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Abstract 

The objective of this thesis is to predict the dynamic behaviour of a full-size Rubber 

Tyred Gantry (RTG) crane and to provide a contribution to the design of an 

automatic crane control system on a laboratory installation. To this end the 

theoretical analyses and modal tests are performed on an existing 1/10 scale 

experimental crane model built for a previous research program. Because this scale 

crane model is not exactly similar to the full-size crane, various approaches are 

presented to achieve better prediction of the dynamic characteristics of the full-size 

crane, ultimately for better automatic control of the experimental crane rig. 

The work in this thesis starts with the development of a Graphical User Interface to 

aid the manual control of the experimental crane model and to achieve a better 

container management system. A structural analysis of the laboratory rig is then 

carried out. The technique used is to divide the whole structure into two parts: a 

stationary framework and a moving substructure (including its attachments). The 

dynamic effect of the moving substructure is represented by four equivalent, time- 

dependent, contacting forces (or lumped masses), and the dynamic behaviour of the 

stationary framework, induced by the moving substructure, is predicted by 

computing the responses to these forces (or lumped masses). Before the forced 

vibration responses can be obtained a finite element model of the scale crane rig has 

first to be established and validated by means of modal testing. A general technique 

for incorporating a standard finite element package into a procedure to calculate the 

dynamic responses of structures due to time-dependent moving point forces is then 

developed. In order to take the inertia effects of the moving substructure into account 

a new concept of equivalent time-dependent moving lumped masses is introduced. A 

general procedure has been developed to allow a standard finite element package to 

be extended to deal with the dynamic analyses of a three-dimensional framework 

subjected to the two-dimensional multiple moving masses. The theoretical results 

obtained are validated by comparison with experimental findings. 



Scaling laws relating the scale and full-size crane are obtained by means of dynamic 

similitude and dimensional analysis. Finite element models of the full-size crane and 

the scale crane rig are constructed, and validated, using the scaling laws. It is found 

that the original scale crane model cannot accurately simulate the dynamic behaviour 

of the full-size crane. Therefore a new stationary framework for the scale crane 

model is proposed. 
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Nomenclature 

[C] Overall damping matrix of the structural system. 
C', (t) x co-ordinate of the centre of the trolley at time t. 

Cxo Initial x co-ordinate of the centre of the trolley. 

C, (t) y co-ordinate of the centre of the trolley at time t. 

Cy0 Initial y co-ordinate of the centre of the trolley. 

E Young's modulus. 

Ex, Initial reading of the x shaft encoder. 

Ey, Initial reading of they shaft encoder. 

E©, Initial reading of the 0 shaft encoder. 

Ef, Initial reading of the £ shaft encoder. 

Ez2 Reading of the x shaft encoder at any time t (t > 0). 

Eve Reading of they shaft encoder at any time t (t > 0). 

E02 Reading of the 0 shaft encoder at any time t (t > 0). 

EP2 Reading of the £ shaft encoder at any time t (t > 0). 

{ F(t) } Overall external force vector of the structural system. 

FQ (t) Harmonic (concentrated) exciting force. 

F, j 
Excitation force amplitude due to unbalance of the motor driving the 

trolley in the .v 
direction. 

FF?. 
a?? iel 

Exciting force amplitude for Frame 1. 

FFraint, 10 
Exciting force amplitude for Frame 10. 

F' Nodal force of node i at time t. 

FL Instantaneous nodal forces of node i in the x direction. 

F ý' Instantaneous nodal forces of node i in they direction. 

Exciting force amplitude due to unbalance of the motor hoisting the 

container in the scale crane model. 
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FF Exciting force amplitude due to unbalance of the motor hoisting the 

container in the full-size crane. 

F, (t) Contact force at points A and B. 

Fz2 (t) Contact force at points C and D. 

FZA (t) Contact force at point A. 

FZB(t) Contact force at point B. 

F c: (t) 
Contact force at point C. 

FZo (t) Contact force at point D. 

I 2nd moment of inertia of cross section of beam. 

[K] Overall stiffness matrix of the structure. 

L Total length of a beam. 

LC Length of cable for the spreader. 

[Al] Overall mass matrix of the structural system. 

MI Moment on node i at time t. 

M Instantaneous moments of node i about the z-axis. 

Ni (0 Shape function corresponding to nodal displacement ui. 

P(t) Concentrated force. 

P, (t) First concentrated force. 

P2 (t) Second concentrated force. 

Pa Exciting force amplitude of Fa (t) . 

Pl. (t) Component of P(t) in the x direction. 

P,, (t) Component of P(t) in the i' direction. 

P_ (t) Component of P(t) in the z direction. 

T,..,.,, 
mel 

Total simulation time for Frame 1. 

TFrairicIO Total simulation time for Frame 10. 

T Total simulation time for the scale crane. 

TF Total simulation time for the full-size crane. 

I "(1) Time-dependent speed of moving force or mass. 
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V Constant speed of moving force or mass. 
V0 Initial velocity of the trolley along the x axis. 

Vcxmax Highest speed of the trolley along the z axis. 

Výyo Initial velocity of the moving substructure along the j axis. 

Vcym Highest speed of the moving substructure along the Taxis. 

Vex (t) Velocity of the trolley along the - axis. 

V", (t) Velocity of the moving substructure (or the attached trolley) along the T 

axis. 
VFramel Velocity of the concentrated force on Frame 1. 

VFramelO Velocity of the concentrated force on Frame 10. 

MP Virtual work done by the external concentrated force P(t). 

öW f Virtual work done by the internal equivalent nodal force of the beam 

element. 

a,,, Acceleration, or deceleration, of the trolley in the _r 
direction. 

Q(t) Acceleration, or deceleration, of the trolley in the . 
direction at time t. 

a Acceleration, or deceleration, of the moving substructure in the 

y direction. 

a. ý. 
(t) Acceleration, or deceleration, of the moving substructure in the y direction 

at time t. 

a' (t) Instantaneous acceleration of node s in the x (or x) direction. 

a (t) Instantaneous acceleration of node s in the y (or y) direction. 

a, (t) Instantaneous acceleration of nodes in the z (or z) direction. 

as+ý (1) Instantaneous acceleration of node s+1 in the x (or x) direction. 

a 1(t) 
Instantaneous acceleration of node s+l in they (or l) direction. 

(1 (r) Instantaneous acceleration of node s+1 in the : (or z) direction. 

(,,,, (t) Acceleration of the moving mass. 

a, I(t) Instantaneous acceleration of the point of application of the moving mass 

in the .v 
(or 

. 
r) direction. 
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am (t) Instantaneous acceleration of the point of application of the moving mass 
in they (or y) direction. 

am (t) Instantaneous acceleration of the point of application of the moving mass 
in the z (or z) direction. 

cii Generalized damping coefficient for the jh mode. 

d Distance between the centres of two light sources in the image calculated 

from the IPSA. 

do Space between the centres of two light sources mounted on the spreader. 

dm (t) Instantaneous displacement of the point of application of the moving mass 

in the x (or x) direction. 

dm (t) Instantaneous displacement of the point of application of the moving mass 

in they (or y) direction. 

dni (t) Instantaneous displacement of the point of application of the moving mass 

in the z (or z) direction. 

ds (t) Instantaneous displacement of node s in the x (or -) direction. 

ds' (t) Instantaneous displacement of node s in they (or y) direction. 

ds (t) Instantaneous displacement of node s in the z (or direction. 

ds+, (t) Instantaneous displacement of node s+1 in the x (or 
. -ý ) direction. 

ds+, (t) Instantaneous displacement of node s+l in they (or y) direction. 

ds+, (t) Instantaneous displacement of node s+1 in the z (or z) direction. 

d 
,v 

Space between the centres of the two light points in the image. 

dvl,,,,, Minimum space between the two light points in the image. 

d. 
tinal 

Maximum space between the two light points in the image. 

d,, 
l 
(t) Displacement of the contact point in the x direction. 

d1 Displacement of the contact point in the y direction. 

d-, (t) Displacement of the contact point in the z direction. 

f Focal length of the CCD camera. 

ýýE (1) Equivalent nodal forces and moments. 
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j(s) (t) Nodal forces and moments of elements. 

f. (t) Generalized force for the i`h mode. 

Generalized force of the scale model for the i`h mode. fs 

fF Generalized force of the full-size model for the i`h mode. 

f (t) Generalized force for the j`" mode. 

fs Generalized force for the scale model. 

fF Generalized force for the full-size model. 

g Gravitational acceleration. 

kF Stiffness of the spring element for the full-size crane. 

kjj Generalized stiffness for the jth mode. 

kr Stiffness of each rotational spring element. 

ks Stiffness of the spring element for the scale crane model. 

k, Stiffness of each translational spring element. 

f Length of each beam element. 

fs Height of the spreader. 

In Moving mass. 

mF Modal masses of the full-size model. 

1,1iiF Modal mass of the full-size model for the i`h mode. 

Ma Mass per unit length of the beam. 

MC Mass of the trolley (including its attachments). 

m(, 9A Equivalent lumped mass at contact point A. 

1? 1,, yB 
Equivalent lumped mass at contact point B. 

'11egC Equivalent lumped mass at contact point C. 

»lego Equivalent lumped mass at contact point D. 

in.. Generalized mass for the i`h mode. 

,,, il, 
Modal mass of the scale crane model for the i`" mode. 

�rýý Modal mass value for the jth mode. 
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mmo, Mass of motor, as shown in Figure 3.3(a). 

mp Total mass of the two moving rails P. 

MS Generalized mass of the scale model. 

qr Generalized co-ordinate for the rth mode. 

qr Generalized acceleration for the rth mode. 

{q(t)} Displacement vector for the whole structure. 

{q(t)} Velocity vector for the whole structure. 

{q(t)} Acceleration vector for the whole structure. 

ro Radius of the two light sources mounted on the spreader. 

rX Radius of the two light points in the image when the length of the cable is 

L. 

tFramel Time for the concentrated force to move from left end to right end of 
Frame 1. 

tFramelO Time for the concentrated force to move from left end to right end of 
Frame 10. 

t,. Time for the trolley to accelerate from VO to VC, 

t}, Time for the trolley to accelerate from Vcyo to V 
y,,,, a 

At Time interval. 

{gu(t)} Modal displacement vector. 

v(. x) Deflection of a beam element at position x. 

V, Position of the moving force P, (t), relative to the left end of the beam. 

V, Position of the moving force P2 (t) , relative to the left end of the beam. 

Va Separation of the two fixed rails Q. 

Separation of the two moving forces. 

�ý(t) 
Position of the moving mass, relative to the left end of the beam. 

VnIol Distance between the mass centre of the motor fixed on the left end of the 

two moving rails P and T axis. 

X" (t) Position of the moving force, relative to the left end of the beam. 
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xt Real position co-ordinate of the moving rails in the longitudinal direction. 

x Global co-ordinate system for the stationary framework. 

Yb Separation of the two moving rails P. 

yI Real position co-ordinate of the trolley in the transverse direction. 

Y Global co-ordinate system for the stationary framework. 

YA (t) y co-ordinate of contact point A. 

yB (t) y co-ordinate of contact point B. 

yc (t) y co-ordinate of contact point C. 

yo(t) y co-ordinate of contact point D. 

z Global co-ordinate system for the stationary framework. 

[CD] Mode shape matrix. 

f2 
Framel Angular velocity of exciting force FFran, 

el . 

QF,. 
a,,, c, o Angular velocity of exciting force FFrq», 

e, 0 . 

OF Angular velocity of exciting force FF. 

QS Angular velocity of exciting force FS 
. 

0, (. V) Normal mode shape for the rth mode. 

'iF Modal co-ordinate for the full-size model. 

/it' Modal co-ordinate for the it" mode. 

'liF Modal co-ordinate of the full-size model for the i`" mode. 

)71s Modal co-ordinate of the scale model for the i`" mode. 

Modal velocity for the ith mode. 

ijý Modal acceleration for the ith mode. 

/I, Modal co-ordinate of the scale model. 

, 217 Scaling factor for the modal co-ordinate. 

,ir Scaling factor for the damping ratio. 

, "I 
Scaling factor for the generalized mass. 

2ý Scaling factor for the generalized force. 
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AW Scaling factor for the natural frequency. 

1ý1 Scaling factor for time. 

21k Scaling factor for the stiffness of a spring element. 

Aim Scaling factor for the generalized mass for the ith mode. 

Iý; f 
Scaling factor for the generalized force for the ith mode. 

Ai, 
7 

Scaling factor for the modal co-ordinate for the i`h mode. 

Air Scaling factor for the damping ratio for the it" mode. 

AM Scaling factor for the angular velocity for the i`" mode. 

Aiw Scaling factor for the natural frequency for the i`" mode. 

Scaling factor for transforming the encoder outputs to the physical position 

co-ordinates of the spreader. 
Scaling factor for transforming the encoder output to the physical position 

co-ordinate of the moving rails. 

Ay Scaling factor for transforming the encoder output to the physical position 

co-ordinate of the trolley. 

AO Scaling factor for transforming the encoder output to the physical rotation 

position co-ordinate of the trolley. 

BS Rotation position of the spreader. 

P Mass density. 

Owj, ý 
Percentage differences between the computed natural frequencies and the 

measured ones using a double-side screw coupling. 

L\O)iTu Percentage differences between the computed natural frequencies and the 

measured ones using a tubular coupling. 

(z) Exciting frequency of Fa (t) . 

(OCI Angular frequency of exciting force Fe, . 

(09 Natural frequency of the crane structure with the moving substructure 

replaced by two girders. 

COi Natural frequency of the i`h mode. 

11011, Natural frequency of the full-size model for the i`" mode. 
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WiFEM Natural frequency of the scale crane model obtained from FEM for the i`h 

mode. 

ýsý 
Natural frequencies of the scale model obtained from modal testing by 

using a double-side screw coupling for the ith mode. 

CoiTu Natural frequencies of the scale model obtained from modal testing by 

using a tubular coupling for the it" mode. 

wes Natural frequency of the scale model for the ith mode. 

wi Natural frequency of the jh mode. 

COk Natural frequency of the k`h mode. 

wr Natural frequency of the r`h mode. 

wmi Natural frequencies of the crane structure with the moving substructure 

replaced by four lumped masses located at different positions. 

Damping ratio. 

'Framel Damping ratio of Frame 1. 

ýFru, 
nelO 

Damping ratio of Frame 10. 

ýF Damping ratio of the full-size model. 

ýiF Damping ratio of the full-size model for the ith mode. 

ýi Damping ratio of the scale model for the i`h mode. 

ýj Linear viscous damping ratio for the jth mode. 

Damping ratio of the scale model. 
_s 
yr, (0 Shape function corresponding to the nodal displacement ui. 
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£«/ (0 - ö5/, (x/? ) 
Figure 5.3 Equivalent nodal forces fi(') (t) (i =1 to 4) for the beam element, s, on 

which a concentrated force P(t) applies. 

Figure 5.4 Beam subjected to a concentrated force P(t) moving with a constant 

speed 1". 

Figure 5.5 Non-zero nodal forces determined by linear interpolation. 

Figure 5.6 (a) Time histories of nodal forces, F, ' (i = 3,4,5), obtained from the 

simple method (----) and the full method (-) for node 3 (0), node 4 (+) and node 5 

(*); (b) Time histories of nodal forces for all 11 nodes based on the full method. 

Figure 5.7 Time histories of nodal moments determined by the full method: (a) for 

nodes 3,4 and 5, All', M, and , 11; ; (b) for all the 11 nodes, M, ' (i =1 to 11). 
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Figure 5.8 Bending moments, P(t)x, at node 3 induced by the moving force, P(t), 

based on the simple method ( ), full method (-O-) and no-moment method 
(-x-). 

Figure 5.9 Finite element model of a simply supported beam for I-DE AS. 

Figure 5.10 Flowchart of the computer program for calculating the time-dependent 

nodal forces and moments, and storing the related information as an ASCII universal 
file to be read by I-DEAS. 

Figure 5.11 Simply supported beam subjected to a harmonic exciting force, 

FQ (t) = PQ sin(ce), moving with a constant speed V. 

Figure 5.12 Time histories for the vertical central displacements (at x= L/2) of the 

simply supported beam obtained from I-DEAS (---+---), classical method (-A-) 

and Rogers' method (ý). 

Figure 5.13 Time histories for the vertical central displacements (at x= L/2) of the 

simply supported beam obtained from I-DEAS with the equivalent nodal forces 

determined by the simple method (0), the full method () and the no-moment 

method (x ). 

Figure 5.14 Beam subjected to two concentrated moving forces with spacing .tf. 

Figure 5.15 Sketch of the scale model of the mobile crane. 

Figure 5.16 Time histories of the vertical displacements of node 60, ±60 (t) . 

Figure 5.17 Time histories of the vertical displacements of node 60, Z60 (t) , 
due to 

movements of the substructure and the trolley, with suddenly applied equivalent 

forces induced by the substructure and the trolley at time t=0. The damping ratio for 

each mode is ý=0.003. 

Figure 5.18 All statements are the same as Figure 5.17 except for a higher damping 

ratio (, --=0.01). 

Figure 5.19 Time histories for the vertical displacements of node 60, Z60 (t) , 
due to 

movements of the substructure and the trolley together with a harmonic force P(t) = 

50 sin(9.5t) N imposed on the trolley at time t=0. The damping ratio for each mode 

is f=0.003. 

Figure 5.20 All statements are the same as Figure 5.19 except that the harmonic 

force is P(t) = 50 sin(124.4t) N. 

xx 



Figure 5.21 Time histories for the vertical displacements of node 60, X60 (t) , 
due to 

movements of the substructure only ; for the original finite element model ( ); 

for the new finite element model (-------). 

Figure 6.1 Equivalent nodal forces of an element, s, subjected to a concentrated 
force P(t). 

Figure 6.2 Mass moving along a beam. 

Figure 6.3 Clamped-clamped beam subjected to a moving mass, in = 1.2 kg, with a 

constant velocity V. 

Figure 6.4 A single DOF spring-damper-mass system. 

Figure 6.5 Comparison of the dimensionless deflections of the contact point due to 

the moving mass between the results in this thesis and reference [65]. 

Figure 6.6 Comparison of the dimensionless deflections at the contact point due to 

the moving force and the moving mass. 

Figure 6.7 Comparison of the vertical displacements of each node of the beam due to 

the moving force and the moving mass. 

Figure 6.8 Vertical displacements of nodes 1,3 and 6 of the beam due to the moving 

force. 

Figure 6.9 Portal frame subjected to a moving mass, m=1.2 kg, with velocity V(t). 

Figure 6.10 Vertical displacements of node 6. 

Figure 6.11 Horizontal displacements of nodes 2 and 6. 

Figure 6.12 Portal frame subjected to two moving masses m, = m2 = 1.2 kg with 

velocity V(t) as shown. 

Figure 6.13 Vertical displacements of nodes 1,3 and 7. 

Figure 6.14 (a) Orthographic view of the scale crane model composed of fixed rails, 

substructure, trolley and spreader; (b) Top view of the schematic model for the 

dynamic analysis of the stationary framework due to the moving substructure. 

Figure 6.15 Equivalent nodal forces f. (') (t) (i =1 to 12) induced by an arbitrary 

contacting lumped mass in located at distance ''(t) from the left node of the beam 

element s (or (t) from the left end of the beam). 

Figure 6.16 (a) Time history of the velocity of the moving substructure along the ly 

axis; (b) Time history of the velocity of the trolley along the .i axis. 
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Figure 6.17 Influence of longitudinal (y) inertial force of the substructure on the 

vertical (2) displacements of nodes 60 and 64 wh en V (t) =a (t) =0 and a (t) _ 

± 0.5236 m/s2. 

Figure 6.18 Influence of longitudinal (y) inertial force of the substructure on the 

longitudinal (y) displacements of nodes 60 and 64 when V (t) = a, T 
(t) = 0 and 

acy(t)= ±0.5236 m/s2. 

Figure 6.19 Influence of longitudinal (y) inertial force of the substructure on the 

longitudinal (y) displacements of nodes 50-62 wh en V (t) =ac-, (t) =0 and a,,. (t) = 

± 0.5236 m/s. 2 

Figure 6.20 Schematic model of the scale crane model with the whole moving 

substructure replaced by (a) four lumped masses (located at three different positions) 

and (b) two transverse girders. 
Figure 6.21 Configuration of the laser vibrometer test for the experimental crane rig. 

Figure 6.22 Time histories for vertical (z) displacements of node 45 for three cases: 

(1) VX(t)=a,. 
z(t)= 

0 and ay(t)= ± 0.5236 m/s2 for-I]-- ; (2) Vx(t)=al(t) =0 

and a,.,, (t) 0.2618 m/s2 for ---Q- ; (3) VY (t) = any (t) =0 and a, C 
(t) _ 

± 0.3124 m/s2 for -x-. 

Figure 6.23 Time histories for the longitudinal (i') displacements of node 14 when 

the trolley remains stationary with respect to the substructure (i. e., VX(t)= am(t) = 

0) and the substructure moves in they direction in the manner shown in Figure 

6.16(a) (i. e., a,, (t) _±0.5236 m/s2). 

Figure 6.24 Influence of damping ratios ( =1.0 and 0.001) on the time histories of 

air (t) =0 and a, (t) _ the longitudinal (y) displacements of node 14 when V, 

± 0.5236 m/s2. 

Figure 6.25 Influence of damping ratios ( =1.0 and 0.005) on the time histories of 

the longitudinal (T ) displacements of node 14 when i Wi(t) = a., (t) =0 and u,, (t) _ 

±0.5236 m/s,. 

Figure 7.1 A typical full-size crane. 
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Figure 7.2 Two steel portal frames with modal scale ratio 2, = 1/10: (a) Frame 1: 

(b) Frame 10. 

Figure 7.3 Time history for the vertical displacements of node 6 of Frame 1. 

Figure 7.4 Time history for the vertical displacements of node 6 of Frame 10. 

Figure 7.5 Finite element model and a global co-ordinate system for the 
full-size crane. The digits in small circles represent the numbering of the nodes. 
Figure 7.6 Cross section of each beam element of the finite element model of the 

full-size crane. The numbers in parentheses are the numberings of the cross sections. 
Figure 7.7 An orthographic view of the finite element model of the full-size crane. 

Figure 7.8 Simulation of container hoisting on (a) 1/10 scale, and (b) full-size finite 

element models. 

Figure 7.9 Time history of the vertical displacements of node 39 of the 1/10 scale 
finite element model. 

Figure 7.10 Time history of the vertical displacements of node 39 of the full-size 

finite element model. 
Figure 7.11 Orthographic view of the adapted 1/10 scale finite element model. 

Figure 7.12 1/10 scale finite element model for: (a) the original rig; (b) the 1 Sc 

modified rig with the beam elements between nodes 1 and 18,18 and 11,6 and 24, 

24 and 16, having been removed (see Figure 4.1); (c) the 2nd modified rig with the 

beam elements between nodes 1 and 18,18 and 11,6 and 24,24 and 16,17 and 18, 

18 and 19,19 and 56,56 and 21,21 and 69,69 and 23,23 and 24, and 24 and 25, 

having been removed (see Figure 4.1); (d) the 3`d modified rig whose configuration is 

similar to an actual full-size crane. 

Figure 7.13 Finite element model and global co-ordinate system for the new 

stationary framework of the scale crane rig. The digits in circles represent the 

numberings of the nodes. 

Figure 7.14 Cross sections of all the beam elements of Figure 7.13, with numberings 

of nodes and beam elements shown in Table 7.10, (unit: inch). 

Figure 7.15 Orthographic view of the new scale crane model for the laboratory. 

Figure 8.1 Sketch for visual sensing system and laser sensing system. 
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Chapter 1 Introduction 

1.1 Foreword 

Rubber Tyred Gantry (RTG) cranes are widely used for transportation of heavy ISO 

(International Standard Organization) freight containers in ports and railhead freight 

yards all over the world. The main motions of the RTG crane consist of the 

movement of the trolley along rails fixed on the top beams, and the lowering and 

hoisting of the container, as shown in Figure I. I. For a tyre-mounted gantry, a slow 

rotation of the whole crane is also possible (see Figure 1.2). Figure 1.3 shows the 

front view and side view of a full-size RTG crane typical of the machines designed 

by FEL International Ltd. 

The present work is the continuation of an existing research program, which has been 

led by Cartmell [1] since 1993. A 1/10 scale crane model, shown in Figure 1.4, has 

already been built [2]. This experimental scale model (see Figure 1.5) is not exactly 

the same as the real crane. For example, in the actual full-size crane, the transverse 

motion of the trolley is achieved by the whole structure moving on wheels (thus, no 

moving rails are required), and the longitudinal motion of the trolley is controlled by 

a mechanism mounted on the parallel top beams. However, in the scale model, the 

entire framework is fixed to the ground (instead of on the wheels), and the 

orthogonal pairs of moving rails are introduced to allow the transverse and 

longitudinal motion of the trolley. 

Under the assumption that the structural members are rigid, Cartmell et al. [1] 

developed a mathematical model for the moving parts of the laboratory rig and 

designed a non-linear control system for this model. The current work aims at 

improving the last mathematical model by including the flexibility (or elasticity) of 

the structural members. In this thesis, the dynamic analysis and the structural 

modifications of the experimental crane model and dynamic simulation of the full- 

size crane model are conducted. A preliminary control system with graphical user 

interface is also developed to aid the control of the experimental crane model. 



Figure 1.1 Typical Rubber Tyred Gantry Crane lifting and stacking containers. 

Figure 1.2 Gantry cranes on the waterfront. 

(a) 

Dimensions (nom) - typical 
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Wide Wide 
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A 19354 16612 Travel 
Inside Clear 

23977 21234 
Width 
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Figure 1.3 A full-sized RTG crane [3]: (a) the front view; (b) the side view. 
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Figure 1.4 Picture of the scale crane model in the laboratory. 
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Figure 1.5 Sketch for the scale crane model (all the motors are not shown). 

The present scale model consists of the following parts (see Figures 1.4 and 1.5): 

1. The stationary framework 

The dashed lines and the two parallel beams located at the top of the scale crane 

model, as shown in Figure 1.5, represent the stationary framework of the scale 

model. The lower part of the framework is fixed to the ground. 

2. The moving rails 

The moving rails are fitted on a rectangular frame. They run along the two parallel 

beams on the top of the stationary framework in the longitudinal direction (see 

Figure 1.5). 

3 



3. The overhead trolley 

The overhead trolley is a fabricated sub-system. It runs on the two moving rails in 

the transverse direction (see Figure 1.5), and contains two motors and a winch 
hoist drum to rotate, lower, and hoist the spreader. 

4. The spreader 

The spreader is configured in the scale model as a rectangular plate. Its actual 

position and orientation are provided by the light sources mounted on it and using 
the mathematical model proposed by Huang [2]. 

For convenience of description, the part composed of the moving rails, the 

rectangular frame (on which the rails are fitted), and the trolley, (including its 

attachments) is called the moving substructure in this thesis. In other words the speed 

of the moving rails is always equal to that of the moving substructure. In addition, 

the direction that the trolley moves in, on the moving rails, is designated as the 

transverse direction and the direction that the whole moving substructure runs in, on 

the stationary framework, is defined as the longitudinal direction, as shown in Figure 

1.5. 

1.2 Problem Overview 

The earlier achievements of this research program are built upon the basis that the 

structural members of the scale crane model are assumed to be rigid. The present 

work aims at improving the mathematical model [1], by taking into account the 

effects of the flexible structural members to aid the design of a better crane control 

system. 

The stationary framework of the scale crane model in the laboratory is fixed to the 

ground (see Figures 1.4 and 1.5), but the full-size crane is equipped with tyres and 

suspension systems (see Figures, 1.1,1.2 and 1.3). A sketch of the front view and 

side view of the scale crane model is shown in Figure 1.6, in which the solid lines 

show the static equilibrium positions of the framework, and the dashed lines show 

the possible deformations of the framework. It is seen that the movement of the 

trolley will induce oscillations of the framework in both the vertical and horizontal 

directions. Hence, if the effects of the tyres and the suspension systems fitted to the 
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full-size crane are not considered in the scale crane model, then the numerical 

analysis results obtained from the scale crane model will not accurately simulate the 
dynamic characteristics of the full-size crane. 

ý.. 

(a) 

Moving 

Trolle 

. 

Spreader 

(b) 

Figure 1.6 (a) Front view and (b) side view for the sketch of the scale crane model. 

1.3 Review of the Existing Research on Gantry Cranes 

A lot of researchers have devoted themselves to the study of the crane problem. For 

example, Sakawa and Nakazumi [4] derived a dynamic model for the control of a 

rotary crane and then applied it to the crane system with open-loop and feedback 

control. Sakawa, Shindo and Hashimoto [5] used their dynamic model for the 

optimal control of a rotary crane. Lee [6] developed a new dynamic model for a 

three-dimensional overhead crane based on defined two-degree-of-freedom swing 

angles for the spreader and applied this model to anti-swing control with a decoupled 

control scheme. Ebeid, Moustafa and Emara-Shabaik [7] presented a non-linear 

electromechanical model for describing the dynamic behaviour of overhead cranes. 

This model considered the non-linear dependence of the load swaying on the 

transients of driving motors during voltage disturbances and start-ups. Butler, 

Honderd and Amerongen [8] proposed a new reference model decomposition method 

as an extension of model reference adaptive control. The decomposition method is 

regarded as a way of including knowledge about the structure and parameters of 

unmodclled dynamics in the adaptive system. By considering the overhead crane as a 

rigid mechanical system, Boustany and d'Andrea-Novel [9] investigated the adaptive 

control of an overhead crane. Al-Garni, Moustafa and Javeed Nizami [10] proposed a 
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non-linear dynamic model for the optimal control of the simultaneous travel, 

traverse, and hoisting/lowering motions of an overhead crane. Ito, Senda and 
Fujimoto [11] studied the dynamic behaviour of a load lifted by a mobile 

construction-type crane by considering the damping effects of the crane structure. 
Beliveau, Dixit and Dal [12] presented a novel strategy for controlling the swinging 

of the payload using a simple model with two pivots and a pendulum. Cartmell, 

Morrish and Taylor [1,13,14] developed a dynamical model, required for the design 

of a formal feedback nonlinearised control system, by neglecting the effects of the 

tyre deformations and the structural deflections. Karmakar and Mukherjee [15] 

presented a bond graph simulation of the electric travelling overhead cranes using 

rigid structures. 

From the above literature one finds that none of the researchers considered the 

effects of the flexible members of the structures in their mathematical models when 

they designed their crane control systems. Since the full-size (RTG) crane 

investigated in this thesis is equipped with tyres and suspension systems it is hoped 

that better simulation of the dynamic characteristics of the full-size crane in the 

laboratory may be achieved by considering the effects of the flexible members in 

scale crane structures. Therefore, the dynamic analysis and the requisite structural 

modifications of the experimental crane model in the laboratory are proposed in this 

thesis. 

1.4 Thesis Structure 

The structure of the thesis is shown in Figure 1.7. It is described as follows: 

1. A graphical user interface has been developed to aid the semi-manual control of 

the experimental crane model, and is discussed in Chapter 2. A new image- 

searching algorithm is presented for calculating the real (instantaneous) position 

and orientation of the spreader. A method for automatic container management is 

also proposed. 

2. In Chapter 3, a technique for calculating the equivalent concentrated forces 

induced by the moving substructure has been developed. The \\ hole crane 

structure is divided into two parts; the stationary framework, and the moving 
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substructure. The latter includes the moving rails and the overhead trolley. The 

moving substructure is defined by four equivalent, concentrated, forces. The 
formulation for calculating these four equivalent concentrated forces is a key 

point in this chapter. 

3. A finite element model of the experimental crane rig currently in the laboratory 

has been analyzed, initially using the finite element package in Chapter 4. To 

check the numerical results obtained from the finite element model, a modal 
testing system has also been used. In order to get better agreement between the 

results of finite element analyses (or calculations) and those of modal testings (or 

measurements) for the natural frequencies and corresponding mode shapes, some 

modifications to the original finite element model have been made. 
4. Because the rails and the overhead trolley for the scale crane model are moving, 

the relationship between the stationary framework and the moving substructure 

has been considered as a stationary framework subjected to four time-dependent 

moving point forces, and this is discussed in Chapter 5. The problem of analysing 

the dynamic characteristics of structures due to moving forces could then be 

solved with various techniques. In this chapter a general technique has been 

developed so that the dynamic behaviour of a three-dimensional structure 

subjected to time-dependent moving forces could be predicted by incorporating 

this modelling with the existing finite element model. 

5. It is not always reasonable to treat the loads due to the moving substructures as 

moving forces (with structural inertia effects neglected). If the acceleration of the 

moving substructure induced by the framework is significant, then the moving 

force problem must be considered as a moving mass problem. Since the inertia 

effects of the moving loads are not taken into account in the existing finite 

element package, a technique combining the finite element method and analytical 

method is presented in Chapter 6 for determining the dynamic responses of 

structures subjected to moving masses. 

6. To simulate the dynamic behaviour of the full-size crane in the laboratory (by 

experiments), the equation of motion for the whole crane structure is initially 

introduced in Chapter 7. Scaling laws, which provide dynamic similitude bet\\ een 

the scale crane model and the actual full-size crane, are then obtained by a means 
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of dimensional analysis and the Buckingham )r-theorem. A 1/10 scale finite 

element model for the full-size crane is established, based on the geometric 
similitude. In order to get better agreement between the theoretical results 
calculated from the scale finite element model and the measured responses 
obtained from the 1/10 scale laboratory model, a new stationary framework for the 

experimental crane rig is proposed. 

7. In Chapter 8, some conclusions for the present thesis and some recommendations 
for future work are presented. 

Chapter 1 

Introduction 

Chapter 31 

Derivation of 
Contact Point 

Forces Induced by 
the Moving 

Substructure and 
Trolley 

Chapter 2 

Speed 
and Container Visual 

position management sensing 
control system system 
system 

Chapter 41 

Free Vibration Analyses of the 
Stationary Framework Using the 

Finite Element Method and 
Modal Testing 

I Chapter 51 
Forced Vibrations due to 

Moving Forces 

I Chapter 61 

Forced Vibrations due to 
Moving Masses 

Chapter 7 

Representation of the Dynamic Behaviour of the Full-size Crane using 
Dynamic Scaling Model Laws and the Finite Element Method 

Chapter 81 

Conculsions for the thesis and 
Recommendations for Future Work 

Figure 1.7 Structure of the thesis. 
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Chapter 2 Graphical User Interface for the Control of the 
Experimental Crane Rig 

2.1 Introduction 

A simple speed-and-position control system for the experimental crane model is 

proposed in [2], in which a visual sensing system is specified to provide information 

regarding the instantaneous position and orientation of the spreader. An algorithm for 

a laser sensing system is also discussed in [2] for the adjustment of the relative 

position and orientation between the spreader and the container. This research is 

limited due to the fact that it is relatively complicated for the control of the scale 

crane model; this is because it is built on the basis of the traditional command- 

prompt environment (i. e., one is required to input the commands manually for each 

control procedure of the experimental crane rig). To simplify this problem a 

graphical user interface (which replaces the manual commands by moving and 

clicking the mouse) is developed to aid the control of the experimental crane model 
in this chapter. It should be noted that the graphical user interface developed in this 

chapter is not a replacement of the control system presented by Huang [2] because 

there is a difference between the formal control approach taken by Huang [2] and the 

semi-automatic interface with manual control approach used in this chapter. 

The speed-and-position control system consists of longitudinal motion of the moving 

rails (see Figure 1.5), transverse motion of the trolley, and the rotation and hoisting 

(or lowering) of the spreader. In this chapter, a preliminary speed-and-position 

control system is established and then it is used as the basis of a container 

management system. A new image-searching algorithm is presented to improve the 

performance of the visual sensing system. A method to achieve the automatic 

container management is also studied. Most of the hardware used in the research of 

[2] is also used here, with summaries of its function to follow. 

Several computer operating systems can be used for developing this graphical user 

interface, for example, UNIX [ 16], OS/? [17], Alicrosoft lt'indows [18]. Considering 

the existing equipment for the scale crane model and the compatibility of computer 
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hardware, Microsoft Windows has been chosen as the basis for the design of the 

controller for the experimental crane model. In this chapter, the speed-and-position 

control system, and the container management system, are developed within 
Microsoft Visual Basic [19,20], with the visual sensing system designed using 
Microsoft Visual C/C++ [21,22]. 

2.2 Design of the Initialisation Unit 

The aim of the initialisation unit was to set up the initial conditions of the 

experimental crane rig [2]. The functionality of this is to check the availability of the 

computer hardware for the experimental crane model and also to make the trolley 

and the spreader stationary at the start time. 

2.2.1 Hardware Arrangement of the Initialisation Unit 

A proprietary interface card, [23], is used, as shown in Figure 2.1, for controlling the 

drive-motors from the host computer. The Universal Library [24], provided by the 

computer hardware company, is used to check the availability of the interface card, 

and plays the key role of providing communications (I/O) between the experimental 

crane rig and the computer. Because the angular speed of the motor is proportional to 

the applied voltage (i. e., zero voltage means no rotation), zero volts are sent to each 

motor, through a control box to ensure each motor is stationary at the start time. The 

functionality of the initialisation unit is shown in Figure 2.2. The graphical user 

Figure 2.1 Hardware arrangement of the initialisation unit. 
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interface for the initialisation unit is shown in Figure 2.3. 



Start 

/ Loading the 
ComputerBoards 

Universal Library to Fail- 
interface interface card 
CIO-DAC08 

Showing the message 
CIO-DAC08 initialisation fail. " 

to the user. 

Sending zero voltage to 
each motor by using Fail 

Universal Library. 

Showing the message 
"Fail to send voltages to motors! " 

Ok 
L 

to the user. 

Showing the relating 

L message successfully. 

ýý 
-- -' 

Figure 2.2 Functionality of the initialisation unit. 

You can switch on the main power of the 
control box now. 

.......... 

Figure 2.3 Graphical user interface of the initialisation unit. 

2.3 Design of a Preliminary Speed-and-Position Control System 

Speed-and-position control is fundamental to the crane system. It controls four main 

motions: longitudinal motion of the moving rails (see Figure 1.5), transverse motion 

of the trolley, and rotation and hoisting (or lowering) of the spreader. In this section a 

system is developed to provide an easier way of controlling the four motions of the 

scale crane model and to show the instantaneous positions of the trolley and the 

spreader on the computer screen. This system significantly aids the control of the 

experimental crane rig. 



2.3.1 Development of the Speed-and-Position Control System 

From Figure 2.4 it can be seen that the moving rails, the trolley, and the spreader are, 

respectively, connected to the four motor pulleys by cables, and that the motions of 

the moving rails, the trolley, and the spreader are achieved by controlled rotation of 

these motors. Two interface cards (CIO-DAC08 [23] and CIO-CTR10 [25]) are 
installed within the host computer. The function of card CIO-DAC08 is to control the 

angular speed of the motors, while the function of card CIO-CTRIO is to control the 

signals from the shaft encoders and to set the rotational direction of each of the 

motors. The functionality of the design of this preliminary speed-and-position control 

system for the experimental crane rig is shown in Figure 2.5 and can be described as 

follows: 

1. The Universal Library [24] is used to set up the CIO-DAC08 and CIO-CTR 10 

cards. If any aspects of the availability of CIO-DAC08 or CIO-CTRIO are absent 

then the program (or the operation) is terminated. It is worth mentioning that the 

CIO-DAC08 card contains eight I/O channels, but only four of them have been 

used for the control of the motor speeds. Similarly, the CIO-CTR10 card contains 

ten counters, but only eight of them are used (four for controlling the encoders 

and another four for controlling the directions of the motors). This means that the 

existing computer hardware is sufficient for the control of the laboratory rig. 

2. A co-ordinate system for the experimental crane model is then created and the real 

positions of the trolley and spreader are adjusted to their initial positions. Since 

the angular velocities of the motors are proportional to the applied voltages one 

can use the CIO-DAC08 card to control the speeds of motion along the moving 

rails, the trolley speed and the spreader speed by varying the voltages sent to the 

motors through a control box. To control the direction of motion of the moving 

rails, the trolley and the spreader one may set up the parameters of the four 

counters which control the rotational directions of the motors within the C'IO- 

CTR 10 card. 

3. The other four counters within the CIO-CTR10 card are connected to the four 

shaft encoders through a control box in order to set up and detect the readings 

from the encoders. The variations in the readings of the encoders are caused hý 

the changes in the speeds of the motors. The transformation for relating the 
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encoder outputs to the physical displacements of the trolley and the spreader is 

given by 

xý 

yI 
_ 

[Ex2- 
Ex, 

Os 

s 

Eye - Ey1 E02 - Eel ERZ -Eel (2.1) 

where x, and y, respectively, represent the real position co-ordinates of the 

moving substructure in the longitudinal direction and the trolley in the transverse 

directions (see Figure 1.5). BS is the angular position of the spreader, and C' 
S 

is 

the height of the spreader; E.,, 
9 
Ey,, E01, Eel represent the initial readings of the 

encoders; E, 2, Eye, EB2, Eel represent the readings of encoders at any time t (t>O); 

and A, Ay, 'o, 2e represent the scaling factors for transforming the encoder 

outputs to the physical position co-ordinates of the moving rails, the trolley and 

the spreader, as obtained from the experiments. 

4. In order to establish a simple close-loop position control for the crane model, a 
Tinier (see Appendix 1) is used to calculate the real positions of the moving rails, 

the trolley and the spreader at any time t (t > 0). The function of Timer is to repeat 

the same procedures in every time interval. In Appendix 1, the Timer is 

introduced and an example to measure the instantaneous velocities of the moving 

rails, the trolley and the spreader by using the Timer is illustrated. 

Figure 2.6 shows the graphical user interface of the speed-and-position control 

system for the experimental crane rig. The Top View of Crane Model graphic (in 

the middle of the figure) shows the instantaneous longitudinal and transverse 

positions of the moving rails and the trolley. The Top View of Spreader and Side 

View of Spreader graphics respectively show the instantaneous rotational angle and 

height of the spreader. To control the motion of the moving rails, the trolley and the 

spreader, one may use the mouse cursor to click the button in the \lodel Control 

Panel (top-right side in the figure). There are two ways to move the moving rails, the 

trolley and the spreader to a particular position: (1) key in the co-ordinates of the 
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desired positions of the moving rails, the trolley and the spreader and then click the 

execute button (' ), (2) directly use the mouse cursor to move the positions of the 

moving rails, the trolley and the spreader to the desired positions (as one may see 
from the Top View of Crane Model, Side View of Spreader and Top View of 

Spreader) and then click the execute button (' ). The Speed Control panel (in the 

top-left side of the figure) shows the voltage applied to each motor. One may control 

the speeds of the motions of the moving rails, the trolley and the spreader by varying 

the voltages in this panel. To stop the movements of the moving rails, the trolley and 

the spreader, one may simply click the button STOP. 

-------------------------------------- 

Trolley TfanSVQV Trajectory 
4ý t 

Motion 

RII 

Cable 

Encoder 2 

Pulley 
Motor 2 

'------------------------------------------------ 

------------------------------------------ 
Trajectory 

Longitudinal 
Mining rails 

motion 

Cable 

Encoder I, 

I'ullcy 
Motor I 

------------------------------------------ 

T::: iijil 

Motor 3 

----------- ----------- -- ---- ---- --- ----- - 
1111HIIIIIIJ1111111111111 

- 
1111111111 

Motor 4 

Encoder 4 

Trolley 

Cable drum 

Pulley 

Spreader 

"I 
----------------------------------------------- 

Figure 2.4 Hardware arrangement of the speed-and-position control system for the 

experimental crane rig. 
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Staff ý 

Initialisation unit. 
(see section 2.2) 

Ok 

Setting up CIO-CTR10 

Ok 

To establish a co-ordinate system 
for the experimental crane rig. 

Installing a Timer 
(see Appendix 1) 

0-ý 
To control the motion of 

the trolley and the spreader 

No Exit 

Yes 

_- 
T 

Disable the Timer. 

End 

Fail End 

Fail -10, 
( 

End 

Timer 

The function of Timer is to detect the variations 
of the encoders and then calculate the real 
positions of the moving rails, the trolley and the 
spreader by using Equation (2.1) in each time 
interval. The instantaneous positions of the 
moving rails, the trolley and the spreader 
obtained are shown on the screen. If the 
positions of the moving rails, the trolley, or the 
spreader is beyond the practically achievable 
displacement, or the desired positions, the 
Timer will stop the motions of the moving rails, 
the trolley and the spreader. In this section, the 
Timer repeats the same foregoing procedures 
25 times per second. This means that the 
information regarding the instantaneous 

positions of the moving rails, the trolley and the 

spreader refreshes 25 times per second. 

Figure 2.5 Fundamental procedures of the speed-and-position control system. 
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Figure 2.6 Graphical user interface for the speed-and-position control system for the 

experimental crane rig. 

2.4 Design of the Visual Sensing System 

Undesirable swinging of the spreader is almost always induced during the motion of 

the trolley. To realise the actual position and orientation of the spreader, the visual 

sensing system proposed by Huang [2] is used. However, a new image-searching 

algorithm is presented in this section to improve the performance of the original 

system. The function of the image-searching algorithm is to calculate the 

instantaneous positions of the centres of the two light points in the image from the 

CCD camera (see Figure 2.7) and then, based on the co-ordinates of the two centres, 

1500 

Model Control Panel 

ý'". ý ýý ( 

l 

t.. 

4.. 
Top View of Spreader 

EXECUTE 

0 
ice. 
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the actual position and orientation of the spreader are calculated by using the 

mathematical model due to Huang [2]. In this section, only part of the image- 

searching algorithm to calculate the co-ordinates of the two centres of the two light 

sources is presented. 

2.4.1 General Configuration of the Visual Sensing System 

As shown in Figure 2.7, a CCD camera and two light sources are mounted on the 

trolley and the spreader, respectively. An interface card connecting to the CCD 

camera for sequentially grabbing the images of the spreader during the motion of the 

trolley is fitted into the host computer. Each image contains two light points which 

represent the positions of the two light sources mounted on the spreader. After 

analysing the images by using the new image-searching algorithm, the co-ordinates 

of the two centres of the two light points are obtained and shown on the screen. 

Image 
processing 

Host 
Computer 

CCD Camera 

O 
Trolley 

O 

Calculating the two centre points 
of the two light sources in order to 
obtain the position and orientation 

of the spreader. 

0 
0 

Interface i 

1 

card 

Cable 
- o- 

I. 
f 11 

\- 

Swinging Light sources mounted on 
spreader the spreader 

Figure 2.7 General configuration of the visual sensing system. 

2.4.2 A New Image-Searching Algorithm 

In 1997, an Improved Partial Search Algorithm (IPSA) was proposed by Huang [2] 

for locating the centre points of the two light sources on the spreader of an image 

from the CCD camera during a swing of the spreader. From the 2 "d row of Table 2.1, 
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it can be seen that the percentage failure of the image-searching algorithm using 
IPSA is zero when the spreader is stationary, or moving in the horizontal direction 

(see Figure 2.8), but is 4.0 while the spreader is swinging along the vertical direction 

(see Figure 2.8). Because the swing of the spreader is usually irregular (in both 

vertical and horizontal directions) in practice, it is possible that the percentage failure 

may be more than 4.0 in such a situation. This is the reason «why a new image- 

searching algorithm is presented. 

Figure 2.9 shows a CCD camera mounted on the trolley and Figure 2.8 shows an 
image of the spreader from the CCD camera in the image plane of Figure 2.9 when 

the length of the cable is LX . From Figure 2.9 one sees that the space between the 

two centres of the two light points in the image, d, varies with the variation of the 

height of the spreader (i. e. the variation of the length of the cable, L, ) and is given 

by 

df 
d° 

xL 
(2.2) 

where do represents the space between the two centres of two light sources mounted 

on the spreader, f represents the focal length of the CCD camera and L, represents 

the length of the cable while the spreader is in the practically achievable 

displacement. 

The maximum and minimum distances between the two light points in the image, 

d 
xn, 41., and d 

rn,;,, , are determined by 

d 
xrnav =dx+ 2r1 (2.3) 

d 
lmrri 

=d 
.x- 

2r (2.4) 

f (2.5) 
L 

where r-, represents the radius of the two light points in the image when the length of 

the cable is L, and i-O represents the radius of the two light sources mounted on the 

spreader. 
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To improve the performance of the IPSA, Equation (2.6) is added into the IPSA. 

dxmin -dCd 
xmax (2.6) 

where d represents the distance between the two centres of light sources in the image 

calculated from the IPSA. 

The results from the IPSA could not be adopted if the distance, d, is not in agreement 
with Equation (2.6). The fundamental working procedures of the new image- 

searching algorithm are (see Figure 2.10): 

1. Calculating the distance between the two centres of the two light points in the 
image obtained from the CCD camera, d, by using the Improved Partial Search 
Algorithm (IPSA). 

2. If the distance, d, calculated from the IPSA agrees with Equation (2.6), the two 
light points in the image will be shown on screen and then step 1 repeated. 
Otherwise, the results from IPSA will be ignored and control goes to step 1 
directly. 

The test results of the new image-searching algorithm are listed in Table 2.2. The 

percentage failure (see 2nd row in Table 2.2) of the new image-searching algorithm is 

zero, whether or not the swinging motions of the spreader are in irregular directions. 

Figures 2.11,2.12,2.13 and 2.14 respectively show the trajectories of the two light 

sources while the spreader is stationary, moving along the vertical direction, moving 

along the horizontal direction and moving in irregular directions. The new image- 

searching algorithm makes the performance (the accuracy of the calculated positions 

of the two centres of the two light points in the image) better, but the average 

processing speed (see 3Rd rows in Tables 2.1 and 2.2) is a bit slower than the IPSA. 

This is expected because the IPSA is established on the basis of the traditional 

command-prompt environment whereas the new image-searching algorithm is 

constructed using the windows environment. However, the rapid improvement in the 

processing speed of computer hardware will overcome this problem in the near 

future. Fi`ure 2.15 shows, on screen, the centres of the two light sources in the visual 

sensing system. 
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Figure 2.10 Operation of the visual sensing system. 

Direction of spreader Stationary Vertical Horizontal Irregular 

motion 1 H 0 

Percentage Failure 0 4.0 0 Absent 

The average processing 
8.0 6.6 7.9 Absent 

speed (frames/s) 

Table 2.1 Test results by using IPSA (performed in MS-DOS) [2]. 

Direction of spreader Stationary Vertical Horizontal Irregular 

motion 1 ý-' 0 

Percentage Failure 0 0 0 0 

The average processing 
7.8 6.4 7.6 6.2 

speed (frames/s) 

Table 2.2 Test results using the new image-searching algorithm (pertormed in 
Windows). 
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Figure 2.11 Trajectories of the two light sources when the spreader is stationary. 
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Figure 2.12 Trajectories of the two light sources when the spreader moves in the 

vertical direction. 
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Figure 2.13 Trajectories of the two light sources when the spreader moves in the 

horizontal direction. 
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Figure 2.14 Trajectories of the two light sources while the spreader moves in both 

vertical and horizontal directions. 
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Figure 2.15 Screen showing the centres of the two light sources in the image plane 

obtained from the visual sensing system. 

2.5 Design of the Container Management System 

The general increase in the handling and storage efficiency of the freight container 

business is recognised as a problem of international importance [26]. The means of 

achieving this end may be: (1) to employ more cranes, and (2) to reduce the average 

cycle time (i. e., the turn-around time of a container ship). For financial, as well as 

operational reasons, the second option looks much more attractive. Therefore, the 

driver is obviously a key factor in achieving a high average throughput, and so 

specialised tools to assist the driver are very much needed. 

The main means of reducing cycle time are: (1) to increase the speeds and 

accelerations of the handling machinery when run manually and (2) to use automatic 

operation. For the sake of consistency and safety automatic operation is the only real 

option for reducing the cycle time. 
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In 1992, Macleod [26] suggests an idea for the development of an automated 

container terminal built on the basis of an automated container handling system. In 

1993, Verschoof [27] published an article entitled automated stacking crates at ECT 

(Europe Combined Terminals). It is mentioned in this article that the new container 

terminal being built for sea-land at Europe Combined Terminals in Rotterdam will be 

one of the most advanced container terminals in the world and the cranes in the 

stacking areas will be operated without drivers. In 1996, Waddicor [28] studied the 

automatic positioning control of freight container lifting equipment. He reported on 

some of the control strategies used in existing crane systems. 

In this section a conceptual method for achieving automatic operation is presented. 

The idea is founded on the basis of a centralised computer system in the cabin of the 

crane, as shown in Figure 2.16, which is used to integrate the speed-and-position 

control system (see section 2.3) to perform the automation of the container 

management. Here, the visual sensing system (see section 2.4) should also be used to 

achieve better positioning of the container when the spreader swings due to motions 

of the trolley. Because the laser sensing system proposed by Huang [2] can, in 

theory, be used to adjust the actual position of the spreader so as to accurately align 

the relative position between the spreader and the container, it is relevant to 

incorporate into this automatic control system. 
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Figure 2.16 Centralised computer system in the cabin of the crane. 



It should be noted that, at the time of writing, the computer hardware provided for 

the experimental crane rig in the laboratory is not able to integrate the speed-and- 

position control system, the visual sensing system and the laser sensing system very 

efficiently. Therefore, only the speed-and-position control is used in this automatic 

control system. 

2.5.1 Development of the Container Management System 

As shown in Figure 2.17, an xy co-ordinate system is established on the floor of the 

laboratory. In order to save computer time for the transformation between the co- 

ordinate system for the floor of the laboratory and the system for the experimental 

crane rig, the former is exactly the same as the latter. The speed-and-position control 

system (see section 2.3) is used as the basis for the position control of this laboratory 

rig. 
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Figure 2.17 Sketch of the container management system for the experimental crane 

rig. 
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After the co-ordinate systems of the floor of the laboratory and the experimental 

crane rig are established, the next procedure is to propose a method to handle the 

containers. As shown in Figure 2.18, if the solid lines with arrows (--º) represent the 

shipping lines of the spreader and the numbers in circles represent the sequence 

numbers of the shipping lines, then the shipping lines of the spreader for moving a 

container from position 1 to position 2 are: This is defined 

as the first cycle. Similarly, the shipping lines of the spreader for moving a container 

from the position 3 to position 4 are: This is defined as the 

second cycle. It is evident that the shipping lines of the first cycle and the second 

cycle (or the shipping lines of each cycle) are composed of the following paths: (1) to 

move the spreader to the top of the container, (2) to hoist the container and then to 

move to the desired position, (3) to lower the container and then to restore the 

spreader to the original height. This kind of repetitive work can now be simplified as 

a regular (periodic) procedure and gives as a basis for an automatic control system. 

@ 

Figure 2.18 Shipping lines for the spreader. The numbers on the boxes represent the 

numbers of containers and the numbers in circles represent the sequence 

numbers of the shipping lines of the spreader. 
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To achieve the foregoing automatic operation, an algorithm, as shown in Figure 
2.19, is presented. This algorithm firstly divides the total procedures (i. e.. the 

shipping lines of the spreader, as shown in Figure 2.18) into several independent 

cycles and then builds a loop to perform these independent cycles. Figure 2.20 sho\\ s 
the operating procedures for this container management system. It is evident that this 

algorithm is the main part of the automatic container management system. 

Figure 2.21 shows the graphical user interface for the container management system. 
The grid in the figure represents the co-ordinate system on the floor in the laboratory 

which can be re-set as required. The rectangles represent the positions of containers 

and the numbers in circles represent the numberings of the containers. To create the 

containers one needs simply to move the mouse cursor to the toolbar (at the top side 

of the figure) and to click the create container button (W ). The positions and 

orientations of the containers can be changed by simply pressing the mouse button 

(pressing the left button for translating the container and the right button for rotating 

the contatiner) and moving the mouse. Several different strategies (the toolbar at the 

right side of the figure) are also provided for changing the positions and the 

orientations of the container. After the information on the original and the desired 

positions and orientations of the containers is given, the next procedure is to build a 

list for the movements of the containers, so that the program can automatically 

generate the shipping lines of the spreader by using the foregoing algorithm. To this 

end one may move the mouse to chose the original and the desired positions of the 

containers (i. e., the rectangles in the figure) on the screen. To perform the automation 

of container management, one may click the execute button (_J). The container 

management system will now be a speed-and-position control system (see section 

2.3) to achieve automatic container management. The real (instantaneous) positions 

and orientations of the moving rails, the trolley, and the spreader, and the 

information regarding the movements of the containers will be shown on the screen 

during operations. The system may also be changed to manual control at any time to 

avoid undesirable situations. 
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Figure 2.19 Algorithm for the procedure required for each cycle. 
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Figure 2.20 Operating procedures for the container management system for the 

experimental crane rig. 
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Figure 2.21 Graphical user interface for the container management system. 

2.6 Conclusions 

A preliminary speed-and-position control system is developed to aid the control of 

the experimental crane model. A new image-searching algorithm is presented for 

improving the performance of the IPSA as presented by Huang [2]. A method to 

achieve semi-automatic operation (i. e., the container management system) is also 

presented. 
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Chapter 3 Derivation of Contact Point Forces Induced by 

the Moving Substructure and Trolley 

3.1 Introduction 

The scale crane model is a fabricated structure, as explained in Chapter 1, which 

consists of several main parts: the stationary framework, the moving rails, the 

overhead trolley and the spreader. The overhead trolley runs on the moving rails and 

the moving rails move along the two parallel beams (or fixed rails) on the top of the 

stationary framework. In order to predict the dynamic characteristics of the scale 

crane model due to the movements of the moving rails and the overhead trolley, one 

needs to determine the excitations on the scale crane model induced by the moving 

rails and the overhead trolley. The objective of this chapter is to derive the 

expressions required for calculating the concentrated forces located at the four- 

contact points between the stationary framework and the moving substructure. 

In engineering, most structures are an assemblage of substructures. It is apparent that 

the substructure method can be one of the best approaches to reducing the 

complexity of a problem. Many researchers have devoted themselves to the study of 

this problem. For example, Kagemoto, Fujino and Murai [29] proposed a method for 

predicting the hydroelastic behaviour of a large box-shaped flexible structure in 

regular waves. In their article the whole structure is divided into a number of 

substructures, and the continuity of deformation is approximately satisfied by the 

successive discrete displacement of each substructure. Kisa, Brandon and Topcu [30] 

studied the free vibration characteristics of a cracked Timoshenko beam by using the 

finite element method and the component mode synthesis method. They divided the 

beam into two components (substructures) and related them by a flexibility matrix 

(incorporated with the interaction forces). In this case each substructure is modelled 

by a two-node, Timoshenko beam, finite element with 3 degrees of freedom (i. e., 

axial deformation, transverse deflection and rotational angle) at each node. Gcradin 

and Chen [31 ] presented an exact, and direct, modeling technique for beam structures 
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by means of a combination of the transfer matrix method and the dynamic stiffness 

matrix method. They divided the whole structure into substructures based on the 

required master degrees of freedom, and then two numerical examples were given to 

demonstrate the effectiveness of their technique for accurately predicting all the 

eigensolutions in a large frequency range. Kawano and Venkataramana [32] 

investigated the dynamic response and reliability of large offshore structures under 

the action of ocean waves, currents and earthquakes. They obtained the equation of 

motion for the structural system by using the substructure method and then carried 

out response analysis. Shankar and Keane [33] presented a method for studying the 

vibration energy flows through structures based on receptance theory. In this case the 

structure is composed of subsystems so that each substructure may be analyzed 

separately, and then the eigenvalues and eigenvectors for each subsystem are 

determined using the finite element method. Two simple examples are given to show 

that there can be good agreement between substructure-based models and actual 

global models. Lee and Jung [34] used a modified Lanczos method, incorporated 

with a substructure technique, to calculate the natural frequencies and mode shapes 

of a large structural system. In their technique, the natural frequencies and the 

corresponding mode shapes of the finite element model are the same as those with, or 

without, the use of a substructure. An example is provided for calculating the first ten 

natural frequencies and the corresponding mode shapes of an open truss helicopter 

tail-boom structure. 

It is apparent that the substructure theory can be applied to the present mobile crane 

problem for analysing the dynamic behaviour of the scale crane structure due to the 

movements of the moving rails and the overhead trolley. The idea proposed in this 

chapter is to divide the whole crane structure into two parts: the stationary 

framework and the moving substructure. The latter consists of the moving rails, the 

overhead trolley and the spreader. The dynamic behaviour of the scale crane 

structure may then be predicted by computing the forced vibration response of the 

stationary framework subjected to four point forces induced by the moving 

substructure. 
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3.2 Derivation of the Four Concentrated Contact Forces 

According to the substructure theory described in the last section, the whole scale 

crane structure can be divided into two parts: the stationary framework and the 

moving substructure. Figure 3.1 shows the moving substructure consisting of two 

moving rails, a overhead trolley, and a spreader. The whole structure, the stationary 
framework, and the moving substructure are shown in Figures 3.2(a), (b) and (c), 

respectively. 

From Figure 3.3(a) one sees that the centreline of the moving substructure parallel to 

the x axis is a symmetric axis for the whole moving substructure. Hence, the 

interactive forces between the two fixed rails and one of the two moving rails are 

equal to the corresponding forces between the two fixed rails and the other one of the 

two moving rails. This is the reason why the contact force at point A is equal to that 

at point B (i. e., F_1 (t) = FZB (t) = F_, (t) ), and the contact force at point D is equal to 

that at point C (i. e., FD W= F_c (t) =F 2(t)) as shown in Figure 3.3(a). Each contact 

force (either F_, (t) or F2 (t)) may be divided into two components. One of them is 

due to the weight of the whole moving substructure (see Figure 3.2(c)), excluding the 

weight of the overhead trolley together with the spreader and the hoisted container. 

This component maintains a constant magnitude but changes its position when the 

whole substructure moves in they direction along the two fixed rails. The other 

component is due to the overhead trolley together with the spreader and the hoisted 

container. This component changes its magnitude when the trolley moves in the 

direction parallel to the .x axis along the two moving rails. 

The summation of the two contact force components mentioned above, and the 

excitation due to the drive motor, define the instantaneous magnitude of each contact 

point force. The instantaneous positions of the four contact point forces are 

determined by the relative position between the two moving rails (on the moving 

substructure) and the two fixed rails (on the top of the stationary framework). 
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Figure 3.1 Moving substructure of the scale crane model consisting of two rails and 

a trolley carrying a spreader. 

Jýý' 

n_. Il _.. 

Trolley 
Motor 

+ 

Figure 3.2 1/10 scale crane model: (a) whole structure, (b) stationary framework and 

(c) moving substructure (the rotating motor and hoisting motor are not 

shown). 
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Figure 3.3 (a) Contact point forces on the moving rails (F., (t) and F. 2 (1)) and the 

relevant symbols; (b) Free-body diagram for each of the two moving rails 

P. 

The meanings for the symbols appearing in Figure 3.3 are: 

0, r, y, z: Global co-ordinate system with origin 0 located at the centre of the top 

plane of the whole scale crane model. 

Q: Fixed rails (parallel beams) on the top of the experimental crane model. 

P: Moving rails running in the direction along the two fixed rails. 
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CC(t) :x co-ordinate for the centre of the trolley at time t. 

CC(t) :y co-ordinate for the centre of the trolley at time t. 

Xa : Spacing between the two fixed rails Q. 

yb : Spacing between the two moving rails P. 

xmo! : Distance between the mass centre of the motor fixed on the left end of the two 

moving rails and y axis. 

mmot : Mass of the motor driving the movement of the trolley in the i direction. 

me : Mass of trolley, spreader and the hoisted container. 

mp : Mass of the moving substructure (excluding mass of trolley, motor, spreader and 

the hoisted container). 
A, B, C, D: Contact points between the two fixed rails Q and the two moving rails P. 

F, (t) : Concentrated force at contact point A (or B) at time t. 

F2(t) :: Concentrated force at contact point C (or D) at time t. 

F, : Exciting force amplitude due to unbalance of the motor located at the left end of 

the two moving rails for driving the movement of the trolley in the . 
i- direction. 

COe, : Angular frequency of Fe, 
. 

1" (t) : Moving speed of the trolley along the .i axis at time t, + for rightward (i. e., 

the positive _i 
) direction and - for leftward (i. e., the negative . t) 

direction. 

(t): Moving speed of the two moving rails along the y axis at time t, + for 

upward (i. e., the positive y) direction and - for downward (i. e., the negative 

j') direction. 

Figure 3.3(a) shows the concentrated forces (F_, (t) and F, 2 (t)) at the four contact 

points (A, B, C and D) and the relevant symbols listed above (e. g., O,. Y, 1-1, f, C. (t) , 

C,, (t) ... i 
. 

(t) and 1, ', (t)) for the 1/10 scale crane model structure. The moving 

substructure may move on the two fixed rails Q along the T axis and the trolley may 

move on the two moving rails P along the .i axis. A, B, C and D are the four points 

of contact between the two substructures. Figure 3.3(b) shows the free-body diagram 

for each of the two moving rails P. 
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According to the principle of moment equilibrium, one obtains the following 

equations. 

For point Z1 as shown in Figure 3.3 (b), one has 

M--(! mg+ 1- Fj t))(x - ! ---) + ('- m -1 x) Z1 2 mor 2 el el mot 22 pg)(2 a 

_F Z2 (t)Xa + (2 mcg)(C (t) +2 Xa) 

. '. Fie (t) =äm pg +4m, g(1 + 2(cxýtý)) +i (mmotg + Fe, sin(weit))(2 - x. ) t3.1) 

Similarly, for point Z2 as shown in Figure 3.3(b), one has 

EMZ2 =- (2 m.,, g +2 Fei sin(welt))(xmot + 2) + Fig (t)xa -2m pg)(2 xQ ) 

(-Lm 
2 cg)(Cz 

(t) -i xa) =0 

. ". FzjCt) =4 mpg +ä mg(l - 2(cXa' )) +2 (mmo, g + Fe, sin(we, t))(2 + 1Xä) (3.2) 

If the excitation due to the motor is negligible, i. e., Fe, = 0, then Equations (3.1) and 

(3.2) reduce to 

F 2(t) =4 mpg +4m, g(1 + 2(cz('») +2 mmotg(2 - Xý') (3.3) 

Fzl (t) =äm pg +äm, g(1- 2(cx (») +2 mm�, g(2 + 'X; ) (3.4) 

For (, (t) =constant, 

CX(t)=Co+V of+2a,, t2 (3.5a) 

or 

CX (t) = CX0 +V otx +2a tX2 +V mý 
(t - tX) (3.5b) 

= 

Vcxmax 
-V 

x 
cxO (3.6) 

a. 

where CO and Cx (t) represent the initial and the instantaneous x co-ordinates for 

the centre of the trolley, respectively. Vo and V, 
m. represent the initial and the 

maximum speeds of the trolley along the x axis, a,, represents the acceleration of 

the trolley, and t, represents the time that the trolley takes to accelerate from VO to 
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Vcxmax 
. It is noted that all the subscripts x for the foregoing symbols represent position 

or motion along the x axis. Equation (3.5a) represents the instantaneous 
_i co- 

ordinate, Cx (t) 
, 

for the trolley continuously accelerating along the _i axis and 
Equation (3.5b) represents that for the trolley accelerating to the maximum speed 
Vcxmax and then moving at this maximum speed along the x axis. 

Since the forces given by Equations (3.3) and (3.4), FZ2 (t) and FZ, (t), represent the 

forces acting on the two moving rails, P, the forces acting on the two fixed rails, Q, 

are those of the same magnitudes but in opposite directions, i. e., 

Fzz (t) =-ä mpg -ä mcg(1 + 2(cz(`) )) -2 m�ýo1g(2 - Xcý) (3.7) 

F'z, (t) =-ä mpg -ä mcg(1- 2(cX<<))) -2 m�la1g(2 + XXä`) (3.8) 

3.3 Calculation of y Co-ordinates for the Nodes at which the Contact Point 

Forces are Located 

As shown in Figure 3.3(a), the moving substructure moves on the two fixed rails 

along they axis, hence the y co-ordinates of the four contact points, A, B, C and D, 

vary with time. In order to define the instantaneous y co-ordinates of the four 

contact points it is necessary to calculate the position of the centreline of the moving 

substructure (or the centre of the trolley) at time t, Cjt) . 

If the moving substructure (or the trolley) moves along they axis with a constant 

acceleration a,,,,, then 

C,, (t) = CO + Vyo t+za,.,, t` (3.9) 

where C,, 0 and 1', 0 are the initial displacement and velocity of the moving 

substructure (or the trolley), respectively. If the moving substructure accelerates 

along the i axis to the maximum speed [ ý.,, 
ý, ül. and then moves with that speed. then 

Cl (t) =C () 
+I 

rl'0 
r, 

i" 
+I act' t+i cimnr (1 

- tý") ý3.1 0ý 
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Y cymax - 
''CYO 

Q 
cY 

(3.11) 

After the instantaneous position, Cy, (t) 
, 
for the centreline of the moving substructure 

(or the centre of the trolley) is determined, the y co-ordinates for the four contact 

points, A, B, C and D, yA (t) , yB (t) , yc (t) and yD (t) , are easily calculated: 

YA(t) = Cy(t) 26 (3.1? ) 

YB(t) = CC(t) + 26 (3.13) 

Ycýt) = CC(t) + 26 (3.14) 

YD(t) _ Cy(t) 26 (3.15) 

where yn is the spacing of the two moving rails P, as shown in Figure 3.3(a). 

3.4 Numerical Calculations of the Contact Point Forces in the Scale 

Crane model 

In order to understand the general applicability of the expressions derived in this 

chapter, five numerical examples are discussed here. The relevant numerical data for 

the scale crane model are [2]: 

v co-ordinate for the centre of trolley: - 500 nim < Cx(t) <_ 500 mm 

v co-ordinate for the centre of trolley: - 750 mm < C}. (t) 
- 

750 inm 

x co-ordinate for the motor mmo, : x,,, o, = 1055 mm = 1.055 m 

Spacing of the two fixed rails P: xQ = 970 mm = 0.970 m 

Spacing of the two moving rails Q: Yb = 270 mm = 0.27 nz 

Mass of the moving substructure (excluding the mass of trolley, motor, spreader and 

hoisted container): nip = 47.5 kg 

Mass of trolley, spreader and hoisted container: in, = 58.15 kg 

Mass of motor at the left end of the two moving rails: m,,, � = 13 kg 
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Maximum speed of the trolley in x direction: V 
X,,, at = 0.3142 in Is 

Maximum speed of the two moving rails in y direction: Vom, 
ar = 0.5236 »i's 

The other parameters required for the five examples are listed in Table 3.1. 

Examples 
CX 

(m) 

Vcxo 

(m/s) 
QcxZ 

(m/s) 

co 

m 

vcýlo 

m/s (ýýi; 's ) 
1 0.5 -0.3142 0 0 0 0 
2 0 0 0 0.75 -0.5236 0 
3 0.5 -0.3142 0 0.75 -0.5236 0 
4 0.5 -0.1 -0.05 0.75 -0.1 -0.5 
5 -0.49 See Figure 3.8(b) -0.6 See Figure 3.8(a) 

Table 3.1 Parameter values for the five numerical examples. 

For Example 1, from the 2nd row of Table 3.1, one sees that the whole substructure is 

stationary along the y axis because VO=a, = 0, and the only movement is due to 

that of the trolley moving in the negative _x 
direction with constant velocity V ýYo =- 

0.3142 m/s from the initial position C., 0= +0.5 m. Figures 3.4(a) and (b) show the 

time histories for the four contact forces in the period of time t=0 to 3.1 s for this 

example, where the curves with 0,0, A and 0 are for the contact points A, B, C and 

D, respectively. It is evident that the positions of the four contact forces do not mov'c 

because the substructure is stationary, as mentioned above. Besides this, the 

magnitude of the contact force at point A is equal to that at point B, i. e., 

F_,, (t) = F. e (0= F_, (t) , 
because the whole substructure is symmetric with respect to 

its centreline parallel to the x axis, as mentioned in section 3.2. Similarly, it is seen 

that F_� (t) =F(. (t) = F-2(0 . From Figures 3.4(a) and (b), one also finds that the 

absolute value of F_, (t) increases and that of F_2 (t) decreases w ith the increase in 

time t when the trolley moves in the negative i direction from its initial position 

C, 
lo = +0.5 in with speed I 

Cro = -0.3 142 m/s. This is also a reasonable result because 

the distance between the trolley and point A (or B) decreases with the increase in 

time t, while that between the trolley and point D (or C) increases with increasing 

time t. It is noted that the contribution of the weight of the trolley (including the 
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spreader and the hoisted container) on the contact force, F_, (t) or F_2 (t) 
, is 

inversely proportional to the distance between the trolley and the associated point. 

For Example 2, the trolley is stationary because VO=a, 
x = 0, as shown in the 3`d 

row of Table 3.1, but the whole substructure moves in the negative y direction from 

the initial position C0= +0.75 m with constant speed VV,, o = -0.5236 m/s. From the 

time histories of the four contact forces, shown in Figures 3.5(a) and (b), one sees 
that the y co-ordinates of point A are equal to those of point D, i. e., "A (t) = D(O , 
and change with time t. Similarly, it is seen that yB (t) = yc (t) change with time and 

show the same trend. The magnitudes of the four contact forces remain constant, 
however, because the trolley is stationary along the x axis. All the above results 

agree with the actual situations. The meanings of the curves with 0,0, A and 0 are 
exactly the same as those for Figures 3.4(a) and (b) and the subsequent Figures 3.6- 
3.7. 

In the case of Example 3, the substructure moves in the negative y direction from 

the initial position C}, 0 = +0.75 m with constant speed V.,. o = -0.5236 m/s and at the 

same time the trolley moves in the negative x direction from the initial position 
C; o= +0.5 in with constant speed V 

,, O = -0.3142 m/s. The time histories for the four 

contact forces are shown in Figures 3.6(a) and (b). From Figure 3.6(a) one sees that 

F_:, (t) =FB (t) = F_, (t) and the absolute values of F, (t) increase with increasing 

time t, while from Figure 3.6(b) one finds that FZD (t) =FC (O = F_, (t) but the 

absolute values of F_2 (t) decrease with increasing time t. As stated previously, the 

reason that F,, (t) =FB (t) =F, (t) and F_o (t) = F(. (t) =F2 (t) is because of the 

symmetric configuration of the substructure with respect its centreline parallel to the 

. 
T- axis. The reason for the absolute values of F, (t) increasing with increasing time 

t, and those of P. -, (t) decreasing with increasing time t, is because of the distance 

between the trolley and contact point A (or B) decreasing with increasing time t. This 

trend is reversed for the distance between the trolley and contact point D (or Q. 
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Taking Example 4 next it can be seen that all the moving conditions for the 
substructure and the trolley are the same as those for Example 3 except that the initial 

speeds of the substructure and the trolley are smaller (go=V0= -0.1 m/s), and both 

the movements have accelerations with magnitudes a,, = -0.5 m/s2 and act _ -0.05 

m/s2. It is noted that the negative signs (-) of acy and ac., , respectively, represent the 

accelerations in the negative y and x directions rather than decelerations. The time 

histories of the four contact forces for the present example are shown in Figures 
3.7(a) and (b). Comparing these figures with Figures 3.6(a) and (b) one may see that 

all the trends for the four contact forces, F, (t) and F2 (t) 
, are similar except that 

the relationship between F, (t) (or F: 2 (t)) and time t is linear in Figures 3.6(a) and 
(b), but is non-linear in Figures 3.7(a) and (b). This is also a reasonable result 
because all the movements in Example 3 are for constant speeds and those in 

Example 4 are for accelerations. 

Finally for Example 5, the substructure and the trolley simultaneously move in the 

positive y direction and positive x direction according to the speeds shown in 

Figures 3.8(a) and (b), respectively, from the initial positions C,, o = -0.6 m and C', 0 = 

-0.49 m. The time history for the contact force at point A (or B), 

F,, (t) = FB(t) = F, (t) 
, and that at point D (or C), F_o(t) = Fc. (t) = FZ, (t) , are 

shown in Figure 3.8(c). As one may see from the last figure that, in the period of 

time t=0.0 to 4.00 s, the absolute value of F, (t) decreases with increasing time t, 

but this trend is reversed for that of F_, (t) 
. 

This is because the distance between the 

trolley and the contact point A (or B) increases with increasing time t and that 

between the trolley and D (or C) decreases with increasing time when the 

substructure and the trolley simultaneously move in the positive til direction and 

positive .i 
direction, respectively. In addition to this, the values of F_, (t) and 

F, (t) remain constant when time t>4.0 s, as shown in Figure 3.8(c). This is a 

correct result because the moving speed of the trolley is equal to zero as shown in 

Figure 3.8(b). 
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Figure 3.4 Time histories of the concentrated forces at the four contact points in 

Example 1 for: F. (t) = FZ,, (t) =F I(t) and (b) F%D(t) = FzC(t) = Fz2(t) . 

The curves with the symbols 0,0,0, and 0 are for the contact forces at 

points A, B, C and D, respectively. 
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Figure 3.5 Time histories of the concentrated forces at the four contact points in 

Example 2 for: (a) F. (t) = FZ, (t) and FZD (t) = Fz2 (t) ; (b) FF (t) = Fz, (t) 

and Fzc (t) = Fz2 (t) . The curves with the symbols 0,0,0, and 13 are for 

the contact forces at points A, B, C and D, respectively. 
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Figure 3.6 Time histories of the concentrated forces at the four contact points in 

Example 3 for: (a)Fz, (t) = FZB(t) = F. I(t) and (b) F%D(t) = FZC(t) = Fzz(t) . 

The curves with the symbols o, 0, A, and 0 are for the contact forces at 

points A, B, C and D, respectively. 
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Figure 3.7 Time histories of the concentrated forces at the four contact points in 

Example 4 for: (a) FAQ) = FZB(t) = FzI(t) and (b) F, (t) = FzC(t) = Fi2(t) . 

The curves with the symbols 0, o, 0, and 0 are for the contact forces at 

points A, B, C and D, respectively. 
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3.5 Conclusions 

In this chapter, the whole scale crane model structure has been divided into two 

parts, the stationary framework and the moving substructure, and then a technique 

for calculating the magnitudes and positions of the four concentrated contact point 

forces between the two subsystems has been presented. It has been shown that the 

dynamic behaviour of the whole scale crane model structure, induced by the 

movements of the two moving rails and the moving trolley, may be predicted by 

computing the forced vibration response of the stationary framework subjected to the 

four time-dependent moving concentrated contact point forces. 
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Chapter 4 Free Vibration Analyses of the Stationary 

Framework Using the Finite Element Method 

and Modal Testing 

4.1 Introduction 

The principal motivation of this thesis is to improve the design of a mobile gantry 

crane. In order to simulate the dynamic behaviour of the full-size crane a 1/10 scale 

model has been built in the laboratory. There exist some differences between the 

actual crane and the scale crane model. The actual crane may move on wheels, but 

the scale model is fixed to the floor. Additionally, in the scale model the horizontal 

movements of the spreader are achieved by running the moving substructure on two 

rails fixed on the top of the stationary framework, or the trolley on the two moving 

rails of the moving substructure (see Figure 3.2(a)). 

Before the forced vibration analyses are performed it is necessary to confirm the 

reliability of the adopted mathematical model. One of the most convenient ways for 

doing this is to compare the computed values of natural frequencies and mode shapes 

of the mathematical model with the experimental counterparts from the 

corresponding scale model. In this chapter the finite element method (FEM) and the 

modal testing technique are employed for this purpose. In the conventional finite 

element model the general screw-fastened joints in the scale model are considered to 

be rigid joints, and the translational displacements (and/or rotational angles) of a 

fixed node (or ground-fixed node) are assumed to be equal to zero. Of course these 

are also the assumptions made in the finite element model of this thesis. Therefore, 

the main work of this chapter is to modify the boundary conditions at the ground 

attachment points. 
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4.2 Finite Element Model of the Scale Crane Rig 

The 1/10 scale crane model is shown in Figures 1.4 and 1.5. For convenience of 
dynamic analysis the whole structure is divided into two parts: the stationary 
framework (as shown in Figure 3.2(b)) and the moving substructure (as shown in 

Figure 3.2(c)). 

Since the key point of this research has been to investigate the dynamic behaviour of 
the stationary framework induced by the movements of the moving substructure and 
trolley, the whole moving substructure (including all its attachments) is taken apart 
from the scale crane model. The finite element model, together with the global co- 

ordinate system (. x ,y, z) for the stationary framework, is shown in Figure 4.1 , in 

which the digits in the small circles denote the numberings of the nodes. The co- 

ordinates for all the 75 nodes of the finite element model are listed in Table 4.1. 

Among all the beam elements comprising this finite element model, the cross-section 

of the structural material between nodes 46 and 47 is a solid square, that between 

nodes 48 and 49 is a solid circle, the cross-sections of the material between nodes 1 

and 18,18 and 11,6 and 24,24 and 16 are L-shaped, while the cross-sections of all 

the others are hollow squares, as shown in Figures 4.2(a), (b), (c) and (d), 

respectively. All of the beam elements are made of steel with mass density P= 

7820 N/m; and Young's modulus of elasticity E= 206.8 x 106 N/ m2 . 

An orthographic view of the finite element model for the stationary framework is 

shown in Figure 4.3. The whole model consists of 99 linear beam elements and 73 

nodes. By using the finite element package I-DEAS [35,36,37], one obtains the first 

ten natural frequencies and the corresponding mode shapes of the scale crane model, 

as shown in Figures 4.4(a)-O), where w, FEM (i =1 to 10) represent the i`h natural 

frequencies of the scale crane model obtained from the finite element method (FEM). 
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Node 
No. z y z 

Node 
No. x y 

1 -1285 0 -2200 2 -1285 0 -920 
3 -1285 0 0 4 -485 0 0 
5 485 0 0 6 1285 0 0 
7 1285 0 -920 8 1285 0 -2200 
9 -1285 -2940 -2200 10 -1285 -2940 -920 

11 -1285 -2940 0 12 -485 -2940 0 
13 485 -2940 0 14 1285 -2940 0 
15 1285 -2940 -920 16 1285 -2940 -2200 
17 -1285 -1460 -2200 18 -1285 -1460 -1092.5 
19 -1285 -1460 0 20 ----- ----- ----- 
21 0 -1460 0 22 ----- ----- ----- 
23 1285 -1460 0 24 1285 -1460 -1107.5 
25 1285 -1460 -2200 26 -485 -2740 0 
27 -419.5 -2740 0 28 419.5 -2740 0 
29 485 -2740 0 30 -485 -2590 0 
31 -370.3 -2590 0 32 370.3 -2590 0 
33 485 -2590 0 34 -485 -350 0 
35 -368.7 -350 0 36 368.7 -350 0 
37 485 -350 0 38 -485 -90 0 

39 -455.1 -90 0 40 455.1 -90 0 
41 485 -90 0 42 -365 0 0 
43 365 0 0 44 -365 -2940 0 
45 365 -2940 0 46 0 -90 0 
47 0 -350 0 48 0 -2590 0 
49 0 -2740 0 50 -485 -560 0 
51 -485 -710 0 52 -485 -860 0 

53 -485 -1010 0 54 -485 -1160 0 

55 -485 -1310 0 56 -485 -1460 0 

57 -485 -1610 0 58 -485 -1760 0 

59 -485 -1910 0 60 -485 -2060 0 
61 -485 -2210 0 62 -485 -2360 0 

63 485 -560 0 64 485 -710 0 

65 485 -860 0 66 485 -1010 0 

67 485 -1160 0 68 485 -1310 0 

69 485 -1460 0 70 485 -1610 0 

71 485 -1760 0 72 485 -1910 0 

73 485 -2060 0 74 485 -2210 0 

75 485 -2360 0 

Table 4.1 Global co-ordinates for the nodes of the finite element model of the 

stationary framework. (unit: mm) 
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Figure 4.2 Cross sections for the beam elements between (a) nodes 46 and 47, (b) 

nodes 48 and 49, (c) nodes 1 and 18,18 and 11,6 and 24,24 and 16, (d) 

all the other nodes. 

Figure 4.3 Orthographic view of the finite element model of the stationary 

framework. 
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Figure 4.4 First ten mode shapes for the finite element model of the stationary 

framework: (a) I" mode with Ct) , FFAI = 9.4651 H:; (b) 2nd node with 

55 



c2FEM =11 
. 7505 Hz; (c) 3rd mode with W3FEM = 14.9176 Hz; (d) 4 mode 

with w4FEM - 
19.8021 Hz; (e) 5 ̀h mode with WSFE� = 26.8943 H. _; (f) 6`h 

mode with W6FEM = 35.5472 Hz; (g) 7`h mode with w, FEM, = 37.6940 Hz: 
(h) 8th mode with W8FEM= 38.3473 Hz; (i) 9`h mode with cv9FEt, _ 45.2145 

Hz; 0) 1 0`h mode with WIOFEM = 48.1794 Hz. 

4.3 Experiments on the Scale Crane Model 

Nowadays the finite element method (FEM) is one of the most popular approaches 
for the vibration analysis of structures, but accuracy of the FEM can be questionable 
and validation is usually required. For this reason modal testing is undertaken to 

measure the natural frequencies and the corresponding mode shapes of the scale 
crane model, and then a comparison between the results and those obtained from the 
finite element model is made. In general, theoretical prediction of the damping 

coefficient for each vibration mode is impossible, thus, no attempt is made here to 

measure the modal damping within the tests. 

The setup for the modal testing of the scale model is shown in Figure 4.5. Two 

shakers are used to give simultaneous excitations on node 10 and node 18 in the 

positive y and .- 
directions, respectively. Each shaker is equipped with a load cell 

to detect the magnitude of the exciting force. The vibration responses at all the nodes 

are measured with accelerometers. The modal parameters (the natural frequencies 

and the corresponding mode shapes of the scale crane model) are determined using 

the LMS modal testing software [38,39]. 

Two kinds of mechanical coupling are used to connect the load cell (or force 

transducer) and the tested structure (the scale crane model). Figure 4.6(a) shows the 

tubular type and Figure 4.6(b) the double-side screw type. Frone the FRF (Frequency 

Response Function) graphs for node 18 vibrating in the i direction, as shown in 

Figure 4.7, one sees that the coupling between the load cell and the tested model 

significantly affects the experimental results. From the response amplitudes of E igure 
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4.7 there is little to distinguish between the performance of the two couplings. A 

practical decision was made to use the double-side screw coupling from hereon. 

In Table 4.2 the 2nd column shows the first ten natural frequencies of the finite 

element model obtained from I-DEAS, c0, FEM (i =1 to 10), and the 3`d and 5`h 

columns show those of the scale crane model obtained from modal testing by using 

the double-side screw coupling, wlsc, and the tubular coupling, w; Tu , respectively. It 

is seen that the percentage differences between the computed natural frequencies and 

the measured values using the double-side screw coupling, Acoisc (%), are smaller 

than those between the computed natural frequencies and the measured Values using 

the tubular coupling, Aw; T,, (%), as shown in the 4th and 6 ̀h columns of Table 4.2, 

respectively. Therefore, the double-side screw coupling has been adopted for the 

subsequent model tests. Note that the values of AWIsC and AWiTu are obtained from 

the following formulas 

OmiSc (/) =I wiFEM - wiSc Ix 100%! w . iFEM 

AwiTu (%) = 
lWiFEM 

- WiTu 
Ix 100%I WiFEM 

(4.1) 

(4.2) 

From Table 4.2 one also finds that the first ten measured natural frequencies (either 

wisp or wir,, ) are lower than the corresponding computed values, WIFEM 
" This is an 

interesting results because the actual rigidity of the screw-fastened (or fixed) joints in 

the scale crane model is found to be smaller than the theoretical rigidity assumed for 

the conventional FEM. 

Figures 4.8(a)-(e) show the five mode shapes and the associated natural frequencies 

of the stationary framework of the scale crane model when using the double-side 

screw coupling. It is noted that the moving substructure (including the moving rails, 

the overhead trolley and the spreader) has been removed from the whole structure of 

the scale crane model, as has been mentioned in section 4.2. 
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Mode 
No., i 

Natural Frequency 
from I-DEAS 

Ct)iFEM (Hz) 

Natural Frequency 
from LMS using 
double-side screw 
coupling, 

W isc (Hz) 

Percentage 
difference 
Aw (%)* 

`S` 

Natural 
Frequency from 
LMS using 
tubular coupling 
CO iTu 

(Hz) 

Percentage 
difference 
0ý (oho)** 

'T" 

1St 9.465134 ----- ----- ----- ----- 
2" 11.75050 9.01 23.32 ----- ---- 

rd 3 14.91768 10.46 29.89 9.37 37.20 
4' 19.80210 14.85 25.00 14.61 26.21 
5' 26.89430 20.07 25.36 19.24 28.45 

35.54720 ----- ----- ----- ----- 
37.69403 ----- ----- ----- ----- 

8` 38.34730 31.52 17.79 30.39 20.74 
45.21481 ----- ----- ----- 

10' 48.17940 ----- ----- ----- ----- 
* AW 

iSc 
(%) =I ýiFEM - ýiSc 

IX 100%/ W 
iFEM 

** AWiTu (0/0) I WiFEM - WiTu IX 100%/ W iFEM 

Table 4.2 Percentage differences between the natural frequencies obtained from the 

finite element model using FEM (w; FEM) and those from model tests on 

the scale crane model by using the double-side screw coupling (w; s, ) and 

the tubular coupling (wi, ). 

V 
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Figure 4.5 Configuration for the modal testing of the scale crane rig. 
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Figure 4.6 Two kinds of coupling for the force transducer and the tested structure: (a) 

tubular type; (b) double-side screw type. 
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Figure 4.8 First five mode shapes and associated natural frequencies of the scale 

crane model obtained from modal testing: (a) 1 s` mode with w, = 9.01 Hz; 

(b) 2"d mode with w2Sc = 10.46 Hz; (c) 3rd mode with (o,, = 14.85 Hz; (d) 

4`' mode with w, k = 20.07 Hz; (e) 5 ̀h mode with wsý. = 31.52 Hz. 
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4.4 Modifications of the Finite Element Model for the Scale Crane 
Rig 

For convenience of description, the finite element model of the scale crane rig 
established in the last section and the one in this section are, respectively, called the 
original finite element model and the modified finite element models. A comparison 
between the first five calculated natural frequencies of the original finite element 
model determined by FEM, wiFEM (i =1 to 5), and the corresponding measured 

values, obtained from modal testing on the scale crane model by using the double- 

side screw coupling, w15 , is shown in Table 4.3. It is noted that the comparison 
between the measured natural frequencies and calculated values should only be made 
on the basis of corresponding mode shapes. The values of percentage differences, 
0 c), sc , as shown in the final column of Table 4.3, are determined from Equation 

(4.1). It can be seen that the percentage differences (Aw; s, %) between the calculated 

natural frequencies and the measured values are not small enough. For the 2 "d mode, 
the maximum value of 0 wist even reaches 29.89%. 

It is proposed that the measuring position of the accelerometer, as shown in Figure 
4.9, may have had something to do with the results of the modal testing, therefore 

similar tests were repeated by changing the positions of the accelerometers. However 

it was subsequently found that the influence of the measuring position of the 
instrument is not significant for the modal testing conducted. 

Mode 
No., i 

Computed natural frequencies 

obtained from I-DEAS, WiFEM (Hz) 

Measured natural frequencies 

obtained from LMS, Wis, (Hz) 

Percentages of 
Frequency differences 
A COQ (%) * 

1 S` 11.75 9.01 23.32 
2" 14.92 10.46 29.89 
3r 19.80 14.85 25.00 
4 26.89 20.07 25.36 
5 38.34 31.52 17.79 

* wiSc (%) = (wiFEM - O)iSc) X 100%/ OiFEM 

Table 4.3 Comparison between the first five natural frequencies of the original finite 

element model determined by FEM, WiFEM, and those obtained from modal 

testing on the scale crane model using a double-side screw coupling, w;, . 
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Accelerometer -------", -'ýý 

Finite clement model 
Node 

Real structure .' 

Figure 4.9 Measurement position of an accelerometer on the tested structure is found 

not to be a key factor affecting the results of the present model tests. The 

solid line (-) and dashed line (---), respectively, represent the real 

structure and the finite element model of the actual structure. 

Referring to the foregoing discussions it is thought that the disagreement between the 

theoretical analyses and the measurements may be due to: (i) the mechanical 

properties of the rigid joints (in the finite element model) not being very close to 

those of the screw-fastened joint (in the scale crane model); (ii) the translational 

displacements (and/or rotational angles) of the fixed end (i. e., the ground-fixed nodes 

as shown in Figure 4.12) not really being equal to zero, as assumed by the FEM. 

The general structural joint of the scale crane model is as shown in Figure 4.10(a) or 

(b), but only the type shown in Figure 4.10(c) can be adopted by conventional FEM. 

Therefore the first modification to the finite element model has been to replace the 

joints of Figures 4.10(a) and (b) by those of Figures 4.11(a) and (b), respectively. 

The finite element analysis was then carried out on the modified finite element 

model, but no satisfactory results were obtained. 
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Since the scale crane model is attached to the wooden tiles of the second floor of a 
building, the translational displacements and rotational angles for the nodes of the 

scale crane model fixed on the wooden tiles are possibly not exactly equal to zero. 
Hence, several translational and rotational spring elements (see Figure 4.12) have 

been introduced to the ground-fixed nodes to modify the finite element model. After 

extensive studies it was found that if the stiffness, k, and k, 
, of each translational 

and rotational spring element were chosen to be 2000 (i. e., k, = 2000 : Viinnr and k,. = 

2000 Nm/rad, then the first five natural frequencies of the modified finite element 

model (see Figure 4.13) determined by FEM, co, FE,,, , will be close to the 

corresponding values obtained from modal testing on the scale crane model, w1s. , as 

shown in Table 4.4. From the table one sees that the maximum percentage difference 

is Aw3Sc = 7.02% and the average value of A oISC is 3.61%. In practice this average 

percentage difference of Oc); sC should be acceptable, hence this new finite element 

model (see Figure 4.13) has been used for further studies on the forced vibration 

analyses of the scale crane model. Where the values of Aw; Sc %, as shown in the final 

column of Table 4.4, are calculated with Equation (4.1). 

The influence of the stiffness, k, and k,, of each translational and rotational spring 

for the ground-fixed nodes on the first five natural frequencies of the modified finite 

element models determined by FEM, w; FEM (i =1 to 5), is shown in Table 4.5 and 

Figure 4.14. It is seen that the variation of the spring stiffness (k, and k, ) is from 

500 (i. e., k, = 500 N/mm and kr = 500 Nm/rad) to 3500 (i. e., k, = 3500 N/mm and 

kr = 3500 Nm/rad). The dashed line with star (--*--), as shown in Figure 4. l4, 

represents the average percentage difference for the first five natural frequencies of 

the modified finite element models, due to the variation of the spring stiffness. The 

lowest value of the percentage difference appears when the stiffness of each 

translational and rotational spring element is equal to 2000 (i. e., k, = 2000 A "111m 

and kr = 2000 Nm/rad). This is the reason why k, = 2000 AV/mm and kr = 2000 

Nm rad are used for the subsequent theoretical analyses in this thesis. 
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Figure 4.10 (a) General structural joint in the scale crane model; (b) alternative joint 

in the scale crane model; (c) corresponding rigid joint for the 

conventional finite element model. 
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Figure 4.1 1 Rigid joint (Figure 4.10(c)) of the finite element model is replaced by: 

(a) modified joint of Figure 4.10(a); (b) modified joint of Figure 4.10(b). 
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ced node 
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Figure 4.12 Translational and rotational spring elements are introduced to the 

ground-fixed nodes for the new finite element model for the scale crane 

rig. 

Figure 4.13 New finite element model for the stationary framework of the scale crane 

rig. 
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Mode 
Natural frequencies Natural frequencies Frequency 
of new finite element of scale crane differences Percentage 

No. 
model with FEM, model using LMS IWiFEbf _W iSc 

differences 
# 

Ct)iFEM (Hz) 
system, w1 (Hz) (Hz) 

ýýis, (%) 

1 S` 9.05 9.01 0.04 0.48 
2n 10.05 10.46 0.41 3.93 
3r 15.89 14.85 1.04 7.02 

th 20.51 20.07 0.44 2.17 
5` 30.11 31.52 1.41 4.46 

Average -------- ------ ------ 3.61 
* Avise (%) =I WiFEM - WiSc IX 100%! WiFEM 

Table 4.4 First five natural frequencies of the new finite element model determined 
by FEME WiFEM , and the corresponding values obtained from modal tests 
on the scale crane model, coj,.. 

Mode 
Natural frequencies CViFEM (Hz) 

No., 
k, = 500 

(N/mm) 
k, = 500 

Nm/ray! 

k, = 1300 
(N/mm) 

k, = 1300 
Nm/ra 

k, = 1800 
(N/mm) 

k, = 1800 
Nm/ra 

k, = 1900 
(NImm) 

k, = 1900 
Nmlra 

k, = 2000 
(N/mm) 

k, = 2000 
Nm/ra 

k, = 2100 
(N/mm) 

k, = 2100 
Nm/ra 

k, = 2500 
(N/nn) 

k, = 2500 
Nm/ra 

k, = 3500 
(N/mm) 

k, = 3500 
Nm/rac 

1s` 6.480 8.359 8.896 8.898 9.053 9.123 9.358 9.745 
2" 8.486 9.631 9.954 10.003 10.049 10.091 10.233 10.468 
3' 13.345 15.392 15.789 15.843 15.893 15.938 16.082 16.299 
4T'-- 17.712 19.942 20.387 20.449 20.506 20.557 20.723 20.975 
5` 27.086 29.550 29.995 30.058 30.114 30.165 30.326 30.566 

Table 4.5 Influence of stiffness, k, and k,. 
, of each translational and rotational spring 

element for the ground-fixed nodes on the first five natural frequencies of 
the modified finite element model determined by FEM, w; FEM 
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Figure 4.14 Influence of stiffness, k, and k, 9 of each translational and rotational 

spring element for the ground-fixed nodes on the percentage differences 
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(AWisc %) between the first five natural frequencies of the modified 

finite element model determined by FEM, WiFEM , and the corresponding 

values obtained from modal tests on the scale crane model, wisc. 

4.5 Conclusions 

In general the accuracy of the finite element modelling of a real structure should be 

considered and modal testing is one effective validation tool. In this chapter it has 

been found that a finite element model built on the assumption that the translational 

displacements and rotational angles of all the ground-fixed nodes are equal to zero, 

as typical when using conventional FEM, cannot provide satisfactory predictions. An 

improved finite element model has been obtained after some modifications have been 

made to the stiffness of the translational and rotational degrees of freedom of the 

ground-fixed nodes for the scale crane model. It has also been found that the type of 

coupling between the load cell and the tested structure significantly affects the results 

of modal testing. Hence, further study of the mechanical configuration of modal tests 

should be generally encouraged. 
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Chapter 5 Forced Vibrations due to Moving Forces 

5.1 Introduction 

The objective of this chapter is to develop a general technique so that one may 

predict the dynamic behaviour of a three-dimensional scale crane model subjected to 

time-dependent moving point forces by means of conventional finite element 

computer packages. To this end the whole scale crane model is divided into two 

parts: the stationary framework, as shown in Figure 3.2(b), and the moving 

substructure as shown in Figure 3.2(c). Now the problem is simplified in order to 

determine the forced vibration response of the stationary framework due to actions of 

the four time-dependent moving point forces induced by the moving substructure 

(see Chapter 3). 

Standard finite element computer packages, such as I-DEAS, are not usually set up to 

easily accommodate time-dependent, moving, loads. Therefore, the technique 

developed in this chapter is as general as possible, so that it is applicable to all 

computer packages. 

Use of a finite element package for solving the moving-force-induced vibration 

problem requires the replacement of the moving force(s) by equivalent nodal force 

vector(s) at any instant of time. To achieve this the basic principle used is to apply 

forces and moments to all the nodes of the finite element model, making these forces 

and moments functions of time. In this chapter three methods are used to tackle this 

part of the work: the full method, the simple method, and the no-moment method. 

The benefits and drawbacks of the three methods are also discussed. 

In order to develop techniques for deriving appropriate force time and moment time 

functions for all the nodes on a structure, a beam subjected to a single moving 

concentrated force is initially studied. The problem of moving-load-induced 

vibrations has already been studied by several researchers. Lin and Trcthewc` [4U, 
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41] presented a method for the dynamic analysis of elastic beams subjected to 
moving dynamic loads induced by the arbitrary movements of a spring-damper-mass 
system, and then applied their technique to the dynamic analysis of a high speed 
precision drilling machine for circuit boards. Hino. Yoshimura, and 
Ananthanarayana [42,43,44] investigated the dynamic deflections of a beam 

subjected to moving vehicle loads, by considering the effects of geometric non- 
linearity. Wu and Dai [45] used the transfer matrix method to determine the natural 
frequencies and mode shapes of a multi-span, non-uniform, beam; and then applied 

the mode superposition technique to perform the dynamic analysis of the beam 

subjected to the moving loads. Lee [46] studied the dynamic responses of a multi- 

span beam with one-sided point constraints and undergoing a moving load. Chang 

and Liu [47] investigated the dynamic behaviour of a non-linear beam subjected to a 

moving load. Thambiratnam and Zhuge [48] proposed a simple procedure for the 

dynamic analysis of beams on an elastic foundation subjected to moving point loads, 

by means of the finite element method. Wu and Chen [49] studied the dynamic 

problem of a channel beam due to a moving load and Lin [50] investigated the 

dynamic response of a beam with intermediate point constraints subjected to a 

moving load. Karaolodes and Kounadis [51] studied the forced vibration responses 

of a two-member simple frame subjected to a moving force whereas Olsson [52] 

investigated the dynamic responses of a bridge due to moving vehicle loads. 

From the above review of the current literature, it can be found that information 

concerning the forced vibration analysis of a three-dimensional framework subjected 

to moving loads is sparse and the author is not aware of any work on the dynamic 

responses of a three-dimensional framework subjected to multiple two-dimensional 

moving loads, such as the case studied in Chapter 3. Hence this chapter addresses 

this problem. 

This chapter starts with the single moving force model and extends the related theory 

to deal with a pair of beams, each of them subjected to two time-dependent mo\'ing 

concentrated forces. This approach may be applied to the dynamic analysis of the 

general mobile crane. 
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5.2 Derivation of Shape Functions by Using a Matrix Nlethod 

Instead of the classical one-by-one derivation method [53], the shape functions for a 
four-degree-of-freedom beam element are derived using an alternative method, the 

matrix method, in this thesis. For the four-degree-of-freedom beam element with 

rigid joints (or nodes) as shown in Figure 5.1(a), the u; (i =1 to 4) represent the 

associated nodal displacements, and the corresponding shape functions, 

Vi (ý; ) = yt. (x/e) (i =1 to 4), are shown in Figures 5.1 (b)-(e), respectively. The shape 

function t' (O is defined as the deflected shape resulting from a unit displacement 

of the ith degree of freedom whilst all the other (three) nodal displacements are 

constrained (see Figures 5.1(b)-(e)). 

The only requirement for the shape function of a beam element is that it must satisfy 

the boundary conditions and the internal continuity in deformation. If the deflection 

behaviour of a beam element is described by a displacement function %'(x) , then it 

must satisfy the following differential equation of equilibrium for the beam element 

in the unloaded region [54,55], 

oýv 
=0 (5.1) 

ýý ý4 

The integration of Equation (5.1) yields a cubic polynomial function in x 

l'(. C) = a1 + a2X + a3X2 + a4X3 (5.2) 

where the constants a,, a2 , a3 and a4 are defined by the boundary conditions below 

u, and =u2 at .i=0 
(5.3a) 

at x= (ß. 3b) 
v=u, and = 114 

C .V 

Application of the boundary conditions given by Equations (5.3a) and (5.3b) yieldti. 
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u, =1 
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I 

(c) ý' -x 

Y 

v3 (o 

L[ 3=1 

V 

1 

ßa(5)=(- 
2 +4-3)'e 

(e) 

Figure 5.1 Definitions for the nodal displacements and shape functions of a four- 

degree-of-freedom beam element: (a) element displacement v(x) and 

nodal displacements u; (i =1 to 4) ; (b) shape function crr, (ý-) = yr, (x/I) 

(c) shape function V2 fi r, (x/L) ; (d) shape function V/ (ý )= yr, (x/ý ) 

; (e) shape function y'4 (,, ) = i'4 (x/ O. 
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u, 1000 a, 
u2 0100 a2 
u3 1 £2 £3 a3 

(5.4) 

u4 01Y 3Q2 a4 

or 

a, f3 000u, 

a2 0 f3 00 u2 
a3 f3 M -2 f2 Y £2 u3 

(5.5) 

a4 2£ -2 £ u4 

Substituting the above values of a; (i =1 to 4) into Equation (5.2) gives 

V(X) = u, + xu2 - 
3x2 

2 ul -ý 
2x2 

u2 + 
3X2 2u x2 

3-ý u4 + f(5.6) 
2X3 x3 2X3 x3 
f3 

uI +-u 
f2 2 Q3 

u3 +-u 
e2 4 

or 

V(X) = VI (C)ul + V2 (5 )u2 + V3 (5 
lu3 + V4 (5 

lu4 (5.7) 

where 

V, (o=1-342+2ý; 3 (5.8) 

V2(0=(4--24-2+4-3)'f (5.9) 

V3 (o = 34-2 -24-3 (5.10) 

V4 (ý=(-ý-2+ý-3(5.11) 

(5.12) 

Equations (5.8)-(5.11) are the shape (displacement) functions which have been 

adopted in the modelling work reported hereon. 

5.3 Equivalent Nodal Forces due to a Stationary Concentrated Force 

In the following the principle of virtual displacements is employed to evaluate the 

equivalent nodal forces corresponding to the associated nodal displacements. 
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According to the principle of virtual displacements, if a system which is in 

equilibrium under the action of a set of externally applied forces is subjected to 

virtual displacements (i. e., a displacement pattern compatible with the system's 

constraints), then the total work done by the set of forces will be equal to zero. 

y 

fE(t) 
P(t) 

.f 
3E (t ) 

---------------------------------E-- JE t 
;----X 

_ 
(a) 

&1(t) 
öyii (0 

-------------------------------------------------- 
(b) 

Figure 5.2 (a) Equivalent nodal forces f, E (t) (i =1 to 4) for a beam element 

subjected to an external concentrated force P(t); (b) deflected function 

of beam element due to virtual displacement du, (t) and 

&u; (t) =0 (i = 2,3,4), ö t'1(ß) = öVº (x/ 0 

For the beam element subjected to an externally applied force P(t) at a fixed location, 

as shown in Figure 5.2(a), a virtual nodal displacement ciu, (t) can be applied to the 

left end of the beam, with all the other virtual nodal displacements of the beam being 

constrained (i. e., ßr2 (t) = ßu3 (t) = bu4 (t) = 0), as shown in Figure 5.2(b), to result in 

the virtual work that is done by the external concentrated force P(t), >fl ', (t) , 
being 

given by 

(>l l'p(t)=-P(t)' "(') (5.13) 

where the negative sign means that the direction of the external force P(t) is opposite 

(tli) , as shown in 
to that of the associated virtual displacement, Syr, (, ) = Sý, - 
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Figures 5.2(a) and (b), where x and £, respectively, represent the position of the 
external force P(t) and length of the beam element. 

Referring to Figure 5.2(b), the virtual work done by the internal, equivalent, nodal 
forces of the beam element, fE (t) (i =1 to 4), is 

4 

i 
(t) = fl (t) &l (t) E 

i=1 (5.14 

where fI (t) is the equivalent nodal force at the left end of the beam element 

associated with the virtual displacement Au, (t) 
. 

According to the principle of virtual work, one has 

1: öW(t) = öW, (t)+ &vf(t)= 0 (5.15) 

Substitution of Equations (5.13) and (5.14) into Equation (5.15) gives 

fE(t) &1(t) =1'(t) tyVI ) (5.16) 

From the definition of shape function (see Figure 5.1(b)), it can be seen that if the 

virtual displacement &u, (t) (as shown in Figure 5.2(b)) is equal to unity, then the 

associated virtual shape function 9V/1 (0 will represent the shape function 

corresponding to the nodal displacement u, , 
i. e., 

öt'1(0 = S'1(ß , 
if ät, (t) =1.0 (5.17) 

From Equations (5.16) and (5.17), one obtains the formula 

fE (s) =P (t)VI (ý. ) ( 5.18) 

Similarly, the equivalent nodal forces corresponding to the other three nodal degrees 

of freedom of the beam element are determined by the formulas 

J; E(f) = P(t) yi1(61 (i =2 to 4) (x. 19) 
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where yr, (0, yr2 and yr, (0 are, respectively, given by Equations (5.8)- 

(5.11). 

5.4 Forced Vibration of a Beam due to a Single Moving Point Force 

5.4.1 The Overall Equivalent Nodal Force Vector 

y 
f, (S) (t4 P(t) . 

f3(s) (t) 

element s 
f 

2(s) 
(t) 

-. V 

xe 
f4(s) (t) 

Figure 5.3 Equivalent nodal forces J(t) (i =1 to 4) for the beam element, s, on 

which a concentrated force P(t) applies. 

The equation of motion for a multiple degree-of-freedom linear structural system is 

given by 

[M]ýý(t)l+ [C]ýý(t)l+ [K]ýq(t)1 = ýF(t)ý (5.20) 

where [Al], [Cr] and [K] are the overall mass, damping and stiffness matrices, 

respectively, and {(t)}, {q(t)} and {q(t)} are the overall acceleration, velocity 

and displacement vectors, respectively, while {F(t) } is the overall external force 

vector. 

When a beam is subjected to a concentrated force, P(t), all the nodal forces of the 

beam are equal to zero except those for the beam element, s, on which the 

concentrated force P(t) applies (see Figure 5.3) [53,56]. Hence, the overall external 

force vector {F(t) } in Equation (5.20) takes the form 

{F(t)} 
= [0 0 0... fp(s) (1) f2(S) (t) f3(s) (t) f 

4(s) 
(t) ... 

00 OJT (5.21) 

\\-here f, " (1) (i =1 to 4) are the equivalent nodal forces for the beam element, s. 

and are given by 
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AA (s) (t), I N, (o 

. 
fi(s) (t) 

_ p(t) 
J N2(C) 

f3(S) (t) N3 (5 
/ 

[j4(s) 
(011 N(4) 

where 

N1(O=yr1(C) (i=1to4) 

represent the shape functions defined by Equations (5.8)-(5.12). 

5.4.2 Equivalent Nodal Forces due to a Moving Point Force 

(5.22) 

(5.23) 

From the foregoing derivation of equivalent nodal forces one sees that the two ends 

of the beam element are considered to be rigid joints so that all the nodal forces, 

f, (') (t) (i =1 to 4), are not equal to zero, in general. For this reason the emergent 

technique for determining the nodal forces due to a concentrated external force P(t) 

is called the full method in this thesis. However, in the general analytical method the 

nodal forces due to a concentrated external force, P(t), are determined by considering 

the two ends of the beam element as pinned joints, and then the nodal forces, 

f,; (s)(t) (i = 1,3) are calculated by using linear interpolation theory [45]. This 

technique is called the simple method in this thesis. It is evident that the nodal 

moments, f,. 1S) (t) (i = 2,4), are automatically equal to zero in the simple method. For 

convenience of comparison, the moment-neglected full method (or simply the no- 

moment method) is also introduced, where all nodal forces are determined by the full 

method, but all the nodal moments, f, (') (t) (i = 2,4), are set to zero. A comparison 

between the numerical results obtained from the simple method and those from the 

no-moment method will reveal the differences between the nodal forces, f, ") (t) (i = 

1,3), determined by using the above two methods. 

5.4.2.1 Using the Full Method 

Figure 5.4 shows a beam composed of n nodes and n-1 beam elements. Ifa 

concentrated force P(t) moves from node 1 to node n of the beam with a constant 
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speed V, then the relationship between the time interval, At , total time steps, q. and 
the time duration required for the force to run over the beam, t , is given by mair 

tmax=q'At 

P(t) 

(x. 24) 

--- --- -ý elements-1 
_1 

Figure 5.4 Beam subjected to a concentrated force P(t) moving with a constant speed 
V. 

The force and moment vectors contain the force and moment information for all 

nodes on the beam at all time steps: 

iiiiiT 

,i=1 to n {F }q+i = [F=o Fr=or F=2& "' F, 
=qo, 

1 

iiiiiT {M: }q+l= [Mr=o MI=o, M, 
=zAI ... M; 

=qA! 
l, i=1 to n 

where i represents the node number. 

At time t=0, the concentrated force is at node 1, as shown in Figure 5.4, 

F, ' o= P(t), F, ' 
=O =0 (i =2 to n) and M, =o =0 (i =1 to n) 

(5.25) 

(5.26) 

(5.27) 

At any time t=r At (r =1 to q), the position of the moving concentrated force, 

relative to the left end of the beam, is given by 

ap(t)=VrAt (5.28) 

The numerical identification of the beam element, s, on which the moving 

concentrated force, P(t), is applied, at any time t, is determined by 

s= (The integer part of "I -P (t)) 
+1 (5.29) 

where I is the length of each beam element (see Figure 5.4). 
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The two nodes of the sth (s =1 to n-1) beam element are s and s+1. Therefore. the 
nodal forces and moments when the moving concentrated force. P(t) is on the so' 
beam element at any time t= rAt (r =1 to q) are given by 

F=, 4, P(t) N1\7P) 

Frs 
rer = P(t) N3 (4P) 

1 re, =0(i =1ton; i #sands+1) 

M! rA! P(t) N2 () 

Mý röl = P(t) N4 (c P) 

M; 
=rä, =0 (i=lton; i# sands+1) 

ýP 
- 

xp (t) - (s -1). 

(5.30) 

(5.31) 

(5.32) 

(5.33) 

(5.34) 

(5.35) 

(5.36) 

and N; (ý; 
p) = yr; (o , (i =1 to 4), are the shape functions defined by Equations 

(5.8)-(5.11). 

From Equations (5.30)-(5.36) one sees that if at a certain instant of time, ý;, is equal 

to an integer, then there exists only one non-zero nodal force, as there should be, 

since an integer value of ý; p means that the moving force P(t) is located at one 

specific node at any moment in time. 

5.4.2.2 Using the Simple Method 

f(s) (t) 
P(r) 

f(S)(t) 

A B 

14 1 

Figure 5.5 Non-zero nodal forces determined by linear interpolation. 

In the general analytical approach [45] the equivalent non-zero nodal forces (f, (''(t) 

and /« (t)) are determined by the simple method introduced in this section, where 

the nodal moments (f (')(t) and 
.1 

')(t)) are neglected and the nodal forces are 

obtained by using linear interpolation. 
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Referring to Figure 5.5, the equilibrium of moments about point A requires that 

- 
P(t)x +f (s) (0'e =o 

.. 
A(S'(t) - P(t)(x) (5.37) 

Similarly, taking moments for all forces acting on the beam element, s, about point B 

of Figure 5.5 gives 

P(t)(ý-x)-f, (s'(t). ý=0 

. '. f 
ls, (t) = P(t)(1- ) (5.38) 

5.4.2.3 Comparisons between the Full, Simple, and No-moment Methods 

To compare the differences between the full method, the simple method, and the no- 

moment method for calculating the equivalent nodal forces, a pinned-pinned beam of 
length L=1m with 11 nodes equally spaced along the beam (c. f., Figure 5.4 with n 

= 11 and f=L /(n - 1) = 0.1 m) is considered. If a concentrated force, P(t) =1N, 

moves from the left end of the beam, at time t=0.0 s, to the right end, with constant 

speed V=0.1 m/s, then the time histories of the nodal forces and the nodal moments, 

for some relevant nodes, are shown in Figures 5.6 and 5.7, respectively. 

Figure 5.6(a) shows the time histories for the forces of nodes 3,4 and 5 (F, ', F4 and 

F, '), where the dashed lines are based on the simple method and the solid lines are 

based on the full method, noting that the symbols 0, + and * are for nodes 3,4 and 

5, respectively. Since the moving speed, V, is a constant, the instantaneous position 

of the concentrated force, P(t), is given by xP(t) = Vt = 0.1t m. In other words the 

abscissae of Figures 5.6(a) and 5.7(a) represent both the time, t, and nodal positions. 

xp (t) . 
For convenience of description, the minima of the curves shown in Figure 

5.6(a) are denoted by A, B, C, D and E, while the maxima are denoted by A', B' and 

C', respectively. Referring to Figures 5.4 and 5.6(a), one sees that the force of node 3 

(at point A) is zero, i. e., F131 o=0, because the moving force P(t) is located at node 2 
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when x(t) = 0.1 m and t=1.0 s. After that, the value of Fra increases with time t 

and reaches its maximum IF3I 
max 

= P(t) = 1.0 N at point A' as one would expect. 

because the moving force P(t) is just located at node 3 at the instant when t=2.0 s 
and the position is xp (t) = 0.2 m. In the period, 2.0 <t<3.0 s, the force on node 3, 

F, 3 
, 

decreases with time, t, as shown by the curves between points A' and C (with 

symbol 0) but the force at node 4, Fri 
, 

increases with time, as shown by those 

between points B and B' and symbol +. This is because the position of the moving 
force P(t) is far from node 3, and close to node 4, with increasing time in the period, 
2.0 <t<3.0 s. Similar reasons may be used to explain the trends shown by the other 

curves of Figures 5.6 and 5.7. 

Figure 5.6(a) also shows that the force variation is linear for the simple method and 

non-linear (cubic power of x) for the full method. However, since the dashed curves 
(for the simple method) and the solid ones (for the full method) are very close to 

each other, the nodal forces, F, ', F4 and F, ', obtained from the simple method are 

still very close to those obtained from the full method. 

Because all the nodal moments are equal to zero for the simple method, only those 

for the full method, M,, M4 and M,, are shown in Figure 5.7(a). From the last 

Figure one sees that the moment of node i, M,, is equal to zero at the time when the 

position of the moving force P(t), xP (t) , 
is instantaneously at the position of that 

node, x; (t) . 
As would be expected, at this instance the nodal forces calculated by 

the two methods are the same as shown in Figure 5.6(a). 

Figures 5.6(b) and 5.7(b) show the time histories of the nodal forces and the nodal 

moments for all 11 nodes of the beam. Both figures reveal a common feature of the 

simple method and the full method which is that at any instant of time both the nodal 

forces and nodal moments are equal to zero, except those of the beam element on 

which the moving force P(t) applies at that particular instant. 

In addition to the nodal forces, F, ', and nodal moments, sf, ' , the bending moment 

(P(t). x) at the left end of a beam element (e. g., node 3 of beam element 3) induced by 
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the moving force, P(t), determined by the simple method, full method and no- 
moment method are also compared in the following where the values of P(t)x are 
inversely calculated from the equivalent nodal force and moment values. Referring 
to Figure 5.3, and taking moments about the left end of the beam element yields 

P(t) x= f2(s) (t) + f4(S) (t) +£ f3(S) (t) 
(5.39) 

The nodal forces f i(') (t), (i =2 to 4), appearing in Equation (5.39), take different 

values dependent on the different method chosen. For the simple method, f3WsW(t) 

represents the nodal force determined by Equation (5.37), while f (s)(t) and f4(') (i ) 

are zero nodal moments. For the full method, f3W sW (t) represents the nodal force 

determined by Equation (5.31), while fW SW (t) and fW SW (t) denote the nodal moments 
determined by Equations (5.33) and (5.34), respectively. For the no-moment method, 

all nodal forces are the same as those for the full method, except that 
f (s' (t) =f 

(s) (t) = o. 

During the period of time, t=2.0 to 3.0 s, the moving force P(t) just runs over the 

beam element 3 from node 3 to node 4 with constant speed V=0.1 m/s. The 

relationship between the values of P(t)x given by Equation (5.39) and the time t, 

obtained from the three different methods, are shown in Figure 5.8. It is seen that the 

values of P(t)x calculated by the simple method and those by the full method show 

no discernible difference. However, the values of P(t)x calculated by the no-moment 

method disagree with those from the other two methods to some extent. 

Although the values of P(t)x based on the nodal forces obtained from the simple 

method are very close to those obtained from the full method, for the chosen 

example, the full method (instead of the simple method) should generally be adopted 

in FEM because nodal moments are usually significant in an actual beam element. 

Besides, now that the nodal forces for the full method have been determined based 

on the beam element with rigid joints (see section 5.4.2), then the no-moment 

method will be incorrect because it neglects all the associated nodal moments. 
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(b) 
Figure 5.6 (a) Time histories of nodal forces, F, ' (i = 3,4,5), obtained from the 

simple method (----) and the full method (-) for node 3 (0), node 4 (+) and node 

5 (*); (b) Time histories of nodal forces for all 11 nodes based on the full method. 
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Figure 5.7 Time histories of nodal moments determined by the full method: (a) for 

nodes 3,4 and 5, M13 , All and M, '; (b) for all the 1l nodes, . 11; (i =I 

to 11). 
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Figure 5.8 Bending moments, P(t)x, at node 3 induced by the moving force, P(t), 

based on the simple method 

method (- x ). 

5.4.3 Numerical Examples 

), full method (-0-) and no-moment 

To check the technique that has been developed, a uniform undamped simply 

supported beam of length L=1m and cross section A=2 cm x1 cm with 10 beam 

elements (i. e., n= 11) is investigated using I-DEAS. The beam is made of steel with 

density p= 7820 kg/m3 and modulus of elasticity E= 206.8 GN/ma. At the instant of 

time t=0, a vertical point force P (t) = sin (10 t) N starts to move from the left end 

to the right end with a constant speed V=1 m/s. 

Initially I-DEAS is used to calculate the first 10 natural frequencies and mode 

shapes. Next, the full method, introduced in section 5.4.2.1, is coded into a 

FORTRAN program to build the force/time and moment/time functions of all the 
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nodes for the finite element model. This information is stored as an ASCII universal 
file to be read by I-DEAS before performing the forced vibration analysis 

To check the numerical results from I-DEAS, the natural frequencies and normal 

modes of the beam are calculated by classical methods and the forced vibration 

results are calculated by using a series solution in terms of the normal modes. 

Procedures similar to this are described by Lee [57], and Lee [58] and Michaltsos et 

al. [59] when dealing with the moving mass problem (this is discussed further in 

Chapter 6). The difference between the moving mass problem and the moving force 

problem is that the inertia effects of the mass are ignored in the moving force 

formulation. It is evident from earlier work [57,58,59] that treating a moving mass 

on a beam as a moving force is a valid approximation when the ratio of moving mass 

to beam mass is suitably small. Timoshenko [60], and Norris [61] and Rogers [62] 

each present their own analytical solution for dealing with the moving force problem. 

Of these themes, Rogers' is the one with the fewest simplifications, so this is used for 

comparison with the current results. 

5.4.3.1 Forced Vibration Analysis using I-DEAS (FEM) 

In order to perform the forced vibration analysis of the simply supported beam 

subjected to a moving harmonic force, a finite element model of the simply 

supported beam is established, as shown in Figure 5.9. The time-dependent nodal 

forces and moments for all the nodes of the finite element model are obtained by 

means of the self-developed FORTRAN program, as shown in Figure 5.10. 

Y 

Figure 5.9 Finite element model of a simply supported beam for I-DEAS. 
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Start 

Declaring global variables: Dataset, Forceset, iFno, iResno, iResdir, iDatano, Tmax, Time, CxO, Acx, Vcxmax, DL, 
iNodeno(Forceset), iDir(Forceset), inoData(Forset), rTime(Forceset, Dataset), rForce(Forceset, Dataset), elemF(4) 

Defining the information for response nodes : iNodenoo, iDir(), inoData() 

Defining the basic properties of the beam and the initial conditions of the 
moving force : Tmax, CxO, VcxO, Acx, Vcxmax, g, DL 

dt = Tmax/(Dataset-1) 
rTime(*, *)=0 and rForce(*, *)=O, Time = -dt, i=0 

Time=Time+dt, rTime(*, i)=Time 

Calculating the magnitude of the moving force, sin(10t), and the element number 
on which the force applies (see Equation (5.29)). 

I Calculating force and moment for each node at time t using a shape function. 

No - ---ý Time > Tmax 

Storing force/time and moment/time functions as an ASCII universal file. 

END 

Figure 5.10 Flowchart of the computer program for calculating the time-dependent 

nodal forces and moments, and storing the related information as an 

ASCII universal file to be read by I-DEAS. 

5.4.3.2 Forced Vibration Analysis using the Classical Method 

Figure 5.11 shows a uniform simply supported beam subjected to a harmonic 

exciting force Fo (t) = Posin(w t) . At time t=0 the concentrated force Fa(t) moves 

across the beam from the left to the right end with a constant speed V. 

According to reference [62], the equation of motion of the beam is given by 
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EI 
a4ä 

+ ma 
a2y 

= FQ (t) "ö [x xp (t)] 
ax at 

(5.40) 

where EI and mQ are the flexural rigidity and mass per unit length of the beans, 

respectively, and Y[x - xp (t)] is the Dirac delta function. 

Pasin (c) t) 

ºv 
----------------------------------------------------------------F---x 

xp(t)=Vt 

L 

y 
Figure 5.11 Simply supported beam subjected to a harmonic exciting force, 

FQ (t) = Po sin(n), moving with a constant speed V. 

The dynamic response of the beam takes the form [63] 

00 

y(x, t) 
-y Y'r 

(x)qr (t) 

r=1 

(5.41) 

where q5,. (x) represents the r`h normal mode shape and q, (t) represents the 

associated generalized co-ordinate. 

Substituting Equation (5.41) into Equation (5.40), premultiplying both sides of the 

resulting expression by O,. (x) dx, and then applying the orthogonal properties of the 

normal mode shapes, one obtains [63] 

ýr + (0,2 qr=FW 
or r 

(x) 

,5 Lr-ß xp (t)i (5.42) 
ma 

where ar is the r`h natural frequency of the beam. 

For the simply supported uniform beam as shown in Figure 5.11, the natural 

frequency is given by 

/"/r)2 EI 

L m1 
(5.41 ) 
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and the normal mode shape takes the form 

Or (x) =2 sin 
r7a 

(5.44) L 

For the present example 

FQ (t) = PQ sin(cat) (5.45) 

and the position of the point force Fa(t) at any time t is 

xp (r) = Vt (5.46) 

In Equation (5.45), Pa and co, respectively, represent the amplitude and the exciting 
frequency of the force Fa(t). 

From Equations (5.42)-(5.46) one obtains 

q+ ý2q - 

ýP sin(w t) 
sin[ 

rýz xP (t) ýP sin(cv t) 
sin(SZ t) rrrmL 

Ma r 
a (5.47) 

PQ 
_ ým [cos(wv t- art) - cos(w t+ Qrt)] 

a 
where 

Qr = 
rirV (5.48) 

L 

The complete solution of Equation (5.47) is 

Pa cos(ai. - Q,. t) cos(aX + S2, t) ]5.49 
qr(t) = A, sinw, t+Br cosCurt+ 22Z 

(5.49) 
ýma 

C(Ir L-(CV-Qr) (ü -(W+Qr) 

If the beam is at rest at time t=0, then qr (0) = q, (0) =0, and the constants A, and 

Br are found to be 

Ar =0 
(5.50) 

B (5.51) 

-(Wv+S2r) wvr -(ýv-SZ, )' 
r ý/)1 

ý22 

The dynamic response of the beam is then determined by substituting Equations 

(5.44), (5.48), (5.49), (5.50) and (5.51) into Equation (5.41). In Equation 0-41). r=1 

to 10 are used. 
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5.4.3.3 Forced Vibration Analysis using Rogers' Analytical Method 

According to reference [62], the equation of motion of the beam as shown in Figure 
5.11 is given by 

EI 
a4y 

+m 
a2y 

= 
2Fa (t) 00 

sin 
riz x 

sin 
rir Vt 

öx4 a ate LLL r-1 
(5.52) 

If the moving force Fa(t) is to take the form given by (5.45), then Equation (5.52) 
becomes 

EI 
a4 

4+mQ 
"y 

. 
2P sin(ctt) °° 

sin 
ru- x 

sin S2rt 
öx at LL r=1 

(5.53) 

For the at-rest initial conditions, the complete solution for the last equation is 

00 

y(x, t) _E sin r'r x {(G, - Dr) COS(O)rt) 
r_1 L (5.54) 

+ [Dr cos(a) - )r )t - Gr COS(O) + Sir )tA} 

where wr is the rth natural frequency of the beam defined by Equation (5.43), Or is 

defined by Equation (5.48) and the other parameters are given by 

/ 

Gr =2 

PL 

2 
(5.55) 

ma[wr -(w+Qr) 1 

/ 

Dr -2 

PL 

2 
(5.56) 

ma[wr -(0-or) 
1 

The forced vibration analysis of the beam can then be performed by introducing 

Equations (5.55) and (5.56) into Equation (5.54). 

5.4.4 Validation 

The time histories of the vertical central displacements (at x= L/2) of the simply 

supported beam obtained from the foregoing dynamic-analysis methods are shown in 

Figure 5.12. It is seen that the results determined by I-DEAS (with equivalent nodal 

forces calculated by the full method) are in good agreement with those obtained from 
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the two analytical closed-form solutions. So, the Finite Element method has been 

shown to be appropriate in this context. 

In Figure 5.12 the I-DEAS results are based on the equivalent nodal forces 

determined by the full method. In order to realise the influence on the simply 

supported beam's central displacements (at x= L/2) of the equivalent nodal forces 

determined by the simple method, the full method and the no-moment method, the 

same problem is repeatedly solved by using I-DEAS with the equivalent nodal forces 

determined by those three methods. It is interesting that the dynamic responses based 

on the simple method are in good agreement with those based on the full method, but 

the vertical central displacements based on the no-moment method differ from those 

based on the simple method (or the full method) to some degree, as one can see from 

Figure 5.13. This phenomenon is the same as that for P(t)x, as discussed in section 

5.4.2.3. 
8.00E. 2 

6.00E-2 

4.00E-2 

E 

2.00E-2 

a) U 
cß 
cl 

`/) 0.00E+0 ß 

CD 

-2.00E-2 
iv 
U 

> 4.00E-2 

6.00E-2 

8.00E. 2 +- 
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

Time (sec) 

Figure 5.12 Time histories for the vertical central displacements (at x= L/2) of the 

simply supported beam obtained from I-DEAS (---+---), classical 

method (-A-) and Rogers' method (-0-). 

90 



2.00E-2 

1.75E-2 

1.50E-2 

1.25E-2 

E 
1.00E-2 
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cUV 2.50E-3 
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1.00E-2 
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 

Time (sec) 

Figure 5.13 Time histories for the vertical central displacements (at x= L/Z) of the 

simply supported beam obtained from I-DEAS with the equivalent 

nodal forces determined by the simple method (0), the full method 

() and the no-moment method (x ). 

5.5 Forced Vibration of a Beam due to Two Moving Point Forces 

-4 -4 

p Ol xf 
_ 

1P2(t) 

---------- ---------- ---------- 
elmient 12 , _I elt iaitn-I Il 

----------- ---------- ---------- 

Figure 5.14 Beam subjected to two concentrated moving forces with spacing xf. 

For a beam subjected to two concentrated forces, P, (t) and P, (t), moving with the 

same speed, V, as shown in Figure 5.14, if, at time t=0, P, (t) moves from the left 

end of the beam to the right end and the spacing between P, (t) and P, (t) is xf, then 

the equivalent nodal forces due to P, (t) may be calculated using the equations of 

section 5.4.2. To calculate the equivalent nodal forces due to P, (t), Equations (5.28), 

(5.29) and (5.36) need to be slightly modified. 
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Since the instantaneous position of P, (t) is given by 

xý (t) = VrAt (5.5 7) 

the instantaneous position of P2 (t) is 

x2(t)=x1(t)+xf =VrAt+xf (5 5 g) 

The numbering for the beam element on which P2 (t) applies is given by 

s= (The integer part of 
Vr At + xf )+1 (5.59) 

Finally, the position of P2 (t) relative to the left end of the beam elements is 

ý; PZ 

(V r At+xf)-(s-1) i 
(5.60) 

Replacing ý; P by 4p, 
2 

in Equations (5.30)-(5.35) will determine the equivalent nodal 

forces and moments due to the second moving force P2 (t) . The overall nodal forces 

and moments can now be obtained by assembling the two sets of nodal forces and 

moments due to P, (t) and P2 (t) . 

It is noted that the two point forces P, (t) and P2 (t) may apply on one or two beam 

elements at a certain instant of time, dependent upon the relative magnitudes of the 

element length, £, and the force spacing, xf, and the instantaneous positions of 

P (t) and PZ (t) . 

5.6 Dynamic Analysis of the Scale Crane Model 

Figure 5.15 shows the scale model for a mobile crane, where the whole system is 

divided into two parts: the stationary framework and the moving substructure. The 

dynamic behaviour of the whole system is determined by the forced vibration 

responses of the stationary framework subjected to four concentrated time-dependent 

moving forces induced by the substructure moving in the T direction. and the trolle 

moving in the . 
i- direction. 

92 



As shown in Figure 5.15, if the four points of contact between the two subsystems 

are denoted by A, B, C and D, then the relationship between the contacting forces 

are: FA (t) = FZB (t) = FZ, (t) and FD (t) ::::::: F C (t) = F2 (t) (see Chapter 3). 

Since the magnitudes of the contact forces, F,, (t) and F_2 (t) 
, are dependent on the 

relative positions between the trolley and the whole substructure, and the magnitudes 

of the equivalent nodal forces f i(') (t), (i =1 to 4; s=1 to n) are, in turn, dependent 

on the magnitudes of FZ, (t) and P, 2 (t) , together with the relative positions between 

the stationary framework and the whole substructure, the time histories for the 

moving speeds of the moving substructure, V, 
}, 
(t) 

, and the trolley, V 
t_ 
(t), are the key 

factors affecting the dynamic responses of the scale crane model. The system is 

therefore acceleration dependent. 

x, 4C (0 

--------- --------- 
MOtoC pB 

' [) A F, (r) ; 

------------- 

A 

Fixed Rail 

V Nock (0, I 

F: 

F_ ý(r 
B 

-/ 
FA 

V 

V/ 

Two parallel beams 

Q 

0 

Figure 5.15 Sketch of the scale model of the mobile crane. 

Moving sub-structure 

rollcy 

rn ' 

i ixcd Rail 
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In the present example the time history for the velocity of the moving substructure, 
Vy (t), is shown in Figure 3.8(a) and that of the trolley, V (t), is shown in Figure 

3.8(b). For convenience of description these two time histories, the initial position 
and the final position, and the accelerating and decelerating conditions of the trolley, 
are all listed in Table 5.1. From the table one sees that the initial position of the 
trolley is located at x= -0.49 m and y= -0.6 m, while the final position of the trolley 
is located at .x= +0.4472 m and y= +0.709 m. The moving substructure moves from 

its initial position at y= -0.6 m, at time t=0s, in the positive j, direction with 

constant acceleration; 1 second later (i. e., at time t=1.0 s) the speed of the moving 

substructure is Vey (t) = 0.5236 m/s, and remains constant speed during the interval, 

1.0 <t _< 
2.5 s. Hereafter the speed of the moving substructure decelerates at a 

constant rate until it reaches zero at the instant when t=3.5 s. During the interval, 

3.5 <t _< 
10.0 s, the moving substructure is stationary (i. e., V 

,, 
(t) = 0). The final 

position of the moving substructure is at y= +0.709 nz. 

Timet 

s 
0 - 1.0 - 2.5 4 3.0 - 3.5 4 4.0 4 10.0 

.v 
(jn> * -0.60 4 4 4 4 - - 4 . . . 0.709 

x (in) -0.49 4 -i -i " 0.4472 

V, 
}, 

(t) (m/s) 0 Accelerate 0.5236 Decelerate Stationary (0) 

V, 
x(t) 

(m/s) 0 Accelerate 0.3142 Decelerate Stationary (0) 

(t) (inls2)** ------- +0.5236 0 -0.5236 0 

aC. t. 
(t) (mis2)* * ------- +0.3142 0 -0.3142 0 

*- denotes moving and " denotes stationary. 
** + denotes acceleration and - denotes deceleration. 
Table 5.1 Time histories for the velocity of the moving substructure (V.,, (t)) and the 

trolley (V, (t) ). 

The moving conditions for the trolley can be summarised as shown in Table 5.1. It is 

noted that the positive sign (+) denotes acceleration and the negative sign (-) denotes 

deceleration. The magnitudes of the accelerations, or decelerations, in a specified 

period are constant. For example, during the interval 0<t <_ 1.0 s, the acceleration of 

the moving substructure is a,, = +0.5236 m/s`, and is constant. For the example 
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under discussion, the accelerations, or decelerations, in different intervals of time are 

equal to each other, i. e., l= I+ 0.52361= I- 0.52361 m/s2. 

Unless specifically stated all the equivalent nodal forces and moments are 
determined using the full method, and the damping ratio (for each mode) is assumed 
to be ý=0.003 in this work. 

5.6.1 The Case of General Movement of Forces 

When the finite element model of the scale crane rig is subjected to time-dependent 

contacting forces, F, (t) and Fz2 (t) , induced by the moving substructure and the 

trolley moving generally, as shown in Figures 3.8(a) and (b) and Table 5.1, the time 
histories of the displacements of node 60 on the fixed railway of the stationary 
framework (see Figure 5.15), z60 (t) (m), are shown in Figure 5.16. The curve with + 

is for the case for damping ratio ý= 0.003, and the curve with 0 is for ý= 0.010. 

Because these two curves are coincident with each other the damping effect appears 

to be negligible in this example in the non-resonant condition. The dashed curve 

(without any symbol) is obtained under the condition when the velocities of the 

moving substructure are equal to half of the corresponding values used for the other 

two curves, respectively. It is evident that the time taken for the former two curves is 

twice that which is required for the dashed curve to reach its maximum. 

In the special case where the trolley is stationary (i. e., V,, (t)= 0), and the moving 

substructure moves with velocities V 
.,. 

(t) according to the data given in Table 5.1 

and Figure 3.8(a), the time history of Z60 (t) is shown in Figure 5.16 by the curve 

with *. It is seen that this curve is very close to the two former curves with symbols 

+ and 0. This means that the influence of trolley motion is not really significant in 

this example. Another special case is when the substructure is stationary (i. c., ! 'CY (t) _ 

0), but the trolley is moving with velocities 1'.. (t) , according to the conditions [-'I% en 

in Table 5.1 and Figure 3.8(b). For this case the time history of E0(t) is shown in 

Figure 5.16 by the curve with x. From Figure 5.16 one sees that the displacement iti 
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almost constant, which agrees with the last conclusion that the influence of trolley 
motion is not significant in this particular example. 

It should be noted that the superposition of the last two curves (with symbols * and 
x) is coincident with the former two curves (with symbols + and 0) as one would 
expect. 

5.6.2 The Case of Suddenly Applied Stationary Forces 

If all the motion conditions for the moving substructure and the trolley are exactly 
the same as in the last subsection (with velocities Vati. (t) and V (t) as shown in 

Table 5.1 and Figures 3.8(a) and (b)), except that the equivalent forces induced by 

the moving substructure and the trolley are suddenly applied to the stationary 
framework at time t=0, then the time history for the vertical displacement of node 

60, z60 (t) , 
is as shown in Figure 5.17. The transient effects are clearly visible, but 

the underlying trend is the same as that of Figure 5.16. Figure 5.18 shows the effect 

of increasing the damping ratio for all modes from ý= 0.003 (for Figure 5.17) to ý= 

0.01. From Figures 5.17 and 5.18 one sees that increasing the damping ratio 

significantly increases the rate of decay. 

5.6.3 The Case of Harmonic, Pulsating, Moving Forces 

In this case motion conditions for the moving substructure and the trolley are exactly 

the same as those of section 5.6.1 (with velocities V 
,. 

(t) and Vor (t) as shown in 

Table 5.1 and Figures 3.8(a) and (b)) except that an additional harmonic force P(t) = 

50 sin(wt) N is imposed on the centre of the trolley at time t=0. The time history 

for the vertical displacement of node 60,760 (t) , shown in Figure 5.19, is based on an 

exciting frequency of ro= 9.5 rad/s, and that shown in Figure 5.20 is based on w= 

124.4 rad/s. The period of the fluctuation in the curve of Figure 5.19 is 7=0.6 `', 

which is very close to the forcing period Tf = 21T Iw==0.66 s, as expected. 

The dynamic responses shown in Figure 5.20 are bigger than that in Figure 5.19, this 

is because the forcing frequency w= 124.4 rad/., is N er-\, close to the 4`h natural 
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frequency of the stationary framework coo = 124.42 rad/s = 19.80 H:. The mode 

shape has significant vibration amplitude in the vertical direction, as one ma`' see 
from Figure 4.4(d). 

5.6.4 Effect of Spring Elements on the Finite Element Model 

This example investigates the effect of introducing translational and rotational spring 

elements to the ground-fixed nodes for the new finite element model. It is interesting 

to note that the inclusion of the spring elements into the original finite element model 

of the scale crane rig, as required for simulating the ground effects and discussed in 

Chapter 4, causes the different responses. As shown in Figure 5.21 the solid line 

() represents the deflections of node 60 when only the moving substructure 

moves along the y axis with speed vý.,, (t) 
, as shown in Figure 3.8(a), using the 

original finite element model (with stiffness of the ground-fixed nodes being equal to 

infinity). The dashed line (-----) represents the deflections using the new finite 

element model (with stiffness of the ground-fixed nodes being equal to the stiffness 

of the added spring elements). The dynamic responses of the new finite element 

model are bigger than those of the original model. 
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Figure 5.16 Time histories of the vertical displacements of node 60, 
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Figure 5.17 Time histories of the vertical displacements of node 60, z60(t), due to 

movements of the substructure and the trolley, with suddenly applied 

equivalent forces induced by the substructure and the trolley at time t= 

0. The damping ratio for each mode is = 0.003. 
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Figure 5.18 All statements are the same as Figure 5.17 except for a higher damping 

ratio (S =0.01). 
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Figure 5.19 Time histories for the vertical displacements of node 60, due to 

movements of the substructure and the trolley together with a harmonic 

force P(t) = 50 sin(9.5t) N imposed on the trolley at time t=0. The 

damping ratio for each mode is ý=0.003. 
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Figure 5.20 All statements are the same as Figure 5.19 except that the harmonic 

force is P(t) = 50 sin( 124.4t) N. 
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Figure 5.21 Time histories for the vertical displacements of node 60, z60(t), due to 

movements of the substructure only; for the original finite element 

model ( ); for the new finite element model (-------). 

5.7 Conclusions 

A technique has been developed for using standard finite element packages to 

analyse the dynamic response of structures subjected to time-dependent moving 

forces. A computer program has been designed to calculate the time-dependent 

external nodal forces on the whole structure, and which provides the equivalent nodal 

forces induced by point forces moving around the structure. The calculation of 

equivalent nodal forces to represent the moving loads has been performed by three 

defined approximate methods. The simple method ignores any moment applied at the 

nodes at the outset and then calculates the equivalent nodal forces by using linear 

interpolation. In the fill method equivalent nodal forces and moments are calculated 

by using shape functions for the element. The no-moment method simply ignores the 

nodal moments calculated when using the full method. 

Although the dynamic responses based on the nodal forces obtained from the simple 

method are in good agreement with those obtained from the full method for the 

100 
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small-motions problem discussed here, the full method, instead of the simple 
method, should be adopted for FEM because nodal moments are usuall`' to be found 
in any real beam element problem. Now that the nodal forces for the full method 
have been determined, based on beam elements with rigid joints (see section 5.4.2). 

then the no-moment method will be an invalid approach because it neglects all the 

associated nodal moments. 

The technique has been applied to a simply supported beam with one moving force, 

and to a three dimensional mobile crane structure with four time-dependent moving 
forces. Both applications give encouraging results with either the full model or the 

simple model. 

All the observations in sections 5.4.4 and 5.6 indicate that the technique is capable of 

providing sensible, realistic, results but future work (see section 6.5.5) Nvill involve 

the experimental validation of such results. This is particularly important for the 

mobile crane work. 

This work was performed using the I-DEAS finite element package. This program is 

generally very accommodating because of its support for ASCII universal files. 

However, many other packages have similar features so the technique that has been 

developed is potentially quite generally applicable. 

The technique has only been applied to beam elements so far, but in principle it is 

general and can be adapted to any element type. The use of the simple model, rather 

than the full model, should make application to finite element models using other 

element types straightforward, but further testing and validation work must be 

completed before the simple method can be proved to be accurate enough for other 

applications. 
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Chapter 6 Forced Vibrations due to Moving Masses 

6.1 Introduction 

In Chapter 5 the dynamic behaviour of a full-sized gantry crane has been discussed 
for a configuration based on the existing experimental crane rig, where the whole 
structure for the scale crane model is divided into two parts: a stationary framework, 

as shown in Figure 3.2(b), and a moving substructure, as shown in Figure 3.2(c). 
Next, the relationship between the stationary framework and the moving substructure 
is simplified to a stationary framework subjected to four time-dependent moving 
point forces. The magnitudes and positions of the forces vary with the motion of the 
trolley in the .x 

direction and that of the moving substructure in the )! direction, as 

shown in Figure 3.3(a). The dynamic responses of the stationary framework 

subjected to these four moving point forces are then found using the I-DEAS finite 

element package [35,36,37], by applying a force to each node of the structure, with 

time-dependent magnitude, to simulate the effect of the moving point forces. The 

result is validated by means of Rogers' analytical method [62]. This is appropriate if 

the magnitudes of the moving point forces are not dependent on the motion of the rail 

upon which they travel. The difference between the moving mass problem and the 

moving force problem is that the inertia effects of the mass are ignored in the moving 

force formulation. So that if the fixed rail is vibrating and the acceleration of the rail 

is significant, then this motion will be transferred to the moving masses, and in turn 

the magnitudes of the contact point forces will be affected by the inertia effects of the 

moving masses. Since these inertia effects cannot be included directly in the existing 

finite element package the objective of this chapter is to present an approach for 

calculating the dynamic response of a three-dimensional structure subjected to 

moving masses. 

The literature concerning the forced vibration analysis of stnictures due to moving 

masses is sparse. Xu, Xu and Genin [64] studied a non-linear moving mass problem 

but unlike most of the existing works which treat the linear problem and neglect the 

102 



longitudinal motion of the beam, in their article Hamilton's principle is employed to 
derive the two non-linear coupled differential equations governing the transverse and 
longitudinal motions of the beam, and then a finite difference method combined with 
a perturbation technique is used to solve the resulting boundary value problem. They 
found that the friction force between the beam and moving mass has a significant 
effect on the longitudinal motion. Lee [57,65] studied the dynamic responses of a 
beam subjected to a moving mass. In this article the equation of motion for a 
Timoshenko beam and an Euler beam, excited by a concentrated mass moving with a 

constant speed, is derived by using the Lagrangian approach and the assumed mode 

method. Lee [58,66] investigated the separation problem between a flexible structure 

and a moving mass and found that the interaction force between a moving mass and a 

structure obviously depends on the velocity of the moving mass and the flexibility of 

the structure. Michaltsos, Sophianopoulos and Kounadis [59] studied the linear 

dynamic response of a simply supported uniform beam under a moving load with 

constant magnitude and constant velocity, by considering the mass effect of the load. 

They used a series solution to assess the individual effect and the coupling effect due 

to the mass of the moving load, the velocity and other parameters. Ichikawa, 

Miyakawa and Matsuda [67] investigated the dynamic behaviour of a multi-span 

continuous beam traversed by a moving mass at a constant velocity, where the 

solution of the system was obtained by using modal analysis and integration. Akin 

and Mofid [68] presented an analytical-numerical method to determine the dynamic 

behaviour of beams with different boundary conditions and carrying a moving mass. 

The author is not aware of any work on the dynamic behaviour of three-dimensional 

structures subjected to two-dimensional moving masses (a trolley moving in the x 

direction and a substructure moving in the y direction in the case of the mobile 

crane problem). Hence the purpose of this chapter is to develop a general analytical 

procedure for incorporation with a standard finite element package so that this 

problem may be solved. For validation the developed technique is first applied to the 

dynamic analysis of a clamped-clamped beam subjected to a moving mass, and then 

it is applied to the mobile crane problem to predict the dynamic response of the crane 

due to the movements of the trolley. 
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6.2 A Mass Moving along a Beam 

6.2.1 Equivalent Nodal Forces of a Beam Element 

y 
f cS) (t) 

P (t> 
1. cS, (t 

e 
f (S) t '' 

fit) 
P(t 

P 

--------- Plemant c 

./ 
3(S) 

(t) 
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101 

fb(S) (t ) 
Y 

Figure 6.1 Equivalent nodal forces of an element, s, subjected to a concentrated force 

P(r). 

The equation of motion for a multiple-degree-of-freedom structural system is given 
by 

[M] {q(t)} + [C] {q(t)} + [K] {q(t)} = {F(t)} (6.1) 

where [M], [C], [K] are, respectively, the overall mass, damping and stiffness 

matrices, {q(t)}, {g(t)}, {q(t)} are respectively the acceleration, velocity and 

displacement vectors for the whole structure and {F(t)} is the external force vector. 

When a beam is subjected to a concentrated force, P(t), the forces on all the nodes of 

the beam are equal to zero except the nodes of element s (as shown in Figure 6.1) on 

III which the concentrated force applies. Hence, the external force vector : F(t)} 

Equation (6.1) takes the form 

{F(t)} 
= 

[0 
... / 

(s) (t) f2(t) f3(t) f (S) (t) 
J 

5`S' (t) f6(S) (`) 
... 

OI T 

ý_ . 
15'(1) 

(6.2) 

where f, (s) (t) (i =1 to 6), as shown in Figure 6.1, represent the nodal forces and 

moments equivalent to the external load P(t). For simplicity, only the two- 

dimensional case (in the xy-plane) is studied here and the more general three- 

dimensional case will be discussed in section 6.5. 

In general the longitudinal (or axial) stiffness of a beam is much larger than the 

transverse stiffness, and in addition to this, the axial force due to a moving load is 
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much smaller than the transverse force. Therefore it is reasonable to assume that the 
longitudinal compression or extension of the beam is negligible. For this assumption 

the axial force component Px (t) can be equally shared across the two horizontal 

nodal forces, i. e., 

f(s)(t) = 
Px(t) 

2 
(6.3) 

f 4(s) (t) = 
PX (t) 

(6.4) 
2 

while the other nodal forces f (s) (t) ,f 
(s) (t) , f5(t) and f(t) are related to the 

transverse force component P}, (t) and given by [40,53] 

f (S) Nl (C) 

A(S) (t) =P 
NZ(o 

A (S) y N3 (o 

L6i (s) N(o 

(6.5) 

in which, N; (C) (i =1 to 4) represent the shape functions given by [40,53] 

N, (C) =1- 342 + 2C3 (6.6) 

N2(; ) _ (C- 2C2 + c3) £ (6.7) 

N3 (C) = 3C2 - 2c3 (6.8) 

Na (o _ (-C2 + ; 3) £ (6.9) 

__ 
x (6.10) 

In Equation (6.10), £ is the element length and x is the distance between the 

application point of Py (t) and the left end of the beam element s at which the moving 

load P(t) is located, as shown in Figure 6.1. 

If the angle between the moving load P(t) and the x-axis is denoted by 0, then the 

axial force component P,, (t) and the transverse component Py(t) in Equations (6.3)- 

(6.5) are given by 
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P, (t) = P(t)COs8 (6.11) 
P, (t) = P(t) sin 8 (6.1? ) 

6.2.2 Dynamic Response due to a Moving Mass 
V (t) 

' 
am (t) 

Y __, 

---------- 
S elements U ----- - k-I --- 

x 

x (t) 

Figure 6.2 Mass moving along a beam. 

Based on the mode superposition method [53], the nodal displacements of a beam 

may be determined by 

{q(t)} _ [c] {u(t)} (6.13) 

where {u(t)} represents a generalized co-ordinate vector and [(D] denotes a mode 

shape matrix consisting of N independent modal vectors. 

ItI=110II 102I 
-{o I... {ONI (6.14) 

and {Oj } is the j`" mode shape of the structure. From Figure 6.1 one sees that this is 

composed of horizontal, vertical and rotational deformations. 

The time derivatives of Equation (6.13) give 

{q(t)} = [D] 11401 (6.15) 

{q(t)} = [c1] {ü(t)} (6.16) 

Substituting Equations (6.13)-(6.16) into Equation (6.1) yields 

[M][D] {ii(t)} + [C] [(D] {is(t)} + [K][D][u(t)} = {F(t)} (6.17) 

So, premultiplying both sides of Equation (6.17) by the transpose of the j`h mode 

shape vector {O1 }T leads to 

l0j }T [Af ][c] (ii(t) I+ {Oj }T [ C] [(I)] {11(t)} + {Oj }T [K][(D] {ll(t)} = iOj IT 

(6.1 
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Using the orthogonality conditions, one has 

{ok}T[M]{oj}=0 ifk# j 

{Yk}T[c]{Y j} =0 if kýj 

{ok}T[K]{oj}=0 if ký j 

Introducing Equations (6.19a)-(6.19c) into Equation (6.18) gives 

mjjüj (t) + C11t (t) + kjjuj (t) = fj (t) 

(6.19a) 

(6.19b) 

(6.19c) 

(6.20) 

where mij. , cii. and kjj are, respectively, the generalized mass, damping and stiffness 

for the jth mode defined by 

mjj = Wjl 'IM]Wj1 (6.21) 

C 
.u= 

IY. j }T 
LCJ 

lo1 I 
(6.22) 

k 
jj = {S1 JT 

[K] 
{Yj } 

(6.23) 

and fj (t) is the generalized force for the j`h mode. 

fj (t) = {O IT {F(t)} (6.24) 

Equation (6.20) may be rewritten as 

Zl ýtý + 
Cý 

1{ " 
ýtý + 

kg) 

Z{ . 

(6.25) 

l11ýý 
I ml 

J ml 

Let 

c;; 
=2l co j 

(6.26a) 
mü 

(6.26b) 
ý9J 

Ill ii 

then Equation (6.25) reduces to 

(t)= J Q) (6.27) 
llýýl)+2 1w1l1(t)+(o u; j 

f 
MJ 
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Hence, 

f(t) 2 ü' (t) -m 2ý. 
icojui 

(t) ýj uý (t) (6.28) 
Jl 

where wi and ýj are respectively the natural frequency and linear viscous damping 

ratio for the j`h mode. 

Since the longitudinal compression or extension of the beam is assumed to be 

negligible in the present analysis, the horizontal acceleration of the contacting point 
between the moving load P(t) and the beam is given by 

am (t) = as (t) =a +I (t) (6.29) 

where s and s+1 are the numberings of the two nodes of the beam element s on 

which the moving load P(t) located. As shown in Figure 6.1 each node of a beam 

element has 3 degrees of freedom (DOF) with the first DOF being in the x direction. 

Hence, as (t) in Equation (6.29) is at the (3(s -1) + 1)" position of (4(t)), as given 

by Equation (6.16). Similarly, as+, (t) is the (3s + 1)" coefficient. 

The vertical acceleration for the contacting point, located between nodes s and s+ 1, is 

found by using linear interpolation: 

a. 
s+. (t) - Q'' (t)] '. t+[. �(t) [a (6.30) 

where a; (t) and as+, (t) are respectively the (3(s -1) + 2)`" and the (3s+2)"' 

coefficients of {q(t)} in Equation (6.16), while x,,, (t) is the distance between the 

moving mass m and the left end of the beam, as shown in Figure 6.2. 

The difference between a moving mass and a moving force is that the former has an 

inertia effect but the latter does not have. Therefore one may treat the moving mass 

problem by including the inertia effect of the moving mass within the moving force 

formulation. In section 6.2.1, Equations (6.1)-(6.12) are used to determine the 

instantaneous equivalent nodal forces and moments of a structural system due to a 

moving force. The instantaneous equivalent nodal forces and moments of a structural 
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system subjected to a moving mass may also be obtained from Equations (6.1)- 
(6.12), but the values of P(t) and Pl, (t) in Equations (6.3)-(6.5) must be determined 

by 

P (tý = m[am (tý + am (týý 

Py (t) = m[g + an (t)] 

(6.31) 

(6.32) 

where m is the moving mass, g is gravitational acceleration, a,, (t) is the acceleration 

of moving mass in the axial (x) direction, as shown in Figure 6.2, while a(t) and 

am (t) are the instantaneous horizontal and vertical accelerations of the application 

point of the moving mass given by Equations (6.29) and (6.30), respectively. For the 

problem studied in this thesis the horizontal force transmission between the moving 

mass and beam is not important. However, for a vehicle moving on a bridge, the 

horizontal forces due to the friction effect between the driven/braking \vheels and the 

bridge may well be significant. 

Figure 6.2 shows a beam composed of k nodes and k-1 beam elements, and a mass m 

moves from node 1 to node k of the beam with velocity V (t) and acceleration 

am (t). At any time t, the instantaneous force and moment vectors of the beam are 

given by Equations (6.33)-(6.35) 

{F ` (t)} _ [F, ̀  (t) F. _c (t) F lc (t) ... Fk` (t)]T 

{F `' (t)} _ [F, ' (t) F2`' (t) F3` (t) ... Fy (t)]T 

{M (t)} _ [M, - (t) M2 (t) M3 (t) ... 
Mk (t)]T 

where the subscripts 1,2...., k represent the node numbers. 

(6.33) 

(6.34) 

(6.35) 

If the moving mass is located at node 1 at time t=0, one has 

F,. -v(t)=0(i=1 to k), F, ''(t)=mg, F, '(t)=0(i=2tok) and, tf, -(t)=0 (i=1tok) 

(6.; (>) 
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If the distance between the moving mass and the left end of the beam is x,, (t), as 

shown in Figure 6.2, then the numbering for the element s on which the moving mass 
is located, at time t (t # 0), can be found from 

s= (The integer part of X. (t)) +1 (6.37) 

Since the two nodes of the sth beam element are s and s+l, the instantaneous nodal 
forces and moments due to the moving mass on the s`h beam element at time t (t t 0) 

are 

FSX (t) = m(am (t) + am (t))/2 
(6.38) 

m(am (t) + am (t))/2 (6.39) 

F. X (t) =0 (i =1 to k; i #s, s+ 1) (6.40) 

Fs'' (t) = m(g +a(1))N, (ý") (6.41) 

Fs+fit) = mfg + a,, (t)) N3 G) (6.42) 

F,. ''(t)=0 (i=ltok; i#s, s+l) (6.43) 

M; (t) = m(g + a, ',; (t)) N2 (c) (6.44) 

Ms+i(t) = m(g + a, (t)) N4(0 (6.45) 

M; -"(t)=0 (i=ltok; i#s, s+1) (6.46) 

where the values of N, (0, N2 ((), N3 (O, N4(0 are given by Equations (6.6)-(6.9). 

For convenience, Equation (6.10) is rewritten as a function of the global co-ordinate 

X111(t) 

J, 
= 

xm(t)-p(s-1) 
e 

L 

(6.47) 

Hence the instantaneous overall external force vector, {F(t) } in Equation (6.1) is 

given by 

{F(t); _ [F, ̀ (t) F, ' (t) M; (t) FZr(t) F (t) M` (t) ... Fk'(t) J (t) M; (t)J' 
(6.48) 
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If, at time t, the moving mass is located on the element s with nodes s and s+ I, then 
the horizontal displacement for the contact point between the moving mass and the 
beam is given by 

dm (t) = d. 
, 
(t) = ds (t) (6.49) 

where ds (t) and ds+, (t) are the (3(s -1) + 1)``` and (3s + 1)`s coefficients of {q(t)) in 
Equation (6.13). 

The vertical displacement of the contact point is obtained by using linear 
interpolation: 

Y (t) _ ds (t) + 
[xm (t) - (s -1)2] [ds 1 (t) - ds (t)] 

(6.50) 

where ds (t) and d'1(t) are the (3(s -1) + 2)`" and (3s + 2)" coefficients of {q(t)} 

in Equation (6.13). 

To show the general application of the technique which has been developed, the 

finite element package ABAQUS [69,70] (instead of I-DEAS) is initially used for 

calculating the natural frequencies, the generalized masses and the corresponding 

mode shapes of the structure. At time t=0, aM 'Q), am Q), {uj(t)} and {üj(t)} are 

taken to be zero. {ü j (t)) is then determined by solving Equation (6.28). The 

substitution of {üj(t)} into Equation (6.16) yields {q(t)}. The values of aý, (t) and 

am(t) can now be found from Equations (6.29) and (6.30). {uz(t)} and {ü f(t)} are 

then obtained from Equation (6.27) by using the numerical simulation code 

generated by AUTOSIM [71]. The substitution of {uj(t)} into Equation (6.13) 

subsequently yields the dynamic response of the structure, {q(t)}. The new values of 

a(t), a(t), {u, (t) } and {üj(t) } are then used as the initial values for the 

calculation at the next time step. 



6.2.3 Implementation and Validation 

m= 1.2 kg 

Figure 6.3 Clamped-clamped beam subjected to a moving mass, ni -- 1.2 kg, with a 

constant velocity V. 

To check the technique which has been developed, a unilomi, undamped, clamped- 

clamped beam of length L=6m and cross section 1 c"mn xI cm, with 10 beam 

elements and 11 nodes, is studied. In order to allow easy comparison with reference 
[65], all the given data for this example are exactly the same as those tirr the example 

presented by Lee [65]: EI/m = 275.4408 m4/s2 and M/mL = 0.2, where E and I, 

respectively, represent the modulus of elasticity and area moment of' inertia, and M 

and m, respectively, represent the mass of the beam and the moving mass. The 

gravitational acceleration is g=9.81 m/s'. At time 1=0, a mass of magnitude rn = 
1.2 kg starts from the left end of the beam and travels to the right end with constant 

velocity V=6.0 m/s, as shown in Figure 6.3. 

Figure 6.4 A single DOF spring-damper-mass system. 

The formulations of sections 6.2.1 and 6.2.2 are coded into a FORTRAN program to 

analyse the forced vibration of the structure subjected to the moving mass. To create 
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this program a single DOF spring-damper-mass system, as shown in Figure 6.4, is 
first modelled using AUTOSIM [71]. AUTOSIM is then used to generate the full 
simulation code. At this stage the FORTRAN code generated by the AUTOSIM is 
modified using the formulations of sections 6.2.1 and 6.2.2 to convert the single DOF 
model to one with multiple degrees of freedom. For convenience, this FORTRAN 
code is called MOVMAS in this thesis. 

First of all the finite element package ABAQUS [69,70] is used to calculate the 
natural frequencies, generalized masses, and the corresponding mode shapes of the 
structure. Then the program MOVMAS is used to calculate the forced vibration 
response of the structure. The numerical results obtained are, in turn, stored as an 
ASCII file so that other software may easily proceed to use them. 

In order to compare the numerical results of this solution procedure with reference 
[65] only the vertical inertia effects are considered in this section. A comparison 
between the dimensionless deflections of the contact point, dm (1)! L, when the 

moving mass moves from the left end of the beam to the right end, as shown in 

Figure 6.3, with a constant velocity V=0.6 m/s, obtained from the program 
MOVMAS, and those from reference [65] are shown in Figure 6.5. Slight differences 

can be found; this is due to the fact that the technique used in this research (mode 

superposition method and finite element method) and that used in reference [65] 

(Lagrangian approach and the assumed mode method) are different. However, the 

differences are negligible (this difference is due to the fact that different numerical- 

analytical methods will provide slightly different results), so the technique developed 

in sections 6.2.1 and 6.2.2 appears to be viable. 

Figure 6.6 shows the dimensionless deflections of the contact point due to the 

moving force and the moving mass with different moving velocities. The solid line 

with circle (-0-), dashed line with triangle (---A---) and solid line with cross 

(-x-) represent the dimensionless deflections due to the moving mass with inertia 

effects considered, while the others represent the ones due to the moving load with 

113 



the inertia effects ignored. It can be seen that the differences between the numerical 
results due to the moving force, and those due to the moving mass, depends on the 
velocity of the moving load. Figure 6.7 shows the vertical displacement of each node 
of the beam when the moving force, or the moving mass, moves from left end of the 
beam to the right end, as shown in Figure 6.3, with a constant velocity V=6 m/s. 
The meshes constructed by the solid lines (-) represent the vertical nodal 
displacements due to the moving force and the meshes constructed by the dashed 
lines (---) represent those due to the moving mass. Significant differences can be 
found between the vertical nodal displacements due to the moving force and those 
due to the moving mass. This suggests that moving force analyses are not always 
adequate. 

The formulations of sections 6.2.1 and 6.2.2 can also be used to perform forced 

vibration analysis of the structure subjected to the moving force, if the inertia effects 
due to the accelerations aM 'Q), am (t) and am (t) , appearing in Equations (6.29), 

(6.30) and (6.31), are set to zero at each time step calculation. The results obtained 

are compared with those obtained from the technique presented in Chapter 5. Figure 

6.8 shows the vertical displacements of nodes 1,3 and 6 of the clamped-clamped 
beam due to a moving point force of magnitude 11.76 N (1.2 kg) which starts at node 
1 and travels to node 11 with the velocity V(t), where the vertical displacements 

obtained from the moving mass method are represented by the solid lines with 0, x 

and 0, while those from the moving force method by the dashed lines with +, 0 and 

*. Slight differences can be found between the curves for the same node. This is due 

to the fact that the natural frequencies, and the corresponding mode shapes obtained 

from I-DEAS (the finite element package used in Chapter 5) and ABAQUS (the 

finite element package used in this chapter) are slightly different. However, the 

differences are negligible, so the technique developed in sections 6.2.1 and 6.2.2 is 

regarded as acceptably accurate. Table 6.1 shows the first ten natural frequencies of 

the clamped-clamped beam, w, (i =1 to 10), determined by I-DEAS and ABAQUS. 

It is evident that there are slight differences between the natural frequencies obtained 
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from the two finite element packages, as one may see from the final column of Table 
6.1. 

N M d i 
Natural Frequencies co; (Hz) Percentage 

o., o e I-DEAS ABAQUS difference, Ow, (%) 
1 1.6416 1.6416 0.0 
2 1.6416 1.6416 0.0 
3 4.5261 4.5261 0.0 
4 4.5261 4.5261 0.0 
5 8.8791 8.8794 0.003379 
6 8.8791 8.8794 0.003379 
7 14.7012 14.703 0.012244 
8 14.7012 14.703 0.012244 
9 22.0277 22.034 0.028600 
10 22.0277 22.034 0.028600 

Table 6.1 The first ten natural frequencies of a clamped-clamped beam, from 

I-DEAS and ABAQUS. 
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Figure 6.5 Comparison of the dimensionless deflections of the contact point due to 

the moving mass between the results of this research and reference [65]. 
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Figure 6.6 Comparison of the dimensionless deflections at the contact point due to 

the moving force and the moving mass. 

Figure 6.7 Comparison of the vertical displacement of each node of the beam due to 

the moving force and the moving mass. 
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Figure 6.8 Vertical displacements of nodes 1,3 and 6 of the beam due to the moving 
force. 

6.3 A Portal Frame Subjected to a Moving Mass 

in=l. 2kg 

Poo. V(t) 

0. (, m 

V (t) 
3 nVs 

T (sec) 
0 0.2 2.0 2.2 

I. ( 111 

L=6. Om 

Figure 6.9 Portal frame subjected to a moving mass, in = 1.2 kg, with velocity V(r). 

Figure 6.9 shows a mass with magnitude in =1.2 kg moving from node 1 to node 11 

of a portal frame with velocity V(t). The material properties of the beam are exactly 

the same as those stated in section 6.2.3. If the portal frame is modelled using 

uniform, undamped beam elements, then the problem can be solved using the 

formulations of section 6.2. Figure 6.10 shows the vertical deflection of node 6 due 
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to a moving mass. The solid line with triangle (-A-) is the one which considers 
both the vertical and the horizontal inertia effects, but the solid line with star 
(-*) only considers the vertical inertia effect. One may see that the horizontal 
inertia effect slightly influences the vertical responses of node 6, therefore, the solid 
line with triangle (-A-) oscillates with respect to the solid line with star (-*-), 

periodically. Figure 6.11 shows the horizontal displacements of nodes 2 and 6. The 

dashed line with plus (--+--) and the solid line with circle (-0-) represent those 
dealing with both the vertical and the horizontal inertia effects, but the dashed line 

with triangle (--A--) and the solid line with square (-D--) represent those 

considering only the vertical inertia effect. It can be seen that the horizontal inertia 

effect is only significant during the time intervals, t=0 to 0.2 s and t=2.0 to 2.2 s, 
during which the moving mass accelerates and decelerates, respectively. This is a 

very reasonable result because the horizontal inertia force induced by the moving 

mass is proportional to the magnitude of acceleration, or deceleration, of the moving 

mass. In addition, the horizontal displacements of node 2 are very close to those of 

node 6, at any time t, because of the larger longitudinal stiffness of the beam and the 

smaller inertia force due to the moving mass. 
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Figure 6.10 Vertical displacements of node 6. 
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Figure 6.11 Horizontal displacements of nodes 2 and 6. 

6.4 A Portal Frame Subjected to Two Moving Masses 

Each mass =1.2 kg v(t) 
xf =0.3m 3ni/S 7: 1 

1 V(t) T (sec) 
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2456 C7) (8) 9 
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L=6.0m 
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Figure 6.12 Portal frame subjected to two moving masses in, = in, = 1.2 kg with 

velocity V(t) as shown. 

For this new example, two masses of m, = m, = 1.2 kg, moving from the left end to 

the right end of a portal frame with velocity V(t), as shown in Figure 6.12, are 

studied. The formulations of section 6.2 are valid for calculating the instantaneous 

equivalent nodal force vector due to the first moving mass. The instantaneous 

equivalent nodal force vector due to the second moving mass may be obtained by 

slightly modifying Equations (6.37) and (6.47), i. e., 

s= (The integer part of +1 (6.51) 
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7m2 
x,,, (t)+xf-(S-1)ý 

i (6.52) 

where x,,, (t) is the distance between the first mass m, and the left end of the beam, 

while (x,,, (t) + x) represents the distance between the second mass m, and the left 

end of the beam, and xf is the spacing between the masses m, and m, . 

The instantaneous overall external force vector can now be obtained by combining 

the contributions due to the two moving masses. Figure 6.13 shows the vertical 
deflections of nodes 1,3 and 7, where the solid lines with plus (-+-), star (-*-) 

and rectangle (-0-) represent the vertical deflections by neglecting the horizontal 

inertia effect of the moving mass, while the solid lines with circle (-0-), triangle 

(-A-) and star (-*-) represent those considering the horizontal inertia effect. 

By comparing the oscillating amplitudes of Figure 6.13 with those of Figure 6.10, 

one sees that the influence of the horizontal inertia effect due to the two moving 

masses (refer to Figure 6.13) is much more significant than that due to the single 

moving mass (refer to Figure 6.10). This is intuitively correct given that the total 

number of moving masses in Figure 6.13 is twice that of Figure 6.10. 
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Figure 6.13 Vertical displacements of nodes 1,3 and 7. 
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6.5 Dynamic Response of a Three-Dimensional Framework due to 
Masses Moving in Two Dimensions 

In this section the dynamic behaviour of the stationary framework of the scale crane 
model due to the moving substructure (see Figure 6.14(a)) is simulated by using two 

parallel beams subjected to four equivalent moving lumped masses (i. e., m,, 94 , nteye 

megc and meqD in Figure 6.14(b)). Now, the first task in the analysis of this system is 

to determine the magnitudes of the four equivalent lumped masses at the four contact 

points between the stationary framework and the moving substructure, A, B, C and D 

as shown in Figure 6.14(b). Because the moving substructure is composed of two 

linear bearing rails, and may move in the longitudinal (y) direction, whereas the 

trolley is fitted to the substructure and can move on two linear bearing rails in the 

transverse (x) direction, the equivalent lumped mass for the moving load in the ý 

and z directions is different to that in the _k 
direction. In other words, if me 

represents the mass of the trolley (including the spreader and hoisted container), 

mmo, is the mass of Motorl, and mp is the mass of all the other parts of the 

substructure, then when the trolley moves in the .- 
direction the inertial force is 

affected by the mass m, only, however, when the whole substructure moves in the T 

direction, or the stationary framework vibrates in the - direction, the inertial forces 

are affected by the masses, mp, in,, and m,,, O, . 
The equivalent lumped masses at the 

four contact points are estimated according to the foregoing discussion. 

From Figure 6.14(a) one may see that the inertial force of the trolley is transferred to 

Pulleyl and Motorl through a cable, and, in turn, transferred to the four contact 

points through the two parallel moving rails. It was found that very small forces 

initiated large accelerations when the cable was disconnected from the motor, thus 

justifying the assumption of negligible friction. Because the compression or the 

extension of the two (longitudinal) fixed rails is negligible and the friction force 

between the moving substructure and the two fixed rails is very low, the inertial tierce 

induced by the substructure moving in the jy direction is assumed to be completely 
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transferred to Motor2 and Pulley2, as shown in Figure 6.14(a). It is also worthy of 
mention that the separation between the moving mass and the beam will not be taken 
into account in this analysis. In other words, it is assumed that the moving mass and 
the beam are always in close contact. 
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F,,,,,,,,,, (t) 1'�(1) u� 
/N 

. yy 

F, (t) 
/)1 

. yý. 

V (r) 

a`` 
D 

Cable 

=========: fl =il= ========= 

Motor2 

(b) 

Pulle} I 

C 

Figure 6.14 (a) Orthographic view of the scale crane model composed of fixed rails, 

substructure, trolley and spreader; (b) Top view of the schematic model 

for the dynamic analysis of the stationary framework due to the moving 

substructure. 
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6.5.1 Derivation of Frame-Trolley Contact Forces by Ignoring Vibrating Effects 

of the Stationary Framework 

From Figures 6.14(a) and (b), one may see that there are four contact points between 

the two fixed rails and the moving substructures: A, B, C and D. The contact forces 
induced by the movements of the moving substructure and the trolley ha\ e been 

derived in Chapter 3. It is found that FA (t) =FB (t) =F_, (t) and 

F, (. (t) = FZD (t) = Fz2 (t) , where FA (t) , FZB (t) , FZc (t) and FD (t) are the contact 

forces of the contact points A, B, C and D, respectively. 

6.5.2 Calculation of Positions of the Contact Points 

As shown in Figure 6.14, when the moving substructure moves on the two fixed rails 

in they direction, the y co-ordinates of the four contact points, A, B, C and D, vary 

with time. The expressions for calculating the instantaneous positions of the four 

contact points are also presented in Chapter 3. 

6.5.3 Determination of External Force Vector by Considering the Inertia Effects 

of Moving Loads 

Figure 6.15 shows an arbitrary contact point between the stationary framework and 

the moving substructure. The mass m represents the equivalent lumped mass of the 

contact force (F_, (t) or F, 2(0) and the beam represents the fixed rail, as shown in 

Figure 6.14(a). 

The equation of motion for the RTG crane structure can be represented as Equation 

(6.1). When a beam is subjected to a concentrated force P(t), as shown in Figure 

6.15, the forces on all the nodes of the beam are equal to zero except those on the 

nodes of elements subjected to the concentrated force. According to Lin and 

Trethewey [40] and Clough and Penzien [53], the external force vector ; F(t); in 

Equation (6.1) takes the following form 
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the beam elements (or y (t) from the left end of the beam). 
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0 

{F(t)} = 

0 

PX (t)N1(0 
Py (t)12 

Pz (t)NI (C) 
PZ (t)N2 (C) 

0 
Px (t)N2 (C) 
Px (t)N3 (O 

Py (t)/2 

PZ (t)N3 (c) 
P (t)Na (0 

0 

F (t)N4 (C) 

fa`s' (t) 
. 
f2(s' (t) 

. 
f3 s' (t) 

f4(s) (t) 

f() (t) 
f 6(s) (t) 

.f 
(s' (t) 

A(s) (t) 
f9(s) (t) 

. 
fýos' (t) 
fýýs'(t) 
. 
f, 2s' (t) 

0 0 (6.53) 

where f,. ýsý (t) (i =1 to 12) represent the equivalent nodal forces and moments as 

shown in Figure 6.15 and N. (C) (i =1 to 4) represent the shape functions given by 

Equations (6.6)-(6.10). 

When the trolley moves in the transverse (x) direction with acceleration a, its 

inertial force is equally shared by the four contact points A, B, C and D, i. e., 

PX (t) = Fx (t) = 
mCa (for point A, B, C or D) 

4 

where me represents the mass of the trolley as shown in Figure 6.14(b). 

(6.54) 

If the friction force between the fixed rails and the moving substructure is ignored, 

then the y -component of the contact force is zero, i. e., 

Py (t) =0 (for point A, B, C or D) (6.55) 

Because the compression or extension of the fixed rails is also ignored in the present 

study, the acceleration of the substructure (including the trolley and the motor) in the 
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longitudinal (y) direction, ac, , is induced directly by the longitudinal force exerted 

by Motor2 and Pulley2 given by (see Figure 6.14(b)) 

FPulley2(t) = _FMotor2 
(t) = 

(m 
p+ mc + mmog ) 

2 
a0, (6.56) 

where (m 
p+ me + mmot) represents the total mass of the whole moving substructure 

(see Chapter 3). Equation (6.56) represent the forces acting on nodes 46,47,48 and 
49, as shown in Figure 4.1, of the stationary framework on which Motor2 and 

Pulley2 are fixed. 

For the case when the inertia effects of the moving masses are ignored the vertical 

contact force components (in the z direction), PZ(t), have been derived in section 

6.5.1, i. e., 

PZ (t) = Fz, (t) (for point A or B) 

Pz (t) = F2(t) (for point C or D) 

(6.57) 

(6.58) 

Therefore, if the inertia effects are considered, then Equations (6.54), (6.57) and 

(6.58) must be replaced by 

Px(t)= m4cx +megAax(t) 

(for point A or B) (6.59) 

= 
mca +m aX () t= m`a" +1 1(t) ax (t) 

4 eqa ,n4g. m 

PX (t) = 
mca" 

+ me9Cam (t) 

4 (for point C or D) (6.60) 

= 
mca +m ax t) = 

m`acx+ Fz2 (t) 
a�, (t) 

4 e9D m(4g 

Pz(t) = F,, (t)+megAam(t) 

z 
F=, (t) z 

(for point A or B) (6.61) 
= Fsl (t) + megBam (t) = Fzl (t) +g am (t) 

F (t) = Fz2 (t) + mvca;, (t) 

z 
Fr2 (t) s 

(for point C or D) (6.62) 

= Fz2(t)+megoa, �(t) = Fz2(t)+-a, �(t) 
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where me9A, meqB, meqc and meqD , respectively, represent the equivalent lumped mass 
at contact points A, B, C and D. The transverse acceleration in the x direction for the 
contact point located between node s and node s+ 1 of the beam element s (on which 
the moving mass is located) is given by using linear interpolation 

am (t) _ as (t) + 
[Ym (t) - (s -1)ý] [as 1(t) - as (t)) 

Q 

where as (t) and as+1 (t) are, respectively, the 

(6.63) 

(6(s - 1) + 1)`*' and (6s + 1)`" 

coefficients of the nodal acceleration vector {q(t)} in Equation (6.16), while ym (t) 

is the distance between the contact point (A, B, C or D) and the left end of the beam, 

as shown in Figure 6.15. 

Similarly, the acceleration in the vertical (z) direction of the foregoing contact point 
is given by 

am (t) =as (t) +[ ym (t) - (s -1)ýJ Las+l (t) - as (t)] 

where as (t) and as+, (t) are, respectively, the 

coefficients of {q(t)} in Equation (6.16). 

(6.64) 

(6(s -1) + 3)`h and (6s + 3)h 

It is noted that Equation (6.56) remains unchanged because Pulley2 and Motor2 are 

fixed on the stationary framework. 

As mentioned in sections 6.2 and 6.4, the instantaneous overall external force vector 

for a beam subjected to two moving masses can be obtained by combining the 

contribution of each moving mass. Similarly, the instantaneous overall external force 

vector for a pair of beams, each subjected to two moving masses, can be obtained by 

combining all the contributions of the four masses. Of course, the contributions of 

the forces exerted by Pulley2 and Motor2 (see Equation (6.56)) to the instantaneous 

overall external force vector must also be considered. 
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After calculating the natural frequencies, generalized masses, and the corresponding 
mode shapes of the finite element model of the mobile crane structure, one may 
obtain the generalized co-ordinate vector {un (t)} from Equation (6.25) by using 
numerical simulation code generated by AUTOSIM [71], and then the actual nodal 
displacement vector {q(t)} may be obtained from Equation (6.13). Finally, the 

element displacement components of the contact point located between node s and 
node s+1 of the beam element s (on which the moving mass is located) are given by 

xn ! tl _ ýx rtl + 
(. ym 1)ý)(d 

+1 
(t) 

-ds 
(t)) 

S (6.65) ll `J 

dm fit) = ds fit) = ds t fit) (6.66) 

dm (t) =d= (t) + 
(Ym (t) - (S -1)ß)(d s+I 

(t) -d '(t)) (t)) 
(6.67) 

where dm (t), dm (t), dm (t) 
, respectively, represent the element centre displacements in 

the x, y and z directions, while ds (t), d,, (t), ds (t), d +, (t), d, (t) and d '+I (t) 

are, respectively, the (6(s- l)+1)`h, (6s+ 1)ih, (6(s-1)+2)`h, (6s+2)`n, (6(s-1)+3) ̀h and 

(6s+3)th coefficients of the nodal displacement vector {q(t)}, as given by Equation 

(6.13). 

6.5.4 Theoretical Results 

6.5.4.1 Influence of Longitudinal (y) Inertia Force of the Substructure 

The initial position of the trolley is at x= -0.49 m, y= -0.6 m. The trolley remains 

stationary with respect to the substructure (i. e., V (t) = a,, (t) =0 and x=-0.49 m ). 

but the whole substructure (including the trolley) moves in the longitudinal (y ) 

direction according to the time history below (see Figure 6.16(a) and 2"d, 4`h and 6`h 

rows of Table 6.2). At time t=0, the substructure accelerates from velocity V,, (t) = 

0.0 to V (t) = +0.5236 m/s in 1.0 s (i. e., the acceleration is a,,,. (t) _ +0.5236 m/s2 

during the time interval t=0.0 to 1.0 s), then it moves with constant velocity Vq(t) 

= +0.5236 m/s during the time interval t=1.0 to 2.5 s, next it decelerates from 
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velocity Vom, (t) = +0.5236 m/s to Vom, (t) = 0.0 in 1.0 s (i. e., the deceleration is 

a,, Y(t) = -0.5236 m/s2 during the time interval t=2.5 to 3.5 s), hereafter the 

substructure keeps stationary (i. e., V(,, (t) = 0.0) until t= 10.0 s. The final position of 
the substructure (including the trolley) is at y= +0.709 m. 
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Figure 6.16 (a) Time history of the velocity of the moving substructure along the y 

axis; (b) Time history of the velocity of the trolley along the x axis. 

Time t 
(s) 

0 4 1.0 -4 2.5 4 3.0 4 3.5 4 4.0 -4 10.0 

(m) -0.60 4 4 4 4 - - 4 " " 0.709 
Y (m) -0.49 - 4 4 - -4 - 4 - 4 " 0.4472 

V, 
y 

(t) (m/s) 0 Accelerate 0.5236 Decelerate Stationary (0) 

V (t) (m/s) 0 Accelerate 0.3142 Decelerate Stationary (0) 

a,, (t)(m/s2)** 
------- +0.5236 0 -0.5236 0 

acx (t) (m/s2)** ------- +0.3142 0 -0.3142 F 0 

*4 denotes moving and " denotes stationary. 
**+ denotes acceleration and - denotes deceleration. 
Table 6.2 Time histories of the velocities of the moving substructure (Vn, (t)) and 

trolley (V (t) ). 

Figure 6.17 shows the vertical (z) deflections of nodes 60 and 64 (see Figure 

6.14(b)) due to the movements of the substructure described above. It can be found 

that, for node 60, the curve which considers the vertical inertia effects only (denoted 
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by the solid line with 0) and the curve which neglects all the inertia effects (denoted 
by the solid lines with +) are coincident with each other. This is also true for node 
64; that is to say, the solid curve with 0 also coincides with the curve with Q. This 

phenomenon means that the vertical (z) inertia effects of the substructure do not 
significantly affect the vertical (z) responses in the present crane problem. 

When both the vertical (z) and horizontal (y) inertia effects are considered, the time 

history of node 60 is represented by the solid line with *, and that of node 64 by *. 

Comparing these two curves with the other associated curves in Figure 6.17, one sees 

that there are only slight differences during the time intervals, t=0 to 1.0 s and t= 

2.5 to 3.5 s, as there should be, because the substructure accelerates and decelerates 

in the above-mentioned time intervals, whilst moving with constant velocity, or 

remaining stationary, for the other times. 

The influence of the longitudinal (y) inertia effects of the substructure on the 

longitudinal (y) displacements of nodes 60 and 64 is shown in Figure 6.18. In this, 

the solid lines with Q (for node 60) and * (for node 64) are the curves of the time 

histories when considering the longitudinal (y) inertia effects of the moving 

substructure. All the other curves are those without considering the longitudinal (Y) 

inertia effects of the moving substructure. Significant difference can be found 

between the curves with, and without, taking the longitudinal (y) inertia effects of 

the moving substructure into account during the time intervals, t=0 to 1.0 s and t= 

2.5 to 3.5 s. The reason for this phenomenon is the same as that for Figure 6.19 and 

is explained as follows: 

Figure 6.19 shows the time histories for the longitudinal (y) displacements of nodes 

50-62 located on the left fixed rail (as shown in Figure 6.14(a)). From the figure, one 

sees that nodes 50-62 have the largest displacements in the negative y (longitudinal) 

direction during the time interval t=0.0 to 1.0 s, while these nodes exhibit the 

largest displacements in the positive y (longitudinal) direction during the time 

interval t=2.5 to 3.5 s. For all the other times, t=1.0 to 2.5 s and t=3.5 to 10.0 s, 
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the longitudinal displacements (in they direction) of nodes 50-62 show very slight 
changes only. These are reasonable results because the moving substructure is 
accelerated in the positive y (longitudinal) direction during the time interval t=0.0 
to 1.0 s, and the associated inertial forces on the cable connecting Motor2 and 
Pulley2 are in the negative y (longitudinal) direction. Therefore the fixed rail on 

which the nodes 50-62 are located is subjected to forces in the negative T 
(longitudinal) direction, but the substructure is decelerated during the time interval t 
= 2.5 to 3.5 s, and the associated inertial forces on the cable (connecting Motor2 and 
Pulley2) and the fixed rail are in the positive y direction. For the other time 
intervals, t=1.0 to 2.5 s and t=3.5 to 10.0 s, the substructure moves with constant 

velocity, or maintains a stationary location, so that no additional force is added to the 

cable (or the fixed rail) and all the longitudinal (y) displacements of nodes 50-62 are 

induced by the gravity force of the moving substructure only during these time 

intervals. 
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Figure 6.17 Influence of longitudinal (y) inertial force of the substructure on the 
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Figure 6.18 Influence of longitudinal (y) inertial force of the substructure on the 
longitudinal (y) displacements of nodes 60 and 64 when VC, (t) = a,, (t) _ 
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Figure 6.19 Influence of longitudinal (. T) inertial force of the substructure on the 

longitudinal (i-, ) displacements of nodes 50-62 when Vc (t) = ac , 
(t) =0 

and a,,. (t) =±0.5236 m/s 
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6.5.4.2 Influence of Modelling of the Moving Substructure 

In the previous sections the moving substructure is replaced by four lumped masses, 
as shown in Figure 6.20(a). In this section, a different model for the moving 
substructure is introduced, as shown in Figure 6.20(b), where it is replaced by two 
girders. The reason that the moving substructure is replaced with two girders is 
because the whole moving substructure is moving along with the two moving rails, 
as shown in Figure 3.2(a). 

Natural frequencies and mode shapes for the whole structure (stationary framework 

together with stationary trolley) are calculated by use of traditional finite elements 
for the three different positions of the substructure (replaced by four lumped masses), 

as depicted in Figure 6.20(a). The mass of the moving substructure is 118.65 kg. The 

mass of each lumped mass in Figure 6.20(a) is 29.66 kg and the moment of inertia is 

taken to be zero. The mass of each girder in Figure 6.20(b) is 59.33 kg and the 

moments of inertia are: Jx -- 0, Jy = JJ = 4.68 kg. m2. 

Table 6.3 shows the first five natural frequencies of the scale crane model as shown 

in Figures 6.20(a) and (b). Where w, �; represents the natural frequency with the 

substructure replaced by four lumped masses located at position i (i = 1,2 and 3), 

while wg represents the corresponding natural frequency with the substructure 

replaced by two girders. Referring to the final column in Table 6.3, it can be found 

that the percentage differences between the natural frequencies wg and (vm3 are 

small except the one for the 4`h mode (Awl wg =7.3886 %). These differences are 

considered to be acceptable. In addition, from the values of wm,, (Um2 and Wm3 

listed in the columns 2-4 of Table 6.3, one sees that the differences in the 

corresponding natural frequencies for the three different positions of the lumped 

masses are small. Therefore, it is reasonable to regard the whole moving substructure 

as represented by four moving lumped masses for the mobile crane problem. 
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I 

n 

(a) (b) 
Figure 6.20 Schematic model of the scale crane model with the whole moving 

substructure replaced by (a) four lumped masses (located at three 

different positions) and (b) two transverse girders. 

Natural frequency (Hz) for Figure 6.20(a) Differences 
t P ercen age Natural frequency 

Acv = differences 
Mode No. Position 1 Position 2 Position 3 (Hz) for Figure 

CO 
ml 

ýnr2 ßm3 6.20(b), CÜg 
Ie 

tb - (Om31 AU) / (V 
g 

1 3.5785 3.6058 3.6119 3.6111 0.0008 0.0221 
2 6.7388 6.7457 6.7468 6.7724 0.0256 0.3780 
3 9.1956 9.2580 9.5244 9.8373 0.3129 3.1808 
4 10.4223 10.4449 10.3684 11.1956 0.8272 7.3886 
5 19.8536 18.7999 19.7581 19.8338 0.0757 0.3817 

Table 6.3 First five natural frequencies of the scale crane model with the whole 

substructure replaced by four lumped masses (located at three different 

positions), wv,,,, (i =1 to 3), and by two transverse girders, cos 

6.5.5 Experimental Validation 

A laser vibrometer is an instrument for the non-contact measurement of vibration 

velocity which measures vibration normal to the surface of the target. In this 

research, it has been used to measure the displacement of selected points on the crane 

structure. The arrangement of the hardware is shown in Figure 6.21. The vibrometer 

was mounted on a tripod and the laser beam was then directed at the relevant node, 
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ensuring that the beam was normal to the surface, so that the reflected beam could be 
detected by the vibrometer. 

Figure 6.21 Configuration of the laser vibrometer test for the experimental crane rig. 

Figure 6.22 shows the calculated and the measured vertical (z) displacements of 

node 45 (see Figure 6.21). In this figure the solid line with square (-0-) is the 

time history of node 45 when the movements of the substructure (in the 1, direction) 

are exactly same as in the last example (i. e., V, (t) = a,. 
_r 
(t) =0 and a,.,, (t) _±0.5236 

m/s2). The solid line with circle (-0-) is for the case when the movements of the 

substructure are the same as above but with half acceleration and half deceleration 

(i. e., V. 
r 
(t) = 2) a,,., (t) =0 and aýý, (t) _±0.2618 m/s2). The solid line with cross (-x-) 

is the case when the moving substructure remains stationary (i. e., Výý, (t) = a.,, (t) = 0) 

and the movements of the trolley (in the . 
-z direction) are as shown in Figure 6.16(b) 

and in the 3rd 5t" and 7`h rows of Table 6.2 (i. e., a. (t) _±0.3124 nn/s`). It is seen 

that the calculated results are very close to the corresponding experimental results 

represented by the solid lines without any attached symbols. 

Figure 6.23 shows the calculated (with damping ratio taken to be 1) and measured 

longitudinal (y) displacements of node 14 (see Figure 6.21), when the trolley 

remains stationary with respect to the substructure (i. e., i;, (1) = a,, (t) _ 0) and the 
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substructure moves with the time history shown in Figure 6.16(a) and in the 2nd, 4th 

and 6`h rows of Table 6.2 (i. e., a(t) _±0.5236 m/s2). It can be found that the 

vibrating frequency during the time intervals, t=0.0 to 1.0 s and t=2.5 to 3.5 s, 
where the moving substructure respectively accelerates and decelerates is about 10 
Hz. Figures 6.24 and 6.25 show the calculated displacements of node 14 with 
damping ratio (ý) taken to be 0.00 1 and 0.005, respectively. It also can be found that 

the vibrating frequency, when the moving substructure accelerates (during t=0.0 to 

1.0 s) or decelerates, (during t=2.5 to 3.5 s) is about 10 Hz. The above-mentioned 

natural frequency (10 Hz) is very close to the 4`h value shown in Table 6.3. Mode 4 

represents an oscillation of the stationary framework in the longitudinal (i- ) 

direction. Therefore, it is believed that the foregoing analysis of the mobile crane 

problem is acceptable. It is noted that the reason that the curve with damping ratio 

taken to be 1 is included to Figures 6.23,6.24 and 6.25 is to provide an aid for 

comparison without over complicating either figure. 
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Figure 6.22 Time histories for vertical (ý) displacements of node 45 for three cases: 

(1) V. (t)(t)= 0 and aý,, (t)= ±0.5236 m/s` for-D-. (2) ý. ý( 
) 

a. (t) =0 and a,.,. (t) _ ±0.2618 m/s` for-4-; (3) ý, (t) = aý. (t) =0 

and a, (t) _±0.3124 m/s`' for -x-. 
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the trolley remains stationary with respect to the substructure (i. e., 
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the longitudinal (y) displacements of node 14 when V (t) = a, (t) =0 

and acy(t) _±0.5236 m/s2. 

6.6 Conclusions 

A technique has been developed to compute the dynamic response of three- 

dimensional structures subjected to movements of bodies in two dimensions on the 

top surface. Natural frequencies and mode shapes of the main structure are calculated 

first, using a standard finite element package. By considering the inertia effects of the 

moving bodies the forced response of the structure is calculated using a separate 

code, developed as a part of this work. The technique developed allows the vibration 

of the main structure and the inertia effects of the moving bodies to be properly 

accounted for. In its current form the program is general, but it has the restriction that 

the rotary inertia of the moving bodies is ignored. This effect is viewed as being 

unimportant for the mobile crane problem, however, it is perfectly possible that it 

should be included when other problems are studied. 

The technique has been validated by comparison with earlier work [65] for the case 

of beams subjected to moving masses. The need for an actual moving mass analysis, 
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as opposed to a simpler moving force analysis, has been highlighted by applying the 

technique to a beam and a portal frame. 

The model crane analysis has been validated by comparison with appropriate 

experimental results. In the mobile crane problem it has been shown that it is 

acceptable to replace the moving substructure with equivalent moving masses. It has 

also been shown that a model including horizontal and vertical inertia effects results 

in a much more realistic simulation than one considering only vertical effects, 

especially for three dimensional structures. 
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Chapter 7 Representation of the Dynamic Behaviour of the 
Full-size Crane using Dynamic Scaling ? Model 
Laws and the Finite Element Method 

7.1 Introduction 

The objective of this chapter is to represent the dynamic behaviour of the full-size 

crane in the laboratory. To this end, a 1/10 scale experimental model, previously 
built for an earlier research program, is used. This scale crane model is not exactly 
the same as an actual crane (see Chapter 1). Hence, although the numerical and 
measured results obtained from Chapter 6 are correct, they still cannot be used to 

simulate correctly the dynamic behaviour of the full-size crane. To solve this 

problem certain structural modifications have been made on the experimental crane 

rig. 

It is very unlikely that the dynamic phenomena potentially present in the full sire 

system will agree with those observed in the scale model if the model is not scaled 

properly. Some researchers have investigated this problem in other contexts. For 

example, Rezaeepazhand, Simitses and Starnes [72] have studied the problems 

associated with the design of scale models for predicting shell vibration response. In 

their article similitude theory is employed to establish similarity between chosen 

structural systems and then the scaling laws are derived and validated. An example 

of complete, and specific, similarity for free vibration of cross-ply cylindrical shell; 

is discussed. Vassalos [73] has investigated the physical modelling and similitude 

issues in marine structures. In his study the information regarding the appropriate use 

of models in the design of marine structures is provided. Similitude theory. 

dimensional analysis, and the use of governing equations in model experimental 

scaling are explained before addressing the modelling of some common ocean 

engineering tests. Safoniuk, Grace, Hackman and Mcknight [74] have presented a 

new method of scaling three-phase fluidised beds in which the sealing laws are 

obtained by achieving geometric and dynamic similitude with the aid of the 
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Buckingham T theorem. Experiments are carried out in order to validate their new 
technique and favourable agreement is achieved. 

The work of Cartmell and Ziegler [75,76], has shown, by means of a large range of 
summarised examples, that a coherent and inclusive dynamic scaling theory can be 
formally stated for dynamical systems definable by sets of ordinary and/or partial 
differential equations with boundary conditions. Their work has taken the case of a 
terrestrial, experimental, scale model of a space propulsion tether, and has applied 
the formal laws (stated in Cartmell and Ziegler [75,76]) to scale rigid body motion 

and also flexural motion. Compatibility issues of different dynamic scalings within 
the same problem are discussed. 

From the foregoing literature it can be seen that similitude theory can be employed to 

establish similarity [77,78] between a scale model and its full size system (actual 

structure), and then the scaling laws can be obtained by means of dimensional 

analysis [79,80,81,82] and the Buckingham it theorem [83]. 

This chapter starts by defining an ordinary differential equation which governs the 

motion of a multi-degree-of-freedom damped structural system (i. e., the crane in this 

case). The scaling laws which provide a novel technique for the structural dynamic 

problem are then derived by using similitude theory, dimensional analysis and the 

Buckingham r theorem. For validation purpose the scaling laws derived in this 

chapter are first applied to a portal frame subjected to a moving load before they are 

applied to represent the dynamic characteristics of the full-size crane within the scale 

crane model. Because the free vibration of a full-size crane is not obtainable 

experimentally a finite element model of the full-size crane is first established to 

provide this information. The 1/10 scale finite element model of the full-size crane is 

then modelled by means of geometric similitude. After comparing the free vibration 

characteristics of the finite element model of the 1/10 scale crane and the modified 

finite element model for the scale crane rig, it is proved that the original, stationary, 

framework of the scale crane rig cannot correctly simulate the dynamic behaviour of 
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the full-size crane. Hence, a new stationary framework for the scale crane rig is 
proposed. 

Since commercially sourced technical information on the stiffness and damping 
characteristics of the tyres and the suspension systems in the full-size crane has not 
been forthcoming from manufacturers, the spring stiffness used in this chapter is an 
assumed value, based on experience of RTG cranes. 
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Figure 7.1 A typical full-size crane. 

7.2 Derivation of Model Scaling Laws 

C 

O 

O 

°ýýýry 
ýýýio 

In general the use of a scale model is to predict dynamic characteristics. 'uch as 

displacement, velocity and force of a full-size system. These physical parameters are 

usually used to determine relevant phenomena in engineering mechanics. In selecting 
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the physical parameters, the most important consideration is to identify those capable 
of representing the full size system characteristics. Hence, irrelevant physical 
parameters must be eliminated at the start of the analysis in order to reduce the 
complexity of the mathematical analysis. 

Similitude, or similarity, between two objects may exist with regard to any one of 
their physical characteristics. For example geometric similitude is similarity of form, 
kinematic similitude is similarity of motion, and dynamic/mechanical similitude is 
similarity of mass/force. In these similitudes, the requirement is that all the following 
homologous linear parameters must be expressible in the same constant ratios. These 

constant ratios are generally defined as scaling factors. When these scaling factors 

are determined and applied to the full size system, the corresponding design 

quantities for the model will be obtained. For instance in the achievement of 
geometric similitude the length-to-depth ratio of the model should be equal to that of 
the full size system. These ratios are necessarily dimensionless. 

The objective of dimensional analysis is to find the requirements for similitude 
between the model and the full size system. It is based on the fact that the actual 

physical properties of a body, such as length, mass, force, ... etc., can be expressed 
in terms of one or more of the fundamental physical dimensions. Generally, various 

systems of dimensions, such as F-L-T (force-length-time) and M-L-T (mass-length- 

time), for example, are used. In this chapter the M-L-T system is employed. 

In 1915, Buckingham [83] presented the r theorem. This presentation of the 

theorem constructs dimensionless terms, as mentioned above, in a systematic way. 

The )r theorem may be phrased as: If a physical phenomenon can be defined in 

terms of n variables, and if each of these n variables can be expressed in terms of no 

more than m dimensions, then the general equation for the phenomenon can be 

expressed as a function of n-m dimensionless ir-terms. For example, if the 

equation F(q,, q2, q3, """, q�) =0 is complete, the solution has the form 

P NI , )r, 2)r, 3" " ", ýn_m) = 0, where the ?r -terms are independent products of the 

parameters q,, q2, q3, " "", etc., and are dimensionless. 
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7.2.1 Scaling Laws for the Mobile Crane Problem 

The RTG crane, in many circumstances, could be reasonably represented by a multi- 
degree-of-freedom linear, damped, structural system, hence the equations of motion 
take the form 

[M] {q(t)} + [C] {q(t)} + [K] {q(t)} = {F(t)} (ý 1) 

where [M], [C], [K] are, respectively, the overall mass, damping, and stiffness 
matrices of the structure, {q(t)}, {q(t)}, {q(t)} are respectively the acceleration, 

velocity and displacement vectors for the whole structure and {F(t)} is the external 
force vector. 

By means of modal analysis, one obtains the following (see Equation (6.27)) 

m; j; + 2mj1icv,, i1 + m; 1w, 
2ri = .f 

(t) (7.2) 

where m;, and ýj are, respectively, the generalized mass and damping, ij;, i, and 7, 

are the generalized acceleration, velocity, and displacement, while f (t) is the 

generalized force, each quantity corresponding to the it' mode which has a natural 

frequency of w; . 

According to Equation (7.2), a vector composed of the scalable parameters can be 

stated [75,76], 

{P} = [z ,, co, m, t, f)T 

where P denotes parameters. 

(7.3) 

According to references [75,76], to generate the dimensionless . r-terms from the 

above parameters, one may nondimensionalize Equation (7.2). The most general 

grouping of Equation (7.3) is to combine the parameters in such a way that the 

product of their dimensions is equal to zero. 
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d 
; jaI a2 W a3 M a4 t a5 f a6 =M° L° T° 

(7.4) 

d Equation (7.4) is called the equation of dimensional homogeneity. The symbol, =, 
means "dimensionally equal to". The symbols M, L and T are three fundamental 
dimensions in the physical system of mass, length, and time. 

In order to systematically obtain )r -terms from a list of parameters, one may 
substitute the dimensions of each parameter into Equation (7.4), and then equate the 

resulting expression to a suitable dimensional system such as M°L°T° or F°L°T°. 

In this thesis the M °L°T ° system is chosen because of its more physical 

significance, although it is understood that the F°L°T° system could equally be 

used. 

. 
el (1)a2 (1)a3 (M)a4 Tas (MLa6 

d 
M0L0T0 

T 
(7.5) 

T 

Rearranging Equation (7.5) leads to 

d 

La1+a6 (1)a2 Mao+a6T-a3+a5-za6 = M°L°T° (7.6) 

Equating the exponents of dimensions M, L and T to zero in Equation (7.6), 

respectively, one gets 

M: a4 + a6 =0 
(7.7) 

L: a, + a6 =0 
(7.8) 

T: - a3 + a5 - 2a6 =0 
(7.9) 

and 

(7. t o) 
a2 = a2 

The last four equations can be solved for an arbitrary choice of four of the six 

constants, for example in terms of a, and a3 , to yield 
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a1=a, (7.11) 

a2 = a2 (7.12) 
a3 = a3 

(7.13) 

a6=-a, (7.14) 

a4=-a6=a, (7.15) 

as =a3+ 2a6 = -2a1 -+- a3 (7.16) 

Substituting Equations (7.1l)-(7.16) into Equation (7.4) gives 

qa, ßa2 Wa, ma, t-2a, +a3 f-a, d 
MOL0T0 (7.17) 

Collecting terms with the same exponent leads to 

2f, (7.18) ( )a, (ý)a2 (, )a3 
d 

M0L9T o 

t 

where ,ý and a are called the -terms and are dimensionless. Therefore, the 2f 

relationship between the )r -terms and the associated parameters take the form 

F(; I,, 
. 
f) 

.f(M)ý, 
ca) (7.19) 

2f 

where F and f are functions. 

According to the concept of similitude (or similarity), the values of these T-terms 

should be equal to each other between the model and the full size system, i. e., 

Isms 17FMF (7.20) 
is fs tFJF 

ýs 
-_ 

(7.21) 

cysts = WFtF 
(7.22) 
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From the last three equations, one obtains 

(7.23) 

ýý =1 (7.24) 

ýwýý =1 (7.25) 

where the subscripts "s" and "F" denote "scale" and "full-size", respectively. 
An, 2, Am ,Af are the scaling factors for the generalized displacement, damping, 

mass and force, respectively, while 2 and A, are those for the natural frequency 

and time, respectively, i. e., 

A 
.7- 

ý%s 177F (7.2 1) 

A4 = ýs 14 (7.27) 

Am = ms IMF (7.28) 

Af =A/. fF (7.29) 

Ws /O)F (7.30) 

/Z1 = is/tF (7.31) 

It is important to mention that solving Equations (7.7)-(7.10) in different ways may 

give different ir -terms, but the scaling laws derived will agree with Equations 

(7.23)-(7.25). 

Equations (7.23)-(7.25) are the scaling laws for the dynamic problem of the mobile 

crane. For the ithmode, Equations (7.23)-(7.25) can be re-stated as 

Aiqýim = 222 
(7.32) 

(7.33) 

Al A, _1 
(7.34) 

where 
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Ai. 
7 

= lis h 7i, 

(7.35) 
Aid _ is 

1 ýiF 
(7.36) 

? 
im = mils l 

miiF 
(7.37) 

Aif 
. 
fs/fiF 

(7.38) 
Ai 

rrw 
= 0)is /F 

(7.39) 

For a scaled system vibrating in its ih mode, Equation (7.2) takes the form 

d2 
m 

)7`s 
+ 2m«.. 

Sci. 
d q'S 

+m oV2 t �s dt2 
AS 

ýS dt «s , STS = . 
fu (7.40) 

SS 

Substituting Equations (7.31) and (7.35)-(7.39) into Equation (7.40) gives 

d2(i___ d(Ai, 
717iF) (AimmiiF) 

d(AttF)2 
+ 2( /ýimmiiF)ýýiý F)ýýiaýýiF) d(Zt ) (7.41) ) 

+ (2immiiF)(AiwWiF)2(Aiq, r7iF) = Aij�iF(t) 

Rearranging Equation (7.41) leads to 

ýimýiý d 2%%"F 
ýAim 

ýirý 
ý eF 

212 
)miiF 

dt2 
-i- 

ý 
ýim ýý1 

) 2%ý1iiF7iFWiF 
ddtF 

(7.42) 
F 

Wi2 FQ7iF)= 1'ifJiF(1) +('imýinýýiq)miiF 

Dividing Equation (7.42) through by 4; f gives 

Äim Äif ÄiaýÄi 
q)2miiF 

7i 
ýFwiFd 

IzF 

ý2ýrf 
)mrrF +( 

dtv 2f dtF 

(7.43) 
Ä. 2 Ä. 

+ miiFWiF(ýiF) = 
. /iF(t 

rf 

If the scaling laws, as shown in Equations (7.32)-(7.34), are correct then the 

following conditions must be satisfied. 

AimAI 

_ 

AimAiý 
iwAi 

_AA 

Aiq 

_1 
4f At Aij ýif 

(7.44) 
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It can be found that Equation (7.44) agrees with the scaling law in Equation (7.32). 
It is evident that several combinations of A,, 

7, 
A, ý, A,., Aim, A, and Auf can be obtained 

from Equation (7.44). By referring to Equations (7.32)-(7.34) and (7.44), one of the 
possible combinations is 

Ain =Al 

A =A? n 

7.2.2 Implementation and Validation 

(7.45) 

For validation two portal frames are discussed here. Figure 7.2(a) shows a uniform 

portal frame composed of 13 nodes and 12 beam elements, in which the length of 

each beam element is 0.6 m, and the cross section of the beam is 1 cm x1 cm. The 

material is steel with density p= 7820 kg/mj and modulus of elasticity E= 206.8 x 

109 N/m2. For convenience, it is called Frame 1 in this section. Figure 7.2(b) shows 

another portal frame called Frame 10, for which the material constants are exactly 

the same as those of Frame 1, the only difference is that the size of Frame 10 is 10 

times that of Frame 1, that is the length of each beam element is 6m and cross 

section of the beam is 10 cm x 10 cm. 

If length is the key parameter for the scaling, then the scaling factor for the i' mode 

generalized displacement should be ö, i. e., 

Ail = 

10 

Substituting Equation (7.46) into (7.45), one obtains 

(7.46) 
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FFramel $"'l ýFrameit) 
=I X sin( 1QX t) N 

tpr.. 
w =1S 

VFPramd 
constant 

1 
e, N 

Sal tion tim 1 Frame! =5S 

Damping ratio 4Framel = 0.001 

6m 

(a) 
F'Framel 

o sin( SýFramelot) 
= 100x sin( 1x t) N 

tF., 
md 0 =10 s 

V= constant ' Framd 0ý 

Simulation tine TF, 
pme, o = 50 s 

Damping ratio 4ramel0 0.001 

60 m 

(b) 
Figure 7.2 Two steel portal frames with modal scale ratio A. 

7= 
1/10: (a) Frame 1; 

(b) Frame 10. 

_1 
Ai 

l- 10 

2 _I -10 
2; 

w =10 
Aim - 1-000 

ýl - 100 

(7.47) 

From Equation (7.47), it is seen that if the modal displacement of Frame 1 is ö of 

Frame 10 (i. e., A;, _ ,ö), then the scaling factors for time (A, ), natural frequency 

modal mass (Aim ), damping ratio (2,, ) and generalized force (. ) are equal to 

ö, 10, ,I and 100 , respectively. Table 7.1 and Table 7.2, respectively, show the 
1000 

first five calculated natural frequencies and the modal masses of Frame 1 and Frame 

150 



10. By referring to the 4t' column of Table 7.1 and Table 7.2, one may see that the 
average value of the scaling factors for natural frequencies and modal masses are 
9.999729 and 0.00080, respectively, i. e., 
Aiw 

- WiFramel l »iFramelO = 9.999729 10 
(7.48) 

Ilim - miiFramel /miiFramel0 
= 0.00080 = (0.093)3 : 0.1)3 

(7.49) 

N i d M 
Natural Frequency w; (Hz) Scaling factor o, o e Frame 1 (WjF, 

ame, 
) Frame 10 (W, Framelo) '?; Q, =W TWNeI 

/cv, 
Frame'o 

1 1.0330 0.1033 10.00000 
2 1.3448 0.1345 9.998513 
3 2.9939 0.2994 9.999666 
4 3.1372 0.3137 10.00064 
5 5.8189 0.5819 9.999828 

__Average -------- -------- 9.999729 

Table 7.1 First five calculated natural frequencies of Frame 1 and Frame 10. 

Generalized Mass (kg) Scaling factor 
Mode No, i Frame 1 (m;, Frame, ) Frame 10 (m;, Framel0 ) Aim = m;; F, amel 

/m;; 
F, nmeio 

1 2.16028 2160.28 0.00100= (0.100)3 
2 1.93906 1939.06 0.00100= (0.100)3 
3 1.99171 2545.16 0.00078=(0.092)3 

4 2.01048 2672.53 0.00075= (0.09 1)3 

5 1.22976 2807.09 0.00044= (0.076)3 

Average -------- -------- 0.00080= (0.093)' 

Table 7.2 First five calculated modal masses of Frame 1 and Frame 10. 

It can be seen that Equations (7.48) and (7.49) agree with Equation (7.47). To 

validate the scaling factors for time, damping ratio, and generalized force, two 

examples are discussed, and the parameters are shown in Table 7.3. 

In the case of Example 1 (see Figure 7.2(a) and the 2"d column of Table 7.3), a 

vertical concentrated force FFrame, sin(1 F, nme, t) =1 x sin(10 x t) N starts from node 1 

and travels to node 11 of Frame 1 in tFramel =1 s with constant velocity. The total 

simulation time is TF, 
nme, =5s and the damping ratio is ýF, ., =4.001. Where the 

simulation time represents the total time during which the dynamic response of the 

portal frame is calculated, as shown in Figures 7.3 and 7.4. For Example 1 the portal 
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frame is subjected to forced vibration when the concentrated moving force runs over 
it during the first one second, after that the portal frame performs free vibration 
during the remaining 4 s, so the total simulation time is 5 s. 

For Example 2 (see Figure 7.2(b) and the 4th column of Table 7.3), a vertical 
concentrated force FFramel0 sin(Q 

FrametOt) = (FFramel 12, ) sin((QF, a. rI 
100 x sin(1 x t) N starts from node 1 and travels to node 11 of Frame 10 in 
tFramelO - 

tFramel /A, =10s, with constant velocity. The total simulation time is 

TFramelo = TFrameIIAr = 50 s and the damping ratio is Frame, o = Frame]/2; 9' = 0.001. 

It is found that one cannot find the scaling factor of angular velocity, 4, from 

Equation (7.47), but one may obtain it from the reciprocal of the scaling factor of 

time, i. e., 

1 (7.50) 
lit /i 

Substituting Equation (7.46) into Equation (7.50) yields, 

(7.51) I 

=10 yo 
which is the scaling factor for the angular velocity in the current case. 

Example 1 Example 2 
Parameters (for Frame 1) 

Scaling factors for Frame 10 

AuftO 
(see Equation (7.47)) 

FFromel0 

Force 

Sln(ýFramelOt ) 

FFramel Sln(ýFramelt) 
An = 1/A - 10 = (ý'Fromej/ýf )sin((ýFýiýý)t) 

( 
=1 x sin(l Ox t) (see Equations (7.50) = 100 x sin(l x t) 

and (7.51)) 

tFramel A-t FramelO =t Fromel 
l= 10 

11 

Time (s) t 10 
T_5 (see Equation (7.47)) TF� lo = TFmmeI ý'1º = 50 

Frnmel 

A. ý =1 ýF�v, ýlo = Framel%'ý; = 0.001 Damping ýFramel . 0.001 
ratio see Equation 7.47 

Table 7.3 Scaling factors for force, time and damping ratio between Frame 1 and 

Frame 10. 
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The time history of the vertical displacements of node 6 for Frame 1 is shown in 
Figure 7.3 and the corresponding one for Frame 10 is shown in Figure 7.4. 

From Figures 7.3 and 7.4, it can be seen that the time (abscissa) ratio (A, ) between 

Figure 7.3 and Figure 7.4 is ;ý as is the vertical displacement (ordinate) ratio (. iq ). 

Therefore the scaling factor for the generalized displacement is . l; -7 = ýö . This agrees 

with Equation (7.47). From Equations (7.48) and (7.49), and the results from 

Example 1 and Example 2, it can be shown that all the scaling factors in Equation 

(7.47) are satisfactory. Therefore it is believed that the scaling factors in Equation 

(7.47) do provide useful dynamic similarity between Frame 1 and Frame 10. In other 

words the assumed scaling factors in Equation (7.45) should be viable for a multi- 

degree-of-freedom damped structural system and are used for further structural 

analysis in this research. 
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N 
U 
N 

N 

0 
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"20.00 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 

Time (sec) 
". V 

Figure 7.3 Time history for the vertical displacements of node 6 of Frame 1 
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Figure 7.4 Time history for the vertical displacements of node 6 of Frame 10. 

7.3 Finite Element Model of the Full-Size Crane 

Because the free vibration data for a full-size crane is not available a finite element 
model of a full-size crane has been established to determine the natural frequencies 

and mode shapes of the full-size crane. The finite element model, together with the 

global co-ordinate system for the full-size crane, is shown in Figure 7.5. The digits in 

the small circles denote the numberings of the nodes. The co-ordinates for all the 168 

nodes of the finite element model are listed in Appendix 2. The cross sections of all 

the beam elements are shown in Figures 7.6(a), (b) and (c). 

For convenience the nodes and the cross sections of the requisite linearly tapered 

non-uniform beam elements are listed in Table 7.4. The cross sections of these non- 

uniform beam elements are represented by those located at the two ends of each non- 

uniform beam element, as one may see from Table 7.4 and Figure 7.6(c). All the 

other beam elements, except those shown in Table 7.4, are with uniform cross 
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sections. All the beam elements are made of steel with mass density p= 7820 kg/m3 

and modulus of elasticity E= 206.8x 109 N/m2. It is noted that in the finite element 

analysis each non-uniform beam element is usually replaced by an equivalent 

uniform beam element with sectional properties (such as sectional area, 2"d moment 

of inertia... ) which are equal to the corresponding average values of the non-uniform 
beam element. 

An orthographic view of the finite element model of the full-size crane is shown in 

Figure 7.7. The whole model consists of 182 elements and 168 nodes. Since 

information on the equivalent stiffness of the tyres and the suspension systems for 

the full-size crane, k, has not been forthcoming, it has been reasonably assumed that 

k=4 KN/mm. 
0 GS GG GS GO 00 GO GO GG 00 00 GO GO GG GOO 

the nodes. 
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Figure 7.5 Finite element model and a global co-ordinate system for the 

full-size crane. The digits in small circles represent the numbering of 
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Figure 7.6(a) Cross section of each beam element of the finite element model of the 

full-size crane. CSO 1-CS23 are the numberings of the cross sections. 
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Figure 7.6(b) (Continued) 
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14 

4º 

CS03 CS03 CS03 CS03 CS03 CS03 CS03 CS03 CS03 CS03 CS03 CS03 CS03 ß03 C303 

65 CS04 81 CS04 97 CS04 113 
CS05 

82 CS05 9a CS05 114 
CS05 

67 CS06 83 CS06 99 CS06 115 
CS06 68 CS23 84 CS23 loo CS23 116 

69 CS07 as CS07 101 CS07 117 
a23 
CS07 

1 70 CS08 86 CS08 loz CS08 Ila 
CS08 

80 
CSO4 

CS09 
CS18 

65 
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CS09 
130 
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Figure 7.6(c) (Continued) The numbers in circles are the location numberings of the 

nodes. 
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Element 
No. 

Node 
No. 

Section 
No. 

Element 
No. 

Node 
No. 

Section 
No 

65 CSO4 66 . CS05 1 66 CS05 2 
67 CS06 

67 CS06 68 CS23 3 68 CS23 4 
69 CS07 

69 CS07 70 CS08 5 6 70 CS08 71 CS09 
71 CS09 72 CS 10 7 72 CS 10 8 

73 CS 11 
73 CS 11 74 CS 12 9 
74 CS 12 10 

75 CS 13 
75 CS 13 76 CS 14 11 76 CS 14 12 

77 CS 15 
77 CS 15 78 CS 16 13 78 CS 16 14 79 CS 17 
81 CSO4 82 CS05 

15 82 CS05 
16 

83 CS06 
83 CS06 84 CS23 

17 84 CS23 18 85 CS07 
85 CS07 86 CS08 

19 86 CS08 20 87 CS09 
87 CS09 88 CS 10 

21 
88 CS 10 

22 89 CS 11 
89 CS 11 90 CS 12 

23 
90 CS 12 

24 91 CS 13 
91 CS 13 92 CS 14 

25 92 CS 14 
26 93 CS 15 

93 CS 15 94 CS 16 
28 27 

94 CS 16 95 CS 17 

97 CSO4 30 
98 CS05 

29 98 CS05 99 CS06 

99 CS06 32 
100 CS23 

31 100 CS23 101 CS07 

101 CS07 34 
102 CS08 

33 102 CS08 103 CS09 
0 

103 CS09 36 
104 CS 1 

11 35 104 CS10 105 CS 
CS12 

105 CS 11 38 
106 

CS 13 37 106 CS 12 107 

Table 7.4(a) Nodes and cross sections of the non-uniform beam elements of the full- 

size crane, as shown in Figure 7.5. 
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107 CS 13 108 39 108 CS14 40 
109 

CS 14 
CS15 

109 CS15 110 CS1 41 110 CS16 42 
111 

6 
CS17 

113 CSO4 114 CS05 43 114 CS05 44 
115 CS06 

115 CS06 116 CS23 45 116 CS23 46 
117 CS07 

117 CS07 118 CS08 47 48 118 CSOB 119 CS09 
119 CSO9 120 CS 10 49 120 CS1o 50 

121 Cs11 
121 CS 11 122 CS 12 51 122 CS12 52 

123 CS13 
123 CS 13 124 CS 14 53 
124 CS 14 54 

125 CS 15 
125 CS 15 126 CS 16 55 
126 CS 16 

56 
127 CS 17 

Table 7.4(b) (Continued) 

Figure 7.7 An orthographic view of the finite element model of the full-size crane. 
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107 CS 13 108 C 39 
108 CS 14 40 

1 0 9 
S1 

15 C 
109 CS 15 110 1 1 0 C CS 16 41 110 CS16 42 

111 CS17 
113 CSO4 114 CS05 43 114 CS05 44 

115 CS06 
115 CS06 116 CS23 45 46 116 CS23 117 CS07 
117 CS07 118 CS08 47 48 118 CS08 119 CS09 
119 CS09 120 CSI 0 49 
120 CS10 50 

121 CS11 
121 CS 11 122 CS 12 51 122 CS12 52 

123 CS13 
123 CS 13 124 CS 14 53 
124 CS14 54 

125 CS15 
125 CS 15 126 CS16 55 126 CS 16 

56 
127 CS 17 

Table 7.4(b) (Continued) 

Figure 7.7 An orthographic view of the finite element model of the full-size crane. 
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7.4 A 1/10 Scale Finite Element Model of the Full-Size Crane 

7.4.1 Determination of the Scaling Factor for the Spring Element Stiffness 

In order to modify the 1/10 scale crane rig a 1/10 scale finite element model ufthe 
full-size crane is discussed in this section. The numberings of the node' and the cro» 

sections for the scale finite element model are exactly the same as those for the full- 

size crane, as described in section 7.3. The only difference is that the size of the : c: lle 
finite element model is 1/10 of that of the full-size crane. Naturally, the stiffness of 

the spring element must also be properly scaled. Since the scaling factor for the 

stiffness of the spring element, 2, k , is not explicitly included in the scalings 

appearing in Equation (7.45), its value is determined as follows: 

Since it can be stated that 

k; =M iiw,. 
2 

then one can write 

12 (7.5 ýik 
=timA; 

W 
='3,7 ( 

Aiq 
)= Ai 

11 

7.4.2 Validation of the 1/10 Scale Finite Element Model 

Again, using length as the key parameter for the scale model, the generalized 

displacement of the 1/10 scale crane model must be 1/10 of that of the full-sire 

crane, i. e., 

10 

Substituting Equation (7.53) into Equations (7.45) and (7.52). one obtain, 

(_ ``) 
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__ 
1 tin 

10 

_ /it -l0 

Aw 10 
Am 

1000 (7.54) 

/II 100 

and 

Ak_1 
10 (7.55) 

Referring to Equation (7.55), the stiffness of each spring element in the 1/10 scale 
finite element model is 

kis = k, FAIk = (4 KN/mm) x1=0.4 KN/mm 
10 (7.56) 

where k represents the stiffness of the spring element and the subscripts "s" and "F" 
denote the scale model and full-size crane, respectively. 

Tables 7.5 and 7.6 respectively show the first five natural frequencies and 
generalized masses of the full-size finite element model and the 1/10 scale finite 

element model. Based on the 4th columns of Tables 7.5 and 7.6, the following 
expressions are obtained 

AM = Avis/wiF = 9.988955 z 10 
Aim 

= mils /miiF 
= 0.1035)3 

~_ 
(0.1) 3 

(7.57) 

(7.58) 

Natural Frequencies w (Hz) 
Mode 
No, i Full-size finite 

element model (W, F) 

1/10 scale finite 
element model (w,, ) 

A, 
d = wis /m, F 

1 0.3508 3.5160 10.02281 
2 0.7021 7.0226 10.00228 
3 

M 

0.9122 9.0479 9.918768 
4 1.2277 12.2875 10.00855 
5 1.6518 16.5054 9.992372 

Average -------- -------- 
9.988955 

Table 7.5 First five natural frequencies for the full-size and the 1/10 scale finite 

element models. 
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Generalize d Mass k 
M 
No, i 

ode Full-size finite element 
model (m; IF) 

1/10 scale finite element 
model (m; ) M=mm 

1 

2 

110610 

153602 
110.072 

152.725 
0.000995= (0.0998)' 
0.000994= (0.0998)' 

3 147381 138.210 0.000938=(0.0978)' 
4 165320 264.844 0.001602= (0.1170)' 
5 265061 267.216 0.001008=(0.1003 

Average -------- -------- 0.001107= (0.1035)' 

Table 7.6 First five generalized masses for the full-size and the 1/10 scale finite 

element models. 

Parameters 1/10 scale finite 
Scaling factor Full-size finite element 

element model model 
All=100 

FS cos(SZst) (see Equation (7.54)) FF COS(SciFt) 

Force (1V) = 2940 x cos(10 x t) * A. =1/As = 10 = (FJ/. 1; f)cos((s2, 
(see Equations (7.50) = 294000 x cos(1 x t) 
and (7.5 1)) 

Time (s) Ts =1 
At _ 10 TF = TJ A= 10 
(see Equation (7.54)) 

Damping ý=0.001 
s 

lj'ý 1 
F 

0.001 
ratio (see Equation 7.54 

* The scaling factor for angular velocity is given uy nquauuil . 1. jvj. 

Table 7.7 Scaling factors for generalized force, time, and damping ratio, for the 1/10 

scale and the full-size finite element models. 

In order to apply the scaling factors for force, time, and damping ratio in Equation 

(7.54) to the dynamic analysis of a mobile crane an example for predicting the 

dynamic behaviour of the crane structure subjected to two exciting forces (due to the 

unbalance of hoisting) is discussed. 

For the 1/10 scale finite element model (see Figure 7.8(a) and the 2n° column of 

Table 7.7), the magnitude of each external force is F, cos(S2tt) = 2940 X cos(10 x 1) N. 

the acting points are nodes 15 and 47, the total simulation time is T, =Is, and the 

damping ratio is 0.001. For the full-size finite element model (see Figure 7.8(b) 

163 



and the 4t' column of Table 7.7), all the required data are the same as those for the 
1/10 scale model, except that the magnitude of each external force is FF cos(i2 = 
(Ff 1 A2 f) cos((n, /AQ )t) = 294000 x cos(1 x t) N, and the total simulation time is 
TF = Ts /A, =10 s. 

1/10 scale crane mo .l 
Node 39 dmý WL. -. - Node 47 

ri 

Node 15 

Container 

M -A- in 

(a) (b) 

Nock 4- 

Figure 7.8 Simulation of container hoisting on (a) 1/10 scale, and (b) full-size finite 

element models. 

Figure 7.9 shows the time history of the vertical displacements of node 39 of the 1/10 

scale finite element model, and Figure 7.10 shows the same for the full-size model. It 

is seen that the time ratio (A, ) shown between the abscissas of Figures 7.9 and 7.10 

is Tö as is the ratio between the displacement ratio (. Z,, ) between the ordinates of 

Figures 7.9 and 7.10. This is a logical result, agreeing as it does with Equation (7.53). 

From Equations (7.57) and (7.58), and the results of the previous example, it is seen 

that the scaling factors in Equations (7.44) and (7.45) are satisfactory for the dynamic 

analysis of the mobile crane. Therefore, the 1/10 scale finite element model for the 

full-size crane, as established in this section, is used for further discussion in the next 

section. For convenience, the scale crane model in which the spring elements arc 

neglected is called, hereafter, the adapted 1/10 scale finite element model (see Figure 

7.11). 
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Figure 7.9 Time history of the vertical displacements of node 39 of the 1 '10 scale 
finite element model. 
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Figure 7.10 Time history of the vertical displacements of node 39 of the full-sire 

finite element model. 
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Figure 7.11 Orthographic view of the adapted 1/10 scale finite element nmodel. 

7.5 Structural Modifications 

The purpose of this section is to modify the structure of the original 1 10 scale crane 
model (see Figure 7.12(a)) so that the dynamic behaviour of the full-size crane can 
be correctly simulated. To this end one may start by comparing the natural 
frequencies of the modified 1/10 scale finite element models (see Figures 7.12(b)- 

(d)) with those of the adapted 1/10 scale finite element model (established in section 
7.4, neglecting the spring elements). The 2nd and 3r`ß columns of Table 7.8, 

respectively, show the first five natural frequencies of the adapted 1/10 scale finite 

element model and those of the original 1/10 scale crane model, as shown in Figure 

7.12(a). It is seen that the corresponding natural frequencies for the last two models 

are very different. Therefore, some structural members of the original 1/10 scale 

crane model must be removed in order to make the natural frequencies of the I S' and 

2nd modified models (see Figures 7.12(b) and (c)) closer to those of the adapted 1/10 

scale finite element model. The 4`h column and 5`h column, respectively, show the 

first five natural frequencies of the ist and 2n`' modified finite element models. It is 

seen that the natural frequencies for the last two modified finite element models are 

still far from the corresponding values for the adapted 1/10 scale finite clement 

model. Because the physical configurations of the original 1 10 scale finite element 

model (see Figure 7.12(a)) and the I" and 2nd modified finite element models We 
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Figures 7.12(b) and (c)) are quite different from the physical configuration of the 
actual mobile crane (see Figure7.1) it has been decided to use the actual geometry of 
the crane as the basis of a 3rd modified finite element model (see Figure 7.12(d)). 

However, the first five natural frequencies of this 3rd modified finite element model, 

as shown in Figure 7.12(d), are still quite different from those of the adapted 1 10 

scale finite element model, as one may see from 2nd and 6 ̀h columns of Table 7.8. 

From the foregoing discussions it is proposed that the original 1/10 scale crane model 

(see Figure 7.12(a)) is not a wholly suitable test rig for simulating the dynamical 

behaviour of a full-size crane, and cannot, therefore, correctly predict the dynamic 

characteristics of a full-size crane. 

" ', ý`. ý 
ýý 

t" 'ý 

"ý ý ýr 
. ýý 

ý Vý . ý_ 

/^ ' /'ý 

(a) 

(c) 

(b) 

/: / 
(d) 

finite element model for: (a) the original rig; (b) the Is' 
Figure 7.12 1/10 scale 

modified rig with the beam elements between nodes 1 and 18,18 and 11.6 and 

having been removed (see Figure 4.1); (c) the 2n`' modified ng 
24,24 and 16, g' 

. ý, 24 and 6 and .. 
with the beam elements between nodes 1 and 18,18 and 11, 

18 and 19,19 and 56,56 and 21,21 and 69,69 and 23,23 and 
16,17 and 18, 

24, and 24 and 25, having been removed (see Figure 4.1); (d) the 3'dmýificd 

rig whose configuration is similar to an actual full-size crane. 
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Table 7.8 First five natural frequencies for the adapted 1/10 scale finite element 
model, the original 1/10 scale model and the three modified models. 

To improve on the limitations of the foregoing finite element models a new scale 

crane model is now proposed. The finite element model together with the global co- 

ordinate system for the stationary framework of the new scale crane model is shown 

in Figure 7.13. The digits in the small circles denote the numbering of the nodes. The 

co-ordinates of all the 36 nodes are listed in Table 7.9. The cross section of all the 

beam elements are shown in Figures 7.14(a)-(i) and and Table 7.10. It is noted that 

the beam elements between nodes 3 and 4,4 and 5,12 and 11,11 and 10,26 and 25, 

25 and 24,17 and 18,18 and 19, are linearly tapered, non-uniform, beam elements. 

Thus, the cross sections of these non-uniform beam elements are represented by 

those located at the two ends of each non-uniform beam element. 

All the beam elements are made of steel, with mass density p= 7820 kg/m3 and 

modulus of elasticity E= 206.8x 109 N/m2. The first five natural frequencies of this 

new scale crane model (with spring element stiffness, k= 400 N/mm) are listed in the 

P column of Table 7.11. It can be seen that the natural frequencies of this new scale 

crane model are very close to the corresponding ones of the adapted 1/10 scale finite 

element model when equipped with linear springs at the ground nodes as shown in 

Figure 7.15. Once the new scale crane model is re-built it is suggested that one may 

correctly simulate the dynamic behaviour of the full-size crane using the scaling laws 

derived in section 7.3. 
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C 

Figure 7.13 Finite element model and global co-ordinate system for the nc%% 
stationary framework of the scale crane rig. The digits in circles 
represent the numberings of the nodes. 

Node 
No. X Y Z 

Node 
No. X y z 

1 0 0 -71.2 2 0 0 -68.6 3 0 0 -66.8 4 0 0 -14.3 
5 0 0 -5 6 0 0 0 
7 5.651395 0 0 8 73.556625 0 0 
9 79.2 0 0 10 79.2 0 -5 
11 79.2 0 -14.3 12 79.2 0 -66.8 
13 79.2 0 -68.6 14 79.2 0 -71.2 
15 0 27.2 -71.2 16 0 27.2 -68.6 
17 0 27.2 -66.8 18 0 27.2 -14.3 
19 0 27.2 -5 20 0 27.2 0 
21 5.651395 27.2 0 22 73.556625 27.2 0 

23 79.2 27.2 0 24 79.2 27.2 -5 
25 79.2 27.2 -14.3 26 79.2 27.2 -66.8 
27 79.2 27.2 -68.6 28 79.2 27.2 -71.2 
29 0 -42 5 -71.2 30 0 1.33125 -71.2 
31 
33 

0 
79.2 

. 25.86875 

-4.25 
-71.2 
-71.2 

32 
34 

0 
79.2 

31.45 
1.33125 

-71.2 
-71.2 
7 2 35 79.2 25.86875 -71.2 36 , 9.2 1. 31.45 - 

11 _t -r AL- .. w.. 

Fable 7.9 Global co-ordinate for each node of the unite eiemenI Inw%;, vI %"- ""- 

stationary framework of the scale crane rig (unit: inch). 
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Figure 7.14 Cross sections of all the beam elements of Figure 7.13, with numberings 

of nodes and beam elements shown in Table 7.10, (unit: inch). 

Element 
No. 

Node 
No. 

Cross Sections, 
Figure 7.14 

Element 
No. 

Node 
No. 

Cross sections 
Figure 7.14 

1 
37 

g 
1 

(h) 38 
2 

5 
(h) 

3 (d) 4 i 
3 

4 i) 
4 

5 (c) 
10 (c) 11 i 

10 
11 i) 

11 
12 (d) 

17 (d) 18 i 
16 

18 i 
17 

19 (c) 
24 (c) 25 i 23 
25 i) 

24 
26 (d) 

* The beam elements between nodes 3 and 4,4 and 5,10 and 11,11 and 12,17 and 
18,18 and 19,24 and 25,25 and 26, are linearly tapered non-uniform beam 
elements. 

Table 7.10 Nodes and cross sections of all the beam elements of the stationary 
framework of the new scale crane model shown in Figure 7.13 

15 

(b) (c) 

-01 33 

10 

ff]- 

5v 
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S 

l) 4 
1075 

4 986 
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Element Node Cross Sections, Element No. No. Figure 7.14 No 
Node Cross sections 

6 . No. Fi e 7.14 
6 1 7 27 

8 29 
8 

9 28 1 
(a) 30 

19 20 
15 30 
31 

21 22 
15 

2 3 31 
32 

7 7 (1) 14 
8 32 

21 (b) 33 
20 14 

22 33 
34 

5 5 28 35 6 35 
9 9 28 36 10 36 (c) 
18 19 

29 9 20 31 
22 23 34 (g) 

34 24 35 
1 1 15 14 2 16 

2 2 16 1 5 3 17 
12 (e) (e) 

12 26 25 13 27 

13 13 27 26 14 28 
Table 7.10 (Continued) 

Natural Frequencies (Hz) 
: ode Adapted 1/10 scale finite Finite element model of the new Difference vo element model equipped with stationary framework equipped percentage 1. springs of k= 400 N/mm, with springs of k= 400 N/mm, % Figure 7.11 equipped with springs Figure 7.15 

3.5160 3.5140 0.0569 
2 7.0226 7.0097 0.1837 
3 9.0479 8.5944 5.0122 
4 12.2875 12.2879 0.0033 
5 16.5054 16.4836 0.1321 
cbrage --------- --------- 1.0776 

e 7.11 A comparison between the first five natural frequencies of the adapter A comparison between the first five natural frequencies of the adapted 

1/10 scale finite element model, when equipped with springs of k= 400 

N/mm, and the finite element model of the new stationary framework of 

the scale crane rig (as shown in Figure 7.15). 
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Figure 7.15 Orthographic view of the new scale crane model for the laboratory. 

7.6 Conclusions 

To illustrate the feasibility of the theory introduced, and the approach presented, a 

mobile crane structure has been represented as a multi-degree-of-freedom, damped, 

structural system. The scaling laws between the 1/10 scale crane model and a full- 

size crane were then obtained by means of dimensional analysis based on the 

Buckingham Ir theorem, and subsequently validated by means of a finite element 

model of the portal frames. 

To get information on the free vibration characteristics of the system, a finite clement 

model of a full-size crane is used to determine its natural frequencies. A I/10 scale 
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finite element model of the full-size crane is then established based on similitude 

geometry. This scale finite element model has been validated by using the scaling 
laws. 

After comparing the natural frequencies and mode shapes of the original 1/10 scale 

finite element model with the corresponding ones for the adapted 1/10 scale finite 

element model for the actual full-size crane, it was found that the original 1/10 scale 

crane model cannot correctly simulate the dynamic behaviour of the actual full-size 

crane. Therefore a new stationary framework for the 1/10 scale crane model has been 

proposed in this chapter. Once the new 1/10 scale crane model is built then the 

dynamic behaviour of a full-size crane can be predicted by applying the scaling laws. 
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Chapter 8 Conclusions and Recommendations for Future 
Work 

8.1 Conclusions 

This thesis deals with the dynamic behaviour and automation of Container 
management of a RTG crane. The contributions of this research are summarized as 
follows from the practical, theoretical and experimental aspect: 

8.1.1 Practical Results 

"A preliminary speed-and-position control system for the experimental crane rig 
has been developed using a Graphical User Interface. By the use of the mouse one 

may easily and accurately control the movements of the trolley and the spreader 

on the experimental crane model. In addition, data regarding the instantaneous 

positions of the trolley and the spreader are shown on a computer screen during 

the motions of the trolley and the spreader. This makes this speed-and-position 

control system practically useful as a training aid. 

" By incorporating the automatic container management algorithm (see section 2.5) 

and the speed-and-position control system, an automatic container management 

system is developed. Although this automatic container management system has 

only been used with the experimental crane model so far; it could also be applied 

to an actual crane system in the field. 

"A new, modified, image-searching algorithm for calculating the real positions and 

orientations of the spreader has been presented to improve the performance of' the 

IPSA (Improved Partial Search Algorithm) presented by Huang [A']. This enables 

higher accuracy to be achieved. 

8.1.2 Theoretical Results 

" An approach for calculating the magnitudes and positions of the equivalent 

contacting forces between two subsystems has been developed. The whole crane 

structure was divided into two parts: the stationary framework and the moving 
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substructure. The dynamic behaviour of the stationary framework induced by the 
moving substructure has been determined by calculating the forced vibration 
response of the stationary framework due to the time-dependent moving 
contacting forces. 

"A general technique for using a standard finite element package to calculate the 
dynamic response of structures to time-dependent moving forces has been 
developed. A computer program has been written to calculate the time-dependent 
external nodal forces on the whole structure in the case when the equivalent 
contact forces (induced by the moving substructure) move around the structure. 
This work was performed using the I-DEAS finite element package which is very 
accommodating because of its support of the ASCII universal file system. Since 

many other packages have similar features the technique developed has potential 
for more general application. 

" In order to consider the inertia effects of the moving loads, a new concept of 

equivalent time-dependent moving lumped masses has been presented. This 

methodology has been based on replacing the moving substructure with four 

equivalent time-dependent, moving, lumped masses. The dynamic behaviour of 

the stationary framework induced by the two-dimensional motion of the trolley 

has been shown to be predicted by computing the forced vibration response of the 

stationary framework subjected to the four equivalent time-dependent moving 

lumped masses. 

"A general analytical procedure has also been developed to allow the standard finite 

element analyses to be extended to deal with the dynamic problems of a three- 

dimensional structure on which masses move in two dimensions. This technique 

has been validated by comparison with earlier work on beams and by use of 

experimental results from the mobile crane. Satisfactory agreements have been 

achieved. 

" Scaling laws for dynamic similarity between full-size and scale-size multi-degree- 

of-freedom damped structural systems have been established and then validated 

using finite element models of portal frames. This was required for the simulation 
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of the dynamic behaviour of the prototype (the actual crane in this case) in the 
laboratory. 

8.1.3 Experimental Results 

"A procedure for checking the accuracy of the finite element modelling of a real 
structure by using modal testing has been presented. It was found that the validity 
of the rigid nodes (for the ground-fixed ends of a structure) in the finite element 
model is questionable, in addition the type of coupling between the load cell and 
the tested structure significantly altered the results of the modal testing. 

8.2 Recommendations for Further Work 

" In the case of the container management system which has been presented within 
this thesis the visual sensing system for calculating the real positions and 

orientations of the spreader at any time instant, and the laser sensing system for 

adjusting the relative position between the spreader and the container are not 

currently integrated within it. To achieve high accuracy it is proposed that this is 

carried out. Figure 8.1 gives a sketch of the visual sensing system and laser 

sensing system. The actual positions and orientations of the spreader obtained 

from the visual sensing system could be used as the basis of high accuracy anti- 

sway control to which could be combined together with the speed-and-position 

control system. The laser sensing system could be used to adjust the relative 

position between the spreader and the container based on the algorithm proposed 

by Huang [2]. 

" In Chapter 4 the original finite element model is modified by introducing spring 

elements into the base of the legs of the stationary framework. It is assumed that 

the stiffness of the spring elements in all the six directions (i. e., translational and 

rotational degrees of freedom in x, y and z directions) is equal. Because 

satisfactory agreement between the natural frequencies obtained from the modified 

finite element model and the LMS modal testing system has been achieved, the use 

of different stiffnesses of the spring elements in the six directions has not been 

studied. It could be argued that the use of identical spring elements in all the si\ 
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directions may not perfectly reflect the actual situation, therefore further study of 
this issue is required. 

" The proposed new stationary framework for the experimental crane rig should be 
built and the ground stiffness for the new scale crane model should be re-measured 
by experiments. Once all the requirements for the new model are satisfied, the 

scaling laws derived in Chapter 7 could then be applied to simulate accurately- the 
dynamic behaviour of the full-size crane. 
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Appendix 1 Description of the Timer 

The function of the Timer is to repeat the procedures that will be perfornied in a 
specified time interval. In this appendix, the Timer is used toi repeatedly detect the 
instantaneous velocities of the moving rails, the trolley and the spreader during each 
time interval. 

A1.1 Basic Property of the Timer 

The Timer is one of the most practical controls [ 19] within the if indoi . 
programming environment. It only has a few properties, and those used most 
frequently are: 

1. Name: The identification of the Timer. 

2. Enabled: To confirm whether the Timer is set up to perfon n the specified 

procedures in each time interval. 

3. Interval: To determine the time interval (i. e., the number of milliseconds) for the 

Timer to repeat the specified procedures. For example, the Timer will 

detect the variations of the encoders (in this Appendix) 25 times per 

second if the value of Interval is equal to 40 milliseconds (i. e., 

' =25). 0.040 

A1.2 Hardware for the Velocity Detecting Unit 

For the speed-and-position control system as shown in Figure 2.4, four motors are 

used. Among which, Motor 1 and Motor 2 are used to control the longitudinal 

motion of the moving rails and the transverse motion of the trolley. respecuvel.., 

while Motor 3 and Motor 4, respectively, control the rotation and hoisting (or 

lowering) of the spreader. In addition, four encoders (Encoder I to Encoder 41 ar, 

respectively attached to the shafts of the four Motors (Motor 1 to \1otk -) ar. ý are 

connected to the interface card (CIO-CTR10) for exchanging information with the 

host computer. 
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A1.3 Expressions for Estimating the Velocities of the Trolley and the 
Spreader 

If S2 and Sl represent the positions of a moving object at times T, and T,, 
respectively, then its average velocity V is given by 

V=s2-s' 
T2 -TI 

(A1.1) 

In the experimental crane model, the motions of the moving rails and the trolley, or 
the rotation and the hoisting (or lowering) of the spreader, are achieved by the 

rotations of the associated motors. The rotations of the motors cause simultaneous 

variations in the associated encoders. At the same time, the Timer detects the 

variation of each encoder during each time interval and then shows the actual 

velocities of the moving rails, the trolley and the spreader on the screen. The 

relationships between the variations of the encoders and the velocities of the moving 

rails, the trolley and the spreader are given by 

Sx2 
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Sx1 

Tx2 
-Tx 1 

V 
Sy 

2- 
Sy 

l 
x 

Vy 
- 

Ty2 - Tyl 

VB Se2 
- 

St9l 

Vi T02 - Tel 

SP2 
- 

Sll 

T, 
2-T11 

EX2 - EXl 
TX2 -Tx I 

Eye - Ey, E= E, 2 _EI 1Ar 
7'y2 -Ty, TB2 -Tel T12 - Tii 'e 

lÄfi 
(A 1.2) 

where the subscripts x, y, B £, respectively, represent the longitudinal motion of the 

moving rails, the transverse motion of the trolley, the rotation of the spreader and the 

hoisting (or lowering) of the spreader; V, Y and V. represent the average velocity of the 

moving rails and the trolley, while VB and V, , respectively, denote the average 
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rotation and hoisting (or lowering) velocities of the spreader; S 1, SX:, SY5,.: Ser, S61, 

S11 and S¬2 represent the associated positions of the moving rails, the trolley and the 

spreader at times T i, T 2, Tyl, Tye Tel, Tom, T, j and T, 2, respectively; Ex,, E,, E,.,, 

E01, E82, E1 and E12 represent the readings of the encoders at time Ti,, Tz2, T,.,, T,.:, 

Tel, Tom, Tl j and Tee, respectively; finally . A, l,, 20 and At represent the scaling factors 

for transforming the variations of the encoders to the actual movements of the 

moving rails, the trolley and the spreader. These are obtained by experiments. 

Based on Equation (A1.2) one may obtain the velocity/time graphs for the moving 

rails, the trolley and the spreader. It is worthy of mention that calculations using 

Equation (A1.2) are made during each time interval of the Timer. In this appendix, 

the above-mentioned calculations are repeated 25 times per second. This means that 

the velocity/time graphs of the moving rails, the trolley and the spreader are 

refreshed 25 times per second on screen. (So one may see four animated curves on 

the screen. ) Figure Al. 1 shows the operating procedures for estimating the velocities 

of the moving rails, the trolley and the spreader, while Figure Al. 2 shows the 

graphical user interface to be used to show the time histories of the velocities for the 

moving rails, the trolley and the spreader. 
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Figure Al. IA flowchart of the computer program for measuring the velocities of the 

moving rails, the trolley and the spreader. 
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Figure A 1.2 Graphical user interface for the velocity detecting unit. 

187 



Appendix 2 Global Co-ordinates for each Node of the Finite 
Element Model of the Full-size Crane 

Unit: inch 
Node 
No. 

x y z 
Node 
No. X }' 

1 0 0 0 2 28.12875 0 0 
3 28.44125 0 0 4 56.51395 0 0 
5 56.82625 0 0 6 112.98375 0 0 
7 113.29625 0 0 8 169.55375 0 0 
9 169.86625 0 0 10 226.12375 0 0 
11 226.43625 0 0 12 282.69375 0 0 
13 283.00625 0 0 14 339.26375 0 0 
15 339.57625 0 0 16 395.83375 0 0 
17 396.14625 0 0 18 452.40375 0 0 
19 452.71625 0 0 20 508.97375 0 0 
21 509.28625 0 0 22 565.54375 0 0 
23 565.85625 0 0 24 622.42625 0 0 
25 622.73875 0 0 26 678.68375 0 0 
27 678.99625 0 0 28 735.25375 0 0 
29 735.56625 0 0 30 763.53875 0 0 
31 763.85125 0 0 32 792 0 0 
33 0 272 0 34 28.12875 272 0 
35 28.44125 272 0 36 56.51395 272 0 
37 56.82625 272 0 38 112.98375 272 0 
39 113.29625 272 0 40 169.55375 272 0 
41 169.86625 272 0 42 226.12375 272 0 

43 226.43625 272 0 44 282.69375 272 0 
45 283.00625 272 0 46 339.26375 272 0 

47 339.57625 272 0 48 395.83375 272 0 
49 396.14625 272 0 50 452.40375 272 0 

51 452.71625 272 0 52 508.97375 272 0 

53 509.28625 272 0 54 565.54375 272 0 

55 565.85625 272 0 56 622.42625 272 0 

57 622.73875 272 0 58 678.68375 272 0 

59 678.99625 272 0 60 735.25375 272 0 

61 735.56625 272 0 62 763.53875 272 0 

63 763.85125 272 0 64 792 272 0 
68 

65 0 0 -50 66 0 0 - 
43 

67 0 0 -118 68 0 0 -1 
218 

69 0 0 -168 70 0 0 - 
318 

71 0 0 -268 72 0 0 - 
418 

73 0 0 -368 74 0 0 - 
518 

75 0 0 -468 76 0 0 - 
-618 77 0 0 -568 78 0 0 
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79 u u -668 80 0 
81 0 272 -50 82 0 

0 -686 
83 0 272 -118 84 

272 -68 
85 0 272 -168 86 0 

272 -143 
87 
89 

0 
0 

272 
272 

-268 
-368 

88 
90 

0 
0 

272 
272 
272 

-218 
-318 
41 91 0 272 -468 92 0 272 - 8 
518 93 0 272 -568 94 0 272 

- 
618 95 0 272 -668 96 0 272 

- 
686 97 792 0 -50 98 792 0 

- 
-68 9 9 792 0 -118 100 792 0 -143 101 792 0 -168 102 792 0 -218 103 792 0 -268 104 792 p -318 105 792 0 -368 106 792 0 -418 107 792 0 -468 108 792 0 -518 109 792 0 -568 110 792 0 -618 111 792 0 -668 112 792 0 -686 113 792 272 -50 114 792 272 -68 115 792 272 -118 116 792 272 -143 117 792 272 -168 118 792 272 -218 119 792 272 -268 120 792 272 -318 121 792 272 -368 122 792 272 -418 123 792 272 -468 124 792 272 -518 125 792 272 -568 126 792 272 -618 127 792 272 -668 128 792 272 -686 129 0 -42.5 -712 130 0 0 -712 

131 0 13.3125 -712 132 0 13.6875 -712 133 0 48.3125 -712 134 0 48.6875 -712 
135 0 83.3125 -712 136 0 83.6875 -712 
137 0 118.3125 -712 138 0 118.6875 -712 
139 0 153.3125 -712 140 0 153.6875 -712 
141 0 188.3125 -712 142 0 188.6875 -712 
143 0 223.3125 -712 144 0 223.6875 -712 
145 0 258.3125 -712 146 0 258.6875 -712 
147 0 272 -712 148 0 314.5 -712 
149 792 -42.5 -712 150 792 0 -712 
151 792 13.3125 -712 152 792 13.6875 -712 
153 792 48.3125 -712 154 792 48.6875 -712 
155 792 83.3125 -712 156 792 83.6875 -712 
157 792 118.3125 -712 158 792 118.6875 -712 
159 792 153.3125 -712 160 792 153.6875 -712 
161 792 188.3125 -712 162 792 188.6875 -712 
163 792 223.3125 -712 164 792 223.6875 -712 
165 792 258.3125 -712 166 792 258.6875 -712 
167 792 272 -712 168 792 lj 

__l -712 

ýý? v; '. ýLß1't'1l 
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