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Abstract

Quasideterminants are a relatively new addition to the field of integrable systems. Their

simple structure disguises a wealth of interesting and useful properties, enabling solutions

of noncommutative integrable equations to be expressed in a straightforward and aes-

thetically pleasing manner. This thesis investigates the derivation and quasideterminant

solutions of two noncommutative integrable equations - the Davey-Stewartson (DS) and

Sasa-Satsuma nonlinear Schrödinger (SSNLS) equations.

Chapter 1 provides a brief overview of the various concepts to which we will refer during

the course of the thesis. We begin by explaining the notion of an integrable system, al-

though no concrete definition has ever been explicitly stated. We then move on to discuss

Lax pairs, and also introduce the Hirota bilinear form of an integrable equation, looking

at the Kadomtsev-Petviashvili (KP) equation as an example. Wronskian and Grammian

determinants will play an important role in later chapters, albeit in a noncommutative

setting, and, as such, we give an account of their widespread use in integrable systems.

Chapter 2 provides further background information, now focusing on noncommutativity.

We explain how noncommutativity can be defined and implemented, both specifically using

a star product formalism, and also in a more general manner. It is this general definition

to which we will allude in the remainder of the thesis. We then give the definition of a

quasideterminant, introduced by Gel’fand and Retakh in 1991, and provide some examples

and properties of these noncommutative determinantal analogues. We also explain how

to calculate the derivative of a quasideterminant. The chapter concludes by outlining the

motivation for studying our particular choice of noncommutative integrable equations and

their quasideterminant solutions.

We begin with the DS equations in Chapter 3, and derive a noncommutative version of

this integrable system using a Lax pair approach. Quasideterminant solutions arise in a

natural way by the implementation of Darboux and binary Darboux transformations, and,

i



ABSTRACT ii

after describing these transformations in detail, we obtain two types of quasideterminant

solution to our system of noncommutative DS equations - a quasi-Wronskian solution from

the application of the ordinary Darboux transformation, and a quasi-Grammian solution

by applying the binary transformation. After verification of these solutions, in Chapter

4 we select the quasi-Grammian solution to allow us to determine a particular class of

solution to our noncommutative DS equations. These solutions, termed dromions, are

lump-like objects decaying exponentially in all directions, and are found at the intersec-

tion of two perpendicular plane waves. We extend earlier work of Gilson and Nimmo

by obtaining plots of these dromion solutions in a noncommutative setting. The work

on the noncommutative DS equations and their dromion solutions constitutes our paper

published in 2009 [34].

Chapter 5 describes how the well-known Darboux and binary Darboux transformations in

(2+1)-dimensions discussed in the previous chapter can be dimensionally-reduced to enable

their application to (1+1)-dimensional integrable equations. This reduction was discussed

briefly by Gilson, Nimmo and Ohta in reference to the self-dual Yang-Mills (SDYM) equa-

tions, however we explain these results in more detail, using a reduction from the DS to

the nonlinear Schrödinger (NLS) equation as a specific example. Results stated here are

utilised in Chapter 6, where we consider higher-order NLS equations in (1+1)-dimension.

We choose to focus on one particular equation, the SSNLS equation, and, after deriving

a noncommutative version of this equation in a similar manner to the derivation of our

noncommutative DS system in Chapter 3, we apply the dimensionally-reduced Darboux

transformation to the noncommutative SSNLS equation. We see that this ordinary Dar-

boux transformation does not preserve the properties of the equation and its Lax pair, and

we must therefore look to the dimensionally-reduced binary Darboux transformation to

obtain a quasi-Grammian solution. After calculating some essential conditions on various

terms appearing in our solution, we are then able to determine and obtain plots of soliton

solutions in a noncommutative setting.

Chapter 7 seeks to bring together the various results obtained in earlier chapters, and also

discusses some open questions arising from our work.
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Chapter 1

Introduction

1.1 Integrable systems

To those not associated with the field, the idea of an integrable system is likely to be

unfamiliar, and even to those actively involved in the area, the precise definition is at times

difficult to pinpoint. There is no generally accepted definition of integrability, however

systems in possession of this property share a number of distinguishing features.

The term integrability, coming from integrable, brings to mind differential equations, and

indeed, an integrable system is a system of differential, difference or integro-differential

equations for which solutions can be obtained in terms of known functions or integrals. All

such systems possess characteristics such as a complete set of conservation laws, exact and

rigorous solution methods, for example the Inverse Scattering Transform, and a wealth of

explicit non-trivial solutions. Specifically, all systems known to be integrable have one or

more of the following [89]:

• solutions that can be expressed in terms of known functions or integrals

• a complete set of conservation laws

• a Lax representation (Lax pair)

• a hierarchy of commuting Hamiltonian flows

• soliton solutions

• a bi-Hamiltonian structure

• a Hirota bilinear form

1



CHAPTER 1. INTRODUCTION 2

• the Painlevé property

• Backlünd transformations.

We discuss two of the above properties later in the chapter. The Lax representation, one

of the central themes of integrable systems, exploits the fact that the time evolution of a

Lax operator (usually a differential operator) is equivalent to a given nonlinear integrable

system. This will be discussed further in Section 1.2.1. We will also discuss the Hirota

bilinear form in Section 1.2.2.

1.2 Preliminaries

We now introduce some preliminary details and concepts used throughout the thesis.

1.2.1 Lax’s method and Lax pairs

In later chapters, we make much use of the Lax pair in order to generate noncommutative

versions of various integrable equations. Indeed, the point where most discussions of

integrability begin is with the idea of a system of differential equations that can be put

into Lax pair form.

The theory of Lax pairs, a pair of linear operators depending on x and possibly t (or x, y

and possibly t in the two-dimensional case) operating on elements of a Hilbert space, was

developed by Peter Lax [55] in 1968 as a way of generalising earlier work by Gardner,

Greene, Kruskal and Miura [27] on the application of the so-called inverse scattering

method to the initial value problem of the Korteweg-de Vries (KdV) equation. After this

introductory work on the KdV equation, the question of whether the method could be

extended to other nonlinear evolution equations arose, and shortly afterwards, Zakharov

and Shabat [93] proved that the nonlinear Schrödinger (NLS) equation was one such

example. In the same year, Wadati [85] provided a method of solution for the modified KdV

(mKdV) equation, before Ablowitz, Kaup, Newell and Segur [4] developed the method for

the sine-Gordon equation. Ablowitz et al. were influential in the development of the

theory, showing that a surprisingly large number of nonlinear evolution equations could

be solved using this method. Because of the similarity between the Fourier transform

method used to solve initial value problems for linear evolution equations and the inverse

scattering method for solving initial value problems of nonlinear evolution equations, they

coined the phrase Inverse Scattering Transform (IST), the name now used throughout
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the field. The IST has come to be known as one of the most important developments in

mathematical physics in the past forty years.

Examples of other such nonlinear equations that can be re-expressed in terms of a Lax

pair and hence solved by the IST include both forms of the Kadomtsev-Petviashvili (KP)

equation [18,19,63], [1], the Davey-Stewartson (DS) equations [3], along with many others.

A common feature of these equations is the existence of soliton solutions, which have no

linear analogue.

Solitons

The discovery of the soliton (or solitary wave) was a very significant one and has allowed

much progress to be made in the field of integrable systems.

Observation of a solitary wave was first made by John Scott Russell, an engineer, in 1834

while on the bank of the Union canal near Edinburgh. As noted in his submission to

the British Association entitled ‘Report on Waves’ ten years later, Russell was watching

the motion of a boat being pulled along the canal by a pair of horses. The boat stopped

suddenly, causing a large mass of water to accumulate at its prow. This mass of water

took the form of a smooth, rounded wave and continued to travel along the canal and, to

Russell’s surprise, did not change in shape or speed as it progressed. This is the defining

characteristic of a solitary wave. Another important feature of solitary waves is that

they remain unchanged after collision or interaction with another wave of the same type,

although the waves undergo a phase shift, highlighting their nonlinear nature. This can be

seen after interaction - the two waves are not in their expected positions had they moved at

a constant speed throughout the collision. The wave of larger amplitude is moved forward

and the wave of shorter amplitude moved backward relative to their positions had the

collision been linear. This behaviour, i.e. the fact that solitary waves can interact and

remain unchanged with the exception of a phase shift, is more reminiscent of particle than

of wave behaviour, and thus led Zabusky and Kruskal [90] to term these waves ‘solitons’,

the ‘-on’ suffix used in the same vein as proton, photon and so on.

Lax’s generalisation

Here we focus on one of the simplest integrable equations, the KdV equation

ut + 6uux + uxxx = 0 (1.1)
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for u = u(x, t). This equation arises as the compatibility condition of two linear oper-

ators, the first (commonly denoted L), determined from the well-known time-dependent

Schrödinger scattering problem with eigenvalue λ, namely [2]

Lψ := ψxx + u(x, t)ψ = λψ, (1.2)

an equation widely studied in the fields of mathematics and physics, with the second

operator M governing the associated time evolution of the eigenfunctions ψ [2],

ψt := Mψ. (1.3)

Lax [55] showed that the results obtained for the KdV equation via Inverse Scattering

could be generalised and applied to many other nonlinear partial differential equations.

Differentiating (1.2) with respect to t and using (1.3) gives

Ltψ + LMψ = λtψ + λMψ, (1.4)

so that, by (1.2),

(Lt + (LM −ML))ψ = λtψ. (1.5)

Thus Lt + (LM −ML) = 0 if and only if λt = 0. We define

[L,M ] := LM −ML (1.6)

and call this the commutator of the operators L and M . Hence we have

Lt + [L,M ] = 0 (1.7)

if and only if λt = 0. Equation (1.7) is known as Lax’s equation. For a suitable choice of L

andM , Lax’s equation generates a nonlinear evolution equation. For example, defining [84]

L = ∂2
x + u, (1.8a)

M = −4∂3
x − 3u∂x − 3ux (1.8b)

where ∂x =
∂

∂x
and so on, we can show that L and M satisfy (1.7) so long as u = u(x, t)

satisfies the KdV equation (1.1), and thus the KdV equation can be thought of as the

compatibility condition of the two linear differential operators L, M given by (1.8). (It

should be mentioned here that in practise, the differential operator ∂t is often included in

one of L or M , and we then consider Lax’s equation as simply [L,M ] = 0. This can be
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seen when we consider the DS equation in Chapter 3).

If we are able to generate a nonlinear evolution equation such as the KdV equation from

the compatibility of two linear operators L and M , then equation (1.7) is called the Lax

representation of the evolution equation, while the pair of operators L, M is known as a

Lax pair.

In his paper of 1968, Lax [55] indicated how, given a linear differential operator L, a

corresponding operator M can be constructed. However, there is no guarantee that a

particular nonlinear evolution equation will have a Lax representation, nor no set method

to determine the operators L, M if such a representation does exist. Advancement in this

area has resulted either from choosing a rather arbitrary form of L and M and investigat-

ing the equation that results from their compatibility, or else by considering a particular

equation and attempting to devise the corresponding linear operators, both approaches

being highly non-trivial.

In the following chapters, we make much use of the notion of a Lax pair in order to

generate noncommutative counterparts of some well-known evolution equations.

1.2.2 Hirota bilinear form

As alluded to above, the Inverse Scattering Transform is a powerful tool used to solve a

range of initial value problems for nonlinear evolution equations. Although this method

is recognised as being one of the major advances in the field of integrable systems, the

transformation is far from trivial, requiring sophisticated analytical methods and making

strong assumptions regarding the equation under consideration. In an attempt to devise

a solution method needing far fewer assumptions and hence applicable to a wider class

of equations, Hirota devised his so-called ‘bilinear’ or ‘direct’ method which has become

a highly regarded solution mechanism leading to multi-soliton solutions and a detailed

understanding of soliton scattering. Indeed, the method is the most efficient known for

finding soliton and multi-soliton solutions of integrable equations [39]. We give only a

brief account of Hirota’s method here - a far more detailed discussion can be found in the

book [48] devoted to the subject.
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Linearisation of a particular nonlinear partial differential equation enables an exact so-

lution to be found with relative ease. However, not all such equations can be linearised,

leading Hirota to establish a method to ‘bilinearise’ nonlinear evolution equations. The

bilinear form is written in terms of a new dependent variable and of Hirota’s bilinear dif-

ferential operators. Once in this bilinear form, a perturbation method can be employed in

order to find an exact solution. This is the essence of Hirota’s direct method. Multi-soliton

solutions can easily be obtained by combining soliton solutions. It should be noted here

that the fact that an equation can be written in a bilinear form does not by itself imply

the equation is integrable.

Example - the Kadomtsev-Petviashvili (KP) equation

As an example we consider the KPII equation, a two-dimensional generalisation of the

KdV equation, namely, for u = u(x, y, t),

(ut + 6uux + uxxx)x + 3uyy = 0. (1.9)

By employing the dependent variable transformation [48]

u = 2(log f)xx, (1.10)

known as a Cole-Hopf transformation, where f = f(x, y, t) is a new dependent variable,

substituting in (1.9), integrating twice and choosing constants of integration to be zero

leaves

ffxt − fxft + ffxxxx + 3f2
xx − 4fxfxxx + 3ffyy − 3f2

y = 0. (1.11)

(We note that transformation (1.10) is the same as that used in the case of the KdV

equation, although in the KdV case, f is a function of x and t only).

Hirota noticed that the terms appearing on the left-hand side of (1.11) can be written

in a more compact way: he introduced a new binary differential operator, commonly

known as a D-operator which, when acting on a pair of functions a, b, is defined by

Dm
x D

n
yD

p
t (a · b) = (∂x − ∂x′)m

(
∂y − ∂y′

)n (∂t − ∂t′)p a(x, y, t)b(x′, y′, t′)
∣∣∣∣x′=x
y′=y
t′=t

(1.12)

for non-negative integers m, n and p, where ∂x denotes
∂

∂x
etc. It is then easy to show

that (1.11) can be written in terms of these D-operators in the form(
Dx(Dt +D3

x) + 3D2
y

)
f · f = 0. (1.13)
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This is the Hirota bilinear form of the KP equation.

In order to find soliton solutions of this bilinear equation, we introduce an arbitrary small

parameter ε and assume that the function f may be expanded in integral powers of ε. We

let

f = 1 +
∞∑
n=1

εnfn(x, y, t)

= 1 + εf1 + ε2f2 + ε3f3 + . . . . (1.14)

Clearly this expansion would have to be truncated at some point and would thus give only

an approximate solution. However, when considering a bilinear equation, an appropriate

choice of f1 is made so that the infinite expansion truncates with only a finite number of

terms, and hence gives an exact solution.

Substituting into (1.13) and collecting like powers of ε, we have

O(ε) : B(f1 · 1 + 1 · f1) = 0, (1.15a)

O(ε2) : B(f2 · 1 + f1 · f1 + 1 · f2) = 0, (1.15b)

O(ε3) : B(f3 · 1 + f2 · f1 + f1 · f2 + 1 · f3) = 0, (1.15c)

...

O(εr) : B

(
r∑

m=0

fr−m · fm

)
= 0 (1.15d)

for some positive integer r, where f0 = 1 and B denotes the bilinear operator

B = Dx(Dt +D3
x) + 3D2

y. (1.16)

The coefficient of ε gives B(f1 ·1)+B(1 ·f1) = 0 using the property of the bilinear operator

such that B(a · b+ c · d) = B(a · b) +B(c · d). Thus

(
∂x
(
∂t + ∂3

x

)
+ 3∂2

y

)
f1 = 0 (1.17)

by (1.12), since, for example, DxDt(f1 · 1) = (f1)xt, and so on. Here we assume that

(f1)x, (f1)y, (f1)t, . . .→ 0 as x→∞ [17]. It can be shown that, if f1 takes the form

f1 = exp η1, (1.18)
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where η1 = P1x+Q1y + Ω1t+ η0
1 and Ω1P1 + P 4

1 + 3Q2
1 = 0 [17], then f1 satisfies (1.17).

Here, P1, Q1 and Ω1 are constants, and η0
1 denotes a phase constant.

The coefficient of ε2 gives, after rearranging as before,

2
(
∂x
(
∂t + ∂3

x

)
+ 3∂2

y

)
f2 = −B(f1 · f1). (1.19)

It can be shown that substitution of f1 = exp η1, with η1 defined as above, into the right-

hand side of (1.19) gives zero, and hence we can choose f2 = 0. Thus the infinite series

(1.14) can be truncated as the finite sum

f = 1 + εf1, (1.20)

and by combining the parameter ε and the phase constant η0
1, we have an exact solution

of the bilinear form of the KP equation (1.13), namely

f = 1 + exp η1. (1.21)

By substituting in (1.10), we obtain the 1-soliton solution, that is

u =
P 2

1

2
sech2 η1

2
. (1.22)

In order to obtain the 2-soliton solution, we use the linear superposition principle and

choose

f1 = exp η1 + exp η2, (1.23)

where ηi = Pix+Qiy+Ωit+η0
i and ΩiPi+P 4

i +3Q2
i = 0 for i = 1, 2. We then continue in

the same manner as above to obtain a solution describing the interaction of two solitons,

namely

f = 1 + exp η1 + exp η2 + exp(η1 + η2 +A12), (1.24)

where the parameter A12 is connected to the phase-shift after the soliton collision.

In principle, we can obtain a solution describing the interaction of any number of solitons

by continuing the perturbation calculation to higher orders. We call the solution describing

the interaction of n solitons (n ≥ 1) the n-soliton solution.

Noncommutative case

The noncommutative KP equation, namely

(vt + vxxx + 3vxvx)x + 3vyy − 3[vx, vy] = 0, (1.25)
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where v = v(x, y, t) and [vx, vy] = vxvy−vyvx, was considered by Gilson and Nimmo in [36]

and is obtained via the compatibility of the same Lax pair

L = ∂2
x + vx − ∂y, (1.26a)

M = 4∂3
x + 6vx∂x + 3vxx + 3vy + ∂t (1.26b)

as is used in the commutative case, however the assumption that v and its derivatives

commute is relaxed. (Note that, as mentioned on page 4, we have included the operator ∂t

in M above). For instance, v could be thought of as a matrix, in which case multiplication

is the usual matrix multiplication. (In the case that variables do commute, differentiation

of (1.25) with respect to x and setting vx = u (and [vx, vy] = 0) leads to the familiar

commutative KP equation (1.9)). A more detailed introduction to noncommutativity will

be given in the next chapter. Here we only wish to point out that in the noncommutative

case, it is thought not possible to obtain a bilinear form of a nonlinear evolution equation

such as the KP equation in a similar manner to the commutative case. We can attempt

to use the same Cole-Hopf transformation, i.e. v = 2(log f)xx for some new dependent

variable f = f(x, y, t), where f is a noncommutative variable, for example a matrix. In

this case, we write

log f = log (1 + (f − 1))

= log(1 + g), say, where g = f − 1

= g − g2

2
+
g3

3
− . . . , (1.27)

so that

(log f)x = gx −
1
2
(gxg + ggx) +

1
3
(gxg2 + ggxg + g2gx)− . . . . (1.28)

However, we see that, with each subsequent differentiation, the resulting expressions will

become increasingly complicated, and thus it is not possible to obtain a compact form

similar to (1.11) expressible in terms of D-operators as in (1.13). Consequently, it is not

appropriate to try to obtain a bilinear form of a noncommutative integrable equation in

this manner. We are, however, able to obtain a noncommutative analogue of a bilinear

form as we shall see in later chapters.

1.2.3 Wronskian and Grammian determinants

Wronskian and Grammian determinants will play a major role in later chapters when we

derive solutions of noncommutative integrable equations. Computing solutions of non-
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linear evolution equations in terms of Wronskian or Grammian determinants, whether in

the commutative or noncommutative case, is highly advantageous as they allow solution

verification to be carried out in a fairly straightforward manner and enable the asymptotic

properties of a solution to be analysed with relative ease.

In the noncommutative case, we introduce the notion of ‘quasi-Wronskians’ and ‘quasi-

Grammians’ by extending the familiar definitions of Wronskians and Grammians in the

commutative case. These commutative definitions are described below.

Wronskian determinants

We have seen that solutions obtained using Hirota’s direct method can be written in the

form of exponential functions, and it then follows that the n-soliton solution to the evo-

lution equation under consideration can be expressed as an nth-order polynomial in n

exponentials. As we have discussed, the IST is a somewhat more complicated method

used to solve nonlinear integrable equations, where an n-soliton solution is obtained in the

form of some function of an n× n determinant [26].

However, although both methods give the required n-soliton solution, verification of this

solution by direct substitution is far from easy, as the derivatives of the soliton solution

cannot be expressed in a simple, compact manner. For example, differentiating an n × n

determinant gives rise to a sum of n determinants, which, in the case of large n, will be

a complicated expression on which to work. To overcome this problem, the notion of a

Wronskian determinant (or more often simply a ‘Wronskian’) is often introduced, and

solution verification by direct substitution can then be implemented easily.

For functions φi = φi(x, . . .) (i = 1, 2, . . . , n) of x and possibly infinitely many other

variables, the nth-order Wronskian of φ1, . . . , φn, commonly denoted W (φ1, . . . , φn), is an

n× n determinant defined by [48]

W (φ1, . . . , φn) := det
(
∂j−1
x φi

)
1≤i,j≤n

=

∣∣∣∣∣∣∣∣∣
φ

(0)
1 . . . φ

(0)
n

...
...

φ
(n−1)
1 . . . φ

(n−1)
n

∣∣∣∣∣∣∣∣∣ , (1.29)

where φ(k)
i denotes the kth x-derivative of φi(x), i.e.

φ
(k)
i = ∂kxφi (k = 0, 1, . . . , n− 1). (1.30)
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The Wronskian (1.29) is frequently written in the more compact notation introduced by

Freeman and Nimmo [25] as

W (φ1, . . . , φn) = (n̂− 1), (1.31)

where the ‘hat’ indicates the presence of consecutive derivatives up to order n− 1.

One of the main advantages of Wronskian determinants comes to light when we con-

sider their derivative: taking the Wronskian W (φ1, . . . , φn) above and differentiating once

with respect to x gives

∂xW (φ1, . . . , φn) =

∣∣∣∣∣∣∣∣∣∣∣∣

φ
(0)
1 . . . φ

(0)
n

...
...

φ
(n−2)
1 . . . φ

(n−2)
n

φ
(n)
1 . . . φ

(n)
n

∣∣∣∣∣∣∣∣∣∣∣∣
, (1.32)

where we have used the fact that a determinant with two identical rows is zero, and hence

the only contribution to the derivative of W (φ1, . . . , φn) comes from differentiating the

final row of the Wronskian. Thus the derivative of a Wronskian is a single determinant.

Further differentiations lead to a sum of determinants, however the length of the sum

depends not on the order of the determinant but on the number of differentiations carried

out. For example, considering the same Wronskian as above, we have

∂2
xW (φ1, . . . , φn) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ
(0)
1 . . . φ

(0)
n

...
...

φ
(n−3)
1 . . . φ

(n−3)
n

φ
(n−1)
1 . . . φ

(n−1)
n

φ
(n)
1 . . . φ

(n)
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣

φ
(0)
1 . . . φ

(0)
n

...
...

φ
(n−2)
1 . . . φ

(n−2)
n

φ
(n+1)
1 . . . φ

(n+1)
n

∣∣∣∣∣∣∣∣∣∣∣∣
= (n̂− 3, n− 1, n) + (n̂− 2, n+ 1), (1.33)

where we have used an extension of the compact notation introduced previously, namely

[25]

(n̂− i, n− k1, n− k2, . . . , n− ki−1),

with the ‘hat’ defined as before, and the n− kj (j = 1, 2, . . . , i− 1) denoting the (n−kj)th

derivative of the row (φ1, . . . , φn). The constant kj is not one of the integers 0, . . . , i.

The fact that differentiation of a Wronskian leads to a single determinant and not a sum of
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determinants as is obtained on differentiation of an ordinary determinant therefore results

in a far more straightforward manipulation of Wronskians.

In the general theory of partial differential equations, the functions φi, and also their

corresponding Wronskian, will depend on x and other variables y, t etc., and will satisfy

linear partial differential equations with constant coefficients in the variables x, y, t and

so on. Such linear equations can be obtained from the Lax pair of the nonlinear evolu-

tion equation under consideration and are called the dispersion relations for the system.

Thus we are always able to relate derivatives of φi with respect to y, t etc. to the deriva-

tives with respect to x, therefore enabling us to express, for example, ∂yW (φ1, . . . , φn),

∂tW (φ1, . . . , φn), and so on, in terms of W (φ1, . . . , φn), where W (φ1, . . . , φn) consists of

the functions φi and their x-derivatives only.

Example - the KP equation

To understand how the notion of a Wronskian can be put into practise, we introduce the

(commutative) KP equation (1.9) as an example. Wronskian solutions of this equation

were obtained by Freeman and Nimmo in 1983 [25], however several years previously, Sat-

suma [80] had noted that the n-soliton solution of the KdV and mKdV equations could be

expressed in Wronskian form, and Freeman, Horrocks and Wilkinson had also made ad-

vances in the area [23]. Following these notable achievements, Wronskian solutions of other

equations, for example the Boussinesq [24], sine-Gordon [26], nonlinear Schrödinger [22]

and Davey-Stewartson [22] equations were subsequently obtained.

We have already discussed, in Section 1.2.2, the solution of the KP equation (1.9) obtained

from Hirota’s direct method, which can be conveniently written in Hirota’s notation as

(
Dx(Dt +D3

x) + 3D2
y

)
f · f = 0, (1.34)

with theD-operators defined as in (1.12). Freeman and Nimmo conjectured that f could be

expressed in the form of a Wronskian, namely, for functions φi = φi(x, y, t) (i = 1, . . . , n),

f = W (φ1, . . . , φn), (1.35)

with the Wronskian determinant defined as in (1.29) and written more compactly as

f = (n̂− 1). (1.36)
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Here, the functions φi satisfy the linear partial differential equations

∂2
xφi − ∂yφi = 0, (1.37a)

4∂3
xφi + ∂tφi = 0, (1.37b)

the dispersion relations for the system. These come from considering the Lax pair (1.26)

for the KP equation in the trivial vacuum case, that is, when u = 0. We calculate the

x-derivatives of f = (n̂− 1) as before, so that

fx = (n̂− 2, n), (1.38a)

fxx = (n̂− 3, n− 1, n) + (n̂− 2, n+ 1), (1.38b)

and similarly for further x-derivatives, and use the dispersion relations (1.37) to determine

the y- and t-derivatives, namely

fy =
(
−(n̂− 3, n− 1, n) + (n̂− 2, n+ 1)

)
, (1.39)

ft = 4
(
−(n̂− 4, n− 2, n− 1, n) + (n̂− 3, n− 1, n+ 1)− (n̂− 2, n+ 2)

)
(1.40)

and so on. Substitution of the appropriate derivatives into (1.11), the expanded form of

(1.34), gives

6
(

(n̂− 3, n− 2, n− 1)(n̂− 3, n, n+ 1)

− (n̂− 3, n− 2, n)(n̂− 3, n− 1, n+ 1) + (n̂− 3, n− 2, n+ 1)(n̂− 3, n− 1, n)
)

= 0.

(1.41)

The left-hand side can be shown to be the Laplace expansion of a 2n × 2n determinant

which is equal to zero, thus verifying the Wronskian solution (1.35). Appropriate forms of

the φi can be chosen in order to generate soliton solutions, see, for example, [25] for details.

The above procedure highlights the simplicity of solution verification in the Wronskian

case, thus explaining their widespread use as a solution-generating technique.

Grammian determinants

A Grammian determinant, the determinant of a Gram or Grammian matrix (often written

‘Gramian’) and named after the Danish actuary Jørgen Pedersen Gram, is one whose
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elements are in integral form. Specifically, a Grammian determinant G := det(gij)1≤i,j≤n

is the determinant of a matrix with entries [48]

gij :=
∫ b

a
fifj dx (1.42)

for real-valued functions fi, fj defined on the closed interval [a, b].

As in the Wronskian case, the n-soliton solutions of various nonlinear evolution equa-

tions can be expressed in Grammian form. Although we have seen the advantage of the

Wronskian technique in that it possesses a simpler form of derivative than an ordinary de-

terminant, the Grammian method of solution is far more powerful. Whereas an nth-order

Wronskian (i.e. an n × n determinant taking the form of a Wronskian) consists of n − 1

derivatives of a function, say φi (i = 1, . . . , n) (thus requiring us to carry out each of these

differentiations in turn), in contrast, an nth-order Grammian determinant requires only a

single integration. Also, as we shall see later in the noncommutative case, verification of

the reality of an obtained solution is far easier in the Grammian than in the Wronskian

case.

Example - the KP equation

We again look at the example of the KP equation and show how the n-soliton solution

can be expressed in Grammian form.

Nakamura [67] was the first to consider soliton solutions of the KP equation in Gram-

mian form. He noted that the Grammian determinant is related to the determinant with

integral entries often used in the IST. However, Nakamura’s Grammian approach avoids

the need to utilise the Gel’fand-Levitan-Marchenko integral equation of inverse scattering

and instead alludes to a Jacobi identity of linear matrix algebra. This will be shown in

more detail later when we consider the DS equations and compare our work in the noncom-

mutative case with earlier work by Gilson and Nimmo in the commutative case. We will

see that verification of Gilson and Nimmo’s Grammian solution in the commutative case is

done using a Jacobi identity. Details of such identities will be discussed in the next chapter.

We once again consider the bilinear form of the KP equation (1.13), namely

(
Dx(Dt +D3

x) + 3D2
y

)
f · f = 0. (1.43)
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(Note that the bilinear form considered by Nakamura is a scaled version of the one above).

We do not give details here, however Nakamura showed that the n-soliton solution could

be expressed in the Grammian form

f = det(hij)1≤i,j≤n, (1.44)

where

hij = cij +
∫ x

−∞
φiψj dx, (1.45)

with cij arbitrary constants and φi = φi(x, y, t), ψj = ψj(x, y, t) satisfying the linear

partial differential equations

(
4∂3

x + ∂t
)
φi = 0,

(
4∂3

x + ∂t
)
ψj = 0, (1.46a)(

∂2
x − ∂y

)
φi = 0,

(
∂2
x + ∂y

)
ψj = 0. (1.46b)

A rather lengthy calculation and use of a Jacobi identity then proves that f given by (1.44)

is indeed a solution to the bilinear KP equation (1.43).

In contrast, in the noncommutative case, we find that verification of our ‘quasi-Grammian’

solution to the noncommutative DS equations does not require use of an identity - by direct

substitution into a noncommutative analogue of the bilinear form of the equations, the

solution is verified immediately. This is also the case when we verify our quasi-Wronskian

solution, so that, as was also noted by Gilson and Nimmo in [36], in some sense solution

verification is actually easier in the noncommutative than in the commutative case. This

will become apparent in Chapter 3.

1.3 Thesis outline

This thesis is organised as follows. Chapter 2 provides background information to non-

commutativity and noncommutative integrable systems, and introduces the definition of

noncommutativity that will be used throughout the thesis. We also introduce the def-

inition of a quasideterminant, one of the major tools in the study of noncommutative

integrable systems, and provide some important properties of quasideterminants. The

chapter concludes with some motivation as to why we have chosen to study our particular

choice of noncommutative integrable equations and their quasideterminant solutions.
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Chapters 3 and 4 concern the Davey-Stewartson (DS) equations in a noncommutative set-

ting. In Chapter 3, we begin by briefly detailing the physical background, and how we can

transform between two equivalent forms of the equations. Section 3.3 shows the procedure

used to derive a noncommutative version of the commutative DS equations considered by

Ablowitz and Schultz.

In Section 3.4, we introduce the concept of a Darboux transformation, an iterative pro-

cess enabling us to generate quasideterminant solutions of our system of noncommutative

DS equations. We explain how an ordinary Darboux transformation can be used in the

generation of quasi-Wronskian solutions, while a binary Darboux transformation leads to

quasi-Grammian solutions. The section that follows gives a direct verification that the ob-

tained quasideterminant solutions are indeed solutions of our system of noncommutative

DS equations.

We move on in Section 3.6 to compare our solution method with that of Gilson and Nimmo,

who obtain Grammian solutions of a system of commutative DS equations. We empha-

sise that aspects of solution verification in the noncommutative case are surprisingly more

straightforward than in the commutative case.

Chapter 4 is devoted to the calculation and depiction of a special kind of solution to the

noncommutative DS equations, namely dromions. We discover some of the complexities of

obtaining such solutions in a noncommutative setting, however the more simple dromion

solutions can be calculated and plotted with relative ease.

In Chapter 5, we detail the procedure used to carry out the dimensional reduction of

a Darboux transformation, from (2 + 1)-dimensions (two spatial and one time dimen-

sion) to (1 + 1)-dimensions (one spatial and one time dimension). We recall the (2 + 1)-

dimensional ordinary Darboux transformation in Section 5.1, and, in Section 5.2, show

how to reduce this to a (1 + 1)-dimensional transformation using the DS and nonlinear

Schrödinger (NLS) equations as examples. Section 5.3 details the dimensional reduction of

the (2 + 1)-dimensional binary Darboux transformation. We note in Section 5.5 that the

dimensionally-reduced Darboux and binary Darboux transformations must be modified

slightly in order to be applicable to the Sasa-Satsuma NLS (SSNLS) equation studied in

the next chapter.

Chapter 6 focuses on higher-order NLS equations, (1+1)-dimensional integrable equations

based on the simple NLS equation but with higher-order terms. The first section of the

chapter provides background information, and also details the higher-order NLS equations
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known to be integrable. Section 6.2 explains how one such equation, namely the SSNLS

equation, can be obtained from a reduction of the 3-component KP hierarchy.

We then proceed to discuss noncommutative versions of various integrable higher-order

NLS equations, deriving two of these via the same Lax pair approach as for the noncom-

mutative DS equations in Chapter 3. We choose to focus our attention on the noncom-

mutative SSNLS equation and, in Section 6.4, apply the dimensionally-reduced Darboux

transformation obtained in Chapter 5 to this noncommutative equation. We find that

certain properties are not preserved by the reduced ordinary Darboux transformation,

and we must therefore allude to the reduced binary Darboux transformation to obtain a

quasi-Grammian solution which can once again be directly verified. Section 6.5 details the

procedure used to obtain soliton solutions in both the commutative and noncommutative

settings.

We conclude in Chapter 7 by summarising our findings and discussing some open problems

that could be investigated in future work.



Chapter 2

Noncommutative integrable

systems

2.1 Introduction

This thesis is concerned with various integrable equations in a noncommutative setting.

In this chapter, we introduce the idea of noncommutativity and some of the many ways in

which noncommutativity can be defined. As shall be explained below, we choose to define

noncommutativity in a very general manner, and only specify the nature of the noncom-

mutativity under consideration when we calculate particular solutions of the equation of

interest.

We also introduce the idea of a quasideterminant, a representation of a determinant in

a noncommutative setting. Quasideterminants will be used extensively throughout the

thesis.

2.2 Definitions of noncommutativity

In simple terms, we say that a binary operation ∗ on a set S is commutative if

x ∗ y = y ∗ x (2.1)

for all x, y ∈ S. In other words, the order of the terms does not affect the final result. Any

operation that does not satisfy this property, for example matrix multiplication, is said to

be noncommutative.

An example of noncommutativity arises in terms of a star product, an associative but

18
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noncommutative product with a Poisson bracket. In this case, noncommutativity is defined

in terms of the coordinates over which the given integrable equation is specified, rather

than the functions present in the equation. In recent years, Hamanaka and Toda [42] have

derived a number of noncommutative integrable equations with noncommutativity defined

by a Moyal star product, for example the noncommutative KdV equation,

ut +
3
4
(ux ? u+ u ? ux) +

1
4
uxxx = 0, (2.2)

where u = u(x, t), and the noncommutative KP equation,

ut +
1
4
uxxx +

3
4
(ux ? u+ u ? ux) +

3
4
∂−1
x uyy +

3
4
[
u, ∂−1

x uy
]
?

= 0 (2.3)

for u = u(x, y, t), ∂−1
x f(x) =

∫ x
dx′ f(x′) and uxxx =

∂3u

∂x3
. This noncommutativity

of coordinates, in either the spatial coordinates or the spatial and time coordinates, is

realised by replacing the ordinary products of the fields with star products. Equations

(2.2) and (2.3) can be seen, up to suitable scaling, to reduce back to the commutative

KdV (1.1) and KP (1.9) equations respectively when ? is standard multiplication and we

assume commutativity, i.e. we assume that u ? ux = uux = ux ? u = uxu. We introduce

the definition of the star product via an example.

Example

In general, for noncommutative coordinates xk and xl, we define

[xk, xl]? := xk ? xl − xl ? xk = iθkl (2.4)

for some nonzero real constant θkl and i =
√
−1. It then follows that

θkl = −θlk. (2.5)

We consider a particular case where f and g are arbitrary functions of three variables

(coordinates) x1, x2, x3, so that f = f(x), g = g(x) for x = (x1, x2, x3). We suppose that

two of the coordinates, say x1 and x2, are noncommutative, so that

[x1, x2]? := x1 ? x2 − x2 ? x1 = iθ12 (2.6)
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and θ11 = θ22 = θ33 = 0 by (2.5). The star product of f and g is then given by [41]

f ? g(x) := exp

 3∑
k,l=1

i
2
θkl∂

(x′)
k ∂

(x′′)
l

 f(x′)g(x′′)|x′=x′′=x

= exp
(

i
2
θ12∂

(x′)
1 ∂

(x′′)
2 +

i
2
θ21∂

(x′)
2 ∂

(x′′)
1

)
f(x′)g(x′′)|x′=x′′=x

= f(x)g(x) +
i
2
θ12
(
∂1f(x)∂2g(x)− ∂2f(x)∂1g(x)

)
+O

(
(θ12)2

)
, (2.7)

where ∂(x′)
k =

∂

∂xk
′ . (In the above definition, the sum over k, l tends to be omitted from

papers). This explicit representation is known as the Groenewold-Moyal product and, in

the commutative limit θ12 → 0, reduces to the ordinary product fg.

In this thesis, we follow the same approach as that used by, for example, Gilson and

Nimmo in [36] (noncommutative KP equation), Gilson, Nimmo and Sooman in [38] (non-

commutative mKP equation) - we adopt a very general approach and do not initially

specify the nature of the noncommutativity under consideration; that is, we simply as-

sume that, for functions f, g, multiplication of f by g is noncommutative: fg 6= gf , i.e.

[f, g] 6= 0. (Here we are assuming noncommutativity of functions, rather than coordi-

nates as in the star product above. We could think of f , g as matrices for example). To

derive a particular integrable equation in this manner, we utilise the same Lax pair, L,

M , say, as in the commutative case but assume no commutativity when calculating the

commutator [L,M ]. This results in a noncommutative version of the integrable equation

under consideration, which reduces back to the commutative equation when we relax the

noncommutative condition.

For example, as we saw in Section 1.2.2, in their work on the noncommutative KP equa-

tion [36], Gilson and Nimmo consider the Lax pair

L = ∂2
x + vx − ∂y, (2.8a)

M = 4∂3
x + 6vx∂x + 3vxx + 3vy + ∂t (2.8b)

for v = v(x, y, t), and set the commutator [L,M ] = 0. Expanding and assuming no

commutativity of variables (so that vxvxx 6= vxxvx and so on) gives a noncommutative KP

equation, namely

(vt + vxxx + 3vxvx)x + 3vyy − 3[vx, vy] = 0, (2.9)
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which, by relaxing the noncommutativity condition, can be differentiatied with respect to

x to give, with vx set equal to u, the well-known commutative KP equation (1.9). We adopt

this approach in Chapter 3, where we derive a noncommutative version of the DS equations,

and in Chapter 6 when deriving noncommutative Hirota and Sasa-Satsuma NLS equations.

Although initially we choose not to specify the nature of our noncommutativity, in Chapter

4 and the later sections of Chapter 6 we make the noncommutativity more explicit by

choosing the functions in our noncommutative equations to be of matrix form. This then

enables solutions to be calculated and plotted for this particular case of noncommutativity.

2.3 Quasideterminants

Here we briefly recall some of the properties of quasideterminants. A more detailed anal-

ysis can be found in the original papers [28,29].

The notion of a quasideterminant was first introduced by Gel’fand and Retakh in [29] as a

straightforward way to define the determinant of a matrix with noncommutative entries.

Many equivalent definitions of quasideterminants exist, the simplest involving inverse mi-

nors. Let A = (aij) be an n×n matrix with entries over a usually noncommutative unitary

ring R. We denote the (i, j)th quasideterminant by |A |ij , where

|A |ij = aij − rji (A
ij)−1sij . (2.10)

Here, Aij is the (n − 1) × (n − 1) minor matrix obtained from A by deleting the ith row

and jth column (note that this matrix must be invertible), rji is the row vector obtained

from the ith row of A by deleting the jth entry, and sij is the column vector obtained from

the jth column of A by deleting the ith entry.

A common notation employed when discussing quasideterminants is to ‘box’ the expansion

element, i.e. we write

|A |11=

∣∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣∣ = a11 − a12a22
−1a21 (2.11)

to denote the (1, 1)th quasideterminant of a 2× 2 matrix A = (aij) (i, j = 1, 2). It should

be noted that the above expansion formula is also valid in the case of block matrices,

provided the matrix to be inverted is square.

Quasideterminants also provide a useful formula for the inverse of a matrix: for an invert-

ible n× n matrix A = (aij) (i, j = 1, . . . , n), the (i, j)th entry of A−1 is given by

(A−1)ij =
(
|A |ji

)−1
, (2.12)
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so that, for n = 2 and A =
(
a b
c d

)
,

A−1 =

(a− bd−1c)−1 (c− db−1a)−1

(b− ac−1d)−1 (d− ca−1b)−1

 . (2.13)

This formula is required when finding quasideterminants of larger matrices (n > 2).

When the elements of A commute, the quasideterminant |A |ij is not simply the determi-

nant of A, but rather a ratio of determinants: it is well-known that, for A invertible, the

(j, i)th entry of A−1 is

(−1)i+j
detAij

detA
.

Then, by (2.12), we can easily see that

|A |ij= (−1)i+j
detA
detAij

(2.14)

in the commutative case.

Quasideterminants possess certain row and column multiplication properties. In short,

if the ith row of a quasideterminant is left- (right)-multiplied by some element λ ∈ R

and all other rows remain unchanged, this has the effect of left- (right)-multiplying the

quasideterminant by λ. A similar result holds for columns. A more detailed explanation

of these results, along with many other results relating to quasideterminants, can be

found in [28]. Before moving on, we do however detail several important quasideterminant

identities which will be useful in later chapters.

2.3.1 Quasideterminant identities

We begin by stating the Jacobi identity for commutative determinants, which is a powerful

tool used to verify Grammian-type solutions of an integrable equation. We follow the

notation given in [48], where the Jacobi identity stated is identical to the commutative

version of the Sylvester identity given in, for example [28]. Hence we could also refer to

the Jacobi identity as a (commutative) Sylvester identity.

For i, j = 1, . . . , n, consider an n × n determinant D = det(ai,j). We denote the (j, k)th

minor of D, that is, the (n− 1)× (n− 1) determinant obtained by eliminating the jth row

and kth column of D, by D

 j

k

. Similarly, the (n− 2)× (n− 2) determinant obtained

by eliminating both the jth and kth rows and the lth and mth columns from D is denoted
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D

 j k

l m

. Then the Jacobi identity states that [48]

D

 i j

i j

D = D

 i

i

D
 j

j

−D
 i

j

D
 j

i

 . (2.15)

For example, suppose n = 3, so that

D =

∣∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣∣ . (2.16)

Taking, for instance, i = 2, j = 3 in (2.15) gives

a11

∣∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣a11 a13

a31 a33

∣∣∣∣∣∣
∣∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣∣−
∣∣∣∣∣∣a11 a12

a31 a32

∣∣∣∣∣∣
∣∣∣∣∣∣a11 a13

a21 a23

∣∣∣∣∣∣ . (2.17)

This can easily be verified by direct calculation, as can results for larger n, using a computer

package if necessary. A proof that the Jacobi identity (2.15) holds for all n can be found

in [48].

Noncommutative case

In their paper of 1991 [29], Gel’fand and Retakh define a noncommutative version of the

Sylvester identity, valid in the case of quasideterminants. We describe this result below

and shall then see that, if we reduce to the commutative case by writing each quasideter-

minant as a ratio of determinants, we arrive at the commutative Jacobi identity described

above. We will see that, perhaps surprisingly, the Sylvester identity for quasideterminants

in the noncommutative case appears more straightforward than the Jacobi identity for

determinants in the commutative case [30].

For i, j = 1, . . . , n, let A = (aij) be a matrix over a (not necessarily commutative) ring R

and, for i, j = 1, . . . , k (k ≤ n), let A0 = (aij) be a k × k submatrix of A assumed to be

invertible over R. We define, for p, q = k + 1, . . . , n, quasideterminants

cpq =

∣∣∣∣∣∣∣∣∣∣∣∣
A0

a1q

...

akq

ap1 . . . apk apq

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.18)
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Now consider the (n − k) × (n − k) matrix C = (cpq), a matrix whose entries consist of

quasideterminants. Then [29]

Theorem 1 For i, j = k + 1, . . . , n,

|A |ij=|C |ij . (2.19)

We do not give details of the proof, but outline an example. Suppose n = 3, with A = (aij)

(i, j = 1, 2, 3), and take the submatrix A0 = (a11), so that k = 1. We assume that A0 is

invertible. Then

c22 =

∣∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣∣ , c23 =

∣∣∣∣∣∣a11 a13

a21 a23

∣∣∣∣∣∣ ,
c32 =

∣∣∣∣∣∣a11 a12

a31 a32

∣∣∣∣∣∣ , c33 =

∣∣∣∣∣∣a11 a13

a31 a33

∣∣∣∣∣∣ , (2.20)

so that

C =

c22 c23

c32 c33

 =



∣∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣∣
∣∣∣∣∣∣a11 a13

a21 a23

∣∣∣∣∣∣
∣∣∣∣∣∣a11 a12

a31 a32

∣∣∣∣∣∣
∣∣∣∣∣∣a11 a13

a31 a33

∣∣∣∣∣∣


. (2.21)

Then, for example, by Theorem 1, we see that

|A |33=|C |33, (2.22)

i.e. ∣∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣a11 a13

a31 a33

∣∣∣∣∣∣−
∣∣∣∣∣∣a11 a12

a31 a32

∣∣∣∣∣∣
∣∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣∣
−1 ∣∣∣∣∣∣a11 a13

a21 a23

∣∣∣∣∣∣ . (2.23)

(It should be noted here that the notation |C |33 means that we expand C as given in

(2.21) about the entry c33, not, as in the case of |A |33, the entry in position (3, 3) (such

an entry does not exist in C, being only of size 2× 2)).

From (2.23), we see that∣∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣a11 a13

a21 a23

∣∣∣∣∣∣
−1

=

∣∣∣∣∣∣a11 a13

a31 a33

∣∣∣∣∣∣
∣∣∣∣∣∣a11 a13

a21 a23

∣∣∣∣∣∣
−1

−

∣∣∣∣∣∣a11 a12

a31 a32

∣∣∣∣∣∣
∣∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣∣
−1

.

(2.24)
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Also, choosing i = 3 and j = 2 in Theorem 1 and A0 = (a11) gives∣∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣∣
−1

=

∣∣∣∣∣∣a11 a12

a31 a32

∣∣∣∣∣∣
∣∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣∣
−1

−

∣∣∣∣∣∣a11 a13

a31 a33

∣∣∣∣∣∣
∣∣∣∣∣∣a11 a13

a21 a23

∣∣∣∣∣∣
−1

.

(2.25)

Thus, by comparing (2.24) and (2.25), we have the relation∣∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣a11 a13

a21 a23

∣∣∣∣∣∣
−1

= −

∣∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣∣
−1

, (2.26)

with others following in the same way using an appropriate choice of submatrix A0. We

will see shortly that the row and column homological relations for quasideterminants are

identical to relations of the form (2.26).

We can express (2.23) in a more useful form as∣∣∣∣∣∣∣∣∣
A B C

D f g

E h i

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣A C

E i

∣∣∣∣∣∣−
∣∣∣∣∣∣A B

E h

∣∣∣∣∣∣
∣∣∣∣∣∣A B

D f

∣∣∣∣∣∣
−1 ∣∣∣∣∣∣A C

D g

∣∣∣∣∣∣ , (2.27)

where A is an M ×M matrix (say), B,C are M × 1 columns, D,E 1 ×M rows, and

f, g, h, i single entries. Taking C to be the M × 1 zero column, g = 1 and i = 0 gives∣∣∣∣∣∣∣∣∣
A B 0

D f 1

E h 0

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣A 0

E 0

∣∣∣∣∣∣−
∣∣∣∣∣∣A B

E h

∣∣∣∣∣∣
∣∣∣∣∣∣A B

D f

∣∣∣∣∣∣
−1 ∣∣∣∣∣∣A 0

D 1

∣∣∣∣∣∣
= −

∣∣∣∣∣∣A B

E h

∣∣∣∣∣∣
∣∣∣∣∣∣A B

D f

∣∣∣∣∣∣
−1

. (2.28)

In the commutative case, we write each quasideterminant in (2.23) as a ratio of determi-

nants using (2.14), so that

a11

∣∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣a11 a13

a31 a33

∣∣∣∣∣∣
∣∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣∣−
∣∣∣∣∣∣a11 a12

a31 a32

∣∣∣∣∣∣
∣∣∣∣∣∣a11 a13

a21 a23

∣∣∣∣∣∣ , (2.29)

which we see matches the result of the Sylvester identity in (2.17).
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A result such as that obtained in (2.26) can be seen to be a homological relation as derived

by Gel’fand and Retakh in [29]. An n × n square matrix A = (aij) is considered, along

with an (n− 1)× (n− 1) minor matrix Akl (k, l = 1, . . . , n) obtained from A by removing

the kth row and lth column. Then Gel’fand and Retakh showed that quasideterminants of

the matrix A and its minors are connected by the following homological relations:

Theorem 2 (i) Row homological relations

− |A |ij . |Ail |−1
sj = |A |il . |Aij |−1

sl , s 6= i. (2.30)

(ii) Column homological relations

− |Akj |−1
it . |A |ij = |Aij |−1

kt . |A |kj , t 6= j. (2.31)

For example, choosing A to be a 3× 3 matrix with l = s = 2 and i = j = 3 in (2.30) gives

the same result as that obtained from the noncommutative Sylvester identity in (2.26).

Quasideterminant invariance properties

We now show that, similar to determinants, quasideterminants possess properties invari-

ant under elementary row and column operations. We will see in particular that we can

subtract rows from the expansion row and leave the quasideterminant unchanged.

Consider, for (n− 1)× (n− 1) matrices A,E, 1× (n− 1) row vectors F,C, (n− 1)× 1 col-

umn vectors O,B, where O denotes the zero column, and single entries g, d, the following

quasideterminant [36]:

∣∣∣∣∣∣
E O

F g

A B

C d

∣∣∣∣∣∣
nn

=

∣∣∣∣∣∣ EA EB

FA+ gC FB + gd

∣∣∣∣∣∣ = g(d− CA−1B) = g

∣∣∣∣∣∣A B

C d

∣∣∣∣∣∣ .
(2.32)

Thus we see that premultiplying the expansion row of a quasideterminant by g has the

effect of premultiplying the whole quasideterminant by g. All other operations leave the

quasideterminant unchanged. A similar invariance property exists for column operations

involving postmultiplication.

Choosing g = 1 in the above, we have∣∣∣∣∣∣
E O

F 1

A B

C d

∣∣∣∣∣∣
nn

=

∣∣∣∣∣∣A B

C d

∣∣∣∣∣∣ . (2.33)
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Now choose E to be the (n − 1) × (n − 1) identity matrix, F the 1 × (n − 1) row vector(
0 . . . 0 −1

)
and O the (n− 1)× 1 zero column vector. Consider the n× n matrix

T =


P Q

R s

R t

 , (2.34)

where P is an (n−2)× (n−1) matrix, R a 1× (n−1) row vector, Q an (n−2)×1 column

vector and s, t single entries. Then

∣∣∣∣∣∣∣∣∣
E O

F 1



P Q

R s

R t


∣∣∣∣∣∣∣∣∣
nn

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



1 0 . . . 0 0 0

0 1 . . . 0 0 0
...

...
...

...
...

0 0 . . . 0 1 0

0 0 . . . 0 −1 1




P Q

R s

R t



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
nn

=

∣∣∣∣∣∣∣∣∣
P Q

R s

0 . . . 0 t− s

∣∣∣∣∣∣∣∣∣ .

(2.35)

However, we know by (2.33) that, for E,F of size as detailed above,∣∣∣∣∣∣∣∣∣
E O

F 1



P Q

R s

R t


∣∣∣∣∣∣∣∣∣
nn

=

∣∣∣∣∣∣∣∣∣
P Q

R s

R t

∣∣∣∣∣∣∣∣∣ . (2.36)

Hence ∣∣∣∣∣∣∣∣∣
P Q

R s

R t

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
P Q

R s

0 . . . 0 t− s

∣∣∣∣∣∣∣∣∣ , (2.37)

so that the value of a quasideterminant is unaffected by subtracting rows from the ex-

pansion row, a property analogous to that of determinants. We exploit this property in

Section 3.5.1 of the next chapter.

2.3.2 Derivatives of a quasideterminant

Here we detail the method used to compute the derivative of a quasideterminant. The

results obtained will be utilised later when verifying quasideterminant solutions of the DS

equations.

We modify the approach of [36] to derive a formula for the derivative of a general quaside-

terminant of the form

Ξ =

∣∣∣∣∣∣A B

C D

∣∣∣∣∣∣ , (2.38)
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where A, B, C and D are matrices of size 2n× 2n, 2n× 2, 2× 2n and 2× 2 respectively.

(The reasoning behind choosing matrices of this size, rather than the more simple choice

of n× n, n× 1, 1× n and 1× 1 matrices, is to allow us to apply the formulae obtained to

quasideterminant solutions of the DS equations in Chapter 3. The matrix sizes can easily

be modified to ensure the results are applicable to, for example, the 3-component SSNLS

equation in Chapter 6). Using the product rule for derivatives, we see that

Ξ′ = D′ − C ′A−1B + CA−1A′A−1B − CA−1B′. (2.39)

Suppose firstly that A is a Grammian-like matrix with derivative

A′ =
k∑
i=1

EiFi (2.40)

for some integer k, where Ei (Fi) are column (row) vectors of comparable lengths. Then

(2.39) becomes

Ξ′ = D′ − C ′A−1B − CA−1B′ +
k∑
i=1

(CA−1Ei)(FiA−1B)

=

∣∣∣∣∣∣A B

C ′ D′

∣∣∣∣∣∣+
∣∣∣∣∣∣A B′

C O2

∣∣∣∣∣∣+
k∑
i=1

∣∣∣∣∣∣A Ei

C O2

∣∣∣∣∣∣
∣∣∣∣∣∣A B

Fi O2

∣∣∣∣∣∣ , (2.41)

where O2 denotes the 2×2 zero matrix ( 0 0
0 0 ). If, on the other hand, the matrix A does not

have a Grammian-like structure, we can once again write the derivative Ξ′ as a product

of quasideterminants as above by inserting the 2n× 2n identity matrix in the form

I =
n−1∑
k=0

(fk ek)(fk ek)T , (2.42)

where ek, fk denote the 2n×1 column vectors with a 1 in the (2n−2k−1)th and (2n−2k)th

row respectively and zeros elsewhere, so that (fk ek) denotes the 2n × 2 matrix with the

(2n− 2k)th and (2n− 2k − 1)th entries equal to 1 and every other entry zero.

Inserting the identity in the form (2.42), we find that, using (2.39),

Ξ′ = D′ − C ′A−1B +
n−1∑
k=0

(
CA−1fkek(fkek)TA′A−1B − CA−1fkek(fkek)TB′

)
. (2.43)

To simplify the above expression, note that

(fkek)TA′ =

(A2n−2k−1)′

(A2n−2k)′

 , (2.44)
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where Ak denotes the kth row of the matrix A, and similarly for (fkek)TB′. Hence

n−1∑
k=0

(
CA−1fkek(fkek)TA′A−1B − CA−1fkek(fkek)TB′

)
=
n−1∑
k=0

(CA−1fkek)

(A2n−2k−1)′

(A2n−2k)′

A−1B −

(B2n−2k−1)′

(B2n−2k)′

 ,

(2.45)

and thus (2.43) gives

Ξ′ =

∣∣∣∣∣∣A B

C ′ D′

∣∣∣∣∣∣+
n−1∑
k=0

∣∣∣∣∣∣A fk ek

C O2

∣∣∣∣∣∣ .
∣∣∣∣∣∣∣∣∣∣

A B

(A2n−2k−1)′

(A2n−2k)′
(B2n−2k−1)′

(B2n−2k)′

∣∣∣∣∣∣∣∣∣∣
. (2.46)

We can also obtain a column version of the derivative formula by inserting the identity in

a different position, i.e. (2.43) is now written as

Ξ′ = D′ − C ′A−1B′ +
n−1∑
k=0

(
CA−1A′fkek(fkek)TA−1B − C ′fkek(fkek)TA−1B

)
. (2.47)

We calculate that

A′(fkek) =
(
(A2n−2k−1)′ (A2n−2k)′

)
, (2.48)

where Ak denotes the kth column of the matrix A, and similarly for C ′(fkek). Thus we

can express Ξ′ as

Ξ′ =

∣∣∣∣∣∣A B′

C ′ D′

∣∣∣∣∣∣+
n−1∑
k=0

∣∣∣∣∣∣∣
A (A2n−2k−1)′ (A2n−2k)′

C (C2n−2k−1)′ (C2n−2k)′

∣∣∣∣∣∣∣ .
∣∣∣∣∣∣ A B

(fkek)T O2

∣∣∣∣∣∣ . (2.49)

2.4 Motivation

As mentioned in earlier sections, noncommutative integrable systems have attracted con-

siderable attention in recent years. Much work has been carried out on the derivation

of such equations with noncommutativity defined in terms of a star product, for exam-

ple by Dimakis and Müller-Hoissen [14], Wang and Wadati [87], Paniak [75], Hamanaka

and Toda [42], Hamanaka [41], and others. However, the idea of taking the definition of

noncommutativity to be very general at first is a relatively new one, with Gilson, Nimmo

and their collaborators the major players in this field, beginning with work on the non-

commutative KP equation in 2007. They also obtained quasideterminant solutions of the

equation via Darboux and binary Darboux transformations. Similar work soon followed,
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with Gilson, Nimmo and Sooman carrying out an identical procedure on a noncommuta-

tive modified KP equation [38], and Li and Nimmo on a non-abelian Toda lattice [59] and

a noncommutative semi-discrete Toda equation [60].

It therefore seems natural to continue in this vein and attempt to obtain similar noncommu-

tative generalisations and quasideterminant solutions of other, somewhat more complex,

integrable equations. The (2 + 1)-dimensional DS equations are a natural place to begin,

as results obtained can be compared and contrasted to those of Gilson and Nimmo in the

commutative case in [35], and can also be reduced to results valid for the noncommutative

NLS equation in (1 + 1)-dimension. The challenges of extending to a noncommutative

setting soon become apparent, particularly when attempting to plot solutions such as

dromions - the choice of parameters is highly non-trivial.

Continuing on a similar theme, another natural step is to revert to a (1 + 1)-dimensional

situation and, rather than considering the relatively simple NLS equation, whose quaside-

terminant solutions can easily be obtained by reduction of those solutions obtained for

the DS equations, we consider higher-order NLS equations in a noncommutative setting,

the Sasa-Satsuma equation being one particular example. Gilson, Hietarinta, Nimmo and

Ohta have considered soliton solutions of this equation in the commutative case [33], and

hence we take their work one step further by extending to a noncommutative situation.



Chapter 3

The Davey-Stewartson equations

3.1 Background

The Davey-Stewartson (DS) equations have become a topic of much interest in recent years.

Derived by Davey and Stewartson in 1974 [13], the system is nonlinear in two spatial and

one time dimension, and describes the evolution of a three-dimensional wave-packet with

slowly varying amplitude on water of finite depth. In his series of papers beginning in

1965, Whitham [88] began to develop a theory to model such an evolution, describing

the motion in terms of a phase and an amplitude variable, with further extensions to the

theory subsequently proposed by Lighthill [61] and Hayes [45].

Whitham’s work indicated that the evolution of these wave-packets is determined by either

a hyperbolic or an elliptic equation. However, his theory does not give any indication as

to what exactly is meant by a slow variation in amplitude; it is usual in such a case to

introduce a small parameter, say ε, with the idea of a slow amplitude variation being

explicitly governed by this parameter. Whitham’s work does not allude to a parameter of

this kind, which led Davey and Stewartson to focus on the so-called method of multiple

scales, whereby a small parameter ε is included in the expansion. In short, this multiple

scales method is used to find an approximate solution to a perturbation problem for

both small and large values of the independent variables. The technique replaces the

independent variables with fast-scale and slow-scale variables and then considers these

new variables to be independent.

In their paper of 1974, Davey and Stewartson showed that the motion of the wave-packet

is described by two partial differential equations (although if the wave-packet takes the

form of an oblique plane wave (a wave in a number of planes), the two equations can be

31
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converted into a single equation). They considered an area of water with depth h, and

used a standard Cartesian coordinate system (x, y, z), with the origin O on the surface of

the water and the z-axis pointing vertically upwards, so that the ‘bed’ of the water area is

given by z = −h and the xy-plane lies on the water surface. At time t = 0, a progressive

wave is formed such that the height of the water’s surface is raised to z = ζ, say.

At later times t > 0, a velocity potential φ(x, y, z, t) is such that

∂2
xφ+ ∂2

yφ+ ∂2
zφ = 0 for − h < z < ζ, (3.1)

with suitable boundary conditions. The progressive wave can be assumed to have a solution

of the form

φ =
∞∑

n=−∞
φnE

n, ζ =
∞∑

n=−∞
ζnE

n, (3.2)

where E = exp[i(kx − ωt)], with k denoting the wavenumber and ω the frequency of the

progressive wave. The parameters φn and ζn are defined by

φn =
∞∑
j=n

εjφnj , ζn =
∞∑
j=n

εjζnj , (3.3)

and are such that, for n ≥ 0, φ−n = φ∗n, ζ−n = ζ∗n, with the φnj functions of x, y, z, t and

ζnj functions of x, y, t. Substituting the expansion (3.2) for φ into the partial differential

equation (3.1) with appropriate boundary conditions (the expression for ζ in (3.2) is needed

to satisfy the boundary conditions) and utilising the method of multiple scales, the well-

known Davey-Stewartson equation is obtained, which can be written as

i∂τA+ λ∂2
ξA+ µ∂2

ηA = ν |A |2A+ ν1AQ, (3.4a)

λ1∂
2
ξQ+ µ1∂

2
ηQ = κ1∂

2
η |A |2 . (3.4b)

Here, A and Q are functions of ξ, η and τ , which in turn are functions of x, y and t, while

λ, λ1, µ, µ1, ν, ν1, κ1 depend on various factors such as the wavenumber k, frequency

ω, acceleration due to gravity, etc. A full account of the derivation can be found in the

original paper [13] by Davey and Stewartson.

Various equivalent forms of the above system of equations are known, and can easily be

obtained by suitable scaling of variables. In the next section, we show how to carry out a

transformation between two such systems.
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3.2 Transformation between equations

Shortly we will derive a noncommutative version of the DS equations by considering the

Lax pair of a system of commutative DS equations given by Ablowitz and Schultz in [7],

namely, for functions q = q(x, y, t), r = r(x, y, t),

iqt = − 1
2σ2

(
qxx + σ2qyy

)
+ iq(A1 −A2), (3.5a)

irt =
1

2σ2

(
rxx + σ2ryy

)
− ir(A1 −A2), (3.5b)

where A1, A2 are such that

(∂x + σ∂y)A1 = − i
2σ2

(∂x − σ∂y)(qr), (3.6a)

(∂x − σ∂y)A2 =
i

2σ2
(∂x + σ∂y)(qr) (3.6b)

and r = ±q∗ (q∗ denotes the complex conjugate of q). The constant σ is chosen to be −1 or

i for the DSI (hyperbolic case) and DSII (elliptic case) equations respectively. Only the DSI

equations give rise to the dromion solutions studied in the next chapter. Before discussing

these equations in a noncommutative setting, we firstly highlight a correspondence between

the above commutative DSI equations (σ = −1) and the commutative DSI equations

considered by Gilson and Nimmo in [35], namely

iut + uXX + uY Y − 4u |u |2 − 2uv = 0, (3.7a)

vXY + (∂X + ∂Y )2 |u |2 = 0, (3.7b)

for functions u = u(X,Y, t), v = v(X,Y, t). (Gilson and Nimmo investigate only the DSI

case as this leads to the dromion solutions considered later in their paper). We define a

variable transformation from x, y to X,Y by

x =
1
2
(X + Y ), (3.8a)

y =
1
2
(X − Y ), (3.8b)

so that

∂x = ∂X + ∂Y , (3.9a)

∂y = ∂Y − ∂X . (3.9b)

Then, in the DSI case, (3.5a) and (3.5b) give, on setting q = u,

iut + uXX + uY Y − iu(A1 −A2) = 0 (3.10)
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and its corresponding complex conjugate. By comparing with (3.7a), we require

A1 −A2 = −2i(2|u|2 + v), (3.11)

which transforms (3.10) to the first of Gilson and Nimmo’s equations (3.7a).

We now apply the operation −1
4(∂x+∂y) to (3.6a) and −1

4(∂x−∂y) to (3.6b). Subtracting

the resulting equations and implementing the same variable transformation (3.8) as be-

fore, with q = u and A1−A2 defined as in (3.11), gives the second of Gilson and Nimmo’s

equations (3.7b).

In this chapter, we have chosen to work with the DS equations and corresponding Lax

pair as given by Ablowitz and Schultz in [7]. Our noncommutative DS system obtained

from this Lax pair was found to match exactly the quantum version of the DS equations

considered in a later paper by Ablowitz, Schultz and Bar Yaacov [81].

3.3 Noncommutative Davey-Stewartson equations

We now derive a system of noncommutative DS equations, a topic of considerable interest

in recent years. Hamanaka [40] derived a system with noncommutativity defined in terms

of the Moyal star product, while more recently, Dimakis and Müller-Hoissen [16] deter-

mined a similar system from a multicomponent KP hierarchy.

The strategy that we employ here, whereby we introduce noncommutativity into an in-

tegrable nonlinear wave equation without destroying the solvability, has previously been

considered by others in the field, for example by Lechtenfeld and Popov [57], and by Lecht-

enfeld, Popov et al. [56], where a noncommutative version of the sine-Gordon equation is

discussed.

As mentioned in the previous chapter, we are not concerned with the nature of the non-

commutativity, and derive a system of noncommutative DS equations in the most general

manner by utilising the same Lax pair as in the commutative case but assuming no com-

mutativity of the dependent variables. This method has also been employed by Gilson

and Nimmo in [36] for the case of the noncommutative KP equation.
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The Lax pair for the (commutative) DS equations (3.5) is given by [7]

ϕx = Λϕ− σJϕy, (3.12a)

ϕt = Aϕ− i
σ
Λϕy + iJϕyy, (3.12b)

where ϕ = ϕ(x, y, t) is a 2× 2 solution matrix, J and Λ are the matrices

J =

1 0

0 −1

 , Λ =

0 q

r 0

 (3.13)

for q, r functions of x, y and t such that r = ±q∗, and A is a 2× 2 matrix given by

A =

 A1
i

2σ2
(qx − σqy)

− i
2σ2

(rx + σry) A2

 , (3.14)

with σ = −1 or σ = i for the DSI and DSII equations respectively. The Lax pair (3.12)

can be expressed in an equivalent form as

L = ∂x − Λ+ σJ∂y, (3.15a)

M = ∂t −A+
i
σ
Λ∂y − iJ∂yy. (3.15b)

By setting the commutator [L,M ] of this Lax pair equal to zero and assuming no commu-

tativity of variables, we obtain the compatibility condition

−Ax + [Λ,A] + Λt − σJAy +
i
σ
ΛΛy − iJΛyy = 0, (3.16a)

i
σ
Λx + σ[A, J ]− iJΛy = 0. (3.16b)

The second equation (3.16b) is satisfied automatically on equating matrix entries, while

from (3.16a), we generate a system of noncommutative Davey-Stewartson (ncDS) equa-

tions,

iqt = − 1
2σ2

(
qxx + σ2qyy

)
+ i(A1q − qA2), (3.17a)

irt =
1

2σ2

(
rxx + σ2ryy

)
− i(rA1 −A2r), (3.17b)

(∂x + σ∂y)A1 = − i
2σ2

(∂x − σ∂y)(qr), (3.17c)

(∂x − σ∂y)A2 =
i

2σ2
(∂x + σ∂y)(rq). (3.17d)

(Note that, taking a dimensional reduction ∂y = 0 gives

±2iqt = −qxx + 2qrq, (3.18)
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which, on scaling, matches the noncommutative NLS equation obtained in [15] (where the

* multiplication is taken to be ordinary multiplication). To revert to the commutative

case, we write qrq = ±qq∗q as ± | q |2 q∗). Our results in this chapter and the next can

easily be reduced to those valid for the noncommutative NLS equation by removing all

dependence on one of the spatial variables x or y.

There is one important factor that we must consider in the noncommutative case, namely

our definition of the matrix Λ in (3.13). In the commutative case, where we consider q

and r to be scalar objects, we see that

Λ† =


Λ for r = q∗,

−Λ for r = −q∗,
(3.19)

where Λ† denotes the Hermitian conjugate (conjugate transpose) of Λ. In the noncommu-

tative case, the conditions (3.19) must be preserved. If we were to take the matrix Λ as in

(3.13) and think of q, r as noncommutative objects, for example matrices, with r = ±q∗,

we find that (3.19) does not hold. Instead, we define Λ to be the same matrix as in (3.13),

however we now define r = ±q†. (Note that we could equally well have used this definition

of r in the commutative case, since, for scalar q, q† = q∗). This does not affect our system

of ncDS equations (3.17), so long as we bear in mind that r = ±q† in this case.

For notational convenience, and to avoid the use of identities later when verifying so-

lutions, we introduce a 2 × 2 matrix S = (sij) (i, j = 1, 2) such that Λ = [J, σS] [58],

thus

S =

 s11
q

2σ
− r

2σ
s22

 . (3.20)

Additionally, by setting

A =
i
σ
Sx − iJSy, (3.21)

(3.16b) is automatically satisfied, and (3.16a) becomes

− i
σ
Sxx + iJSSx − iSJSx − iSxJS + iSxSJ + iσJSyJS

− iσJSySJ + σJSt − σStJ − iσJSSyJ + iσSJSyJ + iσJSyyJ = 0. (3.22)

Note that this is essentially the noncommutative analogue of the Hirota bilinear form (see

for example [48]) of the DS equations.
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3.4 Darboux transformations

3.4.1 Ordinary Darboux transformations

A Darboux transformation, named after the French mathematician Jean-Gaston Darboux,

is an iterative process and a way of generating new solutions of a given integrable equa-

tion. One of the major attractions of Darboux transformations as a solution-generating

technique is that such a transformation can be applied even to the trivial solution of the

equation under consideration and a new non-trivial solution generated. By repeating this

process, a whole family of new non-trivial solutions can be constructed.

We look at the particular example of the system of ncDS equations (3.17) and outline how

such a Darboux transformation can be implemented.

Consider the Lax operators L, M defined as in (3.15), and suppose that T is the set of

zero-eigenvalue, eigenfunctions of L, M , i.e.

T = {θ : L(θ) = M(θ) = 0}. (3.23)

As discussed previously, setting the commutator [L,M ] equal to zero and assuming no

commutativity of variables generates the system of ncDS equations (3.17). We take a

known solution q of this system, for example q = 0, and apply a Darboux transformation,

to be defined later. This transformation maps the original Lax operators L, M to some

new operators L̃, M̃ , with eigenfunctions

T̃ = {θ̃ : L̃(θ̃) = M̃(θ̃) = 0}. (3.24)

These operators are identical to the operators L, M in (3.15) but with Λ replaced by Λ̃

and A by Ã, where

Λ̃ =

0 q̃

r̃ 0

 and Ã =

 Ã1
i

2σ2
(q̃x − σq̃y)

− i
2σ2

(r̃x + σr̃y) Ã2

 . (3.25)

(We define J̃ = J since J is a constant matrix). The operators L, M are covariant under

the action of the Darboux transformation, so that, by setting the commutator of L̃ and

M̃ equal to zero and assuming no commutativity, we generate the same system (3.17) as

before, but with q replaced by q̃ and so on. This new system of equations has solution

q̃, so that, by applying a Darboux transformation, we have generated a new solution of

our original system of ncDS equations (3.17), i.e. q̃ satisfies the system (3.17) whenever

q does. It therefore follows that the Darboux transformation induces an auto-Bäcklund
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transformation q → q̃ for the original system (3.17). Clearly the above process can be

repeated many times, allowing us to obtain a family of solutions of this original system of

equations.

The Darboux transformation, G, is defined in terms of θ as

Gθ := ∂y − θyθ−1 = θ∂yθ
−1, (3.26)

and if φ is a generic eigenfunction of the original Lax operators L, M , then φ̃ = Gθ(φ) is

a generic eigenfunction of the transformed operators L̃, M̃ .

We now show how this transformation can be iterated in a natural way. We mainly

follow the notation of [70], and denote L by L[1], M by M[1] to indicate the starting levels.

Iteration

Step 1 Let θ1, . . . , θn be eigenfunctions of the original Lax operators L[1] = L, M[1] = M ,

and define φ[1] = φ to be a generic (arbitrary) eigenfunction of L[1], M[1]. We choose one

eigenfunction, say θ1, to define a Darboux transformation to a pair of new Lax operators

L[2], M[2], and relabel this eigenfunction as θ1[1] to indicate that it is an eigenfunction of

the original Lax operators L[1], M[1]. Our assumption is that θ1[1] is invertible. Then a

Darboux transformation is defined as

Gθ1[1] = ∂y − θ(1)
1[1]θ

−1
1[1], (3.27)

where θ(1)
1[1] denotes one differentiation of θ1[1] with respect to y, and the new Lax pair

L[2] = Gθ1[1]L[1]G
−1
θ1[1]

, M[2] = Gθ1[1]M[1]G
−1
θ1[1]

has generic eigenfunction

φ[2] := Gθ1[1](φ) = φ(1) − θ(1)
1[1]θ

−1
1[1]φ. (3.28)

(Note here that since φ is an eigenfunction of L[1] = L, M[1] = M , we think of φ as a 2× 2

matrix. In a similar manner, each θi (i = 1, . . . , n) is considered to be a 2×2 matrix. Later,

when we investigate dromion solutions in a noncommutative (matrix) setting, we think of

each entry of θi as having matrix form). In particular, this Darboux transformation maps

the eigenfunction θ1 = θ1[1] to Gθ1[1]
(
θ1[1]

)
:= θ1[2], which is zero (since Gθ1[1]

(
θ1[1]

)
= 0

by definition), and θ2, . . . , θn to θ2[2], . . . , θn[2] respectively, where, for i = 2, . . . , n,

θi[2] = φ[2] |φ→θi
, (3.29)
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i.e. we define the transformed functions θ2[2], . . . , θn[2] in terms of the original (known)

eigenfunctions θ2, . . . , θn of L[1],M[1]. It is easy to show that these transformed functions

are eigenfunctions of the transformed operators L[2],M[2].

Step 2 We now select the eigenfunction θ2[2] to define a Darboux transformation from

the Lax operators L[2],M[2] to some new operators L[3] = Gθ2[2]L[2]G
−1
θ2[2]

and M[3] =

Gθ2[2]M[2]G
−1
θ2[2]

with generic eigenfunctions

φ[3] = Gθ2[2]
(
φ[2]

)
= φ

(1)
[2] − θ

(1)
2[2]θ

−1
2[2]φ[2]. (3.30)

In particular, this Darboux transformation maps the eigenfunction θ2[2] to Gθ2[2]
(
θ2[2]

)
:=

θ2[3], which is zero (since Gθ2[2]
(
θ2[2]

)
= 0 by definition), and θ3[2], . . . , θn[2] to θ3[3], . . . , θn[3]

respectively, where, for i = 3, . . . , n,

θi[3] = φ[3] |φ→θi
. (3.31)

...

Step n (n ≥ 1) We select the eigenfunction θn[n] to define a Darboux transformation

from the Lax operators L[n],M[n] to some new operators L[n+1] = Gθn[n]
L[n]G

−1
θn[n]

and

M[n+1] = Gθn[n]
M[n]G

−1
θn[n]

with generic eigenfunctions

φ[n+1] = Gθn[n]

(
φ[n]

)
= φ

(1)
[n] − θ

(1)
n[n]θ

−1
n[n]φ[n]. (3.32)

In particular, this Darboux transformation maps the eigenfunction θn[n] to Gθn[n]

(
θn[n]

)
,

which is zero as before.

From now on, we choose to simplify our notation slightly, and denote θ1[1] by θ, and, in

general, θk[k] by θ[k] (k = 2, . . . , n). (Note that we have introduced a shorthand notation

only for θk[k] since only terms of this form appear in our iterated expressions - terms of

the form θi[k], say (k 6= i), do not appear). We thus illustrate the Darboux transformation

pictorially as

L[1]
Gθ−−−−→ L[2]

Gθ[2]−−−−→ L[3] −−−−→ . . . −−−−→ L[n]

Gθ[n]−−−−→ L[n+1] ,

θ

where L[2] corresponds to L̃. Darboux summed up one step of this iterative process in a

theorem, applicable to a broad class of operators in a noncommutative setting:
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Theorem 3 (Darboux [12], Matveev [64]) Let

L[1] = ∂x +
N∑
j=0

bj∂
j
y, (3.33)

where bj ∈ R, a ring. Let θ be an invertible eigenfunction of L[1], so that L[1](θ) = 0, and

define Gθ = ∂y − θyθ−1. Then

L[2] = GθL[1]G
−1
θ (3.34)

has the same form as L[1]. In particular, for any eigenfunction φ[1] = φ of L[1],

φ[2] = Gθ(φ) (3.35)

is an eigenfunction of L[2].

The proof of this theorem is straightforward, if a little tedious - we write Gθ in the form

θ∂yθ
−1 and substitute this, along with the definition of L[1], into L[2] = GθL[1]G

−1
θ . Com-

pletion of the proof requires us to use the fact that θ is an eigenfunction of L[1], i.e.

L[1](θ) = 0.

In the case of the DS Lax operator L[1] = L , we take the bj to be 2× 2 matrices, so that

b0 = −Λ and b1 = σJ . A similar theorem holds for the operator M[1] = M - with a general

operator M of the form M = ∂t +
∑N

j=0 cj∂
j
y, we take c0 = −A, c1 =

i
σ
Λ and c2 = −iJ in

the DS case.

Although Darboux’s theorem gives a connection between the eigenfunctions of the trans-

formed Lax operators and those of the original operators, it does not attempt to give a

connection between the coefficients of the transformed equation and those of the original

equation. This requires use of the formulae L[2] = GθL[1]G
−1
θ , i.e. L[2]Gθ = GθL[1], and

similarly M[2]Gθ = GθM[1] which will be outlined in the next section.

Quasi-Wronskian form

By defining Θ = (θ1 . . . θn) and recalling that φ[1] = φ, it can be shown that the expression

for φ[n+1] in (3.32) can be written as a quasideterminant, namely

φ[n+1] =

∣∣∣∣∣∣∣∣∣∣∣∣

Θ φ
...

...

Θ(n−1) φ(n−1)

Θ(n) φ(n)

∣∣∣∣∣∣∣∣∣∣∣∣
, (3.36)
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where Θ(k), φ(k) denote the kth y-derivatives of Θ and φ respectively (k = 0, . . . , n). (Re-

call that φ and each θi (i = 1, . . . , n) are 2 × 2 matrices). Thus we have expressed the

formula for the (n + 1)th generic eigenfunction φ[n+1] in terms of only the known eigen-

functions θ1, . . . , θn and φ of the ‘seed’ Lax pair L[1] = L, M[1] = M . The Wronskian-like

quasideterminant in (3.36) is termed a quasi-Wronskian, see [36], and the proof of (3.36)

is by induction on n as follows.

The expression is clearly true for n = 1, since

φ[2] =

∣∣∣∣∣∣ θ1 φ

θ
(1)
1 φ(1)

∣∣∣∣∣∣
= φ(1) − θ(1)

1 θ−1
1 φ, (3.37)

which holds by (3.28) since θ1[1] = θ1. Now assume that (3.36) is true for some fixed n ≥ 1.

We prove the expression is also true for n+ 1, i.e. we prove that

φ[n+1+1] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ θn+1 φ
...

...
...

Θ(n−1) θ
(n−1)
n+1 φ(n−1)

Θ(n) θ
(n)
n+1 φ(n)

Θ(n+1) θ
(n+1)
n+1 φ(n+1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.38)

We have

φ[n+1+1] = φ
(1)
[n+1] − θ

(1)
n+1[n+1]θ

−1
n+1[n+1]φ[n+1]

≡ φ(1)
[n+1] − θ

(1)
[n+1]θ

−1
[n+1]φ[n+1] (3.39)

by (3.32) on replacing n by n+1. Using the formula for the derivative of a quasideterminant

(2.46), it can be seen that

φ
(1)
[n+1] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ φ
...

...

Θ(n−2) φ(n−2)

Θ(n−1) φ(n−1)

Θ(n+1) φ(n+1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ V φ[n+1], (3.40)
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where

V =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ O2

...
...

Θ(n−2) O2

Θ(n−1) I2

Θ(n) O2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.41)

and O2, I2 denote the 2 × 2 zero and identity matrices respectively. In a similar manner

to the above, since θk[k] = φ[k]|φ→θk
for k = 2, . . . , n, it follows that

θ
(1)
n+1[n+1] ≡ θ

(1)
[n+1] =

∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ θn+1

...
...

Θ(n−1) θ
(n−1)
n+1

Θ(n+1) θ
(n+1)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣
+ V θ[n+1] (3.42)

on replacing φ[n+1] by θn+1[n+1] ≡ θ[n+1] in (3.40). Thus (3.39) is

φ[n+1+1] =

∣∣∣∣∣∣∣∣∣∣∣∣

Θ φ
...

...

Θ(n−1) φ(n−1)

Θ(n+1) φ(n+1)

∣∣∣∣∣∣∣∣∣∣∣∣
+ V φ[n+1] −



∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ θn+1

...
...

Θ(n−1) θ
(n−1)
n+1

Θ(n+1) θ
(n+1)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣
+ V θ[n+1]


θ−1
[n+1]φ[n+1]

=

∣∣∣∣∣∣∣∣∣∣∣∣

Θ φ
...

...

Θ(n−1) φ(n−1)

Θ(n+1) φ(n+1)

∣∣∣∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ θn+1

...
...

Θ(n−1) θ
(n−1)
n+1

Θ(n+1) θ
(n+1)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ θn+1

...
...

Θ(n−1) θ
(n−1)
n+1

Θ(n) θ
(n)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣

−1

.

∣∣∣∣∣∣∣∣∣∣∣∣

Θ φ
...

...

Θ(n−1) φ(n−1)

Θ(n) φ(n)

∣∣∣∣∣∣∣∣∣∣∣∣
by the inductive hypothesis and the fact that θk[k] = φ[k]|φ→θk

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ θn+1 φ
...

...
...

Θ(n−1) θ
(n−1)
n+1 φ(n−1)

Θ(n) θ
(n)
n+1 φ(n)

Θ(n+1) θ
(n+1)
n+1 φ(n+1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.43)

by the noncommutative Sylvester identity (2.27). This completes the proof.

3.4.2 Quasi-Wronskian solution of ncDS using Darboux transformations

We now determine the effect of the Darboux transformation Gθ1[1] = ∂y − θ(1)
1[1]θ

−1
1[1] on the

Lax operator L[1] = L given by (3.15a), with θ1, . . . , θn = θ1[1], . . . , θn[1] eigenfunctions of
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L, and θ1[1] chosen to iterate the Darboux transformation. As before, we denote θ1[1] by

θ, and, in general, θk[k] by θ[k] (k = 2, . . . , n). Corresponding results hold for the operator

M[1] = M given by (3.15b). The operator L[1] = L is transformed to a new operator L[2],

say, where

L[2]Gθ = GθL, (3.44)

giving

− θxyθ−1 + θyθ
−1θxθ

−1 − σJθyyθ−1 + σJθyθ
−1θyθ

−1 + Λ[2]θyθ
−1 + Λy − θyθ−1Λ = 0

(3.45a)

and

− σJθyθ−1 − Λ[2] + Λ+ θyθ
−1σJ = 0. (3.45b)

From (3.45b), we see that Λ[2] = Λ−σ[J, θyθ−1]. Substituting for Λ[2] in the left-hand side

of (3.45a) gives

−
(
θxy − θyθ−1θx + σJθyy − Λθy − σθyθ−1Jθy − Λyθ + θyθ

−1Λθ

)
θ−1

= −
(

(∂y − θyθ−1)(θx − Λθ + σJθy)
)
θ−1

= −(GθLθ)θ−1, (3.46)

which is clearly equal to zero since θ is an eigenfunction of L. Thus (3.45a), (3.45b)

are satisfied with Λ[2] = Λ − σ[J, θyθ−1]. Since Λ = [J, σS] from (3.20) and therefore

Λ[2] = [J, σS[2]], we have

S[2] = S − θyθ−1. (3.47)

After n repeated applications of the Darboux transformation Gθ,

S[n+1] = S[n] − θ
(1)
[n] θ

−1
[n] , (3.48)

where S[1] = S, θ[1] = θ = θ1[1] and θ[k] = θk[k] (k = 2, . . . , n), that is

S[n+1] = S −
n∑
i=1

θ
(1)
[i] θ

−1
[i] . (3.49)
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We express S[n+1] in quasideterminant form as

S[n+1] = S +

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ O2

...
...

Θ(n−2) O2

Θ(n−1) I2

Θ(n) O2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= S + V, (3.50)

where Θ(k) denotes the kth y-derivative of Θ (k = 0, . . . , n) and V is defined as in (3.41).

It should be noted here that each of the entries in the above quasideterminant solution is

not a single entry but a 2× 2 matrix (since the θi are eigenfunctions of L, M).

The proof that S[n+1] can be expressed in the quasideterminant form (3.50) is by induction

on n: for n = 1, we have

S[2] = S +

∣∣∣∣∣∣ θ1 I2

θ
(1)
1 O2

∣∣∣∣∣∣
= S − θyθ−1 since θ1 = θ1[1] = θ, (3.51)

which is true by (3.47). We now make the assumption that (3.50) is true for some fixed

n ≥ 1, and prove that

S[n+1+1] = S +

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ θn+1 O2

...
...

...

Θ(n−1) θ
(n−1)
n+1 O2

Θ(n) θ
(n)
n+1 I2

Θ(n+1) θ
(n+1)
n+1 O2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.52)

We have

S[n+1+1] = S[n+1] − θ
(1)
[n+1]θ

−1
[n+1] (3.53)
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by (3.48) on replacing n by n+1. Using the formula for the derivative of θ[n+1] ≡ θn+1[n+1]

obtained in (3.42), it follows that

S[n+1+1] = S[n+1] −



∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ θn+1

...
...

Θ(n−1) θ
(n−1)
n+1

Θ(n+1) θ
(n+1)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣
+ V θ[n+1]


θ−1
[n+1]

= S + V −

∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ θn+1

...
...

Θ(n−1) θ
(n−1)
n+1

Θ(n+1) θ
(n+1)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣
θ−1
[n+1] − V (3.54)

by the inductive hypothesis. Then, using the fact that θ[k] ≡ θk[k] = φ[k]|φ→θk
, we have

S[n+1+1] = S −

∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ θn+1

...
...

Θ(n−1) θ
(n−1)
n+1

Θ(n+1) θ
(n+1)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ θn+1

...
...

Θ(n−1) θ
(n−1)
n+1

Θ(n) θ
(n)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣

−1

= S +

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ θn+1 O2

...
...

...

Θ(n−1) θ
(n−1)
n+1 O2

Θ(n) θ
(n)
n+1 I2

Θ(n+1) θ
(n+1)
n+1 O2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (3.55)

where we have used the Sylvester identity (2.28), replacing 0 and 1 by the matrices O2

and I2 respectively. Thus by induction, (3.50) is true for all n.

For ease of notation, for integers i, j = 1, . . . , n, we denote by Q(i, j) the quasi-Wronskian

[36]

Q(i, j) =

∣∣∣∣∣∣ Θ̂ fj ej

Θ(n+i) O2

∣∣∣∣∣∣ , (3.56)

where Θ̂ =
(
θ
(i−1)
j

)
i,j=1,...,n

is the n× n Wronskian matrix of θ1, . . . , θn and Θ(k) denotes

the kth y-derivative of Θ (k = 0, . . . , n− 1, n+ i), Θ is the row vector (θ1 . . . θn) of length

n, and fj and ej are 2n× 1 column vectors with a 1 in the (2n− 2j− 1)th and (2n− 2j)th

row respectively and zeros elsewhere. Again each θi is a 2 × 2 matrix. In this definition
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of Q(i, j), we allow i, j to take any integer values subject to the convention that if either

2n−2j or 2n−2j−1 lies outside the range 1, 2, . . . , 2n, then ej = fj = 0 and so Q(i, j) = 0.

Hence (3.50) is given by

S[n+1] = S +Q(0, 0). (3.57)

Alternatively, we can express the solution S of the ncDS equations (3.17) such that Λ =

[J, σS] as

S = S0 +Q(0, 0), (3.58)

where S0 is any given solution of the ncDS equations.

It will be useful to express the quasi-Wronskian solution (3.58) in terms of q and r, the

variables in which the ncDS equations (3.17) are expressed. Taking the trivial vacuum

solution S0 = 0, we have

S = Q(0, 0), (3.59)

which gives, by applying the quasideterminant expansion formula (2.10),

S =

0 0

0 0

− (θ(n)
1 . . . θ

(n)
n

)
Θ̂−1



0 0

0 0
...

...

1 0

0 1


. (3.60)

We now express each θi (i = 1, . . . , n) as an appropriate 2× 2 matrix

θi =

φ2i−1 φ2i

ψ2i−1 ψ2i

 (3.61)

for φ = φ(x, y, t), ψ = ψ(x, y, t), so that

θ1 =

φ1 φ2

ψ1 ψ2

 , (3.62a)

θ2 =

φ3 φ4

ψ3 ψ4

 , (3.62b)

...

θn =

φ2n−1 φ2n

ψ2n−1 ψ2n

 . (3.62c)
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Continuing with the expansion (3.60), we can express S as

S =



∣∣∣∣∣∣ Θ̂ f0

φ(n) 0

∣∣∣∣∣∣
∣∣∣∣∣∣ Θ̂ e0

φ(n) 0

∣∣∣∣∣∣
∣∣∣∣∣∣ Θ̂ f0

ψ(n) 0

∣∣∣∣∣∣
∣∣∣∣∣∣ Θ̂ e0

ψ(n) 0

∣∣∣∣∣∣


, (3.63)

where φ(n), ψ(n) denote the row vectors
(
φ

(n)
1 . . . φ

(n)
2n

)
,
(
ψ

(n)
1 . . . ψ

(n)
2n

)
respectively, and

f0, e0 are defined as on page 45. By comparing with (3.20), we immediately see that q, r

can be expressed as quasi-Wronskians, namely

q = 2σ

∣∣∣∣∣∣ Θ̂ e0

φ(n) 0

∣∣∣∣∣∣ , r = −2σ

∣∣∣∣∣∣ Θ̂ f0

ψ(n) 0

∣∣∣∣∣∣ . (3.64)

3.4.3 Binary Darboux transformations

We give an outline of the construction of a binary Darboux transformation, following the

notation given in [71]. Consider an operator L and let T be the set of eigenfunctions of

L, i.e. T = {θ : L(θ) = 0}. Similarly, let L̃, L̂ be operators with sets of eigenfunctions

T̃ , T̂ respectively, so that T̃ = {θ̃ : L̃(θ̃) = 0} and T̂ = {θ̂ : L̂(θ̂) = 0}. The Darboux

transformation Gθ = ∂y − θyθ−1 = θ∂yθ
−1 maps eigenfunctions of L to eigenfunctions of

L̃, where θ ∈ T and L̃ = GθLG
−1
θ . Similarly, define Gθ̂ = θ̂∂y θ̂

−1 to be the Darboux

transformation mapping eigenfunctions of L̂ to eigenfunctions of L̃ = Gθ̂L̂G
−1

θ̂
, i.e.

T
Gθ−−−−→ T̃

Gθ̂←−−−− T̂ ,

where θ̂ ∈ T̂ . The aim of the binary Darboux transformation is to define a mapping

from T to T̂ in order to determine θ̂. Clearly this is given by (Gθ̂)
−1Gθ, and thus the

binary Darboux transformation is a composition of two ordinary Darboux transformations.

However, by the definition of Gθ̂ above, this transformation requires knowledge of θ̂, the

eigenfunctions to be determined. To find an expression for θ̂, the adjoint operator G†θ

must be considered. The notion of adjoint can be easily extended from the well-known

matrix situation to any ring R. An element a ∈ R has adjoint a†, where the adjoint has

the following properties: if ∂ is a derivative acting on R,

∂† = −∂, (3.65)
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and for any A,B elements of, or operators on, the ring R,

(A+B)† = A† +B†, (3.66a)

(AB)† = B†A†. (3.66b)

We also introduce the notation A−† to denote
(
A†
)−1 =

(
A−1

)†. Using the above relations,

it can be seen that

L̃† =
(
Gθ̂L̂G

−1

θ̂

)†
= G−†

θ̂
L̂†G†

θ̂
, (3.67)

so that G†
θ̂

is a Darboux transformation mapping the eigenfunctions of L̃† to those of L̂†,

i.e. from T̃ † to T̂ †, where

G†
θ̂

=
(
θ̂∂y θ̂

−1
)†

= −θ̂−†∂y θ̂† (3.68)

using properties (3.65) and (3.66b). Clearly, G†
θ̂

(
θ̂−†
)

= 0 by definition, so that θ̂−† is an

eigenfunction of L̃†, i.e. θ̂−† ∈ S̃†. Also, since L̃ = GθLG
−1
θ , so that L = G−1

θ L̃Gθ, we

have

L† =
(
G−1
θ L̃Gθ

)†
= G†θL̃

†G−†θ , (3.69)

so that G†θ is a Darboux transformation mapping the eigenfunctions of L̃† to those of L†,

i.e. from T̃ † to T †. We see that the adjoint Darboux transformations G†θ and G†
θ̂

act in

the opposite directions to their corresponding ‘non-adjoint’ versions. Thus

ρ := G†θ

(
θ̂−†
)

(3.70)

is an eigenfunction of the adjoint operator L†, i.e. ρ ∈ T †. We therefore have the following

situation:
L

Gθ−−−−→ L̃
Gθ̂←−−−− L̂

θ θ̂

L†
G†

θ←−−−− L̃†
G†

θ̂−−−−→ L̂† ,

ρ θ̂−†

with the binary Darboux transformation given by

L
G−1

θ̂
Gθ

−−−−→ L̂ ,
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and the corresponding transformation between the adjoint eigenfunctions defined as

L†
G†

θ̂
G−†

θ−−−−→ L̂† .

We call this the ‘adjoint binary Darboux transformation’ to indicate a transformation be-

tween adjoint operators (i.e. a transformation between adjoint eigenfunctions), although

this transformation is actually the adjoint inverse of the binary Darboux transformation

G−1

θ̂
Gθ.

We have the adjoint eigenfunction ρ defined as

ρ = G†θ

(
θ̂−†
)
. (3.71)

Substituting for G†θ = −θ−†∂yθ† gives

ρ = −θ−†∂y
(
θ†θ̂−†

)
, (3.72)

where θ̂ is the unknown eigenfunction of L̂ to be determined. Thus

∂−1
y (θ†ρ) = −θ†θ̂−†, (3.73)

and hence

θ̂ = −θ
(
∂−1
y (ρ†θ)

)−1

= −θΩ(θ, ρ)−1, (3.74)

where we define Ω(θ, ρ) = ∂−1
y (ρ†θ), i.e. Ω(θ, ρ)y = ρ†θ. Thus the binary Darboux

transformation Gθ,ρ = G−1

θ̂
Gθ is given by

Gθ,ρ =
(
θ̂∂y θ̂

−1
)−1

θ∂yθ
−1 by definition of Gθ and Gθ̂

= θΩ−1∂−1
y Ω∂yθ−1 by (3.74)

= I − θΩ−1∂−1
y ρ†, (3.75)

where Ω = Ω(θ, ρ). The above calculation uses the fact that ∂yΩ = Ωy + Ω∂y, giving

Ω∂y = ∂yΩ − Ωy. The transformation between the adjoint eigenfunctions, G†
θ̂
G−†θ =(

G−1

θ̂
Gθ

)−†
= G−†θ,ρ, is given by

G−†θ,ρ = θ̂−†∂y θ̂
†θ−†∂−1

y θ†

= θ−†Ω†∂yΩ−†∂−1
y θ† by (3.74)

= θ−†Ω†
(
Ω−†y + Ω−†∂y

)
∂−1
y θ†

= I − ρΩ−†∂−1
y θ†, (3.76)
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where we note that Ω−†y = −Ω−†θ†ρΩ−† by differentiating both sides of the equation

Ω†Ω−† = I with respect to y and use the fact that Ω†y = θ†ρ for Ω = Ω(θ, ρ). Notice

that the eigenfunctions and adjoint eigenfunctions have interchanged roles in the adjoint

transformation.

In summary, we have found that a binary Darboux transformation Gθ,ρ transforming

L, M to some new operators L̂, M̂ is given by

Gθ,ρ = I − θΩ(θ, ρ)−1∂−1
y ρ†, (3.77a)

with adjoint transformation

G−†θ,ρ = I − ρΩ(θ, ρ)−†∂−1
y θ† (3.77b)

for eigenfunctions θ of L, M and adjoint eigenfunctions ρ of L†, M †. Here I denotes the

2× 2 identity matrix. The adjoint Lax pair for the ncDS system is given by

L† = −∂x − Λ† −
1
σ
J∂y, (3.78a)

M † = −∂t −A† + iσ(Λ†y + Λ†∂y) + iJ∂yy. (3.78b)

(Note that σ† =
1
σ

for σ = −1, i). Let φ be an eigenfunction of L, M and ψ an eigenfunction

of the corresponding adjoint operators L†, M †, so that L(φ) = M(φ) = 0 and L†(ψ) =

M †(ψ) = 0. We calculate the dispersion relations for the ncDS equations in the trivial

vacuum case, i.e. for Λ,A ≡ 0 and find that

φx = −σJφy, φt = iJφyy, (3.79a)

ψx = − 1
σ
Jψy, ψt = iJψyy. (3.79b)

The potential Ω(φ, ψ) satisfies

Ω(φ, ψ)y = ψ†φ, (3.80)

from which it follows that

Ω(φ, ψ)xy = ψ†xφ+ ψ†φx

= −σ
(
ψ†yJφ+ ψ†Jφy

)
(3.81)

by (3.79a), (3.79b). Thus

Ω(φ, ψ)x = −σ
(
ψ†Jφ−

∫
ψ†Jφy dy +

∫
ψ†Jφy dy

)
= −σψ†Jφ. (3.82)
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Similarly, using the Lax operators M , M †, we deduce that

Ω(φ, ψ)t = i(ψ†Jφy − ψ†yJφ). (3.83)

These definitions are also valid for non-scalar eigenfunctions: if Φ is an n-vector and Ψ an

m-vector, then Ω(Φ,Ψ) is an m× n matrix.

We now detail the procedure used to perform the iteration of the binary Darboux trans-

formation.

Iteration

We relabel L, L† as L[1], L
†
[1] respectively, and similarly for M , M †, to indicate the starting

levels.

Step 1 Let θ1, . . . , θn be eigenfunctions of the original Lax pair L[1] = L, M[1] = M ,

and ρ1, . . . , ρn eigenfunctions of the adjoint Lax operators L†[1] = L†, M †
[1] = M †. Sup-

pose φ[1] = φ is a generic eigenfunction of L[1],M[1] and ψ[1] = ψ a generic eigenfunction

of L†[1],M
†
[1]. We choose θ1 := θ1[1] to be the eigenfunction defining a binary Darboux

transformation from L[1],M[1] to a new Lax pair L[2],M[2], and similarly ρ1 := ρ1[1] the

eigenfunction defining the adjoint binary Darboux transformation from L†[1],M
†
[1] to a new

adjoint Lax pair L†[2],M
†
[2]. Then the operators L[1],M[1] are covariant under the action of

the binary Darboux transformation

Gθ1[1],ρ1[1] = I − θ1[1]Ω(θ1[1], ρ1[1])
−1∂−1

y ρ†1[1], (3.84)

while the adjoint operators L†[1],M
†
[1] are covariant under the adjoint binary Darboux

transformation

G−†θ1[1],ρ1[1] = I − ρ1[1]Ω(θ1[1], ρ1[1])
−†∂−1

y θ†1[1]. (3.85)

The transformed operators

L[2] = Gθ1[1],ρ1[1]L[1]G
−1
θ1[1],ρ1[1]

, (3.86a)

M[2] = Gθ1[1],ρ1[1]M[1]G
−1
θ1[1],ρ1[1]

(3.86b)

have generic eigenfunctions

φ[2] := Gθ1[1],ρ1[1]
(
φ
)

= φ− θ1[1]Ω(θ1[1], ρ1[1])
−1Ω(φ, ρ1[1]), (3.87)
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and generic adjoint eigenfunctions

ψ[2] := G−†θ1[1],ρ1[1] (ψ) = ψ − ρ1[1]Ω(θ1[1], ρ1[1])
−†Ω(θ1[1], ψ)†. (3.88)

The eigenfunction θ1[1] is mapped to zero by (3.84), and the adjoint eigenfunction ρ1[1]

to zero by (3.85). The remaining eigenfunctions θ2, . . . , θn and adjoint eigenfunctions

ρ2, . . . , ρn are mapped to θ2[2], . . . , θn[2] and ρ2[2], . . . , ρn[2] respectively, where, for i =

2, . . . , n,

θi[2] = φ[2]|φ→θi, ρi[2] = ψ[2]|ψ→ρi
. (3.89)

These transformed functions can easily be shown to be eigenfunctions and adjoint eigen-

functions respectively of the transformed operators L[2],M[2] and L†[2],M
†
[2].

...

Step n (n ≥ 1) To perform the nth iteration of the binary Darboux transformation,

we choose the eigenfunction θn[n] to define a binary Darboux transformation from the

Lax operators L[n],M[n] to some new Lax operators L[n+1],M[n+1], and similarly ρn[n] the

adjoint eigenfunction defining the adjoint binary Darboux transformation from L†[n],M
†
[n]

to L†[n+1],M
†
[n+1]. The operators L[n],M[n] are covariant under the action of the binary

Darboux transformation

Gθn[n],ρn[n]
= I − θn[n]Ω(θn[n], ρn[n])

−1∂−1
y ρ†n[n], (3.90)

while the adjoint operators L†[n],M
†
[n] are covariant under the adjoint binary Darboux

transformation

G−†θn[n],ρn[n]
= I − ρn[n]Ω(θn[n], ρn[n])

−†∂−1
y θ†n[n]. (3.91)

The transformed operators

L[n+1] = Gθn[n],ρn[n]
L[n]G

−1
θn[n],ρn[n]

, (3.92a)

M[n+1] = Gθn[n],ρn[n]
M[n]G

−1
θn[n],ρn[n]

(3.92b)

have generic eigenfunctions

φ[n+1] = Gθn[n],ρn[n]

(
φ[n]

)
= φ[n] − θn[n]Ω(θn[n], ρn[n])

−1Ω(φ[n], ρn[n]), (3.93)

and generic adjoint eigenfunctions

ψ[n+1] = G−†θn[n],ρn[n]

(
ψ[n]

)
= ψ[n] − ρn[n]Ω(θn[n], ρn[n])

−†Ω(θn[n], ψ[n])
†. (3.94)
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In particular, the eigenfunction θn[n] is mapped to zero by (3.90), and the adjoint eigen-

function ρn[n] to zero by (3.91). We illustrate the iteration pictorially below, where we have

distinguished between the operators corresponding to ordinary Darboux transformations

by the use of tilde. In addition, L[2] corresponds to L̂ and L̃[2] to L̃.

L[1]

Gθ1[1],ρ1[1]

""

Gθ1[1]

// L̃[2] L[2]
Gθ̂1[1]

oo

Gθ2[2],ρ2[2]

##

Gθ2[2]

// L̃[3] L[3] . . .oo

θ1[1]

L†[1] L̃†[2]
G†

θ1[1]

oo
G†

θ̂1[1]

// L†[2] L̃†[3]
G†

θ2[2]

oo // L†[3] . . . .

ρ1[1]

Quasi-Grammian form

Defining Θ = (θ1 . . . θn) and P = (ρ1 . . . ρn), we express φ[n+1] and ψ[n+1] in quasi-

Grammian form [36] as

φ[n+1] =

∣∣∣∣∣∣Ω(Θ, P ) Ω(φ, P )

Θ φ

∣∣∣∣∣∣ , ψ[n+1] =

∣∣∣∣∣∣Ω(Θ, P )† Ω(Θ, ψ)†

P ψ

∣∣∣∣∣∣ , (3.95)

with

Ω(φ[n+1], ψ[n+1]) =

∣∣∣∣∣∣Ω(Θ, P ) Ω(φ, P )

Ω(Θ, ψ) Ω(φ, ψ)

∣∣∣∣∣∣ . (3.96)

Note that (3.96) follows from (3.95) using the formula for the derivative of a quasi-

Grammian, (2.41), and the usual expansion of a quasideterminant: consider∣∣∣∣∣∣Ω(Θ, P ) Ω(φ, P )

Ω(Θ, ψ) Ω(φ, ψ)

∣∣∣∣∣∣
y

= Ω(φ, ψ)y +

∣∣∣∣∣∣Ω(Θ, P ) Ω(φ, P )

Ω(Θ, ψ)y O2

∣∣∣∣∣∣+
∣∣∣∣∣∣Ω(Θ, P ) Ω(φ, P )y

Ω(Θ, ψ) O2

∣∣∣∣∣∣
+

∣∣∣∣∣∣Ω(Θ, P ) P †

Ω(Θ, ψ) O2

∣∣∣∣∣∣ .
∣∣∣∣∣∣Ω(Θ, P ) Ω(φ, P )

Θ O2

∣∣∣∣∣∣ by (2.41)

= ψ†φ− ψ†ΘΩ(Θ, P )−1Ω(φ, P )− Ω(Θ, ψ)Ω(Θ, P )−1P †φ

+ Ω(Θ, ψ)Ω(Θ, P )−1P †ΘΩ(Θ, P )−1Ω(φ, P ),
(3.97)



CHAPTER 3. THE DAVEY-STEWARTSON EQUATIONS 54

where we have used the fact that Ω(a, b)y = b†a, and, in (2.41),
∑k

i=1EiFi = P †Θ. We

therefore have∣∣∣∣∣∣Ω(Θ, P ) Ω(φ, P )

Ω(Θ, ψ) Ω(φ, ψ)

∣∣∣∣∣∣
y

= (ψ† − Ω(Θ, ψ)Ω(Θ, P )−1P †).(φ−ΘΩ(Θ, P )−1Ω(φ, P ))

=

∣∣∣∣∣∣Ω(Θ, P )† Ω(Θ, ψ)†

P ψ

∣∣∣∣∣∣
†

.

∣∣∣∣∣∣Ω(Θ, P ) Ω(φ, P )

Θ φ

∣∣∣∣∣∣
= ψ†[n+1]φ[n+1]

= Ω(φ[n+1], ψ[n+1])y. (3.98)

Thus (3.96) follows on integration (where we assume constants of integration are equal to

zero).

We now prove the result for φ[n+1] in (3.95) by induction; the proof for ψ[n+1] arises

in a similar manner. We therefore prove that

φ[n+1] =

∣∣∣∣∣∣Ω(Θ, P ) Ω(φ, P )

Θ φ

∣∣∣∣∣∣ . (3.99)

Observe that the result is true for n = 1, since

φ[2] = φ− θ1Ω(θ1, ρ1)−1Ω(φ, ρ1)

= φ− θ1[1]Ω(θ1[1], ρ1[1])
−1Ω(φ, ρ1[1]), (3.100)

which holds by (3.87). Now suppose that (3.99) is true for some fixed n ≥ 1. We will show

that

φ[n+1+1] =

∣∣∣∣∣∣∣∣∣
Ω(Θ, P ) Ω(θn+1, P ) Ω(φ, P )

Ω(Θ, ρn+1) Ω(θn+1, ρn+1) Ω(φ, ρn+1)

Θ θn+1 φ

∣∣∣∣∣∣∣∣∣ . (3.101)

We have

φ[n+1+1] = φ[n+1] − θn+1[n+1]Ω(θn+1[n+1], ρn+1[n+1])
−1Ω(φ[n+1], ρn+1[n+1])

from (3.93), replacing n by n+ 1

=

∣∣∣∣∣∣Ω(Θ, P ) Ω(φ, P )

Θ φ

∣∣∣∣∣∣−
∣∣∣∣∣∣Ω(Θ, P ) Ω(θn+1, P )

Θ θn+1

∣∣∣∣∣∣ .Ω(θn+1[n+1], ρn+1[n+1])
−1Ω(φ[n+1], ρn+1[n+1])

(3.102)
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by the inductive hypothesis (3.99) and the fact that θn[n] = φ[n]|φ→θn , i.e. θn+1[n+1] =

φ[n+1]|φ→θn+1 . In order to obtain a quasideterminant expression for Ω(θn+1[n+1], ρn+1[n+1]),

we look to (3.96) and replace φ[n+1] by θn+1[n+1], i.e. φ by θn+1 (since θn[n] = φ[n]|φ→θn)

and ψ[n+1] by ρn+1[n+1], i.e. ψ by ρn+1 (since ρn[n] = ψ[n]|ψ→ρn). An expression for

Ω(φ[n+1], ρn+1[n+1]) can be obtained in a similar manner. Thus

φn+1[n+1] =

∣∣∣∣∣∣Ω(Θ, P ) Ω(φ, P )

Θ φ

∣∣∣∣∣∣−∣∣∣∣∣∣Ω(Θ, P ) Ω(θn+1, P )

Θ θn+1

∣∣∣∣∣∣ .
∣∣∣∣∣∣ Ω(Θ, P ) Ω(θn+1, P )

Ω(Θ, ρn+1) Ω(θn+1, ρn+1)

∣∣∣∣∣∣
−1

.

∣∣∣∣∣∣ Ω(Θ, P ) Ω(φ, P )

Ω(Θ, ρn+1) Ω(φ, ρn+1)

∣∣∣∣∣∣ ,
(3.103)

which can be seen to equal the right-hand side of (3.101) using the noncommutative

Sylvester identity (2.27). This completes the inductive proof.

3.4.4 Quasi-Grammian solution of ncDS using binary Darboux

transformations

We now determine the effect of the binary Darboux transformation Gθ1[1],ρ1[1] on the Lax

operator L[1] = L given by (3.15a), with θ1, . . . , θn = θ1[1], . . . , θn[1] eigenfunctions of L

and θ1[1] chosen to iterate the Darboux transformation. To simplify our notation slightly,

we will denote θ1[1] by θ, θ̂1[1] by θ̂ and, in general, θk[k] by θ[k] (k = 2, . . . , n). Similarly,

we denote ρ1[1] by ρ, and, in general, ρk[k] by ρ[k]. Corresponding results hold for the

operator M given by (3.15b). Since the binary Darboux transformation Gθ1[1],ρ1[1] = Gθ,ρ

is a composition of the two ordinary Darboux transformations Gθ1[1] ≡ Gθ and Gθ̂1[1] ≡ Gθ̂
(see the diagram on page 53), we have

L̃[2] = GθL[1]G
−1
θ , (3.104)

giving

Λ̃[2] = Λ− σ[J, θyθ−1] (3.105)

as in Section 3.4.2, where Λ = Λ[1], and

L̃[2] = Gθ̂L[2]G
−1

θ̂
, (3.106)

so that

Λ̃[2] = Λ[2] − σ[J, θ̂y θ̂−1] (3.107)
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with θ̂ ≡ θ̂1[1] = −θ1[1]Ω(θ1[1], ρ1[1])−1 as in (3.74). (On substituting in (3.106), we obtain

two equations, one of which can be solved for Λ̃[2], giving the expression above, and the

other simplified to zero as in Section 3.4.2 using the fact that L[2](θ̂) ≡ L[2](θ̂1[1]) = 0).

Comparing (3.105) and (3.107), we see that

Λ− σ[J, θyθ−1] = Λ[2] − σ[J, θ̂y θ̂−1], (3.108)

so that

Λ[2] = Λ− σ[J, θyθ−1] + σ[J, θ̂y θ̂−1]. (3.109)

Since Λ = [J, σS] from page 36 and therefore Λ[2] = [J, σS[2]], we have

S[2] = S − θyθ−1 + θ̂y θ̂
−1

= S − θΩ(θ, ρ)−1ρ† (3.110)

as θ̂ = −θΩ(θ, ρ)−1 from before. After n repeated applications of the binary Darboux

transformation Gθ,ρ, we obtain

S[n+1] = S[n] − θ[n]Ω(θ[n], ρ[n])
−1ρ†[n], (3.111)

i.e.

S[n+1] = S −
n∑
i=1

θ[i]Ω(θ[i], ρ[i])
−1ρ†[k], (3.112)

where S[1] = S, θ[1] = θ1[1] = θ and θ[k] = θk[k] (k = 2, . . . , n), and similarly ρ[1] = ρ1[1] = ρ

and ρ[k] = ρk[k]. By once again defining Θ = (θ1 . . . θn) and P = (ρ1 . . . ρn), we express

S[n+1] in quasi-Grammian form as

S[n+1] = S +

∣∣∣∣∣∣Ω(Θ, P ) P †

Θ O2

∣∣∣∣∣∣ , (3.113)

where Ω(Θ, P ) is the Grammian-like matrix defined by (3.80), (3.82) and (3.83). (Note

that, for i = 1, . . . , n, each θi, ρi is a 2 × 2 matrix (since the θi, ρi are eigenfunctions of

L,M and L†,M † respectively)). The proof is by induction on n as follows.

For n = 1, we have

S[2] = S +

∣∣∣∣∣∣Ω(θ1, ρ1) ρ†1

θ1 O2

∣∣∣∣∣∣
= S − θΩ(θ, ρ)−1ρ†, (3.114)



CHAPTER 3. THE DAVEY-STEWARTSON EQUATIONS 57

which holds by (3.110), since θ1 = θ1[1] = θ, ρ1 = ρ1[1] = ρ. Now suppose that (3.113) is

true for some fixed n ≥ 1. We prove that the result is also true for n + 1, i.e. we prove

that

S[n+1+1] = S +

∣∣∣∣∣∣∣∣∣
Ω(Θ, P ) Ω(θn+1, P ) P †

Ω(Θ, ρn+1) Ω(θn+1, ρn+1) ρ†n+1

Θ θn+1 O2

∣∣∣∣∣∣∣∣∣ . (3.115)

We have

S[n+1+1] = S[n+1] − θ[n+1]Ω(θ[n+1], ρ[n+1])
−1ρ†[n+1] by (3.111), replacing n by n+ 1

= S +

∣∣∣∣∣∣Ω(Θ, P ) P †

Θ O2

∣∣∣∣∣∣
−

∣∣∣∣∣∣Ω(Θ, P ) Ω(θn+1, P )

Θ θn+1

∣∣∣∣∣∣ .
∣∣∣∣∣∣ Ω(Θ, P ) Ω(θn+1, P )

Ω(Θ, ρn+1) Ω(θn+1, ρn+1)

∣∣∣∣∣∣
−1 ∣∣∣∣∣∣ Ω(Θ, P ) P †

Ω(Θ, ρn+1) ρ†n+1

∣∣∣∣∣∣
by the inductive hypothesis (3.113) and (3.95), (3.96), where we have used the fact that

θ[n] ≡ θn[n] = φ[n]|φ→θn , ρ[n] ≡ ρn[n] = ψ[n]|ψ→ρn ,

= S +

∣∣∣∣∣∣∣∣∣
Ω(Θ, P ) Ω(θn+1, P ) P †

Ω(Θ, ρn+1) Ω(θn+1, ρn+1) ρ†n+1

Θ θn+1 O2

∣∣∣∣∣∣∣∣∣ (3.116)

by the noncommutative Sylvester identity (2.27). This completes the proof.

For ease of notation, for integers i, j = 1, . . . , n, we denote by R(i, j) the quasi-Grammian

[36]

R(i, j) = (−1)j

∣∣∣∣∣∣Ω(Θ, P ) P † (j)

Θ(i) O2

∣∣∣∣∣∣ , (3.117)

so that (3.113) is given by

S[n+1] = S +R(0, 0). (3.118)

(The reason for the inclusion of the factor (−1)j in (3.117) will be made clear later). As

before, we can express the solution S of the ncDS equations (3.17) such that Λ = [J, σS]

as

S = S0 +R(0, 0), (3.119)

where S0 is any given solution of the ncDS equations and R(0, 0) is a Grammian-like

quasideterminant. We then take the trivial vacuum solution S0 = 0 and apply (2.10) to
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give

S =

0 0

0 0

−ΘΩ(Θ, P )−1P †. (3.120)

In order to express the quasi-Grammian solution (3.120) in terms of the variables q, r, we

define the matrices θi as in the quasi-Wronskian case (3.61), so that

Θ = (θ1 . . . θn) =

φ1 . . . φ2n

ψ1 . . . ψ2n

 . (3.121)

We also take

P = ΘH† (3.122)

where H is a constant 2n×2n matrix which we assume to be invertible, and H† denotes the

Hermitian conjugate of H. (The reason for choosing P in this form will become apparent -

it will be shown that Θ, P satisfy the same dispersion relations in the case σ = −1, which

are unaffected when multiplied by a constant matrix (independent of x, y, t). Although

we could conceivably make the simpler choice P = Θ, this does not produce the desired

dromion solutions obtained in the next chapter. This has been explained in more detail

in Section 4.1.4).

Thus, from (3.120), we obtain

S =



∣∣∣∣∣∣Ω(Θ, P ) Hφ†

φ 0

∣∣∣∣∣∣
∣∣∣∣∣∣Ω(Θ, P ) Hψ†

φ 0

∣∣∣∣∣∣
∣∣∣∣∣∣Ω(Θ, P ) Hφ†

ψ 0

∣∣∣∣∣∣
∣∣∣∣∣∣Ω(Θ, P ) Hψ†

ψ 0

∣∣∣∣∣∣


, (3.123)

where φ, ψ denote the row vectors (φ1 . . . φ2n), (ψ1 . . . ψ2n) respectively, which gives, by

comparing the above matrix with (3.20), quasi-Grammian expressions for q, r, namely

q = 2σ

∣∣∣∣∣∣Ω(Θ, P ) Hψ†

φ 0

∣∣∣∣∣∣ , r = −2σ

∣∣∣∣∣∣Ω(Θ, P ) Hφ†

ψ 0

∣∣∣∣∣∣ . (3.124)

Hence we have obtained, in (3.64), expressions for q, r in terms of quasi-Wronskians,

and in (3.124), expressions in terms of quasi-Grammians. In the next chapter, when we

investigate dromion solutions of our system of ncDS equations, we will derive a condition to

ensure that, with q, r quasi-Grammians as above, the relation r = ±q† holds. Although we

could also check this relation for our quasi-Wronskian solutions (3.64), the calculation in

this case is more difficult, and hence we choose to focus primarily on our quasi-Grammian

form of solution.
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3.5 Direct verification of quasi-Wronskian and quasi-

Grammian solutions

We now show how our obtained quasideterminant solutions can be verified by direct sub-

stitution by firstly detailing the methods used to calculate the derivatives of the quasi-

Wronskian Q(i, j) and quasi-Grammian R(i, j) using results from Section 2.3.2.

3.5.1 Derivatives of quasi-Wronskians

We saw in Section 3.4.2 that the quasi-Wronskian solution of the ncDS equations (3.17)

is given by S = Q(0, 0), where S is the 2× 2 matrix such that Λ = [J, σS], and Q(i, j) the

quasi-Wronskian

Q(i, j) =

∣∣∣∣∣∣∣∣∣∣
Θ̂ fj ej

Θ(n+i)
0 0

0 0

∣∣∣∣∣∣∣∣∣∣
. (3.125)

There are two important special cases [36]: when n+ i = n− j − 1 ∈ [0, n− 1] (i.e. when

i+ j + 1 = 0 and −n ≤ i < 0),

Q(i, j) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ O2

...
...

Θ(n−j−1) I2
...

...

Θ(n−1) O2

Θ(n+i) O2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ O2

...
...

Θ(n−j−1) I2
...

...

Θ(n−1) O2

O2 −I2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= −I2, (3.126)

where we have used the invariance properties of quasideterminants (2.37) to subtract the

row containing I2 from the last row of the quasi-Wronskian. As before, I2 and O2 denote

the 2 × 2 identity and zero matrices respectively. Similarly, when n + i ∈ [0, n − 1] but

n+ i 6= n− j − 1, we find that Q(i, j) = O2. For arbitrarily large n, we therefore have

Q(i, j) =


−I2 i+ j + 1 = 0,

O2 (i < 0 or j < 0) and i+ j + 1 6= 0.
(3.127)
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The dispersion relations (3.79a) for the ncDS system (3.17) will also be utilised, namely,

for θ an eigenfunction of L, M ,

θx = −σJθy, (3.128a)

θt = iJθyy, (3.128b)

and, since Θ = (θ1 . . . θn) , it follows that

Θx = −σJΘy, (3.129a)

Θt = iJΘyy. (3.129b)

Thus, using (2.46), we have

Q(i, j)y =

∣∣∣∣∣∣ Θ̂ fj ej

Θ(n+i+1) O2

∣∣∣∣∣∣+
n−1∑
k=0

∣∣∣∣∣∣ Θ̂ fk ek

Θ(n+i) O2

∣∣∣∣∣∣ .
∣∣∣∣∣∣ Θ̂ fj ej

Θ(n−k) O2

∣∣∣∣∣∣
= Q(i+ 1, j) +

n−1∑
k=0

Q(i, k)Q(−k, j), (3.130a)

Q(i, j)x =

∣∣∣∣∣∣ Θ̂ fj ej

−σJΘ(n+i+1) O2

∣∣∣∣∣∣+
n−1∑
k=0

∣∣∣∣∣∣ Θ̂ fk ek

Θ(n+i) O2

∣∣∣∣∣∣ .
∣∣∣∣∣∣ Θ̂ fj ej

−σJΘ(n−k) O2

∣∣∣∣∣∣
= −σ

(
JQ(i+ 1, j) +

n−1∑
k=0

Q(i, k)JQ(−k, j)

)
, (3.130b)

Q(i, j)t =

∣∣∣∣∣∣ Θ̂ fj ej

iJΘ(n+i+2) O2

∣∣∣∣∣∣+
n−1∑
k=0

∣∣∣∣∣∣ Θ̂ fk ek

Θ(n+i) O2

∣∣∣∣∣∣ .
∣∣∣∣∣∣ Θ̂ fj ej

iJΘ(n−k+1) O2

∣∣∣∣∣∣
= i

(
JQ(i+ 2, j) +

n−1∑
k=0

Q(i, k)JQ(1− k, j)

)
. (3.130c)

These can be simplified using (3.127), leaving

Q(i, j)y = Q(i+ 1, j)−Q(i, j + 1) +Q(i, 0)Q(0, j), (3.131a)

Q(i, j)x = −σ(JQ(i+ 1, j)−Q(i, j + 1)J +Q(i, 0)JQ(0, j)), (3.131b)

Q(i, j)t = i(JQ(i+ 2, j)−Q(i, j + 2)J +Q(i, 1)JQ(0, j) +Q(i, 0)JQ(1, j)). (3.131c)

3.5.2 Derivatives of quasi-Grammians

From Section 3.4.4, the quasi-Grammian solution of the ncDS equations (3.17) with trivial

vacuum is given by S = R(0, 0), where Λ = [J, σS] for a 2× 2 matrix S, and R(i, j) is the
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quasi-Grammian defined by

R(i, j) = (−1)j

∣∣∣∣∣∣∣∣∣∣
Ω(Θ, P ) P † (j)

Θ(i)
0 0

0 0

∣∣∣∣∣∣∣∣∣∣
(3.132)

for i, j = 1, . . . , n. Again we utilise the dispersion relations for the system, this time

relations in ρ, where ρ is an eigenfunction of L†, M †. We find that, from (3.79b),

ρx = − 1
σ
Jρy, (3.133a)

ρt = iJρyy, (3.133b)

and since P = (ρ1 . . . ρn), it follows that

Px = − 1
σ
JPy, (3.134a)

Pt = iJPyy. (3.134b)

(Note that, for σ = −1, P satisfies the same relations as Θ in (3.129), explaining our

choice of relation between P and Θ in (3.122)).

We now calculate the derivatives of R(i, j) using (2.41). From our construction of the

binary Darboux transformation in Section 3.4.3, the potential Ω(φ, ψ) satisfies

Ω(φ, ψ)y = ψ†φ, (3.135a)

Ω(φ, ψ)x = −σψ†Jφ, (3.135b)

Ω(φ, ψ)t = i(ψ†Jφy − ψ†yJφ). (3.135c)

Thus, since θ[n] = φ[n]|φ→θn , ρ[n] = ψ[n]|ψ→ρn and Θ = (θ1 . . . θn), P = (ρ1 . . . ρn), it

follows that

Ω(Θ, P )y = P †Θ, (3.136a)

Ω(Θ, P )x = −σP †JΘ, (3.136b)

Ω(Θ, P )t = i
(
P †JΘ(1) − P †(1)JΘ

)
, (3.136c)
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where Θ(1), P †(1) denote one differentiation with respect to y of Θ and P † respectively.

Thus, using (2.41), we have the derivatives

R(i, j)y = (−1)j

∣∣∣∣∣∣ Ω P †(j)

Θ(i+1) O2

∣∣∣∣∣∣+ (−1)j

∣∣∣∣∣∣ Ω P †(j+1)

Θ(i) O2

∣∣∣∣∣∣+ (−1)j

∣∣∣∣∣∣ Ω P †

Θ(i) O2

∣∣∣∣∣∣
∣∣∣∣∣∣Ω P †(j)

Θ O2

∣∣∣∣∣∣
= R(i+ 1, j)−R(i, j + 1) +R(i, 0)R(0, j), (3.137a)

R(i, j)x = (−1)j

∣∣∣∣∣∣ Ω P †(j)

−σJΘ(i+1) O2

∣∣∣∣∣∣+ (−1)j

∣∣∣∣∣∣ Ω −σP †(j+1)J

Θ(i) O2

∣∣∣∣∣∣
+ (−1)j

∣∣∣∣∣∣ Ω −σP †

Θ(i) O2

∣∣∣∣∣∣
∣∣∣∣∣∣ Ω P †(j)

JΘ O2

∣∣∣∣∣∣
= −σ(JR(i+ 1, j)−R(i, j + 1)J +R(i, 0)JR(0, j)), (3.137b)

R(i, j)t = (−1)j

∣∣∣∣∣∣ Ω P †(j)

iJΘ(i+2) O2

∣∣∣∣∣∣+ (−1)j

∣∣∣∣∣∣ Ω −iP †(j+2)J

Θ(i) O2

∣∣∣∣∣∣
+ (−1)j

∣∣∣∣∣∣ Ω −iP †(1)

Θ(i) O2

∣∣∣∣∣∣
∣∣∣∣∣∣ Ω P †(j)

JΘ O2

∣∣∣∣∣∣+ (−1)j

∣∣∣∣∣∣ Ω iP †

Θ(i) O2

∣∣∣∣∣∣
∣∣∣∣∣∣ Ω P †(j)

JΘ(1) O2

∣∣∣∣∣∣
= i(JR(i+ 2, j)−R(i, j + 2)J +R(i, 1)JR(0, j) +R(i, 0)JR(1, j)), (3.137c)

where again, Ω = Ω(Θ, P ), and we have used O2 to denote the 2× 2 zero matrix. Notice

that the above derivatives of R(i, j) match exactly the derivatives of Q(i, j) in (3.131).

This explains our definition of R(i, j) given by (3.117) - the coefficient (−1)j is included

to ensure that the derivatives match those of Q(i, j). Thus subsequent calculations to

verify the quasi-Wronskian solution of the ncDS equations will also be valid in the quasi-

Grammian case, meaning that we need only verify one case.

3.5.3 Quasideterminant solution verification

We now show that

S = Q(0, 0) and S = R(0, 0) (3.138)

are solutions of the ncDS equations (3.17), where S is the 2×2 matrix given by (3.20) and

Λ = [J, σS]. Using the derivatives of Q(i, j) obtained in Section 3.5.1, we have, on setting
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i = j = 0,

Sy = Q(0, 0)y = Q(1, 0)−Q(0, 1) +Q(0, 0)2, (3.139a)

Sx = Q(0, 0)x = −σ
(
JQ(1, 0)−Q(0, 1)J +Q(0, 0)JQ(0, 0)

)
, (3.139b)

St = Q(0, 0)t = i
(
JQ(2, 0)−Q(0, 2)J +Q(0, 1)JQ(0, 0) +Q(0, 0)JQ(1, 0)

)
, (3.139c)

Syy = Q(2, 0) +Q(0, 2)− 2Q(1, 1)−Q(0, 1)Q(0, 0) +Q(0, 0)Q(1, 0)

+ 2
(
Q(1, 0)Q(0, 0)−Q(0, 0)Q(0, 1)

)
+ 2Q(0, 0)3,

(3.139d)

Sxx = σ2
(
Q(2, 0) +Q(0, 2)− 2JQ(1, 1)J −Q(0, 1)Q(0, 0) +Q(0, 0)Q(1, 0)

− 2
(
Q(0, 0)JQ(0, 1)J − JQ(1, 0)JQ(0, 0)

)
+ 2Q(0, 0)JQ(0, 0)JQ(0, 0)

)
.

(3.139e)

Substituting the above in (3.22), all terms cancel exactly and thus the quasi-Wronskian

solution S = Q(0, 0) is verified. As mentioned previously, we obtain the same deriva-

tive formulae whether we use the quasi-Wronskian or quasi-Grammian formulation, and

hence the above calculation also confirms the validity of the quasi-Grammian solution

S = R(0, 0).

3.6 Comparison of solutions

3.6.1 Comparison with the bilinear (commutative) approach

We have used a direct approach to obtain quasideterminant solutions of a system of non-

commutative DS equations. This method of solution has been widely studied in the com-

mutative case, for example by Freeman and Nimmo in 1983 [25], who were the first to

use a direct approach to obtain Wronskian solutions of the KdV and KP equations. The

same approach was continued by Freeman in 1984 [22], who extended the idea to the

NLS and DS equations; and by Hietarinta and Hirota in 1990 [46], who obtained ‘double

Wronskian’ solutions of the DS equations using a direct method. Many other examples

of this approach are contained in [48]. In all instances, a change of dependent variable

is required, converting the nonlinear equation to Hirota bilinear form. For example, as

mentioned earlier, in the case of the KP equation

(ut + 6uux + uxxx)x + 3uyy = 0, (3.140)

we apply the Cole-Hopf transformation

u = 2(log f)xx (3.141)
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and find that f satisfies the bilinear relation

(
Dx(Dt +D3

x) + 3D2
y

)
f · f = 0, (3.142)

where the D-operators are defined as before (1.12). A possible solution f in the form of

a Wronskian or Grammian determinant is then substituted into the bilinear relation and

verified using appropriate determinant identities.

For the case of the DS equation, we compare the method of solution used here to ob-

tain (quasi-)Grammian solutions in the noncommutative case with the method of Gilson

and Nimmo in [35], who use the direct approach discussed above to verify Grammian

solutions in the commutative case. We find that the introduction of the 2 × 2 matrix S

defined in (3.20) provides a noncommutative analogue of the Hirota bilinear form (in the

noncommutative case, a true bilinear form is believed not to exist), thus avoiding the need

for quasideterminant identities when verifying the solution. In contrast, we require certain

Jacobi-type identities in order to verify the solution in the commutative case.

3.6.2 Comparison of Grammian solutions

We discuss the approach of Gilson and Nimmo in [35], who consider the DS equations in

the form

i∂tu+ ∂xxu+ ∂yyu− 4u |u |2 − 2uv = 0, (3.143a)

∂xyv + (∂x + ∂y)2 |u |2 = 0, (3.143b)

for functions u = u(x, y, t), v = v(x, y, t). By introducing new dependent variables F

which is real and G which is complex such that

u = G/F, (3.144a)

v = −(∂x + ∂y)2 lnF + a(x, t) + b(y, t), (3.144b)

the Hirota bilinear form of the DS equations (3.143) is given by

(iDt +D2
x +D2

y)G · F = 2(a(x, t) + b(y, t))GF, (3.145a)

DxDyF · F = 2GG∗, (3.145b)

where G∗ denotes the complex conjugate of G, and a(x, t), b(y, t) correspond to the non-

trivial boundary conditions on v. Following the usual method in the commutative case, an
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ansatz is made for a solution F expressed in terms of a Grammian determinant, namely

F =|F |=|I +HΦ |, (3.146)

where Φ is an (M +N)× (M +N) matrix of the form

Φ =

∫ x−∞ φiφj
∗ dx 0

0
∫∞
y ψkψl

∗ dy

 (3.147)

for functions φi(x, t), φj(x, t), ψk(y, t), ψl(y, t), with i, j ∈ {1, . . . ,M}, k, l ∈ {1, . . . , N}.

Here, H is a constant Hermitian matrix of size (M +N)× (M +N) and φ, ψ satisfy the

time-dependent Schrödinger equations

iφt + φxx − 2a(x, t)φ = 0, (3.148a)

iψt − ψyy + 2b(y, t)ψ = 0. (3.148b)

In order to obtain a Grammian expression for G, the derivatives of F are calculated in

terms of bordered determinants and substituted into the left-hand side of (3.145b), giving

DxDyF · F = −2

∣∣∣∣∣∣∣∣∣
0 0 l∗T

0 0 m∗T

Hl Hm F

∣∣∣∣∣∣∣∣∣ |F | +2

∣∣∣∣∣∣ 0 l∗T

Hl F

∣∣∣∣∣∣
∣∣∣∣∣∣ 0 m∗T

Hm F

∣∣∣∣∣∣ , (3.149)

where l and m are M +N column vectors defined by

l = (φ1, . . . , φM ; 0, . . . , 0)T , (3.150a)

m = (0, . . . , 0 ;ψ1, . . . , ψN )T . (3.150b)

A Jacobi identity is also utilised, namely

|A |Ai,jk,l =

∣∣∣∣∣∣A
i
k Ajk

Ail Ajl

∣∣∣∣∣∣ (3.151)

(compare (2.15)), where Ai,...,jk,...,l denotes the minor matrix obtained from the n× n matrix

A by deleting the ith, . . . , jth rows and kth, . . . , lth columns. Choosing

A =


0 0 l∗T

0 0 m∗T

Hl Hm F

 (3.152)
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with {i, j} = {k, l} = {1, 2}, the Jacobi identity gives∣∣∣∣∣∣∣∣∣
0 0 l∗T

0 0 m∗T

Hl Hm F

∣∣∣∣∣∣∣∣∣ |F | −
∣∣∣∣∣∣ 0 l∗T

Hl F

∣∣∣∣∣∣
∣∣∣∣∣∣ 0 m∗T

Hm F

∣∣∣∣∣∣+
∣∣∣∣∣∣ 0 l∗T

Hm F

∣∣∣∣∣∣
∣∣∣∣∣∣ 0 m∗T

Hl F

∣∣∣∣∣∣ = 0. (3.153)

Rearranging and substituting for the first product of determinants in (3.149) gives

DxDyF · F = 2

∣∣∣∣∣∣ 0 l∗T

Hm F

∣∣∣∣∣∣
∣∣∣∣∣∣ 0 m∗T

Hl F

∣∣∣∣∣∣ , (3.154)

and, by comparing with (3.145b), it follows that

GG∗ =

∣∣∣∣∣∣ 0 l∗T

Hm F

∣∣∣∣∣∣
∣∣∣∣∣∣ 0 m∗T

Hl F

∣∣∣∣∣∣ . (3.155)

Taking

G =

∣∣∣∣∣∣ 0 m∗T

Hl F

∣∣∣∣∣∣ , (3.156)

it can be shown that the first determinant on the right-hand side of (3.155) is the complex

conjugate of G. It is also straightforward to calculate the derivatives of G in terms of bor-

dered determinants using the same procedure as for F above. These derivatives can then

be substituted into the left-hand side of (3.145a) and a pair of Jacobi identities utilised to

show that this expression is zero, thus verifying the Grammian solutions for F and G.

In our method used in the noncommutative case, we have avoided the need to propose an

ansatz for the solution, requiring a certain degree of intuition and experience, by deriv-

ing a quasi-Grammian solution directly via a binary Darboux transformation. Also, the

introduction of the 2× 2 matrix S in (3.20) to obtain a noncommutative analogue of the

Hirota bilinear form of the DS equations avoids the need for identities when verifying the

solution.

3.6.3 Comparison of solutions of noncommutative integrable equations

We have explained above how direct verification of quasi-Wronskian and quasi-Grammian

solutions of the ncDS equations requires either the introduction of a 2 × 2 matrix S or

the use of quasideterminant identities. In contrast, in the case of the noncommutative KP

(ncKP) equation studied by Gilson and Nimmo in [36], it was found that, unlike in the
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commutative case, where an identity, namely the Laplace expansion of a determinant, is

necessary in order to verify the Wronskian solution, verification of the quasi-Wronskian

and quasi-Grammian solutions in the noncommutative case (obtained from Darboux and

binary Darboux transformations) is automatic without the use of identities, and without

the introduction of a matrix in a similar manner to that used here for the ncDS equations.

Gilson and Nimmo point out that with all other noncommutative equations they have

studied (noncommutatuve Hirota-Miwa [37,72], noncommutative modified KP [38]), direct

verification of quasi-Wronskian and quasi-Grammian solutions does require the use of

quasideterminant identities, and hence the ncKP equation is thought to be exceptional

in this respect. The ncDS equations join the list of noncommutative integrable equations

requiring quasideterminant identities for solution verification (without the introduction of

an appropriate matrix as in our work), thus further confirming the suspicions of Gilson

and Nimmo.

3.7 Conclusions

In this chapter we obtained a noncommutative version of the Davey-Stewartson system by

utilising the same Lax pair as in the commutative case but relaxing the assumption that the

dependent variables commute. We applied a Darboux and binary Darboux transformation

to this noncommutative system in order to generate quasi-Wronskian and quasi-Grammian

solutions, which were verified by direct substitution. In the next chapter, we look at a

particular type of solution to the noncommutative system and, by choosing the dependent

variables to be of matrix rather than scalar form, are able to obtain plots of these solutions

in a noncommutative setting.



Chapter 4

Solutions of the noncommutative

Davey-Stewartson equations

We now consider a particular type of solution to our system of noncommutative Davey-

Stewartson equations derived in the previous chapter, namely dromions. As we shall

discuss below, dromion solutions of the DS equations have been considered by a number

of authors, however only in the commutative case. We show here that results can be

extended to the noncommutative case.

4.1 Dromion solutions

4.1.1 Background - dromions

A major development in the understanding of the DS equations came in 1988, when Boiti et

al. [10] discovered a class of localised solutions (two-dimensional solitons) decaying to zero

exponentially in all directions as spatial variables tend to infinity. These solutions undergo

a phase shift, and, unlike the (1 + 1)-dimensional case, a possible amplitude change on

interaction with other solitons. These new solutions were later termed dromions by Fokas

and Santini [20], derived from the Greek dromos meaning tracks, to highlight that the

dromions lie at the intersection of perpendicular track-like plane waves. The DS equations

were the first found to posses this wider class of solution.

Until the discovery of dromion solutions by Boiti et al., the only known localised exact

solutions of the DS equations were the so-called ‘lump’ solutions conceived by Ablowitz

and Satsuma in 1979 [6]. Lump solutions, unlike dromions, decay algebraically in all

68
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directions and undergo no change in form upon interaction with similar waves.

Multidromion solutions to the DS system have been obtained using a variety of approaches.

The initial discovery by Boiti et al. was made using Bäcklund transformations, with further

methods being utilised later to obtain the same type of solution - the inverse scattering

method [20], Hirota’s direct method [46] and others. Multidromion solutions have been

determined both in terms of Wronskian [46] and Grammian [35] determinants.

In this section we wish to obtain dromion solutions to our system of ncDS equations (3.17),

which we find correspond to those found by Gilson and Nimmo in terms of Grammian

determinants in the commutative case [35]. We are then able to plot both dromion and

multidromion solutions using our new results.

4.1.2 Dromion solutions - quasi-Wronskian versus quasi-Grammian

In order to obtain dromion solutions, we choose to work with the quasi-Grammian rather

than the quasi-Wronskian solution of our system of ncDS equations. The reasoning be-

hind this choice concerns verification of the reality of our solution - verification is far more

straightforward in the quasi-Grammian case. This can be seen by alluding to the com-

mutative case, where, by studying the work of Hietarinta and Hirota [46], we see that

checking the reality of a solution expressed in terms of a Wronskian determinant can be

rather complex. This point was explicitly made by Hietarinta and Hirota.

In their paper of 1990, Hietarinta and Hirota construct an (N,N)-dromion solution (that

is, a solution consisting of N plane waves in one direction and N in the perpendicular di-

rection, with each point of overlap of these waves giving rise to a dromion) to a system of

DS equations using double Wronskians. By taking a system of commutative DS equations

in terms of variables u and v, both functions of x, y and t, and expressing u, v in terms

of new dependent variables F and G (with F real), the Hirota bilinear form of the DS

equations is obtained, namely

(iDt +D2
x +D2

y)G · F = 0, (4.1a)

DxDyF · F = 2 |G |2. (4.1b)
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Hietarinta and Hirota then introduce eigenfunctions φ(x, t), ψ(y, t) satisfying the disper-

sion relations for the system and use these to construct a double Wronskian τn, namely

τn =

∣∣∣∣∣∣∣∣∣∣∣∣

φ1 φ
(1)
1 . . . φ

(n−1)
1 ψ1 ψ

(1)
1 . . . ψ

(2N−n−1)
1

φ2 φ
(1)
2 . . . φ

(n−1)
2 ψ2 ψ

(1)
2 . . . ψ

(2N−n−1)
2

...
...

...
...

...
...

φ2N φ
(1)
2N . . . φ

(n−1)
2N ψ2N ψ

(1)
2N . . . ψ

(2N−n−1)
2N

∣∣∣∣∣∣∣∣∣∣∣∣
, (4.2)

where n = 1, 2, . . . , 2N − 1. Choosing

φi =
2N∑
j=1

aije
ξj , (4.3a)

ψi =
2N∑
j=1

bije
ζj (4.3b)

for i = 1, . . . , 2N , where ξj = Pjx + iP 2
j t and ζj = Qjy − iQ2

j t for complex constants

Pj , Qj , with aij , bij the (i, j)th entries of 2N × 2N matrices A,B respectively, they then

conjecture that F , G are such that

F = cτ̃N , G = cτ̃N+1, G∗ = cτ̃N−1 (4.4)

for some constant c, where τ̃n = τn exp
(
−
∑N

i=1 ξi+N + ζi

)
.

In order to check reality, it must be shown that F is real, i.e. that cτ̃n is real, and also

that the expression for G∗ is the complex conjugate of the expression for G, i.e. that

cτ̃N−1 = (cτ̃N+1)∗.

In the case of a single dromion solution, the conditions required for this solution to be real

are fairly simple to obtain - by writing the columns of the matrices A, B in terms of the

columns of two new matrices α, β respectively and of Pj , Qj (j = 1, 2), Hietarinta and

Hirota show that a real solution amounts to ensuring that the matrix α−1β is real with

unit determinant.

However, for a general (N,N)-dromion solution, these reality conditions are more difficult

to obtain. A lengthy calculation (see [46] for full details) leads to the requirement that

the matrix α−1β must be symplectic. To enable such a choice to be made, Hietarinta and

Hirota express α and β in terms of an arbitrary nonsingular matrix and two Hermitian

matrices, all of sizeN×N . Although the entries of these matrices may be easy to choose, to

obtain such a condition in order to ensure a real solution is a lengthy and difficult process.

As we shall see later, the Grammian approach leads to a much simpler calculation to verify
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reality. This can be seen in, for example, [78], where Grammian solutions of a system of

commutative DS equations are obtained, although the assumption that the system has

zero asymptotic state is removed. The method used in [78] to check reality of a solution

is the one that we exploit in the next section.

4.1.3 (n, n)-dromion solution - noncommutative (matrix) case

We modify the approach of [35], where dromion solutions of a system of commutative DS

equations are determined. We consider the ncDS system (3.17) and, by specifying that

certain parameters in the quasi-Grammian are of matrix rather than scalar form, we are

able to obtain dromion solutions valid in the noncommutative case. Due to the complexity

of this solution compared to the scalar case considered in [35], we look in some detail only

at the simplest cases of the (1, 1)- and (2, 2)-dromion solutions. We do however verify

reality for the general case. Note here that to obtain dromion solutions, we consider the

DSI case, and hence choose σ = −1.

Recall the expressions for q, r obtained in terms of quasi-Grammians in (3.124), namely

q = −2

∣∣∣∣∣∣Ω(Θ, P ) Hψ†

φ 0

∣∣∣∣∣∣ , r = 2

∣∣∣∣∣∣Ω(Θ, P ) Hφ†

ψ 0

∣∣∣∣∣∣ , (4.5)

where φ, ψ denote the row vectors (φ1 . . . φ2n), (ψ1 . . . ψ2n) respectively and H = (hij)

is a constant invertible square matrix, with † denoting conjugate transpose (Hermitian

conjugate). By once again considering the dispersion relations for the system, we are able

to choose expressions for φ, ψ corresponding to dromion solutions. From (3.129) and the

definition of Θ = (θ1, . . . , θn), where θi is given by (3.61), it follows that φ, ψ satisfy the

relations

(φj)x = (φj)y, (φj)t = i(φj)yy, (4.6a)

(ψj)x = −(ψj)y, (ψj)t = −i(ψj)yy. (4.6b)

(Since the dispersion relations for P are the same as those for Θ when σ = −1 (see

(3.129), (3.134)), considering P rather than Θ and recalling that P = ΘH† will give the

same relations (4.6)).

So far we have not specified the nature of the noncommutativity we are considering. One

of the more straightforward cases to consider is to take the fields q and r to be 2 × 2
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matrices. Thus for dromion solutions in the noncommutative case, we choose φj , ψj to be

2× 2 matrices, so that

φj = αjI2, (4.7a)

ψj = βjI2, (4.7b)

where I2 denotes the 2× 2 identity matrix, and αj , βj the exponentials [35,46]

αj = exp(pjx+ ip2
j t+ pjy + αj0), (4.8a)

βj = exp(qjx− iq2j t− qjy + βj0), (4.8b)

for j = 1, . . . , 2n, suitable phase constants αj0 , βj0 and constants pj , qj , whose real parts

are taken to be positive in order to give the correct asymptotic behaviour. The matrix H

can be assumed to have unit diagonal since we are free to choose the phase constants αj0 ,

βj0 arbitrarily [35]. Using the coordinate transformation X = x + y, Y = −(x − y), we

have

αj = exp(pjX + ip2
j t+ αj0), (4.9a)

βj = exp(−qjY − iq2j t+ βj0), (4.9b)

so that αj = αj(X, t), βj = βj(Y, t).

We now choose to simplify our notation so that we are working with only φ1, . . . , φn and

ψ1, . . . , ψn by relabeling φj as φ j+1
2

for odd j (i.e. j = 1, 3, . . . , 2n− 1) and setting φj = 0

for even j (j = 0, 2, . . . , 2n), and similarly relabeling ψj as ψ j
2

for even j and setting ψj = 0

for odd j, so that θj = diag(φj , ψj) (j = 1, . . . , n) and

φ =
(
φ1 0 φ2 0 . . . φn 0

)
, (4.10a)

ψ =
(
0 ψ1 0 ψ2 . . . 0 ψn

)
, (4.10b)

where each φj , ψj is a 2 × 2 matrix as defined in (4.7) above. Thus, for n = 1, q (which

we henceforth denote by q1 for the (1, 1)-dromion case and qn for the (n, n)-dromion case)

can be expressed in quasi-Grammian form as

q1 = −2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ω(Θ, P ) H

0 0

0 0

β∗1 0

0 β∗1

α1 0 0 0

0 α1 0 0

0 0

0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (4.11)
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whereH = (hij) is a constant invertible 4×4 matrix. (Note thatH is of size 2n×2n = 2×2,

but we now assume each entry of H takes the form of a 2×2 matrix, meaning H is 4n×4n).

Applying the quasideterminant expansion formula (2.10) allows us to express q1 as a 2×2

matrix, where each entry is a quasi-Grammian, namely

q1 = −2



∣∣∣∣∣∣∣∣∣∣∣∣
Ω(Θ, P )

h13β
∗
1

...

h43β
∗
1

α1 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣
Ω(Θ, P )

h14β
∗
1

...

h44β
∗
1

α1 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣

Ω(Θ, P )

h13β
∗
1

...

h43β
∗
1

0 α1 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣
Ω(Θ, P )

h14β
∗
1

...

h44β
∗
1

0 α1 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣


= −2

q111 q112

q121 q122

 , say. (4.12)

We consider each quasi-Grammian in turn, but as an example we will look at the quasi-

Grammian q111. We apply (2.14) to express q111 as a ratio of determinants, namely

q111 = −2

∣∣∣∣∣∣∣∣∣∣∣∣
Ω(Θ, P )

h13β
∗
1

...

h43β
∗
1

α1 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣Ω(Θ, P )
∣∣∣ = −2

G1
11

F
, say. (4.13)

(We have introduced the notation Gnvw and qnvw (v, w = 1, 2) to emphasise that we are

considering the (v, w)th entry of the expansion of qn in the (n, n)-dromion case). Although

(2.14) is valid only in the commutative case, our assumption here is that the variables q, r

in our system of DS equations, and also the parameters φj , ψj , are noncommutative. The

exponentials αj , βj given by (4.9) are clearly commutative by definition, hence we are free

to use the result (2.14).

By expanding the quasi-Grammian r in (4.5) in a similar manner and extracting the (1, 1)th
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entry, we obtain

r111 = 2

∣∣∣∣∣∣∣∣∣∣∣∣
Ω(Θ, P )

h11α
∗
1

...

h41α
∗
1

0 0 β1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣Ω(Θ, P )
∣∣∣ = 2

K1
11

F
, say, (4.14)

with similar results for q112, r
1
12 etc.

4.1.4 Reality conditions

In the (n, n)-dromion case, we have

qnvw = −2
Gnvw
F

, (4.15a)

rnvw = 2
Kn
vw

F
, (4.15b)

for v, w = 1, 2. To verify reality, we must check that rnvw = ±(qnvw)†, i.e. that F is self-

adjoint, and (Gnvw)† = ±Kn
vw, where (Gnvw)† denotes the Hermitian conjugate of Gnvw.

Consider

F =
(
Ω(Θ, P )

)
=
(∫

P †Θdy + C
)

(4.16)

since Ωy = P †Θ for Θ = (θ1 . . . θn), P = (ρ1 . . . ρn), so that F = detF . Here, C = (cij)

(i, j = 1, . . . , 2n) is a 2n× 2n (constant) matrix denoting a constant of integration, where

each cij is a 2× 2 block. From before, P = ΘH†, so that

F =
(
H
∫

Θ†Θdy + C
)
. (4.17)

Thus, since Θ = (θ1 . . . θn) for θj = diag(φj , ψj) (j = 1, . . . , n), this gives

F = H



∫ X
−∞ φ∗1φ1 dX O2 . . .

∫ X
−∞ φ∗1φn dX O2

O2

∫∞
Y ψ∗1ψ1 dY . . . O2

∫∞
Y ψ∗1ψn dY

...
...

...
...∫ X

−∞ φ∗nφ1 dX O2 . . .
∫ X
−∞ φ∗nφn dX O2

O2

∫∞
Y ψ∗nψ1 dY . . . O2

∫∞
Y ψ∗nψn dY


+ C, (4.18)

remembering that each φj , ψj is a 2×2 matrix and O2 denotes the 2×2 zero matrix. The

limits of integration are determined from the definitions of φj , ψj (j = 1, . . . , n) in (4.7),
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(4.9). We choose the entries of the matrix C so that

cij =


I2 for i = j,

O2 otherwise.
(4.19)

Thus

F = I4n +HΦ, (4.20)

where

Φ =



∫ X
−∞ φ∗1φ1 dX O2 . . .

∫ X
−∞ φ∗1φn dX O2

O2

∫∞
Y ψ∗1ψ1 dY . . . O2

∫∞
Y ψ∗1ψn dY

...
...

...
...∫ X

−∞ φ∗nφ1 dX O2 . . .
∫ X
−∞ φ∗nφn dX O2

O2

∫∞
Y ψ∗nψ1 dY . . . O2

∫∞
Y ψ∗nψn dY


, (4.21)

and hence

F = detF =|I4n +HΦ | . (4.22)

We firstly prove F is self-adjoint, i.e. we prove F † = F . We have

F =|I4n +HΦ |

=|H | . |H−1 + Φ | (4.23)

since we assume H to be invertible. Then

F † =|H |† . |H−1 + Φ |†

=|H† | . |(H†)−1 + Φ |

= F, (4.24)

provided H† = H, where we have used the fact that
(
H†)−1 =

(
H−1

)†, and also that

Φ† = Φ (which is clear from the definition of Φ above). Thus for F self-adjoint, we require

that H is a constant 4n× 4n Hermitian matrix.

Here we explain why we made the choice P = ΘH† in (3.122), rather than the con-

ceivably more simple choice of P = Θ. We take our lead from Gilson and Nimmo in the

commutative case with F of the form (3.146), i.e.

F = |I +HΦ|, (4.25)
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where Φ satisfies (3.147), and H and Φ are of compatible sizes. Taking H to be the identity

matrix, we can factorise F so that

F (x, y, t) = F1(x, t)F2(y, t) (4.26)

for some functions F1 and F2. Then, from (3.144b), it follows that

v = −(lnF1)xx − (lnF2)yy + a(x, t) + b(y, t), (4.27)

and, from the bilinear form (3.145b),

|u|2 ≡ 0. (4.28)

To see this, we calculate from the definition of the Hirota derivative (1.12) that

DxDy(F · F ) = 2 (FFxy − FxFy) . (4.29)

With F as in (4.26) above, we find that Fxy = F1xF2y and FxFy = F1F2F1xF2y. Then

DxDy(F · F ) = 2 (F1F2F1xF2y − F1F2F1xF2y) = 0, (4.30)

so that, by (3.145b),

GG∗ = 0. (4.31)

Since u =
G

F
by (3.144a), it follows that

|u|2 = uu∗ =
GG∗

F 2
= 0. (4.32)

In Gilson and Nimmo’s notation, the variable v governs the plane waves, and thus, by

(4.27), we have plane waves parallel to the x- and y-axes which interact in a linear manner.

As a result, these waves do not have any effect on each other, and hence we see no dromions

in the u-plane, i.e. |u|2 = 0, where |u|2 governs the dromion height. We must therefore

choose a more general H to allow for a nonlinear interaction of the plane waves in the

v-plane. This nonlinear interaction leads to dromion solutions.

We follow the same approach in the noncommutative case - although we do not have a

bilinear form as in (3.145), nor a concrete simple expression for our plane waves in terms

of F as in (3.144b), we consider F to have the same structure as in the commutative case

(4.25). We have found that the matrix H must be Hermitian, and, as this matches with

the condition required on H in Gilson and Nimmo’s work, our assumption for the form of

F is a sensible one.
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We now derive the condition so that (Gn11)
† = ±Kn

11. We have

Gn11 =

∣∣∣∣∣∣F Hβ†

α 0

∣∣∣∣∣∣ , (4.33)

where α, β are row vectors defined by

α =
(
α1 0 0 0 α2 0 0 0 . . . αn 0 0 0

)
, (4.34a)

β =
(

0 0 β1 0 0 0 β2 0 . . . 0 0 βn 0
)
, (4.34b)

while

Kn
11 =

∣∣∣∣∣∣F Hα†

β 0

∣∣∣∣∣∣ . (4.35)

Since F = H(H−1 + Φ), it can be seen that

Gn11 =

∣∣∣∣∣∣
H OT

O 1

H−1 + Φ β†

α 0

∣∣∣∣∣∣ , (4.36)

where O denotes the 1× 4 row vector
(
0 0 0 0

)
, so that

(Gn11)
† =

∣∣∣∣∣∣H
† OT

O 1

∣∣∣∣∣∣ .
∣∣∣∣∣∣(H

−1)† + Φ† α†

β 0

∣∣∣∣∣∣
=

∣∣∣∣∣∣
H OT

O 1

H−1 + Φ α†

β 0

∣∣∣∣∣∣
= Kn

11, (4.37)

provided H† = H, i.e. H Hermitian. (Again we have used the fact that Φ† = Φ). Thus we

have rn11 = −(qn11)
† so long as H is a constant Hermitian matrix, agreeing with the work

of Gilson and Nimmo in [35]. We have shown that, by imposing the relation P = ΘH†

for a Hermitian matrix H, the condition rn11 = −(qn11)
† holds and thus, for a dromion

solution (σ = −1), with Λ defined as in (3.13), we must have Λ† = −Λ, i.e. S† = −S since

Λ = [J, σS]. The binary Darboux transformation preserves this skew-adjoint condition, so

that after n iterations, S†[n+1] = −S[n+1], where we use the fact that P = ΘH†.

4.1.5 (1, 1)-dromion solution - matrix case

We now show computer plots of the (1, 1)-dromion solution in the noncommutative case,

where we choose φ1, ψ1 to be 2×2 matrices as in (4.7). A suitable choice of the parameters
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p1, q1 and of the 4 × 4 Hermitian matrix H allows us to obtain plots of the four quasi-

Grammian solutions q111, q
1
12, q

1
21 and q122 as detailed in (4.12).

We are restricted in our choice of p1, q1 and H in that we require F 6= 0. In particular, we

derive conditions so that F > 0. The determinant F can be expanded in terms of minor

matrices of H = (hij) (i, j = 1, . . . , 4), giving

F = 1 + P1

(
h234

234 + h134
134

)
e2η +Q1

(
h124

124 + h123
123

)
e−2ξ + P 2

1 h
34
34e

4η

+Q2
1h

12
12e

−4ξ + P1Q1

(
h24

24 + h14
14 + h23

23 + h13
13

)
e2η−2ξ

+ P 2
1Q1

(
h4

4 + h3
3

)
e4η−2ξ + P1Q

2
1

(
h2

2 + h1
1

)
e2η−4ξ + P 2

1Q
2
1he

4η−4ξ, (4.38)

where we define P1 = 1/(2<(p1)), Q1 = 1/(2<(q1)), η = < (p1)(X − 2=(p1)t) and ξ =

< (q1)(Y − 2=(q1)t), with hrs...ij... denoting the minor matrix obtained by removing rows

i, j, . . . and columns r, s, . . . of H, where i, j, . . ., r, s, . . . ∈ {1, 2, 3, 4}. We have used ‘h’ to

indicate that no rows or columns have been removed, i.e. h = detH. We can also obtain

expressions for each G1
vw (v, w = 1, 2), for instance

G1
11 = α1β

∗
1

(
h124

234 − P1h
14
34e

2η −Q1h
12
23e

−2ξ − P1Q1h
1
3e

2η−2ξ
)
, (4.39)

with α1, β1 defined as in (4.9). Similar expansions can be obtained for G1
12, G

1
21 and G1

22.

Thus, it can be seen that for F > 0, we require <(p1), <(q1) and each of the minor matrices

in the expansion of F to be greater than zero. Suitable choices of p1, q1 and H have been

used to obtain the dromion plots shown later. In addition to the matrix-valued fields q

and r, there are also matrix-valued fields A1 and A2 in the ncDS system (3.17). Plotting

the derivatives of these fields gives plane waves as follows.

From (3.123), we have an expression for the 2× 2 matrix S in terms of quasi-Grammians.

By (3.21), A = −iSx−iJSy, therefore substituting for S using (3.123) and equating matrix

entries gives quasi-Grammian expressions for A1, A2, namely

A1 = −i

∣∣∣∣∣∣Ω Hφ†

φ 0

∣∣∣∣∣∣
x

− i

∣∣∣∣∣∣Ω Hφ†

φ 0

∣∣∣∣∣∣
y

, (4.40a)

A2 = −i

∣∣∣∣∣∣Ω Hψ†

ψ 0

∣∣∣∣∣∣
x

+ i

∣∣∣∣∣∣Ω Hψ†

ψ 0

∣∣∣∣∣∣
y

. (4.40b)

We choose φ1, ψ1 to be 2× 2 matrices as before so that the boxed expansion element ‘0’

in each quasi-Grammian is the 2×2 matrix ( 0 0
0 0 ). Thus, expanding each quasi-Grammian

in the usual manner gives a 2 × 2 matrix where each entry is a quasi-Grammian, and
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hence we have distinct expressions for A1, A2 corresponding to each of the four dromions

q111, q
1
12, q

1
21 and q122. Considering (3.17c)-(3.17d), we find that plotting the combination

(∂x+σ∂y)A1 for σ = −1 gives a plane wave travelling in the X direction, while the combi-

nation (∂x−σ∂y)A2 gives a plane wave in the Y direction. These, along with the dromions

corresponding to each plane wave, have been plotted at time t = 0 in Figures 4.1 and 4.2,

where the Hermitian matrix H has been chosen to have unit diagonal. As can be seen

Figure 4.1: (1, 1)-dromion plots with p1 = 1
2 + i, q1 = 1

2 − i and h12 = 1
2 , h13 = 1

4 , h14 = 3
4 ,

h23 = 1
3 , h24 = 1

2 , h34 = 1
3 .

from Figure 4.1, single dromions of differing heights occur in each of the fields q11, q12,

q21 and q22. If we were to plot the (1, 1)-dromion solution in the commutative (scalar)

case (that is, if we were to choose q and its Hermitian conjugate to be of scalar rather

than matrix form), we would obtain only one dromion in the single field q. This dromion

and its plane waves would have the same basic structure as those above, and thus there

would be no marked difference in the appearance of the dromions in the commutative

and noncommutative cases. The main difference between the two situations concerns the

number of parameters - a far greater number in the noncommutative case gives us more

freedom to control the heights of the dromions, however some extra care has to be taken

in choosing the parameters so that no singularities occur in the solution.
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Figure 4.2: Plane waves corresponding to, clockwise from top left, q111, q
1
12, q

1
22, q

1
21.

With the aid of a computer package, we can easily determine the amplitude of each of the

dromions depicted above. We firstly consider q111 = −2G1
11/F , with F and G1

11 given by

(4.38) and (4.39) respectively. Calculating the numerical values of F and G1
11 at time t = 0

and position (X,Y ) = (0, 0), we find that F = 11.9184 and G1
11 = −0.3125, giving q111 an

amplitude of 0.0524 (to four decimal places). Similar calculations can be carried out for

the remaining three dromions, giving amplitudes for q112, q
1
21 and q122 of 0.3939, 0.1311 and

0.1847 respectively. (Note that the maximum amplitude of each dromion can be seen to

occur at position (X,Y ) = (0, 0) as deviations from this position result in a decrease in

amplitude).

Clearly this is a very näıve approach to utilise in order to determine dromion amplitudes,

and gives no information as to the factors governing these amplitudes. In the scalar (com-

mutative) case, Gilson and Nimmo [35] are able to calculate dromion amplitudes in a

relatively straightforward manner by employing the Hirota bilinear form (3.145) of their

DS equations (3.143), with the variables u, v defined in (3.144). From this bilinear form,

they are able to obtain a simple expression for the dromion amplitudes, namely ∂x∂y(lnF ).

Since F in this case takes the compact form

F = 1 + αe2η + βe−2ρ + γe2η−2ρ, (4.41)
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with η = <(p1)(x− 2=(p1)t), ρ = <(q1)(y− 2=(q1)t), p1, q1 complex parameters and α, β,

γ positive, an easy calculation yields an expression for the dromion amplitudes.

In the noncommutative case, we have no bilinear form as in the commutative case above,

and hence calculations of this type are not possible. (An attempt was made to carry out a

calculation in the same manner to that done by Gilson and Nimmo, however the resulting

expression could not be simplified due to its complexity). This highlights a limitation of

the matrix case - although we have succeeded in plotting the (1, 1)-dromion solution with

relative ease, an analysis of the obtained plots and their properties proves to be rather

difficult.

4.1.6 (2, 2)-dromion solution - matrix case

In the scalar case [35], Gilson and Nimmo carry out a detailed asymptotic analysis of their

(M,N)-dromion solution, and are able to obtain compact expressions for the phase-shifts

and changes in amplitude that occur due to dromion interactions. They then use the

results of this analysis to study a class of (2, 2)-dromions with scattering-type interaction

properties. The Hermitian matrix H can be chosen in such a way so that some of the

dromions have zero amplitude either as t→ −∞ or as t→ +∞.

For the (2, 2)-dromion solution in the matrix case, detailed calculations of this type are

more complicated due to the large number of terms involved. However, we can adopt the

same approach to carry out some of the more straightforward calculations. In particular,

we obtain plots of the situation in which the (1, 1)th dromion in each of the solutions q211,

q212, q
2
21 and q222 does not appear as t→ −∞. These are depicted in Figures 4.3-4.5.

To analyse this situation, we focus our attention on q211 and consider G2
11 in a frame

moving with the (1, 1)th dromion. We define

X̂ = X − 2=(p1)t, (4.42a)

Ŷ = Y − 2=(q1)t, (4.42b)

and consider the limits of G2
11 as t→ −∞. Let

η2 = <(p2) (X − 2=(p2)t)

= <(p2)
(
X̂ − 2(=(p2)−=(p1))t

)
, (4.43a)
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and similarly

ξ2 = <(q2) (Y − 2=(q2)t)

= <(q2)
(
Ŷ − 2(=(q2)−=(q1))t

)
. (4.43b)

We choose to order the pi, qi (i = 1, 2) by means of their imaginary parts, so that =(p1) >

=(p2) and =(q1) < =(q2). Thus, as t → −∞, η2 → −∞ and ξ2 → +∞. It can easily be

shown that η2, −ξ2 determine the real parts of the exponents in α2, β2 respectively, where

α2, β2 are defined as in (4.9), so that, as t→ −∞, α2, β2 → 0 (and hence α∗2, β
∗
2 → 0 also).

Therefore, by setting α2, α
∗
2, β2, β

∗
2 → 0 in G2

11 and expanding the resulting determinant,

we obtain a compact expression for G2
11 as t→ −∞, namely

G2
11 = −α1β

∗
1

(
h1245678

2345678 − P1h
145678
345678e

2η −Q1h
125678
235678e

−2ξ + P1Q1h
15678
35678e

2η−2ξ
)
. (4.44)

Similar expressions can be obtained for the other three determinants G2
12, G

2
21 and G2

22 by

considering an extension of (4.12) to the (2, 2)-dromion case and interchanging columns

appropriately: for example, we firstly interchange columns 3 and 4, and 7 and 8, of H,

before using the same expansion as in (4.44), to obtain an analogous expression for G2
12.

Thus we have, as t→ −∞, compact expressions for the minors of H governing the (1, 1)th

dromion in each of G2
11, G

2
12, G

2
21, G

2
22, namely

G2
11 G2

12

G2
21 G2

22

 = −α1β
∗
1



|h13| |h14|

|h23| |h24|

+ P̂



∣∣∣∣∣∣h12 h13

h22 h23

∣∣∣∣∣∣
∣∣∣∣∣∣h12 h14

h22 h24

∣∣∣∣∣∣
∣∣∣∣∣∣h11 h13

h21 h23

∣∣∣∣∣∣
∣∣∣∣∣∣h11 h14

h21 h24

∣∣∣∣∣∣


e2η

+Q̂



∣∣∣∣∣∣h13 h14

h43 h44

∣∣∣∣∣∣
∣∣∣∣∣∣h13 h14

h33 h34

∣∣∣∣∣∣
∣∣∣∣∣∣h23 h24

h43 h44

∣∣∣∣∣∣
∣∣∣∣∣∣h23 h24

h33 h34

∣∣∣∣∣∣


e−2ξ +P1Q̂



∣∣∣∣∣∣∣∣∣
h12 h13 h14

h22 h23 h24

h42 h43 h44

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
h12 h13 h14

h22 h23 h24

h32 h33 h34

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣
h11 h13 h14

h21 h23 h24

h41 h43 h44

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
h11 h13 h14

h21 h23 h24

h31 h33 h34

∣∣∣∣∣∣∣∣∣


Te2η−2ξ



,

(4.45)

where T = diag(−1, 1), P̂ = P1T and Q̂ = Q1T . Since we have written out each minor

matrix explicitly, rather than using the abbreviated notation as in (4.44), it can easily
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be seen that, by setting h13, h14, h23 and h24 equal to zero, the (1, 1)th dromion in each

of q211, q
2
12, q

2
21 and q222 will vanish as t → −∞. This is shown in Figures 4.3-4.5 below.

(Note that in the plots of q211 and q212 in Figure 4.3, two of the dromions have very small

amplitude). In Figure 4.6, we have focused on the dromion solutions of q222, plotting these

in smaller time increments to highlight how the dromions approach each other and move

apart, while in Figure 4.7, we have shown a close-up of the q222 dromion interaction at

t = 0. In each of these plots, we choose p1 = q2 = 1
2 +i, p2 = q1 = 1

2− i, and the Hermitian

matrix H such that

H =


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1
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1
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1 4 1 81
64 1 121

16 1 1
1
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1
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1
4

1
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4
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16



. (4.46)

Figure 4.3: (2, 2)-dromion plots at t = −10.
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Figure 4.4: (2, 2)-dromion plots at t = 0.

Figure 4.5: (2, 2)-dromion plots at t = 10.
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Figure 4.6: q222 dromion plots at (top row, left to right) t = −10,−7.5,−5, middle row

(left to right) t = −2.5, 0, 2.5 and bottom row (left to right) t = 5, 7.5, 10.

Figure 4.7: Detail of the q222 dromion interaction shown in Figure 4.4.
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The choice of H given in (4.46) seems rather complex; indeed, we have not been able

to find a systematic way to determine appropriate entries of this matrix, and hence have

chosen the entries in a rather random manner. However, one way to ensure that our choice

of H generates suitable dromion plots is to refer to the work of Gilson and Nimmo in [35]

and take H to be a positive definite matrix. In order to choose such an H, we choose any

Hermitian matrix, say J , such that the (1, 3)th, (1, 4)th, (2, 3)th and (2, 4)th entries are

zero and multiply this matrix by its conjugate transpose J†. We make the choice

J =


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2 1
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1
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8 2 1

2
1
2 1 37

16
1
2

1
4 1 1 2 1 1 1

2
9
4



, (4.47)

so that

H = JJ† (4.48)

is positive definite and Hermitian, with zeros in the correct positions so that the (1, 1)th

dromion in each of q211 etc. will vanish as t → −∞. This highlights one of the main

difficulties of obtaining dromion plots in the noncommutative case - we believe that it is

not possible to carry out a detailed analysis as in the work of Gilson and Nimmo, and,

as a result, our choice of the matrix H is somewhat arbitrary. Nevertheless, we have

succeeded in obtaining a range of plots of both the (1, 1)- and (2, 2)-dromion solutions in

the noncommutative case.

4.2 Conclusions

We have derived and plotted a particular type of solution to our system of noncommutative

Davey-Stewartson equations, namely dromions. By choosing the dependent variable q and

its Hermitian conjugate q† to be of matrix rather than scalar form, plots of the (1, 1)-

and (2, 2)-dromion solutions were obtained in the noncommutative case. In theory, this

procedure could be extended to include the (3, 3)-, (4, 4)-dromion cases and so on, however

the difficulties that we faced in the (2, 2)-dromion case with regards to choosing the entries
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of the matrix H indicate that this would not be an easy task. It does not seem possible

to generalise results to the (n, n)-dromion case in order that such calculations could be

carried out routinely. We have, however, succeeded in extending results for the (1, 1)- and

(2, 2)-dromion situation to the noncommutative case and have obtained new plots of single

dromions and dromion interactions.



Chapter 5

Dimensional reduction of Darboux

transformations

We have already described in some detail in Chapter 3 the application of both Darboux

and binary Darboux transformations to a system of Davey-Stewartson equations. Here we

review this procedure and show how the results can be generalised to include a wider class

of Lax operator. We then describe a reduction of these Darboux transformations from

(2 + 1)- to (1 + 1)-dimensions and indicate their application to the nonlinear Schrödinger

equation, a dimensional reduction of the Davey-Stewartson system. This then equips us

with the necessary tools to apply, in the next chapter, the reduced Darboux and binary

Darboux transformations to the Sasa-Satsuma NLS equation in (1 + 1)-dimension, which

can be considered as a dimensional reduction of the 3-component KP hierarchy.

5.1 (2 + 1)-dimensional Darboux transformations

5.1.1 Standard Darboux transformation and its application to the

DS system

We saw in Chapter 3 that the so-called ‘standard’ Darboux transformation, that is

L→ L̃ = GθLG
−1
θ , (5.1a)

M → M̃ = GθMG−1
θ , (5.1b)

where

Gθ = ∂y − θyθ−1 = θ∂yθ
−1, (5.2)

88
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with θ an eigenfunction of the Lax operators L,M , can be applied to a system of noncom-

mutative DS equations to generate quasi-Wronskian solutions. This Darboux transforma-

tion can be applied to other noncommutative nonlinear integrable equations in (2 + 1)-

dimensions, for example the KP equation as detailed by Gilson and Nimmo in [36]. In

fact, it was shown in [65] that the above Darboux transformation can be applied to Lax

operators from a rather general class. We state this result below and show its applicability

to the Lax operators of the DS system. The following theorem is due to Matveev [65] and

is also stated in [73].

Theorem 4 (Part I) Let

L =
N∑
j=0

aj∂
j
y, (5.3)

where N ∈ Z+, aj are operators (possibly matrices) independent of ∂y, and let θ be an

invertible matrix such that L(θ) = θC for some matrix C such that ∂y(C) = 0. Defining

Gθ = θ∂yθ
−1, L is form invariant under the Darboux transformation

L→ L̃ = GθLG
−1
θ (5.4)

if and only if

a0 = α∂x +m0, (5.5a)

aj = mj j > 0, (5.5b)

where α is a constant scalar (i.e. ∂y(α) = 0), mj (j ≥ 0) are matrices and ∂x is a

differential operator independent of ∂y.

For example, in the case of the DS system, we have

L = ∂x − Λ+ σJ∂y, (5.6)

with Λ, J defined as in (3.13) and σ = i or −1. Taking

a0 = ∂x − Λ, (5.7a)

a1 = σJ, (5.7b)

i.e. α = 1, m0 = −Λ and m1 = σJ , we can see that L is of the required form (5.3),

with N = 1. In the above example and those that follow, N denotes the order of the Lax

operator.

We can adapt Theorem 4 for the second operator M in the Lax pair as follows:



CHAPTER 5. DIMENSIONAL REDUCTION OF DARBOUX TRANSFORMATIONS90

Theorem 4 (Part II) Let

M =
N∑
j=0

bj∂
j
y, (5.8)

where N ∈ Z+, bj are operators (possibly matrices) independent of ∂y, and let θ be an

invertible matrix such that M(θ) = θD for some matrix D such that ∂y(D) = 0. Defining

Gθ = θ∂yθ
−1, M is form invariant under the Darboux transformation

M → M̃ = GθMG−1
θ (5.9)

if and only if

b0 = β∂t + n0, (5.10a)

bj = nj j > 0, (5.10b)

where β is a constant scalar (i.e. ∂y(β) = 0), nj (j ≥ 0) are matrices and ∂x is a differ-

ential operator independent of ∂y.

Thus in the case of the DS system, where

M = ∂t −A+
i
σ

Λ∂y − iJ∂yy, (5.11)

with A defined as in (3.14) , we take

b0 = ∂t −A, (5.12a)

b1 =
i
σ

Λ, (5.12b)

b2 = −iJ, (5.12c)

i.e. β = 1, n0 = −A, n1 =
i
σ

Λ and n2 = −iJ . Then M is of the form (5.8) with N = 2.

Note that both C in Part I and D in Part II of the theorem can be taken to be the zero

matrix without loss of generality - in fact, we make this assumption in the DS case in

Chapter 3 when we assume L(θ) = M(θ) = 0.

As was described in Section 3.4.1, Theorem 4 implies that if φ is an eigenfunction of L,

so that L(φ) = 0, then φ̃ := Gθ(φ) is an eigenfunction of L̃, i.e. a solution of L̃(φ̃) = 0.

Similar results hold for eigenfunctions of the Lax operator M .



CHAPTER 5. DIMENSIONAL REDUCTION OF DARBOUX TRANSFORMATIONS91

5.2 (1 + 1)-dimensional Darboux transformations

5.2.1 Reduction of standard Darboux transformation and its application

to the NLS equation

Theorem 4 has a natural dimensional reduction from (2+1)- to (1+1)-dimensions obtained

by making either the x- or y-dependence explicit in the solutions (depending on whether we

choose to reduce to a system in x and t or one in y and t). As an example to motivate this

reduction, we take the standard (2 + 1)-dimensional Darboux transformation applicable

to the DS system (outlined above) and consider a reduction to the NLS equation.

Example: Davey-Stewartson reduction

In the case of the DS system, the Lax operator L is given by (5.6), with L invariant under

the standard Darboux transformation L → L̃ = GθLG
−1
θ , where θ = θ(x, y, t) satisfies

L(θ) = θC for some 2× 2 matrix C such that ∂y(C) = 0. (Of course we are free to choose

C = 0 as explained above). We also define φ = φ(x, y, t) to be an eigenfunction of L, so

that L(φ) = 0.

There are two possible routes that we can take in order to carry out a reduction of the

above procedure from (2 + 1)- to (1 + 1)-dimensions. We either choose to eliminate all

y-dependence from the DS system and subsequently obtain an NLS equation in x and

t, otherwise we eliminate all x-dependence and obtain an NLS equation in y and t. For

simplicity, we consider only one case, the elimination of y-dependence. The elimination of

x-dependence arises in a similar manner.

Elimination of y-dependence

We choose to make the y-dependence explicit in the solutions by employing a ‘separa-

tion of variables’ technique. To do so, we define

θ = θ(x, y, t) := θr(x, t)eΠy, (5.13a)

φ = φ(x, y, t) := φr(x, t)eλy, (5.13b)

where θr and φr are independent of y, Π is a constant matrix and λ a constant scalar.

Here, the superscript r stands for functions in the reduced case. We have thus effectively
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‘split’ θ and φ into two parts, one dependent on y, the other independent of y.

We must now determine the effect that this reduction has on Gθ given by (5.2). Note

that, with θ defined as in (5.13a) and j ∈ Z+,

∂jy (θ(x, y, t)) = θr(x, t)eΠyΠj

= θ(x, y, t)Πj , (5.14)

so that the dimensional reduction replaces ∂jy(θ) with θΠj . Further, with φ defined as in

(5.13b) and j ∈ Z+,

∂jy (φ(x, y, t)) = φr(x, t)eλyλj

= λjφ(x, y, t), (5.15)

i.e. ∂jy(·) = λj(·), so that the dimensional reduction replaces ∂jy with λj . Thus we have,

from Theorem 4,

Gθ = ∂y − θyθ−1

= ∂y − ∂y(θ)θ−1, (5.16)

and hence, in the reduced case, replacing ∂y with λ, ∂y(θ) with θΠ and θ with its reduced

counterpart defined in (5.13a),

Gθr = λ− θΠ(θreΠy)−1

= λ− θreΠyΠe−Πyθ−r

= θr(λI −Π)θ−r, (5.17)

where θ−r denotes (θr)−1. We use the notation Gθr to indicate dependence on θr rather

than θ. Notice that Gθr is now independent of y.

From Theorem 4 Part I, we have the condition

L(θ) = θC (5.18)

and similarly for M in Theorem 4 Part II. Substituting the expression for L given by (5.3),

it follows that
N∑
j=0

aj∂
j
y(θ) = θC, (5.19)
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so that, when we apply the dimensional reduction as above, we obtain
N∑
j=0

aj(θ)Πj = θC. (5.20)

Replacing θ with its reduced form (5.13a) gives

N∑
j=0

aj(θr)eΠyΠj = θreΠyC, (5.21)

i.e.
N∑
j=0

aj(θr)Πj = θrC. (5.22)

We are free to choose C = 0 without loss of generality as explained previously, hence
N∑
j=0

aj(θr)Πj = 0 (5.23)

in the dimensionally-reduced case.

Carrying out the same reduction process on our Lax operator L defined in (5.3) gives

Lr =
N∑
j=0

ajλ
j , (5.24)

where aj are operators independent of λ. We thus have the following corollary of Theorem

4 Part I [73]:

Corollary 4 (Part I) Let

Lr =
N∑
j=0

ajλ
j , (5.25)

where N ∈ Z+, aj are operators independent of λ, and let θr be an invertible matrix such

that
N∑
j=0

aj(θr)Πj = 0 (5.26)

for a constant matrix Π. Defining Gθr = θr(λI − Π)θ−r, Lr is form invariant under the

Darboux transformation

Lr → L̃r = GθrLr(Gθr)−1 (5.27)

if and only if

a0 = α∂x +m0, (5.28a)

aj = mj j > 0, (5.28b)

where α is a constant scalar and mj (j ≥ 0) are matrices.
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Thus, with a0 and a1 defined as in (5.7), we have

Lr = ∂x − Λ + σλJ. (5.29)

This is one part of the Lax pair for the NLS equation in x and t.

We can easily adapt the above corollary to the case of the reduced form of the Lax operator

M of the DS system (i.e. the operator M r of the NLS equation) as follows:

Corollary 4 (Part II) Let

M r =
N∑
j=0

bjλ
j , (5.30)

where N ∈ Z+, bj are operators (possibly matrices) independent of λ, and let θr be an

invertible matrix such that
N∑
j=0

bj(θr)Πj = 0 (5.31)

for a constant matrix Π. Defining Gθr = θr(λI − Π)θ−r, M r is form invariant under the

Darboux transformation

M r → M̃ r = GθrM r(Gθr)−1 (5.32)

if and only if

b0 = β∂t + n0, (5.33a)

bj = nj j > 0, (5.33b)

where β is a constant scalar and nj are matrices.

Thus, choosing b0, b1 and b2 as in (5.12), we have the Lax operator of the NLS equation

in x and t defined as

M r = ∂t −A+
i
σ
λΛ− iλ2J. (5.34)

(Although we do not go into details here, setting the commutator of Lr in (5.29) and M r

in (5.34) equal to zero generates the equation

qxx + 2qrq ± 2iqt = 0, (5.35)

which, on scaling, matches the noncommutative NLS equation (3.18). In this commutator

calculation, we take Λ as in (3.13), where q, r are now functions of x and t only, and

A =

 A1
i

2σ2
qx

− i
2σ2

rx A2

 , (5.36)
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forA1 = A1(x, t), A2 = A2(x, t) (compare (3.14) in Chapter 3), since qy = 0 for q = q(x, t)).

We note here that in the work of Gilson, Nimmo and Ohta on the self-dual Yang-Mills

equations [73], a generalisation of Corollary 4 must be obtained in order that the Lax oper-

ators associated with the self-dual Yang-Mills equations are encompassed. However, as we

shall discover in the next chapter, the corollary that we have stated here does include Lax

operators of the form used in the Sasa-Satsuma NLS equation. Since it is this equation to

which we wish to apply the results of the corollary, no such generalisation is needed.

5.3 Dimensional reduction of binary Darboux transforma-

tions

5.3.1 Reduction of standard binary Darboux transformation

Corresponding to the reduction of the standard Darboux transformation described above,

there also exists a reduction of the standard binary Darboux transformation. This binary

Darboux transformation was described in detail in Section 3.4.3, along with its application

to the DS system in Section 3.4.4. Here, it was found that, for an eigenfunction θ of the

Lax operators L, M and an eigenfunction ρ of the adjoint operators L†, M †, a binary

Darboux transformation G−1

θ̂
Gθ ≡ Gθ,ρ transforming L, M to some new operators L̂, M̂

is defined by

Gθ,ρ = I − θΩ(θ, ρ)−1∂−1
y ρ†, (5.37)

i.e.

Gθ,ρ(·) = (·)− θΩ(θ, ρ)−1Ω(·, ρ), (5.38)

with the adjoint transformation defined by

G−†θ,ρ(·) = (·)− ρΩ(θ, ρ)−†Ω(θ, ·)†, (5.39)

where · denotes a function in x, y and t on which Gθ,ρ acts, and the potential Ω satisfies

Ω(θ, ρ) = ∂−1
y (ρ†θ). The transformed operators L̂, M̂ have generic eigenfunctions

φ̂ = Gθ,ρ(φ) = φ− θΩ(θ, ρ)−1Ω(φ, ρ) (5.40)

and generic adjoint eigenfunctions

ψ̂ = G−†θ,ρ(ψ) = ψ − ρΩ(θ, ρ)−†Ω(θ, ψ)†. (5.41)
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For simplicity we once again consider only one form of the reduction, from x, y and t

to x and t. As in the reduction of the standard Darboux transformation, we make the

y-dependence explicit in the solutions by defining

θ = θ(x, y, t) := θr(x, t)eΠy, (5.42a)

φ = φ(x, y, t) := φr(x, t)eλy, (5.42b)

with the adjoint eigenfunctions ρ, ψ such that

ρ = ρ(x, y, t) := ρr(x, t)eΓy, (5.42c)

ψ = ψ(x, y, t) := ψr(x, t)eνy. (5.42d)

Here, θr, φr, ρr and ψr are independent of y, Π and Γ are constant matrices, while λ, ν

are constant scalars. It then follows that the y-dependence of the potential Ω can also be

made explicit by setting

Ω(θ, ρ) := eΓ
†yΩr(θr, ρr)eΠy. (5.43)

By definition (see Section 3.4.3), in (2 + 1)-dimensions we require

Ω(θ, ρ)y = ρ†θ, (5.44)

i.e. (
eΓ

†yΩr(θr, ρr)eΠy
)
y

= eΓ
†y(ρr)†θreΠy (5.45)

using (5.42a), (5.42c) and (5.43). This gives

Γ†eΓ
†yΩr(θr, ρr)eΠy + eΓ

†yΩr(θr, ρr)eΠyΠ = eΓ
†y(ρr)†θreΠy, (5.46)

thus

Γ†Ωr(θr, ρr) + Ωr(θr, ρr)Π = (ρr)†θr. (5.47)

We also take

Ω(φ, ρ) := e(Γ
†+λI)yΩr(φr, ρr). (5.48)

Again, in (2 + 1)-dimensions, we require

Ω(φ, ρ)y = ρ†φ (5.49)

and thus, by (5.42b), (5.42c) and (5.48),(
e(Γ

†+λI)yΩr(φr, ρr)
)
y

= eΓ
†y(ρr)†φreλy, (5.50)
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so that

(Γ† + λI)Ωr(φr, ρr) = (ρr)†φr. (5.51)

In addition, we define

Ω(θ, ψ) := Ωr(θr, ψr)e(ν
†I+Π)y, (5.52)

so that

Ωr(θr, ψr)(ν†I + Π) = (ψr)†θr. (5.53)

We are now in a position to determine the form of the dimensionally-reduced binary

Darboux transformation. We have

Gθ,ρ = I − θΩ(θ, ρ)−1∂−1
y ρ† (5.54)

and hence

Gθr,ρr = I − θreΠy
(
eΓ

†yΩr(θr, ρr)eΠy
)−1

∂−1
y eΓ

†y(ρr)†

= I − θrΩr(θr, ρr)−1e−Γ†y∂−1
y eΓ

†y(ρr)†

= I − θrΩr(θr, ρr)−1Γ−†(ρr)†, (5.55)

where θr, ρr are independent of y and we assume Γ to be invertible. Thus our expression

for Gθr,ρr is a function of x and t only, confirming that we have carried out a dimensional

reduction.

Note that, using (5.47), we can rewrite our expression for the reduced binary Darboux

transformation Gθr,ρr as

Gθr,ρr = I − θrΩr(θr, ρr)−1Γ−†(ρr)†θrθ−r

= I − θrΩr(θr, ρr)−1Γ−†
(
Γ†Ωr(θr, ρr) + Ωr(θr, ρr)Π

)
θ−r

= −θrΩr(θr, ρr)−1Γ−†Ωr(θr, ρr)Πθ−r. (5.56)

However, formula (5.55) has the advantage that it is still applicable even when the inverse

of θr is not defined. In particular, it is valid when θ and ρ are chosen to be of matrix

form [73].

We also determine the adjoint reduced binary Darboux transformation G−†θ,ρ: in the (2+1)-

dimensional case, we have, from the calculation carried out in (3.75),

Gθ,ρ = θΩ(θ, ρ)−1∂−1
y Ω(θ, ρ)∂yθ−1, (5.57)
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so that

G−†θ,ρ = (θΩ(θ, ρ)−1∂−1
y Ω(θ, ρ)∂yθ−1)−†

= θ−†Ω(θ, ρ)†∂yΩ(θ, ρ)−†∂−1
y θ† (5.58)

since ∂† = −∂. Thus, in the dimensionally-reduced case,

G−†θr,ρr = (θreΠy)−†(eΓ
†yΩr(θr, ρr)eΠy)†∂y(eΓ

†yΩr(θr, ρr)eΠy)−†∂−1
y (θreΠy)†

= (θr)−†e−Π†yeΠ
†yΩr(θr, ρr)†eΓy∂ye−ΓyΩr(θr, ρr)−†e−Π†y∂−1

y eΠ
†yθr†

= (θr)−†Ωr(θr, ρr)†eΓy(−Γ)e−ΓyΩr(θr, ρr)−†e−Π†yΠ−†eΠ
†yθr†

= −(θr)−†Ωr(θr, ρr)†ΓΩr(θr, ρr)−†Π−†θr†. (5.59)

In the (2 + 1)-dimensional case,

Ω(θ, ρ)y = ρ†θ, (5.60)

so that

Ω(θ, ρ)†y = θ†ρ. (5.61)

Then, replacing each term by its reduced counterpart as before gives(
eΓ

†yΩr(θr, ρr)eΠy
)†
y

= (θreΠy)†ρreΓy, (5.62)

and hence

Π†Ωr(θr, ρr)† + Ωr(θr, ρr)†Γ = θr†ρr. (5.63)

We have the adjoint reduced binary Darboux transformation defined in (5.59) as

G−†θr,ρr = −(θr)−†Ωr(θr, ρr)†ΓΩr(θr, ρr)−†Π−†θr† (5.64)

and thus, replacing Ωr(θr, ρr)†Γ with θr†ρr −Π†Ωr(θr, ρr)† as in (5.63) gives

G−†θr,ρr = I − ρrΩr(θr, ρr)−†Π−†θr†. (5.65)

It is often more computationally straightforward to consider the reduced binary transfor-

mation as a composition of the two reduced ordinary Darboux transformations Gθr and

Gθ̂r (as was done in the non-reduced case for the DS equations in Section 3.4.4). We have

found the reduced form of the ordinary Darboux transformation Gθ in (5.17), and we now

obtain a dimensional reduction of the Darboux transformation Gθ̂ in a similar manner as

follows.
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In (2 + 1)-dimensions, we have

θ̂ = −θΩ(θ, ρ)−1 (5.66)

as in (3.74). Replacing θ and Ω(θ, ρ) by their reduced counterparts as defined in (5.13a),

(5.43) gives

θ̂ = −θreΠy
(
eΓ

†yΩr(θr, ρr)eΠy
)−1

, (5.67)

i.e.

θ̂(x, y, t) = −θr(x, t)Ωr(θr, ρr)−1e−Γ†y

= θ̂r(x, t)e−Γ†y, say, (5.68)

where θ̂r(x, t) = −θr(x, t)Ωr(θr, ρr)−1, so that the dimensional reduction replaces ∂jy(θ̂)

with (−1)j θ̂(Γ†)j in a similar manner to (5.14).

We also have, in (2 + 1)-dimensions,

Gθ̂ = ∂y − ∂y(θ̂)θ̂−1 (5.69)

from (5.16), replacing θ by θ̂. Then

Gθ̂r = λ+ θ̂Γ†
(
θ̂re−Γ†y

)−1

= λ+ θ̂rΓ†θ̂−r, (5.70)

where θ̂ = θ̂r(x, t) is defined as above. This is the dimensionally-reduced version of the

Darboux transformation Gθ̂.

5.4 A note on dimensions of matrices

In our reduction from Darboux transformations applicable to the (2 + 1)-dimensional DS

equation to the dimensionally-reduced Darboux transformations of the (1+1)-dimensional

NLS equation, we have stated that θr is an eigenfunction of the Lax operators Lr,M r

defined in (5.29), (5.34) of the NLS equation, while ρr is an eigenfunction of the adjoint

Lax operators Lr†, M r†. We have also introduced constant matrices Π in (5.13a) and Γ

in (5.42c). However, we have neglected to mention the dimensions of these matrices. In

what follows, we choose to omit superscripts.

Since θ = θ(x, t) is an eigenfunction of the NLS Lax operators L, M , so that L(θ) =
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M(θ) = 0, where L,M involve the 2 × 2 matrices J and Λ, θ must have 2 rows, however

can be chosen to have an arbitrary number of columns. After n iterations of the reduced

ordinary Darboux transformation Gθ, we introduce Θ = (θ1 . . . θn), where each θi (i =

1, . . . , n) is an eigenfunction of L, M . Defining each θi to be of size 2×s for some arbitrary

s, we see that Θ has dimension 2× ns = 2×N , say, where N = ns. Similarly, we define

each adjoint eigenfunction ρi (i = 1, . . . , n) to be of size 2× s, so that P = (ρ1 . . . ρn) has

dimension 2×N also.

We choose the constant matrices Π and Γ each to be of size s × s, so that, for example,

the expression for Gθ (i.e. Gθr) in (5.17) makes sense.

We will shortly move on to consider various noncommutative versions of higher-order NLS

equations. We will see that, when we look at the case of the Sasa-Satsuma NLS (SSNLS)

equation, a 3-component higher-order NLS equation, the Lax operators now involve 3× 3

matrices, and hence the θi, ρi must be chosen to be of dimension 3× s.

5.5 Darboux transformations applicable to the Sasa-Satuma

NLS equation

In the next chapter, we will apply dimensionally-reduced Darboux transformations to the

(1 + 1)-dimensional SSNLS equation. For reasons that will be explained in due course,

we define the dimensionally-reduced Darboux and binary Darboux transformations in a

slightly different manner to those for the DS to NLS reduction described above. We include

the complex constant i by setting

θ = θ(x, y, t) := θr(x, t)e−iΠy, (5.71a)

φ = φ(x, y, t) := φr(x, t)e−iλy, (5.71b)

with Π, λ as before. Then the dimensional reduction replaces ∂jy(θ) with (−1)j ijθΠj and

∂jy with (−1)j ijλj , so that the dimensionally-reduced Darboux transformation Gθr is given

by

Gθr = −iθr(λI −Π)θ−r. (5.72)

Similarly, in order to carry out a dimensional reduction of the (2 + 1)-dimensional binary

Darboux transformation, we define the adjoint eigenfunctions ρ, ψ such that

ρ = ρ(x, y, t) := ρr(x, t)eiΓy, (5.73a)

ψ = ψ(x, y, t) := ψr(x, t)eiνy, (5.73b)
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and take

Ω(θ, ρ) := e−iΓ†yΩr(θr, ρr)e−iΠy. (5.74)

In addition,

Ω(φ, ρ) := e−i(Γ†+λI)yΩr(φr, ρr), (5.75)

while

Ω(θ, ψ) := Ωr(θr, ψr)e−i(ν†I+Π)y. (5.76)

Then the dimensionally-reduced binary Darboux transformation in (5.55) is given by

Gθr,ρr = I − iθrΩr(θr, ρr)−1Γ−†(ρr)†, (5.77)

with adjoint

G−†θr,ρr = I − iρrΩr(θr, ρr)−†Π−†(θr)†. (5.78)

Also, the modified versions of (5.51) and (5.53) are

−i(Γ† + λI)Ωr(φr, ρr) = (ρr)†φr (5.79)

and

−iΩr(θr, ψr)(ν†I + Π) = (ψr)†θr (5.80)

respectively, while, in a similar manner to (5.70),

Gθ̂r = −i(λ+ θ̂rΓ†θ̂−r). (5.81)

It is these dimensionally-reduced Darboux transformations and associated results that we

apply to the SSNLS equation in the next chapter.



Chapter 6

Higher-order nonlinear

Schrödinger equations

6.1 Introduction

6.1.1 Background

The nonlinear Schrödinger equation

The celebrated nonlinear Schrödinger (NLS) equation [5],

iqt = qxx ± 2 |q |2q, (6.1)

arises from a coupled pair of nonlinear evolution equations,

iqt = qxx − 2rq2, (6.2a)

−irt = rxx − 2qr2, (6.2b)

setting r = ∓q∗, with q, r complex functions of the real variables x, t. Proved integrable

via the inverse scattering transform in 1971 [93], the NLS equation has a number of impor-

tant applications in both mathematics and physics. Benney and Newell [8] indicated how

the equation can be used as a model for the evolution of slowly varying small amplitude

wave packets in a nonlinear dispersive media. Indeed, the NLS equation has applications

in a wide variety of physical systems - water waves [9, 91], plasma physics [92], nonlinear

optics [43, 44], and many others. Mathematically, the equation is considered to be one of

the fundamental integrable equations admitting an n-soliton solution.

102
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Perhaps one of the most interesting and successful applications of the NLS equation con-

cerns the propagation of short-wave soliton pulses in optical fibres. The field of optical

solitons, devised by Hasegawa and Tappert in 1973 [43, 44], has quickly become an area

of much research in modern science. For further background on the subject, see, for

example, [51] and the references therein.

The Kodama-Hasegawa equation - a higher-order NLS equation

The NLS equation can be used to model short soliton pulses in optical fibres, however,

as the pulses become increasingly short, various effects (such as short-frequency shift,

third-order dispersion and Kerr dispersion [69, 76]) become apparent and the NLS model

is no longer appropriate. In light of this fact, Hasegawa, along with Kodama, developed a

suitable higher-order NLS equation to take account of these additional effects, consisting

of the NLS equation itself along with perturbative correction terms. We do not give details

of the derivation here - a thorough explanation can be found in the original papers [52,53].

Their equation, which we hereafter refer to as the Kodama-Hasegawa higher-order NLS

equation, takes the form

iqt + α1qxx + α2 |q |2q + iε
(
β1qxxx + β2 |q |2qx + β3q(|q |2)x

)
= 0, (6.3)

where again q is a complex function of x and t, the αi (i = 1, 2) and βj (j = 1, 2, 3) are

real constants and ε is a real spectral parameter. Note that the independent variables and

the parameters differ from those in the original equation of Kodama and Hasegawa.

Setting ε = 0 gives the standard NLS equation (which can easily be scaled to match (6.1)),

while the βj (j = 1, 2, 3) terms are perturbative corrections.

6.1.2 Integrable higher-order NLS equations

The Kodama-Hasegawa higher-order NLS equation (6.3) need not be integrable unless

some restrictions are imposed on the parameters β1, β2, β3. With appropriate choices of

these real constants, the inverse scattering transform can be applied to verify integrability

of the resulting equation. It is known that, along with the NLS equation itself, there

are four cases in which integrability can be proven via inverse scattering [79]. These are

described below.
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The Chen-Lee-Liu (CLL) derivative NLS equation (β1 : β2 : β3 = 0 : 1 : 0)

Setting β1 = β3 = 0 and β2 = 1 in (6.3) gives

iqt + α1qxx + α2 |q |2q + iε |q |2qx = 0. (6.4)

By choosing α1 = 1 and α2 = 0, we obtain the derivative NLS equation as derived by

Chen, Lee and Liu in [11], namely

iqt + qxx + iε |q |2qx = 0. (6.5)

This equation was proved integrable by Chen, Lee and Liu in 1979 and confirmed by

Nakamura and Chen the following year using a different approach [68].

The Kaup-Newell (KN) derivative NLS equation (β1 : β2 : β3 = 0 : 1 : 1)

Setting β1 = 0 and β2 = β3 = 1 in (6.3) gives

iqt + α1qxx + α2 |q |2q + iε
(
|q |2qx + q(|q |2)x

)
= 0. (6.6)

Choosing α1 = 1 and α2 = 0, we obtain the derivative NLS equation as derived by Kaup

and Newell in [50], namely

iqt + qxx + iε
(
|q |2qx + q(|q |2)x

)
= 0. (6.7)

Wadati and Sogo [86] carry out a dependent variable transformation between the KN

derivative NLS equation (referred to by Wadati and Sogo as simply the derivative NLS

equation) and the CLL derivative NLS equation. The transformation between these equa-

tions has also been discussed by Kundu in [54].

The Hirota NLS (HNLS) equation (β1 : β2 : β3 = 1 : 6 : 0)

We set β1 = 1, β2 = 6 and β3 = 0 in (6.3), so that

iqt + α1qxx + α2 |q |2q + iε
(
qxxx + 6 |q |2qx

)
= 0, (6.8)

which gives, on setting α1 = α2 = 0, an equation known as the Hirota NLS (HNLS)

equation [47], that is

iqt + iε
(
qxxx + 6 |q |2qx

)
= 0, (6.9)
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i.e.

qt + ε
(
qxxx + 6 |q |2qx

)
= 0, (6.10)

which is a complex modified KdV equation and reduces to the modified KdV equation for

real q.

The Sasa-Satsuma NLS (SSNLS) equation (β1 : β2 : β3 = 1 : 6 : 3)

We finally set β1 = 1, β2 = 6 and β3 = 3 in (6.3) to obtain

iqt + α1qxx + α2 |q |2q + iε
(
qxxx + 6 |q |2qx + 3q(|q |2)x

)
= 0. (6.11)

Sasa and Satsuma [79] consider the case where α1 = 1
2 and α2 = 1 , that is

iqt +
1
2
qxx+ |q |2q + iε

(
qxxx + 6 |q |2qx + 3q(|q |2)x

)
= 0. (6.12)

Since 3β1α2 = β2α1, a result by Gilson et al. [33] shows that, for β1 6= 0, a gauge transfor-

mation can now be implemented to set α1 = α2 = 0. Sasa and Satsuma apply this gauge

transformation and focus on an equivalent version of (6.12), namely

qt + ε
(
qxxx + 6 |q |2qx + 3q(|q |2)x

)
= 0, (6.13)

also proving its integrability. Equation (6.13) is commonly known as the Sasa-Satsuma

NLS (SSNLS) equation, and we will denote it as such from now on. It is natural to refer to

the SSNLS equation as the complex modified KdV II (mKdV II) equation, since, on scal-

ing ε to 1, (6.13) is one of the two integrable complexifications of the mKdV equation [82],

the other being, as mentioned above, the Hirota NLS equation (6.10), an integrable com-

plexification of the mKdV I equation.

Note that in the recent paper of Gilson, Hietarinta, Nimmo and Ohta [33], it is assumed

that β1 6= 0, hence only the Hirota and Sasa-Satsuma NLS equations are defined as being

integrable in this case.

6.2 Reduction from 3-component KP hierarchy

Our understanding of the structure of soliton equations was greatly enhanced by Sato,

who, in 1981, made the remarkable discovery that such equations can be organised into
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infinite hierarchies, and particular equations can be obtained from such hierarchies by

suitable reductions. Sato studied the KP hierarchy in particular, where the KP equation

(1.9) is a key one. He showed that the KdV and Boussinesq equations arise as reductions

of equations in this hierarchy. Other hierarchies have been proposed and studied since

Sato’s initial work, for example the mKP and Dym hierarchies [74].

Sato’s work on the KP hierarchy can be extended to multi-component hierarchies. The

standard KP equation (1.9) is a 1-component equation, with the operators in the Lax pair

being scalars (i.e. 1× 1 matrices) in the commutative case. Thus Sato’s studies concerned

the 1-component KP hierarchy, where the simplest non-trivial nonlinear equation is the

KP equation.

In their paper of 1990 [49], Kajiwara et al. consider an extension of Sato’s KP hierarchy

to two components, and show that the DS equation is the simplest non-trivial nonlinear

equation in this new hierarchy. Via suitable reductions, the NLS equation and its higher

order extensions, along with the mKdV equation, are obtained.

The SSNLS equation, with Lax pair given in terms of 3×3 matrices as we shall see shortly,

arises as a dimensional reduction of the 3-component KP hierarchy. Gilson et al. [33] give

the equations in this hierarchy in bilinear form, while Kajiwara et al. provide an explicit

way of constructing the 2-component KP hierarchy in a ‘non-bilinear form’. Although we

could in theory extend their idea to construct the 3-component hierarchy, the calculation

is far from straightforward, and is not necessary for our work.

6.3 Derivation of noncommutative equations

In this section, we discuss noncommutative versions of the integrable equations mentioned

above, namely the Chen-Lee-Liu and Kaup-Newell derivative NLS equations and the Hi-

rota and Sasa-Satsuma NLS equations. The Chen-Lee-Liu equation has been considered

by Tsuchida and Wadati in the noncommutative (matrix) case [83], and so we simply state

their result. In the same paper, a vector generalisation of the Kaup-Newell equation is

obtained, and once again we state this equation. We do not believe that the Hirota and

Sasa-Satsuma NLS equations have been considered in a noncommutative setting, therefore

this is a topic that we wish to discuss in detail.
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6.3.1 Chen-Lee Liu derivative NLS equation - matrix case

As stated above, Tsuchida and Wadati [83] considered the CLL derivative NLS equation,

namely

iqt + qxx − iqrqx = 0, (6.14a)

irt − rxx − irqrx = 0, (6.14b)

where q, r are complex functions of x, t. (Specifying that r = ±q∗ reduces this coupled

system of equations to a single one). By generalising the Lax pair of this set of equations

to matrix form, they were able to obtain an integrable matrix version of Chen, Lee and

Liu’s equation, that is

iQt +Qxx − iQRQx = 0, (6.15a)

iRt −Rxx − iRxQR = 0, (6.15b)

where Q, R are matrices. Again, this system can be reduced to a single equation by

stipulating that Q and R are complex conjugates. Tsuchida and Wadati also noted that

there is no restriction on the size of the matrices Q and R. Thus, choosing, for example,

Q and R to be a row and column vector respectively, so that

Q = (q1 q2 . . . qm) , (6.16a)

R = (r1 r2 . . . rm)T (6.16b)

for some m ∈ N gives a coupled version of the CLL derivative NLS equation which, on

defining rj = ±q∗j (j = 1, 2, . . . ,m), reduces to a vector version of the equation, that is

iqt + qxx ∓ i |q |2qx = 0, (6.17)

where q is the m-component vector q = (q1 q2 . . . qm).

6.3.2 Kaup-Newell derivative NLS equation - matrix case

In their paper of 1990, Tsuchida and Wadati also state a vector generalisation of the KN

derivative NLS equation, namely [83]

iqt + qxx ∓ i(|q |2q)x = 0, (6.18)

which has been shown to be integrable, and has previously been studied by Morris and

Dodd [66] and Fordy [21].
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6.3.3 Hirota and Sasa-Satsuma NLS equations - general noncommuta-

tive case

In order to derive noncommutative versions of the Sasa-Satsuma and Hirota NLS equa-

tions, we make use of the general m-dimensional Lax operators defined by Ghosh and

Nandy [31,32] as

L = ∂x − Φ, (6.19a)

M = ∂t −Ψ, (6.19b)

where

Φ = −iλJ +A, (6.20a)

Ψ = −4iελ3J + 4ελ2A+ 2εA3 − 2iελJA2 + 2iελJAx − εAxx + εAxA− εAAx, (6.20b)

with ε a real parameter and λ a spectral parameter,

J =

(
m−1∑
i=1

eii

)
− emm (6.21a)

and

A(x, t) =
m−1∑
i=1

αi(x, t)eim −
m−1∑
i=1

α†i (x, t)emi, (6.21b)

where eij is an m×m matrix with the ijth entry equal to one and every other entry zero.

Note that we have included the term α†i in the above definition of A, where † denotes

the adjoint (Hermitian conjugate), rather than α∗i as in the original papers by Ghosh and

Nandy. The reasoning behind this is so that we can encompass the noncommutative case

in our definition of A: when we treat the αi as noncommutative objects, for example

matrices, we find that we must replace α∗i by α†i so that properties of A which hold in the

commutative case also hold when we extend to the noncommutative case. This will become

clear later when we study the particular case of the noncommutative SSNLS equation for

m = 3. In the commutative case, when the αi are thought of as being scalar objects,

α†i = (α∗i )
T = α∗i , since transpose has no effect on a scalar, and hence (6.21b) reduces

back to the same definition of A as in [31, 32]. We mention here that the matrix A is

skew-Hermitian (or anti-Hermitian), so that

A† = −A. (6.22)
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There is a further symmetry property of the matrix A valid in the case of the SSNLS

equation - this will be detailed in Section 6.3.5.

In (6.21b) above, the αi can be chosen as q(x, t) or q∗(x, t) in the commutative (scalar)

case, and as q(x, t), q∗(x, t), qT (x, t) or q†(x, t) in the noncommutative case, where q(x, t)

is a noncommutative object. However, we do not specify the nature of the noncommuta-

tivity at this stage. Later in the chapter, we explicitly choose q to take the form of a 2× 2

matrix. The entries of A will also be of this form, and the entries of J are then replaced

by the 2× 2 zero and identity matrices.

Clearly, from the definitions of J and A in (6.21a), (6.21b) above, it can easily be seen

that

J2 = Im (6.23a)

where Im denotes the m×m identity matrix, and J and A are anti-commutative, i.e.

JA+AJ = 0. (6.23b)

The resulting equation generated from the Lax operators L, M depends on the choice of

entries in the matrix A.

Setting the commutator of L and M equal to zero and equating powers of λ results in

three equations, namely

At + ε
(
Axxx − 2(A2)xA− 3A2Ax + 2AAxA−AxA2

)
= 0, (6.24a)

3JAAx − JAxx − 2JA2A− JAxA− 2AJA2 + 2AJAx

+ 2A2AJ + 2JA3 −AxxJ +AxAJ −AAxJ = 0, (6.24b)

and

−2A2 − 2Ax + 2JA2J − 2JAxJ = 0. (6.24c)

It is straightforward to show that (6.24b) and (6.24c) are automatically satisfied using

only properties (6.23a), (6.23b) and simple differentiation and algebraic manipulation.

Using the same conditions (6.23a), (6.23b), we can simplify (6.24a): by manipulating

(6.23b), it can be shown that

(A2)xA = AxA
2 +AAxA, (6.25)
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and hence (6.24a) simplifies to

At + εAxxx − 3ε(A2Ax +AxA
2) = 0 (6.26)

as in [31]. It is this equation from which we are able to generate higher-order NLS equa-

tions with appropriate choices of A.

Before moving on to generate noncommutative versions of the Sasa-Satsuma and Hirota

NLS equations, we note that, as in the DS case, we can introduce, for notational conve-

nience, an m×m matrix satisfying (6.23b). We let

A = [J, T ] (6.27)

for an m ×m matrix T = (tij) (i, j = 1, . . . ,m). This then enables T to be determined

explicitly for a suitable choice of A, as will be shown later. Replacing A by [J, T ] means

that (6.24b), (6.24c) are satisfied automatically, while (6.26) becomes

JTt − TtJ + ε(JTxxx − TxxxJ)

− 3ε(JTJTJTx − JT 2Tx − T 2JTx + TJTTx − JTJTTxJ + JT 2JTxJ + T 2TxJ

− TJTJTxJ + JTxJTJT − JTxJT 2J − JTxT 2 + JTxTJTJ

− TxTJT + TxT
2J + TxJT

2 − TxJTJTJ) = 0, (6.28)

which we can rewrite in commutator form as

[J, Tt + εTxxx − 3ε(TJTJTx + JTJTTx + TxTJTJ + T 2JTxJ

− T 2Tx + TxJTJT − TxJT 2J − TxT 2)] = 0. (6.29)

This is the noncommutative analogue of the Hirota bilinear form of the higher-order NLS

equations generated by the Lax pair (6.19). We now move on to generate noncommutative

Hirota and Sasa-Satsuma NLS (ncHNLS and ncSSNLS) equations for various values of m.

6.3.4 m = 2

Commutative case

We firstly take m = 2 and consider the commutative case, so that, from (6.21a),

J = e11 − e22

=

1 0

0 −1

 , (6.30)
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while from (6.21b),

A = α1e12 − α∗1e21

=

 0 α1

−α∗1 0

 , (6.31)

remembering that α†1 = α∗1 in the commutative case, that is, when we consider α1 to be a

scalar object.

We choose α1 = q (and hence α∗1 = q∗), where q is a scalar function of x and t and,

by equating the (1, 2)th entries, (6.26) reduces to a commutative 2-component Hirota NLS

equation [47]:

qt + εqxxx + 6ε |q |2qx = 0, (6.32)

where | q |2 denotes the product qq∗. Choosing α1 = q∗ (and hence α∗1 = q) and equating

(1, 2)th entries gives the complex conjugate of (6.32).

Noncommutative case

In the noncommutative case, where A = α1e12 − α†1e21, we choose α1 = q and hence

α†1 = q†, but we now consider q to be a noncommutative object. This gives, again using

(6.26) and equating (1, 2)th entries, a noncommutative version of the Hirota NLS equation,

namely

qt + εqxxx + 3ε(qq†qx + qxq
†q) = 0. (6.33)

Choosing α1 = q†, and hence α†1 = q, and equating (1, 2)th entries gives the corresponding

adjoint (Hermitian conjugate) equation of (6.33).

6.3.5 m = 3

The case m = 3 is more interesting, as we are able to generate both the HNLS and SSNLS

equations as follows.
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Commutative case

In the 3-component commutative case, (6.21a) gives

J = e11 + e22 − e33

=


1 0 0

0 1 0

0 0 −1

 , (6.34)

while (6.21b) gives

A = α1e13 + α2e23 − α∗1e31 − α∗2e32

=


0 0 α1

0 0 α2

−α∗1 −α∗2 0

 , (6.35)

where α†1 = α∗1, α
†
2 = α∗2 when we think of α1, α2 as commutative scalar objects. Note

that in the case m = 3, the Lax pair (6.19) agrees with that given by Sasa and Satsuma

in [79], which they show generates a gauge equivalent version of the (commutative) SSNLS

equation. It was in this paper that the SSNLS equation was first proposed.

We firstly choose α1 = α2 = q (so that α∗1 = α∗2 = q∗), where again q is a scalar function

of x and t. Then, by equating (1, 3)th entries, (6.26) reduces to a commutative HNLS

equation

qt + εqxxx + 12ε |q |2qx = 0 (6.36)

and its corresponding complex conjugate, which can be made to match the HNLS equation

obtained in the case m = 2 by appropriate scaling of the fields q and q∗.

Alternatively, we can choose α1 = q, α2 = q∗ (so that α∗1 = q∗, α∗2 = q). Then (6.26)

reduces to a commutative SSNLS equation, namely

qt + εqxxx + 6ε |q |2qx + 3ε(|q |2)xq = 0 (6.37)

and its corresponding complex conjugate. In this case,

A =


0 0 q

0 0 q∗

−q∗ −q 0

 , (6.38)
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and we see that A satisfies

A = SA∗S (6.39)

for

S =


0 1 0

1 0 0

0 0 1

 . (6.40)

(Premultiplication of an arbitrary 3×3 matrix by S permutes the first two rows of the ma-

trix and leaves the third row unchanged, while postmultiplication by S permutes the first

two columns, leaving the third column unchanged). Note that S−1 = S, since S.S = I3,

the 3 × 3 identity matrix. Properties (6.22) and (6.39) will be exploited later when we

discuss the application of Darboux transformations to the SSNLS equation.

Note that these two equations, namely the HNLS equation (6.36) and the SSNLS equation

(6.37), are the only two possible equations in the commutative case that can be obtained

from the compatibility condition (6.26). Setting α1 = q∗, α2 = q, or α1 = α2 = q∗ again

give equations (6.36) and (6.37), along with their corresponding complex conjugates.

Noncommutative case

In this case, A = α1e13 + α2e23 − α†1e31 − α
†
2e32. We now assume q is a noncommutative

object, and set α1 = α2 = q (so α†1 = α†2 = q†). This gives another ncHNLS equation,

qt + εqxxx + 6ε(qq†qx + qxq
†q) = 0, (6.41)

and the corresponding adjoint equation can be obtained by setting α1 = α2 = q†. Note

that (6.41) can easily be scaled to match (6.33).

Secondly, we set α1 = q and α2 = q∗ (so that α†1 = q†, α†2 = q∗† = qT ). We then obtain,

from (6.26), a noncommutative version of the SSNLS equation, namely

qt + εqxxx + 3ε(qq†qx + qq∗†q∗x + qxq
†q + qxq

∗†q∗) = 0, (6.42)

with the corresponding adjoint equation obtained by setting α1 = q†, α2 = qT .

We have described only two possible cases above, namely the choices α1 = α2 = q (giving

a ncHNLS equation), and α1 = q, α2 = q∗ (giving rise to a ncSSNLS equation). Many

more possibilities exist, for example α1 = q, α2 = q†, or α1 = q∗, α2 = q†
∗ = qT , and so on.
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However, as mentioned above, the matrix A satisfies condition (6.39) in the commutative

(scalar) case which must be preserved when we extend to the noncommutative case. We

find that only the choice α1 = q, α2 = q∗ (or α1 = q∗, α2 = q) preserves this special

condition, and so it is this one on which we focus from now on.

Clearly the process of generating both commutative and noncommutative higher-order

NLS equations can be continued for m = 4, 5 and so on. For example, in the case m = 4,

we can generate an HNLS equation equivalent to those obtained in the cases m = 2, 3 (up

to scaling). We can also obtain new equations (i.e. ones with different ratios of coefficients

which do not reduce to the standard HNLS or SSNLS equations). In the m = 4 case, two

such (commutative) equations are

qt + εqxxx + 12ε |q |2qx + 3ε(|q |2)xq = 0 (6.43)

and

qt + εqxxx + 6ε |q |2qx + 6ε(|q |2)xq = 0. (6.44)

These equations have coefficients in the ratio 1 : 12 : 3 and 1 : 6 : 6 respectively. How-

ever, they are not necessarily integrable; in fact, it is known (see [33]) that (6.44) is not

integrable, but has been investigated in the literature, for example in [62, 77]. We do not

consider these new equations but instead focus our attention only on the noncommutative

integrable SSNLS equation obtained in the case m = 3 above.

6.3.6 General case

Before discussing quasideterminant solutions of the noncommutative version of the SSNLS

equation, we note that it is possible to derive both a commutative and a noncommutative

higher-order NLS equation for a general m. The commutative case has been considered

by Ghosh and Nandy [31,32], however the noncommutative case gives us a new result.

Commutative case

Suppose that our Lax operators L, M in (6.19) are m-dimensional. Then, from (6.21b),

we can see that we have (m−1) αis (i = 1, . . . ,m−1). We choose to identify l of these αis

with q (a scalar function of x, t) for some l = 1, . . . ,m− 1, and the remaining (m− l− 1)

αis with q∗. Then (6.26) gives

qt = εqxxx + 6lε |q |2qx + 3(m− l − 1)ε(|q |2)xq, (6.45)
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with coefficients in the ratio 1 : 6l : 3(m− l−1). Of course, there is no guarantee that such

an equation will be integrable for all choices of l,m - the well-known cases of the HNLS

equation, with coefficient ratios 1 : 6 : 0, i.e. l = 1 and m = 2, and the SSNLS equation,

with coefficient ratios 1 : 6 : 3, i.e. l = 1 andm = 3, are known to be integrable. As we have

shown, these two equations can be obtained for other values of m (for example, we obtain

the HNLS equation when m = 3) and can be reduced to the ‘standard’ versions of the

equations by suitable scalings. However, we choose to focus solely on the SSNLS equation

in the case l = 1, m = 3 (i.e. a 3-component equation), albeit in the noncommutative

case.

Noncommutative case

We can show that, by identifying l of the αis with q, a noncommutative object, and the

remaining (m− l − 1) of the αis with q∗, the noncommutative analogue of (6.45) is

qt = εqxxx + 3lε(qq†qx + qxq
†q) + 3(m− l − 1)ε(qq∗†q∗x + qxq

∗†q∗). (6.46)

In the remainder of this chapter, we consider only the ncSSNLS equation obtained from

(6.46) in the case l = 1, m = 3, i.e.

qt = εqxxx + 3ε(qq†qx + qq∗†q∗x + qxq
†q + qxq

∗†q∗). (6.47)

6.4 Darboux transformations for the SSNLS equation

To begin, we look at the result of application of the reduced ordinary Darboux transfor-

mation given in (5.72), namely

Gθ = −iθ(λI −Π)θ−1, (6.48)

to the Lax operator

L = ∂x + iλJ −A (6.49)

of the ncSSNLS equation (6.47). Here, Π is a constant s×s matrix with each entry taking

the form of a noncommutative object, for example a matrix, while A is defined in (6.35)

with α1 = q, α2 = q∗ and q = q(x, t) a noncommutative object. We have chosen, for

notational convenience, to omit superscripts from now on. Thus θ as given in (6.48) is

actually θr, a function of x and t only.

It should be noted here that, in the majority of what follows, we will only state results for
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the Lax operator L of the SSNLS equation, although the same results also hold for the

Lax operator M as given in (6.19b).

6.4.1 Application of reduced Darboux transformation to SSNLS equa-

tion

We now apply the dimensionally-reduced Darboux transformation (detailed in Corollary

4) to the Lax pair of the SSNLS equation, and thus consider Lax operators of the form

Lr =
N∑
j=0

ajλ
j , (6.50a)

M r =
N∑
j=0

bjλ
j (6.50b)

for operators aj and bj independent of λ, where N ∈ Z+. Then, with the Lax operator L

of the SSNLS equation given by (now omitting superscripts)

L = ∂x + iλJ −A, (6.51)

we choose

a0 = ∂x −A, (6.52a)

a1 = iJ, (6.52b)

i.e., in the notation of the corollary, α = 1, m0 = −A and m1 = iJ . We also have

M = ∂t + ε(Axx −AxA+AAx − 2A3) + 2iλε(JA2 − JAx)− 4λ2εA+ 4iλ3εJ, (6.53)

and hence we choose, in Part II of the corollary,

b0 = ∂t + ε(Axx −AxA+AAx − 2A3), (6.54a)

b1 = 2iε(JA2 − JAx), (6.54b)

b2 = −4εA, (6.54c)

b3 = 4iεJ, (6.54d)

where, in the notation of the corollary, β = 1, n0 = ε(Axx − AxA + AAx − 2A3),

n1 = 2iε(JA2 − JAx), n2 = −4εA and n3 = 4iεJ .

To determine the effect of the reduced Darboux transformation Gθ in (6.48) on the eigen-

functions of the SSNLS Lax pair, we use the same notation as in Chapter 3, and denote
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L by L[1], M by M[1].

Iteration

Step 1 Let θ1, . . . , θn be eigenfunctions of L[1] = L, M[1] = M , and φ[1] = φ a generic

eigenfunction of L[1], M[1]. Choose θ1[1] := θ1 to define a dimensionally-reduced Darboux

transformation

Gθ1[1] = −i
(
λ− θ1[1]Πθ

−1
1[1]

)
(6.55)

to a new Lax pair L[2],M[2], where θ(1)
1[1] := −iθ1[1]Π1 and θ

(1)
1[1] denotes one differentiation

of θ1[1] with respect to x. The new Lax pair

L[2] = Gθ1[1]L[1]G
−1
θ1[1]

, (6.56a)

M[2] = Gθ1[1]M[1]G
−1
θ1[1]

(6.56b)

has generic eigenfunction

φ[2] := Gθ1[1](φ)

= φ(1) − θ(1)
1 θ−1

1 φ (6.57)

since θ1[1] = θ1. As in the (2+1)-dimensional case, the eigenfunction θ1 = θ1[1] is mapped to

zero, and the remaining eigenfunctions θ2, . . . , θn to θ2[2], . . . , θn[2], where, for i = 2, . . . , n,

θi[2] = φ[2] |φ→θi
. (6.58)

...

Step n (n ≥ 1) The eigenfunction θn[n] defines a dimensionally-reduced Darboux trans-

formation from L[n], M[n] to some new operators

L[n+1] = Gθn[n]
L[n]G

−1
θn[n]

, (6.59a)

M[n+1] = Gθn[n]
M[n]G

−1
θn[n]

(6.59b)

with generic eigenfunctions

φ[n+1] = Gθn[n]
(φ[n])

= φ
(1)
[n] − θ

(1)
n[n]θ

−1
n[n]φ[n]. (6.60)
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In particular, this Darboux transformation maps the eigenfunction θn[n] to Gθn[n]

(
θn[n]

)
,

i.e. to zero.

By defining Θ = (θ1 . . . θn), we can show by induction that (6.60) can be expressed in

quasi-Wronskian form as

φ[n+1] =

∣∣∣∣∣∣∣∣∣∣∣∣

Θ φ
...

...

Θ(n−1) φ(n−1)

Θ(n) φ(n)

∣∣∣∣∣∣∣∣∣∣∣∣
, (6.61)

where Θ(n) := −iΘΠ̂n, and Π̂ is the ns× ns = N ×N matrix such that

Π̂ = diag(Π, Π, . . . ,Π︸ ︷︷ ︸
n

), (6.62)

where each matrix Π is of size s×s. The inductive proof is carried out in a similar manner

to that done in Section 3.4 of Chapter 3.

6.4.2 Quasi-Wronskian solution of ncSSNLS using reduced Darboux trans-

formation

We now determine the effect of the reduced Darboux transformation (6.55) on the Lax

operator L[1] = L given by (6.51), with θ1, . . . , θn = θ1[1], . . . , θn[1] eigenfunctions of L, and

θ1[1] chosen to iterate the transformation. To simplify our notation slightly, we will denote

θ1[1] by θ, and, in general, θk[k] by θ[k] (k = 2, . . . , n). Corresponding results hold for the

operator M given by (6.53). The operator L[1] = L is transformed to a new operator L[2],

say, where

L[2] = GθLG
−1
θ , (6.63)

giving

−θxΠθ−1 + θΠθ−1θxθ
−1 +A[2]θΠθ

−1 − θΠθ−1A = 0 (6.64a)

and

JθΠθ−1 − θΠθ−1J + i(A−A[2]) = 0. (6.64b)

Note that, in carrying out the reduction on the ‘standard’ (2 + 1)-dimensional Darboux

transformation, we have, as indicated previously, replaced ∂jy with (−1)j ijλj . Hence λ

is effectively playing the role of ∂y in the reduced case, thus when we apply the reduced

Darboux transformation to the SSNLS Lax operator L, we set coefficients of λj equal to
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zero, rather than coefficients of ∂jy as was done in, for example, the DS case in Chapter 3.

From (6.64b), we see that

A[2] = A− i[J, θΠθ−1], (6.65)

i.e. by introducing the notation θ(1) = −iθΠ1, where θ(1) denotes one differentiation of θ

with respect to x, we have

A[2] = A+ [J, θ(1)θ−1]. (6.66)

Substituting for A[2] in (6.64a) using (6.65) gives

(
−θxΠ + θΠθ−1θx +AθΠ + iθΠθ−1JθΠ− iJθΠ2 − θΠθ−1Aθ

)
θ−1 = 0. (6.67)

In order to see that the left-hand side of this equation is zero, we look to (5.26), where we

have, omitting superscripts,

N∑
j=0

aj(θ)Πj = 0, (6.68)

i.e.

θx −Aθ + iJθΠ = 0 (6.69)

using (6.52). This result can be used to confirm the validity of (6.67).

As mentioned in (6.27), we introduce an m ×m = 3 × 3 matrix T = (tij) (i, j = 1, 2, 3)

such that A = [J, T ]. We then have, from (6.66),

[J, T[2]] = [J, T ] + [J, θ(1)θ−1], (6.70)

so that

T[2] = T + θ(1)θ−1. (6.71)

After n repeated applications of the reduced Darboux transformation,

T[n+1] = T[n] + θ
(1)
[n] θ

−1
[n] , (6.72)

that is

T[n+1] = T +
n∑
j=1

θ
(1)
[j] θ

−1
[j] , (6.73)
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where T[1] = T , θ[1] = θ and θk = θk[k]. By induction, we express T[n+1] in quasi-Wronskian

form as

T[n+1] = T −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ O3

...
...

Θ(n−2) O3

Θ(n−1) I3

Θ(n) O3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (6.74)

where O3 and I3 denote the 3 × 3 zero and identity matrices respectively, and Θ =

(θ1 . . . θn). As before, Θ(k) = −iΘΠ̂k, where Θ(k) denotes the kth x-derivative of Θ

(k = 0, . . . , n), and Π̂ is an ns × ns = 3s× 3s matrix defined as in (6.62). The inductive

proof of (6.74) is similar to that in Chapter 3, Section 3.4.2.

6.4.3 Invariance of Darboux transformation

Above, we have applied the appropriate (1 + 1)-dimensional Darboux transformation to

the Lax operator L of the (noncommutative) SSNLS equation. However, since a Darboux

transformation is, by definition, a special type of gauge transformation that keeps the Lax

pair associated with the particular equation under consideration invariant, we must ensure

that our transformed Lax operator L̃ (≡ L[2]) has the same form as our original operator

L (and similarly for the Lax operator M and transformed operator M̃ ≡ M[2]). Here we

mainly focus on one iteration of the transformation L→ L̃, M → M̃ . In particular, since

L is of the form

L = ∂x + iλJ −A, (6.75)

with

A =


0 0 q

0 0 q∗

−q† −q†∗ 0

 , (6.76)

the transformed matrix Ã must be of the form

Ã =


0 0 q̃

0 0 q̃∗

−q̃† −
(
q̃†
)∗ 0

 , (6.77)

and similarly for the transformed matrix A[n+1] after n iterations of the Darboux transfor-

mation. In short, the Darboux transformation must preserve properties (6.22) and (6.39),
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so that

Ã† = −Ã (6.78a)

and

Ã = SÃ∗S (6.78b)

for S defined as in (6.40). We do not go into details here, however we can show that, with

an appropriate choice of the matrices Θ and Π, the ordinary Darboux transformation can

preserve condition (6.39) (the ‘complex conjugacy condition’). In particular, we define

Θ = SΘ∗S1, (6.79)

where S1 is an ns× ns matrix with real entries such that S2
1 = Ins. The ‘skew-Hermitian

condition’ (6.22) implies that the transformed Lax operator must satisfy L̃† = −L̃. In

general, a symmetry in a Lax pair is not preserved by an ordinary Darboux transformation

but can be preserved by a binary one [73]. In the case of the ncSSNLS equation discussed

here, it is possible for the ordinary Darboux transformation to preserve the skew-Hermitian

condition, however the resulting requirement that θxθ−1 is Hermitian is difficult to realise.

We therefore allude to the reduced binary Darboux transformation noted in Section 5.5.

6.4.4 Application of reduced binary Darboux transformation to SSNLS

equation

We now determine the effect of the reduced binary Darboux transformation detailed in

Section 5.5 on the Lax operators L, M of the SSNLS equation. We relabel L, L† as L[1],

L†[1] respectively, and similarly for M , M †, to indicate the starting levels, and omit super-

script r from now on.

The adjoint Lax pairs L†, M † of the SSNLS equation satsify, from (6.19) and the def-

inition of adjoint given in Section 3.4.3 of Chapter 3,

L† = −∂x − Φ†, (6.80a)

M † = −∂t −Ψ†, (6.80b)
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where

Φ† = iλJ +A†, (6.81a)

Ψ† = 4iελ3J + 4ελ2A† + 2ε(A3)† + 2iελJ(A2)† − 2iελJA†x − εA†xx + εA†A†x − εA†xA†.

(6.81b)

Iteration

Step 1 Let θ1, . . . , θn be eigenfunctions of L[1] = L, M[1] = M , and ρ1, . . . , ρn eigenfunc-

tions of the adjoint Lax operators L†[1] = L†, M †
[1] = M †. Suppose φ[1] = φ is a generic

eigenfunction of L[1],M[1] and ψ[1] = ψ a generic eigenfunction of L†[1],M
†
[1]. We choose

θ1 := θ1[1] to be the eigenfunction defining a reduced binary Darboux transformation from

L[1],M[1] to a new Lax pair L[2],M[2], and similarly ρ1 := ρ1[1] the eigenfunction defin-

ing the adjoint binary Darboux transformation from L†[1],M
†
[1] to a new adjoint Lax pair

L†[2],M
†
[2]. The reduced binary Darboux transformation is defined as

Gθ1[1],ρ1[1] = I − iθ1[1]Ω(θ1[1], ρ1[1])
−1Γ−†ρ†1[1], (6.82)

with adjoint

G−†θ1[1],ρ1[1] = I − iρ1[1]Ω(θ1[1], ρ1[1])
−†Π−†θ†1[1]. (6.83)

The transformed operators

L[2] = Gθ1[1],ρ1[1]L[1]G
−1
θ1[1],ρ1[1]

, (6.84a)

M[2] = Gθ1[1],ρ1[1]M[1]G
−1
θ1[1],ρ1[1]

(6.84b)

have generic eigenfunctions

φ[2] := Gθ1[1],ρ1[1](φ)

= φ− iθ1[1]Ω(θ1[1], ρ1[1])
−1Γ−†ρ†1[1]φ

= φ− θ1[1]Ω(θ1[1], ρ1[1])
−1(I + λIΓ−†)Ω(φ, ρ1[1]) (6.85)

by (5.79), and generic adjoint eigenfunctions

ψ[2] := G−†θ1[1],ρ1[1](ψ)

= ψ − iρ1[1]Ω(θ1[1], ρ1[1])
−†Π−†θ†1[1]ψ

= ψ − ρ1[1]Ω(θ1[1], ρ1[1])
−†(I + νIΠ−†)Ω(θ1[1], ψ)† (6.86)
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by (5.80). The eigenfunction θ1[1] is mapped to zero by (6.82), and the adjoint eigenfunction

ρ1[1] to zero by (6.83). The remaining eigenfunctions θ2, . . . , θn and adjoint eigenfunctions

ρ2, . . . , ρn are mapped to θ2[2], . . . , θn[2] and ρ2[2], . . . , ρn[2] respectively, where, for i =

2, . . . , n,

θi[2] = φ[2]|φ→θi, ρi[2] = ψ[2]|ψ→ρi
. (6.87)

...

Step n (n ≥ 1) To perform the nth iteration of the reduced binary Darboux transforma-

tion, we choose the eigenfunction θn[n] to define a reduced binary Darboux transformation

from the Lax operators L[n],M[n] to some new Lax operators L[n+1],M[n+1], and similarly

ρn[n] the adjoint eigenfunction defining the adjoint reduced binary Darboux transformation

from L†[n],M
†
[n] to L†[n+1],M

†
[n+1]. The operators L[n],M[n] are covariant under the action

of the reduced binary Darboux transformation

Gθn[n],ρn[n]
= I − iθn[n]Ω(θn[n], ρn[n])

−1Γ−†ρ†n[n], (6.88)

while the adjoint operators L†[n],M
†
[n] are covariant under the adjoint binary Darboux

transformation

G−†θn[n],ρn[n]
= I − iρn[n]Ω(θn[n], ρn[n])

−†Π−†θ†n[n]. (6.89)

The transformed operators

L[n+1] = Gθn[n],ρn[n]
L[n]G

−1
θn[n],ρn[n]

, (6.90a)

M[n+1] = Gθn[n],ρn[n]
M[n]G

−1
θn[n],ρn[n]

(6.90b)

have generic eigenfunctions

φ[n+1] = φ[n] − iθn[n]Ω(θn[n], ρn[n])
−1Γ−†[n]ρ

†
n[n]φ[n]

= φ[n] − θn[n]Ω(θn[n], ρn[n])
−1(I + λIΓ−†)Ω(φ[n], ρ[n]), (6.91)

and adjoint eigenfunctions

ψ[n+1] = ψ[n] − iρn[n]Ω(θn[n], ρn[n])
−†Π−†

[n]θ
†
n[n]ψ[n]

= ψ[n] − ρn[n]Ω(θn[n], ρn[n])
−†(I + νIΠ−†)Ω(θn[n], ψ[n])

†. (6.92)

The eigenfunction θn[n] is mapped to zero by (6.88), and the adjoint eigenfunction ρn[n] to

zero by (6.89).
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Quasi-Grammian form

Defining Θ = (θ1 . . . θn) and P = (ρ1 . . . ρn), we express φ[n+1] and ψ[n+1] in quasi-

Grammian form as

φ[n+1] =

∣∣∣∣∣∣Ω(Θ, P ) (I + λIΓ̂−†)Ω(φ, P )

Θ φ

∣∣∣∣∣∣ , ψ[n+1] =

∣∣∣∣∣∣Ω(Θ, P )† (I + νIΠ̂−†)Ω(Θ, ψ)†

P ψ

∣∣∣∣∣∣ ,
(6.93)

where Γ̂ is an ns× ns = 3× 3 matrix such that

Γ̂ = diag(Γ, Γ, . . . ,Γ︸ ︷︷ ︸
n

), (6.94)

with each matrix Γ of size s× s, and Π̂ is defined as in (6.62).

6.4.5 Quasi-Grammian solution of ncSSNLS using reduced binary Dar-

boux transformation

In this section, we calculate the effect of the binary Darboux transformation (6.82) on

the Lax operator L[1] = L of the SSNLS equation given by (6.51), with θ1, . . . , θn =

θ1[1], . . . , θn[1] eigenfunctions of L, and θ1[1] chosen to iterate the Darboux transformation.

As in previous sections, we denote θ1[1] by θ, and, in general, θk[k] by θ[k] (k = 2, . . . , n),

and similarly, ρ1[1] by ρ and ρk[k] by ρ[k]. Corresponding results hold for the operator

M given by (6.53). In what follows, we choose to omit superscripts, so that θ = θr and

Ω = Ωr(θr, ρr).

As mentioned in the previous chapter, it is convenient to consider the reduced binary

Darboux transformation as a composition of the two reduced ordinary Darboux transfor-

mations Gθ and Gθ̂. We have the same situation as depicted in the diagram on page 53

in Chapter 3, with each term replaced by its reduced counterpart. The operator L[1] = L

is transformed to a new operator L̃[2] by the reduced Darboux transformation Gθ1[1] ≡ Gθ
defined in (5.72), so that L̃[2] = GθLGθ−1 , giving

Ã[2] = A− i[J, θΠθ−1] (6.95)

as in (6.65). We also have L̃[2] = Gθ̂L[2]G
−1

θ̂
, and, using the reduced form of Gθ̂ obtained

in (5.81) and omitting superscripts, this gives two equations on equating coefficients of λ,
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namely

θxΩ−1Γ†Ωθ−1 − θΩ−1ΩxΩ−1Γ†Ωθ−1 + θΩ−1Γ†Ωxθ
−1

− θΩ−1Γ†Ωθ−1θxθ
−1 − Ã[2]θΩ

−1Γ†Ωθ−1 + θΩ−1Γ†Ωθ−1A[2] = 0 (6.96)

and

JθΩ−1Γ†Ωθ−1 − θΩ−1Γ†Ωθ−1J − i
(
A[2] − Ã[2]

)
= 0. (6.97)

From (6.97), we have

Ã[2] = A[2] + i[J, θΩ−1Γ†Ωθ−1]. (6.98)

Substituting in (6.96),

θxΩ−1Γ†Ωθ−1 − θΩ−1ΩxΩ−1Γ†Ωθ−1 + θΩ−1Γ†Ωxθ
−1

− θΩ−1Γ†Ωθ−1θxθ
−1 −A[2]θΩ

−1Γ†Ωθ−1 − iJθΩ−1(Γ†)2Ωθ−1

+ iθΩ−1Γ†Ωθ−1JθΩ−1Γ†Ωθ−1 + θΩ−1Γ†Ωθ−1A[2] = 0. (6.99)

The left-hand side can be shown to be zero in a similar manner to Section 6.4.2 - since

θ̂(x, y, t) = θ̂r(x, t)eiΓ
†y from a modified version of (5.68), we see that the dimensional

reduction replaces ∂jy(θ̂) with (ij)θ̂(Γ†)j . We use Corollary 4 Part I on page 93, but

replace L by L̂, θ by θ̂ and the constant C by Ĉ.

Comparing (6.95) and (6.98), we see that

A[2] = A− i[J, θΠθ−1]− i[J, θΩ−1Γ†Ωθ−1]. (6.100)

Although not immediately obvious, by once again introducing a 3 × 3 matrix T = (tij)

(i, j = 1, 2, 3) such that A = [J, T ] and performing some simple algebraic manipulation,

we can see that this expression for A[2] can be written in quasi-Grammian form: (6.100)

is

[J, T[2]] = [J, T ]− i[J, θΠθ−1]− i[J, θΩ−1Γ†Ωθ−1], (6.101)

i.e.

T[2] = T − iθΠθ−1 − iθΩ−1Γ†Ωθ−1, (6.102)

where Ω = Ω(θ, ρ). From a modified version of (5.47), we see that (omitting superscripts),

−iΓ†Ω = ρ†θ + iΩΠ, and hence (6.102) is

T[2] = T − iθΠθ−1 − iθΩ−1(iρ†θ − ΩΠ)θ−1

= T + θΩ−1ρ†, (6.103)
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which we express in quasi-Grammian form as

T[2] = T −

∣∣∣∣∣∣Ω(θ, ρ) ρ†

θ O3

∣∣∣∣∣∣ , (6.104)

where O3 denotes the 3 × 3 zero matrix. After n repeated applications of the reduced

binary Darboux transformation Gθ,ρ, we obtain

T[n+1] = T[n] + θ[n]Ω(θ[n], ρ[n])
−1ρ†[n], (6.105)

that is

T[n+1] = T +
n∑
i=1

θ[i]Ω(θ[i], ρ[i])
−1ρ†[i], (6.106)

where T[1] = T , θ[1] = θ = θ1[1], θ[k] = θk[k] (k = 2, . . . , n), and similarly ρ[1] = ρ = ρ1[1],

ρ[k] = ρk[k]. By defining Θ = (θ1 . . . θn) and P = (ρ1 . . . ρn), we can then, by induction,

express T[n+1] in quasi-Grammian form as

T[n+1] = T −

∣∣∣∣∣∣Ω(Θ, P ) P †

Θ O3

∣∣∣∣∣∣ . (6.107)

The inductive proof is carried out as in Chapter 3, Section 3.4.4.

In order to satisfy the skew-Hermitian condition, we require that

A†[n+1] = −A[n+1], (6.108)

so that

[
J, T[n+1]

]† = −
[
J, T[n+1]

]
, (6.109)

and hence

T †[n+1] = T[n+1]. (6.110)

Using (6.107), we thus require

PΩ(Θ, P )−†Θ† = ΘΩ(Θ, P )−1P † (6.111)

since A† = −A⇒ T † = T .
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We firstly obtain an explicit expression for Ωr(Θr, P r), the reduced form of Ω(Θ, P ). (Note

that in the above, we have omitted superscripts for convenience, so that Ω(Θ, P ) is actu-

ally Ωr(Θr, P r), a (1 + 1)-dimensional entity, where Θr = (θr1 . . . θ
r
n), P

r = (ρr1 . . . ρ
r
n)).

Consider the Lax operator L for the SSNLS equation, namely

LSSNLS = ∂x + iλJ −A. (6.112)

As described in the previous chapter, the dimensional reduction replaces ∂y by −iλ, so

that, by applying this reduction in reverse, the Lax operator (6.112) comes about as a

dimensional reduction of

L = ∂x − J∂y −A. (6.113)

The entries of A are now functions of x, y and t. With θ = θ(x, y, t) an eigenfunction of L

and ρ = ρ(x, y, t) an eigenfunction of the adjoint operator L†, each of size 3× s for some

s, we have

Jθy = θx −Aθ (6.114)

and

Jρy = ρx +A†ρ, (6.115)

so that

ρ†yJ = ρ†x + ρ†A. (6.116)

In (2 + 1)-dimensions, from the definition of Ω(θ, ρ) on page 49,

Ω(θ, ρ) =
∫
ρ†θ dy. (6.117)

Now consider(∫
ρ†Jθ dx

)
y

=
∫
ρ†yJθ dx+

∫
ρ†Jθy dx

=
∫

(ρ†x + ρ†A)θ dx+
∫
ρ†(θx −Aθ) dx by (6.114), (6.116)

=
∫

(ρ†θ)x dx

= Ω(θ, ρ)y. (6.118)
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Hence

Ω(θ, ρ) =
∫
ρ†Jθ dx+ C (6.119)

for some constant of integration C. Replacing each term by its reduced counterpart as

defined in Section 5.5 gives

e−iΓ†yΩr(θr, ρr)e−iΠy =
∫
e−iΓ†yρr†Jθre−iΠy dx+ C, (6.120)

so that

Ωr(θr, ρr) =
∫
ρr†Jθr dx+ C, (6.121)

where θr = θr(x, t), ρr = ρr(x, t), and thus we have an explicit expression for Ωr(θr, ρr) in

(1 + 1)-dimension. Hence

Ωr(Θr, P r) =
∫
P r†JΘr dx+ C (6.122)

for Θ = (θ1 . . . θn), P = (ρ1 . . . ρn). We define C = (cij) (i, j = 1, . . . , ns) to be an

ns×ns constant matrix, where, in the commutative case, each cij is a scalar (1×1) entry.

Choosing C to have entries given by

cij =


1 for i = j,

0 otherwise,
(6.123)

it then follows that

Ωr(Θr, P r) =
∫
P r†JΘr dx+ Ins. (6.124)

We also define

P = ΘS2, (6.125)

where S2 is an invertible Hermitian ns × ns matrix with real entries. (We will see later

that, as in the DS case, Θ, P satisfy the same dispersion relations, and hence this choice

of Θ is a sensible one). Then the left-hand side of (6.111) is

ΘS2Ω(Θ, P )−†S2
−1P †,

which is equal to the right-hand side so long as Ω(Θ, P ) = S2Ω(Θ, P )†S−1
2 . This can

easily be verified using (6.124) and (6.125), where we use the fact that S2 is Hermitian.

Hence (6.111) holds, and thus the skew-Hermitian condition is satisfied so long as P = ΘS2.
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Looking back to our quasi-Grammian solution (6.107), as in the DS case discussed in

Chapter 3, for notational convenience we define a general quasi-Grammian R(i, j) (i, j =

1, . . . , n) to be of the form

R(i, j) = (−1)j

∣∣∣∣∣∣Ω(Θ, P ) P (j)†

Θ(i) O3

∣∣∣∣∣∣ , (6.126)

so that (6.107) is given by

T[n+1] = T −R(0, 0), (6.127)

which can be expressed in a more simple form as

T = T0 −R(0, 0), (6.128)

where T0 is any given solution of the ncSSNLS equation. We choose the trivial vacuum

solution T0 = 0 for simplicity.

Expanding (6.128) with T0 = 0 via the usual expansion of a quasideterminant (2.10)

gives

T = O3 + ΘΩ(Θ, P )−1P †. (6.129)

We have Θ = (θ1 . . . θn), where each θi (i = 1, . . . , n) is an eigenfunction of the Lax

operators L, M of size 3× s, and hence Θ is of size 3×N for some N = ns to be chosen

later. Define

Θ =


Θ1

Θ2

Θ3

 , (6.130)

where the Θi (i = 1, 2, 3) are row vectors of arbitrary length N . Similarly, P = (ρ1 . . . ρn)

and hence P † = col(ρ†1 . . . ρ
†
n), where each ρi (i = 1, . . . , n) is an eigenfunction of the

adjoint Lax operators L†, M † of size 3× s. Then each ρ†i has 3 columns and an arbitrary

number s of rows, and P † is of size N × 3, where N = ns as above. Define

P † =
(
P†

1 P†
2 P†

3

)
, (6.131)
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where the P†
i (i = 1, 2, 3) are column vectors of arbitrary length N .

Thus

T = O3 +


Θ1

Θ2

Θ3

Ω(Θ, P )−1
(
P†

1 P†
2 P†

3

)

= −



∣∣∣∣∣∣Ω(Θ, P ) P†
1

Θ1 0

∣∣∣∣∣∣
∣∣∣∣∣∣Ω(Θ, P ) P†

2

Θ1 0

∣∣∣∣∣∣
∣∣∣∣∣∣Ω(Θ, P ) P†

3

Θ1 0

∣∣∣∣∣∣
∣∣∣∣∣∣Ω(Θ, P ) P†

1

Θ2 0

∣∣∣∣∣∣
∣∣∣∣∣∣Ω(Θ, P ) P†

2

Θ2 0

∣∣∣∣∣∣
∣∣∣∣∣∣Ω(Θ, P ) P†

3

Θ2 0

∣∣∣∣∣∣
∣∣∣∣∣∣Ω(Θ, P ) P†

1

Θ3 0

∣∣∣∣∣∣
∣∣∣∣∣∣Ω(Θ, P ) P†

2

Θ3 0

∣∣∣∣∣∣
∣∣∣∣∣∣Ω(Θ, P ) P†

3

Θ3 0

∣∣∣∣∣∣



. (6.132)

Above, we introduced the 3 × 3 matrix T such that A = [J, T ]. With T = (tij) (i, j =

1, 2, 3), this gives 
0 0 q

0 0 q∗

−q† −q†∗ 0

 =


0 0 2t13

0 0 2t23

−2t31 −2t32 0

 , (6.133)

so that, by comparing with (6.132), we have quasi-Grammian expressions for q, q∗, q† and

q†
∗, namely

q = −2

∣∣∣∣∣∣Ω(Θ, P ) P†
3

Θ1 0

∣∣∣∣∣∣ , q∗ = −2

∣∣∣∣∣∣Ω(Θ, P ) P†
3

Θ2 0

∣∣∣∣∣∣ , (6.134a)

q† = −2

∣∣∣∣∣∣Ω(Θ, P ) P†
1

Θ3 0

∣∣∣∣∣∣ , q†
∗

= −2

∣∣∣∣∣∣Ω(Θ, P ) P†
2

Θ3 0

∣∣∣∣∣∣ . (6.134b)

We have obtained a quasi-Grammian solution q of the ncSSNLS equation, along with its

complex conjugate, adjoint and complex conjugate adjoint. To show that this solution is

unique (i.e. to ensure that, for example, the two quasi-Grammians in (6.134a) are indeed

complex conjugate, etc.), we utilise the conditions on the Θi and Pi (i = 1, 2, 3) obtained

previously.
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6.4.6 Uniqueness of solution

We summarise the conditions that have been determined earlier in the chapter in order to

ensure that application of a Darboux transformation gives a transformed matrix with the

correct structure. We have, from (6.79), that

Θ = SΘ∗S1, (6.135)

where S is the permutation matrix defined in (6.40) and S1 is an ns×ns matrix such that

S2
1 = Ins. In addition,

P = ΘS2, (6.136)

for an ns × ns Hermitian matrix S2. We assume both S1 and S2 are invertible with real

entries (so that ST2 = S2 since S2 is Hermitian). With the above conditions, along with our

definition of Ω(Θ, P ) in (6.124), we can prove the uniqueness of our solution in (6.134). To

do so, we require some results obtained later in the chapter. The calculations are rather

tedious and have thus been detailed in Appendix A. (It is here that we also explain the

reasoning behind our choice of dimensional reduction ∂y → −iλ). We find that we must

impose additional conditions on the matrices S1 and S2 such that

S1 is orthogonal, i.e. S1S
T
1 = Ins, so that ST1 = S−1

1 , (6.137a)

S1 and S2 commute, so that S1S2 = S2S1. (6.137b)

Thus the ncSSNLS equation (6.47) has a unique quasi-Grammian solution, namely

q = −2

∣∣∣∣∣∣Ω(Θ, P ) P†
3

Θ1 0

∣∣∣∣∣∣ , (6.138)

so long as Θ = SΘ∗S1 and P = ΘS2 for S defined in (6.40), where S2 is an ns×ns = N×N

Hermitian matrix with real entries, and S1 and S2 satisfy (6.137). We do not go into details

here, however we can verify that this quasi-Grammian is indeed a solution of the ncSSNLS

equation in a similar manner to the DS case in Chapter 3.

6.5 Soliton solutions - commutative case

We are now in a position to determine and plot the soliton solutions of our ncSSNLS

equation (6.47). To begin, we firstly choose to revert to the commutative case, where cal-

culations are somewhat more straightforward. Although our main interest lies in solutions
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in a noncommutative situation, the commutative version of the SSNLS equation and its

soliton solutions has received little attention, with only the original paper by Sasa and

Satsuma [79] and work by Gilson et al. [33] making advances in this area. We therefore

choose to focus more on the commutative situation here than we did in the DS case in

Chapter 3. We obtain soliton solutions in a commutative setting, which then give us the

framework to extend to the noncommutative case and obtain corresponding soliton plots

in a noncommutative setting.

6.5.1 n-soliton solution

As in the DS case in Chapter 3, we consider our quasi-Grammian solution

q = −2

∣∣∣∣∣∣Ω(Θ, P ) P3
†

Θ1 0

∣∣∣∣∣∣ , (6.139)

where Θ1 denotes the first row of our matrix of eigenfunctions Θ, and similarly P3
† is

the third column of P †, i.e. the Hermitian conjugate of the third row of P , where P

is the matrix of adjoint eigenfunctions. Since we are considering the commutative case,

Θ = (θ1 . . . θn) consists of matrices θi (i = 1, . . . , n), each an eigenfunction of the Lax oper-

ators L, M , of size 3×s with scalar (1×1) entries, and in a similar manner, P = (ρ1 . . . ρn)

contains matrices ρi (i = 1, . . . , n), each eigenfunctions of L†,M †, of size 3× s with scalar

entries. Hence Ω(Θ, P ) =
∫
P †JΘdx+ IN is an N ×N matrix with scalar entries, where

N = ns for some s to be chosen. Later, when we move on to the noncommutative case,

we will suppose that each θi, ρi have entries of matrix form.

In order to obtain a specific quasi-Grammian solution in the commutative case, we must

choose the constant s mentioned above. We consider the relatively simple case of s = 4,

so that each θi (i = 1, . . . , n) is a 3× 4 matrix, as is each ρi (i = 1, . . . , n). The θi and ρi

have scalar entries in the commutative setting.

Define, for i = 1, . . . , n,

θi =


φ4i−3 φ4i−2 φ4i−1 φ4i

ψ4i−3 ψ4i−2 ψ4i−1 ψ4i

χ4i−3 χ4i−2 χ4i−1 χ4i

 (6.140)
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for functions φ = φ(x, t), ψ = ψ(x, t), χ = χ(x, t), so that

Θ =
(
θ1 θ2 . . . θn−1 θn

)
=


φ1 φ2 . . . φ4n−1 φ4n

ψ1 ψ2 . . . ψ4n−1 ψ4n

χ1 χ2 . . . χ4n−1 χ4n

 . (6.141)

The entries of Θ satisfy the dispersion relation for the system, calculated as follows. Since

θ is an eigenfunction of the Lax operator L (6.19a), L(θ) = 0, and hence θx = −iλJθ.

Then

θxx = −iλJθx

= −λ2θ (6.142)

by the definition of θx above, and thus

θxxx = −λ2(−iλJθ)

= iλ3Jθ. (6.143)

Then, since θ is also an eigenfunction of the Lax operator M (6.19b), we have

θt = −4iλ3εJθ

= −4εθxxx. (6.144)

It then follows that, for Θ = (θ1 . . . θn), Θt = −4εΘxxx, hence, for i = 1, . . . , 4n, we have

(φi)t = −4ε (φi)xxx , (6.145a)

(ψi)t = −4ε (ψi)xxx , (6.145b)

(χi)t = −4ε (χi)xxx . (6.145c)

From now on we choose the real constant ε = 1 for simplicity.

We know, from (6.137), that S1 and S2 are ns×ns = 4n×4n matrices satisfying particular

conditions in order to ensure uniqueness of our quasi-Grammian solution, namely S1 must

be an orthogonal matrix whose square is the identity, and S1 and S2 must commute. In

addition, we assume that both S1 and S2 have real entries, with S2 chosen to be Hermitian.

For simplicity, we choose S1 to be a permutation matrix such that

S1 = diag(S̃1, S̃1, . . . , S̃1︸ ︷︷ ︸
n

), (6.146)
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where

S̃1 =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 . (6.147)

Then, defining

S2 = diag(S̃2, S̃2, . . . , S̃2︸ ︷︷ ︸
n

), (6.148)

where S̃2 = (sij) (i, j = 1, . . . , 4) is a 4 × 4 Hermitian matrix, (6.137b) implies that S̃2

takes the form

S̃2 =


s11 s12 s13 s14

s12 s11 s14 s13

s13 s14 s33 s34

s14 s13 s34 s33

 . (6.149)

We choose

S̃2 =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 . (6.150)

(Note that although we could have conceivably left S̃2 as an arbitrary 4×4 matrix for now,

when we later express our quasi-Grammian solution as a ratio of determinants and expand

the denominator using Mathematica in order to find conditions so that this denominator is

non-zero, the obtained expression is extremely unwieldy. We therefore choose our matrix

S̃2 at this stage, and firstly check, using Mathematica, that this gives a non-zero numerator

in our ratio expression. Having done so, we then find conditions on our parameters in order

that the denominator of the ratio is non-zero with this particular choice of S̃2. The choice

of S̃2 is not unique, however it has the important benefit that the numerator of our ratio

is non-trivial - other choices of this matrix, such as S̃2 = I4 or S̃2 = S̃1, result in a trivial

numerator). It then follows that, since P = ΘS2, we have, for i = 1, . . . , n,

ρi = θiS̃2

=


φ4i−1 φ4i φ4i−3 φ4i−2

ψ4i−1 ψ4i ψ4i−3 ψ4i−2

χ4i−1 χ4i χ4i−3 χ4i−2

 , (6.151)



CHAPTER 6. HIGHER-ORDER NONLINEAR SCHRÖDINGER EQUATIONS 135

so that

P = (ρ1, . . . , ρn) =


φ3 φ4 φ1 φ2 . . . φ4n−1 φ4n φ4n−3 φ4n−2

ψ3 ψ4 ψ1 ψ2 . . . ψ4n−1 ψ4n ψ4n−3 ψ4n−2

χ3 χ4 χ1 χ2 . . . χ4n−1 χ4n χ4n−3 χ4n−2

 . (6.152)

Thus our quasi-Grammian solution (6.139) takes the form

q = −2

∣∣∣∣∣∣Ω(Θ, P ) χ†

φ 0

∣∣∣∣∣∣ , (6.153)

where φ, χ denote the row vectors

φ =
(
φ1 φ2 φ3 φ4 . . . φ4n−4 φ4n−3 φ4n−1 φ4n

)
, (6.154a)

χ =
(
χ3 χ4 χ1 χ2 . . . χ4n−1 χ4n χ4n−3 χ4n−2

)
(6.154b)

respectively.

As in our work on the DS equations in Chapter 3, we choose to simplify our notation

so that we work with only φ1, . . . , φ2n, ψ1, . . . , ψ2n and χ1, . . . , χ2n. For i = 1, . . . , 4n, we

relabel

φj as φ2i for j = 4i,

φj as φ2i−1 for j = 4i− 1,

and set φj = 0 for j = 4i − 2, j = 4i − 3. The same conditions also hold for ψ1, . . . , ψ4n.

We also relabel

χj as χ2i for j = 4i− 2,

χj as χ2i−1 for j = 4i− 3,
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and set χj = 0 for j = 4i, j = 4i− 1. We thus have

φ =
(
φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 . . . φ4n−3 φ4n−2 φ4n−1 φ4n

)
=
(

0 0 φ1 φ2 0 0 φ3 φ4 . . . 0 0 φ2n−1 φ2n

)
, (6.155a)

ψ =
(
ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7 ψ8 . . . ψ4n−3 ψ4n−2 ψ4n−1 ψ4n

)
=
(

0 0 ψ1 ψ2 0 0 ψ3 ψ4 . . . 0 0 ψ2n−1 ψ2n

)
, (6.155b)

χ =
(
χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8 . . . χ4n−3 χ4n−2 χ4n−1 χ4n

)
=
(
χ1 χ2 0 0 χ3 χ4 0 0 . . . χ2n−1 χ2n 0 0

)
. (6.155c)

Our choice of the matrix Θ = col
(
Θ1 Θ2 Θ3

)
must satisfy the condition (6.135), so

that

Θ1 = Θ2
∗S1, (6.156a)

Θ2 = Θ1
∗S1, (6.156b)

Θ3 = Θ3
∗S1. (6.156c)

In order that these conditions are satisfied, we choose

φ =
(

0 0 φ1 ψ∗1 0 0 φ2 ψ∗2 . . . 0 0 φ2n−1 ψ∗2n−1

)
, (6.157a)

ψ =
(

0 0 ψ1 φ∗1 0 0 ψ2 φ∗2 . . . 0 0 ψ2n−1 φ∗2n−1

)
, (6.157b)

χ =
(
χ1 χ∗1 0 0 χ2 χ∗2 0 0 . . . χ2n−1 χ∗2n−1 0 0

)
, (6.157c)

i.e. for even i = 2, 4, . . . , 2n− 2, 2n, we choose φi = ψ∗i−1 and χi = χ∗i−1, so that

Θ =


0 0 φ1 ψ∗1 . . . 0 0 φ2n−1 ψ∗2n−1

0 0 ψ1 φ∗1 . . . 0 0 ψ2n−1 φ∗2n−1

χ1 χ∗1 0 0 . . . χ2n−1 χ∗2n−1 0 0

 . (6.158)

It then follows that P = ΘS2 is given by

P =


φ1 ψ∗1 0 0 . . . φ2n−1 ψ∗2n−1 0 0

ψ1 φ∗1 0 0 . . . ψ2n−1 φ∗2n−1 0 0

0 0 χ1 χ∗1 . . . 0 0 χ2n−1 χ∗2n−1

 . (6.159)
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We choose the entries of φ, ψ, χ to satisfy the dispersion relations for the SSNLS equation

as given in (6.145) with ε = 1. We therefore choose, for i = 1, . . . , 2n,

φi = aαi, (6.160a)

ψi = aβi, (6.160b)

χi = γi, (6.160c)

where a is a real constant (to be defined later), and αi, βi, γi are exponentials such that

αi = exp(pix− 4p3
i t), (6.161a)

βi = exp(qix− 4q3i t), (6.161b)

γi = exp(rix− 4r3i t) (6.161c)

for complex constants pi, qi, ri. We will later derive conditions on the pi, qi, ri in order to

give the correct asymptotic behaviour. Thus we have the quasi-Grammian solution in the

commutative case defined to be

q = −2

∣∣∣∣∣∣Ω(Θ, P ) χ̃†

φ 0

∣∣∣∣∣∣ , (6.162)

where φ, χ̃ denote the row vectors

φ =
(
0 0 φ1 ψ∗1 . . . 0 0 φ2n−1 ψ∗2n−1

)
, (6.163a)

χ̃ =
(
0 0 χ1 χ∗1 . . . 0 0 χ2n−1 χ∗2n−1

)
(6.163b)

respectively, and the φi, χi (i = 1, . . . , 2n) are as defined as in (6.160), (6.161). Since we

are considering a commutative situation, we can express the quasi-Grammian in (6.162)

as

q = −2

∣∣∣∣∣∣Ω(Θ, P ) χ̃†

φ 0

∣∣∣∣∣∣∣∣∣Ω(Θ, P )
∣∣∣

= −2
G

F
, say. (6.164)

As in the DS case, we obtain an explicit expression for the determinant F by setting

F = Ω(Θ, P )

=
∫
P †JΘdx+ I4n by (6.124), omitting superscripts, (6.165)
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so that F = detF . Then, since P = ΘS2, it follows that

F = S2

∫
Θ†JΘdx+ I4n. (6.166)

Substituting for Θ using (6.158), we see that

F = S2Ψ + I4n (6.167)

for

Ψ =



−
∫ x
χ1,1 O2 . . . −

∫ x
χ2n−1,1 O2

O2

∫ x
φ1,1ψ1,1 . . . O2

∫ x
φ1,2n−1ψ1,2n−1

...
...

...
...

−
∫ x
χ2n−1,1 O2 . . . −

∫ x
χ2n−1,2n−1 O2

O2

∫ x
φ2n−1,1ψ2n−1,1 . . . O2

∫ x
φ2n−1,2n−1ψ2n−1,2n−1


,

(6.168)

where all integrals are with respect to x, and the limits of integration are determined

from the definitions of φj , ψj , χj (j = 1, . . . , 2n − 1) in (6.160), (6.161). For notational

convenience, we have defined, for i, j = 1, . . . , 2n− 1,

χi,j : =

χ∗iχj χ∗iχ
∗
j

χiχj χiχ
∗
j

 , φi,jψi,j :=

φ∗iφj + ψ∗i ψj φ∗iψ
∗
j + ψ∗i φ

∗
j

ψiφj + φiψj ψiψ
∗
j + φiφ

∗
j

 . (6.169)

Thus

F = detF =|I4n + S2Ψ | . (6.170)

We now consider the simplest example of the 1-soliton solution (n = 1) and derive appro-

priate conditions to ensure that this solution, expressed as a ratio of determinants, has a

non-zero denominator.

6.5.2 1-soliton solution

Choosing n = 1, we have, from (6.158),

Θ = θ1 =


0 0 φ1 ψ∗1

0 0 ψ1 φ∗1

χ1 χ∗1 0 0

 , (6.171)

while from (6.159),

P = ρ1 =


φ1 ψ∗1 0 0

ψ1 φ∗1 0 0

0 0 χ1 χ∗1

 , (6.172)
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with

φ1 = a exp
(
p1x− 4p3

1t
)
, (6.173a)

ψ1 = a exp
(
q1x− 4q31t

)
(6.173b)

and

χ1 = exp
(
r1x− 4r31t

)
(6.173c)

for a real constant a. From (6.168), (6.169),

Ψ =


−
∫ x

χ∗1χ1 dx −
∫ x

χ∗1χ
∗
1 dx 0 0

−
∫ x

χ1χ1 dx −
∫ x

χ1χ
∗
1 dx 0 0

0 0
∫ x

φ∗1φ1 + ψ∗1ψ1 dx
∫ x

φ∗1ψ
∗
1 + ψ∗1φ

∗
1 dx

0 0
∫ x

ψ1φ1 + φ1ψ1 dx
∫ x

ψ1ψ
∗
1 + φ1φ

∗
1 dx

 . (6.174)

Choosing p1 = q1 in (6.173) for simplicity, it then follows from (6.170) that

F =

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 2
∫ x

φ∗1φ1 dx 2
∫ x

φ∗1φ
∗
1 dx

0 1 2
∫ x

φ1φ1 dx 2
∫ x

φ1φ
∗
1 dx

−
∫ x

χ∗1χ1 dx −
∫ x

χ∗1χ
∗
1 dx 1 0

−
∫ x

χ1χ1 dx −
∫ x

χ1χ
∗
1 dx 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
. (6.175)

Since our quasi-Grammian solution q is expressed as a ratio of determinants with denom-

inator F as in (6.164), we must ensure that F is non-zero. Expanding gives

F = 1 + Peη1+η∗1+ξ1+ξ∗1 +Qe2(η1+ξ∗1) +Q∗e2(η
∗
1+ξ1) +Re2(η1+η∗1+ξ1+ξ∗1), (6.176)

where

P =
1 + a2

2<(p1)<(r1)
, (6.177a)

Q =
a

2p1r∗1
, (6.177b)

R =
1 + 2a2 + a4

16 (<(p1))
2

(
1

(<(r1))
2 −

1
r1r∗1

)
+

a2

4p1p∗1

(
1
r1r∗1

− 1
(<(r1))

2

)
, (6.177c)

and

η1 = p1x− 4p3
1t, (6.178a)

ξ1 = r1x− 4r31t. (6.178b)
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Removing a factor of eη1+η∗1+ξ1+ξ∗1 = e2(<(η1)+<(ξ1)), which we will denote by eA, say, we

have

F = eA
(
P +QeB +Q∗e−B +R

1
2

(
R

1
2 eA +R−

1
2 e−A

))
, (6.179)

where B = η1 − η∗1 − (ξ1 − ξ∗1) = 2i(=(η1) − =(ξ1)). It can easily be seen that P,R are

purely real. We let

Q = Q1 + iQ2 (6.180)

for Q1, Q2 ∈ R, so that

QeB +Q∗e−B = Q1

(
eB + e−B

)
+ iQ2

(
eB − e−B

)
= 2 (Q1 cos(2ω)−Q2 sin(2ω)) , (6.181)

where ω = =(η1)−=(ξ1) ∈ R. Thus

F = eA
(
P + 2 (Q1 cos(2ω)−Q2 sin(2ω)) +R

1
2

(
R

1
2 eA +R−

1
2 e−A

))
, (6.182)

where A,P,Q1, Q2, R ∈ R. For F 6= 0 (in particular F > 0), we require that

P + 2 (Q1 cos(2ω)−Q2 sin(2ω)) +R
1
2

(
R

1
2 eA +R−

1
2 e−A

)
> 0. (6.183)

Thus, since R
1
2 eA +R−

1
2 e−A > 0, we can take

P +R
1
2 + 2 |Q1 |> 2 |Q2 | (6.184)

for F > 0. (There are, however, other possibilities, but the inequality in (6.184) is suffi-

cient to ensure F > 0).

We now explain the reason for the inclusion of the real constant a in our definitions

of φi and ψi in (6.160). From (6.176), we see that the terms in Q and Q∗ are a conjugate

pair, hence their sum is real, and every other term in the expansion is real. Thus F is

purely real, no matter our choice of a. Expanding G in a similar manner gives

G = −
(
aeη1+ξ∗1 + eη

∗
1+ξ1

)
− e2(η1+ξ∗1)+(η∗1+ξ1)

(
a

2p1r∗1
− a(1 + a2)

4<(p1)r∗1
− a

2p1<(r1)
+

a(1 + a2)
4<(p1)<(r1)

)
− e(η1+ξ∗1)+2(η∗1+ξ1)

(
a2

2p∗1r1
− 1 + a2

4<(p1)r1
− a2

2p∗1<(r1)
+

1 + a2

4<(p1)<(r1)

)
. (6.185)

It is clear that, for a = 1, each term in the expansion has a corresponding conjugate

partner, and thus G is purely real. Similarly, for a = −1, it can be seen that G is purely
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imaginary. However, for a 6= ±1, the terms do not combine in conjugate pairs, and hence

G consists of a real and imaginary part. Then q = −2G/F is purely real for a = 1 (F and

G both real), purely imaginary for a = −1 (F real, G imaginary), and complex (consisting

of a real and imaginary part) for a 6= ±1. Since we wish our solution q to be complex, we

choose a 6= ±1. In the plots that follow, we choose a = 2.

In order to obtain plots of the 1-soliton solution in the commutative case, we choose

the complex constants p1, r1 so that the condition (6.184) holds. For various values of

these constants, we show a two-dimensional plot at one particular time value (t = 0.1),

along with three-dimensional plots where we see the soliton moving along the x-axis as

time progresses, giving rise to a ‘train’ of solitons. These plots are shown in Figures 6.1-6.3

below. The two-dimensional plots do not take the form of a smooth curve, however this

is due to the fact that we are plotting a complex solution with an imaginary part of an

oscillatory nature. Figure 6.1 shows the soliton train moving from negative to positive

values of x as time progresses, while Figure 6.2 shows the soliton moving in the opposite

direction. The soliton is almost stationary in Figure 6.3.



CHAPTER 6. HIGHER-ORDER NONLINEAR SCHRÖDINGER EQUATIONS 142

Figure 6.1: p1 = 1.9 + i, r1 = 0.5 + 0.3i.
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Figure 6.2: p1 = 1− 0.8i, r1 = 0.3− i.
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Figure 6.3: p1 = 1 + 0.3i, r1 = 0.3− i.
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6.6 Analysis of the 1-soliton solution

6.6.1 Soliton speed

In order to determine the factors governing the speed of the solitons we have plotted, we

firstly consider the determinant F as given in (6.175). By removing appropriate factors

from the rows and columns of this determinant, we find that

F = e2(η1+η∗1+ξ1+ξ∗1)

∣∣∣∣∣∣∣∣∣∣∣∣

e−(η∗1+ξ1) 0 a2

<(p1)
a2

p∗1

0 e−(η1+ξ∗1) a2

p1
a2

<(p1)

− 1
2<(r1) − 1

2r∗1
e−(η1+ξ∗1) 0

− 1
2r1

− 1
2<(r1) 0 e−(η∗1+ξ1)

∣∣∣∣∣∣∣∣∣∣∣∣
. (6.186)

In a similar manner, we can show that

G = e2(η1+η∗1+ξ1+ξ∗1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e−(η∗1+ξ1) 0 a2

<(p1)
a2

p∗1
0

0 e−(η1+ξ∗1) a2

p1
a2

<(p1) 0

− 1
2<(r1) − 1

2r∗1
e−(η1+ξ∗1) 0 1

− 1
2r1

− 1
2<(r1) 0 e−(η∗1+ξ1) 1

0 0 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (6.187)

so that the ratio G/F is given by the ratio of the two determinants above.

Now consider e−(η1+ξ∗1), where

−(η1 + ξ∗1) = −
(
(p1 + r∗1)x− 4(p3

1 + (r∗1)
3)t
)

= −(p1 + r∗1)
(
x− 4

p3
1 + (r∗1)

3

p1 + r∗1
t

)
. (6.188)

This expression describes a wave moving with a speed given by

4
<(p3

1 + (r∗1)
3)

<(p1 + r∗1)
,

enabling us to easily calculate the speeds of the solitons we have plotted above. We find

that the speed of the soliton in Figure 6.1 is 1.92 units, while in Figure 6.2, the soliton is

moving at a faster rate with a speed of −5.52 units, the negative sign indicating that the

soliton travels in the opposite direction. The soliton in Figure 6.3 is almost stationary,

with a speed of −0.44 units.
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6.6.2 Properties

We now look in more detail at the 1-soliton solution with p1, r1 chosen as in Figure 6.2.

Plotting our solution q for various values of the coefficient a in (6.173) gives us a better

understanding of the soliton structure.

Looking at <(q), we see that, beginning at a = −2, |<(q) | decreases, reaching zero at

a = −1 (as explained earlier), and increases for a > −1 (see Figure 6.4). There is also a

change in |=(q) | - we see a reduction in amplitude from a = −1, with |=(q) | equal to zero

for a = 1. The amplitude then begins to increase again as a increases (Figure 6.5). This

is reflected in our plot of |q |=
(
(<(q))2 + (=(q))2

)1/2
- we see a marked difference in the

plots for a = −2, a = −1 (where |<(q) |= 0), a = 0 and a = 1 (where |=(q) |= 0). This is

depicted in Figure 6.6.
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Figure 6.4: Commutative plots of |<(q) | for top row (left to right) a = −2,−1.1, middle

row (left to right) a = −1,−0.8 and bottom row (left to right) a = 0, 1.
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Figure 6.5: Commutative plots of |=(q) | for top row (left to right) a = −1, 0, middle row

(left to right) a = 0.8, 1 and bottom row (left to right) a = 1.1, 2.



CHAPTER 6. HIGHER-ORDER NONLINEAR SCHRÖDINGER EQUATIONS 149

Figure 6.6: Commutative plots of | q | for top row (left to right) a = −2,−1, middle row

(left to right) a = −0.5, 0 and bottom row (left to right) a = 0.5, 1.
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6.7 Noncommutative (matrix) case

We now move on to the noncommutative case, where, as for the DS case in Chapter 4,

we suppose the functions φi, ψi, χi defined in (6.160) take the form of 2 × 2 matrices. In

particular, we let

φi = aαiI2, (6.189a)

ψi = aβiI2, (6.189b)

χi = γiI2 (6.189c)

for a real constant a, where αi, βi, γi are exponentials as in (6.161) and I2 denotes the 2×2

identity matrix.

6.7.1 1-soliton solution

We begin with the 1-soliton solution (n = 1) and choose the matrix S̃1 as in (6.147), but

replace the entries 0 and 1 by the 2 × 2 zero and identity matrices respectively. Then,

since S1 (= S̃1 for n = 1) and S2 (= S̃2 for n = 1) are required to commute, the Hermitian

matrix S2 = (sij) (i, j = 1, 2, . . . , 8, i ≤ j) must take the form

S2 =



s11 s12 s13 s14 s15 s16 s17 s18

s12 s22 s14 s24 s25 s26 s27 s28

s13 s14 s11 s12 s17 s18 s15 s16

s14 s24 s12 s22 s27 s28 s25 s26

s15 s25 s17 s27 s55 s56 s57 s58

s16 s26 s18 s28 s56 s66 s58 s68

s17 s27 s15 s25 s57 s58 s55 s56

s18 s28 s16 s26 s58 s68 s56 s66



. (6.190)

It then follows that, since P = ΘS2 (S2 Hermitian), so that ρ1 = θ1S2 in the 1-soliton

case, we have

P = ρ1 =



0 0 0 0 φ1 0 ψ∗1 0

0 0 0 0 0 φ1 0 ψ∗1

0 0 0 0 ψ1 0 φ∗1 0

0 0 0 0 0 ψ1 0 φ∗1

χ1 0 χ∗1 0 0 0 0 0

0 χ1 0 χ∗1 0 0 0 0


.S2, (6.191)
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with S2 defined as above. Thus our quasi-Grammian solution q (which we denote by q1

for the 1-soliton case), defined for the commutative case in (6.162), is given by

q1 = −2

∣∣∣∣∣∣∣∣∣∣
Ω(θ1, ρ1) γ11 γ12

α11

α12

0 0

0 0

∣∣∣∣∣∣∣∣∣∣
, (6.192)

where α11, α12 are row vectors

α11 =
(
0 0 0 0 aα1 0 aα∗1 0

)
, (6.193a)

α12 =
(
0 0 0 0 0 aα1 0 aα∗1

)
(6.193b)

(choosing p1 = q1 and hence φ1 = ψ1 as before), and γ11, γ12 the column vectors

γ11 =



s11γ
∗
1 + s13γ1

s12γ
∗
1 + s14γ1

s13γ
∗
1 + s11γ1

s14γ
∗
1 + s12γ1

s15γ
∗
1 + s17γ1

s16γ
∗
1 + s18γ1

s17γ
∗
1 + s15γ1

s18γ
∗
1 + s16γ1



, γ12 =



s12γ
∗
1 + s14γ1

s22γ
∗
1 + s24γ1

s14γ
∗
1 + s12γ1

s24γ
∗
1 + s22γ1

s25γ
∗
1 + s27γ1

s26γ
∗
1 + s28γ1

s27γ
∗
1 + s25γ1

s28γ
∗
1 + s26γ1



, (6.194)

with γ11 the adjoint of the penultimate row of P in (6.191), and γ12 the adjoint of the

final row of P .

Expanding in the usual manner gives

q1 = −2



∣∣∣∣∣∣Ω(θ1, ρ1) γ11

α11 0

∣∣∣∣∣∣
∣∣∣∣∣∣Ω(θ1, ρ1) γ12

α11 0

∣∣∣∣∣∣
∣∣∣∣∣∣Ω(θ1, ρ1) γ11

α12 0

∣∣∣∣∣∣
∣∣∣∣∣∣Ω(θ1, ρ1) γ12

α12 0

∣∣∣∣∣∣


= −2

q111 q112

q121 q122

 , say, (6.195)

so that, for example,

q111 = −2

∣∣∣∣∣∣Ω(θ1, ρ1) γ11

α11 0

∣∣∣∣∣∣∣∣∣Ω(θ1, ρ1)
∣∣∣ = −2

G1
11

F
. (6.196)
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We use the same notation as in Chapter 4.

Our main difficulty in the noncommutative case concerned the choice of the matrix S2. As

a first attempt, we replaced the entries 0 and 1 in our choice of S̃2 = S2 for the commu-

tative case (6.150) by the 2 × 2 zero and identity matrices respectively, that is, we chose

the entries s15 = s26 = 1 and every other entry equal to zero. However, this resulted in

G1
12 = G1

21 = 0 and G1
11 = G1

22, and hence we obtained only a single 1-soliton plot in the

2× 2 matrix case, rather than the desired four. We moved on to choose s15 6= s26 and all

remaining entries of S2 equal to zero. We obtained non-identical 1-soliton plots for q111 and

q122, although the solutions for q112 and q121 were still trivial. The next logical step was to

choose the entries s15, s16, s25 and s26 unequal and non-zero, and every other entry zero.

This enabled us to obtain four distinct 1-soliton plots in each of the four matrix entries.

It is clear that the 1-soliton solutions q111, q
1
12, q

1
21 and q122 are governed by the entries

s15, s16, s25 and s26 respectively. Choosing one of these entries to be zero results in the

disappearance of one of the soliton solutions, for example choosing s16 = 0 means that the

1-soliton solution q112 is trivial.

Once again, we must ensure that our denominator F =|Ω(Θ, P ) | is real and non-zero.

The determinant in this case is of size 8× 8, and thus the expansion is rather lengthy and

difficult to work with. We have given the full expansion in Appendix B (for one particular

choice of the matrix S2), and we can clearly see that each term is either purely real or

can be paired with its complex conjugate. Thus F is purely real as required. Finding

conditions so that F is non-zero is far more difficult in the noncommutative case than

in the commutative case described earlier. For this reason, we utilise the same condition

(6.184) as in the commutative case and, since we obtain plots of the expected form with

no singularities, we believe that these conditions give rise to a non-zero F . As for the

DS equation, we have come across a difficulty of extending to the noncommutative case

- the obtained expansions of determinants are very cumbersome and require the aid of a

computer package. Such expressions are troublesome to analyse, and hence this is why we

choose to focus only on the 1-soliton solution in the noncommutative case.

We choose the complex constants p1, r1 in order to satisfy condition (6.184), and once

again show, for each of q111, q
1
12, q

1
21 and q122, a two-dimensional plot at t = 0.1, and a three-
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dimensional plot in order to see the solitons progress with time. These plots are shown

in Figures 6.7-6.12. In Figures 6.7-6.10, we have chosen s15 = 1, s16 = 1
4 , s25 = 1

18 and

s26 = 1
2 in (6.190), with every other entry of S2 equal to zero, and the constant a = 2 in

(6.189a), (6.189b). Figures 6.11 and 6.12 show plots with a different choice of the entries

s15, s16, s25 and s26, and again a = 2.

From Figures 6.11 and 6.12, we see that the 1-soliton solution can propogate with two

peaks. This phenomenon is discussed by Sasa and Satsuma in [79], where it is shown

that whether the 1-soliton solution is single- or double-peaked depends on the value of

a constant c in the 1-soliton solution. In our work, comparing Figures 6.7 and 6.8 with

Figures 6.11 and 6.12 (where the values of p1 and r1 are identical), we can see that the

number of peaks of our 1-soliton solution depends on the choice of the matrix entries s15,

s16, s25 and s26. However, due to the lengthy expansions of the determinants F and G

in our noncommutative solution, determining exactly how the choice of these entries gives

rise to either single- or double-peaked solutions may not be possible.

6.8 Conclusions

In this chapter, we obtained noncommutative versions of two higher-order NLS equations.

We then focused on one of these, the Sasa-Satsuma NLS equation, and derived both quasi-

Wronskian and quasi-Grammian solutions via suitable dimensional reductions of Darboux

and binary Darboux transformations. We used the quasi-Grammian form of solution to

derive and plot soliton solutions in both a commutative and noncommutative setting. As

in the Davey-Stewartson case, limitations were encountered on extending to a noncommu-

tative situation. However, we did succeed in obtaining plots of noncommutative soliton

solutions, with the speed of the solitons in both the commutative and noncommutative

cases determined in a straightforward manner.
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Figure 6.7: Two-dimensional 1-soliton plots at t = 0.1, with p1 = 1− 0.8i, r1 = 0.3− i and

s15 = 1, s16 = 1
4 , s25 = 1

18 , s26 = 1
2 .
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Figure 6.8: Three-dimensional 1-soliton plots with p1 = 1− 0.8i, r1 = 0.3− i and s15 = 1,

s16 = 1
4 , s25 = 1

18 , s26 = 1
2 .



CHAPTER 6. HIGHER-ORDER NONLINEAR SCHRÖDINGER EQUATIONS 156

Figure 6.9: Two-dimensional 1-soliton plots at t = 0.1, with p1 = 1+0.3i, r1 = 0.3− i and

s15 = 1, s16 = 1
4 , s25 = 1

18 , s26 = 1
2 .
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Figure 6.10: Three-dimensional 1-soliton plots with p1 = 1+0.3i, r1 = 0.3− i and s15 = 1,

s16 = 1
4 , s25 = 1

18 , s26 = 1
2 .
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Figure 6.11: Two-dimensional 1-soliton plots at t = 0.1, with p1 = 1 − 0.8i, r1 = 0.3 − i

and s15 = 1
3 , s16 = 1

4 , s25 = 1
5 , s26 = 1

6 .
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Figure 6.12: Three-dimensional 1-soliton plots with p1 = 1−0.8i, r1 = 0.3− i and s15 = 1
3 ,

s16 = 1
4 , s25 = 1

5 , s26 = 1
6 .



Chapter 7

Conclusions and further work

7.1 Summary

Quasideterminants have proved to be a very useful tool when determining solutions of

noncommutative integrable equations, enabling these solutions to be expressed in a sim-

ple and compact manner. We derived, in Chapter 3, a noncommutative version of the

Davey-Stewartson system via a Lax pair approach and subsequently obtained solutions

to this noncommutative system in both quasi-Wronskian and quasi-Grammian form us-

ing Darboux and binary Darboux transformations. The simplicity of the quasideterminant

structure enabled solution verification to be carried out with relative ease. We then moved

on in Chapter 4 to look at one particular class of solution to our system of noncommuta-

tive Davey-Stewartson (ncDS) equations, namely dromions, and were able to obtain plots

in a noncommutative (matrix) setting. Although we succeeded in plotting the (1, 1)- and

(2, 2)-dromion solutions in this case, other solutions, for example the (3, 3)-dromion so-

lution, proved difficult to investigate due to the increasing complexity of the expressions

involved. We considered dromion solutions in a 2× 2 matrix setting, however our results

could, in theory, be extended to an n × n matrix setting (n ≥ 3). Again, calculations in

such cases will be technically difficult and time-consuming. Implementation of a computer

programme may be possible in order to deal with such difficulties.

The aim of Chapter 5 was to describe the reduction of the standard (2 + 1)-dimensional

Darboux and binary Darboux transformations, applied in Chapter 3 to the ncDS sys-

tem, to a (1 + 1)-dimensional situation. Our work here followed that of Gilson, Nimmo

and Ohta, who successfully described this dimensional reduction and its application to

the self-dual Yang-Mills equations. We were then able, in Chapter 6, to apply a slightly
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modified version of these dimensionally-reduced Darboux transformations to a noncom-

mutative Sasa-Satsuma nonlinear Schrödinger equation, obtained in the same manner as

the ncDS system in Chapter 3. Once again, we found compact quasi-Wronskian and

quasi-Grammian expressions for the solution of our noncommutative equation. The quasi-

Grammian solution was then used to plot soliton solutions in a noncommutative setting.

Although limitations were encountered due to the determinant expressions being very

lengthy and difficult to analyse, we did succeed in obtaining plots of the 1-soliton solution

in the 2 × 2 matrix case. Further solutions, for example the 2- and 3-soliton solutions,

could, in theory, be determined and plotted in a similar manner, however this procedure

would be technically complex to carry out by hand.

7.2 Open questions

A number of continuations of our work are possible. One interesting topic would be to

investigate other types of solution to our system of ncDS equations, for example solitoffs,

a hybrid of the soliton and dromion. Such a solution was found to exist for a commuta-

tive Davey-Stewartson system by Gilson in 1992, and resembles a truncated plane wave

soliton tending exponentially to a non-zero value in only one direction. We believe that

solitoff solutions in a noncommutative setting have so far not been studied in the liter-

ature. Dromion-solitoff interactions would be another possible topic of discussion in the

noncommutative case.

The process whereby a noncommutative integrable equation is derived via a Lax pair

approach, and quasideterminant solutions obtained by the application of Darboux trans-

formations, has been implemented for other equations, for example the KP equation by

Gilson and Nimmo, and the modified KP equation by Gilson, Nimmo and Sooman. How-

ever, there are many other equations for which this technique has not been applied - the

Boussinesq and Sawada-Kotera equations being two such examples, and it would be ben-

eficial to investigate these in a similar manner. We would then be in a better position

to discuss both the similarities of, and differences between, noncommutative integrable

equations and their quasideterminant solutions.



Appendix A

A.1 Uniqueness of ncSSNLS quasi-Grammian solution

As detailed in Section 6.4.6, we derive conditions to ensure that our quasi-Grammian

solution (6.134) to the ncSSNLS equation is unique. We consider the commutative and

noncommutative cases separately.

A.1.1 Commutative case

We take q to be a scalar object, so that q† = q∗ and q†
∗ = q. Utilising (2.14) to express

the quasi-Grammians (6.134) as ratios of determinants, we have

q = −2

∣∣∣∣∣∣Ω(Θ, P ) P†
3

Θ1 0

∣∣∣∣∣∣∣∣∣Ω(Θ, P )
∣∣∣ , q∗ = −2

∣∣∣∣∣∣Ω(Θ, P ) P†
3

Θ2 0

∣∣∣∣∣∣∣∣∣Ω(Θ, P )
∣∣∣ , (A.1a)

q† = −2

∣∣∣∣∣∣Ω(Θ, P ) P†
1

Θ3 0

∣∣∣∣∣∣∣∣∣Ω(Θ, P )
∣∣∣ , q†

∗
= −2

∣∣∣∣∣∣Ω(Θ, P ) P†
2

Θ3 0

∣∣∣∣∣∣∣∣∣Ω(Θ, P )
∣∣∣ , (A.1b)

and hence we must show that q† = q∗ and q†∗ = q, i.e.∣∣∣∣∣∣Ω(Θ, P ) P1
†

Θ3 0

∣∣∣∣∣∣ =
∣∣∣∣∣∣Ω(Θ, P ) P3

†

Θ2 0

∣∣∣∣∣∣ (A.2a)

and ∣∣∣∣∣∣Ω(Θ, P ) P2
†

Θ3 0

∣∣∣∣∣∣ =
∣∣∣∣∣∣Ω(Θ, P ) P3

†

Θ1 0

∣∣∣∣∣∣ . (A.2b)

We only prove (A.2a), the proof of (A.2b) follows in a similar manner.

162



APPENDIX A. 163

Since P = ΘS2, we have Pi = ΘiS2 (i = 1, 2, 3), and similarly, condition (6.135) gives

Θ1 = Θ2
∗S1, (A.3a)

Θ2 = Θ1
∗S1, (A.3b)

Θ3 = Θ3
∗S1. (A.3c)

Thus ∣∣∣∣∣∣Ω(Θ, P ) P1
†

Θ3 0

∣∣∣∣∣∣ =
∣∣∣∣∣∣Ω(Θ, P ) S2S

†
1Θ2

T

P3S
−1
2 0

∣∣∣∣∣∣
=

∣∣∣∣∣∣S
−†
1 S−1

2 Ω(Θ, P )S2 Θ2
T

P3 0

∣∣∣∣∣∣
=

∣∣∣∣∣∣S
∗
2Ω(Θ, P )T (S−1

2 )T (S−†1 )T P3
T

Θ2 0

∣∣∣∣∣∣ (A.4)

since transposing has no effect on the value of a determinant. Then, since

P = ΘS2

= SP ∗S−1
2 S1S2 (A.5)

by (6.135), (6.136), so that

P3 = P3
∗S−1

2 S1S2 (A.6a)

and

P3
T = S∗2S

T
1 (S−1

2 )∗P3
†, (A.6b)

it can be shown that∣∣∣∣∣∣Ω(Θ, P ) P1
†

Θ3 0

∣∣∣∣∣∣ =
∣∣∣∣∣∣S2(ST1 )−1Ω(Θ, P )TS−1

2 S−1
1 P†

3

Θ2 0

∣∣∣∣∣∣ , (A.7)

where we use the fact that (A−1)T = (AT )−1 for an invertible matrix A. We take S2 to

be Hermitian as before, so that ST2 = S2 since we assume S2 (and S1) have real entries.

Also,

Ω(Θ, P ) =
∫
P †JΘdx+ Ins, (A.8)
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and hence

Ω(Θ, P )† =
∫

Θ†JP dx+ Ins

= S−1
2 Ω(Θ, P )S2 by (6.136), (A.9)

while

Ω(Θ, P )∗ = S2S
†
1S

−1
2

(∫
P †JΘdx

)
S1 + Ins (A.10)

by (6.135), (6.136) and the fact that SJS = J by definition. Thus

Ω(Θ, P )T = Ω(Θ, P )†
∗

= S−1
2 Ω(Θ, P )∗S2

= S†1S
−1
2

(∫
P †JΘdx

)
S1S2 + Ins (A.11)

by (A.10). It therefore follows that

S2(ST1 )−1Ω(Θ, P )TS−1
2 S−1

1 = S2(ST1 )−1S†1S
−1
2

(∫
P †JΘdx

)
+ S2(ST1 )−1S−1

2 S−1
1 .

(A.12)

The right-hand side is equal to Ω(Θ, P ) if and only if the conditions

S2(ST1 )−1S†1S
−1
2 = Ins (A.13a)

and

S2(ST1 )−1S−1
2 S−1

1 = Ins (A.13b)

hold. We impose a relation on S1 such that

S1 is orthogonal, i.e. ST1 = S−1
1 , (A.14)

and, since we assume S1 has real entries, it follows that S†1 = S−1
1 . Then (A.13a) is

satisfied. To satisfy (A.13b), we require

S2S1S
−1
2 S−1

1 = Ins (A.15)

using the relation on S1 above, so that

S1S2 = S2S1. (A.16)

By imposing conditions (A.14) and (A.16) on the matrices S1 and S2, we therefore obtain∣∣∣∣∣∣Ω(Θ, P ) P1
†

Θ3 0

∣∣∣∣∣∣ =
∣∣∣∣∣∣Ω(Θ, P ) P3

†

Θ2 0

∣∣∣∣∣∣ (A.17)
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as required. Thus in the commutative case, we have solutions

q = −2

∣∣∣∣∣∣Ω(Θ, P ) P2
†

Θ3 0

∣∣∣∣∣∣∣∣∣Ω(Θ, P )
∣∣∣ = −2

G

F
, say, (A.18a)

and

q∗ = −2

∣∣∣∣∣∣Ω(Θ, P ) P1
†

Θ3 0

∣∣∣∣∣∣∣∣∣Ω(Θ, P )
∣∣∣ = −2

K

F
, say. (A.18b)

It remains to show that these solutions are indeed complex conjugate, i.e. we prove that

F is real, and G∗ = K. From (6.170), the determinant F can be expressed in the form

F =|Ω(Θ, P ) |

=|I4n + S2Ψ |, (A.19)

where Ψ = Θ†JΘ, so that Ψ† = Ψ. Then

F =|S2 | . |S−1
2 + Ψ |, (A.20)

so that

F ∗ =|S∗2 | . |(S−1
2 )∗ + Ψ∗ |

=|S†2 | . |S
−†
2 + Ψ† |

= F (A.21)

since S2,Ψ are Hermitian and transposing has no effect on the value of a determinant.

Note that this is the reason for our decision to achieve a dimensionally-reduced Darboux

transformation by replacing ∂y by −iλ, rather than simply λ as was done by Gilson, Nimmo

and Ohta for the self-dual Yang-Mills equation [73]. If we replace ∂y by λ, it then follows

that

F =|I4n − iS2Ψ |, (A.22)

and thus we cannot prove F ∗ = F as above due to the change of sign when we take the

complex conjugate of the complex constant i.

We also show that ∣∣∣∣∣∣Ω(Θ, P )∗ P2
†∗

Θ3
∗ 0

∣∣∣∣∣∣ =
∣∣∣∣∣∣Ω(Θ, P ) P1

†

Θ3 0

∣∣∣∣∣∣ . (A.23)
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Note that, by (A.5), we have P2 = P1
∗S−1

2 S1S2, and also Θ∗
3 = Θ3S1 by (A.3c). Thus∣∣∣∣∣∣Ω(Θ, P )∗ P2

†∗

Θ3
∗ 0

∣∣∣∣∣∣ =
∣∣∣∣∣∣Ω(Θ, P )∗ S2S

†
1S

−1
2 P1

†

Θ3S1 0

∣∣∣∣∣∣
=

∣∣∣∣∣∣S2S
−†
1 S−1

2 Ω(Θ, P )∗S−1
1 P1

†

Θ3 0

∣∣∣∣∣∣ . (A.24)

Using our definition of Ω(Θ, P )∗ in (A.10) and conditions (A.14), (A.16), it can be shown

that

S2S
−†
1 S−1

2 Ω(Θ, P )∗S−1
1 = Ω(Θ, P ), (A.25)

and hence ∣∣∣∣∣∣Ω(Θ, P )∗ P2
†∗

Θ3
∗ 0

∣∣∣∣∣∣ =
∣∣∣∣∣∣Ω(Θ, P ) P1

†

Θ3 0

∣∣∣∣∣∣ (A.26)

as required.

A.1.2 Noncommutative case

In the noncommutative case, we have four distinct solutions q, q∗, q† and q†
∗, each one a

2 × 2 matrix. We choose the entries of Θ, P to be of size 2 × 2, so that Θ, P are now of

size 6× 2N , i.e.

Θ =
(
Θ1 Θ2 . . . Θ6

)T
, (A.27a)

and

P † =
(
P†

1 P†
2 . . . P†

6

)
, (A.27b)

where the Θi (i = 1, 2, . . . , 6) are row vectors of arbitrary length 2N , and the Pi
† column

vectors of the same length. It then follows that

q = −2



∣∣∣∣∣∣Ω(Θ, P ) P†
5

Θ1 0

∣∣∣∣∣∣
∣∣∣∣∣∣Ω(Θ, P ) P†

6

Θ1 0

∣∣∣∣∣∣
∣∣∣∣∣∣Ω(Θ, P ) P†

5

Θ2 0

∣∣∣∣∣∣
∣∣∣∣∣∣Ω(Θ, P ) P†

6

Θ2 0

∣∣∣∣∣∣


= −2

q11 q12

q21 q22

 , say. (A.28)
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Similarly,

q∗ = −2



∣∣∣∣∣∣Ω(Θ, P ) P†
5

Θ3 0

∣∣∣∣∣∣
∣∣∣∣∣∣Ω(Θ, P ) P†

6

Θ3 0

∣∣∣∣∣∣
∣∣∣∣∣∣Ω(Θ, P ) P†

5

Θ4 0

∣∣∣∣∣∣
∣∣∣∣∣∣Ω(Θ, P ) P†

6

Θ4 0

∣∣∣∣∣∣


= −2

q∗11 q∗12

q∗21 q∗22

 , (A.29)

q† = −2



∣∣∣∣∣∣Ω(Θ, P ) P†
1

Θ5 0

∣∣∣∣∣∣
∣∣∣∣∣∣Ω(Θ, P ) P†

2

Θ5 0

∣∣∣∣∣∣
∣∣∣∣∣∣Ω(Θ, P ) P†

1

Θ6 0

∣∣∣∣∣∣
∣∣∣∣∣∣Ω(Θ, P ) P†

2

Θ6 0

∣∣∣∣∣∣


= −2

q†11 q†12

q†21 q†22

 , (A.30)

and

q†
∗

= −2



∣∣∣∣∣∣Ω(Θ, P ) P†
3

Θ5 0

∣∣∣∣∣∣
∣∣∣∣∣∣Ω(Θ, P ) P†

4

Θ5 0

∣∣∣∣∣∣
∣∣∣∣∣∣Ω(Θ, P ) P†

3

Θ6 0

∣∣∣∣∣∣
∣∣∣∣∣∣Ω(Θ, P ) P†

4

Θ6 0

∣∣∣∣∣∣


= −2

q†11∗ q†12
∗

q†21
∗

q†22
∗

 . (A.31)

We consider the solutions in the (1, 1) positions only. Since each is a scalar 1 × 1 entity

(as the ‘boxed’ element in each quasi-Grammian is 1× 1), we are free to implement (2.14)

to express the (1, 1) solutions as a ratio of determinants, so that

q11 = −2

∣∣∣∣∣∣Ω(Θ, P ) P†
5

Θ1 0

∣∣∣∣∣∣∣∣∣Ω(Θ, P )
∣∣∣ = −2

G

F
, q∗11 = −2

∣∣∣∣∣∣Ω(Θ, P ) P†
5

Θ3 0

∣∣∣∣∣∣∣∣∣Ω(Θ, P )
∣∣∣ = −2

H

F
, (A.32a)

q†11 = −2

∣∣∣∣∣∣Ω(Θ, P ) P†
1

Θ5 0

∣∣∣∣∣∣∣∣∣Ω(Θ, P )
∣∣∣ = −2

J

F
, q†11

∗
= −2

∣∣∣∣∣∣Ω(Θ, P ) P†
3

Θ5 0

∣∣∣∣∣∣∣∣∣Ω(Θ, P )
∣∣∣ = −2

K

F
. (A.32b)

We firstly show that the solutions for q11 and q∗11 are complex conjugate, i.e. we show that

F is real, and G∗ = H.
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In a similar manner to the commutative case detailed above, we see that F is real since

S2 is a Hermitian matrix. (The matrix Ψ in (A.19) is still Hermitian when we extend to

the noncommutative case).

We also prove that G∗ = H, i.e.∣∣∣∣∣∣Ω(Θ, P )∗ P5
†∗

Θ1
∗ 0

∣∣∣∣∣∣ =
∣∣∣∣∣∣Ω(Θ, P ) P5

†

Θ3 0

∣∣∣∣∣∣ . (A.33)

In the noncommutative case, each entry of the permutation matrix S defined in (6.40) is

of size 2× 2, so that

S =


O I O

I O O

O O I

 , (A.34)

where O and I denote the 2×2 zero and identity matrices respectively. By (A.5), we have

P5 = P5
∗S−1

2 S1S2, and Θ1
∗ = Θ3S1 since Θ = SΘ∗S1. Then we can easily prove (A.33)

in a similar manner to the commutative case above, imposing conditions (A.14), (A.16).

We must also show that the solutions for q11 and q†11 in (A.32) are Hermitian conju-

gate, the solutions for q11 and q†11
∗

are transpose to one another, and so on. We do not

detail the calculations here, however each one can be shown in a straightforward manner,

once again imposing conditions (A.14), (A.16).
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B.1 Noncommutative SSNLS determinant expansion

Here we give the expansion of the denominator F of the noncommutative 1-soliton solution

obtained in Section 6.7.1. It can then easily be seen that this expansion is purely real. We

have

F = 1 +
Aa2

B

(
1

p∗1r1
e2(η∗1+ξ1) +

1
p1r∗1

e2(η1+ξ∗1)

)
+
Ca4

D

(
1

(p∗1)2r
2
1

e4(η∗1+ξ1) +
1

p2
1(r

∗
1)2

e4(η1+ξ∗1)

)
+

Aa2

4Eprerre
eη1+η∗1+ξ1+ξ∗1

+
(
a4

p1p∗1

{
H

Jr1r∗1
− K

2L(rre)2

}
+

a4

4(pre)2

{
M

4N(rre)2
− K

Lr1r∗1

})
e2(η1+η∗1+ξ1+ξ∗1)

+
Pa6

p1r∗1

(
1

Qp1p∗1r1r
∗
1

− 1
4R(pre)2r1r∗1

− 1
4Rp1p∗1(rre)2

)
e2(2η1+η∗1+ξ1+2ξ∗1)

+
(
Pa6

p∗1r1

{
1

Qp1p∗1r1r
∗
1

− 1
4R(pre)2r1r∗1

− 1
4Rp1p∗1(rre)2

}
+

Pa6

16S(pre)2(rre)2

{
1

p∗1r1
+

1
p1r∗1

})
e2(η1+2η∗1+2ξ1+ξ∗1)

− Pa6

(
1

4p1p∗1prerre

{
1

4L(rre)3
− 1
Jr1r∗1

}
− 1

16(pre)3rre

{
1

Lr1r∗1
− 1

4N(rre)2

})
e3(η1+η∗1+ξ1+ξ∗1)

+
Ca4

4Tprerre

(
1

p∗1r1
eη1+3η∗1+3ξ1+ξ∗1 +

1
p1r∗1

e3η1+η∗1+ξ1+3ξ∗1

)
+ Ua8

(
1

p2
1(p

∗
1)2

{
1

2V r21(r
∗
1)2

+
1

32W (rre)4
− 1

4Qr1r∗1(rre)2

}
+

1
4p1p∗1(pre)2

{
1

4Jr1r∗1(rre)2
− 1

16S(rre)4
− 1
Qr21(r

∗
1)2

}
+

1
32(pre)4

{
1

Wr21(r
∗
1)2

+
1

32L(rre)4
− 1

2Sr1r∗1(rre)2

})
e4(η1+η∗1+ξ1+ξ∗1), (B.1)

where pre, rre denote <(p1),<(r1) respectively, η1 and ξ1 are defined in (6.178), and

A,B,C, . . . are constants. We see that each term in the expansion is either purely real, or
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else has a complex conjugate partner. We have chosen the entries of the matrix S2 (= S̃2

for the 1-soliton solution) in (6.190) so that s15 = 1, s16 = 1
4 , s25 = 1

18 , s26 = 1
2 , and every

other entry equal to zero. Corresponding expansions for other choices of the entries of S2

will also be real in a similar manner. However, the expansion of F for an arbitrary S2 is

too lengthy to write down.
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