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SUMMARY 

The origins of the "population approach" to pharmacokinetic (PK) and pharmacodynarnic 

(PD) data analysis owes much to its use as a tool for understanding the variability in data 

collected during routine therapeutic drug monitoring. Subsequent promotion by leading 

regulatory scientists led the impetus that resulted in its regular and successful application 

in the analysis of the sparse data gathered during the later phases of drug development. 

Nevertheless, it is recognised that assessment of its full potential requires prospective 

application from the beginning of drug development process. This concept is embodied by 

the definition of "PK/PD as a general conceptual framework for drug development". 

However, early studies are inherently data rich and therefore lend themselves to 

noncompartmental analyses and conclusions based on standard statistical hypothesis 

testing. Furthermore, due to the high degree of experimental constraint and the 

homogeneity of the subjects under investigation, the benefits from the "population 

approach" in its traditional sense are not clearly evident. The potential advantages of 

applying the population approach, and, in particular, nonlinear mixed effects modelling 

(NONMEM), to data representative of those typically encountered in early drug 

development are explored in this thesis. 

Normally, the safety of chronic drug treatment is assessed by measuring drug accumulation 

during multiple dosing to steady state. However, for drugs with long terminal half-lives 

dosing to steady state is not always practically possible, and model based predictions are 

often used. In the presented example, a previous standard two stage approach (STS) 

detected an equality between the absorption (Ka) and distribution ((x) rate constants. 

However, using a nonlinear mixed effect model both rate constants were separately 

charactensed. Subsequently, the model was shown to be useful in the prediction of 
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variability in steady state concentrations and in deducing that continuous treatment was 

unlikely to lead to chronic toxicity. 

The standard bioequivalence study has one of the strictest experimental designs. However, 

due to drug toxicity or expected clinical biolnequivalence, there may be reason to establish 

bioequivalence in the target population. In these circumstances the number of samples that 

can be ethically or practically taken from each subject may be limited. A population 

pharmacokinetic approach to bioequivalence testing was compared to the standard 

noncompartmental approach using data from two routine studies. The point and 90% 

confidence interval estimate for relative difference in the area under the concentration time 

curve (AUC) and Ka was estimated directly from a two compartment model with first 

order absorption. After utilising the Wagner Nelson approximation the point and 

confidence interval for the relative difference in (the maximum concentration) Cmax was 

also directly calculated using a novel approach. The conclusion of bioequivalence in AUC 

and bioinequivalence in Cmax was consistent between the two approaches. After randomly 

reducing the dataset to 20% of the its original size, the point and confidence interval 

estimates for the relative difference were still similar to those originally estimated. This 

conclusion was influenced by the sample design and whether an additive or multiplicative 

bioequivalence model was utilised. It was also shown that advanced knowledge of the PK 

model was most likely to allow the bioinequivalence in Cmax to be identified. 

It has been proposed that the use of cross-over or dose escalation designs for dose ranging 

studies in combination with more informative analysis could lead to a better 

characterisation of the dose response relationship. In the example presented, the dose 

response relationship for the 3-hydroxy-3-methylglutaryl Coenzyme A inhibitors (FMG 

COA) inhibitor, simvastatin, was estimated from a cross-over study which covered the 

current recommended dose range (10 to 40 mg). Analysis using nonlinear mixed effects 

modelling approach demonstrated that the selected doses only covered 20% (70 to 90%) of 
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the upper part of the estimated dose response relationship. It was concluded that a lower 

dose strength would be required to allow adjustment within the log-linear portion of the 

dose response relationship. The clinical implications of potential relationships between the 

pre-treatment cholesterol level and the model parameters were explored through prediction 

and simulation. On simulating the relationship between dose and the percentage of patients 

who would achieve reductions to below a recognised target concentration, it was found that 

a different set of dosages may better optimise clinical response. 

Where strict experimental design is invalidated by study design or restricted recruitment, 

the resulting data can be unbalanced and not easily analysed by standard statistical 

methods. In the example presented, the number and size of doses of dofetilide used to test 

for PK/PD differences between patients with ischaernic heart disease (ISH) and healthy 

volunteers were different. A population PK/PD modelling approach was implemented, 

and no difference between the two groups could be detected. The Cmax and peak QTc 

ranges were predicted to be narrower following a fixed dose regimen in comparison to a 

dose per kilogram regimen. However, after incorporating the PK/PD variability, this was 

not predicted to manifest into an overall increase in the risk of Torsades de POintes. 

Nevertheless, there was evidence to suggest that an upper total dose lirMt would be needed 

if a dose per kilogram regimen was to be adopted in future studies. 

Although early drug development is, by nature, a piece-wise process, the application of 

more intuitive methods of analysis, such as nonlinear mixed effects modelling, was shown 

to provide a better understanding of the dose concentration response relationship and a 

useful tool with which to investigate study designs issues. On the basis of the analyses 

presented, the early prospective application of these techniques should have benefits in the 

optimisation of drug development. 
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1 

.1 The phased approach to drug development 

The term "drug development" covers the wide variety of activities required to take new 

chemical entities from discovery through to regulatory approval. The process is time- 

consuming, very costly and has a high failure rate. Only about one or two from every 

10,000 compounds synthesised finally become licensed pharmaceuticals, so it is important 

that the process is optimally managed and controlled. The risk to healthy volunteers and 

patients taking part in clinical trials is minimised by reassessing the proposed therapeutic 

advantage of each chemical entity throughout the development process. A phased 

approach is most often applied to both streamline the development process and improve 

decision making. The commonly defined phases of drug development are briefly described 

below: 

Preclinical 

Identification of candidate drugs by comparing the activity and safety profiles via in vitro 

and animal models is the goal of the preclinical phase. Pharmacokinetic and 

pharmacodynamic data gathered during this phase are also used to guide human dosage 

regimen development and dose escalation strategies. The accuracy of predictions from in 

vitro and animal models can vary substantially, so expeditious progression to a point 

where human investigation can be initiated at minimum risk is the primary focus of the 

preclinical phase. 

Phase I studies 

The primary aim of Phase I is to determine safety and tolerability of a new drug in human 

volunteers. A secondary aim is to provide infon-nation on the absorption, distribution, 

metabolism and excretion and, in some cases, early proof of the therapeutic concept i. e. 

demonstration of the blood pressure reduction effects of a new ant1hypertensive. 
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Phase 11 studies 

Progression from Phase I to Phase 11 represents the transition from healthy volunteers to 

patients with the disease state(s) of interest. Similar factors are explored in both settings, 

but, the focus of Phase 11 is to establish that the new drug is effective. A secondary aim is 

to establish a dose range which provides benefit while rrunin-ýsing the risk of adverse 

effects. This information is used in the design of the Phase III studies. 

Phase III studies 

These are comparative studies designed to assess the safety and effectiveness of the drug in 

conditions approximating those in which the drug would be used in clinical practice. The 

best dosage form and dose or range of doses from Phase II are administered to a larger and 

more varied patient population. One of the additional aims is the detection of groups of 

patients who may be at increased risk of adverse eftects or who require a higher dose to 

achieve an adequate therapeutic response. 

1.2 Role of pharmacokinetic and pharmacodynamic modelling in 

drug development 

The overall understanding of a complex system can be considered to be the sum of the 

knowledge of its component parts. The components underlying the relationship between 

dose and response (Figure 1.1) are more fully described below. 
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Figure 1.1 Relationship between dose and response 
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1.2.1 Pharmacokinetics and pharmacokinetic modelling 

The term Pharmacokinetics was defined by WHO as "the study of the absorption, 

distribution metabolism and elimination of drugs" (World Health Organisation, 1970). An 

apt definition by Wagner describes it as "the study of the time courses of drug and 

metabolite concentrations and amounts in biological fluids, tissues and excreta ..... and the 

construction of suitable models to interpret the data " (Wagner, 1968). The latter 

highlights the need to model or reduce the data to a set of meaningful parameters which 

can be used to make predictions for future experiments. The functional form of the 

pharmacokinetic model is dependent upon both the processes to be modelled and the future 
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predictions required, but usually involves relating dose, dose frequency, and route of 

administration to the change in plasma concentration (Cp) over time. 

1.2.2 Pharmacodynamics and pharmacodynamic modelling 

The principles surrounding the establishment of an appropriate dosage regimen rest heavily 

on the assumption that a functional relationship, albeit complex, exists between the 

concentration at the site of action (Ce) and the response ultimately produced. 

Pharmacodynamics is the study of this relationship and PD modelling involves the 

mathematical expression of the inhibition, activation or potentiation of the biological signal 

(biosignal) which underlies the drug response. Therefore, drug potency and tissue or organ 

sensitivity can be usefully summarised by using models linking concentration to clinical 

effect (Holford & Sheiner, 1982a, b). While the benefits of a new drug cannot be fully 

established until large scale efficacy trials are conducted, the relationships between 

surrogate markers of response to dose or concentration can be used to indicate therapeutic 

potential and guide future dosing. The measurement of drug effect and its interpretation 

through the principles of pharmacodynamics is now considered to be a very important part 

of early drug development. 

1.2.3 The linking of pharmacokinetics and pharmacodynamics: Past and 

present approaches 

The full potential of PK/PD modelling was not fully realised until the effect compartment 

or link model was popularised in the late 1970's early 1980's (Kelman & Whiting, 1979; 

Sheiner et al., 1979; Whiting et al., 1980; Holford & Sheiner, 1982b) which was some 

years after the seminal paper by Segre (Segre, 1968). It has now become the standard 

methodology in modelling the temporal displacement between concentration and effect 

(hysteresis), a complexity which can often anse in non-steady state PK/PD studies (Hudson 
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et al., 1983; Meredith et al., 1983; Guy et al., 1984; Fisher et al., 1985; Hinderling et al., 

1985; Kelman et al., 1986). 

Elaboration of the basic models has also led to the development of sen-ý-parametnc 

approaches, where the PD and/or PK relationship is characterised non-parametrically, but a 

parametric link model is used to account for the hysteresis (Unadkat et al., 1986; Verotta & 

Sheiner, 1988; Fuseau & Sheiner, 1989). Moreover, convolution techniques which allow 

the temporal delay to be characterised by poly-exponential and non-parametric spline 

functions have also been proposed (Verotta & Sheiner, 1991; Gumbleton et al., 1994). 

Other physiological approaches to describing the relationships between concentration and 

effect have more recently been proposed. Protein binding (Pedraz et al., 1992) , formation 

of competitive or non-competitive agonists and antagonists (Gupta et al., 1993) and arteno- 

venous drug concentration differences (Gumbleton et al., 1994) have been proposed as 

alternative pharmacokinetic mechanisms by which both displacement of effect from 

concentration (counterclockwise -hysteresis loop ) or displacement of concentration from 

effect (clockwise -proteresis loop ) could occur. 

A physiological modelling approach to PK/PD was used some time ago to describe the 

effect of warfarin on prothrombin complex activity (Nagashima et al., 1969; Sheiner, 1969) 

and further described by Holford and Sheiner (1982b). More recently it has been applied to 

study the pharmacodynarnics of corticosteriods (Kong et al., 1989; Wald et al., 1991; Wald 

& Jusko, 1992; Lew et al., 1993) and prolactin suppression (Francheteau et al., 1991). By 

way of these and other examples, Jusko and co-workers characterised a family of indirect 

response models for stimulation or inhibition of the production or loss of endogenous 

substances or mediators (Dayneka et al., 1993) and proposed their utility in charactensation 

of the lag-time between concentration and effect for other therapies (Jusko & Hui, 1994). 

They also demonstrated that mi s- specification of an effect compartment model in place of 
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an indirect model would result in erroneous conclusions i. e. that Ce5o and Emax were dose 

dependent (Dayneka et al., 1993; Jusko & Hui, 1994). 

The establishment of appropriate methods for undertaking a PK/PD modelling approach 

has subsequently led to its extensive application in many therapeutic areas i. e. (Swerdlow 

& Holley, 1987; Dingernanse et al., 1988; Donnely et al., 1989; Reid & Meredith, 1990; 

Manderna & Danhof, 1992) and has been the focus of specialist symposia i. e. (Danhof & 

Peck, 1994). More recently the importance of these approaches have gained favour within 

the drug industry (Steimer et al., 1993; Van Peer et al., 1993) and the drug regulatory 

agencies (Peck & Collins, 1990; Peck, 1992a, 1993). A more detailed discussion of the 

advantages of PK/PD modelling in the area of antiarrhythmic drug therapy is shown below, 

and serves as the background to PK/PD analysis described in Chapter 7. 

Hysteresis in the concentration versus ECG time intervals has been commonly shown for 

many antiarrhythmic drugs after intravenous administration i. e. amiodarone (Rodden, 

1993), ajmaline (Padrini et al., 1993) diltiazem (Schwartz & Abernethy, 1987), flecainide 

(Wang et al., 1988), procainanude (Galeazzi et al., 1976), and verapamil(Abemethy et al., 

1986). Consequently, one of the initial applications of the effect compartment theory was 

in the PK/PD modeling of antiarrhythmics i. e quinidine (Holford et al., 1981) digoxin 

(Kelman & Whiting, 1979) and disopyrarrude (Whiting et al., 1980). 

As an alternative, the slopes of the concentration ECG interval relationship can be obtained 

from the post infusion data (Echizen et al., 1985; Abernethy et al., 1986; Schwartz & 

Abernethy, 1987). However, Schwartz et. al. (1989) demonstrated that this technique 

resulted in biased slope estimates,, which over predict the steady state QTc. Furthermore, 

since the descending limb of the hysteresis loop (data post end of infusion) can often 

approximate a sigmoid relationship, dose dependent Emax and CE50 parameter estimates 

have in some cases been wrongly reported (Echizen et al., 1985; Schwartz & Abernethy, 

1987). 
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1.3 Pharmacokinetic and pharmacodynamic variability 

The factors which are commonly found to influence the pharmacokinetics and 

pharmacodynamics and, therefore, help explain the variability in the PK/PD model are also 

shown in Figure 1.1. In the following two sections the components of the overall 

variability are discussed with reference to these factors: 

Interindividual variability 

The interindividual variability in drug response can result from either pharmacokinetic or 

pharmacodynamic differences between subjects. Differences in diet and disease state can 

affect the rate and extent of drug absorption. Similarly, differences in body size, body 

weight, tissue composition and tissue binding can account for interindividual differences in 

drug distribution. The variability in elimination often depends on both genetic and 

environmental factors. Metabolic rates can be either or both genotypically or 

phenotypically different. Differences in overall elimination can be further altered by the 

effect of ageing or disease. Both pathophysiological and genetic differences are major 

factors influencing the interindividual variability in phannacodynamics. 

Intraindividual Variability 

Residual or intraindividual variability is related to several sources. "True" intraindividual 

variability is most often obscured by the variability inherent in the measurements of 

concentration or response i. e. assay error or the error in the recordings of dosing and 

sampling times. "True- intraindividual variability results from moment to moment or 

occasion to occasion changes in physiology, in some cases these have a rhythm and can be 

modelled i. e. diurnal variation in blood pressure. 
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1.3.1 Population approach 

The aim of the population approach is to assess the central tendency of the 

pharmacokinetic and pharmacodynamic response and to quantify the variability around it. 

Although, the concept of measuring and accounting for variability in pharmacokinetics is 

not new, the development of novel statistical methods has allowed PKIPD modelling to 

implemented across all phases of drug development. An outline of the available statistical 

methodologies and the development of the population approach are described below. 

1.3.2 Statistical methodologies used in population pharmacokinetics 

The standard two stage approach (STS) is often used to obtain estimates of the average 

pharmacokinetic parameters and their associated variability from rich experimental data. 

With this approach the estimation of interindividual variability and the investigation of 

covariate relationships are undertaken in a separate step to the nonlinear regression used to 

estimate the individual model parameters. Provided that the study design is reasonably 

balanced, the average parameter estimates should theoretically agree with the "True" 

values. However, it would be expected that the interindivIdual variabilities would be 

upwardly biased since they include the uncertainty in the estimation of the individual 

parameter estimates. Furthermore, particular problems arise with the STS approach when 

the data per individual is sparse, since obtaining parameter estimates for every individual 

may become difficult. In such circumstances naive pooling of data (NPD) can be used to 

obtain average parameter estimates. However, this approach ignores the concept of the 

individual, and estimates of interindividual vanability are not available. 

Statistically, a non-linear mixed effect model, allowing for repeated measurements , is 

necessary to allow estimation of parameters in a single stage. "Mixed effects" refers to the 

combination of both fixed effects (parameters and covariate relationships) and random 
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effects (intra- and inter- individual variability). A parametric approach to the estimation 

problem was developed by Sheiner and Beal and first implemented as the first order (FO) 

method within the program NONMEM (Beal, SL & Sheiner, 1980). The ten-n "parametric 

refers to the assumption that the variability in both parameter estimates and measurements 

follows a Gaussian distribution. The first order method utilises the first term of the Taylor 

series expansion of the nested (intraindividual within interindividual) random effects. The 

resultant linearisation simplifies the problem to one which is more easily estimated. 

Despite this approximation, the method has been shown to be superior to the NPD method 

in estimating the population mean (structural) parameter estimates and superior to the STS 

in estimating interindividual variability of mean parameters when the data is simulated as 

either sparse clinical (Sheiner & Beal, 1980; Sheiner, 1984; Steimer et al., 1984; 

Hashimoto et al., 1994) or rich experimental (Sheiner & Beal, 1981,1983; Beal, 1984) 

from a linear (Sheiner & Beal, 1981,1983; Sheiner, 1984; Steimer et al., 1984) or 

nonlinear (Sheiner & Beal, 1980; Hashimoto et al., 1994) PK (PD) model. Nevertheless, 

the algorithm is prone to inaccuracies when interindividual. variation is large (White et al., 

1990) or when the parameter estimates are highly correlated (Steimer et al., 1984). 

Other approaches have also been developed. Mallet (1986) introduced the non-parametric 

maximum likelihood method which differs from NONMEM in that it is not dependent on 

any prior assumptions about the distribution of the parameter estimates within the 

population. A Bayesian method has also be suggested (Racine-Poon & Smith, 1990) and 

developed using Gibbs Sampling into several exportable packages. 

An EM ( expectation maximisation) -algorithm developed to analyse linear models 

(Dempster et al., 1977; Laird & Ware, 1982) has been further developed for estimation of 

non-linear models by utilising different linearisation methods (Amisaki & Tatsuhara, 1988; 

Aarons, 1993). A Bayesian approach implementing the EM-algonthm has also been 

proposed (Racine-Poon, 1985). 
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More recent versions of NONMEM have developed along similar lines and now include a 
first order conditional (FOCE) algorithm which is similar to the Lindstrom and Bates 

method (Lindstrom & Bates, 1990). Details of statistical aspects of the NONMEM 

software are discussed in chapter 3. 

1.3.3 The population approach -Past and present developments 

It was the FDA who first raised concerns that the pharmacokinetics of new drugs were not 

being sufficiently investigated during the drug development process. In particular, to aid in 

the selection of appropriate doses, they outlined the need for the pharmacokinetics of new 

drugs to be studied in the elderly population (Temple, 1983,1985). In these documents 

they introduced the concept of the pharmacokinetic screen, where trends between patient 

demographics and steady state trough plasma concentrations were investigated. This 

simplistic approach was first adopted for practical reasons, since extensive 

pharmacokinetic sampling in elderly patients was not ethically permissible. The data was 

often sparse and biased as the number and frequency of samples could vary between 

patients and visits. A formalised approach adopting more sophisticated methodology was 

required to deal with these data. Sheiner et al. had earlier alluded to methodology which 

could be used in these situations and highlighted the clear rationale for their development 

as an aid to both drug development and clinical evaluation (Sheiner et al., 1972,1977). 

Despite this obvious need, the application of the population approach was for many years 

quite limited. Underlying this was a degree of healthy scepticism within the drug industry 

(Darrow, 1985; Colburn, 1989). The main reasons for this was complexity of the 

methodology, the lack of general acceptance of the statistical techniques, and the 

explorative nature of the analyses. However, at that time therapeutic drug monitoring xvas 

at its peak, and retrospective analysis using the population approach was used to 
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investigate actors which influenced the pharmacokinetics of drugs with a narrow 

therapeutic index (Whiting et al., 1986). These analyses provided information for both 

dose initiation and subsequent adjustment via Bayesian feedback (Kelman et al., 1982; 

Sheiner & Beal, 1982). 

As a result of the continued acadernic interest, the approach slowly gained favour within 

the drug industry. During the 1990's there has been an explosion of interest, as reflected 

by the large increase in publications and the formation of specific user groups (i. e. PAGE). 

The support through the COST BI initiative has been pivotal in both the further 

development and wider application of the approach within the drug industry (Bechtel & 

Alvan, 1998). As well as two conferences, specialist meetings on PK/PD software (Aarons 

et al., 1994) and performing population PK/PD studies (Aarons et al., 1996) have added 

greatly to the developments in this areas. The first conference entitled "New strategies in 

drug development and clinical evaluation; the population approach" highlighted the short- 

comings to be overcome in order for the approach to become more acceptable. Jochemsen 

(1992) revealed that the European pharmaceutical industry was beginning to employ the 

population approach and incorporate it into study design. However there had only been a 

limited amount of prospective application and it was felt that a conceptual shift within the 

industry was required if the approach was to become established (Olson, 1992). While 

individuals within FDA continued to champion the approach (Peck, 1992a), the European 

guidelines did not reflect the growing interest (Gundert-Remy, 1992). 

The second COST BI "Conference on the population approach: measuring and managing 

variability in resPonse, concentration and dose" in Geneva in 1997 demonstrated that many 

advances had been made. The five intervening years had seen an appreciable development 

addressing theoretical issues around estimation methods, statistical models and design. A 

staggering growth in both awareness and interest in the approach was exemplified by the 

three fold increase in the number of scientific publications (Vozeh, 1997). The present day 
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value of the approach was highlighted by the growth in prospectively planned population 

PK/PD analyses (Bruno, 1997; Fuseau et al., 1997; Jorga et al., 1997; Manderna, 1997), 

and the number of subsequent submissions to the FDA which had included the approach 

(25%) (Ette, 1997). Furthermore, the FDA and NTA regulators presented a number of 

cases where population PK was being used as evidence for labelling statements (Ette, 

1997; Wade, 1997). 

Now, the potential of population pharmacokinetic and pharmacodynan-& modelling and its 

application to the drug development process receives similar attention from academic 

(Aarons, 1992; Sale & Blaschke, 1992; Sheiner & Ludden, 1992; Grasela & Antal, 1993; 

Rosenbaum et al.,, 1995) industry (Samara & Granneman, 1997) and regulatory agencies 

(Peck et al., 1992b). 

1.3.4 Application of PK/PD modelling in the early phases of drug 

development 

The application of PK/PD modelling to data obtained from the early phases (1/11) of drug 

development and its the subsequent use in the design of the Phase III studies has been 

discussed in several papers (Steimer et al., 1993; Van Peer et al., 1993; Peck, 1997). In 

particular, Sheiner, who previously questioned the adequacy of the current practices used in 

drug development (Sheiner, 1991), has proposed an alternative strategy with PK/PD 

modelling as the cornerstone of the optimised process. By partitioning Phases 1/11 and III 

into cycles of "leaming" and "confirming", respectively, he highlighted that early 

development should serve to fully evaluate the "therapeutic response surface" (Sheiner, 

1997); a mandate that requires a greater flexibility both in the design and analysis of the 

early studies (Sheiner & Rubin, 1995). Although some examples showing the advantages 

of using PK/PD modelling with rich experimental data have been highlighted (Sambol, 
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1991; Karlsson et al., 1995; Schoemaker & Cohen, 1996), further work exploring the 

advantages and disadvantages of utilising these methodologies in the early phases of drug Zý 

development is required to support conceptual change proposed by Sheiner and others. 
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CHAPTER 2 

OUTLINE AND GENERAL AIMS 
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The general aim of this thesis is to explore how nonlinear mixed effects modelling can be 

used in the analysis of data taken from the early stages of drug development. The 

advantages and disadvantages of applying these techniques are examined through a series 

of examples- 

Drug safety analysis - Chapter 4 

Bioequivalence, testing- Chapter 5 

Dose response analysis - Chapter 6 

Dose concentration response analysis - Chapter 7 

The order or presentation represents the transition from the application of pharmacokinetic 

modelling (Chapters 4 and 5) to pharmacodynamic modelling (Chapter 6) and finally to an 

example of integrated PK/PD modelling (Chapter 7). The common pharmacokinetic and 

statistical methods are outlined in Chapter 3. Each subsequent chapter is an integral piece 

of work; with aims, methods, results, discussion and conclusions. While Chapters 4,6 and 

7 are focused towards the drug under investigation, all Chapters assess the potential 

advantages of applying a rnixed effect modelling approach to standard early drug 

development problems. 

Conclusions from the four separate analysis are presented in Chapter 8. 
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CHAPTER 3 

GENERAL METHODS 
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This chapter describes the pharmacokinetic and statistical methods which are common to 

the analyses presented in the later Chapters. Analysis specific methods are presented 

within each subsequent Chapter. 

3.1 The nonlinear mixed effects model 

As previously discussed, a non-linear mixed effects model can be used to describe the fixed 

and random effects associated with a model based approach to a PK/PD problem (Chapter 

1). In the sections below, the intraindividual and interindividual submodels are descnbed 

along with the methods used to estimate both simultaneously. 

3.1.1 Intraindividual submodel 

In PK/PD analyses, it is usually assumed that observations can be described by the 

following model 

yi f (pi 
7x ii, -Fid 

Eq (3.1) 

Where yij is the jth observation (concentration and /or response) from the ith individual, 

is a general function of all arguments listed which includes a structural model that 

relates the independent variables, Xij (e. g. time and dosage history), to the observations 

given the ith individuals vector of model parameters p, (such as CL, V, D5o and Emax). 

The term ej accounts for the error between the observations yj and model predictions yj, 

and is normally assumed to be independently symmetrically distributed with an expected 

mean value of zero and van ance V a' . The parameter V represents the dependence 

between model predictions ý and the intraindividual error variance. Changes to v alter Yjj 

how the intraindividual variability model is implemented. If there is no dependence i. e. the 

variance remains constant irrespective of the magnitude of the predictions, the error model 
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is said to homoscedastic or additive. In this case, V (described above) equals I and 07 is 

the standard deviation (SD). However, in many PKIPD cases the error model is found to 

be heteroscedastic i. e. the error variance changes with the magnitude of the prediction. A 

limited heteroscedastic case is where the error vanance is proportional to the magnitude of 

^. Y In this case, V equals 
2 

the variance of cj becomes or 2y2 and or is the ij yij I ^ij 

coefficient of variation (%CV). 

In NONMEM additive and proportional intraindividual error models are defined as follows 

Y=F+ EPS(l) 

Y=F* (1 +EPS (1)) 

Eq 3.1 

Eq 3.2 

where Y is y, F is ^ and EPS(I) is E, . An exponential expression, as shown below ij Yjj j 

can also be used 

Y=F *EXP (EPS(l)) Eq 3.3 

However, with the FO approximation (see section 3.2) this is operationally identical to the 

proportional error model (Eq 3.2). 

More complex intraindividual error models can also be defined. In the general 

heteroscedastic case the error variance is equal too7' ^ýi, where ýj is an estimated variance Y ij 

parameter. The advantage of this is model is that it can smoothly interpolate between a 

homoscedastic model (Ci=O) and the proportional model (Ci=2). 

Unfortunately, observations at or around zero cause estimation problems. Often the 

combined exponential (or proportional) and additive model is used. In this case two 

^2 

independent errors, cj, and and therefore two independent variances 2 and Eij 2 
yij U EXp 

2 are estimated. The is expressed as a (%CV) and is expressed 
ADD U EXP 

U ADD 
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as a standard deviation (SD). In NONMEM, the van ances and covari ances for theFj 's are 

estimated as a block matrix (1). 

In NONMEM the combined exponential and additive intraindividual error model is written 

as follows 

Y=F *EXP(l) + EPS(2) Eq 3.4 

This was the most complex model tested in this thesis and has the advantage that it can be 

easily reduced to an additive or exponential error model. 

3.1.2 Interinclividual model 

The individual structural parameter estimates p, 's are distributed around their typical 

values 0. The following describes the general relationship 

Pik ::::: 9k (Ok 
" Zi 7 

Ilki) Eq (3.5) 

Where PiK'S the kth parameter in the vector of individual parameters P, 
9 

Ok is a parameter 

of () which singly (or in combination with other parameters from () ) describes the 

population average or typical value Pk . The term Z. represents the vector of covariates 

for the ith individual. e. g. the ith's individuals demographics, biochemistry or concomitant 

medication. The function 9k Ois a general function of all arguments listed, and relates 

Pk to z. throughOk , while estimating the difference (11ki )between Pk and Pik, The 

flki 9s are assumed to be independently, multivariately distnbuted, with mean expected 

2 

values of zero and variances of 0),,. The variances and covariances for the TL 's are 

estimated in NONMEM as a block matrix (Q). In comparison to the additive model, the 

exponential error model prevents individual parameter estimates (see section 3.2.2) from 

becoming negative. 
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Examples of additive, proportional and exponential interindividual error models for 

clearance (CL) are described as follows 

CL = TVCL + ETA(l) 
Eq 3.6 

CL = TVCL *(I+ ETA(l)) Eq 3.7 

CL = TVCL *EXP (ETA(l)) Eq 3.8 

where TVCL is the typical value (PK) of CL and ETA(1) is 71, 
i 

3.1.3 General nonlinear mixed effects model 

On suppressing 9k () , the nesting of the intefindividual and the intraindividual models can 

be expressed by the general model: 

yi. = 

,7 
S(Xij 

9zi q()q Ili ýEjj) Eq 3.9 

where S( becomes a general function incorporating the terms of both submodels. 

3.2 Estimating the nonlinear mixed effects model 

As discussed in section 1.3.2, estimation of the nonlinear mixed effects has been 

implemented in a number of software packages (Aarons et al., 1994). However, since only 

NONMEM was used in this thesis only the methods related to this package are presented. 

3.2.1 First Order estimation method (FO) 

NONMEM minimises the extended least squares objective function (Eq 3.10) 

Oels =ý 
[Iogjvar(y, ý 

+ 
(y, 

- E(y, ))var(y, )-'(y, 
- E(y, ))'] Eq 3.10 

where 0,1, is the extended least squares objective function, var(y) is the variance- 

covariance of the ith individual's vector of observations, E (Y) 
is the expectation of yi i. e. 

^ and the subscript t denotes the transpose of the matrix. The log term included in the Yi 

41 



Oels 
can be viewed as a penalty to avoid continuous increases in the variance which would 

decrease the objective function without a decrease in residuals. Under Gaussian conditions 

Oels is only different to -2log-likelihood of the fit (-2LL) by a constant. This attribute is 

utilised in model development and the testing of covariate relationships (3.4.1). 

Closed form solutions of E (Y) 
and var(y) can only be obtained in the special case when 

the general model (Eq 3.9) is linear in its random effects. However, a linearisation can be 

used as an approximate solution when this is not the case. This approximation uses a first 

order Taylor series expansion about the expected values of flki 1) s and cj 's i. e. zero. 

If the general function (3.9) is simplified to the vector M, (E), Tl,, c) , such that 

Eij Yi 11 , Ei) = 
(Mil (E)l"li"dFil)'Mi2 

iEi2)'Mi3 
(0 "li'Ei3) 

Eq 3.11 

where the ith individual's dosing history, covariates and j individual observations are 

suppressed, and the TI, is the ith individual's vectors of Tj -values and cj is the ith 

individual's vectors of E 's for observation J. The expectation of the partial derivatives of 

with respect to TI, and E, can be denoted by matrices Gi and Hi, 

respectively i. e. 

dM. Eq 3.12 
Gi = 

ýý i ((), 0,0) 
d 11, 

Hi = 
dMi 

(0,0,0) Eq 3.13 
dEi 

As a result, E(Y) is approximately given by 

E(y) = M, (E), O, O) + Gill i+ 
HiF, Eq 3.14 
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and if Gj' and Hi'correspond to the transpose of Gi and Hi, respectively, var(y) is 

approximately given by 

Si (0, Q, 1):: ý Gi QGi' + DiagHi EH, ' Eq 3.15 

where Q is the variance covariance matrix of the I 's, and I is the variance covariance of 

the Ej 's as discussed previously. Diag is the matrix diagonal 

The use of the linear approximation to estimate E (Y) 
and var(y) in the extended least 

squares (ELS) objective function is known as the first order (FO) estimation method and 

was the first method implemented with NONMEM. The Oels for the population model 

under the FO approximation becomes: 

I 
log S2(0ýQý,: 

)J+(Yi_Mi(090ý0)) (S2(jq, 
Q, j)ýI(yi_Mi(E), O, O)) 

, 
Eq 3.16 

111 
ii 

'I 

The resultant objective function value (OFV) can be used to compare models (see section 

3.3.1). 

3.2.2 Individual parameter estimates 

With the FO estimation method, individual posterior Bayes parameter estimates can be 

obtained after the ELS problem has been minimised. The objective function which is 

minimised with respect to the il, -values is as follows 

2 
(E)qjZ. 

90)) 

(S2(OqQqE) 1(yi-mi 

logsi(OQqx) +(Yi-mi i 
(o 

I q. 90) Eq 

77'Q -' 77 

3.17 

The population parameters 
(E), Q, 1) are fixed to that obtained from the fit so only the 

second (or Bayesian) term is estimated. Since the individual parameter estimates are 
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obtained after the objective function has been minirn-Ised the tenn "Posthoc" is used to 

describe them. 

3.2.3 First order conditional estimation FOCE 

When the model is highly non-linear in 11, the FO method may under certain 

circumstances produce biased estimates. Bias can occur with non-linear PK or PD models 

and may be exacerbated by multiple dose models. Additional estimation methods are 

available to reduce the bias with the FO method. The conditional estimation methods 

produce both estimates of population parameters and estimates of random interindividual 

effects, simultaneously. The FOCE methods are two stage processes, at each iteration 

conditional estimates of 11, are obtained using the current estimates of E), Q, I. The 

estimates of Q. 
) I are then updated based on The following objective function is 

minirMsed 

log S2 + 
(y, 

M, 
(E), ̂ ,, 0)) s 2(6 Q, j)ýI(yi_Mi 0 

i'O i TI i( Ti 

Eq 3.18 

Two FOCE methods exist, by default the "no interaction" method is specified. In this case 

I is estimated based on the mean parameter model. When "interaction" is specified the 

prediction of I is based on the conditional estimates of fi Tli 

When the intraindividual error is independent of the predicted value i. e. additive error, 

there can be no interaction between the "', 's and E. 's. Therefore, specifying an interaction TI 

can only give different parameter estimates when a heteroscedastic error model is utilised. 

There is a dramatic increase in computation time with the FOCE methods, so the FO 

method is usually used by default. 
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3.3 Model building 

The process of model building involves balancing the need to obtain the best description of 

a set of observations against the convenience and utility of the model. While the individual 

observations are themselves the most accurate representation of the data, they are not very 

easy to use. The arithmetic mean, on the other hand, is convenient to use but is not a good 

description of the majority of the data. The "best" model lies somewhere between these 

two extremes. The stepwise process for determining the most appropriate structural, 

variance and covariate models is outlined below. 

3.3.1 Structural model identification 

The structural models employed for the characterisation of the pharmacokinetic and 

pharmacokinetic/pharmacodynamic relationships may or may not utilise knowledge from 

previous analyses. Refinement of previous models by fixing or deleting parameters from 

the model may be necessary where the data is insufficient to support the full model. 

Difficulties in obtaining satisfactory minimisation or poor parameter precision (i. e. large 

SE) may be used to identify when models are overly complex i. e. not supported by the data. 

If the underlying model is not known or found to be insufficient, knowledge from the basic 

pharmacology and phannacokinetics can be used to propose suitable alternative models. 

Selection of the final structural model is based on a combination of the following criteria : 

1) Significant decrease in objective function value (OBV). This is deten-nined using either 

the likelihood ratio test (LRT), if competing models form a full/reduced pair (see section 

4.1), or the Akaike information criterion (AIC) (Yamaoka et al., 1978) 

i. e. for two models a and b 

AAIC= OFVa-OFVb+2(Pa-Pb) 

where P is the number of free parameters 
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If AAIC >0 model b is choosen over a 

2) Improvement in the goodness of fit (GOF) plots i. e. observed (DV) vs predicted (PRED) 

plots; residual (RES) and weighted residual (WRES) versus time after dose plots. 

Subjectively assessed by looking for patterns and bias in the residuals. 

3) Improvement in the goodness of fit (GOF) plots for the individual data i. e. observed 

(DV) vs individual predicted (IPRED) plots; individual residual (IRES) and individual 

weighted residual (IWRES) versus time after dose plots. 

4) Parameter precision calculated based on the SE of the parameter estimates which are 

obtained using a quadratic approximation. As stated above, a model may be considered 

too complex if one or more of the parameter estimates is not statistically significantly 

different from zero i. e. 95 % CI includes zero. This is approximately equivalent to the 

SE (%) (SE as a percentage of the population parameter estimate) being greater than 

50%. 

3.3.2 Variability model identification 
The combined additive and exponential error model (section 3.1.1) was the most complex 

intraindividual vanability model used. The significance of each component was tested 

using the LRT. Either a proportional or an exponential interindividual error model was 

used. 

3.3.3 Covariate identification and selection 

Graphical analysis was used to detect potential relationships between covanates and 

Posthoc or FOCE derived individual parameter estimates. The trends in the plots were 

used to determine whether the relationship was likely to be linear or nonlinear. The 

significance of each relationship was formally tested by comparing the objective function 

obtained with and without the additional parameter(s) used to describe the relationship. 

The likelihood ratio test was used (LRT) to compare the difference in the objective 
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function values between the two models ( known as the "full" and the "reduced" model 

21 
pair). The difference is approximately X distribution with degrees of freedom (df) equal to 

the difference in the number of free parameters. When one parameter is fixed in the 

reduced model a decrease in objective function value 3.84 is significant at p<0.05. 

After testing all covariates univariately a step-wise procedure was used to incorporate all 

the significant covariates. In the analyses presented there were only a small number of 

covariates of interest, so all combinations of covariates from the univanate analyses were 

tested multivariately. After the full models were built, the final models were obtained by 

removing each of the covariates in turn and performing a LRT. Since the aim of these 

analyses was to generate hypotheses for testing in subsequent studies, the same p-value 

(p<0.05) was used to include and exclude covanates. 
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CHAPTER 4 

APPLICATION OF NONLINEAR MIXED 

EFFECTS MODELLING 

IN THE DRUG SAFETY ANALYSIS OF 

RANITIDINE BISMUTH SUBCITRATE (RBS) 
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In this chapter a nonlinear mixed effects analysis of the distribution / elimination 

pharmacokinetics of bismuth following multiple dosing with ranitidine bismuth subc1trate 

(RBS) is described. The results are compared to a previous analysis where individual 

fitting was carried out using models which assume that the absorption rate Ka is equal to 

initial distribution rate constant (x. Predictions of steady state bismuth accumulation are 

performed and the safety of extended courses of RBS treatment is assessed. 

4.1 Introduction 

4.1.1 Ranitidine bismuth subcitrate (RBS) 

RBS is a novel salt of ranitidine formed from ranitidine hydrochloride and bismuth citrate 

complex. It therefore possesses both the antisecretory actions of ranitidine (Prewitt et al., 

1991), and the mucosal protective (Hudson et al., 1993) and Anti-helicobacter pylori 

(Fraser et al., 1993; Webb et al., 1995) properties of bismuth. RBS was developed for 

treatment of relapse of benign gastric ulcer, duodenal ulcer and eradication of Helicobacter 

pylori. 

4.1.2 Bismuth pharmacokinetics 

The absorption of bismuth depends on the solubility of the salt in which it is administered. 

The most commonly used are the salicylate (Peptobismol @) or subcitrate salt ( 

tripotassium dicitrato bismuthate) (De-nol @). While only trace amounts are absorbed 

from the relatively insoluble subnitrate and salicylate salts (Nwokolo et al., 1990a, b), 

absorption from the more soluble subcitrate salt has been demonstrated (Wagstaff et al., 

1988; Froomes et al., 1989; Gavey et al., 1989; Nwokolo et al., 1989; Benet, 1991; Madaus 

et al., 1991) and a bioavailability of - 0.28% has been estimated based upon urinary 

measurements (Benet, 1991). 

A pictorial representation of the processes governing the pharmacokinetics of absorbed 
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bismuth after oral bismuth subcitrate (BS) administration is shown in Figure 4.1. The 

primary route of elimination is by urinary excretion. While biliary clearance may be as 

much as 90% of renal clearance, hepato-biliary re-circulation may reduce the net bi Ii ary 

loss (Mclean et al., 1989). 

Figure 4.1 Schematic diagram of bismuth pharmacokinetics and pharmacodynamic 
characteristics (adapted from Benet 1991) 
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Previously, the multiple distribution phase pharmacokinetics of bismuth have been shown 

to require at least a tri-eponential model for the post peak decline in plasma concentration 

(Benet, 1991). Bismuth accumulation following regular dosing has been well documented 

with apparent steady state levels being achieved in 30-40 days (Froomes et al., 1989-, 

Gavey et al., 1989; Nwokolo et al., 1989). However, a general ellrYUnation half-life of 21 

days (Froomes et al., 1989) and terminal elimination half-life of 21-72 days (Benet, 1991) 

have been estimated, so accumulatlon may continue for up to 4-12 months. 

The presence of food can reduce the percentage absorbed (Nwokolo et al., 1989)-, and co- 
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administration of H2-antagonists can increase the absorption of bismuth from certain 

formulations by decreasing gastric pH (Nwokolo et al., 1991). Since it is primarily 

eliminated via the renal route, caution is advised in the treatment of patients with renal 

impairment. In particular, a meta-analysis of several bismuth studies demonstrated a 

negative correlation between trough concentration and creatinine clearance (Lacey, 1994). 

The small increase in trough levels was not deemed to be clinically significant. Most of the 

intra- and inter-indi vi dual variability in bismuth levels remains largely unexplained and 

considered to be the result of variable absorption and low intrinsic bioavailability (Benet, 

1991). 

4.1.3 Bismuth toxicity 

While gastro-intestinal side-effects i. e. blackening of the stools are the most commonly 

reported side-effect with bismuth, more severe CNS toxicity has also been reported. 

During the 1970's, oral administration of bismuth salts resulted in over a thousand reported 

cases of neurological disorders which were characterised by myoclonic jerks, severe 

confusion, hallucination and epileptic seizures (Martin-Bouyer et al., 1981). Hillemand 

and co-workers proposed average steady state blood concentrations greater than 50ng. mll 

and lOOng. ml- I (equivalent to plasma levels of 77.5 and 155, respectively) to be "safety'9 

and "alann" levels for bismuth toxicity, respectively (FEllemand et al., 1977). However, 

these have more recently been shown to be over cautious (Benet, 1991). Furthermore, 

previous episodes of CNS toxicity have mainly been associated with salts other than 

subcitrate and treatment duration extending beyond that required clinically (Martin-Bouyer 

et al., 1981). 

Nevertheless, the delay from the onset of therapy until the appearance of toxicity may be 

due to the slow accumulation into the CNS. A full understanding of the pharmacokinetics 
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of bismuth following treatment with RBS is required to help understand the potential for 

toxicity upon prolonged treatment. 

4.1.4 Drug and therapeutic safety evaluation 

The primary focus of the initial healthy volunteer studies is to determine the relationship 

between dose/concentration and adverse events. For a new product containing a 

combination of drugs, these relationships may have previously been established. 

Nevertheless, when the combination has the potential to interact, these relationships will 

have to be reassessed. In multiple dose safety and tolerability studies it is desirable that 

dosing continue until steady state levels have been achieved. However, with drugs which 

have a long terminal half-life this is not always practical. 

4.2 Data and previous results 

4.2.1 Study design& data 

A double blind randomised multiple dose study in healthy volunteers, was undertaken to 

investigate the pharmacokinetics of bismuth and ranitidine following administration of the 

RBS fonnulation. The randomisation assigned one third of subjects to placebo, and the 

remainder to 800mg of RBS twice daily for 28 days. After the morning doses on days 1, 

14, and 28, plasma samples were taken pre-dose and at 0.25,0.5,1.0,2.0,3.0,4.0,5.0,6.0, 

8.01,10.0,12.0 hours post dose. During the intervening weeks, trough samples were 

collected on days 4,7,10,14,18,21 and 25. After day 28, the subjects in the active group 

entered into an open phase where further samples were measured daily for one week, twice 

weekly for the following three weeks and then weekly until either plasma levels fell below 

the assay's limit of quantification or 28 weeks had elapsed from the final dose. 

Subjects had a mean age and weight of 32.3 (SD 8.8 ) years and 77.7 (SD 6.7 ) kg, 

respectively. 
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One subject was lost to follow up before the last full profile study day, the other 17 

subjects completed the initial study phase. Two subjects (5 & 7) were lost to follow up 

after one week post final dose and had plasma bismuth levels of 1.2 and 2.31 ng. ml-1 at this 

time. The rest of the subjects were monitored for an average of 58 (SD 24.2) days post 

dosing, at which point the bismuth concentration was 0.24 (SD 0.04) ng. ml-1. In total the 

eighteen patients provided 977 bismuth concentrations. 

4.2.2 Drug assay 

Plasma bismuth concentration measurements were determined using a validated 

inductively coupled plasma mass - spectroscopy method which had a lower limit of 

quantification of 0.2 ng. ml-I and precision of 13.2% (Tye et al., 1992). 

4.2.3 Previous results using a Standard Two Stage (STS) approach 

Koch et al have previously modelled the data individually using PC-NONLIN version 3 

(Koch et al., 1996). In this analysis, the most appropriate distribution model was initially 

determined from the following models using the AIC ( Chapter 3) to select between 

models. 

2 Compartment 
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4-Compartment 

-C(t 1-e -Nar 
e-N, 

8, r 
Ct=Ae 

1-e -ar +Be 

e-'8r 

-(A+B+C+D)e -Kat 
. 
1-e -NKar 

1-e -Kar 

-ýI 1-e - Nyr 
e- 

Nör 
Ce -y' + De - 1-e r1- 

e-(5'r 

Eq 4.3 

The equations describe plasma concentration (C) as a function of time (t), coefficient 

constants (A, B, C and D), absorption/ distribution/ elirnýination rate constants (Ka, cc, 0, y7 

8) and the standard multiple dose function (I -e -NxT )/ (I -e-x'); where x represents the 

respective rate constant (Ka, (x, P, X, 8), N is the number of equal doses administered by 

time t, andr is the dosing interval. 

However, it was reported that on fitting these models, the standard errors for Ka and cc 

were found to be very large i. e. >100%. Inaccurate and imprecise estimates can occur when 

the absorption rate constant value is similar to that of a distribution or elimination rate 

constant (this is considered further in the discussion-section 4.6.2). To overcome this 

problem, models for the special case where the absorption rate is equal to a distribution or 

elirMnation rate have been derived for the one (Dost, 1968) and two compartment models 

(Wijnand, 1988). These were extended by Koch et al to allow the fit of up to 4 

compartments after multiple doses i. e. 
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3-Compartment 
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Eq 4.6 

where k is the combined absorption and distribution rate constant. The individual 

parameter estimates for the best fit model using this approach are shown in Table 4.1. 

55 



-0 

-0 

-0 C 

-0 

(A 

-i-i 

CZ 
:i 

72 
r_ 

S--4 

E-0 

cz 

ll-ý 
le- 

C\j cm U-) 00 Lo 'It (0 P, - T-- C\J CO 

tn CII 0 11) 00 N C14 C , I- "o 

C) Q Q C) Q C) 0 Q 0 C) 0 
0 C) 0 C) 0 C) 0 CD CD CD C) CD 

CD o 0 C) 0 CD C5 0 CD o C) 0 

I, - -r-- C\l T--- 0) CY) 'It (D CY) -r-- C\l rý- 
w C\l C\l C\l T--- C\J T--- C\j - - (3) Cl) - 

- 
00 C) c C*ý in 

I r - C) m C: ) 
N 
0 -ýt C "o C) --, -, . 

kn 0 C-1 C) -, - 
- 0 "o C: ) 

0 c) C: ) CD 0 CD c) C) CD 0 o c) 

'CT CO co Cf) C\j U-) - 00 - (0 00 r, - w T-- C\J qT C\J -r-- NzT T- -r-- -r-- (0 
C*4) 

Cf) CV) rl_ C) 00 (D CIO LO a) LO OC) (D C\J cm 

00 C14 0 m r- N N 1- 
I 

00 
r- o 

N 00 C-) m ýc m - 'D N r- 
--ý C: ) o o o o (:: ) o 0 

- 
0 

ob CD C3 CD CD o CD CD CD CD 
CD 

C) 
0 

C., 

Ict 00 C\l 
00 

(D Lr) CY) (C) -r- T-- (D T, -- 
C\j -r- -r- cm T- N T-- -r-- (D T-- T-- 

C: ) 00 m kn 00 N CA Oc 1ý0 V-) C\ C*ý 
pq 

q kfý in cn cn "D r- - I-- C-1 C'4 rq "D 
0 o o 0 C: ) 0 

OC) r-ý Of) T-- OD 0 LO qT LO C\l 
cm c) cm C\j .4 C\j C\l LO 

- "1: \'d E cli cli a\ -4 -4 - r- - M -4 C5 06 

C) 

0 CO 
w C\j T- C\j 
CIO 

-4 C14 (01) 

0 C) C) 
C) co 

C5 ci C5 

r- vt 
w CM qqT CY) 

V) 

00 m I'D 

C) C) C 

CCL 
e, -r-- LO 00 

w It rl- CV) 
ctý 

-m 
CIA m 

C) d C) 

ýld 
e, C\l T--- C\j 

w CO LO C\j 
cn 

- CN m Nt 
CN 00 1%0 

U) CM 

- oo N ýo 
qqq d 

u e, CO 0) CO 
N LO N 

C: ) 00 

(0 NN 
U) CD U) 

It (0 0 

,Q C6 -- -- 

LO -r- CY) 
w, 'IT 

OC) C: ) 

00 

Oo 

03 
r-L 

E 
0 u 



4.3 Aims 

The aim of this analysis was to: 

1) Determine the disposition characteristics of bismuth following multiple oral dosing in 

healthy volunteers using nonlinear mixed effect modelling 

2) Compare the population modelling approach to the standard two stage approach with 

regard to estimation of (x and Ka 

3) Predict the steady state levels and therefore assess the potential for toxicity from 

prolonged treatment with RBS 

4.4 Methods 

4.4.1 Noncom partmental analysis 

The area under the plasma time curve for the first 12 hours post dose (AUCO-12)was 

calculated for each full profile day using the linear trapezoidal rule. The maximum 

concentration post dose (Cmax) and minimum concentration after 12 hours (Cmin) were 

determined directly from the data. Ratios of the individual parameters were used to 

assess the accumulation from day I to day 14 and from day 14 to day 28. 

4.4.2 Population pharmacokinetic analysis using micro or macro rate 

constant models 

Micro rate constant model 

An initial population analysis was undertaken utilising the ADVAN5 subroutine from 

the PREDPP library of pharmacokinetic models available within NONMEM. Two and 

three compartment models with first order input were fitted using the FO and FOCE 

methods (Chapter 3). 
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Macro rate constant model 

Due to problems in obtaining appropriate model fits (see results and discussion), a 

second population analysis was undertaken using the coefficient and macro rate constant 

models Eq 4.1 to 4.3. For comparison, the adapted Wijnand compartment models were 

also fitted Eq 4.4 to 4.6. Interindividual variability was estimated on all parameters 

using an exponential error model. Intraindividual variability was estimated using a 

combined exponential and additive error model (Chapter 3). The NMTRAN user 

supplied PRED records for implementation of equations 4.2 and 4.5 are shown in 

Appendix I. I- 

Model dependent estimation of AUCO-129 Cmax and Cmin 

The population mean and individual model dependent estimates of Cmax and Cmin on 

days 1,14 and 28 were obtained by setting N to 1,27 or 55 in Eq. 4.1 to 4.6 and 

substituting in the corresponding population and individual pharmacokinetic parameter 

estimates. While Cmin was obtained by directly substituting t=12, Cmax was obtained 

by varying t until a maximum was reached. This process was automated using the 

solver routine in EXCEL (version 5). AUCO-12on days 1,14 and 28 were obtained by 

integrating the equations over the 12 hour dosing interval. For the standard three 

compartment model (Eq 4.2) the following equation is obtained 

A Nar B -Nrr) A+B+C -NKar) 

e- )+ 
. 
(I-e-N'6)+-c. (I-e - K, . 

('-e 

Eq 4.7 

The values of Cmin and Cmax at steady state were obtained from the equivalent steady 

state equations i. e. for the three compartment model 
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AUCO-12at steady state was determined by taking the integral of these equations over the 

12 hour dosing interval i. e. for the three compartment model 

A UCss =A .+B+C- 
A+B+C 

a8y Ka 

The prediction intervals for AUC, Cmin and Cmax from day 1 up to steady state dosing 

(i. e. (median and 25-75th and 5-95th percentiles) were obtained by simulating for 1000 

patients using the final population mean and variability estimates. 

4.4.3 Assessment and comparison of the noncom partmental and 

population model dependent estimates of accumulation. 

Model based predictions of accumulation in AUCo-12) Cmin and Cmax were compared 

to the noncompartmental estimates. The noncompartment estimates were log-normally 

distributed, so the geometric mean was compared to the average population estimates 

obtained using the exponential interindividual variability model. 

4.5 Results 

4.5.1 Noncompartmental analysis 

The individual and geometric mean, AUCO-12, Cmin and Cmax for days 1,14 and 28 are 

shown in Table 4.2. The average measures indicated that noncompartmental parameters 

increased during the course of the study. The standard deviations were large across all 

parameters and days. All subjects except individuals 3,7,8 and 11 demonstrated a 

progressive increase in both AUCO-12and Cmin during treatment. 
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The relationship between Cmax and duration of treatment was highly variable for all 

individuals. This was exemplified by the largest measured concentration being sampled 

on day 14 in 9 individuals. The accumulation of bismuth during the treatment course is 

shown in terms of the ratios of the parameters on day 14 to day I and on day 28 to day 

14 (Table 4.3). As expected, the geometric mean accumulation in Cmax, Cmin and 

AUCO-12 during the first two weeks (2.07,6.00 and 3.61, Table 4.3) was much greater 

than that during the second two weeks (1.07,1.29 and 1.16, Table 4.3). Although 

further significant increases would not be expected, predictions of the final steady state 

estimates require the application of modelling techniques. 

4.5.2 Population analysis 

Micro rate constant model 

The summary of runs made using the micro rate constant models is shown in Table 4.4. 

Using FO estimation and an exponential error model, the objective function for the three 

compartment model (Run2) was significantly smaller than that for a two compartment 

model (Runl). The combined additive plus exponential intraindividual vanability 

model (Run3) was significantly better than when the exponential error model alone was 

used (Run2). Figure 4.2 shows plots of population predicted concentration versus the 

observed concentration for a three compartment model using the FO and FOCE 

estimation methods (Run 3 and Run 5). The fit with the FOCE method was less biased 

than with the FO method. However, the run terminated unsuccessfully due to rounding 

errors, even after rerunning with new starting estimates. A successful termination and 

lower objective function was obtained by reducing the number of (o terms in the model 

(Run 6). This suggested that the model with the full interindividual variability structure 

had terminated at a local minimum (Run 5). 
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Table 4.4 Model development for the micro rate constant models 
Run 
no 

Estimation 
method 

No 
compartments 

Objective 
function 

No 0 
Parameters 

No w 
parameters 

No cy 
parameters 

Successful 
minimisation 

No 
significant 

figures 

Standard 
errors 

estimated 
1 FO 2 1191.3 5 5 1 yes 3.3 ne 
2 FO 3 405.1 7 7 1 yes 3.1 ne 
3 FO 3 313.0 7 7 2 yes 3.1 ne 
4 FOCE 2 830.8 5 5 1 yes 3.5 ne 

interaction 
5 FOCE 3 188.0 7 7 2 No -0.5 ne 

interaction 
6 FOCE 3 35.7 7 4 2 yes 3.3 yes 

interaction 

ne indicates where the standard errors were not estimable 
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Figure 4.2 Predicted concentration versus observed concentration plots for a) Run 3 (3 
compartment model using the FO estimation) and b) Run 5 (3 compartment model using 
the FOCE estimation) 
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Macro rate constant model 

Model development of the macro rate constant population models is shown in Table 4.5 

and the corresponding population parameter estimates are shown on Table 4.6. Run 

times were much shorter with this parameterisation (12 to 24 hours) and the objective 

functions for equivalent models were substantially lower. There was a large decrease in 

objective function upon fitting a3 compartment model in comparison to a2 

compartment model (Run 8 vs Run 7). The decrease in objective function upon fitting a 

4 compartment model was smaller but still statistically significant (P<0.005), (Run 9 vs 

Run 8). However, the covanance step was not successful and therefore standard errors 

could not be estimated. Figure 4.3 shows the weighted residuals versus time plots for 

the 2,3 and 4 compartment models. While the bias in the weighted residuals indicates 

that there was mi s- specification of the washout phase (times > 672 hours) when the two 

compartment model was fitted (Figure 4.3a), there was no evidence of a bias with the 

three and four compartment models (Figure 4.3 b and c ). Plots of the individual 

predictions are shown on Figure 4.4. While there was a large difference between the 

individual predictions from the two and three compartment models, the individual 

predictions for the three and four compartment model were very similar i. e. only 26 of 

977 individual predictions using the four compartment model were >+25% or <-25% of 

corresponding three compartment model individual predictions. Thirteen of these 

predictions were for three individuals where the individual fitting demonstrated that a 

four compartment model was better. Therefore, while for some individuals the 

concentration time profile was better characterised by a four compartment model, a 

three compartment model was most appropriate across the majority of the subjects. 

Precise population average estimates of Ka and cc were obtained (Table 4.6). In general, 

interindividual variability estimates were large and imprecisely estimated (Table 4.6). 
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Table 4.5 Model development of the macro rate constant models 

Run 
no 

Estimation 
method 

No 
compartments 
& model type 

Objective 
function 

No 0 
Parameters 

No TI 
parameters 

No E 
parameters 

Successful 
minimisation 

No 
significant 

figures 

Standard 
errors 

estimated 

7 FOCE 2 293.7 5 5 2 yes 4.2 yes 
interaction standard 

8 FOCE 3 15.6 7 7 2 yes 4.1 yes 
interaction standard 

9 FOCE 4 -1.58 9 9 2 yes 4.5 no 
interaction standard 

10 FOCE 2 554.2 4 4 2 yes 4.4 yes 
interaction Wijnand 

11 FOCE 3 25.9 6 6 2 yes 4.0 yes 
interaction Wijnand 

12 FOCE 4 2.7 8 8 2 yes 4.7 no 
interaction . 

Wijnand 
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Figure 4.3 Population weighted residuals versus time plots for a) Run 7 (2 compartment 
model using the FOCE estimation), b) Run 8Q compartment model using the FOCE 
estimation) and b) Run 9 (4 compartment model using the FOCE estimation). 
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Figure 4.4 Comparison of individual predictions from the population macro rate 
constant models: a) Two (Run, 7) versus three compartment model (Run8) and b) Four 
(Run9) versus three compartment model (Run8) 
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Individual patient parameters for the standard macro rate constant three compartment 

model are shown in Table 4.7. A selection of individual patient fits using the standard 

macro rate constant model is shown in Figure 4.5. 

The model development and parameter estimates using the Wijnand macro rate constant 

models are also shown in Tables 4.5 and 4.6, respectively. On comparing equivalent 

models, the objective functions were larger than for the standard macro rate constant 

models. For the two compartment ( Run 2 vs Run 10) and three compartment (Run 8 vs 

Run 11) models the differences in objective function were statistically significant 

(P<0.001 and P< 0.01, respectively). A comparison of the individual predictions for the 

three compartment models is shown in Figure 4.6. Only 4 of the 977 Wijnand model 

predictions were >+25% or <-25% of the standard model predictions. 

For the three compartment model, the estimates of B, P, C, y estimates were similar for 

the standard and Wijnand models (Run 8 and Run 11, Table 4.6). The combined 

au I ab-sorption/distribution rate constant, k, was estimated to be 2.3 hr- I (Run 11), and 

I 
therefore, in between the values of 1.2 and 4.4hr- , estimated for (x and Ka, respectively. 

The estimate of the exponential component of intraindividual vanability was the same 

for Runs 8 and 11. 

The individual patient parameters for the Wijnand macro rate constant three 

compartment model are also shown in Table 4.7. The individual estimates of B, P, C, 

and y estimates were similar for the standard and Wijnand macro rate constant models. 

Therefore, while using the Wijnand macro rate constant model increased the objective 

functions, it did not affect the estimate of the intermediate and terminal rate constants. 

The magnitude of k in comparison to (x and Ka, was consistent with that shown with 

population parameters. Since separate estimates of oc and Ka were discernible there was 

no requirement to further utilise the Wijnand macro rate constant model. 
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Table 4.7 Individual parameter estimates and calculated half-lifes for the macro rate 
constant models 

Standard (Run8) 
ID A cc B c y Ka T 1/2 TI/2 T 1/2 TI/2 

ng. ml- I hr-1 ng. ml-1 hr-' ng. ml-' hr-1 hr-1 
cc 

mins 
0 

hrs 
y 

days 
Ka 

mins 
2 5.6 1.2 0.45 0.057 0.025 0.0014 2.7 35 12 20 17 
3 11 1.0 0.76 0.045 0.024 0.0015 4.6 40 15 19 9.1 
4 7.9 1.1 0.43 0.035 0.082 0.0011 3.8 36 20 27 11 
5 6.8 1.5 0.63 0.032 0.046 0.0010 4.7 28 22 29 8.8 
7 12 0.52 0.75 0.046 0.040 0.0018 3.5 80 15 16 12 
8 11 1.7 3.4 0.097 0.034 0.0013 7.5 25 7 22 5.6 
10 6.6 2.4 0.33 0.041 0.021 0.0013 2.6 17 17 22 16 
11 13 0.76 0.51 0.043 0.031 0.0015 3.9 55 16 19 11 
13 5.9 1.6 0.47 0.056 0.053 0.0014 4.3 26 12 21 9.7 
14 6.9 1.1 0.75 0.046 0.040 0.0011 5.3 36 15 26 7.9 
15 6.8 1.2 0.84 0.072 0.029 0.0012 5.2 34 10 24 8.0 
17 6.7 1.4 0.78 0.065 0.016 0.00046 3.7 29 11 63 11 
19 5.7 1.6 0.36 0.040 0.030 0.0020 3.6 27 18 14 11 
21 7.3 1.7 0.38 0.037 0.071 0.0013 6.0 24 19 22 6.9 
23 6.9 1.0 0.66 0.034 0.056 0.0013 3.6 42 20 22 12 
24 6.4 1.6 0.26 0.058 0.29 0.0019 4.4 26 12 15 9.5 
25 8.3 1.8 0.46 0.028 0.078 0.0015 5.8 23 24 20 7.1 
27 5.8 1.1 0.59 0.045 0.083 0.0023 2.9 37 15 12 14 

Population 7.0 1.2 0.57 0.046 0.044 0.0014 4.4 35 15 21 9.6 
(NONMEM) 

Wij nand (Run 11) 

]D A k B c y TI/2 TI/2 TI/2 

k P y 
ng. mI-1. hr-1 hr-1 ng. ml-1 hr-1 ng. mI-1 hr-1 mins hrs days 

2 6.9 1.7 0.48 0.061 0.025 0.0015 24 11 20 
3 31 2.0 0.85 0.048 0.025 0.0015 20 14 19 
4 31 2.0 0.48 0.039 0.083 0.0011 21 18 27 

5 31 2.5 0.66 0.033 0.046 0.0010 16 21 29 

7 31 1.3 1.0 0.049 0.042 0.0019 32 14 15 

8 31 3.2 3.4 0.096 0.034 0.0013 13 7.2 22 

10 4.0 3.3 0.32 0.042 0.022 0.0013 12 16 22 

11 29 1.5 0.63 0.048 0.032 0.0016 28 14 18 

13 15 2.6 0.51 0.060 0.054 0.0014 16 11 21 

14 24 2.4 0.88 0.053 0.040 0.0011 18 13 25 

15 23 2.4 0.97 0.080 0.029 0.0012 17 8.6 24 

17 15 2.3 0.81 0.067 0.016 0.00045 18 10 64 

19 11 2.4 0.39 0.043 0.031 0.0021 17 16 14 

21 26 3.0 0.42 0.041 0.073 0.0013 14 17 21 

23 16 1.8 0.73 0.038 0.058 0.0013 23 18 22 

24 17 2.6 0.29 0.064 0.29 0.0019 16 11 15 

25 29 3.1 0.48 0.030 0.079 0.0015 14 23 20 

27 10 1.8 0.65 0.050 0.085 0.0023 23 14 12 

Population 18 2.3 0.64 0.050 0.045 0.0014 18 14 21 
(NONMEM) 
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Figure 4.5 Individual predictions from the standard population macro rate constant 
model (Run 8) versus time 
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Figure 4.6 Comparison of individual predictions from the population macro rate 
constant models: Three compartment Wijnand model versus standard three 
compartment model 
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The predicted estimates of AUCO-12, Cmax and Cmin for days 1,14 and 28 and at steady 

state, using the population and individual estimates from Run 8 are shown in Table 4.8. 

The ratios of day 14 to day I estimates, and day 28 to day 14 estimates and SS to day 28 

estimates are shown in Table 4.9. Figure 4.7 shows a comparison of the geometric 

mean estimates of AUCO-12, Cmax and Cmin on days 1,14 and 28 from the 

noncompartmental analysis and the corresponding population typical estimates from the 

population analysis . The ratios of the AUCO-12 indicate that the model based estimate 

of accumulation was smaller from day 1 to day 14 (2.94 Table 4.9 vs 3.61 Table 4.3) 

and greater from day 14 to day 28 (1.28 Table 4.9 vs 1.16 Table 4.3). However, the 

resultant estimates of AUCO-12 on day 28 were very similar ( 36.1 ng. ml-l. hr Table 4.8 

vs 36.4ng. ml-l. hr Table 4.2). 
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Figure 4.7 Comparison of population model dependent estimates (Run 8) of a) AUCo-12, 
b) Cmax and c) Cmin with the equivalent geometric mean estimates from the 
noncompartmental analysis on days 1,14 and 28, and at steady state (SS) 
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The model dependent estimates of Cmin on days 1,14 and 28 ( 0.37,1.74 and 2.37 

ng. m I Table 4.8, respectively) were very similar to the observed values (0.30,1.77 and 

2.24 ng. ml-1 Table 4.2, respectively). Although the model dependent estimate of Cmax 

was substantially greater on day 1 (3.47 
, Table 4.8 vs 2.45 Table 4.2), the model 

dependent estimates of accumulation in Cmax over the first 14 days was smaller, so the 

actual estimates on day 14 ( 5.15 Table 4.8 vs 5.33 Table 4.2) and subsequently day 28 ( 

5.80 Table 4.8 vs 5.78 Table 4.2) were similar for the noncompartmental and 

compartmental approaches. 

It was predicted that the accumulation from day 28 to the steady state levels would on 

average result in a further 36%, 47% and 20% increase in AUCO-12, Cmin and Cmax, 

respectively. The predicted estimates of AUCO-12., Cmin and Cmax at steady state were 

49.1 ng. ml-1. hr, 3.49 ng. ml-1 and 6.94 ng. ml-1, respectively (Table 4.8). 

The prediction intervals (median and 25-75th and 5-95th percentiles) for AUC, Cmin 

and Cmax from day I up to steady state are shown in Figure 4.8. At steady state the 

upper limit for Cmax was predicted to be well below the previously proposed "safety" 

limits (50 ng. ml-1, section 4.1.3). 
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Figure 4.8 Predicted estimates of a) AUCo-12, b) Cmax and c) Cmin following a 255 day 
treatment course of RBS. 
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4.6 Discussion 

4.6.1 Safety assessment of RBS treatment 

As previously highlighted (4.1.3), most incidences of toxicity have been due to 

treatment periods which extended beyond those currently used in routine management 

of relapsed gastric or duodenal ulcer. It is therefore unlikely that episodes of CNS 

toxicity would occur with any bismuth formulation given in accordance with current 

clinical practice. Nevertheless, the drug regulatory agencies require that the safety of an 

individual drug product be demonstrated. Furthermore, since alteration of intra-gastric 

acidity has been shown to increase the absorption of bismuth from RBS (Nwokolo et al., 

1991), plasma levels could theoretically increase upon co-administration with ranitidine. 

The noncompartmental geometric mean estimates of AUCO-12, Cmax and Cmin on day 

14 (31.7 ng. ml. hr- I, 5.3 ng. ml -1 and 1.8 ng. ml -1, respectively) were comparable with 

levels previously reported on day 10 of a 500 mg twice daily "S study (34ng. ml. hr-1, 

5 ng. mI -1 and 2 ng. ml -I, respectively) (Lacey et al., 1994). However, since the 

equivalent elemental bismuth doses were 240.8 mg and 150.5 mg, respectively, it would 

be expected that in the present study the average AUCO-12., Cmax and Cmin would be 

significantly higher. The differences may be an artefact of the small sample sizes in 

each study and the large interindividual variability in general (Table 4.2). The three 12 

hour profiles allowed the estimation of bismuth accumulation via noncompartmental 

techniques (Table 4.3). Since accumulation ratios were a lot smaller over the second 

two weeks of dosing it would be expected that further accumulation upon dosing to 

steady state would be limited. In fact, it was predicted that the accumulation from day 

28 to the steady state levels would on average result in a further increase in AUQ-12, 

Cmin and Cmax of 36%, 47% and 20%, respectively. 

All plasma concentrations measured over the 28 day dosing period were lower than 

19ng. ml- I, a value which is approximately one quarter of the proposed 77.5 ng. ml-1 
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safety limit. Similarly, the 5th to 95th percentile range for the predictions of Cmax at 

steady state were shown to be much lower than this limit. Furthermore, there has been 

no clinical evidence that the transitory nature of the Cmax values relate to toxIcity, and 

the limits as previously discussed have themselves been considered to be overcautious 

(Benet, 1991). 

4.6.2 Model dependent methods 

Due to the necessity for at least a three compartment model to describe the typical 

healthy volunteers pharmacokinetics, ADVAN 5 (for general linear models) from the 

PREDPP library was utilised. However, the complexity of the models, the use of 

ADVAN 5 and the requirement for FOCE increased computation time considerably (3-7 

days per run ). In addition, neither successful minimisation or standard error estimation 

could be obtained using the full off-diagonal interindividual error structure. In 

comparison, the coefficient and macro rate constant parameterisation, implemented 

using a PRED subroutine, was found to decrease computation time and provide 

successful termination. Avoiding ADVAN 5 was probably the main reason for the 

improvement in run-times. 

As previously stated, the combined exponential and additive models allowed the 

variance to be calculated as separate homogenous and heterogenous components 

(Chapter 3). Often, both the heterogenous and homogenous intraindividual variability 

are estimated. In this analysis, the additive variance was fixed to 0.04 (LO& due to the 

protracted nature of the terminal phase at or around the LOQ and the inability to obtain 

a precise estimate. 

The population approach determined that a three compartment model would best 

describe the pharmacokinetics of bismuth. This confirms the results of the individual 

fitting and is consistent with a Bayesian analysis of this data which has recently been 
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reported (Bennett et al., 1997). The population typical parameter estimates for both 

population methods i. e. A, B, C, cc, P, y and Ka were (Bayesian / NONMEEM, Run 8 

Table 4.6 ) 4.5/ 7.0 ng. ml-1,0.59 / 0.57 ng. ml-1,0.051 / 0.044 ng. ml-1,0.87 / 1.20 hr-1, 

0.035 / 0.046hr-1 and 0.0013 / 0.0014 hr-1 and 4.76 / 4.4 hr-1, respectively. The small 

differences may be due to the random effects being assumed to be normal and log 

normal for this analysis and the Bayesian analysis, respectively. The estimated half- 

lives from this analysis are similar to those from the Bayesian analysis i. e. (Bayesian / 

NONMIEM) TI/2(x, TI/2p TI/2y and Tl/2Ka were 48 / 35 mins, 20 / 15 hours and 22.2/21 

days, respectively. However, they do not coincide with the range in the half-lives 

previously reported by Benet (1991) i. e. I to 4 hours, 5 to II days and 21 to 72 days. 

Nevertheless, the washout curve available with this dataset should allow the distribution 

and elimination phases to be appropriately characterise. 

As previously discussed, the inflated standard errors when the data was individually 

modelled using a two, three and four compartment model with PC-NONLIN was 

perceived to be due to an equality between absorption and initial distribution parameter 

estimates (x (Koch et al., 1996). Previous investigations of this phenomena have 

focused on the problems of estimating an equality between Ka and Ke parameters of a 

one compartment model with first order absorption. Application of regular residual 

methods (Gibaldi & Perrier, 1982b) , curve stripping programmes i. e. (R-Stnp & 

Minsq., 1987) and the Wagner Nelson method have been shown to give inaccurate 

parameter estimates when Ka <3 Ke or 3 Ka <Ke (Chan & Miller, 1982; Gibaldi & 

Perrier, 1982a; Garrett, 1993). The failure of these methods is due to overlap with the 

absorption phase preventing the determination of a "true" terminal elimination phase. 

In comparison, nonlinear regression has previously been shown to provide accurate 

estimates of Ka and Ke when there is at least a small difference between the values 

(Chan & Miller, 1982; Patel, 1984). However, the closer the parameter estimates the 
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greater the potential for computational problems. Depending on the parameter 

estimation algorithm utilised, both slow and failed convergence can occur, and standard 

errors can become greatly inflated when the correlation between Ke and Ka approaches 

1 (Purves, 1993). In the cases where parameters can be considered to be identical, the 

models derived by Dost (1968) and Wijnand (1988) can be applied. Several 

noncompartmental techniques have been proposed to aid in the identification of whether 

this assumption can be made, however, all are limited to the one compartment single 

dose case (Bialer, 1980; Macheras, 1985; Garrett, 1993). In comparison, the application 

of nonlinear regression allows both identification of an equality in the rate constants and 

subsequent estimation of the combined parameter regardless of the underlying data or 

compartmental model. While there was evidence in the individual fitting approach that 

the large standard errors on the parameter estimates arose from a similarity between the 

(x and Ka, the population typical rate constants were determined to be 3.7 fold different 

and precisely estimated (Table 4.6). The combined absorption and initial distribution 

rate constant k (from the Wijnand model) was equivalent to the average of the separate 

estimates of Ka and cc (from the standard model). This result is consistent with previous 

comparisons of these models (Patel, 1984). 

Ka and cc equality has previously been induced by adding small amounts of random 

error to data simulated using distinct values for Ka and cc (Purves, 1993). As part of this 

investigation, it was shown that the WLS (Weighted Least Squares ) method used by 

Koch et al (1996) erroneously concluded equality of rate constants more often than the 

more complex IRLS (Iteratively Reweighted Least Squares) method. To this regard, the 

application of the ELS (Extended Least Squares ) method with individual data requires 

further investigation. 
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There may be other reasons why the SE of cc and Ka were found to be inflated upon 

individual fitting. The highly variable absorption which is inherent with drugs of low 

bioavailability (Hellriegel et al., 1996) may have prevented accurate estimation of Ka 

and cc. Since different and precise estimates of Ka and oc were also obtained using the 

Bayesian approach (Bennett et al., 1997), the application of population methods has 

been shown to be beneficial in characterising the underlying model which was otherwise 

difficult when using an individual fitting approach. 

Despite the significant reduction in the objective function upon estimating separate cc 

and Ka parameters, the comparison of the standard three compartment model with the 

corresponding Wijnand model showed that assuming equality did not greatly change the 

predictions (Figure 4.6). This is consistent with the previous work which showed the 

predictions from the two types of model could be very similar (Wijnand, 1988) and that 

mis- specification of the absorption phase does not affect the estimation of other 

population model parameters (Wade et al., 1993). 

For the three compartment model in this study the initial, intermediate and terminal 

phases accounted for 7%, 27% and 66% of steady state AUQ-12, respectively. 

Therefore, inaccurate estimation of the initial phase would not greatly affect the 

estimation of exposure. In a simulation analysis Bennett et al (1997) showed that on 

fitting a simple one compartment model to data simulated using the three compartment 

model, there was bias in the estimate of CL/F. However, it was less than the bias in the 

estimate of V/F. This result is consistent with the majority of AUC and hence CL/F 

being associated with a single elimination phase but Cmax and hence V/F being 

dependent on charactensing the full absorption and distribution profile for bismuth. 
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4.7 Conclusions 
While the noncompartmental approach allowed appropriate estimates for accumulation 

during the 28 day treatment course, estimation of expected steady state levels requires 

the application of modelling techniques. While individual patient accumulation is of 

ultimate clinical importance, the typical healthy volunteer accumulation and variability 

is important in the extrapolation to the later phases of drug development. The 

application of the population approach has been shown in this chapter to be useful in 

this respect. 

The initial STS approach suggested that distinct Ka and (x rate constants could not be 

determined. In resolving the problem, the dual absorption and elimination rate constant 

was estimated using adaptations of derived models for the special case where Ka equals 

cc. However, precise population estimates of both Ka and cc could be obtained using the 

FOCE method implementing user supplied PRED codes. 

The problems associated with the population modelling of complex distribution 

functions and extensive multiple non steady state dosing were exemplified. For these 

complex cases the benefits of the FOCE over the FO estimation method was 

demonstrated. The resulting extraordinary CPU times were largely overcome by 

avoiding PREDPP, and by employing simpler user supplied PRED routines. 

The results indicate that the population approach provided an appropriate description of 

healthy volunteer data and a suitable base model for future patient investigations. It was 

shown that accumulation to toxic levels was unlikely with the present formulation and 

dosage regimen. 
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CHAPTER 5 

APPLICATION OF NONLINEAR MIXED 

EFFECTS MODELLING 

TO BIDEQUIVALENCE TESTING 
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In this chapter, the application of the mixed effects modelling to bioequivalence testing is 

investigated. A compartmental modelling approach is compared to the standard non- 

compartmental analysis. The robustness of the mixed effect modelling approach is 

assessed by testing the hypotheses of bioequivalence before and after the datasets have 

been reduced by 80%. Both additive and multiplicative bioequivalence models are utilised 

in the analysis. Finally, the potential role of the population pharmacokinetic approach in 

the assessment of bioequivalence is discussed. 

5.1 Introduction 

5.1.1 The concept of bioavailability and bioequivalence 

Bioavailability, an abbreviated tenn. for biological availability, has been defined by the 

FDA as "the rate and extent to which the active ingredient, or therapeutic moiety, is 

n t.. absorbed and becomes available at the site of action". In practical terms, the proportion of 

a drug which becomes systemically available is known as the absolute bioavailability (F), 

and all intravascular doses are, by convention, 100% bioavailable. The relative 

bioavailability of an extra-vascular drug product is estimated by comparing the 

concentration time profiles after intra-vascular and extra-vascular administration. This 

value is dependent on both the physiochernical properties of the drug and the release 

characteristics of the formulation. 

In comparative bioavailability studies, the concentration time profiles of different 

formulations of the same drug, or different drug products, are compared. In 

bioequivalence studies the average concentration time profiles from different formulations 

are compared to ensure that the products are interchangeable. Bioequivalence is concluded 

when the two formulations are shown to be equivalent in terms of both the "rate" and 

66 extent" of absorption. 
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5.1.2 Parameters used to determine bioequivalence 

Many different pharmacokinetic parameters can be used to describe and assess the drug 

concentration time profiles, e. g. TI/2 Ke, Mean residence time (MRT) etc. The preferred 

parameters are; AUCO-. to assess the total amount of drug which becomes bloavallable 

(i. e. the 44extent" of absorption); Cmax, the maximum observed concentration; and Tmax, 

the time at which the maximum concentration is observed. Together Cmax and Tmax are 

used to assess the rate at which the drug becomes bioavailable. 

5.1.3 Background and history of bioequivalence studies 

After the innovating company's patent has expired, a drug can be manufactured and 

marketed under its "approved" (generic) name. Generic prescribing, which can potentially 

reduce treatment cost, has led to an increase in the number of generic manufacturers and 

the marketing of generic drug products. A method to ensure that efficacy and safety is 

maintained across formulations is therefore required. 

The concept of bioavailability/ bioequivalence became a major public issue in the late 

1960's, when the therapeutic responses between proprietary and generic products for 

several drugs were shown to be different. By 1970, the FDA required evidence of 

"biological availability" in applications for the approval of certain drugs. Subsequently, 

this requirement has developed into the regulations currently used in bioavailability and 

bioequivalence studies. (FDA, 1992) The statistical methodology employed for 

bioavailability / bioequivalence studies has evolved over the years to cope with alterations 

to the regulatory requirements. Recently, the difference between population 

bioequivalence (where the safety of prescribing a drug for the first time is ensured) and 

individual bioequivalence (where the safety of switching from one product to another is 

ensured) has been identified (Anderson & Hauck, 1990; Schall & Luus, 1993; Hauck & 
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Anderson, 1994; Schall & William, 1996). Draft guidelines have been prepared which 

identify separate criteria for each of these issues (FDA, 1997). 

5.1.4 Development of the statistical concepts in bioequivalence testing 

In bioequivalence testing, the rate and extent of absorption from a test formulation (T) is 

compared to a reference formulation (R). If the average population values for the test 

formulation(IIT) and the reference formulation(gR) are equal, then the formulations are 

concluded to be bioequivalent. However, ýtTand ýtRmay differ statistically without the 

difference being clinically important. 

Following the inaugural meeting of the bioavallability committee in 1971, the proposed 

statistical hypothesis for the assessment of bioequivalence was the subject of much debate. 

During the following decade there were many important contributions to the statistical 

methodology used in bioequivalence testing. Amongst the most prominent were the power 

approach, (Schunmann, 1981), the confidence interval approach (Westlake, 1972,1976, 

1979; Metzler, 1974), the reformulated hypothesis approach (Schurimann, 1981; Anderson 

& Hauck, 1983) and the Bayesian approach (Rodda & Davis, 1980; Mandallaz & Mau, 

1981). The methods were initially compared and contrasted by Metzler and Huang (1983). 

More recently the new approaches of population and individual bioequivalence have been 

discussed (FDA, 1997). However, the two one sided test approach (Schurimann, 1987, 

1989) which is operationally identical to the confidence interval approach (Pidgen, 1992) 

used in this chapter, is the current regulatory standard. 

5.1.5 Confidence interval approach 

If the population mean parameter estimates for the test and reference fon-nulations are 

given by ýtTand ýtR, a hypothesis test based on the confidence interval of the mean 

difference can be postulated. The concept is to show bioequivalence by rejecting the Null 

Hypothesis of bi Oinequi valence. The Null Hypothesis is given by 
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Ho: ýtT 
- 

ýtR 
:! ý a, or 

ýtT 
- 

ýtR ý! a2 

where a, and a2are the linlIts for the region of acceptance, where a, < a2. The alternative 

hypothesis of bioequivalence is therefore given by 

Hl: a, "ý' 
ýtT 

- 
ýIR <a2 

The (1-cc) x 100% confidence interval for the sample mean difference is given by 

1) 92 
ß-P 

R-+ 
(tl-«/2, 

n-1). 
s 

T n2 

FS 

where: 
5 

is the sample mean for the reference formulation 

ýt, is the sample mean for the test formulation 

S2 is the mean square error from the analysis of variance between formulations, subjects 

and periods. 

n is the number of subjects 

t1-a12, n-1's the appropriate two tailed t-value with (x usually set at 0.1 or 0.05 for 90% or 

95% confidence, respectively. 

The intervals in their absolute forin are difficult to interpret, so confidence intervals for the 

relative difference are nonnally calculated 

99 
ýtT 

- 
ýtR 

Eq 5.1 (LD 
-9 

ýtR 

The FDA have adopted a policy of accepting bioequivalence when the 90% confidence 

intervals are within 20% (i. e. -al=a2=0.2) of the reference formulation. (Westlake, 1972, 

1981; Pidgen, 1992; Chow & Liu, 1992a). 
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5.1.6 Normality vs In-normality (additive vs multiplicative model) 

The individual Cmax or AUCO-. parameters (Y), for a comparison of two formulations 

using a standard randomised 2x2 cross-over study, can be described by the effects model- 

Y=ýt+I+P+F+E 

where g is the overall mean; I is the random intersubject effect; P is the period effect; F is 

the formulation effect and E is the random intrasubject error in observing Y. Both I and E 

are independent and normally distributed with a mean of zero. Since the parameters Cmax 

and AUCO-., are also considered to be normally distributed, the bioequivalence model is 

additive in both fixed and random effects. 

However, assumptions of normality for Cmax and AUCO-. are often invalid, since the 

underlying distributions can be positively skewed or truncated at zero. In addition, it has 

been shown that intrasubject and intersubject variances often lack homogeneity (Chow & 

Liu, 1992b). Ln- transformation can correct for this skew. In using this model it is 

assumed that the effects model is described by the following multiplicative relationship 

Y=ýt xIxPxFxE 

Upon In-transformation the effects can again be deschbed by an additive model 

ln(Y)=In(ýt) + In(l) + In(P) + In(F) + In(E) 

This concept has direct application to the pharmacokinetic relationships which underly the 

estimation of the parameters used in the bioequivalence test i. e. 

AUCO-- = 
F. DOSE Eq 5.3 

CL 

Upon In-transformation this is converted to the additive model 

ln(AUC,, 
-. 

) = In F- In CL + In DOSE Eq 5.4 

such that In AUCO-. is expressed as a function of the sum of formulation effect (InF) and 

subject effect (InCL). Therefore, the In-transformation could reduce skew, normalise 

variance and ensure that effects are addltive (Steinijans & Hauschke, 1990). 
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An additional advantage is that the In-transformed (multiplicative) model provides a 

confidence interval for the ratio of two means (OInRD)wlthout the need for further 

manipulation (Mandallaz & Mau, 1981)- 

In 
ýUT 

In RD= In 4UT -In JUR I 
Eq 5.5 

ý JU R, 1 

The Null Hypothesis of bioinequivalence for the ratio of the two formulation means 

becomes- 

du T 
ßT 

Ho: In -, 
<In al or 11) --r- >In a2 

( JUR, 7 ( JUR) 

while the corresponding alternative hypothesis of bioequivalence becomes- 

1 

HI: In a <In 
JUT 

< Ina 
17 

ý, JUR) 

Following the 20% rule the limits for a, and a2would be 0.8 & 1.2, respectively. However 

on the logarithmic scale these are not symmetrical around unity. A symmetrical decision 

scheme using the linUts 0.8 & 1.25 has been proposed (Pabst & Jaegar, 1990) and is now 

considered to be a regulatory standard (Chow & Liu, 1994). 

Usually, both normal and log-normal models are applied and the assumptions of normality 

and In-normality are checked in each case. 
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5.1.7 Application of the population approach to bioequivalence data 

Previously, compartmental approaches have been used to directly compare the absorption 

rates, as an addition to standard noncompartmental. hypothesis testing (Graves & Chang, 

1989; Piotrovskij et al., 1995). It has also been shown to be useful in the companson of 

immediate and controlled release formulations when the difference in dosing frequencies 

would not allow bioequivalence to be established noncompartmentally (Miller & Ludden, 

1993). The utilisation of mixed effect modelling in the general context of bioequivalence 

testing was first proposed by Kaniwa et al. (1990), and more recently by Li et al. (1994) 

and Pentikis et al. (1996). Kaniwa et. al. directly compared compartmental and 

noncompartmental methods for estimating bioequivalence in terms of AUCO-. and Cmax. 

For six different drugs, the point and 95% Cl for ORDin AUCO-.. and Cmax were sin-fflarly 

estimated, by the two approaches. The same number of Null Hypotheses, was rejected by 

both approaches (6 in total). They also showed that five out of six Null Hypothesis were 

still rejected when data was reduced by 80%. 
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5.2 Aims 
The aim in this chapter was to confirm and extend the work of Kanlwa et al. (1990), and 

discuss where the population pharmacokinetic approach to bioequivalence testing would be 

useful in drug development and the control of generic equivalents. 

1) Comparison of noncompartmental and compartmental approaches to 

bioequivalence testing. 

The previous comparisons of the compartmental and the noncompartmental approaches to 

bioequivalence testing utilised datasets which were either obviously bioequivalent or 

bioinequivalent in both AUCO-. and Cmax. In this analysis, a dataset which is 

bioequivalent in AUCO-oo but bioinequivalent in Cmax is investigated. The effect of mis- 

specifying the compartmental model and the NONMEEM estimation method used in the 

computation of the model parameters are also assessed. 

2) The Pharmacokinetic model and Cmax derivation 

The regulatory bodies require that Cmax is used to assess the rate of absorption. Kaniwa et 

al. (1990) showed that the Op, 
_D 

in Cmax can be estimated using the mean population 

parameters. However, the confidence intervals for the ORDwere approximated using the SE 

estimates for the absorption rate of the test formulation. A compartmental method for 

determining the point and Cl estimate for the ORDin Cmax is therefore required. In this 

analysis, an approach for estimating the point and CI estimates for the ORDin Cmax, 

directly from a one compartment model, is proposed. A surrogate metric for the direct 

estimation of Cmax from a two compartment model is also proposed. 

3) Additive and Multiplicative bioequivalence models 

The regulatory agencies require that both additive and multiplicative bioequivalence 

models be tested. The compartmental methods for implementing a multiplicative 

bioequivalence model are described and used to estimate the point and CI estimates for the 

OlnRDin AUCO-. and Cmax. 
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4) Power of the population approach in assessing bioequivalence from reduced 

datasets 

Kaniwa et al (1990) previously demonstrated that the results of the hypothesis tests were 

maintained even when the data sets were reduced by 80%. In this analysis, the dataset was 

reduced by assuming three different sampling schemes, representing three different 

methods for the collection of sparse bioequivalence data. 

5.3 Bloequivalence Data 

Data from two bioequivalence studies, comparing the reference Natrilix formulation and a 

test indapamide formulation (Harris Pharmaceuticals), were available and used in the 

assessment of the population compartmental approach to bioequivalence testing . Both had 

a two period randomised cross-over design. In the first sudy, 16 young male healthy 

volunteers received one 2.5mg tablet of each fonnulation, and in the second study 14 

young male healthy volunteers received two 2.5 mg tablets of each formulation. Plasma 

concentrations were measured at 12 time points: 0,0.5,1,1.5,2,2.5,3,4,6,8,12,24,48 

hours after each dose. 

The individual plasma concentration versus time profiles for the 2.5mg and 5. Omg studies 

are shown, split by formulation, in Figures 5.1 and 5.2, respectively. In each case the peak 

concentrations were highest for the test formulation. 
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Figure 5.1 Individual concentration and log concentration time profiles for a) The 
reference and b) The test formulations after a 2.5mg dose 
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Figure 5.2 Individual concentration and log concentration time profiles for a) The 
reference and b) The test formulations after a 5mg dose 
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5.4 Methods 

5.4.1 Noncom partmental approach to bioequivalence testing 

AUCO-. was calculated for each concentration time profile using the linear trapezoidal 

rule. Cmax was taken to be the highest observed concentration after each dose. 

A two way ANOVA was performed separately for each study and then again for the total 

dataset after correcting for dose. The ANOVA analysis was repeated for both raw and In- 

transformed AUCO-. and Cmax parameters. The point estimates and 90% confidence 

intervals for the absolute differences and ORDwere calculated using the mean squared error 

(S) from the ANOVA and equation 5.1. The point estimates and 90% confidence intervals 

O]nRDwere calculated using the mean squared error (S) from the ANOVA of the In- 

transformed parameters and equation 5.5. 

5.4.2 Population model dependent approach: Full model development 

Using both FO and FOCE (with interaction) methods, one and two compartment models 

were compared. The absorption phase was charactensed by either a first order (Ka) or a 

zero order (Ko) absorption model. The requirement for an absorption lag (Tlag) was tested 

in each case. Normal fitting criteria were used to compare the models (Chapter 3). 

5.4.3 A population compartmental approach to bioequivalence testing 

The following outlines how estimates of ORD and 01,1RD 
, 
for AUCO-,,, , 

ka and Cmax 
, were 

obtained for a one and two compartment model. 

Estimation of ORDin AUCO-oo for a one and two compartment model 

The population approach to estimatingORD in the AUCO-. o utillses the following 

relationship- 

AUCo-- = 
F. DOSE Eq 5.6 

v,. Ke 
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where formulation specific population mean estimates of 
F 

and Ke were used to provide V, 

the population average estimates or for AUCO-,, o, shown In Eq 5.1. of ý1 

Since dose and Ke are independent of formulation, the ORDfrom Eq 5.1 on substituting in 

Eq 5.6, for each formulation, simplifies to- 

RD 

FF 
Vl 

T 
Vl 

R 

F 
Vl 

R 

Rearranging for 
F 

gives VI 
T 

FF 
Vl 

T 
VI 

R. 

(ORD + 

Eq 5.7 

Eq 5.8 

This relationship can be utilised in NONMEM to obtain parameter estimates of ORDby 

using 

FFF 
-=- . 

ýl-Formý + 
.ýI+ ORDý. ý Formý 

VI VI 
R 

Vl 
R 

Eq 5.9 

where the indicator variable Form, takes a value of 0 for all concentration associated with 

the reference formulation and I for all concentrations associated with the test formulation. 

F 
is the reciprocal of the population parameter for volume of distribution divided by the 

V, 

bi oavail ability, and provides NONMEM with estimates of scale factor for the conversion 

of compartment amounts into observed concentrations. The following can be estimated- 

V, 

-I FF Form) +F VI 
R 

VI 
R 

. 
(I + ORD). (Fonn) 

Eq 5.10 
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Estimation of 0" in Ka for a one and two compartment model 

Bioequivalence in the rate of absorption can be obtained by comparing the absorption rate 

constants for each formulation. Coding the ORDas previously shown in Eq 5.9, gives- 

Ka = 
KaR'ý I- Fonný + KaR'ý 1+ ORDý. ý Fonný Eq 5.11 

where KaR is the first order absorption rate for the reference fonnulation 

Estimation of ORDin Cmax for a one compartment model 

The estimated population parameters can be used to obtain estimates of Cmax for a one 

compartment model. A one compartment model with first order absorption can be 

described by the equation- 

F. Dose. Ka- -Ke. t 
_ 

-Ka. t Eq 5.12 
Vl. (Ka - Ke) *ýe 

and may be written in the form - 

C(t) ::::::::: A. e 
-Ke. t 

-A. e 
-Ka. t 

where A- 
F. Dose. Ka 

Eq 5.13 
Vj. (Ka - Ke) 

The maximum concentration occurs when the derivative of Eq 5.13 with respect to t is 

equal to zero - 

dC(t) 
Ke. A. e 

-Ke. Tpk 
+Ka. A. e 

-Ka. Tpk 

=0 Eq 5.14 
dt 

Solving for the peak time Tpk gives the followng equation - 

In(K 
Tpk =- 

ý/Ke 
Eq 5.15 

(Ka - Ke) 

So Cmax can be estimated from the model parameters using the relationship- 

CmaXD = 
F. Dose. Ka 

* (e -Ke. Tpk 

-e 
-Ya. Tpk 

V,. (Ka - Ke) 
Eq 5.16 
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where Cmax D is the estimate of Cmax derived from the modelled parameters. TheORD 

between CmaXR D and CmaXT D can be calculated using the formulation specific estimates of 

F 
Ka, Tpk, - and the population mean estimate of Ke. V, 

However, it is also possible to estimate Cmax explicitly, by rearranging Eq 5.16 and 

substituting it into Eq 5.12, to give the following relationship - 

C(t) -- 
Cmax E 

.( 
-K. t -Ka. ) 

e- 
Ke. Tpk 

e- 
Ka. Tpk e -e Eq 5.17 

In this case Cmax E is an estimated model parameter, and the ORDbetween CmaXR E and 

CmaXT E can be estimated from the relationship - 

EEE 
C max =C maxý,. (1 - Form) +C maxR -(I 

+ ORD). (Form) Eq 5.18 

Estimation of ORD in Cmax for a two compartment model 

A two compartment model with first order absorption is described by - 

F. Dose. Ka ( K21 
-a) -a. t 

C(t) = V, .[ (Ka - a)(, 8 -a) 
e+ 

which may be abbreviated to- 

(K21 
+ 

(K21 - ka) - Ka. t 

(Ka - (a - Ka)(, 6 - Ka) e 
Eq 5.19 

C(t) = 
F. Dose. Ka 

. 
[A *. e-(x't+ B* e-ß't -(A * 

V, 

Where A and B are constants. 

(K21 -a) B 
(Ka - a)(, 8 - a) 

(K21-9) 

(Ka -, fl)(a - fi) 

dC(t) 
The maximum concentration occurs when -=0i. e. dt 

Eq 5.20 

A*+B *= 
(K21 - ka) 

(a - Ka)(, 8 - Ka) 

dC(t) 
- 

F. Dose. Ka 
. 
[-(x. A* 

. e-'"t -ß. B*e -ß't + Ka. (A * +B*). e 
- Ka. t1=0 Eq 5.21 

dt V, 
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However, this cannot be solved analytically forTpk, so the value of Tpk has to be 

estimated numerically. The ORD for the derived Cmax (CmaXD) can then be estimated 

F 
using the formulation specific estimates of Tpk, Ka and - and population estimates of a V, 

and P. 

Since Eq 5.21 cannot be solved, it is not possible to estimate Cmax directly. However, by 

adopting the methods proposed by Wagner and Nelson (Wagner, 1975) it is possible to 

obtain an approximation of Tpk. The Wagner Nelson method can be used to characterise 

the absorption profile of a drug product. If absorption is governed by a first order process, 

then the absorption profiles for drugs with mono and bi-exponential distributions can be 

predicted. With a two compartment model it can be shown that - 

Ay F. D. FK12 1 -Ka. Tll 

V=--+. 
tKa. ((x 

- K21). e a(Ka - 
K21 ). e Eq 5.22 VI v, 

L 
cc a(Ka - cc) 

where AT ISthe total amount of drug in the central compartment at time T, assuming that 

V no elimination has occurred i. e. 0=0. Ay is this amount as a concentration. As T --> 00 V1 

F. D K12 d(A 
T/V 1) 

ATapproaches the asymptotic value, VU 
Also when dT 

0 i. e. at time 

AX 
V TApk, V reaches a maximum. Differentiating Eq 5.22 with respect to T and solving for 

TApk gives- 

1 (oc 
- 

K21) 
1 

TApk = (Ka - (x) .1 (Ka 
- 

K2J1 

Where- 

K 
(A., 8 + B. a) 

21 (A + B) 
B', 8 

(/ 
+1 ýB) 

Eq 5.23 

(AX *., L 8+a B Eq 5.24 
(AX 

L B*+') 
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TApk is an approximation of Tpk and is the time at which the accumulative amount 

absorbed into the central compartment divided by VI reaches a maximum. The 

concentration at this time (CAmax ) is an approximation of Cmax and is given by 

CA max = 
F. Dose. Ka [A*. 

e -cc. TApk +B*. e-ý. TApk_ 
(A*+B*). e -Ka. TApk 

V, 

Eq 5.25 

By rearranging Eq 5.25 and substituting in to Eq 5.19 CAmax E can be explicitly estimated, 

using the relationship- 

CA max 

I 

A*. e -CU +B* 
. e-P-t-(A*+B*). e 

-Ka. t] 

C(t) 
--L 

Ka. TApk 
Eq 5.26 [A*. 

e-(x. 
TApk + B*. e- 

P. TApk 
_ (A *+B*). e- 

These relationships hold providing Ka > oc > P. Also, CAmaXE approaches Cmax E when 

the fraction of drug eliMMated by TApk is small i. e. when the elimination rate is very small 

in comparison to Ka and (x. 

Obtaining population estimates of 01. 
RD 

F 
From Eq 5.5, the relationship betweenOInRDand - becomes- 

V, 

In RD = in 
F- 

In 
VI 

T 
VI 

R 
Eq 5.27 

As before, to provide a scale for the conversion of compartmental amounts, in NONMEM, 

the relationship can be expressed as - 

V 
1YF 

I 

In( F 

")+(qnRD*Form) el vi 

Eq 5.28 

Similarly, the relationship between Cmax E and0l,, RDbecomes- 

E= In(C maXE 
)+(qnRD*ForM) 

C max el 
RI Eq 5.29 
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Obtaining confidence interval for the population estimates of ORAandOInRD 

The CI for theORD or OInRDin F 
or Ka can be estimated directly using the SE for theORD V, 

or OlnRDparameter estimates. The Cl for theORD or OlnRDin CmaXD cannot be obtained 

directly. However, the limits of CmaXT D can be calculated using the upper and lower linuts 

of the KaT. The approximate confidence intervals for the ORDin Cmax D 
can be estimated 

by dividing the linuts by CmaXR D (Kan1wa et al., 1990). In comparison, the 95%CI for the 

ORD or OInRD1n CmaXE or CAmaXE can be directly obtained using the SE for theORD or OInRD 

parameter estimates. 

The 95% CI derived from extended least squares asymptotic SE estimates calculated using 

NONMEM have been shown to contain the true value of the parameter estimate on less 

than 95% of occasions (Sheiner & Beal, 1987). In fact 90% was the best performance. 

Thus, in this study the 95% confidence intervals from NONMEM are taken to be 

equivalent to the nominal 90% confidence intervals used to perform the hypothesis tests. 

5.5 Results 

5.5.1 Bloequivalence assessment using noncom partmental estimates 

Figures 5.3 and 5.4 show the untransformed and In-transformed individual dose corrected 

AUCo-oo and Cmax estimates. The In-transfornation reversed the skew on the distribution 

of AUCo-oo and normalised the distribution of Cmax. The bioequivalence of the test and 

reference formulations (AUCo-_ and Cmax) was assessed using the data for each study 

separately and also the combined dataset. Both the untransformed (additive bloequivalence 

model ), and the In-transformed (multiplicative bioequivalence model) data were used. The 

point estimates and 90% CI for the relative differences are presented in Tables 5.1 to 5.4, 
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along with the ANOVA which was used to provide the Error MS (S 2) for the calculation 

of the confidence intervals. 

Point and confidence interval estimates for the relative difference in AUC 0-. 

Using an additive model 

The point and 90% Cl estimates for the ORDin AUC o-oo were similar for the two studies 

and none of the confidence intervals overlapped the ±20% lirmts (Table 5.1). The Null 

Hypothesis of bioinequivalence could be rejected, so the formulations were considered to 

be bioequivalent in AUC o-oo. 
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Figure 5.3 a) Untransformed and b) Ln-transformed distributions of dose corrected 

AUCo-oo (corrected to 5mg) 
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Figure 5.4 a) Untransformed and b) Ln-transformed distributions of dose corrected Cmax 

(corrected to 5mg) 
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Table 5.1 ANOVA of AUCO-., absolute and relative mean differences (ORD) In AUC0-. 
' between test and reference formulations for the 2.5 mg study, the 5mg study and for both 

studies combined 

2.5mg Study 
Source of Variation SS df MS F P-value 
Between patients 2004580 15 133639 9.18 0.0001 
Between fonnulations 2860 1 2860 0.20 0.6600 
Error 218285 15 14552 

otal 2225724 31 

Mean difference (ng. ml- I hr) 18.9 

Relative mean difference 2.2% 

:!! ý -20% or ý! +20% 

90% Cl -56.2 94.0 

90% Cl -6.4% 10.7% 
No 

5. Omg Study 
Source of Variation SS df MS F P-value 
Between patients 2344107 13 180316 9.09 0.0002 
Between formulations 8198 1 8198 0.41 0.5300 
Error 257739 13 19826 

Total 2610043 27 

Mean difference (ng. ml-l. hr) 

Relative mean difference 

:! ý -20% or ýý+20% 

34.2 90% Cl -60.6 129.1 

2.6% 90% Cl -4.6% 9.8% 
No 

F Both 2.5 & 5. Omg Studies Dose corrected (2.5mg AUCO-. x 2) 

Source7of Variation SS df MS F P-value 

Between patients 13116118 29452279.9 11.60 0.00000 

Between formulations 19588 1 19587.9 0.50 0.48400 

]Prrnr 1130926 29 38997.5 

1 

Total 14266632 59 

Mean dl*fference (ng. ml-l. hr) 

Relative mean difference 

-20% or ý! +20% 

36.1 90% Cl -50.6 122.9 

2.3% 90% Cl -3.3% 7.9% 
No 
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Table 5.2 ANOVA of Ln(AUC O-oo), absolute and relative mean differences (01. RD) in 
Ln(AUC 0-. ), between test and reference formulations for the 2.5 mg study, the 5mg study 
and for both studies combined 

Dose 2.5mg 

Source of Variation 

I 

SS f d ms F P-value 

1 

Between patients 2.5 20 15 0.170 8.60 0.000 1 
Between fonnulations 0.002 1 0.002 0.11 0.7400 
Error 0.290 15 0.020 

Total 2.820 31 

Relative Mean difference 1.7% 90% CI -7.1% 10.4% 

:! ý -20% or ý: +25% No 

Dose 5. Omg 

Source of Variation SS df MS F P-value 
Between patients 1.370 13 0.110 8.93 0.0002 
Between formulations 0.006 1 0.006 0.51 0.4900 
Error 0.150 13 0.010 

Total 1.53 27 

Relative Mean difference 2.9% 90% CI -4.3% 10.2% 

:5 -20% or ý! +25% No 

Dose 2.5mg & 5. Omg 2) Dose corrected (2.5mg AUCO-. x 

Source of Variation 

1 

SS qf 

] 

ue ms F P-value 

Between patients 4.912 29 , Do 0 0.169 11.00 0.000 

Between fonnulations 0.008 1 0.008 0.50 0.4891 

IP-rrnr 0.448 29 0.015 

otal 5.367639 59 

Relative Mean difference 

:! ý -20% or ý! +25% 

2.2% 90% Cl -3.2% 7.7% 
No 
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Table 5.3 ANOVA of Cmax , absolute and relative mean differences (ORD) in Cmax, 
between test and reference formulations for the 2.5 mg study, the 5mg study and for both 
studies combined 

2.5mg Study 
Source of Variation SS df Ms F P-value 
Between patients 3847 15 256 2.08 0.08 
Between fon-nulations 939 1 939 7.62 0.01 
Error 1847 15 123 

Total 6632 31 

Mean difference (ng. ml-1) 10.8 90%CI 3.9 17.7 

Relative Mean difference 26.8% 90%Cl 9.7% 44.0% 
:!! ý -20% or ý! +20% Yes 

5. Omg Study 
Source of Variation SS df MS F P-value 
Between patients 9520 13 732 6.08 0.0013 
Between formulations 3035 1 3035 25.21 0.0002 
Error 1565 13 120 

Total 14120 27 

Mean difference (ng. ml-1) 20.8 90%Cl 13.4 28.2 

Relative Mean difference 25.0% 90%Cl 16.2% 33.9% 

:! ý -20% or ý! +20% Yes 

2.5 & 5. Omg Study Dose corrected (2.5mg Cmax x 2) 

Source of Variation SS df MS F P-value 

Between patients 24965 29 861 2.79 0.00367 

Between formulations 6786 1 6786 21.98 0.00006 

Error 8955 29 309 

, 
Total 40706 59 

Mean difference (ng-ml- I) 21.3 90%Cl 13.6 29.0 

Relative Mean difference 26.0% 90%Cl 16.6% 3 5.4 % 

:! ý -20% or ý! +20% 
Yes 
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Table 5.4 ANOVA of Ln(Cmax), absolute and relative mean differences (01nRD) in 
Ln(Cmax), between test and reference formulations for the 2.5 mg study, the 5mg study 
and for both studies combined 

Dose = 2.5mg 
Source of Variation SS df Ms F P-value 

Between patients 1.57 15 0.10 2.08 0.08 
Between formulations I 0.36 1 0.36 7.23 0.02 
Error 0.75 15 0.05 

ITotal 2.68 31 

Relative Mean difference 21.3% 90%CI 7.3% 35.2% 
< -20% or >+25% yes 

Dose = 5. Omg 
Source of Variation SS df Ms F P-value 

Between patients 0.97 13 0.07 4.52 0.0053 
Between formulations 0.37 1 0.37 22.59 0.0004 
Error 0.21 13 0.02 

ITotal 1.55 27 

Relative Mean difference 

< -20% or >+25% 

23.1% 90%cl 14.5% 31.6% 

yes 

Dose =2.5 & 5. Omg Dose corrected (2.5mg Cmax x 2)1 1 

Source of Variation SS df Ms F P-value 

Between patients 2.55 29 0.09 2.64 0.00550 

Between formulations 0.73 1 0.73 21.98 0.00006 

]P. rrr,. -r 0.98 29 0.03 

otal 

Relative Mean difference 

< -20% or >+25% 

4.26 59 

22.1% 90%cl 13.8% 30.4% 

yes 
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Point and confidence interval estimates for the relative difference in AUC 0, 
Using the multiplicative model 

The analysis was repeated using the logarithms of AUC o-oo and Cmax, respectively 

(Table 5.2). Subtraction of the sample means provided estimates of the relative difference 

(OInRA). To maintain a symmetrical interval on the logarithmic scale, the upper 

bioequivalence limit was set to +25%. The point and 90% CI estimates for AUCo-oo were 

relatively unchanged from theORDestimates discussed above. Therefore bioequivalence in 

AUCo-oo could again be concluded. 

The point and confidence interval estimates for absolute and relative difference in 

Cmax 

Using an additive model 

Although the point estimates for the ORDin Cmax were similar across both studies, the 

90%C1 estimates for the ORDin Cmax were wider for the 2.5mg study (Table 5.3). The 

point estimates were 26.8 and 25.0 % for the 2.5mg and the 5 mg studies, respectively. 

Both were greater than the upper lirrUt (+20%). Accordingly, the Null Hypothesis could 

not be rejected and bioinequivalence in Cmax was concluded. 

Using a multiPlicative model 

Bioinequivalence in Cmax was concluded when the multiplicative model was used (Table 

5.4). However, in comparison to the additive model, the point estimates were all within the 

upper limit (+ 25 %). The confidence intervals were also smaller with the multiplicative 

model. In particular, the +9.7 to +44% confidence interval for the 2.5mg study using the 

additive model, was decreased to +7.3% to +35.2% when the multiplicative model was 

used. This result was consistent with the distribution of Cmax being characterised as In- 

normal. 
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5.5.2 Compartmental analysis: Development of the structural and variability 

model 

The development of the population pharmacokinetic model, for the combined set of stud), 

data, is shown in Table 5.5. The structural and variability model was determined assuming 

that there was no difference between the formulations. Standard one and two compartment 

models, parametensed in terms of cc, P, 
V1 

and A/B, 
F 

rates (with and without Tlag ) were tested. 

with zero and first order absorption 

The FO method was used in runs 1 to 6. In run 1, a one compartment model with first 

order absorption using an exponential model for interindividual and intraindividual 

variability was fitted. In run2, a two compartment model was fitted, and the decrease in 

objective function in comparison to runI was statistically significant (P<0.001). However, 

interindividual variability in A/B could not be estimated. In run 3, the previous model was 

repeated but with a expression combining additive and proportional error to estimate 

intraindividual variability. The decrease in objective function was not statistically 

significant, and the estimate of the additive component of intraindividual vanability was 

not significantly different from zero(ýYADD). In run 4, an absorption lag time was added to 

the model, but the parameter could not be estimated. Attempts to model a zero order 

absorption with the FO method resulted in rounding errors, and therefore, an aborted 

covariance step (runs 5 and 6). The higher objective function for run 6 in comparison to run 

5 (which has fewer parameters) was mostly likely due to a local minimum, which could not 

be overcome by changing the starting estimates. 
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Repeating the analysis using the FOCE with interaction method, runs 7 to 11 ( Table 5.5), 

showed similar but not identical results. As with the FO method, there was a statistically 

significant decrease in the objective function when a two compartment model was fitted ( 

run 8 vs run 7), p<0.001. The intersubject vanablity in oc and A/B could not be estimated. 

In run 9, an absorption lag-time of 0.37 hrs was estimated and there was a further decrease 

in objective function. However, the estimates of Ka and Tlag were not significantly 

different from zero. Using the zero order absorption model with the FOCE method also 

resulted in rounding errors (runs 10 and 11, Table 5.5). The differences in the objective 

function and parameter estimates between runs 10 and 11 was again most likely due to run 

II terminating at a local minimum. Both the FO and FOCE methods indicated that a two 

compartment model with first order absorption best described the pharmacokinetics. 

The weighted residual versus time plot for the two estimation methods showed that there 

was a bias in the fit during the absorption phase when the FO method was used (Figure 

5.5a). In comparison, the weighted residual versus time plot for the FOCE method does 

showed no obvious bias. (Figure 5.5b). Splitting the weighted residuals versus time by 

forinulation showed that during the absorption phase the concentrations for the test and 

reference products were under and over estimated, respectively. (Figure 5.6). 
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Figure 5.5 Weighted residual versus time after dose for a two compartment model fitted 
using a) FO method (run 2) b) FOCE with interaction method (run8) 
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Figure 5.6 Weighted residual versus time for a two compartment model with first order 
absorption split by study and formulation 
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5.5.3 Estimation of the relative difference in 
F 

Ka, CmaXD and CAmaXE 
V, 

Equations 5.10 and 5.11 were included in the model (Appendix 1.2) to allow the relative 

F 
differences in - and Ka to be estimated. Subsequently, the bias in the weighted residual V, 

versus time plot was reduced (Figure 5.7 vs Figure 5.6) and there was a further significant 

decrease in objective function (P<0.001) (run12 vs run 8 Jable 5.6). When the ORD 

parameters were estimated the estimateOf (J)Kawas reduced from 50% to 27%(runl2 vs run 

8). Parameterising the model in terms of CAmax (using E. q. 5.23,5.26,5.11 and 5.18- 

Appendix 1.2) resulted in a further small decrease in objective function (run 13 vs run 12 

Table 5.6). The parameter estimates which were common to both models ((x, p, ka and A/B) 

were very similar. The point estimates forORDin CAmax E and Cmax D were also very 

similar i. e. the relative difference in the concentration at the point where the total amount 

absorbed reaches a maximum is very similar to relative difference in Cmax for this dataset. 

Figure 5.8 shows the senstivity of the ORDin CAmax E 
and Cmax D 

to individual changes in 

R 
(x and Ka , while other parameter estimates were fixed to those for run 12. As 

approaches (x, the ORDin CAmax E becomes much greater than theORDin Cmax. In 

RR 
comparison, the divergence when cc approaches 0 or Ka , or Ka approaches cc is smaller. 

Therefore, the equivalence of the ORDin CAmax and Cmax is dependent on 0 being small. 

FE 
Runs 14 and 15 show theOInRDestimates for - and Cmax upon utilising E. q's 5.28 and 

V, 

5.29 (Appendix 1.2), respectively. The other parameter estimates were unchanged. 
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Figure 5.7 Goodness of fit for two compartment model with first order absorption split by 
study and formulation after calculation of the relative difference in Ka and V, ýF 
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Figure 5.8 Comparison of relative difference in CmaX D(Solid line) and CAmaXE(dashed 
Line) for a two compartment model with first order absorption across different estimates of 
cc, 0 and Ka. The vertical lines indicate the actual population estimates for this dataset. 
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5.5.4 Comparison of compartmental and noncom partmenta I approaches to 

bioequivalence assessment 

The point and CI estimates for theORDandOInRDin 
F, 

Ka, Cmax D, and CAmax E for the 
V, 

two compartment model with first order absorption, using FOCE method (run 8& 12, 

Table 5.6), are compared to the equivalent non-compartment estimates in Figures 5.9 to 

5.11. The point and Cl estimates for theORDandOInRDfor the FO fit of the two 

compartment model and both FO and FOCE fit of the one compartment model, are 

included to demonstrate the effect of estimation method and model mispecification on the 

bioequivalence assessment. 

Comparison of the point and confidence interval estimates for the relative difference 

in 

The Null Hypothesis could be rejected with either the one or the two compartment model, 

so bioequivalence was concluded in each case (AUCO-oo/F/Vj) (Figure 5.9). The point and 

interval estimates were practically unchanged by using the multiplicative instead of the 

additive bioequivalence model. The lack of difference relates to there being no obvious 

improvement in the distribution upon assurnIng In-normality (section 5.5.1). Point 

estimates obtained from the one compartment model were larger than those obtained using 

both the noncompartmental and two compartment methods. The CI estimates were largest 

when the FO method was used. The point and CI estimates were very similar to the 

noncompartmental estimates when the best fit two compartment model was fitted using the 

FOCE estimation method. 
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Figure 5.9 Comparison of the point and interval estimates for the a) 0 and b)O nRD in RD 
F 
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Comparison of the point and confidence interval estimates for the relative difference 

in Ka, Cmax D and Cmax E (CAmax-Efor two compartment model ) 

Ka 

For all models, the point estimate for the relative difference in Ka was significantly 

different from zero, indicating that the absorption rate for the test formulation was 

significantly different from the reference formulation (Figure 5.10a). The point and CI 

estimates of this difference varied according to the estimation method and the model. For 

the same pharmacokinetic model, the point estimates obtained using the FOCE method 

were four times greater than those obtained using the FO method. Similarly, for the same 

estimation method, the CI estimates were greatest for the one compartment model. 

CmaxD 

Point estimates for the relative difference in Cmax D were derived using the relative 

F 
difference estimates for Ka and -(Figure 5.1 Ob). Corresponding asymmetrical 

V, 

confidence intervals were obtained using the bounds of the CI for the ORD in Ka (the 

method used by Kaniwa et al. (1990): the upper confidence intervals in CmaXD were shorter 

than the lower confidence intervals. 

The Null Hypothesis could not be rejected when the two compartment model was fitted 

with the FOCE method. The Null Hypothesis of bioinequivalence could be rejected in all 

other cases where a compartment model was utilised. When the two compartment model 

was fitted using the FO method the Cmax D point estimate for theORDwas very small. In 

comparison to all other runs, Ka in this run was estimated to be smaller than cc. Attempts 

were made to constrain Ka > (x but the run did not successfully minimise. 
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Figure 5.10 Comparison of the point and interval estimates for theORDin a) Ka and b) 
Cmax D 
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CmaxE(CAmaxE) 

For both the CmaXE (one compartment model) and CAmax E (two compartment model) 

models, the Null Hypothesis of bioinequivalence could not be rejected when the additive 

bioequivalence model was used (Figure 5.11 a). The point and CI estimates for the relative 

difference using the best fit two compartment model and FOCE estimation were most 

similar to the noncompartmental estimate. As would be predicted from its distribution 

(section 5.5.1) all point and CI estimates were reduced when the multiplicative 

bioequivalence model was implemented (Figure 5.11 b). For the one compartment model, 

this resulted in rejection of the Null Hypothesis of bioinequivalence. 

Overall, the results were found to be independent of estimation method. However, the 

point and confidence interval estimates were most similar to the non-compartmental 

estimates when the FOCE method was utilised. In this dataset., fitting a one compartment 

model reduced the ability of the compartmental approach to detect bloinequi valence in 

Cmax. This is not surprising, since it would be expected that accurate deternunation of the 

relative difference in Cmax would requires the biphasic distribution model to be well 

characterised i. e. use of the correct model. 
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Figure 5.11 Comparison of the point and interval estimates for the a) ORDand b)OInRDin 
CmaXE /CAmax E 
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5.5.5 Bioequivalence assessment of randomly reduced datasets using a 

compartmental approach 

The ability of the population compartmental approach to conclude the correct result when 

the data was reduced by 80% was assessed using three different sampling strategies: 

Full randomisation (FR): 20% of the concentration data from both studies was randomly 

sampled 

Segmented randomisation (SR): 30% of concentrations before the 3hr time point and 

10% of the data after the 3hr time from both studies was randomly sampled. The number 

of concentrations in each dataset was equivalent to 20% of the original data. 

Matched randomisation (MR): 20% of concentrations following administration of the 

reference formulation were randomly sampled from both studies and then the same time 

points after the test formulation were extracted. The number of concentrations in each 

dataset was again equivalent to 20% of the onginal data. 

Number of sampled datasets analysed 

Ten datasets were obtained using each randomisation, providing 30 sparse datasets in total. 

The small number of randorrUsations used here was limited by time. The original initial 

plan was to use this investigation as a pilot for a larger simulation analysis. 

Comparison of one and two compartment model fits to the sparse datasets (using the 

FOCE method) 

A comparison between the fit of a one compartment model and a two compartment model 

with first order absorption to each of the 30 sparse datasets is shown on Table 5.7. The 

AIC criteria (Chapter 3) determined that 90% of the sparse data sets fitted a two 

compartment model better than a one compartment model. 

127 



Table 5.7 Comparison of the objective function and parameter precision from fitting one 
and two compartment models to the sparse datasets 

I Full RandoMisation 
Objective Function Parameter Precision 
OBJ. Diff A AIC 1/2 CC ka 

R # 1/2 

1 19.01 15.01 2 ns s S 1 
2 6.656 2.656 2 s S s 2 
3 19.666 15.666 2 s s S 2 
4 12.508 8.508 2 S S s 2 
5 17.621 13.621 2 S s S 2 
6 14.496 10.496 2 ns ns S 1 
7 25.906 21.906 2 S s s 2 
8 17.049 13.049 2 s S S 2 
9 17.268 13.268 2 S s s 2 
101 3.803 -0.197 11 ns S S I 

Match RandorMsation 
Objective Function Parameter Precision 
OBJ. Diff A AIC *1/2 kaK #1 /2 

1 3.184 -0.816 1 s ns ns 1 
2 14.623 10.623 2 s ns s 1 
3 7.109 3.109 2 ns s s 1 
4 11.136 7.136 2 s s s 2 
5 13.681 9.681 2 s ns s 1 
6 19.408 15.408 2 s s s 2 
7 16.749 12.749 2 ns s s 1 
8 23.752 19.752 2 s s s 2 
9 19.005 15.005 2 s s s 2 
10 10.166 6.166 2 s ns s I 

I Seamental Randomisation I 
Objective Function Parameter Precision 
OBJ. Diff A AIC * 1/2 kaK #1 /2 

1 14.645 10.645 2 s ns s 1 
2 3.183 -0.817 1 s s s 1 
3 7.832 3.832 2 s ns s 1 
4 11.144 7.144 2 s s s 2 
5 6.877 2.877 2 s s s 2 
6 10.142 6.142 2 s ns s 1 
7 7.757 3.757 2 s s s 2 
8 11.194 7.194 2 s s s 2 
9 11.334 7.334 2 ns s s I 
10 6.663 2.663 11 ns s s 1 

A AIC=change in the AIC between aI and 2 compartment model. s= Parameter estimate 

statistically different from zero ns= Parameter estimate not statistically different from zero. 
* 1/2 No of compartments for best fit model based on AAIC 

#1/2 No of compartments for best fit model based on AAIC and parameter precision 
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However, if precision of the cc P and KaRest1mates (the parameters required to correctly 

characterise a two compartment model) were additionally considered in deciding which 

model was most appropriate, parameter estimates were only significantly different from 

zero in 50% of cases. Imprecise two compartment parameter estimates were obtained for 3 

of the 10 FR datasets, 6 of the 10 MR and 6 of the 10 SR datasets. 

Assessment of bioequivalence in the sparse datasets assuming a two compartment 

model 

F Figures 5.12 and 5.13 show the point and Cl estimates for the ORD and theOlnRD in 
V, and 

CmaXE 
, respectively, for the sparse datasets, using a two compartment model with first 

order input and the FOCE estimation method. 

FNI 

The averageORDpoint estimates across the FR, SR and MR datasets were +5.7% , +6.0% 

and +7.6%, respectively. The average for all 30 datsets was +6.4% which was 100% larger 

than the point estimate estimated using the full clataset (FD). The width of the average CI 

across all the sparse datasets was also almost twice that estimated for the full dataset (20 vs 

11 %, respectively). 

The averageOl. RDpoint estimates across the FR, SR and MR datasets, were +4.4% , +4.3% 

and + 5.4%, respectively. The average for all 30 datsets in this case was +4.7 %, which was 

40% larger than the point estimate for the full dataset (+3.2 

The average width of the CI across all the sparse datasets was smaller when the 

multiplicative bioequivalence model was fitted (16% vs 20%) and therefore closer to that 

for the full data set (I I%). 
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Figure 5.12 The point and interval estimates for a) ORtDand b) OInRDin FNI for the sparse 
datasets. COM is the full dataset (FD) analysed using the compartmental approach and NC 
the full dataset (FD) analysed using noncompartmental approach 
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Cmax E 

The averageORDpoint estimates across the FR, SR and MR datasets were +37.1% 9 

+29.3% and +33.2%, respectively. The average for all 30 datsets was +33%, which was 

40% larger than the point estimate obtained using the full dataset (FD). The average width 

of the CI across all the sparse datasets was also almost 300% larger than that for the FD 

(59.5 % vs 20.7%, respectively). 

The averageOInRDpoint estimates across the FR, SR and MR datasets, were +20.8% , 

+19.4% and + 18.4%, respectively. The average for all 30 datsets was +19.5%, which was 

very similar to the point estimate for the full dataset (+20.8). The average width of the CI 

was narrower and hence closer to the FD estimate when the muliplicative bioequivalence 

model was used (26.6% vs 16.8, respectively). 
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Figure 5.13 The point and interval estimates for a)ORDand b)O, 
nRDin CmaxE\CAmaXE for 

the sparse datasets. COM is the full dataset (FD) analysed using the compartmental 
approach and NC the full dataset (FD) analysed using noncompartmental approach 
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Hypothesis testing: Comparison with noncompartment estimates of bioequivalence 

Table 5.8 shows the number of datasets where the Null Hypothesis of bioinequi valence 

was not rejected, split by sampling scheme and repeated for additive (ORD) and 

multiplicative(OiriRD) bioequivalence models. The effect of choosing the most appropriatte 

model determined in Table 5.8 on the hypothesis test was also investigated. 

Table 5.8 The number of Null Hypothesis of Bi oinequi valence which were rejected, split 
by sparse sample scheme, compartmental model and bioequivalence model 

2 Compartment 1/2 model Total 
F/Vj CmwCE F/Vj CmaXE F/Vj CmaXE 

ORD 0 ORD 0 ORD 0 ORD 0 n/40 n/40 
InRD InRD InRD InR 

FR 9 10 02 9 10 02 38 4 
NM 6 10 02 6 10 07 32 9 
SR 69 03 69 13 30 6 

Total for all 21 29 07 21 29 1 12 
I 

sparse datasets 

1/2 model Relative difference when using the most appropriate model, as determined in 

Table 5.7 

Effect of sampling scheme 

FE 
When a two compartment model was used to estimate theOInRDin -and CmaX the 

V, 

number of Null Hypotheses which were re ected was similar across the three sampling i 

schemes. However, the total number of times the Null Hypothesis of bi oinequi valence in 

F 
-was rejected was greatest for the FR sampling scheme. Similarly, the number of times 
V, 

the Null Hypothesis of bioinequivalence in CmaXEwas rejected was also smallest when the 

FR sampling scheme was used. 
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Effect of bioequivalence model 

More Null Hypotheses of bioinequivalence in 
F 

were rejected when the multiplicative V, 

model was used. In contrast, more null hypotheses of bioinequivalence in CmaXEwere not 

rejected when the additive bioequivalence model was used. 

Effect of choosing best fit model rather than the two compartment model 

Using the best fit model did not affect the number of Null Hypothesis of bloinequi valence 

in F/VI which were rejected. However, the number of times the Null Hypothesis of 

bioinequivalence in CmaXEwas rejected increased from 0 to 1 for the additive 

bioequivalence model and from 7 to 12 for the multiplicative bioequivalence model. 
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5.6 Discussion 
The results show that a population compartmental approach to bioequivalence can provide 

point and C1 estimates for the relative difference in absorption rate and In the extent of 

nlý absorption, similar to those estimated using the standard noncompartmental approach. The 

population approach may therefore have application in bioequivalence testing. 

5.6.1 Data set and noncom partmental bioequivalence assessment 

Both the additive and multiplicative bioequivalence models determined that the 

formulations were bioequivalent in AUCO-. and bioinequivalent in Cmax. The affect of 

the bioequivalence model on the point and CI estimates was investigated. The 90% CI for 

the relative difference in Cmax was narrower using the multiplicative bioequivalence 

model. Conversely, since In-transformation did not normalise the distribution of AUCO-., 

the point and 90% CI estimates for the relative difference in AUQ)-. were not affected by 

using the multiplicative bioequivalence model. The wider acceptance interval (-20% to 

+25%) used with the multiplicative bioequivalence model provided a greater chance of 

concluding bioequivalence (Chow & Liu, 1994). The point estimate forOlnRDin Cmax E 

was less than the upper linut of bioequivalence due to the wider acceptance intervals and 

the increased homogeneity of the variance upon In-transformation. The similarity of the 

point and 90% CI, across the two studies, was expected, given that 2.5 mg tablets were 

used in both studies. The 90% Cl for theORDin Cmax was wider in 2.5mg study, but this 

was reduced on using the multiplicative model. 

The single concentration measurements used for Cmax are generally considered to be more 

variable than the integrated AUCO ., so wider acceptance lirrUts for Cmax have been 

advocated and -30% to + 43 % have previously been accepted by the European regulators 

(Steinijans et al., 1992). However, Cmax often relates to adverse events, so the acceptance 

limits should probably be considered on a case by case basis, with variability and PK /PD 
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relationship being taken into account (Benet & Goyan, 1995). In this analysis the ± 20% 

acceptance intervals were used for Cmax to impose the strictest criteria and therefore the 

opportunity of showing a difference between the compartmental and noncompartmental 

assessments of bloequivalence. 

5.6.2 Compartmental assessment of bioequivalence using the full clataset 

The isolated bioinequivalence in Cmax coupled with the need for a bi-exponential equation 

to describe the drug distribution, represented a problem which was more complex than that 

previously investigated using a compartmental approach. 

While a two compartment model was shown to be more appropriate than a one 

compartment model, the optimal model to describe the absorption was not as clearly 

determined. The FOCE method showed that there was little difference between the 

objective functions for the first and zero order absorption models. However, the rounding 

errors with the zero order model resulted in the failure to converge, so the first order 

absorption model was used to ensure that CI for the relative difference could be calculated. 

The small absorption lag time of 0.37 hr was less than the first sampled time point (0.5 hr ) 

and not significantly different from zero. More intensive sampling to increase the 

precision in this estimate would probably not be practical. It is possible that the structure 

of the absorption model may differ between subjects. However, the lack of bias in the 

weighted residual versus time plots would indicate that the single first order rate model was 

the most appropriate model for the average subject. 

The bias in the weighted residual versus time plot using the FO method was removed when 

the fit was repeated using the FOCE method. Therefore the advantage of the FOCE over 

the FO method was again demonstrated. 
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Mis-specifying the model, by using a one compartment model, resulted in under-estimation 

of Cmax, so it is not surprising that the point estimates for the relative differences, were 

found to be lower than those estimated using the two compartment model. 

The model based approach provided estimates of the relative difference in the rate of 

absorption (Ka). Previous investigation of bioequivalence data using compartmental 

modelling has centred on making these comparisons (Graves & Chang, 1989; Piotrovskij et 

al., 1995). However, while identifying a difference in the rate of absorption can be useful 

for comparing the release profiles the clincal relevance of any difference is difficult to 

assess. On the other hand, due to its correlation with the extent of absorption, Cmax is not 

a good estimate of rate of absorption, but it has greater clinical relevance. 

In this analysis, the work by Kaniwa et. al. (1990) has been extended to include the 

estimation of a more appropriate symmetrical confidence interval for the relative difference 

in Cmax. These were found to be very similar to those estimated using the 

noncompartmental method. The concentration at the time when the total amount absorbed 

per unit volume reaches a maximum (CAmax) was used as an approximation for Cmax. 

For this dataset, the point estimates for the relative difference in CAmax and Cmax were 

very similar. However, this approximation was shown to be highly dependent on the 

assumptions of Ka > (x >> P. In particular, P had to be small so that the amount eliminated 

up to Tpk was negligible. In this case the assumption was valid as the terminal half-life 

was 17 hours in comparison to the initial distribution and absorption half-lifes of 2 and 0.5 

hours, respectively. The potential bias in the point estimate for relative difference was 

shown to increase dramatically as the half-lifes approach one another. On fixing all other 

parameters, a bias of 20% and 50% was demonstrated when TI/20was set to 7 hours and 

3.5 hours, respectively. 
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5.6.3 Bioequivalence assessment of randomly reduced datasets using a 

compartmental approach 

The application of the population compartmental approach to bioequivalence testing was 

further investigated with the data randomly reduced by 80%. The robustness of the 

estimates under this reduction was investigated by repeating the reducti I ion ten times for 

each of three sampling schemes. The bioequivalence in AUCO-oo and bioinequivalence in 

Cmax was shown to be relatively robust to the sampling designs. 

The noncompartmental and compartmental point and CI estimates of the relative 

difference in both rate and extent of absorption were similar using the multiplicative 

bioequivalence models. In comparison, the additiveORDpoint and CI estimates were 

inflated. The multiplicative model, may suggest that the modelling approach is more 

dependent on the In-normality assumption when the data is reduced, however, this can only 

be confirmed by further investigation. 

The increase in the number of Null Hypotheses of bioinequi valence in CAmax which were 

rejected when the multiplicative model was implemented, may be due to the wider 

acceptance limits and greater homogeneity in the variance estimate. 

There was little difference between the sampling schemes in terms of the average point 

estimates for the relative difference. However, more datasets provided by the completely 

random sample scheme (FR) were appropriately described by the two compartment model. 

In addition, bioequivalence in extent of absorption and bioinequivalence in rate of 

absorption was more often demonstrated with the FR sampling scheme. 

The most appropriate model for each of the datasets resulted in the Null Hypothesis of 

bi oinequi valence in CAmax being rejected on more occasions than when the two 

compartment model was used. Based on this result, it would appear that prior knowledge 

of the distribution model is required, and should be used even when the sparse data seem to 

be appropriately described by a simpler model. 
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5.6.4 Application of population approach to bioequivalence testing 

Standard bioequivalence data 

While standard 2x2 cross-over studies, may not benefit from using a model dependent 

population approach, there may be some circumstances where modelling the data may 

offer additional information. Meta-analysis may be performed to investigate potential 

reasons for differences in Cmax, such as dose dumping (Graves & Chang, 1989). 

Population pharmacokinetic bioequivalence investigation 

The design of bioequivalence studies to utilise the population approach is more 

controversial. In particular, the transition from constrained experimental data to the 

"observational type" data used in population analysis may be too radical for the regulatory 

authorities and the pharmaceutical industry. However, a population pharmacokinetic 

approach may have application to situations where the standard 2x2 cross-over study is not 

appropriate. 

Complex designs 

The 2x2 cross-over design is most often considered as it removes interindividual 

variability from the comparison. However, when the intnnsic intrasubject variability is 

large, the power of the analysis is greatly decreased (Ekbomn & Melander, 1989). Since 

intrinsic intraindividual variability cannot be calculated from 2x2 cross-over studies, 

higher-order cross-over designs are required to estimate this variability (Kershner & 

Federer, 1981; Laska & Meisner, 1985; Jones & Kenward, 1989). If more than two 

formulations are to be compared, then the number of study days in each sequence can 

become very large. fEgher order cross-overs can be time consuming and costly. In 

particular, they may require an unethical amount of plasma sampling and have an increased 

tendency for study dropouts (Westlake, 1973). By removing the need for full plasma 

concentration time profiles, the approach may make some of the higher cross-over designs 

easier to implement. 
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Patients vs Volunteers 

Where bioequivalence testing is required for drugs which can only be ethically tested in 

patients, such as cytotoxics, high dose opiates, tarnoxifen and flutamide etc., sparse 

sampling would allow the test to be conducted during the course of routine treatment. 

Application of the population approach may also allow testing of the assumption that 

pharmacokinetic equivalence is a substitute for therapeutic equivalence 

(Benet & Goyan, 1995; British Pharmaceutical Conference, 1995; Levy, 1995; Marzo, 

1995). However, very few cases of clinical inequivalence have been identified. In one 

example, the concentration of cyclosporin after administration of its n-ncro-emulsion 

formulation (Neoral) is reduced in liver transplant patients, the bile required for absorption 

is reduced as a result of choleostasis (Friman & Backman, 1996). Nevertheless, the limited 

number of identified clinical inequivalences may be due to the lack of prospective 

pharmacokinetic studies in this area. Even when a measurable and comparable response 

can be recorded, the large number of formulations available makes adhoc detection of 

defective formulations extremely difficult. 

The population approach could be used to test for bioequivalence differences in 

formulations which are thought to show clinical inequivalence. 

With the potential advent of new guidelines which separate population and individual 

bioequivalence, the importance of characterising the interind1vIdual and jntraindividual 

variabilities has become more important (FDA, 1997). As suggested by Sheiner (1992), 

the application of the population pharmacokinetic approach in this area requires further 

investigation. 
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5.7 Conclusions 

In this chapter, a population compartmental approach to standard "full dataset" 

bioequivalence studies has been implemented. The most appropriate two compartment 

model provided point and CI estimates for the ORDandObaRAin the "rate" and "extent" of 

absorption, which were almost identical to the noncompartmental estimates. The FOCE 

method should be utilised in preference to the FO approach, since it improved the model fit 

and provided theORDandOInRApoint and Cl estimates which were most similar to the 

noncompartmental estimates. 

Symmetrical confidence intervals were successfully estimated by parameterising for Cmax 

within the compartment model. The compartmental bioequivalence models were extended 

to allow the present requirements for In-transformation of parameters to be met. The 

application of the population approach to bioequivalence testing was robust even when the 

data was reduced by 80%. A complete randomised (FR) sample scheme performed best, 

but further investigation is required. 

The application of the population approach may be useful in helping to reduce the amount 

of plasma sampling when complex designs are required. Furthermore, when patients have 

to be used for bioequivalence testing, the population approach may allow this to be 

implemented as part of routine clinical practice. 

5.8 Future work 

Confidence intervals 

Exact 95 % Cls for the hypothesis test have previously been based on NONMEM's 

maximum likelihood estimate (Combrink et al., 1997). The shift in parameter estimate 

which causes an objective function change of +3.68 corresponds to the 95% CI limit. A 

full simulation or bootstrapping technique has also been used to estimate the CI for the 
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relative difference in F/Vj and Cmax (Pentikis et al., 1996). Further work using these 

approaches to calculate the confidence intervals is required. 

Sample Size 

A sample size of 20% of the original data was used in this study to represent the 4 to 5 

samples per patient (at least two per formulation per patient in the majority of patients), 

and is consistent with that used by Kaniwa at al. (1990). It was proposed here as an 

arbitrary defined minimum that a prospective population bioequivalence investigation 

would require. Large simulation studies are required to explore the pharmacokinetic, 

variability and sampling issues identified in this analysis. The different randomisations 

represent potential study designs for the collection of sparse bioequivalence data, so the 

requirement for further work on optimal designs for a sparse data approach to 

bioequivalence testing is also highlighted. 
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CHAPTER 6 

THE DOSE RESPONSE RELATIONSHIP FOR 

THE HMG COA REDUCTASE INHIBITOR 

SIMVASTATIN 
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In this chapter, mixed effect modelling is utilised in the assessment of the dose response 

relationship for the HMG-CoA reductase inhibitor simvastatin. The change in total 

cholesterol and each of its various subfractions is investigated using a set of hierarchical 

models. A covariate analysis is undertaken to determine which factors most influence the 

lipid response. The consequence of the apparent inappropriateness of the current 

recommended dosage regimen is discussed and alternative dosing strategies are compared 

through simulation. 

6.1 Introduction 

6.1.1 Dose ranging studies 

The primary aim of phase II studies is to confirm the efficacy and tolerability of a new drug 

in the larger patient population and provide the PK/PD information for development of a 

dosing regimen for the Phase HI programme. Three basic study designs which are 

generally utilised to provide this infonnation are discussed below. 

Dose escalation design 

This design has been considered to most closely resemble clinical practice since the dose is 

increased until a desired response is obtained. However, it has been associated with an 

overestimation of the minimum dose required to produce this response (Temple, 1982; 

Freston, 1986) and has been linked to the introduction of atenolol, captopril (Temple, 

1982; Reid & Meredith, 1990) chlorothaliclone (Tweeddale et al., 1977; Materson et al., 

1978) and chlorthiazide (Berglund & Andersson, 1976) at doses which were ultimately 

found to be higher than those required to treat the majority of patients. As suggested by 

Sarnbol et al., (1991), the expectation of unrealistic therapeutic responses may have 

exacerbated the underlying design problem. Sheiner et al., (1989,1991) have suggested 

that more appropriate interpretation of the data may have prevented this overestimation. 
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They highlighted, that since sensitive subjects achieve an acceptable response at lower 

doses, the mean response at the higher doses only reflects the response for the insensitive 

subjects. They proposed that the inherent bias in the escalation design could be largely 

avoided by utilising a mixed effects modelling approach. While this approach does not 

fully account for the observations missing from the sensitive patients at higher doses, they 

suggested that maintaining these subjects on their final dose throughout study period would 

further help to reduce the bias in estimation of the "typical" dose response relationship. 

Unfortunately, the sequential nature of the design makes it prone to bias when there are 

carry-over effects or time dependent changes in the disease state (Girard et al., 1995). 

Parallel group design 

In this case, subjects are randomised to receive either placebo or one of several selected 

doses. The advantage of this design is that it only lasts for one or two (if the study utilises 

an additional placebo run in phase) treatment periods. Therefore, the study is easy to 

manage, and patients are not lost on follow-up. While it was proposed that this design 

avoided the bias inherent in the escalation studies (Temple, 1982), Sheiner et al. (1989, 

1991) and Sambol et al. (1991) disputed its appropriateness for dose ranging studies in 

general. Interpolation between the pre-selected doses may be prone to bias since the dose 

response relationship is only based on one dose response measurement per subject. Thus, 

the selection of the minimum effective starting dose for future studies is most often taken 

to be the lowest effective dose in comparison to placebo and therefore pre-selected in the 

study design. The single administration also prevents the estimation of intraindividual 

variability, so there is limited infO'Mat'on on which to build a model for the 

individualisation of dose after observation of initial response. 

Cross-over design 

This design although potentially more complicated and problematic from an ethical stand 

point has been shown to be very robust in the estimation of dose response relationships 
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(Girard et al., 1995). In this design every subject receives every dose, so the ratio of 

sensitive to insensitive patients is the same at each dose level. Furthennore, the study 

design allows information to be gained by utilising both analysis of variance (ANOVA) 

and population dose response modelling. This chapter utillses both approaches in the 

establishment of a dose response relationship for simvastatin. 

6.1.2 Hypercholesterolaemia: Clinical consequence and treatment 

It is well established that hypercholesterolaernia is a major risk factor for the development 

and progression of atherosclerotic cardiovascular disease and it is also generally accepted 

that lipid lowering strategies are indicated for its prevention. In most instances, dietary 

intervention remains the recommended first step towards cholesterol reduction. When drug 

treatment is indicated, the 3 -hydroxy-3 -methyl glutaryl -Coenzyme A (HMGCoA) reductase 

inhibitors, including simvastatin, have become established as effective and well tolerated 

treatments. The main goal in the treatment of hypercholesterolaemia is to reduce the risk of 

the premature development (primary intervention) or the recurrence (secondary prevention) 

of vascular events, and the HN4G CoA inhibitors have now been shown to be beneficial in 

reducing the incidence of both (MAAS Investigators, 1994; Pederson, 1994; Shepherd et 

al., 1995). 

Common or "polygenic" hypercholesterolaemia arises from a combination of genetic, 

dietary and environmental factors, and is usually mild to moderate in degree. The more 

serious genetic or "familial" hypercholesterolaemia affects about I in 500 people and is 

associated with a greater CHD risk. The treatment strategy is similar for both forms, with a 

more aggressive approach being adopted when a genetic predisposition is known. Patients 

with a cholesterol greater than 5.2 mmol. 1-1 are initiated on a lipid lowering diet and, 

depending on the response and presence of other risk factors, drug treatment may be 

considered. At present the accepted target range in control of hypercholesterolaernia is a 
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total cholesterol < 5.6 mmol. l-' where it is an isolated risk factor and <5.2 mmol-1-1 where 

there are multiple nsk factors present. 

6.1.3 Lipoproteins and cholesterol: Classification 

Plasma lipoproteins are water-soluble complexes composed of lipids (triglycerides, 

cholesterol and phospholipids) and one or more specific proteins, called apolipoproteins. 

They are broadly classified as high density lipoproteins (HDL), low density lipoproteins 

(LDL), very low density lipoproteins (VLDL) andchylornicrons. Each has a particular role 

in the transportation and utilisation of lipids. 

The chylomicrons, pass dietary cholesteryl esters from the gastro-intestinal tract to the 

liver, where the cholesterol is stored or oxidised to form bile acids. Cholesterol can also be 

synthesised from acetyl CoA in the liver. The rate determining step for this process is the 

conversion of HMG-CoA to mevalonate and this is controlled by the HMG-CoA reductase 

enzyme. Sixty to seventy percent of the total plasma cholesterol is contained within 

circulating LDL particles. Cells requiring cholesterol synthesise receptors and take up LDL 

by receptor-mediated endocytosis. Free cholesterol from dead cell membranes is adsorbed 

onto HDL particles and esterified with long chain fatty acids. The resulting cholesteryl 

esters are subsequently transferred to LDL or VLDL (when triglycerides are present) 

particles and redistributed. 

6.1.4 Simvastatin 

Simvastatin is a semisynthetic prodrug, which is a structural analogue of lovastatin, a 

fermentation product of Aspergillus terrus (Hoffmann et al., 1986). 

Mechanism of action 

Several of its metabolites, most notably simvastatin acid are active and capable of 

competitively and reversibly inhibiting HMG CoA reductase, (Mauro, 1993). Inhibition of 

hepatic cholesterol biosynthesis, gives rise to an increased expression of LDL receptors. 
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These receptors bind LDL particles and remove them from circulation thus lowering total 

circulating cholesterol (Plosker & McTavish, 1995). 

Pharmacokinetics 

Simvastatin is well absorbed ( approximately 60-80%) but undergoes extensive first pass 

metabolism. The bioavailability of sirnvastatin acid has been shown to be less than 5% 

(Todd & Goa, 1990; Mauro, 1993). Several studies in healthy volunteers (Todd & Goa, 

1990; Pentikainen et al., 1992; Mauro, 1993) and in patients with hypercholesterolaemia 

(Cheng et al., 1992) have demonstrated that the peak concentrations of the active 

metabolites occur after I to 3 hours. Animal enzyme inhibition and radiolabelled drug 

studies have demonstrated that simvastatin and its metabolites concentrate in the liver 

(Todd & Goa, 1990; Mauro, 1993). Correspondingly, the circulating levels of simvastatin 

are lower than that for other less lipophilic statins (Pentikainen et al., 1992). At least five 

metabolites including the simvastatin acid have been identified by animal microsomal 

studies (Plosker & McTavish, 1995). The hepatic extraction ratio for slinvastatin is large 

(93%) and the majority of the metabolites are found in the bile (Todd & Goa, 1990; Mauro, 

1993). The total body clearance for sirnvastatin is approximately 31.8L. hr-1 and the 

elimination half-life for simvastatin acid is around 1.9 hours. Less than 10% of the peak 

EIMG CoA reductase activity remains after 12 hours (Mauro, 1993). 

Similar effects of gender and age on the pharmacokinetics of the HMG CoA reductase 

inhibitors were noted following a single dose of atorvastatin (Gibson et al., 1996) and 

multiple doses of sirnvastatin and lovastatin (Cheng et al., 1992). After 17 days of 

slmvastatin (40mg per day), the mean plasma concentration was 40-60% higher in elderly 

patients than young patients and 20%-50% higher in females than males (Walker, 1989). 

Tolerability and adverse effects 

Adverse events with simvastatin are usually mild and transient with treatment related 

discontinuation rates being between 2% and 6% (Todd & Goa, 1990; Pederson, 1994; 
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Pedersen & Tobert, 1996). Creatinine kinases are raised in about 5% of patients, but the 

incidence of myopathy and rhabdomyolysis is rare (Thompson, 1993; Plosker & McTavish, 

1995). 

Clinical efficacy 

Decreases of 20 to 40% in total serum cholesterol, 35 to 45% in LDL cholesterol, 20 to 

40%in LDL : HDL cholesterol and 10 to 20% in total triglycerides, as well as increases of 

5 to 15% in HDL cholesterol have been shown (Plosker & McTavish, 1995). The dose 

escalation studies which have been undertaken were not placebo controlled i. e. (Molgaard 

et al., 1988; Leclercq & Harvengt, 1989; Sirtori et al., 1989; French et al., 1990). The 

placebo controlled dose ranging trials are summarised in Table 6.1. Although the lipid 

lowering efficacy of sirnvastatin is well recognised, it appears that the current dose range 

was based mainly on parallel dose studies. Furthermore, although dose ranging studies 

have been performed, there do not appear to be any published account of attempts to model 

the dose response relationship. 

Factors important in the prediction of clinical response 

It has been shown that the pre-treatment level may be correlated with the percentage 

reduction in both total cholesterol and LDL cholesterol (N4olgaard et al, 1988; Nfiserez et 

al., 1994). However, other studies have suggested that the percentage change is 

independent of baseline level (Farish et al., 1990; Todd & Goa, 1990; Frohlich et al., 

1993). 
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Table 6.1 Placebo controlled dose ranging studies for sirnvastatin 

Reference Patient Duration Study No Dosage Total-C LDL-C HDL-C Tfi- LDL Type (weeks) design Patients Regimen (%)A (%)A (%)A gylcefides /HDL-C 
(mg) * (%)A (%)A 

Mol Familia 4 Parallel 8 Placebo -5 -6 -1 +2 -5 

et al. Group 8 2.5 -16 -18 +2 -17 -19 (1986) 4 5 -22 -27 -2 +5 -8 8 10 -25 -28 +10 -26 -34 4 20 -25 -30 +11 -14 -36 7 40 -32 -37 +21 -34 -47 4 80 -36 -42 +8 -11 -47 Sim ons Familia 
1 

4 Parallel 5 Placebo +5 +8 0 -20 +8 

et al. & poly- group 15 2.5-10 -20 -20 0 -24 -20 (1987) gemc 10 20-80 -30 -37 +8 -44 -42 Kuhn Elderly 4 Parallel 4 Placebo +1 +2 +11 -12 -9 
et al. group 5 2.5 -10 -19 16 +16 -23 (1989) 4 5 -14 -20 -2 +8 -18 6 10 -21 -30 +9 -15 -35 4 20 -35 -49 +4 -14 -51 

Nakaya Not 4 Parallel 5 Placebo +3 +2 +12 -13 & Goto defined group 5 1.25 -8 -8 +4 -13 
(1989) 5 2.5 -13 -20 +18 -25 

5 5 -20 -27 +4 -14 
5 10 -24 -33 +4 -16 
5 20 -26 -40 +12 -10 

Goto Not 12 Parallel 72 placebo -3 -6 -2 +9 
et al. defined group 72 2.5 -15 -24 +6 -9 

(1989) 72 5 -21 -30 +6 -14 
Walker Elderly 4 Parallel 31 placebo -3 -3 
et al. group 32 2.5 -17 -23 

(1990) 32 5 -19 -27 
32 10 -23 -31 +11 -15 
32 20 -28 -37 +7 -20 

Keech Poly- 8 Parallel 207 placebo 
et al. genic Group 208 20 -27 -38 +5 -17 

(1994) 206 40 -29 -41 +6 -19 
Tuomilehto Not 8 Parallel 28 placebo -3 -5 

(1994) defined Group 28 2.5 -16 -21 
et al. 28 5 -20 -25 

27 10 -22 -28 
26 20 -25 -33 
29 40 -30 -41 

* Daily dose A %change from baseline 

While age has been shown to affect the phannacokinetics of simvastatin (6.1.4), the 

influence of age on response could not be shown (Antonicelli et al., 1990; Plosker & 

McTavish, 1995). In one prospective cross-over study an interaction between gender and 

response was demonstrated (Clifton et al., 1994). Similarly, in a large study of 2083 

patients, gender was identified as a significant predictor of the reduction in LDL 

cholesterol (Miserez et al., 1994). Therefore, the variability in response to sinivastatin may 

be partially explained by patient characteristics, and the potential for dose adjustment on 

this basis requires further investigation. 
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6.2 Aims 

In this chapter, data from a phase 11 dose ranging study was used to establish the dose 

response relationship for simvastatin. The primary aims were as follows- 

1) Use ANOVA and standard statistical tests to determine which doses were associated 

with significant changes in total cholesterol and its various subfractions. 

2) Establish the relationships governing the changes in cholesterol and its various 

subfractions by determining the most appropriate pharmacodynamic model for each. 

3) Investigate for relationships between demographic covariates and the parameters of the 

established models. 

4) Compare the results and extrapolations from the models with other dose ranging studies. 

5) Use the models to propose suitable dosing strategies for future treatment 

6) Discuss the limitations of the study design and the potential for using more intuitive 

designs for dose ranging studies 

6.3 Study data 

The study was part of a wider investigation into the tolerance, safety and efficacy of 

HMGCoA inhibitors in a West of Scotland population. Other studies from the programme 

investigating the management of patients with the co-existence of hypercholesterolaernia 

and hypertension have previously been reported (Farish et al., 1990; Macdonald et al., 

1990,1991). The aim of this particular study was to investigate the lipid response to a 

range of sirnvastatin doses. All patients had co-existing hypertension and had previously 

completed the initial 12 week tolerance and efficacy study (Macdonald et al., 1991). The 

standard lipid lowering diet, recommended by the European Artherosclerosis Society 

(Study Group, 1988) and blood pressure control were maintained throughout the study. In 

a randomised. single blind Latin square crossover design, patients received either placebo, 
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10mg, 20mg or 40mg as a single daily dose for 12 weeks. The treatment sequences were as 

follows. 

Period time (weeks) 

0-12 12-24 24-36 36-48 

Group A Placebo 10mg 40mg 20mg 

Group B 10mg 40mg 20mg Placebo 

Group C 40mg 20mg Placebo 10mg 

Group D 20mg Placebo 10mg 40mg 

The demographics for the 41 patients who completed the study are shown in Table 6.2. The 

demographics were similar across the four treatment groups. The population comprised 

30 females (mean age 58 years and mean body weight 70 kg) and 11 males (mean age 56 

years and mean body weight 82 kg). All doses of slmvastatin were well tolerated and no 

significant abnormalities were detected on routine laboratory testing. 

6.4 Assay procedures 

The total triglycerides and total cholesterol were measured by recognised enzymatic 

methods (Bucolo & David, 1973; Allan et al., 1974). The various lipoprotein subfractIons 

were first separated by preparative ultracentrifuge and precipitation techniques (Farish et 

al., 1983). Inter assay coefficients of variation were 2.0% for the measurement of total 

cholesterol, 2.5% for the total triglycerides and between 2.5 - 9.0% for the measurement of 

the total cholesterol subfractions. Total cholesterol and total triglyceride concentrations 

were determined every six weeks, and the concentrations of the lipid subfractions: LDL 

cholesterol, HDL cholesterol and VLDL cholesterol were determined every 12 weeks. 
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Table 6.2 Summary of patient demographics 

Group 
Data A B c D All Groups- 
FEMALES 

No 
I 

9 7 7 7 30 
AGE years 

Mean 57.2 59.1 60.1 55.1 57.9 
SD 6.4 1.9 5.1 8.7 6.3 
MAX 69 62 67 67 69 
MIN 48 56 52 41 41 

Weight Kg 
Mean 66.5 72.1 65.1 78.2 70.2 
SD 12.1 9.3 9.1 13.5 12.3 
MAX 91.0 85.4 84.4 107.2 107.2 
MIN 52.8 50.8 51.6 60.8 50.8 

MALES 
No 3 3 3 2 11 

AGE years 
Mean 54.7 55.0 58.3 53.5 55.5 
SD 7.7 5.1 3.8 4.6 5.8 
MAX 60.0 62.0 63.0 58.0 63.0 
MIN 44.0 51.0 54.0 49.0 44.0 

Weight Kg 
Mean 83.9 86.4 81.1 71.5 81.6 
SD 10.2 13.5 8.6 16.5 13.0 
MAX 99.5 104.4 93.8 90.7 104.4 
MIN 72.0 69.6 72.6 55.0 55.0 

ALL 
AGE years 

Mean 56.6 57.9 59.6 54.8 57.2 
SD 6.8 3.7 4.8 7.9 6.2 
MAX 69.0 62.0 67.0 67.0 69.0 
MIN 44.0 51.0 52.0 41.0 41.0 

Weight Kg 
Mean 70.9 76.4 69.9 76.7 73.3 

SD 13.9 12.5 11.6 14.4 13.4 

MAX 99.5 104.4 93.8 107.2 107.2 

MIN 
lmmý 

1 52.8 50.8 51.6 
- 

55.0 50.8 
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6.5 Methods 

6.5.1 ANOVA and statistical tests 

The influence of dose, period and group on each of the lipid measurements was initially 

investigated using ANOVA. Since there were unequal numbers in each group, this was 

accomplished using general linear modelling (GLM). For the total cholesterol and total 

triglycerides measurements, an additional factor was included to investigate for differences 

between week 6 and week 12 samples. When the F ratio test demonstrated that there was 

a significant difference (P<0.05), between the levels of a factor, Tukey's tests with error 

rates of 0.05,0.01,0.001 (to adjust for multiple comparisons) were used to determine 

which levels were significantly different. 

6.5.2 Population dose response models 
Population dose response relationships were determined using the FO and FOCE 

estimation methods (Chapter 3). Each lipid subfraction and subfraction ratio was modelled 

as a separate lipid response variable (LR). In each case, a hierarchy of models, similar to 

those of Sambol and Sheiner (1991) were fitted to determine the most appropriate 

relationship. 

The placebo measurements (PM) were modelled as: 

LRii = 
(01 

- 
(1 + 17ii» - 

(1 + cij) Eq 6.1 

where 01 is the average PM, PM. For active drug, the response was modelled using one of 

the following expressions: 

LRij --:: 
[(01 

' 
(1 

+ 77i 
J) 

- 
(02 

* 
(1 

+ 17i2 
), If (Dose > 0))] - 

(I 
+ cij) Step model Eq 6.2 

LRij:: --: 
[(01'(1 

+ 77ii)) - 
(02 

+ 03* Dose) - 
(1 

+ '7i2) If (Dose > 0) 
(1 

+ cij) Steplinear 

model Eq 6.3 
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* Dose) 
(02 

1 
LRij I 

)) 
-( 

(I 
-ij 

Emax model Eq 6.4 1 
(01 

"( 
03 + Dose) *+ 1IJ A. +E) 

Where LRij is the lipid subfraction response for the ith individual at the jth observation, 01 

is the typical patient's estimated placebo measurement, 02 is Emax, 03 is D50 and Ilik Is the 

random interindividual error. Interindividual variability estimates were initially obtained 

for both the placebo response (k=1) and the reduction component of the model (k=2). The 

variance of the intraindividual. errors (Fij) was also estimated. A proportional error model 

was initially used for all random effects. The NMTRAN user supplied PRED subroutines 

used to implement these models are shown in Appendix 1.3. 

A graphical representation of the three models is shown in Figure 6.1. The step model, 

which describes an all or nothing response (Eq 6.2), was compared to the step-linear model 

which models the step response but has an additional term to describe a subsequent change 

in response with increasing dose (Eq 6.3). Therefore, the step-linear model (full model) 

has one more parameter than the step-model (reduced model). The full-reduced pair can be 

tested using a likelihood ratio test (Chapter 3). 

If a graded response could be established, then the more physiological Emax model was 

fitted. In this case, structural parameters for Emax and D50 were estimated (Eq 6.4). As 

the step-linear model and the Emax model are different models with the same number of 

parameters, they do not form a full/reduced pair. The AIC (Chapter 3) was therefore used 

to compare the step-linear and Emax models. Since the number of parameters is the same 

for each model the AIC is simply equal to difference between the objective functions. 
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Figure 6.1 Graphical representation of the Step model Step-Linear model and Emax model 
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6.5.3 Covariate analysis and further model development 

Individual placebo estimates were obtained (Chapter 3) and associations with patient 

covariates were investigated graphically. ForEq 6.3 and 6.4 interindividual variability was 

estimated on the whole "reduction portion" of the model, so individual parameter estimates 

Of 02andO3were not available. Instead, individual specific responses at each dose level 

were plotted against the patient covariates to investigate for possible relationships. 

Potential covariates were formally tested using the likelihood ratio test (Chapter 3). 

The appropriateness of the interindividual and intraindividual variability models was also 

tested. In particular, an additive and additive plus proportional model for intraindividual 

variability was also tested. Since relationships between the drug response and the 

measurement on placebo were detected, covariance between the two TI's was also tested. 

Lipid response in terms of reduction in total cholesterol or LDL cholesterol is most often 

communicated in terms of a percent reduction from the pre-treatment baseline level i. e. 
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Table 6.1. While these percentages can be calculated from the model parameters of Eq 6.2 

to 6.4, the percentage reductions at each dose level can themselves be modelled. The 

percentage reduction model equivalent to Eq 6.4 is as follows 

LRY. ---: 100% 01. Dose (1 
+ 171) Percentage reduction model Eq 6.5 

- 
02+ Dose 

Where %LRij is the lipid subfraction response for the ith individual at the jth observation 

as a percent change from the placebo measurement. This model reduces the number of 

structural parameters by one, thus simplifying the model and variance structure. This 

model was also used in the investigation of covariate relationships. The NMTRAN user 

supplied PRED subroutine used to implement this models is shown in Appendix 1.3. 

6.5.4 Predictions and simulations 

Predictions and simulations were undertaken using the parameter estimates (structural and 

variance) from the final model. Since no pre-treatment data was available the placebo 

response could not be estimated. To allow extrapolation to the wider population initial 

(baseline) and placebo measurements were considered to be equivalent i. e. the placebo 

effect was assumed to be negligible in comparison to the drug effect. 

6.6 Results 

Forty one patients completed the study and provided 328 total cholesterol and triglyceride 

concentrations, and 164 measurements of the other subfractions. 

6.6.1 Mean reductions and analysis of variance (ANOVA) 

The mean absolute values and percent changes are summarised in Table 6.3. The mean 

(SD) total cholesterol and total triglycerides concentrations after 12 weeks at each dose 

level were very similar to those after 6 weeks. The mean concentration of total cholesterol 

and its constituent subfractions, with the exception of HDL cholesterol, decreased with 
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increasing dose. The concentration of HDL cholesterol was shown to increase with 
increasing dose. The maximum percentage changes from the placebo measurement (PM) 

for total, LDL and HDL cholesterol were -31(11.7) %, -41(12)% and +14(14)% 

respectively. The maximum reductions in the ratios of total to HDL cholesterol and LDL 

to HDL cholesterol were -39 and -47 %, respectively. The maximum fall in ratios were 

therefore greater than that for total and LDL cholesterol alone. 

The ANOVA results for total cholesterol and each of the subfractions are shown in Table 

6.4. With the exception of HDL cholesterol, a significant difference between the dose 

levels was detected for all measurement (P<0.05). There was no evidence for a period 

effect with any measurements. The similarity between the mean at 6 and 12 weeks for the 

total cholesterol and total triglycerides measurements was confirmed by the lack of week 

effect. The week 6 and 12 measurements were therefore considered as multiple 

observations for purposes of population dose response modelling. There was evidence of a 

group effect for the total cholesterol, total triglycerides and VLDL cholesterol responses. 

The results of the multiple comparisons between the response at each dose level are shown 

in Table 6.3 (see foot note for details). There was a significant reduction from the placebo 

concentrations at all dose levels for total, LDL, VLDL, LDL: HDL and total: HDL 

cholesterol. In comparison, a significant reduction from placebo in total triglycerides was 

only shown at the 40mg dose level. A significant reduction between the 10mg and the 

40mg was shown for total (wk6 & wk12), LDL, and LDL: HDL cholesterol. The 

differences in concentrations between the 20 and 40mg doses was not significant for any 

measurements. Multiple comparisons showed that Group A was significantly different 

(P<0.05) from groups B, C and D for the total triglycerides and that Group A was also 

significantly different (P<0.05) from groups C and D for VLDL cholesterol. Group 

differences for total cholesterol were not found to be statistically different upon multiple 

companson. 
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Table 6.4 ANOVA for total cholesterol and its the various subfractions 

Analy sis of Variance for Total Cholesterol : Week 6 and Week 12 Measurements 
Source DF Seq SS Adi SS Adj MS F P 
Dose 3 297.4 298.1 99.4 135.45 0-000 
Group 3 16.8 16.8 5.6 7.64 0.000 
Period 3 1.4 1.4 0.5 0.65 0.5S-1 
Week 1 0.3 0.3 0.3 0.38 0.536 
Error 317 232.5 232.5 0.7 
Total 327 548.5 

Analysis of Variance for Total Trip-lycerides: Week 6 and Week 12 Measurements 
Source DF Seq SS Adj SS Adj NIS F P 
Dose 3 12.4 12.90 4.30 5.84 0.001 
Group 3 30.2 30.18 10.06 13.67 0.000 
Period 3 2.5 2.55 0.85 1.15 0.327 
Week 1 0.0 0.00 0.00 0.01 0.938 
Error 317 233.3 233.27 0.74 
Total 327 278.4 

Analvsis of Variance for HDL cholesterol 
Source DF Seq SS Adj SS AdýMS 
Dose 3 0.63 0.64 0.21 
Group 3 0.21 0.21 0.07 
Period 3 0.02 0.02 0.01 
Error 154 13.87 13.87 0.09 
Total 163 14.73 

Analy sis of Variance for LDL cholesterol 
Source DF Seq SS Adj SS AdLMS 
Dose 3 123.4 122.6 40.9 
Group 3 1.1 1.1 0.4 
Period 3 0.6 0.6 0.2 
Error 154 84.4 84.4 0.5 

Total 163 209.5 

Analysis of V4riance for VLDL 
Source DF SPA SS Adj SS Adj MS 

Dose 3 4.1 4.1 1.4 

Group 3 2.9 2.9 1.0 

Period 3 0.3 0.3 0.1 

Error 154 26.1 26.1 0.2 

Total 163 33.3 

F 
2.4 
0.8 
0.1 

F 
74.6 

0.7 
0.4 

F 
8.1 
5.7 
0.6 

p 
0.074 
0.511 
0.974 

p 
0.000 
0.580 
0.771 

p 
0.000 
0.001 
0.618 
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6.6.2 Population Dose Response Relationships 

The objective functions and likelihood ratio tests for the model fits are shown in Table 6.5. 

The fit of the step-linear model was superior over the step-model in all cases except for the 

total triglycerides, where the response was adequately described by the simpler model (p< 

0.15). With HDL and VLDL cholesterol, the decrease in objective function was 

considerably less in comparison to that for LDL cholesterol , total cholesterol and the ratio 

models. Only subfractions showing a superior fit to the step-linear model were considered 

further. On fitting the Emax models, only total (Run3) and LDL cholesterol (Run 6) 

showed a greater decrease in objective function over the steplinear model. Individual 

profiles for the total and LDL cholesterol responses are shown in Figures 6.2a and 6.3a. 

The estimated population Emax response relationships for these data with ±1 SD of inter- 

subject variability and ±1 SD inter-subject plus intraindividual variability are shown in 

Figures 6.2b and 6.3b. Estimated structural and variability parameters are shown with 

corresponding standard errors in Table 6.6. Emax values for total and LDL cholesterol 

were 2.7mmol. 1-1 (95% Cl 2.4 to 3.1mmol. 1-1) and 2.6mmol. 1-1(95% Cl 2.2 to 2.9mmol. 1-1) 

with D50 of 5. Omg (95% CI 3.3 to 6.8mg) and 6.3mg (95% CI 3.5 to 9. Omg), respectively. 

There was little change in the variability to accompany the small drop in objective function 

between the Emax and step-linear models for total and LDL cholesterol reduction. For the 

HDL cholesterol, the objective function was increased slightly on fitting the Emax model 

(Table 6.5). The population average percentage reduction for competing models are also 

shown in Table 6.6 and there was little difference between the model predictions. 

However, the Emax model would be favoured for extrapolation outside the study dose 

range. The estimated population Emax profiles for total, LDL and HDL cholesterol are 

shown in Figure 6.4. The tested dose range was predicted to only cover 20% (70 to 90% of 

Emax) of the upper portion of total and LDL cholesterol response curves, and the middle 

30% (40 to 70%) of the HDL response curve. 
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Figure 6.2 a) Individual total cholesterol profiles and b) Population predicted Response 

versus dose. 
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Figure 6.3 a) Individual LDL cholesterol profiles b) Population predicted Response versus 

dose 

a) 

. **.. 
.. '00 

I'll . *-% 
ooo, 

0ii 
0 10 20 30 40 

Dose (mg) 

b) 

8 

7 

6 

5 

4-- 
U 

3 

2 -Population Reponse 

+/-I SD Intersubject variability 

+/-1 SD Intersubject & Intrasubject 

variability 

0ii 
0 10 20 30 40 

Dose (mg) 

163 



7ý 

03 

cz 

cl 
I 

bi) 
M 

9=L4 

-0 

M 

coo 

cl 

:: 3 

P-4 

CIO 

CA 

CA N "o 00 

g to 00 ýo r- V-) 't - V-) m C) Cý m 
0 CN cý m cn 

4-j Q 
10 
0 
ý-4 

to 
E m 0 --4 4n C'4 00 CIN Cf) VI) 0 

Cý M oo 00 06 00 00 "o 

clý Cý 00 00 a) a. ) 0 

-, r- ýb 
cn 

\, D 
V) 

CN 
r. 

kf) 
00 

CD E = cn 'r; t-- 0 cf) \, 6 in (:: ) 't \p "t 0 (14 0 C, 00 ,6 r- C) ýZc X c-, 

C) 
cn 

\-., 110 
-. 4 . 

00 
N .4 ý7q -4 kr) 

00 

- > 
u wI N e Cr) e- w e- o e- o e- 0 ýý 

, -. 1 
Q Zýý 

't e- "o e- "D e- 00 e- 
In s uo r.: o Cn r-ý c\ r-ý 00 (., i c) N F-) N C 4 - 0 in in ---4 N 

00 00 

' f) 
c) 

oý 00 
oý C ý " 

M 03 

1 
CA 

I x --, 4. ) --N --, a) , >< " 0 
--4 x it. ) 0 -, t cl 

00 0 r- 0 00 

CL 
q. q. 

w a ) - (1) , P4 u P4 W. 0 P4 04 o , , . 4- . -ý --ý - 4- ll. ý 11-11 4- ý-, 4M ,ý ý, - 

0 

CIS 0 
E- 

0 
C) 04 0 

-6 

CIS 4ý (: ) 
> _0 

N 

4) 

CD. ce 2 

X0 

(A r. 

(D 
"P 

"c 
0 

tu 
> 
m 

"0 C: Ld le 
(9 (A ýU= 

Q) $. 
. 
r. 

1-. 
C 

22 
Gn 42 

-ZZ -m 

> ce > 

u3 -0 u 

, er -zi zj 
,. rý 5 ,0. 

- ce 

. r. ýc 

ce 
>> 

c7. 

-0 0 

'55 

ce u, 

cd 
X 
M$ le) .0 

0 rn -j 
ý. (D 
u r- 

Iýt 



(1) 

cl 

42 
a) 

Cý4 

41) 

0 

0 
41) 

0 

mý cn 
CD 

cu cn 9.0 :1 
c, D 

.-- 

GBUeLl3 OBL'IU03JOd 

0 
0 
T-1 

0 
Co 

0 
CD 

0 
R* 

0 
C*+4 

0 

0 
in 
1ý0 

CD 000 CD 000 
0 (7) CO r--. LO qe (n CM " 
9-» 



6.6.2 Covariate analysis 

Figure 6.5 shows boxplots of both the modelled individual placebo estimates and the 

individual estimates of response by gender for the total cholesterol Emax model (Run 3). 

Similarly, the corresponding plots for the LDL cholesterol Emax model (Run 6) are shown 

in Figure 6.6. In both cases, males had a slightly lower median placebo estimate and 

slightly higher median response estimate. The differences were more obvious for LDL 

cholesterol Emax model (Figure 6.6). 

Relationships between individual estimates of response and both the observed placebo 

measurements (PM) and body weight are shown in Figures 6.7 and 6.8. Patients with a 

high PM were shown to have a larger absolute response (Figure 6.7 a and Figure 6.8 a). In 

this case, the relationship for LDL cholesterol Emax model (Figure 6.7 a) was less apparent 

than that for total cholesterol Emax model (Figure 6.8 a). There was also some evidence of 

a linear relationship between body weight and response for both the total and LDL 

cholesterol Emax models (Figure 6.7b and 6.8b, respectively). 
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Figure 6.5 Covariate relationships for total cholesterol model: a) Modelled individual 
placebo estimates by gender and b) Modelled individual estimates of response by gender. 
Horizontal line and boxes indicate median and interquartile range (Ql-Q3), respectively. 
The whiskers extend to the lowest and highest values that are still inside the region defined 
by Q1 - 1.5. (Q3 - QI) to Q3 + 1.5. (Q3 - Q1), showing the range of the data. The other 
lines indicate values which lie outside this interval. 

a) 

. 

0 2m 
E 
0 (U 
-ro 
E 
-ý5 
LU 0) 
0 
-0 0 

CL 
co 

13 c 
tl- 

I" 

Female Male 

b) 

o 
2 

E 
(U 0 C: 0 CD CL 
0 C\i (U 

0 
0 
(U 
vu 
.9 Cý ý5 
U-1 

C: C? 

Female Male 

167 



Figure 6.6 Covariate relationships for LDL cholesterol model: a) Modelled individual 
placebo estimates by gender and b) Modelled individual estimates of response by gender. 
Horizontal line and boxes indicate median and interquartile range (Ql-Q3), respectively. 
The whiskers extend to the lowest and highest values that are still inside the region defined 
by Q1 - 1.5. (Q3 - Q1) to Q3 + 1.5. (Q3 - QI), showing the range of the data. The other 
lines indicate values which lie outside this interval. 
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Figure 6.7 Covariate relationships for total cholesterol model: The modelled individual 
estimates of response at 40 mg versus a) The observed placebo measurement and b) Body 
weight 
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Figure 6.8 Covariate relationships for LDL cholesterol model: The modelled individual 
estimates of response at 40 mg versus a) The observed placebo measurement and b) Body 
weight 
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Model development and covariate effects for the total cholesterol response 

Absolute reduction model 

The development and covariate investigation for the total cholesterol using the absolute 

reduction model is shown in Table 6.7. The best structural model from the initial model 

development i. e. Run 3 Table 6.5, is included for comparison. The additive component, 

using a combined additive and proportional intraindividual variability model, was 

estimated to be zero. Re-running with an additive instead of a proportional model 

increased the objective function (Run 3b), so the proportional model was used for the 

covariate investigation. 

In Run 22, the FOCE with interaction method was used instead of the FO method; the 

estimates of variability and precision were less and run times were reasonable, so further 

model development utilised this estimation method. 

Estimating covariance between the modelled placebo measurement PM and the response, 

significantly reduced the objective function, P<0.01 (Run 23 vs Run 22). However, a 

further significant reduction was achieved when the observed PM was used as a covariate 

of Emax, P<0.025 (Run 24 vs Run 23) and the covariance term could be subsequently 

removed without significantly increasing the objective function (Run 25 vs Run 24). 

Including PM with D50 (Run 26), or gender with either Emax (Run27) or D50 (Run 28) also 

significantly decreased the objective function. However, the parameter estimates for the 

gender effects were not significantly different from zero. Including gender with the 

modelled PM (Run 28b) did not significantly decrease the objective function. Adding 

body weight with a linear or non-linear relationship did not improve the fit, but the use of 

weight-corrected dose did reduce the objective function (Run 29). 
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Including PM with Emax provided the lowest objective function, and none of the possible 

two factor models (runs 30 to 32) resulted in a further statistically significant decrease in 

objective function. The weight correction of dose still decreased the objective function and 

was included in the final model (Run 33). 

Percentage reduction model 

The development and covariate investigation for the total cholesterol model using the 

percentage reduction model is shown in Table 6.8. For the basic model (Run 34), the 

population parameter estimates (SE) for Emax and D50 were 31.7 % (±7.6%) and 5.03mg ( 

±17%), respectively. In this case, the additive model was shown to be more appropriate 

than the proportional model (Run 34b vs Run 34). The lower variability estimates and 

improved precision for the parameter estimates was again shown when the FOCE method 

was utilised. (Run 35). Estimating interindividual variability on both Emax and D50 did not 

significantly decrease the objective function (Run 36). As expected, similar covariate 

relationships to those for the absolute reduction model were detected. Including PM with 

Emax (Run 37) or D50 (Run 38) significantly decreased the objective function. Similarly, 

including gender with D50 (Run 40) significantly reduced the objective function. 

However, the reduction in objective function when gender was included with Emax (Run 

39) did not reach statistical significance, and neither of the estimates for the gender effects 

were significantly different from zero ( Run 39 and Run 40). The addition of weight- 

corrected dose again reduced the objective function without increasing model complexity 

(Run 4 1). 
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As with the absolute reduction model, none of the two covariate models significantly 

reduced the objective function further. However, the best single covariate model was 

less easy to determine, since the objective functions for PM with D50 and PM with 

Ernax were very similar (Run 37 vs Run 38), even after correcting dose for body 

weight (Run 45 vs Run 46). There was no difference in the weighted residual versus 

dose plots for the two models (Figure 6.9). The lack of distinction between the two 

models is due to the high degree of correlation between Emax and D50. Absolute 

reductions in (oF . Fsp of 4% (Run 45) or 5% (Run 46) corresponding to a decrease of 

ýF _SP 
24% and 30% in the interindividual variability (O)p 2) were achieved with the final 

models. 

Using the parameters from Run 45, the predicted D50, for a 75 kg person, with initial 

measurements of 6,7.8,1 OmMol. 1- I was 9.00,6.26,2.91 mg, respectfully. Similarly, 

using the parameters from Run 46, the predicted maximum reduction would be 25.8, 

34.8 45.6%, respectfully. These correspond to absolute maximum reductions of 1.6, 

2.7.4.6mMol. L-1 and lowest possible values of 4.4,5.1,5.4mMol. 1-1, respectfully. 

Figure 6.10 shows the predicted percentage reductions for the three different initial 

measurements using the population typical parameter estimates from Run 45 (Figure 

6.10 a) and Run 46 (Figure 6.10 b). The lines are the predicted responses for a 75kg 

person, and the upper and lower limits around each line correspond to the predictions 

for a 100kg and a 50kg person, respectfully. The predictions for average weight 

(75kg) and average initial measurement (7.8mMol. L-1 ) were very similar for the two 

models, due to the high degree of correlation between Emax and D50. However, as 

expected, the predictions for higher or lower initial values were very different. When 

the covariate effect was on Emax (Run 46) the maximum percentage reduction was 

predicted to increase as the initial measurement increased. 

175 



Figure 6.9 Weighted residuals versus dose for the percentage reduction model for 
total cholesterol a) Run 45 (PM as covariate of D50) and b) Run 46 (PM as covanate 
of Emax) 
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Figure 6.10 The predicted reduction in total cholesterol for a typical 70kg subject 
with a placebo measurement of 6 (dotted line), 7.8 (solid line) and 10 (dot_dashed 
line) mMol-L-1 in accordance with a)Run 45 Table 6.8 and b) Run 46 Table 6.8. The 
intervals around each line show the effect of body weight over the range of 50 (lower 
limit) to 100 (upper limit) kg on the predicted response 
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In contrast, the initial measurement did not affect the maximum possible percentage 

reduction when the covariate effect was related to D50 (Run 45). Body weight had 

the greatest influence on the predicted percentage reduction at doses around D50. 

The effect decreased as the predicted percentage response approachedEmax. 

Model development and covariate effects for the LDL cholesterol response 

absolute reduction model 

The development and covariate investigation for the LDL cholesterol using the 

absolute reduction model is shown in Table 6.9. The best structural model from the 

initial model development, Run 6 Table 6.4, is included for comparison. The 

additive component when a combined additive and proportional intraindividual 

variability model was tested, was estimated to be zero. Re-running with an additive 

instead of a proportional model increased the objective function (Run 6b), so the 

proportional model was used for the covariate investigation. Although using the 

FOCE method did not greatly alter the variability or precision in parameter estimates 

(Run 47), it was utilised in the covariate model development for consistency with the 

total cholesterol modelling. Testing covariance between the placebo measurement 

and the response (Run 48) or interindividual variability on both Emax and D50 (Run 

49) did not significantly decrease the objective function. The addition of weight- 

corrected dose again reduced the objective function without increasing model 

complexity (Run 50). Including PM with Emax (Run 5 1) or D50 (Run 52) did not 

significantly decrease the objective function. Although including gender with either 

parameter did significantly decrease the objective function (Run 53 and 54), the 

parameter estimates for the difference were not significantly different from zero. 
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Including gender with the modelled PM (Run 54b) did not significantly decrease the 

objective function. Including gender on both Emax and D50 (Run 55) was not significantly 

different from the best one covariate model (Run 54), and correcting dose for body weight 

did not improve the parameter precision of the gender effect (Run 55). 

Percentage reduction model 

The development and covariate investigation for the LDL cholesterol model using the 

percentage reduction model is shown in Table 6.10. For the basic model, the population 

parameter estimates (SE) for Emax and D50 were 43.9% (±7%) and 6.02mg (±22%), 

respectively (Run 57 Table 6.9). The percentage reduction data was again shown to be 

most appropriately modelled using an additive intraindividual error model (Run 57b vs 

Run 57). There was no change in the parameter estimates upon using the FOCE method 

(Run 58) but it was again used for consistency. Estimating interindividual variability on 

both Emax and D50 significantly decreased the objective function (Run 59), so this variance 

structure was used for the covariate investigation. Estimating covariance between the 

parameters did not further decrease the objective function (Run 60). Using weight 

corrected dose was again shown to decrease the objective function (Run 61). In 

comparison to the covariate analysis using the absolute reduction model, including gender 

with Emax (Run 64) did not significantly decrease the objective function, yet including 

PM with Emax (Run 62) or D50 (Run 63) did significantly decrease the objective function. 

The parameter estimate for the gender effect on D50 was not significantly different from 

zero (Run 65). Out of the possible two factor covariate models (Run 66 to Run 69) only 

the model including gender and PM with D50 significantly further reduced the objective 

function, but, the confidence interval for the gender effect still included zero. 
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Therefore, although lower objective functions were obtained by including a gender effect, 

the only covariate model with sufficiently precise parameter estimates was PM related to 

D50 (Run 63). Again, the use of weight corrected dose further decreased the objective 

function and was included in the final model (Run 70). Run 71 shows the effect of PM on 

Emax with weight corrected dose for completeness. 

The absolute reductions in(OD50 and(OEMAX, between the basic (Run 59) and final model 

(Run 70), were 3% and 10%, respectfully. The absolute reductions correspond to 

percentage decreases in the interindividual variabilities (O)D50 2 
and(OEMAX 

2 )of 18% and 

30%, respectively. 

Using the parameters from Run 70, the predicted D50 for a 75kg person, with initial 

measurements of 4,5.4 and 8mMol. 1-1 was 10.9,7.5 and 1.2mg, respectively. Similarly, 

using the parameters from Run 7 1, the predicted maximum possible reduction would be 

36.7,46.3 and 64.1 %, respectfully. These correspond to absolute maximum reductions of 

1.5,2.5 and 5.1mMol. L-1, and lowest possible values of 2.5,2.9, and 2.9mMol. 1-1 

respectfully. Figure 6.11 shows the predicted percentage change for three different initial 

measurements for Run 70 (Figure 6.1 1a) and Run 71 (Figure 6.1 1b). As before, the lines 

show the predicted response for a 75kg person, and the upper and lower limits around each 

line correspond to the predictions for a 100 and 50kg person, respectfully. As with the 

total cholesterol predictions, the predictions for average weight (75kg) and average initial 

measurement (7.8mMol. L-1 ) were very similar for the two models. Similarly, the 

differences in the predictions upon changing the initial measurements was again 

demonstrated. 
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Figure 6.11 The predicted reduction in LDL cholesterol for a typical 70kg subject with 
placebo measurements of 4 (dotted line), 5.4 (solid line) and 8 (dot-dashed line) mMol. 1: 1 
in accordance with a)Run 70 Table 6.9 and b) Run 71 Table 6.9. The intervals around each 
line show the effect of body weight over the range of 50 (lower limit) to 100 (upper limit) 
kg on the predicted response 
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6.6.3 Simulation of responder rate 

The distribution of total cholesterol after doses of 0,2.5,5,7.5,10,20,30,40,80, and 160 

mg was simulated for a population of 1000 patients with a mean (SD) for PM and body 

weight of 8.0 (0.8)mMol. L-I and 75 (13)kg, respectively. The simulation used the 

parameter estimates from the following Runs: 

Run 45 - PM as a covariate of D50 and dose corrected for body weight 

Run 46- PM as a covariate of Emax and dose corrected for body weight 

In the simulations, the "placebo" response was assumed to be zero, and the pre-treatment 

baseline measurements were considered to be equivalent to the PM used in the model 

development (see Section 6.5.4). 

Patients achieving a total cholesterol < 5.6 mMol. L-' were considered to be completely 

controlled and defined as "responders". The responder rate was defined as the percentage 

of responders at each dose level. 

The range in the simulated total cholesterol concentrations achieved at each dose level is 

shown on Figure 6.12. There was no obvious difference between the two models. The 

simulated percentage of responders by pre-treatment concentration are shown on Table 

6.11 and Figure 6.13a. Predicted responder rates at doses of 10,20 and 40mg were 22.6, 

40.9,54.5%, and 24,41.9 and 56.2% for Run 45 and Run 46, respectively. In general, the 

predicted responder rate was I to 2% different over the whole dose range (0 to 160mg). 

The similarity between the responder rates is consistent with the similarity in the achieved 

concentrations (Figure 6.12). A doubling of dose from 10 to 20mg was predicted to 

increase the responder rate by -80%, while a doubling from 20 to 40mg would only 

increase the responder rate by a further 34% (Figure 6.14 a). 
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Figure 6.12 Distribution of predicted total cholesterol concentrations across dose for a) Baseline on D50 model (Run 45) and b) Baseline on Emax model (Run 46). Horizontal line 
and boxes indicate median and interquartile range (Ql-Q3), respectively. The whiskers 
extend to the lowest and highest values that are still inside the region defined by QI- 
1.5. (Q3 - Q1) to Q3 + 1.5. (Q3 - QI), showing the range of the data. The other lines 
indicate values which lie outside this interval. 
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Figure 6.13 Predicted percentage responding in a simulated population of 1000 patients, 
using the baseline on D50 model (Run 45) and the baseline on Emax model (Run 46). a) All 
baseline measurements b) Baseline measurements >8.8 mMol. I: I c) Baseline 
measurements <7.2 mMol. L 
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Figure 6.14 Predicted percentage responding in a simulated population of 1000 patients, 
using the baseline on D50model (Run 45)-(dashed line) and the baseline on Emax model 
(Run 46)-(solid line). a) Response at 10,20 & 40mg b) Response at 7.5,15 & 80mg 
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A larger than a doubling of dose would be required to double the number of responders 

with doses >20mg (Table 6.11). In comparison to the 10mg to 20mg to 40mg titration, an 

alternative titration of 7.5mg to 15mg to 80mg would increase the responder rate by at least 

70% at each step (Figure 6.14b). 

As expected, the responder rates were predicted to be markedly different between patients 

with high and low pre-treatment concentrations. For example, the responder rate in 

patients with a low pre-treatment concentration (<7.2 mMol/1: 1) taking 5mg daily was 

predicted to be similar to that in patients with a high pre-treatment (>8.8 mMol/I: I) 

concentration taking 160mg daily (Table 6.11). In addition, when considering the tails of 

the pre-treatment concentration distribution ( <7.22 or >8.8 mMol. l: '), the predicted 

responder rate was different for the two models (Figure 6.13 b& c). For these individuals, 

the model from Run 46 (baseline as a covariate of Emax) predicted a significantly higher 

responder rates than the model from Run 45 (baseline as a covanate of D50). This 

difference increased to a maximum over the dose range of 10 to 30mg. The maximum 

differences (14.5% and 18.3% for pre-treatment cholesterol of <7.2 mMol. 1: 1 and > 8.8 

mMol. L-1, respectively) decreased slightly as dose was further increased. 

The potential dosage regimens for patients with high (>8.8 mMol. l; ') and low (<7.2 

mMol. L_1) pre-treatment total cholesterol concentrations are compared in Figures 6.15 and 

6.16, respectively. 
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Figure 6.15 Predicted percentage responding in a simulated population of 152 patients 
with pre-treatment cholesterol >8.8 m. Mol. L_1, using the baseline on D50 model (Run 45)- 
(dashed line) and the baseline on Emax model (Run 46)-(solid line). a) Response at 10,20 
& 40mg b) Response at 7.5,15 & 80mg 
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Figure 6.16 Predicted percentage responding in a simulated population of 168 patients 
with pre-treatment cholesterol <7.2 mMol. U', using the baseline on D50model (Run 45)- 
(dashed line) and the baseline on Emax model (Run 46)-(solid line). a) Response at 10,20 
& 40mg b) Response at 7.5,15 & 80mg 
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6.7 Discussion 

6.7.1 Mean reductions and analysis of variance 

The mean total cholesterol pre-treatment (i. e. PM) was 7.8 ±I-ImMol. L_1 and therefore the 

average patient had at least a three fold increased risk of fatal CHD compared to subjects 

with a normal cholesterol i. e. < 5.2 mMol. L-' (Study group, 1998). In comparison, the 

mean total triglycerides pre-treatment( 2.4 mMol. L_') were only marginally raised in 

comparison to the range of 2.3 to 5.6 mMol. L-' for mild to moderate hypertriglyceridaemia. 

Treatment was therefore mainly required to lower the total cholesterol in general, and LDL 

cholesterol in particular. 

The mean percentage reduction in total cholesterol after the 40mg dose i. e. 31%, was the 

same as that estimated in a previous investigation of subjects sampled from the same 

hypertensive, hypercholesterolaemic population (Macdonald et aL, 1991). Changes in the 

lipid sub-fractions across the dose range were also consistent with previous dose ranging 

studies which utilised different patient populations (Table 6.3 vs Table 6.1). The average 

response to sirnvastatin would therefore appear to be consistent across various sub-groups 

of the potential target population. The equivalence of total cholesterol and total 

triglyceride responses after 6 and 12 weeks of dosing corresponds to the maximum 

response occurring with the first 6 weeks of treatment with a particular dose (Todd & Goa, 

1990). Although the ANOVA and subsequent multiple comparisons indicate the 

significant treatment effects across the tested doses, extrapolation and prediction of 

responses to other doses and differences between potential future dosing strategies requires 

the utilisation of modelling techniques. 

6.7.2 Population dose response relationships 

Since there were no period effects, the lipid responses were modelled ignoring the dose 

administration sequence. The total triglycerides were only mildly raised, so it is not 
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surprising that the simplest step model was the most appropriate in this case. The effects 

on VLDL and HDL cholesterol were best described by the step-linear model which predicts 

that the change in HDL and LDL would increase linearly within the observed dose range. 

The mean parameter estimates for Emax and D50were precisely estimated for the reduction 

in both total and LDL cholesterol. The parallel nature of the projected dose response 

curves (Figure 6.4), and the similarities in the estimated Emax and D50 values highlight 

that the principle effect of simvastatin is to reduce total cholesterol by removing circulating 

LDL cholesterol. The association between decreasing LDL cholesterol and increasing 

HUILDUL cholesterol during treatment with simvastatin is consistent with previous studies 

(Tuornilehto et al., 1994). Although, the changes in the total: HDL cholesterol and 

LDL: HDL cholesterol ratios may be important to the assessment of the total benefit from 

treatment, reduction in CHD mortality has been more clearly related to changes in total or 

LDL cholesterol alone. 

The LDL and total cholesterol responses over the 10 to 40 mg dose ranges were predicted 

to fall into the upper 70-90% of the projected dose response curve (Figure 6.4). However, 

the total and LDL cholesterol model extrapolations may be biased by the small portion of 

the dose response relationship covered by the study dose range. Although, formal model 

validation would require prospective evaluation over a wider dose range, the predicted 

responses were consistent with the results from the primary placebo controlled dose 

ranging studies detailed in Table 6.1 and shown in Figures 6.17 & 6.18. Nevertheless, the 

models did not extrapolate as well to the recent high dose studies (also shown in Figures 

6.17 and 6.18), i. e. the predicted median responses for 160mg was less than that measured 

(Davidson et al., 1997). Whilst this is not surprisIng given that the observation was well 

outside the dose range used to develop the model, the lack of a placebo in the high dose 

study could also account for the difference. 
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However, other emerging work appears to support the notion that the ffMG-CoA reductase 

inhibitors have a response curve which is still log-linear at doses 3 to 4 times the current 

maximum dose (Bradford et al., 1991; Pedersen & Tobert, 1996), and data in this range is 

needed to support the models derived in this analysis . 

6.7.3 Covariate analysis 

Previously, pre-treatment concentration and gender have been shown to be predictors of the 

total and LDL response to simvastatin (Miserez et al., 1994). In this analysis, attempts 

were made to determine which aspect of the dose response relationship each covariate most 

influenced. Initially, an absolute reduction model was used, however, percentage reduction 

from baseline is most often reported when comparing response of lipid lowering therapies. 

Utilising the percentage reduction models reduced the number of interindividual vanablity 

terms required in the basic model. The transformation of the data led to an additive 

intraindividual variability model being more appropriate than the proportional error model 

used with the absolute reduction model. This change highlights the importance of 

rechecking the modelling assumptions. 

In contrast to the absolute reduction model for total cholesterol, which determined that PM 

was best included as a covariate of Emax, changing to the percentage reduction model 

indicated that PM could equally be a covariate of D50- While the high degree of correlation 

between Emax and D50 will always be a confounding factor, larger numbers and a wider 

coverage of the dose response relationship may allow the effect of PM on each or both 

parameters to be more accurately determined. For the LDL cholesterol, utilising the 

percentage reduction model allowed estimation of interindividual varibility on both Emax 

and D50, and determination of a statistically significant effect of PM on Emax and D50- 

Therefore, although the percentage reduction model helped uncover more potential 

covariate relationships it did not help to clarify their relative importance. 
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Gender was a potential covariate for both the total and LDL cholesterol responses, and 

gender differences in both the pharmacokinetics (Cheng et al., 1992) and 

pharmacodymanics of simvastatin have been previously demonstrated (Clifton et al., 1994; 

Nhserez et al., 1994). However, estimates of the relevant parameter were not significantly 

different from zero. Confounding with PM and the female preponderance in the study 

population possibly prevented precise estimation of gender differences. 

The relationship between PM and response is consistent with the action of simvastatin on 

the number of liver LDL receptors. A shift in the equilibrium between production and 

removal of LDL particles towards a higher rate of removal should theoretically produce a 

more profound reduction when the circulating levels are high. However, in this analysis it 

was not possible to determine whether the effect would result in a steeper decline, a greater 

overall reduction or both. 

Nevertheless, the importance of the pre-treatment level in comparison of responses was 

highlighted. On this basis, a difference between baseline levels could also account for the 

disparity between the predicted and observed response to the 160mg dose (Figure 6.17 and 

6.18). 

The association between body weight and the response to simvastatin is more difficult to 

justify since the use of an additional parameter to account for the effect did not have a large 

affect on the fit. Furthermore, although weight reduction in association with a lipid 

lowering diet is reported to decrease plasma cholesterol by up to 25% (Study Group, 1988), 

the average weight did not change over the study duration, and subjects from this study 

population have previously failed to respond to dietary measures (Farish et al., 1990). 

Nevertheless, a weight corrected dose may be justified pharmacokinetically. Liver size is 

related to body weight, so the efficiency with which the active metabolites are cleared from 

the liver, via biliary excretion, may increase with increasing weight. This explanation may 

also theoretically account for gender effects found in previous studies. 
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While the detected covariate relationships are consistent with previously postulated 

covariate effects, the large majority of the interindividual variability remained unexplained. 

Further work, in a larger population, may allow the covariate relationships so far identified 

to be fully characterised and other covariates, which may help to explain more of the 

interindividual variability, to be determined. 

6.7.4 Simulation of responder rate 

For hypercholesterolaernia as an isolated nsk factor, it is recommended that total 

cholesterol should be maintained below 5.6 mMol. L-1. For simplicity, the responder rate 

was predicted using this concentration. However, if the incidence of multiple risk factors 

within the population was known, a range of target concentrations could be used to more 

accurately predict the overall responder rate. 

The accuracy of simulations are conditional on the adequacy of the models, so the 

simulations used parameters from both Run 45 and Run 46 to test for differences. A 

larger responder rate was predicted for the model with PM related to Emax (Run 46), and 

the magnitude of this difference was predicted to increase with both increasing dose and 

the increasing value for PM. 

The change in responder rate with increasing dose is consistent with the Emax model used 

in the simulations i. e. on approach to the asymptotic part of the Emax curve a larger and 

larger dose is required to produce the same increase in response and, therefore responder 

rate. 

Although, it would be possible to individualise dose based on the pre-treatment cholesterol 

measurements, the range of commercially available tablet strengths limit the dose selection. 

The current available strengths in the UK (10 and 20mg) allow for titration from 10mg in 

steps of 10 mg. However, this would seem to only allow for titration in the "flatest" 
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portion of the dose response curve. A smaller tablet strength of 5 to 7.5 mg would allow 

smaller titrations starting from the D50 and therefore the steeper portion of the dose 

response curve. However, rationalisation of treatment, based on achievement of a 

particular "target" cholesterol level, could lead to a completely different set of dose 

strengths. Importantly, the choice of doses has to take into account the relationship 

between dose and adverse effects. Fortunately, the toleration to all doses including 80mg, 

was good in the primary dose ranging studies, and any side-effects have usually been mild 

(Section 6.1.4). However, for a prophylactic treatment even mild side-effects may be 

sufficient to reduce compliance, so it is prudent to dose patients with the lowest possible 

dose required to achieve the desired effect. With this in mind, the choice of 7.5,15 and 80 

mg doses may for several reasons be more advantageous. Firstly, an average responder rate 

similar to that for the 20mg dose could be achieved with an initial dose of 15 mg (Table 

6.11), and the lower dose may lead to a reduced incidence of side-effects. A subsequent 

titration to 80mg would provide a pronounced increase in responder rate for resistant 

patients. Secondly, for patients with a low pre-treatment measurement (i. e. <7.2 mMol. L_1) 

7.5mg may be a more prudent starting dose, since the responder rate is predicted to be very 

similar to that for the 10 mg (53 to 55. % vs 54.2 to 57.7%, Table 6.11), and yet the smaller 

dose may again be sufficient to decrease the incidence of adverse effects. Furthermore, a 

subsequent titration to l5mg would provide a responder rate of between 73 to 80%, which 

is substantial given that another three fold increase in dose would be required to increase 

responder rate by another 10%. Lastly, since the responder rate is much lower in patients 

with a high pre-treatment measurement (i. e. >8.8 mMol-L-1) a starting dose of 80mg may 

be appropriate since the risk of developing CHD could outweigh the risks of any potential 

adverse events. 

Patients not adequately responding to this dose, may only achieve a greater reduction with 

the addition of a second agent such as a bile acid sequestrant (Da Col et al., 1990,1993; 
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Desager et al., 1991) or a fibrate (Deslypere, 1992; Feussner et al., 1992). However, the 

increased potential for more serious adverse effects i. e. myopathy and rhabdomyolysis 

must be considered if a combination with a fibrate is to be advocated (Plosker & 

McTavish, 1995). 

6.7.5 Study design 

The dearth of published knowledge on the dose response relationship for sirnvastatin, 

appears, despite the number of dose ranging studies, to be due to the acceptance of the poor 

information provided by cuffent practices in the design and analysis of dose ranging 

studies. Specifically, use of the parallel design has not provided individual dose response 

information and, therefore, only a conservative exploration of the dose response 

relationship. 

The present study design has only explored doses over a narrow range at the upper end of 

dose response relationship, and the identification of both the structural and covanate 

models was restricted by this limitation. In particular, it was not possible to detennine 

whether the correlation between PM and response was most appropriately modelled by 

including it with D50 or Emax. Escalation of subjects over a wider range of doses would 

have allowed better characterisation of the dose response relationship and the covariate 

effects. This approach would seem particularly appropriate for simvastatin given the low 

incidence of adverse effects. The lag time of six weeks until the maximal effect is 

achieved could restrict the number of doses used in any future escalation design. However, 

the number of subjects achieving the desired total cholesterol concentration could be 

increased by altering the starting dose and titration steps based on the pre-treatment value. 

6.7.6 Future clinical practice 

The potential shortcomings of the present range of doses must be balanced against the 

therapeutic success of simvastatin. However, with the link between control of 
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hypercholesterolaernia and reduction in cardiovascular morbidity and mortality becoming 

established, the need to rationalise treatment may now be more important. Effective 

clinical management of an individual patient's response requires that Information Is 

provided to help rationalise between dose escalation and the addition of other drug therapy. 

Covariate effects (i. e. pre-treatment level and gender) may alter the dose response 

relationship and influence this decision. 

D-- 
I i-eviously, the comparisons of HMG CoA inhibitor potencies has been based on mean 

dose response relationships (Illingworth et al., 1994). The results of this investigation have 

shown how these may lack accuracy and would benefit from the estimation and 

comparison of population dose response relationships (Marshall et al., 1994) as developed 

by Sambol and Sheiner (1991). 

6.8 Conclusions 

The analysis has identified structural models for each of the lipid responses to simvastatin. 

Despite the restrictions of the study design, an Emax relationship for the reduction in total 

and LDL cholesterol was established as the most appropriate model. Average predictions 

for responses outwith the studied dose range were consistent with observations made in 

previous dose ranging studies. 

In the covariate analysis it was not possible to determine whether the correlation between 

PM and response was best modelled by including it with Emax or D50 or both. The 

estimation of the effect of gender on the reduction in LDL cholesterol was confounded by 

the majority of females having a high PM. Modelling the response as a function of dose 

per kg body weight further decreased the objective function without increasing the model 

complexity. 

Simulations predicted that the percentage of responders (patients attaining a cholesterol 

<5.2 mMol. L-1 would increase from 24% on 10mg to 56% on 40mg. However, based on 
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this analysis a more rationale set of doses may be 7.5,15 and 80 mg, and it was predicted 

that these would offer greater flexibility since more of the dose response range could be 

covered. In particular, it was predicted that this would allow patients to be prudently 

titrated in accordance with pre-treatment measurements. 

It may be hypothesised from this analysis that a more appropriate design and interpretation 

of the primary dose ranging studies would have resulted in different doses of simvastatin 

being used in phase III trials. Furthermore, a better understanding of the dose response 

relationship and possible importance of covariates at an early stage in the clinical 

development programme may have helped to provide a definitive recommended dose range 

before the drug was established in clinical practice. 
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CHAPTER 7 

DOSE/ CONCENTRATION/ RESPONSE 

RELATIONSHIP FOR A NOVEL CLASS III 

ANTI-ARRHYTHMIC DOFETILIDE: 

COMPARISON BETWEEN PATIENTS 

AND HEALTHY VOLUNTEERS 

203 



In this chapter mixed effects modelling is used to establish the dose concentration 

response relationship for a novel class III anti-arrhythmic drug under development for the 

treatment of re-entrant cardiac arrhythmias. Effect compartment methodology is used to 

account for the temporal delay between peak plasma concentration and maximum increase 

in the QTc interval, a surrogate marker of Class III anti-arrhythmic activity. A comparison 

between healthy volunteers and patients with ischeamic heart disease is made by testing for 

differences in the parameters of resulting PK/PD models. Covariates which could help 

explain the variability in the PK and PD components of the model are investigated. To aid 

in the design of future studies, fixed dose and dose per kilogram body weight short term 

infusions are compared using simulation. The potential safety implications for each 

regimen are discussed. Similarly, the steady state concentrations which give rise to QTc 

prolongations associated with an increased risk of Torsades de Pointes (TdP) were also 

predicted. 

7.1 Introduction 

7.1.1 Re-enterant cardiac arrhythmias 

Abnormal heart rhythms known as cardiac arrhythrruas can be characterised by electro- 

cardiographic (ECG) techniques. The effectiveness of drug treatment and other procedures 

in the correction or the prevention of rhythm abnon-nalities can be detected and measured 

by an alysing ECG patterns. The PQRST waveform describes one cardiac cycle. 
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R Various alterations in the time and shape 

of this waveform correspond to known 

rhythm disturbances and can be attributed 

to abnormal electrical conduction in 

particular areas of the myocardium. 

Both increased automaticity of pace maker 

cells which initiate the electrical wave 

fronts, and cyclical re-activation of the 

myocardium by wavefronts are common causes of cardiac arrhythmias. Re-activation 

results from temporal and spatial inhomogeneities in conduction and refractoriness within 

the myocardium; which allow advancing wavefronts to fractionate into more independently 

circulating activation wavelets. Re-excitation of previously refractory myocardium 

produces a re-entrant arrhythmia which can result in symptomatic tachycardias, atnal 

fibrillation and life-threatening episodes of ventricular fibrillation (VF). 

7.1.2 Class III antiarrhythmics 

Agents which lengthen the refractory period form an important class of drugs for the 

treatment and prevention of re-entrant arrhythmias (Singh, 1993). Arniodarone and sotalol 

are effective agents in the control of various types of arrhythrrua, and show class III activity 

along with other pharmacological actions (Beckers & Kulbertus, 1987; Singh & 

Nademanee, 1987; Nora & Zipes, 1993). Although a recent study has shown evidence to 

the contrary (Kuck, 1996), arniodarone is generally considered to be effective in 

maintaining sinus rhythm (Middlekauff et al. 1993) and Improving the survival of patients 

with life threatening arrhythmias (Herre et al. 1989; Ceremuzynski, 1993; Greene, 1993). 

However, it has an exceptionally long terminal half-life (20 to 60 days ), so steady state 

conditions are not achieved until several months after the start of therapy (Rodden, 1993). 
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The slow peripheral accumulation is highly vanable due to extensive plasma protein 

binding (>98% ) and the incidence of adverse events i. e. impairment of thyroid function 

and pulmonary toxicity have not been found to correlate with plasma concentrations (Ulrik 

et al. 1992; Greene, 1993). The bradycardic side-effects of sotalol have been largely 

removed by resolving the racernic mixture and administering the d-isomer which has no 

beta-blocking activity (Johnston et al. 1985). However, control of ventricular rate through 

antagonism of the beta-adrenoreceptor may be important, since the mortality rate with the 

single isomer has been shown to be greater than with placebo (Waldo et al. 1996). 

Nevertheless, the predictable pharmacology of a pure class IHantiarrhythlmc may offer the 

advantage of predictable efficacy and the potential of a safer treatment option for both the 

termination and prevention of cardiac arrhythmias. 

7.1.3 Dofetilide 

Dofetilide (UK-68,798) (N-(4- (2- (2-(4- (methane sulphonamido) phenoxy) N- 

methyethylamino) ethyl) phenyl) methane is a pure class III anti arrhythmic, as stratified by 

the Vaughan Williams classification for antiarrhythmics. Accordingly, it selectively 

inhibits the rapid component of the delayed rectifier potassium current Mr, prolongs the 

period that the cardiac tissue is refractory to further excitation, but does not affect the 

velocity of myocardial conduction (Gwilt et al. 1991; Carmellet, 1992). The prolongation 

of the effective refractory period (ERP) and, therefore, the action potential duration (APD), 

prevents the propagation of cycling waves of reactivation (Gwilt et al. 1991; Knilans et al. 

1991). Dofetilide has been shown to be effective in treatment and prevention of 

arrhythmias with a re-entrant mechanism i. e. atrial fibrillation (AF) (Suttorp et al. 1992) , 

paroxysmal supraventricular tachyarrhythmias (pSVT) (Connelly et al. 1992; Wong et al. 

1992) and ventricular tachycardia and fibrillation (VT/VF) (Echt et al. 1991; Fananapazir 

& Cropp, 1992; Thomsen et al. 1992). 
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7.1.4 Pharmacokinetics of dofetilide 

Previous studies have shown a linear relationship between dose and both AUC and Peak 

concentration (Sedgwick et al. 1991; Rasmussen et al. 1992). Elimination from the plasma 

following intravenous infusion has been shown to be biexponential with a terminal half-life 

of 7.5 to 9.0 hours (Rasmussen et al. 1992; Smith et al. 1992; Funck-Brentano, 1993). 

Over 70% of the parent drug appears to be excreted unchanged in the urine while the 

remainder is inactivated by metabolism. The potential for metabolic interactions is 

therefore limited and in addition dofetilide, is only moderately bound to plasma proteins 

(64%). 

7.1.5 Pharmacodynamics of dofetilide 

The QT interval is the time between the depolarisation and repolarisation of the ventricular 

myocardium, and corresponds to the ventricular refractory period. It is measured by 

standard ECG methods and is used in this chapter as an non-invasive surrogate marker of 

class HI antiarrhythmic activity and safety. 

Although QT prolongation has been successfully modelled (Whiting et al. 1980; Holford et 

al. 198 1) , the reliability of QT as a general marker for antiarrhythmic effect has previously 

been questioned (Vaughan-Williams, 1985). However, its relevance when considering 

class III specific agents has more recently been highlighted (Podrid, 1992). 

The length of the QT interval is inversely related to heart rate, so antiarrhythmics with a 

negative inotrophic effect can prolong the QT interval. 

Development of individual regression equations has been shown to produce the least biased 

heart rate corrected QT (QTc) measurements (Kelman et al. 1981). However, the 

population regression models are the most commonly employed i. e. (Bazett, 1920). When 

heart rate ch anges are small within individuals the two approaches are comparable. 
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Dofetilide has no effect on heart rate, but correction is still required to allow comparison of 

the QT intervals measured within and between study days. 

7.1.6 Torsades de Pointes (TdP) 

All antiarrhythmic drugs have a relatively narrow therapeutic window. The maximum 

therapeutic concentrations are limited by the risk of proaffhythmia. A major concern with 

the class III antiaffhythmics is Torsade de Pointes (TdP), a form of polymorphic VT which 

can degenerate into ventricular fibrillation. The incidence of UP is associated with many 

factors and a wide variety of clinical settings (Morganroth, 1987; Keren & Tzivoni, 1991). 

However, the most frequently reported cause of this arrhythmia is exposure to drugs known 

to delay repolarisation (Stratmann & Kennedy, 1987). The overall incidence of UP is low 

even for the class III drugs Mattioni et al. 1989), though prevention is important Since 

episodes can be life-threatening (Sclarovsky et al. 1983; Kuck et al. 1984; Brown et al. 

1986; Dancey et al. 1997). High plasma drug levels lead to excessive prolongation of QTc, 

so overdose is a common cause of UP (Neuvonen et al. 1979; Belton et al. 1982; Kuck et 

al. 1984). Prolongation of QTc is the single most common precursor to UP (Zehender et 

al. 1991). Stratmann and Kennedy reviewed 197 cases of UP 49 % had a predose QTc 

420 msecs, in comparison the normal range for QTc interval in healthy volunteers is 380 to 

400 msecs (Stratmann & Kennedy, 1987). In 89% of the cases investigated the pre-TdP 

QTc was > 560 msecs. Similarly, in 79% of the cases pre-TdP QTc had been prolonged 

by > 25%. While the degree of prolongation has not as yet been shown to correlate with 

efficacy (Surawicz & Knoebel, 1984), it may be possible to identify what is sufficient for 

efficacy but not associated with an increased risk of TdP. The QTc interval may therefore 

be a particularly useful surrogate in the determination of therapeutic regimens for class III 

anti arrhythmic s- 
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7.2 Background to analysis 

Early pharmacodynamic data for dofetilide suggested that the minimum dose to cause a 

measurable change in QTc was 5mcg. kg-1 and 1.5mcg. kg-1 in healthy volunteers and 

patients with ischaemic heart disease (IHD), respectively. This difference suggested that 

the dose concentration response relationships may be different between patients and 

volunteers. Since it is known that disease processes can alter the efficacy of many drugs, 

the presence of ischaernic heart disease may increase the sensitivity of the myocardium to 

dofetilide. Alternatively, the attenuation of effect could simply be the result of an increase 

in target tissue concentration as a result of a disease related reduction in clearance or 

plasma protein binding. Moreover, a combination of both these effects could play a role in 

disease related modification of efficacy. 

In drug development, comparative studies of matched groups of patients and volunteers 

are used to determine the potential for disease related changes to influence the dose 

response relationship. The data from such a study is used in this chapter to develop a 

PK/PD model for dofetilide. 
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7.3 Aims 

The primary aims in this chapter were :- 

1) To develop a PK/PD model to describe the effect of dofetilide on QTc interval 

2) To compare the response to dofetilide in patients with ischaernic heart disease with that 

in healthy subjects. 

3) To estimate the variability in the pharmacokinetic and pharmacodynamic parameters and 

to identify and explore any covariate relationships which help explain the variability. 

4) To compare the variability in pharmacokinetics and pharmacodynamics following fixed 

dose and dose per kilogram regimens 

5) Use the PK/PD relationship to predict the safety of various dosage regimens with regard 

to the incidence of Torsade de Pointes, and thus to help in rational design of future studies. 

7.4 Study design 

Two groups of patients with ischaemic heart disease (IHD) were given increasing doses of 

1,2,4 and 4,6,8mcg. kg-1 of dofetilide, respectively. (A third group was to receive 6,8, 

10mcg. kg-', but this arm of the study was closed due to lack of recruitment). The healthy 

volunteers received 1,67 1OItg. kg-1 of dofetilide. 

Individuals were given three escalating doses and a randomly inserted placebo dose, on a 

single blind basis. Each dose was administered via a syringe driver, as an infusion over 30 

minutes. A one week washout period was allowed between each study day. 

7.5 Data 

Eight patients were recruited into each of the two patient groups and the healthy volunteer 

group. Three females were recruited into the study ( two were healthy volunteers). A total 

of 1594 plasma samples and 1416 measures of QTc were available for analysis. Patient 10 

only received one dose and placebo, being lost to follow up after the after 4mcg/kg dose. 
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Measurements for Patient no II at the highest dose of 8mcg/kg were unobtainable, for the 

same reason . 

Table 7.1 summarises the demographic, biochemical and the pre-dose QT/QTc data for the 

healthy volunteers and IHD patients. While the two subgroups were matched for height 

and age, the IHD patients were significantly heavier (mean difference 14.4kg) than the 

healthy volunteers (Table 7.1). In terms of clinical biochemistry the two groups were also 

well matched. However the mean creatinine clearance (CLcr) for the healthy volunteers 

(68ml. min-1) was significantly lower (P<0.005) than that estimated for the IHD patients 

(92ml. min-1) Table 7.1. There was no difference between the mean predose baseline 

QT/QTc values. 
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7.6 Methods 

Modelling was implemented using both the first order (FO) and first order conditional 

estimation (FOCE) methods (Chapter 3) 

7.6.1 Pharmacokinetics 

Intravenous infusion models with up to three compartments were compared. Models were 

parameterised using micro rate constants, with a central compartment volume of 

distribution also being estimated in each case. 

7.6.2 Pharmacodynamics 

The pharmacodynamic measure QT was corrected for heart rate (BR) to give QTc (the 

corrected QT interval) using Bazett's fonnula (Bazett, 1920) 

QTC - 
QT 

-A-R 

where RR is the RR interval from the eletrocardiogram. 

The placebo response was smoothed using a three point moving average, and the QTc 

measurements were corrected by subtracting the smoothed placebo response. NEssing 

placebo values were replaced by the average of the values on either side. After placebo 

correction the QTc, measurement of dofetilide pharmacodynamic response was modelled 

using two approaches. In the first instance the post-dose QTc measurements were 
r 

corrected by subtracting the predose measurements. Change in QTc was modelled as 

function of concentration (C). 

A QTc =f (C) 

In a second set of models the baseline was included as an additional parameter 

i. e. A QTc =f (C) + Baseline 

A linear and an Emax model were used as functional forms for f(C) 
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7.6.3 PK/PD modelling 

A direct relationships between compartmental concentrations and QTc was initially 

considered. However, a temporal discrepancy between concentration and effect i. e. 

: 31% 

By considering drug transfer between 

the central compartment and the effect 

compartment to be governed by first 

hysteresis (shown in adjacent diagram) was 

evident in the QTc vs plasma concentration 

plots 

The relationship was therefore modelled using 

the standard effect compartment methodology 

described previously in Chapter 1.2.3 and 

outlined in more detail below. 

Kjo 

4*. 
- k12 

'N' Peripheral Central <-- 
[Compartment 

Compartment 

I K21 

order processes, the change in the 

amount of drug in the effect 

compartment (Ae) can be related to 

the amount in the central compartment (A, ) 

dAe 
-=A, *Kle- 

Ae. Keo 
dt 

where KI, and Keo are first order rate constants. 

Eq 7.1 

Since Ae cannot be directly measured, it is more useful to relate drug effect to the 

concentration in the plasma compartment. The compartmental amounts can be replaced by 

the corresponding volume and concentration terms 

Ve. 
dCe 

VI*Kle *C - Ve. Keo. Ce 
dt 

214 

Ki, W 

Effect 
Compartment 

Eq 7.2 

Concentration 



where V, and Ve are the volume of distribution terms for the central and effect 

compartments, respectively. The corresponding drug concentrations for the drug in each 

compartment are given by C and Ce, respectively. 

At steady state there is no net transfer of drug between the plasma and the effect 

compartment so 
dCe 

=0 and the right side of Eq 7.2 must therefore be equal to zero. If we dt 

arbitrarily define Cess = Css (Eq 7.3) then to satisfy Eq 7.2 

Ve. Keo. Ce 
ss = VI. Kj,. Css Eq 7.4 

The volume of distribution for the effect compartment under this assumption of equal 

steady state concentrations can therefore be derived 

Ve = Vj. 
Kle 

Eq 7.5 Keo 

Thus Eq 7.2 may be written as 

dCe 
-= Keo(C - Ce) Eq 7.6 
dt 

The rate constant Keo represents the loss from the effect compartment and characterises the 

dis-equilibrium between C and the measured effect. The half-life for the equilibrium is 

therefore 0.693/Keo. 

The differential equation Eq 7.6 could be used to simultaneously fit the pharmacokinetic 

and phannacodynamic data. Differential equation solvers are available within NONMEM, 

but runtimes can be vastly increased and the modelling can become cumbersome. In this 

chapter, the PK data was modelled in a separate step to the estimation of Keo and the PD 

model. The need for differential equations was avoided by fixing KI, to be very small in 

comparison to the other rate constants (i. e. 0.01 * K10) and treating the effect compartment 

as an extra pharmacokinetic compartment. The assumption Ce,, = C, 
s was preserved by 

utilising Eq 7.5 in the NMTRAN code (Appendix 1.4). 
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7.6.4 Covariate modelling 

Potential differences between healthy volunteers and IHD patients were investigated by 

estimating separate parameters for each sub group. Relationships between the various 

biochemical or demographic covariates and the individual PK/PD parameter estimates 

were investigated (Chapter 3). Both weight and ideal body weight were considered. Ideal 

body weight (IBW) was calculated as follows- 

IBW(men) (kg)= 50 +0.91. (height(cm) - 152) 

IBW(men) (kg)= 45 +0.91. (height(cm) - 152) (Synder et al. 1975) 

Renal function was assessed by calculating the serum creatinine clearance (CLcr) using the 

Cockcroft Gault equation (Rowland & Tozer, 1989a). 

CLcr = 
(140 

- Age) x Weight 
x [1.23(male); orl. 04(female)] 

serum creatinine 

where age is in years, weight in kg and serum creatinine in ýtmolll 

7.7 Results 

7.7.1 Noncom partmental pharmacokinetic estimates 

Both AUCO-i,, f and Cmax increased in proportion to the administered dose (Figure 7.1a & 

b). The slopes for the two linear relationships were mean (SE) 0.064ng. hr. rnl-'. mcg-1 (2%) 

and 0.023ng. ml-l. mcg-1 (7%), respectively. A small negative relationship between both 

dose corrected AUCO-i,, f and Cmax and increasing body weight could be shown (Figure 7.2 

a& b). The slopes for these relationships were -4 hr. ml-l. kg-lx 10-7 (SE 42%) and -3 ml- 

l. kg-lx 10-7 (SE 16%), respectively. 
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Figure 7.1 Relationships between dose and a) AUCO-i, f and b) Cmax 
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Figure 7.2 Relationships between body weight and a) Dose corrected Cmax and b) Dose 
corrected AUCO-inf 
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7.7.2 Pharmacokinetics 

In accordance with previous studies (section 7.1.4), the post infusion distribution was 

shown to be at least biexponential (Figure 7.3). Development of a two compartment 

population phan-nacokinetic model is shown in Table 7.2. In run 1, the intraindividual 

variability component was modelled using the exponential expression (Chapter 3), and the 

parameters were estimated using the FO method. In run 2, the combined expression for 

intraindividual variability was utilised, but the parameters were still estimated using the FO 

method. The large decrease in the value of the objective function, combined with the 

greater degree of precision in the parameter estimates, especially the interindividual 

variability, indicated that the second error structure was more appropriate. However, using 

the model described in run 2, there was a significant bias in the weighted residuals as 

shown in Figure 7.4 a and b. In run 3, this bias was removed by using the FOCE method 

to estimate the population parameters as shown in Figure 7.5 a and b. A decrease in 

variability and increase in the precision of the parameter estimates was associated with the 

improvement in fit. There was no indication in the residuals that a more complex model 

was required (Figure 7.5b). As expected, using a three compartment model did not further 

improve fit, so the two compartment model was deemed to be the most appropriate model. 

In run 4, the FOCE method was retained but the additive expression from the 

intraindividual variability component was removed. The large increase in objective 

function indicated that although small (0.05ng. ml-1) and imprecisely estimated, the additive 

component was important to the model fit. In run 5, the precision of the interindividual 

variability estimates for K10 and V, were improved by removing the interindividual 

variability term from the estimation of K12. However, the large increase in objective 

function indicated that the reduced model complexity resulted in a compromised fit. 
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Figure 7.3 Mean log concentration over a) 50 hours and b) 5) hours 
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Figure 7.4 Goodness of fit plots for a two compartment model fit using the FO 
estimation method (run 2) 
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Figure 7.5 Goodness of fit plots for a two compartment model fit using the FOCE 
interaction method (run 3). 
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7.7.3 Interaction vs no interaction with FOCE method 

The population parameters estimated using the "no interaction" option were different to 

those estimated using the "interaction" option (Table 7.2 run 6 vs run 3). This was most 

easily demonstrated by comparing CL , Q, Vss, TI/2cc and TI/20 obtained for each method 

(table 7.3). The derived population terminal and distributional half-life estimates were 

very similar. However, the clearance (CL), inter compartmental clearance (Q) and volume 

of distribution at steady state (Vss) estimates were different for the two methods 

(Table7.3). 

Table 7.3 Derived CL, Q, Vss, TI/2(X and TI/2p for the FOCE interaction (run3) and 
FOCE nointeraction (run 6) methods 

Run Method CL Q VSS T1/2 (X T1/2 P L. hr-l L. hr-l L i -' h -1 m n r 
3 FOCE 15.2 198 185 2.5 8.9 

interaction 
6 FOCE 19.0 186 217 2.2 9.0 

nointeraction I 

As previously discussed, the objective functions are estimated differently, so method 

comparison has to be based on goodness of fit plots (Chapter 3). Figure 7.6 shows the 

residual plots for each method grouped by sample times. The "no interaction" method 

showed a slight positive bias at the 0.67,0.83,1.0,1.25 and 1.5 time points i. e during the 

first hour post infusion. The SE's estimated by this method were also larger than those 

estimated using the "interaction" method (Table 7.2). So both model fit and parameter 

precision were better when the "interaction" method was used. 

Therefore, a two compartment model, incorporating both additive and exponential 

components for intraindividual variability, and using the FOCE with "interaction" 

estimation method was considered to best describe the pharmacokinetics (run 3 Table 7.2). 

224 



Figure 7.6 Residuals versus time for the a) Interaction (run 3) and b) No interaction (run 6) 
FOCE methods used for the two compartment pharmacokinetic model. 
Horizontal line and boxes indicate median and interquartile range (QI-Q3), respectively. 
The whiskers extend to the lowest and highest values that are still inside the region defined 
by Q1 - 1.5. (Q3 - Q1) to Q3 + 1.5. (Q3 - Q1). The *'s indicate values which lie outside this 
interval. 
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7.7.4 Healthy volunteer vs IHD patients 

While the pharmacostatistical model can be developed using any parameterisation, 

prospective application of covariate relationships is more intuitive when they are related to 

parameters that have a physiological basis (Chapter 3). Further modelling was undertaken 

using models parameterised in terms of volume of distribution and clearance using 

standard relationships within NMTRAN. The individual parameter estimates from run 3 

Table 7.2 are shown by subject group in Table 7.4. The average estimates of V, and Vss 

were respectively lower and higher in the IHD patients, however, these differences were 

not found to be statistically significant (run 7 to 10 Table 7.5). 

7.7.5 Covariate analysis 

Graphical analysis identified four possible covariate relationships: Vss with both body 

weight and ideal body weight (Figure 7.7 a and b) and CL with both CLcr and body weight 

(Figure 7.8 a and b). The importance of these relationships was tested using the series of 

models described in Table 7.6. In accordance with the relationship between dose corrected 

Cmax and body weight (section 7.7.1), relating Vss to body weight significantly decreased 

the objective function (run II Table 7.6). The comparison between run 12 and run 13 

demonstrates that the relationship was dependent on the association between body weight 

and the volume of distribution of the peripheral M) rather than the central compartment 

(Vi). The difference in the relationships is shown graphically in Figure 7.9. The decrease 

in the %CV (wvss) of 3.5% (run 11 v run 3, Table 7.6) after inclusion of body weight is 

equivalent to a 33% reduction in the variability in Vss (O)VSS2) 
. The variability was not 

further reduced by modelling Vss as a function of ideal body weight (run 14 Table 7.6). 
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Table 7.4 Summary of the individual distribution half-life, terminal half-life and volume 
parameters (VI and Vss) split by healthy volunteers and IHD patients 

IHD Group Volunteer Group 

ID TI/2 T1/2 Vss Vi ID T1/2 T1/2 Vss Vi 

cc P (L) (L) cc P (L) (L) 

(mins ) (hrs) (mins) (hrs) 
1 2.4 8.9 215 11.4 17 2.5 9.2 236 16.5 
2 2.4 10.5 204 11.6 18 3.2 8.8 151 13.3 
3 2.7 8.8 231 14.7 19 2.2 9.7 227 16.4 
4 3.0 8.0 160 14.6 20 3.1 10.9 137 12.2 
5 2.8 9.2 181 15.9 21 2.4 9.8 210 16.1 
6 2.5 8.3 222 18.9 22 2.6 9.3 163 13.7 
7 2.6 11.3 171 13.2 23 4.0 8.1 112 11.8 
8 1.9 9.2 194 11.9 24 3.0 8.2 196 16.5 
9 3.7 9.4 257 31.4 
10 2.9 6.8 169 17.0 
11 2.1 7.7 220 15.7 
12 2.3 8.7 139 10.5 
13 2.4 10.0 192 14.0 
14 0.5 9.8 188 2.2 
15 2.7 8.8 205 13.3 
16 2.6 8.8 179 18.4 

Median 2.5 8.9 194.0 14.0 2.6 9.2 179.2 16.1 
Mean 2.4 9.0 196.6 14.4 2.8 9.2 179.1 15.0 

SD 0.7 1.1 30.4 6.0 0.6 0.9 42.1 2.3___a 
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Table 7.5 Comparison between the population phan-nacokinetic parameters for healthy 
volunteers and IHD patients using the FOCE with interaction estimation method 

Run I Parameter 
Tested 

Run3 
Parameter 
Estimate 

Parameter 
Estimate for 

the IHD 
Group 

Parameter 
Estimate for 

the Volunteer 
Group 

Obj 
Fun 

A Obj 
Fun 2 

LRT3 

7 CL (L. hr- 15.2 16 13.9 -3002.58 -2.23 P<O. 15 
(SE%) (4) (5) (8) 

8 V, (L) 13.5 12.4 15.1 -3000.86 -0.51 P<0.5 
(SE%) (14) (20) (4) 

9 Vss (L) 185 193 174 -3001.90 -1.55 P<0.3 
(SE%) (4) (4) (9) 

10 Q (L. hr- 198 200 195 -3000.41 -0.11 P<0.8 
(SE%) (5) (6) (9) 

1) Differences in the parameter estimates between the groups are tested individually in 
runs 7- 10 by comparing them to run 3. 
2) Comparison with objective function from. run 3 Table7.2 
3) LRT = Likelihood Ratio Test 
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Figure 7.7 Covariate relationships between Vss and a) Body weight and b) Ideal body 
weight. The closed circles represent the healthy volunteers and the open circles the IHD 
patients. 
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Figure 7.8 Covanate relationships between dofetilide clearance and a) Creatinine 
clearance, b) Body weight. The closed circles represent the healthy volunteers and the 
open circles the IHD patients. 
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Figure 7.9 Covariate relationships between a) Vi and body weight, b)V2 and body weight. 
The closed circles represent the healthy volunteers and the open circles the IHD patients. 
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While modelling CL as a function of I/SCRT did not decrease the objective function (run 

15 Table 7.6) there was a significant reduction when CL was modelled as a function Of 

body weight (run 16 Table 7.6). An absolute reduction in O)CL of 3.4% indicated that 30% 

of the variability in CL((OCL 2) 
could be explained by body weight. Inclusion of CLcr in the 

CL model significantly reduced the objective function (run17 Table 7.6) but the slope of 

the resultant model was not significantly different from zero (SE >50%CV). The 

relationship between body weight and CL is consistent with the association between 

AUCO-i,, f and body weight (section 7.7.1). 

When both Vss and CL were related to body weight, a further significant reduction in the 

objective function was observed (run 18 vs run II Table 7.6), and the valuesOf 05 
1 

06 
,W 

CL and wvss were consistent with the previous estimates (run 18 vs run 11 & run 17 Table 

7-6). Allowing for a covariance between CL and Vss did not alter the selection of body 

weight as a significant covariate of each. Run 18 was therefore the final covanate model 

for the phannacokinetics of dofetilide. The relationships between Vss and CL, and body 

weight are equivalent to 1.5L. kg-l + 68L and 0.1 14L. hr-1. kg-1 + 6.4L. hr-1, respectively. 

7.7.6 Pharmacodynarnic analysis 

The mean QTc time profile shown in Figure 7.10 was consistent with that for the 

individual subjects. The maximum measured QTc interval increased in proportional to the 

administered dose (Figure 7.1 1a). Although the variability in Tmax for the QTc interval 

decreased with increasing dose, there was no indication of a relationship between the mean 

Tmax and dose (figure 7.1 1b), indicating that the lag between concentration and QTc 

response (Figure 7.12a) is likely to be due to a delay in the distribution of dofetilide to the 

site of drug effect. Since the plot of QTc versus the population predicted peripheral 

compartment concentration showed a proteresis, distribution into the peripheral 

pharmacokinetic compartment occurs at a slower rate than the accumulation at the site of 
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drug effect (Figure 7.12b). Therefore, the small temporal delay between the observed 

concentration and QTc response requires an effect compartment model and the half-life of 

the delay between plasma concentration and effect should be between the distribution and 

terminal phase half-lives (2.5 minutes to 8.9 hours). 

Figure 7.10 Mean QTc versus Time. Vertical line indicates the planned time for the end of 
the infusion. 
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Figure 
1 
7.11 a) Maximum achieved QTc interval versus administered dose (slope of linear 

regression was 0.12 msecs. mcg-' ) b) Time for the maximum achieved QTc interval versus 
administered dose 
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Figure 7.12 Mean placebo corrected QTc versus a) The mean measured concentration b) 
The population predicted peripheral compartment concentration. The arrows show the 
time sequence for the measurements 
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7.7.7 PK/PD analysis 

Development of the population pharmacodynamic model is shown in Table 7.7. In Run 19, 

the relationship between baseline corrected QTc and the concentration in the effect 

compartment (Ce) was described using a linear relationship, the intraindividual variability 

component was described using a combined error model, and the parameters were 

estimated using the FOCE with "interaction" method (Chapter 3). The estimates of 42% 

and 22msecs for the exponential and additive variability, respectively, and are equivalent to 

40msecs at predicted QTc prolongation of 50msecs. In Run 20, the introduction of an 

additional parameter to model the placebo corrected baseline QTc significantly decreased 

the intraindividual variability and the objective function (A-655). The estimates for the 

exponential and additive components were 12% and 20msecs, respectively, are equivalent 

to 26 msecs at predicted QTc prolongation of 50 msecs. While the parameter estimate for 

the slope of the concentration response relationship was unchanged, the Keo estimate was 

increased from 1.29hr-1 to 3.85 hr-1 and the half-life of the hysteresis was decreased from 

0.5 to 0.2 hours. Therefore, the variability in baseline has more affect on the temporal 

displacement estimate than the slope estimate, which characterises the sensitivity of the 

myocardium to dofetilide. 

The standard error for the exponential component was large (SE% > 100%) indicating that 

the estimate was not significantly different from zero. Run 21 was a repeat of run 20 with 

intraindividual variability being described using the additive expression only. Since the 

increase in the objective function was not significant, the simpler form was retained and the 

specification of "interaction" or "no interaction" was no longer required. 

In run 22, an Emax relationship was modelled using the same intraindividual vanability 

model. A further reduction in objective function was achieved but the Emax and Ce50were 

estimated with less precision than the slope parameter of the linear model. 
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The individual parameter estimates for linear and Emax models are shown in Table 7.8. 

Notably, the Keo and the slope (at Ce50 i. e. Emax/Ce50) were largest for the Emax. The 

reduced precision with the Emax model is most likely due to the largest predicted Ce for 

the majority of individuals being much lower than the estimated Ceýo Figures 7.13 -7.15 

show that the Emax model is essentially linear over the observed Ce range for most 

individuals (individuals 43 and 44 are possible exceptions). The slope of the Emax model 

at Ce50 is therefore not comparable to the slope of the linear model. The linear model for 

the prolongation of QTc is therefore the most appropriate for the majority of individuals 

over the dose range investigated. 
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Table 7.8 Individual parameter estimates for QTc prolongation 

Emax Model - Linear Model 
ID Keo Baseline Emax Ce50 Emax/ Keo Baseline Linear 

hr-1 msecs msecs ng ml-1 Ce50 hr" msecs 
msecs. ml. msecs. ml 

I ng-1 ng-1 
IHD 

1 4.09 -7.01 217.36 6.08 35.74 3.89 1.02 21.07 
2 4.64 -4.81 166.13 10.15 16.36 3.90 0.71 12.49 
3 4.27 -3.06 146.50 8.69 16.85 3.49 1.26 12.54 
4 3.72 -10.77 186.72 7.14 26.15 3.41 0.66 14.43 
5 2.80 -8.40 225.76 6.14 36.75 2.94 0.99 21.09 
6 5.27 -4.77 210.83 4.98 42.33 4.65 2.75 24.60 
7 4.75 -13.53 153.85 7.28 21.13 3.70 0.47 10.76 
8 4.50 -4.39 160.88 5.82 27.66 3.73 1.63 16.72 
13 4.55 -3.90 172.58 3.86 44.75 4.05 16.62 17.73 
15 4.27 -400 186.88 500 37.39 3.78 11.84 17.52 
16 4.84 -7.80 188.66 5.99 31.49 4.25 1.39 18.03 
17 7.78 -11.13 184.33 5.97 30.87 6.07 1.74 15.17 
18 4.82 -1600 215.68 6.62 32.58 4.18 0.95 16.18 
19 3.33 -6.24 191.48 8.77 21.84 2.90 1.18 13.76 
20 4.03 -8.44 202.96 5.13 39.55 3.45 5.32 19.36 
21 4.28 -5.80 188.22 5.73 32.82 3.52 3.51 18.54 

Median 4.39 -6.63 187.55 6.04 32.03 3.75 1.33 17.12 
Mean 4.50 -7.50 187.43 6.46 30.89 3.87 3.25 16.87 

SD 1.07 3.73 23.33 1.63 8.65 0.74 4.55 3.66 
VOL 

37 8.22 -2.44 156.88 8.87 17.69 5.87 3.13 11.91 
38 4.51 -4.90 209.05 6.26 33.40 3.71 7.38 15.71 
39 4.87 -9.07 442.42 14.04 31.50 4.49 0.80 21.80 
40 4.22 -3.99 142.27 4.94 28.82 3.02 4.21 14.83 
41 3.94 -3.78 232.38 7.93 29.31 3.29 3.60 17.72 
42 3.68 -6.11 421.83 14.60 28.90 3.41 0.92 21.11 
43 4.39 -37.58 189.88 2.12 89.74 3.27 0.91 19.58 
44 4.91 -3.01 121.63 1.13 107.61 3.44 30.70 16.71 

Median 4.45 -4.45 199.47 7.09 30.41 3.43 3.36 17.21 
Mean 4.84 -8.86 239.54 7.49 45.87 3.81 6.46 17.42 

SD 1.43 11.79 124.23 4.97 33.26 0.94 10.04 3.34 

All 
Median- 4.44 -5.96 188.44 6.11 31.49 3.71 1.51 17.12 

Mean 4.61 -7.96 204.80 6.80 35.88 3.85 4.32 17.06 

Sd 1.18 7.20 75.38 3.08 20.92 0.79 6.82 3.49 
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Figure 7.13 Individual placebo corrected QTc prolongation and predicted Emax response 
versus effect compartment concentration for the IHD patient group recieving doses 1,2.4 
mcg. g 
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Figure 7.14 Individual placebo corrected QTc prolongation and predicted Emax response 
versus effect compartment concentration for the IHD patient group recieving doses 4,6,8 
mcg. g-i 
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Figure 7.15 Individual placebo corrected QTc prolongation and predicted Emax response 
versus effe ct compartment concentration for the health volunteers recieving doses 1,6,10 
mcg. g-i 
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7.7.8 Healthy volunteer vs IHD 

Differences in the baseline, Keo and slope parameters, between healthy volunteers and 

IHD patients, were formally tested using the linear model (run 21, Table7.7). None of the 

parameter differences between the two groups were found to be significantly different (runs 

23,24 and 25, Table 7.9). Graphical analysis did not demonstrate any correlation between 

the investigated covariates and the individual parameter estimates of the pharmacodynamic 

model. 

Table 7.9 Comparison between the population pharmacodynamic parameters for healthy 
volunteers and IHD patients using the FOCE with interaction estimation method 

Run Parameter Run 21 Parameter Parameter Obj A Obj LRT 3 

Tested Parameter Estimate for Estimate for Fun Fun 2 

Estimate the IHD the 
Group Volunteer 

Group 
23 Keo (hr-1) 3.79 3.68 3.86 9590 -0.07 p<0.8 

(SE%) (14) (19) (14) 
24 Baseline 1.61 3.02 0.99 9589 -1.26 P<0.3 

(msecs) 
(SE%) (88) (71) (111) 

25 Linear 16.9 17.50 16.60 9590 -0.2 p<0.7 
(msecs. ml-1) 

(SE%) (7) (8) (8) 

1) Differences in the parameter estimates between the groups are tested individually in 
runs 23 - 25 by comparing them to run 21. 
2) Comparison with objective function from. run 21 Table7.7 

3) LRT = Likelihood Ratio Test 
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7.8 Predictions and simulations 
7.8.1 Comparison of a dose per kilogram regimen and a fixed dose regimen 

for termination of arrhythmia with an IV infusion 

The influence of body weight on Cmax following different 0.5 hr infusion regimens 

using the average PK model 

Based on the final average PK model prior to inclusion of the covariates (run 3), the 

predicted average concentration time profiles after an arbitrary dose of 12 mcg. kg-l. hr-1 are 

shown for a body weight range of 50 to 100 kg in Figures 7.16 a. Since the dose for the 

100kg subject would be twice that for the 50 kg subject, the average peak concentration 

would be predicted to be 100% larger in subjects weighing 100kg (Figures 7.16 a). After 

correcting for the relationships between body weight and CL and Vss identified in the final 

covariate model (Table 7.6 run 18), the peak concentration was still predicted to be 70% 

higher in subjects weighing 100kg in comparison to subjects weighing 50 kg (Figure 7.16 

b). The range in the predicted peak concentration across body weight could be further 

reduced by using a fixed dose regimen. In this case the peak concentration would be 

predicted to be 17% lower in subjects weighing 100kg in comparison to subjects weighing 

50kg (Figure 7.16 c). Therefore, based on the covanate model it was predicted that the 

narrowest range in peak concentrations would be achieved by using a fixed dose regimen. 

However, this conclusion depends on the accuracy of the covariate relationships. A 

sensitivity analysis was performed to test whether the slope of the relationship between Vss 

and body weight altered the above conclusion. Even when the slope for the relationship 

between Vss and body weight was as high as 2.4L. kg-l (i. e. intercept was zero) the peak 

concentrations following the per kilogram dosing strategy were still predicted to be 57% 

higher in 100kg subjects compared to 50kg subjects (Figure 7.17 a). 
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Figure 7.16 The populaton mean predicted concentration time profiles over the body 
weight range of the study for a 30 minutes infusion of a) l2mcg. kg-1. hr-' assuming no 
relationship between CL, Vss, V, and WT, b) 12mcg. kg-l. hr-1 assuming the modelled 
relationships between WT and CL and Vss i. e. slopes of 0.1 14L. hr- I kg-1 andl. 52L. kg-1, c) 
a fixed dose (12mcg. kg-'. hr-lx 77.9kg ) assuming the modelled relationships between WT 
and CL and Vss i. e. slopes of 0.1 14L. hr-l. kg-1 and 1.52L. kg-1 
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Figure 7.17 The populaton mean predicted infusion profiles for (a) a 30 minutes infusion 
of 12mcg. kg-l. hr-1 over the body weight (WT) range for the study: assuming the slope for 
Vss was 2.4L. kg-1 and b) a fixed dose (12mcg. kg-l. hr-lx 77.9kg ) for all weights assuming 
the slope for Vss was 2.4L. kg-'. The estimated slope for CL vs body weight i. e. 0.1 14L. hr- 
1. kg-1 was used in each case 
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In companson, the peak concentrations following the fixed dose regimen were predicted to 

be 27% lower in 100kg subjects compared to 50kg subjects (Figure 7.17 b). While the 

spread in concentration following the dose per kilogram regimen occurs over the initial 

0.16 hr (up to the dashed line Figures 7.16a, 7.16b and 7.17. a), the concentrations 

following the fixed dose regimen are narrowest over this period (up to dashed vertical line 

Figures 7.16c and 7.17b). The variability at the end of the 0.5 hr infusion is more 

dependent on the initial volume of distribution (VI) than Vss and therefore, the relationship 

between V, and body weight. In the present analysis, V, was not influenced by body 

weight, so the predicted concentration range was narrowest when dose was fixed across 

body weight. 

The influence of body weight and infusion time on peak QTc using the average 

PK\PD model 

The predicted QTc following a fixed 600 mcg dose (Figure 7.18) and a 7.7mcg. kg-1 dose 

(Figure 7.19) over infusion times of 1,15,30 and 45 minutes were compared using the 

final average PK/PD model (combination of population parameters from run 18 and run 

21). For mean study weight (77.9 kg), the total amount administered is the same for both 

regimens. Since a linear pharmacodynamic model was used, it rnimicked the differences in 

plasma concentrations, so it is not surprising that the range of peak QTc intervals was 

predicted to be narrower with the fixed dose regimen. As expected, the peak QTc interval 

was predicted to be inversely related to the rate of adrninistration and, therefore, the length 

of the infusion. However, the duration of infusion affected the expected range in peak 

predictions for each regimen differently. While there was a slight widening of the 

predicted range of peak QTc's with increasing infusion duration with the fixed dose 

regimen (figure 7.18), a considerable narrowing was predicted for the per kilogram 

regimen (figure 7.19). Therefore, the difference in the predicted ranges of peak QTc was 

less with the longer infusions. 
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The influence of body weight and infusion time on Cmax and QTc via simulations 

utilising the population parameter estimates 

As before, a fixed 600 mcg dose and a 7.7mcg. kg-1 dose infused over 1,15,30 and 45 

minutes were compared. However, in this instance the full PK/PD model (mean and 

variance estimates from runs 18 and 21) was used to simulate the Cmax and peak QTc for 

1000 subjects. Body weight was randomly sampled from a normal distribution with mean 

and SD equal to 77.9 and 13.9kg, respectively. The results are shown in Table 7.10. In 

contrast to the results with the average PK/PD model, the differences between the two 

dosing strategies were much less obvious. While the SD and 5-95thpercentile range for the 

Cmax and peak QTc (%change QTc) were still larger for the dose per kilogram regimen, 

the differences were less than would be expected from the comparisons shown in Figures 

7.16 - 7.19. As before the difference between the SD's and 5-95 th percentile ranges 

became less as the infusion time increased. 

As previously discussed (see Section 7.1.6), there is an increased risk of UP when QTc 

intervals are prolonged to greater than 25% from baseline or to absolute values Of greater 

than 560msecs. The risk following a fixed 600mcg dose and a 7.74mcg. kg-l dose infused 

over 1,15,30 and 45 minutes were compared. The percentage of subjects exceeding the 

criteria for increased risk of UP are also shown in Table 7.10. 

Following the one minute infusion, almost all subjects, regardless of dosage regimen, were 

predicted to be at nsk of TdP. As expected, the percentage at risk was predicted to 

decrease with increasing infusion time. However, even the percentage at risk after a 45 

minute infusion (24-25%\67%-69%) was still unacceptably large, and lower doses would 

be required. For this population, the percentage change in QTc criterion (>25%) was found 

to be more sensitive than the absolute value criterion (>560msecs). The percentage at risk 

in the whole population was very similar for the two regimens across all infusion times. 
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The lack of difference was due to the overall shape of the two resultant distributions. 

For example, the distribution of peak QTc following the 30 minute infusion (Figure 

7.20) demonstrated that, although there was a larger number of patients with peak 

QTc > 670msecs dosed according to the per kilogram regimen, a larger number of 

patients with peak QTc between 560 and 670msecs were dosed according to the fixed 

dose regimen. Together, approximately the same number of patients were predicted 

to have peak QTc's > 560msecs. Nevertheless, the relationship between percentage 

at risk (defined using either criterion) and body weight was different for the two 

regimens and the differences became more apparent as the infusion time increased 

(Table 7.10). Not surpnsingly, patients with high body weight >91.8 Kg (mean 

+ISD) were predicted to be at much greater risk when dosed according to the per 

kilogram regimen. Although patients with low body weight <64Kg (mean -1SD) 

were predicted to be at greater nsk when dosed according to the fixed dose regimen, 

the increase over that for the whole population was small i. e. For the 30 minute 

infusion 54% vs 46% for the absolute value criterion and 82% vs 82% for percentage 

change criterion,, respectively. 
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7.8.2 Steady state infusions and risk of TdP 

Maintenance therapy with dofetilide for the prevention of arrhythmias will require the 

development of an oral formulation . While the absorption characteristics of dofetilide are 

needed to predict an oral dosage regimen, it is possible to use the current model to predict 

the number of subjects who would be at risk of UP at various Css concentrations, and 

thereby predict the maximum tolerated Css. QTc intervals were predicted for various 

target steady state concentrations (I to 20 ng. ml-1) using the individual parameter estimates 

for the linear pharmacodynamic model (Table 7.8). The cumulative percentage of 

individuals with prolongations greater than 560msecs or +%25 from baseline were 

predicted. These were used to predict the percentage of subjects with an increased risk of 

UP (Figure 7.21). The steep slopes define tight upper liM]ts for the Css. An increased 

risk would appear to occur with concentrations above 4 ng. ml-1 for the >+25% criteria and 

above 6 ng. ml-1 for the >560 msecs criteria (Figure 7.21). The percentage change from 

baseline criteria was again shown to be the most sensitive criteria. 

Figure 7.21 Cummulative frequency of individuals exceeding safety limits for QTc 
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7.9 Discussion 

This analysis has demonstrated that the dose concentration effect relationship for dofetilide 

is the same in healthy volunteers and IHD patients. In general, much of early drug 

development is based on there being a concordance between healthy volunteers and 

patients with IHD. For example, the maximum tolerated dose and dose ranges for future 

patient studies are determined through investigation in healthy volunteers (see chapter 4). 

Furthermore, clinical pharmacology studies undertaken throughout drug development (i. e. 

drug interaction, food effect and bioequivalence studies) routinely utilise healthy volunteers 

as substitutes for the target patient population (see chapter 5). It is therefore important that 

potential differences in the PK/PD relationship for patients and healthy volunteers are 

investigated at an early stage in the drug development process. 

While phannacokinetics and pharmacodynamics for patients and healthy volunteers are 

similar for most marketed drugs, there have been some notable exceptions (Smith et al.. 

1983; Boyd et al. 1989). In such cases it may be possible to use an integrated PK/PD 

model to adjust for differences, so that inferences for the target population could still be 

made from investigations in healthy volunteers. 

7.9.1 Pharmacokinetic analysis 

The bias in the fit of concentration data using the FO method can occur when models are 

highly non-linear (Chapter 3), as demonstrated with the multiple dose three compartment 

model (chapter 4.5.2). However, the single dose two compartment model used in this 

Chapter is relatively linear in comparison. The large number of observations per individual 

(average 66 per patient) may have caused the FO method to be particularly unstable and 

sensitive to inaccurate starting estimates. Rerunning the FO method using the parameters 

calculated by the FOCE method did not reduce the bias. The value of the FOCE method in 

population analysis is, therefore, further highlighted. 

256 



A combined exponential and additive model provided the best fit to the data. The SD of 

the additive component was estimated to be very similar to the limit of quantification of the 

assay (0.05 ng. ml-1, information supplied by Pfizer Ltd). As discussed in chapter 4, this 

result demonstrates that the combined error model is useful when concentrations are 

measured at or around the limit of quantification. 

A larger population is required to substantiate the covariate relationships which were 

determined. However, model development is a step-wise process where decisions are often 

made on limited data, so the extrapolations made here are consistent with routine practice. 

The relationship between clearance and body weight may reflect changes in renal and/or 

hepatic function. Renal impairment has been shown to greatly increase the exposure and 

compromise the safety profile of sotalol, a drug which is structurally similar to dofetilide 

(Dancey et al. 1997). Although there were no comparative estimates of CL in the 

literature, the terminal half-life for this study (9. Ohrs) was within the range of 7.1 to 9.7hr-I 

previously estimated ) (Gemmill et al. 1991; Sedgwick et al. 1991; Tham et al. 1993; Le 

Coz et al. 1995). 

The Vss estimate (185L) was less than that previously reported (228 to 267L) (Gemmill et 

al. 1991; Sedgwick et al. 1991; Tham et al. 1993; Le Coz et al. 1995). Since the average 

body weight in this study (77kg) was consistent with the other studies (68 to 74 kg), the 

final covariate model cannot explain the lower Vss. 

The hydrophilic nature of dofetilide means that it does not readily distribute and 

accumulate into adipose tissue. It would therefore be expected that lean body weight 

would correlate better with Vss, but the covariate analysis demonstrated that actual body 

weight was the most influential covariate. It is possible that the calculation of lean body 

weight using height alone was too empirical, and that that an additional adjustment for 

body frame size (which was not available for this study) may have improved the estimates 

(Robinson et al. 1983). 
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The relationship between body weight and Vss was shown to be entirely due to an increase 

in the peripheral compartment volume. Since plasma volume has been shown to be related 

to body weight (Snyder et al. 1975) it may be expected that V, would also correlate with 

body weight. However, there may not be a direct relationship between V, and plasma 

volume, since V, may include distribution into the extravascular space. 

7.9.2 PK/PD and baseline response 

The demonstrated delay between the end of the infusion peak dofetilide concentration and 

the maximum QTc was consistent with previous studies investigating the pharmacokinetics 

and phannacodynamics of intravenous dofetilide (Gemmill et al. 1991; Sedgwick et al. 

1991; Rasmussen et al. 1992; Le Coz et al. 1995). The Tmax for the peak QTc 

prolongation was shown to be independent of dose, so the temporal delay was unlikely to 

be the result of an indirect effect (Dayneka et al. 1993; Jusko & Hui, 1994). Le Coz et al. 

have previously estimated the temporal displacement of dofetilide using an effect 

compartment (Le Coz et al. 1995). Their estimate of equilibrium half-life estimate was 6-7 

minutes and therefore similar to that estimated here (9 Minutes). 

As previously discussed, many antiarrhythmic drugs show hysteresis after IV dosing 

(Chapter 1.2.4), and the estimation half-lives have been shown to be remarkably similar 

e. g. 2 minutes for disopyramide (Whiting et al. 1980), 6 minutes for procainamide 

(Galeazzi et al. 1976) and 8 minutes for quinidine (Holford et al. 198 1). The delay 

mechanism underlying the distribution into the effect compartment may therefore be 

similar for many antiarrhythmic drugs and related to their shared activity on ion channels. 

In contrast to beta-blockers, which combine extracellularly with adrenergic receptors, ion 

channel blocking drugs exert their effects within the lipid membrane (Herbette et al. 1988) 

or on the intracellular face of the cardiac ion channel (Hondeghem & Katzung, 1977). 

Localised distribution has been postulated as an explanation of the differences in the time 
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course of the various antiarrhythmic effects of arniodarone (Roden, 1993). While the 

adrenergic effects are manifested soon after initiation of therapy (Nfitchell et al. 1989; 

Kadish et al. 1990), slower diffusion to the potassium ion channel means that prolongation 

of the refractory period takes longer to develop akeda et al. 1984; Nhtchell et al. 1989). It 

is likely that a similar process governed the delay in the QTc prolongation following the IV 

administration of dofetilide. 

The importance of taking placebo response into account in assessing the dose response 

relationship (Dobrilla & Scarpignato, 1994) and its particular importance to the assessment 

of cardiovascular drugs (Bienenfield et al. 1996) has been well documented. Diurnal 

variation in QT as a consequence of both temporal changes in sympathovagal tone and 

circulating catecholamines is also well recognised (Bexton et al. 1986; Murakawa et al. 

1992; Hohnloser & Klingenheben, 1994). As previously discussed, the corrected QT 

interval (QTc) was used to account for heart rate changes during and between study days 

(see section 7.15). However, evidence of diumal variation in QTc has also been 

demonstrated (Vervaet & Amery, 1993). The point for point subtraction of the smoothed 

placebo QTc from QTc intervals recorded during treatment with active drug was used to 

remove both placebo effects and any diurnal effects remaining after correction for heart 

rate. 

The baseline QTc measurement was larger than that estimated by Le Coz et. al. (1995) (418 

vs 365msecs, respectively). Since resting QTc intervals have been shown to increase with 

age (Goldberg et al. 1991; Reardon & Malik, 1996), the age difference between the two 

study groups (57.2 vs 23.4 years, respectively) may account for the difference in baseline 

QTc. Age related changes in the sympathovagal tone and circulating catecholarnIne levels 

may underlie this effect. 

Although calculating QTc prolongation as change from baseline has been used to compare 

the effects of different doses of dofetilide (Sedgwick et al. 1991; Rasmussen et al. 1992 
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Tham et al. 1993), an adequate fit to the baseline corrected data could not be attained in 

this analysis. Holford and Sheiner, have previously suggested that when the baseline 

measurement is known with the same degree of certainty as other measurements it should 

be estimated as a parameter to prevent model mi s- specification (Holford & Sheiner, 1982a, 

b). Correspondingly, the intraindividual variability was reduced by greater than 85% when 

the placebo corrected baseline was modelled as a parameter, rather than being used to 

correct the post dose observations. 

In contrast to this analysis, Le Coz et. al (1995) determined that an Emax model was more 

appropriate than a linear model for the majority of subjects (for 8/10 subjects). The Emax 

and Ce5o estimates (121msecs, 57% CV and 2.2 ng. ml-1,26% CV, respectively) were less 

than those estimated when the Emax model was used in this analysis (193 38 %CV and 

6.35 , 65%CV, respectively). Furthermore, the gradient at the Ccýo (Emax/ Ce50) was 

55msecs/ ng. ml-1 in comparison to 35msecs/ ng. ml-1 estimated in this analysis indicates 

that the healthy volunteers in Le Coz et al. study were more sensitive to dofetilide. Since 

healthy volunteers were used in both studies, the age difference between the two groups 

(23.4 vs 57.2 years, respectively) may account for the difference. While the effect of the 

ageing process on phannacokinetics of ant, arrhythryu cs has been well studied, less is 

known about age related changes in the pharmacodynamics (Storein, 1984; Nestico & 

Morganroth, 1986; Podrid et al. 1989; Hayakawa & Ino, 1994; Kim et al. 1994). Since 

changes in the pharmacokinetics confound the interpretation of changes in the 

phannacodynamics (De Caprio et al. 1995) both need to be studied together. 

It has been shown that the sensitivity of the potassium channel to class III agents decreases 

in patients with heart disease (Wit & Coromilas, 1993). Physiological differences between 

the aged and healthy heart have been shown to parallel the progression of heart disease 

(Yamaguchi & Ito, 1988; Assey, 1993). So it is possible that the difference in sensitivity to 
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dofetilide is due to the correlation between age and functional changes in the potassium ion 

channels, which occur in the absence of obvious organic disease. 

Whether or not this is true, the older population did achieve QTc prolongations greater than 

the maximum predicted by Le Coz et. al. A recent analysis has shown that data up to 95 % 

of Emax is needed to obtain adequate precision (Dutta et al. 1996). Therefore, due to the 

safety implications of underestimating the QTc prolongation, and therefore the associated 

risk of UP, it would appear to be more prudent to use a linear pharmacodynamic model in 

the prediction of QTc intervals following alternative dosage regimens. Furthermore, while 

receptor theory implies that a finite maximum could be observed, the therapeutic range for 

dofetilide is likely to be in the linear portion of the concentration response relationship. 

7.9.3 Predictions and simulations 

Comparison of a dose per kilogram regimen and a fixed dose regimen for 

termination of arrhythmia via IV infusion 

Given that on average only 7% of the total dose would be eliminated during the initial 

period of distribution, V, would have little effect on the time to steady state and the 

concentration measured during the later stages of a steady state infusion (Rowland & 

Tozer, 1989b). However, short intravenous infusions are generally used for the abolition of 

affhythmias, so explaining why the variability In V, is important in the selection of a future 

dosing strategy. Since V, was found not to be related to body weight, the only fixed factors 

affecting the rise in concentration during the distribution phase were the rate of infusion 

and the administered dose. The relationship between Vss and body weight only begins to 

affect the rising concentration towards the end of the distribution phase (0.16 hrs i. e. 4x 

T1/2(x). Therefore, the shorter the infusion, the more the peak concentration would be 

influenced by Vi, and the longer the infusion the more the concentration would be 

influenced by Vss. Therefore, the relationship between body weight and Vss has more 

influence on the longer infusions. 
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The interplay between covariate relationships, duration of infusion and dosing regimen was 

examined using predictions based on the average PK/PD model and simulations using the 

full PK/PD model. Even with a much larger slope for the relationship between weight and 

Vss, the range of peak concentrations (predicted using the average PK\PD model) for the 

per kilogram regimen (following a 30 minute infusion), was still twice that for the fixed 

dose regimen. A fixed dosage regimen was shown to provide less variable Cmax and Peak 

QTc measurements for infusions of up to at least 45 minutes of duration. 

Slower infusion rates resulted in smaller maximal changes in QTc, and a lower risk of UP 

(Table 7.10). While the therapeutic response of other antiarrhythrmcs has not previously 

been shown to relate to the level of QTc prolongation, it may be possible to determine this 

for dofetilide since it has only one mechanism of action. Successful termination of an 

arrhythmia may be related to the peak QTc or the percentage change from baseline. 

However, the rate of change of QTc may also be important for quick and effective 

termination. An optimal infusion time and dose for abolishing arrhythmias without 

inducing UP may therefore exist. 

The remaining interindividual and intraindividual variabilities were large in comparison to 

that explained by the covariate model. So inclusion of these estimates along with an 

expectation of the body weight distribution provides a more realistic comparison of the 

dosing regimens. Although the difference between the two regimens was less than would 

be predicted using the average PK/PD model, the full simulation approach confirmed that 

adopting a fixed dose strategy for short infusions would reduce the variability in Cmax and 

QTc prolongation. The reason for this not translating into an overall reduction In the risk 

of UP was found to be due to the differences in the resultant distributions of QTc (Figure 

7.20). The initial distributions for the PK/PD parameters (assumed to be log-normal) and 

the weight distribution (assumed to be normal) could therefore affect the comparison. 
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The sensitivity of the >25% change from baseline criterion compared to the > 560msecs 

criterion was entirely dependent on the baseline QTc. If the baseline was greater than 

425msecs then the absolute QTc criterion would be evoked before the percentage change 

for baseline was exceeded by 25%. The absolute prolongation has been most often 

correlated with an increased risk of UP (Neuvonen et al. 1979; Belton et al. 1982; Kuck et 

al. 1984), however, utilisation of both criteria provides added protection to the patient in 

clinical practice (Stratmann & Kennedy, 1987). 

An important difference between the regimens is in who they place at risk The percentage 

at risk of UP would be particularly high for heavy patients dosed according to the per 

kilogram regimen. Conversely, the fixed dosage regimen would associate a slightly higher 

risk of UP with lighter patients. In deciding on the most appropriate regimen, 

consideration should be given to potential correlation's between body weight and other risk 

factors for UP i. e. hypokalaernia and females. Furthermore the lighter patients may tend 

to be frailer and consequently less likely to recover from an episode of TdP. 

Steady state simulation 

The steady state simulation indicated that steady state concentrations (Css) above 4 ng. ml-1 

(mcg. 1-1) would be (based on the >25% change from baseline criterion) associated with a 

sharp increase in the percentage of patients at high risk of developing TdP. Oral dosage 

regimens for the prevention of arrhythmias could be designed with this level as a maximum 

for the target concentration range. However, it has been assumed that tolerance does not 

develop, in contrast Schwartz et al. (1989) have previously shown that the sensitivity of the 

myocardium to verapamill measured by QTc prolongation, decreases upon multiple dosing. 

Thus further studies are required to assess the effect of duration of therapy on sensitivity of 

the myocardium to dofetilide. 
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7.10 Conclusions 

There was no significant difference in pharmacokinetics and pharmacodynarmcs of 

dofetilide between patients with IHD and age matched healthy volunteers. 

The population approach using NONMEM successfully identified both individual and 

population PK and PD responses, while providing a basic population model which could 

be used in the prospective assessment of the factors which affect dofetilide'sQTc /safety 

profile. The FOCE method with "interaction" gave the least biased estimates for the 

parameters of the pharmacokinetic model. A two compartment model best described the 

pharmacokinetics and an effect compartment was used to account for the displacement 

between concentration and effect. A linear model best described the subsequent 

relationship between effect compartment concentration and QTc prolongation. The 

inclusion of baseline placebo QTc as a calculable parameter in the pharmacodynamic 

model substantially reduced intraindividual variability. 

Simulations were used to identify steady state concentrations which increased the 

percentage of subjects with QTc prolongations above those associated with a high risk of 

TdP. The effect of dosage regimen and duration of infusion on Cmax, peak QTc and risk 

of UP was also investigated via prediction and simulation. While dosing on the basis of 

per kilogram body weight is routinely used in therapeutics, this analysis would suggest that 

for a short infusion, the range and variability in Cmax and QTc measurements would be 

narrower following a fixed dose regimen. The importance of V, and body weight to this 

conclusion was highlighted. 

The fact that lighter patients (who may also be frail and elderly) are most likely to be 

placed at risk with the fixed dose regimen may favour the dose per kilogram regimen. 

Nevertheless, the analysis indicates that caution is required when dosing heavy patients on 

a per kilogram basis, such that a maximum total dose should be imposed in subsequent 
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studies. Further investigation of the variability in the PK/PD relationship is required to 

identify other factors which can aid in the predictions of concentrations and QTc 

measurements and therefore allow optimisation of the dofetilide dosage used in the 

treatment and prevention of cardiac arrhythmias. 
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CHAPTER 8 

GENERAL CONCLUSIONS 
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The analyses discussed in thesis have raised some general points to consider when 

applying nonlinear mixed effect modelling in the early phases of drug development. 

These are summarised in this chapter. 

NONMEM Estimation Methods 

In general the NONMEM software performed well. The FOCE methods substantially 

out performed the FO method in the determination of the most appropriate PK/PD 

model (Chapters 4& 7) and of point and interval estimates for a bioequivalence test 

(Chapter 5). The increase in computation time was most troublesome when the 

problem required a complex nonlinear model and a large amount of data was available 

for each subject (Chapter 4). Unfortunately this is exactly the situation where the 

FOCE methods are most likely to be advantageous. However, it may be possible to 

substantially reduce the extraordinary run times by utilising user defined code 

(Chapter 4). 

Comparison to Standard Approaches of Estimating Pharmacokinetic 

Parameters 

Noncompartmental analysis was successfully used to determine the primary 

pharmacokinetic and pharmacodynamic parameters of interest and allowed drug 

accumulation (Chapter 4), bioequivalence (Chapter 5), dose response (Chapter 6) and 

PK/PD relationships (Chapter 7) to be investigated by standard methods. However, 

model based approaches were required in the prediction of steady state concentrations 

(Chapter 4), and in testing bioequivalence where only a few random plasma samples 

per individual were available (Chapter 5). Furthermore, a fuller understanding of the 

relationships underlying the dose response could be ascertained by adopting the model 

based approaches. In particular, a greater insight into potential covariate effects and a 

break down of the variability into either the PK/PD component of dose response 

relationship was possible (Chapter 6 &7). Together these provided a framework with 

which to predict and simulate responses to different dosage regimens in larger 

populations (Chapter 4,6 &7). 
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Identification of Structural and Covariate Models 

Although identification of the "best" structural model is known to be problematic 

when the data is sparse (Chapter 5& 6), the average model can also be difficult to 

select when the data is rich (Chapter 4& 7). While characterisation of individual 

plasma time profiles allows identification of a range of different structural models 

(Chapter 4), the fit of an individuals data to competing models can be explored using 

the individual estimates obtained from the population approach (Chapter 7). 

Furthermore, it is likely that an apparent qualitative change in the structural model 

between subjects is more likely to be an artefact of the encountered variability and, 

therefore, more readily dealt with by adopting a population approach. 

Due to the small numbers of subjects, it was known from the outset that it would be 

difficult to accurately determine the underlying covariate relationships. Nevertheless, 

the identified covariate relationships allowed several hypotheses to be generated ( 

Chapters 6& 7). While these have to be confirmed in larger Phase 11 or Phase III 

studies, the approach is consistent with the concept of Phase LIII studies as the 

learning and theory testing stage of drug development. One way of increasing the 

confidence in the identified covariate effect is to test assumptions underlying the 

relationships. Sensitivity analysis was found to be useful in assessing the potential 

impact if the covariate effect be over or underestimated (Chapter 7). The subsequent 

clinical importance of these relationships was best ascertained through simulation 

(Chapter 6). 

Study Design 

Although the approach of using mixed effects modelling to interpret data from studies 

where the design has been compromised should be treated with caution, it was found 

to have utility in the example presented in this analysis (Chapter 7). On the other 

hand, a model based approach can also be jeopardised by studies designed without Its 

application in mind (Chapter 6). 
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Predictions/Simulations 

Prediction and simulation techniques are core to developing the understanding gained 
by applying a model based approach to a data problem. While a prediction using 
individual or typical parameter estimates can be useful in exploring the relationships 

uncovered in a particular analysis (Chapter 7), undertaking a formal simulation is 

recommended since it formally accounts for both fixed and random effects (Chapter 4, 

6 and 7). It should, however, be remember that the simulation will only allow 

investigation of factors included in the model. 

Model Assumptions 

While simulation allows you to test for the affect of modelling assumptions on 

potential clinical outcomes (Chapter 6 and 7), the assumptions should first be tested 

during the modelling process. For example, error structure was found to change upon 

changing from modelled baseline to percentage reduction model (Chapter 6). Some 

assumptions may limit the applicability of the developed modelling techniques. For 

example, the Wagner Nelson approximation used to directly estimate Cmax from a 

two compartment model, was only valid for drugs where the terminal half-life was 

much longer than the distribution half-life (Chapter 5). 

Baseline Correction 

While baseline correction can reduce the model complexity (Chapter 6) it is best to 

start from a model where baseline is estimated as a parameter (Chapter 7). In Chapter 

7, when a baseline correction was utilised, the underlying variability in baseline 

measurement prevented the Emax relationship from being identified as a potential 

model. Modelling the baseline greatly reduced the variability and allowed the Emax 

relationship to provide a similar fit to the linear relationship. In Chapter 6, a baseline 

correction was implicit in the percentage reduction model adopted to simplify the 

original absolute reduction from baseline model. While this showed that baseline 

total cholesterol could be a covariate of both Emax and D50 it did not allow the 

determination of which relationship was most important. 
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Hypothesis Testing - 

Determination of statistical significance is generally based on the ability to reject the 
Null Hypothesis in favour of a suitable alternative hypothesis. Normally the 

probabililty ((x) of making a type I error is a preselected acceptable level and the 

probability of making a type 11 error @) is minimised by choosing an appropriate 

sample size. While Phase 1/11 studies can be powered to n-iinimise Type 11 error in the 

determination of mean differences, they are not generally powered for the purposes of 

PK/PD modelling. This is a particular problem with the covariate analyses undertaken 

(Chapter 6 and 7). 

Population PK/PD Modelling the Alternative Paradigm for Drug Development ? 

In the analyses presented, the benefits of PK/PD modelling in the early phases of drug 

development was highlighted. While the application of nonlinear mixed effects 

modelling to bioequivalence testing (Chapter 5) may only provide an advantage in a 

limited number of circumstances, the presented applications in the areas of drug safety 

(Chapter 4), dose response (Chapter 6) and integrated PK/PD problems (Chapter 7) 

cover much of the early development. It can therefore be speculated that wider 

implementation of these techniques would improve decision making and allow 

inforination to be more effectively propagated across the phases of drug development. 
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Appendix 1.1 
Chapter 4: The NMTRAN user supplied PRED subroutines for implementation of 

equations 4.2 (run 8) and 4.5 (run 11). 

Chapter 4 Run8 Chapter 4 Run 11 

$PRED 
TALPH=THETA(l) 
TA=THETA(2) 
TBETA=THETA(3) 
TB=THETA(4) 
TGAM=THETA(5) 
TC=THETA(6) 
TKA= THETA(7) 

ALPH=TALPH*EXP(ETA(l)) 
A=TA*EXP(ETA(2)) 
BETA=TBETA*EXP(ETA(3)) 
B=TB*EY, P(ETA(4)) 
GAM=TGAM*EXP(ETA(5)) 
C=TC*EXP(ETA(6)) 
KA= TKA*EXP(ETA(7)) 
TAU=12 

AI=EXP(-ALPH*T) 
A2=EXP(-N*ALPH*TAU) 
A3=EXP(-ALPH*TAU) 

AIO=A*Al*(I-A2)/(I-A3) 

BI=EXP(-BETA*T) 
B2=EXP(-N*BETA*TAU) 
B3=EXP(-BETA*TAU) 
BIO--B*Bl*(l-B2)/(l-B3) 

CI=EXP(-GAM*T) 
C2=EXP(-N*GAM*TAU) 
C3=EXP(-GAM*TAU) 
C10--C*Cl*(I-C2)/(I-C3) 

$PRED 
TALPH=THETA(l) 
TA=THETA(2) 
TBETA=THETA(3) 
TB=TBETA(4) 
TGAM=THETA(5) 
TC=TBETA(6) 

K=TALPH*EXP(ETA(l)) 
A=TA*EXP(ETA(2)) 
BETA=TBETA*EXP(ETA(3)) 
B=TB*EXP(ETA(4)) 
GAM=TGAM*EXP(ETA(5)) 
C=TC*EXP(ETA(6)) 

TAU=12 

AI=EXP(-K*T) 
A2=EY. P(-N*K*TAU) 
A3=EXP(-K*TAU) 
A4=A*T*Al 
A5=A*TAU*Al 
A6=A4*(l-A2)/(l-A3) 
A7=1/(I-A3) 
A8=(A3-A2)*A7 
A9=A5*A7*(A8-N*A2+A2) 
AIO=A6+A9 

Bl=EXP(-BETA*T) 
B2=EXP(-N*BETA*TAU) 
B3=EXP(-BETA*TAU) 
B 10=B*B 1 *(l-B2)/(l-B3) 

Cl=EXP(-GAM*T) 
C2=EXP(-N*GAM*TAU) 
C3=EY, P(-GAM*TAU) 
CIO=C*Cl*(I-C2)/(l-C3) 

KI=EY, P(-KA*T) 
K2=EXP(-N*KA*TAU) 
K3=EXP(-KA*TAU) 
KIO=-(A+B+C)*Kl*(I-K2)/(I-K3) K10=-(A+B+C)*Al*(l-A2)/(l-A3) 

F=AIO+BlO+CIO+KIO 
IPRED=F 
Y=F*EXP(EPS(2))+EPS(l) 

F=AlO+Blo+CIO+KIO 
IPRED=F 
Y=F*EXP(EPS(2))+EPS(l) 
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Appendix 1.2 
Chapter 5: The NMTRAN $PK subroutine for a two compartment model with the 

F 
relative differencesORDin - and Ka estimated using Equations 5.10 and 5.11, V, 

respectively (Run 12); and the user supplied NMTRAN PRED subroutine 

parameterising the model in terms of CAmax using E. q. 5.23,5.24,5.26,5.11 and 
5.18 (run 13). 

Chapter 5 Run 12 
$SUBROUTINE ADVAN4 TRANS5 
$PK 
1=0 
EF(FORM. EQ. 2) 1=1 

FS2=(I-I)+I*(T]HETA(6)+I) 
FKA=(1-1)+I*(THETA(7)+l) 

TVBETA=THETA(l) 
TVVS2=1/(TIMTA(2)*FS2) 
TVKA=THETA(3)*FKA 
TVAOB=TIMTA(4) 
TALPHA=THETA(5) 

BETA=TVBETA*EXP(ETA(l)) 
S2=TVVS2*EY, P(ETA(2)) 
KA=TVKA*EXP(ETA(3)) 
ALPHA=TALPHA*EXP(ETA(4)) 

AOB=TVAOB 
$ERROR 
Y=F*EXIP(ERR(l)) 

Chapter 5 Run 13 
$PRED 
IND=O 
IF(FORM. EQ. 2) IND=l 
DR=l 
IF(STD. EQ. 1) DR=2 
TIM=TIME*(l-IND)+(TIME- 100) *IND 

TALPHA=TBETA(l) 
CMNAT=TIIETA(2) 
KAN=THETA(3) 
TAOB=TBETA(4) 
TBETA=TBETA(5) 
KCMAX=THETA(6) 
KKA=THETA(7) 

ALPHA=TALPHA*EXP(ETA(l)) 
TCMAX=CMNAT*(I- 
IND)+CMNAT*(I+KCMAX)*IND 
CMAX=(TCMAX/DR)*EXP(ETA(2)) 
TKA=(I-IND)*KAN+IND*KAN*(I+KKA) 
KA=TKA*EXP(ETA(3)) 
AOB=TAOB 
BETA=TBETA*EXP(ETA(4)) 
K21=(AOB*BETA+ALPHA)/(AOB+I) 
Rl=(ALPHA-K21)/(KA-K21) 
IF (Rl. LE. 0) EXIT 11 
TPK=-l/(KA-ALPHA)*DLOG(RI) 

Al=(KA-ALPHA)*(BETA-ALPHA) 
A=(K21-ALPHA)/Al 
Bl=(KA-BETA)*(ALPHA-BETA) 
B=(K21-BETA)/Bl 

AA1=EXP(-ALPHA*TPK) 
AA2=EXP(-ALPHA*TIM) 
BBI=EXP(-BETA*TPK) 
BB2=EXP(-BETA*TIM) 
KA1=EXP(-KA*TPK) 
KA2=EXP(-KA*TIM) 

IZ=A*AA1+B*BBI-(A+B)*KA1 
JZ=CMAX/IZ 
MZ=A*AA2+B*BB2-(A+B)*KA2 
FUN=JZ*W 
Y=FUN*EXP(ERR(l)) 
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Chapter 5: The NMTRAN $PK subroutine for a two compartment model with the 

relative differencesOInRD(multiplicative model) in 
F 

estimated using equations 5.11 
V, 

and 5.28, respectively (run 14); and the user supplied NMTRAN PRED subroutine 

parameterising the model in terms of CAmax using E. q. 5.23,5.24,5.26,5.11 and 
5.29 (run 15). 

Chapter 5 Run 14 
$SUBROUTINE ADVAN4 TRANS5 
$PK 
1=0 
IF(FORM. EQ. 2) I=l 
FS2=1*(THETA(6)) 
FKA=(I-I)+I*(THETA(7)+I) 
TVBETA=THETA(l) 
TVVS2=(THETA(2)+FS2) 
TVKA=TIMTA(3)*FKA 
TVAOB=THETA(4) 
TALPHA=THETA(5) 

TVS2=EXP(TVVS2) 
TS2=1/TVS2 
BETA=TVBETA*EXP(ETA(l)) 
S2=TS2*EXP(ETA(2)) 
KA=TVKA*EY, P(ETA(3)) 
ALPHA=TALPHA*EXP(ETA(4)) 
AOB=TVAOB 
$ERROR 
Y=F*EXP(ERR(l)) 

Chapter 5 Run 15 
$PRED 
IND=O 
IF(FORM. EQ. 2) IND= 1 
DR=l 
EF(STD. EQ. 1) DR=2 
TIM=TIME*(I-IND)+(TIME-100)*IND 

TALPHA=THETA(l) 
CMNAT=TliETA(2) 
KAN=THETA(3) 
TAOB=THETA(4) 
TBETA=THETA(5) 
KCMAX=THETA(6) 
KKA=THETA(7) 

ALPHA=TALPHA*EXP(ETA(l)) 

TCMAX=CMNAT+(KCMAX*IND) 
TDMAX=EXP(TCMAX/DR) 
CMAX=(TDMAX)*EXP(ETA(2)) 

TKA=(l-IND)*KAN+IND*KAN*(I+KKA) 
KA=TKA*EXP(ETA(3)) 

AOB=TAOB 
BETA=TBETA*EXP(ETA(4)) 
K21=(AOB*BETA+ALPHA)/(AOB+I) 
Rl=(ALPHA-K21)/(KA-K21) 
EF (Rl. LE. 0) EXIT II 
TPK=-l/(KA-ALPHA)*DLOG(RI) 
Al=(KA-ALPHA)*(BETA-ALPHA) 
A=(K21-ALPHA)/Al 
Bl=(KA-BETA)*(ALPHA-BETA) 
B=(K2 I-BETA)/B I 
AAI=EXI? (-ALPHA*TPK) 
AA2=EXP(-ALPHA*TIM) 
BB1=EXP(-BETA*TPK) 
BB2=EXP(-BETA*TIM) 
KAI=EXP(-KA*TPK) 
KA2=EXP(-KA*TIM) 
IZ=A*AAI+B*BBI-(A+B)*KAI 
JZ=CMAX/IZ 
MZ=A*AA2+B*BB2-(A+B)*KA2 
FLTN=JZ*Na 
Y=FUN*EXP(ERR(l)) 
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Appendix 1.3 
Chapter 6: The NMRAN user supplied PRED subroutines for implementation 
equations 6.1 to 6.5 i. e. the Placebo, Step, Steplinear, Emax and Emax percentage 
reduction models 

Chapter 6 Step model Chapter 6 Steplinear model 

$PRED 
IND=O 
IF(DOSE. GT. 0) IND= 1 
RED= TI]ETA(2)*EXP(ETA(2)) 
PLAC=THETA(l)*EXP(ETA(l)) 
LR=PLAC-RED*(IND) 
Y=LR*EXP(ERR(l)) 

Chapter 6 Emax model 

$PRED 
B=THETA(3)+DOSE 
A=THETA(2)*DOSE 
RED=(A/B)*EXP(ETA(2)) 
PLAC=THETA(1)*EXP(ETA(l)) 
LR=PLAC-RED 
Y=LR*EXP(ERR(l)) 

$PRED 
IND=O 
IIF(DOSE. GT. 0) IND=l 
RED 1=THETA(2)+TBETA(3)*DOSE 
RED=REDI*EXP(ETA(2)) 
PLAC=THETA(I)*EXP(ETA(l)) 
LR=PLAC-RED*(IND) 
Y=LR*EXP(ERR(l)) 

Chapter 6 Emax Percentage Reduction 
model 

$PRED 
B=THETA(2)+DOSE 
A=THETA(1)*DOSE 
RED=(A/B) *EXP(ETA(l)) 
LR=100-RED 
Y=LR*EXP(ERR(l)) 
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Appendix 1.4 
Chapter 7: The NMTRAN $PK subroutine for a two compartment PK model with an 
effect compartment and either a linear or Emax PD model 

Chapter 7 Linear PD model ) model 

$SUBROUTINE ADVAN5 TRANS I 
$MODEL 
COMP=(CENTRAL, DEFDOSE) 
COMP=(PKCOMP) 
COMP=(PDCOMP, DEFOBS)$PK 

$PK 
KlO=VK1 
K12=VK12 
K21=VK21 
sl=vsl 
K13= 0.01*KlO 
K30= THETA(1)*EXP(ETA(l)) 
LINE=THETA(2)*EXP(ETA(2)) 
BASE=THETA(3)*EXP(ETA(3)) 
S3=SI*KI3/K30 

$ERROR 
EFFC=F 
IPRE=BASE+(LE,,,; E*F) 
Y=EPRE+ERR(l) 

$SUBROUTINE ADVAN5 TRANS I 
$MODEL 
COMP=(CENTRAL, DEFDOSE) 
CON[P=(PKCOMP) 
COMP=(PDCOMP, DEFOBS) 

$PK 
KIO=VK1 
K12=VK12 
K21=VK21 
sl=vsl 
K13= 0.01*KIO 
K30= THETA(1)*EXP(ETA(l)) 
EMAX=THETA(2)*EXP(ETA(2)) 
D50=THETA(3)*EXP(ETA(3)) 
BASE=TBETA(4)*EXP(ETA(4)) 
S3=Sl*Kl3/K30 

$ERROR 
EFFC=F 
IPRE=BASE+(EMAX*F)/(D50+F) 
Y=IPRE+ERR(l) 
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Glossary 
Definitions: population and Statistical modelling theory terms and symbols 

Symbol Derinition 
Intraindividual random effect, accounts for the error between the model 
prediction for the jth observation for the ith individual and the actual 
observation 
the ith individual's vectors of E values 

flki Interindividual random effects; accounts for the error between Pk and Pik 

Ili the ith individual's vectors of il values 

Val Variance of E 's, related to predicted value by function 
2 

Variance of "s, related to predicted value by function 1) K 
flk 

-)Ok 
Vector of population mean parameter estimates; Kth parameter from the 
vector of population mean parameter estimates ý 

ORD Relative difference between two means using an additive model 
OInRA Ratio of two means using a multiplicative model 
aV =1 (ý=O) standard deviation (in observation units) 

2 
V- 

ii 
(C=2) Coefficient of Variation 

For an additive model the standard deviation (in observation units) 
For exponential or proportional the coefficient of variation (%) 

92 Variance - Covariance Matrix of interindividual random effects 71 

C Fixed effect for the power function intraindividual variability model 
X2 Chi squared test 
I Mathematical symbol to represent sum of 
Oels Objective function value (-2 In likelihood as estimated by NONMEM 

OFV or -2LL) 
Obj. Fun. 
f A general function of all arguments listed which includes a structural model 

that relates the independent variables 
g, 0 A general function which relates Pk to 4 throughOk 

S( A general function incorporating interindividual and intraindividual 

submodels 
Pi ith Individuals vector of model parameters 

kth parameter from the ith Individuals vector of model parameters 
Pik 

the population average or typical parameter of the structural model 
Pk 

S Variance - Covariance Matrix of intraindividual random effects 

X ij 
All the independent variable information including the time of observations 

and dosage history 
The jth observation for the ith individual 

Yjj 
The jth prediction for the ith individual 

Yjj 
Represents the vector of covariates for the ith individual 

4 

277 



Symbol Definition 
ADD Additive component of intraindividual error model 
AIC Akaike Information Criterion 
%CV Coefficient of variation 
DV Dependent variable 
EPS Ej in NONMEM syntax 
ELS Extended least squares 
EXP Exponential component of intraindividual error model 
F 

Y 
tj 

in NONMEM syntax 
FO First order estimation 
FOCE First order conditional estimation 
GAM General additive model 
GOF Goodness of fit plots 
Interaction FOCE method where I is based on the conditional estimates of 
Method 
No Interaction FOCE method where I is estimated based on the mean parameter model. 
Method 
11V Interindividual variability 
10V Interoccasion variability 
IPRED Individual predictions 
IRES Individual Weighted Residuals 
IWRES Individual Weighted Residuals 
Likelihood The difference is approximately X2 distribution with degrees of freedom (df) 
ratio test equal to the difference in the number of free parameters. When one 
(LRT) parameter is fixed in the reduced model a decrease in objective function 

value 3.84 is significant at p<0.05. 
Posthoc Individual posterior Bayes parameter estimates obtained after the ELS 

problem has been minimised v 

PRED Population predictions 
PROP Proportional component 
RES Residuals 
SD Standard Deviation 
SE Absolute Standard error 
SE Absolute Standard error /population estimate * 100 

STS Standard Two Stage Approach 
WRES Weighted Residuals 
Y 

y ij in NONMEM syntax 
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Definitions: PK\pD Terms and Symbols 

Symbol Definition 
(X, Pq Y9 81) Initial, intermediate and elimination rate constant (depending on number of 

compartments) 
Ir The dosing interval 

A, Amount of drug in the Central compartment 
Ae Amount of drug in the effect compartment 
AT Total amount of drug in the central compartment at time T 
A, B, C, D coefficient constants 
AUC Area under the concentration time curve 
AUCo-_ (inf) Area under the concentration time curve between 0 and infinity 
AUCo, Area under the concentration time curve between 0 and T 
Ce Concentration at the site of drug action (in the effect compartment) 
Ce,, Concentration at the site of drug action at steady state (in the effect 

compartment) 
Ce50 Concentration at the site of drug action which gives 50% of the maximum 

response 
C, Cp, (Ct) Plasma concentration (Plasma concentration as function of time) 
CSS Plasma concentration at steady state 
CI Confidence Interval 
CL Clearance 
CL/F Apparent clearance (oral plasma clearance) 
Cmax Maximum concentration 
Cmax. D the estimate of Cmax, derived from the modelled parameters 
CAmax Maximum concentration at TApk 
Cmax E Estimate of Cmax. obtained directly from the model 
CAmax E Estimate of CAmax. obtained directly from the model 
D50 Dose which gives 50% of the maximum response 
Emax. The maximum response 
F Bioavailability 
Hysteresis The temporal displacement between concentration and effect in a 

counterclockwise direction 
k Combined absorption and distribution rate constant 
Ka First Order rate constant for absorption 
Ko Zero order constant for absorption 
Ke/K10 Elimination rate constant 
K121K21 inter-compartmental rate constants 
Kle Rate constant governing the transfer to the effect compartment 
Keo Rate constant representing the loss from the effect compartment and 

accounting for the hysteresis 
LR Lipid response 
MRT Mean residence time 
N Number of doses given 
PD Pharmacodynamics 
PK 
Proteresis 

Pharmacokinetics 
The temporal displacement between concentration and effect in a clockwise 
direction 

Q Intercompartmental clearance 
V Volume of distribution 
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Symbol Derinition 
t time 
TI/2 (half-life) Terminal half-life 
Tlag Lag time for absorption 
Tmax/Tpk Time of maximal plasma concentration 
TApk Time at which the accumulative amount absorbed / VI equals a maximum. 

IT approximates to Tpk when Ka>cc >0 
V, Volume of distribution of the central compartment 
Ve Volume of distribution of the effect compartment 
Vss Volume of distribution at steady state 

Other Abbreviations 

Symbol Derinition 
AGE Age of patient (years) 
CI-cr Creatinine Clearance (ml. min-1) estimated from the Cockcroft Gault 

relationship* 
FDA Food and Drug Administration 
HDL High density Lipoproteins (mmol. 1; 1) 
HMG COA 3-hydroxy-3-methylglutaryl Coenzyme A inhibitor 
HR Heart Rate 
LDL Low density Lipoproteins (mmol-L) 
LOQ Limit of Quantification 
QT The ventricular refractory period i. e. the time between the depolarisation and 

repolarisation of the ventricular myocardium, It is measured from a standard 
electrocardiogram (ECG) in msecs 

QTc QT corrected for heart rate 
RR RR interval from the electrocardiogram 
RBS Ranitidine bismuth subcitrate 
SCRT Serum creatinine concentration (mg. dl-1) 
SD Standard deviation 
SEX Gender (males 0, females 1) 
UP Torsade de Pointes 
WT Body weight of patient (kg) 
VLDL Very Low density Lipoproteins (mmol. L 
VT Ventricular Tachycardia 
VF Ventricular Fibrillation 

*Cockcroft Gault relationýhlýp: 
(140 

- Age) x Weight 
CLcr = 

serum creatinine 
.x 

[1.23(male); orl. 04(female)] 
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Publications and Presentations 

Presentations 

A population approach to dose vs response relationship for simvastatin in hypertensive 
hypercholesterolearnic patients 
S. F. Marshall, H. L. Elliott, P. A. Meredith 
British Phannacological Society 
London 5-7thJanuary 1994 

A population approach to dose versus response relationship for sirnvastatin in hypertensive 
hypercholesterolaernic patients 
S. F. Marshall, H. L. Elliott, P. A. Meredith 
Population Approach Group Europe 
London 13-14t" June 1994 

Prediction of simvastatin pharmacological response: a population analysis 
S. F. Marshall, H. L. Elliott, P. A. Meredith 
Population Approach Group Europe 
Frankfurt 9- 1 OthJune 1995 

Application of mixed effects modelling to bioequivalence testing 
S. F. Marshall., P. A. Meredith 
NONMEM intermediate workshop 
Uppsala 12-13thOctober 1995 

Population pharmacokinetics and Pharmacodynamics of a novel anti-arrhythmic drug in 
healthy volunteers and ischaemic heart disease patients 
S. F. Marshall, H. L. Elliott, P. A. Meredith 
PK UK 
Nottingham, 1-3 rd November 1995 

Publications 

Marshall SF, Elliott HL, Meredith PA. A population approach to dose vs response 
relationship for sirnvastatin in hypertensive hypercholesteroleamic patients. 1994 Br J Clin. 
Phannacol Vol 37 p494. 

Marshall SF, Meredith PA, Elliott HL. Efficacy of low-Density-lipoprotein lowering with 
Statins. 1994 Lancet Vol 344 p683-684. 
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