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Abstract 

The International Technology Roadmap for Semiconductors (ITRS) specifies that MOSFET logic 

devices are to be scaled to sub-10nm dimensions by the year 2020, with 32nm bulk devices ready 

for production and double-gate FinFET devices demonstrated down to 5nm channel lengths.  

Future device generations are expected to have lower channel doping in order to reduce variability 

in devices due to the discrete nature of the channel dopants.  Accompanying the reduced channel 

doping is a corresponding increase in the screening length, which is even now comparable with the 

channel length.  Under such conditions, Coulomb scattering mechanisms become increasingly 

complex as the scattering potential interacts with a larger proportion of the device. 

Ionized impurity scattering within the channel is known to be an important Coulombic scattering 

mechanism within MOSFETs.  Those channel impurities located close to the heavily doped source 

and drain or both, will induce a polarisation charge within the source and drain.  These polarisation 

charge effects are shown in this work to increase the net screening of the channel impurities, due to 

the inclusion of remote screening effects, and significantly decrease the scattering rate associated 

with ionized impurity scattering.  Remote screening can potentially reduce the control by ionized 

channel impurities over channel transport properties, leading to an increased sub-threshold current. 

A potential model has been obtained that is based on an exact solution of Poisson’s equation for an 

ionized impurity located close to one or both of these highly doped contact regions.  The model 

shows that remote screening effects are evident within a few channel screening lengths of the 

highly doped contact regions.  The resultant scattering model developed from this potential, which 

is based on the Born approximation, is implemented within a Monte Carlo simulator and is applied 

to MOSFET device simulation. 

The newly developed ionized impurity scattering model, which allows for remote screening, is 

applied in the simulation of two representative MOSFET devices: the first device being a bulk 

MOSFET device developed for the 32nm technology generation; the second device is an Ultra-

Thin-Body Double Gate (UTB DG) MOSFET developed for the forthcoming 22nm technology 

generation.  Thorough investigative simulations show that for both the bulk MOSFET and the UTB 

DG MOSFET, that remote screening of channel impurities in these devices is not a controlling 

effect.  These results prove that the current model for ionized impurity scattering employed in 

Monte Carlo simulations is sufficient to model devices scaled to at least the 22nm technology node, 

predicted to be in production in the year 2012. 
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Chapter 1 Introduction 

The International Technology Roadmap for Semiconductors (ITRS) [1] is a set of manufacturing 

guidelines which are used by industry to ensure that modern devices are both profitable to 

manufacture and are efficient in use.  The roadmap covers all aspects of production from process 

technology to final device performance and also highlights the areas where research and 

development (R&D) are required.  In this work the interest within the ITRS is concerned with the 

digital logic devices roadmap which discusses the scaling and performance of CMOS devices, that 

is the MOSFET. 

The current generation of MOSFETs are based on the bulk or planar devices with a physical gate 

length of 32nm and are quite advanced with high-κ/metal-gate stacks and strained channels [2-4].  

High-κ insulators have been introduced to combat the scaling of the gate oxide, which when using 

the traditional SiO2 would otherwise only be a few atomic layers thick [5, 6].  The reintroduction of 

metal gates (poly-Si gates had been used for almost the previous two decades of scaling due to the 

increased control over the device and minimal production cost) reduces the negative impact of the 

high-κ dielectric [7-10].  Channel performance can be improved through the use of strain which 

increases the carrier mobility [11-13] and there is also an interest in moving to a (110) silicon 

crystal orientation [9, 14]. 

The roadmap projects that the MOSFET device can be scaled to a physical gate length of 8.1nm by 

the year 2022.  The bulk device is predicted to be scaled to a physical channel length of 14nm by 

2016, therefore to achieve the end of roadmap device scaling requires a different device structure 

that reduces Short-Channel Effects (SCEs) (see the textbook by Taur [15] for more detail on SCEs) 

and completes the required performance levels specified by the ITRS. 

A device which offers greater scaling than the bulk device has been led by IBM and is the Silicon-

On-Insulator (SOI) MOSFET.  It remains mostly unchanged from the bulk device in terms of the 

layout of the gate, channel and source/drain with the difference being that the silicon substrate is 

much shallower and is placed on an insulator.  The SOI MOSFET device offers a performance gain 

of 20-35% over the bulk MOSFET and is particularly suitable for low-power applications [16].  It 

too utilises the technological improvements developed for use in the bulk device of high-κ/metal 

gate and channel strain as seen in the latest generations [17-19].  Although this device provides 

greater scaling, the roadmap predicts a physical channel length of 10.7nm by 2019, it is not 

considered to be the device structure to take MOSFET devices to sub-10nm dimensions. 
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The device which is described in the ITRS as the “ultimate MOSFET device” due to its scalability 

to the end of the roadmap is the Double-Gate (DG) or FinFET device [1].  The DG device is a 

particularly favourable device for the roadmap as it greatly reduces the deleterious short-channel 

effects (SCEs) whilst maximising drive current [20].  This device can also be easily integrated into 

the existing conventional planar manufacturing process [21].  DG devices have been demonstrated 

down to 5nm physical channel lengths [12, 22, 23] where fully functional SRAM cells have been 

recently produced using the DG FinFET structure [24]. 

It is well understood that each new scaling generation in the coming years provides new challenges 

and will require that new device structures be utilised.  This of course means that the device 

simulators must also be extended and improved to model the complex processes that are involved.  

A particular effect evident in devices that has been under extensive research is that of Coulomb 

scattering which is an increasingly deleterious effect on device performance as the dimensions are 

reduced below typical screening lengths [25]. 

The focus of this work is to develop an advanced Coulomb scattering model that describes the 

interaction of channel ionized impurities with their corresponding polarisation charges induced in 

the source and drain regions.  In the following section a brief review of the major Coulomb 

scattering processes under study in current generation MOSFETS is undertaken.  Following this, 

the aims and objectives of this research will be stated and an outline of the structure of this work 

will be presented. 

1.1 Coulomb Scattering 

This form of scattering is based on the Coulomb potential, given by equation (1.1) [26], for a point 

charge with a charge Ze( e  is the electronic charge and Z is the number of free charges) located at 

Ir  in a medium of permittivity 0rε ε .  This form of the potential is often called the bare Coulomb 

potential as it does not include the interaction of the other carriers in the definition of the potential. 

 ( )
0

1

4 r

Ze
V

πε ε
=

− I

r
r r

 (1.1) 

It is clear from the definition of this potential that there will be a singularity when = Ir r  and that 

the potential will drop off slowly.  Inclusion of the surrounding charge density allows the screening 

potential of the other carriers to be considered in this potential and is often termed the screened 

Coulomb potential.  This form of the Coulomb potential can be written as 
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 ( ) ( )
0

exp

4 r

Ze
V

λ
πε ε

−
= I

I

r - r
r

r - r
 (1.2) 

where λ  is the static screening length which is typically given by the Debye-Hückel form, written 

here for a non-degenerate system as 

 0
2

r Bk T

e n

ε ελ =  (1.3) 

where Bk  is Boltzmann’s constant, T is the lattice temperature in Kelvin and n is the free electron 

density.  The screened Coulomb potential retains the infinitely high peak of a point charge when 

Ir = r  but the introduction of the static screening length, λ , reduces the range over which the 

potential is noticed.  This is more clearly demonstrated in Figure 1.1 where the two potential 

models are plotted for arbitrary units. 

 

Figure 1.1: Plot of the bare and screened Coulomb p otentials for a point charge located at 
0=Ir . 

Coulomb scattering in MOSFET simulation commonly describes the effect on device performance 

of carrier interactions with ionized impurities and the other carriers.  Ionized impurity (II) 

scattering has the more dominant effect in controlling the carrier transport in doped silicon, in 

particular the mobility of carriers [27-29].  This mechanism is by far the most important Coulomb 

scattering mechanism due to the unavoidable nature of impurity scattering in MOSFET devices.  It 

arises from the doping of the silicon semiconductor material with either donor or acceptor atoms.  

Doping is used to modify and improve the electrical properties of silicon such as to improve the 

threshold voltage by doping the channel or improving drive current by heavily doping the 

source/drain wells. 
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Carrier-carrier (e-e) scattering is dominant at high carrier concentrations, above 17 18 310 10 cm−−∼  

in silicon and redistributes the carrier momentum among the ensemble [30].  The e-e scattering 

mechanism is broken into two separate regimes: the interaction of two carriers with each other, 

binary e-e scattering [31, 32]; the interaction of a carrier with an oscillating carrier collective, that 

is plasmon scattering [33, 34].  The distinction between the two regimes, the long-range or plasmon 

interaction and the short-range or e-e interaction is typically defined by the screening length.  E-e 

interactions at a distance greater than the screening length apart are described in terms of plasmon 

scattering and those closer are described by the short-range interaction.  This distinction follows the 

natural division of e-e interactions where plasma oscillations are manifest over distances greater 

than screening length, and at distances less than the screening length the interactions behave more 

like interacting individual particles [35]. 

These interactions are two of the many different forms of Coulombic scattering that are modelled 

in MOSFET devices.  A depiction of the various Coulomb scattering processes that have been 

studied for the simulation of MOSFET devices is given in Figure 1.2. 

 

Figure 1.2: Various Coulomb scattering processes fo und in modern MOSFET devices. 

In this figure the majority of Coulombic scattering processes are remote, that is the charged 

scattering centre is located some distance from the carrier which it scatters.  There has been a large 

increase in the number of researchers studying remote Coulomb scattering recently as the shrinking 

device dimensions enhance the remote effects. 

Remote charge scattering from ionized impurities located in the gate region of poly-silicon gate 

(remote impurities) devices [36-38] is a strong scattering mechanism in oxide layers less than 3nm 

thick [39].  This scattering mechanism has been reduced by the introduction of the high-κ  

materials in the oxide layer which provide a thicker oxide layer for an equivalent silicon dioxide 

capacitance and a reduced Coulomb potential strength through an increased permittivity, 0rε ε . 
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The introduction of high-κ  materials may have reduced poly-Si charge scattering but it has 

introduced further remote Coulomb scattering due to trapped charges in the gate stack (fixed 

charges) [40].  The effect of these trapped charges is quite significant on effective device mobility 

and alters the drive current [41, 42].  Trapped charges are formed during the production of these 

devices and there is the possibility that future process techniques may reduce the number of trapped 

charges in the oxide layers. 

The introduction of metal gates to MOSFET devices with high-κ  dielectrics has been 

demonstrated to increase device performance and also improves the screening of the remote 

interactions [7].  Despite this, a recent and extensive study of such devices still found that remote 

coulomb scattering still causes significant mobility degradation [8]. 

Remote e-e scattering has also been presented to have a negative impact on device performance for 

devices with thin oxides and channel length less than 40nm [43].  The high density carrier gasses or 

plasmons that are present in the heavily doped source, drain and poly-silicon gate regions interact 

with carriers in the channel region and degrade channel mobility.  Interactions of channel carriers 

with the plasmons in the source and drain regions will reshape the carrier distribution in the 

channel, moving carriers towards the high energy tail of the distribution [44]. 

The interaction of the channel carriers with gate plasmons, also referred to as Coulomb drag has 

been studied [45] and quantitative agreement has been shown experimentally [46].  This remote 

interaction is strong in poly-silicon gate devices but with the increased screening of a metal gate, 

the remote Coulomb interaction is minimised [7]. 

1.2 Aims and Objectives 

The effect of the closeness of the source and drain highly-doped regions on channel ionized 

impurity scattering has not been studied previously and is the focus of this work.  The induced 

polarisation charges in the source and drain will increase the screening of the channel impurities 

(hence remote screening) and will impact the transport of carriers through the channel.  This newly 

studied effect is entitled remote screening of channel impurities and the effect will increase as the 

channel length is reduced in future generations. 

The aim of this work is to produce the new remotely screened scattering model that can be utilised 

efficiently in the Monte Carlo simulation of MOSFET devices to describe the interaction of 

channel ionized impurity with the source and/or drain.  This new scattering model must be able to 

cooperate with the existing ionized impurity model.  Using the newly developed scattering model, 
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Monte Carlo simulations of two example MOSFET devices will be simulated to examine the effect 

on current and next generation devices. 

1.3 Thesis Outline 

This thesis will be laid out in the following structure: 

Chapter 2 will discuss the most common methods of ionized impurity scattering within Monte 

Carlo simulations in a literature review.  This will include some discussion of existing extensions 

(or advancements) to the basic model which have been previously studied.  The distinctions of each 

model will be highlighted and the relative advantages of each will be discussed. 

Chapter 3 presents a brief introduction to the Monte Carlo simulation methodology used within this 

work.  Starting by covering the fundamentals of the Monte Carlo approach, this includes the 

Boltzmann Transport Equation (BTE) and the self-scattering procedure, the chapter then moves on 

to the scattering models and the numerical procedure.  Calibration results of the Monte Carlo 

simulator are also presented to demonstrate the accuracy of the used approach with experimental 

data. 

Chapter 4 calculates the scattering (or interaction) potential for the remotely screened ionized 

impurity model.  The resultant potential is then verified against a fully self-consistent, numerical 

Poisson solution to ensure the calculation is correct.  As will be discussed in this chapter, a 

simplified model is obtained which is shown to be almost identical to the full model. 

Chapter 5 utilises the scattering potential to calculate and analyse a complete scattering model 

suitable for Monte Carlo simulation.  A thorough study is also completed to demonstrate that a 

further simplification to the scattering model can be made which increases the computational 

efficiency with negligible loss of accuracy.  A new numerical approach to the simulation of ionized 

impurity scattering is also introduced which greatly reduces simulation time without negative 

impact on the scattering model. 

Chapter 6 completes Monte Carlo simulation of MOSFET devices with the newly developed 

remote screening model for channel ionized impurities.  A typical current generation bulk 

MOSFET device is simulated along with a future generation double-gate structure to examine the 

effects of remote screening on the channel performance.  In accompaniment to the numerical 

device simulation, an estimated analysis of the analytical channel mobilities is also calculated for 

the devices to confirm the simulation results. 



1.3 Thesis Outline 

7 

Finally in Chapter 7 the conclusions of this work are summarised and suggestions for future work 

are discussed. 
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Chapter 2 Literature Review 

2.1 Introduction 

The focus of this PhD work is on ionized impurity (II) scattering in Monte Carlo (MC) simulation, 

where in a later chapter, an advanced correction to the Brooks-Herring (BH) model will be 

developed.  There are many methods and techniques used to model the scattering of carriers by 

ionized impurities, of which the most common and important techniques shall be reviewed here. 

The first approach to impurity scattering model developed, the Conwell-Weisskopf (CW) model, 

will be discussed in Section 2.2.  This model utilises the Rutherford ion scattering approach, 

combined with an empirical cut-off to remove the divergent nature of the Coulomb potential 

approach.  Although this approach is not used here in MC simulations of room-temperature 

MOSFET devices, it is a significant model and is essential to include in a review of impurity 

scattering. 

The BH model is perhaps the most commonly referenced model with regard to II modelling and as 

such has had the most development in terms of extensions.  This approach differs from the CW 

model in the definition of the scattering potential, where the BH model includes the screening 

effect of the surrounding carriers.  In section 2.3 this model will be reviewed. 

The CW and BH models propose different methods of dealing with the divergence of the Coulomb 

potential, of which both have strong disadvantages at differing points in MOSFET device 

simulation.  Ridley’s Third-Body Exclusion (TBE) model combines these two approaches to 

remove the disadvantages and obtain a model suitable for device simulation.  This model is 

successfully applied to MC simulations within the simulator used in this work and is reviewed in 

section 2.4 along with a discussion on the need for such an approach. 

With modern devices being scaled to sub-50nm dimensions, the number of actual dopants and their 

position within the channel region has a large effect on device performance.  The discrete nature of 

dopants in modern nanoscaled devices can be modelled using an ab initio atomistic approach 

within both Drift-Diffusion (DD) and MC simulations.  Section 2.5 will briefly review this 

approach of atomistic impurity scattering where dopant atoms are treated as discrete charges in the 

electrostatic solution of the device.  Although this approach does not use a typical scattering rate 

representation, it is an important method for modelling the effect of ionized impurities in MC 

simulation. 
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For reference, the method used here to obtain scattering rates for MC is based on application of 

Fermi’s Golden Rule to obtain a scattering probability rate, ( ),P ′k k , for a carrier from a state k  

to a state ′k .  Fermi’s Golden Rule for an elastic collision, such as the interactions involved in II 

scattering, is given by [30] 

 ( ) ( ) ( )( )22
,P E E

π δ′′ ′= −k kk k H k k
ℏ

 (2.1) 

where 
2

′k kH  is the square of scattering matrix element and the Dirac delta function, ( )..δ , ensures 

that energy is conserved in the interaction.  The scattering matrix element is obtained from the 

Fourier Transform of the scattering potential, SU , and can be written as 

 ( ) ( )31
exp Sd i U′ = − ⋅

Ω ∫k kH r q r r  (2.2) 

where 'q = k - k  denotes the transfer of momentum between the carriers and Ω  is the unit volume.  

The scattering rate which can be used within the MC simulation can be found by summing the 

scattering probability rate over all possible final states, defined as equation (2.3), where the 

scattering rate is a function of the magnitude of the state k . 

 ( ) ( ),P
′

′Γ =∑
k

k k k  (2.3) 

This can easily be converted to an integral for a 3-dimensional system using the following 

definition 

 ( ) ( )
( )

3
3

, ,   with  
2

k kP N d P N
π′ ′

Ω′ ′ ′≡ =∑ ∫
k k

k k k k k  (2.4) 

In the calculation of the scattering rate, both the incoming and outgoing carrier wave vector,k and 

′k  respectively, are expanded in the spherical coordinate system, { }, ,k kk θ ϕ=k  and 

{ }, ,k kk θ ϕ′ ′′ ′=k .  By allowing the reference frame of the outgoing wave vector to be aligned with 

the incoming wave vector (that is by allowing 0kθ = ), the angles of the incoming wave vector are 

cancelled.  As a result of this expansion, often the scattering rate equations are written as function 

of a vector variable k  yet utilise a scalar magnitude k  on the RHS. 
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2.2 Conwell-Weisskopf 

The CW approach to ionized impurity scattering is based in the Rutherford formula for scattering 

by a charged ion [47].  This approach treats the ionized impurity as a single point charge which is 

entirely independent from all other ions.  The scattering electron is assumed to have a well-defined 

trajectory.  The model utilises the classic Coulomb point charge which models a single impurity 

atom in a perfect crystal lattice [47, 48].  The scattering potential for the CW model, based on the 

bare Coulomb potential, is given by equation (2.5). 

 ( ) ( )
2

0

1

4S
Si

Ze
U eV

πε ε
= =r r

r
 (2.5) 

Completing the Fourier transform and Born approximation of the scattering potential, the following 

scattering matrix element is obtained 

 
2 22

2

 2 2
0

1 4

4 Si

Ze π
πε ε

   
=    Ω   

k' kH
q

 (2.6) 

Here the number of impurity charge units is given by Z , the static permittivity of silicon is 0Siε ε  

and the momentum transfer wave-vector for an elastic collision (assuming that ( ) ( )E E ′=k k ) is 

specified as ( )2 22 1 cosθ′= −q k .  Evaluating this using spherical co-ordinates for parabolic, 

spherical bands with Fermi’s Golden Rule, equation (2.1), gives the following scattering rate 

 
22 3

3 2
0 0

2 sin

4CW I
Si

Ze m
N k d

ππ θ θ
πε ε

∗ 
Γ =  

 
∫ qℏ

 (2.7) 

where IN  is the impurity density.  The remaining integral in equation (2.7) diverges for 0θ → .  

This is a known problem with the bare Coulomb potential, in that the potential has an infinite range 

over which it is felt. 

Using Rutherford scattering, the scattering electron is treated as a classical particle which interacts 

with the impurity according to the impact parameter, b.  This impact parameter describes the 

interaction of the electron with the impurity via the scattered angle of the electron.  It is defined as 

the perpendicular distance between the scattered electron and impurity ion and is depicted in Figure 

2.1. 
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Figure 2.1: Definition of the impact parameter, b, from Rutherford scattering. 

Conwell and Weisskopf solved the problem of the diverging scattering rate by introducing a limit 

on the potential that defines a cut-off distance for the impact parameter, given by equation (2.8).  

The limit that was introduced is based on the assumption that the scattering event is a two-body 

event, an electron scattering with a single impurity. 

 
2

2 2
0

cot
4 2Si

Ze m
b

k

θ
πε ε

∗   =    
   ℏ

 (2.8) 

To ensure that the electron scatters from only the closest impurity, the impact parameter is cut-off 

at half the average inter-ion separation distance.  Here the definition of the average inter-impurity 

ion distance for a uniform distribution is given as 
1
3

Ia N−=  [48].  The impact parameter and 

average inter-ion separation distance are plotted in Figure 2.2 (a) and (b) respectively. 

 

Figure 2.2: (a) Semi-log plot of the impact paramet er for an electron of energy 25E meV=  

and (b) the plot of the average inter-ion separatio n using 
1
3

Ia N −= . 
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Defining half the average inter-ion distance as the maximum impact parameter in equation (2.8), 

e.g. 
1
31

2max Ib N−= , and solving for the angle, the definition for the minimum scattering angle can be 

obtained as 

 
2

1
min 2 2

0 max

1
2 tan

4 Si

Ze m

k b
θ

πε ε

∗
−   

=    
  ℏ

 (2.9) 

Using equation (2.9), minθ , as the lower limit of the integral in equation (2.7) allows the integral to 

be completing yielding the CW scattering rate. 

 3 31
2 2 2

22
2 min

0

cot
4 22

CW I
Si

Ze
N

m E

θπ
πε ε ∗

   Γ =    
  

 (2.10) 

The CW model finds a solution to the problem of the divergent scattering model due to the 

diverging scattering potential, although it has been often criticised for the artificial manner of using 

half the average inter-ion separation.  It has also been noted that the choice of exactly half the 

separation distance is rather arbitrary and other methods have been suggested.  These have included 

the spherical symmetry on the distribution of impurity ions [49] and even a probabilistic method 

[50, 51] such as equation (2.11). 

 ( )
1
3

1
34 4

2
3 3I Ia N Nπ π

−
−   = Γ ≈   

   
 (2.11) 

The major limitation of the CW approach is that it fails to take into account the effect of the mobile 

charge surrounding the impurity on the scattering potential.  This space charge would effectively 

screen the potential forcing a quicker drop off at large distances from the ionized impurity.  This 

failure in the model will cause an over-estimation of the scattering rate when the mobile charge is 

much less than impurity density, as in the depletion-region of a p-n junction [52]. 

2.3 Brooks-Herring 

The BH model for ionized impurity scattering uses the Coulomb potential to model a single ionized 

impurity but also includes the effect of screening from the space charge surrounding the impurity.  

The screening effect is generally calculated as a length scale which describes the distance the 

potential will take to respond to a change in the charge density and can be found from the 

linearized form of the Poisson equation.  The Poisson equation for a point charge is given as 
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equation (2.12), here Ze is the charge on the impurity located at Ir  and the charge density in the 

system is ( ) ( ) ( ) ( ) ( )( )A De p n N Nρ − += − − +r r r r r . 

 ( ) ( ) ( )
2

2

0 02Si Si

Ze
V

ρ
δ

ε ε πε ε
∇ = − − − I

r
r r r  (2.12) 

Linearization of this equation through the Thomas-Fermi method [53] and assuming a small 

perturbation in the neutral space-charge, the Poisson equation can be written as 

 ( ) ( ) ( )2 2
0

02Si C
Si

Ze
V k Vε ε δ

πε ε
∇ = − − Ir r r r  (2.13) 

where 1
C Ckλ −=  and 

 
( )
( )

1
2

1
2

2
2

0
C

Si B

e n
k

k T

η
ε ε η

−=
F

F
 (2.14) 

This solution uses Fermi-Dirac statistics for the carrier densities and the degenerate Debye-Hückel 

form of the inverse screening length, Ck , where F BE k Tη =  and jF  is the Fermi-Dirac integral of 

order j [54].  Typical values for the degenerate screening length given by equation (2.14) are shown 

in Figure 2.3. 

 

Figure 2.3: Plot of the degenerate Debye-Hückel scr eening length. 

The potential solution to equation (2.13) can then be found using appropriate boundary conditions 

as the screened Coulomb model, given as the energy in equation (2.15).  After completion of the 
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Fourier transform and taking the Born approximation, the scattering matrix element can be derived 

as equation (2.16). 

 ( ) ( ) ( )2

0

exp

4
C

S
Si

kZe
U eV

πε ε
−

= =
r

r r
r

 (2.15) 
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2

 2 2 2
0

1 4

4 Si C

Ze

k

π
πε ε′

   
=    Ω +   

k kH
q

 (2.16) 

Comparing this equation with the scattering matrix element from the CW approach in the previous 

section, equation (2.6), we can see that the screening length removes the singularity as 0→q .  

Clearly, the CW scattering matrix element can be found by setting the inverse screening length to 

zero, that is 0Ck = . 

The scattering rate can be calculated using equation (2.16) in Fermi’s Golden Rule and summing 

over all final states.  Here 2 2 2
Ck CE k m∗= ℏ  and the scattering rate has been multiplied by the 

number density of impurities per unit volume, IN Ω . 

 
5 1

2 2

1
2

22

2
0

2

4 1 4
CC

BH I
Si kk

Ze E
N

E Em E

π
πε ε ∗

 
Γ =   + 

 (2.17) 

The BH approach is generally more widely accepted [48] as it has removed the divergence of the 

scattering rate with low-angle scattering.  This is true as long as there is enough mobile charge 

available to screen the Coulomb potential within a reasonable distance [55].  In conditions where 

there are very few carriers to screen the potential, the BH model returns to the similar divergent 

nature found in the unscreened model.  There has been many corrections and improvements made 

to the BH model, many of which are detailed in the review by Chattopadhyay & Queisser [48]. 

2.3.1 Momentum-Dependent Screening 

The standard BH approach uses a static screening model which in this chapter is the degenerate 

Debye-Hückel model of equation (2.14) model which is momentum independent.  It has been 

suggested by some authors [56, 57] that this model for screening is not sufficiently accurate at high 

doping densities and is being over-estimated.  To correct this a momentum-dependent screening 

correction has been developed which can be applied to the BH case [58, 59]. 
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Momentum dependent screening can be calculated from the dielectric function assuming that the 

impurity potential is time-independent and thus the frequency is zero [56].  The wave-vector 

dependent dielectric function for degenerate statistics can then be written as 

 ( ) ( ) ( )
2

,0 ,0 1 ,Ck
Fε ε ξ η≡ = +q q

q
 (2.18) 

 ( ) ( ) ( )1
2

2
0

1 1
, ln

1 exp

x x
F dx

xx

ξξ η
η ξηξ π

∞

−

+=
−+ −∫

F
 (2.19) 

Here 2
Ck  is the inverse screening length given by equation (2.14), ( )2 22 1 cosθ= −q k  is the 

momentum transfer of the scattering and ( )j ηF  is Fermi integral of order j.  The values ξ , x  and 

η  are related to the momentum transfer wave vector, carrier momentum and Fermi level 

respectively. 

 
2 2

2

8 Bm k T
ξ ∗= qℏ

 (2.20) 

 
2 2

2

2 B

k
x

m k T∗= ℏ
 (2.21) 

 F

B

E

k T
η =  (2.22) 

The momentum dependent screening correction factor has been plotted in part (a) of Figure 2.4.  

The plot demonstrates the correction to the screening at large momentum transfer and the return to 

the static screening model at ( )0, 1F η = .  Within degenerate conditions ( 0η > ) the screening 

correction is reduced as is expected from a higher screening density. 
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Figure 2.4: (a) The momentum dependent screening fa ctor, ( ),F ξ η , over several values of 

the reduced Fermi energy, η , and (b) the ratio of momentum dependent screening  to Debye-
Hückel screening. 

The corrected impurity potential is calculated by applying the dielectric function of equation (2.18) 

to the Fourier Transform of equation (2.5), the CW scattering interaction potential. 

 ( ) ( )
( ) ( )

2

2 2
0

1 4

,0 4 ,mom
Si C

V Ze
V

k F

π
ε πε ε ξ η

 
= =  Ω + 

q
q

q q
 (2.23) 

The scattering rate can then be calculated using Fermi’s Golden Rule with the square of the above 

matrix element, equation (2.23).  Noting that the integral in equation (2.19) must be completed 

numerically which restricts the θ  integral from being completed, the scattering rate can be written 

as 

 ( )
( )( )

22 *

23 2 2
0 0

8 sin

4 ,
mom I

Si C

Ze m k
N d

k F

ππ θ θ
πε ε ξ η

 
Γ =  

  +
∫k

qℏ
 (2.24) 

Momentum dependent screening is expected to decrease the inverse screening length at large q  

values.  This will occur at high carrier densities and cause an increase in the scattering rate 

corresponding to the reduction in magnitude of the screening. 

The momentum dependent correction is demonstrated with respect to the static screening model in 

plot (b) of Figure 2.4.  Here the carriers are assumed to have the room temperature average thermal 

energy, 3
2 BE k T=  at 300K.  The scattering angle defining the momentum transfer wave-vector, q

, is selected through the corresponding peak angular scattering probability.  The peak angular 

scattering probability is found by obtaining the maximum of the integrand in equation (2.24). 
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The effect of the correction is negligible below 17 310 cm−
∼  where most ionized impurity scattering 

is small-angle forward scattering and hence ( )0 0θ → ≈q .  At higher densities, where high-angle 

scattering is dominant, the momentum dependent correction can reduce the screening by up to 

30%. 

In the limit of 
0

lim 0
q

ξ
→

→ , the momentum dependent scattering model given by equation (2.24) will 

return to the BH model.  In other words, when the carrier densities are very low the scattering 

model will return to the screened BH approach.  At the opposite limit, lim
q

ξ
→∞

→ ∞ , when carrier 

densities are very high, the scattering model will behave like the unscreened CW approach. 

2.4 Third-Body Exclusion 

The problem of divergent scattering rates with ionized impurity scattering is a difficult problem to 

solve.  The two well-known methods by CW and BH use different solutions to reduce the range of 

the Coulomb potential.  Of these two methods the BH approach has been more widely accepted as 

it includes the screening of the impurity potential by mobile charge in the system.  It allows the 

Coulomb potential to be curtailed at a distance defined by the screening length.  This method is 

generally very successful when there is sufficient mobile charge in the system to screen the 

impurity potential.  If there is a lack of mobile charge carriers available to screen the potential, the 

model will return to the divergent nature. 

In the CW model the Coulomb potential is strictly cut-off at half the average inter-ion separation 

distance, assuming a uniform impurity distribution.  This method guarantees that the divergent 

nature of the Coulomb potential is contained and ensures that the scattering event is solely a two-

body process.  Ridley has developed a model which reconciles the two approaches used by CW and 

BH, entitled the TBE model.  By introduction of a function that gives the probability of another 

ionized impurity being closer to the scattering carrier, the BH model can be modified to incorporate 

the CW cut-off [55, 60]. 

This model provides the CW and BH models as limiting cases such that if the screening length is 

less than half the average inter-ion separation the screened potential is used otherwise it returns the 

unscreened, cut-off model used by CW.  Figure 2.5 plots the three scattering models against the 

mobile electron concentration and the cross-over from the BH to CW approaches is clear in the 

TBE model.  In this figure, the electron energy is assumed to be 25E meV=  and the background 

impurity concentration is fixed at 18 310IN cm−= . 
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Figure 2.5: Cross-over of TBE scattering model from  the CW to the BH approaches. 

The probability that no other ion is closer to the scattering electron is a function of the impact 

parameter, b , and is given as [55] 

 ( ) ( )2exp IP b ab Nπ= −  (2.25) 

where a  is half the average inter-ion separation given by equation (2.11) and IN  is the density of 

ionized impurities.  The impact parameter is then defined from the differential scattering cross-

section for the BH model as 
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4 2 2 2 2
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b d
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π
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π θ
πε ε θ

∗
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  +=   + − + 

∫

ℏ

 (2.26) 

To obtain the Ridley TBE model, the probability function is applied to the differential scattering 

cross-section to obtain [60] 

 ( ) ( ) ( )R P bσ θ σ θ=  (2.27) 

The scattering rate is calculated by integrating the Ridley differential cross-section, Rσ , over θ  

and multiplying by the impurity density and the group velocity, ( ) m∗=ν k kℏ . 

 ( ) ( )
0

R I RN d
π

σ θ θΓ = ∫v k  (2.28) 
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Completing the integral and after some manipulation, the final scattering rate can be expressed as 

 
( )

( )1 expR BH

a

a

  
Γ = − − Γ   

   

ν k

ν k
 (2.29) 

In this expression BHΓ  is given by equation (2.17), the BH scattering rate and ( ) 1
32 Ia Nπ −=  is the 

average inter-ion separation distance. 

The Ridley TBE model combines the approach of the more widely accepted screened approach 

used by BH with the CW cut-off method of removing the divergence.  This model for ionized 

impurity scattering can be applied consistently to all conditions in a MC simulation without worry 

of it producing excessively large scattering rates when there is few mobile carriers to screen the 

electrons.  It is an advantageous II scattering model as it can be applied to all simulation conditions 

but it is not as accurate a II model as the BH approach and will underestimate the effect of II 

scattering in MOSFET devices [61]. 

The TBE model has traditionally been the approach for II scattering in the MC code used in this 

work but it is not an ideal approach.  As a result, in Chapter 5 a more advanced II model is 

developed and utilised which retains the accuracy of the BH approach whilst reducing the divergent 

scattering rate nature inherent to BH. 

2.5 Atomistic Impurity 

Although the atomistic impurity approach to scattering from ionized impurities is distinct to the 

research within this thesis, it is important to discuss the method used.  A brief overview of the 

technique will be covered here and further detail of the method and effect on device performance is 

referred to the original authors [62-64]. 

As device dimensions are scaled to well below 0.1 mµ , the effect of impurity centres within the 

device become much more important [63].  There will be relatively few dopant ions needed to 

obtain the required doping level.  Hence, it is necessary to look at the effect of the discrete nature 

of these dopants on device performance and carrier transport [65]. 

Typical MC impurity scattering methods utilise an approach based on Fermi’s Golden rule where 

ionized impurities are included via a continuous background doping level.  Atomistic impurity 

scattering takes a different approach to the normal method used within such MC simulations.  In 

atomistic scattering the discrete impurity charge is included directly into the mesh-based solution 
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of the non-linear Poisson solution for the electrostatic potential.  This electrostatic solution is then 

used in an Ensemble Monte Carlo (EMC) simulator where conventional II scattering is removed 

from the scattering tables [66].  Hence, by incorporating the dopant potential into the electrostatic 

solution of the system, the effect of the dopant on carrier transport can be examined in detail within 

the MC simulation [67]. 

The atomistic impurity scattering approach is a classical approach to the problem in that the 

scattering of the carriers from the II is modelled through the classical transport of MC particles.  In 

other words, rather than using a quantum mechanical description of II scattering utilising a 

scattering rate, the atomistic approach scatters particles through the electrostatic field of the ionized 

impurity directly.  Therefore as particles are scattered from the electric fields present using 

Newton’s laws of motion, the classical component of MC simulation, the atomistic approach is a 

classical solution to the problem. 

This approach highlights the effect that discrete impurities have on the electrostatics and current 

drive of the device.  Threshold voltage and drain currents vary with exact dopant number and 

position within the channel and is unavoidable as MOSFET sizes are scaled to decanano 

dimensions [62, 64, 68]. 

2.6 Conclusion 

This chapter has completed a review of the three major II scattering models used within MC 

simulations.  Starting with the CW model which is considered to be the first approach developed to 

model II scattering in semiconductors.  The CW model is developed from the bare Coulomb 

potential that neglects the screening effect of the mobile charge.  To control the divergence of the 

bare Coulomb potential it uses an empirical cut-off on the impact parameter such that any 

scattering event with an impact parameter larger than half the inter-ion separation is neglected.  

This approach is successful in controlling the divergence but can be quite inaccurate in device 

conditions when the mobile carrier density can be several orders of magnitude smaller than the 

impurity density.  This reason limits the use of the CW approach to simulation of bulk 

semiconductors where the mobile charge cannot deviate far from the background impurity density. 

The BH model includes the screening effect of the mobile charge on II scattering and is more 

suitable to a wide variety of device simulations.  The use of the mobile charge density to cut-off the 

potential is a more physical approach to the problem than that utilised in the CW model and 

provides a better measure of carrier mobility in conditions where carrier density is far from the 

impurity density.  Unfortunately, the BH scattering model suffers a problem of divergent scattering 
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rates when the carrier density is several orders of magnitude smaller than the impurity density.  As 

the magnitude of the scattering rate has a direct effect on MC simulation by increasing the physical 

number of scattering events per unit time, a divergent scattering rate renders simulation unfeasible. 

The CW and BH models each use a different approach to controlling the Coulomb potential which 

have advantages in different circumstances.  The TBE model combines these approaches to provide 

a model which doesn’t diverge but also includes the important mobile charge screening effect.  

This model is particularly advantageous in MC simulations as it can be used consistently in all 

device conditions but will underestimate the effect of II scattering when the mobile charge density 

is much smaller than the II density.  The importance of including the screening effect of mobile 

carriers whilst controlling the divergent nature of II scattering forces the use of this non-ideal 

approach.  As mentioned earlier in this chapter, a better model based on the BH approach which 

reduces the divergent nature is developed in Chapter 5 and applied in this work. 

In reviewing the major techniques for II scattering, it is also important to include the approach of 

atomistic impurity scattering.  This is not a typical scattering model utilising Fermi’s Golden Rule, 

instead it resolves discrete ionized impurities in the electrostatic solution to allow simulation of the 

effect of position and number on device performance.  It can be considered a classical approach to 

the problem by modelling the II scattering through the electrostatic fields which transport the 

particles using Newton’s laws of motion.  This approach allows device variability of IIs at the 

atomic scale to be modelled which is increasingly important as device dimensions shrink. 
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Chapter 3 Monte Carlo Simulation  

3.1 Introduction 

The Monte Carlo (MC) simulation methodology is ideal to study the effects of complex scattering 

mechanisms in MOSFET devices and is the simulation methodology used in this PhD thesis.  The 

MC method is a stochastical technique to solve large and complex mathematical problems, and is 

applied here for semiconductor device simulation by means of a particle method to solve the 

Boltzmann Transport Equation (BTE). 

The MC simulation program used in this research has been developed to simulate electron transport 

in nMOSFET devices.  It is a fully self-consistent 3D approach coupled to a non-linear Poisson 

solver and is capable of solving various MOSFET device structures such as the bulk, silicon-over-

insulator and double-gate structures.  Calibration of the simulator is completed against 

experimental data for the properties of silicon such as the energy- and velocity-field characteristics 

and the bulk, concentration-dependent mobility.  There is also device calibration in terms of the 

universal or inversion mobility which has to be matched with experimental data.  Once this 

calibration has been completed, a wide variety of silicon MOSFET structures can be simulated. 

This chapter will begin with a brief review of MC fundamentals in section 3.2, including a 

discussion on the BTE, the band structure and the process of carrier scattering.  Following this, the 

scattering mechanisms employed in the MC simulation used here will be presented and discussed 

in section 3.3.  The method with which devices are solved numerically with the MC procedure is 

covered in section 3.4.  Finally, the calibration of the simulation with experimental data will be 

demonstrated in section 3.5. 

3.2 Monte Carlo Fundamentals 

3.2.1 Boltzmann Transport Equation 

The BTE is a complex integro-differential equation that describes the semi-classical transport of 

carriers in a volume of phase space.  The BTE is semi-classical as it describes the carrier transport 

using the classical equations of motion with Newton’s laws, but describes the scattering of the 

carriers through quantum mechanical terms. 
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The solution to the BTE is the distribution function, ( ), ,f tr k , which gives the probability of 

finding a carrier at a time t in the 6-dimensional phase space.  Essentially the BTE is a bookkeeping 

equation for the distribution function recording the flow of carriers in and out of position and 

momentum space.  The BTE must also ensure that particle continuity is conserved, for instance if 

there is a greater in-flow than out-flow in a volume in phase space or carrier scattering directs 

many carriers to a volume, the distribution function must change to conserve the particle number. 

Once the distribution has been found, many important properties of devices can be obtained.  These 

include the charge density, the carrier density, the mean carrier velocity and the mean carrier 

energy.  These quantities can be found from the distribution function by integrating over all k  

states, such as the carrier density in equation (3.1) or the average kinetic energy density in equation 

(3.2). 

 ( ) ( ) 3, , ,kN
n t f t d=

Ω ∫
k

r r k k  (3.1) 

 ( ) ( ) ( ) 3, , ,kN
W t E f t d=

Ω ∫
k

r k r k k  (3.2) 

For equilibrium systems the distribution function is often expressed by the Fermi distribution for 

degenerate systems or the Maxwell-Boltzmann distribution for non-degenerate systems.  For such 

equilibrium conditions the distribution function can be calculated from the Fermi energy and the 

lattice temperature.  It is also possible to define the displaced or drifted distribution function which 

represents a non-equilibrium distribution function and is considered only a good approximation for 

low-field conditions [30]. 

The BTE can be derived from the quantum mechanical Liouville-Von Neumann transport equation 

under a number of simplifying assumptions [69, 70].  It is also possible to define the BTE using an 

elemental procedure in terms of carrier in- and out-flows of a small volume in phase space over a 

short time period [30].  It is worth noting that the Drift-Diffusion (DD) and hydrodynamic 

approaches can be derived from moments of the BTE. 

The general form for the semi-classical BTE is given by equation (3.3) below [30, 71, 72] 

 
coll

f f
f f

t t

∂ ∂+ ⋅∇ + ⋅∇ =
∂ ∂r kv k

i

 (3.3) 
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where f  is the distribution function that is to be solved, v  denotes the change in position of the 

carriers (the carrier group velocity) and k
i

ℏ  the change in crystal momentum of the carriers subject 

to the externally applied fields.  The 2nd and 3rd terms on the LHS of the BTE refer to the time rate 

of change of the distribution function from the movement of the carriers in position space and from 

the movement of carriers in k  space respectively, ensuring particle continuity.  These terms 

essentially represent the carrier dynamics which obey the classical equations of motion given by 

equations (3.4) and (3.5) where the Hamiltonian can be written as ( ) ( ) ( ),H E eV= +r k k r  [32]. 

 
( )1 1 Ed

H
dt

∂
= = ∇ =

∂k

kr
v

kℏ ℏ
 (3.4) 

 
( ) ( )1 1 1Vd

H e eE
dt

∂
= = − ∇ = − = −

∂r

rk
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r

i

ℏ ℏ ℏ
 (3.5) 

Incidentally, the electric field is determined by Poisson’s equation 

 ( )2

0
D A

Si

e
V E p n N N

ε ε
+ −∇ = −∇ = − − + −  (3.6) 

where 0Siε ε  is the dielectric constant for silicon, V  is the electrostatic potential, e  is the electronic 

charge, p  the mobile hole density, n the mobile electron density and ,D AN N+ −  the ionized donor 

and acceptor density. 

The term on the RHS of the BTE, equation (3.3), refers to the time rate of change of the 

distribution function from collisions of the carriers in phase space.  This scattering term on the 

RHS of the BTE equation can be expressed for a degenerate system as 

 

( ) ( )( ) ( )
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f t f t P d
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′ ′ ′− −

∫

∫

'

'

k

k

r k r k k k k

r k r k k k k
 (3.7) 

where ( ),P ′k k  is the probability of scattering from a state k  to a state ′k , ( ), ,f tr k  gives the 

probability of finding a carrier at state k  and ( )( )1 , ,f t′− r k  gives the probability of state ′k  

being empty.  For the MC approach used in this work this equation can be simplified assuming a 

non-degenerate system such that ( ), , 1f tr k ≪  allowing the terms ( )( )1 ..f−  to be removed. 
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The BTE is a linear equation (for a non-degenerate system) which is not easily solved and although 

analytical solutions have been found, these are generally limited to small regions of interest by the 

approximations involved to obtain the solution.  Numerical approaches to solving this equation are 

more commonly applied and have been far more successfully, offering solutions which can be 

applied to many device conditions.  Numerical solutions to the BTE include an iterative approach 

which solves the whole distribution function at each iteration [30, 71].  This approach was adopted 

early in the development of such numerical approaches and is suitable for low-field conditions.  

Another more advanced approach is the expansion of the BTE using spherical harmonics and has 

been readily applied to MOSFET simulation [30, 73]. 

The approach used in this work is also an early approach but has been very successful in device 

simulation and is the most popular solution.  The numerical method used is of course the particle 

based MC methodology and is quite different from the other numerical approaches in that it models 

the transport of particles directly.  The MC method allows the physics of carrier transport to be 

modelled and yields results for devices that are close to experimental data [71, 74-76].  The 

numerical MC simulation methodology will be discussed in more detail later in the chapter. 

It is important to briefly discuss the three major approximations employed in the BTE equation.  A 

more detailed examination of the approximations involved than that given here can be found in 

references [30, 69]. 

The most important approximation made in the BTE is that of the single particle description of the 

ensemble of particles in a real system.  The distribution function in the full problem describes the 

probability of state of a large number of carriers.  Assuming that carrier-carrier interactions are 

weak, true for dilute concentrations, the ensemble carrier distribution function can be reduced to a 

single carrier distribution.  Although in silicon MOSFETs the carrier concentrations are not always 

weak the carrier-carrier interactions can be included separately via the scattering term on the RHS.  

The single particle description remains valid in this case as carrier-carrier interactions affect the 

distribution function by redistribution of carrier momentum which can be equally well described in 

the single particle description.  It should be noted that the influence of long-range carrier-carrier 

interactions (electron-plasmon interactions) on the system is included indirectly through the electric 

field term, governed by Poisson’s equation (3.6), provided that the mesh spacing and timestep 

intervals are carefully chosen [77, 78]. 

The second approximation, mentioned earlier in this section, is the treatment of the carriers as 

classical particles which obey Newton’s laws.  This is clear from the definition of the distribution 

function which defines both the position and momentum of a given particle.  This assumption will 

hold as long as the electric field is slowly varying over a length comparable to the average carrier 
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wavelength.  Using the thermal de Broglie wavelength equation, the wavelength of an average 

thermal carrier is 2 13B Bh m k T nmλ ∗= ≈  at room temperature (300K). 

The third approximation relates to scattering and states that scattering events are assumed to be 

instantaneous and localised in space.  In other words, the carrier does not change position or gain 

energy from the electric field during the collision.  This approximation can be considered valid as 

long as the mean time between collisions, τ , is greater than Bk Tτ ≫ ℏ .  This can be related to the 

mean distance between collisions using the relation l vτ=  and multiplying both sides by the 

average carrier velocity.  This then states than the mean distance between collisions must be greater 

than the average thermal wavelength, Bλ . 

3.2.2 Band Structure 

The electrons in a perfect crystal can be modelled by Bloch states, including the periodic crystal 

potential, with the wave function [71] 

 ( ) ( ) ( )expnk nku iΨ = ⋅r r k r  (3.8) 

where n is the band index, kℏ  is the carrier crystal momentum and ( )nku r  denotes the periodicity 

of the crystal.  The Bloch states relate a carrier energy E  to a state k , with the function ( )nE k  

often referred to as the energy dispersion relation.  The ( )nE k  functions describe the band 

structure of the material for the given band n.  In this work the material under study is silicon and 

the band index will be neglected in future references.  Also, only the lowest minima conduction 

band for silicon, the X-valleys, will be considered as this work is concentrated on relatively low 

energy electron transport (E < ~1.5eV). 

For the conduction band often a simple quadratic expression is used to represent the energy 

dispersion relation as 

 ( )
2 2

2
E

m∗= k
k

ℏ
 (3.9) 

In this expression all the detail of the band structure is contained within the effective mass, m∗ .  

The effective mass plays a pivotal role in defining the bands and many other aspects of the physical 



3.2 Monte Carlo Fundamentals 

27 

theory.  As such there are several definitions of this term depending on the application.  For a 

detailed review of the definitions see [71]. 

The basic model for the energy bands, given by equation (3.9), is sufficient to gain rough estimates 

on the transport of electrons in a material.  In this work a slightly more advanced energy dispersion 

relation is employed by incorporating the non-parabolic band model.  The non-parabolic band 

model improves the agreement with experiment for the energy bands at higher carrier energies 

[30].  Nonparabolicity is introduced by using an advanced energy dispersion relation given as 

 ( ) ( )1E Eα γ+ = k  (3.10) 

 ( )
2 2

2m
γ ∗= k

k
ℏ

 (3.11) 

where α  is the nonparabolicity parameter and ( )γ k  is essentially the quadratic expression, 

equation (3.11).  The nonparabolicity parameter is often used as a fitting parameter for the transport 

data but it can be defined from band parameters with an expression for conduction bands given by 

equation (3.12) [74]. 
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1
1
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m

E m
α

 
= − 

 
 (3.12) 

In this work an experimentally obtained value for the nonparabolicity parameter is used where 

10.5eVα −=  [30, 71, 79].  Obtaining the positive root of equation (3.10) (only the positive root is 

considered as negative energies are not physical), the energy dispersion relation can be written 

 ( ) ( )1 1 4

2
E

αγ
α

− ± +
=

k
k  (3.13) 

Plotting the parabolic (equation (3.9)) and non-parabolic (equation (3.13)) energy dispersion 

functions in Figure 3.1, plot (a) demonstrates the differences between the models. 



3.2 Monte Carlo Fundamentals 

28 

 

Figure 3.1: (a) Energy dispersion relations and (b)  group velocity for parabolic and non-
parabolic band structures. 

As shown in plot (a) of Figure 3.1 the non-parabolic model increases the spread of energies at 

higher k  states.  This corresponds with an increase in the Density of States (DOS) which for non-

parabolic bands is given by equation (3.14). 

 ( ) ( ) ( )
3

2

1
2 5

22 3

3 2
1

m
E E Eρ α

π

∗

= +
ℏ

 (3.14) 

The DOS for the parabolic model (obtained from equation (3.14) by allowing 0α = ) and the non-

parabolic model is shown plotted against a full numerical description of the band structure in 

Figure 3.2. 

 

Figure 3.2: Comparison of parabolic and non-parabol ic density of states models with a full 
numerical description. Reprinted with permission fr om T. Kunikiyo et al , J. Appl. Phys. 75, 
297 (1994). Copyright 1994, American Institute of P hysics [80]. 
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It is clear from this figure that the DOS using the parabolic model is valid only for very low carrier 

energies.  Whereas the non-parabolic model is much closer to the complete description of the band 

structure to roughly 1.5eV.  Nonparabolicity also has the effect of reducing the carrier velocity for 

a given state k .  The group velocity for a state k  for non-parabolic bands can be found from the 

energy dispersion relation, equation (3.13), as 

 ( ) ( )
1

1 2

E k
v

m Eα∗

∂= =
∂ +

k
k

ℏ

ℏ
 (3.15) 

Plotting the non-parabolic group velocity in part (b) Figure 3.1 highlights the drop in velocity at 

higher k  states. 

3.2.3 Herring-Vogt Transformation 

In the equations discussed so far within this chapter the energy bands are assumed to have an 

isotropic effective mass such that the equi-energy surfaces are spherical.  The energy bands for 

silicon that are under consideration in this work, the X-valleys, actually have ellipsoidal equi-

energy surfaces, that is an anisotropic effective mass.  For ellipsoidal bands the energy dispersion 

relation, neglecting nonparabolicity, can be written [32] 

 ( )
22 22

2
yx z

t t l

kk k
E

m m m∗ ∗ ∗

 
= + +  

 
k

ℏ
 (3.16) 

This representation of the energy dispersion relation makes analytical calculations such as those for 

the scattering mechanisms extremely challenging.  To reduce the complexity of analytical 

calculations the Herring-Vogt transformation can be applied which reduces the ellipsoidal equi-

energy surfaces to spherical surfaces.  The Herring-Vogt transformation makes use of a starred-

space which represents the ellipsoidal wave-vector transformed into the representative spherical 

system.  The transformation is defined by 

 i ij jk T k∗ =  (3.17) 

where *k  is the transformed wave-vector and the transformation matrix T , in the valley frame of 

reference, is of the form 
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Finally, for non-parabolic bands the energy dispersion relation can then be written as 

 ( )
2 2

02m
γ

∗

= k
k

ℏ
 (3.19) 

with the corresponding non-parabolic group velocity as 

 ( )0 1 2i ij jv T k
m Eα

∗=
+
ℏ

 (3.20) 

3.2.4 Fermi’s Golden Rule 

Scattering plays an important role in carrier transport as it defines the carrier interaction with the 

lattice, impurity ions and defects in the material.  As discussed previously, carrier scattering in the 

definition of the BTE is a quantum mechanical concept.  The collision operator of the BTE, 

expanded in equation (3.7), includes the quantum mechanical scattering probability transition rate, 

( ),P ′k k .  The transition rate describes the probability per unit time of a carrier scattering from a 

state k  to a state ′k .  The probability transition rate is calculated using Fermi’s Golden Rule, 

given by equation (3.21).  For a complete discussion on the derivation of the Golden Rule see the 

textbooks [30, 32, 71]. 

 ( ) ( ) ( )( )22
,P E E

π δ ω′′ ′= − ±k kk k H k k ℏ
ℏ

 (3.21) 

Fermi’s Golden Rule is the basic result of scattering theory which is used to describe carrier 

scattering in semiconductors.  In the notation in this chapter, the upper and lower signs are for 

absorption and emission respectively.  The Dirac-delta function ( )..δ  ensures that energy is 

conserved during the scattering interaction by only allowing non-zero interaction probabilities for 

arguments that are zero. 
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The scattering matrix element, ′k kH , must be defined from the scattering potential and defines the 

particular scattering event.  Once a scattering potential has been identified the scattering matrix 

element can be calculated as 

 ( ) ( ) ( ) 3exp expSi U i d′ ′= − ⋅ ⋅∫k k
r

H k r r k r r  (3.22) 

where ( ) ( )SU eV=r r  is the scattering potential energy.  Here the overlap integral has been 

assumed to 1≈  which is an accurate approximation for non-parabolic conduction bands in silicon 

[79, 81]. 

In MC solutions of the BTE the carrier scattering is typically defined as a scattering rate, ( )Γ k , 

that describes the number of scattering events per unit time of a carrier at an energy ( )E k .  The 

scattering rate can be calculated by integrating the probability transition rate over all final states ′k  

described by equation (3.23). 

 ( ) ( ) 3,kN P d
′

′ ′Γ = ∫
k

k k k k  (3.23) 

Here ( )3
2kN π= Ω  is related to the number of electron states within the volume Ω . 

It is important to note that Fermi’s Golden Rule is valid when the duration of a collision is much 

smaller than the free time between collisions.  This condition allows the effect of uncertainty in the 

carrier energy due to collisions to become significantly small that the carrier energy can be well 

defined. 

3.2.5 Self-Scattering 

An important development in the numerical solutions of the BTE and in particular MC simulations 

is the introduction of self-scattering.  Self-scattering is a simplification of the free-flight time 

choice by introduction of a fictitious scattering event which greatly reduces the computational 

complexity of the choice of free-flight times for carriers. 

The probability per unit time, ( )P τ , of a carrier travelling for a time τ  and then being scattered is 

given by [32] 
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 ( ) ( )( ) ( )( )
0

expT TP t t dt
τ

τ
 

′ ′= Γ − Γ 
 
∫k k  (3.24) 

where ( ) ( )T i
i

Γ = Γ∑k k  is the total scattering rate given by the sum of i  scattering mechanisms, 

( ) 0t e t= +k k F ℏ  is the carrier wave vector at a given time t , 0k  is the carrier wave-vector at the 

beginning of the free flight, 0t = . 

To obtain the free-flight time from equation (3.24) requires that τ  be evaluated for a given 

( ) ( )TP τ Γ k  using random numbers distributed between 0 and 1.  This is a complicated 

expression which requires numerical integration as the integral over all the scattering rates within 

the exponential cannot be solved analytically.  A simple solution was proposed by Rees [82, 83] 

through introduction of a scattering rate that does not alter the carrier k  state, aptly titled self-

scattering.  The simplification is achieved by introducing ( )( )0 tΓ k , the self scattering mechanism 

into the total scattering rate such that 

 ( )( ) ( )( ) ( )( ) ( )( ) ( )( )0 0
sc
T i T

i

t t t t tΓ = Γ + Γ = Γ + Γ∑k k k k k  (3.25) 

Substituting this into the probability per unit time of free flight, equation (3.24) yields 

 ( ) ( )( ) ( )( ){ } ( )( ) ( )( ){ }0 0

0

expT TP t t t t dt
τ

τ
 

′ ′ ′= Γ + Γ − Γ + Γ 
 
∫k k k k  (3.26) 

This expression can be greatly simplified by allowing the value of ( )( )0 tΓ k  to be carefully chosen 

to remove the energy dependent scattering rate term and introduce a constant value.  This is 

represented as 

 ( )( ) ( )( )0 Tt tΓ = Γ − Γk k  (3.27) 

where Γ  is a constant value representing the self-scattering rate such that 0 0Γ ≥  for all k  states of 

interest (this value is selected at the start of simulation).  Then the free flight probability becomes 

 ( ) ( )expP τ τ= Γ −Γ  (3.28) 
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which can be solved for the free-flight time τ  through use of a random number r  by rearranging 

the equation to give 

 ( )1
ln 1 rτ = − −

Γ
 (3.29) 

Although this method introduces more scattering events increasing the computational time, it is 

more than compensated by reducing the complexity of calculating the free-flight duration.  The 

number of self-scattering events that occur in a simulation can be minimised by selecting the self-

scattering rate, Γ , to be the largest value of the total scattering rate for the k  states considered. 

3.3 Carrier Scattering Mechanisms 

3.3.1 Acoustic Phonons 

Acoustic phonon scattering is the mechanism which describes the interaction of the carriers with 

the crystal lattice producing a relatively low frequency oscillation of the neighbouring atoms in the 

lattice.  Modelling the exact change in the periodic crystal potential of the oscillating atoms is very 

challenging and a simplified approach making use of a deformation potential, acD , is typically 

employed [32]. 

The acoustic phonon scattering model used within this MC simulator is based on the inelastic 

approach given in Jacoboni’s MC textbook [71] with a modification to the acoustic phonon 

dispersion relation taken from a journal paper by Pop [84].  The final scattering rate suitable for 

non-parabolic, ellipsoidal bands can be written as 

 ( ) ( )( )( )
max

min

2 *3
1 1
2 224

q

ac d
ac q q

qq

D m d
d N

k dE

γω
πρ ω

∗

∗

∗ ∗
∗ ∗

Γ = +∫
q

q q
q

∓
ℏ

 (3.30) 

where ( ) 1
32

d l tm m m=  is the density of states mass, ρ  is the silicon density, k∗  is magnitude of the 

carrier wave-vector in starred space, qωℏ  is the acoustic phonon energy and qN  is the phonon 

occupation number given by equation (3.31).  Noting that the upper sign is for absorption of an 

acoustic phonon, the lower for phonon emission which is the convention used throughout this 

section.  All silicon material and band parameters for this scattering rate are specified in Table 2 at 

the end of the chapter. 
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 ( ) ( )
1

exp 1q

B

q q

k T

N
ω

ω =
−ℏ

 (3.31) 

To evaluate the scattering rate given by equation (3.30) the integral must be completed hence 

requiring that min
∗q  and max

∗q  be found.  These bounds on the integral can be found from energy 

conservation using equation (3.32) [84]. 

 
( ) ( )( )( )cos 1 2

2
d q

q

m
E

ω
θ α ω

∗∗
∗

∗ ∗ ∗= + + ±
qq

q
k q k

∓ ℏ
ℏ

 (3.32) 

Here the RHS can be equated to a function ( )f ∗q  and using the definition that 1 cos 1θ− ≤ ≤  

allows the values of min
∗q  and max

∗q  to be defined as ( )min 1f ∗ =q  and ( )max 1f ∗ = −q .  Here and in the 

scattering rate the phonon frequency, qω , as a function of the momentum transfer, ∗q , is 

determined from equation (3.33) 

 ( ) 2

q u cω ∗ ∗ ∗= +q q q  (3.33) 

where ( )1
3 2 t lu u u= +  is the average velocity and 3 22 10c cm s−= − ×  is a coefficient for the 

dispersion relation given by [84]. 

3.3.2 Optical Phonons 

Optical phonon scattering also uses a deformation potential scattering methodology to simplify the 

description of the oscillating atoms in the crystal lattice.  Optical phonons describe crystal 

oscillations at a much higher frequency than those of acoustic phonons and correspondingly have a 

much larger phonon energy. 

In the MC simulator there are two distinct mechanisms for optical phonon scattering.  The first to 

be considered here is intervalley scattering between equivalent valleys given by equation (3.34) 

[71]. 

 ( ) ( ) ( )( ) ( )
3

2
1

2
1

2

2

1 1
2 23

θ 1 2
2

d t
op f q op f

op

m D K
E N Eω γ α

πρ ω
Γ = + +∓

ℏ
 (3.34) 
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Here the upper signs are for absorption and the lower signs for emission of an optical phonon, 

f opE E ω= ± ℏ  is the final carrier energy with opωℏ  the optical phonon energy, tD K  is the optical 

coupling constant, ( )1f fE Eγ α= +  is the non-parabolic carrier energy term and qN  is the phonon 

occupation number given by equation (3.31).  Again all material and scattering constants used 

within the MC simulator are presented in Table 2. 

The second optical phonon scattering mechanism is that of the f- and g-type phonons, which is also 

an intervalley scattering mechanism and is given by equation (3.35) [71].  The g-type phonons 

describe scattering between equivalent valleys and the f-type phonons describe scattering between 

non-equivalent valleys. 

 ( ) ( ) ( )( ) ( )
3

2
1

2
1
2

2

1 1
, , 2 23

,

θ 1 2
2

d t i
op i f f q op i f

op i

m D K
E Z N Eω γ α

πρ ω
Γ = + +∓

ℏ
 (3.35) 

In this scattering rate the terms with a subscript index i  relate to the particular f- or g-type phonon 

index, details of which are given in Table 2.  The number of final valleys available for a particular 

phonon mode is given by fZ  and all other symbols are the same as defined previously. 

3.3.3 Ionized Impurities 

Ionized impurity (II) scattering is an elastic process and uses the screened Coulomb potential as the 

scattering potential.  The screened Coulomb potential can be found from a solution of Poisson’s 

equation for a point charge in a charge neutral region of a semiconductor (this method is presented 

in detail in [32] and discussed in section 2.3).  The electrostatic screening introduced by the 

background charge is represented in the model employed here by the degenerate Debye-Hückel 

screening model for non-parabolic bands.  This screening model is expressed as 

 
( ) ( )( )
( ) ( )( )

1 1
2 2

1 3
2 2

152
4

5
0 2

E
  for =

B F
C

Si B BB

k Te n
k

k T k Tk T

η α η
η

ε ε η α η
− +

=
+

F F

F F
 (3.36) 

where e  is the electronic charge, n the electron density, jF  is the Fermi integral of order j [54] 

and FE  the Fermi energy used in the reduced Fermi level η . 

The II scattering model utilised in this MC simulator is Ridley’s Third-Body Exclusion (TBE) 

model [51, 55, 60] in conjunction with an empirical fitting parameter which is calibrated such that 
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the bulk mobility is matched to experimental data.  The TBE model, along with other important II 

scattering models are discussed in detail in Chapter 2 of this thesis and further discussion on the 

model is not repeated here.  It should be highlighted that in this work a new model for II scattering 

is developed in Chapter 5 which is a more accurate approach than the TBE model discussed here 

which has been traditionally been used in this MC simulator. 

To compute the TBE model it is important to be able to express the Brooks-Herring (BH) II 

scattering rate which is given by equation (3.37).  This is the standard BH expression for non-

parabolic ellipsoidal bands. 

 
5 1

2 2

1
2

22

2
0

2

4 1 4
CC

BH I
Si kd k

Ze d
N

E dEm E

π γ γ
πε ε γ

 
Γ =   + 

 (3.37) 

Here IN  is the impurity density and 2 2 2
Ck CE k m∗= ℏ  is the screening length represented as an 

energy.  From Van de Roer [60] the TBE scattering model can be expressed as 

 
( )

( )1 expR BH

a

a

ν
ν

  
Γ = − − Γ   

   

k

k
 (3.38) 

where ( )v k  is the group velocity, given by equation (3.15), for the magnitude of the carrier wave-

vector 2 dk m γ∗= ℏ , ( ) 1
32 Ia Nπ −=  is half the average inter-ion separation distance and BHΓ  is 

given by equation (3.37). 

Finally the II scattering rate used in the MC simulation can be obtained by multiplying the TBE 

rate by the empirical correction factor, nK , to obtain the complete scattering rate as 

( )II R n IK NΓ = Γ ×  [85].  Values used for the fitting parameter are given in Table 1 which are 

tabulated and then interpolated for a given impurity density IN .  The empirical correction factor, 

nK , is a fitting parameter which is calibrated such that the II scattering model is fitted to 

experimental bulk mobility data.  This parameter highlights the difference between the physical 

model and experimental data over a wide range of impurity densities. 

Table 1: Values used in empirical correction to II scattering 

10log IN  14 15 16 17 18 19 20 21 22 

nK  1 1 1.4 2.3 3.1 3.7 2.5 1.4 1.4 
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3.3.4 Interface Roughness 

An important scattering mechanism for simulation of MOS devices is Interface Roughness (IR) 

scattering.  This mechanism describes the perturbation in the potential due to roughness at the 

interface of the silicon substrate with the oxide insulator layer.  This mechanism is only evident 

when (for a nMOS device) there is an inversion layer present in the device confining carriers close 

to the interface. 

IR scattering is dependent on the electric field perpendicular to the interface, the vertical electric 

field, which controls the inversion charge and the corresponding confinement of carriers at the 

interface.  As the electric field within the inversion layer varies with position, an average is 

introduced to simplify the scattering model.  The average electric field in the inversion layer is 

expressed as the effective vertical field [30, 58], effE , written as [27] 

 
0 2

S
eff dep

Si

ne
E N

ε ε
 = + 
 

 (3.39) 

where deplN  is the depletion charge density and Sn  is the inversion carrier density. 

In order to describe the interface fluctuations a statistical function is introduced.  The IR scattering 

model uses an exponential autocorrelation function to describe the rough interface as discussed in a 

paper by Goodnick [86].  The form of this autocorrelation function is 

 ( ) ( ) ( )2 exp 2rms eL′∆ ∆ = ∆ −r r - r r  (3.40) 

where r  represents a position in the 2D plane parallel to the interface, rms∆  is the RMS amplitude 

of the fluctuations in the interface and eL  is their correlation length. 

Making use of the Ando model [86, 87] to define the scattering rate, the completed model can be 

found as 

 ( ) ( )
( )3

2

22
2 2 2

3 2 21
0 2

1

1

d
IR eff rms e

e

e m
E L d

L

π

ϕ
∗

Γ = ∆
+

∫k
qℏ

 (3.41) 
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where ( )2 22 1 cosϕ= −q k  is the momentum transfer of the scattering event.  For all future device 

simulations the RMS amplitude of fluctuation is taken as 0.35rms nm∆ =  with a correlation length 

of 1.3eL nm= . 

It should be noted that the at each scattering event the local effective vertical electric field is used 

in place of the definition given by equation (3.39).  The scattering event with the local effective 

field is compared to the scattering rate with the definition using equation (3.39).  Using a rejection 

technique, which is discussed in the appendix of [75], the scattering event will be allowed if the 

ratio is greater than a randomly selected number.  This approach is similar to one discussed in a 

journal paper by Formicone [88]. 

3.4 Monte Carlo Process 

3.4.1 Single Particle Monte Carlo 

The single particle MC approach is the original approach to the modelling of carrier transport first 

developed in the 1960’s.  This approach is suitable for modelling transport of a semiconductor 

material under fixed electric fields and can be used to obtain such quantities as the drift velocity, 

mean carrier energy and the bulk mobility of the material. 

The single particle method is an approximation of the complete system which consists of an 

ensemble of carriers which mutually interact.  Allowing this system to be described as a system of 

independent carriers acting as an ensemble leads to the single particle simulation description.  By 

simulating a single particle accelerating in an electric field and undergoing many scattering events, 

an approximate description of an ensemble of carriers can be found. 

A typical breakdown of the single particle simulation process is given in part (a) of Figure 3.3.  The 

program follows a simple procedure of stochastically selecting a free-flight time according to the 

self-scattering procedure discussed in section 3.2.5 where the particle is subject to acceleration by 

the electric field.  Following this the particle scattering event which ends the free-flight is 

stochastically selected and the carrier is scattered.  This procedure repeats until the simulation time, 

simt , has been completed. 

An important stage in this process is the gathering of carrier data which of course provides the drift 

velocities, mean energy and other quantities of interest.  This is completed at the end of each 
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iteration of the procedure and is generally completed as an average of the quantity of interest over 

the entire simulation period which can be written as [32, 71] 

 
1

T
A A

T τ
τ

τ= ∑  (3.42) 

where A τ  is the quantity average over the free-flight period τ , T  is total simulation time and 

T
A  is the average quantity over the entire simulation period.  Use of this method requires that T  

be long enough to ensure that the average quantity obtained can be considered an unbiased 

estimator, that is the results can be considered in a steady-state and independent of the initial 

conditions. 

This approach has been used successfully to simulate many different materials and is discussed in 

more detail in [32, 74, 75].  It has an advantage in the simplicity of the procedure but is limited by 

the fact that it often requires very large simulation times to obtain stable results.  This approach is 

not widely used in current times due to the increase in computational power which allows more 

advanced procedures to be implemented.  Although the single particle MC is not the approach used 

in the simulator employed in this work, it is an important evolutionary stage of the MC procedure 

and explains the original background to the approach. 



3.4 Monte Carlo Process 

40 

 

Figure 3.3: Flowchart of (a) the single particle an d (b) ensemble Monte Carlo simulators. 

3.4.2 Ensemble Monte Carlo 

The Ensemble Monte Carlo (EMC) process is essentially an extension to the single particle 

approach by introduction of an ensemble of particles to the simulation.  This allows the transient 

characteristics of carrier transport in semiconductors such as velocity overshoot to be simulated.  

The ensemble approach is necessary when simulating a inhomogeneous or non-stationary process 

although it can be used to solve stationary problems by allowing the simulation to continue until 

steady state. 

The EMC approach is that used to simulate the properties of bulk semiconductors within this work.  

In particular the EMC approach is used to calibrate the simulator which is discussed in more detail 

in section 3.5.  The program flow is described by part (b) of Figure 3.3 where the differences 

between this approach and the single-particle method become clear.  Obviously the free-flight and 

scattering process is repeated for the entire ensemble of particles at each timestep. 



3.4 Monte Carlo Process 

41 

A timestep, t∆ , is no longer defined as a single free flight, τ , terminated by a scattering event and 

is instead defined externally as a fixed time period.  Within a timestep each particle will have as 

many free flights terminated by scattering events as is required to fill the timestep (specified as nτ  

free flights in the figure).  In the final nτ  free-flight, for the case that n tττ > ∆ , the carrier is only 

propagated for the time remaining in the current timestep and not for the full free-flight.  This 

ensures that all carriers are propagated for the full timestep, t∆ , only. 

Similar to the single particle approach, the ensemble particle data is collected at the end of each 

timestep but a different procedure for obtaining results is required.  An average for the quantity 

required is obtained at the end of each timestep from the average of the ensemble of particles [32, 

71], which can be written as 

 ( ) ( )1
nN

n

A t A t
N

= ∑  (3.43) 

Here nA  is the quantity of particle number n at a time t , N  is the total number of particles and 

( )
N

A t  is the quantity average over all particles at the given time.  The time average of the 

quantity can be used to reduce the statistical error in ensemble simulations. 

The number of particles in the ensemble is typically specified at the start of the simulation and is 

related to physical number of carriers in the device through the superparticle approach.  Using the 

number of charges in the device, N , the superparticle charge can be found using [30] 

 
sim

N
Q e

N
= −  (3.44) 

where simN  is the number of particles in the simulation.  The superparticles are only considered in 

terms of the charge density and for all other calculations such as scattering the superparticles are 

treated as single carriers. 

3.4.3 Device Monte Carlo 

Simulation of semiconductor devices such as MOSFETs requires a more advanced technique for 

EMC simulation which allows for non-stationary transport through inhomogeneous materials.  The 

Device Ensemble Monte Carlo (DEMC) approach is possible through extension of the EMC 

procedure by inclusion of a self-consistent solution of the electrostatic potential.  A flowchart of the 
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general procedure of the DEMC approach is given in Figure 3.4 showing the extension to the EMC 

approach.  In this figure the EMC procedure is essentially that of Figure 3.3 (b) without the 

feedback loop over all the timesteps which is re-specified in Figure 3.4. 

 

Figure 3.4: Flowchart for a device-ensemble Monte C arlo technique. 

An important stage in the DEMC procedure is the specification of the boundaries as particles in a 

device are bounded.  These boundaries must also be consistent with the solution for the 

electrostatic potential, which will be discussed later.  Bulk material simulation such as those of the 

single-particle and EMC approaches use a boundless simulation (one that assumes an infinite 

material) but for a device a particle must be appropriately treated when reaching a surface.  

Typically there are two boundary conditions, one for a particle reaching an outer boundary for 

which the particle velocity normal to the surface is reflected.  This boundary condition relates to 

the Neumann boundary condition for the electrostatic potential, that is a zero electric field 

component normal to the boundary surface. 

The second boundary is for a particle reaching a contact where it is allowed to be absorbed.  Of 

course as particles leave the device through a contact, particles must be injected to ensure that 

charge neutrality is kept within the contacts.  The corresponding boundary condition for the 

electrostatic potential is the Dirichlet boundary which states that the boundary potential be set at 

the applied bias potential for the contact. 
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During the simulation, particles follow the EMC procedure of free-flight followed by a scattering 

event until the ensemble has completed the timestep.  This movement of the particles causes the 

charge density to evolve with the simulation and will in turn cause the electrostatic potential to 

change.  Before solution of the electrostatic potential can be completed the updated position of the 

particles and hence the charge density must be updated. 

The DEMC simulator uses a Particle-Mesh (PM) method to resolve the particle charges to a mesh 

and define the forces for each particle.  A full discussion on the PM technique can be found in the 

textbook by Hockney and Eastwood [89], here only a very brief discussion on the charge 

assignment mechanism will be undertaken.  The particle charges are assigned to the mesh using a 

Cloud-In-Cell (CIC) technique originally developed for plasma simulations [90].  The CIC 

approach allows each particle charge to be assigned to the two nearest neighbour nodes which aids 

the smoothing of the forces and reduces the amplitude of fluctuations [71]. 

The electrostatic potential is found by solving Poisson’s equation which relates the spatially 

varying charge density to the potential and is given by equation (3.6).  There is extensive 

documentation in textbooks such as [32, 71, 89] regarding the solution of this equation in a PM 

system which is not repeated here.  With the PM method the charge density is known at each mesh 

point thereby allowing the Poisson equation to be discretized over the mesh and solved using a 

finite difference approximation.  Once the potential is found for each mesh point it is possible to 

define the electric fields and the corresponding forces for each particle. 

When utilising a self-consistent PM approach the timestep, t∆ , and the mesh spacing, x∆ , must be 

considered to ensure that the DEMC simulation is stable.  The timestep stability criterion is related 

to the plasma frequency for the highest carrier density, n, specified within the device model.  The 

timestep criterion is given as [91, 92] 

 
2
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ω
∆ ≤  (3.45) 

where Cv  is the momentum relaxation rate and the plasma frequency, pω , can be written 
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Taking a typical MOSFET device the peak carrier density can be estimated at 19 35 10n cm−≈ ×  

giving the plasma frequency as 14 12 10p sω −≈ × .  Estimating a typical momentum relaxation rate of 

15 12 10Cv s−≈ ×  [33], this yields a stable time step of 131 10t s−∆ ≤ × . 

The mesh spacing criterion for resolution of the electrostatic potential is related to the expected 

charge variations within the simulation.  The wavelength of the charge variations is typically 

approximated by the degenerate Debye length given by equation (3.36) which for 19 35 10n cm−= ×  

gives a length of 0.8D nmλ = .  Hence for stable simulation the mesh spacing is generally taken 

such that 2 Dx λ∆ <  [93], hence a mesh spacing of 0.5 ..1x nm nm∆ =  is suitable. 

Although these stability criteria seem well specified there is a certain amount of freedom in the 

choice for the timestep and mesh spacing.  A thorough study has recently been conducted by 

Palestri [91, 93] with the results given by Figure 3.5. 

 

Figure 3.5: (a) Timestep stability plot (from Pales tri [91]) and (b) mesh spacing stability 
(from Palestri [93]).  Open symbols denote stable M onte Carlo simulations and crosses 
unstable simulations. (Both figures © 2006 IEEE) 

This figure demonstrates that a large scattering rate, Cv , helps to stabilise the simulation by 

damping energy oscillations [93]. For the simulation data considered here, 10C pv ω ≈  which 

certainly allows for a greater range of timesteps and mesh spacing for stable MC simulation. 

As a final stability criterion it is important to ensure that the timestep and mesh spacing are a 

correctly chosen pair.  That is, within the chosen timestep the particles will not travel through 

several mesh spaces leading to greater charge oscillations and an increased instability.  This can be 

checked by calculating the distance a particle will travel during the chosen timestep, which can be 

estimated by the maximum group velocity of a carrier in the semiconductor ( 71 10satv cm s≈ × ).  
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Therefore, for this example a reasonable timestep of 141 10t s−∆ = ×  can be chosen, then the 

maximum expected distance a particle can travel is max 1satl v t nm= ∆ ≈  which corresponds with the 

mesh spacing criterion.  It should be noted that this timestep is suitable for bulk silicon simulations 

but for device simulations a timestep several orders of magnitude smaller is generally selected. 

3.5 Monte Carlo Calibration 

3.5.1 Bulk Silicon 

Before using any MC simulator it is necessary to ensure that it has been calibrated against 

experimental data.  For simulations of carrier transport in bulk silicon this requires calibration of 

the phonon scattering models and in the case of the II scattering model used here, the empirical 

correction factor discussed in section 3.3.3.  The phonon scattering models are calibrated through 

adjustment of the corresponding deformation potential and phonon energy where there are several 

published sets of such data [30, 75, 94] which can be used.  These parameters are chosen from the 

published data to match experimental energy- and velocity-field data for undoped silicon.  

Undoped silicon is used to remove the dependence of II scattering on the results. 

To further simplify the phonon calibration process, many of the optical phonon mechanisms can be 

essentially frozen out by simulating the bulk silicon at a lattice temperature of 77K.  This 

temperature is too low for most of the optical phonons which due to their high phonon energy, 

become statistically unimportant.  Simulation at a lattice temperature of 300K then allows the full 

optical phonon model parameters to be calibrated.  All calibrated parameters for the phonon models 

are given in Table 2 at the end of the chapter.  In Figure 3.6, plots (a) and (b) are the results of the 

velocity-field and energy-field calibration respectively.  Experimental data is taken from Canali 

[94] for an undoped sample of silicon at the temperatures of 77K and 300K. 
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Figure 3.6: (a) Velocity-field and (b) energy-field  calibration of Monte Carlo. 

The velocity-field plot shows a good calibration with experimental data for both the low and high 

lattice temperatures over the range of applied fields.  The energy-field figure also shows a close 

trend with experimental data.  At 77K the low-field energy is higher than experimental data which, 

as reported in [31], is a cause of using an analytical band structure representation.  As all future 

simulations in this work are completed for a lattice temperature of 300K, the calibration of the 

phonon models is considered a close match to experimental data at the simulation temperature. 

The II scattering model used in this work utilises an empirical correction factor which improves the 

calibration of the II model with experimental data.  To calibrate the correction factor the bulk 

silicon mobility is matched with experimental data over a wide range of dopant densities.  Here the 

experimental data is taken from Thurber [29] and the values used for the II scattering empirical 

correction factor are given in Table 1.  The result of the calibration is shown in plot (a) of Figure 

3.7 and is clearly a close match with experimental data as is expected with the empirical II 

correction.  It is also worthwhile to note that at impurity concentrations lower than 15 310IN cm−=  

where II scattering is ineffective and phonon scattering dominates, that there is good agreement 

with experimental data. 
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Figure 3.7: (a) Bulk mobility and (b) universal mob ility calibration of Monte Carlo. 

3.5.2 Inversion Layer 

To accurately simulate MOSFET devices it is important to ensure that the MC simulator is 

calibrated to experimental data for carrier transport in the inversion layer.  This process is required 

to calibrate the IR scattering model with experimental data as phonon and II scattering models 

should remain unchanged from the bulk silicon calibration. 

Inversion layer calibration is completed by matching the universal mobility of carriers in an 

inversion layer with experimental universal mobility data.  The experimental data is taken from 

Takagi [27, 28] for the substrate impurity concentration of 18 32 10IN cm−= ×  and a applied lateral 

field of 0.5 /E kV cm= . 

The universal mobility trend is well replicated by the MC simulation as shown in plot (b) of Figure 

3.7, with the correct drop in mobility at low effective field due to II scattering.  At high effective 

fields the IR scattering model reduces the mobility and reproduces the universal curve [27] 

expected from the mobility. 

The calibration of the simulator with the experimental data shown in plot (b) of Figure 3.7 is 

considered to be suitable despite the discrepancy between simulated and experimental data at low 

effective fields.  This is based on the simulators ability to reproduce the overall trend of the 

universal mobility curve, specifically at high fields where interface roughness scattering dominates.  

At low effective fields the universal mobility is dominated by II scattering which in the current 

state-of-the-art simulators is modelled by a bulk 3D approach and is not an accurate solution to the 

II scattering problem in the inversion layer. 
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3.6 Conclusion 

In this chapter the MC simulation procedure has been discussed in terms of the fundamentals of the 

simulation approach, the scattering mechanism involved, the procedure utilised in the numerical 

procedure through to the calibration of the MC code used in this work. 

The discussion on the fundamentals of the MC procedure included the all-important BTE which is 

the core problem which the numerical procedure solves.  The BTE can be described as a 

bookkeeping function for the distribution function which describes the state of the carrier ensemble 

in a device and through which all important quantities of interest can be calculated.  Also discussed 

in the fundamentals section was the description of the silicon band structure used in the simulator.  

An analytical description of the band structure is utilised with the non-parabolic approximation.  

Ellipsoidal bands are also employed with the Herring-Vogt transformation which simplifies the 

description by transferring to and from a starred space. 

Scattering in the BTE and the MC simulation procedure is typically completed using Fermi’s 

Golden Rule approach which is discussed in section 3.2.4.  The scattering in MC simulations is a 

quantum mechanical process which uses the interaction potential of a scattering event to obtain a 

probabilistic scattering rate. 

Finally in the fundamentals section, the self-scattering procedure was discussed which greatly 

simplifies the way in which particle free-flights are selected by introducing a fictitious scattering 

event.  This advancement in numerical simulation greatly advanced numerical MC simulations by 

vastly reducing the complexity of free-flight calculations. 

The scattering mechanisms that are required for accurate simulation of silicon MOSFET devices 

are presented in section 3.3.  These include the intravalley acoustic phonon, the intervalley optical 

phonons, II scattering and IR scattering.  These scattering mechanisms are the minimum required to 

obtain accurate simulation data for bulk silicon and silicon MOSFET devices. 

The evolution of the numerical procedure used within MC simulations was discussed in section 3.4 

from the original 1960’s single particle approach through to the state-of-the-art self-consistent 

DEMC approach.  In the single particle model the simulation can only be used to obtain stationary 

homogeneous processes.  The EMC approach allows transient, inhomogeneous systems to be 

modelled by simulating large numbers of particles and is the modern approach to simulating bulk 

semiconductor characteristics.  For MOSFET simulation the required inclusion of a self-consistent 

Poisson solution leads to the DEMC approach. 



3.6 Conclusion 

49 

The MC simulator calibration with experimental data is demonstrated in the final section.  There 

the energy and velocity characteristics of carrier transport in silicon from the numerical MC 

simulation are shown to be in close match with experimental data.  The carrier mobility for both the 

bulk and universal cases is also shown to be in good agreement with the experimental data. 

Table 2: Silicon band parameters and constants. 

Silicon Constants 35.34 10lu m s= ×  32.329g cmρ =  

 39.04 10tu m s= ×  11.7rε =  

 9acD eV=  
0 5.43a = Å 

Band 1 (X-Valleys)  
00.916lm m=  00.190tm m=  

 10.5eVα −=  1.12GE eV=  

Intervalley Optical   

equivalent X-valleys: 101.75 10tD K eV m= ×  
43op meVω =ℏ

 
g-type: 1fZ =   

 ( ) 10

1
0.5 10t g

D K eV m= ×  ( )
1

12.06op g
meVω =ℏ  

 ( ) 10

2
0.8 10t g

D K eV m= ×  ( )
2

18.53op g
meVω =ℏ  

 ( ) 10

3
3 10t g

D K eV m= ×  ( )
3

63op g
meVω =ℏ  

f-type: 4fZ =   

 ( ) 10

1
0.15 10t f

D K eV m= ×  ( )
1

18.96op f
meVω =ℏ  

 ( ) 10

2
3.4 10t f

D K eV m= ×  ( )
2

47.40op f
meVω =ℏ  

 ( ) 10

3
4 10t f

D K eV m= ×  ( )
3

59.03op f
meVω =ℏ  
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Chapter 4 Scattering Potential Calculation 

4.1 Introduction 

Ionized impurity (II) scattering in modern MOSFET devices has a considerable effect on device 

performance.  A great deal of research has been put into studying the electrostatic and transport 

effects of atomistic scattering [63, 67] yet little work has been done on the effect of impurity 

scattering close to interfaces.  Here the intention is to formulate a scattering potential which 

describes the effect of a single atomistic impurity located next to highly-doped regions.  The work 

will focus on looking at the effect of polarisation charges on channel IIs located close to highly 

doped source and/or drain regions of MOSFETs.  The polarisation charges which are induced in the 

source and/or drain regions are shown here to remotely screen channel II ions. 

Note that for the purpose of this work the typically named source-channel and channel-drain 

junctions shall be referred to as the source and drain interfaces respectively.  This definition should 

not be confused with the typical device context definition of the interface between the silicon 

substrate and the silicon dioxide layer, which is not considered in this work. 

This chapter presents and discusses scattering potentials which describe an atomistic impurity 

interacting with a single interface and also a double interface.  The single interface case represents 

the II ion acting with the source, the double interface case represents the II interacting with the 

source and the drain.  The structure of this chapter is split between the two potential models 

developed here, with section 4.2 presenting the single interface model and section 4.3 the double 

interface model.  As the process of calculating and then verifying the models is identical in each 

case, the repetition in the content presented is carefully minimised. 

The calculation of the single interface model in section 4.2 begins with the system definition before 

defining and solving the Poisson’s equation for the potential in section 4.2.1.  Much of the detail in 

calculation is avoided in this section with the full procedure given in Appendix A.  Plots of the 

potential isolines for the single interface solution are shown in section 4.2.2 with a brief discussion.  

Validation of this solution is then completed in section 4.2.3 by checking the limits and ensuring 

that the behaviour is as expected of the model. 

As the potential derived for the single interface model is an exact analytical solution of Poisson’s 

equation it is important to validate the result with that of a fully self-consistent, non-linear 
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Poisson’s equation solution.  This comparison is given in section 4.2.4 with a brief discussion of 

the method used to complete the comparison. 

The solution found for the potential in the single interface model is very complex as it includes the 

detailed behaviour of a doped semiconductor source region.  A simplified model has been 

calculated by taking a limit on the screening of the source, entitled the strong-screening limit and is 

presented in section 4.2.5.  Although the use of the strong screening limit in this work simplifies 

the expressions involved, primarily it has been introduced to provide a worst-case scenario for this 

interaction.  Utilising an upper limit on the interaction will allow an initial indication on the 

importance of remote screening effects of channel II ions on device performance. 

This structure is repeated for the calculation and verification of the double interface model in 

section 4.3.  The complete potential model is calculated in section 4.3.1 with the detailed procedure 

given in Appendix B.  Validation of the model by means of the limits and comparison with the 

non-linear Poisson solver is given in sections 4.3.3 and 4.3.4 respectively.  The strongly screened 

potential is obtained in section 4.3.5 for the double interface model. 

4.2 Single Interface Potential Model 

A self-consistent potential for a single impurity located close to the source –channel interface shall 

now be calculated by solving the Poisson equation over the source/channel region.  The Linear 

Thomas-Fermi (LTF) approximation [95] is used to simplify this solution of the Poisson equation 

in conjunction with the Debye-Hückel screening model [53].  Due to the cylindrical symmetry of 

the system, cylindrical co-ordinates are used throughout the potential calculation [96].  Here the Z-

axis is normal the source-channel interface with the R  plane parallel to the interface. 

 

Figure 4.1: Physical picture of the problem system,  defining source and channel regions 
with impurity located IZ  from interface. 
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Figure 4.1 provides a pictorial representation of the physical system to be solved.  Here the source 

and channel carrier densities are represented by Sn  and Cn  respectively.  The source is assumed to 

have a larger carrier density in this figure, that is S Cn n>  but this is not an assumption made in the 

calculation of the potential in section 4.2.1. 

The impurity for which the potential is to be found is given by the red circle in the channel region 

for which 0Z > .  In this case, the source interface is located at 0Z =  and the impurity is located at 

IZ  which must be in the channel region.  To simplify the problem and incorporate radial symmetry 

around the Z axis, the impurity is assumed to be located at 0=IR . 

4.2.1 Potential Solution 

The solution for the electrostatic potential of this system can be found by solving the following 

Poisson equations for the free charge density. 

 2

0

   for Z < 0S
S

Si

ρϕ
ε ε

∇ = −  (4.1) 

 
( )2

0 0

( )   for Z > 0
2

C
C I

Si Si

Q
Z Z

R

δρϕ δ
ε ε πε ε

∇ = − − −
R

 (4.2) 

Where Sρ  is the free charge density in the source region and Cρ  the free charge density in the 

channel region.  On the right-hand side of equation (4.2) the atomistic impurity can be seen as a 

charge Q  at position IZ .  For this model, the impurity is positioned at 0=IR  in the R  plane.  

This simplifies the solution but retains the important Z  dependence that controls the interaction 

with the source region. 

The inverse bulk screening length, 1
X Xk λ−= , can be related to the free charge density with the LTF 

approximation by using the following relation 

 2
0X Si X Xkρ ε ε ϕ= −  (4.3) 

Here, the subscript X denotes either the source (S) or channel (C) region.  This then gives the 

linearized Poisson equation, also known as a Helmholtz equation as  

 2 2 0  for Z<0S S Skϕ ϕ∇ − =  (4.4) 
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( )2 2

0

( )  for Z>0
2C C C I

Si

Q
k Z Z

R

δ
ϕ ϕ δ

πε ε
∇ − = − −

R
 (4.5) 

Solutions to equations (4.4)-(4.5) can be found by specifying boundary conditions on the potential, 

,
lim 0
Z

ϕ
→±∞

=
R

.  Using a standardized solution of the Helmholtz equation using cylindrical 

coordinates in conjunction with the Bessel function [96], the electrostatic potential for the source 

and channel region can be found exactly as 

 ( ) ( ) ( )2 2
0

0

1 ( ) ( )expS S SZ dkJ kR A k Z k kϕ θ
∞

= − +∫  (4.6) 

 

( ) ( ){
( )

2 2
0

0

2 2

2 2
0

( ) ( )exp

exp
4

C C C

I C
Si C

Z dkJ kR A k Z k k

Q k
Z Z k k

k k

ϕ θ

πε ε

∞

= − +

+ − − + 
+ 

∫
 (4.7) 

Here ( )Zθ  is the unit step function and 0J  is the zero order Bessel function of the first kind [97].  

As we assume that 0=IR  giving symmetry around the Z axis, only the magnitude of R  has any 

importance in these equations.  This correctly allows the use of the magnitude of R  in the Bessel 

function.  It is important to note that the use of the variable k  here shouldn’t be confused with the 

typical notation for the carrier wave vector which has the identical symbol.  In this case the variable 

is used to denote a separation constant used within the solution of the equation. 

This leaves 2 coefficients, SA  and CA , which need to be found to complete the solution for the 

potentials.  This can be completed by using the static boundary continuity conditions on E  and D  

for electric fields [26] such that 

  or S C
S C

ϕ ϕ∂ ∂= =
∂ ∂

E E
R R� �

 (4.8) 

 0 0 or S C
S C Si SiZ Z

ϕ ϕε ε ε ε∂ ∂= =
∂ ∂

D D  (4.9) 

These define that the tangential electric field, E
�
, must be the same along the interface and that the 

electric flux, D , must be continuous across the interface.  After solving the resulting simultaneous 

equations we find the solutions to the 2 unknown coefficients as 
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 ( )2 2

2 2 2 2
0

( ) exp
4s I C

Si C S

Q k
A k Z k k

k k k kπε ε
= − +

+ + +
 (4.10) 

 ( )
2 2 2 2

2 2

2 2 2 2 2 2
0

( ) exp
4

C S
C I C

Si C C S

k k k kQ k
A k Z k k

k k k k k kπε ε
+ − +

= − +
+ + + +

 (4.11) 

After some manipulation, the complete solutions for Sϕ  and Cϕ  can be written in the form 

 
( )

( ) ( )
0 2 2 2 2

0 0

2 2 2 2

2
1 ( ) ( )

4

exp exp

S
Si C S

S I C

Q k
Z dkJ kR

k k k k

Z k k Z k k

ϕ θ
πε ε

∞

= −
+ + +

× + − +

∫
 (4.12) 

 

( ){
( )( )

2 2
0 2 2

0 0

2 2 2 2
2 2

2 2 2 2

( ) ( ) exp
4

exp

C I C
Si C

S C
I C

S C

Q k
Z dkJ kR Z Z k k

k k

k k k k
Z Z k k

k k k k

ϕ θ
πε ε

∞

= − − +
+

+ − + − − + + 
+ + + 

∫
 (4.13) 

These potential equations define the self-consistent screened solution to an II located within the 

channel region which is coupled to the source, Figure 4.1.  Here this calculation has been 

summarised to the major steps, for more detail of the procedure used to find these solutions see 

Appendix A. 

Examining the solution to the channel potential of equation (4.13), we can see the additional term 

present from the polarisation charge effect.  Looking at the two terms within the curly brackets of 

equation (4.13), the second term represents the potential from the polarisation charge.  The sign of 

the impurity location, IZ , is negative in this second term, representing the location of the fictitious 

polarisation (image) charge. 

4.2.2 Contour Plots 

Plotting the total potential given by equation (4.14) in some contour plots allows for examination 

of the effect of the interface on an atomistic impurity.  Figure 4.2 shows contour plots of the total 

potential with an atomistic impurity located in four different locations in the channel region, 0Z > . 

 S Cϕ ϕ ϕ= +  (4.14) 
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Figure 4.2: Contour plots of the potential for the single interface model.  Plots (a)-(d) show 
four different impurity locations, IZ , where the channel screening length, 4.133C nmλ = , and 

the source screening length is 0.69S nmλ = . 

In Figure 4.2, the source region doping concentration is 20 310IN cm−=  and the channel 

concentration is 18 310IN cm−=  which yields screening lengths of 0.69S nmλ =  and 4.133C nmλ =  

respectively.  The screening lengths are calculated using the degenerate Debye-Hückel screening 

model, equation (3.36). 

In plot (d) the impurity is located at 16IZ nm=  from the source-channel interface and we see very 

little effect of the interface on the resulting potential isolines.  This can be explained by the 

exponential roll-off of the polarisation charge effect with respect to the channel screening length 

and impurity position.  At a positon of 4I CZ λ≈ , the polarisation charge term is very small, e.g. 

( )1 exp 4 0.98− − ≈ . 

The case where the impurity is located far enough away from the interface so as to introduce no 

polarisation charge effects, 4I CZ λ> , will be termed the screened Coulomb limit.  This is so called 

as the potential represents only the screened Coulomb component where the polarisation charge 

term tends to zero.  This will be further demonstrated in section 4.2.3 where this limit and others 

will be analysed. 
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At an impurity position of roughly two screening lengths from the interface, the potential contours 

in plot (c) show the increased screening effect induced from the interaction with the polarisation 

charge.  This effect increases in plot (b) when the impurity is positioned roughly one screening 

length away.  Notice the penetration of the impurity potential into the source region at this distance 

is minimal despite there being a strong interaction with the polarisation charge term.  At 0.1I CZ λ≈  

from the source-channel interface, plotted in (a), the potential contours are highly distorted and the 

potential is being heavily screened by the polarisation charge.  There is strong penetration of the 

impurity potential into the source region where, due to the much smaller screening length, the 

potential drops off much more rapidly. 

4.2.3 Limits of Potential 

It is important to confirm that the calculated potential is valid and yields the correct behaviour.  

This can be checked by testing the various limits of the equations (4.12)-(4.13) to ensure that the 

boundary conditions are properly held and that the expected result is obtained. 

4.2.3.1 Screened Coulomb Limit 

The first limit to check is to ensure that the model returns to the classic screened Coulomb potential 

when the impurity is located a large distance away from the source-channel interface, 4I CZ k ≫ .  

Performing this limit on equations (4.12)-(4.13) gives 

 ( ) ( )2 2

4
lim 1 ( ) exp 0
I C

S I C
Z k

Z Z k kϕ θ− − + =
≫

≃  (4.15) 

 ( )2 2
0 2 24

0 0

lim ( ) ( ) exp
4I C

C I C
Z k

Si C

Q k
Z dkJ kR Z Z k k

k k
ϕ θ

πε ε

∞

= − − +
+∫≫

 (4.16) 

The source potential term is dominated by the negative exponential which tends to zero in the limit 

4I CZ k ≫ .  This is consistent with theory that if the impurity is a great distance from the source, 

there will be no interaction with polarisation charges in this region.  Similarly the polarisation 

charge term within the channel potential, the second exponential on the RHS of equation (4.13), 

will tend to zero. 

After use of the transformation theorem given by equation (4.17) [98] the channel potential can be 

given by equation (4.18).  This form is identical to the screened Coulomb model with no boundary 

interactions such as polarisation effects. 
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 ( ) ( ) ( )2 2

2 2
02 2 2 2

0

exp
exp

a b yx
J xy b x a dx

x a b y

∞ − +
− + ≡

+ +∫  (4.17) 

 
( )

1

2 2

2 24
0

exp ( )
lim ( )

4 ( )I C

C I

C
Z k

Si I

k Z ZQ
Z

Z Z
ϕ θ

πε ε−

− + −
=

+ −

R

R≫

 (4.18) 

4.2.3.2 Matched Screening Limit 

Ensuring that in the limit of matched screening in the source and channel regions, S Ck k= , the 

polarisation charge terms disappear is the purpose of this check.  This is the case if there is no 

boundary introduced via the screening in the source and channel region, then formation of 

polarisation charges is impossible. 

 ( ) ( )( )2 2
0 2 2

0 0

lim 1 ( ) ( ) exp
4S C

S I C
k k

Si C

Q k
Z dkJ kR Z Z k k

k k
ϕ θ

πε ε

∞

=
= − − +

+∫  (4.19) 

 ( )2 2
0 2 2

0 0

lim ( ) ( ) exp
4S C

C I C
k k

Si C

Q k
Z dkJ kR Z Z k k

k k
ϕ θ

πε ε

∞

=
= − − +

+∫  (4.20) 

Completing the matched screening limit on the source and channel potential terms gives the 

equations (4.19) and (4.20).  As expected the model returns to a screened Coulomb potential split 

over the source and drain regions.  Again, if the impurity is located a large distance from the source 

region, the source potential will tend to zero as in the screened Coulomb limit discussed in the 

previous sub-section. 

As the matched screening limit provides a solution of the screened Coulomb potential over the two 

regions, it is convenient to check the continuity of the solution at the interface.  Taking the limit of 

0Z =  on equations (4.19)-(4.20) and equating yields after some manipulation 

 
( ) ( )

( ) ( )

2 2 2 20 0

2 2 2 2
0 0

( ) ( )
exp exp

0 0

I C I C

C C

S C

J kR k J kR k
dk Z k k dk Z k k

k k k k

Z Zϕ ϕ

∞ ∞

− + = − +
+ +

= = =

∫ ∫
 (4.21) 

Equation (4.21) clearly shows that the potentials match at the interface. 
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4.2.4 Comparison with Non-Linear Poisson Solution 

As the newly-developed model for the potential of an impurity located close to a region of high-

doping solves a linearized form of the Poisson equation, it is important to compare this with a 

numerical Poisson solver.  This will allow for an accurate test of the quality of the solution 

obtained here.  First the discrete impurity method will be discussed and demonstrated before the 

detailed comparison between the solution is completed. 

4.2.4.1 Discrete Dopant Simulation 

A fully self-consistent, Non-Linear Poisson (NLP) solution will be used to simulate an ideal device 

of a single atomistic impurity located close to an interface.  The method used to solve for atomistic 

impurities with the Poisson equation is discussed in detail in the paper by Asenov [63].  The 

method involves including a single dopant via the mesh-resolved charge distribution by assigning 

the chosen mesh cell to contain the charge density 3e h  where h  is the mesh spacing.  This mesh-

resolved charge distribution is used within the Poisson solver to calculate the electrostatic potential 

for the system. 

For this experiment a device has been constructed which closely represents the ideal system used to 

develop the single interface potential, Figure 4.1.  This device takes the form of a highly doped n-

region located adjacent to a p-doped region and is depicted in Figure 4.3. 

 

Figure 4.3: Figure demonstrating the doping profile  of the Poisson test device for the single 
interface model.  The doping transition from 20 310DN cm−=  to 18 310AN cm−=  is assumed to be 
abrupt. 

The device has as 20nm square body and is 70nm long which is split into 10nm for the highly-

doped source region and 60nm for the channel.  Doping in the source region is given as 

20 310DN cm−=  and the channel is doped at 18 310AN cm−=  with an abrupt doping transition 

between the regions. 
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To improve the quality of this experiment a slight modification is made to the normal atomistic 

doping process.  As the remote screening model developed here assumes a linear background 

charge density with a single atomistic impurity, a similar assumption is made when resolving the 

charge distribution for the Poisson solution.  Hence, the inclusion of a single atomistic dopant is 

assumed not to alter the surrounding dopant concentration per unit volume of the simulated system. 

Examining this assumption in more detail using equation (4.22) it is found that this assumption has 

little effect on the background doping.  In the system described above the channel region has a 

volume of 18 324 10V cm−= ×  with a dopant density 18 310IN cm−= .  Using the equation below, this 

leads to 24 dopant atoms in the channel volume.  Adding one further dopant to the channel region 

roughly corresponds to a background doping concentration of 18 31.042 10IN cm−= ×  which is less 

than a 5% shift in doping. 

 ion In V N= ×  (4.22) 

A mesh is applied to the structure with a node resolution of 0.25nm.  This fine mesh is important to 

ensure that the atomistic impurity is accurately resolved within a discretized Poisson solution [99].  

The channel length is chosen to be long enough to accommodate the source interface depletion 

width of 36.71dmW nm≃  calculated using the long-channel formula given in equation (4.23) [15]. 

 
( )( )02 2 lnSi g B A i

dm
A

E k T N n
W

eN

ε ε +
=  (4.23) 

The reference channel screening length is calculated using the Debye-Hückel screening model, 

equation (3.36), as 4.133C nmλ =  where the carrier concentration is assumed to be fixed at the 

background dopant concentration, 18 310An N cm−= = .  This reference screening length is used only 

to provide a fixed length scale to measure the position of the impurity in the channel. 

The potential solution for this device with a single atomistic impurity located at four different 

locations is shown in Figure 4.4.  In part (a) of this figure, the atomistic impurity is placed at 

52IZ nm=  which is beyond the end of the depletion region.  This is to ensure that the atomistic 

impurity will be minimally affected by the source interface.  The potential isolines for this impurity 

are spherical close to the impurity and slowly disperse farther from the impurity centre. 
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In parts (b) and (c), the atomistic impurity is located around 
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Plots of the potential iso -contours for an atomistic impurity in the ideal 
interface structure.  Plots (a) -(d) denote varying positions, IZ , of the atomistic impurity 
given in relation to (a) the channel depletion widt h, or (b) -(d) the channel screening length.

In parts (b) and (c), the atomistic impurity is located around 4 Cλ  and 1λ

interface.  The potential contour lines change from being spherical to being teardrop shaped as the 

impurity is located closer to the interface.  Clearly the vicinity of the interface is altering the 

screening of the atomistic impurity potential as is expected. 

4, the impurity is located directly next to the interface at roughly 

polarisation charge effect is very strong as the potential isolines demonstrate.  

The impurity is heavily screened and the impact of the impurity is felt over a cross

much smaller than the case where the interface plays little role such as in pa

 

contours for an atomistic impurity in the ideal single 
, of the atomistic impurity 

(d) the channel screening length.  

1 Cλ  from the source-channel 

interface.  The potential contour lines change from being spherical to being teardrop shaped as the 

impurity is located closer to the interface.  Clearly the vicinity of the interface is altering the 

, the impurity is located directly next to the interface at roughly 0.1I CZ λ= .  

charge effect is very strong as the potential isolines demonstrate.  

The impurity is heavily screened and the impact of the impurity is felt over a cross-sectional area 

much smaller than the case where the interface plays little role such as in part (a) of this figure. 
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These plots show a consistent result with the effect modelled by the single interface potential 

calculated earlier in this chapter, Figure 4.2. 

4.2.4.2 Comparison with Analytical Model 

To ensure that the calculated analytical potential is accurately modelling the impurity it is 

important to compare the results in more detail.  This is possible by a comparison of the analytical 

model with the NLP solution from the previous section.  In Figure 4.5, 1D slice plots of the 

potential obtained from the NLP solver are compared to the analytic solution calculated in section 

4.2.  As the analytical solution uses a linearized Poisson solution, the comparison in the models 

will differ as the full Poisson solution will include the depletion region of the p-n junction.  This 

makes the comparison difficult but a simplifying solution has been utilised to compare the impurity 

potential solutions between the models. 

Solving the model system described by Figure 4.3 with the NLP solver  and with no atomistic 

impurities, a uniform device, provides a solution of the potential for the p-n junction.  The potential 

and carrier density profiles for this uniform device solution can then be extracted giving a solution 

for the depletion region.  Through the use of superposition the uniform device potential can be 

added to the analytical model to provide a solution comparable to the NLP solver.  Likewise the 

uniform solution could have been subtracted from the NLP solver to compare the impurity potential 

alone, but the current method is perhaps closer to real simulation conditions. 
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Figure 4.5: Comparison of the potential of a single  atomistic impurity using a fully self-
consistent, non-linear Poisson solution and the sin gle interface, analytical solution obtained 
in section 4.2. 

For all impurity positions in plots (a)-(d) of Figure 4.5, the analytical solution is found to be very 

close to the discretized NLP solution.  The largest difference is in the resolution of the singular 

peak of a Coulomb point charge, the atomistic impurity centre, which is a known drawback of the 

discretized Poisson solution. 

To be thorough in this comparison, a single impurity position from Figure 4.5 is chosen to 

complete a comparison in the axis parallel to the interface.  This comparison is shown in Figure 4.6 

for 2I CZ λ=  and again shows the close agreement between the models.  Again there is a 

discrepancy in the singular peak of the point charge due to the discretization error induced from the 

numerical solution of the Poisson equation. 
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Figure 4.6: Comparison of the non-linear Poisson an d analytical solutions of a single 
atomistic impurity located at 2I CZ λ= .  Discrepency between solutions of point charge du e 
to numerical discretisation of Non-Linear Poisson s olution at mesh spacing 0.5x nm∆ = . 

This comparison demonstrates that the calculated analytical model accurately provides a method to 

model the polarisation charge effect of an atomistic impurity located close to an region of higher 

doping. 

4.2.5 Strong-Screening Limit 

A set of equations has now been developed which model the potential of a single atomistic 

impurity located close to a reflecting interface.  From the potential equation it is possible to 

develop a scattering mechanism which can be used in Monte Carlo simulation.  The development 

of such a scattering mechanism and the application to Monte Carlo simulation will be the subject of 

the following chapters. 

In their current form the potential solution for the single interface model, given by equation (4.14), 

is quite large and unwieldy.  The calculation of a Monte Carlo appropriate scattering mechanism is 

a daunting procedure and is challenging to complete with the potential described above.  A 

simplified form of the potential has been found which allows a straightforward calculation of the 

scattering mechanism, yet retains as much of the complete physical model as possible.  This 

simplified model has been obtained here by using a limit which is appropriate to the model system 

that the potential solutions have been developed for. 

This limit assumes that the source region is highly degenerately doped, becoming metallic-like, and 

the corresponding screening length becomes very much less than the channel screening length, 

S Cλ λ≪ .  This limit has been termed the strong-screening limit and is shown here to simplify the 

potential solution.  Using the strongly screened limit constitutes a model which assumes the worst 
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case scenario for this interaction in that the source region is a metal.  This, as discussed below in 

section 4.2.5.2, leads to over estimation of the remote screening effect of the induced polarisation 

charges.  For the purpose of this work, which is to study what effect polarisation charges have on 

modern device performance, this limit is considered viable.  It is worthwhile mentioning that the 

strong-screening limit essentially reduces the problem to the classical image charge problem [100]. 

4.2.5.1 Strongly Screened Single Interface Model 

The strong-screening limit for the single interface model greatly reduces the complexity whilst still 

retaining the important characteristics.  Here it can be redefined as S Ck k≫  using the inverse 

screening length.  Using the potential solutions from section 4.2, equations (4.12) and (4.13), and 

taking the limit yields 
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The source potential tends to zero as all of the impurity potential is screened out in a very small 

region on the source side of the interface.  This is expected as the screening in the source becomes 

very strong. 

The limit of the channel potential seems less effective but simplifies the coefficient of the 

polarisation charge term, the second term within the square brackets.  Essentially, the strength of 

the polarisation charge term no longer depends on the ratio between the channel and source 

screening as the source is assumed to be an almost perfect reflecting surface. 
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The strong screening limit allows the form of equation (4.25) to be further simplified by using the 

theorem, given by equation (4.17), which removes the integral. 
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This simplified form of the single interface potential consists of the recognisable screened 

Coulomb potential, the first term in the square bracket, minus the potential of the polarisation 

charge, the second term.  The polarisation charge term can be distinguished by the change in the 

sign of the impurity position, IZ .  As the source potential has been screened to zero with the limit 

of strong-screening, the total potential becomes simply the channel potential.  It is important to 

note that this potential is only valid for the channel region, that is for 0Z > . 

4.2.5.2 Verification of Limit 

Although the strong-screening limit provides a simpler model, it is necessary to check that the 

model still provides an accurate representation of the system.  This can be easily shown by 

comparison of the potential for the complete model against that of the simplified strongly screened 

model.  Such a comparison of the remotely screened impurity potentials is made in Figure 4.7. 

For this comparison an ideal example device has been used which has a source region located at 

0Z <  doped at 20 310IN cm−=  and a channel region, 0Z > , with doping at three concentrations, 

{ }14 16 18 310 ,10 ,10IN cm−= .  The screening length for these three channel densities has been 

calculated using the screening model given by equation (3.36) and corresponds to 

{ }409,41,4.1C nmλ =  respectively.  The source region is only considered in the complete model as 

the strongly screened model screens out the potential in this region.  Hence for the figures in this 

section the source region is not plotted. 
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Figure 4.7: Comparison of the complete and strongly  screened potentials for four impurity 
positions. 

In Figure 4.7 are plots of the impurity potential at four different locations in the channel.  In these 

plots the potential is given for both the complete and the strongly screened models over the three 

different channel impurity densities.  In each plot of Figure 4.7 the strongly screened model shows 

an increased drop of the potential at the source interface.  In plots (c) and (d) this drop in potential 

becomes appreciable at a distance roughly less than one nanometre from the source interface.  

When the impurity is located at one nanometre or less from the interface, as in plots (a) and (b), 

this drop in potential becomes quite large. 

The increased screening of the potential at the source interface is expected from the strongly 

screened model as this limit forces the potential in the source region to zero.  This acts as a strong 

boundary condition for the channel potential which ensures that the channel impurity charge is 

neutralised at the interface.  The validity of this approach can be roughly analysed from the 

behaviour shown in Figure 4.7.  As discussed above the limit induces a large shift for impurities 

very close to the interface.  Examining the potential comparisons in more detail in the following 

figures will allow a better quantitative analysis. 
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Figure 4.8: Detailed comparison of complete and str ongly screened potential models for 
5IZ nm= . 

At an impurity distance of 5IZ nm= , as shown in Figure 4.8, the strong screening limit is adequate 

with a shift in impurity potential of around 5mV  at a tenth of a nanometre from the interface.  

Although this corresponds to a 100% error at the interface, the potential can be considered to be 

well screened at this distance and the strongly screened model is quite accurate.  Beyond the 

impurity into the channel region, the limit yields an error of ~5-10% or less than a millivolt shift in 

potential. 

Interestingly at this impurity position the channel impurity density has a noticeable effect on the 

quality of the strong screening limit.  The higher the impurity density in the channel, and therefore 

the higher the screening density the closer the models are.  This can be explained by the increased 

screening of the impurity potential in the channel minimising the interaction with the source as 

seen in Figure 4.7, plot (d). 

 

Figure 4.9: Detailed comparison of complete and str ongly screened potential models for 
1IZ nm= . 
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At the impurity position 1IZ nm= , the detailed comparison plots of Figure 4.9 show a much larger 

shift in the potential, roughly 70mV at the interface.  The percentage error plot of (b) highlights the 

problem of the strong screening limit at this distance from the source.  Around this impurity 

position the error increases rapidly, but worryingly the error beyond the impurity into the channel 

bulk increases to 30-40%.  At this distance the validity of this limit under these conditions is hard 

to justify given this increase in error. 

 

Figure 4.10: Detailed comparison of complete and st rongly screened potential models for 
0.5IZ nm= . 

Examining the effect of the limit at a closer impurity position in Figure 4.10 highlights the 

increasing error.  The drop in the potential becomes very significant, rising to well over 150mV.  

The error induced in the bulk of the channel, beyond the impurity also show a drastic increase to 

almost 50%.  At this impurity position, within 1nm of the interface, the strong screening limit for 

the source does not provide an accurate solution of the potential. 

Looking at Figure 4.7 it is clear that the error in the approximation becomes appreciable within 

roughly a 1nm region from the source interface.  For impurities located outwith this region, the 

error constitutes a small potential drop.  From this analysis the limit has been shown to be close to 

the complete model over a range of channel impurity concentrations and impurity positions greater 

than 1nm of the interface.  Modelling impurities within 1nm of the interface leads to an 

overestimation in the screening of the potential. 

To further the verification of the strongly screened limit it is appropriate to compare the two 

models in a context of effect on device behaviour.  It is difficult to estimate the effect that the 

strongly screened limit will have on carrier scattering from the comparisons on potential alone and 

therefore an analysis on ionized impurity limited mobility is ideal.  A numerical calculation of the 

impurity scattering limited mobility  using the momentum relaxation rates of the complete and 

strongly screened models is shown in Figure 4.11.  Although the discussion and use of momentum 
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relaxation rates in this chapter is a little out of sequence in the structure of this PhD thesis (see 

Chapter 5), it is necessary for the analysis of the mobility discussed here. 

The electron mobility is calculated using the Kubo-Greenwood formula [33], equation (4.27), 

assuming a spherical, parabolic band structure.  The momentum relaxation rate for the strongly-

screened model is presented in Chapter 5 (assuming the non-parabolicity parameter 0α = ) and 

Appendix C presents the momentum relaxation rate for the complete single interface model. 
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Here e  is the electronic charge, n is the electron density, ( )Eρ  is the density of states, 0f  is the 

equilibrium Fermi function and FE  is the Fermi energy.  The electron density and the density of 

states can be written for parabolic bands as 
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In Figure 4.11 the ratio of the mobility between the two models is plotted against the position, IZ , 

of a single II.  The mobilities are calculated at three different background channel impurity 

concentrations where the carrier density is assumed to equal to impurity density in each case.  

Similar to the potential comparisons given above, the source impurity/carrier density is given as 

20 310In N cm−= =  and is only referenced in the complete model. 
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Figure 4.11: Mobility comparison of the complete an d strongly screened models assuming a 
single ionized dopant at a range of positions IZ , given three background doping 
concentrations. 

It is clear from this plot that the strongly screened model does in fact become increasingly invalid 

when the impurity is located within 1nm of the source interface regardless of channel screening 

density.  This is very much consistent with the conclusion of the potential comparison that the 

strongly screened limit will lead to an over-estimation of the effect of remote screening.  At 1nm 

the strongly screened model gives a mobility approximately just over one and a half times larger 

than that of the complete model.  This increases rapidly at decreasing impurity distance from the 

interface with a ratio of roughly three at 0.5IZ nm=  and a peak of over twenty in the plot above. 

Considering the context of this work which is to model the polarisation charge effect on ionized 

impurity scattering, the use of the strongly screened limit is deemed acceptable to obtain a worst-

case value.  Use of the strongly screened model will correctly yield an upper limit on the effect of 

this interaction in a device simulation as has been completed in Chapter 6. 

4.3 Double Interface Potential Model 

The double interface potential can be calculated following the identical procedure as the single 

interface model.  Cylindrical co-ordinates are used throughout and the LTF approximation, in 

conjunction with the Debye-Hückel screening model, is used to simplify the Poisson solution.  The 

physical system is defined in Figure 4.12 with the source interface located at 0Z =  and the drain 

interface located at CZ L= .  In this figure the source and drain regions have carrier densities larger 

than the channel, ,S D Cn n n> .  Again the impurity is assumed to be always located at 0=IR  to 

incorporate radial symmetry around the Z axis, simplifying the solution. 
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Figure 4.12: Pictorial representation of the double  interface system with the impurity located 
at IZ  and the channel length is given by CL . 

The II is given by the red circle in the channel region and it’s position is defined relative the the 

source and drain interfaces, in this case IZ  and ( )C IL Z−  respectively where CL  denotes the 

channel length. 

4.3.1 Potential Solution 

The Poisson equations defining the double interface system of Figure 4.12 using the LTF 

approximation can be given as 

 2 2 0   for Z < 0S S Skϕ ϕ∇ − =  (4.30) 
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 2 2 0   for Z > LD D D Ckϕ ϕ∇ − =  (4.32) 

Using similar boundary conditions on the potential as the single interface model, 
,
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, and 

using the Bessel functions within cylindrical co-ordinates, the following solutions can be found 
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Here the simplified terms , xK , are given by equations (4.36)-(4.38) below. 
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The four coefficients, { , , , }S C C DA A B A , can be found by matching conditions at the interfaces using 

a simplified set of the electric field continuity equations specified in equation (4.39). 
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These boundary condition have been simplified as the dielectric permittivity is constant throughout 

the system. 

The solution for the four coefficients has been found using a matrix method to solve the 

simultaneous equations, which is not reproduced here (see Appendix B).  The resultant form for the 

coefficients is large and after some manipulation can be reduced to the set of equations given by 

(4.40)-(4.45). 
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The following two coefficients become common components which control the screened fields for 

the polarisation charges in the source, mA , and in the drain, nA . 
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After some re-arrangement the potential for the source, channel and drain regions can be simplified 

to use only the coefficients ( )mA k  and ( )nA k .  These simplified forms are: 
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 S C Dϕ ϕ ϕ ϕ= + +  (4.49) 

Examining the forms of the calculated potentials, there are some distinct similarities with the single 

interface model defined in section 4.2.  The source potential term, Sϕ , is almost identical apart 

from a change in the coefficient.  The channel potential is also very similar but has an additional 

component included from the drain polarisation charges, the third term within the square brackets 

of equation (4.47).  More detail on the calculation of these potentials is given in Appendix B.  This 

includes an outline of the matrix method used to solve for the coefficients. 



4.3 Double Interface Potential Model 

74 

In the single interface model, the single induced polarisation charge could be represented by a 

simple coefficient which can be said to represent a ratio of the screening densities between the 

source and channel regions.  In the double interface model above, the coefficients become 

considerably more complex although represent a similar ratio of screening between the source, 

channel and drain regions. 

As mentioned earlier, the double interface model in certain conditions will induce multiple 

polarisaiton charges.  This is a side-effect of having two reflecting interfaces a short distance apart, 

an analogy being that of having two mirrors facing each other reflecting the same image.  Here this 

behaviour can be seen in the coefficients mA  and nA  which control the polarisation charges 

induced from the source and drain regions.  Looking at the coefficients of equations (4.44) and 

(4.45), the extra complexity of the multiple polarisation charges can be seen by the introduction of 

the positive exponential components.  The positive exponentials represent an infinite sum of 

polarisation charges which interact to increase the overall screening effect. 

4.3.2 Contour Plots 

Plotting the total potential, equation (4.49), for an impurity in three different locations in Figure 

4.13 shows the effect of the double interface model.  Polarisation charge effects are present at both 

ends of the channel and importantly, combine to further increase the screening effect. 
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Figure 4.13: Potential contour plots of a device wi th a channel length 4.133C CL nmλ= = .  

Channel doping is 18 310AN cm−=  and the source-drain doping is 20 310DN cm−= .  Plots (a)-(c) 
identical screening in the source, channel and drai n.  Plots (d)-(f) include the polarisation 
charge effects of the highly-doped source and drain  regions. 

The largest change between the single and double interface potential models comes in the form of 

the coefficients ( )mA k  and ( )nA k  given by equations (4.44)-(4.45).  In this model the coefficients 

are large and complex as the polarisation charge effect develops beyond a reflection of charge from 

one surface to reflections between two surfaces.  Polarisation charges or reflections between the 

heavily-doped source and drain regions is more complex than the single interface.  Under 

circumstances that the channel length is sufficiently short and an atomistic impurity is not fully 

screened in the distance to the interfaces, the double interface model induces multiple polarisation 

charges.  This situation will occur for channel lengths which are smaller than the channel screening 

length. 

4.3.3 Long Channel Limit 

As with the single interface model, it is important to check that the calculated potential behaves in 

the expected manner at appropriate limits.  Due to the similarities between this model and the 

single interface model it is not felt necessary to repeat here the screened Coulomb and the matched 

screening limit.  Instead the potentials for this model will be checked to ensure that in the 

appropriate limit they return to the single interface case.  This limit has been entitled the long 

channel limit and can be found by allowing the channel length to become very large, that is the 
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limit of CL → ∞ .  For this limit it is best to first take the limit on the coefficients ( )mA k  and 

( )nA k  given by equations (4.44)-(4.45): 
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The coefficient nA  which controls the drain polarisation charges correctly tends to zero as the 

channel length tends to infinity.  The source controlled polarisation charge terms, given by mA , 

simplifies vastly as the coefficient is reduced to modelling a single polarisation charge term within 

the source region.  Substituting these coefficients into equations (4.46)-(4.48) gives the single 

interface model, which is not repeated here, as expected if the drain region is a large distance from 

the source and the atomistic impurity. 

4.3.4 Comparison with Non-Linear Poisson Solution 

Comparison of the single interface solution with the NLP solver in section 4.2.4 has shown 

excellent agreement.  To ensure that the double interface model also agrees with a full solution of 

Poisson’s equation , a similar test will be completed here.  Again using a solution of the uniform 

device with the NLP solver to find the solution including the depletion region. 

A simple example device will be used to test the double interface remotely screened impurity 

solution and is depicted in Figure 4.14.  The device will have a channel length which is 

approximately equal to a single screening length at 18 310AN cm−=  of 4.25C CL nmλ≃ ≃ .  This 

device will be referred to as the lambda channel device, for want of a better name. 
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Figure 4.14: Lambda channel device for the comparis on of the double interface potential 
with a non-linear Poisson solver. 

This device is important to test because under conditions when the channel length is around the 

screening length, multiple polarisation charges are likely to be present in the system as discussed at 

the end of section 4.3.2.  Figure 4.15 gives the plots of the lambda channel device with a single 

atomistic impurity in three different locations.  Plots (a) and (b) give the dopant in positions which 

correspond roughly to 0.1 ,0.9I C CZ λ λ=  and plot (c) in position Z =0.5I Cλ . 

 

Figure 4.15: Plots of the non-linear Poisson compar ison with the analytical model for 
remotely-screened impurities within the lambda chan nel device. 

These plots show the excellent agreement between the analytical and numerical solutions.  

Regardless of the impurity position the match is almost indistinguishable neglecting the 

discretization error of the potential peak in the NLP solution. 
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4.3.5 Strong-Screening Limit 

The strong screening limit of the double interface model, that is ,S D Ck k k≫ , will also simplify the 

potential terms much like in the single interface case.  Here the potential equations and coefficients 

from section 4.3.1 (equations (4.44)-(4.48)) are used for the double interface model.  For simplicity 

when applying the limit, it will taken that for the limit of ,S D Ck k k≫ , the xK  terms will become: 
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Taking the limit of the coefficients first: 
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Substituting these coefficients into the limit of equations (4.46) and (4.48) gives the limiting form 

of the double interface source and drain potentials as 
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Finally, substitution of the strongly screened coefficients into the channel potential term yields the 

following. 
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This is a substantial reduction in complexity of the model, yet still retains the important 

polarisation charge terms from the reflecting source and drain regions, the 2nd and 3rd terms in the 

square brackets of equation (4.57) respectively. 

Importantly the coefficients lim lim,m nA A  retain the positive exponential components which can be 

considered to represent the multiple-image effect discussed earlier in this chapter.  The multiple-

image effect is the repeated reflection of the impurity point charge between the source and drain 

regions when the channel length is sufficiently small. 

4.3.5.1 Verification of Limit 

Repeating a procedure similar to that of the single interface case for the strongly-screened model, 

the strongly screened double interface model will now be compared to the complete potential.  

Again, the purpose of this limit is to provide an upper-bound on the remote screening effect of 

channel ionized impurities. 

The comparison will initially be based on two test devices which have different channel lengths, a 

25nm channel length device and a 15nm channel device.  Both of these devices have a channel 

doping concentration of 15 310IN cm−=  which corresponds to screening length of 129.29C nmλ =  

using equation (3.36), the Debye-Hückel screening model.  The source and drain regions of these 

devices which is referenced only within the complete model is doped to 20 310IN cm−= . 
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Figure 4.16: Comparison of the complete double inte rface potential with the strongly 
screened model for two different channel length dev ices. Atomistic impurity located exactly 
mid-channel of each device. 

Figure 4.16 shows the comparison between the potentials for (a) the 25nm device and (b) the 15nm 

channel device.  The potential of the strongly screened model is a close match to the complete 

model surrounding the impurity as expected.  Again there is an increased screening of the potential 

close to the interfaces which is consistent with the strongly screened single interface model. 

With the strongly screened interface model discussed in section 4.2.5.2, the region over which the 

limit caused a notable error in the potential was within roughly 1nm of the interface.  It was shown 

that modelling an impurity within this region of the interface caused a significant error in the 

potential.  Essentially the limit over estimated the polarisation charge effect and over screened the 

impurity potential.  In the double interface model this error in the potential seems evident over a 

larger region from the interface.  Looking at Figure 4.16 the difference in the potential becomes 

appreciable at around ~2nm from each interface.  Plotting the comparison in more detail in Figure 

4.17 allows a better analysis of the error. 

 

Figure 4.17: Detailed comparison of the strongly sc reened and complete double interface 
potential models. 
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Figure 4.17 shows that at ~2nm from the interface the strongly screened model is approximately 

80% of the complete model.  This corresponds to around a 1-1.5mV potential difference for the 

25nm and 15nm channel length devices. 

To further test the validity of the strongly screened model another comparison has been completed 

with a device whose channel length is equal to the channel screening length, for want of a better 

name, the lambda channel device.  This device has a channel doped to 18 310IN cm−=  which 

corresponds to a screening length of 4.133C nmλ = .  The source and drain regions are doped to 

20 310IN cm−= , again this is only referenced with the complete model. 

In Figure 4.18 and Figure 4.19 are the potential comparisons between the models in the lambda 

channel device.  Initially this comparison looks at an atomistic impurity at three different locations 

in the channel but the detailed comparison will look at only two positions due to the symmetry 

between the left and right positions. 

 

Figure 4.18: Comparison between the strongly screen ed and complete double interface 
model using the lambda channel device.  Atomistic i mpurity located at (a) 1IZ nm= , (b) 

0.5I CZ λ=  and (c) 1I CZ nmλ= − . 

Plot (c) of Figure 4.18 shows a single atomistic impurity located exactly mid channel, just over 

2nm from each interface.  There is an appreciable drop in the potential within 1nm of the interface 

which is given in more detail in plot (b) of Figure 4.19.  At 1nm, the strongly screened model is 
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around 80% of the complete model with a corresponding drop of roughly 10mV.  For an impurity 

here within 2nm of the interface, 50% of the potential between the interface is above 80%. 

 

Figure 4.19: Plots of the ratio and potential diffe rence between the strongly screened model 
and the complete model for the lambda channel devic e.  Plot (a) shows the impurity at 

1IZ nm=  and (b) the impurity positioned at 0.5 0.5I C CZ Lλ= = . 

Looking at the case of the impurity located close to the source interface given by plot (a) of Figure 

4.18 and Figure 4.19.  An impurity located at 1nm from the interface the maximum potential 

difference is increased by a factor of 2-3 times the mid channel impurity.  At this distance the 

validity of the strong screening limit is questionable.  This behaviour is not completely dissimilar 

to that of the single interface model with an impurity at this distance from the interface given by 

Figure 4.9. 

It is clear that as the impurity is moved closer to the interface the error in the strongly screened 

model will increase and is very much appreciable within 2nm of an interface.  At impurity 

positions greater than this distance from either the source or drain interface, the limited model is 

shown above to be close to the complete model with small shifts in the potential of several mV’s 

near the interfaces. 

Unfortunately due to time constraints in the PhD project, the complete double interface momentum 

relaxation rate and therefore the mobility has not been calculated for this model.  As discussed in 

the above examination of the strong screening effect on the potential, it can be said that the limit 

will induce an increasing error as impurities are located close to either the source or drain interface 

(or both).  This said, the objective of using this limit is to obtain a worst-case condition for the 

remote screening of channel impurities induced from polarisation charge effects in the source and 

drain regions.  This is certainly achieved by imposing a limiting condition on the screening density 

in these regions. 
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4.4 Conclusion 

In sections 4.2 and 4.3 of this chapter a potential solution for a single atomistic impurity located 

close to one or two highly doped regions has been obtained.  This has been completed by solving 

Poisson’s equation using the LTF approach to obtain an exact analytical solution.  This solution 

naturally includes polarisation charge effects induced by the boundaries which are the focus of this 

work.  Polarisation charge effects are shown to increase the screening of an atomistic impurity 

located close to abrupt interface with a highly doped region.  Hence these potentials represent the 

remotely screened impurity potential for the cases of an impurity located close to the source and/or 

drain regions. 

The mathematical limits of the potential solutions have been checked to ensure the correct 

behaviour.  It has been shown that polarisation charge effects disappear when the impurity is a 

large distance from the interfaces.  Under this condition the model returns to the screened Coulomb 

potential which is the classic potential for an impurity and is an important limit for this model. 

To further prove the validity of the approach and solution presented, in section 4.2.4 and 4.3.4 a 

comparison between a fully self-consistent, non-linear Poisson solver and the calculated analytical 

approach has been completed.  This comparison shows a close agreement between the approaches 

and highlights the accuracy of the remotely-screened impurity potentials. 

Finally, a simplified model has been obtained by introduction of the strong screening limit in 

sections 4.2.5 and 4.3.5, which assumes that the source and drain regions are degenerately doped 

and become metallic like.  The limit has the resultant effect of screening all the induced impurity 

potential in the source/drain regions at the interface, thereby reducing the potentials in these 

regions to zero. 

In the single interface model, the strongly screened potential is shown to be almost exact for 

impurities which are located greater than 1nm from the source interface.  For impurities located 

closer than 1nm from the interface the strongly screened potential greatly over-estimates the 

screening effect.  Similar behaviour is seen in the double interface strongly screened potential for 

impurities located close to either interface. 

The purpose of using the strongly screened models is to represent a worst-case scenario of this 

model in order to obtain an estimate of the effect on device performance.  The strongly screened 

potentials can easily be used in scattering rate calculations whilst providing an upper bound on the 

remote screening features of polarisation charge effects. 
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Chapter 5 Scattering Rate Calculation 

5.1 Introduction 

In typical Monte Carlo (MC) simulations Ionized Impurity (II) scattering is based on a simple 

model of a single II located in a semiconductor material.  Complex boundary effects such as 

polarisation charge effects are not included in this simple physical picture.  Existing II scattering 

models based on this simple physical picture have been given a thorough review in Chapter 2.  It 

should also be noted here that the ab initio atomistic approach to II scattering developed in this 

research group [62, 63] does include the complex boundary effects through the Poisson equation 

solution.  Although, the ab initio approach is a classical approach to the problem in that the II 

scattering is achieved through the classical particle transport in MC, here the intention is to obtain a 

quantum description of the polarisation charge effect. 

In this chapter the aim is to develop a scattering model for MC simulation which extends the 

existing II scattering model.  This new scattering rate will allow the II scattering model to include 

the complex effects of IIs that are located close to the source and drain regions.  The impurity 

potential equations developed in the previous chapter will be used to develop this new model.  In 

this new model the effect of highly-doped regions located close to an ionized dopant is to alter the 

screening of the impurity potential.  Hence, the new model has been entitled remotely screened 

impurity scattering to reflect the nature of the induced screening from polarisation charge induced 

from the source and/or drain regions. 

Initially, the scattering matrix element and then the scattering rate will be calculated for both the 

single interface and double interface models in sections 5.2 and 5.3 respectively.  The method used 

to obtain the scattering rate will be based on Fermi’s Golden Rule approach.  Calculation of the 

momentum relaxation rates and differential cross-section will also be included, which are very 

useful for analysis of the scattering model. 

In section 5.4 the application of this new scattering model in sub-threshold device conditions is 

discussed where screening is very low.  Low-screening densities cause large problems with II 

scattering in MC simulations as will be highlighted and resolved for this scattering model.  This 

involves the development of a new II scattering approach which is presented in detail. 
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Following this, a brief discussion of the numerical implementation into the MC simulator will be 

covered in section 5.5.  This section will cover the techniques used within the MC simulator to 

calculate the scattering rate and complete the scattering process. 

5.2 Single Interface Scattering Model 

In the previous chapter the scattering potential for an atomistic impurity located close to a 

reflecting interface was calculated.  This scattering potential can be used to develop a scattering 

rate for MC simulation.  For such a scattering rate, the matrix element must first be evaluated from 

the scattering potential. 

In the case for the remotely screened impurity model, the strong screening limit potentials shall be 

used as they simplify the model whilst retaining the important polarisation charge effect of the 

source region.  As discussed in the previous chapter, use of this limit is a worst-case condition 

which leads to an overestimation of the remote screening effect induced from the source region for 

impurities located close to the source interface.  The aim of this work is to look at what effect 

remote screening has on device performance, therefore the use of strongly screened model is 

considered suitable as it will provide an upper limit on remote screening. 

The scattering potential for the remotely-screened II model is not spherically symmetric like the 

standard II scattering models.  With the remotely-screened model the scattering potential is 

anisotropic and therefore varies depending on the angle with which the carrier sees the impurity.  

The typical textbook approach for the scattering in Monte Carlo makes use of isotropic scattering 

potentials.  Anisotropy in scattering is typically found through the band structure via anistropic 

effective masses which can also be modelled using an isotropic effective mass with an anisotropic 

scattering potential [101-104].  There are several approaches for modelling anisotropic scattering 

potentials such as a spherical harmonics expansion of the Schrödinger equation as discussed by 

Boardman [105], or through solutions to the linear Boltzmann equation [106-109].  Due to the 

complexity of these approaches and the context of this work which is to analyse what effect remote 

screening may have, a simpler approach is employed here.  This simpler approach will allow for an 

initial examination of the strength of remote screening of ionized impurity scattering in a Monte 

Carlo simulation. 

For the purposes of this work a simplifying approximation is made such that the anisotropy of the 

scattering potential is removed by allowing the incoming carrier angle to be aligned with the 

principle scattering axis.  In other words, we make an assumption on the alignment of the scattering 

potential with the scattering carrier which removes the anisotropy.  This alignment is discussed and 
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analysed in detail later in this chapter and is shown to lead to a negligble error in all cases.  Further 

discussion of this simplification is left to section 5.2.3. 

Initially the scattering matrix element suitable for use with Fermi’s Golden Rule will be calculated 

from the scattering potential defined in the previous chapter, section 4.2.  Following this, in section 

5.2.2 the scattering rate for use in the MC simulation technique will be developed.  Here other 

important scattering model equations are calculated such as the differential cross-section and 

momentum relaxation rate.  These have a specific importance in the analysis of the scattering 

model, allowing the magnitude of the scattering probability and the effect on carrier transport to be 

examined.  In section 5.2.3 the incoming angle simplification will be discussed in detail and the 

effect the simplification has on the model will be presented.  Finally in section 5.2.4 the scattering 

model developed in this section will be analysed. 

5.2.1 Scattering Matrix Element 

The matrix element for a scattering rate is defined as [30] 

 ( ) ( ) ( )3
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Ω ∫k kH r k r r k r  (5.1) 

where electron plane wave functions have been assumed.  The matrix element has been normalised 

over the 3D unit volume, Ω , and ( )SU r  is the scattering energy.  Simplifying this using 

22 ′= −q k k  and separating into cylindrical co-ordinates, the matrix element definition may be 

written as a Fourier transform over the variables ⊥q  and Zq . 
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Throughout this section the scattering momentum transfer variables will be expressed in cylindrical 

co-ordinates using the perpendicular and Z-directed momentum transfer wave vectors, ⊥q  and Zq .  

A more detailed discussion on the exact definition of the scattering momentum transfer wave-

vectors for this scattering model is left to section 5.2.3.  For now it is sufficient to know that the 

definition of the scattering momentum transfer in cylindrical co-ordinates is given by equations 

(5.3)-(5.4). 
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For the single interface model, the scattering potential to be used is the strong screening limit of the 

model.  This potential which was calculated in section 4.2 of the previous chapter can be written as 
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Substituting this scattering potential into the scattering matrix definition equation (5.2) using the 

transform ( ) ( ), ,SU Z eV Z=R R  gives equation (5.6).  As the strongly screened potential is valid 

only for the 0Z >  region, the integral over the Z  space in the Fourier transform has been 

corrected accordingly. 
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After some lengthy integration, the Fourier transform above can be completed to give 
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Taking the magnitude-squared of this matrix element, also known as the Born approximation, 

provides us with a form suitable for use in Fermi’s Golden Rule.  After some algebraic 

manipulation the scattering matrix element becomes 
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 (5.8) 

Equation (5.8) is the scattering matrix element for the single interface, remotely screened impurity 

scattering model.  As is expected the matrix element has some similarities with that of the Brooks-

Herring (BH) approach (see section 2.3) albeit given here in cylindrical co-ordinates.  The terms 
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within the square brackets represents the remote screening coefficient and defines the extent of the 

polarisation charge effects in screening the impurity.  These terms are dominated by the 

( )exp ..IZ−  components which reduce the interaction as the impurity position IZ  increases.  In 

other words the remote screening effect drops off roughly exponentially as the impurity is located 

farther from the source region. 

As discussed in the previous chapter it is important for this scattering rate to return to the BH 

model when the atomistic impurity is located a large distance from the interface.  Looking at the 

second and third terms in the square brackets of the matrix element, the exponentials of negative 

power, it is clear that in the limit of IZ → ∞  these terms will tend to zero and will yield the BH 

model. 

5.2.2 Scattering Rate 

Having found the scattering matrix element in section 5.2.1 for the remotely screened impurity 

model, it is now possible to define the total scattering rate for use in MC simulation.  This 

calculation will follow the method of Fermi’s Golden Rule which defines the scattering transition 

probability for a carrier wave vector k  to a state ′k .  In addition to the total scattering rate, the 

differential scattering cross-section and the momentum relaxation rate will be calculated for the 

new impurity scattering model. 

Equation (5.9) is the Fermi Golden Rule for an elastic scattering event [110], which is a scattering 

event where the incoming and outgoing energies are equal.  Here the overlap integral for electrons 

is assumed to equal one and the band structure is modelled by an ellipsoidal and non-parabolic 

model.  The effective mass, which is a 2nd rank tensor with a single diagonal component, is 

represented by the isotropic density of states effective mass, 23
d l tm m m∗ = , by making use of the 

Herring-Vogt transformation as discussed in section 3.2.3 [71].  The Herring-Vogt transformation 

allows the ellipsoidal bandstructure to be represented as a spherical bandstructure. 
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Here *k  is the carrier wave vector after the Herring-Vogt transformation into starred space (see 

section 3.2.3).  This equation calculates the probability of scattering from a state k  to a state ′k  

but the calculation must be completed using the Herring-Vogt transformed vectors, hence the 

change of the vector in this expression.  Inserting the scattering matrix element of equation (5.8) 

into equation (5.9) for the probability of scattering gives 
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There are various quantities which can be obtained from the scattering probability, ( ),P ′k k , which 

allow various different properties of the scattering model to be analysed.  The differential scattering 

cross-section is found using equation (5.11) which integrates the scattering probability over all k -

space.  Here v  is the velocity of a state k  given by equation (5.12) where α  is the non-

parabolicity parameter. 
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The differential scattering cross-section is a function of angle and allows for analysis of the 

strength of a scattering centre.  Using the scattering probability in equation (5.11) and completing 

the integral yields 
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Here the impurity charge, Q , has been replaced by the number of free unit charges of the II, Z , 

multiplied by the electron charge, e . 

The total scattering rate and the momentum relaxation rate are calculated in a similar manner to 

each other and are specified in equations (5.14) and (5.15) respectively.  The momentum relaxation 

rate includes a weighting term by the change in the momentum of a scattering event, hence the 

extra term within the integral on the RHS of equation (5.15). 
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where Sθ  is the angle between the incident and scattered wave-vector.  The exact definition of the 

scattering angle is left to section 5.2.3. 

The total scattering rate can be found by substituting (5.10) into equation (5.14) and after 

expanding the integral using spherical co-ordinates, the scattering rate is given as 
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The integral over the range of final electron wave vectors, k′ , can be completed easily due to the 

Dirac delta function which ensures energy conservation.  This leaves the integral over the final 

angles 'kθ  and 'kϕ .  These integrals have not been completed here and will be discussed in the next 

section.  After some algebraic manipulation and multiplication by the II density of the unit volume, 

IN Ω , the total scattering rate is found as 
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Here and in the following expressions the magnitude of the incoming vector after the Herring-Vogt 

transformation is written as k∗  for simplicity.  The momentum relaxation rate for the scattering 

process can be defined by inserting the momentum relaxation weighting term into the 'kθ  integral 

of the total scattering rate and using the elastic scattering definition that ( ) ( )E E′ =k k . 
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5.2.3 Scattering Reference Frame 

The II scattering models of BH and Conwell-Weisskopf (CW) have scattering potentials which are 

spherically symmetric.  In a spherically symmetric scattering potential the angle of the incoming 

carrier doesn’t affect the potential the carrier interacts with.  This allows the scattering and device 

reference frames to be aligned reducing the complexity of the model.  The scattering reference 

frame being that used to describe the scattering event and the device reference frame describing the 

physical device for the direction of carrier momentum. 

In the remotely screened model developed here the scattering potential given by equation (5.5) is 

not spherically symmetric.  An example of the potential contours is given in Figure 5.1 below.  

There is rotational symmetry around the Z-axis due to the assumption that the II is located at 

0=IR  (see Figure 5.4 and Figure 5.5).  To properly describe the scattering event for this model 

the scattering reference frame must be fixed and be consistent with the potential model. 

 

Figure 5.1: Fixed scattering reference frame with e xample case of remotely screened 
impurity potential contours and incoming/outgoing c arrier wave-vectors. 

The fixed scattering reference frame used here is identical to the reference frame defined within the 

calculation of the potential (see Figure 4.1) and is closely related to the device reference frame 

which is aligned on the same axes within a cartesian coordinate system.  An example of the fixed 

scattering reference frame is given by Figure 5.1 with the remotely screened II given by the red 
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circle and the incoming carrier by the blue circle.  Figure 5.1 also shows example potential 

contours from a II located close to the source interface where the potential contours become 

slightly egg-shaped with a flat spot close to the source region, demonstrating the non-spherical 

nature. 

Also demonstrated in this figure is an example scattering carrier with the incoming angle kθ  and 

outgoing angle 'kθ  (the angle kθ  assumes a rotation of π  around the Z axis).   It is clear that the 

incoming angle of the carrier will affect the scattering potential that it sees and will alter the 

scattering rate. 

For the Monte Carlo simulator used in this work, which is a 3D bulk Monte Carlo simulator it is 

ideal to express the wave-vectors in the spherical co-ordinate system.  This ensures compatibility 

with the existing code and scattering processes. 

 

Figure 5.2: Definition of the fixed scattering refe rence frame using a spherical co-ordinate 
system. 

Figure 5.2 gives the fixed reference frame for this scattering model in more detail using the 

spherical co-ordinate system.  Here the X-Y plane denoted in the figure represents the R-plane of 

the cylindrical co-ordinate system and of the R plane in Figure 5.1, the angle kϕ  provides the angle 

of rotation around the Z-axis and kθ  gives the angle of the vector from the Z-axis.  This is the 
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generic spherical co-ordinate reference system rotated such that it matches the axis definition of the 

scattering potential given by Figure 4.1. 

Using the fixed reference frame, given in detail by Figure 5.2, the momentum transfer wave-

vectors of equations (5.3)-(5.4) can now be defined.  Expanding the components in terms of 

Cartesian co-ordinates initially gives 
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Using the following textbook transforms [96] and allowing the magnitude of the vector k  to be 

written simply as k  

 sin cosx k kk k θ ϕ=  (5.22) 

 sin siny k kk k θ ϕ=  (5.23) 

 cosz kk k θ=  (5.24) 

the scattering momentum transfer wave-vectors can be expressed in spherical terms as 
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These forms assume an elastic scattering process such that the incoming energy is conserved and so 

( ) ( )E E ′=k k  which is applicable to the II scattering process.  Using equation (5.25) and (5.26), 

the full momentum transfer wave-vector can be written 
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The effect that the incoming carrier has on the scattering model can now be analysed using the 

momentum transfer relations defined above.  Substituting equations (5.25)-(5.27) into the total 

scattering rate of equation (5.18) gives the model including the incoming wave-vector dependence. 

Care must be taken with the momentum relaxation rate as the weighting term depends on the 

scattered angle between the carriers.  As the angle between the incident and scattered wave-vector 

is defined here within a fixed reference frame system, the momentum relaxation weighting term 

must be given as 

 ( )' ' '1 cos 1 cos cos sin sin cosS k k k k k kθ θ θ θ θ ϕ ϕ− ≡ − − −  (5.28) 

Substitution of the momentum transfer relations and the weighting term of equations (5.25)-(5.28) 

into the momentum relaxation rate, equation (5.19), gives the incoming angle dependent 

momentum relaxation rate. 

To test these relations are correct it is ideal to initially check that in the limit of IZ → ∞  the model 

returns to a spherically symmetric case.  That is, the BH limit of the model which has no remote 

screening interaction.  In Figure 5.3 the scattering rate is plotted over all incoming angles for such a 

limit. 

 

Figure 5.3: Plot of the remotely screened scatterin g rate at 4I CZ k ≫  over all possible 
incoming carrier angles. 
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For this figure the impurity density matches the screening density and is given as 

17 310In N cm−= = .  The incoming carrier energy is calculated as the average energy at a lattice 

temperature of 300T K=  using equation (5.29), yielding 40E meV≃ . 
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where jF  is the Fermi-Dirac integral of order j [54] and η  is the reduced Fermi level given by 

F BE k Tη = .  It is very clear that the scattering rate in Figure 5.3 is independent of the incoming 

carrier angle.  This is expected as the scattering model returns to the classic BH case. 

Plotting the incoming angle dependent scattering and momentum relaxation rates for the remotely 

screened model at an impurity distance closer to the interface will show the anisotropic behaviour.  

Using the same impurity density and average carrier energy as Figure 5.3 with an impurity located 

at 1I CZ λ= , the scattering rate is then plotted in Figure 5.4 and the momentum relaxation rate in 

Figure 5.5. 

 

Figure 5.4: Plot of the remotely screened scatterin g rate at 1I CZ k ≈  over all possible 
incoming carrier angles. 

The anisotropic behaviour of the incoming carrier angle on the scattering model is demonstrated in 

these figures with a change in the rates with the incoming angle kθ .  Referring to Figure 5.1 (and 

given in more detail in Figure 5.2), the angle kθ  is the angle of the carrier from the Z-axis.  For an 

angle of 0kθ =  the carrier is aligned with the Z-axis and is travelling away from the source 
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interface, and for an angle of kθ π=  the carrier is aligned with the Z-axis and travelling towards 

the interface. 

It is interesting to note that for 0kθ =  and kθ π=  the scattering and momentum relaxation rates 

are identical.  This behaviour can be understood from the magnitude-squared of the scattering 

matrix element, equation (5.8), being an even function around Zq .  Therefore the rates for k xθ π=  

will be identical to that of k xθ π π= −  for 0 1x≤ ≤ . 

 

Figure 5.5: Plot of the remotely screened momentum relaxation rate at 1I CZ k ≈  over all 
possible incoming carrier angles. 

In both Figure 5.4 and Figure 5.5 the rates reach a maximum at 2kθ π=  which corresponds to the 

point at which the Z-directed momentum transfer, Zq , is at a minimum (the carrier angle is 

perpendicular to the Z-axis).  Examining the scattering matrix element of equation (5.8) again, the 

third term of the remote screening coefficient (the terms within the square brackets) contains the 

Zq  component as a parameter of the cosine function.  When this component, the Z-directed 

momentum transfer, becomes small the frequency of the cosine function will decrease rapidly.  At 

high frequency the cosine function averages to a value close to zero, but at low frequency the 

function average becomes much larger.  Therefore, as 0Zq →  the third term of the coefficient will 

increase in value and will therefore increase the scattering rate. 

The rotational symmetry around the Z-axis is highlighted in these plots, where the kϕ  angle doesn’t 

alter the scattering or momentum relaxation rate in any way.  This is plotted in more detail in 

Figure 5.6 where the momentum relaxation rate has been plotted at three different kθ  angles 
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showing the constant nature of the kϕ  dependence.  This is expected as the II is assumed to always 

lie on the same radial position as the carrier (at the origin) due to the assumption in the potential 

derivation that 0=IR . 

 

Figure 5.6: Momentum relaxation rate showing depend ence on kϕ  for incoming carrier 

dependent model at 17 310In N cm−= = . 

As mentioned previously the scattering model used in this work is simplified by removing the 

incoming angle dependence.  As this work is to analyse the effect that remote screening has on 

device performance, the incoming angle dependence is considered to be unnecessary additional 

complexity.  The simplification employed within this model is to assume that the incoming carrier 

is aligned with the Z-axis such that 0kθ =  which drastically reduces the momentum transfer wave-

vector definitions.  Using this simplification in equations (5.25)-(5.27) gives 

 2 2 2
'sin kθ⊥ ′=q k  (5.30) 

 ( )22 2
'1 cosZ kq θ′= −k  (5.31) 

 ( )2 2 2 2
'2 1 cosZ kq θ⊥ ′= + = −q q k  (5.32) 

It is important to state here that this assumption means that all scattering events assume that the 

carrier is aligned such that it is on the Z-axis.  Although scattering events will occur that assume 

the wrong scattering potential, this simplification provides on average a good estimate of the 

overall scattering effect.  A more detailed examination of the effect of the incoming carrier 

dependence is given below along with a comparison of the models to examine the quality of the 
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simplification.  For reference, the use of the Z-aligned (incoming carrier) simplification, for want 

of a better name, means that the momentum relaxation weighting term becomes 

 '1 cos 1 cosS kθ θ− = −  (5.33) 

Below the incoming carrier dependent scattering model is examined for three different impurity 

concentrations with a corresponding comparison between the models.  The impurity and screening 

concentrations are equal and the average carrier energy is calculated using equation (5.29) for the 

scattering & momentum relaxation rate plots. 

 

Figure 5.7: (a) Scattering and (b) momentum relaxat ion rates for an impurity concentration 
of 15 310IN cm−=  over a range of impurity positions for the incomin g carrier dependent 
remote screening model. 

Starting with Figure 5.7 by examining the incoming carrier dependence on the (a) scattering and (b) 

momentum relaxation rates for the lowest concentration of 15 310In N cm−= = .  Here the plots show 

the rates over a range of impurity positions and as expected, become smaller with decreasing 

distance from the source interface.  Both plot (a) and (b) of this figure are plotted against the angle 

kθ  of the incoming carrier and show the large shift in the scattering model at 2kθ π= . 

Figure 5.8 shows (a) the ratio of mobility and (b) the momentum relaxation rate ratio between the 

incoming angle dependent model and the Z-aligned model.  Here the mobility is calculated from 

the momentum relaxation rate using the Kubo-Greenwood formula of equation (5.34) [33]. 
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Here e  is the electronic charge, n is the electron density, ( )Eρ  is the density of states, ( )Cm E  is 

the conductivity effective mass, 0f  is the equilibrium Fermi function and FE  is the Fermi energy.  

The electron density and the density of states can be written for non-parabolic bands as 
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In Figure 5.8, the data is arranged such that in plot (a) it is ratio of the Z-aligned model to the full 

incoming angle model and (b) the ratio of the complete model to the Z-aligned model.  Therefore 

for values greater than one, the Z-aligned model is (a) over-estimating the mobility or (b) under-

estimating the momentum relaxation rate of the full incoming carrier model.  This is arranged such 

that the plots show similar behaviour to each other as the mobility calculation depends on the 

inverse of the momentum relaxation rate. 

 

Figure 5.8: (a) Ratio of mobilities between the rem ote screening models over incoming 
carrier angle kθ  and (b) momentum relaxation ratios between models over impurity position. 

Plot (a) of Figure 5.8 shows the mobility ratio over a range of impurity positions against the 

incoming carrier angle with the Z-axis, kθ .  For an impurity located at 4I CZ λ=  the mobility ratio 

is one at all incoming carrier angles which is expected as the remote screening nature at this 

distance is very small.  As the impurity moves closer to the interface, the effect of the incoming 

carrier angle becomes much larger and the simplified Z-aligned model over-estimates the mobility 

by up to ~20%. 
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The behaviour of the mobility is shown in plot (b) of Figure 5.8.  It should be noted that in this plot 

the momentum relaxation rate for the complete incoming carrier angle model is fixed at an angle of 

2kθ π= , the alignment which yields the largest change from the Z-aligned model.  This is the case 

for all the momentum relaxation ratio plots in this section, that is plots (b) of Figure 5.8, Figure 

5.10 and Figure 5.12. 

Plot (b) shows that the momentum relaxation time, the inverse of the momentum relaxation rate, is 

over-estimated by the Z-aligned model for 0.03 4C I CZλ λ< <∼  with a peak at 0.1I CZ λ= , 

consistent with the mobility ratio.  For values less than this the momentum relaxation rate is under-

estimated.  Although not shown in the mobility ratio plot for this density, this behaviour is repeated 

for the mobility.  There also is some small oscillation in the momentum relaxation ratio around 

0.1I CZ λ= . 

This oscillating behaviour can be understood by examining the scattering matrix element of 

equation (5.8), specifically the remote screening coefficient within square brackets.  Expanding the 

exponential terms of this coefficient into a power series and retaining only the first order terms 

gives 

 ( )( )2

22 1 1 1 cos
C

sgl C I Z Ik
f k Z q Z⊥ = − + − 

 

q  (5.37) 

Plot (b) of Figure 5.8 shows that the oscillatory behaviour occurs for small C Ik Z , which mean that 

the value of the term given by the first bracket of equation (5.37) will be close to one.  As discussed 

earlier in this section, the Zq  component has a minimum for an incoming carrier angle at 2kθ π=  

which will lead to a smaller argument of the cosine function.  Therefore, for incoming carrier 

angles close to perpendicular to the Z-axis (small Zq ) and impurity positions close to the interface 

(small IZ ), the frequency of the cosine function will be greatly reduced.  This will cause an 

increasingly oscillatory behaviour of the coefficient and scattering model, leading to the apparent 

flip from increased scattering to reduced scattering. 

To obtain a quantitative measure of the quality of the simplification, an average of the mobility 

ratio has been taken over a range of impurity positions taking the worst incoming angle case for the 

complete model.  This range of impurity positions, IZ , is the complete range of positions where 

remote screening is effective.  Using the mean value theorem for integrals, the following 

expression is used to obtain this average. 
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where Zµ  is the mobility of the Z-aligned model and ( )kµ θ  is the complete incoming angle 

mobility model.  The upper limit of 10 Cλ  is chosen such that the remote screening effect is 

negligible, correct at this impurity distance from the interface.  Evaluating equation (5.38) for the 

impurity density of 15 310IN cm−=  yields an average of 1.01325, or an over-estimation of 1.3% of 

the mobility over the range of impurity positions.  Of course, this is for the worst-case scenario, 

assuming that all carriers scatter with 2kθ π= . 

Continuing the examination of the Z-aligned simplification with a higher density of 

17 310In N cm−= =  in Figure 5.9 and Figure 5.10.  In plots (a) and (b) we see the consistent 

reduction in scattering strength with decreasing IZ .  Also evident is the effect of the incoming 

angle on the scattering model with a shift near the 2kθ π=  point.  Although at this higher density 

the change or flip in the scattering behaviour is clear in plot (b) for an impurity position of 

0.1I CZ λ= . 

 

Figure 5.9: (a) Scattering and (b) momentum relaxat ion rates for an impurity concentration 
of 17 310IN cm−=  over a range of impurity positions for the incomin g carrier dependent 
remote screening model. 

In Figure 5.10 the (a) mobility ratio and (b) momentum relaxation ratios are plotted for this 

impurity concentration.  The underestimation of the momentum relaxation at 0.1I CZ λ=  is very 

noticeable and is highlighted in the mobility ratio plot of Figure 5.10.  The oscillatory behaviour of 

the scattering model is clear within plot (b) of Figure 5.10 when plotted over the range of impurity 

positions.  For impurity positions greater than 0.3I CZ λ≈  the mobility is over-estimated and for 

impurity positions closer to the interface the mobility is under-estimated.  This change in behaviour 
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occurs for electrons interacting with the II at angles perpendicular to the Z-axis where the 

magnitude of the scattering potential oscillates with the cosine function at small C Ik Z . 

 

Figure 5.10: (a) Ratio of mobilities between the re mote screening models over incoming 
carrier angle kθ  and (b) momentum relaxation ratios between models over impurity position. 

At this impurity density of 17 310In N cm−= =  the oscillatory behaviour is more compressed over 

the range of impurity positions, IZ .  Referring to the earlier discussion regarding the oscillatory 

behaviour, this compression in the fluctuation can be understood from the larger value of C Ik Z .  

That is, the screening length will be smaller at higher concentrations leading to larger values of Ck  

and reduced oscillation.  Completing the average mobility ratio using equation (5.38) yields an 

average overestimation of roughly 1.4% for this density. 

 

Figure 5.11: (a) Scattering and (b) momentum relaxa tion rates for an impurity concentration 
of 19 310IN cm−=  over a range of impurity positions for the incomin g carrier dependent 
remote screening model. 

Continuing the evaluation of the Z-aligned approximation at an impurity density of 

19 310In N cm−= = , the reduction in the oscillatory behaviour seems to be further enhanced with the 
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increasing density.  The scattering and momentum relaxation rates of Figure 5.11 don’t show a 

significant shift with the incoming carrier angle. 

 

Figure 5.12: (a) Ratio of mobilities between the re mote screening models over incoming 
carrier angle kθ  and (b) momentum relaxation ratios between models over impurity position. 

The mobility ratio, plot (a) of Figure 5.12 shows a majority under-estimation of the mobility over 

the range of impurity positions plotted.  Looking at the momentum relaxation rates of plot (b), there 

is a very small region of overestimation around 3 5I CZ λ= −  and a large region of underestimation.  

It is clear that at this high impurity density the oscillations of the model are reduced in comparison 

to lower densities but lead to underestimation of the mobility.  Completing the average mobility 

ratio from equation (5.38) for this density gives an average underestimation of around 2%. 

In summary the alignment of the incoming carrier to the Z-axis reduces the complexity of the 

scattering model and preserves the remote screening effect.  For remotely screened II scattering the 

average mobility using the Z-aligned model is within 1.5-2% of the complete model over the region 

that remote screening is effective. 

5.2.3.1 Z-Aligned Model 

Use of the Z-aligned momentum transfer wave-vectors of equations (5.30)-(5.32) in the scattering 

model allows the integral over the 'kϕ  angles to be completed.  As there is no longer a 'kϕ  

dependence, the integral over those angle can be completed to yield 2π .  For reference, the Z-

aligned scattering model equations can then be written as 
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for the differential scattering cross section,  
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for the total scattering rate and 
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for the momentum relaxation rate. 

5.2.4 Analysis of Scattering Rate 

Using the different methods of utilising the scattering probability the remotely screened impurity 

scattering process will now be analysed.  Looking at the differential scattering cross-section given 

by equation (5.39) first, which is plotted in a set of polar plots over the scattering angle 'kθ  in 

Figure 5.13.  These plots are for two different screening densities at different carrier energies and 

impurity locations. 

Plot (a) in the figure corresponds to a moderate screening density of approximately 17 310n cm−= .  

At this screening density the differential cross-sectional scattering area is very large which will lead 

to large scattering rates.  In the screening conditions of plot (a) it is clear to see that the scattering 

process favours forward scattering events.  That is, events for which the electron scatters through 

angles of less than 2π .  The differential scattering cross-section for scattering angles greater than 

2π  or back-scattering, depicted by the negative component of the horizontal axis, is very small in 

comparison. 
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At higher energies the tendency to forward scatter is increased as shown by the dotted lines in plot 

(a) of Figure 5.13.  The back-scattering component is extremely small in this case and the range of 

angles for forward scattering is greatly decreased to a narrow range around zero degrees.  From this 

behaviour it can be deduced that the scattering interaction has a lesser effect at higher carrier 

energies. 

 

Figure 5.13: Polar plots of the differential scatte ring cross-section for an electron at low 
(solid lines) and high energy (dashed lines) at var ious impurity locations. 

At the higher screening density of 19 310n cm−=  plotted in (b), the differential scattering cross-

section is considerably smaller.  At low carrier energies the scattering cross-section in plot (b) has 

an almost isotropic nature with no particular scattering angle favoured.  This suggests that impurity 

scattering will have a larger effect at this screening density and carrier energy due to the wide range 

of probable scattering angles.  For higher carrier energies the scattering cross-section shifts towards 

a forward-angle scattering preference which is comparable with the situation at the lower screening 

density of plot (a). 

This can be understood by examining the differential scattering cross section given by equation 

(5.39), in particular the terms involving an angular dependence.  These angular dependent terms 

have been rewritten here as a separate function, fθ , 
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where the momentum transfer wave-vectors are given by equations (5.30)-(5.32).  This function 

highlights the relation between the screening density and the carrier energy given by the terms 

( )2 21 Ck+ q  and ( )2 21 Ck ⊥+ q .  When the screening density is large, the inverse screening length Ck  

is large and these terms are also very large (1≫ ) which causes the function fθ  to become very 

small and the scattering more anisotropic.  Conversely when the screening density is low along 

with the inverse screening length, the terms are very small ( 1≪ ) and the function will lead to more 

isotropic scattering.  This behaviour is of course dependent on carrier energy with higher carrier 

energies always leading to more anisotropic scattering. 

With decreasing distance between the impurity and the source interface, IZ , the scattering cross-

section is reduced in both cases of Figure 5.13.  As the remote screening interaction is expected to 

increase the screening of an impurity, as discussed in Chapter 4, the reduction in scattering cross-

section is logical.  The increased screening of the scattering impurity centre as it moves towards the 

interface clearly reduces the scattering cross-section and will lead to a reduction in the scattering 

rate. 

Plots of the scattering and momentum relaxation rates, equations (5.40) and (5.41), for the same 

conditions in the above polar plots are given in Figure 5.14 and Figure 5.15.  In both of the figures 

below the II concentration is taken to equal the screening density, that is In N= . 

 

Figure 5.14: (a) Scattering and (b) momentum relaxa tion rates under the low screening 
conditions of 17 310In N cm−= =  for various impurity locations. 

As discussed above, the scattering differential cross-section is reduced with decreasing IZ  and 

becomes less effective at higher energies.  This behaviour is clearly seen in the plots of Figure 5.14 
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which give the scattering rates (a) and momentum relaxation rates (b) for the lower concentration 

of 17 310In N cm−= = .  Figure 5.15 of the higher screening density 19 310In N cm−= =  also shows 

this common behaviour which is expected for the remotely screened impurity scattering model. 

 

Figure 5.15: (a) Scattering and (b) momentum relaxa tion rates under the high screening 
conditions of 19 310In N cm−= =  for various impurity locations. 

Comparing the scattering rates between the two figures shows around an order of magnitude 

decrease at the higher concentration following the trend in the radius of the differential scattering 

cross-section. 

In part (b) of Figure 5.14 the momentum relaxation rate for carriers greater than 10meV doesn’t 

show much effect of remote-screening as the impurity position is varied between {0.5..4}I CZ λ= .  

Looking at the high energy polar plot of this case, plot (a) of Figure 5.13, the differential scattering 

cross-section varies dramatically in radius around scattering angles close to zero degrees. 

This behaviour can be understood by looking at the momentum relaxation rate given by equation 

(5.41), particularly the weighting term, ( )'1 cos kθ− .  For small angle forward scattering this 

weighting term becomes very small and the momentum is relaxed on much longer scale.  

Therefore, in this case the scattering rate will be affected by the decreasing scattering cross-section 

radius but the momentum relaxation rate will show little change as the range of scattering angles 

remains close to zero. 

Using the momentum relaxation rate of equation (5.41) the electron mobility can be analytically 

calculated providing more insight into the remote screening effect.  Using the Kubo-Greenwood 

formula of equation (5.34) allows the electron mobility to be calculated.  Here the ratio between the 
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mobilities of the remotely screened model and the BH model are plotted to allow comparison.  The 

BH model is found as the limit IZ → ∞  of the remotely screened model, given as equation (5.43).  

Noting of course, that the BH model is independent of IZ . 
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In the figures below the ratio between the mobilities is given for different doping concentrations 

where the screening density is assumed to equal the doping concentration.  In both figures the ratio 

is taken as the remotely screened mobility over the BH mobility. 

 

Figure 5.16: Ratio between the mobilities of the re motely screened and Brooks-Herring 
models.  The impurity position from the source inte rface, IZ , is given in (a) units of the 

respective channel screening length, Cλ , and (b) nanometres from the source interface. 

In plot (a) of Figure 5.16 the ratio between the mobilities of the two models is plotted over the 

impurity distance from the source interface in units of the respective channel screening length.  

This follows the representation used in the plots of the differential scattering cross-section and the 

scattering/momentum relaxation rates.  Plot (a) of Figure 5.16 shows that remote screening effect 

begins to strongly affect the impurity limited mobility at positions less than two screening lengths 

from the source interface.  Beyond two screening lengths the remotely screened model is a close 

match with the BH model. 

For impurity positions closer to the interface the remotely screened mobility increases heavily as 

the effect of polarisation charges becomes stronger.  In particular, the mobility for the high channel 

density given by the green curve shows a dramatic increase to over 30x the BH mobility.  This 

increase is very large and is a side-effect of the strong-screening limit.  Using equation (3.36), the 

screening length for the screening/dopant concentration of 19 310In N cm−= =  is 1.39C nmλ = .  As 
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discussed at the end of the previous chapter, the strongly screened model over-estimates the 

remote-screening effect for impurities located closer than 1nm from the source interface.  Therefore 

at this density the point that the strongly screened model begins to overestimate the remote 

screening effect corresponds to 0.7I CZ λ≈ . 

The figures in this section have all been plotted with a length scale normalised to the channel 

screening length which allows the scattering model to be analysed and compared over a wide range 

of screening densities and impurity concentrations as well as comparison with the previous figures 

in this section.  Despite this, it is important here to also examine the mobility using a fixed length 

scale.   In plot (b) of Figure 5.16 the mobility ratio between the remotely screened and BH model is 

given over a physical impurity distance from the source interface. 

Using a physical length scale for each screening/background doping concentration in plot (b) of 

Figure 5.16 provides an example closer to a real scenario of the remote screening effect on the 

impurity limited mobility.  This figure highlights the dependence of the channel screening density, 

where the lower the screening density the stronger the mobility increase due to remote screening.  

This plot does not follow the trend of Figure 5.16 which reports that the higher the screening 

density, the larger the remote screening effect.  This reversal in behaviour between the figures can 

be understood from the screening length. 

Using equation (3.36) the screening length can be found as { }126.27,12.64,1.39C nmλ =  for the 

screening densities of { }15 17 19 310 ,10 ,10n cm−=  respectively.  As discussed above, the remote 

screening effect starts to alter the mobility at roughly 2I CZ λ= .  Therefore, at the highest screening 

density the remote screening effect will only alter impurities located within 2.8nm∼  whereas at 

the lowest density we can expect a shift at distances up to 250nm∼ .  For the lowest density 

involved at one nanometre from the interface, IZ  corresponds to roughly 38 10 Cλ−×  which leads to 

a large increase in the mobility of plot (b). 

5.3 Double Interface Scattering Model 

The double interface scattering model is found using an identical procedure to the single interface 

model.  A scattering rate is defined using Fermi’s Golden Rule approach based on the strongly 

screened impurity potential found for this model in the last chapter.  The scattering potential is 

again not spherically symmetric and the Z-aligned incoming carrier simplification is applied. 
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This section will start with the calculation of the scattering matrix element in section 5.3.1.  

Following this the differential scattering cross-section, total scattering rate and the momentum 

relaxation rate will be obtained in section 5.3.2.  The incoming carrier Z-alignment simplification is 

discussed in section 5.3.3 and finally the double interface remotely screened scattering model will 

be analysed in section 5.3.4. 

5.3.1 Scattering Matrix Element 

The strongly screened double interface potential found in section 4.3 is used to calculate the 

scattering matrix element for this model.  The potential for the double interface remotely screened 

impurity potential is valid only in the channel region, that is the region of 0 CZ L< < .  The 

calculation for the scattering matrix element must be integrated over this region only.  Correcting 

the Z-space integral of equation (5.2) gives the following form for the scattering matrix element 

 ( ) ( ) ( )
2

 

0 0 0

1
 , exp exp

CL

ZdZ d d eV Z i iq Z
π

φ
∞

′ ⊥= − ⋅ −
Ω ∫ ∫ ∫k kH R R q R  (5.44) 

Substituting the scattering potential into the matrix element definition and completing the integrals 

gives, after some lengthy manipulation 
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Here the coefficients mA  and nA  are given by the equations (5.46)-(5.47) below and the terms 

,C SK K  and K D  are defined in equation (5.48). 
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Taking the term for the scattering matrix element,  k' kH , of equation (5.45) and completing the 

square of the magnitude to obtain 
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Here a new function defining the interaction with the source and drain regions, dblf , has been 

introduced and is given as 
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New coefficients have been formed to simplify this expression and are given by equations (5.51)-

(5.53) below. 

 ( ) ( )( )exp ( 2 ) exp 2( ) 1C C I C C I CL Z K L Z K+ − −E =  (5.51) 

 ( ) ( )( )( ) exp 2 1exp C I C C CS L Z K LE K= + −  (5.52) 

 ( ) ( )( )exp 2 1 exp 2C CD I CE L K Z K= −  (5.53) 

5.3.2 Scattering Rate 

The double interface remotely screened impurity scattering model can now be developed using the 

scattering matrix element found in the previous section.  The probability of scattering can be found 

using Fermi’s Golden rule, substituting in the scattering matrix element gives 



5.3 Double Interface Scattering Model 

112 

 ( ) ( ) ( ) ( )( )
2 2

2 2 2 2
0

2 1 4
, , ,

4 dbl C I C
Si Z C

eQ
P f k Z L E E

q k

π π δ
πε ε

∗ ∗

⊥

    ′′ = −   Ω + +   
k k k k

qℏ
 (5.54) 

The differential scattering cross-section can be calculated from this probability using equation 

(5.11) and defining the impurity charge to be Q Ze= , the number of unit charges of the impurity 

multiplied by the electronic charge. 
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Substituting the scattering probability defined in equation (5.54) into the total scattering rate, 

equation (5.14) and completing the 'k  integral gives 
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Similar to the single interface model, the final integrals over the 'kθ  and 'kϕ  components will be 

discussed in the following section.  The momentum relaxation rate for the scattering process can be 

simply defined by inserting the weighting term for the change in momentum into the theta integral 

of equation (5.56), yielding 
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5.3.3 Scattering Reference Frame 

The double interface model will also employ the simplified scattering reference frame in an 

approach identical to that used with the single interface remote screening model.  That is the 

incoming carrier will be aligned with the Z-axis of the scattering reference frame reducing the 

angular dependency of the scattering model.  Following a similar analysis to that of section 5.2.3, 

this simplification will be tested for the double interface scattering model. 
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The fixed scattering reference frame given by Figure 5.1 and Figure 5.2 remains unchanged for the 

double interface model.  The momentum transfer wave vector relations presented in section 5.2.3 

for the full incoming carrier case, equations (5.25)-(5.27), and the Z-aligned simplified relations 

given by equations (5.30)-(5.32) are again used. 

The scattering rate, momentum relaxation rate and the mobility analysis are completed for three 

impurity concentrations, { }14 16 18 310 ,10 ,10IN cm−= .  Again as the potential assumes that the 

impurity is located at the origin of the radial axis, 0IR = , there is rotational symmetry around the 

Z axis, the 'kϕ  angle.  The scattering and momentum relaxation rate plots assume an incoming 

carrier with average thermal energy given by equation (5.29) and the mobilities are calculated 

using the Kubo-Greenwood method of equation (5.34).  To analyse the double interface model 

effectively the channel length, CL , is varied with the impurity position located at exactly half the 

channel length, 0.5I CZ L= , in each of the cases below. 

 

Figure 5.17: (a) Scattering and (b) momentum relaxa tion rates for an impurity concentration 
of 14 310IN cm−=  over a range of channel lengths for the incoming c arrier dependent, remote 
screening model. 

Starting with the lowest concentration of 14 310IN cm−=  in Figure 5.17 and Figure 5.18, the 

incoming carrier model clearly shows an increased scattering effect for carrier angles around 

2kθ π= .  This is very much consistent with the single interface model and can be again related to 

the momentum transfer in the Z-axis given by Zq .  For incoming carrier angles close to 

perpendicular to the Z axis there will be minimal momentum transfer in the Z plane and the Zq  

component will become very small.  Looking at the double interface coefficient in the scattering 

matrix element, equation (5.50), for small values of this momentum transfer component the 

coefficient will be large and hence the scattering will be increased. 
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Figure 5.18: (a) Ratio of mobilities between the re mote screening models over incoming 
carrier angle kθ  and (b) momentum relaxation ratios between models over channel length. 

At this low density the simplified model overestimates the momentum relaxation over a wide range 

of channel lengths as shown in plot (b) of Figure 5.18.  Completing an average over a wide range 

of channel lengths using the mean-value theorem for integrals given by equation (5.58) below, 

yields an average overestimation of around 1.8%. 
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For the double interface model it is not possible to complete the average value from an effective 

channel length of zero and instead a value of 510 Cλ−  is chosen as a non-zero channel length.  The 

upper limit of 20 Cλ  coincides with the upper limit of the single interface case (given by equation 

(5.38)), allowing 10 Cλ  from each interface. 
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Figure 5.19: (a) Scattering and (b) momentum relaxa tion rates for an impurity concentration 
of 16 310IN cm−=  over a range of channel lengths for the incoming c arrier dependent, remote 
screening model. 

Examination of the intermediate impurity density of 16 310IN cm−=  in Figure 5.19 and Figure 5.20 

shows that the simplified model overestimates the scattering for channel lengths greater than 

0.2C CL λ≈ .  At this density the momentum relaxation ratios plotted in part (b) of Figure 5.20 also 

demonstrate that underestimation occurs at small channel lengths.  Completing the average 

mobility ratio using equation (5.58) for this density yields an average overestimation of around 

2.4%. 

The momentum relaxation ratio oscillates very much like the single interface model discussed in 

section 5.2.3 and shows the increased compression of this oscillation at higher screening 

concentration.  Whereas in the single interface model the scattering matrix element has a single 

cosine function, here the double interface scattering matrix element coefficient, equation (5.50), has 

a set of cosine and sine functions all dependent on the Z directed momentum transfer, Zq . 
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Figure 5.20: (a) Ratio of mobilities between the re mote screening models over incoming 
carrier angle kθ  and (b) momentum relaxation ratios between models over channel length. 

At the highest impurity concentration given by Figure 5.21 and Figure 5.22 the behaviour of the 

remotely screened double interface model differs to the behaviour seen this far.  The scattering rate 

and momentum relaxation rate plots at a channel length of 2C CL λ=  show a double oscillation.  

This double oscillation has peaks at 4,3 4kθ π π=  and a trough at 2kθ π=  for the momentum 

relaxation rate of plot (b) in Figure 5.21 with a much less understated double oscillation around the 

2kθ π=  point in both the scattering rate and mobility ratio. 

 

Figure 5.21: (a) Scattering and (b) momentum relaxa tion rates for an impurity concentration 
of 18 310IN cm−=  over a range of channel lengths for the incoming c arrier dependent, remote 
screening model. 

This double oscillation at small channel lengths is very much an effect brought on by the set of 

cosine and sine functions in the scattering matrix element.  Examining the dblf  coefficient of the 

scattering matrix element of equation (5.50), the cosine and sine functions both depend on the Z-

directed momentum transfer Zq  and either the impurity position, IZ , or channel length, CL . 
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As has been discussed previously the Zq  component will tend to zero as the incoming carrier angle 

is close to perpendicular to the Z axis.  This reduces the frequency of these angular functions which 

lead to the oscillatory behaviour.  Here the angular functions will have two separate frequencies 

depending on the impurity position and channel length as Zq  is reduced.  In the cases plotted here 

the impurity position is taken to be always half the channel length, that is 0.5I CZ L= , but it will 

always be the case that I CZ L< . 

 

Figure 5.22: (a) Ratio of mobilities between the re mote screening models over incoming 
carrier angle kθ  and (b) momentum relaxation ratios between models over channel length. 

It can be seen that although this has a considerable effect on the momentum relaxation rate, the 

effect on the mobility is relatively minimised.  This of course is due to the fact that the momentum 

relaxation rate is integrated over all energy in the mobility calculation.  For this higher density the 

average mobility ratio is calculated to give an average underestimation of around 1%. 

5.3.3.1 Z-Aligned Model 

Using the Z-aligned momentum transfer wave-vector relations of equations (5.30)-(5.32) allows the 

integral over the angle 'kϕ  to be completed and yields the following final expressions for the 

double interface remotely screened scattering model. 
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5.3.4 Analysis of Scattering Rate 

An analysis of the scattering model defined in section 5.3.2 will now be completed in a similar 

format to that completed for the single interface model.  Here, the analysis of the double interface 

model will be centred around the effect that a small channel length has on the remotely screened 

impurity scattering model. 

Starting with the differential scattering cross-section which has been plotted in Figure 5.23.  For 

these plots the screening density is taken as (a) 16 310In N cm−= =  and (b) 18 310In N cm−= =  which 

leads to screening lengths of 39.95C nmλ =  and 4.04C nmλ =  respectively. 

 

Figure 5.23: Polar plots of the double interface sc attering cross-section for varying channel 
lengths with a single impurity located mid-channel,  0.5I CZ L= . 

Similar to the behaviour of the single interface model, the low screening density differential 

scattering cross-section demonstrates mostly low-angle forward scattering.  At high energies the 

differential scattering cross-section for this low density is restricted to a very small range of 

scattering angles around zero degrees.  The momentum relaxing effect of such small scattering 

angles will be minimal. 

The differential scattering cross-section for the low screening density, plot (a) of Figure 5.23 has an 

extremely large radius.  As the channel length decreases, the remote screening effect reduces this 

radius and will reduce the scattering rate.  The high screening density differential scattering cross-
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section of plot (b) is somewhat more isotropic for low energy carriers than the low density plots.  

Plotted in Figure 5.25 are the scattering and momentum relaxation rates for the double interface 

remotely-screened impurity model with the low screening density conditions of the polar plots 

given above. 

 

Figure 5.24: (a) Scattering and (b) momentum relaxa tion rates under the low screening 
conditions of 16 310In N cm−= =  over a range of channel lengths with a single impu rity located 

mid-channel, 0.5I CZ L= . 

As the differential scattering cross section predicted, the scattering rate does decrease with the 

reducing distance between the source and drain interfaces but the momentum relaxation rate is 

largely unaffected.  Plot (b) of Figure 5.24 shows a small difference between the different channel 

lengths at the very low energies around 0.1meV which will have negligible effect in room 

temperature silicon.  Nearly all the scattering at this low screening density is small angle forward 

scattering as seen by plot (a) of Figure 5.23, which is not altered by increasing the remote screening 

induced by the source and drain.  Despite the small angle forward scattering, the momentum 

relaxation rate is high for low energy carriers but drops off very rapidly with energy. 
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Figure 5.25: (a) Scattering and (b) momentum relaxa tion rates under the high screening 
conditions of 18 310In N cm−= =  for varying channel lengths with a single impurity  located 

mid-channel, 0.5I CZ L= . 

Figure 5.25 shows (a) the scattering and (b) the momentum relaxation rates for the higher density.  

The scattering rate is clearly affected by the reduction in channel length as is the momentum 

relaxation rate for low energy carriers.  Above approximately 20meV the momentum relaxation 

rates becomes largely unaffected by the increase in the remote screening effect as the tendency to 

small angle scattering becomes more dominant. 

The Kubo-Greenwood formula of equation (5.34) is used to plot a comparison of the double 

interface remotely screened impurity mobility against the BH model of equation (5.43).  The BH 

model being the limit of 0IZ ≫  and CL → ∞  of the double interface model.  In plot (a) of Figure 

5.26 the ratio of the remotely screened mobility to the BH mobility is given over a range of channel 

lengths which have been normalised to the respective channel screening lengths.  For the three 

densities plotted here, 14 3 16 3 18 310 ,10 ,10In N cm cm cm− − −= = , the screening lengths are calculated as 

399.54 ,39.95 ,4.04C nm nm nmλ =  respectively. 
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Figure 5.26: Ratio between the mobilities of the re motely screened and Brooks-Herring 
models.  The channel length, CL , is given in units of (a) the respective channel s creening 

length, Cλ , and (b) nanometres where the impurity is always p ositioned at 0.5I CZ L= . 

Plot (a) of Figure 5.26 clearly shows that beyond 5C CL λ=  the double interface remote screening 

has little effect on the impurity limited mobility.  This plot also shows a large increase in the 

mobility at a channel lengths less than Cλ  for the highest doped case represented by the green 

curve.  This large increase in mobility is likely due to the strongly screened model over estimating 

the effect of remote screening and a quick calculation shows that at this point the impurity is 

located around 2IZ nm= .  It is around this distance that the strongly screened model is expected to 

overestimate the effect, as discussed in the previous chapter. 

Plot (b) of Figure 5.26 gives the mobility comparison using a fixed reference for the channel length 

at each density.  This figure highlights the strength of the interaction for low screening density 

channels where the screening length is extremely long.  For the lowest density, given by the blue 

curve, the screening length is almost 400nm which for the remote screening interaction to 

dissipate, would require a channel length of 5 2C mλ µ≈ . 

5.4 Sub-Threshold Impurity Scattering 

It is well known that scattering rates that are based on the Coulomb potential can diverge unless 

they are well bounded.  In the BH approach the Coulomb potential is screened by the mobile 

charge density which generally provides a good bound on the Coulomb potential.  There are other 

approaches which use half the average inter-ion distance to confine the effect of Coulomb 

scattering such as the CW model and Ridley’s Third-Body Exclusion (TBE) technique [47, 55].  

These models are discussed in detail in the literature review of II scattering in Chapter 2. 
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The remotely screened impurity scattering model that has been developed in this chapter follows a 

similar approach to that of BH in that it uses the mobile charge density to restrict the range of 

scattering.  This approach works well when the mobile charge or screening density is greater than 

or equal to the II density.  Under certain conditions such as a MOS capacitor or a MOSFET device 

at low gate bias, the screening density can be much lower than the fixed charge density and can 

approach intrinsic silicon carrier densities.  At such low carrier concentrations the scattering rates 

for the BH approach, and similarly the remote screening model, will tend to very high values. 

 

Figure 5.27: Plots of (a) the scattering rates and (b) the momentum relaxation rates for 
standard II scattering models at sub-threshold cond itions with 18 310IN cm−=  and 12 310n cm−= . 

The three aforementioned II scattering models (CW, BH and TBE) are plotted in Figure 5.27 with 

high background impurity density and a low screening density, a typical sub-threshold case.  In 

these plots the difference between using the the CW and TBE approaches of the inter-ion 

separation distance as a cut-off and using the BH approach of screening by mobile charge is clear 

to see.  Plot (a) of this figure shows that with very low screening densities the BH model begins to 

diverge and results in a scattering rate of roughly 20 110BH s−Γ ≈ .  This is far too large for efficient 

numerical simulation considering that within a general bulk Monte Carlo simulation the timestep is 

around 1510t s−∆ ≈  which leads to almost one hundred thousand events per timestep.  Considering 

that it is typical to have only a few events per timestep, the processing overhead of using the BH 

model in these conditions becomes very large. 

Looking at the momentum relaxation rates for the differing models in plot (b) of Figure 5.27 

highlights the effect of limiting the scattering model through the average inter-ion separation.  This 

difference in the momentum relaxation rates will alter the impurity limited mobility in device 

simulations directly.  Therefore use of the TBE or CW approaches will lead to an underestimation 

of the effect that II scattering has on the mobility. 
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The method for simulating II scattering in the Monte Carlo simulator used here is the TBE model 

as it overcomes the divergent scattering rate problem with low screening densities.  It has 

traditionally been used in this Monte Carlo simulator and the loss of accuracy incurred is neglected 

in favour of efficient simulation.  The loss of accuracy can be highlighted by examining the TBE 

approach applied to the remote screening model developed in this work. 

The loss of accuracy lies with the cut-off used by the TBE model which utilises the impact 

parameter definition, given by equation (5.62).  The scattering events which have an impact 

parameter beyond half the inter-ion separation distance are regarded as being more probable to 

scatter from another scattering centre and therefore are excluded. 

 ( ) ( )2
2 sin  b b bb d

π

θ

π θ π θ σ θ θ= ∫  (5.62) 

To understand why this cut-off approach can be considered inaccurate it is necessary to examine 

the impact parameter, in particular for the case of remotely screened impurity scattering.  

Substituting the single interface differential scattering cross-section of equation (5.39) into the 

impact parameter definition above gives 
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In Figure 5.28 the impact parameter is plotted at various impurity positions for the sub-threshold 

conditions used in Figure 5.27.  Also plotted is the average, half inter-ion separation distance given 

by ( ) 1
31

2 2 Ia Nπ −= . 
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Figure 5.28: Impact parameter for single interface remotely screened impurity model against 
half the average inter-ion separation distance for sub-threshold conditions of 18 310IN cm−=  

with a low carrier density of 12 310n cm−= . 

The plot highlights the large range of scattering events that will be excluded by the TBE model.  In 

particular, the correction to the II scattering model introduced by the remote screening effect is 

excluded using this approach.  Therefore in sub-threshold conditions the use of the TBE model will 

neglect a great deal of impurity scattering including the effect of remote screening.  To properly 

account for all II scattering in sub-threshold conditions the full BH approach with remote screening 

must be modelled, thereby avoiding any underestimation of the importance of II scattering on the 

mobility. 

In this work a new method has been developed to retain the accuracy of the BH approach to II 

scattering whilst controlling the behaviour in sub-threshold conditions where the scattering rate 

tends to large values.  This new method restricts the scattering rate but maintains the original 

momentum relaxation rate, and is possible through the introduction of a simple numerical cap 

developed by Dr. Jeremy Watling [111].  This numerical cap will first be discussed for the BH 

model of scattering in section 5.4.1.  In section 5.4.2 the application of this correction to the 

remotely screened models is presented.  Finally in section 5.4.3 the model is tested with the Monte 

Carlo simulator used in this work. 

5.4.1 Numerical Cap to II Scattering 

This numerical cap to the II scattering process was designed to allow use of the complete BH 

formulation in Monte Carlo simulations without the drawback of large simulations times.  Starting 

by defining the original BH scattering rate and momentum relaxation rate as BH
IIΓ  and 1 BH

mτ  

respectively. 
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Here the term in front of the theta integral has been separated into IIK  given by equation (5.66).  

The scattering angle probability, ( )P θ , has also been separated and is given by equation (5.67) 

below. 
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Now defining the conditions that the numerical correction must satisfy in equations (5.68) and 

(5.69) which state that the momentum relaxation rate of the numerically corrected scattering model 

must match the BH model but the scattering rate cannot increase beyond max
IIΓ . 

 
1 1
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m mτ τ
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Here max
IIΓ  is the fixed cap which for reasons discussed later must be at least greater than 1 2 BH

mτ .  

The solution to this problem is to introduce a minimum scattering angle to cap the scattering rate, 

minθ , and to define a correction function, ( )minG θ , to retain the momentum relaxation time. 
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The correction factor G  can be expressed through use of the defining condition of equation (5.68) 

and after some basic manipulation yields 

 ( )
( ) ( )( )
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1 cos

1 cos

P d
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P d
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−
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∫

∫
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It is clear that as min 0θ →  that this expression for G  will tend to one which is the correct limit and 

ensures that the new scattering rate will adhere to the bounding condition (a) of equation (5.69).  

This leaves the minimum scattering angle, minθ , which due to the self-consistency of the problem 

must be found numerically by a root-finding technique.  Using the condition (b) of equation (5.69), 

the minimum scattering angle can be found by solving the following equation. 
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0
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II II

II IIK G P d
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θ

θ θ θ

Γ − Γ =

Γ − =∫
 (5.73) 

This expression can be simplified by substituting in the expression for G  given by equation (5.72) 

and dividing throughout by the original BH momentum relaxation rate. 

 ( )max
min 0BH

II m Hτ θΓ − =  (5.74) 

where the expression H  is given by 
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This modification to the root-finding method by redefining the problem into a scaled maximum 

scattering rate, max BH
II mτΓ , and the function ( )minH θ  also solves a secondary problem.  Examining 

the ( )minG θ  equation of (5.72), it is clear that as minθ π→  this function will tend to infinity.  By 

re-arrangement of the final problem, it is now possible to define this limitation in more detail.  

Taking the limit ( )
min

minlim H
θ π

θ
→

 it is found that the function tends to 1
2 .  Therefore as long as the 

maximum scattering rate is max 1 2BH
II mτΓ ≥  (using equation (5.74)) the numerically corrected II 
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scattering model will provide the exact BH model at a reduced scattering rate.  This is a 

considerable reduction in the scattering rate as the momentum relaxation rate can be many orders 

of magnitude smaller than the scattering rate [61]. 

5.4.2 Numerically Capped Single/Double Interface Mo dels 

The numerically corrected approach to II scattering outlined in the previous section can be applied 

to the newly developed remotely screened impurity models.  The approach to the problem remains 

identical for the new models but the scattering angle probability, equation (5.67), for the new 

scattering models is changed appropriately.  For the single interface model the angular probability 

dependence is simply the θ -integral of the scattering rate. 

 ( )
( ) ( ) ( ) ( )( )2 2 2 2

22 2

sin
1 exp 2 2cos expI C Z I I C

C

P Z k q Z Z k
k

θθ ⊥ ⊥= + − + − − +
+

q q
q

 (5.76) 

The probability for double interface model can be obtained in the same manner. 
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 (5.77) 

Here the dblf  expression is given by the equations (5.50)-(5.53). 

For both the remotely screening II scattering models the limit of the ( )minH θ  function is identical 

to that of the BH model, that is ( )
min

1
min 2lim H

θ π
θ

→
= .  This can be understood from the behaviour of 

the coefficients of the remotely screened models which simply scale the behaviour of the II 

scattering model. 

5.4.3 Testing Numerical Capped II Scattering 

The numerical correction reduces the scattering rate by restricting the range of angles through 

which the carrier can scatter.  Introduction of a correcting coefficient ( )minG θ  allows the new 

model to retain the original momentum relaxation rate by a self-consistent method of finding minθ .  

As this method alters the dynamics of the carrier scattering process, it is important to ensure that 

the energy and velocity are being properly modelled.  This can be tested by simulating the energy- 

and velocity-field data between the BH and the new numerical II model.  With typical data for the 
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energy- and velocity-field relations given for undoped silicon, it is not possible to compare this 

model directly with experiment as II scattering is obviously negligible in such samples.  Here to 

induce II scattering the silicon has a donor doping concentration of 18 310DN cm−= . 

 

Figure 5.29: (a) Energy-field and (b) velocity-fiel d curves for bulk silicon at a donor 
concentration of 18 310DN cm−= . 

Figure 5.29 shows the energy-field relation and the velocity-field relation for the doped silicon.  

The new numerical corrected II model matches perfectly the BH model in both figures verifying 

that the energy and velocity of carriers is unaffected by numerically capping the scattering process. 

Introduction of a new II scattering model may also affect the calibration of the simulator with other 

experimental data such as with the bulk and universal mobility.  As the Monte Carlo simulator used 

in this work has been tested using Ridley’s TBE model with the doping concentration dependent 

correction discussed in section 3.3.3 for impurity scattering, it is important to ensure that the new 

model doesn’t negatively alter the calibration with experimental data. 

The bulk or doping concentration dependent mobility has been tested for silicon with the original II 

model against the new numerical II approach in plot (a) of Figure 5.30.  The doping-concentration 

dependent correction factor has not been modified for use with the new II model and remains 

identical to that used in the TBE approach discussed in section 3.3.3.  Experimental data in this plot 

is from Thurber [29]. 
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Figure 5.30: (a) Bulk mobility and (b) universal mo bility for silicon at 18 32 10AN cm−= ×  against 
experimental data at 300K. 

The new II scattering model is a slightly better fit with the experimental bulk mobility than the 

TBE model.  Between the concentrations of 15 18 310 10 cm−−  the new model is a closer match to 

experimental data. 

The above plots show that the numerical cap to the BH model doesn’t alter the characteristics of 

the BH model in the energy/velocity plots whilst improving the calibration with experimental data 

over the TBE model with the bulk mobility.  To demonstrate the validity of the new model in sub 

threshold conditions it is necessary to simulate a more advanced structure such as the MOS 

capacitor.  Simulations of the MOS capacitor are used in Monte Carlo simulations to calibrate the 

universal mobility with experimental data [28] as discussed in chapter 3.5.2.  In the device used 

here the substrate is doped to 18 32 10AN cm−= ×  with a low horizontal field of 0.5 /E kV cm= .  

The parameters for each of the scattering mechanisms are as detailed in chapter 3.3.  In plot (b) of 

Figure 5.30 the universal mobility has been plotted showing the improved behaviour of the 

numerically capped BH model with the Ridley TBE model.  Again, the new model is closer to 

experimental data than Ridley’s TBE model and demonstrates the improved mobility of using the 

BH model. 

5.5 Simulator Implementation 

The implementation of the newly developed scattering processes into the numerical Monte Carlo 

simulation follows the typical method used for most scattering mechanisms [31, 75].  To briefly 

summarise, the maximum scattering rate of each mechanism is tabulated in the scattering table 

which is used to stochastically select a mechanism at each scattering event.  Once a scattering 

mechanism is chosen, the appropriate scattering process is evaluated where the carrier is scattered.  
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Within the scattering process, an out-scattering angle is stochastically selected for the carrier 

which, for elastic scattering, conserves the electron energy. 

In this section a brief discussion of the details of the numerical method used will be given starting 

with the method for the calculation of the scattering rate in section 5.5.1.  The scattering process 

and the method used to select the scattering angle is discussed in 5.5.2.  Also discussed in section 

5.5.3 is the numerical implementation of the double interface scattering model coefficient.  

Calculation of the coefficient during simulation can incur numerical floating point overflows under 

certain conditions.  A solution has been found and this will be discussed in this final section. 

5.5.1 Scattering Rate 

The remotely-screened impurity scattering models have been developed as a correction to the 

existing BH scattering model.  Remote screening has been shown to reduce the magnitude of II 

scattering and it is known that it will yield the BH model in the appropriate limit.  Therefore in the 

numerical Monte Carlo simulation it is only necessary to tabulate the BH model for the scattering 

table as it will always be the upper limit on the scattering rate. 

For the numerical II correction the remotely screened scattering and momentum relaxation rates 

must be evaluated which will require numerical integration of the θ  integrals in equations (5.40), 

(5.41), (5.56) and (5.57).  The Romberg integration method as discussed in Numerical Recipes for 

Fortran, section 4.3 [112] is used to evaluate the integral.  It is also required to find the minimum 

scattering angle, minθ , for the numerical II correction.  This involves finding the root of equation 

(5.74) and must be found numerically.  Referring to the methods in Numerical Recipes in Fortran 

[112], the Van Wijngaarden-Dekker-Brent method of section 9.3 has been employed.  These 

numerical routines were chosen for both their simplicity in use and their efficiency as discussed in 

the Numerical Recipes book.  The precision in the results is found to be sufficiently high and of 

course can be fine-tuned to suit the requirements. 

5.5.2 Scattering Process 

The scattering process for remotely screened impurity scattering is relatively typical for II 

scattering.  There are some modifications to the standard II process which are outlined below, the 

most important of these is that of finding the carrier position.  When this scattering event is chosen 

from the scattering table, the process must first determine the carrier position in relation to the 

source and drain interfaces.  If the carrier is located in the source or drain the standard BH 

scattering process is invoked. 
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In the case that the carrier is located in the channel, there is still the possibility that it is located in a 

region that remote screening has no effect.  To combat this, the remote screening correction is only 

invoked if the carrier is within four screening lengths of the source interface in the single interface 

model and within four screening lengths of the source or drain in the double interface model.  The 

value of four is chosen such that the difference between the scattering rate of the remotely screened 

model and the BH model is within a few percent, e.g. ( )1 exp 4 0.98− − ≈ . 

For a carrier which is suitable for scattering with the remote screening correction, an out-scattering 

angle must be selected.  The out-scattering angle can be selected form the probability distribution 

function for each model given by the equations (5.76) and (5.77).  There are several methods 

available to select the scattering angle using random numbers which are discussed in appendix of 

the review paper by Jacoboni and Reggiani [75].  The BH model makes use of the direct technique 

which allows the scattering angle to be chosen directly from a single random number.  As the 

probability distribution functions for the remotely screened impurity scattering models cannot be 

integrated analytically, the direct technique is of no use.  Instead a rejection technique is chosen 

which unfortunately is less efficient than the direct technique as it requires repeated evaluation of 

the probability distribution function.  To increase the efficiency of the rejection method, the 

probability distribution function (PDF) for the scattering is scaled to values between 0 and 1.  

Thereby allowing the upper value constant for the rejection method to be selected as the PDF 

maximum and ensuring a minimum number of rejections.  To obtain the scaling factor requires 

finding the maximum value of the probability function which must be found numerically.  Using 

Brent’s method of section 10.2 in Numerical Recipes in Fortran the maximum value of this 

function can be easily evaluated. 

5.5.3 Double Interface Coefficient Calculation 

The dblf  coefficient given by equations (5.50)-(5.53) contains many exponential terms whose 

components can be very large.  This leads to numerical overflows during the numerical simulation.  

The solution to this problem is to use the approximation ( ) ( )exp 1 expx x− ≈  for large values of x .  

Within the IEEE double-precision format for floating-point numbers which is used in the numerical 

simulations in this work, the numerical precision for floating point numbers is 532±  with a range of 

30810± .  The exponential function will overflow in this system for a power of roughly 

308 ln10 709.196x = ± × = ± . 

Rather than employing an approximation to the coefficient to all values of x  or at values 709x > , 

it is best to introduce an approximation at the numerical precision.  In other words, utilise an 
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approximation on the coefficient when the power is at the limit of numerical precision rather than 

the limit on range, therefore for 53 ln 2 36.7368x = ± × = ± .  Using this value with the IEEE double-

precision system, the approximation that ( ) ( )exp 1 expx x− ≈  can be used and becomes exact when 

employed above powers of 36.7368x > . 

The dblf  coefficient given by equations (5.50)-(5.53) contains three different ( )exp 1x −  terms 

which can be simplified using the approximation discussed above.  These three terms are 

 ( )( )exp 2 1C CL K −  (5.78) 

 ( )( )exp 2( ) 1C I CL Z K− −  (5.79) 

 ( )( )1 exp 2 I CZ K−  (5.80) 

To attain the maximum accuracy it is important to approximate only the necessary terms to avoid 

overflow.  It follows that with three conditions that there are 32 8=  cases which can easily be 

tested in the final program code and the suitably simplified expression for dblf  chosen.  As an 

example, the case where all three terms can be approximated is given here.  Using the simplifying 

approximation on the equations (5.78)-(5.80), substitution back into the coefficient and re-

arranging the terms yields 

 
( ) ( ) ( ) ( ) ( )

( )( ) ( )( ) ( )( )
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dbl I C Z I I C Z C C C

Z I C I C C I C C

f Z K q Z Z K q L L K

q Z L Z L K Z L K

= + − − − + −

− − − + −
 (5.81) 

This term is greatly simplified from the complete form and interestingly has some similarity with 

the single interface coefficient, the terms within the square brackets of equation (5.40).  The first 

three terms of the above expression are identical to the single interface coefficient, which can be 

found exactly by allowing CL → ∞ . 

5.6 Conclusion 

In this chapter a new scattering rate, entitled remotely screened impurity scattering, has been 

developed for numerical device simulation within the Monte Carlo technique.  This newly 

developed scattering rate introduces polarisation charge effects induced from the highly doped 

source and drain regions on impurity scattering in the channel.  Remotely screened impurity 
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scattering has been developed in two different forms, given as either the single or double interface 

case referring to the inclusion of one or two highly doped regions respectively.  The single 

interface case allows the inclusion of a single polarisation charge on the screening of an impurity 

and the double interface case allowing multiple polarisation charges to be induced between the 

source and drain regions. 

Remote screening of IIs has been shown to increase the II-limited mobility considerably when the 

II is located close to the highly-doped source and/or drain regions.  The strength of remote 

screening becomes very strong when the impurity is located within one channel screening length of 

the highly-doped regions.  In the context of real device channel lengths, the lower the impurity 

density in the channel leading to larger channel screening lengths, the stronger the effect of remote 

screening.  In short channel length devices, taking into account remote screening from both the 

source and the drain, the II-limited mobility can be increased by up 500%. 

Due to the anisotropic nature of the scattering potential and the context of this work, a simplified 

approach has been utilised within the scattering model to reduce the complexity whilst allowing an 

analysis of the effect of remote screening.  This simplification, here entitled the Z-aligned model, 

assumes that the incoming carrier is aligned with the Z-axis of the scattering reference frame 

thereby removing the anisotropy.  Essentially the Z-aligned model assumes that the scattering 

potential is isotropic such that it can be used with the typical formulations of Monte Carlo 

scattering approach.  The simplification was shown here using an analysis of incoming carrier 

angle to lead to an average (negligible) error of at most 2%.  The average being taken over the 

domain where remote screening is effective and assuming that the incoming carrier is at the worst 

case alignment for anisotropy. 

The developed scattering mechanism has been developed to fully replace the existing II scattering 

mechanism within the channel region of a MOSFET and although possible, for computational 

efficiency a transition has been introduced to merge with the classic BH approach.  This transition 

is based on the roll-off of the polarisation charges at increasing distance from the source and drain 

interfaces.  This transitional distance corresponds to roughly four channel screening lengths from 

the interface where the effect of polarisation charges on the screening is considered to be very 

small.  Beyond this transitional distance, the II scattering model will revert to the classic BH 

approach, improving computational efficieny by removing the need to evaluate the complex remote 

screening expressions. 

The existing approach to II scattering in the MC simulator used within this work made use of 

Ridley’s TBE approach which has been shown to be non-ideal due to the removal of low screening 

density II scattering.  The TBE approach is particularly bad when modelling low effective field 
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universal mobility where the screening density is much lower than the impurity density.  To resolve 

this problem and allow a complete analysis of the effect of remote screening on II scattering, a new 

approach has been developed which allows low screening density II scattering to be modelled. 

This new approach makes use of a numerical cap to II scattering which has been introduced to 

solve the problem of diverging scattering rates with very low screening densities.  This problem 

exists with BH scattering and the approach used here for the remote screening model.  Through 

restriction of the minimum scattering angle and use of a self-consisten correction function, the 

scattering rate can be numerically capped whilst still maintaining the momentum relaxation rate.  

Thereby all II scattering can be modelled efficiently and with scattering rates which are within 

reason for MC simulation. 
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Chapter 6 Results and Discussion 

6.1 Introduction 

The objective of this PhD research is to examine the remote screening effect that the highly doped 

source and drain regions have on channel ionized impurity (II) scattering.  In Chapter 5 a scattering 

model suitable for Monte Carlo (MC) simulation has been developed which includes the remote 

screening effect.  In this chapter this newly developed model has been applied to simulations of 

two n-type MOSFET devices. 

Remote screening of channel dopants by the source and drain regions has been shown in the 

previous chapter to reduce the effect of II scattering.  This reduction in II scattering is evident close 

to the source and drain interfaces and is considered negligible at a distance greater than four 

channel screening lengths from an interface.  As the remote screening effect is heavily dependent 

on channel screening length, where larger screening lengths increase the strength of the remote 

screening, this effect will be more dominant at lower gate voltages.  Lower gate voltages of course 

lead to lower screening densities in the channel region. 

Hence, the remote screening of II scattering is expected to increase carrier transport performance 

through the channel region particularly near the source and drain interfaces.  This increase in 

performance is expected to be greater at lower gate voltages and will be reduced as the gate voltage 

and channel screening concentration is increased.  This increase in channel transport performance 

can also be described as reduction in the control that doping has on the channel.  At low gate 

voltages II scattering helps to turn the device off by reducing the channel mobility.  With the 

introduction of remote screening to the II scattering mechanism, the low gate voltage channel 

mobility may be increased leading to larger off-state currents. 

The in-house MC simulator which was discussed in Chapter 3 is utilised for the device simulations.  

The scattering parameters and models remain identical to that of the calibrated simulator in chapter 

3.3 with the exception of the II scattering model.  For these device simulations the numerically 

capped Brooks-Herring (BH) model presented in section 5.4 is employed in place of the Third-

Body Exclusion (TBE) II scattering model for the reasons discussed in the previous chapter. 

A self-consistent MC simulation is completed for each of the two devices as discussed in Chapter 

3.  The simulation parameters for the two MC device simulations completed here are kept constant 

between the simulations with a timestep of 1710t s−∆ =  and a total simulation period of 10ps (at 
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low gate voltages the simulation period is increased up to 20ps to reduce the statistical error).  A 

transient period of 2ps is allowed before statistics are gathered and the non-linear Poisson solution 

is solved every 250 timesteps or 2.5fs.  A total of 95000 particles are utilised in each MC 

simulation to represent the charge carriers. 

The first of the devices to be simulated with the remotely screened impurity scattering model is a 

bulk MOSFET device.  This bulk device was first developed and published by Toshiba in 2001 

[113, 114] and is designed as a high-performance device for sub-50nm CMOS applications.  This 

bulk MOSFET device is highly doped and has an advanced doping profile including a super-steep 

retrograde (SSR) doping profile and halo implants.  This complex channel doping profile is 

implemented to reduce the short-channel effects that occur at this scale such as threshold voltage 

roll-off and punch-through.  It has been used here to represent a typical current generation bulk 

MOSFET device which can be scaled successfully for use in future generations [115].  The 

industry roadmap, the International Technology Roadmap for Semiconductors (ITRS) 2008 update 

[1], predicts the bulk device structure to be continued in production until at least 2012. 

The second device to be simulated is a device that is proposed for future technology generations.  

This device is a Ultra-Thin Body Double-Gate (UTB DG) MOSFET device which has been 

developed as part of the PullNano European project as a template device.  The PullNano project 

used this template device to compare the a wide variety of different device simulation techniques 

used within the PullNano European consortium [116].  This device has been designed for a future 

low standby power technology (LSTP) generation and is constructed with a gate length of 22nm.  

The DG structure is currently predicted by the ITRS as the “ultimate MOSFET device” that can be 

scaled to the end of the roadmap [1]. 

The UTB DG device has highly doped source and drain region and unlike the bulk MOSFET, has a 

low doped channel which will increase channel screening lengths.  Originally developed with a 

high-κ  dielectric which has been replaced with the equivalent oxide thickness (EOT) in traditional 

silicon dioxide for the purposes of this simulation study.  This allows the additional complex 

scattering mechanisms that need to be introduced with a high-κ  dielectric to be neglected. 

In these devices the effect of remote screening from the highly doped source and drain regions is 

considered but the remote screening from the highly doped or metal gate(s) has been left to 

research beyond the thesis.  Within this work, the analysis of remote screening from the source and 

drain has been considered to be the more dominant component and has been studied first.  Carriers 

travel through the source and drain remote screening regions to contribute to conduction and 

therefore are far more likely to feel the effect of remote screening.  The effect of gate remote 
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screening is still considered an important interaction and will be studied in the future.  The gate 

remote screening effect will become stronger in future device such as the double gate device where 

gate oxides are become very thin and metal gates are commonplace. 

The structure of the chapter will begin with the bulk MOSFET in section 6.2 followed by the UTB 

DG device in section 6.3 and finishing with the conclusions of the simulations in section 6.4.  For 

the device simulation sections 6.2 & 6.3, the internal structure is repeated.  The device simulation 

sections begin with an initial presentation of the device structure and calibration, followed by a 

brief study of the expected effect of remote screening.  Next within the section, the numerical 

results of the MC simulations for the particular device are discussed in detail and finally the results 

are summarised. 

6.2 35nm Bulk Device 

The 35nm bulk MOSFET device used here has been developed to replicate a published device 

structure from Toshiba [113, 114].  This device has been chosen as it represents a realistic device 

that is used within the industry in CMOS applications.  The device structure has been reconstructed 

from published experimental data within the commercial TCAD software Sentaurus [117], and was 

completed as part of the PhD thesis of Fikru Ademu-Lema, a researcher from this group [118].  

Full details of the calibration of the commercial tools along with the extraction of the device 

structure, doping profiles and characteristics are provided in [118].  The device has since been 

applied within the research group in Drift-Diffusion (DD) simulation.  This required the device 

structure and doping profiles to exported from Sentaurus for application with the in-house DD 

code.  Another researcher from this group, Gareth Roy, completed this process and calibrated the 

DD simulator with Sentaurus as part of his PhD thesis [119]. 

Thankfully due to the construction of the Monte Carlo (MC) simulator used within this work, the 

device structure can be directly exported from the DD simulator and applied without difficulty to 

the MC simulator.  As MC calibration is completed through non-device specific experimental data 

as discussed in Chapter 3, no further calibration is required. 

This section will begin by presenting the device structure and doping profile for this bulk device 

along with the calibration data showing the match between the simulators in section 6.2.1.  

Following this in section 6.2.2 will be a brief analysis of the expected behaviour from the 

introduction of remote screening to ionized impurity scattering in simulation of this device.  Finally 

the results of the MC simulation with remote screening will be analysed in detail within section 

6.2.3. 
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6.2.1 Device Structure and Calibration 

The structure and dimensions of the bulk device used with the MC simulator are given in Figure 

6.1.  It should be noted that this diagram is not drawn to scale but provides a generic overview of 

the structure.  The remote screening plane is given in the upper-left corner of Figure 6.1 and the 

positions of the remote screening interfaces at Z=0 and Z=LC are marked at the edges of the 

source/drain regions. 

 

Figure 6.1: Structure of the bulk MOSFET device. 

The printed gate length of 35nm defines the device scale and has a metallurgical channel length, 

measured from the net doping profile, of approximately 26nm.  This device has been designed for 

the 45nm technology node and MOSFET’s of this scale are already in production.  The oxide 

thickness for this device is 1.4nm and is a silicon oxi-nitride dielectric with a dielectric constant of 

5.45rε = .  The gate in the MOSFET device of Figure 6.1 used within the DD and MC simulators, 

is a metal gate with a work-function of 3.945G eVφ = .  This deviates from the original 

specification of a poly-Si gate as discussed in the original paper [113, 114] and is shown below to 

have little effect on the calibration. 

The net doping profile is given in Figure 6.2 for this bulk device which, as mentioned earlier, was 

produced in the commercial TCAD process tool Sentaurus [117] by Fikru Ademu-Lema [118].  

Use of the commercial process tool has allowed the advanced doping profile to be accurately 

replicated from the published data of the Toshiba device. 
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Figure 6.2: Density plot of bulk MOSFET net doping with the positive scale denoting donor 
doping and the negative acceptor doping. 

In Figure 6.2 the advanced doping profile in the substrate can be clearly seen with n-type doping in 

red and p-type doping in blue.  The device has an indium doped retrograde channel profile with the 

peak density just below the source/drain wells.  This is coupled with boron Halo extensions in the 

channel to improve the punch through characteristics without heavily increasing the channel doping 

concentration.  The source and drain wells are arsenic doped, with shallow extensions to reduce 

short-channel effects and deep junctions to reduce access resistance. 

This channel doping profile has been directly imported into the DD simulation (and MC 

simulation) from Sentaurus and the technique is discussed within the PhD thesis of Gareth Roy 

[119].  It should be noted that this net doping profile figure, which is exported from Sentaurus, 

includes a poly-Si gate which has been neglected within the DD and MC simulations.  Calibration 

of the commercial TCAD software with the in-house DD simulator is completed and discussed in 

detail within Gareth Roy’s thesis and here the results are simply repeated.  Calibration is completed 

through the ID-VG curves and is shown in Figure 6.3. 
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Figure 6.3: (a) Linear and (b) semi-log I D-VG curves for the bulk MOSFET device showing the 
comparison between Sentaurus, Drift-Diffusion and M onte Carlo simulation. 

In plot (a) we see the excellent match between DD and the commercial Sentaurus software at both 

the low drain voltage, 50DV mV= , and the high drain voltage of 1DV V= .  For reference the DD 

simulation has been completed with the original poly-Si gate and the metal gate to demonstrate the 

negligible difference between the results.  Also shown is the comparison between the MC and DD 

simulation of the metal gate device at a low drain bias of 0.1DV V=  and a high drain bias of 

1DV V= .  As is expected, the MC simulation is very close to the DD results at low drain bias and 

shows an increase in the drain current at high drain bias.  This increase is due to the non-

equilibrium transport of carriers within the MC simulation. 

As MC simulation is calibrated to other more generic experimental data such as energy-/velocity-

field curves, bulk mobility and universal mobility, further calibration is not required.  Although it is 

important to ensure that the MC results are similar to the DD simulation, it is indicative to check 

that the curves match in low-field conditions.  This is easier to show in a semi-log plot of the ID-VG 

curves given in plot (b) of Figure 6.3.  In plot (b) the match of the MC with the DD solution is clear 

at the low-field conditions given for 0.1DV V= .  The solutions between DD and MC also match 

well for low gate voltages at the high drain bias where the non-linear transport effects such as 

velocity overshoot are not important. 

In both these plots for the D GI V−  curves, the range of gate voltages was restricted to a minimum 

of 0.4GV V= .  This is the case as MC is unable to accurately model the device for lower gate 

voltages as the statistical noise in the data overcomes the results. 

An important step in the use of the remote screening model for ionized impurity scattering is the 

position of the source and drain interfaces.  In a device with a realistic doping profile this can 
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become a complex decision as abrupt transitions in doping are not found.  Instead a simple estimate 

has been made based on the net doping profile. 

 

Figure 6.4: (a) Net doping profile with signed log scale and (b) net doping difference plot for 
the bulk MOSFET. 

Plot (b) of Figure 6.4 demonstrates a difference plot of the net doping profile (given by the solid 

red line).  In the channel of the bulk MOSFET the point at which the net doping is at the steepest 

gradient is chosen at the point that the source and drain interfaces are to be located.  In Figure 6.4 

the positions chosen for the source and drain interfaces are depicted by the dashed green lines, 

where the source interface is assigned at 47Z nm=  and the drain interface at 73Z nm= . 

Plot (a) of Figure 6.4 also demonstrates a signed log plot of the net doping profile which highlights 

that the point at which the net doping is at the steepest gradient coincides with the metallurgical p-n 

junction.  This strengthens the chosen positions of the source and drain interfaces as being closest 

to the original definition used in the scattering model calculation of abrupt interfaces.  

6.2.2 Analytical Estimate of Remote Screening Effec t 

Before moving to MC simulations of the bulk MOSFET device it is important to examine what 

effect remotely screened ionized impurity scattering is expected to have on the device performance.  

A simple estimate is possible by using analytical calculation of the mobility in conjunction with 

data from DD simulation of the device.  The DD data used within this mobility estimate is the same 

data used to initialise the MC simulation. 

The mobility analysis completed here is not a typical mobility analysis, which normally might be 

completed to characterise uniformly doped silicon under various electric fields.  Here the analysis 

of mobility is used to estimate the effect that the remotely screened II scattering mechanism has in 

the context of channel performance.  In a channel of the device the mobility is spatially dependent 
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on various factors such as doping density, carrier concentration and the electric field.  Such spatial 

dependence makes definition of the mobility in a MOSFET channel extremely challenging.  Here it 

must be stressed that this analysis is a simple, rough estimate for the channel mobility to allow 

greater insight into the behaviour of remote screening in a device context. 

To compute the spatially dependent mobility, a 1D profile of the channel impurity and electron 

concentration data at each mesh point is obtained from the DD simulation data.  The Kubo-

Greenwood formula [33], given by equation (5.34), allows the mobility to be calculated at each 

mesh point along this channel profile for the scattering mechanisms considered.  The total mobility 

can then be approximated through use of Mathiessen’s rule [30], equation (6.1), 

 
1 1

itot iµ µ
=∑  (6.1) 

with iµ  denoting the i-th mobility mechanism.  As mentioned above, the total mobility can be 

calculated at each mesh point along the channel.  In this particular device the mesh points are 

evenly spaced at 0.5nm intervals. 

Referring to the textbook definition of the mobility, it is defined as the proportionality of the carrier 

velocity gained by carriers in between scattering events to the electric field [15].  The average time 

between collisions is also known as the mean free time and can be expressed as the mean free path, 

thl vτ= , with the inclusion of the average thermal velocity of electrons.  The use of the thermal 

velocity can only be considered a very rough estimation which although only applies at equilibrium 

has been used in literature to define an estimated mean free path (see [120]).  Therefore, the 

mobility can be said to be a value defining the relation between carrier velocity and the electric 

field over a mean free path. 

Taking the average thermal velocity as ( ) 1
2 78 0.9907 10th B Cv k T m cm sπ= = ×  [51] and assuming 

the mesh spacing is the mean free path, the mean free time can be approximated as 

9 5 150.5 10 0.9907 10 5 10 sτ − −= × × ≈ × .  This mean free time is an order of magnitude smaller than 

has been reported in the literature [33] and highlights the problem that calculating the mobility on 

the mesh spacing interval will lead to overestimation.  To combat this problem a moving median of 

the total mobility is taken with a span calculated from an estimate of the mean free path.  A simple 

estimate for the mean free path can be obtained using the average ensemble momentum relaxation 

time, defined as equation (6.2) [121], for the mean free time between scattering events. 
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where 0f  is the equilibrium Fermi distribution and tot
mτ  is given as 
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with i
mτ  denoting the i-th scattering mechanism. 

Considering that the Kubo-Greenwood formula is valid for linear, low-field systems [122] and 

Mathiessen’s rule is valid for independent scattering mechanisms [30], the use of this approach in 

bulk MOSFETs can only be regarded as an estimate [71].  Despite all this, the purpose of this 

analysis is to evaluate the remote screening effect on channel performance and the methodology 

discussed here is considered a reasonable approach. 

The scattering mechanisms included in this mobility calculation include the acoustic and optical 

phonons along with II scattering.  Three cases are presented, each case has a different II scattering 

model which will be either the BH model discussed in section 2.3, the single interface remotely 

screened II model from section 5.2.3.1, or the double interface remotely screened II model given in 

section  5.3.3.1.  In all cases ellipsoidal, non-parabolic bands are assumed and for the purposes of a 

simple evaluation, only the first silicon band is included (the X valleys). 

For the intra-valley acoustic phonon model, the approach discussed in section 3.3.1 is used here.  

The intervalley optical phonon scattering mechanisms presented in section 3.3.2 are also used here.  

This includes the scattering between equivalent X-valleys and the f- and g-type intervalley optical 

phonons.  The material constants and transport parameters used in the phonon scattering 

calculations are those listed in Table 2 of Chapter 3. 

As mentioned earlier the DD data is used to initialise the MC simulation and for the mobility 

calculations presented here, the impurity and electron density is all that is required.  For this 

analysis, only the low drain solutions at three separate gate voltages will be analysed.  At each gate 

voltage, the average ensemble momentum relaxation rate is calculated and the mean free path is 

estimated to obtain the span of the moving median. 
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Presented in Figure 6.5 is (a) the carrier/impurity concentrations and (b) the calculated mobility for 

the different ionized impurity models with phonon scattering for 0GV V= .  The average ensemble 

momentum relaxation rate is calculated using equation (6.2) in conjunction with the sum of all 

momentum relaxing processes, equation (6.3), which for all the phonons and the BH model yields 

141.56 10tot
m sτ −= × .  Hence the estimated mean free path is given as 1.55

m
l nmτ = . 

For this the lowest gate voltage of 0GV V= , the carrier concentration is very much lower than the 

impurity density in the channel.  These are conditions where II scattering typically dominates [27] 

and will lead to a high II scattering rate. 

 

Figure 6.5: Plot of (a) the impurity and electron d ensity, and (b) the impurity and phonon 
limited mobility at a gate voltage of 0GV V=  and a drain voltage of 0.1DV V= . 

Plot (b) of Figure 6.5 shows a low mobility along the channel length consistent with the large II 

scattering for the BH case.  It is clear in this plot that the remotely screened II models cause a large 

increase in the mobility over the entire length of the channel.  At the source end of the channel both 

the single and double interface models corresponds to an increase of 196%, with an increase of 

117% at the drain end of the channel for the double interface model. 

The large increase in the channel mobility with the remotely screened models can be understood 

from the low carrier (screening) density in the channel as shown by the red line in plot (a) of Figure 

6.5.  The longer the screening length in the channel, the stronger the remote screening effect which 

reduces the momentum relaxing effect of II scattering. 
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Figure 6.6: Plot of (a) the impurity and electron d ensity, and (b) the impurity and phonon 
limited mobility at a gate voltage of 0.4GV V=  and a drain voltage of 0.1DV V= . 

At a higher gate voltage of 0.4GV V= , the average ensemble momentum relaxation rate is 

calculated as 143.27 10tot
m sτ −= ×  which gives a estimated mean free path of 3.24

m
l nmτ = .  The 

electron concentration at this gate voltage, shown in plot (a) of Figure 6.6, is almost an order of 

magnitude larger than the impurity concentration.  This will decrease the strength of the II 

scattering and the mobility will increase, clear from plot (b) which is approximately four times 

larger than that of 0GV V= . 

The increase in screening density at this higher gate voltage has the effect of reducing the strength 

of remote screening on II scattering.  The effect on the channel mobility due to the remote 

screening models is consistently smaller, on the order of 20% at the source and 7-8% at the drain.  

There is still an increase in the mid channel mobility but it is reduced to ~5% improvement. 

 

Figure 6.7: Plot of (a) the impurity and electron d ensity, and (b) the impurity and phonon 
limited mobility at a gate voltage of 1GV V=  and a drain voltage of 0.1DV V= . 

For the highest gate voltage of 1GV V=  shown in Figure 6.7, the average momentum relaxation rate 

is 145.59 10tot
m sτ −= ×  and the estimated mean free path is 5.54

m
l nmτ = .  At such a high gate 



6.2 35nm Bulk Device 

146 

voltage the mobility here is dominated by phonon scattering as the electron concentration rises to 

well above the impurity concentration.  The characteristic increase in mobility around the source 

and drain interface is still present although much less dramatic than at lower gate voltages.  At the 

source end of the channel there is a peak increase due to remote screening of 10%, a consistent 

increase of 2% along the channel and a peak increase at the drain of 4%.  This reduction in the 

effect of remote screening is expected at high gate voltages where the screening density is greatest. 

From this analysis, the effect of remote screening on the device mobility will be larger at lower 

gate voltages where the carrier concentration is near to or lower than the impurity concentration.  It 

predominantly has the largest effect in a region next to the source and/or drain interfaces, with the 

increase at the source interface less affected by the drain bias.  As the gate voltage increases, the 

screening density increases and the effectiveness of remotely screened II scattering is reduced. 

6.2.3 ID-VG Behaviour with Remote Screening 

Implementing the remotely-screened impurity scattering rates developed in Chapter 5 into the MC 

simulator will allow the effect on device performance to be thoroughly analysed.  MC simulations 

have been completed for the bulk MOSFET device using the newly developed, numerically capped 

methodology for II scattering, discussed in section 5.4. 

The analytical analysis in the previous section suggests that the remote screening effect should 

increase the channel mobility for lower gate voltages.  Ideally this increase in mobility should lead 

to an increase in the drain current at lower gate voltages with a decreasing effect as the gate voltage 

is increased.  Given this evaluation of the remote screening effect, the bulk MOSFET device has 

been simulated for various voltage points to produce an D GI V−  curve.  Such a curve can be used 

to assess the sub-threshold leakage current, the threshold voltage itself and the drive current.  As 

mentioned previously, statistical noise means that simulations must have a gate voltage of 

0.4GV V≥ . 

In Figure 6.8 the simulation data is plotted for four different cases of channel II scattering.  The 

cases are: the numerically capped BH (Num BH) model throughout the device; no II scattering in 

the channel region with Num BH in the source/drain (No Chn II); single interface Remotely 

Screened Brooks Herring scattering (RSBH Sgl) in the channel with Num BH in source/drain; 

double interface remotely screened BH scattering (RSBH Dbl) in the channel and Num BH in 

source/drain. 



6.2 35nm Bulk Device 

147 

 

Figure 6.8: (a) Linear and (b) semi-log I D-VG curves for the bulk MOSFET with remotely 
screened impurity scattering. 

The Num BH case is the baseline case with the generic II scattering model and is denoted by the 

solid black line in the two figures.  As an upper limit on the effect of II scattering in the channel, 

simulations have been completed where II scattering has been neglected for the channel region and 

is shown in the figures as the red line. 

The effect of neglecting the channel II scattering is clear, with a noticeable increase in the drain 

current.  The increase at low drain bias is an almost constant increase at each gate voltage point, 

roughly 30 /A mµ µ .  The increase in current at high drain bias increases slightly with gate voltage, 

roughly 40 /A mµ µ  at low gate voltage to 70 /A mµ µ  at high gate.  Therefore in the bulk device 

the channel impurity scattering plays a role in characterising the device current drive and sub-

threshold leakage. 

The remotely screened models are also included in the figures for the single interface (green line) 

and the double interface (blue line) cases.  The remote screening models clearly have negligible 

effect at any gate voltage.  The small increases at low gate voltage of the low drain bias curve are 

within the error bars on the plot and therefore are not conclusive.  In the following sub-sections the 

results will be analysed in more detail for the four different II cases discussed above.  Initially, 

results of the low drain case of 0.1DV V=  will be analysed followed by the high drain case of 

1DV V= . 

6.2.3.1 Low Drain Bias  

The results for 0.1DV V=  will be examined in greater detail for two gate voltage points, one at a 

low gate voltage and one at the highest gate voltage of 1GV V= .  Given that MC simulation is 

prone to statistical noise at low gate voltages it is important to examine a low gate voltage data 
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point where this noise is minimal.  Examining the error bars at low gate voltage points of 

0.4 ,0.5 ,0.6GV V V V=  in more detail in Figure 6.9 will allow the data point with minimal noise to 

be chosen. 

 

Figure 6.9: I D-VG characteristics for the bulk MOSFET with error bar s for the low gate voltage 
points at 0.1DV V= . 

The error bars in the MC simulator are calculated from the standard deviation in the mean of the 

variable, the drain current in this case, where the statistical dependence has been included through 

an estimation of the correlation time [123].  The error is calculated using the following equation 

[124] 
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where σ  is the standard deviation (2σ  the variance), N  is the number of steps in the simulation 

and kρ  is the estimated k -th- lag autocorrelation (which is dimensionless).  The sum represents an 

estimation of the autocorrelation function.  The k-th lag autocorrelation is estimated using the 

sample autocorrelation, 0k kρ γ γ=  where the autocovariance, kγ , can be estimated by (0γ  is the 

k=0 lag autocovariance, essentially the sample variance, 2σ ) 
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Here tz  represents the variable at a time step t  and z  represents the sample mean over the entire 

time series.  This method is discussed in more detail within the textbook by Box [124].  It should 

be noted that the error bars plotted are a 1σ  case representing a confidence interval (assuming a 

normal distribution of error) of roughly 68%. 

With a more detailed examination on the low gate voltage points in Figure 6.9, the remotely 

screened II scattering model appears to show a slight increase at 0.4 ,0.5GV V V=  and oddly a slight 

decrease at 0.6GV V= .  At a gate voltage of 0.4V  the statistical noise, given by the error bars, 

make this result difficult to examine and validate.  At the gate voltage point of 0.5V the remotely 

screened models are a close match, and slightly larger than the Num BH model.  The error bars at 

this data point are also small enough to be considered not to dominate the results.  It is this data 

point of 0.5GV V=  which has been chosen to analyse the low gate voltage behaviour of the II 

models. 

It is important to ensure that the remotely screened II models are operating correctly and that their 

behaviour is as expected.  This is best shown by plotting a profile of the II scattering tally taken at 

each mesh point.  That is, for each mesh square, the number of II scattering events was counted for 

each of the II scattering cases.  This II scattering tally has been plotted in Figure 6.10 with the II 

scattering tally data given in arbitrary units. 

 

Figure 6.10: Ionized impurity scattering tally alon g the channel for the bulk MOSFET at (a) 
0.5GV V=  and (b) 1GV V=  with 0.1DV V= . 

The plots in Figure 6.10 show that there is a finite number of II scattering events in the channel 

region which, away from the source and drain interfaces, is similar between the remotely screened 

and BH II models.  For the case of no channel II scattering, the tally drops off abruptly at the 

source and drain interfaces as is expected.  Also expected is the drop off in scattering events for the 

single and double interface RSBH model next to the source and drain interfaces respectively.  As 
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discussed in Chapter 4, the remotely screened II models reduces the II scattering rate located close 

to the interfaces which explains the reduced number of events seen above. 

It is also interesting to note that at the higher gate voltage, plot (b) in Figure 6.10, the II scattering 

tally is larger in the channel than the lower gate voltage case, plot (a), for all channel II scattering 

models.  This is contrary to the fact that at lower screening densities the II scattering rate will 

increase.  This can be understood from the increased carrier density at the high gate voltage 

increasing the number of scattering carriers in the channel and consequently, the number of events. 

Having established that the scattering models are operating correctly, it is now essential to examine 

what effect each model has on the carrier transport.  This is best completed by examining the 

carrier velocity and density along the channel.  Figure 6.11 presents (a) the electron velocity and 

(b) density for the gate voltage of 0.5V  and Figure 6.12 the (a) velocity and (b) density for a gate 

voltage of 1V . 

 

Figure 6.11: (a) Velocity profile and (b) electron density along channel of bulk MOSFET 
comparing standard and remotely screened ionized im purity scattering models at 0.5GV V=  

and 0.1DV V= . 

For 0.5GV V=  the electron velocity along the channel in plot (a) of Figure 6.11 increases within 

the source region and is rapidly accelerating as it crosses the source interface at 47nm.  At this 

point, the model which neglects channel II scattering (No Chn II, the red line) has an increased 

velocity which remains larger throughout the channel length and into the drain region at 73nm.  

The standard and remotely screened II scattering cases remain fairly close to each other throughout 

the channel region.  There is a slight increase in carrier velocity mid channel, around the 55-60nm 

region, with remote screening but this is very much within the region suffering from statistical 

noise. 
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Plot (b) of Figure 6.11 gives the corresponding electron density along the channel.  The electron 

density is identical between all four cases of channel II scattering in the MC simulation.  Hence, it 

can be said that the larger drain current of the No Chn II case is due simply to the increased 

electron velocity through the channel.  It also explains the mild increase of the remote screening 

models drain current as the electron velocity in plot (a) of Figure 6.11 is very slightly higher over 

the standard case.  This result is partially obscured by the noise in the data which, if we look at the 

electron density, can be understood.  Given the channel electron density of roughly 19 31 10n cm−= ×  

and multiplying this by a rough estimate of the channel volume, 

19 326 10 1 2.6 10nm nm nm cm−× × = × , corresponds to around 2-3 electrons in the channel volume.  

With so few electrons in the channel contributing to the current density, noise in the results is 

unavoidable. 

The electron velocity and density for the highest gate voltage of 1GV V=  in Figure 6.12 

demonstrates similar results for the different II scattering cases.  Here the electron velocity in the 

channel for the case without II scattering is higher than the standard case, but is not as significant 

an increase as the lower gate voltage case.  In fact, the peak velocity for this higher gate voltage is 

lower than the velocities shown in Figure 6.11 for the low gate voltage point. 

 

Figure 6.12: (a) Velocity profile and (b) electron density along channel of bulk MOSFET 
comparing standard and remotely screened ionized im purity scattering models at 1GV V=  

and 0.1DV V= . 

The relative decrease in velocity can be explained by the electron density given by plot (b) of 

Figure 6.12.  At this higher gate voltage the electron density is around 19 35 10en cm−= ×  which is 

approximately five times the number of electrons present in the channel region.  Referring to the 

simple expression for current density, which can be written 

 e dJ en v=  (6.6) 
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where e  is the electronic charge, en  the carrier density and dv  the drift velocity.  Hence, given that 

the drain current at 1GV V=  is roughly 2.5 times larger and the electron density is 5 times larger 

than the 0.5GV V=  case, the velocity at high drain need only be half the magnitude of the low drain 

results.  Examining the velocity of the low drain case given in Figure 6.11, the peak is roughly 

70.6 10 /dv cm s= ×  and for the high drain case the peak is roughly 70.3 10 /dv cm s= ×  which 

coincides with this basic theory. 

The energy profiles for the carriers are quite similar between the different channel II scattering 

cases.  As II scattering is an elastic process,  the carrier energies in the channel will not be directly 

modified by changes in this model.  Although with the reduction in II scattering, other scattering 

processes could become more prominent such as inelastic phonon scattering which potentially 

could modify the carrier energies, this has not been the case here. 

 

Figure 6.13: Energy profile along channel of bulk M OSFET comparing standard and 
remotely screened ionized impurity scattering at (a ) 0.5GV V=  and 0.1DV V=  and (b) 1GV V=  

and 0.1DV V= . 

At low drain bias the remotely screened II scattering model has little effect on the drain current.  

Considering the analytical mobility analysis completed in section 6.2.2, the remotely screened 

models was expected to increase the channel performance, particularly at the source interface.  

Therefore examination must move to the final scattering mechanism, interface roughness (IR) 

scattering which was not considered in the analytical mobility analysis.  IR scattering is found to 

have a strong performance defining factor in the bulk MOSFET device with the removal of this 

scattering mechanism from the device leads to a 52% increase in drain current at 0.5GV V= , and a 

88% increase at 1GV V= . 
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An estimate to the IR scattering mobility can be evaluated using the IR scattering model and 

estimating the effective vertical electric field, effE , in the channel of the device from the MC 

simulation results.  Taking an estimate of the effective field in the middle of the channel, 

60Z nm= , for both gate voltages gives 1.09effE MV cm≈  and 1.68effE MV cm≈  respectively.  

Using these values in the IR momentum relaxation rate, equation (6.7) below, it is possible to 

compute the corresponding mobility with the Kubo-Greenwood formula, equation (5.34). 
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here 0.35rms nm∆ =  is the RMS amplitude of surface fluctuations and 1.3eL nm=  is the correlation 

length.  This IR scattering model is the Ando model with an exponential autocorrelation function 

[58] as discussed in section 3.3.4, here presented as a momentum relaxation rate.  Numerical 

calculation gives an IR mobility of 2275IR cm Vsµ =  at 0.5GV V= , and 292IR cm Vsµ =  at 

1GV V= . 

Referring to analytical mobility analysis, the remotely screened model was expected to provide a 

peak increase of mobility at the source end of the channel of 20% at 0.4GV V=  and 10% at 

1GV V=  when considering only phonon and II scattering.  Using Mathiessen’s rule, given by 

equation (6.1), the IR mobility can be included in the estimate.  The effect of remote screening at 

48Z nm=  with IR scattering reduces from an increase of approximately 14% to 4.5% at low gate, 

and from approximately 4% to 0.5% at high gate (referring to the analytical mobility plots in 

Figure 6.6 and Figure 6.7).  It is clear from this result that the inclusion of the IR scattering greatly 

reduces the effectiveness of remote screening on II scattering. 

Further explanation for the negligible effect of remote screening can be understood from the 

regions over which remote screening has an effect on II scattering.  This region is defined by the 

channel screening length which can be evaluated using the degenerate, non-parabolic Debye-

Hückel model, equation (3.36).  Examining plot (b) of Figure 6.11 and Figure 6.12, the electron 

densities in the channel can be approximated as 19 32 10n cm−= ×  for 0.5GV V=  and 

19 35 10n cm−= ×  for 1GV V=  which gives screening lengths of 1.06C nmλ =  and 0.79C nmλ =  

respectively.  As discussed in the previous chapter (see Figure 5.16), the scattering model for 

remote screening has little effect beyond two channel screening lengths (and is negligible at 4 Cλ ) 

which leads to a region of around 1.5-2nm from each interface where remote screening can be 
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considered to have a strong effect.  This is less than 10% of the metallurgical channel length, which 

is not an appreciable portion of the channel. 

Taking a simple estimate on the number of probable scattering events in this small remote 

screening region is possible and will highlight the importance of II scattering.  For both gate 

voltages, the carrier drift velocity is around 70.25 10dv cm s= ×  which means the average carrier 

will traverse the remote screening region in approximately 72 0.25 10 80tr nm cm s fsτ ≈ × = .  

Evaluating the BH scattering rate from section 3.3.3 and the remotely screened model (RSBH) 

from section 5.2.3.1 for the conditions outlined above, yields rates for both gate voltages on the 

order of 12 15 10BH s−Γ ≈ ×  and 11 12 10RSBH s−Γ ≈ ×  respectively.  Taking these estimates for the 

scattering rate and transition time, the carriers travelling through the remotely screened region will 

have a probable number of scattering events of approximately 0.4
BH BH trn τΓ ≈ Γ =  for the BH 

model and 0.2
BH BH trn τΓ ≈ Γ =  for the RSBH model. 

Therefore, within the remote screening region (here defined to be 2 Cλ∼  from either interface), the 

BH II model has a probability of scattering which is reduced by a factor of two in the RSBH II 

model.  Although there is a factor of two reduction in probable scattering events, there are still 

relatively few events within the all important region of remote screening. 

6.2.3.2 High Drain Bias 

For the detailed analysis at high drain bias, the gate voltage points of 0.4GV V=  and 1GV V=  are 

chosen.  At the higher drain voltage of 1DV V= , the statistical noise in the MC simulation data is 

less of a factor.  Examining the error bars for the high drain D GI V−  curves in Figure 6.14, this 

reduction in noise is clear. 
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Figure 6.14: I D-VG characteristics for the bulk MOSFET with error bar s for the low gate 
voltage points at 1DV V= . 

A similar procedure is followed for the presentation and discussion of the high drain results as was 

taken in the low drain bias analysis.  The II scattering tally for both gate voltages is plotted in 

Figure 6.15.  Following this the electron velocity and density are plotted in Figure 6.16 for the 0.4V 

gate voltage and in Figure 6.17 for the higher gate voltage of 1V. 

 

Figure 6.15: Ionized impurity scattering tally alon g the channel for bulk MOSFET at (a) 
0.4GV V=  and (b) 1GV V=  with 1DV V= . 

Figure 6.15 shows that the inclusion of remote screening reduces the II scattering tally at the source 

and drain interfaces.  Also evident is the effect of the high drain voltage which biases the channel 

and reduces the II scattering tally towards the drain.  With the large bias across the channel, the 

electron concentration is very much reduced at the drain end of the channel (see Figure 6.16 and 

Figure 6.17), causing the reduction in the II scattering tally. 
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The low gate voltage electron density, plot (b) in Figure 6.16, shows that the No Chn II case 

induces a higher density at the drain end of the channel.  This is contrary to the behaviour of this 

scattering case at the lower drain voltage discussed in section 6.2.3.1, where increases in drain 

current could be explained solely by increases in channel velocity. 

 

Figure 6.16: (a) Velocity profile and (b) electron density along channel of bulk MOSFET 
comparing standard and remotely screened ionized im purity scattering models at 0.4GV V=  

and 1DV V= . 

The increase in drain current of the No Chn II scattering case, as shown in Figure 6.14, is partly 

explained by the increased electron velocity in plot (a) of Figure 6.16, but more so by the 

significant increase in electron density in plot (b).  With no II scattering in the channel region, the 

number of scattering events which can randomise the carrier trajectory will be smaller.  This 

reduction in carrier trajectory randomisation will lead to a higher velocity of carriers traversing the 

channel from source to drain thereby altering the continuity balance and affecting the electron 

density. 

 

Figure 6.17: (a) Velocity profile and (b) electron density along channel of bulk MOSFET 
comparing standard and remotely screened ionized im purity scattering models at 1GV V=  

and 1DV V= . 
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At the highest gate voltage, shown in Figure 6.17, the electron densities are a close match for all 

the models.  The velocity of the No Chn II case is marginally larger than the other models, 

especially at the peak velocity point at approximately 70nm.  At this gate voltage and drain bias, 

the carriers are passing the source interface at the saturation velocity and continue to accelerate 

along the channel, that is velocity overshoot occurs over the entire channel length.  This behaviour 

has a strong effect on controlling the drain current where the velocity at the source end of the 

channel is the dominant factor.  Closer examination of the velocity at the source interface shows 

that the No Chn II case is approximately 4% higher than the Num BH case.  Comparing drain 

currents from the linear D GI V−  curves of Figure 6.8 also shows a increase in the region of 4%. 

 

Figure 6.18: Energy profile along channel of bulk M OSFET comparing standard and 
remotely screened ionized impurity scattering at (a ) 0.4GV V=  and (b) 1GV V= , for 1DV V= . 

Again the average carrier energies along the channel length remain very close to each other 

between the different channel II scattering cases.  The average energy reached by the ensemble is 

considerably larger than the low drain bias.  Near the drain end of the channel, the average carrier 

energy is around 600meV, an almost ten-fold increase on the low drain bias energies. 

At high drain bias the remotely screened models again show negligible effect on the drain current.  

Interface roughness scattering continues to play a strong role in defining the channel performance.  

Removing IR scattering from the simulations provides a 22% increase at low gate voltage and a 

28% increase at high gate.  It is expected, from the analysis involving the analytical mobility 

estimate at low drain, that IR scattering will reduce the effectiveness of remote screening. 

The region where remote screening can be considered strong can be approximated from evaluation 

of the screening length at the source and drain end of the channel, again making use of equation 

(3.36).  Electron densities can be approximated from the plots of Figure 6.16 and Figure 6.17, but 

in this case it needs to be approximated for the both the source and drain end of the channel due to 
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the high drain bias.  For the lower gate voltage of 0.4GV V= , the electron density is approximated 

at 19 310n cm−=  for the source end and 18 310n cm−=  for the drain end.  Evaluating equation (3.36)  

yields the respective screening lengths of 1.4C nmλ =  and 4C nmλ =  for the source and drain ends 

of the channel.  The source end of the channel will have a region in the order of 2 3C nmλ ≈  where 

remote screening is strongly effective.  This corresponds well with the drop in the II scattering tally 

given in plot (a) of Figure 6.15.  This region corresponds to just over 10% of the metallurgical 

channel length, yet there is no improved performance.  At the drain end of the channel, the remote 

screening region is even larger and can be estimated at 2 8C nmλ ≈ , which is over a third of the 

channel length. 

This lack of performance improvement can be understood by examining the impurity scattering in 

the remote screening regions at the source and drain end of the channel.  Starting by looking at the 

source end of the channel first, estimates will be made to gain insight into II scattering in the 

remote screening region.  For the low gate bias, the electron velocity can be estimated from Figure 

6.16, with a drift velocity of 70.4 10dv cm s= ×  at the source interface.  Given a remote screening 

region of approximately 3nm, the transit time for the carrier through this region can be estimated 

as 73 0.4 10 74tr nm cm s fsτ ≈ × = .  The BH and RSBH scattering rates can be evaluated from 

equations (5.64) and (5.40) from Chapter 5, using the conditions outlined above, yielding rates of 

13 110BH s−Γ ≈  and 12 16 10RSBH s−Γ ≈ ×  at the source interface.  Therefore a carrier has approximately 

0.75
BH BH trn τΓ = Γ × =  and 0.42

RSBH RSBH trn τΓ = Γ × =  probable scattering events for the BH and 

RSBH models respectively, in the remote screening region at the source interface.  The relative 

number of probable II scattering events is almost a factor of two decrease in number of events, but 

due to the few II events in this small remote screening region the effect is almost negligible. 

At the drain interface the scenario is quite different due to the high drain voltage.  The drift velocity 

from Figure 6.16 is 73.3 10dv cm s= ×  at the drain interface with a corresponding transit time 

through the 8nm remote screening region of 24tr fsτ ≈ .  The average carrier energy, plotted in plot 

(a) of Figure 6.18, is around 0.45eV  which is very large.  Evaluating the BH and RSBH scattering 

rates gives 13 16 10BH s−Γ ≈ ×  and 12 19 10RSBH s−Γ ≈ ×  at the drain interface.  Estimating the probable 

number of scattering events at the drain end of the channel from this data, 1.44
BH BH trn τΓ = Γ × =  

and 0.2
RSBH RSBH trn τΓ = Γ × = , shows a greater difference between the models.  Despite this large 

difference between probable number of scattering events, there is still no noticeable change in the 

channel performance characteristics.  This negligible shift in channel performance at the drain end 

is due to the very high carrier energy.  Evaluation of the differential scattering cross section 
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highlights the dominance of small angle, forward scattering at these high carrier energies.  Such 

scattering events typically have only a small effect on the momentum relaxing effect of scattering. 

At high gate voltages, the increased screening of the high carrier density reduces the remote 

screening regions to around 1.6nm at the source interface ( 0.79C nmλ = ) and 2.5nm at the drain 

interface ( 1.25C nmλ = ).  This in conjunction with the high carrier velocity and increased energy 

greatly reduces the effectiveness of II scattering.  The number of probable scattering events for 

each electron in either the source or drain remote screening region becomes very small, on the 

order of 0.02 0.04nΓ ≈ −  per electron.  This behaviour is expected at this high gate, high drain 

condition where the carrier density and average energy are at peak levels. 

6.2.4 Summary 

The bulk MOSFET device has an advanced channel doping profile, demonstrated in Figure 6.2, 

that includes a retrograde channel with halo implants which help to reduce short-channel effects.  

The channel is very highly doped at around 18 310IN cm−≈  (with source/drain wells at 

20 310IN cm−≈ ) which will lead to a large amount of channel impurity scattering. 

In this device the source and drain interface position have been simply chosen as the point of 

steepest gradient of the net doping, shown in Figure 6.4.  This choice of position happens to 

coincide with the metallurgical p-n junction and gives the source interface at 47Z nm=  and the 

drain interface at 73Z nm= . 

Using initial DD simulation data, an analytical analysis of the phonon and impurity limited 

mobility was completed for low drain voltage conditions.  This analysis provides insight into the 

effect that remote screening has on impurity scattering in a device context, and highlights the 

expected effect of remote screening on the channel performance.  At very low gate voltages when 

the channel carrier density is low, remote screening leads to a large increase in carrier mobility.  

For 0GV V= , the analysis predicts a channel mobility increase of over 100% along the channel.  As 

the carrier density increases with gate voltage, the effect of remote screening is minimised. 

At the minimum MC simulation gate voltage of 0.4GV V= , the analytical mobility analysis 

predicts a peak increase of 20% at the source end of the channel and 10% at the drain end of the 

channel.  Due to the high screening, this region of increased mobility is restricted to a few 

important nanometre’s at each interface.  At the highest gate voltage simulated, 1GV V= , the effect 
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of remote screening is very small with a maximum increase of 10% at the source interface and a 

consistent 2% increase along the channel length. 

MC simulation of the bulk MOSFET with the remotely screened II model demonstrated results that 

are much less dramatic than predicted with the analytical mobility analysis.  The simulation of the 

newly developed II scattering model proved to offer negligible difference to the carrier transport in 

the channel region.  Results are also obtained which removes the II scattering entirely from the 

channel to obtain an upper limit.  These results show that in the bulk MOSFET, the II scattering 

process has a role in determining the channel performance and drain current. 

Not considered in the analytical mobility estimate is the effect of IR scattering on the channel 

performance, which is found to strongly affect the bulk MOSFET device.  At low drain bias, 

removal of IR scattering from the device increases the drain current by up to 88% at a gate voltage 

of 1GV V= .  A simple estimate for the IR limited mobility is made at low drain voltage to evaluate 

the effect on the remote screening.  Through use of Mathiessen’s rule, the IR limited mobility was 

added to the analytical mobility and found to reduce the effectiveness of remote screening from 

14% to 4.5% at low gate and from 4% to 0.5% at high gate.  IR scattering is shown from this 

simple estimate to be a dominant mechanism in the bulk MOSFET device and reduces any 

appreciable effect of remote screening. 

The region in a device channel where remote screening is effective was also analysed and found to 

be around 2-3nm at the source end, but could be as much as 8nm at the drain end of the channel.  

For the metallurgical channel length of 26nm in this device, these remote screening regions can be 

an appreciable portion of the channel length.  Examining the II scattering in these remote screening 

regions, it was shown that for the source end of the channel, probable II scattering events are quite 

low.  Typically there is a probability of less than one II scattering event per carrier travelling 

through the remote screening region. 

At low drain bias, the carriers have approximately 0.4
BH

nΓ ≈  probable scattering events with the 

BH model which halves to 0.2
RSBH

nΓ ≈  with remote screening.  At high drain bias and low gate 

voltage conditions, the probability of II scattering is slightly higher with 0.75
BH

nΓ ≈  for BH which 

drops to 0.42
RSBH

nΓ ≈ .  Despite the consistent drop with the use of remote screening of II 

scattering, the number of events is too low to affect the channel performance characteristics. 

At the drain end of the channel for high drain voltages, where the remote screening region is large 

and can be up to 8nm, the carrier energy is so large that II scattering has little effect.  For high 
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energy carriers, the scattering is dominated by small angle forward scattering events which have 

little momentum relaxing effect on the carriers. 

6.3 22nm Double-Gate Device 

The ultra-thin body double gate (UTB DG) device has been developed as a template device for the 

PullNano European research project.  It was developed originally to compare device simulations 

amongst a consortium of European research groups [116].  Here this device has been reconstructed 

and calibrated using the commercial Sentaurus software to the original specification, then exported 

for use with the in-house DD simulator.  As discussed before, the MC simulation uses the DD 

solution output as a starting point and requires no further calibration. 

Repeating a similar analysis for the UTB DG device as for the bulk MOSFET, the section will start 

with a brief discussion of the device structure and the calibration between simulations in section 

6.3.1.  Using initial DD data, an analytical calculation of the carrier mobility with and without 

remote screening has been completed with discussion in section 6.3.2.  Section 6.3.3 presents and 

examines the MC simulation data for the device with the newly developed II scattering 

mechanisms. 

6.3.1 Device Structure and Calibration 

The UTB DG device has been developed and optimised for low standby power (LSTP) applications 

for the 22nm technology node.  The device has a 22nm metal gate (a work function of 4.8G eVφ = ) 

with a 1.1nm silicon-dioxide insulator layer and a 10nm silicon body thickness as depicted in 

Figure 6.19. The remote screening plane definition is given in the lower-left corner of Figure 6.19 

and the positions of the remote screening interfaces at Z=0 and Z=LC are marked. 

 

Figure 6.19: Structure of the Ultra-Thin-Body Doubl e-Gate device. 
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This device was originally developed with a high-κ dielectric with effective oxide thickness (EOT) 

of 1.1nm but this has been disregarded here as the high-κ dielectric requires additional scattering 

mechanisms for accurate simulation.  Instead, the oxide layer is replaced with silicon dioxide of 

1.1nm so that the electrostatic nature of the insulator is retained without the additional overhead of 

dealing with the advanced gate stack of a high-κ dielectric. 

The net doping profile for the structure is shown in Figure 6.20.  The DG device has a low doped p-

type channel with 15 31.2 10AN cm−= ×  and highly doped source/drain regions at 

19 35.2 10DN cm−= × . 

 

Figure 6.20: Net doping concentration for the Ultra -Thin-Body Double-Gate device. 

The source and drain doping is a constant doping level from the edges of the device up to 50.5nm 

and 84.5nm respectively, with a Gaussian function roll-off of the doping into the channel region.  

This gives a gate underlap of 6nm from the region of constant doping of the source and drain to the 

metal gate. 

 

Figure 6.21: (a) Linear and (b) semi-log I D-VG calibration plots showing the comparison 
between Sentaurus, Drift-Diffusion and Monte Carlo simulation. 
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The DD simulation was calibrated against the commercial TCAD tool, Sentaurus [117] at both low 

and high drain voltages of 0.1 ,1DV V V= .  The calibrated D GI V−  characteristics for both drain 

voltages are shown in Figure 6.21 along with the MC simulation output.  The MC simulation is a 

close match with the DD simulation when non-equilibrium carrier transport effects are minimal, 

that is at low drain and/or low gate voltage.  The effects of non-equilibrium transport are clear for 

the MC results for high drain at high gate voltage. 

The source and drain interfaces must also be selected for the remotely screened II models and again 

the choice of interface position is taken here solely through the use of the difference plot of the net 

doping profile, plot (b) of Figure 6.22. 

 

Figure 6.22: (a) Net doping profile with signed log  scale and (b) net doping difference plot 
for the Ultra-Thin-Body Double-Gate device. 

The position where the net doping is at its maximum gradient, highlighted by the difference plot, is 

chosen here as the position of the interface and is considered to be closest to the original definition 

of the interface as the point where the doping density changes abruptly from source/drain to 

channel concentrations.  The source and drain interfaces, depicted in Figure 6.22 as the green 

dashed lines, are at 53.5nm and 81.5nm giving a novel channel length of around 28nm. 

6.3.2 Analytical Estimate of Remote Screening Effec t 

An estimate of the remote screening effect on carrier transport through the channel of the DG 

device can be calculated using the Kubo-Greenwood formula for mobility [33].  The spatially 

varying channel mobility can be estimated using the momentum relaxation rates for phonons and 

BH and RSBH II models along with DD simulation data for impurity and electron concentrations. 

The method used to obtain the channel mobility here is identical to that explained and utilised in 

section 6.2.2.  To recap, Mathiessen’s rule is used to sum the individual scattering mechanisms 
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along with an ensemble averaged momentum relaxation length to take a moving median of the 

spatially varying total mobility.  The phonon relaxation rates presented in section 3.3.2 are used to 

calculate phonon mobilities independently.  The II scattering models are calculated from 

expressions given in the previous chapter, Chapter 5, and include the BH, single interface RSBH 

and double interface RSBH models.  The analysis has been completed for three gate voltages, 

{ }0 ,0.4 ,1GV V V V= , at the low drain voltage of 0.1DV V= . 

In Figure 6.23 the plots of (a) electron and impurity concentration and (b) phonon and impurity 

limited mobility are given for the lowest gate voltage of 0GV V= .  The ensemble average 

momentum relaxation rate is calculated using equation (6.2) to be 145.6 10tot
m sτ −≈ × , giving a 

mean free path as 5.6
m

l nmτ ≃ . 

The effect of the minimal impurity density in the channel region is shown in plot (b) of Figure 6.23, 

where the mobility is entirely phonon controlled between roughly 63-72nm.  It is within this 

phonon controlled region that impurity concentration is just above 15 310IN cm−= .  At this low 

density the II limited mobility is extremely high and can be considered to have negligible effect.  

For example, for an impurity density of 15 310IN cm−=  with an electron concentration of 

10 310en cm−= , the impurity limited mobility is roughly 2150 000 /II cm Vsµ ≈ . 

 

Figure 6.23: Plot of (a) the impurity and electron density, and (b) the impurity limited 
mobility for the UTB DG MOSFET at a gate voltage of  0GV V=  and a drain voltage of 

0.1DV V= . 

II scattering in the channel has only an effect within the region of the Gaussian roll-off of the 

source/drain doping at the edges of the channel.  This region of II scattering controlled transport is 

clearly shown in plot (b) of Figure 6.23.  The II controlled region constitutes approximately a 9nm 

region at each end of the channel where remote screening affects the channel performance. 
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At this low gate voltage where the electron density in the channel is very low, remote screening has 

a large effect in the mobility.  At the source end of the channel both remotely screened models 

provide in the region of a 150% increase in mobility, and around 200% for the double interface 

model at the drain end of the channel. 

The analytical mobility estimate for the gate voltage 0.4GV V= , is plotted in Figure 6.24.  The 

average ensemble momentum relaxation rate is calculated as 146.2 10tot
m sτ = ×  giving a mean free 

path of 6.1
m

l nmτ = . 

 

Figure 6.24: Plot of (a) the impurity and electron density, and (b) the impurity limited 
mobility for the UTB DG MOSFET at a gate voltage of  0.4GV V=  and a drain voltage of 

0.1DV V= . 

Increasing the gate voltage to 0.4GV V= , the electron concentration in the channel of the device 

has increased by several orders of magnitude, as plotted in (a) of Figure 6.24.  This increase in the 

screening concentration leads to a reduction in the strength of II scattering to control the mobility, 

as shown in the mobility, plot (b).  This of course has the roll on effect of reducing the strength of 

remote screening on the II scattering.  Despite the large increase in the screening within the 

channel, there is a peak increase of channel mobility of approximately 40% at the source and 60% 

at the drain for the single and double interface models, respectively. 

Increasing the gate voltage to the highest simulated, 1GV V= , increases further the channel electron 

concentration which is now several orders of magnitude bigger than the impurity concentration.  At 

this gate voltage, the ensemble momentum relaxation rate is found to be 147.8 10tot
m sτ = × , 

leading to a mean free path of 7.8
m

l nmτ = . 
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Figure 6.25: Plot of (a) the impurity and electron density, and (b) the impurity limited 
mobility for the UTB DG MOSFET at a gate voltage of  1GV V=  and a drain voltage of 

0.1DV V= . 

The increase in screening will further reduce the effectiveness of remote screening in increasing the 

channel mobility, which is expected at high gate voltages.  Although the effect of remote screening 

is minimised, it still leads to approximately a 40% increase in the mobility at either end of the 

channel (drain increase due to double interface model). 

Summarising this simple analysis of the phonon and impurity limited mobility for the DG device, it 

is clear that the low doped channel region is significantly less controlled by impurity scattering 

than in the case of a typical bulk MOSFET.  Impurity scattering plays a negligible role within the 

9nm metallurgical p-n junction region in the centre of the device, although there is still significant 

II scattering surrounding the source and drain interfaces.  Remote screening is shown to have a 

very large increase at the low gate voltage of 0GV V= , in the region of 150-200%.  This large 

increase in mobility at low gate voltages is predicted to increase the sub-threshold leakage of this 

MOSFET device.  As the device as been developed to fulfil the LSTP requirements, the effect of 

remote screening could play a strongly detrimental role in the device performance. 

As the screening strength increases, the strength of remote screening reduces, as is expected.  At 

0.4GV V= , the new II scattering model is expected to increase the channel mobility near the 

interfaces by up to 40% at the source and 60% at the drain.  Even at the highest gate voltage, there 

is an expected 40% increase in channel mobility within the region of II controlled mobility near the 

interfaces. 

6.3.3 ID-VG Behaviour with Remote Screening 

The UTB DG device has been simulated in the MC code with four different channel II scattering 

cases, identical to the bulk MOSFET simulation discussed previously in this chapter.  These cases 
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are: Num BH – numerically capped Brooks-Herring scattering in the channel region as presented in 

section 5.4.1; No Chn II – all channel II scattering is removed; RSBH Sgl – remotely screened BH 

model for the single (source) interface case; RSBH Dbl – remotely screened BH model for the 

double interface case. 

Simulations have been completed to obtain the D GI V−  characteristics for a range of gate voltages 

of {0.4 ,...,1 }GV V V=  and drain conditions 0.1 ,1DV V V= .  The restricted range of gate voltages is 

again due to the statistical noise in MC simulation at low gate voltages, when the majority carrier 

concentration in the channel region becomes extremely low.  Here Figure 6.26 present the results 

of the MC simulations for all four II scattering cases with error bars at each data point giving the 

statistical error due to noise. 

 

Figure 6.26: (a) Linear and (b) semi-log I D-VG characteristics for the UTB DG MOSFET with 
remotely screened impurity scattering. 

Examining the linear plot of the D GI V−  characteristics of plot (a) in Figure 6.26 show that II 

scattering plays a very minor role in determining the channel performance.  Simulations with the 

channel II scattering turned off show that there is a very small increase in the drain current at high 

gate voltages.  This increase in drain current corresponds approximately to a maximum increase of 

around 20 30 /A mµ µ−  at the peak gate voltage. 

The logarithmic plot of the drain current, plot (b) of Figure 6.26, further demonstrates the lack of 

impurity scattering in controlling the device performance.  At the lowest gate voltage point, 

0.4GV V= , the statistical noise is dominant and examination of the results are not reliable due to 

this.  At the higher voltage of 0.5GV V= , the noise is still considerable but the results seem to 

corroborate the minimal affect of impurity scattering.  These results strongly demonstrate that 

impurity scattering in the channel region of this particular device is very much a negligible effect in 

determining the device performance.  Remote screening clearly has negligible effect in defining the 
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drain current.  A brief analysis of several data points at low and high drain will be completed in the 

following sub-sections to confirm the behaviour seen in the D GI V−  plots. 

6.3.3.1 Low Drain Bias 

The low drain voltage analysis will examine two gate voltage points to confirm the behaviour 

shown in the D GI V−  characteristics.  A low gate voltage point will be chosen below with the aid 

of the error bars in the D GI V−  plots, Figure 6.27.  The high gate voltage will be the 1GV V=  point 

which can be selected without error bar consideration as statistical noise is not a factor at high 

fields. 

 

Figure 6.27: Semi-log plot of the low gate voltage ID-VG characteristics with error bars for the 
UTB DG MOSFET at 0.1DV V= . 

Figure 6.27 gives the low gate voltage drain currents in more detail with their corresponding error 

bars.  The error bars at the lowest gate voltage of 0.4GV V=  are particularly large and have been 

clipped to fit them on the plot, hence the arrow as the bottom cap.  Considering the magnitude of 

the noise at this voltage this point is not analysed here.  At the higher gate voltage of 0.5GV V=  the 

error bars are still quite large despite the corroboration between the drain currents, and for this 

reason it also will not be analysed here.  Instead, the data point at 0.6GV V=  will be analysed given 

that results appear stable, given the small error bars. 
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Figure 6.28: Ionized impurity scattering tally alon g the channel for UTB DG MOSFET at (a) 
0.6GV V=  and (b) 1GV V=  with 0.1DV V= . 

Starting by looking at the II scattering tally for both gate voltage points in Figure 6.28 (note that the 

II scattering tally is given with arbitrary units).  Here the II scattering tally is extremely low in the 

centre of the channel of the device which, referring to Figure 6.22, is expected as the dopant 

density is very low.  In both plot (a) and (b) of Figure 6.28 the effect of remote screening on the II 

scattering tally is evident.  There is a distinct reduction in the number of events at both of the 

interfaces, considering either the single or double interface model.  This is consistent with the 

expectation of a reduced scattering rate with remotely screened II scattering. 

Given the close match between the drain currents at low gate voltages of each of the II cases 

considered here (Figure 6.26), the velocities and carrier densities are expected to be almost 

identical between the models.  At high gate voltages only the case that removes channel II 

scattering, No Chn II, is expected to demonstrates any shift in velocity/carrier density. 

 

Figure 6.29: (a) Velocity profile and (b) electron density along channel of UTB DG device 
with 0.6GV V=  and 0.1DV V= . 
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The electron velocity and density for the low gate voltage point are shown in Figure 6.29.  As 

expected, given that the drain currents match, the carrier densities and velocities are very close 

along the length of the channel for all four cases. 

 

Figure 6.30: (a) Velocity profile and (b) electron density along channel of UTB DG device 
with 1GV V=  and 0.1DV V= . 

At a gate voltage of 1GV V=  the electron densities of plot (b), Figure 6.30 are identical.  As 

expected the No Chn II case demonstrates an increase in electron velocity over an appreciable 

length of the channel, approximately a 5% increase in velocity over the Num BH case.  This 

explains the increase in drain current at this data point displayed in the drain current plot of Figure 

6.26. 

 

Figure 6.31: Energy profile along channel of UTB DG  device with (a) 0.6GV V=  and (b) 

1GV V=  for 0.1DV V= . 

The UTB DG device shows negligible difference with the inclusion of remotely screened impurity 

scattering at low drain bias.  This is explained by the low doped channel, which due to the small 

impurity concentration has minimal channel II scattering.  This is highlighted by the very small 
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shift in drain current when channel II scattering is removed from the simulation.  The small amount 

of impurity scattering at the source and drain end of the channel account for the modest increase in 

drain current at very high gate voltage.  Of course, with high gate voltages the screening density in 

the channel is large and remote screening is minimised.  For 1GV V=  the electron density in the 

channel can be approximated at 19 310n cm−=  and evaluating equation (3.36) gives a screening 

length of 0.92C nmλ = . 

The role of IR scattering has been studied in this device and is found to have a small effect in 

defining the channel performance.  Removal of IR scattering in the device causes around a 2-4% 

increase in drain current.  This lack of IR scattering is an advantage of the UTB DG device as the 

channel enters the volume inversion regime [125].  That is, for silicon body thicknesses between 

3 20Sinm t nm< < , the channel region becomes almost fully inverted at high gate voltage causing 

the conducting channel to be located in the middle of the body.  This is known to reduce the 

influence of surface scattering events including IR scattering [125-127]. 

6.3.3.2 High Drain Bias 

With the high drain bias the statistical noise in the results is reduced considerably, as shown in 

Figure 6.32.  Again, analysis of the results will be undertaken for two gate voltages.  The low gate 

voltage point will be 0.5GV V=  and the high gate voltage at 1GV V= .  Here the results are expected 

to be close to each other except for the No Chn II case at high gate voltages, similar to the low 

drain results. 

 

Figure 6.32: Semi-log plot of the low gate voltage ID-VG characteristics with error bars for the 
UTB DG MOSFET at 1DV V= . 
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The II scattering tally is plotted for both gate voltage points in Figure 6.33.  The distinctive 

behaviour of the remote screening models is evident at the source interface where the II scattering 

tally drops abruptly at the interface and at the drain in the high gate voltage plot of (b).  At the drain 

interface of the low gate voltage in plot (a), this distinctive behaviour is not present and all the II 

scattering cases drop off rapidly. 

A closer examination of plot (a) in Figure 6.33 shows that the numerically capped BH model (Num 

BH) matches with the remotely screened single interface model (RSBH Sgl) as is expected at the 

drain interface.  The remotely screened double interface model (RSBH Dbl) follows the no channel 

II scattering case (No Chn II) which demonstrates that the II scattering at the drain is being 

correctly remotely screened. 

 

Figure 6.33: Ionized impurity scattering tally alon g the channel for UTB DG MOSFET at (a) 
0.5GV V=  and (b) 1GV V=  with 1DV V= . 

This change in behaviour at the drain in plot (a) of Figure 6.33 is obviously due to a reduction in II 

scattering at the drain end of the channel.  Given the high drain bias of 1DV V= , the channel 

inversion layer will be biased such that the carrier density at the drain end of the channel will be 

lower.  Combined with the increased carrier energy due to the drain bias, plot (a) of Figure 6.36, 

this results in a reduced II scattering tally at the drain end of the channel.  This behaviour is also 

shown to a lesser effect in plot (b) of Figure 6.33. 

To confirm this justification a simple calculation can be completed, through use of equation (6.8), 

to obtain an estimate on the number of carriers present in the drain end of the channel. 

 vol
e en V n= ×  (6.8) 
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Here vol
en  is the number of electrons in a volume given by V  with an electron density of en .  

Referring to Figure 6.19 the volume of the channel is given as 

19 334 10 1 3.4 10V nm nm nm cm−= × × = ×  (for the MC simulations completed here the device width 

is 1nm), but considering only the drain end of the channel this becomes 19 31.7 10 cm−× .  The 

electron density is given in plot (b) of Figure 6.34 and for the drain end of the channel will be 

estimated at 16 31.5 10 cm−× .  Evaluating equation (6.8) gives an electron number of 32.55 10−×  in 

the drain end of the channel which relates to roughly 4 superparticles (1 superparticle

45.7325 10−≈ ×  electrons). 

 

Figure 6.34: (a) Velocity profile and (b) electron density profile along channel of UTB DG 
device with 0.5GV V=  and 1DV V= . 

The velocities of each of the four channel II scattering cases for the low gate voltage, plot (a) of 

Figure 6.34, are comparable given the relatively few electrons (or superparticles) that travel 

through the channel region.  At the high gate voltage shown in Figure 6.35, the velocities are again 

very close to each other with the No Chn II case being the largest by a small margin.  This 

increased velocity explains the drain current increase shown in Figure 6.26. 
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Figure 6.35: (a) Velocity profile and (b) electron density profile along channel of UTB DG 
device with 1GV V=  and 1DV V= . 

Plot (a) of Figure 6.35 shows that the electrons are above the saturation velocity over a large 

proportion of the channel.  This phenomenon, which is a feature of non-linear transport in MC 

simulations, provides an increase in drain current beyond the velocity saturated value [15].  An 

interesting point demonstrated in these figures is that the peak velocity and energy of the carriers at 

low gate voltage is much larger than that at high gate voltage.  This can be explained through the 

density of carriers that traverse the channel at low or high gate voltage. 

 

Figure 6.36: Energy profile along channel of UTB DG  device with (a) 0.5GV V=  and (b) 

1GV V=  for 1DV V= . 

At low gate voltage the potential barrier in the channel between the source and drain is high and 

only high energy carriers are able to make it into the channel.  These high energy carriers that make 

it into the channel will encounter a large field accelerating them into the drain.  It is these few 

carriers from the high energy tail of the carrier distribution that are being averaged to obtain the 

velocity plot in Figure 6.34.  This is corroborated by the high average energy of the carriers in the 

channel shown in plot (a) of Figure 6.36. 
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In the high gate voltage case the potential barrier is much lower and a larger fraction of the carrier 

distribution can traverse the channel to the drain.  As carriers with lower energy are able to 

contribute to the drain current, the average energy in the channel will decrease along with the 

average carrier velocity. 

At high drain the overall effect of remote screening is negligible which again is due to the low 

impurity density in the channel.  The effect of the impurity scattering in the small regions at each of 

the channel provide only a small factor in defining channel performance at high gate voltage.  Due 

to the new models inherent dependence on low screening, the high gate voltage cancels the effect 

that remote screening has in this device. 

6.3.4 Summary 

The 22nm template UTB DG device was originally developed as a template device to allow a 

comparison to be made between a large set of different simulators from the European device 

modelling community [116].  The device structure consists of a 10nm thick silicon body with a 

1.1nm EOT oxide layer, here modified to be silicon dioxide from the original specification of a 

high-κ  material. 

With highly doped source and drain contact regions and a low doped channel region, the definition 

of source and drain interface positions for the remotely screened models is again chosen as the 

point of steepest gradient in the roll-off of the source and drain doping into the channel.  This gives 

the source and drain interfaces at positions of Z=53.5nm and Z=81.5nm respectively. 

An initial estimate on the effect of remote screening has been completed by analytically computing 

the phonon and II limited mobility from initial DD simulation.  This examination showed that II 

scattering in the centre of the channel plays little role in determining the channel performance 

where dopant concentration is at its lowest.  Channel II scattering has a controlling factor in the 

device performance near the interfaces where the source and drain doping is still evident and 

coincides with the region that remote screening is active.  Within these small regions at the 

interfaces, the analysis demonstrated that remote screening will increase the channel mobility 

between 40-60% at gate voltages greater than 0.4GV V= . 

The MC simulation of this device includes simulation of four different cases of channel II 

scattering that include the BH scattering model, no channel II scattering and the remotely screened 

models.  Simulations were completed to produce D GI V−  curves for low and high drain biases for 

each of the four cases.  The drain current curves established that channel II scattering in this device 
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is not a strongly controlling factor on the device performance.  This is made particularly clear by 

the No Chn II case which removes all II scattering from the channel and had little effect on the 

drain current.  Given this conclusion, the new remote screening models for II scattering have an 

understandably negligible effect on the device characteristics. 

6.4 Conclusion 

This chapter has taken the newly developed remote screening II scattering models presented in 

Chapter 5 and applied them in a fully self-consistent MC device simulator.  The objective of this 

simulation study is to analyse what effect that remote screening has in the modern MOSFETs 

where the distance between the highly-doped source and drain regions is small.  The MC device 

simulator has been employed to simulate two distinct MOSFET devices, one with a highly doped 

channel typical of the current generation MOSFETs and the second device a future generation 

MOSFET with low doping in the channel. 

The first device is a bulk MOSFET which is forecast to continue in the industrial roadmap until at 

least 2012 [1].  Originally developed by Toshiba as a future device for the high-performance 

technology [113, 114], it has been reconstructed from published data by fellow researchers in the 

Device Modelling Group [118].  This device has been constructed with a metal gate, a 1.4nm thick 

silicon oxi-nitride insulator and a highly doped, advanced channel doping profile design.  

Calibration of the bulk MOSFET is completed between the industrial TCAD tool, Sentaurus [117], 

the in-house DD simulator and the MC simulator. 

Although MC simulation incorporates non-equilibrium transport that is not present in DD, it suffers 

from the problems of statistical noise inherent to such a stochastical particle based approach.  Due 

to this limitation, the bulk MOSFET device can only be accurately simulated for gate voltages 

greater than 0.4GV V= .  This is an important restriction to analysis of remotely screened II 

scattering as very low screening conditions, where remote screening is expected to be strongest,  

cannot be simulated.  This is a limitation of using the MC methodology which can only be worked 

around by moving to a different simulation approach that doesn’t suffer from stochastical noise. 

An important step in the modelling of remote screening is the choice of position for the interfaces 

between the source and the drain.  Abrupt doping transitions don’t occur in realistic doping profiles 

and therefore in this work the gradient of the doping profile is used to select the position.  The point 

at which the doping is changing most rapidly between the highly doped source/drain and the 

channel is selected as the remote screening interface. 



6.4 Conclusion 

177 

An analytical analysis of the phonon and II limited mobility has been completed using the Kubo-

Greenwood formula in conjunction with channel profile data from the DD solution of the bulk 

MOSFET.  This analysis allows the effect of remote screening to be estimated at low screening 

conditions (low gate voltages) and provides a picture of the region that remote screening is 

effective in the device.  The analysis highlights that remote screening will have a larger effect at 

low gate voltages where the screening density in the channel is low, as is expected.  As the gate 

voltage is increased, so does the screening density and the effect of remotely screened II scattering 

is reduced to smaller regions at the edge of the interfaces.  At very low gate voltages in particular, 

the II and phonon limited mobility in the channel region is increased by almost a factor of two. 

Simulations of the bulk MOSFET in the MC simulator have been completed with and without the 

remotely screening impurity scattering, and also for the case of no impurity scattering in the 

channel.  Results without II scattering in the channel of the bulk MOSFET show that in this device 

that the II scattering mechanism plays an important role in defining the channel performance.  The 

drain current is substantially increased when no channel II scattering is included.  However when 

the remotely screened II model is included, the simulation shows negligible effect at any particular 

gate voltage or drain bias. 

This lack of improvement in channel performance with remotely screened II scattering can be 

explained partly by the strong role that interface roughness scattering has in defining channel 

performance.  The analytical estimate using DD data for the phonon and II limited mobility 

suggested that remote screening may have up to a 20% increase in channel mobility within the 

remote screening regions at either end of the channel.  It was discussed that the inclusion of IR 

scattering reduces this analytical estimate of the channel mobility to less than 5%.  Secondly, the 

region over which remote screening is effective in the bulk MOSFET device is small with few II 

scattering events.  Typically, the number of scattering events that occur within the remote screening 

region was found to be less than one per carrier.  Therefore, the combination of strong IR scattering 

with a small region where remote screeing is effective leads to a negligible effect for the bulk 

MOSFET. 

The second device to be simulated was the PullNano UTB DG device which is expected to be the 

device that allows scaling to the end of the industrial roadmap [1].  The UTB DG device has an low 

doped channel region with a 10nm thick silicon body and 1.1nm oxide layer.  A difference plot of 

the net doping profile has again been used to find the source and drain interface positions. 

An analytical estimate on the channel mobility has been completed and demonstrates the effect that 

remote screening has on the channel performance.  At the lowest gate voltage, remote screening is 

shown to have an increase in channel mobility within the remote screening region at either end of 
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the channel.  Predictably, as the gate voltage increases the effect of remote screening is reduced.  

At the minimum MC simulation gate voltage, 0.4GV V= , it was shown that remote screening can 

increase the mobility close to the interfaces by up to 60% and at the highest gate voltage this is 

reduced slightly to 40%.  Despite this increase the remote screening region is limited to a small 

regions at either end of the channel with the centre of the channel dominated by phonon scattering. 

MC simulation of the device with the remote screening models doesn’t provide the expected 

increase in channel performance as was estimated by the mobility analysis.  It is shown that 

impurity scattering in the channel plays an almost negligible role in defining the channel 

performance.  This lack of II scattering effect can be understood from the channel doping profile, 

which is very low, on the order of 15 310IN cm−≈ .  At this low doping, II scattering is negligible 

and the phonon scattering is dominant. 

In conclusion, it has been shown by extensive simulation of two distinct MOSFET devices, that 

remote screening plays no role in defining the channel performance in these devices at the 

simulated gate voltages.  In the bulk device, the dominant IR scattering combined with high 

screening strongly reduces the effect of remote screening.  With the UTB DG device, it is 

explained by the low dopant density in the channel removing the dependence of II scattering in the 

channel characteristics. 

In sub-threshold conditions the remote screening model has been shown to have a considerable 

effect on channel mobility and is predicted to increase the leakage current when the device is off (at 

low gate voltages).  The restriction introduced by MC simulations on the allowable gate voltages 

means that simulations cannot be completed to examine this effect on leakage current.  Further 

work is required to study the effect of this new scattering model at lower gate voltages using a 

different simulation methodology which doesn’t suffer from the statistical noise of MC. 
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Chapter 7 Conclusions 

The aim of this work was to develop and test an advanced Coulomb scattering model that includes 

the effect of the highly-doped source and drain regions on channel ionized impurity (II) scattering 

for the simulation of nanoscale MOSFET devices.  The highly-doped source and drain regions 

introduce additional screening of the channel IIs through polarisation charge effects, the aptly 

named remote screening within this work, which as channel lengths are scaled in MOSFETs will 

increase and strongly affect II scattering in the channel region. 

Here scattering potentials are developed which  represent a single channel II located next to one or 

two highly doped regions, the source and drain, for the single and double interface cases 

respectively.  An exact analytical solution to the Linearized Thomas-Fermi (LTF) form of 

Poisson’s equation for the system has been calculated and is shown to be an excellent match with a 

fully self-consistent numerical Poisson solution.  These scattering potentials include the important 

polarisation charge effects induced from the source and drain regions which increase the screening 

of channel IIs, hence the descriptive title of remote screening. 

It has also been demonstrated that the remote screening scattering potential will return to the 

Brooks-Herring (BH) scattering potential in the limit that the II is located a large distance from the 

highly-doped regions.  This is an important limit to obtain as it ensures that the newly developed 

scattering potential not only returns to the classic solution, but that it will also work alongside 

existing II scattering approaches.  This is of importance for integration into Monte Carlo (MC) 

simulation. 

For the purposes of this work which is to undertake a study on the strength of remote screening in 

MOSFET devices using a MC simulation methodology, a simplified model of remote screening has 

been employed.  The simplified model is obtained using the aptly named strong-screening limit 

which assumes the source and drain regions become metallic-like.  This simplification is shown to 

be almost exact for IIs located greater than 1nm from an interface and represents a worst-case 

scenario for remote-screening interactions.  This worst-case scenario providing an upper limit on 

the remote screening interaction and is suitable for the context of this work. 

Utilising the strongly screened scattering potentials, a MC suitable scattering model has been 

calculated using Fermi’s Golden Rule approach.  Again, as the context of this work is to explore 

the strength of remote screening in device simulations, an assumption on the scattering potential 

has been made to reduce the complexity of the problem.  The remotely screened scattering potential 
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is anisotropic in nature but the typical approach to the calculation of scattering rates in MC is for 

isotropic scattering potentials.  In this work the scattering potential is assumed to be isotropic such 

that the scattering carrier always approaches the II aligned with the Z-axis of the scattering frame.  

Use of the Z-aligned simplification is shown to lead to a less than 2% error over the region where 

remote screening is effective. 

An analysis of the remotely screened scattering models has shown that remote screening reduces 

the strength of II scattering near to the highly-doped source and drain regions.  For impurities 

within 1-2 channel screening lengths of either interface, the effect of remote screening can reduce 

the scattering rate by up to several orders of magnitude.  As channel lengths shrink, the remote 

screening effect induced from the source and drain increases, particularly when the channel 

screening length becomes larger than the channel length.  In such cases, the II limited mobility can 

increase up to 300% over the standard model for channel lengths less than 20nm. 

The existing approach for II scattering utilised in the MC simulation in this work made use of 

Ridley’s Third-Body Exclusion (TBE) model which is far from ideal as it neglects the vast majority 

of II scattering events when screening densities are low.  This becomes a distinct problem for the 

accurate modelling of MOSFET devices as channel screening densities can be several orders of 

magnitude lower than II density leading to an underestimation of the scattering effect.  In this work 

a new approach has been developed which allows the full complement of II scattering to be 

modelled.  This new approach utilises a self-consistent model that allows the scattering rate to be 

capped whilst maintaining the full momentum relaxation rate.  This allows II scattering to be fully 

modelled improving the low screening density simulations whilst ensuring that the simulation 

analysis of remote screening is accurate. 

The remotely screened II scattering model has been used to complete a simulation study of two 

MOSFET devices which are chosen to represent a the state of the art technology and possible 

future technology.  The first device being a bulk MOSFET that is typical of those currently in 

production with high channel doping, and the second device is an low channel doped Ultra-Thin 

Body Double Gate (UTB DG) MOSFET that is a proposed structure for future technological 

generations.  These two devices are chosen to represent the trends in channel doping design, that is 

the highly doped bulk MOSFET or the relatively undoped channel design of the DG design. 

The bulk MOSFET device has a strong dependence on II scattering which was demonstrated by the 

clear improvement in drain current when this scattering mechanism was removed from the channel 

region.  An analytical mobility analysis due to phonon and II scattering suggested that remote 

screening in this device will greatly improve the channel mobility at low gate voltages.  This 

increase in low gate voltage channel mobility would lead to a detrimental affect on device 
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performance by increasing the off-state current of the MOSFET.  MC simulation of the device with 

remote screening of channel IIs demonstrated that for gate voltages above 0.4V, the effect is 

negligible.  This negligible result was shown to be due to a combination of the high Interface 

Roughness (IR) scattering in the device which damped any effect of remote screening and the small 

remote screening region at the respective gate voltages. 

The UTB DG MOSFET device was demonstrated to have a minimal dependence on II scattering 

due to the low doping in the channel region.  The analytical analysis highlighted the phonon 

scattering dominance in the channel which was reinforced by the minimal shift in drain current 

with the removal of channel II scattering.  Again, MC analysis of remote screening has a negligible 

effect on the device performance which can be understood from the lack of II scattering in the 

channel. 

To conclude, the remote screening for II scattering has been shown for higher gate voltages to have 

negligible effect in current generation and low channel doped devices.  Remote screening of 

channel IIs is expected to have a large effect at very low gate voltages where screening densities 

are low.  Unfortunately the MC simulation approach is not suitable to simulate such conditions and 

future work should aim to simulate such low screening conditions perhaps through a direct solution 

of the Boltzmann equation using spherical harmonics expansions [73, 128, 129]. 

7.1 Future Work 

The study of remote screening with sub-threshold MOSFET conditions should be completed to 

fully understand the role of this effect.  This will involve moving to a simulation methodology that 

doesn’t suffer from statistical noise.  An approach which is suitable is that of the spherical 

harmonics expansion of the distribution function enabling a deterministic solution of the 

Boltzmann Transport Equation [73, 128, 129].  This would allow the low gate voltage simulations 

of MOSFETs to be completed whilst including the remote screening scattering mechanism. 

Further studies of MOSFET devices with smaller dimensions are required to confirm the effect of 

remote screening and could be completed using the simulator and remote screening scattering 

approach developed here.  Example devices include the final scaled devices of each particular 

architecture such as a 14nm physical channel length bulk MOSFET, a 10.7nm physical channel 

length Silicon-On-Insulator MOSFET and a 8.1nm physical channel length DG device [1].  This 

would provide a comprehensive study on the effect of remote screening in nanoscale devices by 

extending the study to the end of roadmap scaled devices. 



7.1 Future Work 

182 

The full anisotropic scattering potential should also be studied in simulations of MOSFETs which 

would allow the full scattering effect of the remotely screened II to be analysed.  There are several 

approaches which could be used including the radial wave expansion of the Schrödinger equation 

[105] or perhaps use of a linear Boltzmann expansion to obtain scattering expressions [108].  It 

would also be beneficial for an exact description of the remote screening effect to remove the 

strong-screening limit from the scattering models.  In this work an upper limit or worst-case 

condition for remote screening was sufficient to be able to examine the effect but could be 

extended to provide a more detailed study.  This may be required for the ultra-small channel length 

devices predicted for the end of the ITRS roadmap. 

Finally, the remote screening of channel ionized impurities from the gate region should also be 

studied.  The gate contact in future generation MOSFETs will become a metal and in conjunction 

with oxide thickness scaling, will lead to strong remote screening of channel IIs.  This interaction 

will be evident along the entire length of the channel, extending the remote screening regions to a 

larger portion of the device and possibly leading to a stronger effect.  In particular, this should be 

studied for possible future multiple gate MOSFET architectures where the channel can be 

surrounded by metallic gate regions. 
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Appendix A Single Interface Potential Calculation 

This appendix will provide a detailed outline of the single interface potential calculation discussed 

in section 4.2.1.  An exact solution to the potential of a single ionized impurity located close to 

highly-doped region has been obtained by solving Poisson’s equation.  This is a complex problem 

which has been simplified through use of the linear Thomas-Fermi (LTF) approximation to allow 

an analytical solution to be found. 

A.1  Linearized Poisson’s Equation 

Starting with the LTF form of the Poisson equation, equations (4.4)-(4.5) from section 4.2.1 which 

define the system depicted in Figure 4.1. 

 2 2 0  for Z<0S S Skϕ ϕ∇ − =  (A.1) 

 2 2

0

( )  for Z>0C C C
Si

Q
kϕ ϕ δ

ε ε
∇ − = − − Ir r  (A.2) 

where Sϕ  is the potential in the source region, 0Z < , and Cϕ  is the potential in the channel, 0Z >

.  The 1
S Sk λ −=  and 1

C Ck λ−=  terms represent the inverse screening lengths in the source and drain 

regions respectively and the ionized impurity is located at position Ir  in the channel region. 

As discussed in section 4.2.1, the potential solution will use cylindrical co-ordinates throughout.  

For this model we neglect any radial dependence on impurity position by assuming the impurity is 

located at the origin of the radial axis.  This reduces the complexity of the model by allowing radial 

symmetry around the Z  axis.  Expanding the Dirac delta function of equation (A.2) in cylindrical 

co-ordinates, assuming that 0=IR  

 2 2

0

( )
( )  for Z>0

2C C C I
Si

Q
k Z Z

R

δϕ ϕ δ
πε ε

∇ − = − −R
 (A.3) 

Considering the channel potential initially, the solution will involve finding the general 

(homogenous) solution and the particular solution.  This can be written as 

 G P
C C Cϕ ϕ ϕ= +  (A.4) 
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where G
Cϕ  is the general solution and PCϕ  the particular.  The general solution for the channel 

potential can be found by allowing IZ Z≠  for which the RHS of equation (A.3) becomes 

 2 2 0C C Ckϕ ϕ∇ − =  (A.5) 

This is identical to the source term given by equation (A.1) and will only differ in the behaviour of 

the solution. 

In Figure 7.1 the expected behaviour of the Z components of the potential is given.  For the general 

solutions the expected behaviour is depicted by the red curves and the particular solution by the 

blue curves.  The behaviour is defined by the boundary condition at large distance, Z , which is 

presented in more detail later in this appendix. 

 

Figure 7.1: Expected behaviour of the Z dependent c omponent of the potentials. 

For the general solution, the potential is expected to decrease with distance from the source-

channel interface.  The particular solution will model the point charge with an increasing potential 

moving towards the impurity location at IZ Z= . 

A.2  General Solution 

First solving the general (homogeneous) solution for the source and channel regions given by 

equations (A.1) and (A.5).  Generalising between the source and channel forms, the equation can 

be written as 

 2 2 0x x xkϕ ϕ∇ − =  (A.6) 
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with x  denoting either the source (S) and channel (C ) region.  Using the separation of variables 

technique [96] the potential solution can be expressed in cylindrical co-ordinates using a known 

form. 

 ( ) ( ) ( ),R Z F R Zϕ ζ=  (A.7) 

Here due to the cylindrical symmetry of this problem around the Z  axis there will be no θ  

dependence in the solution and this component is a constant.  Substituting this form of the potential 

back into equation (A.6) gives 

 2 2 0xF k Fζ ζ∇ − =  (A.8) 

Expanding the Laplacian operator in cylindrical co-ordinates, again neglecting the term involving 

θ  as there is no dependence on this in the solution gives 

 
2

2
2

1
0xR F k F

R R R Z
ζ ζ ∂ ∂ ∂  + − =  ∂ ∂ ∂  

 (A.9) 

Rearranging this solution into separable components 

 

2

2

2

2

1 1

1 1

F F
R F

R R R R R R

F F
F

FR R F R

ζ ζ

ζ

  ∂ ∂ ∂ ∂  = +   ∂ ∂ ∂ ∂    

 ∂ ∂= + ∂ ∂ 

 (A.10) 

 
2 2

2 2

1
F F

Z Z

ζζ ζ
ζ

   ∂ ∂=   ∂ ∂   
 (A.11) 

Substituting these back into equation (A.9) and dividing throughout by Fζ  gives 

 
2 2

2
2 2

1 1 1
0x

F F
k

FR R F R Z

ζ
ζ

∂ ∂ ∂+ + − =
∂ ∂ ∂

 (A.12) 

Having now got a form of the equation in terms of R  and Z  only, the equation can be separated 

introducing a separation constant 2k− . 
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2

2
2

1 1F F
k

FR R F R

∂ ∂+ = −
∂ ∂

 (A.13) 

 
2

2 2
2

1
xk k

Z

ζ
ζ

∂ − =
∂

 (A.14) 

Rearranging these equations 

 
2

2 2 2
2

0
F F

R R k R F
R R

∂ ∂+ + =
∂ ∂

 (A.15) 

 ( )
2

2 2
2 xk k

Z

ζ ζ∂ = +
∂

 (A.16) 

A general form of Bessel’s differential equation [96] 

 ( )
2

2 2 2 2
2

0
y y

k n yρ ρ ρ
ρ ρ

∂ ∂+ + − =
∂ ∂

 (A.17) 

and its solution is 

 ( ) ( )n ny AJ k BN kρ ρ= +  (A.18) 

Using this general form gives a solution to equation (A.15) of 

 ( ) ( )0 0F AJ kR BN kR= +  (A.19) 

Solving the Z  dependence from (A.16) which takes the form of a standard exponential solution 

 ( ) ( )2 2 2 2exp expx xZ k k Z k kζ = − + + +  (A.20) 

Substituting these solutions back into equation (A.7) using linear superposition of Bessel functions 

to obtain the final potential gives 

 ( ) ( ) ( )( ) ( ) ( )( )2 2 2 2
0 0

0

 exp expx x xdk a k AJ kR BN kR Z k k Z k kϕ
∞

= + − + + +∫  (A.21) 
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Boundary conditions (BC) define the exact form of this solution for the source and channel regions.  

For the Bessel solution of the radial dependence, ( )F kR , the solution must be finite as 0kR→ .  

This means the Neumann function coefficient must be zero, 0B = , to satisfy this BC where the 

coefficient A will be solved later. 

 ( )0F AJ kR=  (A.22) 

The expected behaviour of the Z  dependence of this solution is given in Figure 7.1, which is 

defined from the BC that the potential must tend to zero as Z → ±∞ .  Therefore for the source 

region ( ) 0Zζ → −∞ =  and for the channel region must be ( ) 0Zζ → ∞ = .  This yields the 

following solution for the source and channel 

 ( ) ( )2 2exp   for Z <0S SZ Z k kζ = +  (A.23) 

 ( ) ( )2 2exp   for Z >0C CZ Z k kζ = − +  (A.24) 

The general solution to equation (A.6) can now be defined for the source and channel regions.  

Substituting equations (A.22)-(A.24) into equation (A.21) gives 

 ( ) ( ) ( )2 2
0

0

exp   for Z < 0S S SdkA k J kR Z k kϕ
∞

= +∫  (A.25) 

for the source region and 

 ( ) ( ) ( )2 2
0

0

exp   for Z > 0G
C C CdkA k J kR Z k kϕ

∞

= − +∫  (A.26) 

for the channel region where the coefficients ( ) ( )S S SA k a k A=  and ( ) ( )C C CA k a k A=  include the 

coefficient of the radial Bessel function and are yet to be obtained. 

A.3  Particular Solution 

The particular solution for the channel potential can be found by solving equation (A.3).  

Simplifying the RHS of the potential equation using the following theorem, which can be found 

using equation (6.512.8) of Gradshteyn & Rhyzhiks book [130], 
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( ) ( )0

0

 
R

dk kJ kR
R

δ ∞

= ∫  (A.27) 

the equation becomes 

 ( )2 2
0

0 0

 ( )
2C C C I

Si

Q
k dk kJ kR Z Zϕ ϕ δ

πε ε

∞

∇ − = − −∫  (A.28) 

Using a known form of the solution from the separation of variables method and using the general 

solution for the R  dependence, the potential can be defined as 

 ( ) ( )0

0

 P
C dk kJ kR Zϕ ζ

∞

= ∫  (A.29) 

Taking the LHS of equation (A.28) separately, expanding the Laplacian operator and substituting 

equation (A.29) gives 

 ( ) ( )
2

2
02

0

1
 CR k dk kJ kR Z

R R R Z
ζ

∞ ∂ ∂ ∂  + −  ∂ ∂ ∂  
∫  (A.30) 

Here we neglect the angular term as before due to the cylindrical symmetry around the Z  axis.  

Attempting to factorise equation (A.30) into separable components yields 

 
( ) ( ) ( )

2 2
0 0 2

02 2
0

1
 C

J kR J kR
dk k J kR k

R R R Z

ζζ ζ
∞   ∂ ∂  ∂+ + −     ∂ ∂ ∂    
∫  (A.31) 

To separate the variables of this equation the terms must be independent of each other.  The 

problem here is that we cannot factor out the Bessel function due to the first term within the square 

brackets.  Thankfully this problem has been solved earlier.  Referring to equation (A.15) of the 

general solution which can be re-written here, assuming that equation (A.22) still holds, as 

 
( ) ( ) ( )

2
0 0 2

02

1J kR J kR
k J kR

R R R

∂ ∂
+ = −

∂ ∂
 (A.32) 

Using this solution in equation (A.31) and factorising gives 
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 ( ) ( )
2

2 2
0 2

0

  Cdk k J kR k k
Z

ζ ζ
∞  ∂ − + ∂ 
∫  (A.33) 

Substituting this back into equation (A.28) yields 

 ( ) ( ) ( )
2

2 2
0 02

00 0

    ( )
2C I

Si

Q
dk k J kR k k dk k J kR Z Z

Z

ζ ζ δ
πε ε

∞ ∞ ∂ −− + = − ∂ 
∫ ∫  (A.34) 

Simplifying this equation by removing the common terms, 

 ( )
2

2 2
2

0

( ) 0
2C I

Si

Q
k k Z Z

Z

ζ ζ δ
πε ε

∂ − + + − =
∂

 (A.35) 

which provides a form which is dependent on Z  only.  The solution to this equation is challenging 

due to the singularity of the Dirac delta function at IZ Z= .  To work around this it is necessary to 

take limits around IZ , allowing the delta function to be integrated.  Integrating around IZ Z η= −  

to IZ Z η= +  for 0η →  

 ( )
2

2 2
2

0

( ) 0
2

I I I

I I I

Z Z Z

C I
SiZ Z Z

Q
dZ k k dZ Z Z dZ

Z

η η η

η η η

ζ ζ δ
πε ε

+ + +

− − −

∂ − + + − =
∂∫ ∫ ∫  (A.36) 

The first integral can be completed to give 

 
( ) ( ) ( )2

2

II

I I

ZZ
I I

Z Z

Z Z Z
dZ

Z Z Z Z

ηη

η η

ζ ζ η ζ ηζ
++

− −

∂  ∂ + ∂ −∂ = = − ∂ ∂ ∂ ∂ 
∫  (A.37) 

The second integral can be completed using the limit on η  

 
( ) ( ) ( )

( ) ( )

2 2 2 2

2 2

0
lim 2 0

I
I

I

I

Z
Z

C C Z
Z

C I

k k dZ k k Z

k k Z

η
η

η
η

η

ζ ζ

ηζ

+
+

−
−

→

− + = − +   

≈ − + =

∫
 (A.38) 

Taking the third integral and using ( ) 1
b

I

a

Z Z dZδ − =∫  when Ia Z b< <  
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0

0 0

( ) lim
2 2

I

I

Z

I
Si SiZ

Q Q
Z Z dZ

η

η
η

δ
πε ε πε ε

+

→
−

− =∫  (A.39) 

Rewriting equation (A.36) with the result of these integrals 

 
( ) ( )

0

  for Z Z
2

I I
I

Si

Z Z Q

Z Z

ζ η ζ η
πε ε

∂ + ∂ −
− = − ≈

∂ ∂
 (A.40) 

For a correct solution of the particular case it is important to ensure that the solution is consistent 

for both IZ Z≈  and IZ Z≠ .  Looking at equation (A.35) for the case of IZ Z≠  

 ( )
2

2 2
2

  for Z ZC Ik k
Z

ζ ζ∂ = + ≠
∂

 (A.41) 

which the solution is already known (see equation (A.20)).  This result for IZ Z≈ , equation (A.40), 

suggests that there is a difference in the gradients of the solution around the impurity position, IZ .  

Referring to the expected behaviour of the solution depicted in Figure 7.1, the potential is expected 

to change gradient around IZ .  The boundary conditions state that for IZ Z<  the potential must 

tend to zero at Z → −∞  and for IZ Z>  the potential must tend to zero at Z → ∞ .  Using the 

solution to equation (A.41) with the BC’s, the solution to the Z  dependence of the particular 

solution can be found as 

 ( ) ( )( )2 2exp   for Z < Za I C IZ Z Z k kζ α= − +  (A.42) 

 ( ) ( )( )2 2exp   for Z > Zb I C IZ Z Z k kζ β= − − +  (A.43) 

To ensure continuity of the solution, the gradients of the potential must match at IZ Z= .  Setting 

equations (A.42)-(A.43) equal to each other and solving for the coefficients gives 

 

( ) ( )

( ) ( )2 2 2 2

0

exp exp

lim   

a I b I

C C

Z Z

k k k k

η

ζ η ζ η

α η β η

α β
→

− = +

− + = − +

=

 (A.44) 
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Using equation (A.40) to find a value for α  by calculating the gradients of equations (A.42) & 

(A.43). 

 
( ) ( )2 2 2 2 2 2

0
exp lima I

C C C

d Z
k k k k k k

dZ η

ζ η
α η α

→

−
= + − + = +  (A.45) 

 
( ) ( )2 2 2 2 2 2

0
exp limb I

C C C

d Z
k k k k k k

dZ η

ζ η
α η α

→

+
= − + − + = − +  (A.46) 

Substituting this into equation (A.40) yields the value for the α  coefficient. 

 

2 2 2 2

0

2 2
0

2

1

4

C C
Si

Si C

Q
k k k k

Q

k k

α α
πε ε

α
πε ε

− + − + = −

=
+

 (A.47) 

Completing the solution for the ζ  function 

 ( ) ( )2 2

2 2
0

1
exp

4 I C
Si C

Q
Z Z Z k k

k k
ζ

πε ε
= − − +

+
 (A.48) 

and substituting this into equation (A.29) will provide the final particular solution of the channel 

potential. 

 ( ) ( )2 2
0 2 2

0 0

 exp
4

P
C I C

Si C

Q k
dk J kR Z Z k k

k k
ϕ

πε ε

∞

= − − +
+∫  (A.49) 

The channel potential can then be found by substituting the general and particular solutions into 

equation (A.4) to give 

 

( ) ( ) ( ){
( )

2 2
0

0

2 2

2 2
0

 exp

exp
4

C C C

I C
Si C

dk J kR A k Z k k

Q k
Z Z k k

k k

ϕ

πε ε

∞

= − +

+ − − + 
+ 

∫
 (A.50) 
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A.4  Coefficients 

The coefficients SA  and CA  of equations (A.25) and (A.50) can be found by defining the boundary 

conditions at 0Z = , the source – channel interface.  The static electric field boundary conditions 

apply at this interface, defining that the electric field must be continuous perpendicular to the 

interface and that the normal electric flux be continuous across the interface. 

 
( ) ( )0 0S CZ Zϕ ϕ∂ = ∂ =

=
∂ ∂R R

 (A.51) 

 
( ) ( )

0 0

0 0S C
Si Si

Z Z

Z Z

ϕ ϕ
ε ε ε ε

∂ = ∂ =
=

∂ ∂
 (A.52) 

Finding the derivate of the potentials for the first boundary condition 

 ( )( )1

0

S
SdkA kJ kR

R

ϕ ∞∂
= −

∂ ∫  (A.53) 

 ( )( ) ( )2 2
1 2 2

00

exp
4

C
C I C

Si C

Q k
dk kJ kR A Z k k

R k k

ϕ
πε ε

∞  ∂  = − + − + ∂ +  
∫  (A.54) 

Setting equation (A.53) equal to equation (A.54) and re-arranging gives 

 ( )2 2

2 2
0

exp
4S C I C

Si C

Q k
A A Z k k

k kπε ε
− = − +

+
 (A.55) 

The derivates for the second boundary condition, equation (A.52) are 

 ( ) 2 2
0

0

S
S SdkA J kR k k

Z

ϕ ∞∂
= +

∂ ∫  (A.56) 

 ( ) ( ) ( )2 2 2 2
0

00

exp
4

C
C C I C

Si

Q
dkJ kR A k k k Z k k

Z

ϕ
πε ε

∞  ∂ = − + + − + ∂  
∫  (A.57) 

Substituting these into the boundary condition and after some manipulation yields 
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 ( )
2 2

2 2

2 2 2 2
0

exp
4

S
S C I C

SiC C

k k Q k
A A Z k k

k k k kπε ε
+

+ = − +
+ +

 (A.58) 

It is now a matter of solving the two simultaneous equations to find the values for the coefficients.  

The source coefficient can be easily found by adding equation (A.55) to (A.58) giving 

 ( )2 2

2 2 2 2
0

2
exp

4S I C
Si C S

Q k
A Z k k

k k k kπε ε
= − +

+ + +
 (A.59) 

To find the channel coefficient, the two equations must be subtracted 

 ( )
2 2 2 2

2 2

2 2 2 2 2 2
0

exp
4

C S
C I C

Si C C S

k k k kQ k
A Z k k

k k k k k kπε ε
+ − +

= − +
+ + + +

 (A.60) 

A.5  Single Interface Solution 

Substituting the coefficients back into the solutions for the potential gives the final form for the 

source and channel potentials. 

 ( ) ( ) ( )0
0 0

2
exp exp

4S I C S
Si C S

Q k
dkJ kR Z K ZK

K K
ϕ

πε ε

∞

= −
+∫  (A.61) 

 

( ) ( ){

( )( )

0
0 0

 exp
4

                       exp

C I C
Si C

C S
I C

C S

Q k
dk J kR Z Z K

K

K K
Z Z K

K K

ϕ
πε ε

∞

= − −

−
+ − + + 

∫
 (A.62) 

where 

 2 2
C CK k k= +  (A.63) 

 2 2
S SK k k= +  (A.64) 



A.5 Single Interface Solution 

194 

Remembering here that the variable k  is purely a separation constant introduced in the solution of 

the partial differential equation and should not be confused with the carrier wave vector variable of 

the same letter. 
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Appendix B Double Interface Potential Calculation 

In this appendix the double interface potential solution will be presented in more detail than is 

provided in chapter 4.3.1.  Due to the similarities in the procedure and the solution, the previous 

appendix will be referenced for part of the solution method.  Here a potential solution is found for a 

single ionized impurity between two highly-doped regions. 

B.1  Linearized Poisson’s Equation 

Starting with Poisson’s equation for the source, channel and drain regions which has been 

linearized using the Thomas-Fermi approximation in section 4.3.1 

 2 2 0  for Z<0S S Skϕ ϕ∇ − =  (B.1) 

 2 2

0

( )  for 0<Z<LC C C C
Si

Q
kϕ ϕ δ

ε ε
∇ − = − − Ir r  (B.2) 

 2 2 0  for Z>LD D D Ckϕ ϕ∇ − =  (B.3) 

Expanding the Dirac delta function of equation (B.2) into cylindrical co-ordinates, allowing 

0=IR  

 2 2

0

( )
( )  for Z>0

2C C C I
Si

Q
k Z Z

R

δϕ ϕ δ
πε ε

∇ − = − −R
 (B.4) 

The solution of the channel potential will involve solving a general and a particular solution.  In 

this model there will be two general solutions corresponding to the regions on either side of the 

point charge in the channel.  Expressing the channel potential in this form as 

 1 2G P G
C C C Cϕ ϕ ϕ ϕ= + +  (B.5) 

where the superscripts 1G  denote the source end of the channel, 2G  the drain end of the channel 

and P  the particular solution of the point charge.  The first step is to find the general solution 

which for the channel potential is found by allowing the right-hand side (RHS) of equation (B.4) to 
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equal zero.  As this form is identical to that of the source and drain regions a universal form can be 

written 

 2 2 0x x xkϕ ϕ∇ − =  (B.6) 

where x  denotes either the source (S), channel (C ), or drain (D ) region.  This solution is found 

for the single interface case in appendix section A.3 and can be used here, again using the same 

radial boundary condition for the Bessel function. 

 ( ) ( ) ( ) ( )( )2 2 2 2
0

0

 exp expx x xdk a k J kR Z k k Z k kϕ
∞

= − + + +∫  (B.7) 

Although this is a universal form for the solution each region has different behaviour as depicted in 

Figure 7.2.  This figure represents the expected behaviour of the general (red curve) and particular 

(blue curve) Z  dependent components of the potential in each of the regions. 

 

Figure 7.2: Expected behaviour of the Z  component of the potential with the source region 
0Z < , the drain region CZ L>  and the impurity at IZ Z= . 

From Figure 7.2 the behaviour of the Z dependence of the potential in the source and drain is 

depicted by the red curve in the 0Z <  and CZ L>  regions respectively.  Applying the boundary 

condition such that the potential tends to zero at large Z  distance ,lim 0S
Z

ϕ
→−∞

=  and lim 0D
Z

ϕ
→∞

= , 

gives the following solutions for the source and drain. 

 ( ) ( ) ( )2 2
0

0

exp   for Z< 0S S SdkA k J kR Z k kϕ
∞

= +∫  (B.8) 

 ( ) ( ) ( )2 2
0

0

exp   for Z >0D D DdkA k J kR Z k kϕ
∞

= − +∫  (B.9) 
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For the channel potential there are two general solutions describing the regions on either side of the 

point charge.  Referring to the red curves in Figure 7.2 the Z behaviour is expected to decrease 

from the source interface and increase towards the drain interface.  This corresponds with the 

limiting boundary condition that the potential must tend to zero at large distances, 1

0
lim 0G

C
Z

ϕ =
≫

 and 

2lim 0
C

G
CZ L

ϕ =
≪

.  Applying these boundary conditions to equation (B.7) provides the general solutions 

for the channel potential. 

 ( ) ( ) ( )1 2 2
0

0

 expG
C C Cdk kA k J kR Z k kϕ

∞

= − +∫  (B.10) 

 ( ) ( ) ( )2 2 2
0

0

 expG
C C Cdk kB k J kR Z k kϕ

∞

= +∫  (B.11) 

The particular solution for the double interface model is identical to that of the single interface 

model allowing the solution to be repeated here.  Using equation (A.49) 

 ( ) ( )2 2
0 2 2

0 0

 exp
4

P
C I C

Si C

Q k
dk J kR Z Z k k

k k
ϕ

πε ε

∞

= − − +
+∫  (B.12) 

Substituting the general and particular solutions for the channel potential into equation (B.5) and 

re-arranging gives the following form. 

 

( ) ( )
( ) ( ) ( ) ( ) ( ){ }

2 2
0 2 2

0 0

2 2 2 2
0

0

 exp
4

exp exp

C I C
Si C

C C C C

Q k
dk J kR Z Z k k

k k

dkJ kR A k Z k k B k Z k k

ϕ
πε ε

∞

∞

= − − +
+

+ − + + +

∫

∫

 (B.13) 

B.2  Solution of Coefficients 

To find the coefficients for the source, drain and channel potentials given by equations (B.8), (B.9) 

and (B.13) respectively, the electric field boundary conditions must be applied at both the 0Z =  

and CZ L=  interfaces.  The boundary conditions for the source interface are 

 
( ) ( )0 0S CZ Zϕ ϕ∂ = ∂ =

=
∂ ∂R R

 (B.14) 
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( ) ( )

0 0

0 0S C
Si Si

Z Z

Z Z

ϕ ϕ
ε ε ε ε

∂ = ∂ =
=

∂ ∂
 (B.15) 

and for the drain interface are 

 
( ) ( )C C D CZ L Z Lϕ ϕ∂ = ∂ =

=
∂ ∂R R

 (B.16) 

 
( ) ( )

0 0
C C D C

Si Si

Z L Z L

Z Z

ϕ ϕ
ε ε ε ε

∂ = ∂ =
=

∂ ∂
 (B.17) 

Using the following expressions allow the potentials to be simplified.  These simplified terms will 

be used throughout the remainder of this appendix. 

 2 2
C CK k k= +  (B.18) 

 2 2
S SK k k= +  (B.19) 

 2 2
D DK k k= +  (B.20) 

Starting with the boundary condition at the source-channel interface and finding the derivates of the 

potentials: 

 
( ) ( )( )1

0

0
 S

S

Z
dk A kJ kR

R

ϕ ∞∂ =
= −

∂ ∫  (B.21) 

 
( ) ( )( ) ( )1

0 0

0
 exp

4
C

I C C C
Si C

Z Q k
dk kJ kR Z K A B

R K

ϕ
πε ε

∞∂ =  
= − − + + ∂  

∫  (B.22) 

Setting these derivatives equal to one another and re-arranging gives 

 ( )
0

exp
4S C C I C

Si C

Q k
A A B Z K

Kπε ε
− − = −  (B.23) 

For the second source-channel interface electric field BC: 
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( ) ( )0

0

0S
S S

Z
dkA J kR K

Z

ϕ ∞∂ =
=

∂ ∫  (B.24) 

 
( ) ( ) ( ){ }0

0 0

0
 exp

4
C

I C C C C C
Si

Z Q
dk J kR k Z K A K B K

Z

ϕ
πε ε

∞∂ =
= − − +

∂ ∫  (B.25) 

Substituting these into equation (B.15) and manipulating yields 

 ( )
0

exp
4

S
S C C I C

C Si C

K Q k
A A B Z K

K Kπε ε
+ − = −  (B.26) 

For the channel-drain interface electric flux BC: 

 

( ) ( )( ) ( )

( ) ( )}
1

0 0

 exp
4

exp exp

C C
C I C

Si C

C C C C C C

Z L Q k
dk kJ kR L Z K

R K

A L K B L K

ϕ
πε ε

∞∂ = 
= − − −∂ 

+ − +

∫  (B.27) 

 
( ) ( )( ) ( )1

0

 expD C
D C D

Z L
dk A kJ kR L K

R

ϕ ∞∂ =
= − −

∂ ∫  (B.28) 

Using these equation to find the electric field BC at the drain interface: 

 

( ) ( ) ( )

( )( )
0

exp exp exp

exp
4

D C D C C C C C C

C I C
Si C

A L K A L K B L K

Q k
L Z K

Kπε ε

− − − −

= − −
 (B.29) 

For the channel-drain interface electric field BC: 

 

( ) ( ) ( ) ( )( ){
( ) ( )

( )}

0
0 0

 exp
4

exp

exp

C C
C I C

Si

C C C C

C C C C

Z L Q
dk J kR k L Z K

Z

A K L K

B K L K

ϕ
πε ε

∞∂ =
= − − −

∂

+ − −

+

∫

 (B.30) 

 
( ) ( )( ) ( )0

0

expD C
D D C D

Z L
dkA J kR K L K

Z

ϕ ∞∂ =
= − −

∂ ∫  (B.31) 

The final BC is then 
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( ) ( ) ( )

( )( )
0

exp exp exp

exp
4

D
D C D C C C C C C

C

C I C
Si C

K
A L K A L K B L K

K

Q k
L Z K

Kπε ε

− − − +

= − −
 (B.32) 

Introducing the following expressions to simplify the RHS of the resulting simultaneous equations 

(B.23), (B.26), (B.29) and (B.32). 

 ( )
0

exp
4 I C

Si C

Q k
Z K

K
γ

πε ε
= −  (B.33) 

 ( )( )
0

exp
4

l
C I C

Si C

Q k
L Z K

K
γ

πε ε
= − −  (B.34) 

Using these four simultaneous equations to find the coefficients is too complex for a basic 

elimination method.  Instead an inverse matrix method is employed to solve the coefficients, e.g. 

arranging the simultaneous equations into the matrices =AX b  presented as equation (B.35), the 

solution for the coefficients can be found from 1−=X A b . 

 
( ) ( ) ( )

( ) ( ) ( )

1 1 1 0

0 exp exp exp

0

0 exp exp exp

S

l
C C C C C D C

S C C C

l
C C C C C C D C D D

A

L K L K L K A

K K K B

K L K K L K K L K A

γ
γ
γ
γ

− −     
     − − − −     =
     −
     − − −    

 (B.35) 

Computing the inverse of the first matrix on the LHS by hand is very tedious, instead Wolfram’s 

Mathematica [131] application has been utilised to solve the coefficients.  Following the 

computation in Mathematica to solve the matrix problem above and after some manipulation the 

coefficients can be written as follows. 

 ( )
0

2 exp
4S I C m

Si

Q
A k Z K A

πε ε
= −  (B.36) 

 ( ) ( )
0

exp
4C C S I C m

Si C

Q k
A K K Z K A

Kπε ε
= − −  (B.37) 

 
( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )2

exp 2 exp 2 exp 2 exp 2

exp 2 1 exp 2 1

C C C I C D C C I C

m

C S D C C C S D C C

K L K Z K K L K Z K
A

K K K L K K K K L K

+ + −
=

+ − + + +
 (B.38) 
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for the source interaction coefficients and 

 ( ) ( )
0

exp
4C C D I C n

Si C

Q k
B K K Z K A

Kπε ε
= − −  (B.39) 

 ( ) ( )( )
0

2 exp exp
4D I C C C D n

Si

Q
A k Z K L K K A

πε ε
= − +  (B.40) 

 
( )( ) ( )( )

( ) ( )( ) ( ) ( )( )2

exp 2 1 exp 2 1

exp 2 1 exp 2 1

C I C S I C

n

C S D C C C S D C C

K Z K K Z K
A

K K K L K K K K L K

+ + −
=

+ − + + +
 (B.41) 

for the drain interaction coefficients. 

B.1  Double Interface Solution 

Substituting the coefficients found in the previous section into the potentials from section B.1 , 

gives the finalised forms. 

 ( ) ( ) ( )0
0 0

2  exp exp
4S S I C m

Si

Q
dk k J kR ZK Z K Aϕ

πε ε

∞

= −∫  (B.42) 

 

( ) ( ){
( ) ( )( )
( ) ( )( ) }

0
0 0

 exp
4

                exp

                exp

C I C
Si C

C S I C m

C D I C n

Q k
dk J kR Z Z K

K

K K Z Z K A

K K Z Z K A

ϕ
πε ε

∞

= − −

+ − − +

+ − − −

∫

 (B.43) 

 ( ) ( )( ) ( )( )0
0 0

2 exp exp
4D C D I C C n

Si

Q
dk kJ kR Z L K Z L K Aϕ

πε ε

∞

= − − − −∫  (B.44) 

Here the coefficients mA and nA  are given by the equations (B.38) and (B.41) respectively, and the 

terms xK  are given by equations (B.18)-(B.20).  Again, k  is introduced as a separation variable 

and should not be confused with the carrier wave vector of the same symbol. 
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Appendix C Full Single Interface Scattering Model 

This appendix will present the scattering model for the full single interface model which is used in 

section 4.2.5.2 to compare the mobility of the full and strongly screened models.  This model is not 

used extensively in this research work but is included in the appendix for future reference. 

The full or complete single interface model is based on the potential found in section 4.2.1 with the 

accompanying detailed calculation in Appendix A.  Unlike the strongly screened model which 

assumes a metallic source and is used for scattering calculations in this PhD work, the model 

developed here will include the exact interaction of the doped source region of semiconductor. 

Here an identical approach to that of Chapter 5 to calculate a scattering model will be used.  A 

spherically-symmetric scattering potential using the Z-aligned simplification discussed in section 

5.2.3 is assumed in the calculation which follows Fermi’s Golden Rule approach assuming 

spherical, non-parabolic bands.  Initially the scattering matrix element will be calculated from the 

scattering potential in section C.1 .  The scattering probability and scattering rate are then obtained 

in section C.2 . 

C.1  Matrix Element 

The matrix element is found by completing the Fourier transform of the interaction potential over 

cylindrical co-ordinates, equation (5.6). 

 ( ) ( ) ( )
2

 

0 0

1
 , exp expS ZdZ d d U Z i iq Z

π

φ
∞ ∞

′ ⊥
−∞

= − ⋅ −
Ω ∫ ∫ ∫k kH R R q R  (C.1) 

For the complete model the full interaction potential calculated in detail in Appendix A will be 

used and is repeated here as equations (C.2)-(C.3). 

 ( ) ( ) ( )0
0 0

2
exp exp

4S I C S
Si C S

Q k
dkJ kR Z K ZK

K K
ϕ

πε ε

∞

= −
+∫  (C.2) 

 

( ) ( ){

( )( )

0
0 0

 exp
4

                       exp

C I C
Si C

C S
I C

C S

Q k
dk J kR Z Z K

K

K K
Z Z K

K K

ϕ
πε ε

∞

= − −

−
+ − + + 

∫
 (C.3) 
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where 

 2 2
C CK k k= +  (C.4) 

 2 2
S SK k k= +  (C.5) 

It should be noted that in equations (C.2)-(C.5) the variable k  is not the carrier wave vector used in 

general notation but is in fact a separation variable introduced in the solution of the potential.  

Using the following form, the source and drain interaction potentials can be substituted into 

equation (5.6). 

 ( ) ( ) ( ) ( )( ), , θ θS S CU Z eV Z e Z Zϕ ϕ= = − +R R  (C.6) 

Here e  is the electronic charge and θ  is the unit step function.  Re-arranging the form of equation 

(5.6) taking care with the unit step functions of equation (C.6) gives 

 ( ) ( ) ( )
2 0

 

0 0 0

1
exp  exp  expS Z C Zd d i dZ e iq Z dZ e iq Z

π

φ ϕ ϕ
∞ ∞

′ ⊥
−∞

  = − ⋅ − + − Ω   
∫ ∫ ∫ ∫k kH R q R  (C.7) 

where ⊥q  is the momentum transfer in the plane perpendicular to the Z-axis and Zq  is the 

momentum transfer along the Z-axis.  After some lengthy integration and algebraic manipulation, 

the Fourier transform of the potentials is found to be 

 

( )

( )

( )

 2 2 2
0

2 2 2

2 2 2 2 2 2

2 2
exp

4

21
exp

exp

S Z
I C

Si C S Z S

C
Z I

C Z S

C Z C S C Z
I C

Z S C S Z S

K iqeQ
Z K

K K q k

K
iq Z

K q k

K iq K K K iq
Z K

q k K K q k

π
πε ε′

⊥

⊥

⊥ ⊥

 +
= −Ω + + +


+ − + +

  + − −
− − −    + + + + +   

k kH
q

q

q q

 (C.8) 

where the terms xK  have now become 

 2 2
C CK k⊥= +q  (C.9) 

 2 2
S SK k⊥= +q  (C.10) 
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Before this scattering matrix element can be used in Fermi’s Golden Rule, the magnitude-squared 

must be found.  After some extensive manipulation, the solution is found as 

 
( )

( )
2 2

22 2 2

2

,
0

2 1

4
,sgl C

Si Z C

Ik
q

f Z
eQ

k

π
πε ε′

⊥

   
   Ω   +

=
+

kk
q

H  (C.11) 

where the sglf  function can be expressed as 

 
( ) ( ) ( )( )

( )( )
, 4 cos sin

exp 2

sgl C I Z I sgl Z I sgl

I C sgl sgl

f k Z q Z A q Z B

Z K C D

= +

+ − +
 (C.12) 

 

( ) ( )

( )
2 2

2 2

cos exp

1
1 2

sgl Z I I C

Z C
C S S

C S Z S

A q Z Z K

q K
K K K

K K q K

= − −

   +× − − +     + +   

 (C.13) 

 

( ) ( )

( ) 2

2 2

2

sin exp

1
1 2

Z
sgl Z I I C

C

C
C S C

C S S

Z

Z

q

q
B q Z Z K

K

K
K K K

K K Kq

= + −

   +
× + − −     + +   

 (C.14) 

 

( ) ( )

2 2

2

2

2

2 2

2

2

1
1 2

4 1Z Z

Z

C S
sgl C S

C S C S

C S C C S
S

S C S S SZ C

K K
C K K

K K K K

K K K K K
K

K K K

q q

q q K K K

 −
= − − −
+ +

      + + −
+ − −        + + + +      

 (C.15) 

 
( )

( ) ( )
( )

( )
2

22 2

2

2 2 2

2 2 22

2

4 1

C S C SZ Z
sgl

C C C S C C C S

Z C C C
C S

Z S C S

Z

SZ

q

K K K Kq q
D

K K K

q

K K K K K

q K K K
K K

q K K K K

 − −
= + +
+ +

    + +
− − + −      + + +    

 (C.16) 

C.2  Scattering Rate 

The scattering rate is found using Fermi’s Golden Rule approach given by equation (5.9), which 

describes the probability of scattering from a state k  to a state ′k  for an elastic interaction. 
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 ( ) ( ) ( )( )2

 

2
,P E E

π δ′′ = −'
k kk k H k k

ℏ
 (C.17) 

Substitution of the scattering matrix element into the Golden Rule gives 

 ( ) ( ) ( )( )
( )

( )
2 2

22 2 2
0

2
,

2
,

4 sg
Si Z

I

C

l Cf k
E EeQ

P
q k

Z
δπ π

πε ε
⊥

′ −   ′ =    Ω   + +

k k
k k

qℏ
 (C.18) 

where sglf  is given by equations (C.12)-(C.16).  The scattering and momentum relaxation rates (for 

an elastic interaction) can be evaluated from the scattering probability using equations (5.14) and 

(5.15) respectively. 

 ( ) ( )( ) , ,kP N P d
′ ′

′ ′ ′Γ = =∑ ∫
k k

k k k k k k  (C.19) 

 ( ) ( )( ) ( )( )
'

1
, 1 cos , 1 cosk

km

P N P dθ θ
τ ′

′ ′ ′= − = −
′ ∑ ∫

k

k k k k k
k

 (C.20) 

 
( )3
2

kN
π
Ω=  (C.21) 

The scattering can be calculated to give 

 ( )
( )

( )
22 *

23 2 2
0 0

2 sin
( ) 1 2 ,

4 I sgl C I
Si C

Ze m k
N E d f k Z

k

ππ θα θ
πε ε

 
Γ = + 

  +
∫k

qℏ
 (C.22) 

where the final integral is left to numerical integration.  The momentum relaxation rate can be 

found by substituting the scattering weighting term into the integral. 

 ( ) ( ) ( )
( )

( )
22 *

23 2 2
0 0

sin 1 cos1 2
1 2 ,

4 I sgl C I
m Si C

Ze m k
N E d f k Z

k

π θ θπ α θ
τ πε ε

− 
= + 
  +

∫k qℏ
 (C.23) 
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