the physical processes associated 

with rapidly pitching an aerofoil beyond its static stall angle of attack. 
In the seventies the study of the unsteady turbulent flows is dominated by the 

works of Telionis and McCroskey [7,8]. The above efforts are mainly experimental 

studies and attempts to derive analytical solutions for unsteady boundary layers. 

The earliest computational investigations of DS appeared in the 70s and early 
80s with indicative efforts by Mehta [9], Gulcat [10] and McCroskey et al. [8]. Chyu 

et al. [111 employed an approximate factorisation scheme based on a pentadiagonal 

solver to perform calculations using the Baldwin-Lomax [12] model, while a year 
later Shamroth and Gibeling [13] employed a better (k - 1) model in conjunction 

with a collocated Briley-McDonald ADI-based solver. 
In the 80's the rapid progress of computer technology allowed researchers to 

simulate unsteady flows using numerical techniques. In the middle 80s, the algorithm 
by Wu [14,15] for incompressible flow provided results consistent with experimental 
data. Tuncer [16] extended the model for high Reynolds number flows, obtaining 

accurate and inexpensive results. 
Furthermore the AGARD's efforts resulted in a comprehensive set of experimen- 

tal data for the light stall regime [17]. The reviews of McCroskey [81 and Carr 

[18] provide good descriptions, on the basis of experiments, of the dynamic stall 

processes. 

Compressibility effects started to be addressed during the last few years [19], and 
there are few numerical studies regarding high Reynolds number compressible flows 
[20]. The time delay between the appeaxance of incompressible and compressible 
Navier-Stokes solutions is primarily due to the increased computational requirements 
for the latter. Rom the simulation point of view, compressibility adds an additional 

1.2. LITERATURE SURVEY 
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differential equation (for energy) to the system of equations. Furthermore, the 

solution must account for sharp flow-field gradients such as shock waves and contact 
discontinuities. During the same period, studies of unsteady flows and starting flows 

over lifting surfaces also started appearing [21]. 

In the 90's the effect of turbulence on the DS has been the subject of extensive 

experimental [22,23] and numerical studies [24]. Ekaterinaris [25,24] simulated 
transonic flows over harmonically oscillating aerofoils at high Reynolds numbers and 
low pitch rates. His results compared well with the experimental data by Lorber and 
Carta [26]. High Reynolds number flows not only increase the computing demands 

but also require careful modelling of turbulence. To date such modelling seems as 

much an art as a science. Eventhough most of the researchers focus on turbulent 
flows there is interest in the laminar flow regime as indicated by the work of Guo et 

a]. [2 7]. 

Examination of the available literature reveals that detailed investigations of DS 

including high Mach and Reynolds number effects as well as lower pitch rates and 

more complex aerofoils, are rare. High pitch rates generally produce more straight- 
forward, vortex-dominated flows where turbulence is less pronounced. Low pitch rate 
flow fields are usually more difficult to compute. Finally, complex aerofoils require 

complex grid generators and exhibit sharp edges, such as truncated trailing edges, 

which can produce numerical difficulties. Due to the number of parameters involved 

in the DS, the problem prevents any easy quantification of the phenomena and thus 
investigations are to be limited to certain parameters. Following McCroskey [28] the 

main parameters of the DS phenomenon are: 

* free-stream Mach number (unsteady shock/ boundary layer interaction), 

* free-stream Reynolds number, 

* flow turbulence, 

e flow transition, 

o aerofoil shape (thickness, leading edge curvature, camber etc. ), 

* type of aerofoil motion (pitch amplitude, mean incidence, pitch rate, pitch axis 
location etc. ), 

e 3D effects (wing, blade tip shape, aspect ratio, planform, anhedral, spanwise 
loading distribution). 

1.2. LITERATURE SURVEY 
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1.2.2 Turbulence modelling 

7 

The majority of works related to turbulent aerodynamic flows employ algebraic or 

one-equation turbulence models. Past research has revealed that the accuracy of 
the turbulent flow calculations is mainly dictated by the accuracy of the turbulence 

model. In addition, experience using zero-equation turbulence models [12] has shown 
that such modelling of turbulence does not provide satisfactory results in most cases. 
In this study, low Reynold number linear two equation eddy viscosity models will be 

used. This is necessary because first-order closure models of turbulence describe the 
Reynolds stresses as a simple function of the mean flow strain and, thus, result in 
large inaccuracies in the simulation of turbulent separated flows. Moreover, eddy- 

viscosity models work well only in cases with mild adverse pressure gradients and 
flowfields with small separation regions. 

The k-e model [29,30] is one of the most popular two-equation turbulence 

models and in the past this model has been used in conjunction with wall-functions 
for the computation of a variety of flows [29,31,32,33]. The k-C model, however, 

exhibits numerical stiffness and inaccuracies when applied to near-wall turbulent 
flows as well as separated flows [31]. Various versions of the k-c model have been 

proposed over the years in order to improve the accuracy of the model in various 
flow cases [31,32,33]. An alternative to the k-c model, which has also received 

considerable attention, is the k-w model by Wilcox [34,35]. In the past, the model 
has been implemented in several flow cases by other authors [36,371. 

Linear EVM of turbulence assume an explicit algebraic relationship between 

Reynolds stresses and mean strain. The validity of these linear (Boussinesq) eddy- 

viscosity models is based upon theoretical justification in simple flows. Linear eddy- 

viscosity models give fair predictions for attached, fully developed turbulent bound- 

ary layers with weak pressure gradients and are relatively easy to be incorporated in 
CFD codes. However, the predictions of these models deteriorate when all compo- 
nents of the Reynolds stress tensor become dynamically significant. Linear low-Re 

two-equation models seem to offer the best balance between accuracy and computa- 
tional cost, but are not able to capture effects arising from normal-stress anisotropy. 
Second-moment closure is not without risk mainly due to the extensive computer 
resources and sophistication that are necessary in implementing and numerically 
solving these equations. 

At present, non-linear and Reynolds stress models seem to be one of the principal 

1.2. LITERATURE SURVEY 
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routes for advanced modelling of turbulence beyond the linear eddy-viscosity models. 
However, the level of their complexity can be very high and, thus, their numerical 
implementation is difficult. In view of the above, only linear Eddy Viscosity Models 

of the k-w family have been used in this work. 

1.2.3 Experimental Work 

Experimental data are of primary importance to numerical studies, in validating the 

realism of the numerical predictions. This section presents the experimental works 

performed so far in the field of 3D DS, which are presented in Table 1.1. 

1. The Work of Wernert 

Amongst the plethora of 2D experimental investigations Wernert et al. [38] conducted 

a PIV study on a pitching NACA 0012 aerofoil for a mean angle of incidence of 15 

degrees and oscillation of amplitude equal to 10 degrees. The wing had an aspect 

ratio of 2.8 the reduced frequency of oscillation was set to 0.15 and the Re number 

of the flow was 3.75 x 10'. The researchers used splitter plates on both ends of 
the wing to give nominally 2D flow. Although this was not a 3D experiment, it 

is the only one with PIV measurements revealed by this literature survey. Also, 

since this experiment was performed in the transitional regime, comparisons between 

measurements and CFD can provide useful insight into the importance of turbulence 

modeling in highly impulsive flows. 

Experiments in 3D DS have been undertaken in chronological order, by Lorber 

[26], Reymuth [39], Horner [40], Piziali [22], Schreck [41], Moir and Coton [42], 

Tang [43], Coton and Galbraith [44] and the Aerodynamics Laboratory of Marseilles 

(LABM) [46]. 

2. The Work of Lorber 

Lorber [26] performed a series of experiments to examine the influence of k, M and 

geometry in TV and DSV strength, in relevance to helicopter flight. He used a semi- 

span rectangular wing measuring 0.44m x 1.22m based on a SIKORSKY SSC-A09 

aerofoil with 9% thickness. The wing was pitched around its 1/4 chord in sinusoidal 
and ramping motions. The measurements taken were surface pressure readings 
from 112 transducers over 5 span-wise rakes (zlc = 0.08,0.32,0.6,1,05 and 1.5, 

measuring from the tip). The wing was tested at Mach numbers between 0.2 and 
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Table 1.1: Summary of the experimental works on 3D DS. Data for cases 4,5,7,8,9 and 
10 were available for comparisons with CFD simulations. 
Case Reference Conditions Measurements 

1 Wernert et al. [38] Oscillatory motion LSV and PIV 

Re = 3.73 x 105, M 0.1 

NACA0012, AR=2.8 

2 Lorber [26] Oscillatory and ramping motions Surface pressure 
Re =Mx 107 ,M=0.2 - 0.6 

SSC-AO9, AR=3.0 

3 Freymuth [39] Ramping motion smoke visualisatons 
Re =6x 104 M=2x 10-3 

4 Horner [40] Oscillatory motion LSV and PIV 

Re = 105'M = 4.5 x 10-3 

Flat plate, AR=2 

5 Piziali [22] Ramping and oscillatory motions Surface pressure 
Re = 2.0 x 106, M=0.278 Flow visualisation 

NACA0015, AR=10 (micro-tufts) 

6 Schreck and Helin [41] Ramping motions Surface pressure 
Re = 6.9 x 104 M=2.6 x 10-2 Flow visualisation 

NACA0012, AR=2 (dye injection) 

7 Moir and Coton [42] Ramping and oscillatory motions Smoke visualisation 
Re = 13 x 103'M = 0.1 

NACA0015, AR=3 

8 Tang and Dowell [43] Oscillatory motions Pressure measurements 

Re = 5.2 x 105, M = 0.20 

NACA0012, AR=1.5 
9 Coton and Galbraith [44] Ramping and oscillatory motions Surface pressure 

Re = 1.5 x 106'M = 0.1 

NACA0015, AR=3 
10 Berton et al. [45,46] Oscillatory motion Boundary layers 

(LABM) Re =3-6x 106, M=0.01 -0.3 Velocity profiles 
NACA0012 Turbulence quantities 
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0.6,3 angles of 0', 15' and 30' and the relationship between the Re and M was 
Re =Mx 101. Lorber's [26] findings addressed mainly three issues: a) TV effects, 
b) stall vortex propagation and c) separation locations. Lorber [26], concluded that 
before stall the TV lowers the effective angle of attack thus reducing lift and delaying 

the onset of stall. In the near the tip region, the TV produces an aft loading creating 

a nose down moment. During stall, interaction with the TV prolongs the residence of 
the stall vortex on the wing. Regarding the DSV propagation characteristics, Lorber 
[26], reported that unswept motions showed slower propagation characteristics due to 

the anchoring of the DSV in the LE region of the tip, However, for the swept motions, 
DSV anchoring was no longer taking place, therefore, the near the tip part of DSV 

propagated faster towards the trailing edge than its inboard section. Moreover, it 

was reported that the variation of Mach number and motion type (sinusoidal or 

ramping) do not alter the DSV propagation properties. Propagation speed for the 

uswept cases was found to be 0.25 times the freestrearn velocity. This measurement 

was performed by monitoring the aft motion of the global minima of the individual 

transducers placed at z1c = 1.6. Closer to the tip, at z1c = 0.08, this speed was 

reduced to 0.09 times the freestream velocity, due to its interaction with the TV. 

Regarding separation, Lorber [26] reported that he only observed LE separation 

phenomena. For low Mach numbers (M < 0. 
' 
3), unsteady separation begun at the 

forward 5- 10% of chord and rapidly expanded to eliminate the LE suction peak to 
form a strong and concentrated stall vortex. For higher Mach numbers (M > 0.3) 

a mildly supersonic flow forms near the LE, causing an oscillation just downstream 

of it. This oscillation forces the flow in the LE to detach earlier than for the lower 

Mach number case. 

3. The Work of Freymuth 

Freymuth [39] published his efforts on investigating the applicability of Helmholtz's 
law to the vortex systems generated by rapidly pitching a rectangular and a delta 

wing. His experiments involved smoke visualisations introduced into axeas of vor- 
ticity production. The rectangular half-wing was sinusoidally pitched at 5* ampli- 
tude around a 20' mean angle of attack. The conditions of the experiment were: 
V,, = 0.61m/s, f=0.67Hz and c=0.152m. The major vortical structures produced 
by this motion (ie the TV, LEV and TEV) were identified as well as their tendency 
to connect in the near the LE region of the tip. However, this connection is not 
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Figure 1. -1: Top view of vortex syýiteill of a rectang111,11, willg witli a. Speut ratio 2 after a 

rapid pitch from W to 60". Pichire taken froin [39]. 

very clear bY the photos included ill the report. Nloreover, Freyinuth [39] assumed 

that this connection confirms Helmholtz's law. However, this law has becii stated 

ill I-O'Crelice to inviscid flows and its validity cannot be confirliled unless, nicasure- 

111clit's of the circilhitiolls of the individual vortices are performed. The Q shape of 

the DSV' which lias also been shown ill this work, is evident ill Figure 1.4. but it 

Nviis Horner [40] who first introduced this terin. The delta wing was periodically 

pitched between the angles of 00 and 30" at r=0.16. The two couilter-rotatilig 

vortices were shown to link ilear the front corner. The linked vortical system then 

convected downstream, while at the same time new LE vortices formed and under- 

welit, the sanic growth-clecay cycle. Further downstream, these vortical structures 

were shown to attain irregular spinil shapes and they finally burst. 

4. The Work of Horner 

Horner ot al. [40], performed smoke visualisation experiments bY oscillating a flat 

plate of 121n spaii, 6m chord and 0.251n thickness in a Win x 16m Nvind tuilliel. 
The flat plate oscillations were driven hy a DC motor coupled to the plate through llý 
a flYwheel and crank linkage. Reduced frequencies of 1.0 and 2.0 and incan angles 
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Figure 1.5: Caricatures of LEV development under 3D test conditions (left) and 2D test 

conditions (right). Picture taken from [40]. 

of 10' and 20' were selected, while the freestream velocity and oscillation amplitude 

was held at 5f t1s and 10' respectively. Two different tip conditions were investi- 

gated to allow for both 2D and 3D flow configurations. Firstly the flat plate was 

positioned at the centre of the section leaving 2in gaps from either side. In the 

second arrangement, the test section was narrowed by inserting a clear acrylic plate. 
Then, the flat plate was re-centered and small woven cellulose tip extensions were 
inserted to ensure a tight seal against the wall sections. However, only partial sealing 

was achieved and the three dimensionality of the flow was only reduced rather than 

eliminated, as flow visualisations clearly demonstrated the existence of the tip vor- 

tices. Therefore what the experimentalist termed as 2D flow conditions as opposed 
to 3D flow conditions was not entirely accurate. Visualisation was performed across 

vertical and horizontal smoke planes. Vertical planes of smoke were introduced at 

several locations to provide smoke visualisations along several span sections and 

above the wing. Horner et al. [40], surnmarised their findings in a series of sketches 
(Figure 1.5) that exhibit the behaviour of the vortical. structures on the suction side 

of the flat plate, for both their 3D and 2D cases. These sketches depict the vortical 

structures during their early, middle and late development. In the early stage, a 

vortex along the leading edge of the wing is formed which connects to the TVs at 
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a point on the leading edge forming a flat rI structure. In the 2D configuration, 
the initiation of the leading edge vortex occurred earlier than in the 3D case. As 

the angle of attack increased, the 2D case LEV gradually grew in size, remaining 

attached to the LE of the flat plate. In the 3D case, the LEV started growing at 

a similar manner but also started moving up and towards the TE. In both cases, 
the ends of the LEV remained pinned to the TV. Finally, following the stall of the 
TVs, in the 3D case the Il structure was forced to attain an Q shape, while in the 

2D case, the 11 structure attained a horseshoe shape. 

5. The Work of Piziali 

Piziali [22] performed extensive experimental investigations of the pressure distribu- 

tion over a semispan wing undergoing pitching motions. He then presented the cycle- 

averaged coefficients for lift, drag and pitching moment as well as limited flow visual- 
isations using arrays of micro-tufts distributed over the suction side of the wing. The 

wing used was based on a NACA 0015 aerofoil section, had a rectangular planform of 
60in x 12in and was used in both 3D and 2D configurations. A square and a round 
tip cap were used, extending the span to a further 0.62in. The pressure taps were 
located at nine spanwise locations, at yls = 0.25,0.475,0.8,0.9,0.957,0.966,0.976 

and 0.995. The wing was mounted horizontally in the wind tunnel's test section. A 

splitter plate was positioned at the wing's root to eliminate the wind tunnel wall 
boundary effect. At the wing's 70% span, an additional wing support was used con- 

sisting of a crossed pair of floor to ceiling streamlined aircraft wires. Leakage from 

the lower to the upper surface was prevented by sealing the wing wire mounting 

points. The pitch oscillation of the wing was generated by a crank mechanism con- 

sisting of a variable speed feedback-controlled DC motor connected to a flywheel. 

The oscillating amplitude was achieved via a pin with adjustable offset and finally 

the connecting rod and pitch arm were attached to the wing's quarter chord axis. 
The amplitude of oscillation was adjustable from 0' to 10', the mean angle could 

vary from -12* to +27' and the reduced frequency range of the oscillation was ad- 
justable from 0.04 to 0.2. Piziali [22], published a very large number of sectional 
integral loads for cl, Cd and c,.,, spanning the entire range of 2D and 3D measurements. 

1.2. LITERATURE SURVEY 



CHAPTER 1. INTRODUCTION 

Fignirc, 1.6: Dye visualisation in water tunnel showing the Q vortex. Picture taken from 

[41]. 

6. The Work of Schreck and Helin 

Sclireck iind Helin [41] used a NACA 0015 profile on a half wing of aspect ratio 2. 

momited in a 0.91 x 0.91 -m win(,,, tunnel. The wing had a rectangular planforni 

ofO. 1524, m chord and 0.291m span, made of hollow aluminum NACA 0015 acrofoll 

stock. A circiihir splitter plate 0.3048, m, in diameter and with a NACA 0015 cutout 

wýis locoted ýd the wing's root. The wing had a single chordwise row of 15 pressure 

transdiicers fitted in the hollow section, that effectively covered 11 spanwise posi- 

tions, by means of adding wing sections to the wing's tip and sliding the splitter 

plat(, over the. wing ,,, pan. The effective spanwise locations were surface pressure 

measurements were recorded were located at 0.0,0.05,0.10,0.15,0.25,0.375,0.5. 

0.625,0.70 and 0.80 span outboard the splitter plate. The nondiniensiomil pitch 

rates were 0.05,0.10 and 0.20, while the Re number was 6.9 x 10". Wing pitch 

axis was located at 0.25c for the experimental range of nondimensional pitch rate 

mid ýit, 0.33c for the nondimensional pitch rate 0.10. Ensemble averaged values were 

recorded over 20 consequetive wing pitch motions. Additionally, water tunnel flow 

vistialisations were provided for the saine wim- split t er plate arrangement, using dve 

hijection. The Rc for the vistialisation experiment was kept at 5.6 x 104 fol 't he 

nondimensional pitcli rates of 0.05,0.10 and 0.20. Schreck and Helin [41], used a 

series of sliction-side pressure, contours together with dye visualisations (Figure 1.6) 

corresponding to Hie same instances, in order to investigate the process of vortex 

generation and evolution throughotit, the ramping motions. tD 
The authors [41] identified the inception of a vortical structurc near the lead- 

extending froill the tip to wing-plate jinicture. As the angle of attack 
hicreilsed, this structure started growing and moving towards the TE. Close to the 
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tip, the vortex was pinned to the LE together with the TV, while towards the wing- 

pInte Juncture it moved freel. y. However, the convection speed of the vortex-end 

close to the wing-plate. juncture was significantly higher than the convection further tý 

outbmird. The, consequence of this non uniforin convection speed was a vortex dis- 

ruption, which caused the DSV to arch and Hex towards the surface of the wing. 

This effect was identified by both pressure contours and dye vistialisation. The re- 

ported effCct of illcreil"'Ill-, - ramping rate, was the DSV disruption occurring) closer 

to the LE. The work by Schreck and Helin [41] was interesting as it was the first 

to prox'idc both surface measurements and flow visualisation iii 3D DS. However, 

the s'plitter plate used had probably surface imperfections which allowed boundary 

layer d(welopment. This was evident throughout their measurements and visiialisa- 

tions', since the flow near the wing-splitter plae ji inct tire appeared to have a strong 

spallwise component. 

7. The Work of Moir and Coton 

Figun, t. 7-. Frmit view smoke visuali,, atioil of Q vortex. Picture I; iken frt)m 1121. 
1 

Moir and Coton [42] performed a series of visualisation experiments using two 

(1111'Crent, wing plimforins, a rectanguLlr of AR =3 and a swept back cut-out of the 

former with 60" swept tips. Both wings were based oil NACA 0015 aerofoil. s. The 

pitching motion ofthe models was achieved with a stepper iiiotor/lead screw s. ystem. 
The st, opper motor was programmed using LABVIEW running oil a ", \,, Iaciiltosli LCIII 

computer. Smoke was produced by vaporishig Ondina oil in a TaYlor scientific smoke 

penenitor and wits introduced to the flow either through small holes in the lilodel 

surfitce or fl'oin , sinoke-rakc positioned upstream of tile model. Images were r(, coi-(I(, (l 

witli ii cmilcorder, subsequentlY tninsferred to digital format using a Nhicintosh 
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grabbing system. Each model was pitched about its quarter chord from 0' to 40' at 

a reduced pitch rate of a+ = 0.08 and the Re number was 12,000. The experiments 

conducted with the rectangular wing planform indicated the presence of two major 

vortical structures; the DSV emanating from the leading edge region and the tip 

vortices. A secondary vortex forming following trailing edge separation had also been 

identified. The flowfield in the mid-span region was shown to be two-dimensional. 
The DSV was observed to form uniformly along the span but quickly assumed an 

arched shape, as downstream convection in the mid span region took place. However, 

the outboard ends of the DSV were pinned to the LE of the tip region. Moir and 
Coton [42] axgued that the faster growth of the DSV along the mid-span region is a 

product of two effects, a) the higher effective a away from the tips due to downwash 

and b) the vortex enhancement in the mid-span region aided by the entrainment 

of the TE vortex. The combined effect of the above according to Moir and Coton 

caused the buckling of the DSV. This buckling shape was the same as identified by 

Horner [40] (who coined the term 'Q vortex) and Schreck and Helin [41] (Figure 

1.7). The swept back wing created flow configurations very similax to those of the 

rectangular wing, [42]. A weaker DSV has been reported and attributed to the 

smaller effective planform area leading to lower lift. However, the tip vortices were 

reported to be larger and with an orientation which directly affected a larger portion 

of the wing. This observation has an interesting consequence regarding the validity 

of Helmholtz's theorem with respect to flows involving DS. If a different planform 

produces stronger tip vortices but weaker DSV, then although the DSV appears to 
be connected with the TVs, their circulations might be different. Another difference 

that Moir and Coton [42] found between the rectangulax and swept wing cases, was 
that in the mid span area, the DSV produced by the swept wing attained a higher 

distance from the wing surface that in the case of the rectangular wing. It also 
had the tendency to remain above the mid chord region, rather than be convected 
downstream as in the case of the rectangulax wing. 

8. The Work of Tang and Dowell 

Tang and Dowell [43] used a NACA 0012 square wing of AR = 1.5 oscillating in 

pitch and took measurements along three span-wise locations (0.5z/c, 0.75z/c and 
0-9z/c) for various reduced pitch rates and angles of attack. These experiments 
aimed to extend the 2D ONERA model to 3D. The unsteady experiments involved 
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sinusoidal motions of mean angle 9'- 28', amplitude 1'- 60 and freestrearn velocities 

of 8.51m/s - 20.56m/s. The oscillation frequency varied from 2Hz to 14Hz. Two 

sets of experiments were conducted, below and above stall. The experimentalists 
[43] have presented a very limited number of sectional integrated loads while their 

focus had been on the extension of the ONERA model rather than the analysis of 
the three dimensionality of the flow. However, their claim that their results were 

qualitatively similar with the 2D case, appears rather peculiar given the high three- 

dimensionality and complexity of the near the tip flow. Tang and Dowel [43] did not 

present measurements at the z1c = 0.9 span position for the above-stall experiments. 

9. The Work of Coton and Galbraith 

Coton and Galbraith[441 used a NACA 0015 square wing with AR =3 in ramp-up, 

ramp-down and harmonic oscillation in pitch. A relatively high Reynolds number 

of 1.5 x IV has been used for various angles of incidence, pitch and ramp rates. The 

experiments took place in the university of Glasgow's 'Handley Page' low speed 

wind tunnel. The actuation force was produced using a hydraulic actuator and a 

crank mechanism which allowed a variation of angle of attack from -26* to 40'. 

The model's aerofoil section was that of a NACA 0015 and the tips were solids 

of revolution. The dimensions of the wing were 126cm x 42cm. An overall of 
192 pressure transducers were placed predominantly on the wing's starboard side. 
There were six chordal distributions with 30 transducers each (on both the upper 

and lower surface of the wing). Additional pressure transducers were placed in the 

region of the tip. A small number of transducers were also placed at the port side 

of the wing to enable checks on the symmetry of the wing loading. Data acquisition 

was carried out by a PC using 200 channels, each capable of a maximum sampling 

rate of 50kHz. The experimentalists [441, presented integrated sectional loads and 

moments as well as Cp histories for six ramping cases with a+ between 0.00043 and 
0.027. The sectional gradients and peak values of the normal force curves vs angle 

of attack, were found to be higher in the mid wing sections than to those near the 

tip. When compared to the 2D case, the full wing 3D normal force curves exhibited 
lower peaks and gradients, however, the 2D and 3D curves were found to be broadly 

very similar. 
The authors argued that the 2D flow is initially similar to the mid-wing sections 

of the 3D case. In their 3D cases [44], a leading edge vortex was identified to develop 
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uniformly across the leading edge. Shortly after its formation, it was observed that 

the DSV losses its uniformity under the influence of the tip vortices. The flow neax 
the tip region was influenced by the downwash of the tip vortices who pin down 

the DSV in the LE of the tip region. The combined effect of the unconstrained 

growth of the DSV in the mid-span region and its pin-down at the tips cause the 
DSV to buckle attaining the Q shaped first reported by Horner [40]. It has also 
been reported [441 that the mid-span segments initially moved faster downstream 

than those outboard. However, the downstream convection was not uniform as the 

passage of the vortex system over the trailing edge occurred almost simultaneously 

across the span. The same observations were made in all but the lowest reduced 

pitch rates, which in effect where in the quasi steady regime and no DSV presence 

was reported. The authors [44] drew very similar conclusions regarding the shape 

and global evolutionary characteristics of the DSV with previous works [40,411, 

however, their experiments were conducted in realistic high Re regime. 

10. The Work in LABM 

The work undertaken by the Aerodynamics Laboratory of Marseilles (LABM) [46] 

employed an embedded Laser Doppler Velocimetry (ELDV) technique in order to 

provide detailed velocity measurements inside the boundary layer during DS. The 

experiment was designed to assist CFD practitioners with their efforts in turbulence 

modelling. A schematic from the experimental apparatus is shown in Figure 1.8. 

The model used for simulating the steady and unsteady flow configurations consisted 

of a swept half wing, mounted vertically within the test section of the SlL high 

subsonic wind tunnel. The wing's section was that of a NACA 0012 aerofoil and 
the half-wing had a root chord of 0.24m and a parallel to the tip chord of 0.06M. 
The leading edge angle was 84' and the trailing edge angle was 72.5'. The wing 
was mounted on a turntable and pivoted around its quarter chord root point via a 
crank mechanism. The optical head was also mounted on the same turntable. The 

experimental apparatus was able to produce sinusoidal motions with mean angles 
in the range 0' to 25* and amplitudes of 3' and 6'. The velocity of the freestream 

varied from 50m/s to 100m/s and the oscillation frequencies from 1Hz to 5Hz. 
Measurements were taken at fifteen vertical distances (0.8mm-90mm) off the 

surface of the wing, at three chordwise locations (0.4c, 0.5c and 0.6c) at 50% of 
span and two chordwise locations (0.4c and 0.57c) at 70% of span. Surface pressure 
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Figure 1.8: The ELDV experimental setup. Picture taken from [46]. 

measurements were also taken at sixteen chordwise positions and at both sides of 

the wing at 50% of span. The wing model used for the pressure measurements 
had the same shape but twice the chord (0.48m at the root). Data acquisition was 

performed through a computer from two Burst Spectrum Analysers, delivering the 

Doppler frequencies for each velocity component as well as the arrival validation 

time for each frequency measurement. The arrival validation time was counted from 

a time origin delivered by a photoelectric cell mounted on the oscillating device 

which provided the exact aerofoil position in terms of phase angle (Wt) during the 

oscillation. 

1.2.4 Computational Work 

A surnmary of the 2D numerical simulations appeared so far in the literature is given 

in Table 1.2. As can be seen, only recently the simulation of unsteady flows with 
low-Re turbulence models beyond the algebraic ones ha-s been attempted. On the 

LITERATURE SURVEY 



CHAPTER 1. INTRODUCTION 20 

other hand, efforts to model 3D unsteady turbulent flow using advanced turbulence 

models have not been undertaken by other authors. A summary of trends in the 

research of unsteady aerodynamic flows is given in [47]. CFD studies have so far 

Reference Model Numerical Scheme 

1 Chyu et a]. BL 2D Beam-Warming, Thin-Layer NS, 

AF pentadiagonal block solver 

2 Shamroth & Gibeling k-1 2D Briley-McDonald, 

Collocated Block solver ADI 

3 Tassa & Sankar BL 2D Briley-McDonald, ADI 

4 Hegna CS 2D Chorin SOR 

5 Rumsey & Anderson BL, JK 2D Thin-Layer NS AF 

block tri-diagonal 

6 Visbal BL 2D Thin-Layer Aý 

7 Mincer et a]. BL 2D Vorticity formulation 

Fourier, SOR 

8 Wu et al. BL, JK, k -e WF 2D Beam-warming 

AF pentadiagonal solver 

9 Dindar & Kaynak BLIJK 2D AF LU-ADI, Pulliam-Chaussee 

10 Rizzetta & Visbal BL, k -E 2D AF Beam-Warming Pentadiagonal 

11 Srinivasan et al. BL, JK, CS, SA, BB 2D AF Beam-Waxming Pentadiagonal 

13 Ekatarinaris & Menter BL, SA, k -w 2D Steger-Warming AF 

14 Yang BL, k -c 2D Collocated Pressure Correction 

15 Niu et al. BL 2D Steger-Warming 

16 Guilmineau et al. [48] BB, SST k-w 2D PISO CPI 

BL: Baldwin-Lomax algebraic turbulence model [12] CS: Cebesi-Smith algebraic turbu- 

lence model [49] JK: Johnson-King algebraic turbulence model [50] SA: Spalaxt-Allmaras 

one-equation turbulence model [51,52] BB: Baldwin-Barth one-equation turbulence 

model [53] AF: Approximate Factorization LU: Lower-Upper (decomposition) SOR: 

Successive Over-Relaxation ADI: Alternating Direction Implicit PISO: Pressure-Implicit 

Solution by Splitting of Operators CPI: Consistent Physical Interpolation 

Table 1.2: Summary of past 2D DS calculations. 

concentrated on 2D DS cases with the earliest efforts to simulate DS performed in 

the 1970s by McCroskey et al. [1], Lorber and Carta [26] and Visbal [19]. Initially, 

compressibility effects were not taken into account due to the required CPU time for 

such calculations. However, in the late 1990s, the problem was revisited by many 
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Table 1.3: Summary of the computational works on 3D DS. 

Case Reference Comparisons with Experimental Works by: 

1 Newsome [58] Schreck and Helin [41] 

2 Ekaterinaris [54] Piziali [22] 

3 Morgan and Visbal [59] 

4 Spentzos et al. [3] Schreck and Helin [411 and Wernert et al. [38] 

researchers [54,20,55,56] and issues like turbulence modelling and compressibility 

effects were assessed. Still, due to the lack of computing power and established CFD 

methods, most CFD work done until now focused on the validation of CFD codes 

rather than the understanding of the flow physics. Barakos and Drikakis [56] have 

assessed several turbulence models in their 2D study, stressing their importance in 

the realistic representation of the flow-field encountered during DS. More recently, 
the same researchers [57] presented results for a range of cases and have analysed 
the flow configuration in 2D. 

The only 3D CFD works published to date on 3D DS axe by Newsome [58] in 

the compressible laminar flow regime and Ekaterinaris [541 and Spentzos et al. [31 

in the turbulent. A summary of the 3D CFD works performed to date on DS are 

presented in Table 1.3. 
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The only comprehensive 3D study of DS performed to date is the work by Spent- 

zos et al. [3]. Spentzos, used the parallel multiblock solver (PMB) of the university of 
Glasgow to simulate several ramping motions based on the experiments by Schreck 

[41] and the sinusoidal motion of the PIV experiment by Wernert, [38]. A detailed 

description of the PMB code can be found in chapter 2 and compaxisons with the 

experimental works ([411 and [381) can be found in chapter 4 of the present work 

respectively. In both cases, a standard Kw turbulence model was used. Although the 
PIV experiments by Wernert et a]. [38] where not 3D, they were the only ones found 

in the literature incorporating measurements of the flow field in the area above the 

wing's surface during DS. The authors [3] presented streamline maps as well as ve- 
locity distributions for several locations in the flow field which matched very closely 
the experimental measurements. They then went on to compare with the 3D surface 

pressure measurements of the experiments by Schreck and Helin [41] and produced a 

series of pressure contour maps and vortex visualisations, that matched very closely 
the measurements and visualisations by Schreck [41]. The computations by Spent- 

zos et aL, were the first CFD simulations to provide detailed visualisations of the 

size and shape of the DSV and its interactions with the TVs. 

1. The work of Newsome 

Newsome [58] used NASA Langley's computer code CFL3D as the flow solver. This 

code is an upwind-biased, finite volume approximate factorisation algorithm em- 

ploying either Van Leer's flux vector splitting or Roe's flux difference splitting. The 

diagonalised algorithm was generalised for unsteady flows with moving grids and 
the Navier-Stokes equations were solved with respect to the inertial coordinates at 
the coordinate locations determined by the moving grid. Newsome [581, used the 

same geometry and conditions with Schreck's and Helin's [41] experimental work. 
His computational grid simulated a wing of AR =2 with a splitter (inviscid) plate 

at the root, however, he used a rounded tip instead of the square tip Schreck and 
Helin [41] used, in order to model the whole computational domain by a single block. 
The Re number used in the computations was RE = 5.6 x 104 for ramping motions 
between 0* and 60' with reduced ramp rates of aý0.1 and 0.2. A higher than the 

experimental M of 0.2 (instead of M=0.03) was used to speed convergence. The 

minimum normalised wall spacing was 5x 10-' and the wing surface was defined 
by 152 circumferential points. No information was provided concerning the num- 
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ber of points across the wing's span. Finally, the non-dimensional time was set to 

0,002. Newsome [58], concentrated his analysis of the flow in the splitter plate - 
wing juncture area. He provided comparisons with Schreck's experiments [41] in 

the form of surface pressure contours for the case of the high ramp rate of 0.2 and 

sectional normal force coefficients for both the computed reduced ramp rates. The 

agreement with experiments was better for the higher ramp rate of 0.2, while for 

the lower ramp rate of 0.1 the inception and evolution of the DSV was V to 10' 

premature. Newsome [58] attributed this discrepancy to the M mismatch between 

CFD and experiments. 

2. The work of Ekaterinaris 

Ekaterinaris [54] used a solver based on the thin layer approximation of the con- 

servative form of the compressible, Reynolds-averaged Navier-Stokes equations for 

a body-fitted coordinate system. The inviscid fluxes were evaluated using Osher's 

upwinding scheme and the viscous fluxes where computed by using central differ- 

encing. Ekaterinaris [54] used a baseline 2D grid with 181 x 121 points to simulate 

two light stall experiments by Piziali [221 (15' + 4.2'sin(t) and 15* + 4.2'sin(t), 

Re = 1.99 X 106 ,M=0.299). He compared the Baldwin-Lomax and Baldwin- 

Barth turbulence models and found that the B-B models provided better results. 
He then went on to compute the light stall 3D case (15'+4.2'sin(t), Re = 1.99 X 106, 

M=0.299) by using the same grid (per 2D section) and time resolution that gave 

the best results in the 2D study case. Ekaterinaris [541 performed the 3D compu- 

tation with a single block C-H type grid of 181 x 51 x 71 points (37 points along 

the wing's span), 16,000 time steps per cycle and the B-B turbulence model. Eka- 

terinaris [54] presented comparisons between measured [22] and computed sectional 
integral loads (Cl, Cd and c .. 

) along three spanwise locations (y/S = 0.47, y/s = 0.80 

and yls = 0.98). The comparisons between the experiments of Piziali [221 and the 

computations of Ekaterinaris [54] were in very good agreement in all three locations 

for both the upstroke and downstroke parts of the hysteresis loops. However, as 
the hysteresis loops indicate, no evidence of the existence of DSV can be seen. In 

fact the maximum angle of 19.2' during the fast sinusoidal motion (k = 0.1) was 
probably too low to produce separation and the subsequent inception of the DSV. 
However, with this work, Ekaterinaris [54] demonstrated that 3D computations are 
possible. 
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3. The work of Morgan and Visbal 

Additional work by Morgan and Visbal [59] also discussed the 3D aspects of DS. The 

objective of the researchers was the simulation of the flow around a wing spanning 
the test section of a tunnel without any tips exposed to the free stream. The wing 

was based on a NACA 0012 aerofoil, had an AR = 4, was pitched from 0' to 60' 

at a constant ramp rate of a+ = 0.2 and the Reynolds and Mach numbers were 
Re = 1.2 x 10' and M=0.1 respectively. One end of the wing was modelled with 

symmetry boundary conditions and the other with Euler slip conditions. The flow 

was solved [59] with a parallel laminar compressible solver in 64 processors and for 

two grid sizes with 4.24million and 8.44million points respectively. Although the 

intentions of the authors were to explore the three-dimensionality of the flow, their 

choice of the boundary conditions deprived the flow from the most important source 

of three-dimensionality in pitching wings, which is the effect of the tips. In fact the 

authors reported on the remarkable similarity between their 3D solutions and the 
2D solutions of a NACA 0012 aerofoil undergoing the same ramping motion. The 

work by Morgan and Visbal [59] did not address the 3D nature of DS, but can be 

seen as a successful exercise of carrying out big parallel computations of pitching 

wings. 

1.2.5 Reduced Models 

CFD studies of 3D DS produce results of varied level of accuracy depending on 
the employed turbulence and transition models. Computations can be expensive in 

terms of computing time and the computing power presently available, is far from 

being adequate to pTovide with real time solutions of the 3D flow-fields encountered 
in practical applications. A variety of alternative approaches have been undertaken, 

aiming to produce reduced models that are computationally efficient yet capable 
to characterise the flowfield across the parameter space. Efforts along these lines 

include the ONERA model based on a non-linear indicial method [60,61], the heuris- 

tic Leishman-Bedoes [62,63] model, a model based on Lagrangian functions devised 

by Vepa [641 as well as simulation of DS by Neural Networks [65,66]. The major 
drawback of such models [62,63,60,61] is the large number of assumptions and tun- 

ing of parameters they require. That impedes their generalising ability and makes 
them suitable only for a narrow operating envelope. Therefore, a large number of 

aerodynamic data is required for their fine tuning. 
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On the other hand, NNs offer improved performance over conventional technolo- 

gies in areas which include: Machine Vision, Pattern Recognition, Signal Filtering, 

Virtual Reality, Data Segmentation, Data Compression, Data Mining, Text Mining, 

Adaptive Control, Optimisation, Complex Mapping etc. and hence they constitute 

a very promising candidate as simple yet efficient DS calculators. 
Past experience has shown that NNs can recreate histories of unsteady aerody- 

namic loads on the suction side of pitching aerofoils, following appropriate training. 
The principles behind NN models are described in detail in chapter 3. Faller et 

al. [65,66], used sets of the experimental data produced by Schreck and Helin [41] to 

train a Recursive NN (RNN) that was able to predict the Cp readings of 15 pressure 
transducers along each of three spanwise positions (0%, 37.5% and 80% span) on the 

upper surface of a ramping-up and ramping-down wings. For all motions, the angle 

of attack a ranged between 0' and 60', the Reynolds number was Re = 6.9 X 104 the 
Mach number was M=0.026 and the reduced ramp rates were 0.01,0.02(t), 0.05(t), 

0.075(v), 0.10(t), 0.15(v) and 0.20(t), were (t) denotes a dataset used for 'training' 

and (v) denotes a dataset used for 'validation'. Furthermore, a sinusoidal motion 

with a reduced frequency of 0.25(v) and mean angle and amplitude of 10' completed 
the dataset used for training and validation of the RNN model. Each dataset com- 

prised of 200 time steps. This RNN model [65,66] had an input layer of 47 neurons, 

an output layer of 45 neurons and two hidden layers with 32 neurons each. The 45 

neurons of the output layer corresponding to the Cp transducers distributed on the 

three spanwise rakes were fed-back to the input layer. The remaining two neurons 

of the input layer represented the instantaneous values of the angle of attack a and 

acceleration daldt. 

Following training of the RNN with all the training datasets, results were pre- 

sented [65,66) in the form of predicted Cp histories for the validation cases. Com- 

parisons between the measured and predicted Cp histories were provided only for 

the spanwise location of 35% span for the two interpolated cases corresponding to 

a+ = 0.075 and 0.15. The RNN model managed to capture the overall shape of the 
individual transducer Cp time histories and the magnitude as well as the phase of 
the footprint of the DSV were predicted well. However, the very limited comparison 
that was provided is not adequate to assess their RNN model more conclusively. 
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1.3 Objectives 

This literature review has shown that although the problem of DS has been studied 

extensively in 2D configurations, there are very few experimental works and only one 

comprehensive numerical 3D study [3] performed to date. It has been shown that 

the full 3D DS on finite wings produces flow phenomena markedly different than the 

ones created from infinite wings. From the industrial point of view, understanding 
3D DS is of primary importance in the effective rotorcraft design. However, prior to 

using CFD for the analysis of such flows, CFD practitioners have to establish that 

their models can provide accurate results. Thus, comparisons with experiments in a 

variety of conditions axe extremely important in building confidence on the particular 

simulation tool of choice. During this work, experimental data in electronic format 

became available for the works summarised in Tabld 1.1. Although this table does 

not include all of the experimental works encountered in the literature, it provides 
data from a wide range of motion types, wing shapes and flow conditions. Therefore, 

one can trust results produced by a CFD methodology successful in reproducing 
these experiments. 

Also, 3D unsteady flow simulations tend to be computationally very expensive 

and reduced models can provide a useful compromise between accuracy and speed. 
A real-time calculator of DS moments and loads would be of considerable benefit to 

most rotorcraft applications. Neural networks can be seen as universal calculators, 

which following the appropriate training, could perform this task on-the-fly and with 

good accuracy. 
Based on the above facts, the objectives of this work are the following: 

o (1) establish confidence on the ability of CFD to accurately simulate 3D DS 

e (2) investigate the flow topology during 3D DS 

(3) assess the possibility of using neural networks as a means of an accurate 

real-time DS computer. 

1.4 Outline 

The remaining of this thesis is organised as follows: 

in chapter 2a brief description of the PMB flow solver used in this study is 

given. The code is capable of solving flow conditions from inviscid to fully tur- 
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bulent using the Reynolds Averaged Navier-Stokes (RANS) equations in three 

dimensions. Detached eddy simulation and large eddy simulation options are 

also available. Due to the flow conditions considered in this work, simple, two- 

equation turbulence models have been employed. Most of the results presented 
in this thesis have been obtained using the baseline k-w model [35]. Good 

results throughout the Reynolds number range (Re = 6,9 x 104 - 2,0 x 106) 

indicate that turbulence modelling is of secondary importance in highly im- 

pulsive flows. To solve the RANS equations, multi-block grids were generated 

around the required geometries, and the equations were discretised using the 

cell-centered finite volume approach. For the discretisation of the convective 
fluxes, Osher's scheme has been used. A formally third-order accurate upwind 

scheme is achieved using a MUSCL interpolation technique. Viscous fluxes 

were discretised using central differences. Boundary conditions were set using 

two layers of halo cells. The solution was marched in time using an implicit 

second-order accurate scheme and the final system of algebraic equations was 

solved using a preconditioned Krylov subspace method. For this work, multi- 
block structured grids have been used and care has been taken in accurately 

representing the tip shape of each wing considered. As explained in [3] flat 

wing tips cannot be modelled with single-block grids and several multi-block 
topologies have been assessed to ensure that the quality of the CFD grids is 

adequate and the geometry of the wing is represented exactly. 

in chapter 3 the two different NN models used in this work are presented. 
Firstly, the principles of the basic FFBP approach are explained and the reader 
is walked through the FORTRAN code in APPENDIX A. Then a variation 

of the FFBP model with recursive feedback is described. The FORTRAN 

implementation of the latter is presented in APPENDIX B. These two models 

are tested for various ramping cases in chapter 6. 

in chapter 4 the comparisons between CFD and the selected experiments (Ta- 

ble 1.1) are shown, addressing objective (1). These tests take place over a 
large range of parameters. The experiments with which CFD simulations are 

compared with, use different wing and tip shapes, planform geometries as well 

as Reynolds and Mach numbers. Even more interestingly, due to the differ- 

ent experimental methodologies, not only surface pressure measurements are 

considered but also flow velocities as well as visualisations of the DSV. Collec- 
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tively, these comparisons provide a very good understanding concerning the 

potential CFD has to offer in the problem of 3D DS and it is the only such 

work done to date. 

the work described in chapter 4 has been a successful confidence building ex- 

ercise which allowed for further explorations of 3D DS phenomenon. Further- 

more, this work establishes CFD as a very promising candidate for exploring 
3D DS free from the costs and limitations encountered in the experimental 
investigations. Chapter 5 contains the attempts for further understanding of 
3D DS. The only available visualisations of the DSV in the literature, have 

been performed at the low Re regime [39,40,41,42]. The DSV and the TV 

are the two major vortical structures in 3D DS and they seem to interact in 

an interesting way. All these works [39,40,41,42] indicated that the DSV 

and the TV connect in the tip region. This raises two questions, a) why? and 
b) is this always the case? Also, what are the effects of Re, M, planform, 

yaw and rotation in 3D DS? Answers to these questions are critical to a bet- 

ter understanding of 3D DS and are the first step towards better industrial 

designs. 

in chapter 6 the two NN models described in chapter 3 are tested for a variety 

of ramping motions. Their behaviour, training requirements and potential to 

predict the basic characteristics of 3D DS are then discussed. Both the NN and 
RNN models were found capable of predicting the inception and propagation 

of the DSV. However, the NN model outperformed the RNN model in terms 

of numerical stability and accuracy in predictions within the training enve- 
lope. The NN model approach also benefits from the inclusion of the spatial 
information in the training and predicting stages which is useful in tackling 

3D problems. Therefore, the NN was the preferred choice for conducting fur- 

ther tests in different geometries and types of motions. These tests involved 

predictions of contours of surface pressures and Cp time histories for ramping, 

yawed and rotating geometries. The FFBP NN model used was found to be a 

very promising alternative to the ONERA, Vepa and Beddoes models. 

* Finally, in chapter 7 the concluding remarks of this work as well as suggestions 
for future work are laid out. 
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Chapter 2 

Mathematical Model I- CFD 

Solver 

2.1 CFD Solver 

All computations were performed using the Parallel Multi-Block (PMB) flow solver 
[67] developed at the University of Glasgow. The flow solver has been continually 

revised and updated over a number of years and has been successfully applied to a 

variety of problems including cavity flows, hypersonic film cooling, spiked bodies, 

flutter and delta wing flows amongst others. The PMB code is a 3D multi-block 

structured-grid solver which solves the Navier-Stokes equations in the 3D Carte- 

sian frame of reference. The Navier-Stokes equations consist of Partial Differential 

Equations (PDEs) describing the laws of conservation for: 

o Mass (continuity equation). 

* Momentum (Newton's 2nd Law). 

* Energy (1st Law of Thermodynamics). 

The continuity equation simply states that the mass must be conserved. In Cartesian 

coordinates, xi, this is written as 

ap a (pui) 
Tt + axi 

(2.1) 

where p is the density of the fluid, t is the time and ui is the velocity vector. In 

the above, tensor notation is used, which implies summation for repeated indices. 
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The second conservation principle states that momentum must be conserved. It 

is written in Cartesian coordinates as 

(9 (Pui) + (9 (Puiuj) = Pfi - 
ap + ý-r-ij (2.2) 

at axj 19xi axj 
where fi represents the body forces, p the pressure and -rij the viscous stress 

tensor, which is defined as 

axj axi 3 aXk + 
(2.3) 

it is the molecular viscosity and Jjj represents the Kronecker delta, which is 

defined as 
1 if i=j 

(2.4) 
0 otherwise 

The third principle can be written in Cartesian coordinates as 

OpE 09 a [ui (pE + p)] - (uirij - qj) = 0. (2.5) + ý7-- 
19t j (9xj 

where E is the total energy of the fluid, defined as 

E=p e+luiui (2.6) 
121 

and e is the specific internal energy with ujui representing the kinetic energy. 
The heat flux vector, qj, is calculated using Fourier's Law 

qi = -k 
aT (2.7) 
(9xi 

where k is the heat transfer coefficient and T is the temperature of the fluid. 

These three laws of conservation can be combined and written in the equation 

shown below, which is referred to as the Navier-Stokes equation of viscous flow. For 

brevity, vector notation is used 

aW a (F+ F') D (G+ G-) a (H'+ H) 
++m0 (2.8) 

ät- + ex ey az 
where W is the vector of conserved variables and is defined by 

W= (p, pu, pv, pw, pE)T (2.9) 

with the variables p, u, v, w, p and E having their usual meaning of density, the three 

components of velocity, pressure and total energy, respectively. The superscripts i 

and v in Equation 2.8 denote the inviscid and viscid components of the flux vectors 
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F (in the x-direction), G (in the y-direction) and H (in the z-direction). The inviscid 

flux vectors, F', G4 and H', are given by 

F' = (pU, pU2 + p, puv, puw, u (pE + p»T, 

G' = >, PUV, PV2 + p, pvw, v (pE +P»T, (2.10) 

H'= (PW, PUW, PVW, PW2 +p, w(pE + p» 
T. 

while the viscous flux vectors, F', G' and H', contain terms for the heat flux and 

viscous forces exerted on the body and can be represented by 

Re (0, Txx, Txy, Txz, UTxx + VTxy + WTxz + qx)T, Fv=1 

GV 
1 (0, Txy, TVY, Tyz, UTxy + Vryy + Wryz + qy)T 

Re 

Hxzzx+ v7-., )T. TTT7_, + wr,,, + qý Ke- (0' "' y' z'u z 

where the term rij represents the viscous stress tensor and qj the heat flux vector. 
Although the Navier-Stokes equations completely describe turbulent flows, the 

large number of temporal and spatial turbulent scales associated with high Reynolds 

numbers make it difficult to resolve all the turbulent scales computationally. In such 

circumstances, small turbulent scales are eliminated by time averaging the Navier- 

Stokes equations to give the Reynolds-Averaged Navier-Stokes equations (RANS). 

This results in additional unknowns (called Reynolds stresses) which are modelled 
by the turbulence model. The viscous stress tensor mentioned in Equation 2.11 

is then approximated by the Boussinesq hypothesis, more description of which is 

provided in the following sections. 
The PMB flow solver uses a cell-centred finite volume approach combined with 

an implicit dual-time stepping method. In this manner, the solution marches in 

pseudo-time for each real time-step to achieve fast convergence. According to the 

finite volume method, the RANS equations can be discretised for each cell by 

j- (Wi, i, kVi, i, k) + Rij, k 0- (2.12) 
t 

where Vi, j, k denotes the cell volume and Ri, j, k represents the flux residual. 
The implicit dual-time stepping method proposed by Jameson [681 is used for 

time-accurate calculations. The residual is redefined to obtain a steady-state equa- 
tion which can be solved using acceleration techniques. The following system of 

equations axe solved in the implicit scheme during the time integration process 
Avw-+, 

- 
Avw!,.,. AVWn+l _ AVW, ýt. 

i, j, k sli, k + i, j, k ij ,k=P,!, tl (2.13) 
AVA-r AvAt ij, k 
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where AV is the change in cell volume, A-r is the pseudo time-step increment 

and At is the physical time-step increment. The flux residual R! '+1 is approximately z, j, k 
defined by 

Wit'-Rn + (Wn+l 
- W11 *, k) 

(2.14) 
, 3, k ' i, j, k aW! I. i, j, k 20 

%, 3, k 
By substituting Equation 2.14 into Equation 2.13, the linear system can be approx- 

imated to 
1+ aRn) 

AW = -IV (2.15) Z_t _5W_ 

where the subscripts i, j, k have been dropped for clarity and AW is used for 

(Wn+l 
i, j, k - Willj, k)' 

Osher's upwind scheme [69] is used to evaluate the convective fluxes although 
Roe's flux-splitting scheme [70] is also available. The MUSCL variable extrapola- 
tion method is employed in conjunction to formally provide third-order accuracy. 
The van Albada limiter is also applied to remove any spurious oscillations across 

shock waves. The central differencing spatial discretisation method is used to solve 

the viscous terms. The linear system of equations that is generated as a result 

of the linearisation is then solved by integration in pseudo-time using a first-order 

backward difference. A Generalised Conjugate Gradient (GCG) method is then 

used in conjunction with a Block Incomplete Lower-Upper (BILU) factorisation as 

a pre-conditioner to solve the linear system of equations, which is obtained from a 
linearisation in pseudo-time. 

The flow solver can be used in serial or parallel mode. To obtain an efficient 

parallel method based on domain decomposition, different methods are applied to 

the flow solver [711. An approximate form of the flux Jacobians resulting from 

the linearisation in pseudo-time is used which reduces the overall size of the linear 

system by reducing the number of non-zero entries. Between the blocks of the 

grid, the BILU factorisation is also decoupled thereby reducing the communication 
between processors. Each processor is also allocated a vector that contains all the 

halo cells for all the blocks in the grid. Message Passing Interface (MPI) is used for 

the communication between the processors in parallel. All computations undertaken 
for the 3D DS analysis have been performed on the Beowulf Pentium 4 100-processor 

workstations of the CFD Laboratory at the University of Glasgow. The two-equation 
Wilcox k-w [72] turbulence model was used. This model is described in more detail 

in the following sections. 
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2.2 General Description of Turbulence and its Mod- 

elling 

Turbulent flows are irregular in the sense that they contain structures which show 

rapid fluctuations in time and space. A broad range of scales are observed to exist at 
high Reynolds numbers where turbulence develops as an instability of the laminax 

flow. Starting with the laminar flow, fluid layers slide smoothly past each other 

and the molecular viscosity dampens any high-frequency small-scale instability. At 

high Reynolds number, the flow reaches a periodic state. The character of the flow 

also changes and becomes more diffusive and dissipative. This flow has increased 

mixing friction, heat transfer rate and spreading rate. Boundary layers consequently 
become thicker and less susceptible to sepaxation. 

The non-linearity of the Navier-Stokes equations leads to various interactions 

between the turbulent fluctuations of different wavelengths and directions. Wave- 

lengths extend from a maximum comparable to the width of the flow to a minimum 
fixed by viscous dissipation scale of energy. A key process that spreads the motion 

over wide range of wavelengths is called vortex stretching. Turbulent structures in 

the flow gain energy if the vortex elements are primarily orientated in a direction 

which allows the mean velocity gradients to stretch them. This mechanism is called 

production of turbulence. The kinetic energy of the turbulent structures is then 

convected, diffused and dissipated. 

Most of the energy is carried by the large scale structures, the orientation of which 
is sensitive to the mean flow. The large eddies cascade energy to the smaller ones 

via stretching. Small eddies have less pronounced preference in their orientation 

and statistically appear to be isotropic. For the shortest wavelengths, energy is 

dissipated by viscosity. This description corresponds to what is known as isotropic 

turbulence. For this flow, the ratio of the largest to smaller scale increases with 
Reynolds number. 

If the unsteady Navier-Stokes equations are used to calculate the flow, a vast 

range of length and time scales would have to be computed. This would require a 

very fine grid and a very high resolution in time. This approach known as Direct 

Numerical Simulation of turbulence (DNS) is by today's computing speeds 

applicable only to flows at very low Reynolds number. One technique called Large- 

Eddy Simulation explicitly resolves the scales away from the wall and exploits 

2.2. GENERAL DESCRIPTION OF TURBULENCE AND ITS 
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modelling in the near-wall regions. A sub-grid scale (SGS) model is used to model 
the smaller scales which are assumed to be more isotropic. Although less compu- 
tationally intensive than DNS, this is still expensive, especially for higher Reynolds 

number flows. 
A turbulence model therefore needs to account for some part of the fluctuating 

motion in order to keep the computing cost down. The optimum model should there- 

fore be simple to implement, general and derived out of the flow physics. It is equally 
important that the model is computationally stable and co-ordinate invariant. These 

statistical turbulence models are applied to a special form of the equations of motion 

called the Reynolds-Averaged Navier-Stokes (RANS) equations. These are obtained 
by Reynolds averaging the Navier-Stokes equations. 

2.3 Reynolds Averaging 

In a turbulent flow, the fields of pressure, velocity, temperature and density vary 

randomly in time. Reynold's averaging approach involves separating the flow quan- 
tities into stationary and random parts. The quantities are then presented as a sum 

of the mean flow value and the fluctuating part 

0=ý+o I (2.16) 

This formulation is then inserted into the conservation equations and a process 
known as Reynolds averaging is performed. Three averaging methods are possi- 
ble: 

o Time averaging. 

9 Spatial averaging. 

o Ensemble averaging. 

2.3.1 Time Averaging 

Time averaging is the most common averaging method. It can be used only for sta- 
tistically stationary turbulent flows, i. e. flows not varying with time on the average. 
For such flows, the mean flow value is defined as 

lim 
1 s+T 

ui(t) dt (2.17) 
Týoo T 

ji 
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In practice, T --+ oo means that the integration time T needs to be long enough 

relative to the maximum period of the assumed fluctuations. 

2.4 Boussinesq-Based Models 

The Boussinesq approximation is based on an analogy between viscous and Reynolds 

stresses and expresses the Reynolds stresses as a product of the eddy viscosity (Pt) 

and the velocity gradient. The Boussinesq's eddy viscosity hypothesis states that 

-p7i, 
ui+ ýU-j 2j OUk 2 

pt 19xj ij 3 pJijk (2.18) 
1( 

i9xi 3 19Xk 

I 

where k represents the specific kinetic energy of the fluctuations and is given by 

UýUý 
2 

(2.19) 

The key idea behind Boussinesq's hypothesis is that the Reynolds stresses can be 

calculated as a product of the dynamic eddy-viscosity, pt, and the strain-rate tensor 

of the mean flow, i. e. 

where 

-pu'iuj' = 21, itSij -2 Jij k (2.20) 
3 

Sii =1 
(aui 

+ 
Puj 

_2 jij 
Ouk ) 

(2.21) 
2 axj axi 3 aXk 

Eddy viscosity, pt, is a scalar and consequently the Reynolds stress components 

are linearly proportional to the mean strain-rate tensor. What is implied here is that 

compressibility plays a secondary rate in the development of the turbulent flow-field. 

According to Morkovin's hypothesis [73], compressibility affects turbulence only at 
hypersonic speeds. 

To compute At, further modelling is required and it is at this point that turbu- 
lence models come into play. Turbulence models are classified into categories based 

on the number of transport equations required to calculate At. According to the 

number of transport equations needed for the calculation of the eddy viscosity, the 
Boussinesq-based models are classified as: 

9 Algebraic or zero-equation models, such as the Cebeci-Smith [49] and 
Baldwin-Lomax [12] models. 

4p One-equation models, such as the Spalart-Allmaras [52] and Baldwin-Baxth 
[53] models. 
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9 Two-equation models, such as the k-c [30], k-w [721, 
,k-W SST [74] 

and k-g [751 models. 

An additional family of models exists, which solves equations for all components of 
the Reynolds stress tensor. These are also known as Reynolds Stress Models 
(RSM), second-order closures or second-moment closures. 

2.5 Viscosity-Dependent Parameters 

Non-dimensionalised wall distances for turbulent flow, y*, and non-turbulent flow, 

Y+, are defined as follows 

.= ynkl/2 + Ynu-r 
vIyv 

(2.22) 

where y,, is the distance from the nearest wall, u. mm VI, -rZ-1-p is the frictional velocity 
and -ru, represents the dynamic wall shear stress. Mirbulent Reynolds numbers for 

the k-- model (denoted by Rt) and for the k-w model (denoted by R, ) are given 
by the following equation 

Rt =- 
kk 

(2.23) 
ve vw 

2.6 One-Equation Models 

This type of turbulence models were designed to improve the ability of algebraic 

models to account for the convection and diffusion of turbulence. This was accom- 
plished by employing a transport equation, usually for the realisation of the kinetic 

energy of turbulence, k. The general form of this transport equation takes the 
following form 

Ok ak aui a [it ak 17 1 

jp 2p 
(2.24) Tt + uj 5T + ýT i Uý -Fui 

j 

The first term in Right-Hand Side (RHS) (7-ij-'9) represents the production of axj 
turbulence. Rom the terms in the square brackets, the first is the molec- P axj 
ular diffusion term, the second (u'iu'iuj') is the turbulent flux of the turbulent Iz 
kinetic energy and the third (Iplu. ) is the pressure diffusion term, which is 

P3 
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usually neglected due to its small contribution. The term - is the dissipation rate 

of k per unit mass of fluid, and is usually defined by 

Ii L. 19uý IM (2.25) 
P (9Xk C9Xk 

Eddy viscosity for one-equation turbulence models is usually calculated by 

pt ..: p Cl, 1,,, j., v/k (2.26) 

where C,, is a coefficient specific to the model. 
The Baldwin-Barth [53] and Spalart-Allmaras [52] one-equation models axe the 

most common types of one-equation models. History effects of the turbulent kinetic 

energy profile are better accounted for in one-equation models due to the additional 
differential equation. This can be particularly important in non-equilibrium flows 

and consequently provides better results than algebraic models. Specifically tuned 

for aerodynamic flows with adverse pressure gradients and transonic flow conditions, 

one-equation models also work well for flow regions where the mean velocity gradient 
is zero. Better modelling of near-wall effects and transition, for instance, can simply 
be integrated into the model's formulation by adding extra relevant terms because 

of its modular design. For these reasons, one-equation models have gained much 

popularity in aerospace applications. The disadvantage of one-equation models is 

the absence of a mechanism for the computation of the length scale, 1, is included 

making the prediction of highly turbulent flows (with a broad range of length scales) 
difficult. In that respect, one-equation models axe still similar to algebraic models. 

2.7 Two-Equation Models 

By far the most popular type of turbulence model used is of the two-equation type. 

Two-equation models are 'complete', i. e. can be used to predict properties of a given 
flow with no prior knowledge of the turbulence structure or flow geometry. Two 

transport equations axe used for the calculation of the turbulent kinetic energy, k, 

and turbulence length scale, 1, or a function of it. The choice of the 2nd variable 
is arbitrary and many proposals have been presented. The most popular involves 

using: 

*e- dissipation rate of turbulence. 

ew- k-specific dissipation rate. 
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9r- turbulent time-scale. 
A description of the different types of two-equation models is provided in Table 2.1 

below. As well as indicating the variable used for the second transport equation, 
Table 2.1 includes the equation used to calculate the eddy viscosity. 

Table 2.1: Different types of two-equation turbulence models and the corresponding 

second variable used 

Two-Equation Model Equation2nd Variable Used 

Kolmogorov (c. 1942) [76) k 1/21-1 w (Frequency Length Scale) 

Rotta (c. 1950) 1 

Harlow-Nakayama (1968) k 3/21-1 (Energy Dissipation Rate) 

[77] 

Spalding (1969) [78] 

Speziale (1992) [79] 

Nee 

Harlow-Nakayama 

kj-2 w 12 (Vorticity fluctuations squaxed) 
Ik-1/2 -r (Time-Scale) 

k1 k1 (k times length scale) 
lk-1/2 vt (Eddy viscosity) 

One of the most widely used two-equation turbulence models is the k-e model. 
One of the original versions of this model was developed by Jones and Launder 

[30] in 1972. The turbulent scale in the k-e model is calculated using a second 

transport equation for the turbulent dissipation rate, E. The eddy viscosity for the 

k-e model is typically derived from 

[IT ý CIAP k 
e 

(2.27) 

where C,, is a model coefficient. The advantage of the k-- model is that it 

performs well for attached flows with thin shear layers and jets but fails to predict 
the correct flow behaviour in many flows with adverse pressure gradients, extended 

separated flow regions, swirl, buoyancy, curvature generated secondary flows and 

unsteady flows. 

The other class of two-equation turbulence models that is widely used is the k-W 

model. In 1988, Wilcox [72] developed the famous k-w model originally conceived 
by Kolmogorov. The k-w model is similar to the k-E model but instead uses 
the k -specific dissipation rate as a second variable to compute the turbulent length 
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scale. The eddy viscosity is obtained by 

k 
AT (2.28) 

Although the k-w model provides better performance in adverse pressure gradient 
flows, it suffers largely from the same problems as the k-- model. Hybrid versions 

of the k-w and k-- models called the Baseline k-w (which improves free stream 
dependancy) and SST models were later introduced by Menter [74]. In particular, 

the SST model, performs well in separated flows. The idea behind the Baseline k-W 

model is to exploit the robust and accurate formulation of the k-W model near the 

wall but to also take advantage of the lack of sensitivity to free-stream values of 

the k-- model away from the wall. Menter [74] achieved this by transforming the 

k-- model into the same form as the k-w formulation. This process generated 

an additional cross-diffusion parameter in the w transport equation. For the SST 

model [74], the idea was to improve the Baseline k-w model by including terms to 

account for the transport of the principal shear stress. This term is incorporated in 

Reynolds Stress Models (RSM) and was also used by Johnson-King [50] to produce 
the so called half-equation model that solved an ode for the maximum shear stress 

transport. Its importance was realised based on the significantly improved results 
for adverse pressure gradient flows [741. 

2.7.1 Model Equations: Linear k-w Model 

Mathematical formulations of the different types of the linear k-w two-equation 

turbulence models discussed in the previous sections are described here. More in- 

formation on the k-E and k-g models can be obtained from Ref. [80]. 

Since the introduction of the linear k-w model by Wilcox in 1988 [72], the 

other notable modification to the k-w model came from Menter in 1994 [741 who 

proposed the hybridisation of the k-w model with the k-E model, as described 

previously. Table 2.2 lists the four notable versions of the k-w models and further 

describes if they include parameters to compute the low Reynolds number properties. 

The turbulence transport equations used in the formulation of the k-w models 

are: 

aa i9k ] (pk) + ýj- (pUjk) Txj +p (P - O"wk) (2.29) 
t xj O'k -`: ý 5x-j +L- 
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Table 2.2: Different types of linear k-w turbulence models 

Type of Model Low-Re 

Wilcox (1988) [72] Yes 

Wilcox (1994) [81] Yes 

Menter (1994) (74] - (i) Baseline Model Yes 

Menter (1994) [74] - (ii) SST Model Yes 

at (pw) + axj 
(Pujw) = 

axj a, axj Vt 0 *W2 
aa 11 1(11+ 111) awl +p (", P- 0)+ pSj (2.30) 

In the transport equation for k and w above, the production of turbulence, P, 

and the dissipation rate specific to k, P,, are defined by: 

(2-31) Pk 
OUi, 

Pw P 
Cl Pk- 

Oxj Vt 

Values for the coefficients used in all the four types of linear k-w models discussed 

here are given in the Tables 2.3 and 2.4. 

Table 2.3: Values of constants used in linear k-w models (continued) 

Type of Model a 
Wilcox (1988) [72] 1 9 

100 
5 
9 

3 
ý-O 

Wilcox (1994) [81] 40 '6 
It 

-L 
R 

-i-. 
18+(-s 

) 

4 
+ R,, L 5 3 

1+ - 
6 

100 
+(R,, L) 

8 T7 40 

0.553 0.075 
Menter (1994) [74] 1 0.09 B B 

(Baseline)' 
0.440 0.083 

Menter (1994) [74] min 110.31 
(r 

, w 0.09 ý 

) 

B 
0.553 

B 
0.075 

(SST)2 
2 W 

0.440 0.083 

Menter's models [74] are constructed as a 'blend' of the k-w and k-- models. 
Here the k-- model is cast in the same form as the k-w model so as to exploit its 

independence of free-stream values. Blending of the k-- and k-w model values 
for a, 31 Uk-1 and q, ý' is (in this notation) given by the following equation 

Fla + (1 - FI) b. (2.32) 
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Table 2.4: Values of constants used in linear k-w models (concluded) 

Type of Model O'k OIw S, 

Wilcox (1988) [72] 220 

Wilcox (1994) [81] 220 

Menter (1994) 

[74] (Baseline)l 

Menter (1994) [74] (SST)2 

11B1.71 
Vo . Vw 

B( 
0.5 

B( 

00.5 

k 

1.0 . 856 

) 

11B0 
0.85 0.5 1-71 Vk - Vw 

B( B( w 

1.0 jý0.856 

The blending function is defined by 

g4) , 
F, = tanh (ar 

, 

where 

(2.33) 

arg, = min max 
( k1/2 500v) 2kw (2.34) 

O*Wy' y2W y2 max (Vk - Vw, 0.0) 
InnI- 

The SST model places an additional vorticity-dependent limiter on the shear 

stress 
2) 2k 1/2 500v F2 

= tanh (arg 
, ar92 = max (2.35) 2 

(3*WY' 

Y 2W 

Note that this model also uses a slightly different value Of ak. 
For low-Reynolds number versions of the k-w model and Menter's Baseline 

k-w and SST models, the following boundary conditions are assumed for a direct 

integration to the wall 

Fork: kw = 0, f lux(k)w = 0. (2.36) 

For w: w= oo, f lux(w)w = -VVW. (2.37) 

where the subscript w denotes the value at the wall. 
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Chapter 3 

Mathematical Model II - Neural 

Network 

3.1 Introduction 

A Neural Network (NN) is an information processing machine, inspired by the way 
biological nervous systems, such as the brain, work. NNs are composed of a large 

number of highly interconnected processing elements (neurons) working in unison to 

solve specific problems. NNs, like the brain, learn by example. An NN is configured 
for a specific application, such as pattern recognition, through a learning process. 
Learning in biological systems involves adjustments to the synaptic connections that 

exist between the neurons. NNs have a remarkable ability to derive meaning from 

complicated or imprecise data and can be used to extract patterns and detect trends 

that are too complex to be noticed by either humans or other computer techniques 
[82,83,84]. A trained neural network can be thought of as an "expert" in the 

category of information it has been given to analyse. This expert can then be used 
to provide predictions given new situations of interest. The architecture of NNS 

facilitate parallel as well as dedicated hardware implementations. Therefore, NNs 

can also be extremely fast in their operation. NNs, have been so far used to very 
diverse applications, from market forecasting to industrial process control and risk 

management. More recently, Faller et al. [65,66] have also used them in unsteady 

aerodynamics for the prediction of DS. In this chapter, the reader is firstly walked 
through the basic principles of NNs. Then the details of two algorithms based 

on a standard feed-forward back-propagation (FFBP) model are presented: (a) a 

standard FFBP NN (Figure 3.1) and (b) a FFBP NN. with feedback (RNN) (Figure 
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3.2). The RNN approach was first tested for DS by Faller et al. [65,66]. 

3.2 Generic FFBP NN 

A NN can be seen as a universal approximator with the capacity to simulate any 

mapping of the type: 

Z= Z(Xl, X21 ... i Xn) 

or in the case of the wing surface pressure distribution during DS: 

Cp = Cp(t, a, a+IX, Y) (3.2) 

The theoretical justification for the suitability of a FFBP NN to approximate such 

mappings, comes from the existence theorem put forward by A. N. Kolmogorov [85]: 

For every integer dimension d>1, there exist continuous real functions hij (x) de- 

fined on the unit interval U= [0,1], such that for every continuous real function 

f (X11 
... I Xd) defined on the d- dimensional unit hypercube Ud' there exist real con- 

tinuous functions gi(x) such that: 

(Xl) 
... ) Xd) 

2d+l d 

gi 1: hij (xj) 
j=l 

(3.3) 

The above equation can be interpreted as a NN with 3 layers and a total of (2d+ 1)d 

neurons in the hidden layer. Figure 3.1 shows the topology of a generic NN model. 

Input La) 

t 

cc 
Cý 

X/C-0 00 

Y/C -0 0 
00 

Figure 3.1: Generic Neural network model. 

This NN consists of an input layer with 5 neurons, 2 hidden layers and an output 

, 6-cp 
Output Layer 

3.2. GENERIC FFBP NN 
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layer with 1 neuron. Each neuron is connected to all the neurons of the previous 
layer and to all the neurons of the next layer. All neurons are exactly the same, 
the only distinguishing characteristics between them being the number of inputs and 

outputs they have. Each inter-neural connection (shown as a straight line) is defined 

by a particular real number, a weight wij. The total number of these weights is the 
degrees of freedom (DoF) of the NN and it is precisely in these connections were 
the 'knowledge' of a trained NN resides. Each neuron can be seen as a 'black box' 

which internally performs two basic operations: 

*a combination which computes a linear summation over its input signals 

ea scaling through an activation function which bounds the result of the sum- 

mation to a required interval. 

The most commonly used activation function is the non linear sigmoid: 

x 
+ e-x 

(3.4) 

whose range of values is the interval [0,11. 

To illustrate how the values propagate through successive layers, we can imagine 

that the 5 input layer neurons of the NN of Figure 3.1 are fed with the values xi 
(i = 1,2,... 5) respectively. Each of the input neurons will pass this value through 

the sigmoid function of eqn (3.4), to yield the following output: 

Yi 
e-xi 

1,2, ..., 5 (3.5) 

We can assume that the first hidden layer of the NN shown in Figure 3.1 has n 

neurons. Each of these neurons is connected with all 5 input layer neurons via the 

weights wij (i = 1,2,..., 5 and j=1,2, ... ' J). Therefore, each of the J neurons on 
the first hidden layer receives a signal equal to: 

5 

h'j' yj x wij, 1,2, ..., J (3.6) 

which will consequently pass through their activation function, to give the following 

value at their output: 
hj 

-hi. n 1 11 2,... ' 1 (3-7) 
1+e 2 

The process described above is repeated until the values reach the output layer. In 

that manner, the NN can be seen as a 'tree' which 'propagates forward' the input 
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signals to the output. Each one of the branches of this tree as seen in figure 3.1, is 

essentially a 'synaptic weight' that defines the connection magnitude of each neuron 

at a given layer to each neuron at the layer ahead. Thus, if all synaptic weights are 
known, a given combination of input values will yield a single value at the output 

of the NN. It should be stressed that the optimal number of hidden layers as well as 
the number of neurons on each hidden layer is currently more an issue of art than it 

is of science. The numbers of input and output neurons are always dictated by the 

physics of the problem at hand, however, the number of neurons in the hidden layers 
(or perceptron) is not at all well defined. An excellent summary of the behaviour 

and the fine-tunning particulars of FFBP NNs can be found in [86]. Mather and 
Kavzoglu [86] argue that the choice behind the number of hidden layers as well 

as the number of neurons on each hidden layer is not straight forward and greatly 
depends on the complexity of the physics of the problem and the number of patterns 

used for training. A pattern is a pair of an input and an output vector. It seems 
that the effect of increasing the number of layers is to make a NN 'smarter' and the 

effect of increasing the number of neurons per layer, makes a NN more accurate. 
The process described so far is essentially the NN's predictive mode (Feed For- 

ward), were all synaptic weights are assumed to be known. Hence, the resulting z at 
the output of the NN is a function of the input values. It is evident that the predic- 
tive mode is very cheap, as the process from input to output involves a very small 

number of operations. A FFBP NN is trained by a sufficient number of patterns. 
The training process starts with a random distribution of the synaptic weights wij 
between layers. Via the process described above, a unique and wrong solution vector 
is yielded at the output of the NN, for a particular pattern. However, since the right 

vector corresponding to the input vector for this pattern is known, a measure of the 

error can be calculated: m 
E lYk 

- tkj (3.8) 
k=l 

or in order to simplify the algebra (see Eqn (3.10) on the next page): 

1K 
)2 

2E 
(Yk 

- tk (3.9) 
k=l 

where K is the number of output neurons and Yk and tk are the components of their 

corresponding output and target values respectively. Clearly, the error function E is 

a function whose variables are all the different weights wij in the NN. The aim of the 
Back Propagation (BP) algorithm is to find the particular distribution of weights 
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that minimise the value of E. The method used here is the Gradient Descent with 
Momentum (GDM) algorithm [871. Without loss of generality, it is assumed that 

the NN has one only hidden layer. To avoid confusion, the indices k, j, i refer to 

the output, hidden and input layers respectively and K, J, I are the total number of 

neurons of these layers. The BP algorithm is explained below, step by step: 

The derivative of Eqn (3.9) is calculated. This derivative represents the rate 

of change of the error function E, subject to a change of the k-th component 

of the output vector: 

ý7-k tk (3.10) Yk 
y 

This change is then propagated backwards to the input of the k-th neuron of 

the output layer. Thus, the effect that a change of the output vector has on 
the input values of the neurons on the output layer is calculated: 

AYk = 
DE DE 

X 
dYk 

= (Yk - tk) X Yk X (1 - Yk) ýXk = OYk dxk 

where Yk is the transfer function defined in Eqn (3.4). 

The next step is to propagate AYk backwards, across the inter-layer connec- 
tions Wjk and the transfer function of the neurons of the hidden layer, to the 

input of the hidden layer. Thus, 

K 

Ahj : -- 
E[Wi, 

k X AYk1 x hj x (i - hj) (3.12) 
k=l 

where hj is defined in Eqn (3.6). 

Ahj in Eqn (3.12) above, represents the magnitude of change of the values hj 

at the input of the hidden layer neurons, subject to a change of the output 

vector. At this point, a change of the weights wij between the input and 
hidden layers can be computed using the generalised delta rule: 

consequently, 

A'wij = 77 x Ahj +ax A'-lwij (3.13) 

W, j = W, j + AnW,, (3.14) 

where 77 is the learning rate, a the learning momentum and n is the global 
iteration level. 
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9 The final step of the BP method, is the amendment of the weights Wjk between 

the hidden and the output layers: 

ATIWjk ---: 77 X AYk + Ci X An- lWjk (3.15) 

and 
Wjk --"-: Wjk +,, ý, n Wjk (3.16) 

At this stage, all the weights in the NN have been re-approximated towards values 
that provide a smaller error E. However, this process has been so far applied to a 

single pattern and only once. Next, the procedure is repeated for all patterns and 
thus an 'epoch' is completed. The procedure is then iterated over the necessaxy 

number of epochs to satisfy a convergence criterion based on a limiting value of E. 

It is critical that during every epoch, the patterns are introduced at a random order. 
This ensures faster learning rates, avoids 'memorising' and increases the capability 

of the NN to tackle situations it has not been trained for. Appendix A, contains the 

Fortran source code of the standard FFBP NN, as explained above. The starting 
file 'input' is read (lines 33-43) providing the name of the pattern file, the values for 

the size of the NN, the running parameters (refresh rate, error threshold, 77 and a). 
Then in lines 45-69, the weights of the networks are initialised with small random 

values. Finally the file containing the training patterns is read (lines 71-86). This file 

must have an ASCII format and as many columns as the number of input neurons 

plus the number of the output neurons. Each line represents a different pattern and 
is of the form 1,0, where I and 0 are the input and output vectors correspondingly. 
Best results will be obtained if all input and output vector components are scaled 
linearly in the range [0,11. The preferred method of scaling is local scaling, within 
individual columns at a time. The main training loop starts at line 89. Line 93 

generates a random integer between 1 and the total number of training patterns. Of 

course, in this way there is no guaxantee that during an epoch all patterns will be 

used once, however, it is expected that over many epochs, all patterns will appear 

with the same frequency. The code between lines 96 and 103 performs the forward 

propagation of the input values to the output of the neurons of the first hidden layer. 

Note, that since the input values are already scaled in [0,1], the sigmoidal transfer 
function is not applied on the input neurons. Then in (lines 106-115) the exit of 
the first hidden layer neurons is further propagated to the exit of the last hidden 

layer neurons. Finally, the forward propagation terminates at the exit of the NN 
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(lines 119-135) where the output value is compared to the target value and thus an 

accumulated error value is calculated (line 130). The part of the code performing 

the BP algorithm is contained between the lines 133 and 213 as described in the 

steps above. More specifically, the quantity Ayk is calculated at line 133 and Ahj 

on line 162 (note that this code supports an arbitrary number of hidden layers). 

The first array of weights (between the input layer and the first hidden layer) is re- 

approximated on line 177 and the weight arrays between the hidden layers on line 

194. Finally, the BP ends when the last array of weights (between the last hidden 

layer and the output layer) is re-approximated on line 210. The loop over all the 

patterns terminates on line 214 and the global loop over all the epochs, on line 216. 

3.3 Recursive NN 

Figure 3.2: Neural network model with feedback. 

The second NN model used (Figure 3.2) is a variation of the standard FFBP NN 

model described in the previous section. In this model, every Cp transducer on the 

wing has a dedicated neuron (15 in this case) both at the input and output layers. 

Therefore, it is no longer necessary to include the spatial information x, y of the 

transducers to the training sequence. Also, during training, the Cp values for every 

motion are fed to their corresponding neuron on the input layer in their true time 

sequence. These values are then propagated to the output layer in exactly the same 

3.3. RECURSIVE NN 
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way as in the standard FFBP NN model. We can assume that the Cp(to) values 

corresponding to time to =0 are fed into the input, together with their corresponding 

a(to) and a+ (to). A random starting distribution of weights propagates these values 
to the output layer. These output values are then compared to the actual Cp(ti) 

values and an error value based on their difference is generated. Based on this error, 
the BP algorithm re-evaluates all the network weights in the same manner as in the 

standard FFBP NN implementation. The sequence is repeated, but now the Cp(ti) 

values that are fed to the input are the output values of the previous step, via the 

feedback loop. The NN is trained after a sufficient number of epochs. A successfully 
trained NN should be able to predict the Cp(t) histories of a particular motion, by 

the starting Cp(to) values as well as the sequence of a(t) and a+(t) corresponding 
to this motion. 

Appendix B, contains the Fortran source code of the FFBP NN with feedback, as 

explained above. Since the code of the RNN is largely identical to the standard NN 

code, only their differences will be described here. The pattern file is read on line 

70 and it consists of the same number of columns as the input layer neurons. The 

number of lines is equal to the sum of the timesteps of all the training cases, each 

presented in their true time sequence. During training, the different sets should 
be randomly presented every time. Therefore, the user is required to input the 

information regarding the number of sets as well as their corresponding starting and 

ending lines (lines 79-91). Then in lines 93-107, the target file is constructed from 

the input file, according to the requirement: 

Target[Cp'(t. )] = Cp'(t. +, ) (3.17) 

where n denotes timestep and i denotes the Cp identity number. Finally, in lines 

132-136 the feedback connection is applied by setting the next input equal to the 

previous output. The FF as well as the BP stage of the NN model with feedback 

are identical to the generic NN model described previously. 
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Chapter 4 

CFD Validation 

4.1 Introduction 

To validate CFD against experiments care must be taken to ensure that the same 
boundary conditions and geometry are used. Due to the flow conditions considered 
here, simple two-equation turbulence models have been employed. The results pre- 

sented in this dissertation have been obtained using the baseline k-W model [35]. 

Meshing finite wings encounters a problem in the tip region as a single-block grid 

will (a) render flat tips topologically impossible and (b) lead to skewed cells in the 

case of rounded tips. To counter these problems, three different blocking strategies 

were considered as shown in Figure 4.1. In a first attempt, shown in Figure 4.1a, 

the tip end is formed by a 2D array of collapsed cells resulting in a C-H single-block 
topology. Although this is adequate for thin, sharp tips, it fails to satisfactorily 

represent the tip geometry of wings with thicker sections or flat tips. For wings 

with flat tips, good results can be obtained by using a true multi-block topology. As 

shown in Figure 4.1b, the tip plane constitutes one of the six sides of a new block 

extending to the far-field. This topology can generate both flat and rounded tips 

and produces no collapsed cells in the vicinity of the tip region. A modification of 
this topology is shown in Figure 4.1c where 4 blocks were used next to the flat tip 

plane to promote cells with a better aspect ratio than in the previous case. Other 

approaches including H-H and C-0 topologies have also been investigated. The lat- 

ter is shown in Figure 4.1d and is suitable for truncated wings with rounded tips. 
In this case, the C- topology used around the leading edge curves around the tip 

resulting in a very smooth distribution of the radial mesh lines around the entire 
wing and in particular at the wing-tip interface, which is no longer treated as a block 
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boundary. This blocking produces the smoothest mesh around the tip region as none 

of the emerging grid cells is skewed. Apart from the single-block C-H method all 

other topologies can be used for both rounded and flat wing tips. Figure 4.2 shows 
the full blocking strategy corresponding to grid (c) of Figure 4.1. This blocking was 

eventually used for all runs and planforms in this work in three variations: (a) half 

wings with symmetry plane on the root plane (Figures 4.2a and b), (b) half wings 

with viscous wall on the root plane (Figure 4.2c) and (c) full wings. In the case 

of full wings, the blocking shown in Figure 4.2a was simply mirrored in respect to 

the root plane to produce the full wing blocking topology. In addition to the wing 

geometry, the selection of end-plates, tunnel walls and kinematics of the moving 

surface are also important. In paragraphs 4.3.1 and 4.5.2 respectively, the effects 

of splitter plates and accurate, non-idealised motion profiles have been accounted. 
In the latter case, an accurate ramping profile was recreated from the experimental 

measurements of the AoA of the wing using Fourier Transform. Table 4.1 presents 

all the experimental cases for which comparisons with CFD computations have been 

performed, in ascending Re. Case 3 of Table 4.1, is an exception, as strictly speak- 
ing, it should not be among the 3D experimental works. However it is the only 

work where PIV measurements have been collected for DS and therefore presented 

a chance for flow field comparisons. The remaining of this chapter is divided into 

three parts: 
(A) the validations of the low Re cases (cases 1 and 2) of Table 4.1 
(B) the validation of the 2D case (case 3 of Table 4.1) and 
(C) the validation of the high Re cases (cases 4,5 and 6) of Table 4.1. 

The details of all grids used in this study are presented in Table 4.2. 

4.1. INTRODUCTION 
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Figure 4.2: Blocking topology corresponding to grid (c) of Figure 4.1. (a) full grid, (b) 

details close to the wing and (c) the blocking used to model the viscous plate on the wing's 

root. 
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4.2 Tables 

Case Reference Conditions Measurements 
1 Moir & Coton [42] Ramping and oscillatory motions Smoke visualisation 

Re=13,000, M=0.1 
NACA0015, AR=3 

2 Schreck & Helin [411 Ramping motion Surface pressure 
Re = 6.9 x 104 

,M=0.03 Flow visualisation 

3 Wernert et al.. [38] Oscillatory motions 
Re=373,000, M=0.15 

NACA0015 

4 Berton et al. [45] Oscillatory motion 
Re =3-6x 106, M=0.01 - 0.3 

NACA0012 

5 Coton & Galbraith [44] Ramping and oscillatory motions 
Re = 1.5 x 106, M=0.1 

NACA0015, AR=3 

6 Piziali [22) Ramping and oscillatory motion 
Re = 2.0 x 106, M=0.278 

NACA0015, AR=10 

NACA0015, AR=2 

(dye injection) 

PIV 

Boundary layers 

Velocity profiles 
Turbulence quantities 

Surface pressure 

Surface pressure 
Flow visualisation 

(micro-tufts) 

Table 4.1: Summary of experimental investigations for 3-D DS. 
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Case Blocks Points 

on wing 

Points 

on tip 

Size 

(nodes) 

Wall 

distance (c) 

CPU time 

(hrs) 

Number 

of CPUS 

1 40 6,750 1,800 2,268,000 10-5 305 12 

2a 13 61222 820 420)000 10-4 255 1 

2b 20 7? 100 900 729,000 10-4 31.1 8 

2c 44 8,400 900 1,728,000 10-4 111.1 8 

2d 64 187900 4,500 2,727,000 10-5 100 24 

3a 6 240 n/a 62,400 10-5 17.5 1 

3b 6 360 n/a 108.000 10-5 38.9 5 

4 36 7,800 71200 1,828,000 10-5 319 8 

5 20 3,375 1,800 1,134,000 10-5 63 9 

6 28 7)800 71200 2,632)000 10-5 320 16 

Table 4.2: Details of the employed CFD grids and time required for the calculations. For 

all cases the far-field boundary of the computational domain was located at 8-10 chord 
lengths away from the wing surface. All calculations were performed on a Linux Beowulf 

cluster with 2.5GHz Pentium-4 nodes. 
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(a) Moir and Coton [421 and Coton and Galbraith [441 (left), 

and Coton and Galbraith [44] swept wing (right). Both utilise a NACA 0015 section. 
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(d) High aspect ratio wing (NACA 0015 wing section) 

Figure 4.3: Wing planforms employed for calculations. (a) Cases 3 and 4 of Table 4.1 by 

Moir and Coton [42] and Coton and Galbraith [44]. (b) Case 5 of Table 4.1 by Berton et 

al. [45]. (c) High aspect ratio wing with linear twist of -100. 
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4.3 The low Re regime validation cases 
The appeal of the experiments performed at low Re is that turbulence modelling 
issues are secondary. Furthermore, grid sizes can be smaller leading to cheaper 

computations. In addition, the employed ramping rates were high so that the flow 

is mainly driven by the forced motion of the body. At slower ramping rates, it 

is expected that the influence of turbulence, transition and viscous effects will be 

stronger. The required CPU time for calculating the 2D and 3D flow cases is re- 

ported in Table 4.2. All calculations were performed on a Beowulf cluster with 2.5 

GHz Pentium-4 nodes. In this section CFD simulations are compared against two 

experimental data sets: 
(A) The flow visualisation experiments of Moir and Coton [42] 

(B) The surface pressure experiments of Schreck and Hellin [41] 

4.3.1 The experiments of Schreck 

The first set of calculations in the low Re regime simulated the experiment of Schreck 

et a]. [411. S. Schreck from NREL kindly provided the data used here. As for the 

flow visualisation experiments of Moir and Coton [42] described in the following 

paragraph, Schreck's experiment was conducted at low Reynolds numbers so tur- 

bulence modelling issues were secondary. For this work both laminax and turbulent 

flow calculations have been performed. It has to be noted that the flow conditions 

of Newsome's study [58] are close but not the same as the ones used here. This is 

due to the fact Newsome's calculations were compaxed against water-tunnel visu- 

alisation and pressure data from Schreck [88] at lower Reynolds number, while the 

current set of experimental data comes from wind-tunnel experiments [41]. In con- 
trast to the previous laminar flow study by Newsome [58] where rounded tips were 

used instead of sharp ones, the present work preserves the real geometry of the wing 

using multi-block grids as explained in the previous sections. This was found to be 

necessary since there is a strong interaction between the tip and the DS vortices. 
Three CFD grids were constructed, the coarse grid has 0.7 million cells, the medium 
1.7 million cells and the fine 2.7 million cells. The medium grid was found to be 

adequate following comparisons of the integral loads of the wing between the three 

grids and was employed for the rest of the calculations. Even results on the coarse 

grid were found to be close to those obtained on finer meshes for incidence angles 
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A time-step sensitivity study was subsequently conducted by halving the original 
time-step. The results of the two calculations were practically the same and therefore 

the original time-step was considered as adequate. This dimensionless time-step of 
0.058 corresponds to a real time-step of 10' seconds and results in four unsteady 
flow solutions per degree of incidence. 

Comparisons against measurements are presented in Figure 4.4 where Cp con- 

tours on the upper surface of the wing are plotted. Measurements are only available 

on part of the wing area [41], bounded by a dashed box on the CFD plots. Three 

sets of calculations are shown including laminar flow results with the inboard bound- 

ary plane of the computational domain assigned a viscous wall boundary condition, 

turbulent flow results with symmetry plane condition and turbulent flow results 

with viscous wall condition. The same number of contours and at the same levels 

were drawn for experiments and CFD. The concentration of the contour lines near 

the mid-chord corresponds to the location of the DSV. One can clearly see that 

at 30 degrees of incidence the simulation results with viscous wall condition are in 

much better agreement with the experiments. It is difficult to decide which of the 

laminar and turbulent flow results are in better agreement with experiments, how- 

ever, towards the tip region of the wing the simulation with the turbulence model 

provides a better comparison predicting more accurately the location of the DSV. 

Overall, the shape and level of the contours corresponds to the measured data with 
the agreement getting better at higher incidence angles. The reason for any minor 
discrepancies towards the mid-span of the wing lies in the fact that the experiment 

used a splitter plate on the wing root with surface qualities that do not exactly 

match the idealisations made by either symmetry or viscous boundary conditions. 
The size of the plate is comparable with the DSV size (the splitter plate diameter 

was equal to two chord lengths) and thus the effectiveness of the plate may not 
be good especially at high incidence angles. Due to the size of the splitter plate, 

results with viscous wall condition at mid-span are closer to the experiments for low 

incidence, however, symmetry plane results tend to be better at higher angles. This 

is because the DSV moves away from the surface of the wing and expands beyond 

the splitter plate. 
Further calculations were performed for different ramp rates and the pivot point 

of the wing was also changed from x1c = 0.33 to x1c - 0.25. The comparison 
between the CFD results and measurements for the surface pressure on the wing is 
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shown in Figure 4.5. One can see that at the higher ramp rate the comparison is 

better since the character of the flow is more impulsive and driven predominantly 
by the motion of the wing. It appears however, that the suction corresponding 
to the DSV extends up to the wing tip where it is joined with the low pressure 

region dominated by the tip vortex. This can be seen in Figure 4.5(b) in the area 

outside the dashed box which marks the region where pressure measurements were 

made. To further assist a quantitative comparison between measurements and CFD 

results, the Cp distribution at two spanwise stations (zlc=1.0 and 1.6) and for 

two incidence angles (30 and 40 degrees) were extracted and the comparisons are 

presented in Figure 4.6. The footprint of the DSV can be seen in all stations while 
the evolution of dynamic stall appears to be slightly faster in the experiment than 

the CFD especially near the leading edge region. 
The ability to predict the integral loads on the wing during the unsteady ma- 

neuver is paramount for design. CFD results for the CL, CD and CM coefficients are 

presented in Figure 4.7. For the sake of comparison, 2D calculations have also been 

performed at the same conditions. As can be seen, results at a higher ramp rate 
indicate a more impulsive behaviour and delayed stall in the 2D case. Overall, the 

3D calculations reveal a smoother variation of the integral loads with a more gradual 

stall in comparison to the 2D results. Apart from potential flow and dynamic stall 

effects, this is a direct result of the interaction between the tip and the DS vortices. 
As the incidence increases, the strength of the tip vortex also increases but the effect 

of the vortex is reduced as it approaches the tip and bends towards the leading edge 

of the wing. This has a strong effect especially for the moment and drag coefficients 

and highlights the problem engineers have to face when scaling 2D measurements 
for use in 3D aerodynamic models. 
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4.3.2 The flow visualisation experiments by Moir and Coton 

The next step in the validation process is the qualitative comparison between CFD 

and the flow visualisation experiments by Moir and Coton [42] at the smoke tunnel 

of the University of Glasgow. Moir and Coton [421, provided detailed account of the 

initiation and evolution of the DS vortex at laminar flow conditions (Re = 13,000). 

The employed wing was of rectangular planform with rounded tips and an aspect 

ratio of 3. Prof F. Coton from University of Glasgow kindly provided the extensive 

video footage from these experiments. A schematic showing the wing used in these 

experiments can be seen in Figure 4.3a. The wing had a NACA 0015 section, 

constant along the span. CFD calculations have been performed for a ramping case, 

at a reduced ramping rate of a+ = 0.16 which corresponds to the test conditions 

used by Moir and Coton [42]. The low Reynolds number of this experiment was 
beneficial since smoke visualisation can be made clearer at lower wind speeds and 
from the point of view of CFD no turbulence modelling was necessary. A set of still 
images has been extracted from the video tapes recorded during the experiments 

and were consequently used for comparisons with the CFD simulation. Figure 4.8 

presents the comparison between experiments and simulation at incidence angles 

where, the most important features of the 3-D DS are shown. Figure 4.8a, shows 

the plan view of the wing at an incidence angle of 30". At this stage, the DSV is well 
formed and its inboard portion is located at approximately 1/3 of chord from the 

leading edge, running parallel to the pitch axis of the wing. The portion however, 

of the DSV close to the tips, is deflected towards the leading edge, and appears to 

interact with the tip vortices. Further aft, one can also see the trailing edge vortex, 

whose ends tend to merge with the DSV and the tip vortices. At this stage, the 

trailing edge vortex is of comparable size with the DSV. Figure 4.8b, shows the 

same time instance from a different viewing angle, in order to show the merging of 
the DSV with the tip vortices, as well as the backwards tilted arch-like shape of the 

DSV resembling ihat of an inclined Q. One can see that the streamlines closer to the 

surface of the wing have the same pattern as the smoke streaks of the visualisation. 
This points to the fact that that the DSV impinges on the surface of the wing at 

a distance of a chord length inboards from the tips in the spanwise direction, and 

at half a chord's length in the chordwise direction. The trailing edge vortex can no 
longer be seen, pushed by a continuously growing in size DSV, which is constantly 
fed with momentum by the free stream and the wing motion. 
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Figure 4.8: Smoke visualisation by Moir and Coton [421 (left) and CFD predictions (right) 

for the short aspect ratio wing of case 3 of Table 4.1. Ramping motion between 0' and 
40', Re=13,000, M=0.1, a+=0.16. (a) Plan view and (b) view from the leading edge of 

the DS vortex and the trailing edge vortices at an incidence angle of 30'. 

65 

4.3. THE LOW RE REGIME VALIDATION CASES 



CHAPTER 4. CFD VALIDATION 66 

4.4 Prediction of the Flow Field around an Os- 

cillating Aerofbil: Comparison Against PIV 

DATA 

Flow field data are very rare for DS cases. The PIV data presented here, were 
kindly provided by P. Wernert of DLR. The next stage of the validation work is to 

compute the 2D velocity field during dynamic stall and compaxe against tunnel mea- 

surements. This is essential since in the following paragraphs the flow configuration 
during 3D DS is to be analysed. Therefore, confidence must be established on the 

accuracy of the employed CFD method and turbulence models. Furthermore, suc- 

cessful comparisons in this regime will support the argument that in relatively fast 

wing motions, turbulence modelling has a secondary effect. It should be noted that 

2D simulations tend to be more sensitive to the influence of turbulent structures 

since there is no mechanism to aid dissipation in the third dimension. Although 

every effort was made to find velocity field measurements for CFD validation in the 

literature, the case by Wernert et a]. [38] was the only finding. Figure 4.9 shows the 

streamlines generated by the experimental measurements and the CFD simulations 

and Figure 4.10 compares the flowfield measurements of Wernert et a]. [381 with 
the present CFD results. Three angles of attack were selected during the oscillation 

cycle. The CFD calculations were made at the same conditions as the experiment, 

with a sinusoidal pitch of the form: a(t) = 15' - 10'cos(kt) at a reduced pitch rate 

of k=0.15, a Re of 3.73 X 105 and the Mach number set to M=0.1. The com- 

parison between CFD and experiments is remarkably good, with the DSV predicted 

at almost the same position as in the measurements (Figure 4.9). The evolution 

of DS is similar to that described by previous authors [57]. A trailing edge vortex 

appears at high incidence angles and below the DSV a system of two secondary 

vortices is formed. Despite the lack of measurements of the surface pressure, the 
PIV study of Wernert et al. [38] provides the rare opportunity for comparing the 

computed velocity field against quantitative measurements. In this work, velocity 

profiles were extracted at three chordwise stations corresponding to x1c = 0.25) 0.5 

and 0.75. With the exception of the work reported by Barakos and Drikakis in [46] 

this is the only other comparison of velocity profiles during DS appearing in the lit- 

erature. As shown in Figure 4.10 the comparison between experiments and CFD is 

remarkablY good at the lowest incidence angle (Figure 4.10a) and remains favourable 
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even at higher incidence angle (Figure 4.10c). The experimentalists [38], have re- 

ported that at the angles of 23' and 24" the flowfield was no longer reproducible 
during the experiments, which explains the discrepancies observed. The agreement 
is better closer to the wall while a constant shift appears towards the outter part 

of the boundary layer. The shape of the profile is however well predicted. Further 

comparisons of the turbulent flow quantities in this unsteady flow are not possible 
due to the lack of near-wall resolution of the PIV measurements. As can be seen in 

Figure 4.10b, the effect of the spatial and temporal results is strong. Three plots 

are shown corresponding to the coarse grid with coarse time (cc), fine grid with fine 

time (ff) and fine grid with coarse time (fc). The details of the grids are given in 

Table 4.2. Grids 3a and 3b where used for the prescribed cases and the final results 

where obtained on grid 3b. The coarse time discretisation corresponds to 80 time 

steps per cycle whereas the fine time discretisation corresponds to 200 time steps 

per cycle. The resolution even of the coarse time step corresponds to 3 unsteady 

calculations per degree of incidence. 
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(a) AoA=22 deg upstroke 

(b) AoA=23 deg upstroke 

(c) AoA=24 deg upstroke 

Figure 4.9: Comparison between experiments (left) by Wernert et a]. [38] and CFD (right): 

The streamlines have been superimposed on colour maps of velocity magnitude. The 

experimental values are based on PIV data. (a(t) = 15' - IO'cos(kt), k=0.15, Re 

3.73 x 105, M=0.1, xlc,,, t = 0.25). 
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4.5 High Re regime validation cases 
In realistic rotor motions, the effective Re is of the order of few millions. The 

remaining validation cases involve experiments performed n the Re range of 106 
-2x 

106 

This section contains the compaxisons between CFD simulations and the exper- 
iments by: 

(A) The ELDV measurements by Berton et al. [45]. 

(B) The surface pressure measurements of Coton and Galbraith [44]. 

(C) The surface pressure measurements of Piziali [22]. 

4.5.1 The ELDV measurements by Berton et al. 

The DS of an oscillating, tapered, low aspect ratio wing has been studied by Berton 

et al. [45,46). This is a very interesting case for two reasons: i) velocity data have 

been obtained at various phase angles during the oscillation and at several spanwise 

and chordwise locations and ii) the wing planform represents an idealisation of an 

active control surface similar to the ones encountered in modern super-maneuverable 

aircraft. Prof. D Favier and Dr A. Berton from LABM kindly provided us with the 

experimental data presented here. The experiments [45] were conducted in the S1L 

high subsonic wind tunnel of the Aerodynamics Laboratory of Marseilles using a 

novel Embedded Laser Doppler Velocimetry (ELDV) technique. According to this 

method the laser probe is mounted on the same circular rotating disc which also 

supports the wing [45,46]. The shape and dimensions of this planform can be seen 
in Figure 4.3(b). The employed wing had a root chord length of 0.24m and was 

mounted in the axisymmetric wind tunnel octagonal cross section of width equal to 

3m. For the cases selected here the freestrearn velocity was 62.5m/s. Experimental 

results [46] are available for oscillatory motion of the wing for several mean angles, 

amplitudes of oscillation between 3' and 6" and reduced frequencies in the range 

of 0.02 to 0.1. Two cases were computed both having a mean angle a,, = 18' and 

amplitude Aa = 6', while the reduced frequencies considered were k=0.048 and 
k=0.06. Comparisons of u-velocity profiles at four different phase angles during the 

oscillation cycle can be seen in Figures 4.11-4.13 for k=0.048 and in Figures 4.14- 

4.16 for k=0.06 respectively. Overall, CFD was found to be in excellent agreement 

with the experimental data. In each of these figures, one can see an embedded plot 
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of the cross spanwise section where the probing station is also shown. The chordwise 
location of the probe, streamlines, as well as the pressure distribution are presented 

at the corresponding phase angle. For each of the two reduced frequencies selected 
for this work, velocity profiles were extracted at three stations (x1c = 0.4, z1c = 0.5), 

(x1c = 0.6, z1c = 0.5) and (x1c = 0.4, z1c = 0.7) for four phase angles (0) of 0, 

90,180 and 270 degrees. The velocity profiles at phase angles of 0 and 270 degrees 

reveal a fully attached flow at all spanwise and chordwise stations. In contrast, the 

velocity profiles at 90 and 180 degrees show massive recirculation of the flow. This 

can also be seen from the embedded plots at Figures 4.11 to 4.16. The CFD solution 

predicted the onset and the extend of the separation very well. It is only for the 

inboard station at x1c = 0.6 that the CFD slightly under-predicts the separation at 

a phase angle of 180 degrees. It is also interesting that the CFD results predict very 

well the velocity profiles at the outboaxd station of z1c = 0.7 for all phase angles 

and employed reduced frequencies. As will be discussed in subsequent paragraphs, 
the flow near the tip is highly 3-D. In this region, the DS vortex appears to interact 

with the tip vortex resulting in a very complex flow field. For this case the CPU 

time was found to be higher apparently due to the extra resolution required near 

solid boundaries and the overhead of the employed turbulence model. 

4.5. HIGH RE REGIME VALIDATION CASES 



CHAPTER 4. CFD VALIDATION 

0 

025 

0.2 

015 

0.1 

0 DS 

-0 

045 

04 

035 

03 

025 

9.2 

015 

0.1 

CBS 

0 

005 

0, 

" i: \\ --e -------- 

tilum 

0=00, a= 120up 

Expoliment 
CFD 

0=2700, a= 60 

0 ý45 

04 

035 

0.3 

025 

;a0.2 

o 15 1 

0.1 F 

72 

a 

0 Experlmerft 
GFO 

0. 

uluoo 

0=90', a= 18' 

a 

04r 

C 35 7 
-- 

0.3 7 

0 25 

0.2 

c 15[ 

0.1 

C DS 
Experkmnt 
CFD 

-0 
D5 

O= 180', a= 12'down 

Figure 4.11: Comparison between CFD and ELDV measurements by Berton et a]. [45] 
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Figure 4.12: Comparison between CFD and ELDV measurements by Berton et al. [451 

for the u-velocity profiles during DS. Oscillatory motion of a tapered wing, a(t) = 120 + 

60sin(kt), k=0.048, Re = 106, M=0.2. The line on the inserted plot corresponds to 

the direction of the ELDV probing, superimposed on pressure contours. The profiles were 

extracted at a spanwise station of z/c = 0.5 and chordwise station of x1c = 0.6 (see Figure 

4.3b). 
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Figure 4.13: Comparison between CFD and ELDV measurements by Berton et al. [451 

for the u-velocity profiles during DS. Oscillatory motion of a tapered wing, a(t) = 12' + 

60sin(kt), k=0.048, Re = 106, M=0.2. The line on the inserted plot corresponds to 

the direction of the ELDV probing, superimposed on pressure contours. The profiles were 

extracted at a spanwise station of z1c = 0.7 and chordwise station of x1c = 0.4 (see Figure 

4.3b). 
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Figure 4.14: Comparison between CFD and ELDV measurements by Berton et al. [45] 

for the u-velocity profiles during DS. Oscillatory motion of a tapered wing, a(t) = 12' + 

6'sin(kt), k=0.06, Re = 106, M=0.2. The line on the inserted plot corresponds to 

the direction of the ELDV probing, superimposed on pressure contours. The profiles were 

extracted at a spanwise station of z1c = 0.5 and chordwise station of x1c = 0.4 (see Figure 

4.3b). 
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Figure 4.15: Comparison between CFD and ELDV measurements by Berton et al. [451 

for the u-velocity profiles during DS. Oscillatory motion of a tapered wing, a(t) = 120 + 

60sin(kt), k=0.06, Re = 106, M=0.2. The line on the inserted plot corresponds to 

the direction of the ELDV probing, superimposed on pressure contours. The profiles were 

extracted at a spanwise station of z1c = 0.5 and chordwise station of x1c = 0.6 (see Figure 

4.3b). 
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Figure 4.16: Comparison between CFD and ELDV measurements by Berton et al. [45] 

for the u-velocity profiles during DS. Oscillatory motion of a tapered wing, a(t) = 12' + 

60sin(kt), k=0.06, Re = 106, M=0.2. The line on the inserted plot corresponds to 

the direction of the ELDV probing, superimposed on pressure contours. The profiles were 

extracted at a spanwise station of z1c = 0.7 and chordwise station of x1c = 0.4 (see Figure 

4.3b). 
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4.5.2 The pressure measurements of Coton and Galbraith 

The tests described here [44], were carried out in the 'Handley Page' wind tunnel of 

the University of Glasgow which is of low speed closed-return type. The planform 

of the wing model used for this experiment is shown in Figure 4.3(a). The model 
had a chord length of 0.42m, a span of 1.26m and was mounted horizontally in the 

tunnel's octagonal cross section of 2.13m x 1.61m. In contrast to other experimental 
investigation where half-span models are used, Coton and Galbraith [44] used a full- 

span model with rounded tips. Their model was instrumented with a series of 180 

pressure taps grouped in six spanwise locations. In addition, a set of 12 taps was 
located closer to the tip region. All signals were fed to a data-logging system, at 

sampling frequencies ranging from 218 Hz to 50,000 Hz, depending on the speed of 

the wing motion of each case. The experimental data used for this work axe averaged 
from a number of consecutive cycles. 

For the CFD investigation both ramping and oscillatory cases have been selected 
from the extensive database provided by Prof. F. Coton and Prof. R. A. McD. 

Galbraith [441 from the Univesity of Glasgow. Figure 4.17 presents the time history 

of the geometric incidence as recorded during the experiment. As can be seen, the 

idealisation of the ramping profile a=a,, + & usually employed in CFD calculations 
is far from satisfactory. In the present work, the time history of the incidence had 

to be curve-fitted and then sampled according to the desired timestep for each 

calculation. Several ramping cases have computed and results axe presented here for 

two cases. Both cases were computed at the same Reynolds and Mach numbers of 
1.5 x 106 and 0.16 respectively. The reduced pitch rates, however, were a+ = 0.011 

and a+ = 0.022. For both cases the incidence varied between -5 and 39 degrees. 

Figure 4.17(b) suggests that a similar treatment is required for the oscillatory 

cases. The ideal case a=a,, + alsin(kt) had to be generalised so that the imposed 

wing actuation corresponds the experimental one. It was found that about ten 

harmonics were necessary and the resulting actuation was described by 

i=10 

a=a,, /2 + aisin(ikt) +, 3icos(ikt). 

Table 4.3 presents the bias a,, as well as the amplitudes (ai, bi) of the in- and 

out- phase components used for the CFD simulations. 
To allow comparisons with the ramping cases the Reynolds and Mach numbers 

were kept the same. Again, two reduced frequencies were used as fundamental 
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harmonics of the oscillation, namely, k=0.092 and k=0.17. Comparisons between 

experiments and CFD results for the surface pressure coefficient are presented in 

Figure 4.18 for the ramping and Figure 4.20 for the oscillatory case. 
Figure 4.18 presents the comparison at two incidence angles. One cannot fail to 

notice that at low incidence (20' in Figure 4.18a) the experiments and CFD agree 

quite well. The shape of the Cp contours corresponds to attached flow and the suc- 
tion peak near the leading edge as well as the pressure recovery along the chordwise 
direction are adequately captured. Since the wing is loaded, the Cp contours near 
the tip are distorted due to the presence of the tip vortex. Unfortunately, the number 

of pressure taps used for the experiment does not allow for detailed compaxison in 

the near tip region. A dashed line on the Cp plot of the CFD solution indicates the 

area covered by the pressure taps. A grid is shown on the experimental plot which 
indicates the location of the pressure taps on the wind tunnel model. At higher 

incidence angles, the agreement between experiments and CFD was less favourable. 

A correction of the incidence angle of about 50 was necessary in order to have a 

similar loading of the wing. As can be seen in Figure 4.18b both experiments and 
CFD indicate the presence of a massive vortical structure over the wing. This can 
be seen near the centre of the plotat a spanwise location z1c of 0.75 where a local 

suction peak is present. This peak is due to the DS vortex impinging on the wing 

surface. At this high incidence, a strong tip vortex dominates the neax tip region 

of the wing. This is now captured by both experiments and CFD and appears as 

a secondary suction peak at z1c of about 1.4. This secondary peak corresponds to 
Cp values of about -3, which is much less than the peak due to the DS vortex which 

reaches Cp values of -1.2. The experimentalists reported an upwash of 0.5 deg in 

the tunnel's test section, possibly attributed to the supporting struts of the wing as 

well as the tunnel wall effects. For the case shown in Figure 4.18b, a correction of 
4' was necessary. This also points out to deficiencies in the calculation since it is 

known from 2-D cases [57] that slower actuations of the wing are harder to simulate 
than rapid ones. This is due to the fact that viscous flow effects are more dominant 

for low ramp rates, especially as static stall conditions are approached. 
Figure 4.19 compares the time history of the surface pressure coefficient at 8 

locations on the wing. As can be seen, the initial part of the curves is close for 

all stations but discrepancies occur at higher incidence angles. For all cases the 

magnitude of Cp is predicted well and the only necessary correction is on the phasing. 
Similar remarks can be made for the oscillatory cases for which CFD results are 
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presented in Figure 4.20. Comparisons are shown only for a phase angle of 90' which 

corresponds to the highest incidence encountered during the oscillation. Again the 

suction peaks induced by the DS and the tip vortices are predicted at almost the 

same magnitude provided a 4' correction of the incidence was applied. 
A separate set of calculations has been conducted for the swept tip planform 

which was tested at the same conditions as the square wing. Results for this case are 

shown in Figure 4.21 again at two incidence angles. For this case, a similax number 

of pressure taps was used and the CFD solution was supplied at the locations of 
these taps. Since the pressure tap locations where not spread out in a structured 

manner, a Delaunay triangulation was used to construct a sampling mesh. The data 

were subsequently used to reconstruct the pressure field in exactly the same way as 
the experiments. Again a correction was need for the wing loadings to match. This 

correction was constant for all the cases considered and the possible sources for this 

discrepancy are the tunnel wall effects, the experimental support mechanisms which 

were not modelled in the CFD runs and/or the turbulence modelling. Interestingly, 

although there was a phase difference between experiments and CFD, the actual Cp 

magnitude compared well. 

0.092 aý = 0.169892 

i12345 

ai -0.0717488 -0.00809223 
0.157438 -0.00194330 

67 

-0.00416931 
0.00219548 

8 

-0.00230814 
0.000897672 

9 

0.001161 

-0.00197636 
10 

ai -1.61438E-05 0.000539150 3.0956E-05 -0.000122833 -0.000159201 
A 0.000977314 0.000387543 -0.000113408 -0.00037934 -6.75040E-05 

k=0.17 0.155459 

2345 

ai -0.101697 0.0161334 0.00914202 -0.00169119 -0.000486481 
A 0.125778 -0.0129037 -0.000836860 -0.00164984 -0.00231397 
i6789 10 

0.000773430 -0.000166552 0.000357502 1.5609E-05 6.5348E-05 

0.000218741 -0.000135753 -0.000478472 -1.08930E-05 -0.000338885 

Table 4.3: Fourier expansion coefficients for the two oscillating cases by Coton & Gal- 

braith [44]. 
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Figure 4.18: Comparison between experimental (left) and CFD (right) surface pressure 
distributions for the case 4 of Table 4.1 [44]. Ramping wing motion between -5' and 39', 

(t+ = 0.022, Re = 1.5 x 106, M=0.16. (a) a= 20' and (b) a= 37' (CFD), a= 33' 
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Figure 4.20: Comparison between experimental (left) and CFD (right) surface pressure 
distributions for the case 4 of Table 4.1 [44]. Oscillating wing motion between 15' and 
35', Re = 1.5 x 106, M=0.16. (a) k=0.17, a= 21' (CFD), a= 21' (Experiment) and 
(b) a= 35' (CFD), a= 31' (Experiment). 
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Figure 4.21: Comparison between experimental (left) and CFD (right) surface pressure 
distribution for the case 5 of Table 4.1 [44] for the wing with swept back tips. Oscillating 

wing motion between 15' and 35', Re = 1.5 x 10', M 0.16. (a) k=0.17, a= 21' 

(CFD), a= 25' (Experiment) and (b) a= 39' (CFD), a 35' (Experiment). 
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4.5.3 The experiments by Piziali 

The experiments by Piziali have been used by several authors in their studies of 2D 

DS. Regardless of their popularity, Ekaterinaris [541 was the only author who at- 

tempi ed the calculation of the 3D case. The case considered by Ekaterinaris has also 

been used in this work and is an oscillatory motion with a mean angle of 11', ampli- 

tudc of 4.2" and reduced pitch rate k=0.096. For his 3D experiments, Piziali [22] 

used ii siniill number of spanwise stations, equipped with pressure transducers and 

reduced the pressure measurements at each spanwise station to sectional coefficients 

oflift, inoinent and drag. The data gathered during numerous oscillations were aver- 

aged in tinie. Figure, 4.22 presents the comparison between CFD and Piziali's data. 

For this case, the stall angle is slightly exceeded and the inboard part of the wing 

experiences mild dynamic stall. As can been seen from the lift loop at the inboard 

win,,, sections, the cl and cj of the upstroke part of the motion is higher than that of 

the downstroke motion. At the same time, the hysteresis of the Cd coefficient is much 

larger than that of the cl. As the tip is approached, the hysteresis loops of both the 

cj mid (-,, coefficients, become much less narrow, indicating the influence of the tip 

vortex which dominates in the near the tip region and whose characteristics depend 

prinim-ily on the AoA of the wing. Towards the tip, the flow is more attached and 

this is shown by the much thiner hysteresis loops. The agreement between CFD and 

experiments remains favourable up to the last station with a mild shift of the CFD 

results towards lower lift. It has to be noted that near the tip the wing model had a 

support structure which was not included in the CFD model and might had an effect 

to the quality of the near the tip measurements. Closer exan-iination of the outboard 

loops indicates that the shift between the CFD results and the experiments is of the 

order of' 1 degree which could also be attributed to wing flex during the experiment. 
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Figure 4.22: Comparison between experimental and CFD hysteresis loops for the sectional 

loads at three stations (a) z/s=0.47, (b) z/s=0.966 and (c) z/s=0.995. The conditions 

correspond to run r0329 of Piziali [221. Oscillating wing motion between 7' and 15', 

Re = 2.0 X 106, M=0.3. 
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4.6 Summary 

88 

Detailed validation of a CFD method has been undertaken for 3D dynamic stall 

cases. The 3D structure of the DSV and the time evolution of the dynamic stall 

phenomenon were revealed and found to agree well with the only flow visualisation 

study available. This is the first time in the literature that extensive computations 
have been undertaken for this very complex unsteady flow phenomenon. The first 

encouraging result is that CFD was able to match the available experimental data 

with good accuracy, and moderate computational cost. For the laminar test cases, 

all flow structures identified with the smoke visualisation were present in the CFD 

solutions and the flow topology was found to be predicted with remarkable precision. 
The comparisons with the experiments performed by Schreck and Helin [41], revealed 
the importance of the accurate modelling of the inboard boundary conditions and 

provided confidence in the modelling of the highly vortical tip region where the 

DSV-TV interaction dominates the flow. The tapered wing case of the Laboratory 

of Marseilles [45) was predicted extremely well given the fact that velocity profiles 

were compared at vaxious 0 angles during the oscillation of the wing and at various 

spanwise locations. The ramping cases by Coton and Galbraith [44] were predicted 

reasonably well with some discrepancies in the stall angle attributed to differences 

between the conditions of the experimental investigation ( for example, the CFD 

computations have been performed with free-stream conditions at the far field of 
the computational domain while the real wing model was confined by both tunnel 

walls and supports) and the present simulation results. 
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Chapter 5 

Flow Topology During DS 

5.1 Introduction 

Having established confidence on the CFD method, further computations were at- 

tempted. The questions addressed in this chapter are: 

e What is the overall topology of the DSV? 

- What is the effect of inboard conditions to the topology of the DSV ? 

- What is the topology of the DSV/TV interaction? 

- What is the effect of Re number to the DSV and DSV/TV interaction? 

- What is the effect of M number to the DSV and DSV/TV interaction? 

* What is the effect of planform shape to DS? 

e What is the effect of yaw to DS? 

* What is the effect of rotation to DS? 

The questions raised above will be, where appropriate, answered in a qualitative 

manner, since appropriate experimental data do not currently exist. Therefore, flow 

visualisation will play a primary role in this process. DS produces impulsive, highly 

three-dimensional vortex dominated flows. It is clear, that in order to be able to 
draw meaningful conclusions on issues like the shape, trajectory and interactions 

of these vortical structures, we need to trust our visualisation methods. When 

an experimentalist releases dye in a water tunnel or smoke in a wind tunnel, an 
impression of the flowfield is generated by the motion of coloured particles in a 
transparent background. A similar 'particle tracking' technique exists in CFD, where 

89 
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the test fluid particles follow the numerical solution of the vector field through 

successive unsteady solutions (also known as Streaklines). However, in the case of 
3D flows this method can be computationally very expensive for two reasons: (a) 

for every CFD run a large number of unsteady solutions need to be stored to ensure 

smooth and accurate tracking leading to excessive storage requirements and (b) 

the actual process of tracking is numerically intensive, requiring machines with fast 

CPUs and high RAMs. An alternative and fax more convenient way of re-creating the 

flowfield from the numerical solution is to use instantaneous streamlines. Streamlines 

are the locii of the tangents of the velocity vectors at a given solution timestep. 

Streamlines and streaklines are identical in the case of steady flows, however, in 

unsteady flows the flowfields they re-create can be considerably different. In the 

case of flows involving DS, the degree of similarity between the 'true' streaklines 

and the 'virtual' streamlines depends on two parameters: (a) the Re and (b) the 
frequency of the wing's motion. The lower the Re is, the longer it will take to the 

fluid particles to travel from the leading edge to the trailing edge. Therefore, the 

higher the chance for the instantaneous flowfield to change during this time interval. 

Also, the higher the frequency of the motion is, the higher the unsteadiness of the 
flowfield will be, thus causing even more deviation to the flow pattern based on 

streamlines from the actual flow pattern based on streaklines. Figures 5.1(a and b) 

show the two flowfields for a= 60' (case 1 of Table 5.1), generated by streaklines 

and streamlines respectively. The size, shape and positioning of the DSV appears 
to be identical in both cases. Since this motion represents the lower Re and higher 

k considered in this study and streamlines appear to be a good approximation of 
the streaklines, it is expected that flowfields based on streamlines can adequately 

represent the flowfields for all other cases in the present study. 

5.1. INTRODUCTION 
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(a) 

(b) 

Figure 5.1: DSV shown at 60' with (a) streaklines and (b) streamlines. Case 1 from 
Table 5.1. a' = 0.2. 
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5.2 Shape of the DSV and the DSV-TV Interac- 

tion 

Figure 5.2 shows the vortex cores (left) and the streamlines (right) from the CFD 

calculations for case 3 of Table 5.1. The phenomenon starts inboards with the 

formation of a vortex at the leading edge which is subsequently detached from the 

wing and grows in size. The growth reduces as one moves towards the tip of the wing 
(Figure 5.2a) and the core of the vortex bends upstream towards the leading edge 

of the wing tip (Figure 5.2b). Further on during the cycle, one cannot fail to notice 
that on the mid-span of the wing (Figure 5.2c) the flow evolves in a similar manner 
to the 2D case [20]. However, as the DSV is formed, the core of the vortex stays 
bound to the LE region of the wing-tip while the main part of the DSV is convected 
downstream. As the DSV grows in size and its core moves above the surface of the 

wing, however, near the wing-tip the vortex is still bound. The result of the DSV 

pinning is to cause buckling leading to the Q shape described in [39] and termed in 

[40]. The phenomenon becomes more and more interesting as the tip vortex grows 

with increasing a, leading to a IM2 vortex configuration which is a combination of 

the two well-established vortical systems: the tip-vortex which appears for all wing 

tips and the DSV which is unique to unsteady flows. The outboard part of the 

wing is exposed to the downwash created by the tip, and therefore is subjected to 

lower AoA than the rest of the wing span. The area above the wing's surface is 

also exposed to the inboards circulation of the TV. The effect of the downwash is 

to reduce the size of the DSV near the tip and the combined effect of the inboards 

directed blow of the TV and the reduced size of the DSV near the tip is to create 

the characteristic Q arching of the DSV. The flow near the LE of the wing tip 

is complex and the streamtraces originating just upstream of the tip are directed 

either towards the tip-vortex or the dynamic stall vortex. Apart from the main 

vortices all secondary vortices appearing during 2D dynamic stall are present in the 

3D case. Interestingly, the secondary vortices formed below the DSV also appear 
to take the same Q shape and bend at the LE of the wing tip, however, these are 
terminated on the wing's surface. It therefore appears, that the LE of the tip is a 

singularity point where the R-Q system stays attached on the solid surface. At this 

point the free stream can feed both vortices with momentum. Thinking in terms of 
Helmholtz's vortex theorems, this flow configuration is very interesting. The DSV 
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and the secondary vortices cannot end up in the freestream, but are forced to either 
join the tip vortex or end on a solid surface. Figures 5.3a-f show 2D spanwise slices 

of streamlines superimposed on contours of w-velocity for the same case as in Figure 

5.1. Figure 5.3a corresponds to a location very close to the tip (zls = 1.11) and 
Figure 5.3f corresponds to a location very close to the wing's half-span (z/5 = 0.03). 

The wing in this case has an AR =3 and the convention used is that z15 =0 

corresponds to the mid-span section, while z1s = 1.5 corresponds to the edge of the 

tip. The boundary between the green-blue and green-yellow regions is where the 

w-velocity changes sign. Negative w corresponds to crossflow directed inboards and 

positive w corresponds to crossflow directed outboards. Figure 5.3a shows a section 

of the DSV close to the LE. The flow across most of the z1c = 2.22 plane is positive 

with the exception of the blue-shaded area which dominates almost half a chord's 
length above the wing's surface. Interestingly enough, underneath the negative 

crossflow exists a positive, occupying a very thin region just over the surface of the 

wing. However, the crossflow through the section of the DSV which can be seen 

at approximately x= c/4, is entirely negative. Further inboards, in Figure 5.3b, 

the DSV has moved downstream and so has the area of negative w-velocity. The 

two counter-rotating LEV's occupy entirely a positive crossflow region. However, 

Figures 5.3c-f, suggest that increasingly, a part of the DSV section enters a positive 

crossflow area, thus inducing shear forces within its core. These shear forces could 
be partly responsible for the complex axching shape of the DSV shown in Figure 

5.1. 
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13 deg 

(b) 20 deg 

25 deg 

(d) 28 deg 

Figure 5.2: Vortex cores (left) and strearntraces (right) for case 2 of Table 5.1. (a) 13', 
(b) 200, (c) 25' and (d) 28'. 
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Figure 5-3: 2D spanwise slices showing streamlines superimposed on contours of w- 

velocity for case 1 of Table 5.1. w-velocity changes sign across the border between green- 
blue and green-yellow contours. (a) z1c = 1.11, (b) z1c = 0.66, (c) z1c = 0.57, (d) 

z1c = 0.48, (e) z/c = 0.21 and (f) z1c = 0.03. 
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5.3 Effect of the Inboard Boundary Conditions to 

the Shape of the DSV 

Figures 5.4a and b present the configuration of the II -Q vortex system for the 

cases of the inboard vertical plane modelled as a symmetry plane (Figure 5.4a) and 

as a viscous wall (Figure 5.4b). One can see that the viscous wall has the effect 

of bending the Q vortex towards the junction of the wing and the plate, giving 
it a very high curvature. Figures 5.5a-h are snapshots of a ramp-up motion (case 

/, -\.. 4 

-,! 
Ll 

(a) (b) 

Figure 5.4: (a) The 'Q' vortex cores at a= 44' for (a) simulation with a symmetry plane 

condition at the root (case 2 of Table 5.1) and (b) simulation with a viscous wall condition 

at the inid-span plane (case 3 of Table 5.1). 

3 of Table 5.1) where the inboards vertical plane has been modelled as a viscous 

wall. Figure 5.5a corresponds to 26.5', Figure 5.5h corresponds to 37' and the AoA 

between successive snapshots is approximately 1.5'. In Figure 5.5, the DSV has 

already formed and has detached from the LE of wing. Its inboard end is attached 

to the LE close to the viscous wall. The DSV then progressively moves up while 
its inboard end moves towards the TE (Figures 5.5b and 5.5c). In Figure 5.5d the 

inboard end of the DSV has reached the point on the viscous wall where x1c = 0.25 

which is the PA of the motion. It is remarkable that while the DSV further grows 

and buckles upwards, its inboard end stays close to the Pitch Axis (PA) for the 

part of the motion corresponding from 29.5' to 35'. Shortly after that, it detaches 

from the PA location of the viscous wall and continues in a backwards and upwards 
trajectory. Modelling the mid-span as a viscous wall, induces a vortical structure 

whose centre is the trace of the Pitch Axis (PA) onto the mid-span plane, and 

angular velocity, the angular velocity of the wing's rotation. However, during the 

5.3. EFFECT OF THE INBOARD BOUNDARY CONDITIONS TO THE 
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early stages of the formation of the DSV, the DSV and this 'viscous wall vortex' 

are of comparable strength and during the DSV's downstream motion they tend 

to merge. The consequence of this interaction is the tendency of the inboard part 

of the DSV to stick to the PA location. In the case of the mid-span plane being 

modelled as a symmetry plane, no such relation seems to exist between the PA and 

the. appearing location of the DSV. 

5.3. EFFECT OF THE INBOARD BOUNDARY CONDITIONS TO THE 
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Figure 5.5: (a) The 'Q' vortex cores for 8 different angles of attack (case 3 of Table 5.1). 

The root plane is modelled with non-slip conditions. (a) 26.5', (b) 28', (c) 29.5', (d) 31', 

(e) 32.5', (f) 34', (g) 35.5' and (h) 37'. 
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5.4 The Effect of planform shape the DSV 

Figiire 5.6 together with Figure 5.1 and Figure 5.4 suminarise the streamlines and 

the vortex cores detected near the stall angle for a variety of planforms across the 

Rc range. In all cases shown, the inboard portion of the DS vortex appears to be 

parallel to the trailing edge, while its outboard portion approaches the leading edge 

part of the tip. However, one distinctive difference has been observed for the low 

aspect ratio wings shown in Figures 5.6(a and b). For these cases, the DS vortex 

was terminated inboards of the wing tip in the region where it impinged on the 

wing surfitce. This was not the case for the high aspect ratio and the tapered wings 
(Figures 5.6c and 5.6d) where the DS vortex appears to be connected to the tip 

vortex near the leading edge of the wing. Therefore, in all cases studied with low Re 

the DSV connected to the TV irrespectively of the AR (Figures 5.1,5.4 and 5.6c). 

However, in the cases studied with high Re (Figures 5.6(a, b and d), the DSV only 

connected to the TV in the case of the high AR planform shown in Figure 5.6d. This 

point,,,, out that the dynamics of the DSV-TV connection are a possible combination 

of two parameters, the Reynolds number and the AR. Thinking along the line of 

the vortex theorems of Helmholtz, both configurations seem valid, as vortices either 

extend to infinity, merge with other vortices or end on solid surfaces. Also, the 

pressure contours shown for all cases in Figure 5.6 are very similar pointing to the 

fact that the How in the near tip region is dominated by the TV. In the case of 

the, swept back wing shown on Figure 5.6b, the TV appears stronger and is formed 

somehow above the wing and inboards in comparison to the straight tip of Figure 

5.6a. This is all indication of Delta-wing vortex formation. 

5.4. THE EFFECT OF PLANFORM SHAPE THE DSV 
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Figure 5.6: Streamlines (left) and vortex cores (right) near the stall angle. (a) Low aspect 

ratio wing with rounded tips (case 5 of Table 5.1), (b) swept back tip (case 7 of Table 

5.1), (c) large aspect ratio wing with 10' negative twist and flat tip (case 6 of Table 5.1), 

and (d) tapered wing with flat tip (case 4 of Table 5.1). 
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5.5 Effect of Re on the DSV-TV interaction 

In order to ftirther clarify the arguments made in the previous section, a parametric 

study was performed for the low AR wing of case 5 of Table 5.1, reducing the 

ReYnolds number while preserving all other flow and geometrical parameters. This 

parametric study was done in five steps, starting from the original Re = 1.511 down 

to Rc = 94K, reducing the Re number by half each time. Figure 5.7 summarises 

the findings of this parametric study and shows the configurations of the vortex 

cores for an AoA of 30'. As shown in Figure 5.7a, the DSV attaches to the wing at 

approximately a chord length away form the tip. However, as the Re is successively 

reduced, the point where the DSV impinges on the wing moves closer to the tip 

(Figures 5.7b-d) and finally, at Re = 94k it is shown to connect to the TV at the 

LE part of the tip. Although, this parametric study cuts through the transitional 

regime, it is expected that due to the highly impulsive nature of the flow, the 

turbulence modelling is of secondary importance. The quality of the comparisons 

shown for the PIV case of Wernert [38] in the previous chapter, supports this view. 

The existence of the tip alters the flow in the near the tip region by inducing a 

negative w- component on the suction side of the wing due to the direction of 

rotation of the tip vortex. The strength of the tip vortex is proportional to the AoA 

of the wing but its size is less dependent on the Re as the left column of Figure 

5.9 suggests. On the other hand, the relative size of the DSV depends oil the Re, 

as shown in Figure 5.9 (right). The lower the Re is, the longer it takes for fluid 

particles to travel over the suction side of the wing and the more they are energized 
bY its motion. Therefore, the lower the Re, the higher the relative strength of the 

DSV is in relation to the TV. The strong crossflow generated by the tip, forces the 

DSV to bend towards the wing surface in all cases. Figure 5.8 shows the w-velocity 

magnitude at the same conditions. The high Re case of 1.5M produces an almost 

symmetric negative velocity distribution around the location of the tip showing the 

dominance of the tip vortex, while as the Reynolds number decreases and the TV 

beconies less potent, the DSV grows larger and approaches the tip region causing 

the w-velocity distribution to assume positive values. 
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Figure 5.7: Plan view of the wing of case 5 of Table 5.1, showing the locations of the DSV 

for four different Reynolds numbers, at an AoA of 30'. (a) Re = 1.5M, (b) Re = 750k, 
(c) Re ý 375K, (d) Re = 188K, (e) Re = 94K. 
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0.15 

Re=1.5M 
0.1 

---- Re=0.75M 
-------- Re=0.375M 
........ . ... - Re=0.188M 
---- Re=0.094M 

0 
> 

-0.05 - 4e 

Root 
1 

Tip 
2 

z- distance 

Figure 5.8: w-velocities vs distance from wing root at the chordwise section x1c ý 0.25 

and at y1c = 0.4 of the wing of case 5 of Table 5.1 for five different Re at an AoA of 30'. 

Positive w is directed outboards. 
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Figure 5.9: Chordwise section at half-span (left) and spanwise section close to the TE 
(right) of the wing of case 5 of Table 5.1, showing the locations and sizes of the DSV (left) 

and TV (right) for five different Re, at an AoA of 30'. (a) Re = 1.5M, (b) Re = 750k, 
(c) Re = 375K, (d) Re = 188K, (e) Re = 94K. 
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5.6 Effect of Mach Number on the DSV-TV in- 

teraction 

Figures 5.10(a and b) show the vortex cores (left) and streamlines over absolute 

z-vorticity contour maps on the mid-span (right) for an AR =5 wing undergoing 

a sinusoidal motion (case 8 of Table 5.1). The AoA is 20' the Re is 106 and the 
M numbers are 0.25 and 0.55 for Figure 5-10a and Figure 5.10b, respectively. In 

V 

(a) 

/ 

(b) 

Figure 5.10: Vortex cores (left) and 2D slices at the wing's half span (right) corresponding 

to case 8 of Table 5.1. The AoA is 20' and the M is (a) 0.25 and (b) 0.55. 

the low M case shown in Figure 5.10a (left), the DSV terminates on the wing's 

surface approximately 1.5 chord lengths from the tip, indicating a low AR effect as 

explained in the previous section. However, in the case of the higher M case shown 
in Figure 5.10b (left), the DSV is shown to terminate at the LE part of the tip. 

Also, the right column of Figures 5.10a and 5.10b suggests that the DSV in the low 

M case attains a higher distance off the wing's surface compared to the high M 
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case. The right colunin of Figure 5.10 show higher vorticity values in the area of 

the DSV corresponding to the low Al case (Figure 5.10a) as opposed to the high AI 

case (Fic) ure 5-10b). Therefore the less compressible flow of the low Al results to a 

more energised DSV which grows larger in size, attains a higher position over the 

wing's surface, and becomes more exposed to the inboards spanwise flux generated 
by the TVs. This in turn causes the DSV to arch at a steeper angle than in the 

high M case of Figure 5.10b and detach from the tips. 

5.7 Effect of Yaw Angle on the Shape of the DSV 

A rotating blade encounters yaw angles usually in the range of - 15" to + 15'. How- 

ever, yaw changes dynamically during rotation. Firstly, in this section, the static 

effect of yaw is examined. The dynamic effect of rotation is the subject of the next 

section. 

Figures 5.11a-c show the DSV cores for three different reduced frequencies and 
two different yaw angles (case 9 of Table 5.1). All motions are sinusoidal and the 

AR = 10 wing is based on a NACA 0012 aerofoil. On the left column, the freestrearn 

is vertical to the LE of the wing and on the right column the angle between the 

freestreani and the LE is 75'. The sinusoidal motion has 10' of mean angle and 10' 

of amplitude, at Rc ý 106 and AI = 0.3. All figures correspond to the n-laxinnim 

angle during this motion of a= 20'. Figures 5.1 la-c correspond to k=0.05, k=0.1 

and A7 = 0.15 respectively. The effect of the sideslip (right column of Figure 5.11) 

is to blow the DSV away from the symmetric configuration it has in zero sideslip 

conditions (left, column of Figure 5.11). However, the main part of the DSV remains 
in all cases parallel to the wing's TE. This indicates that it is primarily the planform 

shape rather than the orientation of the freestream the defining parameter of the 

shape of the DSV- 
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Figure 5.11: Vortex cores for three different reduced frequencies and two different yaw 

angles shown at a= 20' (case 9 of Table 5.1). In the left column the freestream is parallel 

to the chord while in the right the yaw angle is 3= 15'. (a) k=0.05, (b) k=0.1 and (c) 

k=0.15. 
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5.8 Effect of Rotation to the shape of DSV 

Fig, ure 5.12 shows snapshots of the vortex cores for a rotating and pitching wing 

of AR =5 based oil a NACA 0015 aerofoil (case 10 of Table 5.1). The top right 

snapshot of Figure 5.12 corresponds to 0= 0' and a= 10', the middle corresponds 

to () = 90" and o= 20' and the bottom right corresponds to 0= 140' and a= 16.50, 

1-(, spectivel. y. Both pitching and rotational motions have the same frequency. Tile 

freestreiiin conditions are Re = 106 and M =: 0.15. The azimuth angles anti- 

ch)ckwise from top right are: 10', 20', 30', 40', 50', 60', 700,80", 850,900,950,1000, 

110", 120" iind 1400 correspondingly. No change was observed for angles greater than 

140" and therefore, they have been omitted from Figure 5.12. Ali LEV is already 
formed at, o= 100 and starts to separate at 0= 500, where a disturbance call be 

seen close to the outboard tip. The DSV then gradually lifts off the LE part of the 

wing's surface and produces an asymmetric arch clearly visible at 0= 850. The 

distorted S2 vortex then collapses and a section of it is shed downstream (0 = 900). 

This collapse occurs at the relatively low AoA of a= 200 and is due to the high 

offective ii-velocity, which in this case is I+ wr =1+3.75 = 4.75. The remaining 
DSV filanient, that has not been shed downstream then reconnects forming a full 

span vortical filament (0 > 100') and approaches the surface as the AoA reduces 
for azinuttlis 0> 90". Figures 5.13a-c show three instances of the same rotating 

case for itzimuth angles of (a) 0= 850, (b) 0 == 900 and (c) 0= 1100 where the 

vortex cores have now been seeded with streamtraces. Due to the rotational nature 

of the, motion, the outboard part of the wing is exposed to a higher wind speed 

than tile inboard. Hence, if the outboard part of the DSV is fed with momentum at 
higher rate than tile inboard, yet still both being parts of the same vortex filament, 

thei, Helmholtz's theorem would not apply to viscous flows. It would therefore 

be interesting to clarify what is the cause of the asylumetry of the DSV. Figures 

5.14a and b show the vorticity contours (left) and the streamlines (right) for two 

spanwise sections for ý6 = 80'. Although exact integration of vorticity to calculate 

the circulation of tile DSV for each of the two sections has not been performed 
(Figure 5.14 (left)), they appear similar despite the different locations and sizes of 

tile, vortex cores (Figure 5.14 (right)). Therefore, the assymetry of the DSV shown in 

Figure 5.12, could be due to the faster downstream shedding of the outboard part of 

the DSV, being subjected to higher wind velocities. Thus, in this case Helmholtz's 

theorein does not seem to be violated. 
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Figure 5.12: Vortex cores for a rotating wing (case 10 of Table 5.1). The AR of the wing 
is 5 and the tip radius is 12.5. The direction of the freestrearn is from the bottom of the 
page to the top. Azimuth angles anti-clockwise from top: 10', 200,300,400,500,600,700, 

800,85', 900,950,1000,1100,120' and 1400. 
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Figure 5.13: Vortex cores and strearntraces for a rotating wing (case 10 of Table 5.1). 

The AR of the wing is 5 and the tip radius is 12.5. Azimuth angles (a) 85', (b) 90' and 

110'. 
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Figure 5.14: Two spanwise sections for the rotating wing showing vorticity contours (left) 

and streamlines (right) (case 10 of Table 5.1). 0= 80', Re = 106 and M=0.15. (a) 

z1c ý 2.75 and (b) z1c = 3.75 while z1c =0 corresponds to the inboard tip. 
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5.9 Summary 

This chapter concentrated on the overall dynamics of the DSV and the parameters 
that influence its shape and evolution. It has been shown that the DS and the tip 

vortices are the dominant flow features. Short AR wings are more susceptible to the 

influence of the TV, since the latter influences a larger part of the wing's planform. 
The shape and dynamics of the DSV also depend on the Re and M numbers and 

to a lesser extent to the planform shape and sideslip. The Re in particulaxly seems 

to be affecting the extent DSV to the tip region. Rotation produces a distinctive 

assymetry to the formation of the DSV, apparently due to the radial dependence of 

the wind speed. In all cases, the near the tip region pressure distribution is primbxily 
influenced by the TV. 

5.9. SUMMARY 



Chapter 6 

Validation of The Neural Network 

6.1 Introduction 

The sole published work on Neural Networks (NNs) as a model of DS has been 

performed by Faller et al. [65,66]. In this chapter, firstly, the performance of the 

Feed Forward Back Propagation (FFBP) NN and Recursive NN (RNN) models 
described in chapter 3 is assessed. The data for eight ramping motions (Table 6.1) 

from the experiments of Coton and Galbraith [44] are used during this test. Then, 

the FFBP NN model was trained to predict more complex motions involving yaw 

and rotation. The training and validation data for these motions, were derived from 

CFD simulations. 

6.2 Preliminary Results Based on Experimental 

Data 

The first step in the present analysis, has been the use of the readily available exper- 
imental data provided by Coton & Galbraith [44], in order to check the suitability 

of both the NN and RNN approaches described in chapter 3. Data for a total of 8 

ramping cases were used, the details of which are surnmarised in table 6.1. 
Out of these eight data sets, five were used for training and the remaining three 

were used for prediction, two outside the training regime (cases 1 and 8 of table 
6.1) and the third within (case 5 of table 6.1). The rationale behind this choice 
was to assess both the interpolating and extrapolating qualities of the NN model. 
After convergence was attained, the NNs were switched into the predictive mode and 
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Case Reduced Ramp Rate Ramp Rate (deg/s) Used for Training/ Prediction 
1 0.0044 67.34 Prediction 

2 0.0061 91.26 'Iýaining 

3 0.0095 143.36 aaining 

4 0.0120 184.16 'IYaining 

5 0.0140 213.85 Prediction 

6 0.0190 283.97 aaining 

7 0.0250 371-97 aaining 

8 0.0300 429.02 Prediction 

Table 6.1: Details of the experimental data used [44] for the training and validation of 
the NN. Re = 1.47106 ,M=0.16 and the range of angles was -5' - 39. 

simulated the evolutionary characteristics of a further three ramping cases (Table 

6.1, cases 1,5,8) which were not included in the training dataset. The cpu times 

taken to both models to produce full motion predictions were of the order of few 

miliseconds on a 2.5 GHz linux pentium-4 machine. 

6.2.1 NN vs RNN 

The performance of the two models was assessed by predicting the experimentally 

measured time histories of 15 chordwise transducers located at 57% of span [44]. 

Each ramping case was discretised in time into 150 unsteady steps and for each 

unsteady step readings from 15 transducers covering the suction side of the wing 

were used. Therefore the total number of patterns was equal to 5x 150 x 15 = 11,250. 

The convergence criterion used required that the final error should be less than 5% 

of the total initial error. The variables used to train the NN where the reduced ramp 

rate (a+), angle of attack (a), time (t) and the x coordinate of the Cp transducers 

on the wing's suction side. The NN was thereafter trained to approximate the 
functional: Cp =f (a+, a, t, x) and is shown on Figure 6.1 a. The RNN model was 
trained by the true time sequence for each one of the 15 transducers, together with 
their corresponding a and a+. Thus the total number of patterns was 5x 150 = 750 

and the schematic of the model can be seen in Figure 6.1b. 
Several NNs were tested, mainly with two and three hidden layers. RNN models 

with three hidden layers did not converge. Figure 6.2 shows the convergence histories 

for three different NN models, an RNN model with 2x 45 neurons on the hidden 

6.2. PRELIMINARY RESULTS BASED ON EXPERIMENTAL DATA 
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layers and two NN models with 2x 45 and 3x 40 neurons on the hidden layers 

respectively. 

Figure 6.2 shows that the convergence behaviour of the NN models is very similar. 
The initial convergence speed of the RNN model is lower than that of the NN 

models, however, it finally converged to a 2% lower residual value. The reason for 

the seemingly higher convergence speed of the RNN model, is that over the same 
length of time (18hrs) the RNN model will iterate over more epochs than the NN 

model. Each epoch for the RNN model consists of 5x 150 patterns (5 datasets with 
150 time steps each). However, each epoch in the case of the NN models consists 

of 5x 150 x 15 patterns (5 datasets with 150 time steps for each of the 15 pressure 
transducers). 

Figures 6.3a-c show the comparisons of the Cp histories for the 15 transducers 

of the experimental readings vs the NN and RNN predictions. Both the NN and 
RNN models had 2 hidden layers with 45 neurons each. In particular, Figures 6.3a 

and 6.3c suggest that the RNN model performs slightly better in the extrapolation 

cases (cases 1 and 9 of Table 6.1 correspondingly) whereas the NN provides more 

accurate predictions in the interpolated case (case 5 of Table 6.1). Also, the NN 

model was found to be more stable numerically allowing for larger learning and 

momentum terms (0.1 as opposed to 0.001). These conclusions coupled with the 

fact that the NN model also benefits from incorporating the spatial information of 
the transducer locations, established the NN as the preferred choice for the rest of 
this investigation. Such detailed comparisons were never reported by Faller [65,66] 

who just employed the RNN model. 

6.2.2 Cp Surface Contour Predictions Using the NN Model 

Next, the NN model was trained by all 90 transducer readings, for the same set of 

experimental data described in the previous paxagraphs. Each ramping case was 
discretised in time into 150 unsteady steps and for each unsteady step readings from 

90 transducers covering the suction side of the wing were used. Therefore the total 

number of patterns was equal to 5x 150 x 90 = 67,500 and a total of around 105 

epochs were necessary to achieve convergence. The total computing time during 

training was around 24 hours on a single processor 2.5 GHz Pentium 4 computer. 
The convergence criterion used required that the total error should be less than 5% 

of the total initial error. 

6.2. PRELIMINARY RESULTS BASED ON EXPERIMENTAL DATA 
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Figure 6.1: The neural network models used. (a) 2-layer, no feedback, (b) 2-layer with 

feedback, (c) Mayer, no feedback. 
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Figure 6.2: Convergence histories (logarithmic scale) of the RNN and NN models. The 

RNN inodel had 2x 45 neurons on the hidden layers and the two NN models had 2x 45 

and 3x 40 neurons respectively. 

The variables used to train the NN where the reduced ramp rate (a+), angle of 

attack (a), time (t) and the x and y coordinates of the Cp transducers oil the suction 

side of the wing. The NN was thereafter trained to approximate the functional: 

CP =f (a+, a, t, x, y) and is shown on Figure 6.1c. 

Comparisons between the experimental (left) and predicted (right) surface Cp 

(list rib tit ions call be seen in Figures 6.4,6.5 and 6.6, for two different angles of 

attack for each case. The top row in Figures 6.4,6.5 and 6.6 corresponds to angles 

of attack just before the formation of the DSV and the bottom row, corresponds 

to angles of attack were the DSV has been fully formed and is shed towards the 

trailing edge. The comparison is good as both the overall loading and the location 

of the DSV footprint have been accurately predicted. The only exception is Figure 

6.4 were the NN computation predicts the DSV suction peak closer to the wing root 

as opposed to the experiment which shows the trajectory of the DSV to be slightly 

closer to tile tip. It should also be noted that the interpolation case (case 5 of 
Table 6.1) shown ill Figure 6.5 shows an exceptionally good agreement between the 

experiment and the NN prediction. This also is the prevailing conclusion throughout 

this work, ze, whenever adequate training is provided, the NN model provides very 

good predictions within the training envelope. 
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Figure 6.3: Comparison between the predictions of the NN (red) and RNN (green) models 

against experiments (black) [44] for cases (a) 1, (b) 5 and (c) 9 of Table 6.1 respectively. 
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motion between -5 and 40 degrees of incidence, a+ = 0.0044, Re = 1.47 x 106 and 
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Figure 6.5: Comparison between experiments by Coton and Galbraith [44] and NN pre- 
dictions for the surface pressure distribution on the suction side of the square NACA-0015 

wing with rounded tips. (case 6.15). (a) AoA=24.440 and (b) AoA=28.740. Ramping mo- 

tion between -5 and 40 degrees of incidence, a+ = 0.014, Re = 1.47 x 106 and M=0.16. 
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Figure 6.6: Comparison between experiments by Coton and Galbraith [44] and NN pre- 
dictions for the surface pressure distribution on the suction side of the square NACA-0015 

wing with rounded tips. (case 6.18). (a) AoA=27.27' and (b) AoA=35.550. Ramping mo- 
tion between -5 and 40 degrees of incidence, a+ = 0.03, Re = 1.47 x 106 and M=0.16. 

6.3 Exploitation of Neural Networks for Dynamic 

Stall Modelling 

The next step was to exploit the ability of the NN to model DS (a) by increasing 

the complexity of the problem through the introduction of the yaw angle as an extra 

variable and (b) by testing the NN model in rotating geometries. 

6.3. EXPLOITATION OF NEURAL NETWORKS FOR DYNAMIC 
STALL MODELLING 
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Case Reduced Frequency Yaw Angle 

1 0.05 y 00 

2 0.05 y 5' 

3 0.05 y 15" 

4 0.10 y 00 

5 0.10 y 100 

6 0.10 y 15' 

7 0.12 y 80 

8 0.15 y 00 

9 0.15 y 100 

10 0.15 y 150 
11 0.20 y 00 

12 0.40 y 00 

Table 6.2: Details of the CFD runs involving yaw performed. The wing used was based 

on a NACA 0012 aerofoil section with rounded tips and AR=10. The pitching component 

of the motion was a sinusoidal oscillation with both mean angle and amplitude of 100, 

while the Reynolds and Mach numbers were Re = 10 x 106 and M=0.3 respectively. 

6.3.1 Yaw 

Cases 1-12 of Table 6.2, refer to sinusoidal pitching motions with an amplitude and 

mean angle of 10' for different yaw angles. Various combinations of these cases were 

used to train and validate the NN, in order to assess its interpolating as well as 

extrapolating capabilities. Each sinusoidal motion was discretised in 150 unsteady 

steps and pressure values spread along 11 spanwise and 9 chordwise locations on 
the suction surface of the wing were recorded for each time step. Therefore, each 
training dataset was comprised by 99 x 150 = 14850 patterns. Consequently, the 

NN was trained to approximate the function Cp = Cp(t, k, a,, 3, x, y). 

Interpolation in Reduced nequency and Yaw 

The training cases were 4,5,8 and 9 of Table 6.2, whereas the validation case was 

case 7 of Table 6.2. Figure 6.7 shows the comparison of the CFD simulation and NN 

prediction for case 7 of Table 6.2, for 10'upstroke, 20', 10'downstroke and 00 angles 

of attack (Figures 6.7a, b, c and d correspondingly. The comparison is outstanding, 

as both the magnitude and the finer details of the Cp contour topology have been 

6.3. EXPLOITATION OF NEURAL NETWORKS FOR DYNAMIC 
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captured by the NN. Figure 6.11a shows the comparison of the normalised normal 
force acting on the wing's suction side. The peak of the graph corresponding to the 

shedding of the DSV has been very slightly over estimated by the NN, however, the 

instance the shedding occurs, has been captured very accurately (Figure 6.7b). 
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Figure 6.7: CFD computation (left) and NN prediction (right) for case 7 (k = 0.12 and 

,3= 80) of Table 6.2. The NN was trained using cases 4,5,8 and 9 of Table 6.2. (a) 100 

upstroke, (b) 200, (c) 10' downstroke and (d) 0'. Note that the AR has been compressed 
for illustration purposes. The direction of the freestrearn is the same as in Figure 6.7. 
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Interpolation in Reduced Frequency and Extrapolation in Yaw 

'I'll(, I I-iiiiiiiig cases were 5,6,9 and 10 of Table 6.2, whereas the validation case was 

case 7 of Table 6.2. Figure 6.8 shows the comparison of the CFD simulation and NN 

prediction for case 7 of Table 6.2, for 10'upstroke, 20', 10'downstroke and 00 angles 

of attack (Figures 6.8a, b, c and (1) correspondingly. The comparison remains very 
favotirahle, as both tile magnitude and the overall details of the Cp contour topology 

have beell cilptured bY t lie NN. As can be seen in Figure 6.8b, the only discrepancies 

observed witli the CFD computation are in a very small region in the beginning of 

thc reattachenlent part of the cycle, where the NN slightly underestimates the G- 

Again, both the magnitude as well as the location of the DSV shedding are in 

excellent wn-cenient between the CFD simulation and the NN prediction. el 
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Extrapolation in Reduced Fýrequency and Interpolation in Yaw 

The training cases were: (a) 1 (k = 0.05, Ceyaw = 0'), (b) 3 (k = 0.05, Ceyaw =150), 
(c) 4 (k = O-1tayaw = 0") and (d) 6 (k : -- 0-1)Ceyaw =15"), whereas the validation 

case was case 7 (k = 0.12, ayaw = 8') of Table 6.2. Figure 6.9 shows the comparison 

of the CFD simulation and NN prediction for case 7 of Table 6.2, for 100upstroke, 

200,10*downstroke and 0' angles of attack (Figures 6.9a, b, c and d) correspondingly. 
Figure 6.11d shows the comparison for the integral loads for the same case. The 

comparison is very poor as most of the upstroke and the reattachment parts of the 

cycle have been wrongly predicted. Vaxiation of the reduced frequency produced in 

this case a non linear effect to the Cp and training based on only two different values 

of reduced frequency is insufficient to provide an accurate prediction. However, one 

would expect the discrepancy between the actual and predicted values during the 

formation stage of the DSV to be closer, since the reduced frequency of k 0.12 

is not far from the reduced frequencies used for training of k=0.05 and k 0.1. 

The source for this anomaly can be understood by observing Figure 6.11e which 

shows the integrated normal forces for cases 1,4,7,8 and 11 of Table 6.2. While the 

transitions from the curve corresponding to k=0.1 to the one corresponding to 

k=0.15 and beyond, are smooth pointing out that the physical phenomena are 

taking place are very similar but different in magnitude and phase, the transition 

to the curve corresponding to the value of k=0.05 is of very different nature. In 

fact the integrated loads predicted by the NN for the case of k=0.12 as seen in 

Figure 6.11c above, look very similar in shape but of different magnitude, to the 

curve corresponding to k=0.05, (Figure 6.11e). 

Following the previous remark, the training dataset was augmented with case 8 

of Table 6.2 and the case chosen for validation was case 11. Figure 6.10 shows the 

comparison of the CFD simulation and NN prediction for case 11 of Table 6.2, for 

10'upstroke, 20*, 10*downstroke and 0' angles of attack. The comparison is now 
is very good, since the physics incorporated in the training datasets were adequate 
for an accurate extrapolating prediction. 

The results shown in the previous paragraphs indicate that NNs can successfully 

model DS in ramping and pitching motions, following the appropriate training. The 

numerical experiments described so far, have yielded one important insight into the 
behaviour of the NNs: Predictions are exemplary provided the free parameters (k 

and 0, in the examples involving yaw) axe adequately enveloped by the training 
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examples. Extrapolations beyond the training envelope are also possible if their 

values do not correspond to cases with significantly different physics. 
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Figure 6.10: CFD computation (left) and NN prediction (right) for case 7 (k = 0.12 and 
0= 8") of Table 6.2. The NN was trained using cases 1,3,4 and 6 of Table 6.2. (a) 10' 

upstroke, (b) 20', (c) 100 downstroke and (d) 0'. Note that the AR has been compressed 
for illustration purposes. The direction of the freestrearn is the same as in Figure 6.10. 

6.3. EXPLOITATION OF NEURAL NETWORKS FOR DYNAMIC 
STALL MODELLING 



CHAPTER. 6. VALIDATION OF THE NEURAL NETWORK 

-0.45 

-0.6 

-0.7 

-0.75 

-0.86 

-0.9 

-0.45 

-0.6 

-0.65 

LL. 
i -0.6 

z -0.66 
1 

. 0.7 
1-0.76 

z 

-0.8 

-0.86 

1.2 

1.1 

0.8 

z 0.7 

0.5 

z 
0.4 

0.3 

0.2 

CFD 

(a) 

(c) 

-0.6 

9-0, .5 

LL -0.6 
i 

-0.65 
z 

-0.7 

-0.75 

z 
-0.8 

-0.85 

Z 
-0.7 

i-0.75 

-OJ - 

(d) 

k-0.06 
k-0.10 
k=0.12 
k-0.15 
k-0.20 

132 

CFD 
NN 

so 1 00 150 
Time Stop 

(e) 

Figure 6.11: Norinalised normal force vs normalised time corresponding to the cases 
described in paragraphs (a) 5.4.1, (b) 5.4.2, (c) 5.4.3 and (d) 5.4.4 correspondingly. (e) 

integrated normal forces for cases 1,4,7,8 and 11 of Table 6.2. 

6.3. EXPLOITATION OF NEURAL NETWORKS FOR DYNAMIC 
STALL MODELLING 

0, a0.0 NomiallsedThns 

Normallsed Tkne 



CHAPTER 6. VALIDATION OF THE NEURAL NETWORK 133 

Case Reduced Frequency Pitch (Y/N) DS (Y/N) 

1 0.10 N N 0.40 

1) 0.15 N N 0.15 

3 0.20 N N 0.20 

4 0.10 y N 0.40 

5 0.15 y y 0.15 

6 0.20 y y 0.20 

Table 6.3: Details of the CFD run involving rotation. The wing used was based on it 
NACA 0015 aerofoil section with rounded tips and AR = 5. The wing's tip was located at 

a distance of 12.5 from the rotation centre. The pitching component of the motion, where 

applicable, was a sinusoidal oscillation with both mean angle and amplitude of 100, while 

the Reynolds number and Mach numbers were Re = 10 x 106 and M=0.15 respectively. 

Tile pitching frequency (were applicable) was the same as the rotating frequency. In all 

cases, rotation was performed between 0' and 180' on the advancing side. 

6.3.2 Rotating Wings 

In this sectiou. we attciiipt to train a NN to predict the pressure distributions 

oil rotating wings. Table 6.3 suminarises the CFD runs performed to provide the 

training and validating data. Each rotating motion was discretised in 180 unsteady 

steps and pressure values spread along 6 spanwise and 9 chordwise locations oil the 

suction surface of the wing were recorded for each time step. Therefore, each training 

dataset was comprised by 54 x 180 = 9720 patterns. For all rotating motions, the 

wing was based oil a NACA 0015 aerofoil, had an AR =5 and the tip distance from 

the centre of rotation was 12.5. 

Pure Rotation 

In the first experiment, cases I and 3 (Table 6.3) were used as the training examples 

and case 2 was used to provide the validation data. Cases I-3 involve rotating 

wings with a steady angle of attack a= 100. Consequently, the NN was trained 

to approximate the function C,, = Cp(t, k, V), x, y) . The NN employed had 3x 15 

neurons in the hidden layers. Figures 6.13(a-f) show the pressure loading on tile 

wing for the CFD computations (left) and the NN predictions (right) for case 2 of 
Table 6.3. The runs were perforined for a half azimuthal cycle and Figures 6.13a-f 

correspond to 30,60,90,120,150 and 180 degrees of azimuth respectively. Due to 
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the non pitching motion, no DS takes place and the NN was able to predict very 

well the wing's pressure loading, throughout the motion. 
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Figure 6.12: CFD computation (left) and NN prediction (right) for case 2 of Table 6.3. 

The NN was trained using cases 1 and 3 of Table 6.3. (a) 30' azimuth, (b) 60' azimuth, 
(c) 900 azimuth, (continued over ... ). 
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Figure 6.13: (d) 120' azimuth, (e) 150' azimuth and (f) 180' azimuth ( ... concluded). 

Rotation with Pitch 

So far, the NN has yielded very good results for pitching/ ramping motions (DS 

present) as well as motions involving pure rotation (DS absent). In this section 

a wild extrapolation is attempted. The NN will be trained by the pure sinusoidal 

motions of cases 1,3 and 8, shown on Table 6.2 as well as the pure rotational motion 

of case 2 of Table 6.3 in an attempt to predict the dynamics of the pitching-rotational 

motion of case 5 of Table 6.3. The data from all these cases need to be presented 

to the NN in a unified way. Since the pitching and the rotating components are in 

phase and of equal frequency, a half azimuthal cycle of the rotation corresponds to 

a half period of the oscillation. Azimuth V) = 0' corresponds to the mean angle of 
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the oscillation (10') during upstroke, azimuth V) = 90' corresponds to the maximum 

oscillatory incidence of 20' and finally, azimuthO = 180' corresponds to 101 during 

downstroke. On the other hand, during a rotating motion with k=0.05, an effective 

yaw angle of 3= 15* is experienced at the wing's half span at azimuth V) = 25' and 
for any k, effective yaw of 0' occurs at azimuth of V) = 90'. Also, since the wings 

of the sinusoidal and rotating motions are different, a flag is introduced with value 
0 for the rotating wing and 1 for the pitching wing. Therefore, the NN was trained 

to approximate the functional: Cp = Cp(f lag, a,, O, k, t, x, y). Figures 6.14a-f show 
the comparison between NN predictions and CFD calculations for the Cp histories 

for the 9x6 locations on the suction side of the rotating wing. Although the mean 

magnitudes of the Cp predictions are close to the CFD values, the NN has failed to 

reproduce the higher harmonics, chaxacteristic of DS. This is due to two reasons: (a) 

Training was insufficient. The dynamic content of DS in the training data was only 

contained in cases 1,3 and 8 of Table 6.2. However, these cases represent 3 only 
different azimuthal steps out of the total of 180 during rotation. Therefore, their 

statistically their occurrence frequency was very low compared to the frequency of 

occurrence of data not containing DS. (b) The dynamic range of the Cp during 

rotation is higher than the corresponding dynamic range during simple oscillation 
by a factor of 10. This is due to the higher effective wind experienced by the wing 
during the rotating motion. In this training exercise, DS is contained only in data 

of a narrow dynamic range hence having less impact to the final state of the NN. 
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Figure 6.14: CFD computations vs NN predictions of the Cp histories for case 5 of Table 

6.3. The NN was trained using cases 1,3 and 8 of Table 6.2 and case 2 of Table 6.3. 

Spanwise rakes kit (a) 0%, (b) 20%, (c) 40%, (d) 60%, (e) 80% and (f) 100% are shown. 
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6.4 Summary 

A function of the analytical form y=f (X1 
i X2 7 ... i Xn) is the most abstract, inclusive 

and accurate way to describe the dynamic relationship between the independent 

variables X1 i X2) ... ) Xn and their dependent constraint y. A NN can be trained to 

accurately represent such a relationship through appropriate training. The training 

process is comprised by continually re-adjusting the synaptic connections between 

neurons. This iterative re-adjustment stops when the differences between the target 

values and the network outputs for all patterns are values below the error threshold 

value. When this condition is reached, the NN can replicate the function above, at 
least for the patterns used for training. In order for the NN to be able to generalise 

either within or outside the training envelope, a careful choice of training patterns 
has to be made. The training patterns, should be densely distributed in respect to 

the variables whose change induces a non linear change to the function. Naturally, 

if a NN is to be trained to replicate a highly non-linear function like the pressure 
distribution on a wing's surface during DS, then a large combination of patterns is 

required. The numerical experiments performed in this chapter, have shown that in 

non-rotational DS conditions, the pressure on the surface of a ramping or oscillating 

wing can be very accurately predicted, with few only training cases. The extension 
to conditions with non zero sideslip proved equally successful, since sideslip for the 

moderate angles employed here had a linear only effect to the pressure distribution. 

However, the extrapolation from the physics of DS in oscillatory cases with sideslip 
to the physics of DS in motion combining pitching and rotation, was not successful 
due to the very limited number of both oscillating and rotating cases in the training 

envelope. 

6.4. SUMMARY 



Chapter 7 

Conclusions and Future Work 

In this chapter the conclusions drawn from this work are surnmarised and suggestions 
for future work are put forward. 

7.1 Conclusions 

The first part of this work has been the detailed validation of a CFD method for 

3D dynamic stall cases. The 3D structure of the DSV and the time evolution of 
the dynamic stall phenomenon were revealed and found to agree well with the only 
flow visualisation study available [44]. This is the first time in the literature that 

extensive computations have been undertaken for this very complex unsteady flow 

phenomenon. The first encouraging result has been to establish that CFD was 

able to match the available experimental data with good accuracy, and moderate 

computational cost. For the low-Re cases, all flow structures identified with the 

smoke visualisation were present [42] in the CFD solutions and the flow topology 

was found to be predicted with remarkable precision. The compaxisons with the 

experiments performed by Schreck and Helin [411, revealed the importance of the 

accurate modelling of the inboard boundary conditions and provided confidence 
in the modelling of the highly vortical tip region where the DSV-TV interaction 

dominates the flow. The tapered wing case of the Laboratory of Marseilles [45] 

was predicted extremely well given the fact that velocity profiles were compared at 

various 0 angles during the oscillation of the wing and at various spanwise locations. 

This highlights that accurate field data from experiments can be predicted well. In 

addition, this is the first time field data for DS are compared against CFD. The 

ramping cases by Coton and Galbraith [441 were predicted reasonably well with 
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some discrepancies in the stall angle attributed to differences between the conditions 

of the experimental investigation (for example, the CFD computations have been 

performed with free-stream conditions at the far field of the computational domain 

while the real wing model was confined by both tunnel walls and supports) and the 

present simulation results. 
The comparisons between CFD and the PIV experiments of Wernert et al. showed 

that both the flowfield and the evolution of DS can be predicted well by CFD. 

Following the necessary comparisons between CFD and experiments to build 

confidence on the numerical results, the overall dynamics of the DSV and the pa- 

rameters that influence its shape and evolution were assessed. It has been shown 

that the DS and the tip vortices are the dominant flow features. Short AR wings 

are more susceptible to the influence of the TV, since the latter influences a larger 

part of the wing's planform. The shape and dynamics of the DSV also depend on 

the Re and M numbers and to a lesser extent to the planform shape and sideslip. 
The Re in particularly seems to be affecting the distance of the DSV's extremurn to 

the tip region. Rotation produces a distinctive asymmetry to the formation of the 

DSV, possibly due to the radial dependence of the inflow velocity. In all cases, the 

near the tip region pressure distribution is primarily influenced by the TV. 

Finally, the capability of a NN to predict the pressure distribution on the suction 

side of a wing during DS was assessed. It has been shown that the pressure on the 

surface of a ramping or oscillating wing can be very accurately be predicted, both 

within and outside the training envelope, with few only training cases. The extension 
to conditions with non zero sideslip proved equally successful, since sideslip for the 

moderate angles employed here had a linear only effect to the pressure distribution. 

However, the extrapolation from the physics of DS in oscillatory cases with sideslip 
to the physics of DS in motion combining pitching and rotation, was not successful 
due to the very limited number of both oscillating and rotating cases considered. 

7.2 Future Work 

Three-dimensional DS is primarily encountered on rotating surfaces like helicopter 

rotors and wind turbine blades. However, there is a lack in literature of detailed 

measurements on rotating wings. Therefore experiments conducted on realistic ro- 
tating conditions axe necessary to assess the potential of CFD to simulate accurately 
such flows. Such measurements should include both on and off-surface data. 

7.2. FUTURE WORK 
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Also, this work has not addressed the performance of different turbulence models, 

along the lines of which, the following three points need to be adressed: 
1. Investigation of the effect of turbulence model for flows with significant ro- 

tation such as the core of dynamic stall vortex. In some comparisons, the growth 

and diffusion of the DS vortex in the computation appears to be greater that the 

one measured. This may be due to turbulence model or due to the diffusion of the 

scheme especially when TVD limiters are on. 
2. The flow conditions of some computations are probably in the transitional 

flow regime. For 3D there is no too much hope that the transition location can 
be predicted (and if the transition location is not right then the transitional flow 

prediction is difficult and not very accurate). I am not therefore suggesting that 

somebody has to look at transitional flow effects especially for the very complex 

problem 3D, DS that you looked in your thesis. You may just want to add some 

commends on the effect of transition. 

3. Large eddy simulations (LES) or Detached Eddy Simulations (DES) could 

reveal more on the fundamental mechanisms of vortex formation and convection 

over the wing surface given that the DS vortex away from the surface would move 
in an almost uniform mesh (needed for LES) where the accuracy of the numerical 

scheme will not be affected by grid stretching which can degrade the accuracy of the 

scheme to less than the design order of accuracy. There are several papers in the 

literature where the effect of grid stretching on the accuracy of the computations 
has been investigated and it was shown that even 2nd order schemes are not truly 

second order accurate with large grid stretching. 
The NN approach although has already provided promising results, is still far 

from being established as the weapon of choice in modelling of 3D DS as encountered 
in rotorcraft. The high computational times involved in rotating geometries are the 

only limiting factors towards building a detailed training database. This database 

will provide the ultimate test on the suitability of the NN approach. Thereafter, 

research in the direction of designing and testing a controller able to provide on-the- 
fly adjustments, should be the next step. 

Thorough analysis of the 3D DS phenomenon in rotating conditions is of primary 
importance in the efficient rotorcraft and wind turbine design. Advances on this 
direction will have multi-faceted benefits, as they will lead to not only faster but 

also safer rotorcraft and more efficient power generation. 

7.2. FUTURE WORK 
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1 
2 

3 

10 
11 
12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

program neural-net 
parameter(imaxl=100000, imax2=64, ilay=3) 
integer epoch, istart 
integer i, j, k, p, np, list(imaxl) 
integer numpattern, numinput, numhidden 
integer numoutput, nml 
real*8 input(O: imaxl, O: imax2) 
real*8 target(O: imaxl, O: imax2) 
real*8 output(O: imaxl, O: imax2) 
real*8 hidden(ilay, imaxl, imax2) 
real*8 sum(O: imaxl, O: imax2), silmm(O: imaxi) 
real*8 weightIH(O: imax2,0: imax2) 
real*8 weightHH(ilay, O: imax2,0: imax2) 
real*8 weightHO(O: imax2,0: imax2) 
real*8 deltaO(O: imaxl), deltaH(ilay, O: imaxi) 
real*8 deltaweightIH(O: imaxl, O: imax2) 
real*8 deltaweightHO(O: imaxl, O: imax2) 
real*8 deltaweightHH(ilay, O: imaxl, O: imax2) 
real*8 inp(imaxl, imax2) 
real*8 error, eta, alpha, smallwt, errorl 
real*8 errormax, r 
character*50 patfile 
character*13 wfile 

11 format(60(fl2.6,2X)) 
12 format(A50) 
13 format(Al) 

smallwt=O. l 
iepoch=l 
errorO=0.0 

33 open(l, file=linput) 
34 read(l, *)patfile 
35 read(l, *)nilminput 
36 read(l, *)=l 

150 
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37 read (1, *) numb idden 
38 read(l, *)nilmoutput 
39 read(I. *)ifresh 
40 read(l, *)cerror 
41 read(l, *)eta 
42 read(l, *)alpha 
43 close(l) 
44 C 

45 C intitialise input-to-hidden weights 
46 do j=I, numhidden 
47 do i=l, numinput 
48 deltaweightIH(i, j)=O. O 
49 weightIH(i, j)=2.0*(rand(O))*smallwt 

so enddo 
51 enddo 
52 C 

53 C intitialise hidden-to-output weights 
54 do k=l, numoutput 

55 do j=1, numbidden 
56 deltaweightHO(j, k)=O. O 
57 weightHO(j, k)=2.0*(rand(O))*smallwt 
58 enddo 
59 enddo 
60 C 

61 c initialise hidden to hidden weights 
62 do il=l, nml 
63 do i=1, m1mbidden 
64 do j=1, numhidden 
65 deltaweightHH(il, j, i)=O. O 
66 weightHH(il, j, i)=2.0*(rand(O))*smallwt 
67 enddo 
68 enddo 
69 enddo 
70 C 

71 open(l, file=patfile) 
72 i=1 

73 10 list M =i 

74 read(1, *, END=777)(inp(i, j), j=I, numinput+numoutput) 
75 do j=1, numinput 
76 input(i, j)=inp(i, j) 
77 enddo 
78 do j=l, numoutput 
79 target (i, j) =inp U, j +33i, minput) 
80 enddo 
81 i=i+l 
82 goto 10 
63 777 continue 
84 numpattern=i-1 
85 write(*, *)"# l, numpattern, ) patterns' 
86 close(l) 
87 C 
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88 c Training begins here 

89 do epoch=iepoch. 60000000 

90 error=0.0 
91 errormax=-10.0e+6 
92 do np=l, numpattern 
93 np=l+int(rand(O)*float(nilmpattern)) 
94 

95 

96 

97 

98 

go 

100 

101 

102 

103 

104 

105 

106 

107 

Ice 

109 

110 

ill 

112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

124 

125 

126 

127 

128 

129 

130 

131 

132 

133 

134 

135 

136 

137 

138 

c 
c propagate forward from input to hiddenl 

do j=l, numhidden 
sum(p, j)=weightIH(O, j) 
do i=l, numinput 

sum(p, j)=sum(p, j)+ 
input(p, i)*weightIH(i, j) 

enddo 
hidden(l, p, j)=1.0/(1.0+exp(-sum(p, j))) 

enddo 
c 
c propagate forward from hidden-I to hidden-n 

do il=l, nml-l 
do j=l, numhidden 

sum(p, j)=weightHH(il, O, j) 
do i=l, numhidden 

sum(p, j)=sum(p, j)+ 
& hidden(il, p, i)*weightHH(il, i, j) 

enddo 
hidden(il+l, p, j)=1.0/(I. O+exp(-sum(p, j))) 

enddo 
enddo 

c propagate forward from hidden-n to output, calculate error & 
c remedy per output node 

do k=1, numoutput 
sum(p, k)=weightHO(O, k) 
do j=I, numhidden 

sum(p, k)=sum(p, k)+ 
hidden(nml, p, j)*weightHO(j, k) 

enddo 
output(p, k)=1.0/(1.0+exp(-sum(p, k))) 
if (epoch. eq. 1) errorO=error 

r=target(p, k)-output(p, k) 
r=abs(r) 
r=0.5*r*r 
error=error+r 
errormax=dmaxl(errormax, r) 
if (errormax. eq. r) il=p 
deltaO(k)=(target(p, k)-output(p, k))* 

& (output(p, k)*(I. O-output(p, k))) 
enddo 
if (epoch. eq. 1) errorO=error 
errorl=error/erroro 
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139 

140 

141 

142 

143 

144 

145 

146 

147 

148 

149 

150 

151 

152 

153 

154 

155 

156 

157 

158 

ISO 

160 

161 

162 

163 

164 

165 

166 

167 

168 

169 

170 

171 

172 

173 

174 

175 

176 

177 

178 

179 

180 

181 

182 

183 

184 

185 

185 

187 

188 

189 

c backpropagate from output to hidden-n, use output remedy 
c to calculate remedy per hidden-n node 

do j=1, numhidden 
sjImM(j)=O. O 
do k=l, nilmoutput 

sIIMMQ)=s1IMmQ)+ 
& weightHO(j, k)*deltaO(k) 

enddo 
deltaH(nml, j)=silmm(j)*hidden(nml, p, j)* 

& (1.0-hidden(nial, p, j)) 
enddo 

c backpropagate from hidden-n to hiddeni, use hidden-n remedy 
c to calculate remedy per hidden-n-I node 

do il=ximl-1,1, -l 
do j=1, numhidden 

summ(i)=0.0 
do jk=l, numhidden 

sjIMM(j)=sI'MMQ)+ 
weightHH(il, j, jk)*deltaH(il+l, jk) 

enddo 
deltaH(il, j)=sllrnm (j) 
hidden(il, p, j)*(1.0-hidden(il, p, j)) 

enddo 
enddo 

c backpropagate from hiddenl to input & use hiddenl remedy 
c to re-calculate i-hl weights 

do j=l, numhidden 
deltaweightIH(O, j)=eta*deltaH(l, j)+ 

& alpha*deltaweightIH(O, j) 
weightIH(O, j)=weightIH(O, j)+ 

& deltaweightIH(O, j) 
do i=l, numinput 

deltaweightIH(i, j)= 
& eta*input(p, i)*deltaH(l, j)+alpha* 
& deltaweightIH(i, j) 

weightIH(i, j)=weightIH(i, j)+ 
& deltaweightIH(i, j) 

enddo 
enddo 

c propagate from hiddenI to hidden-n & use hidden2 remedy 
c to recalculate h-n-h-n+l weights 

do il=l, nml-l 
do j=1, rvTnhidden 

deltaweightHH(il, O, j)=eta*deltaH(il+l, j) 
& +alpha*deltaweightHH(il, O, j) 

weightHH(il, O, j)=weightHH(il, O, j)+ 
& deltaweightHH(il, O, j) 
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190 
191 

192 

193 

194 

195 

196 

197 

198 

199 

200 C 

201 C 

202 

203 

204 

205 

206 

207 

208 

209 

210 

211 

212 

213 

214 

215 

216 

217 

216 

210 

220 

221 

222 

223 

224 

225 

226 

227 

228 

229 

230 

do i=l, numbidden 
deltaweightHH(il, i, j)= 

& eta*hidden(il, p, i)*deltaH(il+l, j) 
& +alpha*deltaweightHH(il, i, j) 

weightHH(il, i, j)=weightHH(il, i, j)+ 
& deltaweightHH(il, i, j) 

enddo 
enddo 

enddo 

propagate from hidden3 to output & use output remedy 
to re-calculate h3-o weights 

do k=l, numoutput 
deltaweightHO(O, k)= 

& eta*deltaO(k)+alpha*deltaweightHO(O, k) 
weightHO(O, k)=weightHO(O, k)+ 

& deltaweightHO(O, k) 
do j=l, numhidden 

deltaweightHO(j, k)=eta*hidden(nml, p, j)* 
& deltaO(k)+alpha*deltaweightHO(j, k) 

weightHO(j, k)=weightHO(j, k)+ 
& deltaweightHO(j, k) 

enddo 
enddo 

enddo 
if (errorl. 1t. cerror) goto 1000 

enddo 
1000 continue 

write(*, *) 'The End) 
stop 
end 

c sample input file for a 5-input 1-output NN: 
c 
c inl(l) in2(I) in3(1) in4(1) in5(1) target(l) 
c inl(2) in2(2) in3(2) in4(2) in5(2) target(2) 
c ........................................... 
c inl(n) in2(n) in3(n) in4(n) in5(n) target(n) 
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231 

232 

233 

234 

235 

236 

237 

238 

239 

240 

241 

242 

243 

244 

245 

246 

247 

248 

249 

250 

251 

252 

253 

254 

255 

256 

257 

258 

259 

260 

261 

262 

263 

264 

265 

266 

program neural-net 
parameter(imaxl=750, imax2=256, ilay=2) 
integer epoch, istart, ps(imax2), pe(imax2) 
integer i, j, k, p, np, list(imaxl) 
integer numpattern, nilminput 
integer numhidden, 33i, moutput, numlay 
real*8 input(imaxl, imax2) 
real*8 target(imaxl, imax2) 
real*8 output(imaxi, imax2) 
real*8 hidden(ilay, imaxl, imax2) 
real*8 sum(O: imaxl, O: imax2), silmm(O: imax2) 
real*8 weightIH(O: imax2,0: imax2) 
real*8 weightHH(ilay, O: imax2,0: imax2) 
real*8 weightHO(O: imax2,0: imax2) 
real*8 deltaO(O: imax2), deltaH(ilay, O: imax2) 
real*8 deltaweightIH(O: imax2,0: imax2) 
real*8 deltaweightHO(O: imax2,0: imax2) 
real*8 deltaweightHH(ilay, O: imax2,0: imax2) 
real*8 error, eta, alpha, smallwt, errorl, r 

character*50 patfile 
character*13 wfile 

11 format(222(fl2.6,2X)) 
12 format(ASO) 
13 format(Al) 

smallwt=0.05 
iepoch=l 
errorO=0.0 

open(l, file=lrinput') 
read(l, *)patfile 
read(l, *)numinput 
read(l, *)numlay 
read(l, *)numhidden 
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267 

268 

269 

270 

271 

272 

273 

274 

275 

276 

277 

278 

279 

280 

281 

282 

283 

284 

285 

286 

287 

288 

289 

290 

291 

292 

293 

294 

295 

296 

297 

298 

299 

300 

301 

302 

303 

304 

305 

306 

307 

308 

309 

310 

311 

312 

313 

314 

315 

316 

317 

read(l, *)numoutput 
read(l, *)ifresh 
read(l, *)cerror 
read(l, *)eta 
read(l, *)alpha 
read(l, *)wfile 
close(l) 

c intitialise input-to-hidden weights 
do j=l, numhidden 

do i=l, nilminput 
deltaweightIH(i, j)=O. O 
weightIH(i, j)=2.0*(rand(O))*smallwt 

enddo 
enddo 

c intitialise hidden-to-output weights 
do k=l, numoutput 

do j=l, numbidden 
deltaweightHO(j, k)=O. O 
weightHO(j, k)=2.0*(rand(O))*smallwt 

enddo 
enddo 

c initialise hidden to hidden weights 
do il=l, numlay 

do i=l, numhidden 
do j=l, numhidden 

deltaweightHH(il, j, i)=O. O 
weightHH(il, j, i)=2.0*(rand(O))*smallwt 

enddo 
enddo 

enddo 
c 
c 

open(l, file=patfile) 
do i=1,9999999 
read(I, *, END=666)(input(i, j), j=l, numinput) 
enddo 

666 continue 
numpattern=i-I 
write(*, *) I# 1, mimpattern, ' pattern lines' 
close(l) 

print*, Ienter number of sets' 
read*, numsets 
print*, Ienter p-start for each 

& (starting from the 2nd)) 
do i=2, numsets 

read*, Ps(i) 
pe(i-l)=Ps(i)-l 

enddo 
ps(l)=l 
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318 

319 

320 

321 

322 

323 

324 

325 

326 

327 

328 

329 

330 

331 

332 

333 

334 

335 

336 

337 

338 

339 

340 

341 
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343 

344 

345 

346 

347 

348 

349 

350 

351 

352 

353 

354 

355 

356 

357 

358 

359 

360 

361 

362 

363 

364 

365 

366 

367 

368 

pe(numsets)=nilmpattern 
write(*, *) 1# l, numsets, l sets' 
index=O 
numdif=nilminput-numoutput 

do i=l, numsets 
list(i)=i 

print*, Iset l, i, ps(i), pe(i) 
do ii=ps(i), pe(i)-i 

do j=l, numoutput 
target(ii, j)=input(ii+l, j+numdif) 

enddo 
enddo 

enddo 
open(l, file=ltarget. pat') 
do i=l, nilmsets 

do j=ps(i), pe(i)-l 
write(1,11)(target(j, k), k=l, numoutput) 

enddo 
enddo 

if (istart. eq. 0) then 
call system(Irm . /history. dat') 

endif 

c START TRAINING 
do epoch=iepoch, 50000000 

c 
c shuffle training sets 

do i=l, numsets-1 
number=int(rand(O)*float(2)) 
if (number. eq. 1) then 

iii=list(i) 
list(i)=list(i+l) 
list(i+l)=iii 

endif 
enddo 
error=0.0 

c 
do ins=l, numsets 

index=l 
do p=ps(list(ins)), pe(list(ins))-l 

c RECCURENT FEEDBACK 
if (index. gt. 1) then 

do j=l, nilmoutput 
input (p, j +33i, mdif )=output (p-1, j) 

enddo 
endif 

c 
c propagate forward from input to hiddenl 
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369 do j=l, rium'hidden 
370 sum(p, j)=weightIH(O, j) 

371 do i=l, nilminput 
372 sum(p, j)=sum(p, j)+ 

373 & input(p, i)*weightIH(i, j) 

374 enddo 
375 hidden(l, p, j)= 

376 & 1.0/(1.0+exp(-sum(p, j))) 

M enddo 
378 

379 c propagate forward from hidden-1 to hidden-n 

380 do il=l, numlay-I 
381 do j=l, numhidden 
382 sum(p, j)=weightHH(il, O, j) 

383 do i=l, numbidden 
384 sum(p, j)=sum(p, j)+ 

385 & hidden(il, p, i)* 

386 & weightHH(il, i, j) 

387 enddo 
388 hidden(il+l, p, j)= 

389 & 1.0/(1.0+exp(-sum(p, j))) 

390 enddo 
391 enddo 
392 

303 c propagate forward from hidden-n to output, 

394 c calculate error & remedy per output node 
395 do k=l, niTnoutput 

396 sum(p, k)=weightHO(O, k) 
397 do j=l, ni, mbidden 
308 sum(p, k)=sum(p, k)+ 

399 hidden(nilmlay, p, j)*weightHO(j, k) 

400 enddo 
401 output(p, k)=1.0/(1.0+ 
402 exp(-sum(p, k))) 

403 r=0.5*(target(p, k)- 

404 output(p, k))**2 

405 C r=abs(r) 
406 error=error+r 
407 deltaO(k)=(target(p, k) 

408 -output(p, k))* 

409 (output (p, k) * 
410 & (1.0-output(p, k))) 

411 enddo 
412 if (epoch. eq. 1) errorO=error 
423 errorl=error/erroro 
414 index=index+l 
415 

416 c backpropagate from output to hidden-n, 
417 c use output remedy to calculate 
418 c remedy per hidden-n node 
419 do j-1, numhidden 
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420 surnm Q) =0.0 

421 do k=l, nilynoutput 
422 suTnm(j)=s=m(j)+ 
423 & weightHO(j, k)*deltaO(k) 
424 enddo 
425 deltaH(nilmlay, j)= 
426 simm(j)*hidden(numlay, p, j)* 
427 & (1.0-hidden(nilmlay, p, j)) 
428 enddo 
429 

430 c backpropagate from hidden-n to hiddenl, use hidden-n 
431 c remedy to calculate remedy per hidden-n-1 node 
432 do il=numlay-1,1, -I 
433 do J=1, numhidden 
434 sjIMM(j)=O. O 

435 do jk=1, ni, mbidden 
436 summ Q) =siiTnTn Q)+ 
437 & weightHH(il, j, jk)* 
438 & deltaH(il+l, jk) 
439 enddo 
440 deltaH(il, j)=si, mm(j)* 
441 & hidden(il, p, j)* 
442 & (1.0-hidden(il, p, j)) 
443 enddo 
444 enddo 
445 

446 c backpropagate from hiddenl to input 
447 c use hiddeni remedy to re-calculate i-hl weights 
448 do j=1, numhidden 
449 deltaweightIH(O, j)=eta*deltaH(l, j)+ 
450 & alpha*deltaweightIH(o, j) 
451 weightIH(O, j)=weightIH(O, j)+ 
452 & deltaweightIH(O, j) 
453 do i=1, numinput 
454 deltaweightIH(i, j)= 
455 & eta*input(p, i)*deltaH(I, j)+ 
456 & alpha*deltaweightIH(i, j) 
457 weightIH(i, j)=weightIH(i, j)+ 
458 & deltaweightIH(i, j) 
459 enddo 
460 enddo 
461 

462 c propagate fro m hiddenI to hidden-n & 
463 c use hidden2 r emedy to recalculate h-n-h-n+1 weights 
464 do il=l, numlay-I 
465 do j=I, numhidden 
466 deltaweightHH(il, O, j)= 
467 & eta*deltaH(il+l, j) 
468 & +alpha*deltaweightHH(il, O, j) 
469 weightHH(il, O, j)= 
470 & weightHH(il, O, j)+ 
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471 

472 

473 

474 

475 

476 

477 

478 

479 

480 

481 

482 

483 

484 C 

485 C 

486 

487 

488 

489 

490 

491 

492 

493 

494 

495 

496 

497 

498 

499 

500 

501 

502 C 

503 C 

504 

505 

S(A 

507 

508 

509 

sio 

511 

512 

$13 

514 C 

sis 

516 

517 

518 

519 

520 

521 

& deltaweightHH(il, O, j) 
do i=l, numbidden 

deltaweightHH(il, i, j)= 
& eta*hidden(il, p, i)* 
& deltaH(il+l, j) 
& +alpha*deltaweightHH(il, i, j) 

weightHH(il, i, j)= 
& weightHH(il, i, j)+ 
& deltaweightHH(il, i, j) 

enddo 
enddo 

enddo 

propagate from hidden3 to output 
& use output remedy to re-calculate h3-o weights 

do k=l, numoutput 
deltaweightHO(O, k)= 

& eta*deltaD(k)+alpha*deltaweightHO(O, k) 

weightHO(O, k)=weightHO(O, k)+ 
& deltaweightHO(O, k) 

do j=l, nimbidden 
deltaweightHO(j, k)= 

& eta*hidden(numlay, p, j)* 
& deltaO(k)+alpha*deltaweightHO(j, k) 

weightHO(j, k)=weightHO(j, k)+ 
& deltaweightHO(j, k) 

enddo 
enddo 

enddo 
enddo 

if ((epoch/ifresh)*ifresh. eq. epoch) then 

call weights(epoch, errorO, numinput, nilmlay, 
numhidden, nilmoutput, 

& weightIH, weightHH, weightHO, wfile) 
write(*, *) epoch, errorl 
open(3, file=loutput. pat') 
do i3=1, numsets 

do j3=ps(i3), pe(i3)-I 
write(3,11)(input(j3, k3), k3=1, niiminput) 

& (outputQ3, M), k3=1, numoutputý 
enddo 

enddo 
close(3) 
open(ii, file=lhistory. datl, access=lappend') 
write(ll, *)epoch, errorl 
close(11) 
call system('. /predictrl) 
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522 endif 
523 if (errorl. 1t. cerror) goto 1000 
524 enddo 
525 

526 1000 continue 
527 call weights(epoch, errorO, numinput, numlay, ni, Tnhidden, 
528 & nilmoutput. weightIH, weightHH, weightHO, wfile) 
529 write(*, *) epoch, errorl 
530 write(*, *) 'The End) 
531 end 
532 

533 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

534 subroutine weights(epoch, errorO, ninput, nl, nhidden, noutput, 
535 & wweightIH, wweightHH, wweightHO, wwfile) 
536 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

537 parameter (imax2=256, ilay=2) 
538 integer epoch 
539 real*8 wweightHH(ilay, O: imax2,0: imax2) 

540 real*8 wweightHO(O: imax2,0: imax2) 
541 real*8 wweightIH(O: imax2,0: imax2) 

542 character*13 wwfile 
543 

544 open(l, file=wwfile) 
545 write(l, *)epoch, errorO 
546 write(l, *)ninput, nl, nhidden, noutput 

547 do i=O, ninput 
548 do j=O, nhidden 
549 write(I, *)wweightIH(i, j) 
550 enddo 
551 enddo 
552 do il=l, nl 
553 do i=O, nhidden 
554 do j=O, nhidden 
555 write(I, *)wweightHH(il, i, j) 
556 enddo 
557 enddo 
558 enddo 
559 do i=O, nhidden 
560 do k=O, noutput 
561 write(1, *)wweightHO(i, k) 
562 enddo 
563 enddo 
564 close(l) 
565 return 
566 end 
567 

568 

569 

570 c sample input file for a 5-input 4-output RNN: 
571 c tl ini(ti) in2(tl) in3(tl) in4(tI) 
572 c t2 inl(t2) in2(t2) in3(t2) in4(t2) 
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573 C............................. 

574 c tn inl(tn) in2(tn) in3(tn) in4(tn) 
575 

UNIVEPSITY 


