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Abstract

The International Technology Roadmap for Semicotais(ITRS) specifies that MOSFET logic

devices are to be scaled to sub-10nm dimensiorteebyear 2020, with 32nm bulk devices ready
for production and double-gate FinFET devices destrated down to 5nm channel lengths.
Future device generations are expected to haver Iokannel doping in order to reduce variability
in devices due to the discrete nature of the cHashmants. Accompanying the reduced channel
doping is a corresponding increase in the scredeimgth, which is even now comparable with the
channel length. Under such conditions, Coulomktasidag mechanisms become increasingly

complex as the scattering potential interacts witaarger proportion of the device.

lonized impurity scattering within the channel isokvn to be an important Coulombic scattering
mechanism within MOSFETs. Those channel impuritieated close to the heavily doped source
and drain or both, will induce a polarisation cteavgthin the source and drain. These polarisation
charge effects are shown in this work to increlhsenet screening of the channel impurities, due to
the inclusion of remote screening effects, andiBogmtly decrease the scattering rate associated
with ionized impurity scattering. Remote screenoag potentially reduce the control by ionized

channel impurities over channel transport propgrteading to an increased sub-threshold current.

A potential model has been obtained that is baseahcexact solution of Poisson’s equation for an
ionized impurity located close to one or both aésh highly doped contact regions. The model
shows that remote screening effects are evideritiwd few channel screening lengths of the
highly doped contact regions. The resultant saagganodel developed from this potential, which
is based on the Born approximation, is implememiithin a Monte Carlo simulator and is applied
to MOSFET device simulation.

The newly developed ionized impurity scattering modvhich allows for remote screening, is
applied in the simulation of two representative MKBES devices: the first device being a bulk
MOSFET device developed for the 32nm technologyegsion; the second device is an Ultra-
Thin-Body Double Gate (UTB DG) MOSFET developed foe forthcoming 22nm technology
generation. Thorough investigative simulationsvstivat for both the bulk MOSFET and the UTB
DG MOSFET, that remote screening of channel imjgiin these devices is not a controlling
effect. These results prove that the current mdéaieionized impurity scattering employed in
Monte Carlo simulations is sufficient to model dms scaled to at least the 22nm technology node,

predicted to be in production in the year 2012
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Chapter 1  Introduction

The International Technology Roadmap for Semicotais(ITRS) [1] is a set of manufacturing
guidelines which are used by industry to ensurd thadern devices are both profitable to
manufacture and are efficient in use. The roadomyers all aspects of production from process
technology to final device performance and alsohliifts the areas where research and
development (R&D) are required. In this work theerest within the ITRS is concerned with the
digital logic devices roadmap which discusses tatirsg and performance of CMOS devices, that
is the MOSFET.

The current generation of MOSFETSs are based obuahleor planar devices with a physical gate
length of 32nm and are quite advanced with hifhetal-gate stacks and strained channels [2-4].
High-x insulators have been introduced to combat thengcaf the gate oxide, which when using
the traditional Si@Qwould otherwise only be a few atomic layers tH&k6]. The reintroduction of
metal gates (poly-Si gates had been used for althegtrevious two decades of scaling due to the
increased control over the device and minimal pctida cost) reduces the negative impact of the
high« dielectric [7-10]. Channel performance can bermapd through the use of strain which
increases the carrier mobility [11-13] and theraalso an interest in moving to a (110) silicon

crystal orientation [9, 14].

The roadmap projects that the MOSFET device castaked to a physical gate length of 8.1nm by
the year 2022. The bulk device is predicted tedmed to a physical channel length of 14nm by
2016, therefore to achieve the end of roadmap desdaling requires a different device structure
that reduces Short-Channel Effects (SCESs) (sete#ttieook by Taur [15] for more detail on SCES)
and completes the required performance levels fipe iy the ITRS.

A device which offers greater scaling than the lidkice has been led by IBM and is the Silicon-
On-Insulator (SOI) MOSFET. It remains mostly unaofjad from the bulk device in terms of the
layout of the gate, channel and source/drain withdifference being that the silicon substrate is
much shallower and is placed on an insulator. SBEMOSFET device offers a performance gain
of 20-35% over the bulk MOSFET and is particulailytable for low-power applications [16]. It
too utilises the technological improvements devetbfor use in the bulk device of higimetal
gate and channel strain as seen in the latest gjerey [17-19]. Although this device provides
greater scaling, the roadmap predicts a physicahmél length of 10.7nm by 2019, it is not

considered to be the device structure to take MOSd#dvices to sub-10nm dimensions.
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The device which is described in the ITRS as thetate MOSFET device” due to its scalability
to the end of the roadmap is the Double-Gate (DGFIoFET device [1]. The DG device is a
particularly favourable device for the roadmap tagreatly reduces the deleterious short-channel
effects (SCEs) whilst maximising drive current [20]his device can also be easily integrated into
the existing conventional planar manufacturing pesc[21]. DG devices have been demonstrated
down to 5nm physical channel lengths [12, 22, 2B&ne fully functional SRAM cells have been
recently produced using the DG FIinFET structurg.[24

It is well understood that each new scaling geimrah the coming years provides new challenges
and will require that new device structures beisgtd. This of course means that the device
simulators must also be extended and improved telrthe complex processes that are involved.
A patrticular effect evident in devices that hasrbeader extensive research is that of Coulomb
scattering which is an increasingly deleterioug@fbn device performance as the dimensions are

reduced below typical screening lengths [25].

The focus of this work is to develop an advancedl@uob scattering model that describes the
interaction of channel ionized impurities with thedrresponding polarisation charges induced in
the source and drain regions. In the followingtiseca brief review of the major Coulomb
scattering processes under study in current geoer®tOSFETS is undertaken. Following this,
the aims and objectives of this research will la¢est and an outline of the structure of this work

will be presented.
1.1 Coulomb Scattering

This form of scattering is based on the Coulomtepidl, given by equation (1.1) [26], for a point

charge with a chargge( e is the electronic charge a@ds the number of free charges) located at
r, in a medium of permittivitys,&,. This form of the potential is often called therds Coulomb

potential as it does not include the interactiothefother carriers in the definition of the poiaint

_ Ze 1
(r)_477£r£0 Ir=r,| (1.1)

It is clear from the definition of this potentidlat there will be a singularity whem=r, and that

the potential will drop off slowly. Inclusion dfi¢ surrounding charge density allows the screening
potential of the other carriers to be considerethis potential and is often termed the screened

Coulomb potential. This form of the Coulomb poigintan be written as
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V()= ze exp(-|r-r,|/2)

= 1.2
ATE €, |r-r| (1.2)

where A is the static screening length which is typicgiyen by the Debye-Huckel form, written

here for a non-degenerate system as

grgokBT
en

(1.3)

where kg is Boltzmann’s constant, is the lattice temperature in Kelvin ands the free electron

density. The screened Coulomb potential retaipsirfinitely high peak of a point charge when
r=r, but the introduction of the static screening léngt, reduces the range over which the

potential is noticed. This is more clearly demaatstd in Figure 1.1 where the two potential

models are plotted for arbitrary units.

1000

—  bare Coulomb
— screened Coulomb

-100 =50 0 50 100

Figure 1.1: Plot of the bare and screened Coulomb p  otentials for a point charge located at
r,=0.

Coulomb scattering in MOSFET simulation commonlgaées the effect on device performance
of carrier interactions with ionized impurities atide other carriers. lonized impurity (I)
scattering has the more dominant effect in contwlthe carrier transport in doped silicon, in
particular the mobility of carriers [27-29]. Thisechanism is by far the most important Coulomb
scattering mechanism due to the unavoidable nafurapurity scattering in MOSFET devices. It
arises from the doping of the silicon semiconduataterial with either donor or acceptor atoms.
Doping is used to modify and improve the electrigaiperties of silicon such as to improve the
threshold voltage by doping the channel or imprgvilrive current by heavily doping the

source/drain wells.
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Carrier-carrier (e-e) scattering is dominant ahhigurrier concentrations, abovel0” —10°cmi®

in silicon and redistributes the carrier momentumong the ensemble [30]. The e-e scattering
mechanism is broken into two separate regimesintegaction of two carriers with each other,
binary e-e scattering [31, 32]; the interactioraafarrier with an oscillating carrier collectivleat

is plasmon scattering [33, 34]. The distinctioba@en the two regimes, the long-range or plasmon
interaction and the short-range or e-e interadsatypically defined by the screening length. E-e
interactions at a distance greater than the sergdangth apart are described in terms of plasmon
scattering and those closer are described by th-singe interaction. This distinction followseth
natural division of e-e interactions where plasmail@ations are manifest over distances greater
than screening length, and at distances less l@ndreening length the interactions behave more

like interacting individual particles [35].

These interactions are two of the many differentnfo of Coulombic scattering that are modelled
in MOSFET devices. A depiction of the various Qouob scattering processes that have been

studied for the simulation of MOSFET devices isegivn Figure 1.2.

Interface trap Fixed charge
\
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Remote _—> @ \ Gate j VW | < plasmon
Impurity ,» Oxide é /
Source (@ VW' Drain

/9 Substrate

\ W4 )
Impurity lons Electron-Electron

Interactions

Figure 1.2: Various Coulomb scattering processes fo und in modern MOSFET devices.

In this figure the majority of Coulombic scatterimgocesses are remote, that is the charged
scattering centre is located some distance froncainger which it scatters. There has been a large
increase in the number of researchers studyingtee@oulomb scattering recently as the shrinking

device dimensions enhance the remote effects.

Remote charge scattering from ionized impuritiesated in the gate region of poly-silicon gate
(remote impurities) devices [36-38] is a strongtsrang mechanism in oxide layers less than 3nm
thick [39]. This scattering mechanism has beeruged by the introduction of the high-
materials in the oxide layer which provide a thick&ide layer for an equivalent silicon dioxide

capacitance and a reduced Coulomb potential strehgiugh an increased permittivity,&, .
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The introduction of highk materials may have reduced poly-Si charge scagfeout it has
introduced further remote Coulomb scattering dudrépped charges in the gate stack (fixed
charges) [40]. The effect of these trapped chaigygsite significant on effective device mobility
and alters the drive current [41, 42]. Trappedr@bs are formed during the production of these
devices and there is the possibility that futurecpss techniques may reduce the number of trapped

charges in the oxide layers.

The introduction of metal gates to MOSFET deviceighwhigh-« dielectrics has been
demonstrated to increase device performance aral imlproves the screening of the remote
interactions [7]. Despite this, a recent and esitenstudy of such devices still found that remote

coulomb scattering still causes significant mopitiegradation [8].

Remote e-e scattering has also been presentede¢mhzegative impact on device performance for
devices with thin oxides and channel length leas ##0nm [43]. The high density carrier gasses or
plasmons that are present in the heavily dopedcepdrain and poly-silicon gate regions interact
with carriers in the channel region and degradeneblamobility. Interactions of channel carriers
with the plasmons in the source and drain regioils reshape the carrier distribution in the

channel, moving carriers towards the high enertjptahe distribution [44].

The interaction of the channel carriers with gdtsmons, also referred to as Coulomb drag has
been studied [45] and quantitative agreement has Bhown experimentally [46]. This remote
interaction is strong in poly-silicon gate devideg with the increased screening of a metal gate,

the remote Coulomb interaction is minimised [7].
1.2 Aims and Objectives

The effect of the closeness of the source and dmaghly-doped regions on channel ionized
impurity scattering has not been studied previoasig is the focus of this work. The induced
polarisation charges in the source and drain wilease the screening of the channel impurities
(hence remote screening) and will impact the trartsgf carriers through the channel. This newly
studied effect is entitled remote screening of dedampurities and the effect will increase as the

channel length is reduced in future generations.

The aim of this work is to produce the new remotalgeened scattering model that can be utilised
efficiently in the Monte Carlo simulation of MOSFEdevices to describe the interaction of
channel ionized impurity with the source and/orimrarhis new scattering model must be able to

cooperate with the existing ionized impurity modeélsing the newly developed scattering model,
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Monte Carlo simulations of two example MOSFET desiavill be simulated to examine the effect

on current and next generation devices.

1.3 Thesis Outline

This thesis will be laid out in the following strtuce:

Chapter 2 will discuss the most common methodsooized impurity scattering within Monte
Carlo simulations in a literature review. This lvisiiclude some discussion of existing extensions
(or advancements) to the basic model which hava pesviously studied. The distinctions of each

model will be highlighted and the relative advaetagf each will be discussed.

Chapter 3 presents a brief introduction to the Mdarlo simulation methodology used within this
work. Starting by covering the fundamentals of tMente Carlo approach, this includes the
Boltzmann Transport Equation (BTE) and the selfisetimg procedure, the chapter then moves on
to the scattering models and the numerical proeedutalibration results of the Monte Carlo
simulator are also presented to demonstrate therame of the used approach with experimental

data.

Chapter 4 calculates the scattering (or interaftjpotential for the remotely screened ionized
impurity model. The resultant potential is themified against a fully self-consistent, numerical
Poisson solution to ensure the calculation is cbrreAs will be discussed in this chapter, a

simplified model is obtained which is shown to l@st identical to the full model.

Chapter 5 utilises the scattering potential to Wake and analyse a complete scattering model
suitable for Monte Carlo simulation. A thorougludy is also completed to demonstrate that a
further simplification to the scattering model che made which increases the computational
efficiency with negligible loss of accuracy. A nemrmerical approach to the simulation of ionized
impurity scattering is also introduced which greattduces simulation time without negative

impact on the scattering model.

Chapter 6 completes Monte Carlo simulation of MOBFEevices with the newly developed
remote screening model for channel ionized impasiti A typical current generation bulk
MOSFET device is simulated along with a future gatien double-gate structure to examine the
effects of remote screening on the channel perfocaa In accompaniment to the numerical
device simulation, an estimated analysis of thdytinal channel mobilities is also calculated for

the devices to confirm the simulation results.
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Finally in Chapter 7 the conclusions of this work aummarised and suggestions for future work

are discussed.



Chapter 2  Literature Review

2.1 Introduction

The focus of this PhD work is on ionized impurith) cattering in Monte Carlo (MC) simulation,
where in a later chapter, an advanced correctiothéo Brooks-Herring (BH) model will be
developed. There are many methods and technicgex$ to model the scattering of carriers by

ionized impurities, of which the most common angdmant techniques shall be reviewed here.

The first approach to impurity scattering model eéleped, the Conwell-Weisskopf (CW) model,
will be discussed in Section 2.2. This model sgifi the Rutherford ion scattering approach,
combined with an empirical cut-off to remove theredgent nature of the Coulomb potential
approach. Although this approach is not used lher&C simulations of room-temperature
MOSFET devices, it is a significant model and isesgial to include in a review of impurity

scattering.

The BH model is perhaps the most commonly referdneedel with regard to Il modelling and as
such has had the most development in terms of gxtesn This approach differs from the CW
model in the definition of the scattering potentihere the BH model includes the screening

effect of the surrounding carriers. In sectionthi8 model will be reviewed.

The CW and BH models propose different methodsealfidg with the divergence of the Coulomb
potential, of which both have strong disadvantagesdiffering points in MOSFET device
simulation. Ridley’'s Third-Body Exclusion (TBE) mel combines these two approaches to
remove the disadvantages and obtain a model smit@pl device simulation. This model is
successfully applied to MC simulations within theglator used in this work and is reviewed in

section 2.4 along with a discussion on the needdoh an approach.

With modern devices being scaled to sub-50nm difoessthe number of actual dopants and their
position within the channel region has a largeafée device performance. The discrete nature of
dopants in modern nanoscaled devices can be mddedlimg anab initio atomistic approach
within both Drift-Diffusion (DD) and MC simulations Section 2.5 will briefly review this
approach of atomistic impurity scattering whereatdpatoms are treated as discrete charges in the
electrostatic solution of the device. Althoughsthpproach does not use a typical scattering rate
representation, it is an important method for miiaglthe effect of ionized impurities in MC

simulation.
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For reference, the method used here to obtainescagtrates for MC is based on application of

Fermi's Golden Rule to obtain a scattering proligbihte, P(k,k'), for a carrier from a statk

to a statek’'. Fermi’'s Golden Rule for an elastic collisiongcBlas the interactions involved in Il

scattering, is given by [30]
T 2 T
lﬁkk)=7§wkdﬂx5@)-5«)) (2.1)

where|H,, |2 is the square of scattering matrix element andinec delta functiond(..), ensures

that energy is conserved in the interaction. T¢egtering matrix element is obtained from the

Fourier Transform of the scattering potentldl,, and can be written as

Hp, =éjd3r exp(-if B)Uf ) (2.2)

whereq =k -k denotes the transfer of momentum between theecamindQ is the unit volume.

The scattering rate which can be used within the #it@ulation can be found by summing the
scattering probability rate over all possible firsthtes, defined as equation (2.3), where the

scattering rate is a function of the magnitudenefdstatek .
r(k)=2_Pkk’) (2.3)
=

This can easily be converted to an integral for-din3ensional system using the following

definition

Q
(27)°

> P(kk)=N[dk'Plk’) with N = (2.4)

=
In the calculation of the scattering rate, bothitt@ming and outgoing carrier wave vectoand
k' respectively, are expanded in the spherical coatdi system, k ={k,9k,¢k} and
k' :{k',Hk, ,¢k.} . By allowing the reference frame of the outgomayve vector to be aligned with

the incoming wave vector (that is by allowiy=0), the angles of the incoming wave vector are

cancelled. As a result of this expansion, oftendbattering rate equations are written as function

of a vector variablé yet utilise a scalar magnitude on the RHS.
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2.2 Conwell-Weisskopf

The CW approach to ionized impurity scattering asdxd in the Rutherford formula for scattering
by a charged ion [47]. This approach treats timzex impurity as a single point charge which is
entirely independent from all other ions. The wgatg electron is assumed to have a well-defined
trajectory. The model utilises the classic Coulgnaint charge which models a single impurity
atom in a perfect crystal lattice [47, 48]. Thatsering potential for the CW model, based on the

bare Coulomb potential, is given by equation (2.5).

z¢€ 1
ArEE, T

Ug(r)=ev(r)= (2.5)

Completing the Fourier transform and Born approxiomaof the scattering potential, the following

scattering matrix element is obtained

2 2
|Hk'k|2 :[ 2¢ J %(4_7;} (2.6)
drege, ) Q7 Q

Here the number of impurity charge units is givena, the static permittivity of silicon iggé,

and the momentum transfer wave-vector for an elastilision (assuming thak (k)= E(k')) is

specified asq2=2k'2(1— c039). Evaluating this using spherical co-ordinates parabolic,

spherical bands with Fermi’s Golden Rule, equatibh), gives the following scattering rate

2 3 T
rCW:( Z¢e J NIZHnJFkJ-sdeH 2.7)

ATE €, n’ 0 q°

where N, is the impurity density. The remaining integnaldquation (2.7) diverges f& - 0.

This is a known problem with the bare Coulomb ptégnin that the potential has an infinite range

over which it is felt.

Using Rutherford scattering, the scattering electsotreated as a classical particle which interact
with the impurity according to the impact paramgter This impact parameter describes the
interaction of the electron with the impurity vigetscattered angle of the electron. It is defiagd
the perpendicular distance between the scatteeett@h and impurity ion and is depicted in Figure
2.1.

10



2.2 Conwell-Weisskopf

Figure 2.1: Definition of the impact parameter, b, from Rutherford scattering.

Conwell and Weisskopf solved the problem of theedijing scattering rate by introducing a limit
on the potential that defines a cut-off distancetfe impact parameter, given by equation (2.8).
The limit that was introduced is based on the agsiom that the scattering event is a two-body

event, an electron scattering with a single imgurit

ATESE, ) hK? 2

To ensure that the electron scatters from onlyctbsest impurity, the impact parameter is cut-off

at half the average inter-ion separation distartdere the definition of the average inter-impurity
ion distance for a uniform distribution is given ass N,‘% [48]. The impact parameter and

average inter-ion separation distance are plottétigure 2.2 (a) and (b) respectively.

(@ bom (b)
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Figure 2.2: (a) Semi-log plot of the impact paramet er for an electron of energy E =25meV
and (b) the plot of the average inter-ion separatio nusing a= N, K&
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Defining half the average inter-ion distance asrtfeximum impact parameter in equation (2.8),
eg.b...=% N,'%, and solving for the angle, the definition for thenimum scattering angle can be

obtained as

Hmm:Ztan‘l([leez J m l} (2.9)

7E5igo h2k2 brnax

Using equation (2.9)8,,,, as the lower limit of the integral in equation7(Rallows the integral to

be completing yielding the CW scattering rate.

2
Z€e T Q..
e = N cot?| —min 2.10
o [47E5i50j ' 2em P ( 2 J (2.10)

The CW model finds a solution to the problem of theergent scattering model due to the
diverging scattering potential, although it hasrbeften criticised for the artificial manner of ngi

half the average inter-ion separation. It has #@leen noted that the choice of exactly half the
separation distance is rather arbitrary and othethads have been suggested. These have included
the spherical symmetry on the distribution of impuions [49] and even a probabilistic method
[50, 51] such as equation (2.11).

(A (A < (o
a—(gﬂNlJ r(g}(zm\;) (2.11)

The major limitation of the CW approach is thdits to take into account the effect of the mobile
charge surrounding the impurity on the scatteringeiptial. This space charge would effectively
screen the potential forcing a quicker drop offaatje distances from the ionized impurity. This
failure in the model will cause an over-estimatairthe scattering rate when the mobile charge is

much less than impurity density, as in the dephetiegion of a p-n junction [52].
2.3 Brooks-Herring

The BH model for ionized impurity scattering usles €Coulomb potential to model a single ionized
impurity but also includes the effect of screenirgn the space charge surrounding the impurity.
The screening effect is generally calculated asrgth scale which describes the distance the
potential will take to respond to a change in ti@rge density and can be found from the

linearized form of the Poisson equation. The Rwissquation for a point charge is given as

12
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equation (2.12), her&e is the charge on the impurity locatedratand the charge density in the

systemisp(r)=e( p(r)-nf )= Nif )+ N ).

ofr ) (2.12)

Linearization of this equation through the Thomasai method [53] and assuming a small

perturbation in the neutral space-charge, the Boisguation can be written as

Ze
27E‘Si"5‘0

O3V (r) =eg&,keV(r ) - or +,) (2.13)

where A, =kZ* and

2 = en 3y (n)
EiEokeT Sy, (’7)

(2.14)

This solution uses Fermi-Dirac statistics for tlaerier densities and the degenerate Debye-Hiickel

form of the inverse screening lengtk, , wherer7 = E. /k, T and 3§, is the Fermi-Dirac integral of

order j [54]. Typical values for the degenerateesning length given by equation (2.14) are shown

in Figure 2.3.
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Figure 2.3: Plot of the degenerate Debye-Hiickel scr  eening length.

The potential solution to equation (2.13) can therfound using appropriate boundary conditions

as the screened Coulomb model, given as the emergguation (2.15). After completion of the
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Fourier transform and taking the Born approximatitie scattering matrix element can be derived

as equation (2.16).

_ z& _exp(-kr)

Ug(r)= v(r)-4m5i£O ; (2.15)
o (z¢ Y 1( a7 Y

|HkVK| _(4755#90] E(qz"'kéJ (2.18)

Comparing this equation with the scattering magtement from the CW approach in the previous

section, equation (2.6), we can see that the sicigdength removes the singularity as— 0.
Clearly, the CW scattering matrix element can henfbby setting the inverse screening length to

zero, that isk; =0.

The scattering rate can be calculated using equé®d6) in Fermi’s Golden Rule and summing

over all final states. Herds,_ =h2k§/2rrF and the scattering rate has been multiplied by the

number density of impurities per unit volung,Q .

2 % A
rBH:[ z¢ JN i E (2.17)

4rEgE, ) | mMEL 1+ 4E/E_

The BH approach is generally more widely accept] fs it has removed the divergence of the
scattering rate with low-angle scattering. Thigriee as long as there is enough mobile charge
available to screen the Coulomb potential withireasonable distance [55]. In conditions where
there are very few carriers to screen the potertti@l BH model returns to the similar divergent

nature found in the unscreened model. There has &ny corrections and improvements made

to the BH model, many of which are detailed initedew by Chattopadhyay & Queisser [48].
2.3.1 Momentum-Dependent Screening

The standard BH approach uses a static screeniniglmdich in this chapter is the degenerate
Debye-Huickel model of equation (2.14) model whishmomentum independent. It has been
suggested by some authors [56, 57] that this mimdelcreening is not sufficiently accurate at high
doping densities and is being over-estimated. dmect this a momentum-dependent screening

correction has been developed which can be apmlidte BH case [58, 59].
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2.3 Brooks-Herring

Momentum dependent screening can be calculated thendielectric function assuming that the
impurity potential is time-independent and thus theguency is zero [56]. The wave-vector

dependent dielectric function for degenerate siedi€an then be written as

£(9,0)=&(q,0) = 1+%F(E n) (2.18)
F(en)=—t e [— in 2 i (2.19)
I P prvee e M PR

Here k? is the inverse screening length given by equaf@i4), g :2k2(1— 0039) is the
momentum transfer of the scattering a}]c(fy) is Fermi integral of order j. The valués x and

n are related to the momentum transfer wave vedatarfier momentum and Fermi level

respectively.

h2q2
2 2.20
¢ 8mk, T (2.20)
21,2
X =K (2.21)
2mk, T
EF
= 2.22
n T (2.22)

The momentum dependent screening correction fa@srbeen plotted in part (a) of Figure 2.4.

The plot demonstrates the correction to the scngeai large momentum transfer and the return to
the static screening model Et(O,n)=1. Within degenerate conditiong £0) the screening

correction is reduced as is expected from a higbezening density.
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Figure 2.4: (a) The momentum dependent screening fa  ctor, F (5,17), over several values of
the reduced Fermi energy, 17, and (b) the ratio of momentum dependent screening to Debye-
Huckel screening.

The corrected impurity potential is calculated pylgiing the dielectric function of equation (2.18)

to the Fourier Transform of equation (2.5), the &¥#ttering interaction potential.

q)
,0

(z¢ Y1  4n
)_(47E5i£0]9q2+kéF(E/7) (2.23)

v
Vmom q =
@)=74
The scattering rate can then be calculated usingiseGolden Rule with the square of the above
matrix element, equation (2.23). Noting that theegral in equation (2.19) must be completed
numerically which restricts th@ integral from being completed, the scattering cate be written

as

Fmom(k)z( & JZN,S’”“* kf SIN_4g (2.24)
ATE-E, n 0(q2+k62|:(5,,7))

Momentum dependent screening is expected to dectbasinverse screening length at lamge

values. This will occur at high carrier densitiasd cause an increase in the scattering rate

corresponding to the reduction in magnitude ofstreening.

The momentum dependent correction is demonstraitddraspect to the static screening model in
plot (b) of Figure 2.4. Here the carriers are asiito have the room temperature average thermal

energy,E =%k, T at 300K. The scattering angle defining the mommentransfer wave-vector

, is selected through the corresponding peak angdattering probability. The peak angular

scattering probability is found by obtaining thexinaum of the integrand in equation (2.24).
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2.4 Third-Body Exclusion

The effect of the correction is negligible belevil0' cmi® where most ionized impurity scattering
is small-angle forward scattering and herq(@ > 0) = 0. At higher densities, where high-angle

scattering is dominant, the momentum dependenection can reduce the screening by up to
30%.

In the limit of Iirrg)f - 0, the momentum dependent scattering model givesgration (2.24) will
q-

return to the BH model. In other words, when therier densities are very low the scattering

model will return to the screened BH approach. th opposite limit, linf - o, when carrier
q-o

densities are very high, the scattering model bgtave like the unscreened CW approach.
2.4 Third-Body Exclusion

The problem of divergent scattering rates with Zzediimpurity scattering is a difficult problem to
solve. The two well-known methods by CW and BH diierent solutions to reduce the range of
the Coulomb potential. Of these two methods thed®droach has been more widely accepted as
it includes the screening of the impurity potentigl mobile charge in the system. It allows the
Coulomb potential to be curtailed at a distancendeff by the screening length. This method is
generally very successful when there is sufficiembile charge in the system to screen the
impurity potential. If there is a lack of mobilbarge carriers available to screen the potenhial, t

model will return to the divergent nature.

In the CW model the Coulomb potential is strictlyt-off at half the average inter-ion separation
distance, assuming a uniform impurity distributioifhis method guarantees that the divergent
nature of the Coulomb potential is contained argles that the scattering event is solely a two-
body process. Ridley has developed a model wigicbrciles the two approaches used by CW and
BH, entitled the TBE model. By introduction of anttion that gives the probability of another
ionized impurity being closer to the scatteringiesy the BH model can be modified to incorporate
the CW cut-off [55, 60].

This model provides the CW and BH models as lirgittases such that if the screening length is
less than half the average inter-ion separatiorstheened potential is used otherwise it returas th
unscreened, cut-off model used by CW. Figure Zofsghe three scattering models against the
mobile electron concentration and the cross-ovemfthe BH to CW approaches is clear in the

TBE model. In this figure, the electron energyassumed to b& =25meV and the background

impurity concentration is fixed atl, =10®cni®.
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Figure 2.5: Cross-over of TBE scattering model from the CW to the BH approaches.

The probability that no other ion is closer to #eattering electron is a function of the impact

parameterp, and is given as [55]
P(b) = exp(-malf N ) (2.25)

where a is half the average inter-ion separation giveregyation (2.11) andN, is the density of

ionized impurities. The impact parameter is thefingd from the differential scattering cross-

section for the BH model as

n* =27[ o (6,)sin6,d6,

o

(2.26)

zé Y 2mmi2 1 1+ co¥
ATESE, h* 4k*+kE 2K (1- cod) + K

To obtain the Ridley TBE model, the probability €tion is applied to the differential scattering

cross-section to obtain [60]
o:(8)=a(6)P(b) (2.27)

The scattering rate is calculated by integrating Ridley differential cross-sectioms,, over 8

and multiplying by the impurity density and the gpovelocity, v(k) =7k /m’.

Fe=v(k)N,[o.(6)d6 (2.28)

0
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2.5 Atomistic Impurity

Completing the integral and after some manipulatibe final scattering rate can be expressed as

M :%k)[l— ex;{—T‘L)rBH H (2.29)

In this expressiont 5, is given by equation (2.17), the BH scattering m’ndaz(Zan )_% is the

average inter-ion separation distance.

The Ridley TBE model combines the approach of tlmeenwidely accepted screened approach
used by BH with the CW cut-off method of removirg tdivergence. This model for ionized
impurity scattering can be applied consistentlpltacconditions in a MC simulation without worry
of it producing excessively large scattering ratdegen there is few mobile carriers to screen the
electrons. It is an advantageous Il scatteringehad it can be applied to all simulation condision
but it is not as accurate a Il model as the BH a@g@gm and will underestimate the effect of I
scattering in MOSFET devices [61].

The TBE model has traditionally been the approachlfscattering in the MC code used in this
work but it is not an ideal approach. As a resutChapter 5 a more advanced Il model is
developed and utilised which retains the accurdd¢lyeoBH approach whilst reducing the divergent

scattering rate nature inherent to BH.
2.5 Atomistic Impurity

Although the atomistic impurity approach to scatigrfrom ionized impurities is distinct to the
research within this thesis, it is important tocdiss the method used. A brief overview of the
technique will be covered here and further detiaihe method and effect on device performance is

referred to the original authors [62-64].

As device dimensions are scaled to well beldov/m, the effect of impurity centres within the

device become much more important [63]. There bdlrelatively few dopant ions needed to
obtain the required doping level. Hence, it isessary to look at the effect of the discrete nature

of these dopants on device performance and caraiesport [65].

Typical MC impurity scattering methods utilise gopeoach based on Fermi's Golden rule where
ionized impurities are included via a continuouskgeound doping level. Atomistic impurity

scattering takes a different approach to the nomethod used within such MC simulations. In
atomistic scattering the discrete impurity chamgéncluded directly into the mesh-based solution

19



2.6 Conclusion

of the non-linear Poisson solution for the eledatds potential. This electrostatic solution igih
used in an Ensemble Monte Carlo (EMC) simulator wh@nventional 1l scattering is removed
from the scattering tables [66]. Hence, by incoating the dopant potential into the electrostatic
solution of the system, the effect of the dopantamier transport can be examined in detail within
the MC simulation [67].

The atomistic impurity scattering approach is assileal approach to the problem in that the
scattering of the carriers from the Il is modeltetbugh the classical transport of MC particles. |
other words, rather than using a quantum mechamieatription of Il scattering utilising a
scattering rate, the atomistic approach scattetiles through the electrostatic field of the sl
impurity directly. Therefore as particles are taratd from the electric fields present using
Newton’s laws of motion, the classical componenM@ simulation, the atomistic approach is a

classical solution to the problem.

This approach highlights the effect that discretpurities have on the electrostatics and current
drive of the device. Threshold voltage and drainrents vary with exact dopant number and
position within the channel and is unavoidable a®3WET sizes are scaled to decanano
dimensions [62, 64, 68].

2.6 Conclusion

This chapter has completed a review of the threpmmi& scattering models used within MC
simulations. Starting with the CW model which ansidered to be the first approach developed to
model Il scattering in semiconductors. The CW nhadedeveloped from the bare Coulomb
potential that neglects the screening effect ofrtiubile charge. To control the divergence of the
bare Coulomb potential it uses an empirical cut-ff the impact parameter such that any
scattering event with an impact parameter largan thalf the inter-ion separation is neglected.
This approach is successful in controlling the dijeace but can be quite inaccurate in device
conditions when the mobile carrier density can &eerl orders of magnitude smaller than the
impurity density. This reason limits the use ok t&W approach to simulation of bulk

semiconductors where the mobile charge cannot tdefdafrom the background impurity density.

The BH model includes the screening effect of thabile charge on Il scattering and is more
suitable to a wide variety of device simulatiod$e use of the mobile charge density to cut-off the
potential is a more physical approach to the probthan that utilised in the CW model and
provides a better measure of carrier mobility imditons where carrier density is far from the

impurity density. Unfortunately, the BH scatterimgpdel suffers a problem of divergent scattering
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rates when the carrier density is several ordersaginitude smaller than the impurity density. As
the magnitude of the scattering rate has a diféatteon MC simulation by increasing the physical

number of scattering events per unit time, a deetgcattering rate renders simulation unfeasible.

The CW and BH models each use a different apprtacbntrolling the Coulomb potential which
have advantages in different circumstances. THhe mBdel combines these approaches to provide
a model which doesn’t diverge but also includes ithportant mobile charge screening effect.
This model is particularly advantageous in MC siatioihs as it can be used consistently in all
device conditions but will underestimate the effefctl scattering when the mobile charge density
is much smaller than the Il density. The impor&ant including the screening effect of mobile
carriers whilst controlling the divergent nature lbfscattering forces the use of this non-ideal
approach. As mentioned earlier in this chaptdreter model based on the BH approach which

reduces the divergent nature is developed in Chaped applied in this work.

In reviewing the major techniques for Il scatteriitgs also important to include the approach of
atomistic impurity scattering. This is not a tygdiscattering model utilising Fermi’s Golden Rule,
instead it resolves discrete ionized impuritiethie electrostatic solution to allow simulation bét
effect of position and number on device performanitean be considered a classical approach to
the problem by modelling the Il scattering throutpe electrostatic fields which transport the
particles using Newton’s laws of motion. This aygwh allows device variability of lls at the

atomic scale to be modelled which is increasingigartant as device dimensions shrink.
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Chapter 3  Monte Carlo Simulation

3.1 Introduction

The Monte Carlo (MC) simulation methodology is ibeastudy the effects of complex scattering
mechanisms in MOSFET devices and is the simulatiethodology used in this PhD thesis. The
MC method is a stochastical technique to solveelangd complex mathematical problems, and is
applied here for semiconductor device simulationnfiyans of a particle method to solve the

Boltzmann Transport Equation (BTE).

The MC simulation program used in this researchoe@s developed to simulate electron transport
in NMOSFET devices. It is a fully self-consist&id approach coupled to a non-linear Poisson
solver and is capable of solving various MOSFETiakegtructures such as the bulk, silicon-over-
insulator and double-gate structures. Calibratimin the simulator is completed against
experimental data for the properties of siliconhsas the energy- and velocity-field characteristics
and the bulk, concentration-dependent mobility.eréhis also device calibration in terms of the
universal or inversion mobility which has to be ofe#d with experimental data. Once this

calibration has been completed, a wide varietylwons MOSFET structures can be simulated.

This chapter will begin with a brief review of MQirfdamentals in section 3.2, including a
discussion on the BTE, the band structure and rtheegs of carrier scattering. Following this, the
scattering mechanisms employed in the MC simulatised here will be presented and discussed
in section 3.3. The method with which devices solved numerically with the MC procedure is
covered in section 3.4. Finally, the calibratidntlee simulation with experimental data will be

demonstrated in section 3.5.

3.2 Monte Carlo Fundamentals

3.2.1 Boltzmann Transport Equation

The BTE is a complex integro-differential equatitvat describes the semi-classical transport of
carriers in a volume of phase space. The BTEns-skassical as it describes the carrier transport
using the classical equations of motion with Nev#daws, but describes the scattering of the

carriers through quantum mechanical terms.
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3.2 Monte Carlo Fundamentals

The solution to the BTE is the distribution functjof (r,k ,t), which gives the probability of

finding a carrier at a timein the 6-dimensional phase space. EssentiallBifieis a bookkeeping
equation for the distribution function recordingetlow of carriers in and out of position and
momentum space. The BTE must also ensure thatlpacbntinuity is conserved, for instance if
there is a greater in-flow than out-flow in a vokinm phase space or carrier scattering directs

many carriers to a volume, the distribution functroust change to conserve the particle number.

Once the distribution has been found, many imporgeoperties of devices can be obtained. These
include the charge density, the carrier densitg, itiean carrier velocity and the mean carrier
energy. These quantities can be found from theilaligion function by integrating over ak
states, such as the carrier density in equatidr) ¢(8.the average kinetic energy density in equatio
(3.2).

n(r,t):%jf(r k 1) dk (3.1)

W(r,t)=%jE(k) frk .o ok (3.2)

For equilibrium systems the distribution functiandften expressed by the Fermi distribution for
degenerate systems or the Maxwell-Boltzmann digioh for non-degenerate systems. For such
equilibrium conditions the distribution functionrche calculated from the Fermi energy and the
lattice temperature. It is also possible to defreedisplaced or drifted distribution function whi

represents a non-equilibrium distribution functeord is considered only a good approximation for

low-field conditions [30].

The BTE can be derived from the quantum mechaticaiville-Von Neumann transport equation
under a number of simplifying assumptions [69, 7B]is also possible to define the BTE using an
elemental procedure in terms of carrier in- andftmws of a small volume in phase space over a
short time period [30]. It is worth noting thatetiDrift-Diffusion (DD) and hydrodynamic

approaches can be derived from moments of the BTE.

The general form for the semi-classical BTE is gibg equation (3.3) below [30, 71, 72]

‘;—ft+vuﬂ,f+kuﬂkf:ﬂ (3.3)

coll
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3.2 Monte Carlo Fundamentals

where f is the distribution function that is to be solvad,denotes the change in position of the

carriers (the carrier group velocity) and the change in crystal momentum of the carriergestib
to the externally applied fields. Th&2nd ¥ terms on the LHS of the BTE refer to the time rate
of change of the distribution function from the reawent of the carriers in position space and from
the movement of carriers ik space respectively, ensuring particle continuiffhese terms

essentially represent the carrier dynamics whiobydbe classical equations of motion given by

equations (3.4) and (3.5) where the Hamiltonianamritten asH (r k ) =E(k ) +eV( ) [32].

V:E:EDKH :}aE—(k) (34)
dat 7 h ok
dk _ 1 1 0vV(r)_ 1
k=—"=-ZOH=-= =—= 3.5
dt " ne or heE(r) (3:5)

Incidentally, the electric field is determined bgi$son’s equation

0V = -0E=-—2

(p-n+ N - N) (3.6)

Si®0

where £,¢, is the dielectric constant for silicoW, is the electrostatic potentia, is the electronic

charge, p the mobile hole densityn the mobile electron density ard;, N, the ionized donor

and acceptor density.

The term on the RHS of the BTE, equation (3.3)enefto the time rate of change of the
distribution function from collisions of the cam$ein phase space. This scattering term on the

RHS of the BTE equation can be expressed for andggte system as

of
ot

:If(r,k',t)(l—f(r Kk 't))p(< K )di '

_I f(rk.t)(1-f(k't)Pkk Vet (3.7)

where P(k k') is the probability of scattering from a stdteto a statek', f(rk,t) gives the

probability of finding a carrier at state and (1— f(r ,k',t)) gives the probability of stat&’
being empty. For the MC approach used in this vibik equation can be simplified assuming a

non-degenerate system such tfidt k ,t) <1 allowing the terms(l— f ()) to be removed.
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3.2 Monte Carlo Fundamentals

The BTE is a linear equation (for a non-degenesgstem) which is not easily solved and although
analytical solutions have been found, these arergéy limited to small regions of interest by the
approximations involved to obtain the solution. nNarical approaches to solving this equation are
more commonly applied and have been far more ssftdgs offering solutions which can be
applied to many device conditions. Numerical Sohg to the BTE include an iterative approach
which solves the whole distribution function at lederation [30, 71]. This approach was adopted
early in the development of such numerical appreadnd is suitable for low-field conditions.
Another more advanced approach is the expansitineoBTE using spherical harmonics and has
been readily applied to MOSFET simulation [30, 73].

The approach used in this work is also an earlyaggth but has been very successful in device
simulation and is the most popular solution. Thenarical method used is of course the particle
based MC methodology and is quite different fromakher numerical approaches in that it models
the transport of particles directly. The MC metradlbws the physics of carrier transport to be
modelled and vyields results for devices that amseclto experimental data [71, 74-76]. The

numerical MC simulation methodology will be discedsn more detail later in the chapter.

It is important to briefly discuss the three magpproximations employed in the BTE equation. A
more detailed examination of the approximation®ived than that given here can be found in

references [30, 69].

The most important approximation made in the BTEh# of the single particle description of the
ensemble of particles in a real system. The bigtion function in the full problem describes the
probability of state of a large number of carrier&ssuming that carrier-carrier interactions are
weak, true for dilute concentrations, the ensemhbkeier distribution function can be reduced to a
single carrier distribution. Although in silicon@SFETSs the carrier concentrations are not always
weak the carrier-carrier interactions can be inetldeparately via the scattering term on the RHS.
The single particle description remains valid irstbase as carrier-carrier interactions affect the
distribution function by redistribution of carrievomentum which can be equally well described in
the single particle description. It should be dotieat the influence of long-range carrier-carrier
interactions (electron-plasmon interactions) ongystem is included indirectly through the electric
field term, governed by Poisson’s equation (3.8pvijuled that the mesh spacing and timestep

intervals are carefully chosen [77, 78].

The second approximation, mentioned earlier in fa@stion, is the treatment of the carriers as
classical particles which obey Newton’s laws. Tikiglear from the definition of the distribution
function which defines both the position and moroembf a given particle. This assumption will

hold as long as the electric field is slowly varyiover a length comparable to the average carrier
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3.2 Monte Carlo Fundamentals

wavelength. Using the thermal de Broglie wavelengfjuation, the wavelength of an average

thermal carrier is; = h/JZkaB T=13nm at room temperature (300K).

The third approximation relates to scattering atades that scattering events are assumed to be
instantaneous and localised in space. In othedsydhe carrier does not change position or gain
energy from the electric field during the collisioithis approximation can be considered valid as

long as the mean time between collisionsjs greater thar > h/kBT. This can be related to the

mean distance between collisions using the relatiswr and multiplying both sides by the
average carrier velocity. This then states thamtlan distance between collisions must be greater

than the average thermal wavelengip,

3.2.2 Band Structure

The electrons in a perfect crystal can be moddiedloch states, including the periodic crystal

potential, with the wave function [71]
W (r)=u,(r)exp(k D) (3.8)

wheren is the band indexik is the carrier crystal momentum auq((r) denotes the periodicity
of the crystal. The Bloch states relate a caeiegrgy E to a statek , with the function En(k)

often referred to as the energy dispersion relatiorhe En(k) functions describe the band

structure of the material for the given band In this work the material under study is silicamd
the band index will be neglected in future refeemc Also, only the lowest minima conduction
band for silicon, the X-valleys, will be considerad this work is concentrated on relatively low

energy electron transport (E < ~1.5eV).

For the conduction band often a simple quadratigression is used to represent the energy

dispersion relation as

E(k)= (3.9)

In this expression all the detail of the band gtres is contained within the effective mass,.

The effective mass plays a pivotal role in defining bands and many other aspects of the physical
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3.2 Monte Carlo Fundamentals

theory. As such there are several definitionshed term depending on the application. For a

detailed review of the definitions see [71].

The basic model for the energy bands, given bytemué3.9), is sufficient to gain rough estimates
on the transport of electrons in a material. s Work a slightly more advanced energy dispersion
relation is employed by incorporating the non-pat@bband model. The non-parabolic band
model improves the agreement with experiment fer énergy bands at higher carrier energies

[30]. Nonparabolicity is introduced by using arvadced energy dispersion relation given as

E(1+aE)=y(k) (3.10)
1K
y(k)=2 5 (3.11)

where a is the nonparabolicity parameter ar}((k) is essentially the quadratic expression,

equation (3.11). The nonparabolicity parameteften used as a fitting parameter for the transport
data but it can be defined from band parameteds aritexpression for conduction bands given by
equation (3.12) [74].

a =i(1—ﬂ] (3.12)

In this work an experimentally obtained value fbe thonparabolicity parameter is used where
a=0.%eV™ [30, 71, 79]. Obtaining the positive root of etjoia (3.10) (only the positive root is

considered as negative energies are not phystbalgnergy dispersion relation can be written

_—1x 1+ day(k)
B 2a

E(k)

(3.13)

Plotting the parabolic (equation (3.9)) and norapatic (equation (3.13)) energy dispersion
functions in Figure 3.1, plot (a) demonstratesdifferences between the models.
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Figure 3.1: (a) Energy dispersion relations and (b) group velocity for parabolic and non-
parabolic band structures.

As shown in plot (a) of Figure 3.1 the non-parabafiodel increases the spread of energies at
higher k states. This corresponds with an increase iDtesity of States (DOS) which for non-

parabolic bands is given by equation (3.14).

o\
p(E) =% E*(1+%0aE) (3.14)

The DOS for the parabolic model (obtained from ¢igna(3.14) by allowinga =0) and the non-
parabolic model is shown plotted against a full atical description of the band structure in
Figure 3.2.
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Figure 3.2: Comparison of parabolic and non-parabol ic density of states models with a full
numerical description. Reprinted with permission fr om T. Kunikiyo et al, J. Appl. Phys. 75,
297 (1994). Copyright 1994, American Institute of P hysics [80].
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It is clear from this figure that the DOS using gegabolic model is valid only for very low carrier

energies. Whereas the non-parabolic model is mloder to the complete description of the band
structure to roughly 1.5eV. Nonparabolicity alss lthe effect of reducing the carrier velocity for
a given statek . The group velocity for a state for non-parabolic bands can be found from the

energy dispersion relation, equation (3.13), as

hok m'(1+20E)

(3.15)

Plotting the non-parabolic group velocity in pas) Eigure 3.1 highlights the drop in velocity at
higherk states.

3.2.3 Herring-Vogt Transformation

In the equations discussed so far within this arafite energy bands are assumed to have an
isotropic effective mass such that the equi-enengyaces are spherical. The energy bands for
silicon that are under consideration in this walle X-valleys, actually have ellipsoidal equi-

energy surfaces, that is an anisotropic effectiesan For ellipsoidal bands the energy dispersion

relation, neglecting nonparabolicity, can be wntfa2]

E(k):h_zz(rljfu+k_n§]+k_r:;] (3.16)

This representation of the energy dispersion @lathakes analytical calculations such as those for
the scattering mechanisms extremely challengingo r&duce the complexity of analytical
calculations the Herring-Vogt transformation canapplied which reduces the ellipsoidal equi-
energy surfaces to spherical surfaces. The HeXfows transformation makes use of a starred-
space which represents the ellipsoidal wave-vewtorsformed into the representative spherical

system. The transformation is defined by
k™= Tk (3.17)

wherek” is the transformed wave-vector and the transfaomanatrix T, in the valley frame of

reference, is of the form
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T=| 0 (%)y 0 (3.18)

o o (m)

Finally, for non-parabolic bands the energy disiperselation can then be written as

n’k™
y(k)= 5 (3.19)
m,
with the corresponding non-parabolic group veloaiy
=#T l{] (3.20)
' m(1+20E) " '

3.2.4 Fermi’'s Golden Rule

Scattering plays an important role in carrier t@ors as it defines the carrier interaction with the
lattice, impurity ions and defects in the materi&ls discussed previously, carrier scattering & th
definition of the BTE is a quantum mechanical cqce The collision operator of the BTE,

expanded in equation (3.7), includes the quanturchargical scattering probability transition rate,

P(k,k'). The transition rate describes the probability y&t time of a carrier scattering from a

state k to a statek’. The probability transition rate is calculatedngsFermi’s Golden Rule,
given by equation (3.21). For a complete discussio the derivation of the Golden Rule see the
textbooks [30, 32, 71].

P(kk') =277T|H ol 0(Ek')- Ek )% hw) (3.21)

Fermi’'s Golden Rule is the basic result of scaiggriheory which is used to describe carrier

scattering in semiconductors. In the notationhis thapter, the upper and lower signs are for
absorption and emission respectively. The Dirdtad&inction 5() ensures that energy is

conserved during the scattering interaction by ailywing non-zero interaction probabilities for

arguments that are zero.
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3.2 Monte Carlo Fundamentals

The scattering matrix elemertt,, , must be defined from the scattering potential defihes the

particular scattering event. Once a scatterin@rmi@l has been identified the scattering matrix

element can be calculated as

H o :jexp(—ik’m)US(r )exp(k D)dF (3.22)

where Ug(r)=eV(r) is the scattering potential energy. Here the lapeintegral has been

assumed to=1 which is an accurate approximation for non-parabobnduction bands in silicon
[79, 81].

In MC solutions of the BTE the carrier scatterisgypically defined as a scattering rat'e(,k) :

that describes the number of scattering eventsupiétime of a carrier at an energﬁl(k) . The

scattering rate can be calculated by integratiegptiobability transition rate over all final state's

described by equation (3.23).

r(k)=NJP(kk")dk’ (3.23)

o
Here N, = Q/(Zn)3 is related to the number of electron states withavolumeQ .

It is important to note that Fermi’s Golden Rulevadid when the duration of a collision is much
smaller than the free time between collisions. sTundition allows the effect of uncertainty in the
carrier energy due to collisions to become sigaifity small that the carrier energy can be well
defined.

3.2.5 Self-Scattering

An important development in the numerical solutiohshe BTE and in particular MC simulations
is the introduction of self-scattering. Self-seattg is a simplification of the free-flight time
choice by introduction of a fictitious scatteringeat which greatly reduces the computational

complexity of the choice of free-flight times faarciers.

The probability per unit timeP(r), of a carrier travelling for a time and then being scattered is

given by [32]
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3.2 Monte Carlo Fundamentals

P(r)=r (k (t))exp{—JzFT (k (t’))dt’} (3.24)

wherel; (k)= T (k) is the total scattering rate given by the suni afcattering mechanisms,

i
k(t) =k, +& t/7 is the carrier wave vector at a given titnek,, is the carrier wave-vector at the

beginning of the free flight; =0.

To obtain the free-flight time from equation (3.24quires thatr be evaluated for a given
P(r)/r; (k) using random numbers distributed between 0 and This is a complicated

expression which requires numerical integratiorthasintegral over all the scattering rates within
the exponential cannot be solved analytically. ifipte solution was proposed by Rees [82, 83]

through introduction of a scattering rate that doet alter the carriek state, aptly titled self-

scattering. The simplification is achieved by @aatncing Fo(k(t)), the self scattering mechanism

into the total scattering rate such that
r(k (1) = Z‘ri (ke (6)) + Fofie (1) =T (1)) +Toke (1) (3.25)

Substituting this into the probability per unit grof free flight, equation (3.24) yields
P(r)={rs (k(1))+ o (k (1))} exp[—j{rT (k (1)) +To (k ())}dt (3.26)
0

This expression can be greatly simplified by allogvthe value ofo(k (t)) to be carefully chosen

to remove the energy dependent scattering rate #&rhintroduce a constant value. This is

represented as
Mo(k(t) =1 -1 (k (1)) (3.27)

wherel is a constant value representing the self-scageste such that, >0 for all k states of

interest (this value is selected at the startrofigition). Then the free flight probability becane

P(r)=rexp(-T7) (3.28)

32



3.3 Carrier Scattering Mechanisms

which can be solved for the free-flight tinrethrough use of a random numberby rearranging

the equation to give
1
r=—FIn(1—r) (3.29)

Although this method introduces more scatteringnevéncreasing the computational time, it is
more than compensated by reducing the complexitgatfulating the free-flight duration. The
number of self-scattering events that occur innaukation can be minimised by selecting the self-

scattering ratel” , to be the largest value of the total scatteratg for thek states considered.

3.3 Carrier Scattering Mechanisms

3.3.1 Acoustic Phonons

Acoustic phonon scattering is the mechanism whigscdbes the interaction of the carriers with
the crystal lattice producing a relatively low ftecy oscillation of the neighbouring atoms in the
lattice. Modelling the exact change in the peigaztiystal potential of the oscillating atoms iswer

challenging and a simplified approach making use afeformation potentialD,_, is typically

ac’

employed [32].

The acoustic phonon scattering model used withis BhC simulator is based on the inelastic
approach given in Jacoboni’'s MC textbook [71] wdhmodification to the acoustic phonon
dispersion relation taken from a journal paper by F84]. The final scattering rate suitable for

non-parabolic, ellipsoidal bands can be written as

qmax

=aere | g MelE))G 320

wherem, = ( m nj)% is the density of states mags,is the silicon densityk” is magnitude of the

carrier wave-vector in starred spadey), is the acoustic phonon energy ahlj is the phonon

occupation number given by equation (3.31). Notimat the upper sign is for absorption of an
acoustic phonon, the lower for phonon emission Wwhe the convention used throughout this
section. All silicon material and band parameferghis scattering rate are specified in Tablé 2 a

the end of the chapter.
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3.3 Carrier Scattering Mechanisms

1
exp_(%) - (3.31)

To evaluate the scattering rate given by equat®B0] the integral must be completed hence
requiring thatq,. and g, be found. These bounds on the integral can bedfdtom energy

conservation using equation (3.32) [84].

2k ng'k” (2+a( Exne(a))) (3.32)

Here the RHS can be equated to a functhD) and using the definition thatl< cosf< 1

0
min

allows the values ofj.. andq,_, to be defined ad (qim) =1 and f (qiax) =-1. Here and in the

scattering rate the phonon frequenay,, as a function of the momentum transfey,, is

determined from equation (3.33)
@, (a")=(wa’+da” (3.33)

where <u>:§(2u[ + q) is the average velocity and=-2x10°cn?/ s is a coefficient for the

dispersion relation given by [84].
3.3.2 Optical Phonons

Optical phonon scattering also uses a deformatienpial scattering methodology to simplify the
description of the oscillating atoms in the cryskaitice. Optical phonons describe crystal
oscillations at a much higher frequency than tredsgcoustic phonons and correspondingly have a

much larger phonon energy.
In the MC simulator there are two distinct mecharsidor optical phonon scattering. The first to

be considered here is intervalley scattering betwesguivalent valleys given by equation (3.34)
[71].

A 2
Mo =9(Ef)%(m(%)+%ﬁ)yyz (1+20E) (3.34)
op
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3.3 Carrier Scattering Mechanisms

Here the upper signs are for absorption and thedaigns for emission of an optical phonon,

E; = Ethw, is the final carrier energy witha),, the optical phonon energf),K is the optical

coupling constanty = E, (1+ aEf) is the non-parabolic carrier energy term g is the phonon

occupation number given by equation (3.31). Agalinmaterial and scattering constants used

within the MC simulator are presented in Table 2.

The second optical phonon scattering mechanishaisaf the f- and g-type phonons, which is also
an intervalley scattering mechanism and is givereqyation (3.35) [71]. The g-type phonons
describe scattering between equivalent valleysthed-type phonons describe scattering between

non-equivalent valleys.

A 2
M oo =e(Ef)gf;§Z)+}:;)zf(Nq(w )+374)y*(1+ 20 ) (3.35)

p,i
In this scattering rate the terms with a subsénigex i relate to the particular f- or g-type phonon
index, details of which are given in Table 2. Thanber of final valleys available for a particular

phonon mode is given by, and all other symbols are the same as definedqusly.

3.3.3 lonized Impurities

lonized impurity (ll) scattering is an elastic pess and uses the screened Coulomb potential as the
scattering potential. The screened Coulomb patentin be found from a solution of Poisson’s
equation for a point charge in a charge neutrabregf a semiconductor (this method is presented
in detail in [32] and discussed in section 2.3)heTelectrostatic screening introduced by the
background charge is represented in the model gmplbere by the degenerate Debye-Hiickel

screening model for non-parabolic bands. Thisesing model is expressed as

2 +2ak,T
en (3,(n)+3ak T3, (n)) for p=2E (3.36)

ke = EsE KT (gyz (/7) +%akBT§% (/7)) kKT

where e is the electronic charge) the electron densityg; is the Fermi integral of order j [54]

and E. the Fermi energy used in the reduced Fermi lgvel

The 1l scattering model utilised in this MC simuats Ridley’s Third-Body Exclusion (TBE)

model [51, 55, 60] in conjunction with an empiri¢iéling parameter which is calibrated such that
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3.3 Carrier Scattering Mechanisms

the bulk mobility is matched to experimental daldhe TBE model, along with other important Il
scattering models are discussed in detail in Chdptaf this thesis and further discussion on the
model is not repeated here. It should be hightidhihat in this work a new model for Il scattering
is developed in Chapter 5 which is a more accumpfoach than the TBE model discussed here

which has been traditionally been used in this Mauator.

To compute the TBE model it is important to be ataeexpress the Brooks-Herring (BH) Il
scattering rate which is given by equation (3.37his is the standard BH expression for non-

parabolic ellipsoidal bands.

2 % ;
M| 2| N2E_ v W (3.37)
ATE4E, my B, 1+ 4y/E,_ dE

Here N, is the impurity density and,_ =h2k§/2r‘rF is the screening length represented as an

energy. From Van de Roer [60] the TBE scatterirngleh can be expressed as

r. :@{1- ex;{-ﬁi)r% H (3.38)

Wherev(k) is the group velocity, given by equation (3.19), the magnitude of the carrier wave-

vector k=/2njy/n, a=(2nN, )% is half the average inter-ion separation disteaee I, is

given by equation (3.37).

Finally the Il scattering rate used in the MC siatidn can be obtained by multiplying the TBE

rate by the empirical correction factorK,, to obtain the complete scattering rate as
r, =rg XKn(N,) [85]. Values used for the fitting parameter areeg in Table 1 which are
tabulated and then interpolated for a given imgulignsity N,. The empirical correction factor,

K,, is a fitting parameter which is calibrated sutiattthe Il scattering model is fitted to

experimental bulk mobility data. This parametaghtights the difference between the physical

model and experimental data over a wide range pfiity densities.

Table 1: Values used in empirical correction to Il scattering
log,, N, 14 15 16 17 18 19 20 21 22
K, 1 1 1.4 2.3 3.1 3.7 2.5 1.4 1.4
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3.3 Carrier Scattering Mechanisms

3.3.4 Interface Roughness

An important scattering mechanism for simulationM®S devices is Interface Roughness (IR)
scattering. This mechanism describes the pertorbat the potential due to roughness at the
interface of the silicon substrate with the oxidsulator layer. This mechanism is only evident
when (for a nMOS device) there is an inversion igyesent in the device confining carriers close

to the interface.

IR scattering is dependent on the electric fieldopadicular to the interface, the vertical electric
field, which controls the inversion charge and toeresponding confinement of carriers at the
interface. As the electric field within the inviens layer varies with position, an average is

introduced to simplify the scattering model. Theerage electric field in the inversion layer is

expressed as the effective vertical field [30, 98], , written as [27]
E., =i( N +&J (3.39)

where N, is the depletion charge density andis the inversion carrier density.

In order to describe the interface fluctuationsagistical function is introduced. The IR scatberi
model uses an exponential autocorrelation fundtiatkescribe the rough interface as discussed in a

paper by Goodnick [86]. The form of this autoctatien function is
(B(r)a(r-r)) =02 exp(-V2 /L,) (3.40)

wherer represents a position in the 2D plane parallehéointerface A . is the RMS amplitude

rms

of the fluctuations in the interface ahg is their correlation length.

Making use of the Ando model [86, 87] to define Huattering rate, the completed model can be

found as

ro(k)=Em (EZA2 L2)2.|‘ﬂd¢; (3.41)

rms— e

e o (1+1L0%)"
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3.4 Monte Carlo Process

where g® = 2k2(1— COS¢) is the momentum transfer of the scattering evértr all future device
simulations the RMS amplitude of fluctuation is@akasA,, . =0.35"m with a correlation length

of L, =1.3am.

It should be noted that the at each scatteringtethenlocal effective vertical electric field isad

in place of the definition given by equation (3.390he scattering event with the local effective
field is compared to the scattering rate with tkérdtion using equation (3.39). Using a rejection
technique, which is discussed in the appendix 6f,[the scattering event will be allowed if the

ratio is greater than a randomly selected numfdis approach is similar to one discussed in a

journal paper by Formicone [88].

3.4 Monte Carlo Process

3.4.1 Single Particle Monte Carlo

The single particle MC approach is the originalrapph to the modelling of carrier transport first
developed in the 1960’s. This approach is suitétemodelling transport of a semiconductor
material under fixed electric fields and can beduseobtain such quantities as the drift velocity,

mean carrier energy and the bulk mobility of thdarial.

The single particle method is an approximation led tomplete system which consists of an
ensemble of carriers which mutually interact. Mg this system to be described as a system of
independent carriers acting as an ensemble ledt® tsingle particle simulation description. By
simulating a single particle accelerating in arciie field and undergoing many scattering events,

an approximate description of an ensemble of agardan be found.

A typical breakdown of the single particle simubaitiprocess is given in part (a) of Figure 3.3. The
program follows a simple procedure of stochastjcadllecting a free-flight time according to the
self-scattering procedure discussed in sectiord 3vhere the particle is subject to acceleration by
the electric field. Following this the particle astering event which ends the free-flight is
stochastically selected and the carrier is scattefdis procedure repeats until the simulatioretim
t,, has been completed.

An important stage in this process is the gathesincarrier data which of course provides the drift

velocities, mean energy and other quantities adr@st. This is completed at the end of each
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3.4 Monte Carlo Process

iteration of the procedure and is generally congalets an average of the quantity of interest over

the entire simulation period which can be writter{22, 71]
1
(), == (A 7 (3.42

where(A}r is the quantity average over the free-flight pegrio, T is total simulation time and

{A}T is the average quantity over the entire simulagieriod. Use of this method requires tfat

be long enough to ensure that the average quasititgined can be considered an unbiased
estimator, that is the results can be considered steady-state and independent of the initial

conditions.

This approach has been used successfully to sienmany different materials and is discussed in
more detail in [32, 74, 75]. It has an advantagthe simplicity of the procedure but is limited by
the fact that it often requires very large simwalattimes to obtain stable results. This approach i
not widely used in current times due to the inceeimscomputational power which allows more
advanced procedures to be implemented. Althouglsitigle particle MC is not the approach used
in the simulator employed in this work, it is anpontant evolutionary stage of the MC procedure

and explains the original background to the apgroac
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(a) (b)
Start
Read material/sim data
Read material/sim data Setup initial conditions
Setup initial conditions P
Scatter Carrier g
v

»| Carrier Free-Flight Carrier Free-Flight IsnT> At
Scatter Carrier Free-Flight for At-n_t
Gather Carrier Data All Carriers?

‘ Gather Ensemble Data
a Nag

Output Carrier Data
/ Output Ensemble Data/

Figure 3.3: Flowchart of (a) the single particle an  d (b) ensemble Monte Carlo simulators.

3.4.2 Ensemble Monte Carlo

The Ensemble Monte Carlo (EMC) process is essintal extension to the single particle
approach by introduction of an ensemble of padittethe simulation. This allows the transient
characteristics of carrier transport in semicondgcsuch as velocity overshoot to be simulated.
The ensemble approach is necessary when simulkatinfomogeneous or non-stationary process
although it can be used to solve stationary problésallowing the simulation to continue until
steady state.

The EMC approach is that used to simulate the ptiggeof bulk semiconductors within this work.

In particular the EMC approach is used to calibthéesimulator which is discussed in more detalil
in section 3.5. The program flow is described layt{b) of Figure 3.3 where the differences
between this approach and the single-particle ndelie@ome clear. Obviously the free-flight and

scattering process is repeated for the entire dolgeoh particles at each timestep.
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A timestep,At, is no longer defined as a single free flighf,terminated by a scattering event and
is instead defined externally as a fixed time pkridWithin a timestep each particle will have as
many free flights terminated by scattering evestssaequired to fill the timestep (specified @s
free flights in the figure). In the finah, free-flight, for the case that.r > At, the carrier is only

propagated for the time remaining in the curremestep and not for the full free-flight. This

ensures that all carriers are propagated for thérhestep,At, only.

Similar to the single particle approach, the enderplrticle data is collected at the end of each
timestep but a different procedure for obtaininguits is required. An average for the quantity
required is obtained at the end of each timestm the average of the ensemble of particles [32,

71], which can be written as
(AD), =< ZA (Y (3.43)

Here A, is the quantity of particle number at a timet, N is the total number of particles and
<A(t)>N is the quantity average over all particles at giveen time. The time average of the

guantity can be used to reduce the statisticat @rrensemble simulations.

The number of particles in the ensemble is typycsfiecified at the start of the simulation and is
related to physical number of carriers in the devtlrough the superparticle approach. Using the

number of charges in the devidd,, the superparticle charge can be found using [30]

Q=-e — (3.44)

where N, is the number of particles in the simulation. Bouperparticles are only considered in

terms of the charge density and for all other dataans such as scattering the superparticles are

treated as single carriers.
3.4.3 Device Monte Carlo

Simulation of semiconductor devices such as MOSFiEfsires a more advanced technique for
EMC simulation which allows for non-stationary tsgort through inhomogeneous materials. The
Device Ensemble Monte Carlo (DEMC) approach is ipessthrough extension of the EMC

procedure by inclusion of a self-consistent solutbthe electrostatic potential. A flowchart bét
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general procedure of the DEMC approach is givefignire 3.4 showing the extension to the EMC
approach. In this figure the EMC procedure is msaly that of Figure 3.3 (b) without the
feedback loop over all the timesteps which is reedfed in Figure 3.4.

Read device data
Setup boundaries

<_I

Ensemble MC

v

Charge Assignment

v

Solve Poisson Eqn

Y

Yes

/ Output Device Data /

a+

Figure 3.4: Flowchart for a device-ensemble Monte C  arlo technique.

An important stage in the DEMC procedure is thecHjpation of the boundaries as patrticles in a
device are bounded. These boundaries must alscohsistent with the solution for the

electrostatic potential, which will be discussetgia Bulk material simulation such as those of the
single-particle and EMC approaches use a boundlgsslation (one that assumes an infinite
material) but for a device a particle must be appately treated when reaching a surface.
Typically there are two boundary conditions, one doparticle reaching an outer boundary for
which the particle velocity normal to the surfaseréflected. This boundary condition relates to
the Neumann boundary condition for the electrastg@idtential, that is a zero electric field

component normal to the boundary surface.

The second boundary is for a particle reachingrdamb where it is allowed to be absorbed. Of
course as particles leave the device through aacgnparticles must be injected to ensure that
charge neutrality is kept within the contacts. Tdwmresponding boundary condition for the

electrostatic potential is the Dirichlet boundarkieh states that the boundary potential be set at

the applied bias potential for the contact.
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During the simulation, particles follow the EMC pealure of free-flight followed by a scattering

event until the ensemble has completed the timesTéps movement of the particles causes the
charge density to evolve with the simulation andl imi turn cause the electrostatic potential to
change. Before solution of the electrostatic piibnan be completed the updated position of the

particles and hence the charge density must beteghda

The DEMC simulator uses a Particle-Mesh (PM) metlwocksolve the particle charges to a mesh
and define the forces for each particle. A fufiadission on the PM technique can be found in the
textbook by Hockney and Eastwood [89], here onlyweay brief discussion on the charge
assignment mechanism will be undertaken. Thegbartharges are assigned to the mesh using a
Cloud-In-Cell (CIC) technique originally developddr plasma simulations [90]. The CIC
approach allows each particle charge to be assigntte two nearest neighbour nodes which aids

the smoothing of the forces and reduces the amglitd fluctuations [71].

The electrostatic potential is found by solving $83oin’s equation which relates the spatially
varying charge density to the potential and is igiy®y equation (3.6). There is extensive
documentation in textbooks such as [32, 71, 89ndigg the solution of this equation in a PM
system which is not repeated here. With the PMhotkthe charge density is known at each mesh
point thereby allowing the Poisson equation to Iserdtized over the mesh and solved using a
finite difference approximation. Once the potdniafound for each mesh point it is possible to

define the electric fields and the correspondirngds for each particle.

When utilising a self-consistent PM approach theesitep,At, and the mesh spacingx , must be
considered to ensure that the DEMC simulationdblst The timestep stability criterion is related
to the plasma frequency for the highest carriersienn, specified within the device model. The

timestep criterion is given as [91, 92]

(3.45)

8|

where\, is the momentum relaxation rate and the plasntpénecy,w,, can be written

w = |- (3.46)
£Si£0m
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Taking a typical MOSFET device the peak carriersitgncan be estimated at=5x10°cni®

giving the plasma frequency ag, = 2x10s™. Estimating a typical momentum relaxation rate of

V. =2x10°s™ [33], this yields a stable time step &f <1x10*s.

The mesh spacing criterion for resolution of thecebstatic potential is related to the expected
charge variations within the simulation. The wawgjth of the charge variations is typically
approximated by the degenerate Debye length giyezgbation (3.36) which fon=5x10°cmi?®

gives a length ofd, =0.8ahm. Hence for stable simulation the mesh spacingeiserally taken

such thatAx <24, [93], hence a mesh spacingff = 0.5nm..1nrr is suitable.

Although these stability criteria seem well spexifithere is a certain amount of freedom in the
choice for the timestep and mesh spacing. A thgiostudy has recently been conducted by
Palestri [91, 93] with the results given by Figarb.

(a) 2 LU B B A L (b) [T T LB A B R R | .
_ ; ° ]
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Figure 3.5: (a) Timestep stability plot (from Pales tri [91]) and (b) mesh spacing stability

(from Palestri [93]). Open symbols denote stable M onte Carlo simulations and crosses
unstable simulations. (Both figures © 2006 IEEE)

This figure demonstrates that a large scatteririg, ra., helps to stabilise the simulation by

damping energy oscillations [93]. For the simulatidata considered herelc/a)pzlo which

certainly allows for a greater range of timestapd mesh spacing for stable MC simulation.

As a final stability criterion it is important tonsure that the timestep and mesh spacing are a
correctly chosen pair. That is, within the chosiemestep the particles will not travel through
several mesh spaces leading to greater chargdatiscié and an increased instability. This can be

checked by calculating the distance a particle tnalvel during the chosen timestep, which can be

estimated by the maximum group velocity of a cariiethe semiconductorv(,, =1x10 cny s).
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Therefore, for this example a reasonable timesﬁemtozlxlﬁ”s can be chosen, then the
maximum expected distance a particle can travgl is=v, At =1Inm which corresponds with the

mesh spacing criterion. It should be noted thigttimestep is suitable for bulk silicon simulaton

but for device simulations a timestep several @adémagnitude smaller is generally selected.

3.5 Monte Carlo Calibration

3.5.1 Bulk Silicon

Before using any MC simulator it is necessary teuea that it has been calibrated against
experimental data. For simulations of carrier $gaort in bulk silicon this requires calibration of
the phonon scattering models and in the case ofl theattering model used here, the empirical
correction factor discussed in section 3.3.3. phenon scattering models are calibrated through
adjustment of the corresponding deformation podéatnd phonon energy where there are several
published sets of such data [30, 75, 94] whichlmamnsed. These parameters are chosen from the
published data to match experimental energy- anldcitg-field data for undoped silicon.

Undoped silicon is used to remove the dependentiescattering on the results.

To further simplify the phonon calibration procesgny of the optical phonon mechanisms can be
essentially frozen out by simulating the bulk siticat a lattice temperature of 77K. This
temperature is too low for most of the optical ptvas which due to their high phonon energy,
become statistically unimportant. Simulation dattéice temperature of 300K then allows the full
optical phonon model parameters to be calibratdticalibrated parameters for the phonon models
are given in Table 2 at the end of the chapterFigure 3.6, plots (a) and (b) are the resultdef t
velocity-field and energy-field calibration respgety. Experimental data is taken from Canali
[94] for an undoped sample of silicon at the terapges of 77K and 300K.
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Figure 3.6: (a) Velocity-field and (b) energy-field  calibration of Monte Carlo.

The velocity-field plot shows a good calibratiorthvexperimental data for both the low and high
lattice temperatures over the range of appliedifiel The energy-field figure also shows a close
trend with experimental data. At 77K the low-fi@dergy is higher than experimental data which,
as reported in [31], is a cause of using an arwalytand structure representation. As all future
simulations in this work are completed for a latiemperature of 300K, the calibration of the

phonon models is considered a close match to expatal data at the simulation temperature.

The Il scattering model used in this work utilisgsempirical correction factor which improves the
calibration of the Il model with experimental datd.o calibrate the correction factor the bulk
silicon mobility is matched with experimental datzer a wide range of dopant densities. Here the
experimental data is taken from Thurber [29] ang vhlues used for the Il scattering empirical
correction factor are given in Table 1. The resilthe calibration is shown in plot (a) of Figure

3.7 and is clearly a close match with experimenfaa as is expected with the empirical Il
correction. It is also worthwhile to note thatimpurity concentrations lower thaN, =10*cni®

where |l scattering is ineffective and phonon sgaiy dominates, that there is good agreement
with experimental data.
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3.5 Monte Carlo Calibration
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Figure 3.7: (a) Bulk mobility and (b) universal mob ility calibration of Monte Carlo.

3.5.2 Inversion Layer

To accurately simulate MOSFET devices it is impartéo ensure that the MC simulator is
calibrated to experimental data for carrier tramsjyothe inversion layer. This process is reqiiire
to calibrate the IR scattering model with experitaémlata as phonon and Il scattering models

should remain unchanged from the bulk silicon catibn.

Inversion layer calibration is completed by matchithe universal mobility of carriers in an

inversion layer with experimental universal mopildata. The experimental data is taken from
Takagi [27, 28] for the substrate impurity concatitm of N, =2x10®cni® and a applied lateral
field of E=0.5kV /cm.

The universal mobility trend is well replicated thye MC simulation as shown in plot (b) of Figure
3.7, with the correct drop in mobility at low effa@ field due to Il scattering. At high effective
fields the IR scattering model reduces the mobitityd reproduces the universal curve [27]

expected from the mobility.

The calibration of the simulator with the experinardata shown in plot (b) of Figure 3.7 is
considered to be suitable despite the discrepaatyden simulated and experimental data at low
effective fields. This is based on the simulatahslity to reproduce the overall trend of the
universal mobility curve, specifically at high fill where interface roughness scattering dominates.
At low effective fields the universal mobility isothinated by Il scattering which in the current
state-of-the-art simulators is modelled by a bulkgpproach and is not an accurate solution to the

Il scattering problem in the inversion layer.
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3.6 Conclusion

3.6 Conclusion

In this chapter the MC simulation procedure haslakscussed in terms of the fundamentals of the
simulation approach, the scattering mechanism uaghl the procedure utilised in the numerical

procedure through to the calibration of the MC coded in this work.

The discussion on the fundamentals of the MC praeethcluded the all-important BTE which is
the core problem which the numerical procedure eolv The BTE can be described as a
bookkeeping function for the distribution functiamich describes the state of the carrier ensemble
in a device and through which all important quaesiof interest can be calculated. Also discussed
in the fundamentals section was the descriptiothefsilicon band structure used in the simulator.
An analytical description of the band structurauigised with the non-parabolic approximation.
Ellipsoidal bands are also employed with the Her¥ogt transformation which simplifies the

description by transferring to and fronstarredspace.

Scattering in the BTE and the MC simulation procedis typically completed using Fermi's
Golden Rule approach which is discussed in se@i@ml. The scattering in MC simulations is a
guantum mechanical process which uses the interaptitential of a scattering event to obtain a

probabilistic scattering rate.

Finally in the fundamentals section, the self-saty procedure was discussed which greatly
simplifies the way in which particle free-flightseaselected by introducing a fictitious scattering
event. This advancement in numerical simulaticgatly advanced numerical MC simulations by

vastly reducing the complexity of free-flight calations.

The scattering mechanisms that are required faurate simulation of silicon MOSFET devices
are presented in section 3.3. These include thavailley acoustic phonon, the intervalley optical
phonons, Il scattering and IR scattering. Thea#teseng mechanisms are the minimum required to

obtain accurate simulation data for bulk silicon adicon MOSFET devices.

The evolution of the numerical procedure used wit¥iC simulations was discussed in section 3.4
from the original 1960’s single particle approatinouigh to the state-of-the-art self-consistent
DEMC approach. In the single particle model theutation can only be used to obtain stationary
homogeneous processes. The EMC approach allowsigrd, inhomogeneous systems to be
modelled by simulating large numbers of particled & the modern approach to simulating bulk
semiconductor characteristics. For MOSFET simaitathe required inclusion of a self-consistent

Poisson solution leads to the DEMC approach.
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3.6 Conclusion

The MC simulator calibration with experimental degademonstrated in the final section. There
the energy and velocity characteristics of cartransport in silicon from the numerical MC
simulation are shown to be in close match with eérpental data. The carrier mobility for both the

bulk and universal cases is also shown to be il ggoeement with the experimental data.

Table 2: Silicon band parameters and constants.

Silicon Constants u =5.34x 16 ny's 0 =2.329/cnt
U =9.04x 16y s g =117
D,. =%V a, =5.43A
Band 1 (X-Valleys) m =0.916m m =0.190m
a=05V" Es =1.12%V

Intervalley Optical

equivalent X-valleys: D,K =1.75x 18°eV/ m ha,, =43meV
g-type: Z, =1
(DK),, =0.5x16%V/m (hea,) , =12.08mev
(DK),,=0.8x10°eV/m (ha)op)g2 =18.53neV
(DK),, =3x10%eV/m (hea,),, =63mev
f-type: Z =4
(DK),,=0.15x 10°eV/ m (ha,), =18.96mev
(DK),,=3.4x10°eV/m (na,), , =47.40mev
(DK),,=4x10%V/m (na,),, =59.03nev
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Chapter 4  Scattering Potential Calculation

4.1 Introduction

lonized impurity (Il) scattering in modern MOSFE®uices has a considerable effect on device
performance. A great deal of research has beeinfuistudying the electrostatic and transport
effects of atomistic scattering [63, 67] yet litthork has been done on the effect of impurity
scattering close to interfaces. Here the inteni®rno formulate a scattering potential which

describes the effect of a single atomistic impuldiyated next to highly-doped regions. The work
will focus on looking at the effect of polarisati@harges on channel lls located close to highly
doped source and/or drain regions of MOSFETSs. pidterisation charges which are induced in the

source and/or drain regions are shown here to elynstreen channel Il ions.

Note that for the purpose of this work the typigatlamed source-channel and channel-drain
junctions shall be referred to as the source aaih dinterfaces respectively. This definition shbul
not be confused with the typical device contextirdébn of the interface between the silicon

substrate and the silicon dioxide layer, whichasconsidered in this work.

This chapter presents and discusses scatteringntiadgewhich describe an atomistic impurity
interacting with a single interface and also a deuterface. The single interface case represents
the Il ion acting with the source, the double ifdee case represents the Il interacting with the
source and the drain. The structure of this chaistesplit between the two potential models
developed here, with section 4.2 presenting thglesimterface model and section 4.3 the double
interface model. As the process of calculating tesh verifying the models is identical in each

case, the repetition in the content presentedrefully minimised.

The calculation of the single interface model iotem 4.2 begins with the system definition before
defining and solving the Poisson’s equation forpbeential in section 4.2.1. Much of the detail in
calculation is avoided in this section with thel fofocedure given in Appendix A. Plots of the
potential isolines for the single interface solatare shown in section 4.2.2 with a brief discussio

Validation of this solution is then completed ircen 4.2.3 by checking the limits and ensuring

that the behaviour is as expected of the model.

As the potential derived for the single interfaced®l is an exact analytical solution of Poisson’s

equation it is important to validate the result hwihat of a fully self-consistent, non-linear
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4.2 Single Interface Potential Model

Poisson’s equation solution. This comparison i&giin section 4.2.4 with a brief discussion of

the method used to complete the comparison.

The solution found for the potential in the singleerface model is very complex as it includes the
detailed behaviour of a doped semiconductor soueggon. A simplified model has been
calculated by taking a limit on the screening & slource, entitled the strong-screening limit and i
presented in section 4.2.5. Although the use efstinong screening limit in this work simplifies
the expressions involved, primarily it has beenodiiced to provide a worst-case scenario for this
interaction. Utilising an upper limit on the indetion will allow an initial indication on the

importance of remote screening effects of charriehk on device performance.

This structure is repeated for the calculation a&edfication of the double interface model in
section 4.3. The complete potential model is dated in section 4.3.1 with the detailed procedure
given in Appendix B. Validation of the model by ams of the limits and comparison with the
non-linear Poisson solver is given in sections34ahd 4.3.4 respectively. The strongly screened

potential is obtained in section 4.3.5 for the deubterface model.
4.2 Single Interface Potential Model

A self-consistent potential for a single impuribchted close to the source —channel interface shall
now be calculated by solving the Poisson equatier the source/channel region. The Linear
Thomas-Fermi (LTF) approximation [95] is used tmglify this solution of the Poisson equation
in conjunction with the Debye-Htickel screening mdé&8]. Due to the cylindrical symmetry of
the system, cylindrical co-ordinates are used tjinout the potential calculation [96]. Here the Z-

axis is normal the source-channel interface wighRhplane parallel to the interface.

A
R
Source, ng Channel, n,
: ®
0 Z
7Z<0 Z>0
Figure 4.1: Physical picture of the problem system, defining source and channel regions

with impurity located ~ Z, from interface.
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4.2 Single Interface Potential Model

Figure 4.1 provides a pictorial representationhef physical system to be solved. Here the source

and channel carrier densities are representeastand n. respectively. The source is assumed to
have a larger carrier density in this figure, tisang > n. but this is not an assumption made in the

calculation of the potential in section 4.2.1

The impurity for which the potential is to be fouisdgiven by the red circle in the channel region

for which Z >0. In this case, the source interface is located a0 and the impurity is located at

Z, which must be in the channel region. To simpiifg problem and incorporate radial symmetry

around the Z axis, the impurity is assumed to batkd atR, =0.

4.2.1 Potential Solution

The solution for the electrostatic potential ofstlsiystem can be found by solving the following

Poisson equations for the free charge density.

O2g, =-L5 forz<o (4.1)
ESiEO
3(R
g, =-Le -9 ( )5(z—z,) forz>0 4.2)

E&, 2lEgE, R

Where pg is the free charge density in the source regiah gn the free charge density in the
channel region. On the right-hand side of equaib) the atomistic impurity can be seen as a
chargeQ at positionZ,. For this model, the impurity is positioned Rf =0 in the R plane.

This simplifies the solution but retains the impmitt Z dependence that controls the interaction

with the source region.

The inverse bulk screening length, = A", can be related to the free charge density with_fiF

approximation by using the following relation

Px = _£Si50k§<¢x (4-3)

Here, the subscript X denotes either the sourceo(Shannel (C) region. This then gives the

linearized Poisson equation, also known as a Hdlmkquation as

0%, —k% ;=0 for Z<0 (4.4)
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4.2 Single Interface Potential Model

0%, K@ = —%@5(2 -2) forz>0 (4.5)

Solutions to equations (4.4)-(4.5) can be foundbgcifying boundary conditions on the potential,

RI;m+ ¢=0. Using a standardized solution of the Helmholguation using cylindrical

coordinates in conjunction with the Bessel functj86], the electrostatic potential for the source

and channel region can be found exactly as

¢S:(1—9(Z))Tkoo(kF; A( aexp( z k+ g) (4.6)

g =02)] ks, (kR AC kexp(- 2 &+ K
9 a exp(—|Z—Z||w/k2+ I{)}

ATE g€, \/k2 +k?

4.7)

Here 8(Z) is the unit step function and, is the zero order Bessel function of the firstck[@7].

As we assume thaR, =0 giving symmetry around the Z axis, only the magét of R has any
importance in these equations. This correctliyvadlthe use of the magnitude Bf in the Bessel
function. It is important to note that the uselad variablek here shouldn’t be confused with the
typical notation for the carrier wave vector whiwds the identical symbol. In this case the vagiabl

is used to denote a separation constant used wfiteigolution of the equation.

This leaves 2 coefficientsA; and A., which need to be found to complete the solutimnthe

potentials. This can be completed by using thiécdt@undary continuity conditions o and D
for electric fields [26] such that

0 0
Eis =Ejcor _6¢RS :—aic (4.8)
0 0
D =D, oregg, 95 =£S,£0—a¢zc (4.9)

0z

These define that the tangential electric fidid, must be the same along the interface and that the

electric flux, D, must be continuous across the interface. Afibsirgg the resulting simultaneous

equations we find the solutions to the 2 unknowefficients as
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4.2 Single Interface Potential Model

__Q K 7
Ag(k)_4m5i£o\/k2+kcz+\/k2+ kszexp( 4 k2+|é) (4.10)

-_Q K \/k2+ké_\/k2+k52 7 (k212
At(k) 4]ZESi£0 \/k2+ké \/k2+|€+\/k2+ |<§exp( ZI k +K;) (4.11)

After some manipulation, the complete solutionsggrand ¢. can be written in the form

2k
dkd, (kR
’ES'g j e+ ie+ K (4.12)

xexp(Z J+ K )exp( Z\/kZT)

¢s=(1-6(2)) 2

g =02) 5> Idk%(kaﬁ[exp( |z 2V k+ &)

_j:zz : Ié :\?Ez: léexp(—(z+zI WK+ kg)}

(4.13)

These potential equations define the self-condigereened solution to an Il located within the
channel region which is coupled to the source, féigd.1. Here this calculation has been
summarised to the major steps, for more detaihefprocedure used to find these solutions see

Appendix A.

Examining the solution to the channel potentiakgtiation (4.13), we can see the additional term
present from the polarisation charge effect. Logkat the two terms within the curly brackets of
equation (4.13), the second term represents thenfialt from the polarisation charge. The sign of

the impurity location,Z, , is negative in this second term, representingdbation of the fictitious

polarisation (image) charge.

4.2.2 Contour Plots

Plotting the total potential given by equation @).In some contour plots allows for examination
of the effect of the interface on an atomistic imifyu Figure 4.2 shows contour plots of the total

potential with an atomistic impurity located in fadifferent locations in the channel regich> 0.

P=¢s+ @ (4.14)
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4.2 Single Interface Potential Model

(a) Z=0.4nm (b) Z=4nm

(d) Z=16nm

—20H]

Figure 4.2: Contour plots of the potential for the single interface model. Plots (a)-(d) show
four different impurity locations, Z, , where the channel screening length, 4. =4.1331m, and

the source screening lengthis ~ Ag =0.69m.

In Figure 4.2 the source region doping concentration M =10°cm® and the channel

concentration isN, =10 cni® which yields screening lengths df =0.69m and A. =4.1331m

respectively. The screening lengths are calculasidg the degenerate Debye-Hlickel screening

model, equation (3.36).

In plot (d) the impurity is located &, =16nm from the source-channel interface and we see very

little effect of the interface on the resulting @atial isolines. This can be explained by the
exponential roll-off of the polarisation chargeesff with respect to the channel screening length

and impurity position. At a positon &, =4/., the polarisation charge term is very small, e.g.

1-exp(-4 = 0.9¢

The case where the impurity is located far enouglyafrom the interface so as to introduce no
polarisation charge effect¥, >4/, will be termed the screened Coulomb limit. Tikiso called

as the potential represents only the screened @dutmmponent where the polarisation charge
term tends to zero. This will be further demortslan section 4.2.3 where this limit and others

will be analysed.
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4.2 Single Interface Potential Model

At an impurity position of roughly two screeningitghs from the interface, the potential contours
in plot (c) show the increased screening effecuaed from the interaction with the polarisation
charge. This effect increases in plot (b) whenithpurity is positioned roughly one screening
length away. Notice the penetration of the imgupibtential into the source region at this distance
is minimal despite there being a strong interactiith the polarisation charge term. Zf =0.14.
from the source-channel interface, plotted in tta@, potential contours are highly distorted and the
potential is being heavily screened by the poléideacharge. There is strong penetration of the
impurity potential into the source region wheregdo the much smaller screening length, the
potential drops off much more rapidly.

4.2.3 Limits of Potential

It is important to confirm that the calculated putal is valid and yields the correct behaviour.
This can be checked by testing the various limitthe equations (4.12)-(4.13) to ensure that the
boundary conditions are properly held and thaettgected result is obtained.

4.2.3.1Screened Coulomb Limit

The first limit to check is to ensure that the ma@éurns to the classic screened Coulomb potential
when the impurity is located a large distance afwam the source-channel interfacg,k. > 4.

Performing this limit on equations (4.12)-(4.13)ag

Jim g =(1- H(Z))exp( 7, J1e+ kg)zo (4.15)

Jim g =6(2) 4775 jkoO( kF}\/iexp( | - 7 k+ g) (4.16)

The source potential term is dominated by the megaixponential which tends to zero in the limit
Z k.- >4. This is consistent with theory that if the imipyiis a great distance from the source,
there will be no interaction with polarisation cpes in this region. Similarly the polarisation

charge term within the channel potential, the sdoexponential on the RHS of equation (4.13),
will tend to zero.

After use of the transformation theorem given byatipn (4.17) [98] the channel potential can be
given by equation (4.18). This form is identicalthe screened Coulomb model with no boundary

interactions such as polarisation effects.
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4.2 Single Interface Potential Model

exp( —a\/m )

X
{m\lo(xy)exp(—b\/ N a%) e N (4.17)
exp(—kCJR2 +(Z-2 )2)
im ¢, =6(2) (4.18)

2>k 47Es|£o JR*+(Z2-27)?
4.2.3.2Matched Screening Limit

Ensuring that in the limit of matched screeninghie source and channel regiorg,= k., the

polarisation charge terms disappear is the purpbshis check. This is the case if there is no
boundary introduced via the screening in the sowmd channel region, then formation of

polarisation charges is impossible.

lim ¢, = (1-6(2))

— Jdk\lo(kamexp( 2)J k+ gz) (4.19)

lim ¢ =6(2)

fEs. jkoo( kF}\/iexp( | z- 71 k+ g) (4.20)

Completing the matched screening limit on the sewiod channel potential terms gives the
equations (4.19) and (4.20). As expected the madetns to a screened Coulomb potential split
over the source and drain regions. Again, if thpurity is located a large distance from the source
region, the source potential will tend to zero mghe screened Coulomb limit discussed in the

previous sub-section.

As the matched screening limit provides a solutibthe screened Coulomb potential over the two
regions, it is convenient to check the continuityle solution at the interface. Taking the limit

Z =0 on equations (4.19)-(4.20) and equating yieldsrafdme manipulation

Idkj@(exp( Z\/kZT) Id kFX kexp( ZW)

¢S(Z :0):¢C(Z_O)

(4.21)

Equation (4.21) clearly shows that the potentiadéaim at the interface.
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4.2 Single Interface Potential Model

4.2.4 Comparison with Non-Linear Poisson Solution

As the newly-developed model for the potential ofimpurity located close to a region of high-
doping solves a linearized form of the Poisson ggoait is important to compare this with a
numerical Poisson solver. This will allow for ancarate test of the quality of the solution
obtained here. First the discrete impurity metidki be discussed and demonstrated before the

detailed comparison between the solution is coraglet
4.2.4.1Discrete Dopant Simulation

A fully self-consistent, Non-Linear Poisson (NLR)wgion will be used to simulate an ideal device
of a single atomistic impurity located close toiaterface. The method used to solve for atomistic
impurities with the Poisson equation is discusgedietail in the paper by Asenov [63]. The

method involves including a single dopant via theshiresolved charge distribution by assigning

the chosen mesh cell to contain the charge dee;%hil whereh is the mesh spacing. This mesh-

resolved charge distribution is used within thesBoin solver to calculate the electrostatic potentia

for the system.

For this experiment a device has been construchéchvelosely represents the ideal system used to
develop the single interface potential, Figure 4This device takes the form of a highly doped n-
region located adjacent to a p-doped region adéécted in Figure 4.3.

Source

N _=10*cm?3
20nm 2

10nm 60nm

Figure 4.3: Figure demonstrating the doping profile of the Poisson test device for the single
interface model. The doping transition from N, =10°cm® to N, =10®cni® is assumed to be
abrupt.

The device has as 20nm square body and is 70nmwhigh is split into 10nm for the highly-
doped source region and 60nm for the channel. rgppn the source region is given as

N, =10°cmi® and the channel is doped &, =10°cnm® with an abrupt doping transition

between the regions.
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4.2 Single Interface Potential Model

To improve the quality of this experiment a slighbdification is made to the normal atomistic

doping process. As the remote screening modellole®@ here assumes a linear background
charge density with a single atomistic impuritysimilar assumption is made when resolving the
charge distribution for the Poisson solution. Hertbe inclusion of a single atomistic dopant is

assumed not to alter the surrounding dopant corateant per unit volume of the simulated system.

Examining this assumption in more detail using éiqua4.22) it is found that this assumption has

little effect on the background doping. In theteys described above the channel region has a
volume of V =24x 10" cn? with a dopant densityN, =10cni®. Using the equation below, this
leads to 24 dopant atoms in the channel volumedirdone further dopant to the channel region
roughly corresponds to a background doping conagoir of N, =1.042x 16°cni® which is less
than a 5% shift in doping.

r}on =Vx NI (422)

A mesh is applied to the structure with a nodeltgem of 0.25nm. This fine mesh is important to
ensure that the atomistic impurity is accurateoheed within a discretized Poisson solution [99].
The channel length is chosen to be long enouglt¢coramodate the source interface depletion

width of W, = 36.7Inm calculated using the long-channel formula giveednation (4.23) [15].

e :\/2£Si£0(Eg/2+ koTIn( N,/ n)) (4.23)

eN,

The reference channel screening length is calailagng the Debye-Hickel screening model,
equation (3.36), asl. =4.133m where the carrier concentration is assumed toixsel fat the
background dopant concentratians N, =10 cni®. This reference screening length is used only

to provide a fixed length scale to measure thetijposdf the impurity in the channel.

The potential solution for this device with a simgitomistic impurity located at four different
locations is shown in Figure 4.4. In part (a) listfigure, the atomistic impurity is placed at

Z, =52nm which is beyond the end of the depletion regidmis is to ensure that the atomistic

impurity will be minimally affected by the souragérface. The potential isolines for this impurity

are spherical close to the impurity and slowly disg farther from the impurity centre.
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Figure 4.4: Plots of the potential iso -contours for an atomistic impurity in the ideal single

interface structure. Plots (a) -(d) denote varying positions, Z,, of the atomistic impurity
given in relation to (a) the channel depletion widt  h, or (b) -(d) the channel screening length.

In parts (b) and (c), the atomistic impurity isdted arount44. and14. from the source-channel

interface. The potential contour lines change flm@ing spherical to being teardrop shaped a
impurity is located closer to the interface. Chlgahe vicinity of the interface is altering tl
screening of the atomistic impurity poteal as is expected.

In part (d) of Figure 4, the impurity is located directly next to the ifitee at roughhZ, =0.14. .

At this distance th@olerisationcharge effect is very strong as the potential meaidemonstrate
The impurity is heavily screened and the impacthefimpurity is felt over a cro-sectional area

much smaller than the case where the interfaces fitélg role such as in it (a) of this figure.
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4.2 Single Interface Potential Model

These plots show a consistent result with the effieadelled by the single interface potential

calculated earlier in this chapter, Figure 4.2.
4.2.4.2Comparison with Analytical Model

To ensure that the calculated analytical poterigalaccurately modelling the impurity it is

important to compare the results in more detalisTs possible by a comparison of the analytical
model with the NLP solution from the previous sewti In Figure 4.5, 1D slice plots of the

potential obtained from the NLP solver are compdeethe analytic solution calculated in section
4.2. As the analytical solution uses a lineariBeisson solution, the comparison in the models
will differ as the full Poisson solution will inclle the depletion region of the p-n junction. This
makes the comparison difficult but a simplifyindwtmn has been utilised to compare the impurity

potential solutions between the models.

Solving the model system described by Figure 41 wie NLP solver and with no atomistic
impurities, a uniform device, provides a solutidrite potential for the p-n junction. The potehtia
and carrier density profiles for this uniform dewisolution can then be extracted giving a solution
for the depletion region. Through the use of sppsition the uniform device potential can be
added to the analytical model to provide a solutomparable to the NLP solver. Likewise the
uniform solution could have been subtracted froemNP solver to compare the impurity potential

alone, but the current method is perhaps closezaiossimulation conditions.
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4.2 Single Interface Potential Model
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Figure 4.5: Comparison of the potential of a single atomistic impurity using a fully self-

consistent, non-linear Poisson solution and the sin gle interface, analytical solution obtained
in section 4.2.

For all impurity positions in plots (a)-(d) of Figu4.5, the analytical solution is found to be very
close to the discretized NLP solution. The larghfference is in the resolution of the singular
peak of a Coulomb point charge, the atomistic intpuwentre, which is a known drawback of the

discretized Poisson solution.

To be thorough in this comparison, a single impupbsition from Figure 4.5 is chosen to
complete a comparison in the axis parallel to titerface. This comparison is shown in Figure 4.6

for Z, =24, and again shows the close agreement between tlielsno Again there is a

discrepancy in the singular peak of the point chahge to the discretization error induced from the

numerical solution of the Poisson equation.
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>
E — Non-Linear Poisson
§ [ — Remotely-Screened
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R Position [nm]

Figure 4.6: Comparison of the non-linear Poisson an  d analytical solutions of a single
atomistic impurity located at ~ Z, =24.. Discrepency between solutions of point charge du e
to numerical discretisation of Non-Linear Poisson s olution at mesh spacing  Ax=0.5nm.

This comparison demonstrates that the calculatelytcal model accurately provides a method to
model the polarisation charge effect of an atomistipurity located close to an region of higher
doping.

4.2.5 Strong-Screening Limit

A set of equations has now been developed whichemtite potential of a single atomistic
impurity located close to a reflecting interfacé&rom the potential equation it is possible to
develop a scattering mechanism which can be usétbitte Carlo simulation. The development
of such a scattering mechanism and the applicatidmonte Carlo simulation will be the subject of
the following chapters.

In their current form the potential solution foetkingle interface model, given by equation (4.14),
is quite large and unwieldy. The calculation dflante Carlo appropriate scattering mechanism is
a daunting procedure and is challenging to compléth the potential described above. A
simplified form of the potential has been found ethallows a straightforward calculation of the
scattering mechanism, yet retains as much of tmeplxie physical model as possible. This
simplified model has been obtained here by usihigiawhich is appropriate to the model system

that the potential solutions have been developed fo

This limit assumes that the source region is higlegenerately doped, becoming metallic-like, and
the corresponding screening length becomes veryhniess than the channel screening length,

As < Ac. This limit has been termed the strong-screehimg and is shown here to simplify the

potential solution. Using the strongly screenedtliconstitutes a model which assumes the worst
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4.2 Single Interface Potential Model

case scenario for this interaction in that the sewegion is a metal. This, as discussed below in
section 4.2.5.2, leads to over estimation of timote screening effect of the induced polarisation
charges. For the purpose of this work, which isttaly what effect polarisation charges have on
modern device performance, this limit is considevedle. It is worthwhile mentioning that the

strong-screening limit essentially reduces the lgrlio the classical image charge problem [100].

4.2.5.1Strongly Screened Single Interface Model

The strong-screening limit for the single interfacedel greatly reduces the complexity whilst still
retaining the important characteristics. Hereah de redefined a&; > k. using the inverse

screening length. Using the potential solutiomsnfrsection 4.2, equations (4.12) and (4.13), and
taking the limit yields

Iim ¢, =(1-6(2)) 47E jkoo(kF;—exp Z k) exp( 7 &+ g)
(4.24)
kI|>>rrg o = Mzo forz< 0

S

The source potential tends to zero as all of theunity potential is screened out in a very small
region on the source side of the interface. Thisxipected as the screening in the source becomes

very strong.

The limit of the channel potential seems less @ffecbut simplifies the coefficient of the
polarisation charge term, the second term withangfuare brackets. Essentially, the strength of
the polarisation charge term no longer dependshenratio between the channel and source

screening as the source is assumed to be an gherdstt reflecting surface.

| = 7 k+ &

lim ¢ =&2)

ﬂfs. j dk3,( KR Ji [exp(

4

L exp(—(z +7,)
K

)

s } (4.25)
)
]

Iim ¢, =8(2)

j dk,( kB ﬁ[exp( |z 7 k+ k
- ex;é—(Z+Z \/7)

Sl

The strong screening limit allows the form of edprat(4.25) to be further simplified by using the

theorem, given by equation (4.17), which removesititegral.
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4.2 Single Interface Potential Model

o exp(—kCJR2 +(z- ZI)Z)

klsi>£rl]<c¢c =92) 4rE £, R2 + (Z -7, )2
(4.26)
exp(—kN/Rz +(z+2 )2)
R2+(z+2)

This simplified form of the single interface potahtconsists of the recognisable screened
Coulomb potential, the first term in the square bedcminus the potential of the polarisation

charge, the second term. The polarisation change tan be distinguished by the change in the
sign of the impurity positionZ, . As the source potential has been screened tovaér the limit

of strong-screening, the total potential become®ki the channel potential. It is important to

note that this potential is only valid for the chahregion, that is foZ >0.
4.2.5.2Verification of Limit

Although the strong-screening limit provides a dienpgmodel, it is necessary to check that the
model still provides an accurate representatiorthef system. This can be easily shown by
comparison of the potential for the complete madginst that of the simplified strongly screened

model. Such a comparison of the remotely screempdrity potentials is made in Figure 4.7.

For this comparison an ideal example device haa lbsed which has a source region located at

Z <0 doped atN, =10°°cmi® and a channel regiorZ >0, with doping at three concentrations,
N, ={1014,1016,1(38} cmi®.  The screening length for these three channekitiesn has been

calculated using the screening model given by éguat(3.36) and corresponds to
A ={409,41,4.}1nm respectively. The source region is only considénethe complete model as

the strongly screened model screens out the patentthis region. Hence for the figures in this

section the source region is not plotted.
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Figure 4.7: Comparison of the complete and strongly screened potentials for four impurity
positions.

In Figure 4.7 are plots of the impurity potentitlf@ur different locations in the channel. In thes
plots the potential is given for both the completel the strongly screened models over the three
different channel impurity densities. In each mbFigure 4.7 the strongly screened model shows
an increased drop of the potential at the sourtefate. In plots (c) and (d) this drop in potehti
becomes appreciable at a distance roughly less dhannanometre from the source interface.
When the impurity is located at one nanometre ss feom the interface, as in plots (a) and (b),

this drop in potential becomes quite large.

The increased screening of the potential at thecsointerface is expected from the strongly
screened model as this limit forces the potentidhe source region to zero. This acts as a strong
boundary condition for the channel potential whatsures that the channel impurity charge is
neutralised at the interface. The validity of tligproach can be roughly analysed from the
behaviour shown in Figure 4.7. As discussed altbgdimit induces a large shift for impurities
very close to the interface. Examining the potdntbomparisons in more detail in the following

figures will allow a better quantitative analysis.
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Figure 4.8: Detailed comparison of complete and str  ongly screened potential models for
Z, =5nm.

At an impurity distance oZ, =5nm, as shown in Figure 4.8, the strong screening Isradequate

with a shift in impurity potential of aroun8mV at a tenth of a nanometre from the interface.
Although this corresponds to a 100% error at theriace, the potential can be considered to be
well screened at this distance and the stronglgesard model is quite accurate. Beyond the
impurity into the channel region, the limit yielda error of ~5-10% or less than a millivolt shift i

potential.

Interestingly at this impurity position the chanmelpurity density has a noticeable effect on the
quality of the strong screening limit. The higliee impurity density in the channel, and therefore
the higher the screening density the closer theefsaale. This can be explained by the increased
screening of the impurity potential in the chanméhimising the interaction with the source as
seen in Figure 4.7, plot (d).

(a) (b)

Veot=Viim [V]

I
0.01 0.1 1 10 100 0.001 0.01 0.1 1 10 100
Z [nm] Z [nm]

— N=10"cm? — N=10"%cm? N=10'"%cm?

Figure 4.9: Detailed comparison of complete and str  ongly screened potential models for
Z, =1nm.
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4.2 Single Interface Potential Model

At the impurity positionZ, =1nm, the detailed comparison plots of Figure 4.9 slaawuch larger

shift in the potential, roughly 70mV at the interda The percentage error plot of (b) highlights th
problem of the strong screening limit at this dise& from the source. Around this impurity
position the error increases rapidly, but worryyntile error beyond the impurity into the channel
bulk increases to 30-40%. At this distance théditglof this limit under these conditions is hard

to justify given this increase in error.

(@) (b)

% Error

0.01 0.1 1 10 100 0.001 0.01 0.1 ! 1 10 100
Z [nm] Z [nm]
— N=10"cm? — N=10%cm? N=10"%cm?3

Figure 4.10: Detailed comparison of complete and st  rongly screened potential models for
Z, =0.5nm.

Examining the effect of the limit at a closer imiyrposition in Figure 4.10 highlights the
increasing error. The drop in the potential becowery significant, rising to well over 150mV.
The error induced in the bulk of the channel, belytre impurity also show a drastic increase to
almost 50%. At this impurity position, within 1nof the interface, the strong screening limit for

the source does not provide an accurate solutidimegbotential.

Looking at Figure 4.7 it is clear that the errortlie approximation becomes appreciable within
roughly a 1nm region from the source interface.r iRtpurities located outwith this region, the
error constitutes a small potential drop. Frors timalysis the limit has been shown to be close to
the complete model over a range of channel impgotycentrations and impurity positions greater
than 1nm of the interface. Modelling impuritiesthihn 1nm of the interface leads to an

overestimation in the screening of the potential.

To further the verification of the strongly scrednamit it is appropriate to compare the two
models in a context of effect on device behavioiiris difficult to estimate the effect that the
strongly screened limit will have on carrier scattg from the comparisons on potential alone and
therefore an analysis on ionized impurity limitedbniity is ideal. A numerical calculation of the
impurity scattering limited mobility using the memtum relaxation rates of the complete and

strongly screened models is shown in Figure 4 Although the discussion and use of momentum
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4.2 Single Interface Potential Model

relaxation rates in this chapter is a little outsefjuence in the structure of this PhD thesis (see

Chapter 5), it is necessary for the analysis ohtiodility discussed here.

The electron mobility is calculated using the Kubeeenwood formula [33], equation (4.27),
assuming a spherical, parabolic band structuree mbmentum relaxation rate for the strongly-
screened model is presented in Chapter 5 (assuthéexgon-parabolicity parameter =0) and

Appendix C presents the momentum relaxation ratéhtocomplete single interface model.

_ 2 of,
y—SmDn_([dEp(E) Er,, E)(aEFj (4.27)

Here e is the electronic charge is the electron density,o(E) is the density of stated, is the

equilibrium Fermi function ande; is the Fermi energy. The electron density anddéesity of

states can be written for parabolic bands as

0 %
_o Mk T _E¢
n—Z( o J 3, (n) forn T (4.28)
0\%
3(2m
p(E) :% E* (4.29)

In Figure 4.11 the ratio of the mobility betweer tivo models is plotted against the positidn,

of a single Il. The mobilities are calculated htee different background channel impurity
concentrations where the carrier density is assutneelqual to impurity density in each case.

Similar to the potential comparisons given abowe, $ource impurity/carrier density is given as

n=N, =10°cni® and is only referenced in the complete model.
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Figure 4.11: Mobility comparison of the complete an  d strongly screened models assuming a
single ionized dopant at a range of positions Z,, given three background doping

concentrations.

It is clear from this plot that the strongly scredrmodel does in fact become increasingly invalid
when the impurity is located within 1nm of the smuinterface regardless of channel screening
density. This is very much consistent with the atosion of the potential comparison that the
strongly screened limit will lead to an over-estiioa of the effect of remote screening. At 1nm
the strongly screened model gives a mobility apipnately just over one and a half times larger
than that of the complete model. This increaspgligat decreasing impurity distance from the

interface with a ratio of roughly three &t =0.5nm and a peak of over twenty in the plot above.

Considering the context of this work which is todabthe polarisation charge effect on ionized
impurity scattering, the use of the strongly scesklimit is deemed acceptable to obtain a worst-
case value. Use of the strongly screened modetuaritectly yield an upper limit on the effect of

this interaction in a device simulation as has bmmmpleted in Chapter 6.

4.3 Double Interface Potential Model

The double interface potential can be calculatdidviing the identical procedure as the single
interface model. Cylindrical co-ordinates are usledughout and the LTF approximation, in
conjunction with the Debye-Huckel screening modelised to simplify the Poisson solution. The

physical system is defined in Figure 4\Mh the source interface located at=0 and the drain

interface located aZ = L. . In this figure the source and drain regions hzaveier densities larger

than the channelng,n, > n.. Again the impurity is assumed to be always ledadt R, =0 to

incorporate radial symmetry around the Z axis, $ifyipg the solution.
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Source, ng Channel, n_ Drain, n

Figure 4.12: Pictorial representation of the double interface system with the impurity located
at Z, and the channel length is given by L. .

The 1l is given by the red circle in the channaiom and it's position is defined relative the the
source and drain interfaces, in this cage and (LC —Z,) respectively wherel. denotes the

channel length.

4.3.1 Potential Solution

The Poisson equations defining the double interfagstem of Figure 4.12 using the LTF

approximation can be given as

Dp, -k’ =0 forZ<C (4.30)

(R)
0%, — Ko = -2 5(z-2) for0<z< 4.31
fomlCpe= S 0(27) for0<Z<l (4.31)
0%, k2, =0 forZ> L, (4.32)

Using similar boundary conditions on the poterdisthe single interface mod(-%llé'm ¢ -0, and

using the Bessel functions within cylindrical calimates, the following solutions can be found

6. =(1-6(2))[ k(K7 A( hexpl zK) (4:33)
g = (6(2)-6(2- )] dea () -2 el = 4 )
—At(k) pléXZKC) (4.34)

~Be (k) pbeK:)]
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4.3 Double Interface Potential Model

#o =6(2 - L) [k, (k) A( hexp(- ZK)

Here the simplified termsK, , are given by equations (4.36)-(4.38) below.

Ko =K +K

(4.35)

(4.36)

(4.37)

(4.38)

The four coefficients{ A, A, B, Ay , can be found by matching conditions at the iais#6 using

a simplified set of the electric field continuitgjuations specified in equation (4.39).

0p. _0p. 00 _00,
0Z 0Z 0Z 0Z
09 _0¢.  ,00c _ 00,
OR OR OR OR

(4.39)

These boundary condition have been simplified agltalectric permittivity is constant throughout

the system.

The solution for the four coefficients has beennfbuusing a matrix method to solve the

simultaneous equations, which is not reproduced {se Appendix B). The resultant form for the

coefficients is large and after some manipulatian be reduced to the set of equations given by

(4.40)-(4.45).

Q

4rE E,

A (k)= 2k A(Kexo(-Z K)

Q L( Ks — Ke) An( Klexp(- Z, K.)

ATEE, K

A (k)=
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Ay (K) = —2—2k A(Kexd(- Z k) exf- L K+ K)) (4.43)

4rE E,

The following two coefficients become common comgras which control the screened fields for

the polarisation charges in the sourég, and in the drainA, .

_Ke(exp(@cKo)+ exf ZKo))+Ko( exp BKe)- epzK)) )
(KZ+KoK)(exp( LK)~ )+K o Kp+K Y exf 2K J+ ) |

Kc(exp(ZZ. Kc)+])+ Ks(expé Z K)- )L
(Ké+KDKS)(eXp(Z_CKC)_])+KCKD+KSX expﬁ 2K c)"‘ )L (449

sz

After some re-arrangement the potential for thecmwchannel and drain regions can be simplified

to use only the coefficients,, (k) and A, (k). These simplified forms are:

po=—2 (1—6?(2))Tkoo( kR2k A( kexd- Z K) exf ZK) (4.46)

ATE, si€o

b= e (02)-0(2- L)) [0 (19 ol 2 7 )

47ESi£O
~(Ks=K¢)A, (k) efp(Z+2Z) Ke) (4.47)

_(KD _Kc)Ah(k) e«[z_ Zw) Kc):|

b0 i AT (H2 kol -(7- 0 Q)
x exf=(Z - L) Ko)

P=Ps+P:.+¢, (4.49)

Examining the forms of the calculated potentidieré are some distinct similarities with the single
interface model defined in section 4.2. The soyrotential term,@g, is almost identical apart

from a change in the coefficient. The channel pidéis also very similar but has an additional
component included from the drain polarisation gear the third term within the square brackets
of equation (4.47). More detail on the calculatadrihese potentials is given in Appendix B. This

includes an outline of the matrix method used teestor the coefficients.
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In the single interface model, the single inducethpsation charge could be represented by a
simple coefficient which can be said to represenat® of the screening densities between the
source and channel regions. In the double interfamdel above, the coefficients become
considerably more complex although represent alaimatio of screening between the source,

channel and drain regions.

As mentioned earlier, the double interface modelcamtain conditions will induce multiple
polarisaiton charges. This is a side-effect ofilgéwo reflecting interfaces a short distance gpar
an analogy being that of having two mirrors facéagh other reflecting the same image. Here this

behaviour can be seen in the coefficie§s and A, which control the polarisation charges

induced from the source and drain regions. Lookihghe coefficients of equations (4.44) and
(4.45), the extra complexity of the multiple posation charges can be seen by the introduction of
the positive exponential components. The posigxponentials represent an infinite sum of

polarisation charges which interact to increaseotrezall screening effect.

4.3.2 Contour Plots

Plotting the total potential, equation (4.49), for impurity in three different locations in Figure
4.13 shows the effect of the double interface modRalarisation charge effects are present at both

ends of the channel and importantly, combine tth&urincrease the screening effect.
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Z=04nm Z=2nm Z=3.7nm

(a) (b) ©

Figure 4.13: Potential contour plots of a device wi  th a channel length L. =A. =4.133mm.
Channel doping is N, =10®cni® and the source-drain doping is N, =10°°cm’®. Plots (a)-(c)

identical screening in the source, channel and drai n. Plots (d)-(f) include the polarisation
charge effects of the highly-doped source and drain regions.

The largest change between the single and douteldane potential models comes in the form of
the coefficientsA, (k) and A, (k) given by equations (4.44)-(4.45). In this modi toefficients

are large and complex as the polarisation charfgetalevelops beyond a reflection of charge from
one surface to reflections between two surfaceslariBation charges or reflections between the
heavily-doped source and drain regions is more ¢exnghan the single interface. Under
circumstances that the channel length is suffiresttort and an atomistic impurity is not fully
screened in the distance to the interfaces, théldonterface model induces multiple polarisation
charges. This situation will occur for channeldg#érs which are smaller than the channel screening
length.

4.3.3 Long Channel Limit

As with the single interface model, it is importantcheck that the calculated potential behaves in
the expected manner at appropriate limits. Dug¢héosimilarities between this model and the
single interface model it is not felt necessaryepeat here the screened Coulomb and the matched
screening limit. Instead the potentials for thisdal will be checked to ensure that in the
appropriate limit they return to the single intedacase. This limit has been entitled the long
channel limit and can be found by allowing the cteddength to become very large, that is the
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4.3 Double Interface Potential Model

limit of L. — . For this limit it is best to first take the limon the coefficientsA, (k) and

A, (k) given by equations (4.44)-(4.45):

exp( LK) (K +Kp )+ exd Z, K. )(Ke+Kp)

lim A, =

Lo -0 eXp(Z-cKc)(Ké"'KDKs"’KCa( D+K3)) (4.50)
__ 1
B Ko +Kg
im A = SR Z K )(Ke +Ko) + Ko =Ko
Leoew 1 @(p(ZLcKc)((Kc + Ks)(KC+ K D)) (451)

=0

The coefficient A, which controls the drain polarisation charges ety tends to zero as the

channel length tends to infinity. The source calféd polarisation charge terms, given By,

simplifies vastly as the coefficient is reducedrtodelling a single polarisation charge term within
the source region. Substituting these coefficients equations (4.46)-(4.48) gives the single
interface model, which is not repeated here, as@rd if the drain region is a large distance from

the source and the atomistic impurity.
4.3.4 Comparison with Non-Linear Poisson Solution

Comparison of the single interface solution witle tNLP solver in section 4.2.4 has shown
excellent agreement. To ensure that the doubdefate model also agrees with a full solution of
Poisson’s equation , a similar test will be comgrehere. Again using a solution of the uniform

device with the NLP solver to find the solutionlunting the depletion region.

A simple example device will be used to test thelde interface remotely screened impurity

solution and is depicted in Figure 4.14. The dewviill have a channel length which is
approximately equal to a single screening lengtMNat=10"cni® of L. =A.=4.25mm. This

device will be referred to as the lambda channeicge for want of a better name.
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Source Drain
N,=10%cm?* N,=10*cm?
10nm
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Figure 4.14: Lambda channel device for the comparis  on of the double interface potential
with a non-linear Poisson solver.

This device is important to test because under iiond when the channel length is around the
screening length, multiple polarisation chargesligedy to be present in the system as discussed at
the end of section 4.3.2. Figure 4.15 gives tludspdf the lambda channel device with a single
atomistic impurity in three different locationslof® (a) and (b) give the dopant in positions which

correspond roughly t&, =0.14. ,0.9). and plot (c) in positiorZ, =0.54. .

(@) Z Position [nm] (b) Z Position [nm]
s 15 5 15
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8 —— Non-Linear Poisson
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&~ —— Remotely-Screened Solution
_1_5 L

Figure 4.15: Plots of the non-linear Poisson compar ison with the analytical model for
remotely-screened impurities within the lambda chan nel device.

These plots show the excellent agreement betweenattalytical and numerical solutions.
Regardless of the impurity position the match isnadt indistinguishable neglecting the
discretization error of the potential peak in tHePNsolution.
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4.3.5 Strong-Screening Limit

The strong screening limit of the double interfavadel, that isks, k, > k., will also simplify the

potential terms much like in the single interfaese. Here the potential equations and coefficients
from section 4.3.1 (equations (4.44)-(4.48)) aredu®r the double interface model. For simplicity

when applying the limit, it will taken that for thienit of kg, k, > k., the K, terms will become:
ks, kp> ke

_ {KS =kq
lim (4.52)

Taking the limit of the coefficients first:

K, (eXp( 2. Kc) - eXF( Z, Kc))

k Ikin;k An =
ol Tk (exp( 2L K o) - 3+ kDKC( i '%D)( exf 2.KJ)+ )L (4.53)
im exp( Z-CKC)_ ex;( Z, KC)
A = ks(eXp(ZLC Kc)_l)
lim B Ks (exp( 2, Kc)_ ])
ks kp>ke kSkD(eXp( 2L, Kc) - ])+ ks KC( I+ k%sj( ex[ﬁ 2. KC) + )]_ (4.54)

exp(Z K. )- 1
ks (exp( 2. K. )-1)

A" =

Substituting these coefficients into the limit afuations (4.46) and (4.48) gives the limiting form

of the double interface source and drain potengéals

lim ¢S=%=o forz < (4.55)

_op(-(Z- L) k)

=0 forZ>L. (4.56)

Finally, substitution of the strongly screened &io&nts into the channel potential term yields the

following.
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m, o= (6(2)-0(z- L)) [k (k) el 2 7 )
—kSA"nm e(qa Z+7) K) (4.57)

Ar(K) elz-2) k)]

This is a substantial reduction in complexity ofe timodel, yet still retains the important
polarisation charge terms from the reflecting sewand drain regions, thé“2and ¥ terms in the

square brackets of equation (4.57) respectively.

Importantly the coefficientsA™", A™ retain the positive exponential components whiah be

considered to represent thaultiple-imageeffect discussed earlier in this chapter. Tindtiple-
imageeffect is the repeated reflection of the impuptyint charge between the source and drain

regions when the channel length is sufficiently kma
4.3.5.1Verification of Limit

Repeating a procedure similar to that of the simgfierface case for the strongly-screened model,
the strongly screened double interface model wilvrbe compared to the complete potential.
Again, the purpose of this limit is to provide apper-bound on the remote screening effect of

channel ionized impurities.

The comparison will initially be based on two tdsvices which have different channel lengths, a

25nm channel length device and a 15nm channel elevigoth of these devices have a channel
doping concentration oN, =10°cni® which corresponds to screening lengthAf=129.29\m
using equation (3.36), the Debye-Huickel screeningeh The source and drain regions of these

devices which is referenced only within the compleibdel is doped tt, =10°cni®.
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4.3 Double Interface Potential Model

(a) (b)
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Figure 4.16: Comparison of the complete double inte rface potential with the strongly
screened model for two different channel length dev ices. Atomistic impurity located exactly
mid-channel of each device.

Figure 4.16 shows the comparison between the paleifidr (a) the 25nm device and (b) the 15nm
channel device. The potential of the strongly eeesl model is a close match to the complete
model surrounding the impurity as expected. Agdhaére is an increased screening of the potential

close to the interfaces which is consistent withgtrongly screened single interface model.

With the strongly screened interface model disaligsesection 4.2.5.2, the region over which the
limit caused a notable error in the potential waiw roughly 1nm of the interface. It was shown
that modelling an impurity within this region ofehnterface caused a significant error in the
potential. Essentially the limit over estimated fholarisation charge effect and over screened the
impurity potential. In the double interface modek error in the potential seems evident over a
larger region from the interface. Looking at Figu.16 the difference in the potential becomes
appreciable at around ~2nm from each interfacettiRlj the comparison in more detail in Figure

4.17 allows a better analysis of the error.

(b)

0.003
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0 7_5040003

10 15 6
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Figure 4.17: Detailed comparison of the strongly sc  reened and complete double interface
potential models.
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4.3 Double Interface Potential Model

Figure 4.17 shows that at ~2nm from the interfdume dtrongly screened model is approximately
80% of the complete model. This corresponds taradoa 1-1.5mV potential difference for the

25nm and 15nm channel length devices.

To further test the validity of the strongly scredrmodel another comparison has been completed

with a device whose channel length is equal toctiennel screening length, for want of a better

name, the lambda channel device. This device hesaanel doped taN, =10*cm® which
corresponds to a screening lengthf=4.133im. The source and drain regions are doped to

N, =10”cni®, again this is only referenced with the completelet.

In Figure 4.18 and Figure 4.19 are the potentiahgarisons between the models in the lambda
channel device. Initially this comparison looksaatatomistic impurity at three different locations
in the channel but the detailed comparison willkl@ only two positions due to the symmetry

between the left and right positions.

Potential [V]
o
=

o

o

=
T

0.001 j

Z [am]

—— Complete Model

—— Strong Screening Limit

Figure 4.18: Comparison between the strongly screen ed and complete double interface
model using the lambda channel device. Atomistic i mpurity located at (a) Z, =1nm, (b)

Z, =051, and (c) Z, = A, —-1nm.

Plot (c) of Figure 4.18 shows a single atomistigumity located exactly mid channel, just over
2nm from each interface. There is an apprecialup th the potential within 1nm of the interface

which is given in more detail in plot (b) of Figudel9. At 1nm, the strongly screened model is
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4.3 Double Interface Potential Model

around 80% of the complete model with a correspandrop of roughly 10mV. For an impurity

here within 2nm of the interface, 50% of the patdrietween the interface is above 80%.

(a) (b)
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Figure 4.19: Plots of the ratio and potential diffe ~ rence between the strongly screened model
and the complete model for the lambda channel devic e. Plot (a) shows the impurity at
Z, =1nm and (b) the impurity positioned at  Z, =0.51. = 0.8...

Looking at the case of the impurity located clas¢hie source interface given by plot (a) of Figure
4.18 and Figure 4.19. An impurity located at 1mwonf the interface the maximum potential
difference is increased by a factor of 2-3 times thid channel impurity. At this distance the
validity of the strong screening limit is questible This behaviour is not completely dissimilar
to that of the single interface model with an impuat this distance from the interface given by

Figure 4.9.

It is clear that as the impurity is moved closetthe interface the error in the strongly screened
model will increase and is very much appreciabléhwi 2nm of an interface. At impurity
positions greater than this distance from eithergburce or drain interface, the limited model is
shown above to be close to the complete model svithll shifts in the potential of several mV’s

near the interfaces.

Unfortunately due to time constraints in the PhDjgut, the complete double interface momentum
relaxation rate and therefore the mobility has lmexn calculated for this model. As discussed in
the above examination of the strong screening efiedhe potential, it can be said that the limit
will induce an increasing error as impurities arealted close to either the source or drain interfac
(or both). This said, the objective of using thisit is to obtain a worst-case condition for the

remote screening of channel impurities induced fpmtarisation charge effects in the source and
drain regions. This is certainly achieved by impgsa limiting condition on the screening density

in these regions.
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4.4 Conclusion

4.4 Conclusion

In sections 4.2 and 4.3 of this chapter a potestéltion for a single atomistic impurity located
close to one or two highly doped regions has bdxtaimed. This has been completed by solving
Poisson’s equation using the LTF approach to olaairexact analytical solution. This solution
naturally includes polarisation charge effects patliby the boundaries which are the focus of this
work. Polarisation charge effects are shown toei@se the screening of an atomistic impurity
located close to abrupt interface with a highly elbpegion. Hence these potentials represent the
remotely screened impurity potential for the casfesn impurity located close to the source and/or

drain regions.

The mathematical limits of the potential solutionave been checked to ensure the correct
behaviour. It has been shown that polarisatiorrgeh&ffects disappear when the impurity is a
large distance from the interfaces. Under thigdit@n the model returns to the screened Coulomb

potential which is the classic potential for an imify and is an important limit for this model.

To further prove the validity of the approach awtlgon presented, in section 4.2.4 and 4.3.4 a
comparison between a fully self-consistent, noednPoisson solver and the calculated analytical
approach has been completed. This comparison saalsse agreement between the approaches

and highlights the accuracy of the remotely-scrdempurity potentials.

Finally, a simplified model has been obtained biraduction of the strong screening limit in
sections 4.2.5 and 4.3.5, which assumes that thnees@nd drain regions are degenerately doped
and become metallic like. The limit has the resulteffect of screening all the induced impurity
potential in the source/drain regions at the iaieef thereby reducing the potentials in these

regions to zero.

In the single interface model, the strongly screlepetential is shown to be almost exact for
impurities which are located greater than 1nm ftbm source interface. For impurities located
closer than 1nm from the interface the stronglyesned potential greatly over-estimates the
screening effect. Similar behaviour is seen indbable interface strongly screened potential for

impurities located close to either interface.

The purpose of using the strongly screened modete represent a worst-case scenario of this
model in order to obtain an estimate of the eftactdevice performance. The strongly screened
potentials can easily be used in scattering rdtailedions whilst providing an upper bound on the

remote screening features of polarisation charfgetst
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Chapter 5  Scattering Rate Calculation

5.1 Introduction

In typical Monte Carlo (MC) simulations lonized lomity (ll) scattering is based on a simple
model of a single Il located in a semiconductor eriat. Complex boundary effects such as
polarisation charge effects are not included is #imple physical picture. Existing Il scattering
models based on this simple physical picture haanlgiven a thorough review in Chapter 2. It
should also be noted here that #ie initio atomistic approach to Il scattering developedhiis t
research group [62, 63] does include the complaxnbary effects through the Poisson equation
solution. Although, theab initio approach is a classical approach to the problemhah the Il
scattering is achieved through the classical partiansport in MC, here the intention is to obtain

quantum description of the polarisation chargeotffe

In this chapter the aim is to develop a scattermgdel for MC simulation which extends the
existing Il scattering model. This new scatteniate will allow the 1l scattering model to include
the complex effects of lls that are located claséhe source and drain regions. The impurity
potential equations developed in the previous @raptll be used to develop this new model. In
this new model the effect of highly-doped regiomsaked close to an ionized dopant is to alter the
screening of the impurity potential. Hence, thevmaodel has been entitled remotely screened
impurity scattering to reflect the nature of theuned screening from polarisation charge induced

from the source and/or drain regions.

Initially, the scattering matrix element and thée scattering rate will be calculated for both the
single interface and double interface models iti@es 5.2 and 5.3 respectively. The method used
to obtain the scattering rate will be based on Fer@olden Rule approach. Calculation of the
momentum relaxation rates and differential crossi@e will also be included, which are very

useful for analysis of the scattering model.

In section 5.4 the application of this new scatignmodel in sub-threshold device conditions is
discussed where screening is very low. Low-screemiensities cause large problems with I
scattering in MC simulations as will be highlightadd resolved for this scattering model. This

involves the development of a new Il scatteringrapph which is presented in detail.
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5.2 Single Interface Scattering Model

Following this, a brief discussion of the numericaplementation into the MC simulator will be
covered in section 5.5. This section will covee techniques used within the MC simulator to

calculate the scattering rate and complete théesoag process.
5.2 Single Interface Scattering Model

In the previous chapter the scattering potential &0 atomistic impurity located close to a
reflecting interface was calculated. This scattggpotential can be used to develop a scattering
rate for MC simulation. For such a scattering rdte matrix element must first be evaluated from

the scattering potential.

In the case for the remotely screened impurity hdtle strong screening limit potentials shall be
used as they simplify the model whilst retaining important polarisation charge effect of the
source region. As discussed in the previous chapse of this limit is a worst-case condition
which leads to an overestimation of the remoteesing effect induced from the source region for
impurities located close to the source interfadde aim of this work is to look at what effect
remote screening has on device performance, therdfe use of strongly screened model is

considered suitable as it will provide an uppeitliom remote screening.

The scattering potential for the remotely-screeliadodel is not spherically symmetric like the
standard Il scattering models. With the remotelgened model the scattering potential is
anisotropic and therefore varies depending on tgteawith which the carrier sees the impurity.
The typical textbook approach for the scatteringllionte Carlo makes use of isotropic scattering
potentials. Anisotropy in scattering is typicafiyund through the band structure via anistropic
effective masses which can also be modelled usingaropic effective mass with an anisotropic
scattering potential [101-104]. There are sevapgroaches for modelling anisotropic scattering
potentials such as a spherical harmonics expardighe Schrodinger equation as discussed by
Boardman [105], or through solutions to the linBaltzmann equation [106-109]. Due to the
complexity of these approaches and the contextisfwork which is to analyse what effect remote
screening may have, a simpler approach is emplogeel This simpler approach will allow for an
initial examination of the strength of remote saiag of ionized impurity scattering in a Monte

Carlo simulation.

For the purposes of this work a simplifying approation is made such that the anisotropy of the
scattering potential is removed by allowing theoiming carrier angle to be aligned with the
principle scattering axis. In other words, we makeassumption on the alignment of the scattering

potential with the scattering carrier which remotles anisotropy. This alignment is discussed and
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5.2 Single Interface Scattering Model

analysed in detail later in this chapter and issshto lead to a negligble error in all cases. ket

discussion of this simplification is left to secti6.2.3.

Initially the scattering matrix element suitable tse with Fermi’s Golden Rule will be calculated
from the scattering potential defined in the pregichapter, section 4.2. Following this, in settio
5.2.2 the scattering rate for use in the MC sinmfatechnique will be developed. Here other
important scattering model equations are calculatech as the differential cross-section and
momentum relaxation rate. These have a specifioitance in the analysis of the scattering
model, allowing the magnitude of the scatteringopfulity and the effect on carrier transport to be
examined. In section 5.2.3 the incoming angle Bfiogtion will be discussed in detail and the
effect the simplification has on the model will pesented. Finally in section 5.2.4 the scattering

model developed in this section will be analysed.

5.2.1 Scattering Matrix Element

The matrix element for a scattering rate is defiag@30]

He =

Ok

o exp(-k 0)ust ) exe ) 6.

where electron plane wave functions have been asturfihe matrix element has been normalised

over the 3D unit volume,Q, and Us(r) is the scattering energy. Simplifying this using

q? =|k’—k|2 and separating into cylindrical co-ordinates, thatrix element definition may be

written as a Fourier transform over the varialifgsand g, .

1% % % : :
H, :ajdzj dgf R Us(R, 2 exp(~ i1, R) exi{-ig, 2) (5.2)
—00 0 0

Throughout this section the scattering momentumsfex variables will be expressed in cylindrical
co-ordinates using the perpendicular and Z-direotechentum transfer wave vectocg, and d, .

A more detailed discussion on the exact definitidrthe scattering momentum transfer wave-
vectors for this scattering model is left to settmn2.3. For now it is sufficient to know that the
definition of the scattering momentum transfer jlindrical co-ordinates is given by equations
(5.3)-(5.4).

% =|kp k| (5.3)
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5.2 Single Interface Scattering Model

Q2 =|k, — k|’ (5.4)

For the single interface model, the scattering miaeto be used is the strong screening limithef t

model. This potential which was calculated in ieectl.2 of the previous chapter can be written as

o exp(—kcw/R2 +(z-2 )2)

TEsi R2+(z-2)

_exp(—kcw/Rz +(z+Z )2)

JR*+(z2+2)

V(R,Z)=6(2)

(5.5)

Substituting this scattering potential into thetsrang matrix definition equation (5.2) using the
transformUg(R,Z) = eV(R, 2) gives equation (5.6). As the strongly screeneniil is valid

only for the Z >0 region, the integral over th& space in the Fourier transform has been

corrected accordingly.
17 F  F : :
Hy :Ejdzj. dgf R eVR, Zexp(-d, R) exi{- ig 2 (5.6)
0 0 0

After some lengthy integration, the Fourier tramsf@bove can be completed to give

H., = e 1 : 472T [exp -iq,Z exp( Z Q2+ )} (5.7)

ArEgE, Q OF +05 + kS

Taking the magnitude-squared of this matrix elemaigo known as the Born approximation,
provides us with a form suitable for use in Ferm@®iden Rule. After some algebraic

manipulation the scattering matrix element becomes

o ArEgE, ) Q° qé +0; + ke (5.8)

{1+ exe{~Z, a7 + K| - 2c0§0,2) exp-Z\o? + €|

Equation (5.8) is the scattering matrix elementtfar single interface, remotely screened impurity
scattering model. As is expected the matrix eldrhas some similarities with that of the Brooks-

Herring (BH) approach (see section 2.3) albeit gitiere in cylindrical co-ordinates. The terms
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5.2 Single Interface Scattering Model

within the square brackets represents the remogesing coefficient and defines the extent of the

polarisation charge effects in screening the intpuri These terms are dominated by the
exp(—ZI ) components which reduce the interaction as theuditypposition Z, increases. In

other words the remote screening effect dropsaf@inly exponentially as the impurity is located

farther from the source region.

As discussed in the previous chapter it is impdrfan this scattering rate to return to the BH
model when the atomistic impurity is located a ¢éadistance from the interface. Looking at the
second and third terms in the square bracketseofrthtrix element, the exponentials of negative

power, it is clear that in the limit of, — o these terms will tend to zero and will yield thel B

model.

5.2.2 Scattering Rate

Having found the scattering matrix element in secth.2.1 for the remotely screened impurity
model, it is now possible to define the total smaty rate for use in MC simulation. This
calculation will follow the method of Fermi’'s Golddrule which defines the scattering transition
probability for a carrier wave vectdt to a statek’. In addition to the total scattering rate, the
differential scattering cross-section and the mdomenrelaxation rate will be calculated for the

new impurity scattering model.

Equation (5.9) is the Fermi Golden Rule for ant@ascattering event [110], which is a scattering
event where the incoming and outgoing energiegequal. Here the overlap integral for electrons
is assumed to equal one and the band structuredelfed by an ellipsoidal and non-parabolic

model. The effective mass, which is ¥ Pank tensor with a single diagonal component, is

represented by the isotropic density of statesctfie mass,m; =3/ mnf , by making use of the

Herring-Vogt transformation as discussed in secBch3 [71]. The Herring-Vogt transformation

allows the ellipsoidal bandstructure to be represgbas a spherical bandstructure.
P(k k') =27]T|H k,k|25( E(k *’)— Ef )) (5.9)

Here k is the carrier wave vector after the Herring-Vaginsformation into starred space (see
section 3.2.3). This equation calculates the griibaof scattering from a stat& to a statek’
but the calculation must be completed using therihrigVogt transformed vectors, hence the
change of the vector in this expression. Insertivegscattering matrix element of equation (5.8)
into equation (5.9) for the probability of scatteyigives
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5.2 Single Interface Scattering Model

P(kk')= Zhﬂ(MZ(jfoj Q_lz[q2 +372T+ kzj 5(E(kg)_ E(k*)) (5.10)

Jven|-2, (1) - 2c0ba 2) op-2a+ €]

There are various quantities which can be obtairmd the scattering probability?(k,k') , which

allow various different properties of the scattgrimodel to be analysed. The differential scattgerin
cross-section is found using equation (5.11) wiitbgrates the scattering probability over laH
space. Herev is the velocity of a stat&k given by equation (5.12) where is the non-

parabolicity parameter.

g =

k" P(k k') (5.11)

v(k)3

10E hk”
=== = 5.12
) hok my(1+20E) (512

v(k
The differential scattering cross-section is a fiomc of angle and allows for analysis of the
strength of a scattering centre. Using the séagerobability in equation (5.11) and completing

the integral yields

o ]22”“’(“%);2
ATEsE, ) I (0% +K2) (5.13)

x[1+exp( z, ) 2cobq, Z,) x(rz\/qmiﬂ

Here the impurity chargeQ , has been replaced by the number of free unitgesaof the II,Z,

multiplied by the electron charge,
The total scattering rate and the momentum relaxatate are calculated in a similar manner to
each other and are specified in equations (5.1d)Y%ai15) respectively. The momentum relaxation

rate includes a weighting term by the change inrtlmenentum of a scattering event, hence the

extra term within the integral on the RHS of equatf5.15).

r)=>Pkk)=N[Pkk)a" (5.14)
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1 N _ N .
Tm(k)-;P(k,k )(1 - cos%} N, | P(k k )[}k* coéstat (5.15)

(5.16)

where &, is the angle between the incident and scatteree@wactor. The exact definition of the

scattering angle is left to section 5.2.3.

The total scattering rate can be found by subsigu(5.10) into equation (5.14) and after

expanding the integral using spherical co-ordindtesscattering rate is given as

z¢ Y12¥ oo o=
477ESi€oJ o { dg,. !) dé, sing, £ dK’ K W
x[1+ exp(—z, q§+k§)— 2c0bq, Z,) ex(yz,/qg+ lg)} (5.17)

xJ(E(k*’)— E(k*))

(k) =[

The integral over the range of final electron waeetors, k', can be completed easily due to the
Dirac delta function which ensures energy cons@mat This leaves the integral over the final
anglesg,. and ¢,.. These integrals have not been completed herevdinoe discussed in the next
section. After some algebraic manipulation andtiplidation by the Il density of the unit volume,

N,Q, the total scattering rate is found as

L 2mK o ing,
r(k):(MZEe:J N, r;g (1+20E) [ dg, | dé?k.(jm—kkcz)z
si€o 0 0 q + (5.18)

x[1+ exp(—Z. Joz + Kf)— 2cobq, Z) ex(r Z 9%+ @)}

Here and in the following expressions the magnitoidéne incoming vector after the Herring-Vogt
transformation is written ak"” for simplicity. The momentum relaxation rate fbe scattering

process can be defined by inserting the momentilawxatgon weighting term into thé,. integral

of the total scattering rate and using the elastittering definition thakE (k') = E(k) .
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1 :( Z¢€ ] N, szgku(1+20E)quﬁk.]{dek.smek'(l_ c0259s)
r.(k) | 4Egs, h > o (0% +K2) (5.19)

><[1+exp(—zI qé+l€)— 2cofq, Z) eX%*Z\/qzu’f K)}

5.2.3 Scattering Reference Frame

The Il scattering models of BH and Conwell-Weisdk@W) have scattering potentials which are
spherically symmetric. In a spherically symmesaattering potential the angle of the incoming
carrier doesn't affect the potential the carrigeiacts with. This allows the scattering and devic
reference frames to be aligned reducing the cortgleX the model. The scattering reference
frame being that used to describe the scatteriegteand the device reference frame describing the

physical device for the direction of carrier moment

In the remotely screened model developed heredhttesing potential given by equation (5.5) is
not spherically symmetric. An example of the ptincontours is given in Figure 5.1 below.
There is rotational symmetry around the Z-axis ttughe assumption that the Il is located at

R, =0 (see Figure 5.4 and Figure 5.5). To properly diesdhe scattering event for this model

the scattering reference frame must be fixed antbhsistent with the potential model.

~Y

Figure 5.1: Fixed scattering reference frame with e xample case of remotely screened
impurity potential contours and incoming/outgoing ¢ arrier wave-vectors.

The fixed scattering reference frame used hermeistical to the reference frame defined within the
calculation of the potential (see Figure 4.1) amcalosely related to the device reference frame
which is aligned on the same axes within a cames@ordinate system. An example of the fixed

scattering reference frame is given by Figure 5ith whe remotely screened Il given by the red
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5.2 Single Interface Scattering Model

circle and the incoming carrier by the blue circl&igure 5.1 also shows example potential
contours from a Il located close to the sourcerfate where the potential contours become
slightly egg-shaped with a flat spot close to tbherse region, demonstrating the non-spherical

nature.

Also demonstrated in this figure is an exampletsday carrier with the incoming angi@ and

outgoing angled,. (the angled, assumes a rotation af around the Z axis). It is clear that the

incoming angle of the carrier will affect the seattg potential that it sees and will alter the

scattering rate.

For the Monte Carlo simulator used in this work,akhis a 3D bulk Monte Carlo simulator it is
ideal to express the wave-vectors in the sphedealrdinate system. This ensures compatibility

with the existing code and scattering processes.

e
. "_,-‘ \3(‘
X-axis *S‘?
A

Figure 5.2: Definition of the fixed scattering refe  rence frame using a spherical co-ordinate
system.

Figure 5.2 gives the fixed reference frame for thisttering model in more detail using the
spherical co-ordinate system. Here the X-Y plaeeoted in the figure represents the R-plane of

the cylindrical co-ordinate system and of the Rplan Figure 5.1, the anglg provides the angle

of rotation around the Z-axis an] gives the angle of the vector from the Z-axis.isTil the
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5.2 Single Interface Scattering Model

generic spherical co-ordinate reference systentedsuch that it matches the axis definition of the

scattering potential given by Figure 4.1.

Using the fixed reference frame, given in detail Figure 5.2, the momentum transfer wave-
vectors of equations (5.3)-(5.4) can now be defindeixpanding the components in terms of

Cartesian co-ordinates initially gives

0% =[i, ~kof =k [+ i, kf .20
= (k24 K2 -2k, K ) +( K2+ K- 2K k)
o =k~ k| = K2+ K€ -2K, Ok (5.21)

Using the following textbook transforms [96] andbaling the magnitude of the vectdr to be

written simply ask

k, = ksing, cosp, (5.22)
k, = ksing, sing, (5.23)
k, = kcosd, (5.24)

the scattering momentum transfer wave-vectors eagxpressed in spherical terms as

q2 =k?sin?g, + k?sin*g,, — XK sirg, sid, cosp,—¢,)

5.25
=k?(sin*g, + sin? g, - 2sirg, sid, cog,-9,)) (5.25)
2 =Kk’cos’ g, + k?cosf, - Xk co8, c

qZ k , k' k @(‘ (526)
=k’ (cos, - co#,.)
These forms assume an elastic scattering procebglsat the incoming energy is conserved and so

E(k)=E(k’) which is applicable to the Il scattering processsing equation (5.25) and (5.26),

the full momentum transfer wave-vector can be emitt

9’ =q2 +q;

5.27
= 2k2 (1_ Cogk Coﬁk, - Slﬂk Siakv Cé¢k - ¢k)) ( )
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5.2 Single Interface Scattering Model

The effect that the incoming carrier has on thdtegag model can now be analysed using the
momentum transfer relations defined above. Sulbsig equations (5.25)-(5.27) into the total
scattering rate of equation (5.18) gives the mau=lding the incoming wave-vector dependence.

Care must be taken with the momentum relaxatioae &ast the weighting term depends on the
scattered angle between the carriers. As the d@jleeen the incident and scattered wave-vector
is defined here within a fixed reference frame aystthe momentum relaxation weighting term

must be given as

1-cosfs = I co, ca8,— s, sty cas—¢,) (5.28)

Substitution of the momentum transfer relations #redweighting term of equations (5.25)-(5.28)
into the momentum relaxation rate, equation (5.1¢lyes the incoming angle dependent

momentum relaxation rate.

To test these relations are correct it is ideahittally check that in the limit ofZ, — o the model

returns to a spherically symmetric case. Thathis,BH limit of the model which has no remote
screening interaction. In Figure 5.3 the scattgrate is plotted over all incoming angles for sach

limit.

Figure 5.3: Plot of the remotely screened scatterin g rate at Z k. >4 over all possible
incoming carrier angles.
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5.2 Single Interface Scattering Model

For this figure the impurity density matches theresaing density and is given as

n=N, =10"cm?®. The incoming carrier energy is calculated asaberage energy at a lattice

temperature off =300K using equation (5.29), yieldingE) = 40meV.

13 (1) + FaksTS, (1)
3y, (n) + 5 ak, T3, (7)

(5.29)

where §; is the Fermi-Dirac integral of order j [54] amd is the reduced Fermi level given by

n=E;/kT. Itis very clear that the scattering rate inufey5.3 is independent of the incoming

carrier angle. This is expected as the scattenodel returns to the classic BH case.

Plotting the incoming angle dependent scatterirdjranmentum relaxation rates for the remotely
screened model at an impurity distance closerédrtterface will show the anisotropic behaviour.
Using the same impurity density and average caenergy as Figure 5.3 with an impurity located

at Z, =11., the scattering rate is then plotted in Figure &d the momentum relaxation rate in

Figure 5.5.

Figure 5.4: Plot of the remotely screened scatterin g rate at Z k. =1 over all possible
incoming carrier angles.

The anisotropic behaviour of the incoming carriegla on the scattering model is demonstrated in

these figures with a change in the rates with ticerning angled, . Referring to Figure 5.1 (and
given in more detail in Figure 5.2), the andleis the angle of the carrier from the Z-axis. Bor

angle of § =0 the carrier is aligned with the Z-axis and is &limg away from the source
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5.2 Single Interface Scattering Model

interface, and for an angle & = the carrier is aligned with the Z-axis and trawnelltowards

the interface.

It is interesting to note that foff, =0 and §, = 77 the scattering and momentum relaxation rates

are identical. This behaviour can be understoodhfthe magnitude-squared of the scattering

matrix element, equation (5.8), being an even fonaroundq, . Therefore the rates fd&, = xr

will be identical to that o, = 77— x/r for 0< x<1.

Figure 5.5: Plot of the remotely screened momentum relaxation rate at Z k. =1 over all
possible incoming carrier angles.

In both Figure 5.4 and Figure 5.5 the rates reatlae@mum até, =77/2 which corresponds to the
point at which the Z-directed momentum transfgg, is at a minimum (the carrier angle is

perpendicular to the Z-axis). Examining the scaigematrix element of equation (5.8) again, the
third term of the remote screening coefficient (teems within the square brackets) contains the

g, component as a parameter of the cosine functigvhen this component, the Z-directed

momentum transfer, becomes small the frequenciieotosine function will decrease rapidly. At
high frequency the cosine function averages to laevalose to zero, but at low frequency the

function average becomes much larger. Thereferg, a- O the third term of the coefficient will

increase in value and will therefore increase tiadtering rate.

The rotational symmetry around the Z-axis is higied in these plots, where the angle doesn’t
alter the scattering or momentum relaxation rateng way. This is plotted in more detail in

Figure 5.6 where the momentum relaxation rate reseniplotted at three differerd], angles
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5.2 Single Interface Scattering Model

showing the constant nature of tie dependence. This is expected as the Il is asstorgdiays
lie on the same radial position as the carrieti{atorigin) due to the assumption in the potential

derivation thatR, =0.

Ty [571]
1.4%1012 ¢

1.35x1012 |

1.3x102 T

1.25% 1012 |

Figure 5.6: Momentum relaxation rate showing depend ence on ¢, for incoming carrier

dependent model at n=N, =10"cm?®.

As mentioned previously the scattering model usedhis work is simplified by removing the

incoming angle dependence. As this work is toymgathe effect that remote screening has on
device performance, the incoming angle dependemamrnsidered to be unnecessary additional
complexity. The simplification employed within shinodel is to assume that the incoming carrier

is aligned with the Z-axis such th8f =0 which drastically reduces the momentum transferena

vector definitions. Using this simplification imeations (5.25)-(5.27) gives

g2 =k'?sin*4,. (5.30)
q2 =k'?(1- cost,.)’ (5.31)
9° =g +q; = 2k'?(1~ co®, ) (5.32)

It is important to state here that this assumpti@ans that all scattering events assume that the
carrier is aligned such that it is on the Z-ax&lthough scattering events will occur that assume

the wrong scattering potential, this simplificatipnovides on average a good estimate of the
overall scattering effect. A more detailed exartiora of the effect of the incoming carrier

dependence is given below along with a comparidahe models to examine the quality of the
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5.2 Single Interface Scattering Model

simplification. For reference, the use of the igiad (incoming carrier) simplification, for want

of a better name, means that the momentum relaxagaghting term becomes
1-co¥, = - co¥, (5.33)

Below the incoming carrier dependent scattering ehdsl examined for three different impurity
concentrations with a corresponding comparison éetwhe models. The impurity and screening
concentrations are equal and the average carr@pgeiis calculated using equation (5.29) for the
scattering & momentum relaxation rate plots.
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Figure 5.7: (a) Scattering and (b) momentum relaxat ion rates for an impurity concentration
of N, =10°cm™ over a range of impurity positions for the incomin g carrier dependent
remote screening model.

Starting with Figure 5.7 by examining the incomaagrier dependence on the (a) scattering and (b)
momentum relaxation rates for the lowest concentraif n= N, =10 cni®. Here the plots show

the rates over a range of impurity positions andegsected, become smaller with decreasing
distance from the source interface. Both plotaga] (b) of this figure are plotted against the angl

g, of the incoming carrier and show the large shifthie scattering model & = 77/2.

Figure 5.8 shows (a) the ratio of mobility and {f®@ momentum relaxation rate ratio between the
incoming angle dependent model and the Z-alignedetoHere the mobility is calculated from

the momentum relaxation rate using the Kubo-GreeaWormula of equation (5.34) [33].

=2 dEn( ) &, &) m( E)(%j (5.34)
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Here e is the electronic charge is the electron densityp(E) is the density of statesy. ( E) is

the conductivity effective masd,, is the equilibrium Fermi function and; is the Fermi energy.

The electron density and the density of statedbeanritten for non-parabolic bands as

%
kT Ef
n:z[%j [g%(q)+gakBTg%(/7)] forqza (5.35)
o\
p(E)=3(;Lh3) E*(1+5aE) (5.36)

In Figure 5.8, the data is arranged such thaton (@) it is ratio of the Z-aligned model to thdl fu

incoming angle model and (b) the ratio of the cateimodel to the Z-aligned model. Therefore
for values greater than one, the Z-aligned modéhjsover-estimating the mobility or (b) under-
estimating the momentum relaxation rate of theifldbming carrier model. This is arranged such
that the plots show similar behaviour to each otherthe mobility calculation depends on the

inverse of the momentum relaxation rate.
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Figure 5.8: (a) Ratio of mobilities between the rem ote screening models over incoming
carrier angle g, and (b) momentum relaxation ratios between models over impurity position.

Plot (a) of Figure 5.8 shows the mobility ratio p\ae range of impurity positions against the
incoming carrier angle with the Z-axié), . For an impurity located &, =4/. the mobility ratio

is one at all incoming carrier angles which is expd as the remote screening nature at this
distance is very small. As the impurity moves elowm the interface, the effect of the incoming
carrier angle becomes much larger and the simglifi@ligned model over-estimates the mobility

by up to ~20%.
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5.2 Single Interface Scattering Model

The behaviour of the mobility is shown in plot @#)Figure 5.8. It should be noted that in thistplo
the momentum relaxation rate for the complete iringroarrier angle model is fixed at an angle of
6, = /2, the alignment which yields the largest changenftbe Z-aligned model. This is the case
for all the momentum relaxation ratio plots in tmction, that is plots (b) of Figure 5.8, Figure
5.10 and Figure 5.12.

Plot (b) shows that the momentum relaxation tirhe,ibverse of the momentum relaxation rate, is
over-estimated by the Z-aligned model fer0.03). <Z, < 4}. with a peak atZ, =0.14.,

consistent with the mobility ratio. For valuesdekan this the momentum relaxation rate is under-
estimated. Although not shown in the mobility egpiot for this density, this behaviour is repeated

for the mobility. There also is some small ostiia in the momentum relaxation ratio around
Z =0.14..

This oscillating behaviour can be understood bymemang the scattering matrix element of
equation (5.8), specifically the remote screeniogfficient within square brackets. Expanding the
exponential terms of this coefficient into a poveeries and retaining only the first order terms

gives
fuu :2(1— K.Z, 1+%j(1— co$q,Z,)) (5.37)

Plot (b) of Figure 5.8 shows that the oscillatogh@viour occurs for smak.Z, , which mean that
the value of the term given by the first brackeegfiation (5.37) will be close to one. As discdsse
earlier in this section, thg, component has a minimum for an incoming carrigfl@at g, = 77/2
which will lead to a smaller argument of the cosfoaction. Therefore, for incoming carrier
angles close to perpendicular to the Z-axis (srga)l and impurity positions close to the interface
(small Z,), the frequency of the cosine function will be ate reduced. This will cause an

increasingly oscillatory behaviour of the coeffitieand scattering model, leading to the apparent

flip from increased scattering to reduced scattering.

To obtain a quantitative measure of the qualitythaf simplification, an average of the mobility
ratio has been taken over a range of impurity posttaking the worst incoming angle case for the
complete model. This range of impurity positioZs,, is the complete range of positions where
remote screening is effective. Using the mean evatobeorem for integrals, the following

expression is used to obtain this average.
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10)c

_ 1 Hy
R)=Tor, | % ug=m3 (539

where £, is the mobility of the Z-aligned model ar;d(&k) is the complete incoming angle

mobility model. The upper limit oflOA. is chosen such that the remote screening effect is
negligible, correct at this impurity distance frahe interface. Evaluating equation (5.38) for the

impurity density of N, =10°cni® yields an average of 1.01325, or an over-estimatfol.3% of

the mobility over the range of impurity position©f course, this is for the worst-case scenario,

assuming that all carriers scatter wih=77/2.

Continuing the examination of the Z-aligned simipétion with a higher density of
n=N, =10"cm® in Figure 5.9 and Figure 5.10. In plots (a) abyl (e see the consistent
reduction in scattering strength with decreasifjg Also evident is the effect of the incoming
angle on the scattering model with a shift near@he 77/2 point. Although at this higher density

the change oflip in the scattering behaviour is clear in plot (by fin impurity position of
Z =0.1..
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Figure 5.9: (a) Scattering and (b) momentum relaxat ion rates for an impurity concentration
of N, =10"cmi® over a range of impurity positions for the incomin g carrier dependent
remote screening model.

In Figure 5.10 the (a) mobility ratio and (b) morhan relaxation ratios are plotted for this
impurity concentration. The underestimation of thementum relaxation aZ, =0.14. is very

noticeable and is highlighted in the mobility rapiot of Figure 5.10. The oscillatory behaviour of
the scattering model is clear within plot (b) ofiiie 5.10 when plotted over the range of impurity

positions. For impurity positions greater than=0.34. the mobility is over-estimated and for

impurity positions closer to the interface the nlibpis under-estimated. This change in behaviour
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5.2 Single Interface Scattering Model

occurs for electrons interacting with the Il at ksgperpendicular to the Z-axis where the

magnitude of the scattering potential oscillatethhie cosine function at smad.Z, .
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Figure 5.10: (a) Ratio of mobilities between the re  mote screening models over incoming
carrier angle g, and (b) momentum relaxation ratios between models over impurity position.

At this impurity density ofn=N, =10 cm® the oscillatory behaviour is more compressed over
the range of impurity positionsZ,. Referring to the earlier discussion regarding discillatory
behaviour, this compression in the fluctuation benunderstood from the larger value lfZ, .
That is, the screening length will be smaller ghler concentrations leading to larger value& of

and reduced oscillation. Completing the averagiliy ratio using equation (5.38) yields an

average overestimation of roughly 1.4% for thissign
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Figure 5.11: (a) Scattering and (b) momentum relaxa tion rates for an impurity concentration
of N, =10°cni® over a range of impurity positions for the incomin g carrier dependent
remote screening model.

Continuing the evaluation of the Z-aligned approadion at an impurity density of

n=N, =10°cni®, the reduction in the oscillatory behaviour seg¢mise further enhanced with the
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5.2 Single Interface Scattering Model

increasing density. The scattering and momentuaxa#&on rates of Figure 5.11 don’t show a

significant shift with the incoming carrier angle.

@  Ratio ®)

1.00 — = = — — 1.05
0.95 -

0.90 -

Il Il Il Il Il Il ZI [AC]
0.0 05 1.0 15 2.0 25 3.0 0.01 0.05 0.10 050 1.00 5.00 10.00

Figure 5.12: (a) Ratio of mobilities between the re  mote screening models over incoming
carrier angle g, and (b) momentum relaxation ratios between models over impurity position.

The mobility ratio, plot (a) of Figure 5.12 showsnajority under-estimation of the mobility over
the range of impurity positions plotted. Lookingl@e momentum relaxation rates of plot (b), there
is a very small region of overestimation aroufid=3-51. and a large region of underestimation.
It is clear that at this high impurity density thecillations of the model are reduced in comparison
to lower densities but lead to underestimationhef tobility. Completing the average mobility

ratio from equation (5.38) for this density givesaverage underestimation of around 2%.

In summary the alignment of the incoming carriertlte Z-axis reduces the complexity of the
scattering model and preserves the remote screeffej. For remotely screened Il scattering the
average mobility using the Z-aligned model is withi5-2% of the complete model over the region

that remote screening is effective.

5.2.3.1Z-Aligned Model

Use of the Z-aligned momentum transfer wave-veavbrsquations (5.30)-(5.32) in the scattering

model allows the integral over thg,. angles to be completed. As there is no longef,.a

dependence, the integral over those angle can ipleted to yield2/7. For reference, the Z-

aligned scattering model equations can then beenrds
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J(ek'):( - J237T‘§(1+20,E)2;2
ATEsE,) h (0% +K2) (5.39)

x[1+exp( Z, ) 2cofq, Z) exérZ«/qD )}

for the differential scattering cross section,

re=[-2 | N ﬂm"ku(l 20E) jda _siné.__
4 7
sio (q +kc) (5.40)

x[1+exp( Z, ) 2cofq, Z) X(TZ\/%iﬂ

for the total scattering rate and

2 3 . . B
1 =( z¢& j N, 2 nr?ku(lJrZaE)jdgk‘smHk.(l cozsﬂk.)
Tm(k) ATE 4£, 0 (q2 + ké) (5.41)

x[1+exp( Z, ) 2cofq, Z) exérzm)}

for the momentum relaxation rate.
5.2.4 Analysis of Scattering Rate

Using the different methods of utilising the scattg probability the remotely screened impurity
scattering process will now be analysed. Lookinthe differential scattering cross-section given
by equation (5.39) first, which is plotted in a sétpolar plots over the scattering anghke in
Figure 5.13. These plots are for two differenesaing densities at different carrier energies and

impurity locations.

Plot (a) in the figure corresponds to a moderateesing density of approximately=10"cni>.

At this screening density the differential crosstgmal scattering area is very large which widde

to large scattering rates. In the screening caditof plot (a) it is clear to see that the scaitp
process favours forward scattering events. Thatvsnts for which the electron scatters through
angles of less tham/2. The differential scattering cross-section faattering angles greater than

71/2 or back-scattering, depicted by the negative carapbof the horizontal axis, is very small in

comparison.
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At higher energies the tendency to forward scasgt@rcreased as shown by the dotted lines in plot
(a) of Figure 5.13. The back-scattering compomesktremely small in this case and the range of
angles for forward scattering is greatly decreasezinarrow range around zero degrees. From this
behaviour it can be deduced that the scatteringrantion has a lesser effect at higher carrier

energies.

(a) A.=12.65nm (b)A=1.39nm
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Figure 5.13: Polar plots of the differential scatte  ring cross-section for an electron at low
(solid lines) and high energy (dashed lines) at var  ious impurity locations.

At the higher screening density ef=10"cni® plotted in (b), the differential scattering cross-
section is considerably smaller. At low carrieergies the scattering cross-section in plot (b) has
an almost isotropic nature with no particular ssraty angle favoured. This suggests that impurity
scattering will have a larger effect at this sciegrlensity and carrier energy due to the wide eang
of probable scattering angles. For higher cagigrgies the scattering cross-section shifts tosvard
a forward-angle scattering preference which is canaple with the situation at the lower screening

density of plot (a).

This can be understood by examining the differémsitattering cross section given by equation

(5.39), in particular the terms involving an anguliependence. These angular dependent terms

have been rewritten here as a separate funcfign,

fo 1
q*(1+kZ/a?) (5.42)

{1+ e~ 2.2, 5 K/a)- 2c0kq.2) ofr a2/ 4 £/a)]
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where the momentum transfer wave-vectors are dgoyerquations (5.30)-(5.32). This function

highlights the relation between the screening dgresad the carrier energy given by the terms

(1+ ké/qz) and(1+ ké/qé) When the screening density is large, the invecseening lengthk.

is large and these terms are also very largd ) which causes the functiofi, to become very

small and the scattering more anisotropic. Coralgra’hen the screening density is low along
with the inverse screening length, the terms arg small («1) and the function will lead to more
isotropic scattering. This behaviour is of coudspendent on carrier energy with higher carrier

energies always leading to more anisotropic séatter

With decreasing distance between the impurity &edsburce interfaceZ, , the scattering cross-

section is reduced in both cases of Figure 5.18.th& remote screening interaction is expected to
increase the screening of an impurity, as discuss&hapter 4, the reduction in scattering cross-
section is logical. The increased screening ottadtering impurity centre as it moves towards the
interface clearly reduces the scattering crosseseeind will lead to a reduction in the scattering

rate.

Plots of the scattering and momentum relaxatioastag¢quations (5.40) and (5.41), for the same
conditions in the above polar plots are given igufé 5.14 and Figure 5.15. In both of the figures

below the Il concentration is taken to equal theaging density, that in= N, .
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Figure 5.14: (a) Scattering and (b) momentum relaxa tion rates under the low screening
conditions of n=N, =107 cm* for various impurity locations.

As discussed above, the scattering differentiabssection is reduced with decreasidg and

becomes less effective at higher energies. THhiaweur is clearly seen in the plots of Figure 5.14
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which give the scattering rates (a) and momentdaxaéion rates (b) for the lower concentration
of n=N, =10"cm®. Figure 5.15 of the higher screening density N, =10 cni® also shows

this common behaviour which is expected for theatehy screened impurity scattering model.
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Figure 5.15: (a) Scattering and (b) momentum relaxa tion rates under the high screening
conditions of n=N, =10 cm"* for various impurity locations.

Comparing the scattering rates between the twordgyshows around an order of magnitude
decrease at the higher concentration followingtteed in the radius of the differential scattering

cross-section.

In part (b) of Figure 5.14 the momentum relaxatiate for carriers greater than 10meV doesn'’t
show much effect of remote-screening as the imppasition is varied betweed, ={0.5..4}A. .

Looking at the high energy polar plot of this cgsef (a) of Figure 5.13, the differential scatteyi

cross-section varies dramatically in radius arosgattering angles close to zero degrees.

This behaviour can be understood by looking atnleenentum relaxation rate given by equation
(5.41), particularly the weighting tern(;L— cos9k.). For small angle forward scattering this
weighting term becomes very small and the momentsmrelaxed on much longer scale.
Therefore, in this case the scattering rate wilafiected by the decreasing scattering cross-sectio

radius but the momentum relaxation rate will shatlel change as the range of scattering angles

remains close to zero.

Using the momentum relaxation rate of equation1(bthe electron mobility can be analytically
calculated providing more insight into the remoteesning effect. Using the Kubo-Greenwood

formula of equation (5.34) allows the electron ntighto be calculated. Here the ratio between the
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mobilities of the remotely screened model and thienBdel are plotted to allow comparison. The

BH model is found as the limiZ, — o« of the remotely screened model, given as equgficts).

Noting of course, that the BH model is independén, .

1 :( Z€ J N, 2 m?dkm(1+2aE)jzd9k, sind(1- C0529k-) (5.43)
In(k) (47es, h 0 (q2 + kcz)

In the figures below the ratio between the moleiitis given for different doping concentrations
where the screening density is assumed to equaldpi@g concentration. In both figures the ratio

is taken as the remotely screened mobility oveBiHanobility.
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Figure 5.16: Ratio between the mobilities of the re  motely screened and Brooks-Herring
models. The impurity position from the source inte rface, Z, , is given in (a) units of the

respective channel screening length,  A., and (b) nanometres from the source interface.

In plot (a) of Figure 5.16 the ratio between thebifittes of the two models is plotted over the
impurity distance from the source interface in sirof the respective channel screening length.
This follows the representation used in the pldtthe differential scattering cross-section and the
scattering/momentum relaxation rates. Plot (affigiire 5.16 shows that remote screening effect
begins to strongly affect the impurity limited miilyi at positions less than two screening lengths
from the source interface. Beyond two screenimgtles the remotely screened model is a close
match with the BH model.

For impurity positions closer to the interface teenotely screened mobility increases heavily as
the effect of polarisation charges becomes strontyeparticular, the mobility for the high channel
density given by the green curve shows a dramaticease to over 30x the BH mobility. This

increase is very large and is a side-effect ofstheng-screening limit. Using equation (3.36), the

screening length for the screening/dopant concémtraf n= N, =10°cm® is A. =1.3%m. As
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discussed at the end of the previous chapter, ttomgly screened model over-estimates the
remote-screening effect for impurities located efddan 1nm from the source interface. Therefore
at this density the point that the strongly screenedel begins to overestimate the remote

screening effect correspondsZp=0.74. .

The figures in this section have all been plottathva length scale normalised to the channel
screening length which allows the scattering mealéde analysed and compared over a wide range
of screening densities and impurity concentrat@assvell as comparison with the previous figures
in this section. Despite this, it is importantdén also examine the mobility using a fixed length
scale. In plot (b) of Figure 5.16 the mobilityicebetween the remotely screened and BH model is

given over a physical impurity distance from tharse interface.

Using a physical length scale for each screenimiifiraund doping concentration in plot (b) of
Figure 5.16 provides an example closer to a reaha&to of the remote screening effect on the
impurity limited mobility. This figure highlightthe dependence of the channel screening density,
where the lower the screening density the strottgmobility increase due to remote screening.
This plot does not follow the trend of Figure 5dMich reports that the higher the screening
density, the larger the remote screening effedtis Teversal in behaviour between the figures can

be understood from the screening length.

Using equation (3.36) the screening length candoed asA. ={126.27,12.64,1.C}91m for the
screening densities oh={1015,10”,169} cm ? respectively. As discussed above, the remote

screening effect starts to alter the mobility atgloly Z, =2A.. Therefore, at the highest screening

density the remote screening effect will only alfapurities located within~ 2.8hm whereas at

the lowest density we can expect a shift at digang to~250nm. For the lowest density
involved at one nanometre from the interfagg,corresponds to roughig=x10°A. which leads to

a large increase in the mobility of plot (b).
5.3 Double Interface Scattering Model

The double interface scattering model is found gisin identical procedure to the single interface
model. A scattering rate is defined using Ferndaslden Rule approach based on the strongly
screened impurity potential found for this modeltlie last chapter. The scattering potential is

again not spherically symmetric and the Z-alignexbming carrier simplification is applied.
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This section will start with the calculation of tteeattering matrix element in section 5.3.1.
Following this the differential scattering crossten, total scattering rate and the momentum
relaxation rate will be obtained in section 5.3The incoming carrier Z-alignment simplification is

discussed in section 5.3.3 and finally the doubterface remotely screened scattering model will

be analysed in section 5.3.4.
5.3.1 Scattering Matrix Element

The strongly screened double interface potentiahdoin section 4.3 is used to calculate the

scattering matrix element for this model. The pog for the double interface remotely screened
impurity potential is valid only in the channel reg, that is the region oD<Z<L.. The

calculation for the scattering matrix element mustintegrated over this region only. Correcting

the Z-space integral of equation (5.2) gives thiewong form for the scattering matrix element

2 o

Ho =éIdeo dq){d? e(R, Jexp(-d, [R) exf- ig 2 (5.44)

Substituting the scattering potential into the magtement definition and completing the integrals

gives, after some lengthy manipulation

H,.\ = eQ 2ﬂi{2exp(—iqZZ.)— ex{-Z Kc)( ]JLIq_Zj

rEE, Q K2 K

_eXp(_iquc) eXF( ¢ -L Kc)[ ]'_E_Z]
c (5.45)

-exp(-Z, Kc)(l_ ex{-iq, L¢) eX(’_LCKc))( }E_Z]Am

C

—exp(-Z, K. )( exf{-ia,L.) expL.K.)- )1(1+E—Zj An}

C

Here the coefficientsh,, and A, are given by the equations (5.46)-(5.47) below #Hredterms

K.,Ks andK, are defined in equation (5.48).

_exp(AcK.) - exf ZKe) (5.46)

A exp( A.K.) -1
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5.3 Double Interface Scattering Model

A = (5.47)

Ko =402 +k&; Kg=4/a2+kE; Ko=4/ai+k3 (5.48)

Taking the term for the scattering matrix elemeryt,, , of equation (5.45) and completing the

square of the magnitude to obtain

Mol = 22| & | e ) (5.49

ATEE, qz+q;+ K

Here a new function defining the interaction witte tsource and drain regions,,,, has been

introduced and is given as

ol 2.10) = SR E B (5 - cog q.2)- & cof g )

(exp( 2Kc)- 9 (5.50)
~(Ex sifa,2)+ & sif q L))’ |

New coefficients have been formed to simplify thigression and are given by equations (5.51)-
(5.53) below.

E; = exp( L+ Z, )Kc)( EXF( 2. -2, Kc) - )» (5.51)
Es =exp((Le +Z,)Kc ) (exp( 2K ) - ) (5.52)
E, =exp( 2 K. )(1- exd Z K.)) (5.53)

5.3.2 Scattering Rate

The double interface remotely screened impuritytedag model can now be developed using the
scattering matrix element found in the previoudieac The probability of scattering can be found

using Fermi’'s Golden rule, substituting in the sEd@hg matrix element gives
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5.3 Double Interface Scattering Model

P(k,k’):z—ﬂ( eQ T 1( add T fdb,(kC,ZI,LC)J(E(k“)—E(kD)) (5.54)

n | arEge, ) Q7% +qZ + K2

The differential scattering cross-section can bleutated from this probability using equation

(5.11) and defining the impurity charge to Qe= Ze, the number of unit charges of the impurity

multiplied by the electronic charge.

( z¢ Y 2w , 1
0-_[4715&50} 7 (1+2aE)mfdbl(kC’z|1Lc) (5.55)

Substituting the scattering probability defined dguation (5.54) into the total scattering rate,

equation (5.14) and completing tkeintegral gives

2r

r(k):[ ze J N, zz;g’ku(uzaE)j

4ZE‘SiEO 0

sing,.

(o + 1)

fu(k Z. L) (5.56)

d¢k,f &,
0

Similar to the single interface model, the findlegrals over thef,. and ¢,. components will be

discussed in the following section. The momentataxation rate for the scattering process can be
simply defined by inserting the weighting term fbe change in momentum into the theta integral

of equation (5.56), yielding

1k) :( z¢& ]2 N, 22m), k](“ )

T ( ATE (£, h
% sing.(1- cog) (5:57)
XI d¢k-_[d‘9 fan (ke Z10 L)

0 0 « (q2 +ké)2
5.3.3 Scattering Reference Frame

The double interface model will also employ the diffed scattering reference frame in an

approach identical to that used with the singlerface remote screening model. That is the
incoming carrier will be aligned with the Z-axis tife scattering reference frame reducing the
angular dependency of the scattering model. Fatigwa similar analysis to that of section 5.2.3,

this simplification will be tested for the doublgérface scattering model.
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5.3 Double Interface Scattering Model

The fixed scattering reference frame given by Fedul and Figure 5.2 remains unchanged for the
double interface model. The momentum transfer waagctor relations presented in section 5.2.3
for the full incoming carrier case, equations (3-&527), and the Z-aligned simplified relations

given by equations (5.30)-(5.32) are again used.

The scattering rate, momentum relaxation rate aedntobility analysis are completed for three

impurity concentrations,N, :{10”,10‘6,168} cm®.  Again as the potential assumes that the

impurity is located at the origin of the radial xR =0, there is rotational symmetry around the

Z axis, theg,. angle. The scattering and momentum relaxatioa pédts assume an incoming

carrier with average thermal energy given by equa(s.29) and the mobilities are calculated
using the Kubo-Greenwood method of equation (5.3%h analyse the double interface model

effectively the channel length,. , is varied with the impurity position located ataetly half the

channel lengthZ, =0.5L, in each of the cases below.

(a) (b)
TIs'] T [s7']

3.6x10°

3.0)(1013 /\
3.5x10°

2.5x108
3.4x10°

2.0x101 -
3.3x10°

1.5x101 -

HH\HH\HH\HH\H"\HH\Hek L L L L L L ek
0.0 0.5 1.0 15 2.0 2.5 3.0 0.0 0.5 1.0 15 2.0 2.5 3.0
— L=8\, — L=\ L=3\, — L=2A

Figure 5.17: (a) Scattering and (b) momentum relaxa tion rates for an impurity concentration
of N, =10"cni® over a range of channel lengths for the incoming ¢ arrier dependent, remote
screening model.

Starting with the lowest concentration ®, =10“cni® in Figure 5.17 and Figure 5.18, the

incoming carrier model clearly shows an increaseattsring effect for carrier angles around

6, =m/2. This is very much consistent with the singleiface model and can be again related to
the momentum transfer in the Z-axis given lby. For incoming carrier angles close to

perpendicular to the Z axis there will be minimabmentum transfer in the Z plane and e

component will become very small. Looking at tleulble interface coefficient in the scattering
matrix element, equation (5.50), for small valudstlis momentum transfer component the

coefficient will be large and hence the scatterinilgbe increased.
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(@) (b)
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Figure 5.18: (a) Ratio of mobilities between the re  mote screening models over incoming
carrier angle g, and (b) momentum relaxation ratios between models over channel length.

At this low density the simplified model overesttesmthe momentum relaxation over a wide range
of channel lengths as shown in plot (b) of Figurs85 Completing an average over a wide range
of channel lengths using the mean-value theoremintegrals given by equation (5.58) below,

yields an average overestimation of around 1.8%.

20)¢

<R”>:(2o/1 -10°A )I 6. =m2) 9 71/2)

1075

(5.58)

For the double interface model it is not possibledmplete the average value from an effective

channel length of zero and instead a valué®f . is chosen as a non-zero channel length. The
upper limit of 204, coincides with the upper limit of the single iritee case (given by equation

(5.38)), allowing104. from each interface.
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(a) (b)
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Figure 5.19: (a) Scattering and (b) momentum relaxa tion rates for an impurity concentration
of N, =10cni® over a range of channel lengths for the incoming ¢ arrier dependent, remote
screening model.

Examination of the intermediate impurity density ¥f =10°cni® in Figure 5.19 and Figure 5.20
shows that the simplified model overestimates tbattering for channel lengths greater than
L. =0.24.. At this density the momentum relaxation ratitstted in part (b) of Figure 5.20 also
demonstrate that underestimation occurs at smahmedl lengths. Completing the average

mobility ratio using equation (5.58) for this ddgsyields an average overestimation of around
2.4%.

The momentum relaxation ratio oscillates very mliké the single interface model discussed in
section 5.2.3 and shows the increased compresdiothi® oscillation at higher screening
concentration. Whereas in the single interface ehtlte scattering matrix element has a single

cosine function, here the double interface scatjematrix element coefficient, equation (5.50), has

a set of cosine and sine functions all dependetit®Z directed momentum transfey, .
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Figure 5.20: (a) Ratio of mobilities between the re  mote screening models over incoming
carrier angle g, and (b) momentum relaxation ratios between models over channel length.

At the highest impurity concentration given by Figb.21 and Figure 5.22 the behaviour of the
remotely screened double interface model diffethéobehaviour seen this far. The scattering rate
and momentum relaxation rate plots at a channejteaf L. =24, show a double oscillation.
This double oscillation has peaks @&t=7/4,377/ 4 and a trough a8, =77/2 for the momentum
relaxation rate of plot (b) in Figure 5.21 with aich less understated double oscillation around the

6, = 71/2 point in both the scattering rate and mobilityoat

(a) (b)
I G| T [s7']
710t N
3.0x10% _/__\ 68x1012
- 6.6x101 |
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0.0 05 10 15 20 25 3.0 & 0.0 05 10 15 20 25 3.0 &
— L=8\, — L=4\ L=3\. — L=2\

Figure 5.21: (a) Scattering and (b) momentum relaxa tion rates for an impurity concentration
of N, =10%cmi® over a range of channel lengths for the incoming ¢ arrier dependent, remote
screening model.

This double oscillation at small channel lengthsésy much an effect brought on by the set of
cosine and sine functions in the scattering matt@ment. Examining thd,, coefficient of the
scattering matrix element of equation (5.50), thsie and sine functions both depend on the Z-

directed momentum transfey, and either the impurity positiorz, , or channel lengthl. .
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5.3 Double Interface Scattering Model

As has been discussed previously thecomponent will tend to zero as the incoming casiegle

is close to perpendicular to the Z axis. This oeduthe frequency of these angular functions which

lead to the oscillatory behaviour. Here the angtlactions will have two separate frequencies

depending on the impurity position and channeltlersg g, is reduced. In the cases plotted here
the impurity position is taken to be always hak thannel length, that i&, =0.5L., but it will

always be the case thaf < L. .
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Figure 5.22: (a) Ratio of mobilities between the re  mote screening models over incoming
carrier angle g, and (b) momentum relaxation ratios between models over channel length.

It can be seen that although this has a considemtbtct on the momentum relaxation rate, the
effect on the mobility is relatively minimised. iShof course is due to the fact that the momentum
relaxation rate is integrated over all energy i thobility calculation. For this higher densitgth

average mobility ratio is calculated to give anrage underestimation of around 1%.

5.3.3.1Z-Aligned Model

Using the Z-aligned momentum transfer wave-veatations of equations (5.30)-(5.32) allows the

integral over the anglg,. to be completed and yields the following final esgsions for the

double interface remotely screened scattering model

[ ze 22377md2 » 1
a_(wgeJ ' (1+2”E)Wfdb'("mzwtc) (5.59)

( z¢ Y. 2mK (] sing,.
r(k)_(4m3igoj N =5 (1+2aE)Idek'—(q2+k§)z fo(k,Z, k)  (5.60)
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1 _(z¢ Y N2Zmm k](1+ 20
r.(k) \4mEge, n (561
sing,.(1- cod;) '

(*+ k)

«[ 8, fa (ke 20 L)

5.3.4 Analysis of Scattering Rate

An analysis of the scattering model defined inisect.3.2 will now be completed in a similar
format to that completed for the single interfacedel. Here, the analysis of the double interface
model will be centred around the effect that a smlznnel length has on the remotely screened

impurity scattering model.

Starting with the differential scattering crossts®mt which has been plotted in Figure 5.23. For
these plots the screening density is taken as N, =10°cni® and (b)n= N, =10*cn® which

leads to screening lengths 4f =39.951m and A. =4.04m respectively.

(a) A=39.95nm (b) A=4.04nm

o [nm’]

— E=1meV -- E=25meV
4x108
2x108

[
-1000

r o [nm?]

-2x105 |

-4x10% [

— L=8\ — L=a\ L=3\, — L=2A

Figure 5.23: Polar plots of the double interface sc  attering cross-section for varying channel
lengths with a single impurity located mid-channel, Z =0.5L..

Similar to the behaviour of the single interfacedap the low screening density differential
scattering cross-section demonstrates mostly layleaforward scattering. At high energies the
differential scattering cross-section for this lal@nsity is restricted to a very small range of
scattering angles around zero degrees. The momerdlaxing effect of such small scattering

angles will be minimal.

The differential scattering cross-section for v screening density, plot (a) of Figure 5.23 has a
extremely large radius. As the channel length eleses, the remote screening effect reduces this

radius and will reduce the scattering rate. Tlyh lsicreening density differential scattering cross-
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5.3 Double Interface Scattering Model

section of plot (b) is somewhat more isotropic lfaw energy carriers than the low density plots.
Plotted in Figure 5.25 are the scattering and maumenelaxation rates for the double interface
remotely-screened impurity model with the low saiag density conditions of the polar plots

given above.
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Figure 5.24: (a) Scattering and (b) momentum relaxa tion rates under the low screening
conditions of n=N, =10°cni® over a range of channel lengths with a single impu rity located
mid-channel, Z, =0.5L..

As the differential scattering cross section prittic the scattering rate does decrease with the
reducing distance between the source and drainfants but the momentum relaxation rate is
largely unaffected. Plot (b) of Figure 5.24 shawsmall difference between the different channel
lengths at the very low energies aroufdimeV which will have negligible effect in room
temperature silicon. Nearly all the scatteringhéd low screening density is small angle forward
scattering as seen by plot (a) of Figure 5.23, wisaot altered by increasing the remote screening
induced by the source and drain. Despite the saradle forward scattering, the momentum

relaxation rate is high for low energy carriers 8igps off very rapidly with energy.
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@) (b)

ris4 Ty [s7']

7.0x10'3 -
5.0x1013
3.0x 101 -

2.0x103 ¢
1.5x108 b

1.0x10" -

0.001 0.01 0.1 1 0.001 0.01 0.1 1
Energy [eV] Energy [eV]

Figure 5.25: (a) Scattering and (b) momentum relaxa tion rates under the high screening
conditions of n=N, =10®¥cm?® for varying channel lengths with a single impurity located
mid-channel, Z, =0.5L..

Figure 5.25 shows (a) the scattering and (b) thememtum relaxation rates for the higher density.
The scattering rate is clearly affected by the c&idn in channel length as is the momentum
relaxation rate for low energy carriers. Above ragpnately 20meV the momentum relaxation
rates becomes largely unaffected by the increaiaeimemote screening effect as the tendency to

small angle scattering becomes more dominant.

The Kubo-Greenwood formula of equation (5.34) ieduso plot a comparison of the double
interface remotely screened impurity mobility aghithe BH model of equation (5.43). The BH
model being the limit oZ, >0 and L. - « of the double interface model. In plot (a) of utig

5.26 the ratio of the remotely screened mobilityhem BH mobility is given over a range of channel

lengths which have been normalised to the resmeaiannel screening lengths. For the three

densities plotted herey= N, =10 cni®,10° cm?®,10° cm, the screening lengths are calculated as

A =399.54m,39.95m , 4.04n respectively.
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5.4 Sub-Threshold Impurity Scattering
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Figure 5.26: Ratio between the mobilities of the re  motely screened and Brooks-Herring
models. The channel length, L., is given in units of (a) the respective channel s  creening

length, A., and (b) nanometres where the impurity is always p  ositioned at Z, =0.5L. .

Plot (a) of Figure 5.26 clearly shows that beydnpd=5A4. the double interface remote screening
has little effect on the impurity limited mobility.This plot also shows a large increase in the
mobility at a channel lengths less thdp for the highest doped case represented by thengree
curve. This large increase in mobility is likelyalto the strongly screened model over estimating
the effect of remote screening and a quick calmrashows that at this point the impurity is
located aroundZ, =2nm. It is around this distance that the stronglyesoed model is expected to

overestimate the effect, as discussed in the puewsbapter.

Plot (b) of Figure 5.26 gives the mobility companasing a fixed reference for the channel length
at each density. This figure highlights the sttengf the interaction for low screening density
channels where the screening length is extremely. Id~or the lowest density, given by the blue

curve, the screening length is almo$90nm which for the remote screening interaction to

dissipate, would require a channel lengttbdf = 2um.

5.4 Sub-Threshold Impurity Scattering

It is well known that scattering rates that areellasn the Coulomb potential can diverge unless
they are well bounded. In the BH approach the @uabl potential is screened by the mobile
charge density which generally provides a good daumthe Coulomb potential. There are other
approaches which use half the average inter-iotane to confine the effect of Coulomb
scattering such as the CW model and Ridley’'s TBiody Exclusion (TBE) technique [47, 55].

These models are discussed in detail in the liesaeview of Il scattering in Chapter 2.
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5.4 Sub-Threshold Impurity Scattering

The remotely screened impurity scattering moddi llag been developed in this chapter follows a
similar approach to that of BH in that it uses thebile charge density to restrict the range of
scattering. This approach works well when the heotinarge or screening density is greater than
or equal to the Il density. Under certain conaisicuch as a MOS capacitor or a MOSFET device
at low gate bias, the screening density can be nmwhr than the fixed charge density and can
approach intrinsic silicon carrier densities. Atls low carrier concentrations the scattering rates

for the BH approach, and similarly the remote suirgge model, will tend to very high values.

@ (b)
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— Third-Body Exclusion

10 ¢

1018 L

10]5 L
1016 L
1013 L
1014 /
1074 0.001 0.01 0.1 1 10 0.001 0.01 0.1 1
Energy [eV] Energy [eV]

Figure 5.27: Plots of (a) the scattering rates and (b) the momentum relaxation rates for
standard Il scattering models at sub-threshold cond  itions with N, =10®cni® and n=10%cm’®.

The three aforementioned Il scattering models (BW,and TBE) are plotted in Figure 5.27 with
high background impurity density and a low scregmiensity, a typical sub-threshold case. In
these plots the difference between using the the @W TBE approaches of the inter-ion
separation distance as a cut-off and using the Btlomch of screening by mobile charge is clear

to see. Plot (a) of this figure shows that witiniew screening densities the BH model begins to

1

diverge and results in a scattering rate of roudhly =10°°s™*. This is far too large for efficient

numerical simulation considering that within a gahéulk Monte Carlo simulation the timestep is

aroundAt =10*°s which leads to almost one hundred thousand ert§imestep. Considering
that it is typical to have only a few events pemndstep, the processing overhead of using the BH

model in these conditions becomes very large.

Looking at the momentum relaxation rates for thiéfedhg models in plot (b) of Figure 5.27
highlights the effect of limiting the scattering de through the average inter-ion separation. This
difference in the momentum relaxation rates witealthe impurity limited mobility in device
simulations directly. Therefore use of the TBEGMW approaches will lead to an underestimation

of the effect that Il scattering has on the moilit
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5.4 Sub-Threshold Impurity Scattering

The method for simulating 1l scattering in the Me@arlo simulator used here is the TBE model
as it overcomes the divergent scattering rate problith low screening densities. It has
traditionally been used in this Monte Carlo simotand the loss of accuracy incurred is neglected
in favour of efficient simulation. The loss of acacy can be highlighted by examining the TBE

approach applied to the remote screening modellojee in this work.

The loss of accuracy lies with the cut-off used tbg TBE model which utilises the impact
parameter definition, given by equation (5.62). eTérattering events which have an impact
parameter beyond half the inter-ion separationadc# are regarded as being more probable to

scatter from another scattering centre and therefg excluded.
nb(6)° = 271 sing, o(8,)dé, (5.62)
g

To understand why this cut-off approach can beidensd inaccurate it is necessary to examine
the impact parameter, in particular for the caserahotely screened impurity scattering.
Substituting the single interface differential $edhg cross-section of equation (5.39) into the

impact parameter definition above gives

(6 =( zé& jZ 2*m* m? i+ 2aE)2de9b sin(4,)
ATE £, n' 6 (q2 + ké)2 (5.63)

><[1+exp(—zI q§+k§)— 2cofq, Z) ex(if Z\q? + @)}

In Figure 5.28 the impact parameter is plottedaatous impurity positions for the sub-threshold

conditions used in Figure 5.27. Also plotted is #tverage, half inter-ion separation distance given

by a=1(27N,) 7.
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Figure 5.28: Impact parameter for single interface remotely screened impurity model against
half the average inter-ion separation distance for sub-threshold conditions of N, =10%cm’®

with a low carrier density of  n=10%cmi?.

The plot highlights the large range of scatteringras that will be excluded by the TBE model. In
particular, the correction to the Il scattering mbahtroduced by the remote screening effect is
excluded using this approach. Therefore in substwld conditions the use of the TBE model will
neglect a great deal of impurity scattering inahgdthe effect of remote screening. To properly
account for all 1l scattering in sub-threshold citinds the full BH approach with remote screening
must be modelled, thereby avoiding any underesiimaif the importance of Il scattering on the

mobility.

In this work a new method has been developed &inréhe accuracy of the BH approach to |l
scattering whilst controlling the behaviour in ghbeshold conditions where the scattering rate
tends to large values. This new method restriogs dcattering rate but maintains the original
momentum relaxation rate, and is possible throunghimtroduction of a simple numerical cap
developed by Dr. Jeremy Watling [111]. This nurcaricap will first be discussed for the BH
model of scattering in section 5.4.1. In sectioA.5 the application of this correction to the
remotely screened models is presented. Finalgeation 5.4.3 the model is tested with the Monte

Carlo simulator used in this work.

5.4.1 Numerical Cap to Il Scattering

This numerical cap to the Il scattering process designed to allow use of the complete BH
formulation in Monte Carlo simulations without tHeawback of large simulations times. Starting

by defining the original BH scattering rate and reotum relaxation rate ag;" and /72"

respectively.

124



5.4 Sub-Threshold Impurity Scattering

M=K, ]TP(H) dg (5.64)

=K, | P(6)(2- cog6)) de (5.65)

BH
m 0

Here the term in front of the theta integral hasrbseparated intéK, given by equation (5.66).

The scattering angle probabilitya,(é?), has also been separated and is given by equgi6n)

below.

47Ke, n®

:( z¢ j N, Sk (5.66)

P(6)= sin(6) (5.67)

(2km(1— cog6)) + ké)2

Now defining the conditions that the numerical ecotion must satisfy in equations (5.68) and

(5.69) which state that the momentum relaxatioa cdtthe numerically corrected scattering model

must match the BH model but the scattering rateagimcrease beyond;™.

1 1
TW = Tnew (568)
new rﬁH for rIIBH < rlrlnax (a:
r” = max BH max (569)
r|| for r|| > r|| (b)

Here '™ is the fixed cap which for reasons discussed laigst be at least greater thger®" .
The solution to this problem is to introduce a mmaim scattering angle to cap the scattering rate,

6

min ?

and to define a correction functio@,(&

min

), to retain the momentum relaxation time.

m

rﬂew = I(|| G(Hmin) I P(H) de (5.70)
1 i _
e K..G(é'mm)gj P(6)(L- cog6)) do (5.71)

'min
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The correction factoG can be expressed through use of the defining tonddf equation (5.68)

and after some basic manipulation yields

P(6)(1- coq#))dg
G(6in) =

(5.72)

—_—y [0t

P(6)(1-cog#))dg

Hmin

It is clear that ag],,, — O that this expression fo& will tend to one which is the correct limit and

ensures that the new scattering rate will adherde¢dbounding condition (a) of equation (5.69).
This leaves the minimum scattering angf,,, which due to the self-consistency of the problem

must be found numerically by a root-finding techrgq Using the condition (b) of equation (5.69),

the minimum scattering angle can be found by sgltire following equation.

[mex_rew =
) | P(6)do=0 (5.73)

Hmin

=K, G(B

min

This expression can be simplified by substitutimghe expression foG given by equation (5.72)

and dividing throughout by the original BH momentretaxation rate.

et =H(6,,)=0 (5.74)

m

where the expressioH is given by

[ P(6)as

)= (5.75)

w

[ P(6)(1-cog6))de

gmln

H (8

min

This madification to the root-finding method by efishing the problem into a scaled maximum

scattering rate] 72", and the functionH (6’

Il m min

) also solves a secondary problem. Examining

the G(4

min

) equation of (5.72), it is clear that &5, — 77 this function will tend to infinity. By

re-arrangement of the final problem, it is now possto define this limitation in more detail.

Taking the limit lim H (¢

s min

) it is found that the function tends §g. Therefore as long as the

min

maximum scattering rate i§]%7>"

m

>1/2 (using equation (5.74)) the numerically corrected
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5.4 Sub-Threshold Impurity Scattering

scattering model will provide the exact BH model aatreduced scattering rate. This is a
considerable reduction in the scattering rate asntbmentum relaxation rate can be many orders

of magnitude smaller than the scattering rate [61].
5.4.2 Numerically Capped Single/Double Interface Mo  dels

The numerically corrected approach to Il scattedaotjined in the previous section can be applied
to the newly developed remotely screened impuritglels. The approach to the problem remains
identical for the new models but the scatteringl@amgobability, equation (5.67), for the new

scattering models is changed appropriately. Fersthgle interface model the angular probability

dependence is simply th#-integral of the scattering rate.

P(H):ﬁ(h exp(—ZI qé+k§)— 2cofq Z) ex()- Z\Jq + @)) (5.76)

The probability for double interface model can béamed in the same manner.

sing

P(6) =m f,

(ke Z, L) (5.77)

Here thef,, expression is given by the equations (5.50)-(5.53)

For both the remotely screening Il scattering medleé limit of theH (Hmin

) function is identical

to that of the BH model, that isim H (4

s min

)=1. This can be understood from the behaviour of

Hmm

the coefficients of the remotely screened modelschvisimply scale the behaviour of the I

scattering model.
5.4.3 Testing Numerical Capped Il Scattering

The numerical correction reduces the scattering bt restricting the range of angles through

which the carrier can scatter. Introduction of carecting coefficientG(Hmm) allows the new
model to retain the original momentum relaxatiow gy a self-consistent method of findiély,, .

As this method alters the dynamics of the carréattering process, it is important to ensure that
the energy and velocity are being properly modell@tis can be tested by simulating the energy-

and velocity-field data between the BH and the mewerical || model. With typical data for the

127



5.4 Sub-Threshold Impurity Scattering

energy- and velocity-field relations given for upeéd silicon, it is not possible to compare this

model directly with experiment as Il scatteringolsviously negligible in such samples. Here to

induce Il scattering the silicon has a donor dogiogcentration ofN, =10®cni®.

@ [
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e—e BH 300K
new I1 77K

— now 1 300K

)

e—e BH 77K
e—e BH 300K P

new I1 77K
— new 11 300K P
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Figure 5.29: (a) Energy-field and (b) velocity-fiel d curves for bulk silicon at a donor

concentration of N, =10®cnmi®.

Figure 5.29 shows the energy-field relation andvblecity-field relation for the doped silicon.
The new numerical corrected Il model matches p#yfebe BH model in both figures verifying

that the energy and velocity of carriers is unaéddyy numerically capping the scattering process.

Introduction of a new Il scattering model may aéfect the calibration of the simulator with other
experimental data such as with the bulk and unalenebility. As the Monte Carlo simulator used
in this work has been tested using Ridley’s TBE elagith the doping concentration dependent
correction discussed in section 3.3.3 for impusitgttering, it is important to ensure that the new

model doesn’t negatively alter the calibration vattperimental data.

The bulk or doping concentration dependent moblfilag been tested for silicon with the original 1l
model against the new numerical 1l approach in @ptof Figure 5.30. The doping-concentration
dependent correction factor has not been modifegduse with the new Il model and remains
identical to that used in the TBE approach disaligsasection 3.3.3. Experimental data in this plot
is from Thurber [29].
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Figure 5.30: (a) Bulk mobility and (b) universal mo  bility for silicon at N, =2x10°cni® against
experimental data at 300K.

The new Il scattering model is a slightly bettérviith the experimental bulk mobility than the

TBE model. Between the concentrations16f — 10%cm ® the new model is a closer match to

experimental data.

The above plots show that the numerical cap tdBtHemodel doesn'’t alter the characteristics of
the BH model in the energy/velocity plots whilstpraving the calibration with experimental data
over the TBE model with the bulk mobility. To denstrate the validity of the new model in sub
threshold conditions it is necessary to simulaten@e advanced structure such as the MOS
capacitor. Simulations of the MOS capacitor aredus Monte Carlo simulations to calibrate the

universal mobility with experimental data [28] aisalissed in chapter 3.5.2. In the device used
here the substrate is doped My, =2x10°cm® with a low horizontal field ofE =0.5kV /cm.

The parameters for each of the scattering mechanggmas detailed in chapter 3.3. In plot (b) of
Figure 5.30 the universal mobility has been plotswbwing the improved behaviour of the

numerically capped BH model with the Ridley TBE rabd Again, the new model is closer to

experimental data than Ridley’s TBE model and destrates the improved mobility of using the

BH model.

5.5 Simulator Implementation

The implementation of the newly developed scattedgrocesses into the numerical Monte Carlo
simulation follows the typical method used for mestttering mechanisms [31, 75]. To briefly
summarise, the maximum scattering rate of each amsm is tabulated in the scattering table
which is used to stochastically select a mecharasreach scattering event. Once a scattering

mechanism is chosen, the appropriate scatteringepsois evaluated where the carrier is scattered.
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5.5 Simulator Implementation

Within the scattering process, an out-scatteringleams stochastically selected for the carrier

which, for elastic scattering, conserves the ebecénergy.

In this section a brief discussion of the detaflshe numerical method used will be given starting
with the method for the calculation of the scattgriate in section 5.5.1. The scattering process
and the method used to select the scattering amgliscussed in 5.5.2. Also discussed in section
5.5.3 is the numerical implementation of the doubiterface scattering model coefficient.
Calculation of the coefficient during simulatiomncacur numerical floating point overflows under

certain conditions. A solution has been found thnglwill be discussed in this final section.

5.5.1 Scattering Rate

The remotely-screened impurity scattering modelgehlaeen developed as a correction to the
existing BH scattering model. Remote screeninglbeen shown to reduce the magnitude of I
scattering and it is known that it will yield thedBnodel in the appropriate limit. Therefore in the
numerical Monte Carlo simulation it is only necegda tabulate the BH model for the scattering

table as it will always be the upper limit on tleatsering rate.

For the numerical Il correction the remotely scesbicattering and momentum relaxation rates
must be evaluated which will require numerical gmégion of thed integrals in equations (5.40),
(5.41), (5.56) and (5.57). The Romberg integratiwthod as discussed in Numerical Recipes for
Fortran, section 4.3 [112] is used to evaluateirttegral. It is also required to find the minimum

scattering angled,,,, for the numerical 1l correction. This involveading the root of equation

(5.74) and must be found numerically. Referringh® methods in Numerical Recipes in Fortran
[112], the Van Wijngaarden-Dekker-Brent method ett®n 9.3 has been employed. These
numerical routines were chosen for both their sioitglin use and their efficiency as discussed in
the Numerical Recipes book. The precision in #sults is found to be sufficiently high and of

course can be fine-tuned to suit the requirements.

5.5.2 Scattering Process

The scattering process for remotely screened irypugtattering is relatively typical for I

scattering. There are some modifications to thadsrd Il process which are outlined below, the
most important of these is that of finding the marposition. When this scattering event is chosen
from the scattering table, the process must fietemnine the carrier position in relation to the
source and drain interfaces. If the carrier isated in the source or drain the standard BH

scattering process is invoked.
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5.5 Simulator Implementation

In the case that the carrier is located in the rhhrthere is still the possibility that it is |ded in a
region that remote screening has no effect. Tobabris, the remote screening correction is only
invoked if the carrier is within four screening dghs of the source interface in the single intexfac
model and within four screening lengths of the sewr drain in the double interface model. The

value of four is chosen such that the differendevben the scattering rate of the remotely screened

model and the BH model is within a few percent, &-gexp(—4 = 0.9¢

For a carrier which is suitable for scattering viltle remote screening correction, an out-scattering
angle must be selected. The out-scattering aragiedbe selected form the probability distribution
function for each model given by the equations @p.@nd (5.77). There are several methods
available to select the scattering angle usingaandumbers which are discussed in appendix of
the review paper by Jacoboni and Reggiani [75]e BH model makes use of the direct technique
which allows the scattering angle to be chosenctlirdrom a single random number. As the
probability distribution functions for the remotetgreened impurity scattering models cannot be
integrated analytically, the direct technique isnofuse. Instead a rejection technique is chosen
which unfortunately is less efficient than the direechnique as it requires repeated evaluation of
the probability distribution function. To increadlee efficiency of the rejection method, the
probability distribution function (PDF) for the dtexing is scaled to values between 0 and 1.
Thereby allowing the upper value constant for thieation method to be selected as the PDF
maximum and ensuring a minimum number of rejectioi® obtain the scaling factor requires
finding the maximum value of the probability furartiwhich must be found numerically. Using
Brent's method of section 10.2 in Numerical RecifesFortran the maximum value of this

function can be easily evaluated.
5.5.3 Double Interface Coefficient Calculation

The f,, coefficient given by equations (5.50)-(5.53) camtamany exponential terms whose
components can be very large. This leads to naadesiverflows during the numerical simulation.
The solution to this problem is to use the appration exp(x) - 1= exi{ x) for large values ok.

Within the IEEE double-precision format for floagipoint numbers which is used in the numerical

+53

simulations in this work, the numerical precision floating point numbers i with a range of

10°%. The exponential function will overflow in thisystem for a power of roughly
x=2308x In10= % 709.19.

Rather than employing an approximation to the ¢ciefit to all values ofx or at valuesx>709,

it is best to introduce an approximation at the atiocal precision. In other words, utilise an
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approximation on the coefficient when the poweatishe limit of numerical precision rather than

the limit on range, therefore for=+53x In2=+36.736¢ Using this value with the IEEE double-

precision system, the approximation tieap(x) — 1= exgx) can be used and becomes exact when

employed above powers bﬂ >36.736¢.

The f,, coefficient given by equations (5.50)-(5.53) caméathree differentexp(x)—] terms

which can be simplified using the approximatiorcdssed above. These three terms are

(exp( 2AcKe)- 1)) (5.78)
(exp( 2. -Z XK)- ]) (5.79)
(1-exp( Z, K. )) (5.80)

To attain the maximum accuracy it is important ppraximate only the necessary terms to avoid
overflow. It follows that with three conditionsahthere are2® =8 cases which can easily be
tested in the final program code and the suitabtypkfied expression forf,, chosen. As an
example, the case where all three terms can bexpmated is given here. Using the simplifying

approximation on the equations (5.78)-(5.80), sulgin back into the coefficient and re-

arranging the terms yields

fo =1+exp(-2Z K.)- 2co$q,Z,) exp-Z K. )+ 2césy L) ekple K) (5.8
—2cofq; (Z, - L)) exf(Z - L) Ke) + exb b7 - L) K)
This term is greatly simplified from the completegrh and interestingly has some similarity with
the single interface coefficient, the terms witltie square brackets of equation (5.40). The first
three terms of the above expression are identicthé single interface coefficient, which can be

found exactly by allowing. — oo.

5.6 Conclusion

In this chapter a new scattering rate, entitledatety screened impurity scattering, has been
developed for numerical device simulation withire tMonte Carlo technique. This newly
developed scattering rate introduces polarisatioaxrge effects induced from the highly doped

source and drain regions on impurity scatteringha channel. Remotely screened impurity
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scattering has been developed in two different gorgiven as either the single or double interface
case referring to the inclusion of one or two hyglioped regions respectively. The single
interface case allows the inclusion of a singleapsition charge on the screening of an impurity
and the double interface case allowing multipleapshtion charges to be induced between the

source and drain regions.

Remote screening of lIs has been shown to incribesd-limited mobility considerably when the

Il is located close to the highly-doped source andirain regions. The strength of remote
screening becomes very strong when the impuriyciated within one channel screening length of
the highly-doped regions. In the context of reavide channel lengths, the lower the impurity
density in the channel leading to larger channedesting lengths, the stronger the effect of remote
screening. In short channel length devices, takimg account remote screening from both the

source and the drain, the II-limited mobility camibcreased by up 500%.

Due to the anisotropic nature of the scatteringeipiidl and the context of this work, a simplified
approach has been utilised within the scatterindehto reduce the complexity whilst allowing an
analysis of the effect of remote screening. Thigpéfication, here entitled the Z-aligned model,
assumes that the incoming carrier is aligned whil Z-axis of the scattering reference frame
thereby removing the anisotropy. Essentially thaligned model assumes that the scattering
potential is isotropic such that it can be usedhwite typical formulations of Monte Carlo
scattering approach. The simplification was shdwne using an analysis of incoming carrier
angle to lead to an average (negligible) errortafnast 2%. The average being taken over the
domain where remote screening is effective andnaisguthat the incoming carrier is at the worst

case alignment for anisotropy.

The developed scattering mechanism has been dedetogfully replace the existing Il scattering
mechanism within the channel region of a MOSFET altdough possible, for computational
efficiency a transition has been introduced to rmemgh the classic BH approach. This transition
is based on the roll-off of the polarisation chargéincreasing distance from the source and drain
interfaces. This transitional distance correspdandoughly four channel screening lengths from
the interface where the effect of polarisation gkaron the screening is considered to be very
small. Beyond this transitional distance, the datsering model will revert to the classic BH
approach, improving computational efficieny by reing the need to evaluate the complex remote

screening expressions.

The existing approach to Il scattering in the M@udator used within this work made use of
Ridley's TBE approach which has been shown to beideal due to the removal of low screening

density Il scattering. The TBE approach is palidy bad when modelling low effective field
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universal mobility where the screening density iscmlower than the impurity density. To resolve
this problem and allow a complete analysis of tifiece of remote screening on |l scattering, a new

approach has been developed which allows low strgelensity Il scattering to be modelled.

This new approach makes use of a numerical cap foaktering which has been introduced to
solve the problem of diverging scattering rateshwiery low screening densities. This problem
exists with BH scattering and the approach used harthe remote screening model. Through
restriction of the minimum scattering angle and ofe self-consisten correction function, the
scattering rate can be numerically capped whilBtretintaining the momentum relaxation rate.
Thereby all 1l scattering can be modelled efficigrand with scattering rates which are within

reason for MC simulation.
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Chapter 6 Results and Discussion

6.1 Introduction

The objective of this PhD research is to examimerémote screening effect that the highly doped
source and drain regions have on channel ionizedriity (II) scattering. In Chapter 5 a scattering
model suitable for Monte Carlo (MC) simulation Haeen developed which includes the remote
screening effect. In this chapter this newly depell model has been applied to simulations of

two n-type MOSFET devices.

Remote screening of channel dopants by the sourdedeain regions has been shown in the
previous chapter to reduce the effect of Il scatter This reduction in Il scattering is evidenbsd

to the source and drain interfaces and is congidesgligible at a distance greater than four
channel screening lengths from an interface. Asrémote screening effect is heavily dependent
on channel screening length, where larger scredeimgths increase the strength of the remote
screening, this effect will be more dominant atéowate voltages. Lower gate voltages of course

lead to lower screening densities in the chanrggbre

Hence, the remote screening of Il scattering iseetqul to increase carrier transport performance
through the channel region particularly near thars® and drain interfaces. This increase in
performance is expected to be greater at lowerygdtages and will be reduced as the gate voltage
and channel screening concentration is increa3duk increase in channel transport performance
can also be described as reduction in the contial doping has on the channel. At low gate
voltages Il scattering helps to turn the device ff reducing the channel mobility. With the

introduction of remote screening to the Il scattgrimechanism, the low gate voltage channel

mobility may be increased leading to larger offistzurrents.

The in-house MC simulator which was discussed iapgfér 3 is utilised for the device simulations.
The scattering parameters and models remain idémtichat of the calibrated simulator in chapter
3.3 with the exception of the Il scattering modéior these device simulations the numerically
capped Brooks-Herring (BH) model presented in sach.4 is employed in place of the Third-

Body Exclusion (TBE) Il scattering model for thesens discussed in the previous chapter.

A self-consistent MC simulation is completed focleaf the two devices as discussed in Chapter

3. The simulation parameters for the two MC dewsiicsulations completed here are kept constant

between the simulations with a timestepAif=10""s and a total simulation period dDps (at
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low gate voltages the simulation period is increage to 20ps to reduce the statistical error). A
transient period oR ps is allowed before statistics are gathered anahtimelinear Poisson solution
is solved every 250 timesteps @r5fs. A total of 95000 particles are utilised in eadC

simulation to represent the charge carriers.

The first of the devices to be simulated with thenotely screened impurity scattering model is a
bulk MOSFET device. This bulk device was first eieped and published by Toshiba in 2001
[113, 114] and is designed as a high-performaneeeédor sub-50nm CMOS applications. This
bulk MOSFET device is highly doped and has an ackdmoping profile including a super-steep
retrograde (SSR) doping profile and halo implant§his complex channel doping profile is
implemented to reduce the short-channel effectsdbeur at this scale such as threshold voltage
roll-off and punch-through. It has been used Hereepresent a typical current generation bulk
MOSFET device which can be scaled successfullyuse in future generations [115]. The
industry roadmap, the International Technology Raag for Semiconductors (ITRS) 2008 update
[1], predicts the bulk device structure to be cmméid in production until at least 2012.

The second device to be simulated is a deviceishatoposed for future technology generations.
This device is a Ultra-Thin Body Double-Gate (UTBSPMOSFET device which has been
developed as part of the PullNano European pr@jed template device. The PullNano project
used this template device to compare the a widietyaof different device simulation techniques
used within the PullNano European consortium [116his device has been designed for a future
low standby power technology (LSTP) generation sndonstructed with a gate length of 22nm.
The DG structure is currently predicted by the IT&She “ultimate MOSFET device” that can be

scaled to the end of the roadmap [1].

The UTB DG device has highly doped source and deggion and unlike the bulk MOSFET, has a
low doped channel which will increase channel sureglengths. Originally developed with a
high-« dielectric which has been replaced with the edentaoxide thickness (EOT) in traditional

silicon dioxide for the purposes of this simulatistudy. This allows the additional complex

scattering mechanisms that need to be introductdanhigh« dielectric to be neglected.

In these devices the effect of remote screening fitee highly doped source and drain regions is
considered but the remote screening from the higldged or metal gate(s) has been left to
research beyond the thesis. Within this work,ahalysis of remote screening from the source and
drain has been considered to be the more domimampa@nent and has been studied first. Carriers
travel through the source and drain remote scrgerggions to contribute to conduction and

therefore are far more likely to feel the effectrefnote screening. The effect of gate remote
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screening is still considered an important intecaceind will be studied in the future. The gate
remote screening effect will become stronger inreitdevice such as the double gate device where

gate oxides are become very thin and metal gagescanmonplace.

The structure of the chapter will begin with thdkoMOSFET in section 6.2 followed by the UTB
DG device in section 6.3 and finishing with the dosions of the simulations in section 6.4. For
the device simulation sections 6.2 & 6.3, the m&istructure is repeated. The device simulation
sections begin with an initial presentation of ttevice structure and calibration, followed by a
brief study of the expected effect of remote sdregn Next within the section, the numerical
results of the MC simulations for the particulavide are discussed in detail and finally the result

are summarised.

6.2 35nm Bulk Device

The 35nm bulk MOSFET device used here has beenlaged to replicate a published device
structure from Toshiba [113, 114]. This device haen chosen as it represents a realistic device
that is used within the industry in CMOS applicaio The device structure has been reconstructed
from published experimental data within the comnarCCAD software Sentaurus [117], and was
completed as part of the PhD thesis of Fikru Addrema, a researcher from this group [118].
Full details of the calibration of the commerciabls along with the extraction of the device
structure, doping profiles and characteristics pn@vided in [118]. The device has since been
applied within the research group in Drift-DiffusigDD) simulation. This required the device
structure and doping profiles to exported from &enis for application with the in-house DD
code. Another researcher from this group, Gareth, Rompleted this process and calibrated the
DD simulator with Sentaurus as part of his PhDithgsl9].

Thankfully due to the construction of the Monte IBEMC) simulator used within this work, the
device structure can be directly exported from B simulator and applied without difficulty to
the MC simulator. As MC calibration is completéddugh non-device specific experimental data

as discussed in Chapter 3, no further calibrasaequired.

This section will begin by presenting the deviceidure and doping profile for this bulk device
along with the calibration data showing the matatween the simulators in section 6.2.1.
Following this in section 6.2.2 will be a brief dyss of the expected behaviour from the
introduction of remote screening to ionized impustattering in simulation of this device. Finally
the results of the MC simulation with remote sciegrwill be analysed in detail within section
6.2.3.
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6.2.1 Device Structure and Calibration

The structure and dimensions of the bulk devicel wgigh the MC simulator are given in Figure

6.1. It should be noted that this diagram is nmainh to scale but provides a generic overview of
the structure. The remote screening plane is givahe upper-left corner of Figure 6.1 and the
positions of the remote screening interfaces at Znf Z=Lc are marked at the edges of the

source/drain regions.

35nm Gate

R
z 1.4nm Oxide
T
47nm ‘l L |l 20nm \ 55nm
Source z=0 z=L, Drain
75nm

Substrate

Figure 6.1: Structure of the bulk MOSFET device.

The printed gate length of 35nm defines the destade and has a metallurgical channel length,
measured from the net doping profile, of approxeha6nm. This device has been designed for
the 45nm technology node and MOSFET's of this seaée already in production. The oxide
thickness for this device is 1.4nm and is a silioannitride dielectric with a dielectric constawit

& =5.45. The gate in the MOSFET device of Figure 6.1 usidin the DD and MC simulators,

is a metal gate with a work-function ofg =3.94%V. This deviates from the original

specification of a poly-Si gate as discussed inattiginal paper [113, 114] and is shown below to

have little effect on the calibration.

The net doping profile is given in Figure 6.2 forstbulk device which, as mentioned earlier, was
produced in the commercial TCAD process tool Sen&l17] by Fikru Ademu-Lema [118].
Use of the commercial process tool has allowedattheanced doping profile to be accurately
replicated from the published data of the Toshibaak.
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Figure 6.2: Density plot of bulk MOSFET net doping with the positive scale denoting donor
doping and the negative acceptor doping.

In Figure 6.2 the advanced doping profile in thiesttate can be clearly seen with n-type doping in
red and p-type doping in blue. The device haswdiuin doped retrograde channel profile with the
peak density just below the source/drain wellsisTé coupled with boron Halo extensions in the
channel to improve the punch through charactesistithout heavily increasing the channel doping
concentration. The source and drain wells arenarsgoped, with shallow extensions to reduce
short-channel effects and deep junctions to redacess resistance.

This channel doping profile has been directly intpdrinto the DD simulation (and MC
simulation) from Sentaurus and the technique isudised within the PhD thesis of Gareth Roy
[119]. It should be noted that this net dopingfipedfigure, which is exported from Sentaurus,
includes a poly-Si gate which has been neglecténimihe DD and MC simulations. Calibration
of the commercial TCAD software with the in-housB Bimulator is completed and discussed in
detail within Gareth Roy’s thesis and here theltesare simply repeated. Calibration is completed
through thed-Vs curves and is shown in Figure 6.3.
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Figure 6.3: (a) Linear and (b) semi-log | p-Vg curves for the bulk MOSFET device showing the
comparison between Sentaurus, Drift-Diffusion and M onte Carlo simulation.

In plot (a) we see the excellent match between BiDthe commercial Sentaurus software at both
the low drain voltagey, =50mV, and the high drain voltage &, =1V. For reference the DD
simulation has been completed with the original/#il gate and the metal gate to demonstrate the
negligible difference between the results. Alsovah is the comparison between the MC and DD
simulation of the metal gate device at a low digiss of V; =0.V and a high drain bias of
V, =1V. As is expected, the MC simulation is very cléséhe DD results at low drain bias and

shows an increase in the drain current at highndba#s. This increase is due to the non-

equilibrium transport of carriers within the MC sitation.

As MC simulation is calibrated to other more gen@xperimental data such as energy-/velocity-
field curves, bulk mobility and universal mobilitigrther calibration is not required. Althoughst
important to ensure that the MC results are simdathe DD simulation, it is indicative to check
that the curves match in low-field conditions. §s easier to show in a semi-log plot of th&/k
curves given in plot (b) of Figure 6.3. In plo) (be match of the MC with the DD solution is clear
at the low-field conditions given fov, =0.V. The solutions between DD and MC also match
well for low gate voltages at the high drain biakewe the non-linear transport effects such as

velocity overshoot are not important.

In both these plots for thé, -V, curves, the range of gate voltages was restrictedminimum

of V; =0.4V. This is the case as MC is unable to accuratelgdahthe device for lower gate

voltages as the statistical noise in the data avees the results.

An important step in the use of the remote screpniodel for ionized impurity scattering is the

position of the source and drain interfaces. Idesice with a realistic doping profile this can
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become a complex decision as abrupt transitiodsping are not found. Instead a simple estimate

has been made based on the net doping profile.
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Figure 6.4: (a) Net doping profile with signed log scale and (b) net doping difference plot for
the bulk MOSFET.

Plot (b) of Figure 6.4 demonstrates a differenad pf the net doping profile (given by the solid

red line). In the channel of the bulk MOSFET tloenp at which the net doping is at the steepest
gradient is chosen at the point that the sourcedaaith interfaces are to be located. In Figure 6.4
the positions chosen for the source and drainfates are depicted by the dashed green lines,

where the source interface is assigned at47nm and the drain interface & = 73nm.

Plot (a) of Figure 6.4 also demonstrates a sigag@lot of the net doping profile which highlights
that the point at which the net doping is at tleegest gradient coincides with the metallurgical p-
junction. This strengthens the chosen positionthefsource and drain interfaces as being closest

to the original definition used in the scatteringdual calculation of abrupt interfaces.

6.2.2 Analytical Estimate of Remote Screening Effec  t

Before moving to MC simulations of the bulk MOSFH@vice it is important to examine what
effect remotely screened ionized impurity scattpisexpected to have on the device performance.
A simple estimate is possible by using analyticdtulation of the mobility in conjunction with
data from DD simulation of the device. The DD dagad within this mobility estimate is the same

data used to initialise the MC simulation.

The mobility analysis completed here is not a tgpimobility analysis, which normally might be
completed to characterise uniformly doped silicoder various electric fields. Here the analysis
of mobility is used to estimate the effect that tbmotely screened Il scattering mechanism has in

the context of channel performance. In a chanhtiedevice the mobility is spatially dependent
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on various factors such as doping density, cacoacentration and the electric field. Such spatial
dependence makes definition of the mobility in a®RET channel extremely challenging. Here it
must be stressed that this analysis is a simplgghr@stimate for the channel mobility to allow

greater insight into the behaviour of remote sdregm a device context.

To compute the spatially dependent mobility, a 1Dfife of the channel impurity and electron
concentration data at each mesh point is obtainech the DD simulation data. The Kubo-
Greenwood formula [33], given by equation (5.34)pves the mobility to be calculated at each
mesh point along this channel profile for the sratty mechanisms considered. The total mobility

can then be approximated through use of Mathiesgete [30], equation (6.1),

—=y= 6.1)

with 4 denoting the-th mobility mechanism. As mentioned above, thialtanobility can be

calculated at each mesh point along the channelthis particular device the mesh points are

evenly spaced at 0.5nm intervals.

Referring to the textbook definition of the moljliit is defined as the proportionality of the carr
velocity gained by carriers in between scatteringngs to the electric field [15]. The average time
between collisions is also known as the mean free &nd can be expressed as the mean free path,
| =7v,,, with the inclusion of the average thermal velpaif electrons. The use of the thermal
velocity can only be considered a very rough edtomavhich although only applies at equilibrium
has been used in literature to define an estimatedn free path (see [120]). Therefore, the
mobility can be said to be a value defining theatieh between carrier velocity and the electric

field over a mean free path.

Taking the average thermal velocity q§:(8kBT/mQ)% =0.9907 10 crpt : [51] and assuming
the mesh spacing is the mean free path, the meea time can be approximated as
7=0.5x10°/ 0.990% 10= & I¢s. This mean free time is an order of magnitudellemtnan

has been reported in the literature [33] and higitt§ the problem that calculating the mobility on
the mesh spacing interval will lead to overestionati To combat this problem a moving median of
the total mobility is taken with a span calculatesim an estimate of the mean free path. A simple
estimate for the mean free path can be obtained)uke average ensemble momentum relaxation

time, defined as equation (6.2) [121], for the m&an time between scattering events.
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) IdEr:;’t( E) Eaf%E

(1) _ (6.2)
==
0
where f, is the equilibrium Fermi distribution aref" is given as
1
= : 6.
(8 () 63

with 7' denoting thé-th scattering mechanism.

Considering that the Kubo-Greenwood formula is dvdbr linear, low-field systems [122] and
Mathiessen’s rule is valid for independent scattgrnechanisms [30], the use of this approach in
bulk MOSFETs can only be regarded as an estimdte [Despite all this, the purpose of this
analysis is to evaluate the remote screening etfieathannel performance and the methodology

discussed here is considered a reasonable approach.

The scattering mechanisms included in this mobiiyjculation include the acoustic and optical
phonons along with Il scattering. Three casepeageented, each case has a different Il scattering
model which will be either the BH model discussedséction 2.3, the single interface remotely
screened Il model from section 5.2.3.1, or the tmirtierface remotely screened Il model given in
section 5.3.3.1. In all cases ellipsoidal, norapalic bands are assumed and for the purposes of a

simple evaluation, only the first silicon bandrisluded (the X valleys).

For the intra-valley acoustic phonon model, therapph discussed in section 3.3.1 is used here.
The intervalley optical phonon scattering mechasigmesented in section 3.3.2 are also used here.
This includes the scattering between equivalentaleys and the f- and g-type intervalley optical
phonons. The material constants and transportndess used in the phonon scattering

calculations are those listed in Table 2 of Chapter

As mentioned earlier the DD data is used to in#&althe MC simulation and for the mobility
calculations presented here, the impurity and elactlensity is all that is required. For this
analysis, only the low drain solutions at threeasafe gate voltages will be analysed. At each gate
voltage, the average ensemble momentum relaxadiienis calculated and the mean free path is

estimated to obtain the span of the moving median.
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Presented in Figure 6.5 is (a) the carrier/impurggpcentrations and (b) the calculated mobility for
the different ionized impurity models with phonaraiering forV; =0V. The average ensemble

momentum relaxation rate is calculated using equoat6.2) in conjunction with the sum of all

momentum relaxing processes, equation (6.3), wiuiclll the phonons and the BH model yields

<r}§t> =1.56x 10*'s. Hence the estimated mean free path is givép asl.55m.

For this the lowest gate voltage \¢f =0V, the carrier concentration is very much lower thzen

impurity density in the channel. These are coadgiwhere |l scattering typically dominates [27]

and will lead to a high Il scattering rate.
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Figure 6.5: Plot of (a) the impurity and electron d  ensity, and (b) the impurity and phonon
limited mobility at a gate voltage of  V, =0V and a drain voltage of V, =0.1V.
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Plot (b) of Figure 6.5 shows a low mobility alorigetchannel length consistent with the large II
scattering for the BH case. It is clear in thistghat the remotely screened Il models causege lar
increase in the mobility over the entire lengthief channel. At the source end of the channel both
the single and double interface models correspemds increase of 196%, with an increase of
117% at the drain end of the channel for the dourtésface model.

The large increase in the channel mobility with temotely screened models can be understood
from the low carrier (screening) density in theroiel as shown by the red line in plot (a) of Figure
6.5. The longer the screening length in the chiatine stronger the remote screening effect which

reduces the momentum relaxing effect of Il scattgri
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Figure 6.6: Plot of (a) the impurity and electron d  ensity, and (b) the impurity and phonon
limited mobility at a gate voltage of  V; =0.4V and a drain voltage of V, =0.1V.

At a higher gate voltage o¥; =0.4V, the average ensemble momentum relaxation rate is

tot
m

calculated as<r >=3.27>< 10™s which gives a estimated mean free path,oF3.22hm. The

electron concentration at this gate voltage, showplot (a) of Figure 6.6, is almost an order of
magnitude larger than the impurity concentratioihis will decrease the strength of the II
scattering and the mobility will increase, cleaonfr plot (b) which is approximately four times

larger than that of/; =0V .

The increase in screening density at this highes galtage has the effect of reducing the strength
of remote screening on Il scattering. The effecttbe channel mobility due to the remote
screening models is consistently smaller, on tldemnof 20% at the source and 7-8% at the drain.

There is still an increase in the mid channel mighlilut it is reduced to ~5% improvement.
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Figure 6.7: Plot of (a) the impurity and electron d  ensity, and (b) the impurity and phonon
limited mobility at a gate voltage of  V; =1V and a drain voltage of V, =0.1V.

For the highest gate voltage \df =1V shown in Figure 6.7, the average momentum relexatite

tot
m

is <r >:5.59>< 10“s and the estimated mean free patH is=5.54m. At such a high gate
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voltage the mobility here is dominated by phonoattecing as the electron concentration rises to
well above the impurity concentration. The chagastic increase in mobility around the source
and drain interface is still present although mleds dramatic than at lower gate voltages. At the
source end of the channel there is a peak incréaseao remote screening of 10%, a consistent
increase of 2% along the channel and a peak ineraiathe drain of 4%. This reduction in the

effect of remote screening is expected at high galtages where the screening density is greatest.

From this analysis, the effect of remote screeminghe device mobility will be larger at lower
gate voltages where the carrier concentration as teeor lower than the impurity concentration. It
predominantly has the largest effect in a regioxt t@the source and/or drain interfaces, with the
increase at the source interface less affectedhdoydtain bias. As the gate voltage increases, the

screening density increases and the effectiverfagsnmtely screened Il scattering is reduced.

6.2.3 Ip-Vg Behaviour with Remote Screening

Implementing the remotely-screened impurity scadterates developed in Chapter 5 into the MC
simulator will allow the effect on device perforncanto be thoroughly analysed. MC simulations
have been completed for the bulk MOSFET devicegugie newly developed, numerically capped

methodology for Il scattering, discussed in seciah

The analytical analysis in the previous sectiongests that the remote screening effect should
increase the channel mobility for lower gate vadag Ideally this increase in mobility should lead

to an increase in the drain current at lower gattages with a decreasing effect as the gate weltag
is increased. Given this evaluation of the rensmieening effect, the bulk MOSFET device has

been simulated for various voltage points to predac |, -V curve. Such a curve can be used

to assess the sub-threshold leakage current, teshthld voltage itself and the drive current. As
mentioned previously, statistical noise means #iatulations must have a gate voltage of
V;20.4v.

In Figure 6.8 the simulation data is plotted fourfalifferent cases of channel Il scattering. The
cases are: the numerically capped BH (Num BH) mtdelughout the device; no Il scattering in
the channel region with Num BH in the source/drélito Chn II); single interface Remotely
Screened Brooks Herring scattering (RSBH Sgl) im ¢hannel with Num BH in source/drain;
double interface remotely screened BH scatterin@BiR Dbl) in the channel and Num BH in

source/drain.
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Figure 6.8: (a) Linear and (b) semi-log | p-Vg curves for the bulk MOSFET with remotely
screened impurity scattering.

The Num BH case is the baseline case withgeaeericll scattering model and is denoted by the
solid black line in the two figures. As an uppenit on the effect of Il scattering in the channel,
simulations have been completed where |l scattdragybeen neglected for the channel region and

is shown in the figures as the red line.

The effect of neglecting the channel |l scatteiimglear, with a noticeable increase in the drain
current. The increase at low drain bias is an atngonstant increase at each gate voltage point,

roughly 30uA /um. The increase in current at high drain bias iases slightly with gate voltage,
roughly 4QuA /um at low gate voltage to A /m at high gate. Therefore in the bulk device

the channel impurity scattering plays a role inrahterising the device current drive and sub-

threshold leakage.

The remotely screened models are also includelerfigures for the single interface (green line)
and the double interface (blue line) cases. Thaote screening models clearly have negligible
effect at any gate voltage. The small increasdégvagate voltage of the low drain bias curve are
within the error bars on the plot and thereforeraeconclusive. In the following sub-sections the
results will be analysed in more detail for therfalifferent 1l cases discussed above. Initially,

results of the low drain case &, =0.V will be analysed followed by the high drain cade o

V, =1V.

6.2.3.1Low Drain Bias

The results foV, =0.V will be examined in greater detail for two gatdtage points, one at a
low gate voltage and one at the highest gate wl@igv; =1V. Given that MC simulation is

prone to statistical noise at low gate voltageis important to examine a low gate voltage data
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point where this noise is minimal. Examining th&oe bars at low gate voltage points of
V; =0.4v,0.5/,0./ in more detail in Figure 6.9 will allow the dataipt with minimal noise to

be chosen.
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Figure 6.9: | p-Vg characteristics for the bulk MOSFET with error bar s for the low gate voltage
pointsat V, =0.V.

The error bars in the MC simulator are calculatenfthe standard deviation in the mean of the
variable, the drain current in this case, wheresthéstical dependence has been included through
an estimation of the correlation time [123]. Theoeis calculated using the following equation
[124]

err =\/%(1+ ZZ(l—Ejka (6.4)

where ¢ is the standard deviatiorr{ the variance)N is the number of steps in the simulation
and p, is the estimated -th- lag autocorrelation (which is dimensionles§he sum represents an

estimation of the autocorrelation function. Tkéh lag autocorrelation is estimated using the

sample autocorrelationg, =, /), Where the autocovariancg,, can be estimated byy( is the

k=0 lag autocovariance, essentially the sample vagianit)

IR E ©5)
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Here z represents the variable at a time stepnd Z represents the sample mean over the entire
time series. This method is discussed in moreildeithin the textbook by Box [124]. It should
be noted that the error bars plotted arkracase representing a confidence interval (assu@ing

normal distribution of error) of roughly 68%.

With a more detailed examination on the low gatéiage points in Figure 6.9, the remotely

screened Il scattering model appears to show hatsfigrease a¥; =0.4v,0.5/ and oddly a slight

decrease aV; =0.6V. At a gate voltage 00.4/ the statistical noise, given by the error bars,
make this result difficult to examine and validatét the gate voltage point of 0.5V the remotely
screened models are a close match, and slightjeddahan the Num BH model. The error bars at
this data point are also small enough to be considaeot to dominate the results. It is this data

point of V; =0.5/ which has been chosen to analyse the low gateagelbehaviour of the I

models.

It is important to ensure that the remotely scrddhenodels are operating correctly and that their
behaviour is as expected. This is best shown digipd a profile of the Il scattering tally takeh a
each mesh point. That is, for each mesh squaeumber of 1l scattering events was counted for
each of the Il scattering cases. This Il scattetaily has been plotted in Figure 6.10 with the 1l

scattering tally data given in arbitrary units.
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Figure 6.10: lonized impurity scattering tally alon g the channel for the bulk MOSFET at (a)
V; =0.5V and (b) V; =1V with V, =0.V.

The plots in Figure 6.10 show that there is adimumber of Il scattering events in the channel
region which, away from the source and drain imiees, is similar between the remotely screened
and BH Il models. For the case of no channel #ttecing, the tally drops off abruptly at the
source and drain interfaces as is expected. Adpeated is the drop off in scattering events fer th

single and double interface RSBH model next tosthierce and drain interfaces respectively. As
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discussed in Chapter 4, the remotely screened dletsaeduces the Il scattering rate located close

to the interfaces which explains the reduced nurabewents seen above.

It is also interesting to note that at the highategvoltage, plot (b) in Figure 6.10, the Il scatig
tally is larger in the channel than the lower gat#tage case, plot (a), for all channel Il scattgri
models. This is contrary to the fact that at lowereening densities the Il scattering rate will
increase. This can be understood from the incdeaserier density at the high gate voltage

increasing the number of scattering carriers irctiennel and consequently, the number of events.

Having established that the scattering models pegating correctly, it is now essential to examine
what effect each model has on the carrier transp®tiis is best completed by examining the
carrier velocity and density along the channelguRé 6.11 presents (a) the electron velocity and
(b) density for the gate voltage 6f5/ and Figure 6.12 the (a) velocity and (b) dengityd gate
voltage oflv .
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Figure 6.11: (a) Velocity profile and (b) electron density along channel of bulk MOSFET
comparing standard and remotely screened ionized im purity scattering models at  V,; =0.5V

and V, =0.1v.

For V; =0.5V the electron velocity along the channel in plgt¢aFigure 6.11 increases within

the source region and is rapidly accelerating asdsses the source interface at 47nm. At this
point, the model which neglects channel Il scaitgiNo Chn I, the red line) has an increased
velocity which remains larger throughout the charergth and into the drain region at 73nm.
The standard and remotely screened Il scatterisgscgemain fairly close to each other throughout
the channel region. There is a slight increasgimier velocity mid channel, around the 55-60nm
region, with remote screening but this is very mudgthin the region suffering from statistical

noise.
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Plot (b) of Figure 6.11 gives the correspondingtets density along the channel. The electron
density is identical between all four cases of clehull scattering in the MC simulation. Hence, it
can be said that the larger drain current of theQ¥m Il case is due simply to the increased
electron velocity through the channel. It alsolaks the mild increase of the remote screening
models drain current as the electron velocity wt gh) of Figure 6.11 is very slightly higher over
the standard case. This result is partially okestiny the noise in the data which, if we look & th
electron density, can be understood. Given tharaiaelectron density of roughly=1x10°cni®

and  multiplying this by a rough estimate of the e  volume,
26nmx 10nnmx 1nn¥ 2.6¢< 10° crf, corresponds to around 2-3 electrons in the cHarolame.

With so few electrons in the channel contributingthe current density, noise in the results is

unavoidable.

The electron velocity and density for the highestegvoltage ofV; =1V in Figure 6.12

demonstrates similar results for the differentdatsering cases. Here the electron velocity in the
channel for the case without Il scattering is higien the standard case, but is not as significant
an increase as the lower gate voltage case. tinthecpeak velocity for this higher gate voltage i

lower than the velocities shown in Figure 6.11tfa low gate voltage point.
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Figure 6.12: (a) Velocity profile and (b) electron density along channel of bulk MOSFET
comparing standard and remotely screened ionized im purity scattering models at V=1V

and V, =0.1v.

The relative decrease in velocity can be explaibgdhe electron density given by plot (b) of
Figure 6.12. At this higher gate voltage the etectensity is arounch, =5x10°cni® which is

approximately five times the number of electronsspnt in the channel region. Referring to the

simple expression for current density, which canvbéen

J=eny (6.6)
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wheree is the electronic charge, the carrier density and, the drift velocity. Hence, given that
the drain current a¥; =1V is roughly 2.5 times larger and the electron dgrisi5 times larger
than theV; = 0.5V case, the velocity at high drain need only be ti@fmagnitude of the low drain
results. Examining the velocity of the low draiase given in Figure 6.11, the peak is roughly
v, =0.6x10cm/< and for the high drain case the peak is roughly=0.3x10cm/s which

coincides with this basic theory.

The energy profiles for the carriers are quite Eimbetween the different channel Il scattering
cases. As |l scattering is an elastic process,c#frier energies in the channel will not be diyec

modified by changes in this model. Although wilie reduction in Il scattering, other scattering
processes could become more prominent such assticef@honon scattering which potentially

could modify the carrier energies, this has nonltee case here.
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Figure 6.13: Energy profile along channel of bulk M  OSFET comparing standard and
remotely screened ionized impurity scattering at (a ) V; =0.5v and V, =0.V and (b) V, =1V

and V, =0.1v.

At low drain bias the remotely screened Il scatiggninodel has little effect on the drain current.
Considering the analytical mobility analysis conmptein section 6.2.2, the remotely screened
models was expected to increase the channel pexfaen particularly at the source interface.
Therefore examination must move to the final sdaige mechanism, interface roughness (IR)
scattering which was not considered in the anallticobility analysis. IR scattering is found to
have a strong performance defining factor in thik BIOSFET device with the removal of this

scattering mechanism from the device leads to a ibB2%ase in drain current & =0.5/, and a

88% increase af; =1V .
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An estimate to the IR scattering mobility can beileated using the IR scattering model and

estimating the effective vertical electric fiel&,; , in the channel of the device from the MC

simulation results. Taking an estimate of the aiffe field in the middle of the channel,

Z =60nm, for both gate voltages givel,; =1.09MV/cm and E,, =1.68MV/cm respectively.

Using these values in the IR momentum relaxatida, raquation (6.7) below, it is possible to

compute the corresponding mobility with the Kube&rwood formula, equation (5.34).

1 _€em 2 2 1- cosp
—= El, L. (1+20E) | dp———=- 6.7
Z_r|an 2h3 ( eff = rms e) ( + ) l ¢ (1+%|_‘25q2)% ( )

hereA, . =0.35m is the RMS amplitude of surface fluctuations dng=1.3nm is the correlation

length. This IR scattering model is the Ando modigh an exponential autocorrelation function

[58] as discussed in section 3.3.4, here preseated momentum relaxation rate. Numerical

calculation gives an IR mobility ofy, =275cn?/Vs at V, =0.5V, and 4, =92cn?/Vs at
V. =1V,

Referring to analytical mobility analysis, the reelp screened model was expected to provide a

peak increase of mobility at the source end of ¢hannel of 20% al; =0.4V and 10% at

V; =1V when considering only phonon and Il scatteringsing Mathiessen’s rule, given by

equation (6.1), the IR mobility can be includedhe estimate. The effect of remote screening at
Z =48nm with IR scattering reduces from an increase ofeximately 14% to 4.5% at low gate,
and from approximately 4% to 0.5% at high gateefmifig to the analytical mobility plots in
Figure 6.6 and Figure 6.7). It is clear from tldsult that the inclusion of the IR scattering ¢jsea

reduces the effectiveness of remote screening seattering.

Further explanation for the negligible effect ofnate screening can be understood from the
regions over which remote screening has an effedt scattering. This region is defined by the
channel screening length which can be evaluatedgugie degenerate, non-parabolic Debye-

Huckel model, equation (3.36). Examining plot @)Figure 6.11 and Figure 6.12, the electron
densities in the channel can be approximated res2x10°cmi® for V,=0.5V and
n=5x10%cni® for V; =1V which gives screening lengths of. =1.06nm and A. =0.79m
respectively. As discussed in the previous chafsee Figure 5.16), the scattering model for
remote screening has little effect beyond two cleasoreening lengths (and is negligible4al. )

which leads to a region of around 1.5-2nm from eimtérface where remote screening can be
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6.2 35nm Bulk Device

considered to have a strong effect. This is leas 10% of the metallurgical channel length, which

is not an appreciable portion of the channel.

Taking a simple estimate on the number of probadattering events in this small remote

screening region is possible and will highlight tihgportance of Il scattering. For both gate
voltages, the carrier drift velocity is aroung =0.25x 10 cny s which means the average carrier
will traverse the remote screening region in appnately 7, =2nm/0.25>< 10 cnmi s= 80f«

Evaluating the BH scattering rate from section 3.8nd the remotely screened model (RSBH)

from section 5.2.3.1 for the conditions outlinedady, yields rates for both gate voltages on the
order of Iy, =5x10%s™ and I, =2x10's™ respectively. Taking these estimates for the
scattering rate and transition time, the carrigagedlling through the remotely screened region will

have a probable number of scattering events ofoaxppately n- =TIg,7, =0.4 for the BH

model andn. =T g,7, =0.2 for the RSBH model.

Therefore, within the remote screening region (fieined to be- 2A. from either interface), the

BH 1l model has a probability of scattering whichreduced by a factor of two in the RSBH I
model. Although there is a factor of two reductionprobable scattering events, there are still

relatively few events within the all important regiof remote screening.

6.2.3.2High Drain Bias

For the detailed analysis at high drain bias, the goltage points o¥; =0.4V andV; =1V are
chosen. At the higher drain voltage \4f =1V, the statistical noise in the MC simulation daa i

less of a factor. Examining the error bars for tingh drain |, -V curves in Figure 6.14, this

reduction in noise is clear.
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Figure 6.14: | 5-Vg characteristics for the bulk MOSFET with error bar s for the low gate
voltage pointsat  V, =1V .

A similar procedure is followed for the presentatand discussion of the high drain results as was
taken in the low drain bias analysis. The Il sratg tally for both gate voltages is plotted in
Figure 6.15. Following this the electron veloatyd density are plotted in Figure 6.16 for the 0.4V
gate voltage and in Figure 6.17 for the higher gateage of 1V.
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Figure 6.15: lonized impurity scattering tally alon g the channel for bulk MOSFET at (a)
V; =0.4V and (b) V; =1V with V, =1V .

Figure 6.15 shows that the inclusion of remoteestireg reduces the 1l scattering tally at the source
and drain interfaces. Also evident is the effddthe high drain voltage which biases the channel
and reduces the |l scattering tally towards thendraVith the large bias across the channel, the
electron concentration is very much reduced atdtlaén end of the channel (see Figure 6.16 and

Figure 6.17), causing the reduction in the Il sraty tally.
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6.2 35nm Bulk Device

The low gate voltage electron density, plot (b)Figure 6.16, shows that the No Chn Il case
induces a higher density at the drain end of ttecll. This is contrary to the behaviour of this
scattering case at the lower drain voltage discligsesection 6.2.3.1, where increases in drain

current could be explained solely by increasedanael velocity.
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Figure 6.16: (a) Velocity profile and (b) electron density along channel of bulk MOSFET
comparing standard and remotely screened ionized im purity scattering models at  V; =0.4V

and V, =1V .

The increase in drain current of the No Chn Il weatg case, as shown in Figure 6.14, is partly
explained by the increased electron velocity int @@ of Figure 6.16, but more so by the
significant increase in electron density in plot (BWith no Il scattering in the channel regiore th
number of scattering events which can randomisectreer trajectory will be smaller. This
reduction in carrier trajectory randomisation uélhd to a higher velocity of carriers traversing th
channel from source to drain thereby altering tbatiouity balance and affecting the electron

density.
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Figure 6.17: (a) Velocity profile and (b) electron density along channel of bulk MOSFET
comparing standard and remotely screened ionized im purity scattering models at V=1V

and V, =1V.
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6.2 35nm Bulk Device

At the highest gate voltage, shown in Figure 6th&, electron densities are a close match for all
the models. The velocity of the No Chn Il casemarginally larger than the other models,

especially at the peak velocity point at approxehaZOnm. At this gate voltage and drain bias,
the carriers are passing the source interfaceeasdituration velocity and continue to accelerate
along the channel, that is velocity overshoot ce@wer the entire channel length. This behaviour
has a strong effect on controlling the drain curnehere the velocity at the source end of the
channel is the dominant factor. Closer examinatibthe velocity at the source interface shows
that the No Chn Il case is approximately 4% higthem the Num BH case. Comparing drain

currents from the lineak, -V, curves of Figure 6.8 also shows a increase ime@n of 4%.

(b)
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Figure 6.18: Energy profile along channel of bulk M  OSFET comparing standard and
remotely screened ionized impurity scattering at (a ) V; =0.4V and (b) V, =1V, for V, =1V .

Again the average carrier energies along the chaength remain very close to each other
between the different channel Il scattering casBse average energy reached by the ensemble is
considerably larger than the low drain bias. Nbardrain end of the channel, the average carrier

energy is around 600meV, an almost ten-fold in@easthe low drain bias energies.

At high drain bias the remotely screened modelsnagjzow negligible effect on the drain current.
Interface roughness scattering continues to plstyang role in defining the channel performance.
Removing IR scattering from the simulations proside22% increase at low gate voltage and a
28% increase at high gate. It is expected, from dhalysis involving the analytical mobility

estimate at low drain, that IR scattering will reduhe effectiveness of remote screening.

The region where remote screening can be considéraag can be approximated from evaluation
of the screening length at the source and drainoérile channel, again making use of equation
(3.36). Electron densities can be approximatenhftioe plots of Figure 6.16 and Figure 6.17, but

in this case it needs to be approximated for thh e source and drain end of the channel due to
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6.2 35nm Bulk Device

the high drain bias. For the lower gate voltag&/of 0.4V, the electron density is approximated
at n=10"cni® for the source end anai=10"*cm® for the drain end. Evaluating equation (3.36)
yields the respective screening lengthsigf=1.4nm and A, =4nm for the source and drain ends
of the channel. The source end of the channelhaife a region in the order @1, =3nm where

remote screening is strongly effective. This cepands well with the drop in the Il scatteringytall
given in plot (a) of Figure 6.15. This region asponds to just over 10% of the metallurgical
channel length, yet there is no improved perforreanét the drain end of the channel, the remote

screening region is even larger and can be estihatt@4. =8nm, which is over a third of the

channel length.

This lack of performance improvement can be undedsby examining the impurity scattering in
the remote screening regions at the source and dral of the channel. Starting by looking at the
source end of the channel first, estimates willntede to gain insight into Il scattering in the

remote screening region. For the low gate biasgthctron velocity can be estimated from Figure
6.16, with a drift velocity ofv, =0.4x 10 cny s at the source interface. Given a remote screening
region of approximatel\8nm, the transit time for the carrier through thisioegcan be estimated
as 1, =3nny0.4x 10 cni s 74f. The BH and RSBH scattering rates can be evalufiten
equations (5.64) and (5.40) from Chapter 5, udmgdonditions outlined above, yielding rates of
Mgy =10°s™ and Tl ., =6x10°s™ at the source interface. Therefore a carrierappsoximately

N, =leyx7, =075 and n.__ =T, %7,=0.42 probable scattering events for the BH and

RSBH models respectively, in the remote screenaggon at the source interface. The relative
number of probable Il scattering events is almdstcéor of two decrease in number of events, but

due to the few Il events in this small remote scireg region the effect is almost negligible.

At the drain interface the scenario is quite défardue to the high drain voltage. The drift véloc
from Figure 6.16 isv, =3.3x10 cny < at the drain interface with a corresponding triatisie
through theBnm remote screening region of = 24fs. The average carrier energy, plotted in plot
(a) of Figure 6.18, is around.4%V which is very large. Evaluating the BH and RSRidttering
rates gived g, =6x10°s™ and T g, =9x10°s™ at the drain interface. Estimating the probable

number of scattering events at the drain end otcttenel from this datay. =TI, x7, =1.44

and n; =T gey*7,=0.2, shows a greater difference between the modelsspiie this large

difference between probable number of scatterirenesy there is still no noticeable change in the
channel performance characteristics. This nedéghift in channel performance at the drain end

is due to the very high carrier energy. Evaluatainthe differential scattering cross section

158
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highlights the dominance of small angle, forwardt&ring at these high carrier energies. Such

scattering events typically have only a small dfftecthe momentum relaxing effect of scattering.

At high gate voltages, the increased screeninghefigh carrier density reduces the remote

screening regions to arourddénm at the source interfacel{ =0.79m) and 2.5nm at the drain

interface (A. =1.25vm). This in conjunction with the high carrier veitycand increased energy

greatly reduces the effectiveness of Il scatterifidie number of probable scattering events for
each electron in either the source or drain remsoteening region becomes very small, on the

order of n- =0.02—- 0.0« per electron. This behaviour is expected at tingh gate, high drain

condition where the carrier density and averageggnare at peak levels.

6.2.4 Summary

The bulk MOSFET device has an advanced channehdgmiofile, demonstrated in Figure 6.2,

that includes a retrograde channel with halo imiglavhich help to reduce short-channel effects.

The channel is very highly doped at arourd =10°cmi® (with source/drain wells at

N, =10°°cni®) which will lead to a large amount of channel imipuscattering.

In this device the source and drain interface mwsihave been simply chosen as the point of
steepest gradient of the net doping, shown in Eigud. This choice of position happens to
coincide with the metallurgical p-n junction andrieg the source interface at=47nm and the

drain interface aZ = 73nm.

Using initial DD simulation data, an analytical &sés of the phonon and impurity limited

mobility was completed for low drain voltage coimaits. This analysis provides insight into the
effect that remote screening has on impurity sgatjein a device context, and highlights the
expected effect of remote screening on the chgmerébrmance. At very low gate voltages when
the channel carrier density is low, remote scragt@ads to a large increase in carrier mobility.

For V; =0V, the analysis predicts a channel mobility incresfsever 100% along the channel. As

the carrier density increases with gate voltage effect of remote screening is minimised.

At the minimum MC simulation gate voltage &f; =0.4V, the analytical mobility analysis

predicts a peak increase of 20% at the source etiteachannel and 10% at the drain end of the
channel. Due to the high screening, this regioninofeased mobility is restricted to a few

important nanometre’s at each interface. At tlyhést gate voltage simulated, =1V, the effect
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6.2 35nm Bulk Device

of remote screening is very small with a maximurréase of 10% at the source interface and a

consistent 2% increase along the channel length.

MC simulation of the bulk MOSFET with the remotslyreened 1l model demonstrated results that
are much less dramatic than predicted with theyéinal mobility analysis. The simulation of the
newly developed Il scattering model proved to offegligible difference to the carrier transport in
the channel region. Results are also obtainedhvmemoves the Il scattering entirely from the
channel to obtain an upper limit. These resultsasthat in the bulk MOSFET, the |l scattering

process has a role in determining the channel pediace and drain current.

Not considered in the analytical mobility estimatethe effect of IR scattering on the channel
performance, which is found to strongly affect thdk MOSFET device. At low drain bias,
removal of IR scattering from the device increabesdrain current by up to 88% at a gate voltage

of V; =1V. A simple estimate for the IR limited mobility isade at low drain voltage to evaluate

the effect on the remote screening. Through uddathiessen’s rule, the IR limited mobility was
added to the analytical mobility and found to rezltice effectiveness of remote screening from
14% to 4.5% at low gate and from 4% to 0.5% at fggke. IR scattering is shown from this
simple estimate to be a dominant mechanism in thi& MOSFET device and reduces any

appreciable effect of remote screening.

The region in a device channel where remote sangeasieffective was also analysed and found to
be around 2-3nm at the source end, but could euaf as 8nm at the drain end of the channel.
For the metallurgical channel length of 26nm irsthiévice, these remote screening regions can be
an appreciable portion of the channel length. EBrang the 1l scattering in these remote screening
regions, it was shown that for the source end efcthannel, probable Il scattering events are quite
low. Typically there is a probability of less thane Il scattering event per carrier travelling

through the remote screening region.

At low drain bias, the carriers have approximately =0.4 probable scattering events with the
BH model which halves taoy. _ =0.2 with remote screening. At high drain bias and igate
voltage conditions, the probability of Il scattayiis slightly higher withn- =0.75 for BH which

drops ton-  =0.42. Despite the consistent drop with the use of temscreening of II

scattering, the number of events is too low todffiee channel performance characteristics.

At the drain end of the channel for high drain aghs, where the remote screening region is large

and can be up to 8nm, the carrier energy is s lthgt |l scattering has little effect. For high
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6.3 22nm Double-Gate Device

energy carriers, the scattering is dominated byllsamgle forward scattering events which have

littte momentum relaxing effect on the carriers.

6.3 22nm Double-Gate Device

The ultra-thin body double gate (UTB DG) device hasn developed as a template device for the
PullNano European research project. It was deeelagiginally to compare device simulations

amongst a consortium of European research grod§.[Here this device has been reconstructed
and calibrated using the commercial Sentaurus softwo the original specification, then exported
for use with the in-house DD simulator. As diseubbefore, the MC simulation uses the DD

solution output as a starting point and requirefunimer calibration.

Repeating a similar analysis for the UTB DG dewsdor the bulk MOSFET, the section will start
with a brief discussion of the device structure #mel calibration between simulations in section
6.3.1. Using initial DD data, an analytical caltion of the carrier mobility with and without
remote screening has been completed with discugsisaction 6.3.2. Section 6.3.3 presents and
examines the MC simulation data for the device witle newly developed Il scattering

mechanisms.

6.3.1 Device Structure and Calibration

The UTB DG device has been developed and optinfddw standby power (LSTP) applications
for the 22nm technology node. The device has an22etal gate (a work function @f, =4.8eV)

with a 1.1nm silicon-dioxide insulator layer andl@nm silicon body thickness as depicted in
Figure 6.19. The remote screening plane definisogiven in the lower-left corner of Figure 6.19

and the positions of the remote screening intesfat@=0 and Z=¢ are marked.
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Figure 6.19: Structure of the Ultra-Thin-Body Doubl  e-Gate device.
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6.3 22nm Double-Gate Device

This device was originally developed with a highielectric with effective oxide thickness (EOT)
of 1.1nm but this has been disregarded here akidiiec dielectric requires additional scattering
mechanisms for accurate simulation. Instead, #eeolayer is replaced with silicon dioxide of
1.1nm so that the electrostatic nature of the ateulis retained without the additional overhead of

dealing with the advanced gate stack of a kiglelectric.

The net doping profile for the structure is showrrigure 6.20. The DG device has a low doped p-

type channel with N, =1.2x10°cm® and highly doped source/drain regions at

N, =5.2x10%cmi®.

Total_Doping_[ /em3]

Figure 6.20: Net doping concentration for the Ultra  -Thin-Body Double-Gate device.

The source and drain doping is a constant dopive feom the edges of the device up to 50.5nm
and 84.5nm respectively, with a Gaussian functahaff of the doping into the channel region.
This gives a gate underlap of 6nm from the regibooastant doping of the source and drain to the
metal gate.
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Figure 6.21: (a) Linear and (b) semi-log | p-Vg calibration plots showing the comparison
between Sentaurus, Drift-Diffusion and Monte Carlo simulation.
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6.3 22nm Double-Gate Device

The DD simulation was calibrated against the consraef CAD tool, Sentaurus [117] at both low
and high drain voltages of, =0.V,V. The calibratedl, -V, characteristics for both drain

voltages are shown in Figure 6.21 along with the 8fif@ulation output. The MC simulation is a
close match with the DD simulation when non-equillim carrier transport effects are minimal,
that is at low drain and/or low gate voltage. TEfiiects of non-equilibrium transport are clear for

the MC results for high drain at high gate voltage.

The source and drain interfaces must also be seléat the remotely screened Il models and again
the choice of interface position is taken herelgal@ough the use of the difference plot of thé ne

doping profile, plot (b) of Figure 6.22.
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Figure 6.22: (a) Net doping profile with signed log scale and (b) net doping difference plot
for the Ultra-Thin-Body Double-Gate device.

The position where the net doping is at its maxingradient, highlighted by the difference plot, is
chosen here as the position of the interface andrisidered to be closest to the original definitio
of the interface as the point where the doping ilerchanges abruptly from source/drain to
channel concentrations. The source and drainfates, depicted in Figure 6.22 as the green

dashed lines, are at 53.5nm and 81.5nm giving alrahannel length of around 28nm.
6.3.2 Analytical Estimate of Remote Screening Effec  t

An estimate of the remote screening effect on earriansport through the channel of the DG
device can be calculated using the Kubo-Greenwaoohifla for mobility [33]. The spatially
varying channel mobility can be estimated usingrttementum relaxation rates for phonons and

BH and RSBH Il models along with DD simulation dé&aaimpurity and electron concentrations.

The method used to obtain the channel mobility ieiidentical to that explained and utilised in

section 6.2.2. To recap, Mathiessen’s rule is usesum the individual scattering mechanisms
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along with an ensemble averaged momentum relax#tiogth to take a moving median of the
spatially varying total mobility. The phonon reddion rates presented in section 3.3.2 are used to
calculate phonon mobilities independently. The stattering models are calculated from
expressions given in the previous chapter, Chdptand include the BH, single interface RSBH

and double interface RSBH models. The analysisbhe®sn completed for three gate voltages,

V; ={0V,0.4v , M, at the low drain voltage 6f, =0.1V .

In Figure 6.23 the plots of (a) electron and imgudoncentration and (b) phonon and impurity
limited mobility are given for the lowest gate age of V; =0V. The ensemble average

tot
m

momentum relaxation rate is calculated using eqoatb.2) to be<r >=5.6>< 10*s, giving a

mean free path ds =5.6hm.

The effect of the minimal impurity density in thieaminel region is shown in plot (b) of Figure 6.23,

where the mobility is entirely phonon controlledtveeen roughly 63-72nm. It is within this
phonon controlled region that impurity concentnatis just aboveN, =10°cni®. At this low
density the Il limited mobility is extremely higm@ can be considered to have negligible effect.

For example, for an impurity density oN, =10°cm® with an electron concentration of

n, =10°cn1®, the impurity limited mobility is roughlyz, =150 000cn? As.
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Figure 6.23: Plot of (a) the impurity and electron density, and (b) the impurity limited
mobility for the UTB DG MOSFET at a gate voltage of V; =0V and a drain voltage of

V, =0.V.

Il scattering in the channel has only an effecthimitthe region of the Gaussian roll-off of the
source/drain doping at the edges of the channlis fEégion of Il scattering controlled transport is
clearly shown in plot (b) of Figure 6.23. The dndrolled region constitutes approximately a 9nm

region at each end of the channel where remotesicig affects the channel performance.
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6.3 22nm Double-Gate Device

At this low gate voltage where the electron denisitthe channel is very low, remote screening has
a large effect in the mobility. At the source avfdthe channel both remotely screened models
provide in the region of a 150% increase in mopilénd around 200% for the double interface

model at the drain end of the channel.

The analytical mobility estimate for the gate vgiav; =0.4V, is plotted in Figure 6.24. The

average ensemble momentum relaxation rate is emmas<rt°‘> =6.2x 10"s giving a mean free

m

path ofl, =6.Inm.
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Figure 6.24: Plot of (a) the impurity and electron density, and (b) the impurity limited
mobility for the UTB DG MOSFET at a gate voltage of V; =0.4V and a drain voltage of

V, =0.V.

Increasing the gate voltage Y@ =0.4V, the electron concentration in the channel ofdbeice

has increased by several orders of magnitude,cdieglin (a) of Figure 6.24. This increase in the
screening concentration leads to a reduction irsttength of Il scattering to control the mobility,

as shown in the mobility, plot (b). This of coutsgs the roll on effect of reducing the strength of
remote screening on the Il scattering. Despite ltinge increase in the screening within the
channel, there is a peak increase of channel mpbiliapproximately 40% at the source and 60%

at the drain for the single and double interfacelei® respectively.

Increasing the gate voltage to the highest simdjalg =1V, increases further the channel electron

concentration which is now several orders of magigtbigger than the impurity concentration. At

tot

this gate voltage, the ensemble momentum relaxata is found to be(rm >:7.8>< 10"s,

leading to a mean free pathlof =7.81m.
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Figure 6.25: Plot of (a) the impurity and electron density, and (b) the impurity limited
mobility for the UTB DG MOSFET at a gate voltage of V; =1V and a drain voltage of

V, =0.V.

The increase in screening will further reduce tifiecéveness of remote screening in increasing the
channel mobility, which is expected at high gaté#ages. Although the effect of remote screening
is minimised, it still leads to approximately a 40B6rease in the mobility at either end of the

channel (drain increase due to double interfaceefiod

Summarising this simple analysis of the phononiarlrity limited mobility for the DG device, it

is clear that the low doped channel region is Sigamtly less controlled by impurity scattering
than in the case of a typical bulk MOSFET. Impustattering plays a negligible role within the
9nm metallurgical p-n junction region in the certfehe device, although there is still significant
Il scattering surrounding the source and drainrfat®s. Remote screening is shown to have a
very large increase at the low gate voltagevg=0V, in the region of 150-200%. This large
increase in mobility at low gate voltages is presticto increase the sub-threshold leakage of this
MOSFET device. As the device as been developddlfibthe LSTP requirements, the effect of

remote screening could play a strongly detrimerdial in the device performance.

As the screening strength increases, the strerfgtenmte screening reduces, as is expected. At
V; =0.4V, the new Il scattering model is expected to ineeethe channel mobility near the

interfaces by up to 40% at the source and 60%seatithin. Even at the highest gate voltage, there
is an expected 40% increase in channel mobilithiwithe region of Il controlled mobility near the

interfaces.

6.3.3 Ip-Vg Behaviour with Remote Screening

The UTB DG device has been simulated in the MC acwitle four different channel 1l scattering

cases, identical to the bulk MOSFET simulation gssed previously in this chapter. These cases
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6.3 22nm Double-Gate Device

are: Num BH — numerically capped Brooks-Herringitgeang in the channel region as presented in
section 5.4.1; No Chn Il — all channel Il scattgria removed; RSBH Sgl — remotely screened BH
model for the single (source) interface case; RIBM — remotely screened BH model for the

double interface case.

Simulations have been completed to obtain lthe'V, characteristics for a range of gate voltages

of V; ={0.4V,...,V} and drain condition¥, =0.V,V. The restricted range of gate voltages is
again due to the statistical noise in MC simulatrow gate voltages, when the majority carrier
concentration in the channel region becomes extieloe. Here Figure 6.26 present the results
of the MC simulations for all four 1l scatteringsess with error bars at each data point giving the

statistical error due to noise.
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Figure 6.26: (a) Linear and (b) semi-log | p-Vg characteristics for the UTB DG MOSFET with
remotely screened impurity scattering.

Examining the linear plot of thé, -V, characteristics of plot (a) in Figure 6.26 showttH

scattering plays a very minor role in determinihg thannel performance. Simulations with the
channel Il scattering turned off show that thera igery small increase in the drain current at high
gate voltages. This increase in drain currentesponds approximately to a maximum increase of

around20- 3QuA /um at the peak gate voltage.

The logarithmic plot of the drain current, plot @) Figure 6.26, further demonstrates the lack of
impurity scattering in controlling the device perfance. At the lowest gate voltage point,
V; =0.4V, the statistical noise is dominant and examinatibthe results are not reliable due to
this. At the higher voltage d¥; =0.5V, the noise is still considerable but the resudtsns to

corroborate the minimal affect of impurity scattgri These results strongly demonstrate that
impurity scattering in the channel region of théstizular device is very much a negligible effact i

determining the device performance. Remote sangesiearly has negligible effect in defining the
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6.3 22nm Double-Gate Device

drain current. A brief analysis of several datanfsoat low and high drain will be completed in the

following sub-sections to confirm the behaviourrseethe | ; -V, plots.

6.3.3.1Low Drain Bias

The low drain voltage analysis will examine two ggabltage points to confirm the behaviour
shown in thel ; -V, characteristics. A low gate voltage point will tieosen below with the aid
of the error bars in thé, -V, plots, Figure 6.27. The high gate voltage wilitbeV, =1V point

which can be selected without error bar considematis statistical noise is not a factor at high
fields.
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Figure 6.27: Semi-log plot of the low gate voltage Ip-Vg characteristics with error bars for the
UTB DG MOSFET at V, =0.IV.

Figure 6.27 gives the low gate voltage drain cusém more detail with their corresponding error
bars. The error bars at the lowest gate voltagé,cf 0.4V are particularly large and have been
clipped to fit them on the plot, hence the arrowthesbottom cap. Considering the magnitude of
the noise at this voltage this point is not analysere. At the higher gate voltage\ef=0.5V the
error bars are still quite large despite the carration between the drain currents, and for this
reason it also will not be analysed here. Instdsldata point a¥; = 0.6V will be analysed given

that results appear stable, given the small emas.b
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6.3 22nm Double-Gate Device
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Figure 6.28: lonized impurity scattering tally alon
V; =0.6v and (b) V; =1V with V, =0.IV.

g the channel for UTB DG MOSFET at (a)

Starting by looking at the Il scattering tally footh gate voltage points in Figure 6.28 (note that
Il scattering tally is given with arbitrary unitsHere the Il scattering tally is extremely lowtre
centre of the channel of the device which, refgrrin Figure 6.22, is expected as the dopant
density is very low. In both plot (a) and (b) aflve 6.28 the effect of remote screening on the I
scattering tally is evident. There is a distinetiuction in the number of events at both of the
interfaces, considering either the single or doubterface model. This is consistent with the

expectation of a reduced scattering rate with reipaticreened Il scattering.

Given the close match between the drain currenisvatgate voltages of each of the Il cases
considered here (Figure 6.26), the velocities aadiar densities are expected to be almost
identical between the models. At high gate vokagaly the case that removes channel I

scattering, No Chn Il, is expected to demonstratgsshift in velocity/carrier density.
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Figure 6.29: (a) Velocity profile channel of UTB DG device

with V; =0.6V and V, =0.1v.

and (b) electron density along
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6.3 22nm Double-Gate Device

The electron velocity and density for the low gatdtage point are shown in Figure 6.29. As

expected, given that the drain currents match,ctdréer densities and velocities are

along the length of the channel for all four cases.
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Figure 6.30: (a) Velocity profile and (b) electron
with V; =1V and V, =0.V.

density along channel of UTB DG device

At a gate voltage ol =1V the electron densities of plot (b), Figure 6.3@ afentical. As

expected the No Chn Il case demonstrates an irerieaslectron velocity over an appreciable
This
explains the increase in drain current at this gatat displayed in the drain current plot of Figur

6.26.

length of the channel, approximately a 5% increasgelocity over the Num BH case.
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Figure 6.31: Energy profile along channel of UTB DG
V; =1V for V, =0.v.

device with (a) V;=0.6V and (b)

The UTB DG device shows negligible difference witle inclusion of remotely screened impurity
scattering at low drain bias. This is explainedtiwy low doped channel, which due to the small

impurity concentration has minimal channel Il sedttg. This is highlighted by the very small
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6.3 22nm Double-Gate Device

shift in drain current when channel Il scatteriagemoved from the simulation. The small amount
of impurity scattering at the source and drain ehthe channel account for the modest increase in
drain current at very high gate voltage. Of couvaéh high gate voltages the screening density in

the channel is large and remote screening is maaichi ForV; =1V the electron density in the

channel can be approximated mt10°cni® and evaluating equation (3.36) gives a screening

length of A. =0.921m.

The role of IR scattering has been studied in tl@gice and is found to have a small effect in
defining the channel performance. Removal of IRttecing in the device causes around a 2-4%
increase in drain current. This lack of IR scatiglis an advantage of the UTB DG device as the
channel enters the volume inversion regime [1ZBhat is, for silicon body thicknesses between
3nm< t; < 20nm, the channel region becomes almost fully inveeaetiigh gate voltage causing
the conducting channel to be located in the midifléghe body. This is known to reduce the

influence of surface scattering events includingt®ttering [125-127].
6.3.3.2High Drain Bias

With the high drain bias the statistical noise lie results is reduced considerably, as shown in
Figure 6.32. Again, analysis of the results wil indertaken for two gate voltages. The low gate
voltage point will beV; =0.5/ and the high gate voltage¥t =1V . Here the results are expected

to be close to each other except for the No Chradle at high gate voltages, similar to the low

drain results.
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Figure 6.32: Semi-log plot of the low gate voltage Ip-V characteristics with error bars for the
UTB DG MOSFET at V, =1V.

171



6.3 22nm Double-Gate Device

The Il scattering tally is plotted for both gateltage points in Figure 6.33. The distinctive
behaviour of the remote screening models is evidettie source interface where the Il scattering
tally drops abruptly at the interface and at trerdin the high gate voltage plot of (b). At thaid
interface of the low gate voltage in plot (a), tHistinctive behaviour is not present and all the |

scattering cases drop off rapidly.

A closer examination of plot (a) in Figure 6.33 wisdhat the numerically capped BH model (Num
BH) matches with the remotely screened single fiater model (RSBH Sgl) as is expected at the
drain interface. The remotely screened doublefarte model (RSBH Dbl) follows the no channel
Il scattering case (No Chn Il) which demonstrateat tthe Il scattering at the drain is being

correctly remotely screened.
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Figure 6.33: lonized impurity scattering tally alon g the channel for UTB DG MOSFET at (a)
V; =0.5V and (b) Vg =1V with V, =1V.

This change in behaviour at the drain in plot faffigure 6.33 is obviously due to a reduction in Il
scattering at the drain end of the channel. Gitrenhigh drain bias oV, =1V, the channel
inversion layer will be biased such that the cardensity at the drain end of the channel will be
lower. Combined with the increased carrier enalgg to the drain bias, plot (a) of Figure 6.36,
this results in a reduced |l scattering tally a train end of the channel. This behaviour is also

shown to a lesser effect in plot (b) of Figure 6.33

To confirm this justification a simple calculatiean be completed, through use of equation (6.8),

to obtain an estimate on the number of carriersguein the drain end of the channel.

' =Vvxn, (6.8)

L =
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6.3 22nm Double-Gate Device

vol

Here n;” is the number of electrons in a volume given\bywith an electron density of,.
Referring to  Figure 6.19 the wvolume of the channels given as
V =34nmx 10nmx 1nn¥ 3.4 10° crt (for the MC simulations completed here the dewvidgth
is 1nm), but considering only the drain end of t@nnel this becomes.7x10cm®. The
electron density is given in plot (b) of Figure 4.8nd for the drain end of the channel will be

estimated atl.5x 13°cm®. Evaluating equation (6.8) gives an electron nemdf 2.55x 10° in
the drain end of the channel which relates to rbough superparticles (1 superparticle

=5.7325< 10" electrons).
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Figure 6.34: (a) Velocity profile and (b) electron density profile along channel of UTB DG
device with V; =0.5V and V, =1V .

The velocities of each of the four channel Il ssd@tg cases for the low gate voltage, plot (a) of
Figure 6.34, are comparable given the relatively feectrons (or superparticles) that travel
through the channel region. At the high gate g@tahown in Figure 6.35, the velocities are again
very close to each other with the No Chn Il casedeéhe largest by a small margin. This

increased velocity explains the drain current imseeshown in Figure 6.26.
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6.3 22nm Double-Gate Device
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Figure 6.35: (a) Velocity profile and (b) electron
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Plot (a) of Figure 6.35 shows that the electrores @vove the saturation velocity over a large
proportion of the channel. This phenomenon, whgcla feature of non-linear transport in MC
simulations, provides an increase in drain curi@yond the velocity saturated value [15]. An
interesting point demonstrated in these figurébas the peak velocity and energy of the carriers a
low gate voltage is much larger than that at higteg/oltage. This can be explained through the

density of carriers that traverse the channelatdohigh gate voltage.
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Figure 6.36: Energy profile along channel of UTB DG
V; =1V for V, =1V.

device with (a) V;=0.5v/ and (b)

At low gate voltage the potential barrier in theachel between the source and drain is high and
only high energy carriers are able to make it theochannel. These high energy carriers that make
it into the channel will encounter a large fieldcelerating them into the drain. It is these few
carriers from the high energy tail of the carrigtabution that are being averaged to obtain the
velocity plot in Figure 6.34. This is corroborateyglthe high average energy of the carriers in the

channel shown in plot (a) of Figure 6.36.
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6.3 22nm Double-Gate Device

In the high gate voltage case the potential baisienuch lower and a larger fraction of the carrier
distribution can traverse the channel to the draiks carriers with lower energy are able to
contribute to the drain current, the average enamgthe channel will decrease along with the

average carrier velocity.

At high drain the overall effect of remote scregnia negligible which again is due to the low
impurity density in the channel. The effect of thgpurity scattering in the small regions at eath o
the channel provide only a small factor in definginnel performance at high gate voltage. Due
to the new models inherent dependence on low sogetie high gate voltage cancels the effect

that remote screening has in this device.

6.3.4 Summary

The 22nm template UTB DG device was originally deped as a template device to allow a
comparison to be made between a large set of @iffesimulators from the European device
modelling community [116]. The device structuresists of a 10nm thick silicon body with a
1.1nm EOT oxide layer, here modified to be silidbaxide from the original specification of a

high-« material.

With highly doped source and drain contact regiamd a low doped channel region, the definition
of source and drain interface positions for the atety screened models is again chosen as the
point of steepest gradient in the roll-off of tleisce and drain doping into the channel. Thisgive

the source and drain interfaces at positions of3Zsfim and Z=81.5nm respectively.

An initial estimate on the effect of remote scragrias been completed by analytically computing
the phonon and Il limited mobility from initial DBimulation. This examination showed that Il
scattering in the centre of the channel playselittle in determining the channel performance
where dopant concentration is at its lowest. Ckhflinscattering has a controlling factor in the
device performance near the interfaces where thecsoand drain doping is still evident and
coincides with the region that remote screeningwave. Within these small regions at the
interfaces, the analysis demonstrated that remmteesing will increase the channel mobility

between 40-60% at gate voltages greater #aan 0.4V .

The MC simulation of this device includes simulatiof four different cases of channel Ii

scattering that include the BH scattering modelchannel Il scattering and the remotely screened
models. Simulations were completed to produige-V, curves for low and high drain biases for

each of the four cases. The drain current curstgblished that channel Il scattering in this devic
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is not a strongly controlling factor on the devpaformance. This is made particularly clear by
the No Chn Il case which removes all Il scatterirgn the channel and had little effect on the
drain current. Given this conclusion, the new resmscreening models for Il scattering have an

understandably negligible effect on the device attaristics.

6.4 Conclusion

This chapter has taken the newly developed remotesing Il scattering models presented in
Chapter 5 and applied them in a fully self-consistdC device simulator. The objective of this

simulation study is to analyse what effect that aemscreening has in the modern MOSFETSs
where the distance between the highly-doped scamdedrain regions is small. The MC device
simulator has been employed to simulate two disildOSFET devices, one with a highly doped

channel typical of the current generation MOSFETd the second device a future generation
MOSFET with low doping in the channel.

The first device is a bulk MOSFET which is forecastontinue in the industrial roadmap until at
least 2012 [1]. Originally developed by Toshibaaag$uture device for the high-performance
technology [113, 114], it has been reconstructethfpublished data by fellow researchers in the
Device Modelling Group [118]. This device has beenstructed with a metal gate, a 1.4nm thick
silicon oxi-nitride insulator and a highly dopeddvanced channel doping profile design.
Calibration of the bulk MOSFET is completed betw#ss industrial TCAD tool, Sentaurus [117],

the in-house DD simulator and the MC simulator.

Although MC simulation incorporates non-equilibrisransport that is not present in DD, it suffers
from the problems of statistical noise inherenstich a stochastical particle based approach. Due
to this limitation, the bulk MOSFET device can ordg accurately simulated for gate voltages

greater thanV; =0.4V. This is an important restriction to analysis refmotely screened II

scattering as very low screening conditions, wireraote screening is expected to be strongest,
cannot be simulated. This is a limitation of usihg MC methodology which can only be worked

around by moving to a different simulation approtwt doesn't suffer from stochastical noise.

An important step in the modelling of remote sciegnis the choice of position for the interfaces
between the source and the drain. Abrupt dopaagsitions don’t occur in realistic doping profiles
and therefore in this work the gradient of the dgpirofile is used to select the position. Thenpoi

at which the doping is changing most rapidly betwdlee highly doped source/drain and the

channel is selected as the remote screening ingerfa
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An analytical analysis of the phonon and Il limitebility has been completed using the Kubo-
Greenwood formula in conjunction with channel pgeofilata from the DD solution of the bulk

MOSFET. This analysis allows the effect of remsteeening to be estimated at low screening
conditions (low gate voltages) and provides a petaf the region that remote screening is
effective in the device. The analysis highligtitattremote screening will have a larger effect at
low gate voltages where the screening density énctimnnel is low, as is expected. As the gate
voltage is increased, so does the screening dearsityhe effect of remotely screened Il scattering
is reduced to smaller regions at the edge of ttexfaces. At very low gate voltages in particular,

the Il and phonon limited mobility in the channegion is increased by almost a factor of two.

Simulations of the bulk MOSFET in the MC simulat@ve been completed with and without the
remotely screening impurity scattering, and also tf@ case of no impurity scattering in the
channel. Results without Il scattering in the aierof the bulk MOSFET show that in this device
that the Il scattering mechanism plays an impontalat in defining the channel performance. The
drain current is substantially increased when ranokl Il scattering is included. However when
the remotely screened Il model is included, theutition shows negligible effect at any particular

gate voltage or drain bias.

This lack of improvement in channel performancehwimotely screened |l scattering can be
explained partly by the strong role that interfaceighness scattering has in defining channel
performance. The analytical estimate using DD datathe phonon and Il limited mobility
suggested that remote screening may have up tdai2€ease in channel mobility within the
remote screening regions at either end of the aianit was discussed that the inclusion of IR
scattering reduces this analytical estimate ofctennel mobility to less than 5%. Secondly, the
region over which remote screening is effectivehi@ bulk MOSFET device is small with few I
scattering events. Typically, the number of scatipevents that occur within the remote screening
region was found to be less than one per carfiberefore, the combination of strong IR scattering
with a small region where remote screeing is eiffecteads to a negligible effect for the bulk
MOSFET.

The second device to be simulated was the PullNAF® DG device which is expected to be the
device that allows scaling to the end of the indailstoadmap [1]. The UTB DG device has an low
doped channel region with a 10nm thick silicon badg 1.1nm oxide layer. A difference plot of

the net doping profile has again been used totfiadsource and drain interface positions.

An analytical estimate on the channel mobility haen completed and demonstrates the effect that
remote screening has on the channel performantéheAowest gate voltage, remote screening is

shown to have an increase in channel mobility withie remote screening region at either end of
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the channel. Predictably, as the gate voltagee@sas the effect of remote screening is reduced.
At the minimum MC simulation gate voltagé, =0.4V, it was shown that remote screening can

increase the mobility close to the interfaces bytaB0% and at the highest gate voltage this is
reduced slightly to 40%. Despite this increasertmaote screening region is limited to a small

regions at either end of the channel with the ecofithe channel dominated by phonon scattering.

MC simulation of the device with the remote scregnmodels doesn't provide the expected
increase in channel performance as was estimatethdoymobility analysis. It is shown that
impurity scattering in the channel plays an almaosgligible role in defining the channel

performance. This lack of Il scattering effect dmnunderstood from the channel doping profile,
which is very low, on the order dfl, =10°cni®. At this low doping, Il scattering is negligible

and the phonon scattering is dominant.

In conclusion, it has been shown by extensive stian of two distinct MOSFET devices, that
remote screening plays no role in defining the oearperformance in these devices at the
simulated gate voltages. In the bulk device, tbenidant IR scattering combined with high
screening strongly reduces the effect of remoteesing. With the UTB DG device, it is
explained by the low dopant density in the chameeloving the dependence of Il scattering in the

channel characteristics.

In sub-threshold conditions the remote screeninglehbas been shown to have a considerable
effect on channel mobility and is predicted to @age the leakage current when the device is off (at
low gate voltages). The restriction introducedM§ simulations on the allowable gate voltages
means that simulations cannot be completed to eaithiis effect on leakage current. Further
work is required to study the effect of this nevatsering model at lower gate voltages using a

different simulation methodology which doesn’'t guffrom the statistical noise of MC.
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Chapter 7 Conclusions

The aim of this work was to develop and test araadgd Coulomb scattering model that includes
the effect of the highly-doped source and drainomegyon channel ionized impurity (ll) scattering

for the simulation of nanoscale MOSFET devices.e highly-doped source and drain regions
introduce additional screening of the channel Heotigh polarisation charge effects, the aptly
named remote screening within this work, which laannel lengths are scaled in MOSFETs will

increase and strongly affect Il scattering in tharmel region.

Here scattering potentials are developed whiclresgmt a single channel Il located next to one or
two highly doped regions, the source and drain, tfar single and double interface cases
respectively. An exact analytical solution to thiaearized Thomas-Fermi (LTF) form of

Poisson’s equation for the system has been cadcb&atd is shown to be an excellent match with a
fully self-consistent numerical Poisson solutiofhese scattering potentials include the important
polarisation charge effects induced from the soaragdrain regions which increase the screening

of channel lls, hence the descriptive title of réenecreening.

It has also been demonstrated that the remote rsegescattering potential will return to the
Brooks-Herring (BH) scattering potential in the ilithat the 1l is located a large distance from the
highly-doped regions. This is an important linatdbtain as it ensures that the newly developed
scattering potential not only returns to the claslution, but that it will also work alongside
existing Il scattering approaches. This is of im@oce for integration into Monte Carlo (MC)

simulation.

For the purposes of this work which is to undertalstudy on the strength of remote screening in
MOSFET devices using a MC simulation methodologsinaplified model of remote screening has
been employed. The simplified model is obtaineishgishe aptly named strong-screening limit
which assumes the source and drain regions becataliatlike. This simplification is shown to
be almost exact for lls located greater than lnomfian interface and represents a worst-case
scenario for remote-screening interactions. Thisstvcase scenario providing an upper limit on

the remote screening interaction and is suitabi¢hi® context of this work.

Utilising the strongly screened scattering potdsitia MC suitable scattering model has been
calculated using Fermi’'s Golden Rule approach. i\gas the context of this work is to explore
the strength of remote screening in device simutati an assumption on the scattering potential

has been made to reduce the complexity of the @nobIThe remotely screened scattering potential
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is anisotropic in nature but the typical approazhhe calculation of scattering rates in MC is for
isotropic scattering potentials. In this work #eattering potential is assumed to be isotropit suc
that the scattering carrier always approacheslthkghed with the Z-axis of the scattering frame.
Use of the Z-aligned simplification is shown todeta a less than 2% error over the region where

remote screening is effective.

An analysis of the remotely screened scatteringatsolas shown that remote screening reduces
the strength of Il scattering near to the highlpeid source and drain regions. For impurities
within 1-2 channel screening lengths of eitherrfiaige, the effect of remote screening can reduce
the scattering rate by up to several orders of madgm As channel lengths shrink, the remote
screening effect induced from the source and dimagmeases, particularly when the channel
screening length becomes larger than the chanmgthe In such cases, the Il limited mobility can

increase up to 300% over the standard model famraddengths less than 20nm.

The existing approach for Il scattering utilisedtire MC simulation in this work made use of
Ridley’s Third-Body Exclusion (TBE) model whichfar from ideal as it neglects the vast majority
of 1l scattering events when screening densitiesl@arv. This becomes a distinct problem for the
accurate modelling of MOSFET devices as channa&lesting densities can be several orders of
magnitude lower than Il density leading to an uedemation of the scattering effect. In this work
a new approach has been developed which allowdulhe&omplement of Il scattering to be
modelled. This new approach utilises a self-caestsmodel that allows the scattering rate to be
capped whilst maintaining the full momentum rel@mtate. This allows Il scattering to be fully
modelled improving the low screening density sirtiales whilst ensuring that the simulation

analysis of remote screening is accurate.

The remotely screened Il scattering model has lised to complete a simulation study of two
MOSFET devices which are chosen to represent asttite of the art technology and possible
future technology. The first device being a bullOSFET that is typical of those currently in
production with high channel doping, and the secdedce is an low channel doped Ultra-Thin
Body Double Gate (UTB DG) MOSFET that is a proposgdicture for future technological
generations. These two devices are chosen tosaqrthe trends in channel doping design, that is
the highly doped bulk MOSFET or the relatively updd channel design of the DG design.

The bulk MOSFET device has a strong dependencesmattering which was demonstrated by the
clear improvement in drain current when this scattemechanism was removed from the channel
region. An analytical mobility analysis due to pba and Il scattering suggested that remote
screening in this device will greatly improve thieannel mobility at low gate voltages. This

increase in low gate voltage channel mobility wolddd to a detrimental affect on device
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7. Conclusions

performance by increasing the off-state currenthefMOSFET. MC simulation of the device with

remote screening of channel lls demonstrated thiaigte voltages above 0.4V, the effect is
negligible. This negligible result was shown to dige to a combination of the high Interface
Roughness (IR) scattering in the device which dahgrey effect of remote screening and the small

remote screening region at the respective gategest

The UTB DG MOSFET device was demonstrated to hawenémal dependence on Il scattering
due to the low doping in the channel region. Thalgical analysis highlighted the phonon
scattering dominance in the channel which was oeted by the minimal shift in drain current
with the removal of channel Il scattering. AgaifiC analysis of remote screening has a negligible
effect on the device performance which can be wtded from the lack of Il scattering in the

channel.

To conclude, the remote screening for Il scattehiag been shown for higher gate voltages to have
negligible effect in current generation and low e doped devices. Remote screening of
channel lls is expected to have a large effecteay low gate voltages where screening densities
are low. Unfortunately the MC simulation appro@hot suitable to simulate such conditions and
future work should aim to simulate such low scragrionditions perhaps through a direct solution

of the Boltzmann equation using spherical harmoeiggnsions [73, 128, 129].

7.1 Future Work

The study of remote screening with sub-thresholdSABT conditions should be completed to
fully understand the role of this effect. This hilvolve moving to a simulation methodology that
doesn’t suffer from statistical noise. An approaghich is suitable is that of the spherical
harmonics expansion of the distribution functionalding a deterministic solution of the
Boltzmann Transport Equation [73, 128, 129]. Twculd allow the low gate voltage simulations

of MOSFETSs to be completed whilst including the o¢enscreening scattering mechanism.

Further studies of MOSFET devices with smaller disiens are required to confirm the effect of
remote screening and could be completed using ithelator and remote screening scattering
approach developed here. Example devices incloddfinal scaled devices of each particular
architecture such as a 14nm physical channel lebgth MOSFET, a 10.7nm physical channel
length Silicon-On-Insulator MOSFET and a 8.1nm jpt¢sischannel length DG device [1]. This
would provide a comprehensive study on the effégemote screening in nanoscale devices by

extending the study to the end of roadmap scaleides
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7.1 Future Work

The full anisotropic scattering potential shouldoabe studied in simulations of MOSFETs which
would allow the full scattering effect of the remlyt screened Il to be analysed. There are several
approaches which could be used including the radgale expansion of the Schrédinger equation
[105] or perhaps use of a linear Boltzmann expansioobtain scattering expressions [108]. It
would also be beneficial for an exact descriptidrthee remote screening effect to remove the
strong-screening limit from the scattering model this work an upper limit or worst-case
condition for remote screening was sufficient to dide to examine the effect but could be
extended to provide a more detailed study. Thig bearequired for the ultra-small channel length

devices predicted for the end of the ITRS roadmap.

Finally, the remote screening of channel ionizegurnties from the gate region should also be
studied. The gate contact in future generation B will become a metal and in conjunction
with oxide thickness scaling, will lead to stroremote screening of channel lls. This interaction
will be evident along the entire length of the afmgn extending the remote screening regions to a
larger portion of the device and possibly leadiogtstronger effect. In particular, this should be
studied for possible future multiple gate MOSFEThitectures where the channel can be

surrounded by metallic gate regions.
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Appendix A Single Interface Potential Calculation

This appendix will provide a detailed outline oéthkingle interface potential calculation discussed
in section 4.2.1. An exact solution to the potntif a single ionized impurity located close to
highly-doped region has been obtained by solvinigddn's equation. This is a complex problem
which has been simplified through use of the linBaomas-Fermi (LTF) approximation to allow

an analytical solution to be found.
A.1 Linearized Poisson’s Equation

Starting with the LTF form of the Poisson equatieguations (4.4)-(4.5) from section 4.2.1 which
define the system depicted in Figure 4.1.

0%, —k2p =0 for Z<0 (A1)
0%¢. —kipe = - Q o(r —r,) forz>0 (A.2)

where ¢ is the potential in the source regich< 0, and @, is the potential in the channél,>0

. Theks =Ag" and k. = A" terms represent the inverse screening lengthiseirsource and drain

regions respectively and the ionized impurity isated at positiom, in the channel region.

As discussed in section 4.2.1, the potential smiutiill use cylindrical co-ordinates throughout.
For this model we neglect any radial dependencienpurity position by assuming the impurity is
located at the origin of the radial axis. Thisuegs the complexity of the model by allowing radial
symmetry around th& axis. Expanding the Dirac delta function of e@urafA.2) in cylindrical

co-ordinates, assuming thgf, =0

P4, ~K24. = —%@5(2 ~ 7)) for z>0 (A.3)

Considering the channel potential initially, thelusion will involve finding the general

(homogenous) solution and the particular soluti®his can be written as

. =4c +oc (A.4)
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A.2 General Solution

where @2 is the general solution ang the particular. The general solution for the cfen

potential can be found by allowing# Z, for which the RHS of equation (A.3) becomes

0%, —k2p. =0 (A.5)

This is identical to the source term given by eiuma(A.1) and will only differ in the behaviour of

the solution.

In Figure 7.1 the expected behaviour of the Z camepds of the potential is given. For the general
solutions the expected behaviour is depicted byréldecurves and the particular solution by the
blue curves. The behaviour is defined by the baundondition at large distanc&,, which is

presented in more detail later in this appendix.

Figure 7.1: Expected behaviour of the Z dependent ¢ = omponent of the potentials.

For the general solution, the potential is expedtediecrease with distance from the source-
channel interface. The particular solution will gebthe point charge with an increasing potential

moving towards the impurity location &= Z, .

A.2 General Solution

First solving the general (homogeneous) solutiontfi@ source and channel regions given by
equations (A.1) and (A.5). Generalising betweendburce and channel forms, the equation can

be written as

0°, ~kig, =0 (A.6)
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A.2 General Solution

with X denoting either the sourc&f and channel € ) region. Using the separation of variables
technique [96] the potential solution can be exgedsin cylindrical co-ordinates using a known

form.

#(R2)=F(R{(2 (A7)
Here due to the cylindrical symmetry of this prablaround theZ axis there will be nod
dependence in the solution and this component@atant. Substituting this form of the potential
back into equation (A.6) gives

0°F¢ -K2F{ =0 (A.8)

Expanding the Laplacian operator in cylindricalardinates, again neglecting the term involving

@ as there is no dependence on this in the solgiias

19(_9d
[Eﬁ(Ra_Rj aZ}FZ KKFZ =0 (A.9)

Rearranging this solution into separable components

19 10F _0°F
{R@R( 6RH Fe= Z[RDR d R}

(A.10)

= FZ ia_F +162_F

FROR FoR

9° 10%¢
FC=F{|= All
o |re=re 2] (A1)
Substituting these back into equation (A.9) anddilig throughout by gives
2 2

LOF 10F 10°¢ 1oy (A.12)

FROR FOR (0Z

Having now got a form of the equation in termsRfand Z only, the equation can be separated

introducing a separation constark’ .
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A.2 General Solution

2
10F  10°F _ .

FROR FOR (A13)
%g; k2 =Kk (A.14)
Rearranging these equations
Rzazlz +RE LR =0 (A.15)
R oR
%:(k2+kf)i (A.16)
A general form of Bessel's differential equatio®]9
p2%+pg—;’)+(k2p2— n2) y=0 (A.17)
and its solution is
y=AJ,(ko)+ BN( ko) (A.18)
Using this general form gives a solution to equa(ia.15) of
F=AJ,(kR+ BN( kR (A.19)

Solving theZ dependence from (A.16) which takes the form obadard exponential solution

Z:exp( z e+ )+ exF(Z«/k2+ ) (A.20)

Substituting these solutions back into equatior’{Aising linear superposition of Bessel functions

to obtain the final potential gives

8 jdka(k A3( KR+ BIy( B(exp( e M+ exg \;272}) (A.21)
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A.3 Particular Solution

Boundary conditions (BC) define the exact formlo$ tsolution for the source and channel regions.
For the Bessel solution of the radial dependerficékR), the solution must be finite deR - 0.

This means the Neumann function coefficient muskzém®, B =0, to satisfy this BC where the

coefficient A will be solved later.
F=A) (kR (A.22)

The expected behaviour of thé dependence of this solution is given in Figure, Which is

defined from the BC that the potential must tendéoo asZ - +« . Therefore for the source
region {(Z - —»)=0 and for the channel region must §gZ - «)=0. This yields the

following solution for the source and channel

{s(2) =exp(Z./k2 + kg) for Z <( (A.23)
7.(2) :exp(—Zw/kz N kﬁ) for Z >C (A.24)

The general solution to equation (A.6) can now béneéd for the source and channel regions.
Substituting equations (A.22)-(A.24) into equat{@dn21) gives

:TdkAS(k) 3( kF)exp( Z k+ g) forz<( (A.25)

for the source region and

:]gdk'%( kF)exp( Z/ k+ g) forZ>( (A.26)

for the channel region where the coefficielts( k) = as( k) A, and A (k) = a.(K) A include the

coefficient of the radial Bessel function and aeetp be obtained.
A.3 Particular Solution

The particular solution for the channel potentiancbe found by solving equation (A.3).
Simplifying the RHS of the potential equation usifhg following theorem, which can be found
using equation (6.512.8) of Gradshteyn & Rhyzhiek[130],
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A.3 Particular Solution

%QR) dk k,( kR (A.27)

o—38

the equation becomes

Q

mSi‘gO

D°¢. —Kip. = - 5 Tdk k}(kRI( Z 2 (A.28)

Using a known form of the solution from the separabf variables method and using the general

solution for theR dependence, the potential can be defined as
¢ =[dk k3, (kRS ( 2 (A.29)
0

Taking the LHS of equation (A.28) separately, exfiag the Laplacian operator and substituting
equation (A.29) gives

{%%[R%{}%— K%ﬁ dk k3( kRS ( 2 (A.30)

Here we neglect the angular term as before dubdaylindrical symmetry around thé axis.

Attempting to factorise equation (A.30) into sefeecomponents yields

? 023,(kR)  103( kR 0°¢

dk k g + +J(k - A.31
-([ H R’ R 0R ZJO(F?&Z ke ( )

To separate the variables of this equation the demmst be independent of each other. The

problem here is that we cannot factor out the Bdasetion due to the first term within the square

brackets. Thankfully this problem has been soleadier. Referring to equation (A.15) of the

general solution which can be re-written here, mésg that equation (A.22) still holds, as

0°Jo(kR) , 103 (KR _ _ .
TR R - k?J, (kR (A.32)

Using this solution in equation (A.31) and factoriggives
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A.3 Particular Solution

Tdk k 3( ka{g;i - K+ g)} (A.33)

Substituting this back into equation (A.28) yields

jdkkao ka{azz ( R+ g)}: Q J'dk kil KB 2 2 (A34)

2TEGE,

Simplifying this equation by removing the commomis,

02
azz

Z(k2+K)+ 2Q &Z-7)=0 (A.35)

Si®0

which provides a form which is dependentdronly. The solution to this equation is challerggin

due to the singularity of the Dirac delta functanZ = Z,. To work around this it is necessary to
take limits aroundZ, , allowing the delta function to be integratedtefirating aroundZ = Z, —-n

toZ=2 +n forn -0

Z,+n aZZ Z,+n Q Z+n
] azzdz‘(‘@J’ €) | ¢dz+ T [ oz 2) d=0 (A.36)

Zy-n Zi-n Si%0 7 -

The first integral can be completed to give

9% g7 - FZ(Z)T% _94(z +n) _0¢(2 -n) (A37)
0z 0z 0Z 0Z

Z-n Z-n

The second integral can be completed using theé dimiy

Z, +n

(€ +i?) [ caz=~(k+R)[¢(3]]

21 (A.38)
lim ==(k¢ +k*)27¢ (2,) =

b
Taking the third integral and USil’fg5(Z -Z)dZ=1whena<Z <b
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A.3 Particular Solution

Q Ijma'(z—zl)dZ:!]im Q (A.39)

2TEE, z,-n ~0 7',

Rewriting equation (A.36) with the result of thestegrals

90{(z,+n) _9{(Z _’7):— Q forZz=2Z (A.40)
0z 0Z 2TE €, I |

For a correct solution of the particular case iimgortant to ensure that the solution is conststen

forbothZ=2 andZ # Z . Looking at equation (A.35) for the casedf Z,

0°¢
0Z2

=(k2+K?)¢ forz#Z (A.41)

which the solution is already known (see equat®2@)). This result forZ = Z, , equation (A.40),
suggests that there is a difference in the grasliehthe solution around the impurity positiof, .
Referring to the expected behaviour of the solutlepicted in Figure 7.1, the potential is expected
to change gradient around, . The boundary conditions state that K Z, the potential must
tend to zero atZ — — and for Z>Z, the potential must tend to zero &t— o . Using the

solution to equation (A.41) with the BC's, the dan to the Z dependence of the particular

solution can be found as

¢.(2)=aexp((2-2) K+ §) forz<3z (A.42)
¢(2)=pexp(~(2-2) K+ §) forz>7 (A.43)

To ensure continuity of the solution, the gradiesftthe potential must match & =2, . Setting

equations (A.42)-(A.43) equal to each other andisglfor the coefficients gives

Za(zl _”):Zb(zl +’7)
aexp(—q k2+kg):ﬁexp(—/7 K+ k:z) (A.44)

lim a=p4
n-0
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A.3 Particular Solution

Using equation (A.40) to find a value fer by calculating the gradients of equations (A.42) &
(A.43).

dZa(Zl _’7) - /k2+k§aexp(—/7 K2 + Kg):gm K% + Iga (A.45)

dz

dZ,(Z +n) =_maexp(_,7 an @)zm_‘/k%r Ka (A.46)

dz

Substituting this into equation (A.40) yields traue for thea coefficient.

_ k2+ 20,_ k2+ 20,:_ Q
\/ l% \/ K: 27E‘Si‘90
_Q 1 (A.47)
ATE G, \/k2 + KCZ
Completing the solution for thé function
__Q 1
2(2)= _exp(-|2- 2|+ §) (A.48)

ATE €, \/k2

and substituting this into equation (A.29) will gide the final particular solution of the channel

potential.

jko S e exp( |- 7 k+ &) (A.49)

The channel potential can then be found by sulbsigfuhe general and particular solutions into

equation (A.4) to give

:Idk 5(kR{ A( yexd[- 3 &+ §)
Q a 2 exp(—|Z—Z||«/k2 + Ié)}

+
ATEE, \/k2 + kS

(A.50)
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A.4 Coefficients

A.4 Coefficients

The coefficientsA; and A. of equations (A.25) and (A.50) can be found byrde§ the boundary

conditions atZ =0, the source — channel interface. The static mtefield boundary conditions
apply at this interface, defining that the elecfimld must be continuous perpendicular to the

interface and that the normal electric flux be ocamus across the interface.

0¢5(2=0) _9¢.(2=0)

A51
OR OR ( )
09,(Z2=0 09.(Z=0
‘ESigo% = gsfg‘o% (A.52)
Finding the derivate of the potentials for thetflssundary condition
a¢s j dkA (-k1( kR) (A.53)

6¢C=Tdk(—k4(k9){/é+4,§€ o exp(- 2 k+ 5‘)} (A59)

Setting equation (A.53) equal to equation (A.54) emarranging gives

A= A= Q eXp( ZK+K ) (A.55)

ATE €, \/k2

The derivates for the second boundary conditionatgn (A.52) are

a¢5 jdkAsJo (kR R+ & (A.56)

e <[ (1) A(-[ B )2

Si®0

Iexp( 7/ &+ ;jk)} (A57)

Substituting these into the boundary condition aftelr some manipulation yields
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A.5 Single Interface Solution

K+k , , __Q
e I e 2 E) e

It is now a matter of solving the two simultane@ggiations to find the values for the coefficients.

The source coefficient can be easily found by agldigquation (A.55) to (A.58) giving

__Q 2k _
A= A7EE, [+ K+ K+ K eXp( K€+ ) (A.59)

To find the channel coefficient, the two equatiomsst be subtracted

B I S o SR [
A:_47E5i€o k2+kczexp( Z k2+|é)\/k2+k§+\/k2+ c (A.60)

A.5 Single Interface Solution

Substituting the coefficients back into the solnsidor the potential gives the final form for the

source and channel potentials.

#s = 4,E P fko kF§ eXP(— 7 K)exq zK) (A.61)
o=t Id“ Aol 2 7 1)
K —K (A.62)
+ﬁ e>(p—(Z+Z|)KC)}
where
Ke =k + K (A.63)

=+ K2 (A.64)
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A.5 Single Interface Solution

Remembering here that the varialdeis purely a separation constant introduced instiiation of
the partial differential equation and should notbefused with the carrier wave vector variable of

the same letter.
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Appendix B Double Interface Potential Calculation

In this appendix the double interface potentiaugoh will be presented in more detail than is
provided in chapter 4.3.1. Due to the similarifieshe procedure and the solution, the previous
appendix will be referenced for part of the solntinethod. Here a potential solution is found for a

single ionized impurity between two highly-dopedions.
B.1 Linearized Poisson’s Equation

Starting with Poisson’s equation for the sourceanctel and drain regions which has been

linearized using the Thomas-Fermi approximatiogdation 4.3.1

0%, —k2p =0 for Z<0 (B.1)

0%@. —kip. = - Q o(r —r,) for 0<Z<L. (B.2)
Si®0

0%, k2, =0 for Z>L, (B.3)

Expanding the Dirac delta function of equation (Bi@to cylindrical co-ordinates, allowing

R, =0

P4, ~K2p. = - 2,7,35 @5(2 ~ 7)) for z>0 (B.4)

The solution of the channel potential will involgelving a general and a particular solution. In

this model there will be two general solutions esponding to the regions on either side of the

point charge in the channel. Expressing the cHagotential in this form as
P =9 + P+ (B.5)
where the superscripS1l denote the source end of the chan®2, the drain end of the channel

and P the particular solution of the point charge. Tist step is to find the general solution

which for the channel potential is found by allogitme right-hand side (RHS) of equation (B.4) to
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B.1 Linearized Poisson’s Equation

equal zero. As this form is identical to thatlo# source and drain regions a universal form can be

written
0°¢, —ki#, =0 (B.6)
where x denotes either the sourc8), channel C), or drain (D) region. This solution is found

for the single interface case in appendix sectio® @&nd can be used here, again using the same

radial boundary condition for the Bessel function.

¢X:Tdk a( K) %(kF}(exp(— 2 &+ K]+ exq g kr j<)) (B.7)

Although this is a universal form for the solutieach region has different behaviour as depicted in
Figure 7.2. This figure represents the expectéwieur of the general (red curve) and particular

(blue curve)Z dependent components of the potential in eacheofégions.

NN

Figure 7.2: Expected behaviour of the ~ Z component of the potential with the source region
Z<0,thedrainregion Z> L. andtheimpurityat Z=2.

NF ——— - — . . ——— =

I
\
N

From Figure 7.2 the behaviour of the Z dependericthe potential in the source and drain is

depicted by the red curve in th&<0 and Z > L. regions respectively. Applying the boundary

condition such that the potential tends to zertaage Z distance ZJinj ¢, =0 and Izim ¢, =0,

gives the following solutions for the source andinr

P :Tdkps(k) 3( kF)exp( Z] k+ g) for z< C (B.8)

#, = kA, (1) 3( kexp(- 2/ k+ k) forz>C (B.9)

196



B.2 Solution of Coefficients

For the channel potential there are two generaitisols describing the regions on either side of the
point charge. Referring to the red curves in Fegdr2 the Z behaviour is expected to decrease

from the source interface and increase towardsdthen interface. This corresponds with the

limiting boundary condition that the potential mteshd to zero at large distancd;'sr%qb(‘fl =0 and
ZIirrL1c ¢S% =0. Applying these boundary conditions to equatiBi¥) provides the general solutions

for the channel potential.

= ok ka (B 3( Kpexe(- 3 % &) .10)

- o ke (9 a( pers{ 7 Fr X o

The particular solution for the double interfacedwmlois identical to that of the single interface

model allowing the solution to be repeated hersinggequation (A.49)

jko S e exp( |- 7 k+ &) (8.12)

Substituting the general and particular solutiamstifie channel potential into equation (B.5) and

re-arranging gives the following form.

Q
fo=—— jko kKR —— ex -| z- 7]\ k+ &
4TE € K2 p( ) (B.13)

+[aks, (kR A( @exp(- Z/ ke &)+ B Jexd ¢ % &)
0
B.2 Solution of Coefficients
To find the coefficients for the source, drain ahénnel potentials given by equations (B.8), (B.9)

and (B.13) respectively, the electric field bourydeonditions must be applied at both the=0

and Z = L. interfaces. The boundary conditions for the seumterface are

0¢5(2=0) _09¢:(2=0)
AR  OR

(B.14)
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B.2 Solution of Coefficients

EgE —a¢S(Z:O)=€i€—a¢C(Z:O) (B.15)
Si®0 az Si“0 az .
and for the drain interface are
oR oR ’
g_nggigw (Bl?)
Si®0 az Si“0 az .

Using the following expressions allow the potemsti be simplified. These simplified terms will

be used throughout the remainder of this appendix.

K. =k + K2 (B.18)

Kg =4k + K2 (B.19)
Ky =K% + K2 (B.20)

Starting with the boundary condition at the sowhennel interface and finding the derivates of the

potentials:

W{dk A(-kI( kR) (B.21)

0P (Z 20) — Q ]idk (_k‘]L( ka){%eXp(_ Z |6)+ A+ g} (B.22)

OoR ATEGE, %

Setting these derivatives equal to one anothereuagranging gives

A -A.-B.= 2 Q Kiexp(—zI Ke) (B.23)

Si®0 C

For the second source-channel interface electid BC:
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B.2 Solution of Coefficients

M Tdkszo (kR K (B.24)
3¢, (2=0 o
: gz )=4m2i50£dk L (kR{ lexp(- 2 KK)- A K+ B K} (B.25)

Substituting these into equation (B.15) and maniting yields

Q Lexp(— Z K.) (B.26)

—S 4
ASK A~ 4715‘ & Ke

For the channel-drain interface electric flux BC:

0. (Z=Lc) _ k.
oR 4ms,£0£dk k‘]l ka){ exp( |l: Z' Iﬁ) (B.27)
+A exp(-Lc K ) + B exi LK)}
0
¢D(Z—L° jolk/sb K3 ( kR)exp(- L K) (B.28)
Using these equation to find the electric field 8CGhe drain interface:
A, exp(-LKo) - A, ext{-L.Ko) - B, exfLoK)
k (B.29)
477ZI£OK—exp( (L =Z,)Ke)
For the channel-drain interface electric field BC:
0¢.(Z
el zte) - 2 Jaka,(@f(-Yex(-( L~ 2) &)
+A:( c)exp( Ke) (B.30)
+B. K exp( LK)}
0
Wol2zke), I dka, 3 KR(- K )exp(- L K) (8.31)

The final BC is then
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B.2 Solution of Coefficients

Ay 12 X0~ Ko) = A, exXH{- LK) + B ex LK)

5 ) (B.32)
e (2K

Introducing the following expressions to simpliffetRHS of the resulting simultaneous equations

(B.23), (B.26), (B.29) and (B.32).

_ Q Kk _
y= 477ESi£oK_ceXp( Z K.) (B.33)
k
Y = 4;55 K—exp( (Le-2)K.) (B.34)

Using these four simultaneous equations to find g¢befficients is too complex for a basic
elimination method. Instead an inverse matrix rmétls employed to solve the coefficients, e.g.

arranging the simultaneous equations into the oedX =b presented as equation (B.35), the

solution for the coefficients can be found froe=A ™D .

1 -1 -1 0 AT [y
0 _eXp(_LcKc) _eXchKc) ex()_LcK D) A - y (B.35)
Ks K K¢ 0 B.| | ¥ '

0 -Kcexp(-LcKe) KeexgLKe) Ky exp-LKo) || A | |V

Computing the inverse of the first matrix on the3Hy hand is very tedious, instead Wolfram’s
Mathematica [131] application has been utilised sve the coefficients. Following the
computation in Mathematica to solve the matrix peobabove and after some manipulation the

coefficients can be written as follows.

_ Q _
AS_47ESi€o 2kexp(-Z, K.) A, (B.36)
_ Q k _ _
A = 4z £, Ko (K K )exp( ZIKC)A\n (B.37)

=Kc(exp(z.CK)+eXF(ZK)) o exp BKe) - ep 2K)) (B.38)
(KE+KaKo)(exp( 2K o) = J+K (KoK J(exf 2k g+ L
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B.1 Double Interface Solution

for the source interaction coefficients and

Q k

B. = 17E. -, K_C( Ke — KD)eXp(—ZI KC) A (B.39)
Ay =2 2kexr(=Z ) ex o (K. + Ko)) A (B.40)

Ke (exp( Z, Ko )+ 3+ K exf Z,Ko)- L
KE+ KK o) (exp( LK o) =+ K o(K+K ) exf 2 K )+ )

A = ( (B.41)

for the drain interaction coefficients.
B.1 Double Interface Solution

Substituting the coefficients found in the previaestion into the potentials from section B.1 ,

gives the finalised forms.

Ps = 472igozdk2k J(kRexp zK)exg- Z K) A (B.42)
T k
b = 477:?Qsifo‘([dk I kI%K—C{exp(—| z- 7 pg)
+(KC - KS) eXb—(Z + ZI) Kc) A, (B.43)
+(Ke = Kp) exp-(2-2,) K.) A}
Q

82— Jaiq (KQex(-(Z L) K)ex{-(2- L) k) & (B.44)

47E £,

Here the coefficient$h,and A, are given by the equations (B.38) and (B.41) retspady, and the

terms K, are given by equations (B.18)-(B.20). Agaln,is introduced as a separation variable

and should not be confused with the carrier wawtoreof the same symbol.
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Appendix C Full Single Interface Scattering Model

This appendix will present the scattering modeltfar full single interface model which is used in
section 4.2.5.2 to compare the mobility of the &nl strongly screened models. This model is not

used extensively in this research work but is idetliin the appendix for future reference.

The full or complete single interface model is lshsa the potential found in section 4.2.1 with the
accompanying detailed calculation in Appendix A.nlike the strongly screened model which
assumes a metallic source and is used for scajtesdiculations in this PhD work, the model

developed here will include the exact interactibthe doped source region of semiconductor.

Here an identical approach to that of Chapter Balgulate a scattering model will be used. A
spherically-symmetric scattering potential using #raligned simplification discussed in section
5.2.3 is assumed in the calculation which followsrrhi’'s Golden Rule approach assuming
spherical, non-parabolic bands. Initially the t&atg matrix element will be calculated from the
scattering potential in section C.1 . The scatteprobability and scattering rate are then obthine

in section C.2 .
C.1 Matrix Element

The matrix element is found by completing the Fewtransform of the interaction potential over

cylindrical co-ordinates, equation (5.6).

- T f Us (R, Z)exp(- 01, [R) exi{—iq, 2) (C.1)

o'—;S

Dk

For the complete model the full interaction potentalculated in detail in Appendix A will be

used and is repeated here as equations (C.2)-(C.3).

= 71’?5.50£ko0( kR K02+kKSexp(— Z K)exd zK) (C.2)

Qg [k JO(kR)Ki{exp(—| z- 7 k)
K.-K
R ep(zez)k)]
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C.1 Matrix Element

where

Ko =K+ K2 (C.4)

K =K + K2 (C.5)

It should be noted that in equations (C.2)-(C.8)\hriablek is not the carrier wave vector used in
general notation but is in fact a separation végiabtroduced in the solution of the potential.
Using the following form, the source and drain fatgion potentials can be substituted into

equation (5.6).
Us(R.Z)=eV(R,2)= 40(- 2¢<+6( J¢.) (C.6)

Here e is the electronic charge arédis the unit step function. Re-arranging the fafequation

(5.6) taking care with the unit step functions qfiation (C.6) gives

Hy éf rpToReXp —ig, [R {idz & exp(—iozz)+I dZ ¢. exp- iq z}} (C.7)

where g, is the momentum transfer in the plane perpendictdathe Z-axis andqg, is the

momentum transfer along the Z-axis. After some@tley integration and algebraic manipulation,

the Fourier transform of the potentials is foundbéo

M = 472350 ZQH{ Ke f AR )q;%;fkg
+Kic(exp(—iqzz, )q§+2q—K§C+k§ (C.8)
“eelzk )(QéKi ;iiizké _[ KKZ; ij qéK+C;§iizkém
where the term¥, have now become
Ko =495 +k2 (C.9)
Ks =492 +Kk2 (C.10)
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C.2 Scattering Rate

Before this scattering matrix element can be useBermi’'s Golden Rule, the magnitude-squared

must be found. After some extensive manipulatiba,solution is found as

|Hk,k'|2=(e—QJ (2—”) ;f (kC,ZI) (C.11)

2 'sgl
ATE €, Q (qé + qz2 + ké)

where thef,, function can be expressed as

sgl

fsgl(kc,Z|)=4(cos(qZZ|) Ayt Sil’( 4 Z) §g|)

(C.12)
+eXp(_Z| KC )(ngl + Dsgl)
Ay :COS(qzzl)_ ex;(—z| Kc)
2 2 C.13
X/ 1- : [(Kc _Ks)+2KS(qzz;KgJ] ( :
Ke +Ks gz + Ks
B, =sin(0, Z,) + exp(-Z KC)E—Z
c
(C.14)
2 2
x| 1+ : [(Kc _Ks)_ZKc(qé;KchJ
Ke +Ks g; +Ks
2
nglzl_ 1 {z(KC_KS)_M
Ke +Ksg Ke+Ks
(C.15)
2 2 2 2 _
S
0z s c s\& S Ke+ K
K2 K (K.+K K K (K.+K
c c( c s) c c( c s) (C.16)

b ek e )|
qZ+KS KC+KS qZ+KS
C.2 Scattering Rate

The scattering rate is found using Fermi’'s GoldemeRapproach given by equation (5.9), which

describes the probability of scattering from aestatto a statek’ for an elastic interaction.
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C.2 Scattering Rate

P(k k') =277T|H ol 0(Elk ) - EK)) (C.17)

Substitution of the scattering matrix element ithie Golden Rule gives

o S A )

where f , is given by equations (C.12)-(C.16). The scattgend momentum relaxation rates (for

an elastic interaction) can be evaluated from tiadtaring probability using equations (5.14) and

(5.15) respectively.

0= LRk )Nk 9

LI ")(1- = ' '
7 (K) —;P(k’k )(1- co¥) Nk! Pk k')( & coé) & (C.20)
N = (2?1)3 (C.21)

The scattering can be calculated to give

Z€
ATE, si€o

J N, 2’;2“ Koe 20E) [0 ¢ (k.,2) (C.22)

(@)

r(k)=(

where the final integral is left to numerical intagon. The momentum relaxation rate can be

found by substituting the scattering weighting ténio the integral.

1 zé Y, 27mk T sin6(1- co®)
= N 1+ 20E)| d————L f , C.23
Tm(k) [47Esfgoj | K3 ( + ).([ (q2+ké)2 sgl(K: Z) ( )
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