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Summary 

 

 Candida species are commonly part of the normal flora in humans; 

however, they are opportunistic fungal pathogens that are capable of causing a 

variety of infections in hospitalized and immunocompromised individuals. 

These infections range from superficial to systemic ones. Many Candida 

infections involve biofilm formation on the surfaces of implanted devices, such 

as catheters and prostheses, or host tissues. Candida biofilms are resistant to a 

range of antifungal agents in current clinical use but the basis of this drug 

resistance is not clear. The aim of this project was to investigate possible 

resistance mechanisms using two fungicidal agents, amphotericin B and 

caspofungin, a new drug reported to have anti-biofilm activity. 

 The activity of amphotericin B and caspofungin at different development 

phases of Candida biofilms was investigated in vitro. Amphotericin B at two 

times the MIC (for planktonic culture) had the least effect on Candida biofilms, 

but at a higher concentration (five times the MIC) it showed relatively high 

activity against biofilms of C. parapsilosis and C. glabrata, especially at the 

late development phase. Biofilms of C. albicans were more resistant to 

amphotericin B throughout development (except for the earliest stage) than 

the other Candida species. Caspofungin, at two times the MIC, generally exhibited 

a greater effect on Candida biofilms than amphotericin B although this was not 

observed with C. parapsilosis biofilms in some development phases. 

Caspofungin, at five times the MIC, was slightly less effective than at the lower 

concentration against C. tropicalis in all development phases tested. The 

species most susceptible to caspofungin throughout biofilm development was C. 

glabrata. In no case were biofilm cells of any Candida species completely killed 

by either amphotericin B or caspofungin.  

 The penetration of caspofungin through biofilms of different Candida 

species was evaluated using an in vitro filter disc bioassay.  Caspofungin 

penetration through biofilms of C. albicans SC5314 was initially faster than C. 

albicans GDH2346; however, after 6 h drug diffusion was greater with biofilms 

of strain GDH2346 (70.8% of the control value). Among other Candida species 

tested, the highest drug penetration was observed with C. glabrata and C. 

parapsilosis (81.2% and 73.3% of the control value, respectively), while the 
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lowest was seen with biofilms of C. krusei. Biofilms of C. tropicalis also showed 

poor penetration. Exposure of biofilms of any Candida species to caspofungin 

(or amphotericin B) in this assay failed to result in complete killing of biofilm 

cells. However, evaluation of caspofungin activity against biofilms was 

complicated by the paradoxical phenomenon (reduced activity of the drug at 

high concentrations, above the minimum inhibitory concentration). Scanning 

electron microscopy revealed that caspofungin caused more structural damage 

to biofilm cells and matrix than did amphotericin B; the highest degree of 

damage due to caspofungin was observed in biofilms of C. glabrata and C. 

krusei.  

 The presence of a small number of drug-tolerant or persister cells is one 

possible mechanism of biofilm drug resistance. Biofilms and planktonic cells of 

five Candida species were surveyed for the presence of persister cell 

populations after exposure to amphotericin B. None of the planktonic cultures 

(exponential or stationary phase) contained persister cells. However, persisters 

were found in biofilms of one of two strains of C. albicans tested and in 

biofilms of C. krusei and C. parapsilosis, but not in biofilms of C. glabrata or C. 

tropicalis. Live-dead staining with fluorescein diacetate confirmed these 

results which do, however, suggest that persister cells cannot solely account 

for drug resistance in Candida biofilms. 

 If microorganisms exposed to antimicrobial agents undergo a type of 

programmed cell death or apoptosis, persisters could be variant in which this 

process has been disabled. Here, specific staining methods were used to 

investigate the existence of apoptosis in Candida biofilms subjected to 

different concentrations of amphotericin B. Caspase activity, indicative of 

apoptosis, was detected with SR-FLICA and D2R fluorochrome-based staining 

reagents in all of these biofilms. The general inhibitor of mammalian caspases, 

Z-VAD-FMK, when used at a low concentration (2.5 µM), increased the viability 

of drug-treated biofilms up to 11.5-fold (P<0.001%). Seven specific caspase 

inhibitors had different effects on C. albicans biofilm viability, but inhibitors of 

caspases-1, -9, -5, -3, and -2 all significantly increased cell survival (40-fold, 8-

fold, 3.5-fold, 1.9-fold and 1.7-fold, respectively). On the other hand, histone 

deacetylase (HDA) inhibitors enhanced the activity of amphotericin B against 

biofilms of all three Candida species. Sodium butyrate and sodium valproate, 

for example, when added concurrently with amphotericin B, completely 
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eliminated biofilm populations of C. albicans. Overall, these results 

demonstrate an apoptotic process in amphotericin-treated biofilms of three 

Candida species. They also indicate that HDA inhibitors can enhance the action 

of the drug and in some cases even eradicate persister subpopulations, 

suggesting that histone acetylation might activate apoptosis in these cells.  
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1 Candida 

1.1  Background 

 Candida species are yeasts, or single-celled fungi, that commonly 

colonize different body sites such as the skin, oral cavity, oesophagus,  and 

gastrointestinal and genital tracts (Kumamoto & Vinces, 2005; Odds, 1988; 

Wingard & Leather, 2004). According to Odds (1988), most people carry a single 

strain of Candida at different body sites, as part of their normal flora. 

However, a few individuals may harbour more than one strain or species of 

Candida at the same time; this occurs more commonly in hospitalized and 

immunocompromised patients (McCullough et al., 1996).  Under normal 

circumstances, Candida species remain as commensals and do not produce 

clinical disease; however, they may become opportunistic pathogens under 

certain conditions (Odds, 1988). Although there are about 200 species of 

Candida, it is well established that only a few are pathogenic for humans; in 

fact, 65% of Candida species are unable to grow at a temperature of 37°C 

(Schauer & Hanschke, 1999). Six species are most frequently isolated in human 

infections, namely, C. albicans, C. tropicalis, C. glabrata, C. parapsilosis, C. 

krusei, and C. lusitaniae (AbiSaid, 1997).  

 C. albicans is the most significant and frequently isolated yeast 

pathogen. According to data from the US National Nosocomial Infections 

Surveillance System, approximately 50% of fungal nosocomial infections are 

caused by C. albicans (Calderone, 2002; Marcilla et al., 1998). C. albicans is 

also the predominant species in fungal biofilm infections of medical devices 

(He et al., 2006). In vitro, C. albicans biofilms exhibit resistance to a wide 

range of commonly used antifungals such as fluconazole, amphotericin B, 

nystatin, and ketoconazole, as well as the newer triazoles, ravuconazole and 

voriconazole (Chandra et al., 2001a; Chandra et al., 2001b; Hawser & Douglas, 

1995; Kuhn et al., 2002a; Kuhn et al., 2002b). However, in recent years there 

has been a shift from C. albicans to non-C. albicans Candida species (NCAC) so 

that approximately half of the reported cases of Candidaemia are now caused 

by NCAC. Non-C. albicans species such as C. glabrata, C. krusei, C. 

parapsilosis, C. tropicalis and the new species, C. dubliniensis, have been 

identified as important opportunistic pathogens; these species are sometimes 
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less susceptible than C. albicans to antifungal agents and may require a higher 

dosage for a clinical cure (Cheng et al., 2005; Yucesoy & Marol, 2003) .  

 C. tropicalis, unlike C. albicans, which can be found as a commensal, is 

almost always associated with the development of fungal infections (Wingard 

et al., 1979). An increase in the incidence of C. tropicalis has been recognized 

recently; it accounts for 4 to 24% of all Candida species isolated (AbiSaid, 1997; 

Price et al., 1994; Wingard, 1995). With regard to its pathogenicity and 

virulence, data from animal models suggest that it is at least as virulent as C. 

albicans (Wingard, 1995).  C. tropicalis has the potential to cause severe 

invasive disease, with multiorgan involvement in neutropenic patients, and it is 

associated with a high mortality rate (33-90%) (Powderly et al., 1988; Wingard 

et al., 1979; Wingard, 1995). Furthermore, this species has been found to be 

less susceptible than C. albicans to antifungal agents such as fluconazole and 

amphotericin B (Powderly et al., 1988; Rex et al., 1995; White et al., 1998). 

 C. glabrata is the second  most common cause of systemic candidosis 

and candiduria after C. albicans in the United States (Occhipinti et al., 1994; 

Pfaller et al., 1999b). It is also the NCAC species that is most commonly 

isolated from the oral cavities of HIV–infected patients (Sangeorzan et al., 

1994; Schoofs et al., 1998). This species contributes to mortality in 

approximately 21% of pediatric patients with bloodstream infections (Fridkin et 

al., 2006) and it is known for its decreased susceptibility to azoles (Magill et 

al., 2006).  

 C. parapsilosis has become the second most frequently recovered 

Candida species from blood cultures in Europe, Latin America, and Canada, and 

is ranked third in the United States (Yucesoy & Marol, 2003). C. parapsilosis has 

also been shown to be the Candida species most commonly recovered from the 

hands of health workers and can adhere strongly to the surfaces of 

intravascular catheters and prosthetic devices (De Bernardis et al., 1999; 

Hedderwick et al., 2000; Levin et al., 1998).  In addition, C. parapsilosis has 

become the NCAC species most commonly isolated in neonatal intensive-care 

units (Rangel-Frausto et al., 1999). 

 C. krusei is a relatively uncommon pathogen accounting for 2 to 4% of 

Candidaemia cases (Calderone, 2002). C. krusei fungaemia commonly occurs in 

haematology patients with severe neutropenia due to bone marrow 



  Introduction 
 
  

 

3 

transplantation or leukaemia. In these patients, C. krusei fungaemia is 

associated with high mortality rates of approximately 60 to 93%, and infection 

is often disseminated (Abbas et al., 2000; Merz et al., 1986; Nguyen et al., 

1996). This species is known to be resistant to fluconazole (Rex et al., 2000); 

however, some investigators have also noticed reduced susceptibility to other 

antifungal drugs among isolates of C. krusei, suggesting that C. krusei is a 

multidrug-resistant pathogen (Berrouane et al., 1996; Kao et al., 1999). Most 

recently, C. krusei has been implicated in disseminated disease in patients 

receiving caspofungin (Pelletier et al., 2005).  

1.2  Morphology 

 Colonies of Candida species on Sabouraud dextrose agar are normally 

white to cream coloured, grow rapidly and mature in 3 days at 25°C. The 

microscopic features of Candida species show species-related variations. All 

species grow in the logarithmic phase as oval-to-oblong, budding cells (yeasts). 

These cells occur singly, or in clusters or chains. Most members of the genus 

Candida also produce a filamentous type of growth involving pseudohyphae 

which are essentially chains of elongated yeast cells. Candida albicans and the 

closely related C. dubliniensis have the ability to form both pseudohyphae and 

true hyphae (Fig. 1). The early stage in the formation of a true hypha is known 

as a germ tube. In addition, Candida albicans and C. dubliniensis can also 

produce chlamydospores; these cells are larger and more rounded than yeast 

cells and their physiological status is uncertain (Calderone, 2002; Larone, 

1995). 

1.3  Candida cell wall structure 

 The cell wall is vital both to the biology of the yeast and to its 

interactions with host cells in health and disease. It protects the fungus from 

host defence mechanisms and it is responsible for maintaining the unique 

shapes that characterize fungal growth (Marcilla et al., 1998). The surface of 

the organism is the site of the physical interactions between the fungus and 

host tissues that lead to adherence, and between the fungus and the immune 

system that lead to clearance (Cannon & Chaffin, 1999). The surface layers of 

the fungal cell are composed of an outer cell wall and an inner cell membrane 

(Aguilar-Uscanga & Francois, 2003). The cell wall is an active structure that can  
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Figure 1. Growth forms of Candida species: yeast, pseudohyphae, and 

hyphae  

Candida albicans can exist in three forms that have distinct shapes: yeast cells, 

pseudohyphae and true hyphae. Yeast cells are round to ovoid in shape and 

separate readily from each other. Pseudohyphae are elongated yeast cells that 

remain attached to one another at the constricted septation site and usually 

grow in a branching pattern. True hyphae are long and highly polarized, with 

parallel sides and septa, and no obvious constrictions between cells. 
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adapt to physiological changes. Its composition is unique; therefore it is an 

ideal target for new antifungal drugs since it is not present in mammalian cells 

(Marcilla et al., 1998). The cell wall of C. albicans makes up 30% of the dry 

weight of the cell; about 80 to 90% of the cell wall is composed of 

carbohydrate, 6 to 25% of protein and 1 to 7% of lipid (Chaffin et al., 1998). 

The carbohydrates include branched polymers of glucose (β-1,3-D-glucans and 

β-1,6-D-glucans), unbranched polymers of N-acetyl-D-glucosamine (chitin) and 

polymers of mannose (mannan), covalently bound to proteins (Calderone, 2002; 

Chaffin et al., 1998; Marcilla et al., 1998). In C. albicans, β-glucans account for 

50 to 60% by weight of the fungal cell wall while mannoproteins account for 

approximately 40% of the total cell wall polysaccharide (Calderone, 2002). 

Glucan and chitin polymers are responsible for the rigidity of the cell wall and 

also for cell morphology. The cell wall polymers in Candida species are linked 

together by covalent bonds, in addition to hydrogen and hydrophobic bonds. 

Covalent linkages between glucan and chitin, and between mannoproteins and 

β-glucan, have been described. Furthermore, β-1,3 and β-1,6 glucan are also 

linked to proteins by phosphodiester linkages. It is believed that the fungal cell 

wall is composed of building blocks of mannoproteins, which are associated 

through glycosyl phosphatidylinositol (GPI) anchor remnants with β-1,6 glucan, 

which in turn is linked to β-1,3 glucan and chitin (Figure 2) (Bowman & Free, 

2006; Klis et al., 2001; Smits et al., 2001). 

1.4  Candida infections 

 Over the last few decades the prevalence of opportunistic Candida 

infections has increased. This rise is largely attributed to the extensive use of 

immunosuppressive and cytotoxic drugs, widespread use of broad-spectrum 

antibiotics (permitting fungal overgrowth), and increased use of invasive 

devices (catheters, prostheses, and valves) (Douglas, 2003; Kumamoto & 

Vinces, 2005). These opportunistic fungi are potential pathogens in patients 

with certain predisposing factors, e.g. patients with AIDS, organ transplants, 

prolonged antibiotic use, diabetes mellitus, malnutrition, and obstructive 

uropathy (Wainstein et al., 1995). Candida species are capable of causing a 

variety of infections, ranging from the superficial to systemic (Calderone, 2002; 

Odds, 1988). 
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Figure 2. Schematic of fungal cell wall.  

GPI, glycophosphatidylinositol. Reprinted from Selitrennikoff (2001) by 

permission of the publisher, American Society for Microbiology. 
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1.4.1 Superficial candidosis 

 Candida infections of the skin are referred to as cutaneous candidosis, 

whereas infections on mucous membranes of the mouth, oropharynx or vagina 

are termed mucosal candidosis. The most common superficial infections mainly 

take the form of mucosal candidosis: vulvovaginal candidosis or oropharyngeal 

candidosis (Fidel & Sobel, 1996). Vulvovaginal candidosis occurs most 

frequently in women of childbearing age. It has been estimated that 75% of all 

adult women will experience at least one vaginal infection episode during their 

lifetime (Odds, 1988). Candida species can be found as commensals in the 

vagina in 10 to 25% of all women (Fidel & Sobel, 1996). Predisposing factors for 

Candida overgrowth include pregnancy, antibiotic use, immunosuppressive 

therapy, hormone replacement therapy or uncontrolled diabetes mellitus 

(Arendorf & Walker, 1987; Bulad et al., 2004). A study by Moreira and Paula 

(2006) on patients with vulvovaginal candidosis showed that C. albicans is the 

most frequently isolated species, with 90% of isolation, followed by C. glabrata 

with 6% and C. parapsilosis and C. tropicalis each with 2%.   

 Oropharyngeal candidosis (OPC) refers to Candida infection in the mouth 

and throat. The most common types of OPC are oral thrush and denture-

induced stomatitis. Oral thrush is characterized by soft, white or cream-

coloured deposits on mucosal membranes.  This infection most frequently 

occurs in newborns, the elderly, and diabetics. In the absence of other known 

causes of immunosuppression, oral thrush in an adult is highly predictive of 

human immunodeficiency virus (HIV) infection (Dronda et al., 1996).  Candida-

associated denture stomatitis is prevalent in approximately 11 to 67% of 

denture wearers. The upper denture provides a surface to which Candida can 

adhere. In the oral cavity, Candida species usually co-exist with commensal 

bacteria. Studies by Budtz-Jorgensen (1990) have shown that in denture plaque 

of patients with Candida-induced denture stomatitis, 93% of the plaque biofilm 

is composed of yeasts and the remainder comprises oral bacteria. Despite 

antifungal therapy to treat denture stomatitis, infection is usually re-

established soon after the treatment ceases, suggesting that denture plaque 

may serve as a protected reservoir of C. albicans (Budtz-jorgensen, 1990). 

Resolution of the infection may sometimes occur by simply removing the 

dentures (Calderone, 2002).  
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 Two forms of OPC are commonly encountered among HIV patients: 

pseudomembranous and erythematous candidosis. Pseudomembranous OPC 

consists of smooth, white, papular lesions. Erythematous OPC is characterized 

by smooth red patches on the hard or soft palate, oropharynx, buccal mucosa, 

and dorsal tongue (Becksague & Jarvis, 1993; Cheng et al., 2005; Edmond et 

al., 1999). It has been estimated that 90% of HIV patients develop OPC in 

various stages of their disease (de Repentigny et al., 2004). 

1.4.2 Invasive candidosis 

 Candida species now rank as the fourth most common cause of 

nosocomial bloodstream infections in the United States (Edmond et al., 1999). 

Candidaemia is the most common form of invasive candidosis and usually occurs 

in individuals with reduced function of the immune system and those 

hospitalized with serious underlying conditions (Pfaller & Diekema, 2007). 

Despite available antifungal therapy, the rate of morbidity and mortality 

associated with candidaemia remains high: about 30 to 70% among cancer 

patients (Horn et al., 1985; Viscoli et al., 1999) and 26 to 75% among non-

cancer patients (Cheng et al., 2005; Komshian et al., 1989; Phillips et al., 

1997). Several studies have suggested that many if not most incidents of 

candidaemia are catheter related (Pfaller & Diekema, 2007). The largest 

prospective treatment study of patients with candidaemia implicated a 

catheter in 72% of them (Rex et al., 1994). In invasive candidosis, 60 to 75% of 

infections are caused by C. albicans. Although the incidence of non-C. albicans 

species as a cause of infection is increasing in both invasive and mucosal 

candidosis, C. albicans remains the most prevalent aetiological agent of 

Candida infection (Jabra-Rizk et al., 2004; Slavin et al., 2004; Wingard & 

Leather, 2004). 

 

2 Virulence factors of Candida species 

 Like other pathogens, in order to establish an infection, opportunistic 

pathogens have to evade the immune system, survive, divide in the host 

environment and spread to new tissues. C. albicans expresses several virulence 

factors that contribute to pathogenesis. These factors include morphogenesis 

(the reversible transition between unicellular yeast cells and filamentous 
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growth forms), hydrolytic enzyme production, adhesion (production of host 

recognition biomolecules), and phenotypic switching (Calderone & Fonzi, 

2001). 

2.1  Morphogenesis 

 Morphogenesis refers to the transition between various growth 

morphologies. The fungal pathogen, C. albicans, shows considerable 

morphogenetic flexibility. This organism has the ability to reversibly convert 

between the yeast form and the filamentous form (hyphal or pseudohyphal 

states).  This transition is thought to contribute to the ability to grow on 

surfaces and invade tissues (Calderone & Fonzi, 2001; Yang, 2003). Of all 

Candida species, only C. albicans and C. dubliniensis have the ability to 

undergo both types of filamentous growth and are defined as polymorphic in 

their growth patterns (Calderone & Fonzi, 2001). Virulence is attenuated in 

mutants that are unable to switch from the yeast form to the hyphal form. For 

example, mutant strains of C. albicans that were defective in germ-tube 

formation showed decreased tissue invasion in an immunosuppressed animal 

model (Riggle et al., 1999). The various cellular forms of C. albicans can be 

induced by many different environmental factors, such as mammalian serum, 

high temperatures (37°C), and neutral pH (Brown & Gow, 1999; Brown et al., 

1999). Moreover, hyphae are formed in response to nutrient deprivation and 

filamentous growth is considered an important adaptive response that enables 

the fungus to forage for nutrients more effectively (Brown & Gow, 1999; 

Calderone & Fonzi, 2001; Palecek et al., 2002).  

 Several signalling pathways control morphogenesis in C. albicans. These 

include the mitogen-activated protein kinase (MAPK) and Ras-cAMP signalling 

pathways that are thought to activate filamentous growth in response to 

starvation and/or serum signals (Brown, 2001; Ernst, 2000; Whiteway, 2000). 

The MAPK and Ras-cAMP pathways regulate the transcription factors Cph1 and 

Efg1, respectively (Liu et al., 1994; Stoldt et al., 1997). Under most 

experimental conditions, yeast-hypha morphogenesis is blocked in a C. albicans 

cph1/cph1, efg1/efg1 double mutant. This indicates that the transduction of 

most environmental signals is dependent on Ras-cAMP or MAPK signalling (Lo et 

al., 1997). Tripathi and colleagues (2002) have reported that amino acid 

starvation induces pseudohyphal growth in C. albicans and this morphogenesis 
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response is dependent upon CaGcn4, a functional homologue of S. cerevisiae 

Gcn4. About 30% of C. albicans wild-type cells (containing a functional CaGcn4 

locus) formed filamentous projections, whereas the gcn4/gcn4 mutant cells 

only formed buds (Tripathi et al., 2002). Another study by Wightman et al. 

(2004) suggested that Nim1-kinases, Gin4 and HsI1, act as negative regulators 

of pseudohyphal development. Hyphal forms can be inhibited by farnesol, a 

quorum-sensing molecule (Hornby et al., 2001). Also, down regulation of Nrg1 

(a DNA-binding repressor protein) synthesis induces filamentous growth in C. 

albicans (Braun et al., 2001). The hyphal and pseudohyphal forms can revert 

back to the yeast form but the mechanisms controlling this transition are not 

well understood (Whiteway & Oberholzer, 2004). Several studies have shown 

that most lesions in infected tissues are populated by both morphological 

forms, suggesting that both contribute to the development and progression of 

disease (Calderone & Fonzi, 2001). 

2.2  Production of extracellular hydrolytic enzymes 

 The three most important hydrolytic enzymes produced by C. albicans 

and linked directly to virulence are secreted aspartic proteinases (SAPs), 

phospholipases, and lipases. Secreted hydrolytic enzymes can contribute to 

host tissue invasion by digesting or distorting host cell membranes, degrading 

host surface molecules to enhance adhesion, or digesting cells and molecules of 

the host immune system to avoid or resist antimicrobial attack (Calderone, 

2002).  

2.2.1 Aspartic proteinases 

 Secreted aspartic proteinases degrade many human proteins at lesion 

sites; such proteins include albumin, haemoglobin, keratin, and secretory 

immunoglobulin A. To date, 10 different SAP genes (SAP1-10) have been 

identified in C. albicans and their proteolytic activity has been linked to tissue 

invasion (Naglik et al., 2003). The production of SAPs is not limited to C. 

albicans only and their presence has been demonstrated in C.tropicalis, C. 

parapsilosis, C. dubliniensis, and C. guilliermondii (Calderone & Fonzi, 2001; 

Calderone, 2002). In vitro studies have shown that SAP1, 2, and 3 genes are 

expressed by yeast cells only, whereas expression  of  SAP4, 5, and 6  is limited 

to the hyphal form (Hube et al., 1998; Yang, 2003).  The expression of SAP7 has 
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never been observed under any laboratory growth conditions. SAP8 transcript 

has been detected in yeast cells grown at 25°C in a defined growth medium 

and SAP9 is expressed in later growth phases (Monod et al., 1998; Yang, 2003). 

2.2.2  Phospholipases and lipases 

 The activity of phospholipases has been reported in several fungal 

pathogens including Candida species, Cryptococcus neoformans, and 

Aspergillus fumigatus (Birch et al., 1996; Chen et al., 1997; Yang, 2003). 

According to the specific ester bond cleaved, these enzymes have been divided 

into four types of phospholipases: phospholipase A (PLA), phospholipase B 

(PLB), phospholipase C (PLC), and phospholipase D (PLD) (Calderone & Fonzi, 

2001; Yang, 2003). The major phospholipase in C. albicans is phospholipase B; 

it has both hydrolase (fatty acid release) and lysophospholipase-transacylase 

activities (Leidich et al., 1998). Two PLB genes, PLB1 and PLB2, have been 

identified and cloned; only PLB1 has been associated with virulence. In an 

intravenous murine model for hematogenously disseminated candidosis, the 

virulence of C. albicans mutants lacking PLB1 was significantly attenuated and 

the mutants showed a dramatically reduced ability to penetrate host cells 

(Leidich et al., 1998). A separate study indicated that a PLB1-disrupted mutant 

of C. albicans was less invasive and caused reduced inflammatory response in 

an oral-intragastric infant-mouse model (Ghannoum, 2000). These findings 

suggest that phospholipase secretion may contribute to the virulence of C. 

albicans. Non-C. albicans species such as C. tropicalis, C. parapsilosis, and C. 

glabrata have also been shown to secrete phospholipases, albeit at lower levels 

(Ghannoum, 2000).  

 In comparison to proteinases and phospholipases, other secreted 

hydrolytic enzymes of C. albicans such as lipases or esterases, have been rather 

neglected until recently. Extracellular lipase activity of pathogenic Candida 

species was first detected by Werner (1966) and a secreted esterase was later 

characterized by Tsuboi et al. (1996). The esterase was induced by lipids such 

as Tween 80 and showed a high activity on α-naphthyl palmitate at pH 5.5. 

However, it was not able to hydrolyze triolein, tripalmitin, and α-lecithin, and 

it was therefore characterized as a monoester hydrolase. C. albicans was able 

to grow in media with triolein as a sole source of carbon, suggesting that other 
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lipolytic enzymes must exist (Sheridan & Ratledge, 1996). Subsequently, a 

range of lipase genes (LIP1-10) were identified in C. albicans (Hube et al., 

2000) and in other Candida species such as C. parapsilosis, C.tropicalis, and C. 

krusei (Fu et al., 1997; Neugnot et al., 2002). It has been found that lipase 

gene expression depends on the stage of infection rather than on the organ 

localization (Hube et al., 2000).  

2.3  Adhesion 

 One of the most important virulence factors of Candida species is their 

ability to adhere using a variety of mechanisms, permitting the yeast to anchor 

at a site and establish the process of colonization and biofilm formation (Cotter 

& Kavanagh, 2000). Candida species can adhere to host cells, as well as to the 

surfaces of medical devices, and form biofilms; this results in an increase in 

antifungal resistance (Chandra et al., 2001a; Hawser & Douglas, 1995). There is 

a positive correlation between the virulence of different Candida species and 

their ability to form biofilms (Hawser & Douglas, 1994). Adhesion of the yeast 

form of the fungus to epithelial cells can involve several kinds of adhesin–

receptor interactions, including protein-protein, protein-carbohydrate, and 

carbohydrate-carbohydrate interactions (Cutler, 1991; Staddon et al., 1990). C. 

albicans and other species seem to bind and interact not only with human 

epithelial surfaces but also with human proteins of the blood and internal 

tissues (Calderone & Gow, 2002). 

2.3.1 Adhesins 

 The components of the organism that promote host recognition and 

adherence are usually referred to as adhesins. The adhesins of C. albicans are 

usually polysaccharide or glycoprotein in nature (Calderone & Gow, 2002). 

Candida albicans possesses multiple adhesins and there may be more than one 

adhesin that recognizes a host ligand or cell (Cannon & Chaffin, 1999). Many 

studies in vitro have shown that a number of environmental signals appear to 

regulate the expression of Candida adhesins, including the availability of sugar 

(McCourtie & Douglas, 1984; Pizzo et al., 2000), iron (Baillie & Douglas, 1998b), 

and temperature (Kennedy & Sandin, 1988). 
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 C. albicans has a family of at least nine ALS (agglutinin-like sequence) 

genes that encode cell-surface glycosylated proteins. These proteins have 

homology with the S. cerevisiae α–agglutinin protein that is required for cell-

cell recognition during mating (Calderone & Fonzi, 2001). In C. albicans and 

other related species, these proteins are thought to play a role in adhesion to 

host surfaces (Calderone & Gow, 2002). Als1p and Als5p in C. albicans have an 

adhesin function in relation to human buccal epithelial cells and fibronectin, 

respectively (Hoyer, 2001). Kamai and colleagues (2002) showed that Als1p has 

an important role in the adherence of the organism to the oral mucosa during 

the early stages of infection. Recently, it has been demonstrated that an 

Als3/Als3 mutant strain of C. albicans had an obvious defect in biofilm 

formation on silicone elastomer discs; the mutant biofilm was structurally 

weakened and had approximately half the biofilm of a wild-type biofilm  (Zhao 

et al., 2006). 

 A hypha cell wall-specific protein (Hwp1) was found on the surface of 

germ tubes and true hyphae, but not on yeasts or pseudohyphae of C. albicans 

(Sundstrom et al., 2002). Hwp1 is encoded by a gene that was originally 

isolated as a cDNA that encoded a hypha-specific antigen. The gene encodes an 

outer surface mannoprotein that is believed to be oriented with its amino-

terminal domain surface-exposed and carboxyl terminus most probably 

covalently integrated with cell wall β-glucan (Staab et al., 1996). The structure 

of the protein suggests that it is linked through a GPI-anchor to cell wall β-

glucan (Staab & Sundstrom, 1998). In subsequent work, Staab et al. (1999) 

showed that Hwp1 functions as a substrate for mammalian transglutaminases, 

suggesting that the protein is involved in the formation of stable complexes 

with buccal epithelial cells. It has been reported that an hwp1/hwp1 mutant 

strain of C. albicans was greatly impaired in its ability to form stable 

attachments to human buccal epithelial cells. Also, this mutant showed 

reduced virulence in a mouse model of systemic candidosis compared with the 

HWP1/HWP1 strain (Staab et al., 1999). 

 More recently, the role of Hwp1 in C. albicans biofilm formation has 

been investigated. A study by Nobile et al. (2006) demonstrated a requirement 

for Hwp1 for normal biofilm formation by C. albicans in vitro and in vivo. In an 

in vitro model, a hwp1/hwp1 mutant produced a thin biofilm that lacked much 
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of the hyphal mass found in wild-type biofilms. Further, in a rat venous 

catheter model, the hwp1/hwp1 mutant was severely deficient in biofilm 

formation, yielding only yeast microcolonies (Nobile et al., 2006). These 

findings suggest that Hwp1 is critical for adhesion and biofilm formation. 

 The integrin-like protein Int1 of Candida has been shown to have a role 

in adhesion and in morphogenesis. Disruption of the INT1 gene in C. albicans 

reduced yeast adhesion to human epithelial cells by approximately 40%. 

Moreover, in a mouse model, the mutation in INT1 reduced the virulence of C. 

albicans (Kinneberg et al., 1999). 

2.3.2 Receptors 

 Fibronectin was one of the first molecules to be recognized as a receptor 

for C. albicans (Skerl et al., 1984). Fibronectin is an extracellular matrix 

glycoprotein to which a number of microorganisms adhere avidly (Pendrak & 

Klotz, 1995). The induction of a fibronectin-binding mannoprotein of C. 

albicans was demonstrated when cells were grown in a medium that contains 

0.1% haemoglobin (Yan et al., 1996; Yan et al., 1998). In disseminated 

candidosis, the fibronectin adhesin may be responsible for the adherence of the 

microorganism to intravascular structures such as endothelial cells or the 

subendothelial extracellular matrix (Pendrak & Klotz, 1995). The presence of 

adsorbed fibronectin as a target protein for epithelial attachment of C. 

tropicalis was also confirmed (Bendel & Hostetter, 1993). 

 The complement fragment iC3b has also been implicated as a ligand 

associated with epithelial and endothelial cell adherence (Gustafson et al., 

1991). Heidenreich and Dierich (1985) were the first to describe the binding of 

sheep erythrocytes coated with human iC3b or C3d to germ tubes of C. 

albicans. They concluded that germ tubes had surface receptors for bound 

complement components that functioned similarly to the human complement 

receptor 2 (CR2) and the human CR3 of host defence cells in their recognition 

of C3d and iC3b. Later, Calderone et al. (1988) identified, in extracts of C. 

albicans pseudohyphae but not yeasts, two proteins of approximately 62 and 70 

kDa that bind the C3d fragment of C3. The finding of C3 receptors, exclusively 

on the more pathogenic Candida species, is highly predictive of their 

involvement in disease processes (Calderone et al., 1988).  Jimenez-Lucho et 
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al. (1990) suggested that yeast cells of C. albicans and other fungi bind 

specifically to the glycosphingolipid, lactosylceramide. Lactosylceramide is a 

major glycosphingolipid in human glioma brain cells and was the only lipid to 

which the yeasts bound. As lactosylceramide is widely distributed in epithelial 

tissues, this glycosphingolipid could be a receptor for yeast colonization and 

disseminated disease in humans (Jimenez-Lucho et al., 1990). 

 Lectin-like Candida adhesins that recognize glycosides containing L-

fucose- or N-acetyl-D-glucosamine have been identified (Critchley & Douglas, 

1987a; Critchley & Douglas, 1987b). The binding of some C. albicans strains to 

buccal epithelial cells was inhibited by fucose, but in other strains it was 

inhibited by N-acetyl-D-glucosamine or D-glucosamine, suggesting strain-

specific receptors. Furthermore, fucoside-binding adhesin has been purified 

and shown to have an affinity for glycosphingolipid receptors carrying the H 

blood-group antigen, suggesting that blood group antigens may act as epithelial 

cell receptors for C. albicans (Tosh & Douglas, 1992). The purified adhesin was 

devoid of carbohydrate and inhibited yeast adhesion to buccal epithelial cells 

by 80% at an adhesin concentration of 10 µg/ml. In subsequent work, the 

binding of the purified adhesin (fucoside-binding protein), crude adhesin 

(extracellular polymeric material), and intact yeast cells of different strains of 

C. albicans to glycosphingolipid receptors was investigated by a chromatogram 

overlay assay. All preparations from five C. albicans strains bound to glycolipids 

carrying the H blood group antigen. However, one strain, GDH2023, showed a 

completely different binding pattern and bound only to glycolipids containing 

N-acetyl-D-glucosamine (Cameron & Douglas, 1996). These results confirmed 

earlier findings about the receptor specificity of the strains made on the basis 

of adhesion inhibition studies (Critchley & Douglas, 1987b). 

2.4  Phenotypic switching  

 This phenomenon could have important implications in pathogenesis and 

is considered to be an attribute of virulence in C. albicans and other species of 

Candida; switching has been reported in C. glabrata, C.tropicalis, and C. 

parapsilosis as well as C. albicans (Soll, 2002). Colonies of C. albicans can 

switch among variant phenotypes including smooth, rough, star, stippled, 

irregular wrinkled, and fuzzy at high frequency (10-4 to 10-1) (Slutsky et al., 

1985). Switching can be stimulated by low doses of UV light and the reversion 
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of the variant colonies (phenotypes) to the original parental phenotype occurs 

at high frequency (Calderone & Fonzi, 2001; Pomes et al., 1985). Phenotypic 

switching may involve changes in the expression of cell surface antigens, 

enzyme production, and even drug sensitivity. However, the basic mechanism 

of phenotypic switching and the involvement of this phenomenon in the 

virulence of C. albicans are not clear. One of the most studied phenotypic 

switching processes is the white-opaque system in C. albicans strain WO-1 

(Slutsky et al., 1987). In this system, smooth, white, hemispherical colonies 

(white phase) can switch to flat, gray colonies (opaque phase). A number of 

differences exist between these two colony types, including cell shape (white 

cells are round-ovoid and opaque cells are elongated or bean-shaped), cell 

surface structure (pimples are found on opaque cells only), and germination at 

37°C (by white cells only unless the opaque cells are grown on human skin 

epithelial cells). Opaque cells have a greater ability to colonize the skin in a 

mouse model of cutaneous infection and a higher frequency of mating than do 

white-phase cells (Kvaal et al., 1999; Miller & Johnson, 2002). However, 

opaque cells are less virulent than white cells in a systemic mouse model (Kvaal 

et al., 1999). Furthermore, these two phenotypes show different gene 

expression; OPA1 and SAP3 are expressed specifically in opaque cells, whereas 

SAP2, WH11, and EFG1 are expressed in white cells (Srikantha & Soll, 1993). 

Phenotypic switching has been found to affect adhesion to human epithelial 

cells. The adhesion of white and opaque cells of strain WO-1 to buccal 

epithelium were dramatically different; white cells were significantly more 

adhesive than opaque cells (Kennedy et al., 1988). 

 Recently the correlation between phenotype switching and biofilm 

formation has been investigated. Biofilms formed by 100% white cells of C. 

albicans were dense and composed of a mixture of yeast cells and hyphae, 

whereas biofilms formed by 100% opaque cells were thin and fragile, and made 

up almost entirely of cells that had extended conjugation tubes. However, the 

thickness of biofilms formed by 90% white and 10% opaque cells was twice that 

of biofilms formed by 100% white cells; the minority opaque cells stimulated 

biofilm development by white cells. This finding reveals a novel form of 

communication between switch phenotypes (Daniels et al., 2006).    
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 The effect of phenotype switching on biofilm formation in C. parapsilosis 

was also investigated. Cells from crepe and concentric phenotypes were 

pseudohyphal, whereas cells from smooth and crater phenotypes were mostly 

yeast-like. On polystyrene surfaces, the concentric phenotype produced up to 

two-fold more biofilm than the crepe and crater phenotypes. Smooth 

phenotypes produced the least biofilm (Laffey & Butler, 2005). 

 

3 Antifungal drugs 

 The antifungal agents that are currently available for the treatment of 

systemic fungal infections are grouped according to their site of action in 

fungal cells into four major classes: the polyenes, azoles, pyrimidine 

analogues, and echinocandins. 

3.1  Polyenes 

 Polyenes are all produced by species of Streptomyces and include 

amphotericin B (Fig. 3A ) and nystatin, which are considered to be fungicidal 

(Jabra-Rizk et al., 2004; Wingard & Leather, 2004). The polyenes cause the 

fungal cell to die by binding to the sterol, ergosterol, in the fungal cell 

membrane. This binding leads to membrane disruption, increased permeability, 

leakage of cytoplasmic contents, and cell death (Fig. 4).  Amphotericin B has a 

very broad spectrum of antifungal activity and it has been the drug of choice 

for treatment of invasive fungal infections for many years. Most fungi are 

susceptible to amphotericin B, including most Candida and Aspergillus species 

(Slavin et al., 2004; Wingard & Leather, 2004). However, some species exhibit 

reduced susceptibility or resistance including C. lusitaniae, C. guilliermondii, 

Trichosporon beigelii, A. terreus, A. flavus and Fusarium spp. (Polak & 

Hartman, 1991; Slavin et al., 2004; Wingard & Leather, 2004). 

 Frequent toxicities and a narrow therapeutic window are major 

limitations to the clinical use of amphotericin B (Slavin et al., 2004; Wingard & 

Leather, 2004). Infusional toxicity occurs in approximately 50-60% of treated 

patients and renal failure in 80% of patients receiving a 2-week course (Slavin 

et al., 2004). Amphotericin shows poor tolerability, especially with patients  
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Figure 3. Chemical structures of antifungal drugs: amphotericin B and 

fluconazole 

 

B. Fluconazole 

A. Amphotericin B 
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Figure 4.  Mechanism of action of polyenes on the fungal cell membrane 

Polyene antifungals such as amphotericin B act by binding to ergosterol in the 

cell membrane. This binding results in depolarization of the membrane and 

formation of pores that increase permeability and leakage of vital cytoplasmic 

components (mono- or divalent cations), eventually leading to death of the 

organism.  Reprinted by courtesy of www.doctorfungus.org. 
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requiring long-term courses of doses above 0.5 mg/kg per day (Slavin et al., 

2004; Wingard & Leather, 2004). 

 Lipid formulations of amphotericin B were developed to ensure less 

infusional and renal toxicity, and greater tolerability; these preparations 

permit higher doses of amphotericin B to be used in clinical practice (Slavin et 

al., 2004; Wingard & Leather, 2004). 

3.2  Azoles  

 The azoles, first described in the late 1960s, are totally synthetic. This 

class includes the imidazoles (clotrimazole, miconazole, and ketoconazole) and 

the triazoles (fluconazole, itraconazole, and voriconazole) (Jabra-Rizk et al., 

2004; Wingard & Leather, 2004). The azoles inhibit the biosynthesis of 

ergosterol through their interactions with the enzyme lanosterol demethylase, 

which is responsible for the conversion of lanosterol to ergosterol. This leads to 

a reduced content of ergosterol in the fungal cell membrane and ultimately 

inhibition and fungal death (Fig. 5). Azole antifungal agents have a fungistatic, 

broad-spectrum activity against most yeasts and filamentous fungi (Slavin et 

al., 2004; Wingard & Leather, 2004). Among the most commonly used azoles is 

fluconazole (Fig. 3B), available as both oral and intravenous formulations. 

Fluconazole is a very effective drug for the treatment of most yeast infections, 

particularly oropharyngeal and vaginal candidosis. Fluconazole is also 

recommended as a first choice for the treatment of invasive Candida infections 

in non-neutropenic patients such as solid-organ transplant patients, surgical 

and ICU patients, or for those with urinary tract infections due to susceptible 

Candida species. Furthermore, fluconazole can successfully treat Candidaemia 

in neutropenic patients, as long as the patient is stable and the infection is not 

due to Candida species less susceptible to fluconazole (Rex et al., 1994). 

Several species are resistant to fluconazole; almost all C. krusei isolates are 

intrinsically resistant and about 50% of C. glabrata isolates show reduced 

susceptibility to the drug (Jabra-Rizk et al., 2004; Slavin et al., 2004). 

Fluconazole is safe, with a very low incidence of side effects, and is well 

tolerated (Slavin et al., 2004; Wingard & Leather, 2004). Furthermore, it has 

efficacy against moulds.  
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Figure 5.  Mechanism of action of azoles on the fungal cell membrane 

Azole antifungals inhibit the fungal cytochrome P450 14-α-lanosterol 

demethylase, thereby interrupting the synthesis of ergosterol. Inhibition of this 

critical enzyme in the ergosterol synthesis pathway leads to the depletion of 

ergosterol in the cell membrane and accumulation of toxic intermediate 

sterols, causing increased membrane permeability and inhibition of fungal 

growth. Reprinted by courtesy of www.doctorfungus.org. 
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 Voriconazole is one of the newest triazoles available and it has the 

broadest spectrum activity of all the licensed azoles. It exhibits activity against 

Candida (including fluconazole-resistant species), Aspergillus and Fusarium 

species, but not against zygomycetes. Voriconazole has two toxicity effects 

that are not seen with other azoles. It causes photopsia, a visual disturbance, 

in up to 30-45% of recipients and photosensitivity, in up to 5% of patients 

receiving the drug. In addition to its toxicities, drug interaction is a very 

important issue to be considered (Jabra-Rizk et al., 2004; Wingard & Leather, 

2004). 

 Posaconazole is an extended-spectrum triazole that was approved in 

2006. It is active against Candida species, Aspergillus species, and is the only 

azole with reliable antifungal activity against Zygomycetes. It is also effective 

against Candida isolates resistant to itraconazole, fluconazole, and 

voriconazole (Greer, 2007; Keating, 2005; Torres et al., 2005) and has activity 

comparable to fluconazole in treating oropharyngeal candidosis in HIV-positive 

patients (Vazquez et al., 2006). Ravuconazole is the latest azole agent to 

undergo clinical development. It shows a broad spectrum of activity against 

fungal pathogens including Candida, Aspergillus, Cryptococcus species, and 

dermatophytes (Pfaller et al., 2004) it also exhibits good activity against 

fluconazole- or itraconazole-resistant isolates of C. albicans and C. dubliniensis 

(Pfaller et al., 1999a). 

3.3  Pyrimidine analogues 

 5-Flucytosine (5-fluorocytosine; 5-FC) is a pyrimidine analogue that was 

originally developed in the 1950s as a potential antineoplastic agent and later 

was found to have antifungal activity (Fig. 6A).  After its transport into the 

fungal cell, it is deaminated to the active form, 5-fluorouracil (5-FU), and 

ultimately leads to the disruption of DNA and protein synthesis (Fig. 7) (Polak & 

Hartman, 1991; Wingard & Leather, 2004). Flucytosine has a narrow spectrum 

of activity against Candida and Cryptococcus species (Wingard & Leather, 

2004). Most moulds including Aspergillus spp. are resistant (Maschmeyer & 

Glasmacher, 2005; Slavin et al., 2004; Wingard & Leather, 2004).  
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Figure 6. Chemical structures of antifungal drugs: flucytosine and 

caspofungin 

A. Flucytosine 

B. Caspofungin 
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Figure 7. Mechanism of action of 5-flucytosine on the fungal cell 

5-Flucytosine is transported into susceptible fungal cells by a specific enzyme 

cytosine permease and converted in the cytoplasm by cytosine deaminase to 5-

fluorouracil (5-FU).  5-FU undergoes further steps of activation and finally 

interacts as FUTP with RNA biosynthesis and causes miscoding and halts protein 

synthesis. Additionally, 5-FU is converted to dTMP which inhibits DNA synthesis 

by blocking the function of thymidylate synthetase. Reprinted by courtesy of 

www.doctorfungus.org. 

5-FC, 5-fluorocytosine; 5-FU, 5-fluorouracil; FdUMP, 5-fluorodeoxyuridine;

FUMP, 5-fluorouridine monophosphate; FUDP, 5-fluorouridine diphosphate;

FUTP, 5-fluorouridine triphosphate; dUMP, deoxyuridine monophosphate
dTMP, deoxythymidine monophosphate

5-FC, 5-fluorocytosine; 5-FU, 5-fluorouracil; FdUMP, 5-fluorodeoxyuridine;

FUMP, 5-fluorouridine monophosphate; FUDP, 5-fluorouridine diphosphate;

FUTP, 5-fluorouridine triphosphate; dUMP, deoxyuridine monophosphate
dTMP, deoxythymidine monophosphate
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3.4  Echinocandins 

 The echinocandins and their analogues, the pneumocandins, are semi-

synthetic cyclic lipopeptides and represent a new class of antifungal agents 

that have a unique mechanism of action. They inhibit the synthesis of β-1,3-D-

glucan, an essential component of the fungal cell wall (Fig. 8). This component 

is absent in mammalian cells, which increases the drug’s specificity and 

reduces its toxicity for mammalian cells (Maschmeyer & Glasmacher, 2005; 

Slavin et al., 2004; Wingard & Leather, 2004). Echinocandins have fungicidal 

activity against Candida spp. and fungistatic activity against Aspergillus spp. In 

vitro, echinocandins demonstrate excellent activity, against amphotericin B- 

resistant and azole-resistant Candida and Aspergillus species (Espinel-Ingroff, 

2003; Maschmeyer & Glasmacher, 2005; Wingard & Leather, 2004) but have no 

activity against fungi that lack significant β-glucan in their cell walls, such as  

Cryptococcus and Trichosporon species (Espinel-Ingroff, 2003; Slavin et al., 

2004).  The inhibition is effective and specific, and short exposure leads to cell 

death (Maschmeyer & Glasmacher, 2005). This class of drugs now includes 

anidulafungin and micafungin, as well as caspofungin. However, caspofungin 

(Fig. 6B) was the first echinocandin licensed for treatment of fungal infections. 

It has demonstrated excellent pharmacokinetic properties and exhibited good 

safety profiles (Chandra et al., 2001a; Kuhn et al., 2002a; Mukherjee et al., 

2005). 

 

4 Biofilms 

 In Nature, biofilms are the most common form of microbial growth; 

microorganisms are found attached to surfaces and not as free-floating 

(planktonic) cells (Chandra et al., 2001a; Douglas, 2003; Mukherjee et al., 

2005; O'Toole et al., 2000). Biofilms are a preferred mode of microbial 

existence as they provide protection for the cells against physical forces, pH 

changes, chemical attacks, and offer higher chances of survival in a low-nutrient 

environment (Jefferson, 2004). A biofilm is defined as a community of 

microorganisms that develops from a single species or from multiple species of 

bacteria or fungi attached to a surface.  
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Figure 8.  Mechanism of action of echinocandins on the fungal cell wall 

Echinocandins inhibit the enzyme β-1,3-glucan synthase. This inhibition results 

in depletion of glucan polymers in the fungal cell wall, resulting in an 

abnormally weak cell wall unable to withstand osmotic stress. Reprinted by 

courtesy of www.doctorfungus.org. 
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These microbes are embedded in a matrix, often slimy, of extracellular 

polymeric material (Donlan, 2001; Donlan & Costerton, 2002; Douglas, 2003; 

Kumamoto & Vinces, 2005) and exhibit a distinctive phenotype with regard to 

growth rate and gene transcription (Donlan & Costerton, 2002; Douglas, 2003).  

 A large number of studies have been carried out in order to understand 

bacterial biofilms and their role in disease (Chandra et al., 2001a; Douglas, 

2003; Jabra-Rizk et al., 2004; Mukherjee et al., 2005). In the seventeenth 

century, dental plaque on tooth surfaces was the first example of what we now 

call a biofilm to be recognized in medical systems (Marsh, 1995). Recent 

estimates suggest that some 65% of all human infections involve biofilms 

(Dominic et al., 2007; Ramage et al., 2005). Many of these infections are 

associated with implanted medical devices such as intravascular catheters, 

joint replacements, endotracheal tubes and prosthetic heart valves, which can 

act as surfaces for biofilm growth (Donlan, 2001). These devices can easily 

become contaminated. The infusion fluid itself or the catheter hub may be the 

source of infection but, more often, organisms are introduced from the 

patient’s skin or from the hands of health care workers.  Sometimes the distal 

tip of the catheter is contaminated during the insertion process; alternatively, 

organisms from another site in the body can travel via the blood and infect the 

catheter (Collin, 1999; Donlan & Costerton, 2002). Biofilm microorganisms can 

also be found in tissues taken from non-device-related chronic infections such 

as cystic fibrosis, native valve endocarditis, otitis media, chronic bacterial 

prostatitis and periodontitis (Mukherjee et al., 2005). The most common 

organisms isolated from catheter biofilms are C. albicans and a diversity of 

bacterial species including Staphylococcus aureus, S. epidermidis, 

Pseudomonas aeruginosa and Actinobacter species (Kumamoto & Vinces, 2005; 

Mukherjee et al., 2005). In the United States, several million vascular and 

urinary catheters and tens of thousands of prosthetic heart valves are used 

annually (Chandra et al., 2001a; Kuhn et al., 2002a; Kumamoto & Vinces, 

2005). Infections of catheters are not only expensive in terms of catheter 

replacement but may also cause a bacteraemia or fungaemia with a mortality 

rate of up to 40% (Cheng et al., 2005; Nguyen et al., 1995). The use of central 

venous catheters (CVCs) in current clinical practice is responsible for more than 

90% of bloodstream infections (Odetola et al., 2003), resulting in 10-25% 

mortality among these patients (Nicastri et al., 2001; Veenstra et al., 1999) . 
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4.1  Candida biofilms 

 Little attention has been given to medically relevant fungal biofilms in 

comparison to bacterial biofilms and their role in disease.  All Candida species 

are opportunistic pathogens and their emergence as important nosocomial 

pathogens is related to specific risk factors. These factors include 

immunosuppressive therapy, antibiotic therapy, and the use of indwelling 

devices such as intravenous catheters (Calderone, 2002; Nucci et al., 1998). 

Approximately 50% of all nosocomial infections are medical device-related 

infections and about 10% of these infections are due to Candida spp. 

(Kumamoto & Vinces, 2005). In a prospective study of catheter colonization, C. 

albicans represented the second highest colonization to invasive infection rate 

(Crump & Collignon, 2000). Even with current antifungal therapy, the mortality 

of patients with systemic candidosis can be as high as 40% (Dominic et al., 

2007). 

 Superficial Candida infections related to implanted devices are much 

less serious, but are the most frequently encountered and can be problematic 

(Douglas, 2003; Jabra-Rizk et al., 2004; Mukherjee et al., 2005). One of the 

most common is denture stomatitis, a Candida infection of the oral mucosa 

that is promoted by a close-fitting upper denture and is present in up to 65% of 

edentulous persons (Chandra et al., 2001a; Jabra-Rizk et al., 2004; O'Toole et 

al., 2000).  

 A description of Candida biofilms on specific devices is presented in 

Table 1 (Ramage et al., 2006; Kojic et al., 2004).  Non-device-related 

infections can also involve biofilms; these include Candida endocarditis and 

Candida vaginitis  (Donlan & Costerton, 2002; Douglas, 2003).  

4.2  Model biofilm systems 

 A variety of biofilm models have been developed by different groups of 

researchers to investigate the properties of Candida biofilms in vitro. Almost 

all of these models have been adapted from methods reported previously for 

bacteria.  

 Hawser and Douglas (1994) initially described a simple method, involving 

growth of adherent populations on the surfaces of small discs cut from 

catheters. Growth of biofilms was monitored quantitatively by a colorimetric  
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Table 1. Some of the implantable devices on which Candida biofilms 

develop most frequently 

 

Device Annual use in 

the United States
Infection risk 

(%)

Central and peripheral 5 million 3-8 albicans

venous catheters glabrata

parapsilosis

Hemodialysis and albicans

peritoneal  dialysis parapsilosis

catheters

Urinary catheters Tens of 

millions

10-30 albicans

Endotracheal tubes Millions 10-25 albicans

albicans

glabrata

parapsilosis

tropicalis

Breast implants 130 000 1-2 albicans

parapsilosis

albicans

glabrata

Neurosurgical shunts 40 000 6-15 albicans

albicans

tropicalis

albicans

glabrata

240 000 1-20

Intracardiac prosthetic 

devices

400 000 1-3

Dentures > 1 million 5-10

Main Candida 

species

Prosthetic joints 600 000 1-3

Voice prostheses Thousands 50-100

Device Annual use in 

the United States
Infection risk 

(%)

Central and peripheral 5 million 3-8 albicans

venous catheters glabrata

parapsilosis

Hemodialysis and albicans

peritoneal  dialysis parapsilosis

catheters

Urinary catheters Tens of 

millions

10-30 albicans

Endotracheal tubes Millions 10-25 albicans

albicans

glabrata

parapsilosis

tropicalis

Breast implants 130 000 1-2 albicans

parapsilosis

albicans

glabrata

Neurosurgical shunts 40 000 6-15 albicans

albicans

tropicalis

albicans

glabrata

240 000 1-20

Intracardiac prosthetic 

devices

400 000 1-3

Dentures > 1 million 5-10

Main Candida 

species

Prosthetic joints 600 000 1-3

Voice prostheses Thousands 50-100

 

Reprinted from Ramage et al. (2006) by permission of the publisher, John Wiley 

and Sons; and from Kojic et al. (2004) by permission of the publisher, American 

Society for Microbiology. 
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assay involving the reduction of a tetrazolium salt, or by [3H] leucine 

incorporation. Subsequent in vitro model systems have included procedures 

with a variety of different acrylic strips and discs, glass slides, microtitre 

plates, cylindrical cellulose filters, perfused biofilm fermenters, polycarbonate 

membrane filters, and tissue culture flasks; these models have produced 

biofilms formed under both static and flow conditions (Al-Fattani & Douglas, 

2004; Baillie & Douglas, 1998a; Baillie & Douglas, 1999a; Chandra et al., 2001a; 

Honraet et al., 2005; Ramage & Lopez-Ribot, 2005). Among the various systems 

described, the 96-well microtitre plate method permits rapid processing of a 

large number of samples and has therefore been widely used. It has proved 

particularly valuable for determination and standardization of antifungal 

susceptibility testing in Candida biofilms (Ramage et al., 2001b; Ramage et al., 

2001c). Studies with different model systems have also identified factors 

affecting Candida biofilm development and phenotypic properties associated 

with this mode of growth.  

 More recently, two different animal models of catheter-associated 

Candida infections have been described, and visualization of the resulting 

biofilms formed in vivo has revealed structural features similar to those of 

biofilms formed in vitro (Andes et al., 2004; Schinabeck et al., 2004). These 

findings suggest that in vitro model systems can replicate in vivo events and 

therefore that the observations made may be clinically relevant (Ramage et 

al., 2005).  

4.2.1 Quantitative analysis of biofilm growth 

 Several methods have been used to measure the growth of Candida 

biofilms. Commonly used methods are: (a) uptake of radioactively labelled 

leucine; (b) determination of metabolic activity via reduction of tetrazolium 

salts by mitochondrial dehydrogenases or ferric reductase; (c) absorption of 

crystal violet dye, (d) determination of dry weight, (e) viable cell counts; and 

(f) measurement of ATP-bioluminescence (Baillie & Douglas, 1999b; Chandra et 

al., 2001b; Hawser & Douglas, 1994; Nikawa et al., 1996; Ramage et al., 

2001b). 
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4.3  Factors affecting biofilm formation 

 A number of environmental and growth factors can greatly influence the 

ability of Candida to form biofilms in vitro, including the Candida species, the 

nature of the surface colonized, the host-derived conditioning film, the liquid 

flow, and the type of nutrients available.  

4.3.1 Candida species and strain  

 Different Candida species show some correlation between their ability to 

form biofilms and their pathogenicity when tested in the catheter disc system. 

Isolates of C. parapsilosis, C. pseudotropicalis and C. glabrata all gave 

considerably less biofilm growth than the more pathogenic C. albicans (Hawser 

& Douglas, 1994). Recently, it has been confirmed that C. albicans isolates 

consistently produce more biofilm in vitro than non-C. albicans isolates (Kuhn 

et al., 2002a). 

4.3.2 Nature of colonized surface 

 The chemical nature and properties of the colonized surface play an 

important role in biofilm formation (Hawser & Douglas, 1994; Mukherjee et al., 

2005). In the catheter disc model system, the type of material used affected 

biofilm formation by C. albicans. Biofilm formation was slightly greater on 

latex or silicone elastomer than on polyvinylchloride, but was significantly 

reduced on polyurethane or 100% silicone (Hawser & Douglas, 1994). 

4.3.3 Presence of conditioning film 

  In vivo, catheters and other implants rapidly adsorb host proteins which 

form a conditioning film on the implant surface. Preincubation of PVC catheter 

discs in vitro with fibrinogen or collagen improved the formation of biofilms by 

C. albicans (Douglas, 2003; Mukherjee et al., 2005). Likewise, conditioning 

films of serum or saliva enhanced biofilm formation on denture acrylic 

(Chandra et al., 2001b; Nikawa et al., 1996). 

4.3.4 Liquid flow 

 In vivo, development of biofilms is frequently subjected to a liquid flow. 

This can be achieved in vitro by gentle shaking of the growing biofilm on a 
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catheter disc in liquid medium, to produce a flow of liquid over the surface of 

the cells (Hawser et al., 1998). More sophisticated flow systems include biofilm 

formation on cylindrical cellulose filters (Baillie & Douglas, 1998b; Baillie & 

Douglas, 1999a), in the perfused biofilm fermenter (Baillie & Douglas, 1999b), 

or in a modified Robbins device (Al-Fattani & Douglas, 2006). Biofilms of C. 

albicans incubated under these conditions produce substantially more matrix 

material than those incubated statically. 

4.3.5 Growth media and different nutrients 

 Nutrients play an important role in biofilm formation. The effect of 

different carbohydrates on C. albicans biofilm formation was examined and it 

was shown that biofilm formation reached a maximum after 48 h in a medium 

containing 500 mM galactose or 50 mM glucose and then declined; however, the 

cell yield was lower in the low-glucose medium (Hawser & Douglas, 1994). C. 

tropicalis and C. parapsilosis seem to form biofilms quite readily when grown 

in medium containing 8% glucose (Shin et al., 2002). 

4.4  Structure of Candida biofilms 

 The biofilm development cycle includes adhesion of planktonic cells to 

the surface, growth and secretion of extracellular polymers (forming the 

mature biofilm with mushroom-shaped microcolonies) and cell detachment 

(Fig. 9). The architecture of biofilms formed by Candida species shares several 

properties with bacterial biofilms (Chandra et al., 2001a; Douglas, 2003; Jabra-

Rizk et al., 2004; O'Toole et al., 2000). However, many fully mature Candida 

biofilms have a mixture of morphological forms and consist of a dense network 

of yeasts and filaments in a matrix of extracellular polymeric material. Some 

non-C. albicans species such as C. glabrata (Chandra & Ghannoum, 2004; Kuhn 

et al., 2002a) and some isolates of C. parapsilosis (Laffey & Butler, 2005) form 

biofilms that contain yeast cells with no filaments. 

 Biofilm formation by C. albicans proceeds in three distinct 

developmental phases: initial adherence, followed by proliferation, and  

maturation over a period of 24 to 48 h (Chandra et al., 2001a; Hawser & 

Douglas, 1994; Ramage et al., 2001a). Scanning electron microscopy was shown 

that mature biofilms of C. albicans grown on catheter material consist of  
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Figure 9. Different stages in the biofilm life cycle 

1. Initial reversible attachment of free swimming micro-organisms to surface  

2. Permanent chemical attachment, single layer, microorganisms begin making 

slime  

3. Early vertical development  

4. Maturing biofilms (mushroom-shaped microcolonies) with multiple layers and 

channels between the microcolonies 

5. Mature biofilm with seeding / dispersal of more free swimming micro-

organisms  

Reprinted by courtesy of Center for Biofilm Engineering, Montana State 

University, USA (www.erc.montana.edu). 
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yeasts, hyphae and pseudohyphae arranged in a bilayer structure; there is a 

dense, basal yeast layer that anchors the biofilm to the catheter surface, and 

an overlying but more open, hyphal layer (Douglas, 2003; Kuhn et al., 2002a) 

(Fig. 10). Subsequent studies indicated that in vivo biofilms are structurally 

similar to those described in vitro model except for numerous host cells 

including red blood cells, platelets, macrophages and neutrophils that are 

embedded in the matrix (Andes et al., 2004; Schinabeck et al., 2004).  

Recent advances in confocal laser scanning microscopy (CLSM), provided 

the opportunity to visualize living biofilms in a fully hydrated condition. C. 

albicans biofilms were observed as three-dimensional structures consisting of 

microcolonies of yeasts and hyphae surrounded by a matrix of extracellular 

polymeric material and separated by water channels to facilitate nutrient 

circulation and disposal of waste products (Chandra et al., 2001a; Douglas, 

2003; Kumamoto & Vinces, 2005). The CLSM technique has also shown that 

Candida biofilms can range in thickness from 25 µm to more than 450 µm 

(Chandra et al., 2001a). 

 Quorum sensing appears to play an important role in Candida biofilm 

formation and to date two quorum sensing molecules have been identified: 

farnesol and tyrosol (Alem et al., 2006; Ramage et al., 2002b). This strategy of 

cell-cell communication contributes to the biofilm’s wellbeing by preventing 

unnecessary overpopulation and controlling competition for nutrients; it also 

has important implications in the infectious process, especially for 

dissemination and for the establishment of distal sites of infection (Nickerson 

et al., 2006; Ramage et al., 2002b). Quorum sensing systems may regulate the 

active detachment of cells by the production of enzymes to break down the 

biofilm extracellular polymeric matrix (Ghannoum & OToole, 2004; Kruppa, 

2009).    

 The matrix composition of C. albicans biofilms has been studied and 

compared with the extracellular polymeric material collected from culture 

supernatants of planktonically grown organisms. Both materials contained 

carbohydrate, protein, phosphorus and hexosamine. However, the matrix had 

considerably less carbohydrate (41%), and protein (5%). It also had a higher 

proportion of glucose (16%) than mannose and contained galactose (Baillie & 

Douglas, 2000). In a recent study, the biofilm matrix of C. tropicalis was  
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Figure 10. Stages in the formation of a Candida albicans biofilm on a 

polyvinylchloride (PVC) catheter surface  

(a) Catheter surface with an adsorbed conditioning film of host proteins (black 

dots). (b) Initial yeast (red) adhesion to the surface. (c) Formation of the basal 

layers of yeast microcolonies. These anchor each microcolony to the surface. 

(d) Completion of microcolony formation by addition of the upper, mainly 

hyphal layer and matrix material (yellow) that surrounds both yeasts (red) and 

hyphae (green). Mature biofilms contain numerous microcolonies with 

interspersed water channels to allow circulation of nutrients. On other surfaces 

(e.g. cellulose fibres) microcolonies consisting entirely of yeast cells are 

produced. Reprinted from Douglas (2003) by permission of the publisher, 

Elsevier. 
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analyzed and shown to contain large amounts of hexosamine (27.4%) with 

smaller proportions of carbohydrate (3.3%, including 0.5% glucose), protein, 

and phosphorus (Al-Fattani & Douglas, 2006). 

4.5  Mixed-species biofilms 

 Biofilms that are formed by a mixture of Candida species and bacteria 

(polymicrobial biofilms) are probably common in vivo (El-Azizi et al., 2004). In 

vitro, various studies suggest that extensive interactions between these species 

occur. For example, the catheter disc model has been used to investigate 

mixed–species biofilms consisting of C. albicans and Staphylococcus 

epidermidis. Two strains of S. epidermidis were used: a slime-producing wild-

type and a slime-negative mutant. Both strains of S. epidermidis showed 

numerous physical interactions with both yeast and hyphal forms of C. albicans 

(Adam et al., 2002).  Moreover, drug susceptibility studies suggested that 

fungal cells can modulate the action of antibiotics, and bacteria can affect 

antifungal activity in these biofilms. The presence of C. albicans in the biofilm 

increased the resistance of slime-negative staphylococci to vancomycin, 

whereas Candida resistance to fluconazole was enhanced in the presence of 

slime-producing staphylococci (Adam et al., 2002).  

 Antagonistic interactions have been observed in mixed-species biofilms 

consisting of Pseudomonas aeruginosa and C. albicans. In vitro studies showed 

that P. aeruginosa formed a dense biofilm on C. albicans hyphae, and killed the 

fungus. However, the bacteria were unable to bind to, or kill, yeast-form C. 

albicans (Hogan & Kolter, 2002). Subsequent studies showed that P. aeruginosa 

excretes a compound structurally similar to the quorum sensing molecule, 

farnesol, which inhibits yeast-hyphal morphogenesis (Hogan et al., 2004). 

4.6  Biofilm resistance to antimicrobial agents 

 Microbial biofilms not only serve as a nidus for disease but are also 

notoriously resistant to a wide range of antimicrobial agents (Donlan, 2001; 

Hoyle & Costerton, 1991; Jabra-Rizk et al., 2004). In vitro, bacterial cells in a 

biofilm are 10-1000 times more resistant to antibiotics than planktonic cells 

(Donlan & Costerton, 2002). Similar findings with Candida biofilms were first 

reported in 1995 (Hawser & Douglas, 1995). Clinically important antifungal 

agents, including amphotericin B, fluconazole, flucytosine, itraconozole, and 
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ketoconazole were tested against different Candida species. All these agents 

showed much less activity against C. albicans biofilms than against planktonic 

cells. Concentrations of antifungal agent required to reduce metabolic activity 

by 50% were five to eight times higher than for planktonic cells, and 30-2000 

times higher than the corresponding minimum inhibitory concentrations. 

Biofilms of non-C. albicans species such as C. tropicalis, C. parapsilosis, C. 

krusei, and C. glabrata were also drug resistant (Hawser & Douglas, 1995). 

Subsequent studies have demonstrated drug resistance for Candida biofilms 

grown in a variety of model systems in vitro (Baillie & Douglas, 1998b; Chandra 

et al., 2001a; Chandra et al., 2001b; Mukherjee & Chandra, 2004; Ramage et 

al., 2001b). Moreover, with in vivo animal models, Candida biofilms showed a 

resistant phenotype similar to that of biofilms formed in vitro (Kuhn et al., 

2002b).  

 Since antifungal therapy is often ineffective, biofilm-associated 

infections are problematic and removal of the infected device is 

recommended. However, in the case of infected heart valves, central nervous 

system shunts and joint prostheses, removal may result in serious implications 

for the patient (Jabra-Rizk et al., 2004). Therefore, there is an obvious 

requirement for antifungal drugs that are active against this type of infection. 

Recently, two classes of antifungal agents, namely, lipid formulations of 

amphotericin B (liposomal AMB and AMB lipid complex) and the echinocandins, 

have shown activity against Candida biofilms. The mechanism behind their 

unique activity is unclear (Kuhn et al., 2002b). 

4.7  Possible mechanisms of biofilm drug resistance 

 The mechanisms of biofilm-associated resistance to antimicrobial agents 

are not fully understood. In bacteria, resistance appears to be multifactorial 

and may vary with the bacteria present in the biofilm and the  nature of the 

antimicrobial agent being administered (Mah & O'Toole, 2001).  With Candida 

biofilms, at least four factors have been considered to be responsible for 

increased resistance to antimicrobial agents. These are: a) restricted drug 

diffusion through the matrix of extracellular polymeric material, b) phenotypic 

differences resulting from low growth rate or nutrient depletion, c) surface 

contact-induced gene expression and d) the presence of “persister” cells 

(Douglas, 2003; Mukherjee & Chandra, 2004; Ramage et al., 2005). Cell density 
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(Perumal et al., 2007), membrane sterols (Mukherjee et al., 2003), and cell 

wall glucans (Nett et al., 2007b) could also play a role. To date, most evidence 

suggests that drug resistance in Candida biofilms may be due to a combination 

of two or more of these mechanisms. 

4.7.1 Restricted drug diffusion 

 The production of extracellular polymeric matrix is one of the 

distinguishing characteristics of biofilms. It has long been supposed that this 

matrix might act as a barrier to the diffusion of antimicrobial agents. This was 

investigated in C. albicans by comparing the susceptibility profiles of biofilms 

grown under liquid flow conditions (maximal matrix production) with those of 

biofilms grown under static conditions (minimal matrix production). Both types 

of biofilm were resistant to antifungal drugs with no significant differences 

(Baillie & Douglas, 2000); this suggests that drug resistance is unrelated to the 

extent of matrix formation. However, other studies with biofilms produced 

under flow conditions showed that resuspended cells (which had previously lost 

most of their matrix) were 20% less resistant to amphotericin B than the intact 

biofilms (Baillie & Douglas, 1998a; Baillie & Douglas, 1998b). These results with 

resuspended biofilm cells were subsequently confirmed elsewhere (Ramage et 

al., 2002a).  

 More recently, a filter disc assay was used to examine the penetration of 

antifungal drugs (flucytosine, fluconazole, amphotericin B, and voriconazole) 

into single- and mixed-species biofilms containing Candida. In single-species 

Candida biofilms, fluconazole penetration was more rapid than penetration by 

flucytosine. Each drug showed similar diffusion rates through biofilms of three 

strains of C. albicans. However, the rates of drug diffusion through biofilms of 

C. glabrata or C. krusei were faster than those through biofilms of C. 

parapsilosis or C. tropicalis. In all cases, after 3 to 6 h the drug concentration 

at the distal edge of the biofilm was very high but failed to yield complete 

killing of biofilm cells. In mixed-species biofilms containing C. albicans and S. 

epidermidis, the diffusion of all four antifungal agents was very slow. In these 

experiments, the drug concentrations at the distal edges of the biofilms 

substantially exceeded the MIC. Thus, although the presence of bacteria and 

bacterial matrix material undoubtedly retarded the penetration of the 
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antifungal drugs, poor penetration does not account for the drug resistance of 

Candida biofilm cells, even in these mixed-species biofilms (Al-Fattani & 

Douglas, 2004).  

 Subsequently, the same research group used a different model biofilm 

system to investigate further the role of the matrix in biofilm resistance to 

antifungal agents. Biofilms of C. albicans were grown under conditions of 

continuous flow in a modified Robbins device (Al-Fattani & Douglas, 2006). 

These biofilms produced more matrix material than those grown statically and 

were significantly more resistant to amphotericin B. Biofilms of C. tropicalis 

produced copious amounts of matrix material and were completely resistant to 

amphotericin B and fluconazole. Mixed-species biofilms containing C. albicans 

and a slimy strain of S. epidermidis, when grown statically or in the modified 

Robbins device, were completely resistant to both drugs. On the other hand, 

mixed-species biofilms of C. albicans and a slime-negative mutant of S. 

epidermidis were completely drug resistant only when grown under flow 

conditions (Al-Fattani & Douglas, 2006).  Overall, these results suggest that the 

matrix might play a significant role in biofilm drug resistance, especially when 

biofilms are grown under flow conditions similar to those found in catheter 

infections in vivo. 

4.7.2 Slow growth rate and nutrient limitation 

 Biofilm cells, especially those at the bottom of the biofilm, are expected 

to experience some form of nutrient limitation, which in turn slows their 

growth rate. A slow growth rate is often associated with phenotypic changes 

such as alteration in cell surface composition that may affect the susceptibility 

of the microorganisms to antimicrobial agents. Moreover, various studies have 

shown that antimicrobial agents are more effective in killing rapidly growing 

cells (Mah & O'Toole, 2001). Therefore, growth rate could be an important 

modulator of drug activity in biofilms (Donlan & Costerton, 2002; Mah & 

O'Toole, 2001). To examine the effect of growth rate with C. albicans, a 

perfused biofilm fermentor was used to produce biofilms at different growth 

rates. The susceptibility of the biofilm cells to amphotericin B was then 

compared with that of planktonic organisms grown at the same rate in a 

chemostat. The results showed that biofilm cells were resistant to 
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amphotericin B at all growth rates tested, while planktonic cells were resistant 

only at low growth rates (Baillie & Douglas, 1998a). Therefore, biofilm 

resistance depends on some other feature of the biofilm mode of growth and is 

not only the result of a low growth rate. 

 Subsequent studies demonstrated that drug resistance is associated with 

an increase in the metabolic activity of the developing biofilm (Chandra et al., 

2001a; Chandra et al., 2001b) and that drug resistance develops over time, 

coincident with biofilm maturation. A separate investigation by Baillie and 

Douglas (1998b), using the cylindrical cellulose filter model system, reported 

that glucose-limited and iron-limited biofilms grown at the same low rate were 

equally resistant to amphotericin B. In the same study, daughter cells from 

iron-limited biofilms were significantly more susceptible to the drug than those 

from glucose-limited biofilms. An acute disseminated infection produced by the 

release of such cells from an implant biofilm might therefore respond rapidly to 

amphotericin B treatment but the biofilm would be unaffected. 

4.7.3 Surface contact-induced gene expression 

 When cells attach to a surface and form a biofilm, they express an 

altered phenotype. There is a special interest in trying to identify the genes 

that are activated or repressed in biofilms as compared with planktonic cells, 

particularly genes that might contribute to increased resistance to 

antimicrobial agents. Antifungal resistance in planktonic cells of C. albicans has 

been associated with the expression of two different types of efflux pump, 

encoded by CDR and MDR genes, respectively. Recent studies have 

demonstrated that both CDR and MDR genes are upregulated during biofilm 

formation and development. However, mutant strains lacking one or both 

pumps were highly susceptible to fluconazole when growing planktonically but 

still retained the resistant phenotype during biofilm growth (Ramage et al., 

2002a). A separate study investigated the antifungal susceptibilities of biofilms 

developed by C. albicans Cdr1/Cdr2 and Cdr1/Cdr2/Mdr1 double and triple 

mutants. Biofilms formed by these mutants were more susceptible to 

fluconazole at an early stage of biofilm development than the wild-type strain.  

At later time points (12 and 48 h), all the strains became resistant to 

fluconazole. These studies indicate that efflux pumps are differently expressed 
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during biofilm formation and that they contribute to azole resistance in the 

early phase of biofilm formation but not in the later phases (Mukherjee et al., 

2003). 

4.7.4 Existence of “persister” cells 

 A recently proposed hypothesis for the resistance of bacterial biofilms is 

that a subpopulation of microorganisms in a biofilm differentiates into a unique 

and highly protected phenotypic state in the presence of a bactericidal agent, 

similar to spore formation (Spoering & Lewis, 2001; Stewart & Costerton, 

2001). Persisters were first noted in planktonic cultures by Joseph Bigger (1944) 

in one of the first studies on the mechanism of penicillin action. The persister 

phenomenon has recently received increased attention in the context of 

biofilms where persisting cells have the added protection of an extracellular 

matrix (Spoering & Lewis, 2001).  

 Persisters, which might consist of 1% or less of the original population, 

remain dormant (neither grow nor die) despite continued exposure to an 

antimicrobial drug (Lewis, 2005). These cells can withstand drug concentrations 

substantially above the MIC and represent special survivor cells that are 

phenotypic variants of the wild type, rather than mutants (Keren et al., 2004b; 

Lewis, 2000). The immune system is able to clear any planktonic persisters 

whereas in a biofilm, persisters are protected by the matrix against immune 

cells. Biofilm persisters are formed by all bacterial species studied, and are 

present at 0.1-1% in biofilms of Pseudomonas aeruginosa, Escherichia coli, or 

Staphylococcus aureus, for example (Keren et al., 2004b). Bacteria produce 

multidrug-tolerant persister cells in both planktonic and biofilm populations 

(Brooun et al., 2000; Keren et al., 2004b; Spoering & Lewis, 2001). A biphasic 

pattern of killing is a defining feature demonstrating the presence of persisters 

in bacterial populations; the majority of the population is rapidly killed, 

whereas a small fraction of the cells are unaffected even by prolonged 

antibiotic treatment (Brooun et al., 2000; Stewart, 2002). 

 The existence of such cells in Candida species has been reported 

recently. Certain cells at the base of a C. albicans biofilm were shown to have 

increased resistance to the antiseptic, chlorhexidine (Suci & Tyler, 2003). In 

addition, small subpopulations in biofilms of both C. albicans and C. tropicalis 
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were found to be 4 to 533 times more tolerant of high concentrations of metal 

chelating agents than the corresponding planktonic cell populations (Harrison 

et al., 2007). Increased resistance to amphotericin B was also detected in a 

subpopulation of C. albicans biofilms which remained adhering to the surface 

of a tubular flow cell after most cells were washed away. These cells were 

resistant to amphotericin B  at ten times the concentration that eliminated 

planktonic populations, and the high level of resistance appeared to correlate 

with differential regulation of the ergosterol and β-1,3 glucan genes ERG1, 

ERG25, SKN1, and KRE1 (Khot et al., 2006).  

 A separate study by LaFleur and colleagues (2006) demonstrated that a 

subpopulation of cells within C. albicans biofilms exhibited multidrug 

tolerance. In this investigation, biofilms of C. albicans exhibited a biphasic 

killing pattern in response to two microbicidal agents, amphotericin B and 

chlorhexidine, indicating the presence of persisters. The extent of killing with a 

combination of amphotericin B and chlorhexidine was similar to that obtained 

with individually added antimicrobials, and it was thus concluded that surviving 

persisters form a multidrug-tolerant subpopulation. Unlike bacterial 

populations, surviving C. albicans persisters were detected only in biofilms, and 

not in planktonic, exponentially growing or stationary-phase populations. 

Reinoculation of cells that survived killing by amphotericin B produced a new 

biofilm with a new subpopulation of persisters, suggesting that C. albicans 

persisters are not mutants, but phenotypic variants of the wild type. Given that 

persisters were produced only in the biofilm, mutants defective in biofilm 

formation were examined for persister production. Interestingly, all biofilm-

defective mutants treated with high concentrations of amphotericin B were 

able to produce normal levels of persisters. This result may indicate that 

attachment rather than formation of a complex biofilm architecture initiates 

persister formation. 

 Mammalian cells with serious damage may undergo programmed cell 

death or apoptosis. In this respect, it has been suggested that treatment of 

microorganisms with antimicrobial agents triggers a programmed suicide 

mechanism, resulting in death from apoptosis (Gilbert et al., 2002; Lewis, 

2005). Persisters may represent cells with defective programmed cell death 

rather than inherent resistance to the agent (Jabra-Rizk et al., 2004), i.e., 
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inhibition of programmed cell death allows the cells to exhibit tolerance to 

antimicrobial drugs (Lewis, 2005). 

 

5 Apoptosis 

 Cell death is a completely normal process in living organisms and plays a 

major role in physiological processes of multicellular organisms, particularly 

during embryogenesis and metamorphosis (Lockshin & Zakeri, 2001). The term 

programmed cell death was first introduced in 1964, to describe a process 

whereby cell death during development is not accidental in nature but follows 

a sequence of controlled and regulated steps leading to locally and temporally 

defined self destruction (Lockshin & Williams, 1964).  In 1972, Kerr and 

coworkers coined the term ‘apoptosis’ to describe the processes leading to 

controlled cellular self destruction. Apoptosis is involved in various biological 

processes such as development, differentiation, proliferation/homoeostasis, 

regulation and function of the immune system, and in the removal of defective 

and therefore harmful cells (Wyllie et al., 1980). Defects in apoptosis can 

result in uncontrolled cell proliferation (such as in cancer), autoimmune 

diseases and spreading of viral infections, while excessive apoptosis can cause 

neurodegenerative disorders, AIDS, and ischemic heart diseases (Thompson, 

1995).   

5.1  Apoptosis in mammalian cells 

 Apoptosis is characterized by cell shrinkage (the cell shows deformation 

and loses contact with its neighbouring cells), chromatin condensation, nuclear 

fragmentation, plasma membrane blebbing, and cell fragmentation into 

compact membrane-enclosed structures called ‘apoptotic bodies’. The 

apoptotic bodies are engulfed by macrophages (in mammals) or by 

neighbouring cells, without causing an inflammatory response (Griffin & 

Hardwick, 1997). Apoptosis is quite different from the necrotic mode of cell 

death in which the cells suffer a major insult, resulting in a loss of membrane 

integrity, swelling and rupture of the cells. During necrosis, the cellular 

contents are released in an uncontrolled way into the cell's environment and 

this results in damage to the surrounding cells, inflammatory responses and, 
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potentially, serious health problems (Lawen, 2003; Leist & Jaattela, 2001; Van 

Cruchten & Van Den Broeck, 2002) (Fig. 11). 

 Apoptosis can be triggered by a wide variety of stimuli from outside 

(extrinsic inducers) or inside (intrinsic inducers) the cell. Extrinsic signals may 

include toxins, hormones, growth factors, or cytokines (Cobb & Schaefer, 1997; 

Kirby, 2004) while intrinsic signalling can be initiated by a cell in response to 

stress such as DNA damage (e.g. by radiation or chemotherapeutic drugs) or 

starvation, as well as to oxidative stress (Kaufmann & Earnshaw, 2000; Wang, 

2001). The key effectors that modulate apoptosis are cysteinyl aspartate-

specific proteases (caspases). Strictly defined, cell death can only be classified 

to follow a classical apoptosis mode if execution of cell death is dependent on 

caspase activity (Leist & Jaattela, 2001). These caspases exist within the cell in 

an inactive form and they can be cleaved to form active enzymes following the 

induction of apoptosis. Once the initiator caspases have been activated, a 

sequential activation of caspases takes place. These enzymes cleave other 

caspases and non-caspase substrates such as proteins of the DNA repair system, 

resulting in the mediation and amplification of the death signal and eventually 

in the execution of cell death with all the characteristic features of apoptosis 

(Earnshaw, 1999). However, there are also potential negative regulators of 

apoptosis including Bcl-2 family proteins and inhibitor-of-apoptosis proteins 

(White, 1996).  

5.2  Apoptosis in yeasts  

 Recent studies indicate that yeasts undergo programmed cell death for 

several good reasons. For example, the death of aged, infertile, damaged, or 

virus-infected yeast cells may ensure the survival of the rest of the population 

(Buttner et al., 2006). A large number of exogenous stimuli have also been 

found to induce apoptosis-like cell death in yeasts (Madeo et al., 2004). These 

include stress stimuli such as hydrogen peroxide, acetic acid, hyperosmotic 

stress, ultraviolet irradiation, mating pheromone exposure, amino acid 

starvation, aspirin, and some antifungal drugs (Almeida et al., 2008; Frohlich & 

Madeo, 2000; Gourlay et al., 2006; Hiramoto et al., 2003; Madeo et al., 1997; 

Silva et al., 2005).  
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Figure 11.  Hallmarks of the apoptotic and necrotic cell death process 

Apoptosis includes cellular shrinking, chromatin condensation and margination 

at the nuclear periphery with the eventual formation of membrane-bound 

apoptotic bodies which contain organelles, cytosol and nuclear fragments. 

These bodies are phagocytosed without triggering inflammatory processes. The 

necrotic cell swells, becomes leaky and finally is disrupted and releases its 

contents into the surrounding tissue resulting in inflammation. Reprinted from 

Van Cruchten & Van Den Broeck (2002) by permission of the publisher, John 

Wiley and Sons. 
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Phillips and colleagues (2003) reported that planktonically grown cells of C. 

albicans, when treated with low concentrations of amphotericin B or H2O2, 

exhibit cellular changes reminiscent of mammalian apoptosis. These include 

nuclear fragmentation, chromatin condensation, phosphatidylserine 

externalization, reactive oxygen species accumulation, and arrest in G2/M cell 

cycle phases. In Saccharomyces cerevisiae, one caspase-like protease 

(metacaspase Mca1p) has been identified that functions similarly to caspases in 

mammalian cells  (Madeo et al., 2002). Several studies have demonstrated that 

apoptosis in S. cerevisiae may be dependent on the activity of the metacaspase 

Mca1p (also known as MCA1 or YCA1) (Bettiga et al., 2004; Khan et al., 2005; 

Madeo et al., 2002). However, in other studies, the apoptotic killing response 

was shown to be Mca1p-independent, indicating the presence of additional 

caspase-like activity in S. cerevisiae (Hardwick & Cheng, 2004; Hauptmann et 

al., 2006; Herker et al., 2004; Vachova & Palkova, 2005; Wissing et al., 2004). 

More recently, Cao et al. (2009) have found that C. albicans contains a putative 

metacaspase CaMCA1 which shows homology to S. cerevisiae metacaspase. The 

deletion of CaMCA1 resulted in decreased caspase activity and in resistance to 

oxidative stress (Cao et al., 2009). 

 Histone acetylation and deacetylation play critical roles in eukaryotic 

gene transcriptional regulation (Grunstein, 1997; Howe et al., 1999). 

Acetylation is generally associated with activation, whereas lack of acetylation 

tends to correlate with repression; these two processes work together to 

achieve appropriate levels of transcription (Sterner & Berger, 2000). Histone 

deacetylases (HDAs) selectively regulate chromatin structure, which in turn 

affects the folding patterns and interactions between DNA and DNA-binding 

proteins (Grozinger & Schreiber, 2002; Mai et al., 2007). To date, more than 50 

non-histone proteins have been identified as substrates for one or another of 

the HDAs. These substrates include proteins with regulatory roles in cell 

proliferation, cell migration, and cell death (Dokmanovic et al., 2007). HDA 

inhibitors such as valproic acid, trichostatin A, and butyric acid are known to 

induce apoptosis in mammalian cells (Kawagoe et al., 2002). In fungi, histone 

deacetylases are also important regulators of many cellular functions and HDA 

inhibitors have been found to affect a number of processes in these organisms 

(Kurdistani & Grunstein, 2003; Mai et al., 2007; Simonetti et al., 2007; Smith & 

Edlind, 2002). Valproic acid induces YCA1-dependent apoptosis in S. cerevisiae 
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(Mitsui et al., 2005). In C. albicans, HDA inhibitors have been reported to 

enhance sensitivity to azoles and other antifungal agents (Mai et al., 2007; 

Smith & Edlind, 2002), to inhibit adhesion and serum-induced germ-tube 

formation (Noverr & Huffnagle, 2004; Simonetti et al., 2007), and to promote 

colony-type switching (Klar et al., 2001; Srikantha et al., 2001).  
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6 Aims and Objectives of Research 

 Most hospital-acquired implant-based infections attributable to fungi are 

caused by Candida albicans and other closely related Candida species. These 

organisms are able to form adherent biofilms on the surfaces of catheters, joint 

replacements, prosthetic heart valves, and other medical devices. Candida 

biofilm-associated infections are resistant to a range of antifungal agents in 

current clinical use. As a result, antifungal therapy is often ineffective and 

removal of these devices is recommended. However, in the case of infected 

heart valves, central nervous system shunts and joint prostheses, removal may 

result in serious consequences for the patient. The basis of biofilm drug 

resistance is poorly understood. The aim of this project was to investigate 

possible resistance mechanisms, with particular emphasis on restricted drug 

penetration through the biofilm matrix and the existence of persisters in 

Candida biofilms. Research concentrated on two fungicidal agents: 

amphotericin B which has long been used for the treatment of systemic 

infections, and caspofungin, a newly licensed drug reported to show some 

activity against biofilms. 

Specific objectives were the following: 

1. To compare the susceptibility to amphotericin B and caspofungin of 

 Candida biofilms at different developmental phases in vitro. 

2. To determine the penetration of caspofungin through biofilms of 

 different Candida species using a filter disc assay. 

3. To investigate the presence of persister (drug-tolerant) cells in 

 planktonic cultures and biofilms of Candida species by means of 

 fluorescein staining and viability measurements. 

4. To explore the existence of apoptosis in Candida biofilms and to 

 determine the effect of apoptosis activators and inhibitors on drug 

 resistance.  
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1 Candida species 

 Six Candida isolates were used in this study. C. albicans GDH2346 was 

originally isolated from a patient with denture stomatitis at Glasgow Dental 

Hospital. C. albicans SC5314 was kindly provided by Professor Neil. A. R. Gow, 

University of Aberdeen, Aberdeen, Scotland. C. glabrata AAHB12, C. tropicalis 

AAHB73, and C. parapsilosis AAHB4479 were isolated from patients with line 

infections at Crosshouse Hospital, Kilmarnock, Scotland. C. krusei was obtained 

from a clinical specimen and came from the Regional Mycology Reference 

Laboratory, Glasgow, Scotland. 

 All isolates were maintained on slopes of Sabouraud dextrose agar (SDA; 

Difco) and stored at 2 to 8°C. Fresh slopes were prepared at 2-monthly 

intervals from long-term stocks held in 50% glycerol at -70°C. 

 

2 Growth media 

2.1  Sabouraud dextrose agar 

 Sabouraud dextrose agar (SDA; Oxoid; 65g/litre) was autoclaved for 15 

min at 121°C. The final pH was 5.6 ± 0.2. After autoclaving and cooling to 

50°C, the medium was dispensed in petri dishes or universal bottles for slope 

cultures. This medium was used to maintain Candida isolates.  

2.2   Yeast nitrogen base 

 Yeast nitrogen base medium (YNB; Difco) was supplemented with 50 mM 

glucose as a carbon source. This medium was used as a standard liquid medium 

for growth of planktonic cells and biofilms. One litre of this medium contained 

of 6.7 g of yeast nitrogen base and 9 g of glucose (50 mM) and the final pH was 

5.4. The medium was autoclaved at 10 p.s.i for 10 min. 

2.3   YNB agar with 50mM or 200mM glucose 

 YNB containing 50 mM glucose was prepared as described earlier (section 

2.2). Agar powder (12 g/litre; Duchefa) was added before autoclaving. The 

medium was dispensed into petri dishes. YNB agar with 50 mM glucose was used 

for drug penetration assays. YNB agar supplemented with 200 mM glucose 
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(36g/litre) was used for lawn production by the indicator strain during drug 

penetration assays and for viable cell counts. 

2.4  YNB agar containing antifungal agents 

 Using a sterile filtration unit (Sartorius Minisart; pore size, 0.2 µm), the 

drug solution was filtered into culture medium (YNB agar containing 50 mM 

glucose) buffered with 0.165 M morpholinepropanesulfonic acid (MOPS; 34.53 

g/litre; Sigma) to pH 7, and kept molten at 50°C. The medium was dispensed in 

petri dishes and used for drug penetration assays. 

2.5   RPMI 1640 buffered with MOPS 

 RPMI 1640 liquid medium (with L-glutamine; Cambrex) was buffered with 

MOPS (34.53 g/litre; Sigma) to pH 7 at 25°C (National Committee for Clinical 

Laboratory Standards, 1995). The medium was then filter sterilized using a 

sterile filtration unit (Sartorius Minisart; pore size, 0.2 µm) and stored at 4°C. 

This medium was used for MIC determinations.  

2.6  RPMI 1640 buffered with HEPES 

 RPMI 1640 liquid medium (with L-glutamine; Cambrex) was buffered with 

HEPES [4-(2-Hydroxyethyl) piperazine-1-ethanesulforic acid, sodium salt; 16.4 

g/litre] to pH 7 at 25°C (National Committee for Clinical Laboratory Standards, 

1995). The medium was then filter sterilized using a sterile filtration unit 

(Sartorius Minisart; pore size, 0.2 µm) and stored at 4°C. This medium was used 

for killing curve assays.  

 

3 Chemicals 

3.1   Antifungal agents 

3.1.1 Fluconazole 

 Stock solutions of fluconazole (800 µg/ml; Sigma) were prepared in 

sterile water and filter sterilized. Small volumes of the solution were dispensed 

into sterile vials and stored at -20°C. 
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3.1.2 Amphotericin B 

 Stock solutions of amphotericin B (8000 µg/ml or 40 mg/ml; Sigma) were 

dissolved in dimethyl sulphoxide (DMSO) and filter sterilized. Small volumes of 

the solution were dispensed into sterile vials and stored at -20°C. Amphotericin 

B is light sensitive and therefore aliquots were protected in foil. 

3.1.3 Caspofungin 

 Stock solutions of caspofungin (800 µg/ml; Merck) were prepared in 

sterile water and filter sterilized. Small volumes of the solution were dispensed 

into sterile vials and stored at -20°C. 

3.2   Tetrazolium salt XTT 

 The tetrazolium salt, XTT [2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-

tetrazolium-5-carboxanilide] was used as an indicator of cell viability. XTT is 

reduced by mitochondrial dehydrogenases to a brown-coloured tetrazolium 

formazan product.  The dye formed is water soluble and the dye intensity can be 

read at a given wavelength with a spectrophotometer.  The intensity of the dye is 

proportional to the number of metabolically active cells.  

3.3  Live-dead cell staining  

3.3.1 Fluorescein diacetate 

 Fluorescein diacetate (3,6-Diacetoxyfluoran; Di-O-acetylfluorescein; 

Sigma) is a fluorescent dye used to distinguish dead yeast cells from living 

cells. This dye specifically stains dead yeast cells with a green fluorescence.  

3.4  Apoptosis inhibitors (Caspase inhibitors) 

3.4.1 Z-VAD-FMK 

 Stock solutions (14.7 mM) of the general caspase inhibitor, Z-VAD-FMK 

(Calbiochem) were prepared in DMSO and stored in small aliquots at -20°C.  
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3.4.2 Caspase inhibitor set III 

 Caspase Inhibitor Set III was supplied by the manufacturer (Calbiochem) 

as 2 mM solutions in DMSO and consisted of: caspase-1 inhibitor VI (Z-YVAD-

FMK); caspase-2 inhibitor I (Z-VDVAD-FMK); caspase-3 inhibitor II (Z-DEVD-FMK); 

caspase-5 inhibitor I (Z-WEHD-FMK); caspase-6 inhibitor I (Z-VEID-FMK); 

caspase-8 inhibitor II (Z-IETD-FMK); and caspase-9 inhibitor I (Z-LEHD-FMK). 

Caspase Inhibitors were stored at -20°C. 

3.5   Apoptosis inducers (Histone deacetylase inhibitors) 

3.5.1 Sodium butyrate 

 Stock solutions of sodium butyrate (1 M; Sigma) were prepared in sterile 

water. Small volumes of the solution were dispensed into sterile vials and 

stored at -20°C. 

3.5.2 Sodium valproate 

 Stock solutions of sodium valproate (1 mg/ml; Sigma) were prepared in 

sterile water. Small volumes of the solution were dispensed into sterile vials 

and stored at -20°C. 

3.5.3 Trichostatin A 

 Stock solutions of trichostatin A (10 mg/ml; Calbiochem) were prepared 

in DMSO and stored in small aliquots at -20°C.  

3.5.4 Apicidin 

 Stock solutions of apicidin (10 mg/ml; Calbiochem) were prepared in 

DMSO and stored in small aliquots at -20°C.  

3.6  Apoptosis detection kits 

3.6.1 SR-FLICA 

 An SR-FLICA (Sulforhodamine-Fluorescent Labelled Inhibitors of 

Caspases) apoptosis detection assay (Immunochemistry Technologies) was used 

to detect apoptotic cells. The SR-VAD-FMK FLICA reagent comprises 3 
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segments: a red fluorescent label (Sulforhodamine; SR); an amino acid peptide 

inhibitor sequence targeted by all active caspases (VAD); and a 

fluoromethylketone group (FMK) which acts as a leaving group and helps form a 

covalent bond with the active caspase enzyme. SR-VAD-FMK irreversibly binds 

to many activated caspases (caspase-1, -3, -4, -5, -6, -7, -8, and -9). The FLICA 

reagent is supplied as a highly concentrated lyophilized powder. It is 

reconstituted in 50 µl DMSO forming a 150-fold stock concentrate and then 

diluted 1 in 5 in PBS to form a final 30-fold concentrated working solution. For 

best results, the working solution is used the same day that it is prepared; 

however, the stock concentrate can be stored at -20ºC for 6 months. 

3.6.2 CaspSCREEN apoptosis detection 

 A CaspSCREENTM kit (Biovision Research Products, CA) was also used to 

detect caspase activity. The assay is based on the cleavage of (aspartyl)2-

Rhodamine 110 (D2R), a reported substrate for members of the caspase family 

of proteases. The caspase substrate D2R is non-fluorescent; however, upon 

cleavage by cellular activated caspases, the released rhodamine 110 gives rise 

to a green fluorescence that can be measured by flow cytometry or by using a 

fluorescence microscope.  

3.7  Pepstatin A 

 Pepstatin A (Sigma) was dissolved at a concentration of 1 mg/ml in 

methanol containing 10 % (v/v) acetic acid. Small volumes of the solution were 

dispensed in sterile vials and stored at -20°C. 

 

4 Antifungal susceptibility of Candida planktonic cells 

4.1  Inoculum preparation 

 Using the NCCLS method (National Committee for Clinical Laboratory 

Standards, 1995), five colonies of >1 mm diameter from 24 h cultures grown on 

SDA plates at 37 ºC were suspended in 5 ml of sterile saline (0.85% w/v). The 

resulting suspension was vortexed for 15 s and the cell density was adjusted to 

a reading of 0.5 at 530 nm using a spectrophotometer. This procedure yielded a 

Candida stock suspension of 1 x 106 to 5 x 106 cells per ml. A working 
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suspension was made via a 1:50 dilution followed by a 1:20 dilution of the stock 

suspension with RPMI 1640 medium to obtain a concentration double that of 

the test inoculum (1 x 103 to 5 x 103 cells/ml).  

4.2   Broth microdilution 

 The broth microdilution method was performed according to the NCCLS 

guidelines (National Committee for Clinical Laboratory Standards, 1995).  

4.2.1 Minimum inhibitory concentration (MIC) 

  The MIC assay was performed in U-shaped wells of sterile 96-well plates 

(Costar; Corning Inc, USA). Serial dilutions of antifungal agents (amphotericin 

B, caspofungin) were prepared at double the final concentration in RPMI 1640 

medium buffered with 0.165 M MOPS (pH 7); the dilutions ranged from 0.06 to 

16 µg/ml. The Candida inoculum was prepared as described previously (Section 

4.1). Antifungal solutions (100 µl) were dispensed in the wells of a microtitre 

plate. The inoculum suspension (100 µl) was then added to each well of the 

microtitre plate. This results in a 1:2 dilution of both the antifungal agent and 

the inoculum. Control wells contained inoculum suspension and medium 

without drug. The plates were incubated at 37˚C for 48 h. The MIC end point 

for the tested drugs was defined as the lowest concentration resulting in no 

visible growth in the wells (100% inhibition).  

4.2.2 Minimum fungicidal concentration (MFC) 

 The minimum inhibitory concentration (MIC) of amphotericin B for C. 

albicans GDH2346 was determined following the method described previously 

(Section 4.2.1). After the MIC was read, 100 µl samples from each well at or 

above the MIC were transferred to duplicate SDA agar plates (90 mm diameter) 

and spread evenly. The plates were incubated at 37˚C and read after 48 h. The 

minimum fungicidal concentration (MFC) was defined as the lowest drug 

concentration that caused total killing of cells. 

4.3   Killing curves 

 To further investigate the fungicidal activity of amphotericin B against 

C. albicans GDH2346, three to five colonies of C. albicans GDH2346 were 

picked from a 48-h plate culture and suspended in 10 ml of sterile distilled 
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water; the optical density was adjusted to 0.5 at 530 nm. One ml of this 

inoculum was added to either 9 ml of RPMI 1640 medium buffered with HEPES 

alone (control) or to 9 ml of the same buffered medium containing 

amphotericin B at final concentrations of one-half, one, two and four times the 

MIC. Cultures were then placed on a shaker and incubated at 37˚C. At time 

points 0, 2, 6 and 24 h following the inoculation of C. albicans into the 

solutions, a 100 µl aliquot from each test solution was removed. After 10-fold 

serial dilutions in RPMI, 50 µl aliquots from each dilution were spread on 

duplicate SDA plates. Plates were incubated at 37˚C. The total number of 

colony forming units (CFU) on each plate was determined after 48 h (Barchiesi 

et al., 2005). The results were used to construct killing curves of cell survival 

against time for each concentration of amphotericin B tested.  

 

5  Biofilm formation on catheter discs 

5.1  Catheter discs 

 Discs (surface area, 0.5 cm2; diameter, 0.8 cm) were cut from polyvinyl 

chloride (PVC) Faucher tubes (French gauge 36; Vygon, Cirencester, UK) using a 

metal punch (Fig. 12). The discs were sterilized by exposure to ultraviolet 

radiation (254nm; UVP Inc., USA) for 20 min on both sides. 

5.2   Biofilm inoculum 

 Candida isolates were grown in YNB medium containing 50 mM glucose. 

Batches of medium (50 ml in 250-ml Erlenmeyer flasks) were inoculated from 

slopes and incubated for 24 h at 37°C in an orbital shaker at 60 rpm. Aliquots of 

culture (10ml) were transferred to universal bottles and centrifuged at 3000 

rpm for 4 min. Cell pellets were washed twice in 0.15 M phosphate-buffered 

saline (PBS; pH 7.2; Sigma) and resuspended in the same buffer. Cell 

suspensions were standardized to an optical density of 0.8 at 520 nm.  

5.3  Biofilm formation 

 Catheter discs (Section 5.1) were transferred aseptically into wells of 24-

well Costar tissue culture plates, with concave side facing up.  A standardized 

cell suspension (80 µl) was applied to the surface of each disc. The cells were  
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Figure 12.  Metal punch device and biofilm discs. 

Metal punch (A) used to cut polyvinyl chloride (PVC) discs (diameter, 0.8 cm) 

(C) from PVC Faucher tubes (B) for biofilm formation. 
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allowed to adhere to the discs for 1 h at 37°C. Nonadherent cells were 

removed by gentle washing with PBS (5 ml). Discs were then submerged into 1 

ml YNB medium containing 50 mM glucose in wells of fresh tissue culture 

plates. Plates were incubated for 48 h at 37°C (Fig. 13). 

5.4  Quantitative measurement of biofilm growth 

 Biofilm metabolic activity was measured colorimetrically using a 

tetrazolium salt (XTT) reduction assay. This salt is reduced by mitochondrial 

dehydrogenases to a brown-coloured tetrazolium formazan product, which is 

then determined spectrophotometrically. However, addition of the electron 

coupling agent menadione (Vitamin K3; 2-methyl-1,4-naphthoquinone; Sigma) is 

necessary. XTT solution (250 µg/ml; Sigma) was dissolved in sterile, pre-

warmed PBS containing 1% (w/v) glucose and 1 ml was added to each well of 

fresh plates containing the biofilm discs. Menadione solution (1 mM in acetone; 

4 µl) was also added to the wells to give a final concentration of 4 µM. The 

biofilms were then incubated for 5 h at 37°C in the dark. The solution 

containing XTT formazan in each well was transferred to a microfuge tube and 

clarified at 13000 rpm for 3 min. The supernatant was then transferred to a 

microcuvette for measuring formazan production at 492 nm (Fig. 14). 

5.5  Viable counts of biofilm cells 

 This method was used to measure the number of viable cells in biofilms.  

Biofilm cells were harvested from the discs by scraping and vigorous vortexing, 

washed twice in 0.15 M PBS, pH 7.2, and resuspended in more PBS. Ten-fold 

serial dilutions (10-1 to 10-6) of biofilm cell suspensions were prepared in PBS. 

Duplicate samples (0.1 ml) of the 10-5 and 10-6 dilutions were then spread on 

YNB agar containing 200 mM glucose and the plates were incubated for 24 – 48 

h at 37°C. The total number of CFU was counted and this number multiplied by 

the dilution factor to determine the concentration of cells per ml of original 

sample. 

 

 

 



  Materials & methods 
 
  

 

59 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Costar tissue culture plate containing mature 48-h old biofilms 

grown on polyvinyl chloride catheter discs.  

Biofilm discs were submerged in 1 ml YNB growth medium with 50 mM glucose. 
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Figure 14. Tetrazolium salt (XTT) reduction assay used to measure biofilm 

cell viability. 

Metabolically active cells convert XTT to a brown-coloured formazan product. 

(A) Positive sample, after incubation for 5 h at 37ºC; (B) Negative control 

sample, colourless. 
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6 Antifungal susceptibility of Candida biofilms 

6.1  Susceptibility of biofilms on catheter discs 

 Stock solutions of the drugs were diluted in growth medium (YNB 

containing 50 mM glucose) buffered to pH 7 with MOPS buffer. Biofilms were 

grown on discs for 48 h at 37°C or for specific time periods and then 

transferred into wells containing 1 ml of buffered medium with defined 

concentrations of the test antifungal agents. Control discs were submerged in 

buffered medium free of drug. Discs were further incubated for 24 h at 37°C 

and the effect of the antifungal agent was measured by either the XTT 

reduction assay (Section 5.4) or by a viable cell count (Section 5.5). 

 

7 Antifungal activity at different developmental phases 

of Candida biofilms 

 Biofilms were grown on catheter discs for 8, 17, 24 or 35 h and then 

submerged into 1 ml of buffered YNB glucose (50 mM) medium containing 

different concentrations (2 times or 5 times the MIC) of antifungal agent. These 

were 2.6 and 6.5 µg/ml of amphotericin B for C. albicans GDH2346; 1.6 and 4 

µg/ml of amphotericin B for C. albicans SC5314; 4.6 and 11.5 µg/ml of 

amphotericin B for C. tropicalis; 2.4 and 6 µg/ml of amphotericin B for C. 

glabrata; 4.4 and 11 µg/ml of amphotericin B for C. parapsilosis; 0.8 and 2 

µg/ml of caspofungin for C. albicans GDH2346; 0.6 and 1.5 µg/ml of 

caspofungin for C. albicans SC5314; 0.9 and 2.25 µg/ml of caspofungin for C. 

tropicalis; 1.4 and 3.5 µg/ml of caspofungin for C. glabrata; 1.6 and 4 µg/ml of 

caspofungin for C. parapsilosis. Control discs were submerged in medium free 

of drug. Discs were further incubated for a total of 48 h at 37°C and metabolic 

activities of biofilm cells were measured using the XTT assay (Section 5.4). 
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8 Penetration of antifungal agents through Candida 

biofilms 

 This penetration assay was a modification of the filter disc method for 

bacterial biofilms as previously described by Anderl et al. (Anderl et al., 2000). 

One antifungal agent was used in this study: caspofungin. However for 

comparative purposes, some experiments (preparation of a standard curve for 

drug penetration and viability measurements) were carried out with 

amphotericin B. 

8.1  Biofilm formation on membrane filters 

 The biofilm inoculum was prepared as described in section 5.2 except 

that the cell suspension was adjusted to an optical density of 0.2 at 600 nm. 

Biofilms were grown on polycarbonate membrane filters (diameter, 25 mm; 

pore size, 0.2 µm; Whatman) which were sterilized by exposure to ultraviolet 

radiation for 15 min on both sides prior to inoculation.  The filters were placed 

aseptically on plates of YNB agar containing 50 mM glucose (Section 2.3). A 

standardized cell suspension (50 µl) was carefully deposited on the surface of 

each sterile membrane. All agar plates were incubated for 24 h at 37°C. The 

membrane-supported biofilms were then transferred to fresh YNB agar plates 

and reincubated for a further 24 h, giving a total incubation time of 48 h for 

biofilm formation. 

8.2   Drug penetration through biofilms 

 A drug concentration of 60 times the MIC for Candida albicans GDH2346 

was used in antifungal agent-supplemented YNB agar (Section 2.4), i.e., 24 

µg/ml for caspofungin. After 48 h of biofilm formation on membrane filters 

(section 8.1), smaller polycarbonate membrane filters (diameter, 13 mm; pore 

size, 0.2 µm; Whatman) were sterilized by exposure to ultraviolet radiation for 

15 min on both sides and then carefully placed on top of the 48-h biofilms. 

Paper concentration discs (diameter, 6 mm; Becton Dickinson) were also 

sterilized by exposure to ultraviolet radiation for 15 min on both sides and then 

moistened with 30 µl of growth medium prior to placement on top of the 13-

mm-diameter membranes. Wetting the discs helped to prevent the capillary 

action of the antifungal medium through the biofilms. The whole assembly –  



  Materials & methods 
 
  

 

63 

the biofilm ‘sandwich’ - was transferred to an antifungal agent-containing agar 

plate using sterile forceps (Fig. 15). All plates were incubated for specific time 

periods, i.e., 60, 90, 120, 180, 240, or 360 min at 37°C.  

 The amount of antifungal agent that diffused into a concentration disc 

through the biofilm was determined by using the disc in a standard drug 

diffusion assay. Plates of YNB agar containing 200 mM glucose were seeded 

with 150 µl of a standardized suspension of planktonic C. albicans GDH 2346 

which was used as an indicator organism. The suspension was adjusted to an 

optical density of 1.0 at 520 nm prior to plating. The concentration discs were 

removed from the biofilm ‘sandwiches’ after the specified exposure time and 

placed on the seeded plates, which were then incubated for 24 h at 37°C. The 

zones of growth inhibition were measured and used to determine the 

concentration of active antifungal agent in the discs by reference to a standard 

curve prepared by using drug solutions of different concentrations but fixed 

volumes (Section 8.3). The assay was conducted in duplicate on two separate 

occasions for each Candida isolate tested. The control assays used for the 

experiment were concentration discs placed on the two-membrane system 

without the biofilm. To provide a normalized penetration curve, the drug 

concentration that diffuse through the biofilm (C) was divided by the drug 

concentration determined for the control (C0). 

8.3  Preparation of drug standard curves 

 Drug standard curves were prepared by using drug solutions of different 

concentrations but fixed volumes. The standard curve was constructed by 

plotting the log of the drug concentration used versus the diameter of the zone 

of growth inhibition. 

 Overnight planktonic cultures of C. albicans GDH2346 (used here as an 

indicator organism) were harvested by centrifugation at 3000 rpm for 5 min, 

washed twice in sterile PBS, and then adjusted to an optical density of 1.0 at 

520 nm in PBS. Plates of YNB agar containing 200 mM glucose were seeded with 

150 µl of this standardized suspension. Concentration discs were moistened 

with a fixed volume (30 µl) of drug solution before being transferred to the pre-

seeded plates. Plates were then incubated for 24 h at 37ºC. The zones of 

growth inhibition were measured (in mm) at four points around each disc and  
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Figure 15. The experimental system used to determine the penetration of 

antifungal agents through biofilms. 

 

The biofilm (B) is initially formed on a 25 mm-diameter membrane filter (A) 

resting on glucose YNB agar (not shown). A second, smaller filter (C) is placed 

on top of the biofilm, and a moistened concentration disc (D) is positioned on 

top of the second filter. After 48 h of biofilm formation, the entire assembly is 

transferred to antifungal-containing agar (E). All plates are incubated at 37ºC 

for time periods ranging from 60 to 360 min. 
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the mean value calculated. These values were plotted against the drug 

concentration used, to produce a standard curve. 

8.3.1 Caspofungin 

 A standard curve of caspofungin concentration against zone of growth 

inhibition (distance from edge of disc, mm) was prepared as described in 

section 8.3 with the following drug concentrations: 4, 8, 10, 20, 25, and 30 

µg/ml (Table 2 and Fig. 16). 

8.3.2 Amphotericin B 

 A standard curve of amphotericin B concentration against zone of growth 

inhibition (distance from edge of disc, mm) was prepared as described in 

section 8.3 with the following drug concentrations: 16, 20, 30, 40, 50, and 60 

µg/ml (Table 3 and Fig. 17). 

8.4  Drug susceptibility of biofilms on membrane filters 

 After biofilm formation on 25-mm-diameter membrane filters, biofilms 

were capped with sterile 13-mm-diameter filters, transferred to antifungal 

agent-containing agar, and incubated for 6 h at 37°C (the maximum exposure 

period in drug penetration assays) or 24 h. A drug concentration of 60 times the 

MIC for Candida albicans GDH2346 was used in the antifungal agent-

supplemented agar. The concentrations used were as follows: caspofungin, 24 

µg/ml and amphotericin B, 78 µg/ml. After incubation for the specified 

exposure time, biofilm cells were gently scraped from the membranes with a 

sterile scalpel and resuspended in 10 ml of PBS. Viable cell counts were carried 

out as described in Section 5.5. 
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Table 2. Zone of growth inhibition due to caspofungin on plates seeded with 

C. albicans GDH2346 a 

 

 

  

Zone of growth inhibition (distance from edge of disc, mm) 

produced by caspofungin at a concentration (µg/ml) of 

Disc b 2 4 8 10 20 25 30 c 

1 0.0 0.88 2.00 2.60 3.13 3.94 4.21 

2 0.0 1.00 2.03 2.44 3.86 3.70 4.00 

3 0.0 1.20 1.79 2.23 3.00 3.23 3.64 

4 0.0 0.95 2.30 2.37 3.62 3.15 3.89 

Total 0.0 4.03 8.12 9.64 13.61 14.02 15.74 

Mean d 0.0 1.01 2.03 2.41 3.40 3.51 3.94 

 

a Growth medium (YNB supplemented with 200 mM glucose) was seeded with 

150µl of a standard suspension of C. albicans. 

b  Blank paper concentration disc (4 for each drug concentration) were 

moistened with a fixed volume (30 µl) of drug solution. 

c  Different concentrations (µg/ml) of caspofungin were used to draw the 

standard curve. 

d  Data are means from two independent experiments done in duplicate. 
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Figure 16. Standard curve for caspofungin in drug penetration assay 
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Table 3. Zone of growth inhibition due to amphotericin B on plates seeded 

with C. albicans GDH2346 a 

 

 

  

Zone of growth inhibition (distance from edge of disc, mm) 

produced by amphotericin B at a concentration (µg/ml) of 

Disc b 10 16 20 30 40 50 60 c 

1 0.0 1.03 1.56 4.00 4.35 4.70 4.78 

2 0.0 1.25 1.95 3.64 4.33 4.10 5.00 

3 0.0 0.81 1.63 3.47 4.15 4.34 5.11 

4 0.0 0.97 1.52 3.89 3.68 4.14 4.40 

Total 0.0 4.06 6.66 15.00 16.51 17.28 19.29 

Mean d 0.0 1.02 1.67 3.75 4.13 4.32 4.82 

 

a Growth medium (YNB supplemented with 200 mM glucose) was seeded with 

150µl of a standard suspension of C. albicans. 

b  Blank paper concentration disc (4 for each drug concentration) were 

moistened with a fixed volume (30 µl) of drug solution. 

c  Different concentrations (µg/ml) of amphotericin B were used to draw the 

standard curve. 

d  Data are means from two independent experiments done in duplicate. 
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Figure 17. Standard curve for amphotericin B in drug penetration assay  
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9 Scanning electron microscopy of biofilms 

9.1  Standard SEM air-drying procedure 

 Biofilms formed on polycarbonate membranes were fixed with 2.5% (v/v) 

glutaraldehyde in PBS (pH 7.2) for 1 h at room temperature. The biofilms were 

then treated with 1% (w/v) osmium tetroxide (Sigma) for 1 h, washed three 

times in 3 ml of distilled water for 10 min, treated with 1% (w/v) uranyl 

acetate for 1 h, and finally washed twice in 3 ml of distilled water . Biofilms 

were dehydrated in a series of ethanol solutions (30%, 50%, 70%, 90% absolute 

ethanol, and dried absolute ethanol) for 10 minutes each. All samples were air 

dried in a desiccator overnight then mounted on aluminium stubs before being 

gold coated with a polaron coater, and viewed under a Philips 500 scanning 

electron microscope. 

9.2  Cationic dye procedure  

 To improve the preservation and visualization of matrix material in 

biofilms, a procedure involving cationic dyes (Erlandsen et al., 2004b) was 

used. Biofilms formed on polycarbonate membrane filters were fixed overnight 

at room temperature in a mixture of 2% paraformaldehyde and 2% 

glutaraldehyde in 0.15 M sodium cacodylate buffer, pH 7.4, and containing 

0.15% alcian blue or 0.15% ruthenium red (cationic dyes). After primary fixation 

in the aldehyde mixture with cationic dye additives, the samples were rinsed in 

0.15 M cacodylate buffer twice (5 min each) and immersed in 1% (w/v) osmium 

tetroxide in 0.15 M cacodylate buffer containing 1.5% (w/v) potassium 

ferrocyanide for 90–120 min. They were then washed five times with distilled 

water. Dehydration of the samples was achieved by immersion in an ascending 

ethanol series ranging, in 20% increments (30%, 50%, 70%, and 90% absolute 

ethanol) , followed by dried absolute ethanol, for 10 minutes each. The last 

step of dehydration was using 100% hexamethyldisilizane (Sigma) twice for 5 

min each time. All samples were air dried in a desiccator overnight then 

mounted on aluminium stubs before being gold coated with a polaron coater, 

and viewed under a Philips 500 scanning electron microscope. 
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10  Persister cells in Candida species 

10.1  Persister cells in planktonic cultures 

 All organisms were grown at 37°C with shaking in YNB medium 

containing 50 mM glucose (50 ml in 250-ml flasks). Exponential-phase cultures 

were incubated for 8 h (C. krusei, C. albicans, and C. tropicalis), 11 h (C. 

parapsilosis), or 18 h (C. glabrata). Stationary-phase cultures of all species 

were incubated for 48 h. Cells from samples (100 µl) of exponential- or 

stationary-phase cultures were harvested and washed twice in PBS. Washed 

cells were treated in microtitre plates with different concentrations of 

amphotericin B (5 to 100 µg/ml) in YNB glucose medium buffered to pH 7 with 

0.165 M MOPS. Control cells were treated similarly with buffered medium 

without amphotericin B. All cell suspensions were adjusted to a concentration 

(approximately 107 cells/ml) equivalent to that of resuspended biofilms. After 

incubation at 37°C for 24 h, the cells were washed twice and resuspended in 

PBS (100 µl). Viable counts were then carried out by serial dilution and plating 

on YNB agar containing 200 mM glucose (Section 5.5). Assays were carried out 

in duplicate and done at least twice on different days. 

10.2  Persister cells in biofilms 

 Organisms were grown in YNB medium containing 50 mM glucose and 

washed cell suspensions were adjusted to an optical density of 0.8 at 520 nm 

(Section 5.2). Biofilms were formed on PVC discs as described previously 

(Section 5.3). The biofilms were then treated with amphotericin B at 

concentrations ranging from 5 to 100 µg/ml. Mature (48-h) biofilms were 

transferred to fresh wells, submerged in YNB glucose medium (1 ml) containing 

different concentrations of amphotericin B and buffered to pH 7 with 0.165 M 

MOPS, and incubated at 37°C for 24 h. Control biofilms were incubated in 

buffered medium in the absence of amphotericin B. After incubation, biofilm 

cells were harvested from the discs by scraping and vigorous vortexing, washed 

twice in 0.15 M PBS, pH 7.2, and resuspended in more PBS (100 µl). Viable 

counts were then determined by the standard procedure of serial dilution 

followed by plating on YNB agar containing 200 mM glucose (Section 5.5). 

Assays were carried out in duplicate and done at least twice on different days. 
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10.3  Live-dead staining with fluorescein 

 Biofilms were grown on PVC catheter discs in YNB containing 50 mM 

glucose for 48 h at 37°C. Biofilm discs were then transferred into 1 ml of 

buffered YNB glucose (50 mM) medium plus 100 µg/ml fluorescein diacetate 

alone (control) or with amphotericin B (100 µg/ml) and fluorescein diacetate 

(100 µg/ml) and incubated  for 24 h at 37°C. The biofilm cells were then 

scraped from the discs, vigorously vortexed, and washed three times in PBS. 

Cell pellets were resuspended in 300 µl PBS and viewed under a x100 oil 

immersion lens using a fluorescence microscope (Zeiss Axioimager M1; Fig. 18). 

Fluorescein diacetate stains dead yeast cells with a green fluorescence while 

live cells remain unstained (LaFleur et al., 2006). 

 

11  Apoptosis in Candida biofilms 

11.1  SR-FLICA apoptosis detection assay 

 An SR-FLICA kit was used to detect active caspase enzymes within 

biofilm cells. The SR-FLICA reagent was reconstituted in 50 µl DMSO, as 

recommended by the manufacturers, to form a stock concentrate. The 

concentrate was further diluted with 200 µl PBS to produce the working 

solution. Mature (48-h) biofilms of C. albicans strains GDH2346 and SC5314, C. 

parapsilosis, and C. krusei were submerged in buffered YNB glucose medium 

containing amphotericin B (50µg/ml) and incubated for 5 h or 24 h at 37ºC. The 

biofilms were washed gently in PBS and the cells were resuspended to a 

concentration of approximately 107/ml. SR-FLICA working solution (10 µl) was 

then added to 200 µl of biofilm cell suspension and the mixtures were 

incubated for 1 h at 37ºC in the dark. The cells were washed twice by spinning 

in a microfuge for 5 min using a wash buffer provided in the kit. Cell pellets 

were resuspended in 300 µl wash buffer and examined under a x100 oil 

immersion lens using a fluorescence microscope (Zeiss Axioimager M1) with a 

bandpass filter (excitation 550 nm, emission >580 nm). Apoptotic cells with 

active caspase enzymes fluoresced red. 
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Figure 18. Fluorescence microscope (Zeiss Axioimager M1) used to examine 

biofilm cells stained with fluorescein diacetate, or with FLICA or D2R 

reagents 

 

 

 

 

  



  Materials & methods 
 
  

 

74 

In addition, further investigations were carried out on the effect of pre-

treating biofilm cells with unlabelled general caspase inhibitor Z-VAD-FMK 

before the addition of the FLICA reagent. Mature (48-h) biofilms were treated 

with amphotericin B (50 µg/ml) for 24 h at 37ºC and then exposed to the 

unlabelled general caspase inhibitor Z-VAD-FMK (2.5 µM), 1 h prior the addition 

of the FLICA reagent.  In another experiment the unlabelled general caspase 

inhibitor Z-VAD-FMK was added to biofilms along with the inducer of apoptosis 

(i.e. amphotericin B). The biofilms were incubated for 24 h at 37ºC and then 

analysed by the FLICA assay. 

11.2   D2R apoptosis detection assay 

 A CaspSCREENTM kit was also used to detect caspase activity. Mature (48-

h) biofilms were submerged in buffered YNB glucose medium containing 

amphotericin B (50 µg/ml) and incubated for 24 h at 37ºC. Biofilm cells were 

washed gently in PBS and centrifuged to give a pellet (105 cells) which was 

resuspended in D2R incubation buffer (0.3 ml). Dithiothreitol (1 M; 3 µl) and D2R 

reagent (1µl) were then added and the mixture was incubated for 45 min at 

37ºC in the dark. Resuspended cells were observed under a x100 oil immersion 

lens using a fluorescence microscope (Zeiss Axioimager M1) with a bandpass 

filter (excitation 488 nm, emission 530 nm). Apoptotic cells with active caspase 

enzymes fluoresced green. 

 Further investigations were carried out on the effect of pre-treating 

biofilm cells with unlabelled general caspase inhibitor Z-VAD-FMK before the 

addition of the D2R reagent. Mature (48-h) biofilms were treated with 

amphotericin B (50 µg/ml) for 24 h at 37ºC and then exposed to the unlabelled 

general caspase inhibitor Z-VAD-FMK (2.5 µM), 1 h prior the addition of D2R 

reagent.  In another experiment the unlabelled general caspase inhibitor Z-

VAD-FMK was added to biofilms along with the inducer of apoptosis (i.e. 

amphotericin B). The biofilms were incubated for 24 h at 37ºC and then 

processed with the D2R reagent. 
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11.3   Effect of caspase inhibitors 

11.3.1  Effect on biofilm growth 

 To investigate the effect of Z-VAD-FMK on biofilm growth and viability, 

48-h biofilms of C. albicans strains GDH2346 and SC5314, C. parapsilosis, and C. 

krusei were washed gently with PBS and submerged in YNB glucose medium 

(1ml) buffered with MOPS and containing different concentrations (2.5, 5, 10, 

and 20 µM) of Z-VAD-FMK. Control biofilms were transferred to buffered 

medium without Z-VAD-FMK. Biofilms were incubated for 24 h at 37ºC and then 

cells were harvested and their numbers determined by viable counts (Section 

5.5). 

 Identical procedures were used to determine the effect on biofilm 

growth of specific inhibitors of caspases-1, -2, -3, -5, -6, -8, and -9 (Caspase 

Inhibitor Set III), at a concentration of 2.5 µM. 

11.3.2   Effect on antifungal activity 

 Mature (48-h) Candida biofilms were submerged in buffered YNB glucose 

medium containing Z-VAD-FMK (2.5, 5, 10, or 20 µM) and amphotericin B (50 

µg/ml). The final concentration of DMSO in assay mixtures ranged from 0.12 % 

to 0.26 %. Control biofilms were transferred into buffered medium containing 

amphotericin B only. Biofilms were incubated for 24 h at 37ºC and cell survival 

was determined by viable cell counts (Section 5.5). 

 Specific inhibitors of caspases-1, -2, -3, -5, -6, -8, and -9 (Caspase 

Inhibitor Set III), at a concentration of 2.5 µM, were also tested for their 

effects on the activity of amphotericin B (50 µg/ml) against Candida biofilms. 

The final DMSO concentration in the buffered medium was 0.25 %.  

 The effect of pepstatin A, an inhibitor of acid proteases (aspartyl 

peptidases) which are known to be produced by Candida species, was also 

tested. Mature (48-h) biofilms of C. albicans strains GDH2346 and SC5314 were 

submerged in buffered YNB glucose medium containing amphotericin B (50 

µg/ml) and pepstatin A (2.5 µM). Biofilms were then incubated at 37ºC for 24 h 

and cell survival was determined by viable cell counts (Section 5.5). Control 

biofilm discs without pepstatin A were also included. 
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11.4  Effect of histone deacetylase (HDA) inhibitors 

 A variety of histone deacetylase inhibitors (sodium butyrate, sodium 

valproate, apicidin, and trichostatin A) were tested against different Candida 

isolates (C. albicans strains GDH2346 and SC5314, C. parapsilosis, and C. 

krusei). The effect of HDA inhibitors on biofilm growth and viability was 

investigated at two stages: at time zero of biofilm formation, and after 48 h of 

biofilm formation. The effect of HDA inhibitors was determined by the XTT 

reduction assay (Section 3.2) and/or viable cell counts (Section 5.5). XTT assays 

were carried out in triplicate and done twice on different days. Viable cell 

counts were performed twice, in duplicate. 

11.4.1  Effect on biofilm growth 

11.4.1.1 Addition at time zero of biofilm formation 

 A standardized cell suspension (80 µl) was applied to each PVC disc, 

incubated for 1 h at 37ºC, and washed gently with PBS to remove non-adherent 

cells. Each disc was then submerged in 1ml YNB glucose medium buffered with 

MOPS and containing different concentrations of HDA inhibitors (2, 8 or 32 

µg/ml; 2, 8, or 32 mM for sodium butyrate). Discs were incubated for 48 h at 

37ºC for biofilm formation. The final concentration of DMSO in all cases was 

less than 0.5 %. Control biofilms were transferred to buffered medium without 

HDA inhibitor. 

11.4.1.2  Addition to mature biofilms 

 Mature (48-h) biofilms of Candida isolates were washed gently with PBS 

and submerged in YNB glucose medium (1 ml) containing different 

concentrations of HDA inhibitors (2, 8 or 32 µg/ml; 2, 8, or 32 mM for sodium 

butyrate). Biofilms were incubated for a further 24 h at 37ºC. Control biofilms 

were transferred to buffered medium without HDA inhibitor. 

11.4.2  Effect on antifungal activity 

 The effects of HDA inhibitors on the activity of amphotericin B and 

fluconazole against Candida species were assessed under two sets of 

conditions. First, mature (48-h) biofilms grown in the presence of different 

concentrations of HDA inhibitors (2, 8 or 32 µg/ml; 2, 8, or 32 mM for sodium 
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butyrate) were washed gently with PBS and submerged in 1 ml buffered YNB 

glucose medium containing different concentrations of antifungal agents (10 or 

50 µg/ml). Discs were then incubated for further 24 h at 37ºC. Secondly, 

mature (48-h) biofilms grown in HDA inhibitor-free medium were washed gently 

with PBS and submerged in 1 ml buffered YNB glucose medium containing 

different concentrations of antifungal agents (10 or 50 µg/ml) and HDA 

inhibitors (2, 8 or 32 µg/ml; 2, 8, or 32 mM for sodium butyrate). The final 

concentration of DMSO in the medium was less than 0.5 %. Discs were then 

incubated for further 24 h at 37ºC. Control biofilms were incubated in medium 

without HDA inhibitor, or without both HDA inhibitor and amphotericin B. 
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1 Activity of amphotericin B and caspofungin on 

planktonic cells of Candida species 

1.1 Minimum inhibitory concentration of both drugs for various 

Candida species 

 Antifungal susceptibility testing was performed by the broth microdilution 

method according to the Clinical and Laboratory Standards Institute (CLSI; 

formerly NCCLS) recommendations (National Committee for Clinical Laboratory 

Standards, 1995). The MIC endpoint was defined as the lowest concentration of 

the drug that produced optically clear wells (100% inhibition). Amphotericin B 

and caspofungin drug concentrations initially ranged from 0.06 to 8 µg/ml, plus 

16 µg/ml for caspofungin (Tables 4 and 6). The concentration range for each 

drug was then expanded to reach an exact endpoint (Tables 5 and 7).  The 

planktonic MICs of five Candida isolates are summarised in Table 8. The majority 

of the isolates were relatively resistant to amphotericin B; normally endpoints 

for Candida species are tightly clustered between 0.25 and 1.0 µg/ml (National 

Committee for Clinical Laboratory Standards, 1995). The MICs ranged between 

0.8 and 2.3 µg/ml, with C. albicans SC5314 being the isolate most susceptible to 

amphotericin B, at an MIC of 0.8 µg/ml. However, all five isolates showed 

greater susceptibility to caspofungin; the MICs for this antifungal agent ranged 

from 0.3 to 0.8 µg/ml (Table 8). 

1.2 Paradoxical effect of caspofungin 

 The paradoxical effect consists of reduced activity of the drug at high 

concentrations, above the minimum inhibitory concentration. This phenomenon 

has been reported recently for caspofungin by several different research groups 

(Arikan et al., 2005; Ostrosky-Zeichner et al., 2003; Ramage et al., 2002c; 

Stevens et al., 2004; Stevens et al., 2005). In this study, five Candida isolates 

were screened at caspofungin concentrations up to 16 µg/ml by the broth 

microdilution method. Three isolates only demonstrated the paradoxical effect 

at different concentrations of the drug; these were C. albicans (both strains) and 

C. tropicalis.  The MICs for all three isolates were < 0.45 µg/ml. However, 

reduced activity of caspofungin was observed at high drug concentrations: at 4  
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Table 4. MIC determinations for amphotericin B against planktonic cells of 

different Candida species: drug concentrations of 0.06 to 8 µµµµg/ml 

 
 
 
 

Growth at amphotericin B concentration (µg/ml) of:* Isolate 

0 0.062 0.125 0.25 0.5 1 2 4 8 

C. albicans 
GDH2346 4+ 4+ 4+ 3+ 2+ 2+ 0 0 0 

C. albicans 
SC5314 4+ 4+ 4+ 3+ 2+ 0 0 0 0 

C. tropicalis 
AAHB73 4+ 4+ 4+ 4+ 3+ 2+ 1+ 0 0 

C. glabrata 
AAHB12 4+ 4+ 4+ 4+ 3+ 1+ 0 0 0 

C. parapsilosis 
AAHB4479 4+ 4+ 4+ 4+ 4+ 3+ 1+ 0 0 
                    
 

* 4+ = no reduction in turbidity relative to control; 3+ = slight reduction in 

turbidity; 2+ = prominent decrease in turbidity; 1+ = slightly hazy; and 0 = 

optically clear well. ND= not done. Assays were performed two or three times in 

duplicate. 

 



 
 

Table 5. MIC determinations for amphotericin B against planktonic cells of different Candida species: drug concentration 

range expanded from 0.5 to 2.6 µµµµg/ml 

 
 

Growth at amphotericin B concentration (µg/ml) of:* 

Isolate 

0 0.5 0.6 0.7 0.8 0.9 1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.6 

C. albicans 
GDH2346 4+ 2+ ND ND ND ND 2+ 2+ 0 0 0 0 0 0 0 0 0 0 0 0 0 

C. albicans 
SC5314 4+ 2+ 1+ 1+ 0 0 0 0 ND 0 ND 0 ND ND ND 0 0 0 0 0 0 

C. tropicalis 
AAHB73 4+ 3+ ND ND ND ND 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 1+ 1+ 1+ 0 0 0 

C. glabrata 
AAHB12 4+ 3+ 2+ 2+ 2+ 2+ 1+ 0 ND 0 ND 0 ND ND ND 0 0 0 0 0 0 

C. parapsilosis 
AAHB4479 4+ 4+ 4+ 4+ 4+ 4+ 3+ 2+ ND 1+ ND 1+ ND ND ND 1+ ND 0 0 0 0 
                                            

 

 * 4+ = no reduction in turbidity relative to control; 3+ = slight reduction in turbidity; 2+ = prominent decrease in turbidity;         

 1+ = slightly hazy; and 0 = optically clear well. ND= not done. Assays were performed two or three times in duplicate. 
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Table 6. MIC determinations for caspofungin against planktonic cells of 

different Candida species: drug concentrations of 0.06 to 16 µµµµg/ml 

 
 
 
 

 
Growth at caspofungin concentration (µg/ml) of:* Isolate 

0 0.062 0.125 0.25 0.5 1 2 4 8 16 

C. albicans 
GDH2346 4+ 4+ 2+ 1+ 0 0 0 1+ 2+ 2+ 

C. albicans 
SC5314 4+ 4+ 3+ 1+ 0 0 0 0 1+ 1+ 

C. tropicalis 
AAHB73 4+ 4+ 3+ 1+ 0 0 0 2+ 2+ 2+ 

C. glabrata 
AAHB12 4+ 4+ 3+ 3+ 2+ 0 0 0 0 0 

C. parapsilosis 
AAHB4479 4+ 4+ 3+ 3+ 3+ 0 0 0 0 0 
                      
 
 
* 4+ = no reduction in turbidity relative to control; 3+ = slight reduction in 

turbidity; 2+ = prominent decrease in turbidity; 1+ = slightly hazy; and 0 = 

optically clear well. ND= not done. Assays were performed two or three times in 

duplicate. 



 
 

Table 7. MIC determinations for caspofungin against planktonic cells of different Candida species: drug concentration range 

expanded from 0.5 to 2.6 µµµµg/ml 

 

Growth at caspofungin concentration (µg/ml) of:* 

 
Isolate 

0 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.8 0.9 1 2 3 3.5 4 5 6 7 8 

C. albicans 
GDH2346 4+ 1+ 1+ 1+ 0 0 0 0 0 0 0 0 0 0 0 0 0 1+ 2+ 2+ 2+ 2+ 

C. albicans 
SC5314 4+ 1+ 0 ND 0 0 0 ND 0 ND 0 0 0 0 ND ND ND 0 ND ND ND 1+ 

C. tropicalis 
AAHB73 4+ 1+ 1+ 1+ 1+ 0 0 0 0 0 0 0 0 0 0 1+ 2+ 2+ 2+ 2+ 2+ 2+ 

C. glabrata 
AAHB12 4+ 3+ 3+ ND 3+ 3+ 2+ ND 1+ ND 0 0 0 0 ND ND ND 0 ND ND ND 0 

C. parapsilosis 
AAHB4479 4+ 3+ 3+ ND 3+ 3+ 3+ ND 3+ ND 2+ 0 0 0 ND ND ND 0 ND ND ND 0 
                       

* 4+ = no reduction in turbidity relative to control; 3+ = slight reduction in turbidity; 2+ = prominent decrease in turbidity; 1+ = 

slightly hazy; and 0 = optically clear well. ND= not done. Assays were performed two or three times in duplicate. 



                                                                                                                                      Results 

 

 

 

84 

 

 

 

 

Table 8. Summary of the MICs of amphotericin B and caspofungin for 

planktonic cells of different Candida isolates 

 

 

MIC (µg/ml)  
Isolate 

 
Amphotericin B Caspofungin 

C. albicans GDH2346 1.3 0.4 

C. albicans SC5314 0.8 0.3 

C. tropicalis AAHB73 2.3   0.45 

C. glabrata AAHB12 1.2 0.7 

C. parapsilosis AAHB4479 2.2 0.8 
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to 16 µg/ml, 8 to 16 µg/ml and 3 to 16 µg/ml for C. albicans GDH2346, C. 

albicans SC5314 and C. tropicalis, respectively (Tables 6 and 7). 

 

2 Fungicidal activity of amphotericin B against 

planktonic cells of C. albicans GDH2346 

 The in vitro fungicidal activity of amphotericin B was measured for 

planktonic cells of C. albicans GDH2346 by two methods (Barchiesi et al., 2004; 

Barchiesi et al., 2005; Di Bonaventura et al., 2004): assays for the minimum 

fungicidal concentration and time-kill curves. 

2.1 Minimum fungicidal concentration 

 After the minimum inhibitory concentration of amphotericin B for C. 

albicans GDH2346 was determined, 100 µl samples from each well at or above 

the MIC were plated on to SDA agar plates and incubated for 48 h at 37ºC. The 

minimum fungicidal concentration (MFC) was defined as the lowest drug 

concentration that caused total killing of cells. The minimum inhibitory 

concentration of amphotericin B for C. albicans GDH2346 was 1.3 µg/ml; the 

MFC occurred at the MIC end point.  

2.2  Time-kill curves 

 To investigate the fungicidal activity of amphotericin B against C. albicans 

GDH2346, three to five colonies were picked from a 48-h plate culture, 

suspended in sterile distilled water, and the optical density was adjusted to 0.5 

at 530 nm. An aliquot (1ml) of the adjusted suspension was added to 9 ml of 

growth medium plus the appropriate amount of drug. Amphotericin B was used 

at concentrations of one-half, one, two, and four times the MIC. The suspensions 

were placed on a shaker and incubated at 37ºC. At time points 0, 2, 6, and 24 h, 

100 µl of the suspension was removed, diluted in growth medium, and plated on 

to SDA plates. The number of CFU on each plate was determined after 48 h of 

incubation. Amphotericin B at 0.5 times the MIC exhibited some fungicidal 

activity (55% killing after 24 h), whereas complete fungicidal activity against C. 
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albicans was observed at a drug concentration equal to the MIC. Amphotericin B 

at 4 times the MIC was fungicidal after 2 h of incubation while drug 

concentrations equal to, or double the MIC were fungicidal after 6 h (Fig. 19). 

 

3 In vitro activity of amphotericin B and caspofungin at 

different developmental phases of Candida biofilms 

 Previous studies of C. albicans biofilm formation (Chandra et al., 2001a; 

Hawser & Douglas, 1994) showed that it occurs in several distinct developmental 

phases, resulting in a highly heterogeneous architecture of well-defined cellular 

communities enclosed in a thick polysaccharide matrix. These phases are: (i) 

early phase (0 to 11 h) involving the initial attachment of yeast cells to the disc 

material, (ii) intermediate phase (12 to 30 h) involving aggregation of the yeast 

cells and the formation of hyphae, and (iii) maturation phase (31 to 72 h) 

involving the production of the extracellular matrix. 

 In this investigation, the effects of three factors on drug resistance were 

examined: i) the Candida species; ii) the developmental stage of the biofilm; 

and iii) the drug concentration. Candida biofilms were grown on polyvinyl 

catheter discs. Different concentrations of amphotericin B and caspofungin (two 

times and five times the MIC for each isolate) were introduced at different 

stages of biofilm development (after 8, 17, 24, and 35 h). The efficacy of both 

drugs was measured after 48 h using the tetrazolium XTT reduction assay.  

3.1 8-h Candida biofilms 

 For most Candida isolates, biofilms in the early stage of development (i.e. 

8-h biofilms) were relatively resistant to amphotericin B at a concentration of 

two times the MIC, whereas at five times the MIC, metabolic activity was 

reduced significantly (P< 0.01; Fig. 20). However, amphotericin B at both 

concentrations was highly effective against C. albicans SC5314, with a 99% 

reduction in metabolic activity. On the other hand, caspofungin at two times the  
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Figure 19. Time-kill study conducted against C. albicans GDH2346 planktonic 

cells 

 

Amphotericin B was used at concentrations equal to 0.5, 1, 2, and 4 times the 

MIC. Control (♦); 0.5X MIC (ο); 1X MIC (▲); 2X MIC (■); 4X MIC (×). Results are 

from one experiment, carried out in duplicate. 
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Figure 20. Effect of amphotericin B (      ) and caspofungin (       ) at 2x (A) or 

5x (B) the MIC on 8-h Candida biofilms. Data represent the mean + standard 

error for one experiment carried out with three replicates. 
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MIC showed higher activity than amphotericin B, except with C. parapsilosis 

biofilms where there was little effect. However, at the higher concentration, 

caspofungin was less effective against C. albicans SC5314 and C. tropicalis than 

amphotericin B. Also, the higher concentration of caspofungin was less effective 

at reducing the metabolic activity of C. albicans SC5314 and C. tropicalis 

biofilms than the lower drug concentration. 

3.2 17-h Candida biofilms 

 With the exception of C. albicans SC5314, biofilms grown for 17 h were 

more susceptible to amphotericin B at twice the MIC than biofilms grown for 8 h 

(Fig. 21). However, at this stage of biofilm development, biofilms were more 

resistant to the higher drug concentration. Caspofungin, at both concentrations, 

exhibited a greater effect than amphotericin B. Biofilms were more resistant to 

caspofungin at a concentration of twice the MIC than the biofilms grown for 8 h, 

with the exception of C. parapsilosis biofilms which were more sensitive. The 

greatest reduction in metabolic activity was observed with the higher drug 

concentration, with the exception of C. tropicalis biofilms. 

3.3 24-h Candida biofilms 

 Increased resistance to both antifungal drugs was observed in 24-h old 

biofilms of some Candida species (Fig. 22). At this stage of biofilm development, 

amphotericin B at the lower concentration had little effect on the metabolic 

activity of both C. albicans strains but showed greater activity against biofilms 

of C. parapsilosis, compared with earlier stages of development. Biofilms of 

both C. albicans strains also showed increased resistance to the higher drug 

concentration than at the earlier stages. Caspofungin was more effective at 

inhibiting biofilm growth than amphotericin B, except with C. parapsilosis 

biofilms. Caspofungin was more effective at the higher concentration than at the 

lower concentration, except with C. tropicalis biofilms. Its greatest effect was 

against C. glabrata biofilms. 
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Figure 21. Effect of amphotericin B (    ) and caspofungin (    ) at 2x (A) 

or 5x (B) the MIC on 17-h Candida biofilms.  Data represent the mean + 

standard error for one experiment carried out with three replicates. 
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B        

 

Figure 22. Effect of amphotericin B (    ) and caspofungin (    ) at 2x (A) 

or 5x (B) the MIC on 24-h Candida biofilms.  Data represent the mean + 

standard error for one experiment carried out with three replicates. 
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3.4 35-h Candida biofilms 

 Mature (35-h) biofilms showed a susceptibility pattern similar to that of 

the 24-h biofilms. Both antifungal drugs were least effective against C. albicans 

SC5314. Caspofungin at the lower concentration was more effective than 

amphotericin B against biofilms of C. albicans, C. tropicalis, and C. glabrata, but 

not C. parapsilosis. However, caspofungin at the higher concentration showed 

more activity than amphotericin B against C. albicans GDH2346, C. tropicalis, 

and C. glabrata, but not against C. albicans SC5314 and C. parapsilosis. At this 

phase of development, all species showed increased resistance to caspofungin, 

at five times the MIC, as compared with 17-h and 24-h biofilms. Moreover, some 

Candida biofilms were more resistant to caspofungin at a concentration of five 

times the MIC than to the lower concentration; this was observed with biofilms 

of C. albicans SC5314 and C. tropicalis (Fig. 23). 

3.5 Overall conclusions 

 In summary, amphotericin B at two times the MIC had the least effect on 

Candida biofilms. However, when the drug concentration was increased to five 

times the MIC, the effect of amphotericin B increased. Amphotericin B at the 

higher concentration showed relatively high activity against C. parapsilosis and 

C. glabrata biofilms, especially at the late development phase (Fig. 23B). 

Biofilms of both strains of C. albicans were more resistant to amphotericin B 

throughout development (except for the earliest stage) than the other Candida 

species. 

 Caspofungin, at two times the MIC, generally exhibited a greater effect on 

Candida biofilms than amphotericin B although this was not observed with C. 

parapsilosis biofilms in some development phases (i.e. 24-h and 35-h biofilms). 

Caspofungin, at five times the MIC, was slightly less efficacious than at the lower 

concentration against C. tropicalis in all development phases tested (Figs. 20-23) 

and against C. albicans SC5314 in some phases (Figs. 20 and 23). In no case were 

biofilm cells of any Candida species completely killed by either amphotericin B 

or caspofungin, both of which are fungicidal agents, at either concentration 

used. The species most susceptible to caspofungin (at both concentrations) 
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Figure 23. Effect of amphotericin B (    ) and caspofungin (    ) at 2x (A) 

or 5x (B) the MIC on 35-h Candida biofilms.  Data represent the mean + 

standard error for one experiment carried out with three replicates. 
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throughout biofilm development was C. glabrata (Figs. 20-23); C. albicans 

GDH2346 was susceptible in the early phase (Fig. 20). 

 

4 Penetration of antifungal agent (caspofungin) through 

Candida biofilms 

 This penetration assay was a modification of the filter disc method 

described previously for bacterial biofilms. Biofilms were grown on 

polycarbonate membrane filters resting on YNB agar plates containing 50mM 

glucose for 48 h. A second smaller filter was placed on top of the 48 h biofilm 

and finally a moistened concentration disc was positioned on top of the second 

filter. The whole assembly was then transferred to antifungal containing agar. 

Plates were incubated at 37°C for specific time periods (60, 90, 120, 180, 240, 

or 360 min). Drug concentrations were selected based on their ability to produce 

large zones of growth inhibition in control assays for drug penetration; 

caspofungin was tested at a concentration of 60 times the MIC for C. albicans 

GDH2346 (i.e. 24 µg/ml). The amount of antifungal agent that diffused out of 

the agar and through the biofilm ‘sandwich’ to the concentration disc was 

determined by using the disc in a standard drug diffusion assay. The diameters 

of zones of growth inhibition were measured and used to determine the 

concentration of active antifungal agent in the discs by reference to a standard 

curve prepared using drug solutions of different concentrations but fixed 

volumes.  

4.1 Penetration of caspofungin through biofilms of C. albicans 

strains 

 Although caspofungin is a large polypeptide molecule with a molecular 

mass of 1213 Da, it penetrated Candida biofilms well. Different levels of 

penetration were demonstrated with biofilms of different Candida species. 
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4.1.1 Susceptibility of C. albicans to caspofungin 

 The MIC of caspofungin for planktonic C. albicans GDH2346 is 0.4 µg/ml, 

as determined previously (section 1.1). In this assay, biofilms of C. albicans were 

challenged with 60 times the MIC of caspofungin (i.e. 24 µg/ml).  

4.1.2 Caspofungin penetration through biofilms of C. albicans GDH2346 

 Caspofungin penetration through C. albicans GDH2346 biofilms was zero 

after 60 min but increased gradually to 28 % of the control value after 90 min.  

Within 360 min, the drug concentration (C) at the distal edge of the biofilm had 

reached 70.8 % of the control value (C0) (Fig. 24). 

4.1.3 Caspofungin penetration through biofilms of C. albicans SC5314 

 Diffusion of caspofungin through biofilms of C. albicans SC5314 was also 

zero after 60 min but then rose gradually to 38.6 % after 90 min. After 360 min, 

it had reached 57.8 % of that of the control value (Fig. 25). 

4.2 Penetration of caspofungin through biofilms of non-C. 

albicans species 

4.2.1 Caspofungin penetration through C. glabrata AAHB12 biofilms 

 Caspofungin penetration through C. glabrata biofilms was rapid, reaching 

54.8 % of the control value after 60 min.  Within 360 min it had reached 81.2 % 

of the control value (Fig. 26). 

4.2.2 Caspofungin penetration through C. parapsilosis AAHB4479 biofilms 

 The rate of penetration of caspofungin through C. parapsilosis biofilms 

was also fast, reaching 39.4 % of the control value after 60 min.  After 360 min, 

it had reached 73.3 % of the control value (Fig. 27). 

4.2.3 Caspofungin penetration through C. tropicalis AAHB73 biofilms 

 Caspofungin diffusion through biofilms of C. tropicalis was zero after 60 

min but rapidly reached 25.6 % of the control value after 90 min. It then levelled  
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Figure 24. Penetration of caspofungin through biofilms of C. albicans 

GDH2346 with time 

The drug concentration that diffused through the biofilm (C) was divided by the 

drug concentration for the control (C0). Error bars indicate the standard errors of 

the means for two independent experiments carried out in duplicate. 
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Figure 25. Penetration of caspofungin through biofilms of C. albicans SC5314 

with time 

 

The drug concentration that diffused through the biofilm (C) was divided by the 

drug concentration for the control (C0). Error bars indicate the standard errors of 

the means for two independent experiments carried out in duplicate. 
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Figure 26. Penetration of caspofungin through biofilms of C. glabrata with 

time 

The drug concentration that diffused through the biofilm (C) was divided by the 

drug concentration for the control (C0). Error bars indicate the standard errors of 

the means for two independent experiments carried out in duplicate. 
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Figure 27. Penetration of caspofungin through biofilms of C. parapsilosis 

with time 

The drug concentration that diffused through the biofilm (C) was divided by the 

drug concentration for the control (C0). Error bars indicate the standard errors of 

the means for two independent experiments carried out in duplicate. 

 

 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

60 90 120 180 240 360

C
/C

0

Time (min) 



                                                                                                                                      Results 

 

 

 

100 

off but increased again to reach 49.9 % of the control value after 360 min (Fig. 

28). 

4.2.4 Caspofungin penetration through C. krusei (Glasgow) biofilms 

 There was zero drug penetration through C. krusei biofilms after 90 min. 

After 120 min, the caspofungin concentration had risen rapidly to 34.6 %. Within 

360 min, it had reached 44.2 % of the control value (Fig. 29).  

4.3 Comparison of caspofungin penetration through biofilms of 

different Candida species  

 Both C. albicans GDH2346 and C. albicans SC5314 biofilms showed zero 

diffusion of caspofungin after 60 min of exposure (Fig. 30). Subsequently, drug 

diffusion was initially faster through biofilms of strain SC5314 but then levelled 

off. After 360 min, drug penetration was greater (70.8% of the control value) 

with biofilms of strain GDH2346.  

 The initial rate of drug penetration after 60 min through biofilms of C. 

glabrata AAHB12 and C. parapsilosis AAHB 4479 was faster than that seen with 

the other species (54.8 % and 39.4 % of the control value, respectively) (Fig. 31). 

The slowest diffusion was through C. krusei biofilms; it was zero after 90 min 

and then increased rapidly to 34.6 % after 120 min. Biofilms of this species 

showed the lowest drug penetration overall (44.2 % after 360 min). Biofilms of C. 

tropicalis were also penetrated poorly, with zero penetration after 60 min and 

then a gradual increase to 49.9 % of the control value after 360 min. The highest 

drug penetration overall was observed with C. glabrata and C. parapsilosis, at 

81.2 % and 73.3 % of the control value after 360 min, respectively (Fig. 31). 

4.4 Effect of antifungal agents on the viability of biofilm cells 

 After incubation of biofilms sandwiched between the two membranes on 

antifungal agent-containing agar, as in the penetration assay, the effects of 

antifungal agents on the viability of biofilm cells were assessed. Biofilms were 

incubated for 6 h (the time period during which drug penetration was 

determined) or 24 h at 37°C and viable counts were then carried out. Antifungal 

agents (amphotericin B or caspofungin) were present at concentrations similar to  
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Figure 28. Penetration of caspofungin through biofilms of C. tropicalis with 

time 

The drug concentration that diffused through the biofilm (C) was divided by the 

drug concentration for the control (C0). Error bars indicate the standard errors of 

the means for two independent experiments carried out in duplicate. 
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Figure 29. Penetration of caspofungin through biofilms of C. krusei with time 

 

The drug concentration that diffused through the biofilm (C) was divided by the 

drug concentration for the control (C0). Error bars indicate the standard errors of 

the means for two independent experiments carried out in duplicate. 
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Figure 30. Penetration of caspofungin through biofilms of C. albicans 

GDH2346 (■) and C. albicans SC5314 (♦) with time 

 

The drug concentration that diffused through the biofilm (C) was divided by the 

drug concentration for the control (C0). Error bars indicate the standard errors of 

the means for two independent experiments carried out in duplicate. 
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Figure 31. Penetration of caspofungin through biofilms of C. glabrata (×), C. 

parapsilosis (■), C. tropicalis (▲), and C. krusei (●) with time 

 

The drug concentration that diffused through the biofilm (C) was divided by the 

drug concentration for the control (C0). Error bars indicate the standard errors of 

the means for two independent experiments carried out in duplicate. 
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those in the drug penetration assay (i.e. 60 times the MIC of C. albicans 

GDH2346). 

4.4.1 Amphotericin B 

 Amphotericin B at 60 times the MIC (78 µg/ml) showed relatively poor 

activity against biofilms of all five Candida species (Table 9). C. glabrata and C. 

parapsilosis biofilms were the most affected, with cell viabilities of 3 % and 43 

%, after 6 h, and 0.1 % and 7 % after 24 h, respectively. The two C. albicans 

strains were the least susceptible, retaining 48 % viability after 24 h. Biofilms of 

C. tropicalis and C. krusei had intermediate viabilities of 38 % and 36 %, 

respectively, following drug treatment for 24 h (Table 9). 

4.4.2 Caspofungin  

 In general, Candida biofilms were less susceptible to caspofungin than to 

amphotericin B when treated at high drug concentrations (Table 9). After 6 h of 

exposure to caspofungin at 24 µg/ml (60 times the MIC), biofilms of all species 

showed a similar effect, with 67 to 76 % viability. Biofilm cells of C. glabrata 

were the most susceptible to caspofungin after 24 h of exposure, with 32 % 

viable cells. However, biofilms of this species were even more susceptible to 

amphotericin B (Table 9). Overall caspofungin treatment, like amphotericin B 

treatment, failed to result in complete killing of biofilm cells.  

 The paradoxical effect of caspofungin (reduced activity at high 

concentrations) was observed in previous work with planktonic cultures of some 

species, i.e. C. albicans (both strains) and C. tropicalis, but not C. parapsilosis 

or C. glabrata (Section 1.2). Therefore, biofilm cells of all six Candida isolates in 

this study were examined further for the paradoxical phenomenon. The biofilms 

were challenged with 5 or 10 times the MIC of caspofungin (2 or 4 µg/ml, 

respectively). The paradoxical effect was demonstrated in biofilms of C. 

glabrata and C. parapsilosis after either 6 h or 24 h (C. parapsilosis only) 

exposure time (Table 10). A caspofungin concentration of 4 µg/ml had a lesser 

effect on C. glabrata than a concentration of 2 µg/ml after 6 h of exposure 

(P<0.001). Similarly, biofilms of C. parapsilosis were more susceptible (P<0.006) 

to a concentration of 2 µg/ml than to one of 4 µg/ml after either 6 h or 24 h  
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Table 9. Viability of biofilm cells of Candida spp. after exposure to 

amphotericin B (78 µg/ml) or caspofungin (24 µg/ml) for 6 or 24 h * 

 
 

  Viability (%) 

Organism Amphotericin B (78 µg/ml)  Caspofungin (24 µg/ml) 

  6 h 24 h   6 h 24 h 
 
C. albicans 
GDH2346 65.6 + 1.8  48.0 + 0.5  71.3 + 3.6 44.9 + 2.7 

C. albicans 
SC5314 54.3 + 1.5 48.2 + 1.3  75.9 + 1.6 42.0 + 2.2 

C. tropicalis 
AAHB73 57.1 + 1.5 38.3 + 2.4  73.8 + 2.7 49.7 + 2.7 

C. glabrata 
AAHB12 2.8 + 0.7 0.1 + 0.1  70.5 + 2.8 32.2 + 1.5 

C. parapsilosis 
AAHB4479 43.1 + 1.7 6.6 + 0.9  75.9 + 3.3 52.6 + 1.5 

C. krusei 
Glasgow 63.7 + 2.8 35.6 + 1.8  66.6 + 2.6 58.5 + 2.1 
            

 

* Viability is expressed as percentage of that of control cells. Data represent the 

means + standard errors for two experiments carried out in duplicate. All results 

were significantly different at P < 0.006 from that of control.  
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Table 10. Viability of biofilm cells of Candida spp. after exposure to 

caspofungin (2 or 4 µg/ml) for 6 or 24 h * 

 
 

  Viability (%) 

Organism Caspofungin (2 µg/ml)   Caspofungin (4 µg/ml) 

  6 h 24 h  6 h 24 h 
 
C. albicans 
GDH2346 84.8 + 3.2 b 44.3 + 1.9 a  79.5 + 3.2 a 43.7 + 1.8 a 

C. albicans 
SC5314 77.4 + 3.0 a 39.7 + 3.7 a  76.7 + 2.0 a 36.8 + 2.0 a 

C. tropicalis 
AAHB73 79.3 + 2.8 a 62.3 + 4.4 a  57.9 + 3.4 a 49.9 + 2.1 a 

C. glabrata 
AAHB12 47.7 + 3.2 a 11.1 + 0.5 a  59.9 + 2.5 a 7.9 + 0.7 a 

C. parapsilosis 
AAHB4479 77.1 + 3.0 a 61.2 + 4.5 a  83.9 + 3.9 a 70.4 + 3.0 a 

C. krusei 
Glasgow 91.6 + 4.5 c 58.4 + 3.7 a  65.4 + 3.8 a 38.0 + 4.0 a 

            
 
* Viability is expressed as a percentage of that of control cells. Data represent 

the means + standard errors for two independent experiments carried out in 

duplicate.  

a Value significantly different at P < 0.006 from that of control 

b Value significantly different at P < 0.012 from that of control 

c Value not significantly different at P > 0.087 from that of control 

 

 

 



                                                                                                                                      Results 

 

 

 

108 

exposure (Table 10). The paradoxical phenomenon complicates the evaluation of 

caspofungin activity against biofilms. Nevertheless, caspofungin clearly showed 

high activity at low concentrations against biofilms of several Candida species. 

4.5 Scanning electron microscopy of Candida biofilms before 

and after penetration by antifungal agents 

 Membrane-supported biofilms were fixed and processed for scanning 

electron microscopy (SEM) according to the method described by Erlandsen et 

al. (2004) who had used this procedure previously to investigate the presence of 

bacterial glycocalyx. Here, the presence of acidic polysaccharides and the 

effects of two antifungal drugs (amphotericin B and caspofungin) on biofilm 

structure and morphology were investigated.  After air drying, biofilms were 

more easily detached from the membrane filter and this allowed examination of 

three areas: (i) the top surface of the biofilm; (ii) the bottom surface of the 

biofilm (biofilms were turned upside down); and (iii) the membrane-attached 

basal region of the biofilm. Using cationic dyes (alcian blue or ruthenium red) in 

the primary fixation significantly improved the visualization of 

exopolysaccharides in the biofilm samples. Procedures with either dye gave good 

preservation of cell morphology and matrix material. However, with the 

exception of C. tropicalis and C. krusei biofilms, ruthenium red treatment 

produced a weakly held biofilm that broke easily into pieces. Because of this, all 

the biofilms shown in micrographs presented here were stained with alcian blue. 

4.5.1 Effects of amphotericin B and caspofungin on biofilm structure of 

different Candida species 

 The effects of amphotericin B (78 µg/ml) and caspofungin (24 µg/ml) on 

the structure of the biofilms were studied. The areas of the biofilm were 

examined as described above. 

4.5.1.1 The top surface of the biofilm 

 SEM observations of the top surface of the biofilm showed that the 

untreated control biofilm was, in some cases, covered with a slime-like material 

in which yeasts and filaments were completely embedded. This type of material 

was visualized in abundance in C. tropicalis and C. krusei biofilms (Fig. 32, E1 
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and F1). The other species failed to exhibit the slime-like material and only 

relatively sparse amounts of matrix material were seen (Figs. 32, A1, C1, D1 and 

33, A1-D1). Biofilms formed by C. albicans GDH2346 consisted of a dense 

network of yeast cells only (Figs. 32 and 33, A1), whereas those of C. albicans 

SC5314 consisted of both yeast and filamentous forms (Fig. 32, B1). C. glabrata 

and C. parapsilosis formed biofilms containing densely packed yeast cells (Figs. 

32 and 33, C1 and D1); in the case of C. parapsilosis, some of the cells were 

rather elongated (Figs. 32 and 33, D1). 

  

 After 24 h of exposure to amphotericin B, the top surface of the biofilms 

seemed largely unaffected and the cells retained the morphology of those found 

in the controls (Fig. 32, A2, B2, C2, D2, and F2), although in C. tropicalis 

biofilms the slime-like material was less evident (Fig. 32, E2). Caspofungin, on 

the other hand, affected the morphology of C. parapsilosis biofilms; some cells 

were damaged and appeared to be spherical and enlarged compared with those 

found in the control (Fig. 33, D2). Moreover, following caspofungin treatment, C. 

tropicalis and C. krusei biofilms contained less matrix material and were devoid 

of the slime-like component (Figs. 33, E2 and F2). However, caspofungin did not 

appear to affect the top surface of C. albicans biofilms (Figs. 33, A2 and B2), nor 

that of C. glabrata biofilms (Fig. 33, C2). 
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Figure 32. Scanning electron micrographs of the top layers of biofilms of 

Candida species exposed to amphotericin B  

Biofilms were grown on polycarbonate membrane filters for 48 h, and then 

treated with amphotericin for 24 h. The figure shows control biofilms (1) and 

biofilms grown in the presence of amphotericin B (78 µg/ml) (2). Arrows in A 

indicate matrix material; arrow in B1 indicates hyphae. 
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Figure 32 

(continued) 

 

Arrows indicate matrix material 
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Figure 32 

(continued) 

 

Arrows in E1, F1 and F2 indicate slime-like matrix material; arrow in E2 indicates 

matrix material 
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Figure 33. Scanning electron micrographs of the top layers of biofilms of 

Candida species exposed to caspofungin 

Biofilms were grown on polycarbonate membrane filters for 48 h, and then 

treated with caspofungin for 24 h. The figure shows control biofilms (1) and 

biofilms grown in the presence of caspofungin (24 µg/ml) (2). Arrows indicate 

matrix material. 
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Figure 33 

(continued) 

 

Arrows in C1 and C2 indicate matrix material; arrows in D2 indicate spherical, 

enlarged, and damaged cells. 
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Figure 33 

(continued) 

 

Arrows in E1 and F1 indicate slime-like matrix material; arrows in E2 and F2 

indicate matrix material 
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4.5.1.2 The bottom surface of the biofilm 

 The bottom surface of the untreated control biofilms showed different 

types of matrix material. These appeared as strands (Figs. 34, C1 and 35, F1) 

attached to the cell surface and forming a complex meshwork between cells, or 

as slime-like material (Figs. 34, D2 and 35, E1). Globule-like matrix particles 

were also seen on cell surfaces (Figs. 34, A1, B1 and 35, A1, B1). 

 After 24 h of amphotericin B treatment, some damage to the biofilm 

structure, at the bottom surface, was clearly seen in C. krusei biofilms; the 

meshwork structure was almost completely destroyed (Fig. 34, F2) and relatively 

little matrix remained. Amphotericin B also caused elongated cells in biofilms of 

C. krusei to become shorter and more spherical (Fig. 34, F2). In contrast, no 

change in biofilm structure or cell morphology was apparent in biofilms of the 

other Candida species (Fig. 34, A2-E2).  

 Caspofungin caused much more damage to the bottom surface of the 

biofilm. Severe destruction of the bottom surface meshwork structure was 

observed with biofilms of C. glabrata, C. tropicalis, and C. krusei (Figs. 35, C2, 

E2, and F2). In addition, many yeast cells in the biofilm had lost their surface 

matrix coat; this was visualized clearly with C. albicans and C. tropicalis (Fig. 

35, A2, B2, and E2). Caspofungin also caused cell rupture in biofilms of C. 

tropicalis and C. krusei (Fig. 35, E2 and F2). However, no such changes were 

apparent with biofilms of C. parapsilosis (Fig. 35, D2). 
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Figure 34. Scanning electron micrographs of the bottom layers of biofilms of 

Candida species exposed to amphotericin B 

Biofilms were grown on polycarbonate membrane filters for 48 h, and then 

treated with amphotericin for 24 h. The figure shows control biofilms (1) and 

biofilms grown in the presence of amphotericin B (78 µg/ml) (2). Arrows indicate 

globule-like matrix particle. 
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Figure 34 

(continued) 

 

Arrows in C indicate matrix material; arrows in D indicate slime-like matrix 

material. 
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Figure 34 

(continued) 

 

Arrows in E and F1 indicate matrix material; arrows in F2 indicate remaining 

matrix material and spherical yeast cells. 
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Figure 35. Scanning electron micrographs of the bottom layers of biofilms of 

Candida species exposed to caspofungin 

Biofilms were grown on polycarbonate membrane filters for 48 h, and then 

treated with caspofungin for 24 h. The figure shows control biofilms (1) and 

biofilms grown in the presence of or caspofungin (24 µg/ml) (2). Arrows in A1 

and B1 indicate globule-like matrix; arrows in A2 and B2 indicate yeast cells 

without surface matrix material. 
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Figure 35 

(continued) 

 

Arrows in C2 indicate severe destruction of matrix material; arrows in C1 and D 

indicate matrix material. 
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Figure 35 

(continued) 

 

Arrow in E1 indicates slime-like matrix material; arrows in E2 indicate damaged 

yeast cells; arrows in F2 indicate severe destruction of the meshwork structure 

and damaged yeast cells.  
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4.5.1.3 The membrane-attached basal region of the biofilm 

 SEM observations of the membrane-attached basal region of control 

biofilms showed, in most cases, yeast cells submerged in a dense slime-like 

material. This was clearly visualized in C. albicans GDH2346 (Figs. 36 and 37, 

A1), C. albicans SC5314 (Figs. 36 and 37, B1), C. glabrata AAHB12 (Fig. 36 and 

37, C1), C. parapsilosis (Fig. 36, D1), and C. krusei (Figs. 36 and 37, F1). On the 

other hand, C. tropicalis showed a thick meshwork of matrix material connecting 

cells and attaching them to the surface (Figs. 36 and 37, E1) in addition to the 

slime-like material (Fig. 36, E1) 

 After treatment with amphotericin B, the slime-like material which was 

covering the basal region disappeared in most Candida biofilms. The removal of 

this type of material in C. albicans GDH2346 biofilms revealed a thick network of 

strands that seemed to anchor the cells to the substrate (Fig. 36, A2). The slimy 

material was also absent in amphotericin-treated biofilms of C. glabrata and C. 

parapsilosis but here no strands were apparent (Figs. 36, C2 and D2). On the 

other hand, C. albicans SC5314 biofilms retained a little slimy matrix material 

(Fig. 36, B2), whereas C. krusei biofilms appeared to retain as much intact slimy 

material as control biofilms (Fig. 36, F2). The basal region of amphotericin-

treated C. tropicalis biofilms had a thick meshwork of strands connecting cells 

together and to the substrate (Fig. 36, E2). In some cases, yeast cells at the 

basal region were elongated, as in C. glabrata (Fig.36, C2) or shortened and 

ballooned as C. krusei (Fig. 36, F2).  

 Caspofungin caused a high degree of damage to biofilm cells as well as 

damage to the biofilm structure of all six Candida isolates. The basal slime-like 

material was completely removed in all those Candida species that appeared to 

have it (Fig. 37, A2, B2, C2, and F2). The removal of this slimy material revealed 

a thick network of matrix strands as in C. albicans SC5314 (Fig. 37, B2) or short 

fibrils of matrix material surrounding single yeast cells as in C. glabrata (Fig. 37, 

C2), C. parapsilosis (Fig. 37, D2), and C. krusei (Fig. 37, F2). The meshwork 

structure of C. tropicalis was highly damaged (Fig. 37, E2). Caspofungin had also 

caused some damage to the yeast cells at the basal region and cell ‘footprints’ 

were found which are presumably due to lysed cells (Fig. 37, C2, D2, F2). 
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Figure 36. Scanning electron micrographs of the membrane-attached basal 

region of biofilms of Candida species exposed to amphotericin B 

Biofilms were grown on polycarbonate membrane filters for 48 h, and then 

treated with amphotericin for 24 h. The figure shows control biofilms (1) and 

biofilms grown in the presence of amphotericin B (78 µg/ml) (2). Arrow in A1 

indicates slime-like matrix material; arrows in A2 indicate thick strands of 

matrix material; arrow in B2 indicates remaining slime-like material. 
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Figure 36 

(continued) 

 

Arrows in C1 and D1 indicate slime-like material; arrows in C2 indicate elongated 

yeast cells. 
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Figure 36 

(continued) 

 

Arrows in E1 indicate thick meshwork of strands as well as slime-like material; 

arrows in E2 indicate thick meshwork of strands attached to the surface; arrows 

in F1 indicate control elongated yeast cell; arrows in F2 indicate shortened, 

ballooned cells. 
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Figure 37. Scanning electron micrographs of the membrane-attached basal 

region of biofilms of Candida species exposed to caspofungin 

Biofilms were grown on polycarbonate membrane filters for 48 h, and then 

treated with caspofungin for 24 h. The figure shows control biofilms (1) and 

biofilms grown in the presence of or caspofungin (24 µg/ml) (2). Arrow in A1 

indicates slime-like matrix material; arrows in B2 indicate a thick network of 

strands attached to the surface. 
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Figure 37 

(continued) 

 

Arrow in C1 indicates slime-like material; arrows in C2 and D2 indicate damaged 

yeast cells and ‘cell footprints’; arrows in D1 indicate strands of matrix material 

attached to the surface. 
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Figure 37 

(continued) 

 

Arrows in E1 and E2 indicate thick meshwork of strands of matrix material; 

arrows in F2 indicate damaged yeast cells and ‘cell footprints’. 
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 In summary, cells in both the membrane-attached basal region and the 

bottom surface of the biofilms (close to the drug-containing agar surface) were 

more affected by antifungal drugs than those at the top surface, which were 

more likely to be found intact. Caspofungin caused more damage to the biofilm 

structure and biofilm cell morphology than did amphotericin B. Moreover, the 

highest degree of damage overall was caused by caspofungin, and was observed 

in biofilms of C. krusei and C. glabrata. 

 

5 Persister cells in planktonic cultures and biofilms of 

different Candida species 

 Planktonic cultures (exponential and stationary-phase) and biofilms 

(grown on catheter discs for 48 h) of six isolates (i.e. C. albicans GDH2346, C. 

albicans SC5314, C. glabrata AAHB12, C. parapsilosis AAHB4479, C. krusei 

Glasgow and C. tropicalis AAHB73) were exposed to different concentrations of 

antifungals (amphotericin B and caspofungin; 5 µg – 100 µg/ml) for 24 h and 

examined for the presence of persister cells using standard viable cell counts. 

Caspofungin was tested against both strains of C. albicans but showed limited 

effects on stationary-phase cells and biofilms, producing at most only a 10-fold 

decrease in viability (Figs. 38 and 39).  Planktonic cells in exponential growth 

phase were rather more susceptible to caspofungin (Figs. 38 and 39). On the 

basis of these preliminary studies it was decided that caspofungin was an 

unsuitable antifungal agent for use in investigations on persister cells, and 

further experiments were carried out with amphotericin B only. 

5.1 Persister cells in planktonic cultures of Candida species 

5.1.1 Persister cells in planktonic cultures of C. albicans strains 

 Planktonic cells of strain GDH2346, in both exponential and stationary 

growth phases were effectively killed by a low concentration of amphotericin B 

(5 µg/ml) with no detectable survivors (Fig. 40); the MIC for this strain is 1.3 

µg/ml. Planktonic cells of strain SC5314 in exponential and stationary growth  
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Figure 38. Survival of biofilm cells (▲), planktonic exponential-phase cells 

(●), and planktonic stationary-phase cells (□) of C. albicans GDH2346 

exposed to different concentrations of caspofungin 

Biofilms were grown on PVC catheter discs for 48 h in YNB medium containing 50 

mM glucose and caspofungin at the concentration indicated, and then processed 

for viable cell counts. Exponential- and stationary-phase planktonic cultures 

were grown in the same medium. Results are means + standard errors of two 

independent experiments carried out in duplicate. 
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Figure 39. Survival of biofilm cells (▲), planktonic exponential-phase cells 

(●), and planktonic stationary-phase cells (□) of C. albicans SC5314 exposed 

to different concentrations of caspofungin 

Biofilms were grown on PVC catheter discs for 48 h in YNB medium containing 50 

mM glucose and caspofungin at the concentration indicated, and then processed 

for viable cell counts. Exponential- and stationary-phase planktonic cultures 

were grown in the same medium. Results are means + standard errors of two 

independent experiments carried out in duplicate. 
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Figure 40. Survival of biofilm cells (▲), planktonic exponential-phase cells 

(●), and planktonic stationary-phase cells (□) of C. albicans GDH2346 

exposed to different concentrations of amphotericin B 

Biofilms were grown on PVC catheter discs for 48 h in YNB medium containing 50 

mM glucose and amphotericin B at the concentration indicated, and then 

processed for viable cell counts. Exponential- and stationary-phase cultures 

were grown in the same medium. Results are means + standard errors of two 

independent experiments carried out in duplicate. 
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phases were also completely eliminated at this low concentration of 

amphotericin B (Fig. 41). The MIC for strain SC5314 is 0.8 µg/ml. 

5.1.2 Persister cells in planktonic cultures of non-C. albicans species 

 Planktonic cells of non-C. albicans species were also susceptible to 

amphotericin B. Exponentially growing cells of C. glabrata, C. tropicalis and C. 

krusei were killed by amphotericin B at a concentration of 5 µg/ml (Figs. 42-44) 

whereas those of C. parapsilosis were relatively more resistant (Fig. 45). 

Stationary-phase cells of C. tropicalis, C. krusei and C. parapsilosis were less 

susceptible than exponentially growing cells (Figs. 43-45), while stationary-phase 

cells of C. krusei showed a distinct tolerance to amphotericin B (Fig. 44). 

Overall, there was no indication of persisters among planktonic cells of any 

Candida species tested since all of these cells were eliminated completely at an 

amphotericin B concentration of 100 µg/ml. 

5.2 Persister cells in biofilms of Candida species 

5.2.1 Persister cells in biofilms of C. albicans strains 

 Unlike planktonic cells, biofilms of C. albicans GDH2346 seemed to 

contain a small fraction (0.01 %) of cells tolerant to amphotericin B at 

concentration of 100 µg/ml (Fig. 40), i.e. drug-tolerant persister cells. 

Unexpectedly, biofilms of C. albicans SC5314 appeared to lack such tolerant 

cells as no cells survived exposure to 100 µg/ml amphotericin B (Fig. 41). 

Nevertheless, in this strain, as in strain GDH2346, biofilm cells were more drug 

resistant than planktonic cells. 

5.2.2 Persister cells in biofilms of non-C. albicans species 

 Although biofilms of all four non-C. albicans species were considerably 

more resistant to amphotericin B than planktonic cells, only biofilms of C. krusei 

and C. parapsilosis gave biphasic killing curves indicative of the presence of 

persisters (Figs. 44 and 45). These biofilms, unlike those of C. glabrata and C. 

tropicalis, still showed some viability even after exposure to a drug 

concentration of 100 µg/ml. However, for both species the persister population  
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Figure 41. Survival of biofilm cells (▲), planktonic exponential-phase cells 

(●), and planktonic stationary-phase cells (□) of C. albicans SC5314 exposed 

to different concentrations of amphotericin B 

Biofilms were grown on PVC catheter discs for 48 h in YNB medium containing 50 

mM glucose and amphotericin B at the concentration indicated, and then 

processed for viable cell counts. Exponential- and stationary-phase cultures 

were grown in the same medium. Results are means + standard errors of two 

independent experiments carried out in duplicate. 
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Figure 42. Survival of C. glabrata biofilm cells (▲), planktonic exponential-

phase cells (●), and planktonic stationary-phase cells (□) exposed to different 

concentrations of amphotericin B 

Biofilms were grown on PVC catheter discs for 48 h in YNB medium containing 50 

mM glucose and amphotericin B at the concentration indicated, and then 

processed for viable cell counts. Exponential- and stationary-phase cultures 

were grown in the same medium. Results are means + standard errors of two 

independent experiments carried out in duplicate. 
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Figure 43. Survival of C. tropicalis biofilm cells (▲), planktonic exponential-

phase cells (●), and planktonic stationary-phase cells (□) exposed to different 

concentrations of amphotericin B 

Biofilms were grown on PVC catheter discs for 48 h in YNB medium containing 50 

mM glucose and amphotericin B at the concentration indicated, and then 

processed for viable cell counts. Exponential- and stationary-phase cultures 

were grown in the same medium. Results are means + standard errors of two 

independent experiments carried out in duplicate. 
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Figure 44. Survival of C. krusei biofilm cells (▲), planktonic exponential-

phase cells (●), and planktonic stationary-phase cells (□) exposed to different 

concentrations of amphotericin B 

Biofilms were grown on PVC catheter discs for 48 h in YNB medium containing 50 

mM glucose and amphotericin B at the concentration indicated, and then 

processed for viable cell counts. Exponential- and stationary-phase cultures 

were grown in the same medium. Results are means + standard errors of two 

independent experiments carried out in duplicate. 
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Figure 45. Survival of C. parapsilosis biofilm cells (▲), planktonic 

exponential-phase cells (●), and planktonic stationary-phase cells (□) 

exposed to different concentrations of amphotericin B 

Biofilms were grown on PVC catheter discs for 48 h in YNB medium containing 50 

mM glucose and amphotericin B at the concentration indicated, and then 

processed for viable cell counts. Exponential- and stationary-phase cultures 

were grown in the same medium. Results are means + standard errors of two 

independent experiments carried out in duplicate. 
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was small, representing approximately 0.001% and 0.07% of the total cell count 

of biofilms of C. krusei and C. parapsilosis, respectively. C. tropicalis and C. 

glabrata biofilm cells were eliminated at amphotericin concentrations of 30 

µg/ml and 100 µg/ml, respectively (Figs. 42 and 43). 

5.3 Live-dead staining of persister cells 

 To confirm the existence of persister cells in some Candida isolates but 

not in others, a live-dead staining procedure with fluorescein diacetate was used 

(LaFleur et al., 2006).  

5.3.1 Staining with fluorescein diacetate 

 Fluorescein diacetate was used to discriminate between live and dead 

yeast cells; this dye specifically stains dead yeast cells with a bright green 

fluorescence. Mature (48-h) Candida biofilms (C. albicans GDH2346 and SC5314, 

C. krusei Glasgow, and C. parapsilosis AAHB4479) were treated with a high 

concentration of amphotericin B (100 µg/ml) for 24 h at 37°C and stained with 

fluorescein diacetate. A small number of unstained cells (live) were detected in 

three of the isolates. These cells appeared to have normal morphology similar to 

that of untreated control cells and their numbers varied among the different 

Candida species. C. parapsilosis biofilms (Fig. 46) contained more of the live 

cells than did biofilms of C. albicans GDH2346 or C. krusei (Figs. 47 and 48, 

respectively). In contrast, C. albicans SC5314 failed to show live cells (Fig. 49). 

With all four isolates, fluorescence staining was rarely observed in untreated 

control cells (i.e. 72-h biofilm cells). These findings further confirm the earlier 

viability measurements which showed that persisters were present in biofilms of 

C. albicans GDH2346, C. krusei, and C. parapsilosis but absent from biofilms of 

C. albicans SC5314. 
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Figure 46. Live-dead staining of C. parapsilosis biofilm cells with fluorescein 

diacetate 

Biofilms (48-h) were incubated with amphotericin B (100 µg/ml) and fluorescein 

diacetate (100 µg/ml) for 24 h at 37ºC. Washed, resuspended biofilm cells were 

then examined by fluorescence microscopy. Differential interference contrast 

(DIC), fluorescence, and overlaid images are shown of untreated biofilm cells (A) 

and biofilm cells treated with amphotericin B (B). Dead cells fluoresce green. 
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Figure 47. Live-dead staining of C. albicans GDH2346 biofilm cells with 

fluorescein diacetate  

Biofilms (48-h) were incubated with amphotericin B (100 µg/ml) and fluorescein 

diacetate (100 µg/ml) for 24 h at 37ºC. Washed, resuspended biofilm cells were 

then examined by fluorescence microscopy. Differential interference contrast 

(DIC), fluorescence, and overlaid images are shown of untreated biofilm cells (A) 

and biofilm cells treated with amphotericin B (B). Dead cells fluoresce green. 
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Figure 48. Live-dead staining of C. krusei biofilm cells with fluorescein 

diacetate 

Biofilms (48-h) were incubated with amphotericin B (100 µg/ml) and fluorescein 

diacetate (100 µg/ml) for 24 h at 37ºC. Washed, resuspended biofilm cells were 

then examined by fluorescence microscopy. Differential interference contrast 

(DIC), fluorescence, and overlaid images are shown of untreated biofilm cells (A) 

and biofilm cells treated with amphotericin B (B). Dead cells fluoresce green. 

Bar, 13 µm 
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Figure 49. Live-dead staining of C. albicans SC5314 biofilm cells with 

fluorescein diacetate 

Biofilms (48-h) were incubated with amphotericin B (100 µg/ml) and fluorescein 

diacetate (100 µg/ml) for 24 h at 37ºC. Washed, resuspended biofilm cells were 

then examined by fluorescence microscopy. Differential interference contrast 

(DIC), fluorescence, and overlaid images are shown of untreated biofilm cells (A) 

and biofilm cells treated with amphotericin B (B). Dead cells fluoresce green. 
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6 Apoptosis in Candida biofilms 

6.1  Detection of apoptotic cells in Candida biofilms 

6.1.1 Caspase detection using a polycaspase SR-FLICA reagent 

 The FLICA reagent (for fluorochrome-labelled inhibitor of caspase) was 

used to detect the presence of caspases in Candida biofilm cells. When the 

reagent enters a cell, any active caspases present will bind covalently to the 

peptide inhibitor sequence of FLICA (VAD). As a result, the fluorescent label, 

sulforhodamine (SR) is retained within the cell which fluoresces red. Here, 48-h 

biofilms of C. krusei, C. parapsilosis and both strains of C. albicans were treated 

with amphotericin B (10 or 50 µg/ml) for 5 h or 24 h. The cells were then 

labelled with the reagent and viewed under a fluorescence microscope. 

 Exposure of biofilms of C. albicans SC5314 to amphotericin B at a 

concentration of 10 µg/ml for 5 h resulted in relatively few cells that were 

stained with FLICA reagent (Fig. 50, A2) while biofilms exposed to a higher 

concentration of AMB (i.e. 50 µg/ml) showed slightly more stained cells, 

indicating a higher level of caspase activity (Fig. 50, A3). Considerably more 

stained cells resulted after 24 h of exposure (Fig. 50, B2 and 3).  Similarly, 

exposing biofilms of C. albicans GDH2346 to amphotericin B at a concentration 

of 50 µg/ml for 5 h resulted in relatively few cells that were stained with the 

FLICA reagent (Fig. 51, A2 and 3). Again, considerably more stained cells (93%) 

were seen in biofilms that had been exposed to the drug for 24 h (Fig. 51, B2 and 

3), suggesting an ongoing process of apoptosis induction. After such treatment, 

higher numbers of apoptotic cells appeared to be present in biofilms of C. 

albicans (both strains) and C. krusei (Fig. 52, A2 and 3) than in biofilms of C. 

parapsilosis (Fig. 52, B2 and 3). Some cells were faint red which may indicate a 

lower concentration of active caspase; these cells were probably just beginning 

to enter apoptosis at the time the reagent was added. Unstained, non-apoptotic 

cells appeared to be intact and had a morphology similar to that of untreated 

control cells.  

 Pre-treatment of biofilm cells with unlabelled caspase inhibitor Z-VAD-

FMK for 1h before the addition of FLICA failed to block the caspase-like protease  
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Figure 50. Caspase detection using a polycaspase SR-FLICA reagent: C. 

albicans SC5314  

Biofilms (48-h) of C. albicans SC5314 were treated with AMB (10 or 50 µg/ml) for 

5 h or 24 h. Biofilm cells were then labelled with the SR-VAD-FMK reagent for 60 

min at 37°C and examined by fluorescence microscopy. DIC and fluorescence 

images of C. albicans SC5314 exposed to AMB for 5 h (A) or 24 h (B) are shown:  

(1) untreated control biofilm cells; (2) biofilm cells treated with AMB (10 µg/ml); 

and (3) biofilm cells treated with AMB (50 µg/ml). Orange/red fluorescence 

indicates caspase activity. Bar, 13 µm. 
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Figure 51. Caspase detection using a polycaspase SR-FLICA reagent: C. 

albicans GDH2346 

Biofilms (48-h) of C. albicans GDH2346 were treated with AMB (50 µg/ml) for 5 h 

or 24 h. Biofilm cells were then labelled with the SR-VAD-FMK reagent for 60 min 

at 37°C and examined by fluorescence microscopy. DIC and fluorescence images 

of C. albicans GDH2346 exposed to AMB for 5 h (A) or for 24 h (B) are shown: (1) 

untreated control biofilm cells; (2 and 3) treated biofilm cells. Orange/red 

fluorescence indicates caspase activity. Bar, 13 µm. 
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Figure 52. Caspase detection using a polycaspase SR-FLICA reagent: C. krusei 

and C. parapsilosis 

Biofilms (48-h) of C. krusei and C. parapsilosis were treated with AMB (50 µg/ml) 

for 24 h. Biofilm cells were then labelled with the SR-VAD-FMK reagent for 60 

min at 37C and examined by fluorescence microscopy. DIC and fluorescence 

images of C. krusei (A) and C. parapsilosis (B) are shown: (1) untreated control 

biofilm cells; (2 and 3) treated biofilm cells. Orange/red fluorescence indicates 

caspase activity. Bar, 13 µm. 
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binding sites. Furthermore, subsequent binding of FLICA was not completely 

prevented by addition of the unlabelled caspase inhibitor at the time of 

apoptosis induction; the number of stained cells did not significantly decrease 

(94 % of 1300 cells counted, P<0.37). 

6.1.2 Caspase detection using a D2R reagent 

 To confirm the results with the FLICA reagent, the presence of active 

caspase-like proteases was investigated using another method. This assay is 

based on the cleavage of (aspartyl)2-Rhodamine 110 (D2R) which is a substrate 

for caspases.  D2R is non-fluorescent but when it enters the cell it can be 

cleaved by active caspases to green fluorescent monosubstituted rhodamine 110 

and free rhodamine (Hug et al., 1999). With biofilms exposed to amphotericin B 

(50 µg/ml) for 24 h, the number of cells stained by D2R was high (96%; Figs. 53 

and 54); cells from untreated biofilms, however, were rarely stained. 

 Pre-treating biofilm cells of C. albicans GDH2346 with unlabelled Z-VAD-

FMK for 1h prior to the addition of D2R reagent did not prevent subsequent 

binding of D2R. Furthermore, addition of the unlabelled caspase inhibitor along 

with the inducer of apoptosis (AMB) also did not completely prevent the 

subsequent binding of D2R. Nevertheless, the number of stained cells was 

significantly lower (81% of 600 cells counted; P<0.035) than the number of 

stained cells in biofilms exposed to the apoptosis inducer only (97 % of 600 cells 

counted). 
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Figure 53. Caspase detection using a D2R reagent: C. albicans strains 

GDH2346 and SC5314 

Candida biofilms (48-h) were treated with AMB (50 µg/ml) for 24 h at 37 °C. 

Biofilm cells were then labelled with D2R for 45 min at 37 °C and examined by 

fluorescence microscopy. DIC and fluorescence images of C. albicans GDH2346 

(A) and C. albicans SC5314 (B) are shown: (1) untreated control biofilm cells; (2 

and 3) treated biofilm cells. Green fluorescence indicates caspase activity. Bar,  

5 µm. 
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Figure 54. Caspase detection using a D2R reagent: C. krusei and C. 

parapsilosis 

Candida biofilms (48-h) were treated with AMB (50 µg/ml) for 24 h at 37 °C. 

Biofilm cells were then labelled with D2R for 45 min at 37 °C and examined by 

fluorescence microscopy. DIC and fluorescence images of C. krusei (A) and C. 

parapsilosis (B) are shown: (1) untreated control biofilm cells; (2 and 3) treated 

biofilm cells. Green fluorescence indicates caspase activity. Bar, 5 µm. 
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6.2 Effects of caspase inhibitors on Candida biofilms 

 The effects of caspase inhibitors on amphotericin B activity against 

Candida biofilms were investigated using a broad spectrum caspase inhibitor (Z-

VAD-FMK) and a variety of specific caspase inhibitors. Drug action was 

determined by viable cell count assays. The concentration of the solvent DMSO 

was maintained as low as possible (< 0.26 %) since higher concentrations were 

found to interfere with the inhibitors and to increase the number of dead cells in 

the presence of amphotericin B; examples of this effect are shown in Figs. 55 

and 56. Furthermore, according to the manufacturer of the inhibitors 

(Calbiochem), ‘a final DMSO concentration should not exceed 0.2% as higher 

levels may increase the risk of cellular toxicity which may mask the effect of the 

caspase inhibitor’. 

6.2.1 Effect of a general caspase inhibitor (Z-VAD-FMK) 

 Mature (48-h) biofilms of C. albicans GDH2346, C. krusei Glasgow, and C. 

parapsilosis AAHB4479 were incubated for 24 h at 37ºC in fresh growth medium 

in the presence of different concentrations of the caspase inhibitor Z-VAD-FMK 

(2.5, 5, 10, and 20 µM) alone or together with amphotericin B (50 µg/ml). 

6.2.1.1 Effect of Z-VAD-FMK on viability of Candida biofilms 

 Addition of the caspase inhibitor, Z-VAD-FMK, had no significant effect on 

biofilm viability (P>0.05) for any of the three Candida species at any 

concentration tested (Fig. 57). 

6.2.1.2 Effect of Z-VAD-FMK on amphotericin B activity against Candida 

biofilms 

 When Z-VAD-FMK was added at a concentration as low as 2.5 µM together 

with amphotericin B (50 µg/ml), it significantly reduced the effect of the drug 

on Candida biofilms. Biofilm viability was increased by 11.5-fold (P<0.001) and 

1.6-fold (P<0.05) for C. albicans GDH2346 and C. parapsilosis, respectively. 

However, Z-VAD-FMK (2.5 µM) produced no significant increase in biofilm 

viability with C. krusei (Fig. 58).  In contrast, Z-VAD-FMK at high concentrations 

(10 µM to 20 µM) was ineffective in preventing cell death; a dramatic increase in 

the number of dead cells was observed instead. The proportion of dead cells was 
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Figure 55. Effect of Z-VAD-FMK on amphotericin B (50µg/ml) activity against 

C. albicans GDH2346 in the presence of DMSO at 0.5-1.4% (♦) or 0.12-0.26% 

(■) 

Data represent the means + standard errors of two independent experiments 

carried out in duplicate. 
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Figure 56. Effect of Z-VAD-FMK on amphotericin B (50µg/ml) activity against 

C. parapsilosis in the presence of DMSO at 0.5-1.4% (♦) or 0.12-0.26% (■) 

Data represent the means + standard errors of two independent experiments 

carried out in duplicate.  
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Figure 57. Effect of general caspase inhibitor Z-VAD-FMK on the viability of 

biofilms of C. albicans GDH2346 (♦), C. krusei (■), and C. parapsilosis (∆) 

 

Biofilms (48-h) were incubated with ZVAD-FMK for 24 h at 37°C and cell survival 

was determined by viable counts. Results are the means + standard errors of two 

independent experiments carried out in duplicate. Final DMSO concentration, < 

0.014%.  
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Figure 58. Effect of general caspase inhibitor Z-VAD-FMK on amphotericin B 

activity against biofilms of C. albicans GDH2346 (♦), C. parapsilosis (∆), and 

C. krusei (■) 

Biofilms (48-h) were incubated with Z-VAD-FMK and amphotericin B (50 µg/ml), 

together with Z-VAD-FMK at the concentration indicated, for 24 h at 37°C and 

cell survival was determined by viable counts. Results are the means + standard 

errors of two independent experiments carried out in duplicate. Final DMSO 

concentration, 0.12-0.26%. 
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highest at a concentration of 20 µM: 41 %, 57 %, and 94 % for C. albicans 

GDH2346, C. parapsilosis and C. krusei, respectively (Fig. 58).   

 The effect of combined treatment with Z-VAD-FMK and amphotericin B 

was also investigated with biofilms of C. albicans SC5314.  This strain seems to 

lack persisters, and biofilms lose all viability after exposure to amphotericin B at 

a concentration of 30 µg/ml (Section 5.2.1). When Z-VAD-FMK (2.5 µM) was 

added to 48-h biofilms along with amphotericin B (50 µg/ml), after incubation 

for 24 h at 37ºC there was a complete loss of viability like that observed with 

control biofilms exposed only to the antifungal agent. On the other hand, 

treating biofilms with Z-VAD-FMK and a lower concentration of amphotericin B 

(10 µg/ml) resulted in an 11.9-fold increase in viability (P<0.001). 

 The specificity of the effect noted with the general caspase inhibitor was 

investigated using pepstatin A, an inhibitor of aspartic proteinases which are 

known to be produced by Candida species. Mature (48-h) biofilms of C. albicans 

GDH2346 and C. albicans SC5314 were exposed to pepstatin A (2.5 µM) plus 

amphotericin B (50 µg/ml) for 24 h at 37ºC. Pepstatin A, with either C. albicans 

strain, had no significant effect in improving cell survival (Fig. 59). As noted 

above, C. albicans SC5314 biofilms produce no persisters and are completely 

eliminated at concentrations of amphotericin B >30 µg/ml (Section 5.2.1). 

6.2.2 Effect of some specific caspase inhibitors 

 A set of specific caspase inhibitors, active individually against caspases-1, 

-2, -3, -5, -6, -8, and -9, was also tested against C. albicans GDH2346 biofilms, 

at a concentration of 2.5 µM. 

6.2.2.1 Effect of specific caspase inhibitors on viability of Candida biofilms 

 Mature (48-h) biofilms of C. albicans were incubated for 24 h at 37ºC in 

fresh growth medium in the presence of specific caspase inhibitors (2.5 µM). 

None of the inhibitors showed a significant effect (P>0.05) on biofilm viability 

asdetermined by viable counts (Fig. 60). 
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Figure 59. Effects of pepstatin A on amphotericin B activity against biofilms 

of C. albicans GDH2346 and C albicans SC5314 

Biofilms (48-h) were incubated with pepstatin A (2.5 µM) and amphotericin B 

(50µg/ml) for 24 h at 37°C. Cell survival was determined by viable counts. 

Control (AMB only) (  ); pepstatin A + AMB (  ). Results are means + standard 

errors of two independent experiments carried out in duplicate.   
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Figure 60. Effects of specific inhibitors of caspases-1, -2, -3, -5, -6, -8, and -9 

on viability of C. albicans GDH2346 biofilms 

Biofilms (48-h) were incubated with inhibitor (2.5 µM) for 24 h at 37°C. Cell 

survival was determined by viable counts. Results are means + standard errors of 

two independent experiments carried out in duplicate. Final DMSO 

concentration, 0.125%.  
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6.2.2.2 Effect of specific caspase inhibitors on amphotericin B activity 

against Candida biofilms 

 When specific caspase inhibitors (2.5 µM) were added along with 

amphotericin B (50 µg/ml) to 48-h C. albicans biofilms, some of the inhibitors 

significantly enhanced the survival of biofilm cells. Caspase-1 inhibitor VI 

produced in a 40-fold increase in biofilm cell survival (P<0.001) compared with 

amphotericin B-treated controls. Similarly, inhibitors of caspases -9, -5, -3, and  

-2 increased cell survival 8-fold (P<0.001), 3.5-fold (P<0.001), 1.9-fold (P<0.001), 

and 1.7-fold (P<0.01), respectively. In contrast, caspase-6 and caspase-8 

inhibitors decreased biofilm cell survival as compared with the amphotericin-

treated controls (Fig. 61). 

6.3 Effects of histone deacetylase (HDA) inhibitors on Candida 

biofilms 

 The effects of four HDA inhibitors, namely sodium butyrate, sodium 

valproate, apicidin, and trichostatin A, on Candida biofilms were investigated 

using two methods. Initial experiments were carried out using a tetrazolium salt 

reduction (XTT) assay. However, very low XTT readings were obtained with one 

Candida species (C. parapsilosis). Additional experiments were therefore carried 

out using a viable cell count assay. In preliminary experiments, HDA inhibitors 

were added at time zero of biofilm formation but this procedure produced 

biofilms that were fragile, loosely adherent to PVC discs and difficult to handle 

(especially with trichostatin A and apicidin). In all subsequent experiments, the 

effects of HDA inhibitors were tested on mature (48-h) Candida biofilms instead. 

6.3.1 Effects of HDA inhibitors on growth and viability of Candida biofilms 

6.3.1.1 Tetrazolium salt reduction (XTT) assays 

 HDA inhibitors (sodium butyrate, sodium valproate, apicidin, and 

trichostatin A) at different concentrations (2 to 32 µg/ml, or 2 to 32 mM for 

sodium butyrate) were added to incubation mixtures at time zero of biofilm 

production. Incubation was continued for 48 h at 37 ºC. Sodium valproate had no 

significant effect on the growth of C. albicans GDH2346 biofilms, whereas 

sodium butyrate and apicidin reduced growth by 8 to 15 % (P<0.05). On the other  
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Figure 61. Effects of specific inhibitors of caspases-1, -2, -3, -5, -6, -8, and -9 

on amphotericin B activity against biofilms of C. albicans GDH2346 

Biofilms (48-h) were incubated with inhibitor (2.5 µM) and amphotericin B 

(50µg/ml) for 24 h at 37°C. Cell survival was determined by viable counts. 

Results are means + standard errors of two independent experiments carried out 

in duplicate. Final DMSO concentration, 0.25%.  
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hand, trichostatin A seemed to enhance growth slightly at low concentrations 

(Fig. 62).  

 Growth of C. krusei and C. parapsilosis biofilms was reduced by all four 

HDA inhibitors by 10 to 36% (Fig. 63 and 64). Using the XTT assay, low metabolic 

activity was consistently observed with C. parapsilosis biofilms. The reason for 

this is not clear; similar observations have been made by a colleague working in 

this laboratory (Filip Ruzicka, personal communication). Kuhn and co-workers 

have reported that XTT readings in this assay can vary in accordance with the 

sensitivity of different strains and species of Candida to tetrazolium salts.  They 

have also demonstrated decreased XTT activity with C. parapsilosis (strains 

P/A71 and P92) compared to C. albicans strains (Kuhn et al., 2002a; Kuhn et al., 

2002b; Kuhn et al., 2003). 

6.3.1.2 Viable cell counts 

 Mature (48-h) biofilms of C. albicans GDH2346, C. parapsilosis and C. 

krusei were incubated for 24 h at 37ºC in fresh growth medium in the presence 

of different concentrations of the HDA inhibitors.  None of the inhibitors 

affected the viability of any of the Candida species (Figs. 65, 66, and 67). 

6.3.2 Effects of HDA inhibitors on fluconazole activity against Candida 

biofilms 

 The effects of HDA inhibitors on fluconazole activity against C. albicans 

biofilms were evaluated by the XTT metabolic assay. The addition of HDA 

inhibitors (2 to 32 µg/ml, or 2 to 32 mM for sodium butyrate) at time zero of 

biofilm formation increased the action of fluconazole, at either 10 or 50 µg/ml, 

against biofilms of C. albicans GDH2346. The greatest effect on viability was 

observed in the presence of sodium butyrate (32 mM); biofilm viability was 

reduced by 36 % and 26 % (P< 0.001) at fluconazole concentrations of 10 and 50 

µg/ml, respectively (Fig. 68 and 69).  Valproate, apicidin, and trichostatin A at 

their highest concentration (32 µg/ml) also produced a significant effect on 

biofilm viability at a fluconazole concentration of 10 µg/ml; viability decreased 

by 28 %, 28 %, and 23.8 %, respectively (P< 0.001) (Fig. 68). Interestingly, 

valproate and apicidin at the higher concentration of fluconazole (50 µg/ml)  
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Figure 62. Effects of HDA inhibitors on the growth of biofilms of C. albicans 

GDH2346 as determined by XTT assays 

HDA inhibitors (2, 8, 32 µg/ml or mM) were added at time zero of biofilm 

formation. Incubation was for 48 h at 37°C.  Results are means + standard errors 

of two independent experiments carried out in triplicate. Sodium butyrate (mM; 

□), sodium valproate (µg/ml; ■), apicidin (µg/ml; ▲), and trichostatin A (µg/ml; 

○).  
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Figure 63. Effects of HDA inhibitors on the growth of C. krusei biofilms as 

determined by XTT assays 

HDA inhibitors (2, 8, 32 µg/ml or mM) were added at time zero of biofilm 

formation. Incubation was for 48 h at 37°C.  Results are means + standard errors 

of two independent experiments carried out in triplicate. Sodium butyrate (mM; 

□), sodium valproate (µg/ml; ■), apicidin (µg/ml; ▲), and trichostatin A (µg/ml; 

○). 
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Figure 64. Effects of HDA inhibitors on the growth of C. parapsilosis biofilms 

as determined by XTT assays 

HDA inhibitors (2, 8, 32 µg/ml or mM) were added at time zero of biofilm 

formation. Incubation was for 48 h at 37°C.  Results are means + standard errors 

of two independent experiments carried out in triplicate. Sodium butyrate (mM; 

□), sodium valproate (µg/ml; ■), apicidin (µg/ml; ▲), and trichostatin A (µg/ml; 

○). 
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Figure 65. Effect of HDA inhibitors on the viability of C. albicans GDH2346 

biofilms 

Biofilms (48-h) were incubated with HDA inhibitors for 24 h at 37°C. Results are 

means + standard errors of two independent experiments carried out in 

triplicate. Sodium butyrate (mM; □), sodium valproate (µg/ml; ■), apicidin 

(µg/ml; ▲), and trichostatin A (µg/ml; ○).  
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Figure 66. Effect of HDA inhibitors on the viability of C. krusei biofilms  

Biofilms (48-h) were incubated with HDA inhibitors for 24 h at 37°C. Results are 

means + standard errors of two independent experiments carried out in 

triplicate. Sodium butyrate (mM; □), sodium valproate (µg/ml; ■), apicidin 

(µg/ml; ▲), and trichostatin A (µg/ml; ○). 
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Figure 67. Effect of HDA inhibitors on the viability of C. parapsilosis biofilms 

Biofilms (48-h) were incubated with HDA inhibitors for 24 h at 37°C. Results are 

means + standard errors of two independent experiments carried out in 

triplicate. Sodium butyrate (mM; □), sodium valproate (µg/ml; ■), apicidin 

(µg/ml; ▲), and trichostatin A (µg/ml; ○). 
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Figure 68. Effects of HDA inhibitors on fluconazole (10 µg/ml) activity against 

biofilms of C. albicans GDH2346 

HDA inhibitors were added at time zero of biofilm formation. After incubation 

for 48 h, biofilms were exposed to fluconazole (10 µg/ml) for 24 h at 37°C. Cell 

viability was measured by the XTT assay. Sodium butyrate (SB; mM), sodium 

valproate (VAL; µg/ml), apicidin (AP; µg/ml), and trichostatin A (TSA; µg/ml) 

were used at concentrations of     2;    8;    32 µg/ml or mM. Results are 

means + standard errors of two independent experiments carried out in 

triplicate. 
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were less effective (10.5 % and 19 %, respectively), whereas trichostatin A 

appeared to enhance growth (Fig. 69). 

 A similar experiment was performed in which the HDA inhibitors were 

added to mature (48-h) biofilms of C. albicans GDH2346 rather than at time zero 

of biofilm formation. All four HDA inhibitors at their highest concentration (32 

µg/ml or mM) had a marked effect on biofilm viability at both fluconazole 

concentrations (10 or 50 µg/ml); however, sodium butyrate (32 mM) had the 

greatest effect and reduced biofilm viability by 40 % and 24 %, at fluconazole 

concentrations of 10 and 50 µg/ml, respectively (P< 0.01) (Figs. 70 and 71). 

6.3.3 Effect of HDA inhibitors on amphotericin B activity against Candida 

biofilms 

 Similar experiments were carried out to investigate the effects of HDA 

inhibitors (sodium butyrate, sodium valproate, apicidin, and trichostatin A) at 

different concentrations on the activity of amphotericin B against Candida 

biofilms. Tetrazolium reduction (XTT) and viable cell count assays were again 

used to assess the effects.  

6.3.3.1 Tetrazolium salt reduction (XTT) assays  

 The addition of HDA inhibitors at time zero of biofilm formation produced 

varied effects on amphotericin B activity. Sodium butyrate at all concentrations 

(2 to 32 mM) significantly enhanced the activity of amphotericin B against C. 

albicans GDH2346 biofilms. Sodium butyrate at concentrations of 2, 8, and 32 

mM with amphotericin B (10 µg/ml) reduced biofilm viability by 34 %, 56 %, and 

68 %, respectively (P<0.001; Fig. 72), and in the presence of a higher 

concentration of amphotericin B (50 µg/ml) by 47%, 59.7%, and 76%, respectively 

(P<0.001; Fig. 73). In contrast, valproate and apicidin at all concentrations (2 to 

32 mM) with amphotericin B (50 µg/ml) had no significant effect on C. albicans 

biofilm viability (P>0.05; Fig. 73). However, significant effects on viability 

(decreases of 37% and 31%, respectively) were observed when these inhibitors 

were used at a concentration of 32 µg/ml with amphotericin B at 10 µg/ml 

(P<0.001; Fig. 72).  Results with trichostatin A were not reliable in this assay; it 

was noticed that this inhibitor in the presence of amphotericin B causes 

detachment of C. albicans biofilms from the PVC discs. Surprisingly, 



                                                                                                                                      Results 

 

 

 

171 

 

            

            

  

Figure 69. Effects of HDA inhibitors on fluconazole (50 µg/ml) activity against 

biofilms of C. albicans GDH2346 

HDA inhibitors were added at time zero of biofilm formation. After incubation 

for 48 h, biofilms were exposed to fluconazole (50 µg/ml) for 24 h at 37°C. Cell 

viability was measured by the XTT assay. Sodium butyrate (SB; mM), sodium 

valproate (VAL; µg/ml), apicidin (AP; µg/ml), and trichostatin A (TSA; µg/ml) 

were used at concentrations of     2;    8;    32 µg/ml or mM. Results are 

means + standard errors of two independent experiments carried out in 

triplicate.
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Figure 70. Effects of HDA inhibitors on fluconazole (10 µg/ml) activity against 

biofilms of C. albicans GDH2346: inhibitors added to mature biofilms 

Biofilms (48-h) were incubated with HDA inhibitors and fluconazole (10 µg/ml) 

for 24 h at 37°C. Cell viability was measured by the XTT assay. Sodium butyrate 

(SB; mM), sodium valproate (VAL; µg/ml), apicidin (AP; µg/ml), and trichostatin 

A (TSA; µg/ml) were used at concentrations of   2;   8;  32 mM or µg/ml. 

Results are means + standard errors of two independent experiments carried out 

in triplicate.  

 

0.0

20.0

40.0

60.0

80.0

100.0

120.0

SB VAL AP TSA

HDA inhibitor (µg/ml or mM)

B
io

fi
lm

 c
e

ll
 v

ia
b

il
it

y
 (

%
 o

f 
c

o
n

tr
o

l)



                                                                                                                                      Results 

 

 

 

173 

            

            

  

 

Figure 71. Effects of HDA inhibitors on fluconazole (50 µg/ml) activity against 

biofilms of C. albicans GDH2346: inhibitors added to mature biofilms 

Biofilms (48-h) were incubated with HDA inhibitors and fluconazole (50 µg/ml) 

for 24 h at 37°C. Cell viability was measured by the XTT assay. Sodium butyrate 

(SB; mM), sodium valproate (VAL; µg/ml), apicidin (AP; µg/ml), and trichostatin 

A (TSA; µg/ml) were used at concentrations of    2;     8;    32 mM or µg/ml. 

Results are means + standard errors of two independent experiments carried out 

in triplicate. 
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Figure 72. Effects of HDA inhibitors on amphotericin B (10 µg/ml) activity 

against biofilms of C. albicans GDH2346  

HDA inhibitors were added at time zero of biofilm formation. After incubation 

for 48 h, biofilms were exposed to amphotericin B (10 µg/ml) for 24 h at 37°C. 

Cell viability was measured by the XTT assay. Sodium butyrate (SB; mM), sodium 

valproate (VAL; µg/ml), apicidin (AP; µg/ml), and trichostatin A (TSA; µg/ml) 

were used at concentrations of    2;    8;    32 µg/ml or mM. Results are 

means + standard errors of two independent experiments carried out in 

triplicate. 

 

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

500.0

SB VAL AP TSA

HDA inhibitor (µg/ml or mM)

B
io

fi
lm

 c
e
ll
 v

ia
b

il
it

y
 (

%
 o

f 
c
o

n
tr

o
l)



                                                                                                                                      Results 

 

 

 

175 

 

 

 

 

Figure 73. Effects of HDA inhibitors on amphotericin B (50 µg/ml) activity 

against biofilms of C. albicans GDH2346 

HDA inhibitors were added at time zero of biofilm formation. After incubation 

for 48 h, biofilms were exposed to amphotericin B (50 µg/ml) for 24 h at 37°C. 

Cell viability was measured by the XTT assay. Sodium butyrate (SB; mM), sodium 

valproate (VAL; µg/ml), apicidin (AP; µg/ml), and trichostatin A (TSA; µg/ml) 

were used at concentrations of    2;   8;   32 µg/ml or mM. Results are means 

+ standard errors of two independent experiments carried out in triplicate. 
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the XTT readings for trichostatin A were significantly higher than that of the 

control (P<0.001); the reason for this result is unclear. However, since biofilm 

cells are enclosed in an extracellular polymeric matrix, detachment of the 

biofilm could expose cells directly to the XTT reagent which in turn might result 

in higher readings.  

 Biofilms of C. krusei and C. parapsilosis were also examined for the 

effects of HDA inhibitors on amphotericin B activity. With biofilms of C. krusei, 

sodium butyrate (32 mM) together with amphotericin B (10 or 50 µg/ml) 

decreased viability by 50% and 66%, respectively (P< 0.001; Figs. 74 and 75). 

Valproate and apicidin had their greatest effects at a concentration of 32 µg/ml 

with amphotericin B at 10 µg/ml (i.e. decreases of 37% and 45%, respectively; 

P<0.001). In contrast, trichostatin A, produced no significant effect at any 

concentration tested. With biofilms of C. parapsilosis, on the other hand, results 

were less striking overall. Biofilms treated with a high concentration of HDA 

inhibitors (32 µg/ml or mM) and amphotericin B (10 µg/ml) showed decreases in 

viability of 23%, 18%, and 10% with valproate, apicidin, and sodium butyrate, 

respectively (P<0.05; Fig. 76). At the higher concentration of amphotericin B (50 

µg/ml), there was no significant effect with any of the inhibitors used (Fig. 77). 

6.3.3.2  Viable cell counts 

 Mature (48-h) biofilms of C. albicans GDH2346, C. parapsilosis and C. 

krusei were incubated for 24 h at 37ºC in fresh growth medium in the presence 

of different concentrations of the HDA inhibitors plus amphotericin B (10 or 50 

µg/ml).  HDA inhibitors had a marked effect on biofilm viability in the presence 

of the drug. Biofilm populations of C. albicans were completely eliminated by 

sodium butyrate (8 or 32 mM) at low concentrations of amphotericin B (10 

µg/ml; Fig. 78), and by even lower concentrations of butyrate (2 mM) at higher 

concentrations (50 µg/ml) of the drug (Fig. 79). In the absence of butyrate, 

biofilms of this strain of C. albicans produce persisters which remain viable at 

amphotericin B concentrations of up to 100 µg/ml (Section 5.2.1). Biofilms of C. 

krusei and C. parapsilosis, which also produce persisters, were rather less 

susceptible; combined treatment with butyrate (32 mM) and amphotericin B (50 

µg/ml) reduced biofilm viability by 66% and 75%, respectively (Fig. 80 and 81). 
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Figure 74. Effects of HDA inhibitors on amphotericin B (10 µg/ml) activity 

against biofilms of C. krusei 

HDA inhibitors were added at time zero of biofilm formation. After incubation 

for 48 h, biofilms were exposed to amphotericin B (10 µg/ml) for 24 h at 37°C. 

Cell viability was measured by the XTT assay. Sodium butyrate (SB; mM), sodium 

valproate (VAL; µg/ml), apicidin (AP; µg/ml), and trichostatin A (TSA; µg/ml) 

were used at concentrations of    2;      8;      32 µg/ml or mM. Results are means 

+ standard errors of two independent experiments carried out in triplicate. 
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Figure 75. Effects of HDA inhibitors on amphotericin B (50 µg/ml) activity 

against biofilms of C. krusei 

HDA inhibitors were added at time zero of biofilm formation. After incubation 

for 48 h, biofilms were exposed to amphotericin B (50 µg/ml) for 24 h at 37°C. 

Cell viability was measured by the XTT assay. Sodium butyrate (SB; mM), sodium 

valproate (VAL; µg/ml), apicidin (AP; µg/ml), and trichostatin A (TSA; µg/ml) 

were used at concentrations of   2;     8;   32 µg/ml or mM. Results are 

means + standard errors of two independent experiments carried out in 

triplicate. 
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Figure 76. Effects of HDA inhibitors on amphotericin B (10 µg/ml) activity 

against biofilms of C. parapsilosis 

HDA inhibitors were added at time zero of biofilm formation. After incubation 

for 48 h, biofilms were exposed to amphotericin B (10 µg/ml) for 24 h at 37°C. 

Cell viability was measured by the XTT assay. Sodium butyrate (SB; mM), sodium 

valproate (VAL; µg/ml), apicidin (AP; µg/ml), and trichostatin A (TSA; µg/ml) 

were used at concentrations of    2;    8;  32 µg/ml or mM. Results are means 

+ standard errors of two independent experiments carried out in triplicate. 
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Figure 77. Effects of HDA inhibitors on amphotericin B (50 µg/ml) activity 

against biofilms of C. parapsilosis 

HDA inhibitors were added at time zero of biofilm formation. After incubation 

for 48 h, biofilms were exposed to amphotericin B (50 µg/ml) for 24 h at 37°C. 

Cell viability was measured by the XTT assay. Sodium butyrate (SB; mM), sodium 

valproate (VAL; µg/ml), apicidin (AP; µg/ml), and trichostatin A (TSA; µg/ml) 

were used at concentrations of    2;       8;      32 µg/ml or mM. Results are 

means + standard errors of two independent experiments carried out in 

triplicate. 
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Figure 78. Effects of HDA inhibitors on amphotericin B (10 µg/ml) activity 

against biofilms of C. albicans GDH2346 

Biofilms (48-h) were incubated with amphotericin B (10 µg/ml) and sodium 

butyrate (mM; ♦) or valproate (µg/ml; □) or apicidin (µg/ml; ▲) for 24 h at 37°C 

and cell survival was determined by viable counts. Results are means + standard 

errors of two independent experiments carried out in duplicate. 
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Figure 79. Effects of HDA inhibitors on amphotericin B (50 µg/ml) activity 

against biofilms of C. albicans GDH2346 

Biofilms (48-h) were incubated with amphotericin B (50 µg/ml) and sodium 

butyrate (mM; ♦) or valproate (µg/ml; □) or apicidin (µg/ml; ▲) for 24 h at 37°C 

and cell survival was determined by viable counts. Results are means + standard 

errors of two independent experiments carried out in duplicate. 
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Figure 80. Effects of HDA inhibitors on amphotericin B activity against 

biofilms of C. krusei 

Biofilms (48-h) were incubated with amphotericin B (50 µg/ml) and sodium 

butyrate (mM; ♦) or valproate (µg/ml; □) or apicidin (µg/ml; ▲) or trichostatin A 

(µg/ml; x) for 24 h at 37°C and cell survival was determined by viable counts. 

Results are means + standard errors of two independent experiments carried out 

in duplicate. 
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Figure 81. Effects of HDA inhibitors on amphotericin B activity against 

biofilms of C. parapsilosis 

Biofilms (48-h) were incubated with amphotericin B (50 µg/ml) and sodium 

butyrate (mM; ♦) or valproate (µg/ml; □) or apicidin (µg/ml; ▲) or trichostatin A 

(µg/ml; x) for 24 h at 37°C and cell survival was determined by viable counts. 

Results are means + standard errors of two independent experiments carried out 

in duplicate. 
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 A second HDA inhibitor, sodium valproate, also effectively eliminated 

biofilm populations of C. albicans when used at a concentration of 32 µg/ml with 

amphotericin B at 50 µg/ml (Fig. 79). Biofilms of C. krusei were even more 

sensitive to this inhibitor and lost all viability after treatment with 8 µg/ml 

valproate and 50 µg/ml amphotericin B (Fig. 80). On the other hand, biofilms of 

C. parapsilosis lost only 43% of their viability when treated in an identical 

manner (Fig. 81).  

 The other HDA inhibitors, apicidin and trichostatin A, both significantly 

reduced biofilm viability of all species tested (P<0.002) when used in 

conjunction with amphotericin B, although neither inhibitor produced complete 

killing of the biofilm population. Apicidin at a concentration of 32 µg/ml and 

amphotericin B (50 µg/ml) effectively reduced biofilm viability of C. albicans, C. 

krusei, and C. parapsilosis by 96 %, 87 %, and 74 %, respectively (Figs. 79, 80, 

and 81). Biofilms of C. krusei and C. parapsilosis were similarly sensitive to 

trichostatin A and viability was reduced by 97 % and 87 %, respectively (Fig. 80 

and 81). Trichostatin A was not tested against C. albicans since it was noted that 

this inhibitor used in combination with amphotericin B caused some detachment 

of C. albicans biofilms from PVC discs. 
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1 In vitro activity of amphotericin B and caspofungin at 

different developmental phases of Candida biofilms 

 Candida cells within biofilms are much more resistant to a variety of  

antimicrobial agents than are their planktonic counterparts (Hawser & Douglas, 

1995; Kuhn et al., 2002b; Mukherjee et al., 2003). These agents include the 

clinically important antifungal drugs amphotericin B, fluconazole, flucytosine, 

itraconazole and ketoconazole. More recently, however, it has been reported 

that some of the newer antifungal agents are active against Candida biofilms. 

Thus, while biofilms of C. albicans and C. parapsilosis were clearly resistant to 

the new triazoles, voriconazole and ravuconazole, there appeared to be some 

antibiofilm activity with lipid formulations of amphotericin B and two 

echinocandins (caspofungin and micafungin) (Kuhn et al., 2002b). Caspofungin 

was the first echinocandin to be licensed for clinical use. It acts on planktonic 

cells by inhibiting the synthesis of β-1,3-D-glucan in fungal cell walls. However, 

its action against Candida biofilms is not well characterized.  

 In the present study, the efficacy of amphotericin B and caspofungin 

against biofilms of different Candida species, at different stages of maturation, 

was compared. Biofilms of C. albicans (strains GDH2346 and SC5314), C. 

tropicalis, C. glabrata, and C. parapsilosis were allowed to develop over a series 

of time intervals (8, 17, 24, and 35 h). After each interval, antifungal drug at 

two or five times the MIC was added and the biofilms were further incubated for 

a total of 48 h. The ability of amphotericin B and caspofungin to inhibit fungal 

metabolism at the different stages of biofilm maturation was then evaluated 

using XTT reduction assays. Under the experimental conditions of this study, the 

activity of amphotericin B and caspofungin was assessed according to three 

parameters: (i) the Candida species; (ii) the maturation age of the biofilm; and 

(iii) the concentration of the antifungal drug.  

1.1 Activity of amphotericin B 

 Previous work by Chandra et al. (2001a) demonstrated that antifungal 

resistance of C. albicans biofilms increased in conjunction with the 

developmental phase of the biofilms; in other words, the progression of drug 

resistance was associated with the increase in metabolic activity of developing 
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biofilms. However, a recent study by Tobudic et al. (2009) failed to observe a 

correlation between the age of Candida biofilms and resistance to amphotericin 

B; the metabolic activity of biofilms grown for 24 h and 72 h was reduced 

significantly, but a lesser little effect was observed in 48-h biofilms.  

 In the present investigation, biofilms of both strains of C. albicans were 

more resistant to amphotericin B throughout development (except for the 

earliest stage) than the other Candida species. Amphotericin B at two times the 

MIC (ranging from 1.6 to 4.6 µg/ml) had the least effect on Candida biofilms. 

However, when the drug concentration was increased to five times the MIC 

(ranging from 4 to 11.5 µg/ml), the effect of amphotericin B increased. 

Amphotericin B concentration-dependent activity has been reported previously 

with C. albicans biofilms (Ramage et al., 2002c; Tobudic et al., 2009). 

Amphotericin B at the higher concentration showed relatively high activity 

against C. tropicalis, C. parapsilosis and C. glabrata biofilms, especially at the 

late development phase (35-h biofilms). Further, the least effect was observed 

in biofilms grown for 24 h, except with C. parapsilosis which showed the lowest 

metabolic activity in biofilms grown for 17 h.  

 Amphotericin B binds to the major sterol in the fungal cell membrane, 

ergosterol, and causes the death of the fungal cell (Slavin et al., 2004; Wingard 

& Leather, 2004). Mukherjee and colleagues analyzed the membrane sterols of 

C. albicans and revealed that the levels of ergosterol were substantially 

decreased in intermediate and mature stages compared with those in early-stage 

biofilms (Mukherjee et al., 2003). They also found that the levels of ergosterol 

biosynthetic intermediates varied among biofilm developmental stages. 

Alteration in sterol composition may result in membrane permeability changes 

that prevent or slow down the entry of antifungal drugs into the Candida cell. In 

addition to this mechanism, the absence of extracellular material in young (8-h) 

biofilms might play some role in their enhanced susceptibility to the higher 

concentration of amphotericin B and in the decreased susceptibility of biofilms 

at later stages of maturation. 
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1.2  Activity of caspofungin  

 Data regarding the effect of caspofungin on biofilms of Candida species in 

vitro are rather contradictory. Previous studies have reported that caspofungin 

displays potent antibiofilm activity in vitro with decreases in biofilm metabolic 

activity of >50 % at concentrations similar to the MIC (Bachmann et al., 2002; 

Katragkou et al., 2008; Kuhn et al., 2002b; Tobudic et al., 2009). In contrast to 

these results, Cocuaud et al. (2005) found that caspofungin used at the MIC 

failed to modify the metabolic activity of C. albicans biofilms in all development 

phases tested. Nevertheless, the same concentration of caspofungin significantly 

reduced the metabolism of C. parapsilosis biofilms grown for 2 h or 48 h 

(Cocuaud et al., 2005). Related investigations have shown that when caspofungin 

is used at higher therapeutic concentrations (2 mg⁄l), it causes a significant 

reduction in biofilm metabolic activity of different Candida species, including 

both C. albicans and C. parapsilosis (Cateau et al., 2008; Cocuaud et al., 2005; 

Ferreira et al., 2009; Katragkou et al., 2008; Ramage et al., 2002c). However, 

Choi et al. (2007) have reported that caspofungin, at therapeutic 

concentrations, is active against biofilms formed by C. albicans and C. glabrata 

but not against those formed by C. tropicalis and C. parapsilosis. 

Although caspofungin is a fungicidal agent for planktonic cells of Candida 

species, it failed to show a fungicidal effect, defined as 95 % killing, on C. 

albicans biofilms tested in any of the developmental phases (Tobudic et al., 

2009). By contrast, Ramage et al. (2002c) found that caspofungin killed >99 % of 

biofilm cells of C. albicans at therapeutically attainable concentrations. 

Subsequent studies have shown that complete sterility of mature Candida 

biofilms is difficult to achieve (Bachmann et al., 2002; Katragkou et al., 2008). 

However, caspofungin has shown considerable efficacy in the treatment of C. 

albicans biofilms in vivo (Lazzell et al., 2009; Shuford et al., 2006).  

 In the current work, caspofungin, at two times the MIC (ranging from 0.6 to 

1.6 µg/ml), had a greater effect on Candida biofilms than did amphotericin B, 

although this was not seen with C. parapsilosis biofilms at some stages of 

development (i.e. 24-h and 35-h biofilms). Caspofungin, at five times the MIC 

(ranging from 1.5 to 4 µg/ml), was rather less effective than at the lower 

concentration against C. tropicalis in all development phases tested and against 
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C. albicans SC5314 in some phases (i.e. 8-h and 35-h biofilms). The species most 

susceptible to caspofungin, at both concentrations and throughout biofilm 

development, was C. glabrata. 

Reduced activity of caspofungin at high concentrations, above the MIC, 

has been described for both planktonic and biofilm cells; this phenomenon is 

called the paradoxical effect or paradoxical growth. It has been reported for 

planktonic cells of different Candida spp. (Ostrosky-Zeichner et al., 2003; 

Stevens et al., 2004; Stevens et al., 2005) and for C. albicans biofilms (Ramage 

et al., 2002c; Tobudic et al., 2009). In a recent survey of five different Candida 

species (Melo et al., 2007) all isolates except those of C. tropicalis displayed 

paradoxical growth more frequently when they were grown as biofilms than 

when they were grown as planktonic cells. Moreover, paradoxical growth was 

undetectable among C. metapsilosis isolates grown planktonically but was 

present in 100% of isolates grown as biofilms. In a separate investigation 

(Ferreira et al., 2009)  paradoxical growth was confirmed in biofilms of C. 

albicans and C. tropicalis but not in those of C. parapsilosis. 

So far, the mechanism of the paradoxical effect of caspofungin has not 

been elucidated and its clinical significance is still unclear. In this study, 

paradoxical growth was detected in planktonic cells of some Candida isolates at 

different concentrations of the drug; these were C. albicans (both strains) and 

C. tropicalis. Reduced activity of caspofungin was observed at high drug 

concentrations: at 4 to 16 µg/ml, 8 to 16 µg/ml and 3 to 16 µg/ml for C. 

albicans GDH2346, C. albicans SC5314 and C. tropicalis, respectively. Among 

Candida biofilms tested, caspofungin at five times the MIC showed reduced 

activity against C. tropicalis at all developmental phases and against C. albicans 

SC5314 biofilms grown for 8 h and 35 h only. Recently, Tobudic et al. (2009) also 

demonstrated decreased caspofungin activity at high concentrations in C. 

albicans biofilms, particularly biofilms grown for 48 h. 

 Overall, this part of the study has demonstrated that amphotericin B has a 

concentration-dependent activity against Candida biofilms. Activity varied, 

depending on the Candida species and the development phase of the biofilm. 

Caspofungin, at two times the MIC, exhibited a greater effect on Candida biofilms than 

amphotericin B, except with C. parapsilosis biofilms grown for 24 h and 35 h. 
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The efficacy of caspofungin in inhibiting the metabolism of biofilm cells was 

dependent on the concentration of antifungal used, the Candida species, and 

the phase of biofilm development.  It was also complicated by the paradoxical 

effect. Several resistance mechanisms may be activated during the course of 

biofilm development. These could include the time-dependent production of 

quorum sensing molecules, activation of efflux pumps, alterations of cell wall 

assembly and the presence of persister cells (Tobudic et al., 2009). Further 

research is required to elucidate the role of these mechanisms over the various 

stages of biofilm maturation. 

 

2 Penetration of antifungal agent (caspofungin) through 

Candida biofilms 

 Biofilm-mediated antifungal resistance has been well documented and 

one of the mechanisms that may contribute to biofilm resistance is restriction of 

drug penetration through the biofilm matrix. The extracellular polymeric matrix, 

which envelops biofilm cells, may affect and limit the diffusion of solutes and 

antimicrobials. For example, the ability of a drug to penetrate the biofilm can 

be severely reduced if it is reactively neutralized as it diffuses into a cell 

cluster; this may involve enzymatic degradation or drug binding to charged 

extracellular polymers (Anderl et al., 2000; Stewart et al., 2001). Anderl et al. 

(2000) attributed the ability of ciprofloxacin to penetrate a bacterial biofilm 

faster than ampicillin to its low reactivity with the biofilm. A similar finding was 

reported by Stewart et al. (2001) who observed that chlorosulfamate penetrated 

bacterial biofilms more rapidly than hypochlorite due to a slower reaction rate 

with biofilm components. These results suggest that the extent of antibiotic 

penetration through bacterial biofilms depends greatly upon both the nature of 

the antimicrobial agent and the organism involved. 

 Most studies on drug penetration have been conducted with bacterial 

biofilms. However, three recent investigations (Al-Fattani & Douglas, 2004; 

Samaranayake et al., 2005; Subha & Gananamani, 2008) have evaluated the 

penetration of antifungals through Candida biofilms. These studies were carried 

out using an in vitro filter disc assay with commonly used antifungals such as 
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amphotericin B, fluconazole, itraconozole, ketoconazole, voriconazole, and 

flucytosine. Al-Fattani & Douglas (2004) showed that fluconazole diffused into 

single-species Candida biofilms more rapidly than flucytosine. Both drugs 

penetrated biofilms of C. glabrata and C. krusei faster than those of C. 

parapsilosis and C. tropicalis. Moreover, amphotericin B showed rapid 

penetration through C. albicans biofilms. In mixed-species biofilms containing C. 

albicans and S. epidermidis, the diffusion of the antifungal drugs was very slow. 

Subsequently, Samaranayake et al. (2005) reported that fluconazole and 

flucytosine demonstrated a similar degree of penetration through biofilms of C. 

albicans, C. parapsilosis, and C. krusei, while amphotericin B penetrated least 

well. Biofilms of all three Candida species showed a significant increase in drug 

penetration with increasing fluconazole and flucytosine concentrations but not 

with increasing concentrations of amphotericin B. In contrast to both these 

earlier studies, Subha & Gnanamani (2008) reported that all drugs tested 

(amphotericin B, fluconazole, itraconozole, ketoconazole) were unable to 

penetrate biofilms of C. albicans and C. tropicalis and reach the topmost disc 

(the concentration disc) even at concentrations as high as 2000 µg/ml. However, 

partial penetration by azoles was observed.  

 In this study, the penetration of caspofungin through biofilms of different 

Candida species was investigated using a similar model system. To date, the 

ability of this drug to penetrate Candida biofilms has not been reported. The 

rates of diffusion of caspofungin through biofilms of different strains of C. 

albicans were similar. Al-Fattani & Douglas (2004) described related findings 

with fluconazole and flucytosine; the rates of diffusion of either drug through 

biofilms of three strains of C. albicans were similar. However, different levels of 

penetration through biofilms of non-C. albicans species were observed. 

Caspofungin diffusion through biofilms of C. glabrata and C. parapsilosis was 

faster and greater than that through biofilms of C. krusei and C. tropicalis. 

Faster drug penetration through biofilms of C. glabrata and slower penetration 

through those of C. tropicalis was also reported by Al-Fattani & Douglas (2004).  

 The ability of antifungal agents to diffuse into Candida biofilms will 

depend on the chemical nature of the drug as well as the nature of the biofilm 

matrix material. In this connection, it is noteworthy that in biofilms of C. 



                                                                                                                              Discussion 

 

 

 

193 

albicans, C. parapsilosis and C. glabrata the major matrix component is 

carbohydrate, probably glucan, whereas in C. tropicalis biofilms, which are 

poorly penetrated by drugs, it is hexosamine (Al-Fattani & Douglas, 2006; Silva 

et al., 2009). Hexosamine is also present in the matrix of S. epidermidis biofilms 

in the form of a polysaccharide of ß-1,6-linked N-acetylglucosamine (Mack et al., 

1996); this polymer mediates cell-cell interaction within the biofilm  (Gotz, 

2002) and its production has been related to S. epidermidis virulence in 

catheter-infection models in animals. However, synthesis of glucan as a matrix 

component of some Candida biofilms could be inhibited by caspofungin and this 

might explain the rapid penetration of the drug through such biofilms. This is 

discussed further in Section 2.2. 

2.1 Effect of antifungal agents on the viability of biofilm cells 

The effect of antimicrobial agents on biofilm cell viability following drug 

penetration has been investigated previously. Anderl et al. (2000) reported that 

ciprofloxacin perfused bacterial biofilms within a few hours but bacteria were 

not killed even after 24 h of exposure. Likewise, a biofilm formed by a β-

lactamase deficient mutant was fully perfused by ampicillin but the cells were 

not effectively killed. Further, Stewart et al. (2001) demonstrated that both 

chlorosulfamate and hypochlorite completely penetrated bacterial biofilms after 

60 min of treatment but neither antimicrobial was able to kill biofilm cells very 

effectively. Similar findings were reported by Al-Fattani & Douglas (2004). After 

3 to 6 h, both fluconazole and flucytosine had fully penetrated biofilms of 

different Candida species, yet neither drug was able to produce complete killing 

of biofilm cells even after 24 h of treatment.  

In this study, the effect of caspofungin and amphotericin B on biofilm cell 

viability was assessed by viable counts. Biofilms ‘sandwiched’ between the two 

membranes were exposed to antifungal agent-containing agar for 6 h or 24 h. An 

earlier investigation in this laboratory showed rapid penetration of amphotericin 

B throughout C. albicans biofilms (Al-Fattani & Douglas, 2004); however, after 6 

h of amphotericin B and caspofungin penetration, about 70% of the biofilm cells 

remained viable. Both drugs failed to produce complete killing of biofilm cells 

even after 24 h. Indeed, caspofungin showed less activity than amphotericin B. 

This may be associated with the paradoxical effect of caspofungin at high 
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concentrations. A drug concentration of 24 µg/ml was used in this assay. Low 

drug concentrations are unsuitable as high concentrations are required to obtain 

well defined zones of growth inhibition. 

2.2 Scanning electron microscopy of biofilms 

An improved scanning electron microscopy technique was used in this work 

to visualize biofilm structural changes associated with antifungal penetration. 

Conventional SEM methods appear to severely distort biofilm architecture, due 

to the fixation and dehydration steps required (Chandra et al., 2008; Ferreira et 

al., 2009; Ramage et al., 2001a). It has been demonstrated recently that using 

cationic dyes during fixation improves preservation of biofilm exopolysaccharide 

matrix and protects it from collapse during the dehydration/critical point drying 

process. Moreover, various cationic dyes (such as alcian blue, safranin O, and 

ruthenium red) can dramatically increase visualization of the exopolysaccharide 

matrix structure, and different cationic dyes may selectively permit visualization 

of different components in the matrix (Di Bonaventura et al., 2006; Erlandsen et 

al., 2004b). For instance, the Gram-positive bacterium, Enterococcus faecalis, 

produces biofilms on cellulose tubing which have an extensive matrix (Erlandsen 

et al., 2004a). Fixation of these biofilms in aldehyde alone, without cationic 

dyes, allowed the visualization of a few surface fibrils that appeared to attach 

the cocci to the substratum, whereas addition of alcian blue to the aldehyde 

cocktail resulted in a different matrix; this consisted of a branching network of 

fibrils on the cell surface and a thick mat of fibrils on the substratum. However, 

when another cationic dye, safranin O, was used, fewer filaments were present 

and some of them formed a meshwork above cells anchored to the substratum. 

Variations in size, shape and charge density of the dyes appeared to account for 

these differences in matrix appearance (Erlandsen et al., 2004b). 

Previous work by Samaranayake et al. (2005), using conventional SEM 

procedures, demonstrated that biofilms grown on polycarbonate membrane 

filters are distinct from those on polymethyl methacrylate strips or silicone 

elastomer discs (Chandra et al., 2001a; Kuhn et al., 2002a). For example, 

mature biofilms of C. albicans contained very few hyphal forms on membrane 

filter discs in comparison to the abundant filamentation seen on polymethyl 
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methacrylate strips (Chandra et al., 2001a), silicone elastomer (Kuhn et al., 

2002a), or polyvinyl chloride discs (Hawser et al., 1998). 

In this study biofilms of six Candida isolates were examined using the 

cationic-dye procedure for SEM. The results revealed that C. albicans forms a 

dense biofilm consisting of mostly yeast cells on polycarbonate filters; 

occasional filamentous forms were embedded within the exopolymeric material, 

an observation similar to that of Samaranayake et al. (2005). On the other hand, 

C. parapsilosis and C. glabrata appeared to develop biofilms that were less 

dense than those of C. albicans; they contained mostly yeast cells, were devoid 

of hyphal forms and were covered by less matrix material. This was similar to 

the findings of Kuhn et al. (2002a). Subsequent observations of relatively sparse 

biofilm formation by C. parapsilosis on polycarbonate filters were made by 

Samaranayake et al. (2005). Recently, other research groups have reported that 

C. glabrata forms less extensive biofilms consisting of a multicellular structure 

packed with yeast cells but devoid of pseudohyphae and hyphae (Silva et al., 

2009; Thein et al., 2007). Based on biofilm dry weight, Hawser and Douglas 

(1994) showed that isolates of C. parapsilosis and C. glabrata produced 

significantly less biofilm growth on PVC catheter discs compared with C. 

albicans. However, C. tropicalis and C. krusei exhibited more extensive biofilm 

growth than did C. albicans (Hawser & Douglas, 1994). Recently, SEM studies by 

Al-Fattani and Douglas (2004) have revealed that C. tropicalis biofilms consist of 

a dense network of yeast cells and filamentous forms encased in a very slimy 

matrix material (Al-Fattani & Douglas, 2004; Al-Fattani & Douglas, 2006). 

In the current investigation, results similar to those in all of these earlier 

studies were obtained. Biofilms of C. parapsilosis and C. glabrata, formed on 

polycarbonate membrane filters, were less dense than those of C. albicans and 

consisted of yeast cells only. On the other hand, biofilms of C. tropicalis and C. 

krusei possessed a very extensive, slimy matrix material covering a dense 

network of yeast cells and filaments. The slowest rates and the lowest levels of 

caspofungin penetration were found with biofilms formed by C. tropicalis and C. 

krusei and it is possible that the complex structure with slimy matrix of these 

biofilms might retard antifungal penetration. In contrast, the biofilms showing 

the fastest rates, as well as the highest levels of caspofungin penetration were 
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those formed by C. parapsilosis and C. glabrata. One reason for this observation 

could be the formation of less extensive biofilms by both species. 

Previous SEM observations of antifungal-treated Candida biofilms 

demonstrated some obvious effects of the drugs on biofilm structure. 

Samaranayake et al. (2005) reported that although amphotericin B was the drug 

least penetrant through biofilms of C. albicans, C. parapsilosis, and C. krusei, it 

caused more structural damage to the superficial cells of the biofilm than either 

fluconazole or flucytosine. Further, Bachmann et al. (2002) examined the effect 

of caspofungin on biofilms of C. albicans and their results indicated that 

caspofungin significantly affected both cellular morphology and overall biofilm 

architecture. In the present study, an evaluation of the ultrastructural effects of 

antifungal penetration through Candida biofilms revealed that different drugs 

caused different degrees of damage among biofilms of different Candida species. 

SEM observations showed that caspofungin caused more damage to biofilms 

of all the Candida isolates tested than did amphotericin B. Caspofungin severely 

affected the matrix architecture as well as cell morphology. Caspofungin, a new 

lipopeptide antifungal, belongs to the echinocandin family that inhibits the 

synthesis of β-1,3-glucan, a major component of the fungal cell wall (Denning, 

2002; Georgopapadakou, 2001; Kauffman & Carver, 2008). β-Glucans are the 

main component of the C. albicans cell wall, accounting for approximately 60% 

of its weight (Chaffin et al., 1998; Klis et al., 2001).  Moreover, culture 

supernatants of Candida contain high amounts of β-glucans (Odabasi et al., 

2006). Interestingly, cell walls of C. albicans biofilm cells contain significantly 

greater concentrations of β-1,3-glucan than their planktonic counterparts; these 

glucans can also be found in the supernatants surrounding biofilms and in the 

matrix material (Nett et al., 2007a; Nett et al., 2007b). These observations 

would suggest that caspofungin exposure affects biofilm cell walls and matrix 

composition, which in turn change cell morphology and the architecture of the 

biofilm. 

 The chemical composition of matrix material could play a minor role in 

slowing the diffusion of antimicrobial agents. Biofilm cells of P. aeruginosa have 

been shown to contain periplasmic glucans which appear to interact physically 

with antibiotics and retard their diffusion (Mah et al., 2003). It has also been 
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suggested that the nature and the amount of extracellular glucans produced by 

Streptococcus mutans from sucrose in dental plaque play a role in slowing acid 

diffusion (Hojo et al., 1976). Previous work by Baillie and Douglas (2000) 

demonstrated that C. albicans biofilm matrix contains carbohydrate, protein, 

phosphorus, glucose and hexosamine. However, a considerable portion of the 

matrix material remains unidentified. These results were confirmed in recent 

work by Al-Fattani and Douglas (2006) on the chemical composition of the 

biofilm matrix. This study revealed that C. tropicalis biofilms, which are poorly 

penetrated by antifungal agents (Al-Fattani and Douglas, 2004; results of the 

present investigation), contain matrix material rich in hexosamine (27.4%), with 

smaller amounts of carbohydrate, protein, phosphorus, and uronic acid (3.3%, 

3.3%, 0.2%, and 1.6%, respectively). In contrast, C. albicans biofilms, which are 

more readily penetrated by drugs (Al-Fattani and Douglas, 2004; results of the 

present investigation), possess a matrix that consists mainly of carbohydrate 

(39.6%, including glucose 32.2%) with small amounts of protein, hexosamine, 

phosphorus, and uronic acid (5.0%, 3.3%, 0.5%, and 0.1%, respectively). It is 

possible that the slow rate of drug penetration through biofilms of C. tropicalis 

is due to the production of a hexosamine-containing matrix polymer. 

 The impact of several enzymes on biofilm matrix polymers has also been 

investigated (Al-Fattani & Douglas, 2006). The greatest effect was observed with 

lyticase (which hydrolyses β-1,3-glucan), which caused an 85% and 53% 

detachment of C. albicans and C. tropicalis biofilms, respectively. This result 

indicates that some of the glucose present in the C. albicans matrix could be 

present as β-1,3-glucan, a polysaccharide which is a major structural component 

of the cell wall (Al-Fattani & Douglas, 2006). Another study by Nett et al. 

(2007b) showed that the cell walls from biofilm cells of C. albicans contained 

significantly more total carbohydrate and β-1,3-glucan compared with walls from 

planktonic cells, and that these glucans could be found in the supernatant 

surrounding the biofilm and in the matrix. Moreover, cell walls from both 

planktonic and biofilm cells bound a measurable amount of fluconazole. 

However, four- to five-fold more compound was bound to the biofilm cell walls. 

The effect of β-1,3 glucanase on the susceptibility of biofilm cells to fluconazole 

and amphotericin B was also investigated. The enzyme markedly enhanced the 

activity of both drugs against C. albicans biofilm cells. These results suggest that 
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a cell wall component, such as glucan, may interact physically with the 

antifungal and retard penetration to the site of action (Nett et al., 2007b). 

 Recently, a study by Silva et al. (2009) attempted to characterized 

biofilms of non-C. albicans Candida species (NCAC). In this investigation, biofilm 

matrices of NCAC species were analyzed for carbohydrate and protein content. 

Consistent differences were found in the matrix composition of biofilms of the 

NCAC species.  Matrix material from C. tropicalis biofilms had low amounts of 

both carbohydrate and protein while that extracted from Candida parapsilosis 

biofilms had high amounts of carbohydrate with low amounts of protein. In 

contrast, C. glabrata matrix material had higher quantities of both protein and 

carbohydrate compared to the other species; protein levels were on average five 

times higher than those of C. parapsilosis and C. tropicalis (Silva et al., 2009). 

The results of this study are in accordance with previous work on C. tropicalis 

biofilms by Al-Fattani and Douglas (2006) which demonstrated that the matrix of 

this species contains mainly hexosamine, with smaller amounts of carbohydrate 

and protein. It also further supports the notion that biofilms which contain 

substantial amounts of matrix carbohydrate (those of C. albicans, C. 

parapsilosis, and C. glabrata) are more easily penetrated by antifungal agents, 

including caspofungin, than are hexosamine-rich biofilms such as those of C. 

tropicalis. 

 A non-destructive, in situ analysis by Raman microscopy was applied 

recently to multispecies biofilms (Ivleva et al., 2008; Ivleva et al., 2009; Wagner 

et al., 2009). Without staining the sample, this technique can provide detailed 

information about the chemical composition and the distribution of extracellular 

polymeric substances and microorganisms within such biofilms. Based on their 

specific Raman scattering signals, the various constituents in the biofilm matrix 

can be classified (e.g. polysaccharides, proteins) and detailed chemical 

information about them obtained. Raman microscopy is therefore a promising 

future tool for further characterization of different matrix constituents in 

Candida biofilms. 
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3 Persister cells in planktonic cultures and biofilms of 

different Candida species  

 The discovery of persister cells in bacterial biofilms helped to clarify the 

puzzling resistance of biofilms to killing by antimicrobial agents (Keren et al., 

2004b). Persisters were originally described as dormant or nongrowing cells 

(Lewis, 2007) but are now recognized as drug-tolerant cells – usually 1% or less of 

the overall population – which neither grow nor die in the presence of 

microbicidal antibiotics. The ability to avoid killing is their key characteristic 

(Keren et al., 2004a). The existence of such cells in biofilms of C. albicans (Khot 

et al., 2006; LaFleur et al., 2006; Lafleur et al., 2009; Tsang & Tang, 2009) has 

also been reported recently . LaFleur et al. (2006) demonstrated that exposure 

of C. albicans biofilms to amphotericin B or chlorhexidine resulted in biphasic 

killing indicative of the presence of a persister subpopulation capable of 

surviving high concentrations of these fungicidal agents. In contrast to bacterial 

species tested, planktonic cultures (exponential or stationary phase) of Candida 

species seemed to be devoid of persisters (LaFleur et al., 2006).  

 In this study, viability measurements and fluorescein staining were used 

to investigate the existence of persisters in planktonic cultures and biofilm cells 

of C. albicans, C. tropicalis, C. glabrata, C. krusei, and C. parapsilosis subjected 

to different concentrations of amphotericin B. Planktonic cultures of all these 

species appeared to lack persisters, in accordance with the earlier results of 

LaFleur et al. (2006). Similarly, using the criteria adopted previously for C. 

albicans (LaFleur et al., 2006), persisters were absent from biofilms of some 

species. Persisters were found in biofilms of C. albicans GDH2346, C. krusei, and 

C. parapsilosis in low numbers (0.001 to 0.07%), while biofilms of C. albicans 

SC5314, C. glabrata and C. tropicalis were devoid of such cells. It is unlikely that 

persister cells were mutants since acquired resistance to amphotericin B is rare. 

Moreover, LaFleur et al. (2006) in their study clearly demonstrated that C. 

albicans persisters were phenotypic variants, not mutants, of the wild type. 

 In addition to viability measurements, fluorescein diacetate was also used 

to discriminate between living and dead biofilm cells; this dye specifically stains 

dead cells green. Biofilms (48-h) of C. albicans (both strains), C. krusei and C. 

parapsilosis were treated with a high concentration (100 µg/ml) of amphotericin 
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B for 24 h at 37ºC and the cells were then stained with fluorescein diacetate. 

With most of these biofilms, small numbers of unstained (live) cells were 

detected. These cells appeared to have a normal morphology and their numbers 

varied according to the Candida species under investigation. C. parapsilosis 

biofilms contained more of the live cells than did biofilms of C. krusei or C. 

albicans GDH 2346. By contrast, no live cells were detected in biofilms of C. 

albicans SC5314 exposed to a high concentration of amphotericin B. 

Fluorescence was rarely observed in untreated, control cells (ie. 72-h biofilm 

cells). On the assumption that the unstained cells represent drug-tolerant 

persisters, these results with fluorescein staining confirmed the viability 

measurements, showing that persisters were present in biofilms of C. albicans 

GDH 2346, C. krusei and C. parapsilosis, but absent from biofilms of C. albicans 

SC5314.  

 A recent investigation by Khot et al. (2006) also identified a small 

subpopulation of cells in C. albicans biofilms showing increased tolerance to 

amphotericin B. The biofilms were cultured in a tubular flow cell and exhibited 

typical C. albicans biofilm architecture (Baillie & Douglas, 1999a; Douglas, 

2003), consisting of a thin basal yeast layer and an overlying thicker, partly 

filamentous layer. After growth, most of the biofilm was removed by draining 

and washing the tubing, but a monolayer of yeast cells remained on the surface. 

In dose-response experiments with amphotericin B, this yeast subpopulation 

showed greater tolerance of the drug than biofilm cells removed by washing. 

Metabolic activity, rather than viability, was measured after exposure to a range 

of amphotericin B concentrations for 1 h. The dose response curve for the basal 

yeast cells decreased to a plateau of approximately 50% metabolic activity 

between a drug concentration of 3.7 µg/ml_ and the highest concentration of 28 

µg/ml_. Whether these cells represent a population of persisters, as defined here 

is not clear. Conversely, it is not known whether the persister population 

identified in biofilms of C. albicans GDH2346 in the present study consisted 

entirely of yeast cells.  

 LaFleur et al. (2009) recently reported a study of Candida persister cells 

in the oral cavity of cancer patients undergoing treatment with chlorhexidine. 

Strains isolated from patients with long-term Candida carriage had high levels of 
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persisters. All of the high-persister isolates had an amphotericin B MIC that was 

the same as that for the wild type indicating that these strains were drug-

tolerant rather than drug-resistant mutants. This study suggests that persister 

cells are clinically relevant and that antimicrobial therapy selects for high-

persister strains in vivo.  

 Another study on the formation of Candida persister cells on titanium 

surfaces was reported recently (Tsang & Tang, 2009). Titanium discs were 

surface-treated by three different methods: group A, polishing; group B, 

sandblasting followed by acid-etching; and group C, sandblasting alone. Persister 

cells of two C. albicans strains (ATCC 90028 and HK30Aa), in planktonic and 

biofilm states, were measured by viable cell counts after 24 h of exposure to 

various concentrations of amphotericin B. No persister cells were detected in 

the planktonic cultures. However, persister cells were detected at a drug 

concentration of 64 µg/ml in all groups of both C. albicans strains. Nevertheless, 

group C of C. albicans ATCC 90028 appeared to provide a surface relatively 

unfavourable for the development of persister cells (Tsang & Tang, 2009). 

 The mechanisms by which Candida biofilms resist the action of antifungal 

agents are poorly understood. The biofilm matrix does not appear to form a 

major barrier to drug penetration since antifungal agents permeate Candida 

biofilms relatively easily (Al-Fattani & Douglas, 2004). However, under flow 

conditions resembling those found in catheter infections in vivo, increased 

production of matrix polymers can contribute to drug resistance (Al-Fattani & 

Douglas, 2006). Studies with a perfused biofilm fermenter (Baillie & Douglas, 

1998a) have shown that drug resistance is not simply due to a low growth rate, 

and a related investigation (Baillie & Douglas, 1998b) demonstrated that iron 

limitation of biofilm growth is not solely responsible. It is possible that 

expression of resistance genes is induced by contact with a surface. For 

example, genes encoding multidrug efflux pumps in C. albicans are upregulated 

during biofilm formation and development. However, mutants lacking these 

genes are drug sensitive when growing planktonically but still drug resistant 

during biofilm growth (Ramage et al., 2002a). The recent attractive suggestion 

that a small number of persister cells are responsible for resistance (LaFleur et 

al., 2006) is not wholly supported by the present study. Although persister 
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populations are present in biofilms of several C. albicans isolates (LaFleur et al., 

2006; Tsang & Tang, 2009), the results described here demonstrate that 

persisters are absent from those of at least one well-characterized strain, C. 

albicans SC5314. Similarly, while biofilms of C. krusei and C. parapsilosis appear 

to harbour persister cells, biofilms of C. glabrata and C. tropicalis are devoid of 

such cells. Biofilm drug resistance in Candida species therefore remains 

unexplained and is most likely multifactorial in nature. 

 

4 Apoptosis in Candida biofilms 

 Apoptosis is one type of programmed cell death that serves to eradicate 

defective cells and is essential for the development and maintenance of 

multicellular organisms. It is defined by a series of biochemical and 

morphological changes, one of the most important of which is the activation of 

caspases (Leist & Jaattela, 2001). During the past decade, evidence of apoptosis 

in both yeasts and filamentous fungi has been obtained (Hamann et al., 2008; 

Madeo et al., 2004; Mazzoni & Falcone, 2008; Ramsdale, 2008). In C. albicans 

growing planktonically, exposure of the organism to a variety of environmental 

conditions such as weak acid stress, oxidative stress, or ultraviolet irradiation 

can produce characteristics typical of apopotosis.  These include externalization 

of phosphatidylserine, chromatin condensation, accumulation of reactive oxygen 

species, DNA degradation and caspase activation (Cao et al., 2009; Phillips et 

al., 2003; Shirtliff et al., 2009; Yang et al., 2010). The benefits of such a suicide 

process to unicellular organisms like yeasts are not immediately obvious. 

However, apoptosis could be highly advantageous for a biofilm community that, 

in many ways, resembles a multicellular organism. The self-destruction of 

damaged cells which consume scarce nutrients in a vain attempt to repair 

themselves could enhance the viability and reproductive success of healthier 

members of the community (Buttner et al., 2006; Lewis, 2000). This study has 

shown via specific staining and the use of caspase inhibitors that apoptosis does 

indeed occur in Candida biofilms during exposure to the antifungal agent, 

amphotericin B. 
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4.1  Detection of apoptotic cells in Candida biofilms 

 Caspase activity was monitored initially in biofilm cells by the binding of a 

specific fluorochrome-labelled inhibitor of caspases (FLICA). FLICAs have become 

widely used for the detection of active caspases in yeasts as well as in 

mammalian cells, although their use has sometimes been controversial 

(Pozarowski et al., 2003; Vachova & Palkova, 2007). Madeo et al. (2002) 

reported FLICA binding to active caspase in intact (propidium iodide-negative) 

cells of S. cerevisiae, and only in cells containing a functional YCA1 gene; no 

binding was detected in an yca 1 mutant. However, other studies have indicated 

nonspecific FLICA binding by heat-killed or ageing yeast cells (Vachova & 

Palkova, 2007; Wysocki & Kron, 2004). In the present investigation, fluorescent 

staining was rarely observed in control cells from biofilms not exposed to 

amphotericin B. Moreover, caspase activity, as detected by FLICA, increased 

with longer incubation times. However, to demonstrate unequivocally caspase 

activity in drug-treated biofilm cells, a second staining method was also used. 

This involves a non-fluorescent substrate, D2R (aspartyl2-Rhodamine 110), which 

enters intact yeast cells and is cleaved by the direct action of activated caspases 

to a green fluorescent compound. Our results with this staining method 

confirmed that drug-treated biofilm cells undergo apoptosis. Very recently, two 

separate research groups have demonstrated caspase activity in planktonic 

cultures of C. albicans by one or other of these staining protocols (Cao et al., 

2009; Shirtliff et al., 2009). 

4.2  Effects of caspase inhibitors on Candida biofilms 

 Synthetic caspase inhibitors have been developed both as research tools 

and with the hope that they may eventually be used clinically to prevent cell 

death. They act by binding to the active site of caspases either in a reversible or 

irreversible manner. The peptide recognition sequence of the inhibitor is 

attached to a functional group such as fluoromethylketone (FMK). FMK-

containing peptides are irreversible inhibitors; those synthesized with an 

additional benzyloxycarbonyl group (also known as Z) show enhanced cell 

permeability. In this study, low concentrations of the general caspase inhibitor, 

Z-VAD-FMK, significantly increased the viability of biofilms of C. albicans 

GDH2346 exposed to amphotericin B, suggesting that caspase activity had been 
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partially suppressed. This inhibitor has a broad specificity and is capable of 

inhibiting human caspases-1 to -9 to varying extents, with greatest activity 

against caspases-1, -5, -8 and -9. The half-life for irreversible inhibition at 1 µM 

inhibitor is < 40 min for all of these enzymes  (Garcia-Calvo et al., 1998). Some 

specific caspase inhibitors, each differing in the nature of its peptide recognition 

sequence, also increased the viability of biofilms of C. albicans GDH2346 treated 

with amphotericin B. The greatest effect, a 40-fold increase in viability, was 

observed with a caspase-1 inhibitor (Z-YVAD-FMK); there were also 8-fold and 

3.5-fold increases with a caspase-9 inhibitor (Z-LEHD-FMK) and a caspase-5 

inhibitor (Z-WEHD-FMK), respectively. 

 Partial suppression of caspase activity in C. albicans by mammalian 

caspase inhibitors is not wholly unexpected. To date, only one enzyme with 

caspase-like activity, CaMCA1, has been identified in C. albicans. This, like its 

homologue in S. cerevisiae, YCA1/MCA1, is a metacaspase (Cao et al., 2009). 

Mammalian caspases are cysteine proteases with a stringent specificity for 

cleaving protein substrates containing aspartic acid. Plant, protozoan and fungal 

metacaspases, on the other hand, display arginine and lysine protease specificity 

instead of the aspartic acid specificity characteristic of caspases. Nevertheless, 

Madeo et al. (2002) reported that extracts of a YCA1 overproducing strain of S. 

cerevisiae, which had been treated with H2O2 to induce apoptosis, showed a high 

proteolytic activity towards several substrates for mammalian caspases. Addition 

of the general caspase inhibitor, Z-VAD-FMK, to the extracts completely 

abrogated this catalytic activity. Mammalian caspase inhibitors, including Z-VAD-

FMK, are also known to be remarkably efficient at blocking programmed cell 

death in plants (Bonneau et al., 2008). However, there is some evidence that 

plant metacaspases do not cleave caspase substrates and are not inhibited by 

caspase inhibitors (Bonneau et al., 2008). It is therefore possible that other 

caspase-like activities are present in both plants and yeasts. In S. cerevisiae, for 

example, an MCA1/YCA1-independent caspase-like activity has been detected in 

an mca1 mutant using the D2R staining procedure (Vachova & Palkova, 2005). 

There are several other reports of MCA1-independent caspase-like activities in S. 

cerevisiae detected by different approaches (Vachova & Palkova, 2007). 

Moreover, very recently, Aerts et al. (2009) demonstrated that the antifungal 

plant defensin RsAFP2 induces apoptotic cell death in C. albicans that is 
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independent of CaMCA1, indicating the existence of at least one other 

unidentified caspase or caspase-like protease in this organism. 

4.3  Effects of histone deacetylase (HDA) inhibitors on Candida 

biofilms 

 There was a striking effect on viability when Candida biofilms were 

incubated with amphotericin B in the presence of HDA inhibitors. The addition of 

either sodium valproate or sodium butyrate to the incubation mixtures 

completely eliminated biofilm populations of C. albicans GDH2346 at 

amphotericin concentrations of 10 to 50 µg/ml. Without an inhibitor, biofilms of 

this strain of C. albicans remain viable at drug concentrations of up to 100 µg/ml 

due to the presence of persisters. HDA inhibitors are known to induce apoptosis 

in mammalian cells (Kawagoe et al., 2002; Medina et al., 1997). Recently, 

valproate was reported to induce YCA1-dependent apoptosis in S. cerevisiae; a 

yca1 mutant survived this treatment (Mitsui et al., 2005). It was subsequently 

shown that valproate also stimulated the accumulation of neutral lipids, mainly 

triacylglycerol, in the apoptotic wild-type cells (Sun et al., 2007). Valproic acid 

is a short-chain fatty acid widely used in humans as an anticonvulsant and has 

teratogenic  and anti-tumour activities. Whether it induces lipid accumulation in 

C. albicans is not known. Sodium butyrate was even more effective than 

valproate at eradicating biofilms of C. albicans GDH2346 when added to 

incubation mixtures together with amphotericin B. Butyrate inhibits germination 

in C. albicans (Noverr & Huffnagle, 2004); at concentrations of 4 to 8 mM, it also 

enhances the activity of fluconazole against planktonic C. albicans cells (Smith & 

Edlind, 2002). 

 Drug-tolerant persisters capable of withstanding high concentrations of 

amphotericin B have been detected in biofilms of many but not all strains of C. 

albicans tested. Biofilms of C. albicans SC5314, for example, appear to lack 

persisters as demonstrated by viable counts and by fluorescein staining. 

Similarly, while biofilms of C. krusei and C. parapsilosis produce persisters, 

biofilms of some strains of C. glabrata and C. tropicalis do not. The reasons for 

these differences are not clear. Moreover, the mechanisms by which Candida 

persisters tolerate high drug concentrations are not understood. This 

investigation has demonstrated that persisters capable of surviving amphotericin 
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B concentrations of 100 µg/ml are nevertheless eradicated at lower drug 

concentrations when simultaneously subjected to an HDA inhibitor such as 

valproate or butyrate. This finding implies that histone acetylation might 

somehow activate apoptosis in these cells. The HDA inhibitor, trichostatin A, is 

known to affect colony-type phenotypic switching in C. albicans. It causes a 

dramatic increase in the frequency of switching in the white-to-opaque 

transition but has no effect on the frequency of switching in the opaque-to-

white transition, suggesting that deacetylation through a trichostatin-sensitive 

deacetylase selectively suppresses switching in one direction (Klar et al., 2001). 

Targeted deletion of HDA1, which encodes a deacetylase sensitive to trichostatin 

A, had the same selective effect. Subsequent studies showed that a second 

histone deacetylase gene, RPD3, plays a role in suppressing the basic switch 

events in both directions (Srikantha et al., 2001). Whether these or any other 

histone deacetylase genes are involved in the regulation of caspase-like activity 

in C. albicans biofilms remains to be demonstrated. 

 Trichostatin A and other HDA inhibitors have also been shown to enhance 

the sensitivity of planktonic C. albicans to the azoles fluconazole, itraconazole 

and miconazole. Smith and Edlind (2002) reported that expression of ERG genes 

(encoding azole targets) and CDR/MDR1 genes (encoding multidrug transporters) 

was induced by fluconazole, but that trichostatin A reduced this upregulation by 

50 to 100%. The authors concluded that trichostatin A probably does not act 

directly on ERG and CDR gene promoters since decreased deacetylation (ie. 

increased acetylation) should enhance, not inhibit, transcriptional upregulation. 

Rather, azole treatment could be associated with histone deacetylation  of the 

promoter region of a transcriptional repressor. The resulting down-regulation of 

this repressor would lead to upregulation of ERG and CDR. However, HDA 

inhibition by trichostatin A would result in constitutive expression of this 

repressor, blocking ERG/CDR upregulation (Smith & Edlind, 2002). 

 Recent evidence suggests that the Ras-cAMP-PKA signalling pathway in C. 

albicans regulates programmed cell death induced by exposure to acetic acid or 

hydrogen peroxide, either by inhibiting antiapoptotic functions (such as stress 

responses) or by activating proapoptotic functions (Phillips et al., 2006). 

Mutations that block Ras signalling were shown to suppress or delay the 
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apoptotic response; in contrast, mutations that stimulate signalling accelerated 

the apoptotic response (Phillips et al., 2006). The role of histone acetylation or 

deacetylation, if any, in this regulatory process is not known, nor is it clear 

whether the Ras pathway is involved in amphotericin-induced apoptosis either in 

planktonic or biofilm cultures. However, treatment of C. albicans with 

trichostatin A has been reported to produce a significant reduction in 

transcription of EFG1, a gene which codes for a key regulatory protein in this 

pathway (Simonetti et al., 2007). Studies with biofilms of Ras mutants of C. 

albicans could therefore be instructive and might help to elucidate the 

mechanism by which drug-tolerant persisters resist programmed cell death.  

 

5 Concluding remarks 

 Implanted medical devices are at risk of Candida biofilm formation. 

Microorganisms in the biofilm environment exhibit an altered phenotype and are 

difficult to remove since they are both recalcitrant to antifungals and isolated 

from host immune components. Clinical guidelines recommend device removal in 

order to avoid progression to systemic disease, which has a mortality rate of up 

to 40%. Biofilm resistance to antifungal drugs is complex and involves more than 

one mechanism. This study has demonstrated that even the most effective 

fungicidal agents, amphotericin B and the newly introduced caspofungin, are 

unlikely to cure or eradicate a biofilm infection.  

 The extent to which the matrix acts as a barrier to drug diffusion would 

depend on the chemical nature of both antifungal drugs as well as the matrix 

material. Caspofungin penetration through biofilms of Candida varied among 

species. However, although caspofungin was able to penetrate biofilms of 

different Candida species with different diffusion rates, it failed to do so at 

rates appreciably different from those of other drugs (Al-Fattani & Douglas, 

2004) and it failed to result in complete killing of biofilm cells. These findings 

suggest that drug penetration is not a major factor in biofilm resistance. On the 

other hand, drug resistance of C. albicans biofilms is significantly enhanced by 

increased production of matrix material under flow conditions (Al-Fattani & 

Douglas, 2006). Thus, further detailed chemical analysis of biofilm matrix 

material is required to understand the nature of antifungal reactivity with 
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various biofilm components. For example, C. tropicalis matrix material, which 

contains significant amounts of hexosamine and appears to partially hinder the 

diffusion of several drugs, deserves further study. 

 The discovery of a persister cell population, which survives high 

concentrations of antifungal drugs, helps to explain the resistance of biofilms to 

killing. Surprisingly, in this study, not all Candida biofilms contained persisters 

which suggests that persisters cannot solely account for drug resistance. It would 

be interesting to carry out a more extensive survey of the existence of persisters 

in biofilms of different Candida species. Additional research aimed at 

determining the molecular mechanisms responsible for persister formation is 

also merited. 

 Amphotericin B induced apoptosis in Candida biofilms as detected by SR-

FLICA and D2R fluorochrome-based staining reagents. Mammalian general 

caspase inhibitor and some specific caspase inhibitors produced significant 

increases in the viability of drug-treated biofilms of C. albicans.  On the other 

hand, histone deacetylase inhibitors enhanced the activity of amphotericin B 

against biofilms of Candida species and in some cases even eradicated persister 

subpopulations. Persisters may therefore represent cells with a defective 

apoptosis mechanism and histone acetylation could activate apoptosis in these 

cells. These results suggest that it might be possible to kill all biofilms cells, 

including persisters, in vivo with a combination of antifungals and apoptosis 

activators (i.e. histone deacetylase inhibitors), if appropriate concentrations are 

used.  

 This study could be extended further by testing drug-tolerant biofilm cells 

for other apoptosis markers such as phosphatidylserine externalization, 

chromatin condensation, or reactive oxygen species accumulation. Recently, the 

isolation of a CaMCA1 null mutant has been reported (Cao et al., 2009) and 

biofilm experiments with this mutant would also be very informative. It now 

appears that C. albicans may contain a caspase activity that is distinct from the 

metacaspase (Aerts et al., 2009). Further investigations with the null mutant 

should establish the relative importance of these activities in Candida biofilms 

exposed to amphotericin B. 
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Appendix 1   Medium 

1.1 Yeast Nitrogen Base (YNB; Difco)  
___________________________________________________________________ 
  
Chemical   Weight/litre 
___________________________________________________________________ 
  
Ammonium sulfate  5.0 g 

Monopotassium phosphate 1.0 g 

Magnesium sulfate  0.5 g 

Sodium chloride 0.1 g 

Calcium chloride 0.1 g 

L-Histidine monohydrochloride 10.0 mg 

LD-Methionine      20.0 mg 

LD-Tryptophan     20.0 mg 

Biotin        2.0 µg 

Inositol     2000.0 µg   

Boric acid     500.0 µg 

Niacin (Nicotinic acid)  400.0 µg 

Manganese sulfate    400.0 µg 

Pyridoxine HCl    400.0 µg 

Zinc sulfate   400.0 µg 

Thiamine HCl    400.0 µg 

Calcium pantothenate (D-Pantothenic acid) 400.0 µg 

Ferric chloride    200.0 µg 

Sodium molybdate 200.0 µg 

Riboflavin     200.0 µg 

p-Aminobenzoic acid 200.0 µg 

Potassium iodide 100.0 µg 

Copper sulfate  40.0 µg 

Folic acid        2.0µg 

___________________________________________________________________ 

Final pH 5.4 ± 0.1 at 25 ˚C 
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1.2 Sabouraud Dextrose Agar (SDA; Oxoid) 
________________________________________________________________ 

Chemical   Weight (g/l) 
________________________________________________________________ 

Mycological peptone    10.0 

Glucose    40.0 

Agar      15.0 

________________________________________________________________ 

Autoclaved for 15 min at 15 lbs pressure (121˚C). Final pH 5.6 ± 0.2 at 25˚C 
 
 

Appendix 2  Buffers 

2.1 0.15 M Phosphate-buffered saline (PBS)  
 
Phosphate buffered saline tablet  
__________________________________________________________________ 

Chemical            Quantity 
___________________________________________________________________________ 

Phosphate buffered saline tablet   1.0 

Distilled water    200 ml 

__________________________________________________________________ 

Each tablet added to 200 ml distilled water yields 0.01 M phosphate buffer, 

0.0027 M potassium chloride and 0.137 M sodium chloride. The solution was 

autoclaved at 121˚C for 15 min. The pH of the subsequent solution was 7.2, at 

25˚C. 
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2.2 RPMI 1640 with HEPES (Sigma) 
 

 

Chemicals g/litre 

Calcium Nitrate 4H2O 0.1 

Magnesium Sulfate (anhydrous) 0.04884 

Potassium Chloride 0.4 

Sodium Chloride 6.0 

Sodium Phosphate Dibasic (anhydrous) 0.8 

L-Arginine (free base) 0.2 

L-Asparagine (anhydrous) 0.05 

L-Aspartic Acid 0.02 

L-Cystine 2HCL 0.0652 

L-Glutamic Acid 0.02 

L-Glutamine 0.3 

Glycine 0.01 

L-Histidine (free base) 0.015 

Hydroxy-L-Proline 0.02 

L-Isoleucine 0.05 

L-Leucine 0.05 

L-Lysine HCL 0.04 

L-Methionine 0.015 

L-Phenylalanine 0.015 

L-Proline 0.02 

L-Serine 0.03 

L-Threonine 0.02 

L-Tryptophan 0.005 

L-Tyrosine 2Na H2O 0.02883 

L-Valine 0.02 

D-Biotin 0.0002 

Choline Chloride 0.003 

Folic Acid 0.001 

myo-Inositol 0.035 

Niacinamide 0.001 

p-Amino Benzoic Acid 0.001 

D-Pantothenic Acid (hemicalcium) 0.00025 
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Final pH 7.0 

2.3 RPMI 1640 with L- Glutamine (Cambrex) 
 

Chemicals mg/L 

Inorganic Salts 
 
Ca(NO3)2•4H2O 100.00 

KCl 400.00 

MgSO4•7H2O 100.00 

NaCl 6000.00 

NaHCO3 2000.00 

Na2HPO4•7H2O 1512.00 

Other Components 

Glucose 2000.00 
Glutathione (reduced) 1.00 
Phenol Red•Na 5.00 
Amino Acids 

L-Arginine 200.00 
L-Asparagine•H2O 50.00 
L-Aspartic Acid 20.00 
L-Cystine 50.00 
L-Glutmaic Acid 20.00 
L-Glutamine 300.00 
Glycine 10.00 
L-Histidine 15.00 

Pyridoxine HCL 0.001 

Riboflavin 0.0002 

Thiamine HCL 0.001 

Vitamin B12 0.000005 

D-Glucose 2 

Glutathione (reduced) 0.001 

HEPES 5.958 

Phenol Red (sodium) 0.0053 

NaHCO3 2.0  
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Hydroxy L•Proline 20.00 
L-Isoleucine 50.00 
L-Leucine 50.00 
L-Lysine•HCl 40.00 
L-Methionine 15.00 
L-Phenylalanine 15.00 
L-Proline 20.00 
L-Serine 30.00 
L-Threonine 20.00 
L-Trypotophan 5.00 
L-Tyrosine 20.00 
L-Valine 20.00 
Vitamins 

p-Aminobenzoic Acid 1.00 
d-Biotin 0.20 
D-Ca Pantothenate 0.25 
Choline Chloride 3.00 
Folic Acid 1.00 
i-Inositol 35.00 
Nicotinamide 1.00 
Pyridoxine•HCl 1.00 
Riboflavin 0.20 
Thiamine•HCl 1.00 
Vitamin B12 0.01 
 
Final pH 7.0     
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