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Abstract

Intrinsic parameter fluctuations have become a serious obstacle to the con-
tinued scaling of MOSFET devices, particularly in the sub-100 nm regime.
The increase in intrinsic parameter fluctuations means that simulations on a
statistical scale are necessary to capture device parameter distributions. In
this work, large-scale simulations of samples of 100,000s of devices are carried
out in order to accurately characterise statistical variability of the threshold
voltage in a real 35 nm MOSFET. Simulations were performed for the two
dominant sources of statistical variability – random discrete dopants (RDD)
and line edge roughness (LER). In total ∼400,000 devices have been simu-
lated, taking approximately 500,000 CPU hours (60 CPU years). The results
reveal the true shape of the distribution of threshold voltage, which is shown
to be positively skewed for random dopants and negatively skewed for line edge
roughness. Through further statistical analysis and data mining, techniques
for reconstructing the distributions of the threshold voltage are developed. By
using these techniques, methods are demonstrated that allow statistical en-
hancement of random dopant and line edge roughness simulations, thereby
reducing the computational expense necessary to accurately characterise their
effects. The accuracy of these techniques is analysed and they are further
verified against scaled and alternative device architectures. The combined ef-
fects of RDD and LER are also investigated and it is demonstrated that the
statistical combination of the individual RDD and LER-induced distributions
of threshold voltage closely matches that obtained from simulations. By ap-
plying the statistical enhancement techniques developed for RDD and LER,
it is shown that the computational cost of characterising their effects can be
reduced by 1–2 orders of magnitude.
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Chapter 1

Introduction

The phenomenal growth of the semiconductor industry has been driven by the
continuous scaling of transistors and the corresponding increase in complexity
of integrated circuits. The trend in the growth of the number of transistors
on a chip was first observed in 1965 by Gordon Moore [8] and formulated at
the 1975 IEDM [9] in what has come to be known as Moore’s Law. Moore’s
Law effectively states that the number of transistors on a chip will quadruple
every three years [10], and has, in effect, become a self-fulfilling prophecy for
the semiconductor industry, as the continuation of Moore’s law now guides
research and development.

In 1974, Robert Dennard proposed the scaling rules that became the ba-
sis for the aggressive scaling of CMOS [11] that we have seen over the last
4 decades. MOSFETs have now reached deep sub-micron dimensions (<
100nm), and despite a multitude of issues related to continued scaling, the
pace of Moore’s Law continues unabated. The progress of semiconductor tech-
nology is now generally guided by the International Technology Roadmap for
Semiconductors [12], which has been published since 1992, and details the de-
sign parameters and technological innovations necessary to continue Moore’s
Law.

There has been a great deal of research into CMOS scaling below 100 nm [13,
14] and while bulk MOSFETs with gate lengths as small as 5 nm have been
reported [15], these devices have generally failed to meet the requirements of
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the ITRS. It is widely expected that bulk MOSFETs will be replaced with
alternative architectures well before channel lengths of 5 nm reach mass pro-
duction. Indeed, the ITRS currently predicts the end of bulk CMOS in 2015
with gate lengths of 17 nm and the focus for extreme scaling has moved away
from conventional architectures. As a result there has recently been extensive
research into nanometer scale devices with Silicon-on-Insulator (SOI), FinFET
and multi-gate architectures, which have better electrostatic integrity and scal-
ing properties [16, 17, 18].

Problems arise at such small scales due to imperfections in the fabrica-
tion process and from random statistical variations in the fundamental atomic
structure of devices. This is due to the fact that charge and matter are funda-
mentally discrete. It is from these variations and imperfections that intrinsic
parameter fluctuations (IPF) of transistors arise and it is recognised that these
variations will pose a serious obstacle to the continued scaling of CMOS [19].
Various techniques have been developed to improve variations arising from
process tools, which are largely systematic and therefore predictable. These
include techniques such as optical proximity correction. The nature of ran-
dom variations however means that these cannot be eliminated no matter how
much the fabrication process is improved and they must instead be accounted
for during the design phase and minimized through device and circuit design.

Although alternative device architectures show less statistical variability
of transistor parameters than the conventional architecture, bulk MOSFETs
are still the workhorse of the semiconductor industry. In addition, the lifetime
of bulk CMOS was extended in the 2008 update of the roadmap [12, 20].
The ITRS also indicates that bulk MOSFETs will still be in use after the
introduction of ultra-thin body (UTB) SOI devices and it is eminently clear
that bulk devices are and will continue to be an essential foundation for the
semiconductor industry. This is why this work is primarily concerned with
intrinsic parameter fluctuations in bulk MOSFETs.

It has also been suggested that Silicon in the transistor channel may be
replaced by Silicon Germanium (SiGe), Germanium (Ge) or III-V compound
semiconductors such as Gallium Arsenide (GaAs), Indium Gallium Arsenide
(InGaAs) and Indium Antimonide (InSb) [21]. However, in the past, the
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advantages of III-V-based transistors in increasing drive current and mobil-
ity have been outweighed by the advantages of Silicon, namely its material
strength and the quality of its native oxide, SiO2. To make alternative chan-
nel materials commercially viable, the difficulties in the development of a good
quality gate dielectric and the integration of SiGe, Ge or III-V channels onto
Si substrates must be overcome.

Recently, there has also been a lot of research into so-called 3D integra-
tion [22], in which there are multiple active layers in a chip. Apart from in-
creasing the integration density, this has the advantage of reducing the average
wire length and consequently reducing signal propagation times. Significant
performance gains are therefore likely and it has been shown that power can
be reduced by

√
N [23] and frequency increased by

√
N3 [24], where N is the

number of layers. The fabrication process will not be straightforward however
and there are likely to be issues with yield, alignment and reliability.

As stated above, the scaling of MOSFETs to deep sub-micron dimensions
means that the fundamental discrete nature of charge and matter starts to
become an issue. Intrinsic parameter fluctuations occur, for example, because
the placement of dopants in devices cannot be exactly controlled and variations
in the device structure start to influence device behaviour. These variations
are random in nature and understanding the effect they have on device per-
formance is an important problem. In order to understand and improve the
operation of MOSFETs, it is common to use numerical modelling and simula-
tions [25]. This allows the transistor characteristics to be better understood
and designs to evolve, thus improving device performance. Understanding sta-
tistical variations, in particular the tails of parameter distributions, is a key
problem in large integrated systems and enabling correct predictions of chip
yields and performance and is an area that still requires significant research
effort.
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1.1 Aims and Objectives

With continued scaling comes increasing variability and coupled with the ever
increasing number of devices per chip, it becomes increasingly difficult to pre-
dict the behaviour of intrinsic parameters with sufficient accuracy. Although
MOSFETs were previously studied as single idealised devices, the influence of
IPF has forced the use of statistical simulations in order to accurately pre-
dict the statistical nature of the operational characteristics of the device [26].
Such predictive simulations are essential in order to meet yield, power and
performance targets and to ensure the long term reliability of chips.

The aim of this project is to study intrinsic parameter fluctuations in detail
using large scale statistical simulations, which are enabled by Grid computing
technology. The goal is to understand the statistical properties of nano-scale
bulk MOSFETs subject to intrinsic parameter fluctuations in detail. This will
enable the shapes of parameter distributions to be accurately deduced and
related to the underlying device structure.

To achieve this aim, the project has the following objectives:

• Develop/adapt tools to facilitate and administer the simulation of 100,000s
of devices on large compute resources.

• Simulate large ensembles of MOSFETs subject to two of the key variabil-
ity sources in deep sub-micron devices – random discrete dopants (RDD)
and line edge roughness (LER) – both individually and in combination.

• Through data mining and statistical analysis, relate the underlying de-
vice physics to intrinsic parameter fluctuations.

• Develop physically informed statistical enhancement methodologies to
reduce the computational cost of characterising variability.

1.2 Outline

The remainder of this thesis is organised as follows. Chapter 2 reviews the
background associated with the problem of intrinsic parameter fluctuations
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and transistor variability. The main sources of variability, including random
discrete dopants and line edge roughness, are described. The physical ori-
gins of the different sources are discussed, along with their effect on MOSFET
parameters. The simulation techniques commonly used to study intrinsic fluc-
tuations are also outlined and the strengths and weaknesses of each approach
compared.

In Chapter 3, the simulation methodology is described in more detail. An
overview of the Glasgow 3D atomistic simulator is given and the implemen-
tation of the sources of variability considered in this work is described. The
extensive computational efforts undertaken here require the use of grid tech-
nology, and some aspects of this technology are outlined. The primary test bed
device studied in this work is introduced and details of the device structure
and characteristics are given.

Chapter 4 presents the results obtained from the simulation of samples of
100,000 devices with random discrete dopants. These results are statistically
analysed and the factors contributing to random dopant fluctuations are inves-
tigated by employing data mining techniques. Further analysis is carried out
to show how the distribution of threshold voltage can be reconstructed from
the underlying device properties. A statistical enhancement methodology for
random dopant simulations is developed and the accuracy of this approach is
analysed by validating results against the original simulation data.

The impact of line edge roughness is investigated in Chapter 5, where the
results of simulations of samples of 10,000–25,000 devices are presented. The
corresponding device parameters contributing to LER-induced variability are
deduced and two approaches for reconstructing the distribution of threshold
voltage are proposed. Details of statistical enhancement methodologies for
LER simulations are also given. The width dependence of LER-induced vari-
ability is analysed and the developed statistical enhancement methodology is
applied and verified against simulation data. Finally, the impact of LER on
alternative device architectures is investigated and the enhancement method-
ology again verified through comparison to simulation data.

In Chapter 6, the results of simulations of the combined effects of random
dopants and line edge roughness are presented. Again, samples of 100,000
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devices have been simulated in order to accurately capture the true shape
of the distribution of threshold voltage. The methodologies developed in the
previous two chapters are revisited and used to reconstruct to distribution of
VT due to combined RDD and LER-induced fluctuations. The accuracy of the
statistical enhancement techniques is verified and the saving in computational
cost by employing these techniques is demonstrated.

Finally, the conclusions for this work are drawn in Chapter 7. The main
results are summarised and suggestions are made for possible extensions to
this work that may be carried out in the future.
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Chapter 2

Background

The continued scaling of conventional bulk MOSFETs has been one of the pri-
mary focuses of semiconductor research since Dennard proposed his generalized
scaling rules [13]. In the last decade, the semiconductor industry has devoted
much effort to scaling MOSFETs into the nanometer regime and MOSFETs in
the 45 nm technology generation with channel lengths of 35 nm are currently
in mass production [27]. Physical gate lengths below 30 nm are expected in
the 32 nm technology generation [28], and according to the ITRS [12] physical
gate lengths down to 17 nm are predicted for the end of applicability of bulk
MOSFETs. SOI and eventually multi-gate devices are expected to take over
at sub-16 nm technology generations. However, despite extensive research into
alternative architectures, bulk MOSFETs remain the present device architec-
ture of choice due to the difficulties in the large-scale integration of these new
device architectures [29]. The cost and risk associated with transitioning to
new architectures is a hugely important consideration for integrated device
manufacturers (IDMs) and foundries.

One of the significant problems associated with further scaling is the sta-
tistical variability of transistor parameters. Transistor dimensions are now
measureable in atomic-scale units and, as a result, self-averaging of atomic
scale fluctuations and imperfections in the transistor structure is no longer
taking place. MOSFET fabrication processes cannot be controlled precisely
at atomic scales, meaning that the number and position of individual atoms
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is random. Consequently, variations in MOSFET performance occur due to
factors such as random dopant placement, atomic scale interface roughness
and gate morphology and structure. For example, only a few tens of atoms
in the channel dominate the behaviour of a sub-0.1 µm gate length MOS-
FET. Variations in the physical channel length also mean that short channel
effects (SCE) become increasingly important, particularly at high drain volt-
ages. This results in drain induced barrier lowering (DIBL), which reduces
the height of the potential barrier between the source and drain and leads to
threshold voltage (VT ) lowering and increased sub-threshold leakage current.
In particularly bad cases, the barrier may be degraded to such an extent that
punch-through occurs and significant drain current flows through the device
regardless of the applied gate voltage. Such variations also make it difficult to
scale the supply and threshold voltages, since in order to decrease leakage, VT
must be increased, however this reduces the drive current and thus adversely
affects timing. The chip performance requirement also prevents supply volt-
age scaling, and has led to a significant increase in static power dissipation, to
the point where static power is now a significant fraction of the total power
dissipation [30].

Leakage [27] and VT variability [31] have been significantly improved by
the introduction of high-κ metal gates, however these introduce new sources of
variability into the picture. It is clear that intrinsic parameter fluctuations are
already a major challenge facing the semiconductor industry and will continue
to be a problem in the future.

In this chapter, some of the primary sources of statistical variability in
bulk MOSFETs are described and the particular sources investigated in this
work are examined in further detail. Details of some of the common simu-
lation techniques used to study statistical variability are given. Specifically,
drift/diffusion, Monte Carlo and non-equilibrium Green’s functions approaches
are described, with a focus on their applicability for the large-scale simulations
to be carried out in this work.
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Figure 2.1: Design challenges for CMOS. After [1].

2.1 Intrinsic Parameter Fluctuations

It is commonly acknowledged that variability in device characteristics will
be one of the major challenges as MOSFETs are scaled into the nanometer
regime [1]. The “happy scaling” years are over, and design in the nanometer
regime faces a great many challenges. The cumulative challenges facing the
continued scaling of CMOS technology are shown in Figure 2.1. The impact
of these challenges on the semiconductor industry is dramatic: in the 2007
ITRS [12] MOSFETs with physical gate lengths of 13 nm were predicted to
reach mass production around 2013. However, in the 2008 update, this has
been replaced with 18 nm and 13 nm postponed until 2017. In addition, for
high performance (HP) applications, the lifespan of bulk MOSFETs has been
extended by 4 years until 2016 and the introduction of multi-gate devices
delayed by 4 years from 2011 until 2015. In the 2009 roadmap update, the
down scaling of physical gate length for HP transistors was further shifted by
a year and the end of bulk MOSFETs is now forecast for 2015. There are
many factors that contribute to these difficulties, and variability of intrinsic
parameters is one of the most significant.

At the device level, there are both systematic and statistical sources of
variation. Systematic variations arise, for example, due to imperfections in
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lithography process and are largely deterministic and although complex are
predictable. As a result, they fall under a measure of control and methods exist
to compensate for their effects [32]. For example, distortions that occur dur-
ing the photo-lithography process can be corrected for using Optical Proximity
Correction (OPC). In addition, strain, which is widely used to enhance tran-
sistor performance, causes both microscopic statistical variations and larger
scale deterministic variations that primarily arise from the circuit layout. In
this case, the layout dependent fluctuations are more significant than the local
variations and as a result, strain can be effectively treated as a systematic
source of variability and analysed using TCAD tools and SPICE [33, 34]. A
more significant problem, however, stems from entirely statistical intrinsic pa-
rameter fluctuations (IPF) and the inherent randomness associated with them.
Statistical fluctuations arise due to the fundamental discrete nature of charge
and matter and the inability to precisely control, for example, the placement
of dopant atoms in a device. These sources already account for more than 50%
of the total variability in the current 45 nm technology generation [35, 36], and
are expected to have a significantly greater influence at the 32 nm and future
technology generations [37]. It is thus clear that statistical fluctuations are of
critical importance to the future of CMOS scaling and integration [38].

In the past, the fabricated dimensions of transistors in CMOS chips have
been much larger than atomic scales. It was thus entirely reasonable to use
a continuous approximation of the device structure in order to simulate de-
vice behaviour, since average values taken over arbitrary volumes at transistor
scale would not vary significantly. As transistor dimensions have approached
atomic scale, where there may only be a few tens of dopant atoms in the ac-
tive device region, this approximation is no longer valid [39]. If we consider
a 0.25µm technology transistor (in production ∼ 1997) with a physical gate
length Lg = 200nm, junction depth xj = 100nm and an average channel
doping N = 1018 cm−3, this would contain approximately 4000 dopants in the
channel region. Assuming that the number of dopants follows a Poisson distri-
bution, the standard deviation of the number of dopants (

√
4000) represents

∼ 1.6% of the total doping. In comparison, a 65 nm technology transistor in
production in 2007, with Lg = 35nm, xj = 18nm and N = 2× 1018 cm−3 will
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have approximately 40 dopants in the channel region. The standard deviation
of the number of dopants is then

√
40, which represents ∼ 16% of the total

doping - clearly a much more significant fluctuation. Furthermore, at 3σ this
represents a variation of nearly 50% in the number of dopants, compared to 5%
for the 200 nm transistor. It is clear that in the sub-100 nm regime, describing
a transistor as being continuously doped and having smooth interfaces is no
longer sufficient. It is essential to realise that it is not sufficient to study just
one idealised device and to incorporate these atomic scale fluctuations into
models and simulation tools. In this context, it is essential to study ensembles
of devices that are microscopically different and the statistics associated with
these ensembles in order to make predictions that can be used at higher levels
of abstraction in the design hierarchy.

Not only are the absolute variations in device parameters larger as devices
are scaled, but due to the huge numbers of transistors integrated in modern
chips, it is also more likely that very rare devices will be encountered than
in the past. These statistically rare devices must be factored in the higher
levels of design. By way of example, consider a probability that a transistor
is completely non-functional of 1 in 10 million. This translates to 200 non-
functional devices on the latest 2 billion transistor chips. In addition, there
will also be a significant fraction of devices that operate poorly. This already
profoundly affects SRAM design [40], and, in logic circuits causes statistical
timing problems [41] and hard digital faults [42]. In both cases, statistical
variability restricts threshold and supply voltage scaling causing static and
dynamic power dissipation problems [43].

As illustrated in Figure 2.2, there are several sources of statistical variabil-
ity, which arise from the fundamental discrete nature of charge and matter.
Variations in the number and position of dopant atoms (i.e. random dis-
crete dopants) affect the electrostatics and carrier transport in devices. The
molecular nature of the photoresists used to pattern devices causes line edge
roughness (LER) and variations in the gate geometry. Variations also arise
from the structure of the gate stack. For example, there will be variations in
the local thickness of the gate oxide. In addition, in high-κ/metal gates, the
metal is composed of crystal grains with different orientations and sizes. This
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Figure 2.2: Illustration of some of the key sources of statistical variability in
bulk MOSFETs.

leads to local variations in the gate work function, which affects the threshold
voltage [44, 45].

Random discrete dopants (RDDs) in the channel and source/drain regions
are the dominant source of statistical variability in contemporary bulk MOS-
FETs, which continue to be the CMOS workhorse at the 45 nm and 32 nm
technology generations [46, 47, 48]. While RDDs are currently the primary
source of statistical variability, the contribution of LER is becoming more im-
portant due to the fact that LER scaling lags the ITRS requirements [3]. While
new device architectures such as SOI and FinFETs tolerate low channel dop-
ing, which reduces RDD variability, they are highly susceptible to the effects
of LER. Recent simulation results predict that LER induced variability could
overtake RDD variability in bulk; SOI and double gate devices, particularly at
high drain voltages [49].

In the design of state of-the-art SRAM and flash memories, occurrences
of devices more than 6-7σ from the mean now play important roles, creating
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the necessity for detailed knowledge of the exact shape of statistical distribu-
tions far out into their tails [50]. Traditionally, simulations of small statistical
samples (approximately 200 devices) have been used to identify and study
the different sources of statistical variability, including random dopant effects
[51, 52, 53, 54, 55]. However, using such small sample sizes it is not possible to
accurately analyse the shape of the distribution or to accurately determine the
impact of variability as far as 6 or 7σ from the mean. The question remains
open as to what extent the different sources of variability, and random discrete
dopants in particular, are capable of producing noticeable variations at 6 or
7σ.

Statistical variations will inevitably have a negative impact on the overall
yield of a fabrication process and on the robustness of a design, making it
essential that parameter fluctuations are properly incorporated into the design
process so that feasible design margins can be established and, where possible,
the design optimized to account for statistical variability [56]. Predictive sim-
ulation is therefore of great importance, as variations can be introduced into
device models in a controlled manner that would be difficult and expensive, if
not impossible, in a real experimental setting. It also allows individual sources
of variability to be studied in isolation and thus in greater detail.

It should, of course, be acknowledged that in advanced emerging device
architectures variability due to particular sources may be reduced or may dis-
appear completely. For example, in devices that tolerate low channel doping,
such as FinFETs, random dopant induced variability is drastically reduced [53].
It is also the case however, that other sources of variability will emerge in these
devices, such as the impact of roughness and variations in fin shape on FinFET
devices. Since transistors will continue to shrink, regardless of their architec-
ture, fewer and fewer atoms will determine the behaviour of individual devices,
meaning that statistical variability will continue to be a major factor in design
and fabrication.

While 3D device simulation is an essential tool in predicting statistical
device behaviour, it is still a computationally intensive task and it is imprac-
tical to consider simulating the large numbers of devices that are contained
in cutting edge processors. Yet, in order to make valid predictions about the
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impact of statistical variability on yield, it is necessary to have a detailed un-
derstanding of how the tails of the device parameter distributions behave. It
is for this reason that we wish to study methods by which it may be possi-
ble to predict device behaviour, even for very rare devices, through statistical
enhancement of a much smaller data set, facilitated by an understanding of
the physics involved, rather than employing a purely brute force approach. It
should be expected however that some degree of brute force will be involved,
since without a good, physically accurate approximation of the underlying dis-
tributions involved, it will not be possible to verify the developed, physics led,
statistically enhanced approaches.

2.1.1 Random Dopants

As discussed above, the scaling of transistor dimensions to sub-100 nm lengths
results in a relatively small number of dopants in the active region of the de-
vice. Statistical averaging of the doping concentration is no longer a valid
assumption and the behaviour of the device is determined by the number and
individual position of dopant atoms. Local variations in the doping profile of
the device lead to inhomogeneity in the potential profile. Consequently, cer-
tain parts of the device will turn on before others, resulting in a lowering of
the average threshold voltage as compared to a continuously doped device, as
well as variation around the mean value [57]. The inhomogeneity in the po-
tential is demonstrated in example potential profiles obtained for continuously
doped and atomistic devices, which are presented in Figures 2.3(a) and 2.3(b)
respectively.

Random discrete dopants (RDD) are one of the primary sources of variabil-
ity in bulk MOSFETs [51] and have been shown to contribute 60-65% of the
total variability in measurements of 65- and 45 nm bulk Silicon devices [19]. In
terms of predicting device characteristics through simulation, it has previously
been reasonable to use a continuous approximation, where a given device is
continuously doped, and as a result the carrier concentration, potential profile
and interfaces are all smooth. This approximation is valid only as long as vari-
ations in number and position of dopants in the device have negligible effects
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(a) (b)

Figure 2.3: Potential profiles of (a) a continuously doped device and (b) an
atomistic device.

on the device characteristics.
The fabrication of modern MOSFETs involves several implantation steps [58],

which are required for threshold voltage control; well implantations; source
and drain implantations and extensions; and pocket implants to reduce short
channel effects. Dopants are implanted at high energy and scatter many times
before coming to rest. Thermal annealing then allows the implanted dopant
atoms to replace Si atoms in the crystal lattice and become electrically active.
Dopants diffuse during the annealing process, adding further randomness to
the distribution. The net result of this process is that each device will have a
particular doping distribution specific to that device due to the random nature
of the scattering processes during implantation and diffusion during annealing.
In general, the final positions of dopants are treated as being uncorrelated, al-
though it has been suggested that Coulombic interactions during annealing
may lead to correlations in dopant position and thus a more ordered distribu-
tion of dopants than would otherwise be expected [59]. A sketch of a 4.2 nm
MOSFET, which represents an extreme scaling scenario and is of a comparable
size to small biological features such as ion channels [60], is shown in Figure 2.4
with the silicon lattice overlaid and dopant positions indicated. This clearly
indicates the scale of the problem, in that only a handful of dopants determine
the behaviour of the device at this scale.

Since the doping distribution that results from the fabrication process is
specific to a particular device, each device will have a slightly different thresh-
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Figure 2.4: Sketch of a 4.2 nm gate length MOSFET, with silicon crystal
lattice and dopant positions superimposed. After [2].

old voltage, as determined by the influence of individual dopant atoms on
the potential. This effect was predicted several decades ago, in the early sev-
enties [61, 46], and was subsequently confirmed experimentally in the late
80s and in a number of studies since [47, 62, 63, 64]. The effects of random
dopants on MOSFET characteristics has been studied extensively both ana-
lytically [65, 66, 67] and numerically in 2D [66, 68, 48] and in 3D [69, 39]. In
general, the doping concentrations are obtained from continuous doping pro-
files and dopant positions are generated from this using techniques such as the
one described in Section 3.1.1 [68, 69, 70, 57]. It is also possible to model the
distribution of dopant atoms using an atomic scale process simulator, which
models the fabrication process and traces the actual implantation of dopant
atoms in a realistic manner using Monte Carlo procedures [71, 72]. This, how-
ever, vastly increases the computational expense and in most instances the
straightforward approach of generating dopants from the continuous doping
profile is sufficiently accurate [2].

Through predictive 3D simulation, it has been shown that the introduction
of random dopants causes a lowering of the average threshold voltage of the
ensemble, as compared to the same device with continuous doping [69, 73].
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It has also been shown that random dopant induced VT variations increase
significantly at very small (sub-20 nm) channel lengths [51]. This occurs be-
cause although the doping must be increased in smaller devices to overcome
short channel effects, the physical size of the device also reduces to such an
extent that the total number of dopants in the active region is also reduced.
It is also important to note that it is not just the number of dopants that is
important, but also the position of the dopants. In some cases the position of
dopants has been neglected [54] and this leads to an underestimation of the
variability and to the truncation of the lower tail of the distribution [74]. This
is partially due to the fact that it is dopants close to the interface that have
the greatest impact on the threshold voltage [75, 76]. The effect of dopant
position on the threshold voltage is fully examined in this work in Chapter 4.
Since the dopants close to the interface exert the greatest influence on VT vari-
ability, devices that have lowly doped and undoped channels, such as SOI [77]
and FinFET devices [78], can achieve a significant reduction in the variability
caused by random dopants [79].

It has also been shown that the incorporation of quantum effects in ‘atom-
istic’ simulations results in an increase in both the variation and lowering of the
threshold voltage due to the increase in equivalent oxide thickness (EOT) asso-
ciated with the quantum mechnical charge distribution in the channel [80, 81].
Introducing quantum mechanical (QM) effects into the simulation also allows
discrete dopants to be properly resolved. It should be noted that in sub-100 nm
MOSFETs, the introduction of quantum effects into the simulation ordinarily
results in a positive shift in the threshold voltage, due to quantization in the
direction normal to the interface. However, the additional incorporation of
random dopants results in a negative shift in VT that depends on the doping
concentration and may compensate for the positive shift associated with QM
effects [73].

2.1.2 Line Edge Roughness

Although random discrete dopants are currently the primary source of sta-
tistical variability in conventional bulk MOSFETs, the contribution from line
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Figure 2.5: Data for LER reported by various labs that demonstrates the
non-scaling of LER. The magnitude is on average about 5 nm. After [3].

edge roughness (LER) is increasing with continued downscaling of MOSFET
devices. The problem is also exacerbated by the fact that LER scaling cur-
rently lags the requirements of the ITRS [82, 83, 3], as shown in Figure 2.5.
Simulations of the LER formation process have demonstrated the difficulties
associated with reducing the magnitude of the roughness [84]. A simulation
study of the effects of LER on device performance has shown that if the mag-
nitude of the roughness is not reduced below its current levels then LER will
overtake random dopants as the dominant source of statistical variability at
around 18 nm channel lengths [51]. LER is also expected to cause comparable
fluctuations to RDD in SOI and double-gate devices at low drain voltage and
to overtake RDD at high drain voltage [85, 86]. Recent 2D and 3D simulations
of FinFETs have also shown that LER has a much greater influence on device
performance than RDD [53].

LER arises due to the discrete molecular nature of the photoresists used
during the fabrication process. During the fabrication process, the wafer is spin
coated with photoresist before being selectively exposed to UV light through
the photomask in order to pattern the transistor gates. The wafer is then
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Figure 2.6: Roughness patterns in positive and negative resists. After [2].

baked and spin coated with the corresponding developer for the photoresist.
Depending on the type of resist, either the exposed or unexposed areas are
soluble in the developer. This leaves behind the image on the mask in the case
of positive photoresist, or its inverse in the case of negative resist. Example
roughness patterns corresponding to positive and negative resists are shown in
Figure 2.6.

The exposed regions of the patterned layer are then etched and the remain-
ing photoresist stripped. Roughness arises during this process mainly due to
the polymer nature of the resist molecules. The resist molecules can form
polymer aggregates due to intermolecular forces and entanglement of polymer
chains [87, 88]. Roughness arises because the larger aggregates take longer
to dissolve in the developer than the smaller molecules. Yamaguchi et al. [87]
also demonstrated that the magnitude of the roughness is closely related to the
polymer granule size and furthermore, the granule size depends on the molec-
ular weight of the resist. For the particular resist studied by Yamaguchi et al.,
ZEP520 (Nippon Zeon Co.), the reported granule diameter was ∼20-30 nm,
with corresponding line width fluctuations of ∼2-3 nm. Additional roughness
can also come from insufficiency of the lithographic system, however this con-
tributes more to low frequency roughness [83] and is not a major contributor to
high frequency roughness that occurs on the spatial scale of individual devices,
which comes primarily from roughness due to polymer granules [89].

In addition, the patterned gate is used as a mask for the source/drain
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implantation, which are thus self-aligned with respect to the gate edge, however
the metallurgical PN junctions will not follow the gate LER exactly [90] due
to smearing during thermal annealing and when the implantation angle is
shallow. LER was not an issue in the past when transistor spatial dimensions
were orders of magnitude larger than the roughness, however in deep sub-
micron devices, the magnitude of LER is comparable to the channel length,
resulting in significant variations in the channel length, which in turn degrades
transistor performance. Indeed, in order to be able to reliably fabricate devices
at the end of the roadmap, the ITRS indicates that sub-1 nm control of LER
will be necessary.

The degradation in performance due to LER is due to the deviation of the
channel length from its ideal uniform value. As a result, in particular regions,
the channel will be shorter than average and in other regions longer than
average. In regions where the local length is longer than average, the device
is more difficult to turn on and, while this results in a reduction in leakage,
it also reduces the drive current. Conversely, when the local length is shorter
than average, the device turns on earlier, increasing leakage and degrading the
noise margins. Shorter channel lengths are also problematic because shortening
the channel has a stronger effect on leakage than lengthening it, due to the
exponential dependence of the current. The short channel effects of the device
are degraded due to lowering of the potential barrier in regions where the local
length is short. At high drain this effect will be enhanced due to the further
penetration of the drain electric field into the channel, leading to increased
drain-induced barrier lowering (DIBL).

It is clear that LER has an important impact in deep sub-micron tran-
sistors that must be properly accounted for and that improvements in the
photolithography process will be necessary. Current resists must be improved
as it is apparent that with channel lengths less than 10 nm expected at the end
of the roadmap, the presence of polymer granules 2-3 times the channel length
in resist chemicals will have seriously detrimental effects on the reliability of
the fabrication process. Additionally, although RDD induced effects can be re-
duced with undoped channels, LER continues to be an issue in such alternative
architectures, with the problem being particularly acute in FinFETs [91]. It
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Figure 2.7: ITRS predictions and extrapolation of current LER for intercon-
nects. After [4].

was however recently demonstrated by Fukutome et al. [92] that LER-induced
VT variations in bulk MOSFETs could be reduced through extension implan-
tations parallel to the gate width direction of the device, a technique that may
be useful as LER induced variability increases.

It should also be noted that LER is a phenomenon that affects intercon-
nects as well as transistors. LER in interconnects results in resistance and
capacitance variability, a factor that will significantly affect signal propaga-
tion between components [4]. The impact of LER on interconnects is shown
in Figure 2.7. As stated already, LER scaling lags the ITRS and the roadmap
forecast for LER may be overly optimistic. Figure 2.7 demonstrates intercon-
nects for the 45-, 32- and 22 nm technology nodes, with roughness as forecast
by the roadmap and unscaled roughness.

2.2 Simulation Techniques

Different techniques can be employed in the simulation of sub-0.1µm MOS-
FET devices [5]. As shown in Figure 2.8, these range in complexity from
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Figure 2.8: Hierarchy of computational techniques used to study MOSFETs.
After [5].

quantum mechanical approaches, which are extremely computationally de-
manding, to compact models that attempt to model MOSFET characteristics
semi-analytically and are computationally simple enough that many thousands
of transistors can easily be included in a circuit-level simulation. Between these
extremes lie techniques such as drift/diffusion simulations and Monte Carlo
approaches, which attempt to capture important physical phenomena while
introducing simplifying assumptions that reduce the complexity of the simu-
lation. Since intrinsic parameter fluctuations arise from the granular nature
of charge and matter, it is essential that a simulator accurately describes the
physical system and is able to resolve individual dopant atoms and material
non-uniformities. Intrinsic parameter fluctuations are by nature 3-dimensional,
therefore, regardless of the modelling formalism employed, it is necessary to
carry out 3D simulations in order to fully capture their effects on device char-
acteristics.

It is also important to consider the statistical nature of intrinsic parameter
fluctuations. It is of course impossible to exhaustively characterise a statistical
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population for all but the most trivial of problems, and statistical variability is
no exception. Furthermore, due to the extremely high level of integration on
modern microprocessor chips, problematic statistically rare devices become,
relatively speaking, a much more common occurrence due to the large num-
bers of devices involved. It is therefore necessary to simulate a sufficiently
large statistical sample of devices so that the parameters characterising the
statistical distributions can be extracted with an acceptable level of accuracy.
With this in mind, it is necessary to employ modelling approaches that are
efficient enough to allow large statistical ensembles to be simulated within a
realistic time frame.

Despite their efficiency, compact models are only useful at higher levels of
abstraction such as in circuit design, where transistors are, in essence, treated
as black-box components. They do not capture the device physics accurately
and rely on semi-empirical fitting in order to reproduce transistor characteris-
tics. In addition, they lack predictive power at the device level. The excessive
simplification of the physical processes involved and of the device itself result
in an unacceptable loss of physical detail and they are not generally useful for
characterising statistical variability that arises from the atomic structure of
the device. For this reason, we do not consider compact models further in this
work.

The information that is propagated from physical simulations to the next
level in the design tool chain should also be considered. Although a complete
description of the I-V characteristics of a device will always be more accurate,
threshold voltage and leakage current are important and useful parameters for
circuit design that can be obtained with significantly less computational effort
than a full characterisation. Due to its importance in the operation of CMOS
circuits, we primarily focus on threshold voltage variability in this work.

In this section, we review some of the common techniques used for simula-
tion of MOSFET devices with respect to the requirements outlined above.
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2.2.1 Drift/Diffusion

The drift/diffusion (DD) approach, which models the lowest-order transport
system that can be obtained from the Boltzmann transport equation (BTE) [5],
has been the backbone of numerical device simulation for over forty years. This
began in the 1960s with the work of Scharfetter and Gummel [93], who pro-
posed a robust discretisation of the DD equations and a self-consistent iterative
method for solving them. Since then, a wealth of practical knowledge on the
application of the DD equations has been accumulated [25, 94]. Despite the
remarkable scaling of semiconductor devices since the 60s, many refinements
and improvements to the DD model have been proposed (for example, more
accurate mobility models [95, 96] and Density Gradient quantum corrections
- see Section 2.2.1.1) and the DD approach remains a useful tool even for the
simulation of deep sub-micron devices.

Here we consider the steady-state simulation of an n-channel MOSFET,
which is a unipolar device. Apart from breakdown simulations, only the trans-
port of electrons in the channel determines the device operation. In the DD
approach, the steady-state current continuity equation (Equation 2.1) is solved
self-consistently with Poisson’s equation (Equation 2.2), which provides cou-
pling of the current and charge distribution to the potential distribution and
the corresponding field distribution [97]. Solving Poisson’s equation yields
the electrostatic potential, which can then be included in the current density
equations.

∇ · Jn = 0 (2.1)

∇ · (ε∇ψ) = q(n− p+N−A −N
+
D ) (2.2)

In Equation 2.1, Jn is the current density. In Equation 2.2, ε is the per-
mittivity, ψ is the electrostatic potential, n and p are the electron and hole
distributions and N−A and N+

D are the ionised acceptor and donor distribu-
tions. It should be noted that different simulation techniques employ different
techniques to update the mobile charge distribution. The current density is
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expressed as the superposition of two components – the drift component (Equa-
tion 2.3), which is related to the electric field (E) and the diffusion component
(Equation 2.4), which is related to the gradient of the electron density (n).

Jn,drift = qnµnE = −qnµn∇ψ (2.3)

Jn,diff = qDn∇n (2.4)

where µ is the mobility, D is the diffusion coefficient and the other sym-
bols have the same meaning as above. In the Boltzmann approximation, the
mobility and diffusion coefficient are related via the Einstein relation:

Dn =
kBT

q
µn (2.5)

where kB is Boltzmann’s constant and T is the temperature.
Significant simplifying assumptions are made in the derivation of the DD

model from the BTE in order to obtain a closed system of equations and these
limit the validity of the DD model [98]. As such, the DD model does not
incorporate non-local effects and assumes that carriers are in thermal equilib-
rium with the lattice. This is not valid at high electric fields, however, where
the carrier energy increases above the lattice energy and the effective carrier
temperature is higher than the lattice temperature. The validity of the DD
model can, however, be improved through empirical extensions such as better
mobility models and quantum corrections. These improve the validity of the
DD model at higher electric fields and take quantum confinement into account.
However the validity of the DD approach is still limited to operating in regimes
where the electric field varies slowly. DD assumes that carriers are able to in-
stantaneously respond to changes in the electric field, however carriers are not
massless and require a finite time and distance to equilibriate with the field
and as a consequence, DD is unable to capture velocity overshoot effects [5].

Despite the shortcomings of the DD model, it is extremely useful due to its
robustness, easy extension into 2 and 3 dimensions and efficiency. In simula-
tions of sub-100 nm devices, it is still perfectly accurate in the sub-threshold
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regime of operation, as the coupling between the current and Poisson’s equa-
tion is weak and electrostatics mainly dominate the behaviour of the device.
The application of DD methods is therefore ideal for the investigation of statis-
tical threshold voltage and leakage current variability. Since the simulation of
many thousands of devices is necessary to fully characterise the statistical dis-
tributions of MOSFET parameters, speed is of the utmost importance and the
computational efficiency of the drift/diffusion model is an important factor.

2.2.1.1 Density Gradient

The drift/diffusion approximation can be extended to include quantum cor-
rections, which improve the validity of the approach in aggresively scaled de-
vices. The Glasgow DD simulator incorporates density gradient (DG) correc-
tions, which were originally proposed in 1987 [99] by Ancona and Tiersten as
a macroscopic description of some of the quantum mechanical behaviour of
strong inversion layers at the Si/SiO2 gate interface of transistors. DG the-
ory allows some non-local quantum effects to be taken into account, thereby
improving the accuracy of the DD approximation for highly scaled devices.
Quantum effects are incorporated by adding a dependence on the gradient of
the density to the equations of state for the electron gas. This in turn leads
to an extra term in the expression for the current.

Jn = qDn∇n− qµnn∇ψ + 2qnµn∇
(
bn
∇2
√
n√
n

)
(2.6)

This can be seen as a generalized drift/diffusion current equation with an
additional driving force, due to an effective potential related to the gradient
of the electron gas density. Since it arises from the gradient of the electron
distribution, the additional term can be thought of as a “quantum diffusion”
current, in the same way that qDn∇n is seen as a classical diffusion current.
In Equation 2.6, Jn is the current density, q is the electronic charge, n is the
electron density, µ is the mobility, ψ is the electrostatic potential and b is a
term that expresses the magnitude of the density gradient dependence and has
the general form b = ~2

4m∗qr
[100]. In the relation for b, ~ is the reduced Planck

constant, m∗ is the effective mass and r is a parameter that depends on the
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Figure 2.9: Comparison of the electron concentration obtained from classical
and density gradient simulations.

temperature and the number of filled sub-bands [101]. For “high” temperatures
(above ∼ 77 K in Silicon), r approaches 3 and b becomes ~2

12qm∗n
[102].

By expressing the current density in terms of a quasi-Fermi potential, an
expression for the quasi-Fermi potential can be obtained [103].

φn = ψ − kBT

q
ln(

n

ni
) + 2bn

∇2
√
n√
n

(2.7)

The inclusion of the additional driving term has the effect of pushing carri-
ers away from the Si/SiO2 interface, which is consistent with the 1-D solution
of the Poisson-Schrödinger equation [104]. This can be seen in Figure 2.9,
which shows the electron concentration obtained from classical and density
gradient simulations. By deriving the density gradient theory from micro-
scopic principles, rather than macroscopic, it has been shown [105] that the
macroscopic theory represents the lowest order quantum effects arising from
the microscopic physics and thus has a good range of applicability. Density gra-
dient theory is therefore able to capture some aspects of quantum mechanics,
such as quantum confinement and, to some extent, quantum tunnelling [106].

The shift in the peak electron concentration away from the interface occurs
as a result of quantum confinement. This increases the equivalent oxide thick-
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ness and leads to an increase in the threshold voltage. Quantum tunnelling is
included only to a limited extent, as DG theory cannot account for electron
coherence effects. However it was shown [106] that reducing the channel length
resulted in degradation of the sub-threshold slope in DG simulations, a result
that is consistent with the qualitative inclusion of tunnelling.

In addition, other simulation results by Xiong et al. [107] have also shown
good agreement between density gradient theory and full Poisson-Schrödinger,
with less than 10 mV difference in the threshold voltage obtained from both
methods for a 20 nm double gate device.

Although not the original purpose of density gradient theory, the inclusion
of density gradient corrections is also useful for correctly capturing the effect
of random dopants on the potential distribution of the device. In classical
drift/diffusion, discrete impurities cause sharp wells in the potential, resulting
in charge trapping around the impurity. When density gradient is included, the
same force that pushes the peak carrier concentration away from the Si/SiO2

interface also has the same effect around discrete impurities and aids the cor-
rect resolution of random dopants. This will be discussed in more detail in
Section 3.1.1.

The comparison of density gradient with more advanced simulation tech-
niques demonstrates that DG is able to produce accurate results even for very
small devices, meaning that the lower computational cost of DD after the in-
clusion of DG corrections can be exploited for large-scale statistical simulations
for devices in the sub-0.1 µm regime.

2.2.2 Monte Carlo

Monte Carlo simulation techniques [108, 109] approach the problem of sim-
ulating carrier transport in a fundamentally different way to drift/diffusion
methods. While DD methods represent a low order approximation of the
Boltzmann transport equation, Monte Carlo methods are an indirect way of
solving the BTE. The BTE is a difficult equation to solve and obtaining a di-
rect solution is impossible in all but the most trivial of cases and Monte Carlo
methods have gained popularity due to the fact that they avoid the attendant
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Figure 2.10: Illustration of the free flight and scattering of carriers in a Monte
Carlo simulation.

problems of obtaining a direct solution. They instead seek to model the micro-
scopic transport phenomena involved in semiconductor device operation, i.e.
the free flight and scattering of carriers. It should be noted that Monte Carlo
is a general statistical numerical method and is applicable to other problems
in addition to semiconductor carrier transport [109].

Monte Carlo simulates the movement of carriers inside a semiconductor de-
vice, which can be thought of as a series of free flights and randomly selected
scattering events at the end of each free flight. The movement of a single par-
ticle through the simulation domain is illustrated in Figure 2.10. Although the
trajectory of particles during free flight is calculated using classical Newtonian
physics, the scattering events incorporate quantum mechanics and, as such,
Monte Carlo is a semi-classical model of the transport of particles. Scattering
events can include interactions between carriers and phonons, fixed impurities
and other carriers. The flight times and scattering events are determined by
random numbers and by choosing appropriate probability distributions for the
random numbers will correspond to the correct physics of the processes. Since
large quantities of random numbers are required for Monte Carlo simulations,
it is clear that a fast, high quality source of random numbers is important.
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The typical flow of a Monte Carlo simulation is as follows. The initial
state of the device is obtained from an analytical model or the output of
another simpler simulation technique, such as drift/diffusion. Carriers are then
propagated, scattering events selected and statistics on the particles gathered.
The simulation can be carried out as a ‘frozen field’ simulation, where the
field distribution inside the device does not change, or self-consistently, where
Poisson’s equation is used to update the driving field after each time step.
This process is then repeated until the quantities of interest are estimated
with sufficient precision.

One of the major advantages of Monte Carlo over drift/diffusion is its abil-
ity to correctly capture non-equilibrium carrier transport at high electric fields.
The small spatial scales involved in deep sub-micron transistors mean that the
electric fields are very high when the device is in the on state and the operating
point is far from equilibrium. The carriers are not in thermal equilibrium with
the lattice and non-local, non-equilibrium carrier transport becomes impor-
tant. Since the actual microscopic physics of the carriers is taken into account,
effects such as velocity overshoot are properly considered. This incorporation
of accurate carrier transport mean that Monte Carlo simulations may, to some
extent, go beyond the limits of the BTE and yield more realistic results, as they
naturally include noise and fluctuations that would occur in real devices [5].

Despite the better physical accuracy of the Monte Carlo approach, one of
the major drawbacks is the large computational expense, as it is necessary
to populate the system with a sufficient number of carriers, such that the
ensemble averages are suitably representative of the corresponding averages
for the entire carrier gas [94]. Due to the small number of particles in the
simulation (∼10,000–50,000), there will still be noise in the statistical data
however, and it may be important to apply variance reduction techniques in
order to improve the accuracy of estimated averages. In order to accumulate
good statistics, it is also necessary for the simulation time to be sufficiently
long. In general, the requirement for long simulation times (on the order of
days/weeks, rather than hours) means that Monte Carlo methods are not well
suited for large-scale statistical simulation. In terms of statistical variability,
they are more naturally suited to studying on-current variability than threshold
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Figure 2.11: Illustration of the Green’s function, which represents the resulting
wavefunction at r in response to an excitation at r′. After [6].

voltage variability, since in the sub-threshold regime the number of free carriers
and scattering events is much lower, meaning that it takes much longer to
accumulate reliable statistics [98] and increasing the computation time taken
to obtain accurate estimates of the parameter of interest.

2.2.3 Non-Equilibrium Green’s Functions

Despite the improved physical accuracy of Monte Carlo approaches, semi-
classical approaches begin to lose validity at the extremes of scaling [110]
and below channel lengths of ∼10 nm quantum effects begin to dominate.
This requires a fundamentally quantum description of the system. This is dis-
tinct from the incorporation of quantum effects into semi-classical Monte Carlo
simulations to describe particular quantum aspects of the system. Quantum
transport approaches are effectively at the top of the hierarchy of simulation
complexity and are extremely computationally expensive.

In the non-equilibrium Green’s function (NEGF) approach, the device un-
der study is represented by an appropriate Hamiltonian, for example, the ef-
fective mass Hamiltonian. The Green’s function describes the response of the
system at any arbitrary point r to an excitation at the point r′ [6], as illustrated
in Figure 2.11.

The electron and current densities can be obtained from the lesser Green’s
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function G< using the following equations.

n(E, x) = iG<(E, x, x′) (2.8)

J(E, x) = −i e~
2m

(∇−∇′)G<(E, x, x′)

∣∣∣∣
x−x′

(2.9)

Where E is the energy, e is the electronic charge, ~ is the reduced Planck
constant, m is the effective mass and ∇ and ∇′ operate on x and x′, respec-
tively. More details on the calculation of G< and the related functions can be
found in [6].

To solve Green’s functions for the quantities of interest, it is necessary
to invert very large matrices, making the simulation very memory intensive.
For example, for a mesh containing n points, the corresponding Hamiltonian
will contain n × n elements. This complicates the algorithm and makes it
difficult to extend it into 2- and 3D as the matrices quickly become extremely
large. As a result, the NEGF approach has primarily been used to study
lower dimensional systems, although full scale 3D simulation studies have been
carried out recently [111].

The typical flow of a NEGF simulation would be as follows. An initial
estimate of the potential and electron concentration are obtained from, for
example, a drift/diffusion simulation. The NEGF approach is used to deter-
mine the new electron density based on the initial potential. A quasi-Fermi
potential is calculated from the old potential and new electron density, which
is then used to solve Poisson’s equation to obtain the new potential distribu-
tion. This process is repeated iteratively until self-consistent convergence of
the potential, electron density and current are achieved.

Due to the immense computational complexity associated with the NEGF
approach, it is infeasible to use this for large-scale statistical simulation of
realistic devices. In addition, the devices of interest in this work are larger
than those typically examined using the NEGF approach and a semi-classical
approach is entirely sufficient. The NEGF approach does however have appli-
cability in calibrating quantum corrections that are applied to traditional DD
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and Monte Carlo simulations.

2.3 Summary

In this chapter, an overview was given of some of the key sources of statistical
variability. The two major sources in contemporary bulk MOSFETs – random
discrete dopants and line edge roughness – were examined in detail. Some of
the simulation techniques commonly used to study intrinsic parameter fluctu-
ations were also discussed. Drift/diffusion, Monte Carlo and Non-equilibrium
Green’s functions approaches were outlined, along with some of their advan-
tages and disadvantages. In addition, density gradient quantum corrections,
which are used to improve the accuracy and applicability of the drift/diffusion
approach were summarised.

Computational efficiency was the most important consideration for the
large-scale simulations in this project, thus while Monte Carlo and NEGF
approaches result in better physical accuracy, they were not appropriate for
this work. In the next chapter, the Glasgow 3D drift/diffusion simulator is
described in more detail, along with how the sources of variability of interest
for this study are incorporated. The 35 nm MOSFET that is the primary test-
bed in this research is described and details of the Grid technology employed
in this study are given.
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Simulation Methodology

In this Chapter, we describe the Glasgow 3D “atomistic” simulator and how
the sources of variability studied in this thesis are implemented in the simu-
lator. There is considerable technical difficulty associated with the large-scale
simulations that were carried out as part of this work. An overview of the Grid
technology that facilitated these simulations is given. The transistor studied
is described in detail, including information about the corresponding TCAD
process and device simulation and the calibration of the simulations to the
measured device characteristics. Finally, we outline specific aspects of the
simulations, such as the choice of bias conditions and the issues of numerical
accuracy and convergence.

3.1 The ‘Atomistic’ Simulator

The Glasgow “atomistic” simulator has been developed within the Device Mod-
elling Group for a number of years and an overview of the operation of the sim-
ulator is given in this section. It should be noted that although no fundamental
changes to the simulator were necessary for this work, some modifications were
made in order to make the use of the simulator in a Grid environment easier
(see Section 3.2).

The simulator self-consistently solves the nonlinear Poisson (Equation 3.1)
and current continuity equations (Equation 3.2) in the drift/diffusion (DD)
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approximation. The DD equations are discretised and solved in a 3D simu-
lation domain. Since intrinsic parameter fluctuations occur due to physical
phenomena that are inherently 3 dimensional in nature, this renders 2D and
quasi-3D simulations unsuitable to fully capture their influence on the device.
This is due, for example, to the fact that 2D and quasi-3D simulations will not
properly capture the current flow around discrete impurities and the resulting
percolation path between the source and drain, which allows early turn-on of
the device [112].

The steady-state system of semiconductor equations suitable for the sim-
ulation of MOSFETs includes Poisson’s equation (3.1), the current continuity
equation (3.2) for the majority carriers in the transistor (electrons in this case)
and the corresponding equations for the current in the drift/diffusion approx-
imation (3.3).

∇ · (ε∇ψ) = q(n− p+N−A −N
+
D ) (3.1)

∇ · Jn = 0 (3.2)

Jn = qDn∇n− qµnn∇ψ (3.3)

In Equation 3.1, ε is the permittivity,ψ is the potential, q is the electron
charge, n is the electron concentration, p is the hole concentration, N−A is the
ionised acceptor concentration and N+

D is the ionised donor concentration. In
Equation 3.2, Jn is the current density, which can be obtained from Equa-
tion 3.3. In Equation 3.3, Jn is the electron current density, Dn is the electron
diffusion coefficient and µn is the electron mobility.

These equations are discretised onto a non-uniform 3D Cartesian mesh
using a finite difference scheme that was first proposed by Scharfetter and
Gummel [113]. The Scharfetter-Gummel scheme assumes that the carrier dis-
tribution is exponential between mesh points and is stable regardless of the
mesh size. In MOSFET simulations, a fine mesh is required to accurately
capture the changes in the current density distribution in the inversion layer.
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The mesh spacing h is usually in the range 1–0.5 nm, although finer steps are
frequently used in the active regions of the device.

The use of fine meshing is problematic, however, as the inclusion of ran-
dom dopants in the simulation leads to a dependence of the solution on the
mesh step size, as described in [114] and in Section 3.1.1 below. This is due
to artificial trapping of mobile charge in the potential wells associated with
discrete dopants. This erroneous charge trapping is significantly reduced by
the inclusion of Density Gradient (DG) quantum corrections [115, 103] in the
simulator. Density Gradient corrections were originally developed in order
to properly capture the behaviour of the inversion layer charge [99], which is
essential for the correct modelling of IV curves in ultra small devices. The
quantum corrections take quantum confinement into account, which raises the
electron ground state, and thus also aid in the correct resolution of discrete
dopants. The Glasgow simulator includes Density Gradient corrections for
both electrons and holes, which enables the effect of discrete dopants on de-
vice characteristics to be correctly determined. The density gradient equation,
which is solved self-consistently with Poisson’s equation, is given by Equa-
tion 3.4.

2bn
∇2
√
n√
n

= ψ − φn +
kBT

q
ln(

n

ni
) (3.4)

In Equation 3.4 bn is defined as ~2

12qm∗n
, where ~ is the reduced Planck

constant, q is the electron charge and m∗n is the effective mass of an electron.
n is the electron distribution, ψ is the electrostatic potential, φn is the quasi-
Fermi potential, ni is the intrinsic carrier concentration and the other symbols
have their conventional meanings.

Equations 3.1–3.3 are a system of coupled equations that is solved self-
consistently using Gummel iterations [93]. The Gummel iteration is modified
to include the Density Gradient equations and as implemented in the Glasgow
simulator, the Gummel iteration consists of the following process, which is
illustrated in Figure 3.1. First, the Density Gradient equations are solved
self-consistently with Poisson’s equation. This pair of equations is then solved
self-consistently with the current continuity equations. Direct inclusion of
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Figure 3.1: Flowchart illustrating how the Density Gradient equations are
incorporated into the Gummel iteration. After [2].

the DG equations into the Gummel cycle was found to negatively impact the
convergence properties of the algorithm, however solving the DG equations self-
consistently with Poisson’s equation improves stability and convergence [2].

In the simulator, Poisson’s Equation and the density gradient equations
are solved using a Successive Over-Relaxation (SOR) solver and the current
continuity equations are solved using a BiCGSTAB solver. The more complex
BiCGSTAB solver is required for the current continuity equations due to the
non-diagonally dominant system of equations that arises from the Gummel
discretisation scheme and the inclusion of sophisticated mobility models, which
extend the validity of the drift/diffusion formalism.

As stated previously, the drift/diffusion formalism does not capture non-
equilibrium transport effects at high electric fields and thus does not accu-
rately predict the current in decananometer transistors. It also cannot capture
current variations associated with Coulomb scattering from random discrete
dopants. This does not, however, diminish the usefulness of the drift/diffusion
approach for predicting threshold voltage variability, since it models the sub-
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threshold regime well, where the behaviour of the device is primarily deter-
mined by electrostatics. The applicability of DD for the simulation of ultra
small devices is also improved by the incorporation of quantum corrections.

DD is also favourable from the point of view of its computational efficiency.
To demonstrate this, the Glasgow simulator was benchmarked on a 2.66 GHz
Intel Xeon (Harpertown) machine. Although the simulator can use multi-
ple cores in a machine, it was restricted to a single core for the purposes of
the benchmark, as this is reflective of the cluster/grid environment where the
large-scale simulation work was carried out. Simulations to find the threshold
voltage were carried out for the 35 nm device (described in Section 3.3) with
continuous, uniform doping and no sources of variability included. The mesh
size for the device is 109× 36× 64 nodes (251,136 nodes in total). For a clas-
sical simulation, without density gradient corrections, the overall simulation
time was ∼2.5 minutes, with 55-60% of the time per (gate) voltage point spent
solving Poisson’s equation and 35-40% spent solving current continuity. With
density gradient corrections included, the total simulation time was ∼ 32.5

minutes, with over 95% of the time per voltage point taken solving Poisson’s
and the density gradient equations and, correspondingly, less than 5% on solv-
ing current continuity. Although the inclusion of density gradient drastically
increases the total simulation time, it is necessary in order to obtain accurate
results for such small devices.

3.1.1 Random Dopants

The DD approach is a classical continuum simulation approach and the repre-
sentation of random discrete dopants presents some difficulties. Special treat-
ment is needed to consistently represent individual discrete dopants in the
simulation domain. The statistical generation of the dopant distribution in
individual devices also needs special care.

One of the major problems associated with including random dopants in
DD simulations is artificial charge trapping on top of impurity atoms [72]. In
classical drift/diffusion simulations, this occurs due to the use of Boltzmann
or Fermi-Dirac statistics, which results in the electron concentration closely
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following the electrostatic potential. Discrete dopants create deep Coulomb
potential wells for majority carriers and in classical simulations, where the
carrier concentration is locally related to the potential distribution, such wells
are able to trap large numbers of carriers, resulting in artificial localisation of
the majority carriers. This is unphysical however since, quantum mechanically,
only certain discrete energy levels are allowed, and for individual dopants the
ground state is near the conduction band edge [116, 117], meaning that carriers
are less strongly localised near the dopant and can more easily escape the
potential well.

In DD simulations, the dopant charge density associated with a particular
mesh node is inversely proportional to the volume of the node, therefore, the
requirement for a fine mesh in the simulation of ultra small devices leads to
localisation of charge within the mesh cell. The result is a sharpening of the
Coulomb potential well with the refinement of the mesh, which represents the
singularities of the potential associated with a point charge more closely. Pro-
posed solutions to this problem have included charge assignment schemes [118],
splitting of the Coulomb potential into short and long range components [119]
and the introduction of quantum corrections [120, 114, 121].

The inclusion of individual discrete dopants in the Glasgow DD simulator
is achieved by using a charge assignment scheme to spread the single point
charge of the dopant onto the surrounding mesh nodes. There are several
charge assignment schemes that can be employed, such as nearest grid point
(NGP), Gaussian smearing and Cloud-in-Cell (CIC) [122]. Since NGP leads to
excessive charge trapping and Gaussian smearing relies on somewhat arbitrary
choices of parameters [2], CIC is adopted in the simulator. The CIC approach
spreads the single elemental charge q onto the eight mesh points neighbour-
ing the dopant atom, as illustrated in Figure 3.2. The charge assigned to a
particular mesh point is given by Equation 3.5:

ρ(x, y, z) = wxwywz
1

V
(3.5)

where ρ is the charge, wx, wy and wz are weighting factors that depend on the
location of the dopant atom and V is the volume associated with the mesh
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Figure 3.2: The Cloud-in-Cell charge assignment scheme. The charge from the
dopant atom is split among the eight neighbouring mesh points. After [2].

node, given by V = hxhyhz. For the Cloud-in-Cell approach, with a uniform
mesh in x, y and z, the weighting factors are given by Equation 3.6:

wx =

1− |x−xp|
h

|x− xp| ≤ h

0 otherwise
(3.6)

where x is the dopant x position, xp is the mesh point position and h is the
mesh step size. The fraction of the dopant charge assigned to a particular
mesh point therefore corresponds to the distance between the dopant and the
mesh point.

While artificial charge trapping is reduced by employing the Cloud-in-Cell
charge assignment scheme, there is still a dependence on the mesh step size. For
dopants that are near mesh points, CIC also behaves more like NGP, as a larger
proportion of the charge is assigned to the nearest mesh point. Although there
are other more complex charge assignment schemes, for example Triangular
Shaped Cloud (TSC), which spread the charge beyond the mesh cell containing
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the dopant, these schemes become more computationally complex and are not
necessarily desirable in simulations of MOSFET devices, for example, at the
Si/SiO2 interface.

Since charge assignment does not eliminate artificial charge trapping, it is
necessary to adopt an additional approach to reduce charge localisation. Due
to the somewhat arbitrary choice of cut-off point and the possibility of dou-
ble counting in approaches that split the Coulomb potential into short and
long range components, density gradient quantum corrections are used in the
Glasgow simulator. The inclusion of density gradient corrections results in a
significant decrease in the amount of charge that becomes localised around
discrete impurities. This reflects the effect of quantum confinement in the po-
tential wells, which reduces the sharp peaks associated with discrete impurities
in classical DD simulations. By reducing the amount of charge that becomes
trapped around impurities, there are more carriers that are free to contribute
to the current flow, resulting in a decrease in the resistance associated with
the region containing discrete dopants.

The inclusion of density gradient corrections also helps to alleviate the de-
pendence of the charge on the mesh step size. The effective quantum potential
is much less sensitive to the mesh step size than the corresponding classical
potential, thus avoiding further increases in the amount of charge localisation
around impurity atoms due to reductions in the mesh size.

As well as correct resolution of individual discrete dopants, it is also impor-
tant to correctly determine where dopants should be placed in the devices in
order to represent dopant distributions that arise from realistic doping profiles.
Since modern CMOS devices have small dimensions and complex doping pro-
files and require non-uniform meshing, simple approaches based on randomly
generated 3D co-ordinates or selecting dopant numbers from a Poisson distri-
bution are insufficiently precise to accurately determine the discrete dopant
distribution.

The Glasgow simulator employs a method first described by Frank et al. [7].
In this method, random numbers are generated for every Silicon lattice site to
determine if the atom is a dopant or not. This is not an onerous task, since in
deep sub-micron devices, the actual number of Si lattice sites is of a manage-
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Figure 3.3: Sample random dopant distribution obtained using the method
described in [7]. Discrete acceptors are indicated in red and discrete donors in
blue.

able order of magnitude. For example, a small cubic volume with side 50 nm,
which may represent the simulation domain of an ultra small device, contains
only ∼ 6.25 × 106 Si atoms. The generation of 106 − 107 random numbers is
a straightforward computational task compared to the full 3D simulation of
the device. Thus, for each lattice site, dopants are introduced using a rejec-
tion technique that selects whether a dopant should be placed at a particular
lattice site based on a probability given by the ratio of the doping and Si con-
centration at that site. In regions of uniform doping, this is equivalent to a
Bernoulli trial for each lattice site, therefore the distribution of the number of
dopants that arises is a Binomial distribution. For a large number of trials, as
is the case here, the Binomial distribution can be approximated well by a Pois-
son distribution, hence the common observation that the number of dopants
closely follows a Poisson distribution. A sample random dopant distribution
obtained using this method is shown in Figure 3.3.

It should also be noted that in real devices, there may be a possible cor-
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relation in the discrete dopant position due to Coulomb interactions between
the dopants during high temperature annealing. This is not included in the
simulator and is currently ignored this work [59].

3.1.2 Line Edge Roughness

Line edge roughness is introduced into the simulator using a method based on
1D Fourier synthesis, as detailed in [3]. Previous methods used to model LER
include 2D simulations coupled with the statistics of the channel length [123,
124, 125, 126] and 3D simulations that employed square wave approximations
of the gate edges [127, 128]. More complex approaches to modelling LER also
incorporate atomic scale process simulation [71] and the effects of strain related
variations [129], however these are neglected in this study.

The Fourier synthesis method employed here generates lines from a Gaus-
sian power spectrum. The corresponding auto-correlation function, which is
characterised by two parameters – the RMS amplitude (∆)1 and the correlation
length (Λ) – is fitted to that obtained from the analysis of SEM micrographs
of extreme ultraviolet (EUV) [130] and electron beam lithography [131]. Val-
ues obtained for Λ indicate that the autocorrelation length lies in the range
20-30 nm, while 3∆ has remained in the range ∼ 3− 5 nm.

The Gaussian power spectrum used in the simulator is given by Equa-
tion 3.7:

SG(k) =
√
π∆2Λ exp(−k

2Λ2

4
) (3.7)

where k = i( 2π
Ndx

). N is the number of mesh points in Fourier space, with
spacing dx and 0 ≤ i ≤ N

2
. Note that the power spectral density (S) and

the auto-correlation (R) functions can be related using the Wiener-Khintchine
theorem [132], which states that the power spectral density is the Fourier
transform of the auto-correlation function, given by Equation 3.8.

1Note that the values commonly quoted as “LER magnitude” are usually defined as 3∆.
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Sx(ω) =

∞̂

−∞

Rx(τ) exp(−ωτ)dτ (3.8)

A set of N discrete elements is used for the Fourier space representation of
the line [L(k)], with amplitudes generated from the power spectrum and the
phase of each element being selected randomly in order to generate randomly
varying lines in real space (Equation 3.9).

L(k) = SG(k)∠rand(0, 2π) (3.9)

For inputs which are real numbers, the discrete Fourier transform obeys the
symmetry Xk = X∗N−k, where the ∗ represents complex conjugation. Fur-
thermore, the elements X0 and XN/2 (the Nyquist frequency) are purely real.
Enforcing these conditions on L(k) therefore ensures that the inverse DFT of
the randomly constructed spectrum (i.e. the LER pattern, l(x)) is purely real.
This also means that onlyN/2 elements of L(k) are independent, with elements
N/2 + 1 to N being determined by complex conjugation. The corresponding
real space line is thus obtained by taking the inverse Fourier transform of
L(k), as in Equation 3.10. An example of a resulting random line is shown in
Figure 3.4.

l(x) = F−1{L(k)} (3.10)

Both gate edges are generated using this method, and an example doping
profile with LER introduced in this way is shown in Figure 3.5. It should be
noted that in our simulations, the metallurgical PN junctions are assumed to
follow the gate edges. Although this assumption may not be valid in certain
situations, for example when the implantation angle is very shallow [90], it
is reasonable given that the correlation length is typically longer than the
junction depth in deep sub-micron devices. It is also possible that thermal
annealing during doping activation can cause smearing of the PN junctions.
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Figure 3.4: Example of a random line generated by the above algorithm.

Figure 3.5: Doping profile in an example device with LER introduced.
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3.2 Grid Technology

In order to facilitate computation on the scale required for this work, it was
necessary to employ advanced grid technology. This is important due to both
the large numbers of computational resources deployed and for storing, man-
aging and analysing the corresponding output data produced by the simulator.

In total, over 500,000 CPU hours (approximately 60 CPU years) worth
of computational time was required for the 3D simulations carried for this
work. The computational resources were provided by ScotGrid [133] and by
the Device Modelling Group’s (DMG) own in-house cluster. These resources
totalled approximately 1,000 cores at the time these simulations were carried
out and consist of a mixture of high performance AMD Opteron and Intel
Xeon systems.

Significant technical challenges are associated with simulation on this scale
in terms of job submission, job tracking and data management, which had to
be overcome. Since each simulated device is independent, the most straight-
forward method for large scale simulation is a simple task farming approach,
which requires the ability to submit thousands of jobs in a single batch. On
the ScotGrid system, job submission was performed using the Globus software
toolkit [134]. The functionality of Globus on ScotGrid was however limited to
single job submission and monitoring, rendering it unsuitable for large scale
task farming. The Ganga frontend [135] has been developed at CERN to over-
come this limitation and the maximum number of concurrent jobs is limited
only by the system. In this case, the system limits the number of jobs to
1,000 per user, but since our simulator itself can create and simulate a statis-
tical sample of devices within a single job execution the facilities provided by
Ganga proved sufficient to perform the necessary amount of simulations. While
this method of submission alleviates many of the issues associated with large
parallel job submissions, Ganga is not without problems. Ganga automates
the process of job submission and monitoring, but since it is a front-end to the
existing system, some of the deficiencies of the grid middleware are still evi-
dent; for example job submission is extremely slow (Approximately 1-2 hours
to submit 500 jobs). Additionally, it was also found that Ganga sometimes
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fails to properly track jobs (due to both bugs in Ganga and resource broker
problems, in our experience), resulting in it becoming impossible for the user
to control the jobs, and requiring administrator intervention to cancel the ex-
ecution of such rogue jobs. On the DMG’s in-house cluster, job submission is
achieved using Sun Grid Engine (SGE). SGE inherently supports large-scale
parallel submission in the form of array jobs, making submission to this system
more straightforward.

The issues encountered with Ganga and middleware stack on ScotGrid re-
sulted, in some instances, in the complete loss of a set of 500 jobs. Although
the majority of issues were related to job submission rather than execution,
in some cases batches of jobs were lost partway through the job, resulting in
wasted run time and incomplete output data. This complicates the resub-
mission procedure as devices that successfully completed before the job failed
should not be rerun and must be excluded from the job when it is resubmitted.
Other intermittent failures occurred during the simulations due to issues with
both the software and hardware on the system and it was usual to have to
resubmit up to 25% of the jobs for a batch. In addition, while the simulation
work was on-going, Ganga was upgraded, which led to status monitoring issues
whereby Ganga would successfully submit jobs, but could not obtain status
information or control the jobs. The issues encountered with job submission
also frequently resulted in partial submission of the batch, which again led
to incomplete output data. It is estimated that of all the jobs submitted to
ScotGrid during this work, approximately 30-40% had to be resubmitted at
least once. It should also be noted that it is important to track failed and/or
numerically unstable simulations in order to preserve the statistical integrity of
the samples. While, for example, it is feasible and correct for duplicate atom-
istic profiles to occur due to the finite number of lattice sites in the system, it
is important to ensure that duplicate random number generator seeds are not
included in the ensemble.

Due to the issues encountered in the submission and tracking of the large
numbers of jobs, a data management system based on a PostgreSQL database
backend was developed to alleviate some of these problems. In addition, it was
clear that managing the large numbers of output files produced was difficult
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exp-id device-no vth ioff ndop date-run
1 1 0.092104 4.90992e-08 2661 2007-11-19

location dopants
node092.beowulf.cluster [Encoded binary data]

Table 3.1: Example record of the output data from a simulation with random
dopants.

and that simple file-based storage approaches were inadequate to properly
archive and manage the data. The simulator was modified to store the output
data directly in the database, which facilitated some semblance of live job
status monitoring, the facility for which is not provided by Ganga/Globus.
This also aided in co-ordinating the resubmission of jobs that failed due to
issues with the grid software or hardware problems. The use of a database
also allows the data to be stored in a self consistent manner along with useful
metadata and derived data, and there is a total of approximately 41,000,000
rows of output and derived data stored from this work. Device results can,
for example, be cross-referenced with records of the details of the experiment
and simulator input files. In addition, this is useful for subsequent analysis, as
complex data mining can be performed directly on the data via SQL queries
and direct interfaces to tools such as ‘R’ [136] and ‘Python’ [137]. The structure
of the database is demonstrated in Table 3.1, which shows an example record
of the output for a simulation with random dopants.

3.3 Device Characteristics

In order to accurately characterise the effects of intrinsic parameter fluctua-
tions, the device under investigation should be realistic and representative of
a recent technology generation. Although now slightly dated, the device un-
der study in this thesis is a 35 nm physical gate length n-Channel MOSFET,
originally published by Toshiba [138], which is representative of devices from
the 65 nm technology node. The device is widely used within the Glasgow De-
vice Modelling Group in various variability simulation studies. This allows the
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Figure 3.6: Doping profile of the 35 nm device under investigation in this
thesis.

results obtained in this work to be directly compared against existing results
for the same device and gives confidence that the obtained results are accu-
rate. The device has a poly-silicon gate with Oxynitride gate dielectric and
EOT = 0.88nm, and features retrograde Indium channel doping, which helps
reduce threshold voltage variability due to random dopant effects and avoids
degradation of carrier mobility. The device also includes Boron source/drain
haloes to help control short channel effects (SCE) and prevent punch-through.
Shallow source/drain extensions are also used in order to control SCE, with
xj = 20nm. The drive current reported by Inaba, et al. [138] for the device
was 676µA/µm at VD = 0.85V and IOFF = 100nA/µm. The 2D net doping
profile of the device is shown in Figure 3.6, and the 1D profile of the channel
doping and the source/drain extensions in Figure 3.7.

To ensure the accuracy of the simulations, the “atomistic” simulator is cal-
ibrated to match the characteristics obtained from TCAD simulation (using
Taurus [139]) of a wide, continuously doped device. The TCAD simulations
themselves have also been calibrated to real device measurements. The atom-
istic simulator cannot be directly calibrated to the device measurements as it
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Figure 3.7: Vertical doping profile (Indium) and source/drain extension profile
(Arsenic) of the 35 nm device.

does not include external resistances, which are associated with the metal con-
tacts. Instead, the TCAD simulations, which do include external resistances,
are calibrated to the experimental measurements. The external resistances
are then removed from the TCAD simulations, allowing the calibration of the
“atomistic” simulator against the TCAD results [2].

The calibration procedure primarily involves tuning the parameters associ-
ated with the mobility models used in the simulations. In this case the mobility
model used is the Caughey-Thomas model [95], in which the mobility depends
on the doping concentration and the electric field. Additional parameters, such
as those associated with density gradient quantum corrections, can also be ad-
justed in order to accurately match the experimental data. Full details of the
calibration for this device can be found in [2].

Figure 3.8 compares the simulated IDVG characteristics with those obtained
from measurement and from TCAD simulation of the 35 nm MOSFET using
Taurus and shows that the simulator reproduces the device characteristics well.

In order to assess the potential impact of intrinsic parameter fluctuations
on future scaled devices, the 35 nm MOSFET used here is scaled down to a
physical gate length of 13 nm, which reflects the predicted device dimensions
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Figure 3.8: Comparison of the IDVG characteristics of the 35 nm device ob-
tained from drift/diffusion simulation, TCAD simulation and experimental
measurement.

Device EOT (nm) xj (nm) Doping (cm−3)
35 nm 0.88 20 2× 1018

13 nm 0.44 8 1.6× 1019

Table 3.2: Comparison of basic device parameters including EOT , xj, and
surface doping concentration in the channel.

near the end of the roadmap [51]. The scaling is based on generalised scaling
rules [11] and a summary of the equivalent oxide thickness (EOT), extension
depth (xj) and surface doping is given in Table 3.2. The scaling is performed
with the intention of preserving the device structure and doping profile shape
from the base 35 nm device. The surface doping concentration in the channel
is also kept as low as possible, in order to reduce fluctuations due to random
discrete dopants, while maintaining suitable control over short channel effects.
The scaling also maintains an off current less than 1µA/µm.
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3.4 Simulation Details

In the simulation work that follows, we focus solely on threshold voltage vari-
ability. Examining VT variation is a common way of characterising the effects
of statistical variability on MOSFET devices [140], as VT variations are impor-
tant for the operation of many types of CMOS circuits and are also related to
leakage current variations in the device, which are causing the leakage power
crisis in modern VLSI chips. The drift/diffusion formalism is suitable for this
study as it provides the required computational efficiency when compared to
other methods. DD simulations provide accurate results in the sub-threshold
region of operation, where electrostatics dominate, thus the use of threshold
voltage to quantify the effect of statistical variability is a natural choice.

For these simulations, we define the threshold voltage using a current cri-
terion, as given by Equation 3.11.

IVT = 10−8Weff

Leff
(3.11)

The threshold current is scaled by the width and length of the device in
order to allow a consistent comparison between the different simulated devices.

In order to ensure accurate results from the simulator, tolerances of 10−8

are enforced on the Poisson and current continuity solvers, while an overall
accuracy of 10−4 is enforced on the Gummel iteration. If these tolerances are
not sufficiently high, the simulator has convergence difficulties with the current
and tends to take more Gummel iterations for a particular gate voltage and
may not be able to determine the current accurately enough to extract the
threshold voltage.

Finally, it should also be noted that in this work we focus exclusively on n-
Channel transistors, as they have been shown to have greater variability than
p-Channel devices [141].
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3.5 Summary

In this chapter, some of the underlying features of the Glasgow 3D drift/diffusion
simulator were described. Details of the drift/diffusion and density gradient
equations were given, along with details of the numerical algorithms used to
solve the equations. The approaches used to incorporate random dopants into
the simulator, including the charge assignment scheme and dopant placement
algorithm were described, as well as the algorithm used to generate line edge
roughness patterns. It was necessary to employ advanced Grid technology
in order to manage the computational resources and data generated by the
simulations performed in this study, and an overview of this technology was
given.

The primary test bed device used in this work was a 35 nm MOSFET
originally published by Toshiba. The device structure, doping profile and cali-
bration of the “atomistic” simulator to TCAD and experimental measurements
were detailed. Specifics of the simulations carried out, such as the threshold
voltage criterion used and the accuracy used in the solvers were also given.

In the next chapter, we begin the simulation study with an investigation of
statistical variability associated with random discrete dopants, which are the
primary source of statistical variability in contemporary bulk MOSFETs.
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Random Discrete Dopants

Random discrete dopants are the dominant source of statistical variability in
contemporary bulk MOSFETs, which continue to be the CMOS workhorse at
the 45 and 32 nm technology generations [46, 47, 48]. In the design of state
of-the-art SRAM and flash memories, occurrences of devices more than 6-7σ
from the mean now play important roles, creating the necessity for detailed
knowledge of the exact shape of statistical distributions of device parameters
far out into their tails [50]. The small sample sizes (∼ 200 devices) that have
been traditionally used to characterise statistical variability are insufficient
to accurately analyse the shape of a distribution or to accurately determine
the magnitude of variability as far as 6 or 7σ from the mean. It is an open
question, however, as to what extent the different sources of variability, and
random discrete dopants in particular, are capable of producing noticeable
variations at 6 or 7σ.

In this chapter we present a detailed 3D simulation study of random dopant
induced threshold voltage variation using unprecedented statistical samples of
more than 105 microscopically different devices. Simulations are performed for
conventional bulk n-channel MOSFETs with 35 and 13 nm channel lengths,
with sample sizes of 100,000 and 140,000, respectively. Ensembles of this size
allow us to predict, with a high level of statistical confidence, the correct shape
of the real distributions of parameter fluctuations caused by RDD. A careful
statistical analysis of these results then reveals the underlying physics that
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Device Mean (mV ) St. Dev. (mV ) Skew Kurtosis
35 nm 225.9±0.1 30.28±0.07 0.1597±0.008 0.0486±0.02
13 nm 225.9±0.2 81.79±0.16 0.2177±0.007 0.1212±0.02

Table 4.1: Statistical moments for the simulated devices with standard er-
rors computed by bootstrapping (see Appendix A). The mean of VT has been
normalised to a typical value for high performance devices.

shapes the distribution. Based on this, we then demonstrate a methodology
whereby the distribution of VT can be calculated semi-analytically and show
how the procedure can be statistically enhanced. Finally, we present an anal-
ysis of the accuracy of this approach.

4.1 Simulation Results

The statistical distributions of the threshold voltage (VT ) obtained from simu-
lations at a low drain voltage of 100mV are shown in Figure 4.1 (See Section 3.4
for full details of the simulation parameters). Note that, where possible, data
for the 35 and 13 nm devices are shown on the same axis scales in order to
allow the relative variations in the two devices to be compared. A visual in-
spection of the data indicates that the distribution of VT is asymmetric and
that the asymmetry is more pronounced in the case of the 13 nm MOSFET.
Similar asymmetry has recently been observed in experimentally measured VT
distributions in a large statistical sample of transistors corresponding to the
65 nm technology generation [32], and in flash memory devices [142]. The
calculated values for the mean value of VT , and its standard deviation, skew
and kurtosis1 for both devices are presented in Table 4.1. It is clear from
the non-zero values of the skew and kurtosis that the distributions of VT are
asymmetric and that the asymmetry increases with decreasing channel length,
confirming the conclusion drawn from visual inspection.

In order to highlight the deficiencies of the common assumption that ran-
dom dopant induced VT variability follows a Gaussian distribution, we approx-

1Note that this is Fisher’s kurtosis, which is defined as µ4
µ2

2
− 3 and is 0 for a Gaussian

distribution.
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(a)

(b)

Figure 4.1: Distributions of VT for the (a) 35 nm and (b) 13 nm devices. Type
IV Pearson and Gaussian distributions are shown for comparison. It is clear
that the Pearson IV produces a better fit across the entire distribution. For the
35 nm device, the χ2 error for the Pearson IV is 0.38 vs. 2.4 for the Gaussian
and 0.18 vs. 1.5 for the 13 nm device.
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imate the distribution of the simulated data for both devices with a Gaussian
and a Type IV Pearson distribution. The Type IV Pearson distribution has
both skew and kurtosis [143], and is described by Eq. 4.1.

P (VT ) = k

(
(VT − λ)2

a2
+ 1

)−m
e
−ν tan−1

“
VT−λ
a

”
(4.1)

The parameters of the Pearson distribution k, m, ν, a and λ are fitted to
the data by performing a non-linear curve fit which minimises the total χ2

error over the full range of data. The mean µ and the standard deviation σ of
the Gaussian distribution are simply calculated from the raw device data. The
Gaussian and Pearson distributions obtained for the 35 and 13 nm devices are
shown, along with the simulated distributions in Figures 4.1(a) and (b). The
semi-logarithmic plot provides a detailed view of the discrepancy between the
Gaussian distribution and the raw statistical data as one approaches larger
values of σ in the tails of the distribution. It is clear that the Pearson distribu-
tion provides a significantly better fit to the simulation data, due to its larger
number of degrees of freedom. It should be noted that despite the excellent fit
provided by the Pearson IV, there is no physical meaning associated with the
use of this distribution. It is, however, a useful tool to demonstrate the error
introduced by the assumption of a symmetrical distribution, however further
analysis is necessary in order to relate the distribution of VT to the statistics
of the underlying physical mechanisms.

Although it is clear that the tails of the distribution of VT in small devices
cannot be accurately represented by a Gaussian distribution, it is important to
determine how accurate any characterisation of the threshold voltage actually
is. In order to assess the errors in the statistical description of the raw data,
the relative change in the first four moments of the two distributions of VT
is calculated as the ensemble size increases. The results are presented in Fig-
ure 4.2. The clear convergence observed in all four moments gives a high degree
of confidence that the statistical characterisation provides accurate results. As
expected, for a given sample size, the error in the estimate of the skew and the
kurtosis is significantly higher than the error in the mean and the standard
deviation indicating that very large samples are required to accurately deter-
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(a)

(b)

Figure 4.2: Relative change in the first four statistical moments of the distri-
butions of VT as a function of sample size for the (a) 35 nm device and (b)
13 nm device.
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Figure 4.3: Raw electrostatic surface potential profiles for devices in the lower
part, middle and upper part of the distributions for (a) 35 nm devices and (b)
13 nm devices.

mine the higher order moments of the distributions and to correctly quantify
the asymmetry.

In order to better understand the physical mechanisms whereby random
discrete dopants affect VT it is also instructive to study the surface potential
distributions of devices from across the distribution at identical gate voltages.
Since the channel determining the current flow is close to the Si/SiO2 interface,
it is reasonable to assume that it is dopants in the vicinity of the interface that
will have the greatest impact on the threshold voltage. Devices close to the
mean VT , and from the upper and lower tails of the distributions of VT for
both 35 and 13 nm transistors are selected and the surface potential plots for
the selected devices are shown in Figures 4.3(a) and (b). At both channel
lengths the behaviour of the devices with higher VT is determined by the
clustering of dopants across the channel width at the location of the maximum
of the potential barrier between the source and the drain. At this position the
dopants have the maximum impact on VT by almost completely blocking the
current path. Conversely, the behaviour of the transistors from the low end of
the distribution of VT is determined by the lack of dopants in the part of the
channel near the potential barrier maximum, creating an open current path
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Figure 4.4: The device is divided into 1 nm slices in both the X and Z axes.
The number of dopants in each box is used to calculate the correlation between
position and threshold voltage. The extent of the SSR shown in Figure 4.6(a)
is indicated.

responsible for the low VT . We can see that in the high VT devices, there are
no current channels through valleys in the surface potential profile, since the
valleys are blocked by spikes in the potential associated with random discrete
dopants. Comparing this to the low VT transistors, it is clear that there are
many more available paths through which current flows, due to the lack of
dopants. This results in early turn-on of the device and thus lower threshold
voltage. In mean VT devices, there are both valleys through which current can
flow and spikes which obstruct current flow at the position of the potential
barrier maximum.

4.2 Statistical Analysis

Early theoretical analysis has suggested that asymmetry in random dopant
induced VT variation [144, 145] can be attributed to the Poisson distribution
governing the number of dopants in the gate depletion region [57]. It is known
that the number of dopants in the channel of a device affects the threshold
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voltage, as discrete dopants cause a localised increase of the potential in the
channel. However, the number of dopants is not the only source of VT variation.
The position of dopants [146, 69] must also be considered, as many different
configurations of dopant position will occur for a fixed number of dopants.
Modelling VT variation using only total dopant number neglects variation due
to dopant position and leads to an unphysical truncation of the lower tail of
the distribution [74]. Thus, the first step in a more detailed analysis is to
determine in which region variations in local dopant density have the greatest
effect on the threshold voltage. This will help us to define the statistically
significant region (SSR) of the transistor, in which random dopants dominate
the statistical behaviour of the device ensemble.

In order to accomplish this we have calculated the correlation coefficient
between VT and the total dopant number in a series of 1 nm deep horizontal
slabs bounded by the source and the drain, starting from the oxide interface
and ranging down through the device body. A similar procedure is repeated
for 1 nm wide vertical slabs ranging through the channel from source to drain,
as illustrated schematically in Figure 4.4. The correlation between VT and
dopant x position is shown in Figure 4.5(a) for both 1 nm thick slices d nm
from the interface and for slices d nm thick (i.e. the cumulative sum of the
1 nm slices up to and including that position). From this figure we see that
the largest calculated correlation is for dopants between the PN junctions of
the device. Figure 4.5(b) shows the correlation between threshold voltage and
dopant z position, again for 1 and d nm thick slices and clearly indicates
that dopants near the interface make the most significant contribution to VT
fluctuations. By combining the 1D correlation in x and z from the 1 nm
slices, a two-dimensional map of the correlation between the position of an
individual dopant within the SSR and VT can be constructed, which is plotted
in Figures 4.6(a) and (b) for both the 35 and 13 nm devices.

The SSR is bounded by the metallurgical junctions of the source and drain
and extends approximately 20 nm down from the interface in the 35 nm device
and approximately 10 nm from the interface in the 13 nm transistor. These
values compare closely with the depletion depths for these devices, which are
∼ 25nm and∼ 9nm in the 35 and 13 nm devices, respectively. This conclusion
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(a)

(b)

Figure 4.5: Correlation between dopant position and threshold voltage for the
35 nm device (a) in the X axis and (b) in the Z axis. Note that z = 0nm is at
the oxide interface.
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(a)

(b)

Figure 4.6: The two dimensional correlations of dopant position and VT for
(a) the 35 nm device and (b) the 13 nm device. The statistically significant
region can be determined visually from these plots.
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is consistent with previous theoretical studies [26] and experimental observa-
tions [47] that it is dopants in the channel that have the greatest influence on
VT fluctuations. It is interesting to note that for the two simulated devices,
the maximum correlation between dopant position and VT is not at the oxide
interface, but approximately 1.5 nm below it. This is due to the density gra-
dient quantum corrections used in the simulations, which force the maximum
of the carrier distribution away from the surface, and determining the posi-
tion at which the device is most sensitive to the presence of random dopants
within the channel. The density gradient carrier distribution is consistent with
that obtained from the self-consistent solution of the 1D Poisson-Schrödinger
equation [104].

By choosing devices with a fixed number of dopants within the SSR (NSSR)
it is possible to estimate the distribution of the threshold voltage caused solely
by the random position of dopants. Figures 4.7(a) and (b) illustrate the evo-
lution of the distribution of VT as a function of NSSR for the 35 and 13 nm
transistors respectively. As illustrated in Figure 4.8 both the mean and stan-
dard deviation of the threshold voltage distributions increase linearly with
NSSR. For densely populated samples with a constant number of dopants in
the SSR (around the mean value NSSR = 44 for the 35 nm and NSSR = 20 for
the 13 nm transistor) the calculated skew and kurtosis are small, leading to the
conclusion that the distributions of threshold voltages due to random dopant
position for fixed NSSR are Gaussian. In order to verify this hypothesis, we use
the Mann-Whitney test [147], which tests the null hypothesis that two samples
are drawn from the same underlying population. Several of the positional dis-
tributions for the 35 nm device were tested against 10,000 samples randomly
generated from a Gaussian distribution with the same mean and standard de-
viation as the data and the statistics of the p-values obtained can be seen in
Table 4.2. Taking the standard statistical significance level of α = 0.05, we see
that there are no p-values close to or below this level, therefore we accept the
null hypothesis that the distributions are Gaussian.
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(a) (b)

Figure 4.7: The distribution of VT as a function of number of dopants, NSSR,
in the SSR for (a) the 35 nm transistor and (b) the 13 nm transistors. For a
fixed NSSR, the distribution of VT is determined by dopant position. Note the
increasing mean and standard deviation as a function of NSSR.

Figure 4.8: The dependence of the VT mean and standard deviation as a
function of NSSR for both devices. The linear dependence allows positional
effects on VT to be extrapolated out to larger values of σ.
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NSSR Mean St. Dev. Min Max
40 0.856 0.108 0.330 0.999
41 0.765 0.145 0.210 0.999
42 0.771 0.145 0.262 0.999
43 0.790 0.141 0.244 0.999
44 0.798 0.138 0.246 0.999
45 0.518 0.148 0.119 0.999
46 0.836 0.120 0.351 0.999
47 0.847 0.113 0.365 0.999
48 0.733 0.143 0.210 0.999

Table 4.2: Statistics of the p-values obtained by conducting Mann-Whitney
tests for the positional distributions for the 35 nm device against 10,000 ran-
dom Gaussians. As there are no p-values below 0.05, we accept the null hy-
pothesis that the positional distributions are Gaussian.

4.3 Constructing the Distribution of VT

As previously stated, there are two components that contribute to RDD-
induced VT variation – the number of dopants in the SSR and the position
of these dopants. It should be noted that since the device has a finite number
of sites in the underlying Si crystal lattice, it is both feasible and correct for
duplicate dopant distributions to occur and these should not be excluded from
consideration.

The number of dopants in the SSR can be described by either a Binomial
distribution [148] or a Poisson distribution [68]. The Binomial distribution
converges to a Poisson distribution for a sufficiently large number of trials and
we consequently assume that a Poisson distribution governs the number of
dopants in the SSR as, in this case, there are on the order of 106-107 trials,
which is the approximate number of lattice sites at which a dopant can be
placed in the Silicon crystal. We have already shown that the variation in VT
due to position (i.e. when NSSR is fixed) is Gaussian. Although there is a
different Gaussian for each NSSR, this can also be seen as a single Gaussian
with varying µ and σ that is moved through the Poisson distribution. This
represents a convolution operation and the complete distribution of VT is thus
the discrete convolution of a Poisson distribution with a mean value NSSR
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(a)

(b)

Figure 4.9: (a) Illustration of how the variation that comes from each fixed
value ofNSSR contributes to the total variation. The Gaussians are weighted by
the corresponding probability from the Poisson distribution. (b) Illustration of
how the overall distribution (for the 35 nm device) converges as the summation
in Equation 4.2 progresses.
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[P (i, NSSR)], governing the number of dopants in the SSR, and the Gaussian
distribution of VT for fixed NSSR [G(VT , µ(NSSR), σ(NSSR))], as expressed by
Eq. 4.2. Note that the limits of the summation, NSSRmin and NSSRmax, should
be selected such that the probability of that number of dopants occurring is
low enough to be effectively zero.

P (VT ) =

NSSRmax∑
i=NSSRmin

P (i, NSSR) ·G(VT , µ(i), σ(i)) (4.2)

Figure 4.9(a) illustrates how the two components contributing to the RDD-
induced variation combine to give the total variation. From this, it is clear that
for different values of NSSR, there are particular combinations of dopants that
give rise to the same threshold voltage. For example, particular configurations
of dopants for NSSR = 43 and NSSR = 44 may both give rise to a VT of
220mV . The total probability of obtaining any given threshold voltage is thus
the sum of the probabilities arising from each of these positional distributions,
weighted by the probability of that particular number of dopants occurring (as
given by the Poisson distribution).

Figure 4.9(b) shows how the distribution of VT converges as the summation
in Equation 4.2 progresses, for the 35 nm device. Figures 4.10(a) and (b) show
the semi-logarithmic distribution of VT for both the 35 and 13 nm devices. The
convolution is calculated by direct extraction of the values for µ(NSSR) and
σ(NSSR) from the simulation data and by fitting straight lines for these func-
tions and extrapolating (see Section 4.3.1). It can clearly be seen that both
of the calculated convolutions match the distribution of data obtained from
simulation extremely well. Figures 4.11(a) and (b) show Quantile-Quantile
(Q-Q) plots [149] of the data. Q-Q plots are a graphical statistical technique
for testing the null hypothesis that data follows a certain distribution. The
reference distribution appears as a straight line and any departures from this
line indicate a difference between the data and the reference distribution. Fig-
ure 4.11(a) compares the simulation data to a Gaussian distribution with the
same mean and standard deviation as the data, clearly demonstrating the as-
sumption that the data follows a Gaussian distribution is incorrect, with the
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(a)

(b)

Figure 4.10: Comparison between the simulated VT distribution and the convo-
lution. The convolution is calculated directly from the simulation data and by
extrapolating the functions µ(NSSR) and σ(NSSR) shown in Figure 4.8. Both
methods show excellent agreement with the simulation data.
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(a)

(b)

Figure 4.11: Quantile-Quantile plots comparing the simulation data for 35 nm
with (a) a Gaussian distribution and (b) the semi-analytical convolution.
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deviation from Gaussian increasing significantly in the tails. The simulation
data is compared to the distribution generated using our convolution model in
Figure 4.11(b) and it is can be seen that both closely match.

From this analysis it becomes clear that the asymmetry in the random
dopant induced threshold voltage distribution is due to two factors: firstly
the Poisson distribution for a fixed value of NSSR is asymmetric with positive
skew and this asymmetry increases as NSSR is reduced and secondly because
the standard deviation σ(NSSR) increases with NSSR, causing the upper tail
of the distribution to become extended.

4.3.1 Statistical Enhancement

As Figure 4.8 clearly shows, the mean µ(NSSR) and the standard deviation
σ(NSSR) of the positional distributions depend linearly on the number of
dopants. It is straightforward to calculate a linear regression for these func-
tions and from this it is possible to extrapolate the values of µ(NSSR) and
σ(NSSR) in order to calculate values from the distribution of VT to arbitrary
values of σVT . It should of course be noted that these extrapolations are only
valid within the limits of the physics included in the simulator. Within these
limits, this approach can be used to obtain distributions that are equivalent,
in terms of information content, to those obtained from brute force simula-
tion of very large statistical samples. While in Figure 4.8 the regression fits
are calculating using all of the available simulation data, this need not be the
case. For example, in the 35 nm MOSFET case, the extrapolated results in
Figure 4.10(a) are obtained as follows. For this device, NSSR = 44, and we
have selected VT distributions for NSSR = 42 and NSSR = 46. This yields 3
points with which to calculate the regressions for µ(NSSR) and σ(NSSR). We
then extrapolate for NSSR = 1 to 200 to obtain the positional Gaussians and
calculate the distribution of VT using Equation 4.2. The distribution obtained
from Equation 4.2 using the extrapolated values actually better fits the sim-
ulation data than the convolution calculated with the Gaussian distributions
extracted from simulation. This is evident in the reduction of the calculated
χ2 error, which decreases from 0.94 for the distribution from extracted values
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to 0.55 for the extrapolated. This improvement in the statistical error is due to
the fact that the linear extrapolation removes noise from the values of µ(NSSR)

and σ(NSSR) at small and large NSSR, where the sampled populations of VT
become small.

Thus, a possible method for the statistical enhancement of random dopant
induced variability simulations includes the following steps:

1. Determine the SSR – An SSR must be selected for the given device in
order to avoid the decorrelating effect of dopants that do not significantly
influence the threshold voltage. The effect of the selection of SSR is
examined in Section 4.4.

2. Estimate NSSR – The value of NSSR can be estimated by generating a
large sample of devices and determining the average number of dopants
in the previously selected SSR. It should be noted that while NSSR can
only take non-negative integer values, NSSR can be any positive real
number. It is not necessary to perform any simulations at this point –
only the device structure need be generated. Note also that NSSR can be
determined by integrating the continuous doping profile in the SSR and
that atomic level process tools that accurately model the implantation
process, if available, may be useful for this process.

3. Select devices for simulation – From the large sample of generated
devices, select devices with, for example, NSSR−∆, NSSR and NSSR+∆

dopants in the SSR and simulate n of these devices. The effect of the
choice of ∆ and n is also examined in Section 4.4.

4. Estimate µ(NSSR) and σ(NSSR) – The linear functions that charac-
terise the positional Gaussian distributions can be estimated from the
simulation results.

5. Calculate VT – Equation 4.2 can be used to calculate the distribution
of VT .

The process of generating atomistic devices is significantly less computation-
ally demanding than their simulation, and as we have shown with the above
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example, this methodology is capable of accurately predicting the distribution
obtained via pure “brute force” simulation. Since only a subset of devices are
simulated with this approach, it could be used to dramatically speed up the
accurate evaluation of VT fluctuations. This method is also independent of the
actual continuous doping profile in the simulated devices.

4.4 Error Analysis

In order to employ the statistical enhancement methodology described in the
previous section, several assumptions must be investigated, including the se-
lection of the SSR, the choice of ∆ and the sample size n. In order to examine
the robustness of the semi-analytical method, we have analysed the impact of
these three factors on the accuracy of the final calculated distribution. The
analysis is performed on the simulations results obtained for the 35 nm MOS-
FET and the simulation data obtained from the large ensemble is used as the
“gold standard” to which all other results are compared.

4.4.1 Choosing the SSR

In this simulation study, the SSR was determined by directly calculating the
correlation between dopant position and threshold voltage. Unfortunately such
an approach requires the simulation of a very large statistical sample to accu-
rately calculate the correlation. In order to make the statistical enhancement
methodology more efficient, it would be useful to determine the SSR based
on structural device parameters. We therefore examine how critical the choice
of SSR is to the accuracy of the calculated distribution of VT . This can be
achieved by varying the length and depth of the SSR in turn, as shown in
Figure 4.12, and then assessing the impact that the change in the SSR bound-
aries has on the accuracy of the calculated distribution of VT . Throughout
this analysis, it is assumed that the SSR encompasses the entire width of the
device.

The selection of the SSR has a direct effect on the Poisson distribution of
NSSR through the mean value NSSR, as different numbers of dopants will fall
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Figure 4.12: Demonstration of how the SSR is varied to determine the effect
of SSR size on the error of the constructed distribution.

in different configurations of the SSR for the same device. This changes both
the location and shape of the Poisson distribution, since the moments depend
on the mean value. It would thus be reasonable to expect that changes in this
value will have a significant effect on the accuracy of the final distribution.
However, since for each particular choice of SSR a given device may have a
different value of NSSR, it will fall into a different bin, changing the parameters
of the positional distributions. This causes the functions µ(NSSR) and σ(NSSR)

to vary and they must be re-extracted. The effect of SSR length is examined
by fixing the SSR to the centre of the channel and varying the length from
2 to 40 nm. The corresponding linear dependences of µ(NSSR) and σ(NSSR)

are shown in Figure 4.13, clearly indicating that changes in the SSR result in
different slopes and y-axis intercepts for µ(NSSR) and σ(NSSR). Varying the
depth of the SSR (while keeping the length fixed) also results in similar trends
for µ(NSSR) and σ(NSSR).

Next, we examine the effect of SSR width on the χ2 error of the calculated
distribution, which is used as a measure of the accuracy of the calculation.
For comparison, the lowest χ2 value obtained from the SSR estimated in Fig-
ure 4.6(a) was 0.55. From the results shown in Figure 4.14(a), it is clear that a
very narrow SSR will lead to a poor prediction of the distribution of VT , since
it is obviously unphysical to expect the small number of dopants in this narrow
region to completely dominate the fluctuation of VT . We also expect that a
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(a)

(b)

Figure 4.13: Functions (a) µ(NSSR) and (b) σ(NSSR) for SSR lengths from
2 nm to 40 nm. The dashed lines indicate where the SSR bounds correspond
to the metallurgical PN junctions.
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(a)

(b)

Figure 4.14: Dependence of the χ2 error of the extrapolated distribution on
(a) the length of the SSR and (b) the depth of the SSR. The dashed line in
(a) represents where the edges of the SSR overlap the metallurgical junctions.
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very large SSR would result in a poor estimation of the distribution of VT since
the SSR would then include large numbers of dopants that do not contribute
significantly to VT variations and which cause some degree of de-correlation.
Once the SSR reaches a width sufficient to cover of the majority the channel,
the calculated error becomes very close to the previous optimum value and
there is little improvement in the error beyond this. In practice, after this
point, changes in the linear functions actually compensate for the changes in
the Poisson distribution, resulting in a constructed distribution that still accu-
rately matches the simulated distribution. This suggests that the methodology
is rather robust to the choice of the SSR, which can therefore be based solely
on knowledge of the transistor structure. Based on the information presented
in Figure 4.14(a), it is reasonable to select the metallurgic PN junctions near
the oxide interface as a reliable estimate of the lateral bounds of the SSR.
Therefore the length of the SSR may be determined from the 2D doping pro-
file of the device, which in the case of the 35 nm device investigated here is
∼ 26nm, with the SSR centered in the channel. Similarly, we can examine
the effect of SSR depth on the final χ2 error value. Figure 4.14(b) indicates
that the SSR must be sufficiently large to capture the depletion layer under
the gate. The theoretical maximum depletion layer width can be estimated
using Equation 4.3 and in the case of the 35 nm device is ∼ 25nm and as
Figure 4.14(b) indicates, the error drops off well within this depth, thus this
value can safely be used as the vertical extent required for the SSR.

Wd =

√√√√4εSikBT ln
(
Na
ni

)
q2Na

(4.3)

4.4.2 Impact of Sample Size

In the statistical enhancement methodology described in Section 4.3.1, n de-
vices with NSSR − ∆, NSSR and NSSR + ∆ dopants in the SSR are selected
for simulation in order to establish the functions µ(NSSR) and σ(NSSR). It is
useful to examine the effect of both n and ∆ on the accuracy of the calculated
distribution in order to determine the optimal subset of devices to simulate.
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(a)

(b)

Figure 4.15: Distribution of χ2 errors for different sample sizes for (a) ∆ = 2
and (b) ∆ = 8. The errors are calculated for 100,000 random convolutions
drawn from the original data. Note that the x-axis is different in both plots.
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Figure 4.16: Median χ2 error as a function of sample size for ∆ = 2− 8. The
errors are small for sample sizes above ∼ 2, 000 for most values of ∆.

Again, the original simulation data is used as the “gold standard” against which
the errors are calculated.

First, we examine the distribution of errors for the calculated distribution
for different sample sizes, with ∆ = 2 and ∆ = 8. Errors are calculated by re-
peated random sub-sampling of the simulation data – a type of cross-validation.
In this case, sub-samples of n devices having NSSR −∆, NSSR and NSSR + ∆

dopants in the SSR are drawn from the data and the convolution calculated
for these random sub-samples. The χ2 error is determined by comparing this
random convolution to that generated from the original large ensemble. This
procedure is repeated 100,000 times to yield a distribution of the errors for the
given sample size and value of ∆.

The distributions of errors are shown in Figures 4.15(a) and (b) respectively.
From this, it is clear that the average and spread of the error is generally larger
for a given sample size and ∆ = 2, compared to ∆ = 8. Indeed, the accuracy
is rather poor for ∆ = 2 and a small sample size. If we consider the linear
regression used to determine µ(NSSR) and σ(NSSR), it is obvious that when
∆ is small, noise in the values of µ and σ will have a greater influence on the
regression than when ∆ is large. As Figure 4.15(b) shows, a relatively accurate
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distribution can be obtained with a sample size of only 1,000 when ∆ = 8.
The median χ2 error as a function of sample size is shown in Figure 4.16

for 2 ≤ ∆ ≤ 8, which confirms these observations and also indicates that for
larger values of ∆, the improvement in error is small above sample sizes of
∼ 2, 000. Using this information, it can be seen that an accurate prediction of
the distribution of VT can be obtained with, for example, ∆ = 8 and n = 2, 000.

From this analysis, it is clear that by employing the methodology described
in Section 4.3.1 the evaluation of VT fluctuations can be made considerably
more efficient. The distribution calculated using the statistical enhancement
methodology accurately reproduces the location, spread and shape of the distri-
bution obtained from the brute force approach. We can see that the same level
information content obtained through the brute-force simulation of 100,000
different devices can be obtained from a comparatively small sample of only
6,000 – a reduction of more than an order of magnitude in terms of the amount
of computational time necessary to characterise the effect of random discrete
dopants.

4.5 Summary

In this chapter, the statistical distribution of threshold voltage due to random
discrete dopants has been accurately characterised through the simulation of
statistical samples with size > 105. The results show that the distribution of
threshold voltage in ultra-small devices is asymmetric and that the asymmetry
increases with scaling. The simulation of large statistical samples allows the
variation and shape of the distribution to be accurately analysed.

Through data mining and statistical analysis of the data generated from
simulation, we show that there are two components that contribute to thresh-
old voltage variation due to random dopants – the number of dopants in the
SSR and their random positions. The total variation in the threshold voltage
can be calculated from the distributions extracted from devices with identical
numbers of dopants in the SSR, and closely matches the brute force simulated
distribution. This approach can be statistically enhanced in order to reduce
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the computational cost of accurately characterising random dopant induced VT
fluctuations and the statistically enhanced methodology is shown to be robust.
The effect of the selection of the parameters involved on the accuracy of the
approach is also investigated.

In the next chapter, we continue the investigation into VT variability by
studying the influence of line edge roughness. While random dopants currently
dominate threshold voltage variability, line edge roughness is also a major
contributor to the total variability, and may overtake random dopants as the
dominant source in future devices [51].
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Line Edge Roughness

The detailed distribution of VT due to random discrete dopants (RDD), which
are the primary source of statistical variability in current conventional (bulk)
CMOS transistors [48, 47] has been analysed in the previous chapter. The
contribution of line edge roughness (LER) to statistical variability, however,
is becoming more important due to the fact that LER scaling currently lags
the requirements of the ITRS [3]. As described in Section 2.1.2, LER occurs
due to the molecular nature of the photoresists used during device fabrication
and results in non-uniformity of the gate edges. As a result, due to local short
channel effects, particular sections of the gate may start to conduct before
others, leading to variation in the threshold voltage of the device. While new
device architectures such as Silicon-on-Insulator (SOI) and FinFETs tolerate
low channel doping, which reduces RDD variability, they are highly susceptible
to the effects of LER. Recent simulation results predict that LER induced
variability could overtake that induced by RDD in bulk; SOI and double gate
devices, particularly at high drain voltages [49, 51].

To study the effects of LER, we have simulated very large device ensembles
with unique patterns of LER in each device at both high and low drain bias
conditions, for the same 35 nm bulk MOSFET for which random dopant effects
were studied in Chapter 4. Smaller ensembles of a selection of other devices
have been simulated in order to confirm the trends observed in the simulation
of the 35 nm device and in order to assess the impact of LER induced vari-
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Device VD (mV) # Simulated
Toshiba 35 nm Bulk 100 25,000
Toshiba 35 nm Bulk 800 10,000

45 nm Bulk 100 1,000
32 nm SOI 100 1,000
22 nm DG 100 1,280

Table 5.1: Summary of the devices and associated drain voltages simulated to
study LER induced VT variability.

ability on new device architectures. The devices simulated in this Chapter are
summarised in Table 5.1.

In order to introduce LER into the simulations, we utilise a method based
on 1D Fourier synthesis which generates lines using a Gaussian power spec-
trum (see Section 3.1.2 for details). The corresponding autocorrelation func-
tion is characterised by two parameters – the RMS amplitude (∆) and the
correlation length (Λ). Note that quoted values for LER magnitude usually
correspond to 3∆. Values for LER magnitude have remained in the range of
4 − 5nm due to the fact that LER is not scaling as predicted by the ITRS
roadmap [3]. In our study we have adopted a slightly pessimistic value of
3∆ = 5nm. The correlation length is a measure of the distance over which the
fluctuations are correlated, which is determined by fitting the autocorrelation
function (in this case a Gaussian autocorrelation function) to measured gate
edge patterns [150]. Thus, in these simulations, values of ∆ = 1.6667nm and
Λ = 30nm have been used to generate random source/drain and gate edges
introduced by the roughness of the resist during fabrication. In this work, we
assume that the PN junctions follow the same pattern as the gate edge. This
may not be the case when the implantation angle of the doping process is very
shallow [90]. Smearing of the PN junction LER can also occur as a result of
thermal annealing during doping activation.
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Figure 5.1: Comparison of the histograms of VT obtained from RDD only and
LER only simulations at VD = 100mV .

5.1 35 nm MOSFET Results

In order to quantify the relative contributions of RDD and LER to the overall
variation in VT , the distributions of VT introduced by RDD and LER at low
drain (VD = 100mV ) are compared in Figure 5.1. It is clear that while RDD
is the dominant source of statistical variability in this device, LER introduces
statistical variability of a comparable magnitude, with the standard deviation
being ∼ 40% of the RDD-induced standard deviation. There is also a small
shift in the central tendency between the distributions, with VT being 5mV

higher for LER than for RDD. The reduction in VT due to RDD occurs due to
the lowering of the potential barrier in the regions between dopants, leading
to current percolation and early turn on in some parts of the device. Since
the carrier concentration is exponentially dependent on the potential, the local
potential lowering in the regions without dopants results in a strong increase
in the carrier concentration and the current density in such percolation paths
and in an overall reduction of VT [57].

Comparison of the extracted distributions with reference Gaussian distri-
butions having mean (µ) and standard deviation (σ) values calculated from
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Statistic VD = 100mV VD = 800mV RDD
Minimum (mV) 159.4±5.2 65.54±8.6 112.7±1.5
Maximum (mV) 271.9±2.0 234.6±3.7 370.5±2.3
Mean (mV) 231.1±0.1 174.3±0.2 225.9±0.1

St. Dev. (mV) 12.75±0.06 19.18±0.15 30.28±0.07
Skew -0.407±0.02 -0.431±0.03 0.159±0.008

Kurtosis 0.255±0.06 0.363±0.12 0.0486±0.02

Table 5.2: Summary of the statistical moments and the standard errors of the
data for LER simulations at VD = 100mV and VD = 800mV .

the data clearly shows that the LER induced distribution of VT is skewed in
the opposite direction when compared to the RDD induced distribution. This
is consistent with the descriptive statistics extracted from the distribution,
presented in Table 5.2. In particular, we note that the skew is significantly
greater for variation induced by LER than for that due to RDD. The negative
skew observed in the LER case is attributable to the lowering of the threshold
voltage due to early turn-on in devices with narrow paths across the chan-
nel. Similar negative skew has been observed experimentally and attributed
to LER by Miyamura et al. [151].

The distributions of VT at low and high drain voltages are shown in Fig-
ures 5.2(a) and (b). The two distributions are plotted using a semi-logarithmic
scale and indicate that both threshold voltage variation and threshold voltage
lowering increase with drain voltage. This can be attributed to the influence
of drain induced barrier lowering (DIBL). In this case, the increase in drain
voltage results in a negative shift of 57mV (∼ 25%) of the mean threshold
voltage and an increase in the standard deviation by 6.4mV (∼ 50%). Gaus-
sians with mean and standard deviation extracted from the data are shown in
both plots to illustrate the departure from the common assumption that VT
follows a Gaussian distribution. Table 5.2 provides a detailed summary of the
statistical parameters of the distributions. The skew and kurtosis values in
the table show that the drain voltage slightly increases the asymmetry. While
the asymmetry of the distribution of VT may be related to early turn-on in the
narrowest parts of the channel, further analysis (see Section 5.2) has suggested
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Figure 5.2: Comparison of the histograms of VT obtained for LER simulations
at VD = 100mV and VD = 800mV . Gaussian distributions with the data
mean and standard deviation are shown for comparison.

that there is a stronger correlation between the threshold voltage and the av-
erage channel length compared to the correlation with the minimum channel
length.

The relative change in the first four statistical moments of the distributions
of VT as a function of sample size is shown in Figure 5.3 to give an indication
of the level of statistical accuracy attained by the simulation of such large
statistical samples. The convergence of the statistical moments to well defined
values can be clearly seen. As with RDD, it is clear that the shape of the
distribution cannot be accurately determined from small samples of a few
hundreds of devices.

5.2 Statistical Analysis

It is reasonable to expect that the threshold voltage in any particular transistor
from the sample will be dominated by the shortest path(s) across the channel
since, due to the short channel effects, the dependence between shortest path
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(a)

(b)

Figure 5.3: Relative change in the first four statistical moments of the dis-
tribution of VT as a function of sample size for (a) VD = 100mV and (b)
VD = 800mV .
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(a) (b)

Figure 5.4: Demonstration of how the minimum distance across the channel is
computed. In (a) the distance from source to drain is calculated normal to the
width direction of the channel at each mesh point. In (b) the distance from
each point of the source line to every point of the drain line is calculated.

and current, particularly in the sub-threshold region, is non-linear. In order
to examine the correlation between VT and minimum channel length (LC) it
is necessary to clarify how the minimum value of LC is extracted. Figure 5.4
illustrates the position of the source/drain metallurgical junctions at the inter-
face for a particular simulated device. First, the distance across the channel
at each point along the channel width is calculated, as shown in Figure 5.4(a).
Then the distance between each point on the source line and every point on
the drain line is calculated, as shown in Figure 5.4(b), in order to check for
short paths between extrusions that are offset along the line. We found that
since the LER patterns vary relatively slowly there is little difference between
the two methods and we consequently use the first method, as it is computa-
tionally and conceptually simpler. The average and maximum values for LC
are also computed in this manner.

Figure 5.5 compares the distributions of VT as a function of the minimum,
maximum and average value of LC . It is visually clear that both the minimum
and maximum values of LC are strongly correlated with the threshold voltage,
with calculated correlation coefficients of ρminLC ,VT = 0.92 and ρmaxLC ,VT =
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0.88. However, there is an even stronger correlation between average channel
length and VT yielding a correlation coefficient of ρavg LC ,VT = 0.994. In order
to examine the origins of this correlation, devices with uniform gate edges and
different channel lengths are simulated. This yields devices with channel length
equal to the average at every point along the width of the device. Figure 5.6
compares the channel length dependence of the threshold voltage obtained
from ‘uniform edge’ simulations with the scatter plot of average LC against
VT at low and high drain voltages. The uniform edge results lie extremely
close to the upper boundary of the distributions of VT , indicating that such
simulations can be used to accurately predict the effects of LER on a given
device. Several curve fits were also performed to this data in order to allow
the prediction of LER effects to large values of σVT . The closest agreement
was obtained for function of the form f(x) = α− β exp(−γx). This is plotted
in Figure 5.6, showing an excellent fit to the simulation data. It should be
noted that in a well-designed device, the influence of reverse short channel
effects would be evident. The results shown here indicate comparatively poor
VT roll-off behaviour in the simulated 35 nm device.

We also examine the relationship between off current and average value of
LC , shown in Figure 5.7. As expected, a similarly strong correlation exists
between the leakage current and average LC . This is not surprising, given that
log IOFF = log IVT −

VT
S
. The results for uniform edge simulations are also

plotted, showing an excellent prediction of IOFF variability for a given channel
length.

5.3 Constructing the Distribution of VT

From the simulation results, we have established that there is a close relation-
ship between threshold voltage and the mean channel length. In this section we
analyse the factors that contribute to LER induced variability and investigate
how the distribution of VT can be calculated semi-analytically.
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Figure 5.5: Scatterplot of VT against minimum, maximum and average LC for
each device. An almost direct, although non-linear, relationship between VT
and average LC can be seen.

Figure 5.6: Scatterplot of VT against average LC for low and high drain volt-
ages. The results of simulations with constant channel lengths are also plotted
along with a curve fit of the form α− β exp(−γx).
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Figure 5.7: Scatterplot of IOFF against average LC . The results for constant
channel lengths are also plotted.

5.3.1 Components of Variation

Based on the extracted relationship between VT and the mean channel length
(LC), we investigate how the distribution of threshold voltage can be con-
structed from a reduced sample. From Figure 5.6 it is clear that although VT
and LC are very highly correlated, there is a small variation in the threshold
voltage for a fixed average channel length. This is due to the fact that although
different gate shapes can give the same average channel length, the SD effects
are not identical and may result in different threshold voltages. Since there
are two factors contributing to the VT variation, it is reasonable to assume
that the overall distribution of VT will be the convolution of the distributions
resulting from the two sources, in a similar way to the random dopant induced
distribution (see Section 4.3).

To analyse the variation in devices with identical average channel lengths,
we extract the distribution of threshold voltage for a small segment of aver-
age channel length, e.g. from 35 nm to 36 nm. However, even for a small
1 nm segment, there is still a macroscopic variation in VT caused by the de-
pendence of VT on LC , which must be separated from VT variation for a fixed
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channel length. To separate these two contributions, we normalise the thresh-
old voltage in a segment using the function originally fitted to the results of
the uniform edge simulations [VT (LC)] and then determine the distribution
of the remaining contribution, as illustrated graphically in Figure 5.8. The
‘sub-distributions’ extracted using this method can be seen in Figure 5.9. The
probability density functions (PDFs) have been estimated using kernel den-
sity estimation (KDE) [152] rather than histograms. A KDE is a continuous
estimate of the PDF that is useful when the sample size is small, as it has
the effect of smoothing the histogram. The PDF is estimated by placing a
kernel (usually a Gaussian) at each occurrence in the sample and summing
the corresponding probabilities. Examining the ‘sub-distributions’ shows that
they are negatively skewed, and that the standard deviation changes when
progressing to larger values of LC . While the mean of these distributions can
be determined approximately using the uniform edge data, the standard devia-
tion requires closer attention. The dependence of the standard deviation of the
sub-distributions as a function of average LC is shown in Figure 5.10. Linear
and decaying exponential curve fits are also shown and with the exponential
fit being more favourable. This is related to weaker dependence of the thresh-
old voltage on channel length variations at longer average channel lengths.
As a result, at larger channel lengths, different microscopic realisations of a
particular average channel length have a smaller impact on the corresponding
VT variations. While no definite trends for the skew and kurtosis could be
determined for the sub-distributions, in Section 5.3.2 we show that the shape
of these distributions has little influence on the accuracy of the constructed
distribution.

Having determined how VT depends on LC , the next step necessary for the
re-construction of the distribution of VT is to determine the distribution of LC
itself. The distribution of LC obtained by generating 106 random line pairs is
shown in Figure 5.11. Visually, the distribution appears Gaussian, which is
confirmed by the skew and kurtosis, which are 0.0033 and -0.071 respectively.
This was further verified using the Mann-Whitney test [147]. As detailed in
Section 4.2, this tests whether two samples are drawn from the same underlying
population. This allows the simulation data to be tested by comparing with
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Figure 5.8: Illustration of how the distribution of VT for a small segment of
LC is extracted.

Figure 5.9: The ‘sub-distribution’ of VT extracted for successive 1 nm segments
of LC in 3D.
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Figure 5.10: Standard deviation of the ‘sub-distributions’ of VT . Linear and
decaying exponential curve fits are also shown.

Figure 5.11: Distribution of LC in the simulated 35 nm device. 106 random
line pairs were generated and the average channel length calculated as shown
in Figure 5.4(a). The distribution is compared to a Gaussian with the same
mean and standard deviation as the data.
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random deviates drawn from a true Gaussian distribution. The data for LC
was tested against 1,000 randomly generated Gaussians, with an average p-
value of 0.635 and no p-values below the standard statistical significance level
of α = 0.05 were produced. We therefore conclude that the distribution is
indeed Gaussian, with µ = 35nm and σ = 2.059nm.

5.3.2 Convolution Method

Knowing how LC varies, it is possible to construct the distribution of thresh-
old voltage by convolving the distribution of LC with the sub-distributions
extracted for small segments of mean channel length. Since we have not quan-
tified the higher moments of the sub-distributions, and in order to simplify
this procedure, we have approximated the sub-distributions for a given value
of LC using Gaussian distributions. The approach parallels the method pre-
viously used to construct the distribution of threshold voltage due to random
dopants, and is expressed mathematically in Equation 5.1, which can be used
to determine the probability for a particular threshold voltage.

P (VT ) =
∞∑

LC=0

G(LC , µLC , σLC ) ·G(VT , µVT (LC), σVT (LC)) (5.1)

Where G is a Gaussian distribution, µLC is the mean of LC , σLC is the
standard deviation of LC , the curve fitted to the uniform edge simulations (i.e.
VT (LC)) is used as µVT (LC) and the decaying exponential curve fitted to the
standard deviation of the extracted sub-distributions (see Figure 5.10) is used
as σVT (LC). The numerical evaluation of Equation 5.1 yields an excellent fit
to the simulation data with a χ2 error of 0.461. It should be noted that a step
size of 0.1 nm or smaller is typically required for the numerical summation
in order to achieve an accurate and smooth distribution. In order to reduce
the computational complexity of evaluating the sum, the upper limit of the
summation can also be reduced to a practical finite number, e.g. 100 nm.

While an exponential fit for σVT (LC) provides a good match to the data,
there is still a degree of uncertainty over the actual form of this function. We
should therefore determine to what extent the choice of σVT (LC) affects the
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constructed distribution. In order to analyse the impact, we set σVT (LC) to a
constant value chosen to be approximately the standard deviation (∼ 0.5mV )
at the nominal channel length for the device (35 nm). Calculating the distri-
bution for this value results in a χ2 error of 0.459, indicating that changes in
σVT (LC) have a relatively small impact on the final distribution of VT . Having
verified that using a constant value for σVT (LC) does not significantly degrade
the accuracy of the calculated distribution, we can also analyse the impact of
the magnitude of the constant chosen to represent σVT (LC).

The distribution was calculated for values of σVT (LC) from 0.01mV−10mV

and the resulting errors can be seen in Figure 5.12. Obviously, choosing un-
realistically large values for σ results in an extremely poor fit to the data, as
would be expected, since large values of σ will dominate over the dependence
of VT on LC . To avoid errors, the value of σ should be small and in fact, it
could be eliminated entirely by assuming a delta distribution. This is based on
the observation that the error of the calculated distribution becomes constant
for values of σ below ∼ 0.5mV , and the assumption that this remains true in
the limiting case where σ → 0. In this limit, a Gaussian distribution becomes
a Dirac delta function, located at x = µ:

lim
σ→0

G(x, µ, σ) = δ(x− µ) (5.2)

The Gaussian sub-distributions are thus replaced with Dirac delta func-
tions. Since the sub-distributions have no width, as such, it is also necessary
to replace the discrete sum over LC with a continuous integral. The probability
of obtaining a particular threshold voltage is then expressed by Equation 5.3.

P (VT ) =

ˆ ∞
0

G(LC , µLC , σLC ) · δ(VT − µVT (LC)) dLC (5.3)

A distribution calculated using the above equation yields a χ2 error of 0.464,
which is very close to the value obtained using the previous approaches and is
consistent with the minimum value of the error observed in Figure 5.12. This
reduces the complexity of estimating the distribution, as it is not necessary
to quantify the variation in VT for a fixed value of LC . As with the previous

96



Chapter 5. Line Edge Roughness 97

Figure 5.12: χ2 error of the calculated distribution as a function of the value
of σ used for the sub-distributions.

approach, the upper limit of the integral may be reduced in practice to a
realistic maximum channel length.

By removing the need to estimate σVT (LC) and by using a VT (LC) depen-
dence fitted to the simulations of devices with uniform edge, we reduce the
computational effort necessary to accurately calculate the distribution of VT
to a small number of uniform simulations.

5.3.3 Transformation of Variable Method

In the previous section we have shown that the variation in VT for a fixed value
of LC has little effect on the overall distribution of threshold voltage. The dis-
tribution of VT is thus obtained by convolving the Gaussian distribution of
LC with a series of delta functions that are located according to the function
VT (LC). By convolving the distribution of LC with delta functions, we are es-
sentially using VT (LC) to non-uniformly sample the distribution of LC . VT (LC)

can thus be seen as a function that provides a mapping between LC and VT .
Using the following identity [153], this function can be used to transform one
random variable (the average channel length) into another random variable
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(threshold voltage):

PY (y) =

[
PX(x)

∣∣∣∣dxdy
∣∣∣∣]
x=f−1(y)

(5.4)

where X and Y are random variables with probability density functions
PX and PY ; and f is a function that relates the two variables, i.e. Y = f(X).
In this particular instance, we are transforming the random variable LC into
the random variable VT using the fitted relationship α − β exp(−γLC) as the
mapping function. This allows the distribution of VT to be defined as follows:

PVT (VT ) =
1

γ(α− VT )
PLC (LC(VT )) (5.5)

where PLC is the Gaussian distribution of the average channel length. Al-
ternatively, this can be defined in terms of the CDF, which removes the need
for the scaling factor, as the CDF is intrinsically normalized to 1:

PVT (VT ) =
∂

∂VT
FLC (LC(VT )) (5.6)

where FLC is the CDF of the distribution of LC . Using this method for
calculating the distribution of VT for the 35 nm device yields a χ2 error of
0.46, which is consistent with the previous method. This method is preferable
to the convolution method described in the previous section, as it avoids the
computation of potentially complicated integrals and allows the utilisation of
relatively complex relationships as the mapping function. It should also be
noted that for the transformation of variable detailed above, the mapping
function must be invertible. However, the transformation can be generalized
to mapping functions that are not invertible, provided that there are a finite
number of roots for each value of y in Equation 5.4.

Returning to the analysis of the final distribution, the transformation can
be understood in terms of the density and mapping functions and it can be
seen that the skew and kurtosis of the distribution of VT are due to the non-
linearity of the mapping function. This has the net result that, for a given 1D
mesh of equally spaced points in LC , the corresponding points in VT will have
a non-uniform spacing. Where the rate of change of the mapping function is
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high, the spacing in VT will be larger, introducing skew in the distribution. It
is clear that in our case, due to the particular shape of the mapping function,
the distribution will be skewed towards lower values of VT .

5.3.4 Results

In this section we present the distributions of VT calculated using the semi-
analytical method from the previous section and compare them in detail with
the simulation results. Here, the distributions are calculated using the trans-
formation of random variable method.

The distribution of VT at low drain voltage (VD = 100mV ) is calculated
by transforming the distribution of LC , as detailed in Section 5.3.3, is shown
in Figure 5.13. The entire range of the distribution is shown in Figure 5.13(a)
and a magnified view of the tails is presented in Figure 5.13(b). It is clear that
the distribution of VT is considerably more skewed than that due to RDD and
that a Gaussian distribution provides an extremely poor representation of the
statistical variation of the threshold voltage due to LER. As a consequence,
a circuit designer working under the assumption that the distribution is sym-
metric will introduce a significant error in their estimation of the number of
devices with low and high VT values, which will impact circuit performance
and reliability. In this case, assuming a Gaussian distribution of VT with the
same mean and standard deviation as the simulated distribution results in the
number of devices with VT < µ− 3σ being underestimated by a factor of ∼ 4

and the number of devices with VT > µ+3σ overestimated by a factor of ∼ 29.
Although there is considerable noise in the tails of the simulated distri-

bution, it is clear that the semi-analytical model presented here provides a
much more accurate prediction of the variation. QQ plots of the simulation
data against a Gaussian distribution are shown in Figure 5.14(a) and against
the semi-analytical distribution in Figure 5.14(b). This indicates that the dis-
tribution obtained semi-analytically very closely matches both the shape and
location of the underlying simulated distribution. It is also apparent in the
Gaussian QQ plot that the data diverges quickly from the Gaussian and that
it is a poor approximation even at relatively small values of σ.
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(a)

(b)

Figure 5.13: Comparison between the distribution of VT due to LER obtained
from simulation and those calculated using the semi-analytical method. (a)
shows the entire distribution and (b) shows a magnified section of the tails.
Note that in (b) the two tails are overlaid. Gaussian distributions shown for
reference. The semi-analytical distribution is calculated using the method
described in Section 5.3.3 and gives excellent agreement with the simulation
data over the entire range of values.
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(a)

(b)

Figure 5.14: Quantile-Quantile plots comparing the LER simulation data for
35 nm with (a) a Gaussian distribution and (b) the semi-analytical distribution.
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Figure 5.15: Comparison between the simulated VT distribution due to LER
and the semi-analytical distribution at high drain (VD = 800mV ), with a
Gaussian distributions shown for reference.

The distribution of VT at high drain voltage can also be calculated and
produces a similarly good match with the simulation data, as can be seen in
Figure 5.15. The distribution of LC does not change with drain voltage, and it
is only the mapping function VT (LC) that changes due to the effects of DIBL.
The high drain mapping function can be seen in Figure 5.6 and we note that
as well as the downward shift that represents the threshold voltage lowering,
the bending of the curve increases, which results in the extension of the lower
tail of the distribution of threshold voltage and consequently an increase in
the skew.

5.4 Width Dependence

In this section the effect of device width on LER induced VT variation is in-
vestigated. While VT variability due to random dopants generally scales with
width as 1√

w
[62], less is known about the width scaling of variation due to

LER. In order to investigate this, samples of 1,000 devices were simulated for
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Width w0 2w0 3w0 4w0

# of Sims 25,000 1,000 1,000 1,000
Min (mV) 159.4±5.2 184.7±5.6 194.1±2.1 200.8±1.6
Max (mV) 271.9±2.0 256.0±0.5 253.8±0.8 252.5±1.4
Mean (mV) 231.1±0.1 231.1±0.3 230.8±0.3 230.7±0.2

St. Dev. (mV) 12.75±0.06 10.54±0.24 8.97±0.23 7.76±0.18
St.Dev.√

w
(mV) 12.75 9.02 7.36 6.38

Skew -0.407±0.02 -0.387±0.09 -0.363±0.10 -0.302±0.08
Kurtosis 0.255±0.06 0.0392±0.29 0.317±0.28 0.167±0.20

Table 5.3: Summary of the descriptive statistics and standard errors of the
distribution of VT for devices with widths 1-4. All results are for VD = 100mV .

devices with channel widths 2, 3 and 4 times the minimal channel width (w0)
of 35 nm at a low drain voltage of 100mV . The moments of the simulated
distributions are given in Table 5.3. Values are also shown for the standard
deviation scaled by

√
w and from these results, we see that the standard devi-

ation decreases with width more slowly than 1√
w
. While the error in the skew

and kurtosis will be relatively high for the small samples under investigation
here, the effect of channel width on the skew can be qualitatively assessed,
and shows a decrease in the skew as the width increases. With regard to the
kurtosis however, there is too much statistical noise to draw any conclusions
on its behaviour with width from the simulation data.

In order to calculate the distribution of VT semi-analytically, we require the
distribution of the average channel length, and the mapping function VT (LC).
While Figure 5.6 indicates that the mapping function changes with drain bias,
the threshold current scales with width and the shape of this function should
not change. This is confirmed by extracting it for all four device widths (Fig-
ure 5.16). Since the mapping function does not change, the only factor re-
maining that can affect the threshold voltage variation is the distribution of
LC . This distribution becomes narrower as the width increases, due to greater
statistical averaging of the LER patterns. In the first instance, this leads to
a narrower distribution of VT , a prediction that is consistent with the values
obtained from simulation, as demonstrated in the simulated and calculated
distributions of VT for the four different width devices, shown in Figure 5.17.
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Figure 5.16: Comparison of the relationship between LC and VT for devices
with widths 1-4, at VD = 100mV .

The calculated distributions again provide excellent matches to the simulation
data, further demonstrating the robustness of this method.

More subtly, the narrowing of the distribution of LC also affects the skew of
the distribution of VT . As discussed already, the skew in the distribution of VT
is due to the non-uniform mapping of the random variable LC into VT . Given
the same mapping function and the fact that the rate of change is higher at
low values of LC , then a narrower distribution of LC will cover less of the axis
described by the mapping function. In particular, there will be fewer or no
occurrences of the very short average channel lengths, which will lead to the
distribution of VT being less skewed. This is also consistent with the simulated
values.

Since the distribution of VT can be defined as a function of another ran-
dom variable (LC), the width dependence of VT variation can also be studied
analytically. Given a Gaussian distribution G and a mapping function f , the
moments about the mean of the transformed distribution can be expressed as
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Figure 5.17: Comparison of the simulated and calculated distributions for
devices with widths 1-4. Note that the width 1 distribution covers a much
larger range of VT as there are 25,000 devices for width 1 compared to 1,000
for widths 2-4. Symbols indicate the simulation data and lines the calculated
distribution.

µk =

∞̂

−∞

(f(x)− µ′1)kG(x, µLC , σLC (w))dx (5.7)

where k is the central moment number, µ′1 is the first moment about the
origin (i.e. the mean) of the transformed distribution, µLC is the mean value of
LC and σLC (w) is the standard deviation of LC as a function of the transistor
width. The standard deviation of VT is then defined as σ =

√
µ2, the skew as

γ1 = µ3

σ3 and the kurtosis as γ2 = µ4

σ4 . Using these expressions, we can estimate
how the distribution of VT changes with width. Figure 5.18 shows the width
dependence of the moments, obtained by evaluating the distributions of VT for
widths up to 20. By curve fitting, we find that the width dependence of the
standard deviation, skew and kurtosis can be approximated using a function
of the form α

(x+γ)β
. As the skew and kurtosis decay, the distribution becomes

more Gaussian-like, as we would expect from the effect of averaging. The
standard deviation also decreases in the same way, consistent with the results
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(a) (b)

Figure 5.18: Dependence of the standard deviation, skew and excess kurtosis
of the distribution of VT on device channel width, all of which decay towards
zero with increasing width.

35nm Bulk 45nm Bulk 32nm SOI 22nm DG
# of Sims 25,000 1,000 1,000 1,280
Min (mV) 159.4±5.2 187.3±9.7 508.8±1.4 427.7±7.6
Max (mV) 271.9±2.0 351.9±1.0 541.6±0.7 529.3±1.4
Mean (mV) 231.1±0.1 292.2±0.8 528.3±0.2 499.7±0.4

St. Dev. (mV) 12.75±0.06 24.91±0.57 5.25±0.13 13.84±0.36
Skew -0.407±0.02 -0.385±0.08 -0.512±0.07 -0.962±0.10

Kurtosis 0.255±0.06 0.112±0.25 0.199±0.16 1.44±0.44

Table 5.4: Summary of the statistical moments of the distribution of VT at low
drain in all four devices.

already shown and the expectation that variability decreases in wider devices.

5.5 Impact on Alternative Device Architectures

In order to confirm the trends observed in the simulations of the bulk 35 nm
device and to examine the potential impact of LER on different device archi-
tectures, smaller ensembles of several other devices have been simulated. The
devices include a low power 45 nm bulk MOSFET with an oxide thickness of
1.7 nm developed by ST Microelectronics [36]; a 32 nm ultra thin body SOI
MOSFET with a body thickness of 7 nm and equivalent oxide thickness (EOT)
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(a) (b)

(c)

Figure 5.19: Doping profiles of the (a) 45 nm bulk device, (b) 32 nm SOI
device and (c) 22 nm double gate device.

Figure 5.20: Comparison of the distribution of VT due to LER in the four
simulated devices at VD = 100mV .
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Figure 5.21: Comparison of the relationship between LC and VT in the four
simulated devices at VD = 100mV .

of 1.2 nm; and a 22 nm double gate MOSFET with a body thickness of 10 nm
and EOT of 1.1 nm. The SOI and double gate devices were developed by the
PULLNANO consortium [85]. The doping profiles of the devices are shown in
Figure 5.19 and the distributions of threshold voltage obtained at low drain
voltage (VD = 100mV ) are presented in Figure 5.20. For all devices, the shape
of the distribution of VT is similar, with negative skew being present for all
four devices. It should be noted that the SOI device in particular exhibits
good immunity to LER induced variability, having a standard deviation much
lower than the other three devices. This is due to the fact that SOI devices
have superior electrostatic integrity, which reduces the short channel effects.

Scatter plots illustrating the relationship between VT and LC in each device
are shown in Figure 5.21. The same general relationship between LC and VT ,
as in the case of the 35 nm device, can be seen in all four devices. As this
relationship provides the mapping between the two random variables (LC and
VT ), the shape of this function will directly affect the final distribution of VT .
The effect of these changes in shape can be seen in the skew and kurtosis values,
given in Table 5.4, along with the other moments of the statistical distributions.
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The values of the moments also confirm the visual observation that the SOI
device has significantly better immunity to LER induced fluctuations. While
there would appear to be no improvement in the VT spread for the double gate
device compared to the 35 nm bulk device, it should be noted that in these
simulations both gates follow the same LER pattern, and therefore represent
a worst case scenario. Modelling the bottom gate with different edges to the
top gate would likely result in a reduction of the spread of VT due to statistical
averaging.

Since the simulation results for the three additional devices simulated here
are similar to the results for the 35 nm device that we have studied in detail, the
transformation of variable method developed for calculating the distribution of
VT should be equally applicable to these devices. The mapping function for all
four devices can still be suitably modelled with an exponential function f(x) =

α−β exp(−γx) and the distribution of LC extracted from the simulation data.
The distributions are computed for the three additional devices and the results
are shown in Figure 5.22, where it can be seen that this method produces
consistently good results across all of the devices, demonstrating the generality
of the approach.

5.6 Summary

In this chapter, the effects of line edge roughness on threshold voltage vari-
ability have been studied in detail. The distribution of VT has been accurately
characterized at low and high drain voltages with ensembles of 10,000 or more
devices. The results indicate that the VT variations due to LER are negatively
skewed.

We show that the dispersion of VT for a given channel length does not con-
tribute significantly to the overall VT variation and that an accurate description
of threshold voltage fluctuations can be formulated using only the results from
‘uniform edge’ simulations. We also demonstrate two semi-analytical methods
whereby the distribution of VT can be estimated. This methodology is shown
to accurately reproduce the simulated distributions of VT .
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Figure 5.22: Comparison of the calculated and simulated distributions of VT
due to LER in the four simulated devices. Symbols indicate the simulation
data and lines the calculated distribution.

The influence of LER in alternative device architectures is also investigated,
showing that some of these architectures may present suitable immunity to the
effects of LER. The methodology developed for calculating VT fluctuations is
shown to be equally applicable to other device architectures and produces good
predictions of the variation in these devices. Finally, we investigate the effect
of device width on LER-induced variations. Devices with widths 2-4 times the
minimal are simulated and show that although the variation decreases with
width, the standard deviation does not scale as 1√

w
. The distributions of VT

for wider devices are also calculated semi-analytically and the excellent match
with simulation data further demonstrates the robustness and utility of this
methodology.

In the next chapter, we examine the results of combined RDD+LER sim-
ulations and investigate how the individual distributions can be combined to
match the simulation results.
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Chapter 6

Combined Fluctuations

Random discrete dopant (RDD) and line edge roughness (LER) induced thresh-
old voltage variability have been studied individually in Chapters 4 and 5. The
detailed simulation study of these individual sources has allowed the develop-
ment of methodologies for the accurate and efficient prediction of their effects
on the threshold voltage. However RDD and LER are present simultaneously
in real devices. For this reason, statistical enhancement of their individual
simulations is only useful if the corresponding distributions can be reliably
combined to produce the resulting distribution in real devices.

In order to examine the combined impact of RDD and LER on transis-
tor variability, we have continued the simulation study of the 35 nm template
MOSFET from the previous chapters. Simulations have been performed of
100,000 microscopically distinct devices, in which both RDD and LER are
present. This allows the distribution of VT due to the combined effects to be
accurately characterized. We also examine how the overall distribution can be
constructed from the distributions obtained from the simulations of the indi-
vidual sources. We compare the statistical combination of the distributions of
the raw RDD and LER simulation data and the combination of the statisti-
cally enhanced RDD and LER distributions with the simulation data for the
combined variability sources.
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Figure 6.1: Distribution of VT obtained for simulations of combined RDD and
LER fluctuations at low drain (VD = 100mV ). The distribution is very close
to Gaussian, but appears to deviate slightly in the upper tail.

6.1 Statistical Analysis

Simulations of combined fluctuations were performed at low drain bias (VD =

100mV ) and the semi-logarithmic distribution of threshold voltage is shown in
Figure 6.1. Visual inspection of this distribution reveals that the fluctuations
in VT due to the combined effects of RDD and LER is very close to Gaussian.
It appears that the opposing skews of the two individual distributions cancel
out to a large extent. It is also apparent that there is a small deviation from
Gaussian in the upper tail, which can be better observed in the QQ plot of
the distribution against a Gaussian in Figure 6.2. The relative changes in the
four moments of the distribution are shown in Figure 6.3, which shows, as with
our previous simulation studies, that the large statistical ensemble provides a
significant reduction in the error associated with the parameterisation of the
distribution. Numerical values for the first four moments of the distribution
are given in Table 6.1, along with the corresponding values from the individual
simulations of RDD and LER induced variability. The skew and kurtosis
figures confirm the assumption that the distribution is very close to Gaussian.
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Figure 6.2: QQ plot of the VT results from the combined RDD+LER sim-
ulations against a Gaussian distribution with the data mean and standard
deviation. The upper tail deviation is more apparent.

Figure 6.3: Relative change in the first four statistical moments of the dis-
tribution of VT as a function of sample size for combined RDD and LER
fluctuations.
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Statistic RDD LER RDD+LER
Minimum (mV) 112.7±1.5 159.4±5.2 75.35±6.6
Maximum (mV) 370.5±2.3 271.9±2.0 384.0±5.7
Mean (mV) 225.9±0.1 231.1±0.1 225.6±0.1

St. Dev. (mV) 30.28±0.07 12.75±0.06 33.08±0.07
Skew 0.159±0.008 -0.407±0.02 0.0623±0.008

Kurtosis 0.0486±0.02 0.255±0.06 0.0527±0.02

Table 6.1: Summary of the statistical moments and standard errors of the data
for the combined RDD and LER simulations at VD = 100mV .

To test further how close the simulated distribution is to a Gaussian, we use
the Mann-Whitney test employed in the previous chapters. The simulated dis-
tribution was tested against 10,000 randomly generated Gaussians, and yielded
a mean p-value of 0.334, with a standard deviation of 0.269. Approximately
12% of the p-values were less than α = 0.05, which indicates that the distri-
bution bears some similarity to a Gaussian but this is merely a coincidence
in this case. Furthermore, skew is considered significant if the absolute value
of the skew is greater than twice the standard error [154], indicating that in
this case the skew is indeed significant. The kurtosis may also be considered
significant in the same way, however the absolute value is much closer to the
error margin and more likely to be a chance fluctuation.

It is therefore clear that in spite of the similarly between the simulated
distribution and a Gaussian, the QQ plot of the data and the results of the
Mann-Whitney tests indicate that we cannot conclude that the distribution
of VT due to the combined effects of RDD and LER is truly Gaussian in
nature. Small positive skew similar to that present in our simulation results
has also been observed in measurements performed on a test chip fabricated
using a 65 nm SOI process having transistors with a physical gate length of
35 nm [155, 156, 32].

As observed in the previous study of random dopant effects, the asym-
metry in the distribution of VT due to RDD increases with scaling and it is
likely that in smaller devices, the distribution due to the combined effects will
also exhibit increasing asymmetry. It is also worth noting that the distribu-
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tion studied here includes only the effects of random dopants and line edge
roughness. While these are among the major sources of variability, polysilicon
and metal gate induced variability can also have a strong effect in contempo-
rary MOSFETs [52] and their incorporation will affect the shape of the final
distribution.

It is worth noting that although the central limit theorem (CLT), which
indicates that the sum of a sufficient number of random variables tends to-
wards a Gaussian distribution, might be expected to apply here, in this case
the number of distributions is small – in this work only two. The convergence
towards Gaussian would therefore likely be slow were it not for the oppos-
ing skews of the two component distributions. As stated above, the skew is
likely to increase as devices are scaled further and effects such as gate work
function variability have been shown to be strongly non-Gaussian [157]. As a
consequence, the CLT is unlikely to be particularly useful in this context. It is
however likely that the CLT was more applicable in the past, since the distri-
butions of interest were less asymmetric and the convergence towards Gaussian
would be faster.

6.2 Combining RDD and LER Induced Distri-

butions

Having studied random discrete dopants and line edge roughness in detail
and developed methods for the statistical enhancement of their simulations in
Chapters 4 and 5, we would like to examine how the distributions of VT that
arise from the individual sources can be combined.

By studying RDD and LER in isolation, we have obtained two random
variables in VT , which accurately represent the variation due to the two com-
ponents. If the two random variables are statistically independent, then they
can be straight-forwardly combined by convolving the corresponding density
functions. In order to understand to what extent the assumption of statistical
independence of RDD and LER is reasonable, we must examine the MOSFET
fabrication process. Note that for simplicity, we refer to the fabrication of an
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n-Channel MOSFET here.
It was already shown in Chapter 4 that random dopant effects are domi-

nated by the dopants in a relatively small volume under the gate. The doping
in this region is primarily determined by the P-well doping level and the P-
doping implanted for threshold voltage adjustment. These doping steps occur
before the gate formation and thus cannot be influenced by LER effects. The
source and drain regions are implanted after patterning of the gate and are
self-aligned, thus the LER pattern will be directly transferred to the junction
edge. However, discrete donors in the source and drain do not have a signifi-
cant effect of VT variability [7]. The implantation of halo doping will also be
affected by the LER of the gate, however the halo doping is used to control
short channel effects and is generally implanted sufficiently deep in the device
that the associated dopants are below the statistically significant region (Sec-
tion 4.2). Therefore it is reasonable to assume that random discrete dopants
and line edge roughness can be considered statistically independent. To test
this assumption, we construct the distribution of VT due to the combined ef-
fects of RDD and LER by convolving the individual distributions that arise
from RDD and LER.

Figures 6.4(a) and (b) show the distribution of VT constructed by the nu-
merical convolution of the individual distributions obtained from simulations
of RDD and LER is isolation. The resulting distribution is compared to the
data obtained from simulations with combined RDD and LER. It can be seen
that the convolution fits the data significantly better than the Gaussian, con-
firming that it is a better representation of the simulation data and that the
two sources are indeed statistically independent. The QQ plot also indicates
that the convolution of the two individual distributions accurately reproduces
the shape of the distribution. In particular, there is an improvement in the
upper tail, which is not captured well by the Gaussian.

One caveat that should be noted is the determination of the mean of the
resulting distribution. The effect of convolving two (or more) density func-
tions together is that the cumulants1 of the distributions add together. Since

1Cumulants are quantities that add under convolution and are closely related to the
moments of a distribution.
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(a)

(b)

Figure 6.4: Comparison of the distributions obtained from simulation and by
convolving the individual distributions obtained from simulations of RDD and
LER in isolation. (a) Semi-logarithmic histogram and (b) QQ plot.
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the mean is the first cumulant, ordinarily we should expect that µRDD+LER =

µRDD+µLER. However, addition of the mean values in this way is obviously un-
physical. By examining the individual distributions, we note that µLER is close
to the threshold voltage obtained from simulation of the continuously doped
device (0.232mV ), while µRDD, in contrast, shows a noticeable lowering. This
is expected, as RDD simulations are known to have a lower average threshold
voltage, compared to continuous doping simulations (see Section 2.1.1). There
may be a small influence from LER due to the fact that devices with shorter av-
erage channel lengths will suffer from degraded short channel effects, however
VT lowering is dominated by the effects of RDD. For this reason, the convolved
distribution is normalised to have the same mean value as the distribution due
to RDD.

Although there is a small difference of∼ 0.3mV between µRDD and µRDD+LER,
this is within the limits of the statistical error for the mean. The simulated
distributions for RDD and RDD+LER both have a standard error of the mean
of approximately 0.1mV and assuming that the sample mean is normally dis-
tributed around the population mean with a standard deviation equal to the
standard error, the observed values for µRDD and µRDD+LER fall within 3σ of
each other.

Having confirmed that the distribution due to combined RDD and LER can
be accurately reproduced by convolving the distributions obtained from simula-
tion, we examine the convolution of the semi-analytical distributions developed
in the previous chapters. This is done in order to verify that their combina-
tion is consistent with both the raw simulated data for combined RDD+LER
fluctuations and with the convolution of the individual simulated distributions.

The distribution of VT obtained by convolving the semi-analytical distribu-
tions for RDD and LER is shown in Figure 6.5(a) and the corresponding QQ
plot is shown in Figure 6.5(b). From both of these, it is clear that the results
obtained by combining the statistically enhanced distributions also match the
simulation data extremely well.

Since the distribution due to combined RDD and LER can be accurately re-
produced using the statistically enhanced approaches detailed in Sections 4.3.1
and 5.3, it is possible to characterise the combined effects of random dopants
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(a)

(b)

Figure 6.5: Comparison of the distributions obtained from simulation and
by convolving the semi-analytical distributions for RDD and LER. (a) Semi-
logarithmic histogram and (b) QQ plot.
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and line edge roughness on threshold voltage and benefit from the reduced com-
putational time needed to characterise the two sources individually by applying
the developed computationally efficient statistical enhancement strategies. As
detailed in Section 4.4, the effects of random dopants can be accurately charac-
terised from the simulation (or potentially, measurement) of just 6,000 devices.
Similarly, LER can be characterised by simulating a small number of devices,
e.g. 20, with uniform gate edges and different channel lengths. In this way,
a complete characterisation of the effects of RDD and LER, both in isolation
and in combination, can be achieved at the expense of just ∼ 7, 500 CPU hours
of simulation, compared to approximately 300,000 CPU hours to perform the
complete low drain brute force characterisation of the 35 nm transistor – a
reduction by a factor of ∼ 40 times.

6.3 Summary

In this chapter, we investigated the combined effects of random discrete dopants
and line edge roughness on threshold voltage variability. The distribution of
VT was accurately characterized by the simulation of a statistical ensemble of
100,000 devices. The results indicate that VT variations due to the combined
impact of RDD and LER are, in this case, close to Gaussian.

We show that the results obtained from the individual simulation of ran-
dom dopants and line edge roughness can be combined by convolving the two
distributions of VT . The results closely match those obtained from combined
simulations, indicating that the two sources of variability are statistically in-
dependent. We show also that the individual distributions obtained using the
statistical enhancement methodologies proposed for RDD and LER in Chap-
ters 4 and 5 can also be reliably combined to produce accurate predictions of
the overall threshold voltage variability.

The excellent predictions of the combined variability yielded by the sta-
tistical enhancement methodologies allow a significant reduction in the com-
putational effort necessary to accurately characterise the combined effects of
random dopants and line edge roughness. As illustrated by the results shown
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in this chapter, an accurate characterisation of combined RDD+LER variabil-
ity can be obtained from the simulation of a few thousand devices, as opposed
to several 100,000s of brute force simulations. Thus, a reduction of 1-2 orders
of magnitude in the computational time necessary to accurately estimate the
shape and tails of the distribution can be achieved.
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Chapter 7

Conclusions and Future Work

The aim of this work was to investigate intrinsic parameter fluctuations in
nano-scale MOSFETs in detail through large scale statistical simulations. These
fluctuations arise due to the fundamental discrete nature of charge and mat-
ter. The operational characteristics of deep sub-micron MOS transistors vary
due to the particular microscopic structure of a given device – for example the
location of dopant atoms in the channel will vary from device to device. In
order to properly account for these variations, it is necessary to incorporate
knowledge about them in the design phase of the system. Accurate knowledge
about transistor parameter distributions can be obtained from experimental
measurements, however this is generally extremely expensive, time consuming
and can only be done for a mature technology. Through careful and compre-
hensive modelling and calibration however, good predictions about statistical
transistor behaviour can be made through simulation. The large number of
transistors on modern chips demands statistical simulation on a very large scale
in order to properly describe the tails of parameter distributions, whereby in-
formation about statistically rare devices, which have the greatest impact on
circuit functionality, can be obtained.

To allow a detailed characterisation and analysis of statistical threshold
voltage variability in MOSFET devices, almost 400,000 full scale 3D simu-
lations were carried out for this work. Simulations were performed for two
important sources of statistical variability – random discrete dopants and line
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edge roughness, both individually and in combination. This allowed the ex-
act shape of the distribution of VT to be determined out to ∼ 5 − 6σ. By
employing statistical analysis and data mining techniques, it was possible, for
the first time, to develop methodologies for statistical enhancement of simu-
lations of RDD and LER. The distributions of VT obtained using statistical
enhancement were verified against those obtained from brute force simulation
and excellent matches were obtained for a variety of device structures. The
statistical combination of the two distributions was compared to simulations
of combined RDD+LER effects and also showed excellent agreement. The sta-
tistical enhancement strategies were developed with the aim of reducing the
computational time necessary to accurately characterise statistical variability.
By applying the developed techniques, it was demonstrated that character-
isation to a similar level of accuracy as obtained here through brute force
simulation could be obtained from less than 10,000 CPU hours of simulation,
compared to over 300,000 CPU hours needed for the brute force approach.

In Chapter 2, a description of some of the key sources of intrinsic param-
eter fluctuations in contemporary bulk MOSFETs was given. The particular
sources investigated in this work – random dopants and line edge roughness –
were described in detail along with their effects on MOSFET operational char-
acteristics. Some of the common simulation techniques used to study intrinsic
parameter fluctuations and their advantages and disadvantages were also dis-
cussed. Drift/diffusion, Monte Carlo and Non-equilibrium Green’s functions
approaches were outlined. Due to the requirement for simulation on extremely
large statistical scales, computational efficiency was the most important con-
sideration and for this reason drift/diffusion methods were exclusively used in
this work. Quantum corrections that allow drift/diffusion to better capture
the operation of nano-scale MOSFETs are included in the Glasgow simulator
and were also outlined.

In Chapter 3, details of the simulation methodology were given. The oper-
ation of the Glasgow 3D atomistic simulator was briefly described and details
were given on how random dopants and line edge roughness were introduced
into the simulation. Due to the large scale of the simulations carried out, it
was necessary to employ Grid technology to enable proper management of the
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computational resources and output data. An outline of the corresponding
methods and tools was given and some of the problems encountered were de-
scribed. The characteristics and doping profile of the 35 nm MOSFET that
was the focus of this study were described in detail. Finally, the specifics of
the simulations carried out, such as the definition of threshold voltage used in
this work, were given.

Chapter 4 described the results obtained from the large sale simulation of
random dopant induced threshold voltage variability in 100,000 devices. The
distribution of VT was examined in detail and was shown to be positively
skewed. For the 35 nm transistor studied, the distribution of VT had a skew
of ∼0.16, which increases with scaling, with a skew of ∼0.22 obtained for a
13 nm transistor. The non-Gaussian nature of the distribution has significant
implications for yield estimation in large systems. The obtained distribution
and random dopant positional data was then analysed in detail to determine
the correlation between dopant position and threshold voltage. This allowed
the statistically significant region of the device to be determined, which ex-
tends approximately from the source PN junction to the drain PN junction
and less than the depletion width down from the interface. Further analysis
determined the variation in VT due to dopant number and dopant position
and a methodology for reconstructing the distribution of VT was developed.
An error analysis of this methodology was then carried out and scenarios for
statistical enhancement of random dopant simulations were demonstrated.

The simulation study was continued in Chapter 5 for LER induced thresh-
old voltage variability. The results obtained from simulation of 35,000 devices
were presented and the distribution of VT again accurately characterised. In
this case, the distribution of VT was shown to be negatively skewed, with a
skew of ∼0.41 for the 35 nm transistor. Statistical analysis was carried out and
identified that LER induced variations in the threshold voltage were strongly
correlated with the average channel length. This correlation can be charac-
terised by simulating devices with uniform gate edges and varying channel
lengths. Further analysis identified the contributing factors to LER induced
variability and two semi-analytical methods for reconstructing the distribution
of VT were detailed. These semi-analytical methods allow the distribution of
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VT to be determined from the distribution of the average channel length and
the aforementioned correlation and were compared to results from low and high
drain voltage simulations, demonstrating an excellent match to the simulation
data. Comparisons were also carried out for 35 nm devices with varying width
and for alternative bulk, SOI and double gate architectures, all showing close
agreement with the simulation data.

Finally, in Chapter 6 the combined effects of random dopants and line edge
roughness were investigated. Simulation of an ensemble of 100,000 devices
again allowed the true shape of the distribution of VT to be obtained with
statistical confidence. In this particular instance, the combined distribution is
close to Gaussian, however this will not generally be the case. The statistical
combination of the individual distributions of VT arising from RDD and LER
was examined and found to closely match the simulated distribution. The sta-
tistical enhancement techniques developed in the previous chapters were also
used to construct the individual distributions and their combination compared
with the simulation data. The excellent match obtained using the statistical
enhancement techniques indicated that they could be applied to make accurate
predictions of the individual and combined effects of RDD and LER with a
reduction in computational cost of 1–2 orders of magnitude, compared to the
standard brute force approach.

7.1 Future Work

There are several areas where the work presented here could be extended.
First, we primarily focus on variations at low drain voltage here, and large
scale simulation at high drain voltages would be useful in order to further
validate and, if necessary, refine the statistical enhancement methodologies
developed in this work. Although the behaviour of LER-induced variability
at high drain voltage was briefly investigated in this work, the behaviour of
RDD-induced and combined variability would also be worthy of further study
at high drain voltage. In addition, investigations into the width dependence
of VT variability for RDD and combined fluctuations in realistic devices would
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be a useful extension to this work. These extensions would potentially allow
the techniques presented here to be further generalized.

The introduction of other sources of variability would also be a natural
extension of this work. In particular, work function variability is expected to
become a significant problem with the recent introduction of high-κ metal gate
technology [45] and a study of this would be a good next step in continuing this
work. As demonstrated in this work, large statistical samples are necessary
in order to fully capture the shape of parameter distributions. By continuing
the large scale simulations presented here with other sources of variability, the
true shapes of the particular distributions can be deduced and ideally similar
statistical enhancement methodologies could be developed and integrated with
those presented here.

We have also considered only n-Channel devices in this work and since
variability reported for p-Channel devices is generally lower [158, 141], it would
be of interest to study the underlying causes of this difference in terms of the
statistical device properties.
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Statistics

A.1 Descriptive Statistics

Descriptive statistics are used to quantitatively describe various features of a
dataset or probability distribution, such as location, dispersion and shape [159].
The location can be described by the mean (µ), median and mode, which
specify the expected value, the 50-50 point and the most frequent value of
the data. The dispersion of a dataset or distribution can be described by the
variance (σ2) and its square root, the standard deviation. This measures the
spread of the data around its expected value. The shape of a distribution can
be described by the parameters skew (γ1) and kurtosis (γ2), which measure the
asymmetry and “peakedness” of the distribution, respectively. The quantities
mean, variance, skew and kurtosis can be obtained from the moments of a
probability density function, which are defined as follows:

µ′n =

ˆ ∞
−∞

(x− a)nf(x)dx (A.1)

Where µ′n is the n’th moment about the value a of the distribution f(x).
The moments about the origin are given by Equation A.1 when a = 0, with
the first moment about the origin being the mean. The central moments, µn,
are given by Equation A.1 when a = µ′1, with the variance being the second
central moment. Finally, the skew and kurtosis are given by the third and
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Figure A.1: Illustration of the proportion of occurences at different values of
σ for a standard Gaussian distribution.

fourth standardized moments, which are defined as γ1 = µ3

σ3 and γ2 = µ4

σ4 ,
respectively.

Statistical variability in MOSFETs has been primarily quantified using the
standard deviation, which can also be interpreted graphically, as shown in
Figure A.1. From the figure, it can be seen that for a Gaussian distribution ∼
34.1% of occurences will be between µ and µ+σ, obtained from

´ µ+σ

µ
g(x)dx =

1
2
Erf( 1√

2
) ≈ 0.341. Consquently, ∼ 68% of occurences will be within 1σ of

the mean. Conversely, 32% of occurences will be more than 1σ from the mean.
The value of σ therefore gives an indication of the rarity of a particular event.
Table A.1 gives details of the number of occurences inside and outside a given
value of σ for a Gaussian distribution.

Although the probability of an occurence at 6σ is very low, there are how-
ever more than 109 transistors on modern chips and it is inevitable that devices
with deviations this far from the mean will occur. It is for this reason that cir-
cuit designs must properly account for the impact of devices with such extreme
deviations.
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nσ Fraction Inside nσ Fraction Outside nσ
1 0.683 3.17× 10−1

2 0.9545 4.55× 10−2

3 0.99730 2.70× 10−3

4 0.9999367 6.33× 10−5

5 0.999999427 5.73× 10−7

6 0.99999999803 1.97× 10−9

7 0.99999999999744 2.56× 10−12

Table A.1: Fraction of occurences inside and outside a given value of σ for a
Gaussian distribution.

A.2 Mann-Whitney Test

Given two random samplesX and Y with sizem and n and density functions F
and G, respectively, the Mann-Whitney test is a statistical method for testing
the null hypothesis that F = G [160], i.e. that the distributions of X and
Y are the same. The alternative hypothesis is that F 6= G. The test was
first proposed by Frank Wilcoxon in 1945 [161] and extended in 1947 by H.
B. Mann and D. R. Whitney [147]. To test the null hypothesis, the samples
from both X and Y are collectively ordered from smallest to largest, without
distinguishing which sample they belong to. The ordered values are assigned
ranks from 1 to m + n. If the null hyopthesis is assumed to be true, then the
values X1, ..., Xm will tend to be randomly distributed throughout the ranked
values, rather than being clustered, e.g. in the lower values.

To calculate the test statistic U , the ranks corresponding to sample X are
summed. Assuming that F = G, the expected value of U is given by:

E(U) =
m(m+ n+ 1)

2
(A.2)

Furthermore, the variance of U can also be calculated as follows:

V ar(U) =
mn(m+ n+ 1)

12
(A.3)

For large sample sizes, the test statistic U will be approximately Normal,
with mean and variance given by Equations A.2 and A.3. This distribution
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can then be used to determine whether the null hypothesis should be rejected
or not, depending on whether U significantly deviates from its expected value.
This can be determined by looking up p-values in standard tables of the Normal
distribution.

More specifically, the null hyopthesis should be rejected if |U − E(U) ≥ c|,
where c is a constant that determines the significance level. The value of c can
be calulcated by:

c =
√
V ar(U)Φ−1(1− α

2
) (A.4)

Where α is the desired significance level and Φ−1 is the inverse CDF, also
known as the quantile function, of the standard Normal distribution.

A.3 Bootstrap Resampling

Bootstrapping is a resampling technique that allows the errors in a statis-
tical parameter to be estimated, which was introduced in 1979 by Bradley
Efron [162, 160]. It is a computer-based method that makes estimates of
statistical parameters using Monte Carlo simulation, which is useful when an-
alytical forms for the parameters of interest are either unknown, too complex
or do not exist. It can also be formulated in a parametric form, where as-
sumptions are made about the underlying distributions, or as a nonparametric
technique that makes no assumptions about the underlying distributions.

We begin with a random sample X with unknown distribution F and a
parameter of interest, which depends on X. By way of example, we will use
the skew γ1. The sample X from unknown distribution F is replaced with a
sample X∗ from a known distribution, F̂ . The skew is then calculated from
X∗. The choice of F̂ is key for this technique and for the nonparametric
bootstrap, F̂ is chosen to be the sample density function. Thus, the sample
X∗ is a random sample from the initial sample X. It is important to note that
sample size of X∗ is the same as X and the values are obtained by sampling
with replacement from the original data.

To obtain the distribution of the skew, a large number (N) of samples,
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X∗(1),...,X∗(N), are drawn from the original data X and the skew calculated
for each X∗(i), yielding N estimates of γ1 (T = γ

(1)
1 , ..., γ

(N)
1 ), from which the

distribution of the skew can be obtained. The standard error of the skew can
then be estimated from the standard deviation of T .

Boostrapping is a general technique, and the parameter tested using this
approach can be any parameter that can be meaningfully defined for X and all
samples X∗(i). Note also that the number of samples N can vary significantly
and generally depends on the desired accuracy and the time and computing
power available.

A.4 Interpretation of PDFs

A probability density function (PDF) describes the probability of a particular
event or value occuring, and may be either discrete or continuous. For a
discrete probability distribution, p(x) must be ≥ 0 and the sum over all values
must be 1. As a result, the probability is given by the y value of the distribution
at any point x, i.e. P [X = x] = p(x), and therefore 0 ≤ p(x) ≤ 1. Note that a
discrete probability distribution may also be referred to as a probability mass
function (PMF).

For a continuous distribution, it is not possible to define the probability
at a single point, since there are infinitely many points in a continuous func-
tion. The actual probability is therefore defined as the probability that a
random value falls within a particular range, i.e. P [a ≤ x ≤ b] =

´ b
a
p(x)dx.

Continuous distributions must also be non-negative and obey the property´∞
−∞ p(x)dx = 1. One consequence of defining the probability P over an in-
terval is that the absolute value of the function p(x) may be greater than 1,
depending on the x-axis range. It is important to realise that this does not
represent a probability greater than 1, but rather a probability density per
unit x greater than 1. When the probability is evaluated, it must still obey
the property 0 ≤ P [a ≤ x ≤ b] ≤ 1.
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