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Abstract 

The primary objective of these series of experiments was to develop an optimal 
hyperhydration strategy for use during conditions of restricted water access or 

exercise-induced heat stress. This strategy was composed of two compounds, 

namely Cr and Gly which each targeted specific body water compartments in 

order to maximise the volume of retained water. Endurance-trained subjects were 

recruited to participate in the current series of three experiments, and following 

Cr/Gly supplementation, body water was estimated by multifrequency 

bioimpedance and the physiological responses to exercise in the heat (30°C, 70% 

relative humidity) recorded and compared to pre-supplementation values. 

The aim of the first study presented in this thesis (Chapter 3 a) was to examine the 

effects of combined Cr and Gly supplementation on fluid retention and 

subsequently the effects on cardiovascular, thermoregulatory and metabolic 

responses and performance during exercise in the heat. Cr and Gly were delivered 

according to loading protocols previously established in the literature (20g of Cr 

for 6 days and 1g Gly-kg"1 body mass diluted in 500 ml of water 2 hours prior to 

the start of the experimental trial). Combined Cr and Gly supplementation 
increased body mass by 1.59 ± 0.41 kg with no change in TBW, ICW, ECW or 
RPE, heart rate and T. during exercise in the heat compared to the pre- 

supplementation experimental trial. Given that previous Cr supplementation 

studies have consistently found significant increases in TBW it can be deduced 

that the Gly administered prior to exercise had in some way negated the Cr- 

induced increase in TBW. The results highlight the importance of the loading 

protocol design when attempting to fluid load prior to exercise. 

The aim of Chapter 3 (b) was to examine the effects of a novel method of Cr and 
Gly delivery and ingestion on fluid retention and distribution. The novel loading 

protocol (ingestion of both Cr and Gly for 7 days) was designed to allow 

sufficient time for the retained fluid to be dispersed within body compartments. 
This regimen of Cr and Gly supplementation resulted in a significant increase in 

body mass of approximately 1.0 kg. Furthermore, TBW increased by 0.9 L and 

was dispersed equally between intra- and extra-cellular water compartments. 
Therefore, the large increase in TBW suggests that ingesting both Cr and Gly over 
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several days may be the most effective method of hyperhydration prior to 

exercise. 

Chapter 4 (a) aimed to assess the effects of Cr and Gly supplementation ingested 

according to the loading protocol described in the previous chapter (6 days of Cr 

and Gly ingestion, with the final supplement consumed 3 hours prior to 

measurement) on cardiovascular, thermoregulatory and metabolic responses and 

performance during exercise in the heat. As before, combined Cr and Gly 

supplementation resulted in a significant increase in body mass (1.20 ± 0.57 kg). 

Yet despite ingesting both Cr and Gly over several days to allow sufficient time 

for the retained fluid to be dispersed within body compartments, there was no 

change in TBW, ICW, ECW or RPE, heart rate and Tc during exercise in the heat 

compared to pre-supplementation. It is probable that ingestion of a hypertonic 

solution such as the Cr and Gly mixture resulted in slowing of gastric emptying 

and an initial efflux of water from the plasma into the intestinal lumen. Therefore, 

the timing of ingestion is evidently critical, with the final supplement requiring to 

be consumed longer than 3 hours prior to the need for hyperhydration. 

The aim of the study in Chapter 4 (b) was to examine the effects of extending the 

period of time between ingestion of the final Cr/Gly supplement on the retention 

and distribution of fluid. The overall aim was to develop an effective 'fluid- 

loading' strategy for use during exercise in the heat. 6 Subjects ingested both Cr 

and Gly for 6 days as before with half ingesting the final supplement 3 hours prior 

to body water measurement and the other half receiving their final supplement 5 

hours prior to the experimental trial. Subjects in both groups experienced 

significant increases in body mass following supplementation (1.60 ± 0.34 kg and 

1.21 ± 0.28 kg for 3 hour and 5 hour groups, respectively), but there was only a 

significant increase in TBW (1.1 ± 0.4 L) when the final supplement was ingested 

5 hours prior to measurement. Therefore, consumption of both Cr and Gly over 

several days and ingestion of the final supplement 5 hours prior to exercise is the 

most effective method of fluid loading. This will allow sufficient time for the 

retained fluid to leave the stomach, pass across the intestinal lumen wall and be 

dispersed within body water compartments. 

The experiment in Chapter 5 compared the effects of the novel Cr and Gly loading 

protocol established in Chapter 4 (b) on cardiovascular, thermoregulatory and 

metabolic responses and performance during exercise in the heat. Combined Cr 
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and Gly resulted in a significant increase in body mass (0.97 ± 0.28 L) and TBW 

(0.87 ± 0.21 L) and was associated with an attenuation in heart rate, Tc and 

perception of effort during prolonged exercise in the heat. The key finding of this 

study was that the increase in TBW after combined Cr and Gly supplementation 

was significantly greater than either Cr or Gly supplementation alone. Despite the 

increased hydration associated with combined Cr and Gly, there was no further 

attenuation in heart rate or Tc compared to Cr alone. Hyperhydrating prior to 

exercise through Cr, Gly or a combination of the two did not result in any 

significant improvement in 16.1 km time trial performance compared to 

euhydration. This may be because the time trial was too short to induce a degree 

of dehydration high enough to confer a significant reduction in exercise 

performance as a result of the altered hydration status. Alternatively, 

hyperhydration may not offer any significant advantage in terms of exercise 

performance compared to euhydration or indeed modest dehydration (i. e. loss of 

2-3% body mass). 

It has previously been reported that differences in wind speed and resistance 

between internal and external environments mean that it is of limited efficacy to 

extrapolate research findings from the laboratory to the field. Therefore, there is a 

need to determine the effects of combined Cr and Gly supplementation on thermal 

strain during exercise in the field. However, as yet no method of T. measurement 

for use in field studies has been validated during periods of severe heat stress. The 

aim of Chapter 6 was to compare Tc measurements obtained using an ingestible 

telemetry pill and a tympanic membrane thermometer with those from a rectal 

thermistor during rest and high intensity exercise conducted in a hot and humid 

environment (30°C and 70% relative humidity) intended to raise T. above 39°C. It 

was concluded that the ingestible telemetry pill system provides valid 

measurements of Tc during both rest and exercise-induced hyperthermia up to the 

limits of Tc measurement and therefore can be used in the field where Tre and 

esophageal temperatures cannot be taken. This will allow the effect of combined 
Cr and Gly supplementation on thermoregulatory responses during field studies to 

be precisely quantified. 
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1.1 Exercise in the heat 

As homeothermic organisms, humans must maintain their Tc within a relatively narrow 

range (35 to 42°C) in order to maintain physiological function (Noakes, 2001). Muscular 

contraction during exercise produces a significant amount of heat, which can potentially 

cause Tc to rise to the uppermost region of these tolerable limits unless heat is lost through 

either behavioural or homeostatic mechanisms. When exercise is performed under severe 

environmental conditions such as high heat and humidity, the amount of heat lost to the 

environment is reduced resulting in significant metabolic, cardiovascular and thermal 

strain and in extreme circumstances denaturating of essential proteins and enzymes with 

potentially fatal consequence (Blatteis, 2001). Some examples of the dangers of exercising 

in the heat include the Italian marathon runner Dorando Pietri who lay in a coma for two 

days after completing the 1908 London Olympics, and Francisco Lazaro the Portuguese 

runner who collapsed with heat stroke and sadly died after 19 miles of the marathon at the 

so called `Sunshine Olympics' in Stockholm, 1912, a race ran in an ambient temperature of 

39°C (Noakes, 2001). Furthermore, the incidents of deaths related to heat-induced injury 

are not wholly restricted to the athletics arena. The military is a prime example, with the 

official statistics reporting more soldiers treated for heat stroke than gun shot wounds in 

the recent Gulf War conflict (Wyatt, 2004). Firemen, rescue workers and astronauts are 

groups who also remain at significant risk of heat injury during their day-to-day vocation. 

Until our knowledge of human physiology and sports science improves to such an extent 

that adequate preventative measures can be developed, these unfortunate and unnecessary 

injuries will continue to happen. In addition, integration of preventative medical research 

into the sporting arena will ultimately lead to significant improvements in exercise 

performance as athletes become better equipped to tolerate extreme environmental 

conditions. Therefore just as humans have evolved to run long distances (Liebenberg, 

2006), so must exercise physiology evolve to enable athletes to run faster. 

Humans regulate T. during exercise through two main avenues: non-evaporative (or `dry') 

heat loss and evaporative heat loss. Thermoregulation through non-evaporative heat loss is 

the sum of the flux of heat loss through convection, conduction and radiation from the 

body to the surrounding environment. Evaporative heat loss is the process by which water 

(predominantly sweat) evaporates from the surface of the body, causing the loss of 

between 1092 and 2520 kJ of heat-L-1 evaporated fluid and as a consequence, significant 

cooling of the skin (Sawka & Wenger, 1998). In environments where the ambient 

temperature exceeds T, k, evaporative cooling is the only mechanism by which the body can 
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dissipate heat as cooling via conduction and convection cannot take place due to the 

reversal of the direction of heat transfer (Sawka & Wenger, 1998). Sweating is stimulated 

by an increase in Tc and increased cutaneous vasodilation causing a movement of water 
from plasma into the 1.6-4 million eccrine glands located in the skin (Sato, 1977). This 

water is then secreted from the eccrine glands as sweat onto the body surface, whereupon 

evaporative cooling of the skin occurs. Using chlorine distribution analysis, Nose et al. 
(1988) reported a strong association between loss of free water (sweat/urine) and the 

decrease in ICW following 90-110 min of exercise at 36°C, implicating a significant role 

for ICW in the sweating response. Thus, the water secreted in sweat is obtained in varying 

proportions from both the intra- and the extra-cellular fluid compartments to ensure both 

maintenance of blood volume and efficient thermoregulation (Fig. 1.1). However, the 

capacity to lose heat through sweating is significantly reduced when the air humidity is 

high as the air absorbs less water from the surface of the skin (Sawka & Wenger, 1998). As 

a result, sweat does not evaporate from the skin and drips off without significantly 

contributing to the heat loss process. The volume of sweat lost during exercise can be 

significant during prolonged endurance races in the heat and may result in a loss of body 

water in excess of 5L which is between 6-10% of body mass (Hubbard & Armstrong, 

1988; Wyndham & Strydom, 1969). The highest sweat rate recorded in the literature is an 

impressive 3.7 L"hr-1 by Alberto Salazar the winner of the 1984 Olympic marathon in Los 

Angeles; a race run in extreme heat and humidity (Armstrong et at., 1986). Indeed, sweat 

loss can be high even in a cool climate, where sweat rates of between 1 and 2 L"hr-1 have 

been recorded in soccer players during training in ambient temperatures of between 5-10°C 

(Maughan et al., 2005). 

Evolutionary biologists suggest that the ability to lose heat via sweat evaporation may have 

developed from the practise of hunting animals over long distances by early humans in 

Africa, the so called Bernd Heinrich hypothesis (Liebenberg, 2006). This ritual still 

performed in the present day by the San tribe (often referred to as ̀ The First People') who 

are widely acknowledged to be the oldest inhabitants of southern Africa, with an unbroken 

link to their ancestors who have lived in the same region for over 30,000 years 

(Liebenberg, 2006). Hunters aim to run down their prey (predominantly antelopes) by 

tracking them at high speed over difficult terrain and in the heat of the day (e. g. 46"C), 

until man or animal must collapse from sheer exhaustion. These races are often run at 

speeds of around 4 to 6 miles per hour, for anywhere from two to six and a half hours, and 

traverse up to 22 miles of terrain. These stats fall well within the performance range of the 

world's fastest competitive marathoners (Fig. 1.3), who set a pace of roughly 1 -2 miles per 

hour to cover 26 miles, albeit under far less harsh conditions (Liebenberg. 2006). The San 
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tribe hunt in groups of three with two initially doing the hard work of tracking and 
pursuing over the and grassland and woodland terrain, while the other holds back. 
Eventually, the leaders drop behind, leaving the third man to hound and spear the antelope 
when it reaches its limit. `The animal will either just completely collapse, or it will actually 
slow down to a point where it just stands there ... with sort of glazed-over eyes. ' 
(Liebenberg, 2006). `Essentially, you're pushing the animal to overheat'. The large 

antelopes that the men hunt soon become dehydrated during the chase which causes a 
decrease in sweating and the rate of cutaneous evaporation by 12-89% which can lead to a 
reduction in the thermoregulatory capacity of the animal, and eventually hyperthermia 

(Cain et al., 2006). Perhaps through a process of natural selection only those hunters who 

were able to tolerate these severe environmental conditions would survive. Indeed, it is 

believed that persistence hunting is so effective that it may have helped select for the 

excellent thermoregulatory system, bipedal posture, and long strides that we all possess 
today (Liebenberg, 2006). 

1.2 Dehydration 

The traditional `cardiovascular model' of dehydration provides a simple explanation for 

the effects of dehydration on exercise performance and is best understood by reference to 

Figure 1.2. This model contends that fluid lost through sweat during exercise will reduce 

plasma volume and consequently venous return to the heart (Fig. 1.2). As a direct result, 

stroke volume will be reduced and heart rate will increase ('cardiovascular drift') in order 

to maintain cardiac output (Ekelund, 1967). Ultimately the physiological limitation of a 

maximum heart rate will fail to accommodate the ongoing reduction in stroke volume 

resulting in a decrease in cardiac outcome and aerobic capacity (Rowell, 1986) which will 

have a profound negative effect on exercise performance (Fig. 1.2). Additionally, 

circulating blood volume may be further decreased by cutaneous vasodilatation to allow 

heat dissipation that increases the compliance of the cutaneous venous blood vessels, 

thereby reducing venous pressure. This reduced venous pressure results in pooling of the 

blood in the cutaneous venules resulting in decreased venous return, reduced stroke 

volume, reduced end-diastolic filling pressure and resultant further cardiovascular stress 

(MacDougall et al., 1974; Sawka et al., 2001). Paradoxically, oxygen delivery to the 

working muscles must also be maintained in order to sustain energy metabolism during 

exercise, presenting the body with two competitive cardiovascular demands. However. 

Gonzalez-Alonso et al. (1995) have determined that during cardiovascular drift there is an 

increase in systemic vascular resistance as the cardiovascular system attempts to deal with 
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Figure 1.1 Schematic representation of body fluid compartments in man. The shaded areas depict the 
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sizes of the various fluid compartments and the approximate absolute volumes of the compartments (in 
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sweat loss. Adapted from Verbalis (2003). 

the strain of a reduced cardiac output. Thus, the general vasoconstrictor response causes 

constriction in the cutaneous circulation resulting in a significant reduction in skin blood 

flow. Furthermore, Gonzalez-Alonso et al. (2000) found that stroke volume was similar 

whilst exercising at moderate intensity in hot (35 °C) vs. cold (8 °C) conditions, both in the 

euhydrated and dehydrated condition even though cutaneous blood flow varied. It follows 

therefore, that an increase in cutaneous blood flow does not explain the reduction in stroke 

volume, nor the progressive increase in heart rate (cardiac drift) observed during prolonged 

exercise, both of which are exacerbated in the heat. More recently, Coyle & Gonzalez- 

Alonso (2001) have suggested an alternative explanation for the cardiovascular drift 

phenomenon. These authors propose instead that an elevated heart rate caused by an 

increase in T, and sympathetic nervous activity results in a reduction in diastolic filling 

time giving rise to a decline in stroke volume. This mechanism would account for 

approximately one half of the reduction in stroke volume, with the second half occurring as 
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Figure 1.2 Schematic diagram of the cardiovascular model of dehydration. The arrows indicate the 
effects of sweat loss on the cardiovascular and thermoregulatory systems and the possible link to 
fatigue during exercise. 

a result of hypovolemia (Coyle & Gonzalez-Alonso, 2001). According to the 

cardiovascular model of dehydration, a reduction in cutaneous blood flow can impede heat 

exchange and reduce the temperature regulating capacity of the body which will lead to an 

increase in Tc and resultant premature fatigue (Fortney et al., 1984) (Fig. 1.2). Therefore it 

would be reasonable to assume that the extent of dehydration will be closely related to the 

elevation of Tc during exercise (Montain & Coyle, 1992a; 1992b). However, Noakes et al. 

(1991) propose that the primary factor in determining Tc during prolonged exercise is not 

the extent of dehydration incurred but the metabolic rate. Early studies clearly 

demonstrated that relative exercise intensity (i. e. percentage Vol max) correlates very well 

with Tre during exercise (Saltin & Hermansen, 1966). Furthermore, it is a common 

observation that the highest placed finishers in a marathon typically have the highest post 

race Tre (Maron et al., 1975; Noakes et al., 1991; Pugh et al., 1967), a finding consistent 

with observations of elite athletes completing a marathon at a higher percentage Vo, 
max 

than non-elite runners (Fox & Costill, 1972; Maughan & Leiper, 1983). Nevertheless, the 

notion that the increased heart rate and Tc during exercise in the heat and reductions in 

stroke volume and cardiac output all occur in proportion to the level of dehydration is well 

supported in the literature (e. g. Montain & Coyle, 1992a; 1992b). Indeed Montain et al. 

(1998) have suggested that T, rises by 0.1-0.2°C for every percent of body mass loss 

resulting from dehydration. Whether the dehydration is causative of the increase in T, or 
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whether there is merely a spurious relationship between the two variables remains to be 
determined (Noakes, 2005). Furthermore, dehydration has also been associated with an 
increase in muscle glycogen use (Hargreaves et al., 1996), increased blood concentrations 
of fluid regulating hormones (McConell et al., 1997) and increased discomfort during 

exercise (Noakes, 1993). 

A comprehensive review of marathon literature by Cheuvront and Haymes (2001) suggests 
that athletes may be able to endure dehydration within a certain range. Analysis of all 

running studies involving active dehydration (process of losing water from the euhydrated 

state) reveals that body mass losses between 1.6-3.1% have no effect on Tc and therefore 

are within a tolerable range. However, when dehydration exceeds 3% of body mass there is 

significant impairment in cardiovascular and thermoregulatory function (Wyndham & 

Strydom, 1969). This may be due to the fact that plasma volume does not decrease 

considerably during running beyond the initial drop at the onset of exercise (Sawka & 

Coyle, 1999). This is providing dehydration remains lower than 4% body mass as when 

dehydration increases beyond this point there is a further loss in plasma volume and 

significant impairment of heat loss (Sawka & Coyle, 1999). The stability of plasma volume 

during running has also been reported during marathon and treadmill running despite even 

larger reductions (4-7%) in TBW (Kolka et al., 1982; Sawka & Pandolf, 1990). However, 

although this may be the case for running, other sports such as cycling invoke a 

comparatively greater degree of haemoconcentration (Harrison, 1985). Therefore, the 

exercise modality may have a significant effect on the modification of cardiovascular and 

thermoregulatory responses during progressive dehydration. Montain and Coyle (1992b) 

have demonstrated that losses in plasma volume are significantly greater during 2 hours of 

cycling at 63-67% V02 maxcompared to marathon data. Furthermore, Tc responds to active 

dehydration (1-4%) in a linear fashion under controlled laboratory conditions (Montain & 

Coyle, 1992b). 

1.3 Exercise Performance 

Despite the reported impact of dehydration on cardiovascular and thermoregulatory 

responses during exercise (Fig. 1.2) it remains unknown exactly how these physiological 

factors contribute to the fatigue process. Of course fatigue, defined as the failure to 

maintain an expected power output' (Hultman & Sjoholm, 1986). is an inevitable 

consequence of all prolonged physical exercise. Despite the well-documented negatiN e 

effects of high ambient temperatures on exercise performance, the underlying 
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physiological mechanisms have been extensively debated without clear consensus. Early 

attempts to explain why fatigue occurs prematurely in the heat focused primarily on e` ents 
occurring within skeletal muscle, usually termed peripheral fatigue. Peripheral fatigue is 

typically defined as any fatigue arising from the failure of mechanisms at or beyond the 

neuromuscular junction, including junctional transmission, electrical activity of muscle and 
its activation (Edwards, 1981). However, as several studies indicate, skeletal muscle ATP 

concentrations are never reduced to less than 50% of the resting value under all conditions 

of exercise (Gonzalez-Alonso & Calbet, 2003; Noakes, 2005). Furthermore, Pitsiladis & 

Maughan (1999) concluded that glycogen depletion was not the performance-limiting 
factor during exercise in the heat as exercise was terminated prior to the depletion of all 

carbohydrate stores. Similarly, Parkin et al. (1999) reported that after exercise to 

exhaustion in ambient temperatures of 3,20 and 40°C, muscle [glycogen] was highest in 

the 40°C condition. Therefore, it is difficult to explain hyperthermia-induced fatigue by 

peripheral factors alone. There is now mounting evidence to suggest that fatigue during 

exercise may originate at a higher level than skeletal muscle, specifically within the central 

nervous system, a hypothesis first proposed by Newsholme et al. (1987). This hypothesis 

proposes that an increase in the concentration of tryptophan in the blood and hence the 

neurotransmitter 5-hydroxytryptamine in some neurons which are involved in control of 

motor activity in the brain, could lead to central fatigue (Newsholme et al., 1987). 

Research in the early nineties by Nielsen et al. (1993) observed that humans always ceased 

exercising when Tc reached a certain limit (averaging 39.7°C) that was constant for each 

subject. However, at the point of exhaustion there was no reduction in cardiac output, 

muscle (leg) blood flow, no changes in substrate utilisation or availability, and no 

recognised accumulated `fatigue' substances. This led the authors to propose that `... the 

high Tc per se, and not circulatory failure, is the critical factor for the exhaustion during 

exercise in heat stress' (Nielsen et al., 1993). In a follow up study comparing the effects of 

pre-heating and pre-cooling the body, these same researchers showed that high internal 

body temperature did indeed cause fatigue in trained subjects during prolonged exercise in 

hot environments as time to exhaustion was inversely related to the initial T, and directly 

related to the rate of heat storage (Gonzalez-Alonso et al.. 1999). Furthermore, Nybo & 

Nielsen (2001) found that the ability to generate skeletal muscle force during a prolonged 

maximum voluntary contraction is attenuated with hyperthermia. Therefore, the premature 

fatigue that occurs during exercise in the heat could be caused by an increased T, reducing 

the brain's capacity to recruit skeletal muscle and not due to a peripheral impairment of 

skeletal muscle function. Conversely, Tucker et al. (2004) found that when comparing 

skeletal muscle recruitment during self paced exercise in both hot (3 5°C) and cool (1 Y`'C) 
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environments, power output and integrated electromyographic activity of the quadriceps 
muscle began to decrease early in the hot conditions when T, heart rate and RPE were 
similar in both conditions. These findings suggest that there may be an anticipatory 
response during self-paced exercise whereby the brain adjusts skeletal muscle recruitment 
and power output accordingly to reduced heat production and thereby ensuring 
maintenance of thermoregulatory and metabolic function (Tucker et al.. 2004). This has 
led to the development of the so called `central governor' theory, which proposes that the 
brain reduces muscle fibre recruitment during prolonged exercise in the heat in order to 

maintain the integrity of the organism (Noakes, 2001). However, a subconscious central 

governor component of fatigue during exercise in the heat would fail to explain how 

humans can run to the point of excessive heat storage resulting in death, described in the 
first paragraph of this thesis. Indeed deaths during athletic pursuits have been reported 

since 490 BC when the Athenian messenger Phidippides collapsed and died after running 

the 26 miles from the Greek village of Marathon to Athens in what was likely to have been 

hot conditions, to report news of victory in battle. Until direct experimental evidence can 

be offered to support the existence of a central governor, this will remain a controversial 

and unproven theory. It has also been shown that cerebral blood flow is reduced by 18- 

20% during exercise in hyperthermia compared to normothermia (Nielsen & Nybo, 

2003; Nybo et al., 2002). These authors conclude that the reduction in cerebral blood flow 

is due to hyperthermia-induced hyperventilation causing a decrease in arterial CO2 

pressure and consequent cerebral vasoconstriction that may explain the pre-syncope 

symptoms occasionally observed during subjects exercising in the heat (Nielsen & Nybo, 

2003). 

Whatever the mechanism, previous studies have shown unequivocally that endurance 

exercise performance is impaired markedly when ambient temperature is high (Adams et 

al., 1975; Galloway & Maughan, 1997; Kozlowski et al., 1985 ; MacDougall et al., 

1974; Nielsen et al., 1990; Saltin et al., 1972; Suzuki, 1980) and increased when ambient 

temperature is low (Febbraio et al., 1996; Galloway & Maughan, 1997). For example, 

Galloway & Maughan (1997) reported that when subjects were asked to complete exercise 

at 70% VO 
2 max to exhaustion at ambient temperatures of 4.11.21 and 31 °C, exercise time 

was longest (93.5 ± 6.2 min) at 11 °C and shortest (51.6 ± 3.7 min) at 31 T. Furthermore, 

the effect of ambient temperature on endurance performance is not solely limited to the 

laboratory setting. Figure 1.3 compares the ambient temperatures and completion time of 

the 10 fastest male marathon performances (left) and the Olympic marathons since 1972 

(right) (Fudge et al., 2005). Regardless of the Olympic games being the pinnacle of athletic 



-, qq 

o 
competition where world records are continually broken every four years. the Olympic 

marathon times since 1972 are vastly slower than the fastest 10 marathons ever completed. 
For example, in the recent Athens Olympic games in 2004, Stephan Baldini the Italian who 
won the race in 2: 10: 55 was 6 min slower than Kenyan Paul Tergat's world record of 
2: 04: 55, set in Berlin in 2003. However, while Tergat competed in relatively cool 
conditions (10°C), Baldini had to battle sweltering conditions of 30°C and oppressively 
high humidity. The fact that all of the Olympic marathons since 1972 have been competed 
in ambient temperatures in excess of 20°C clearly emphasises the direct negative impact of 

environmental heat stress on endurance performance. Furthermore, this trend is likely to 

continue as athletes begin to prepare for what will likely be another hot Olympic games in 

2008 in Beijing, China. The multitude of theories offered to explain the mechanism 

underlying the occurrence of premature fatigue during exercise in the heat clearly 

emphasises the need for continuing future research, especially in the field. Only when the 

interaction of the physiological processes that culminate in fatigue are determined will it be 

possible to provide definitive preventative measures that will reduce the adverse effects of 

heat stress on human performance. Yet despite this, development of strategies to improve 

exercise performance in the heat has been one of the corner stones of exercise physiology 

research for the last 40 years. 

One of the vital practices currently used to prepare athletes for competition in high 

temperatures is heat acclimatisation. The negative impact of hot environments on the 

performance of an athlete can be greatly limited by a period of heat acclimatisation prior to 

competition (Terrados & Maughan, 1995). The major benefits of the acclimatisation 

process include an expansion of plasma volume, increased skin blood flow and sweating 

response leading to reduced heart rate, RPE, blood [lactate] and T, during exercise 

(Armstrong & Maresh, 1991; Terrados & Maughan, 1995). Yet due to the increased sweat 

rate there is an associated increase in the volume of fluid required to minimise dehydration 

and any possible adverse effects on performance. Furthermore, pre-cooling the body prior 

to training or competition via cold air (5-10°C) or cold water immersion is another strategy 

utilised by athletes in recent years. This will increase the margin for metabolic heat 

production prolonging the time to reach the critical limiting temperature when a given 

exercise intensity can no longer be maintained (Marino, ? 002: 'ýielsen c al., 199 3). 
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Figure 1.3 The impact of ambient temperature on elite male marathon performance time. Country's 
flag indicates nationality of the marathon winner. Red lines indicate average ambient temperature for 
both the fastest all time marathon performances (lower line - 7.3°C) and the Olympic marathons since 
1972 (upper line - 24.3°C). Data correct 8/2006. Adapted from Fudge et al. (2005). 

The rationale for fluid ingestion during exercise stems from the traditionally accepted 

`cardiovascular model' of dehydration. Specifically, the fluid ingested would maintain 

plasma volume resulting in a reduction in cardiovascular strain during exercise in the heat. 

As a direct result, skin blood flow would be maintained allowing sufficient continuation of 

convective heat loss. Additionally, there would be sufficient body water to maintain 

adequate sweat production and optimum evaporative cooling, which overall would 

enhance thermoregulatory function. Thus, it has been proposed that the reduction in 

cardiovascular and thermal strain induced by fluid ingestion should ultimately improve 

exercise performance, especially in the heat (Convertino et al., 1996). There has been 

vociferous debate between leading groups of researchers in the last 30 years regarding the 

most effective fluid ingestion strategy to improve exercise performance in the heat 

(Convertino et al., 1996, Noakes, 2001). However, the idea that fluid should be ingested 

during exercise is a relatively recent phenomenon only coming to fruition in the second 
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half of the twentieth century. Indeed, Jackie Meckler who ran marathons and 
ultramarathons in a career spanning from 1945 to 1969 commented that, `In those days it 

was quite fashionable not to drink, until one absolutely had to. After a race, runners would 
say with pride, `I only had a drink after 30 or 40 km'. To run a complete marathon without 
any fluid replacement was regarded as the ultimate aim of most runners, and a test of their 
fitness' (Noakes, 2001). This may seem particularly surprising given the first set of studies 
examining the effects of heat stress and dehydration on T, heart rate, exercise performance 
and physiological well being were published in 1938 and 1947 (Adolph, 1938; Adolph, 
1947; Adolph & Dill, 1938). These studies concluded that soldiers marching in desert heat 
developed dehydration despite free access to fluids, which subsequently resulted in 

premature fatigue. Furthermore, heart rate and T, rose as a linear function of the level of 
dehydration. Adolph (1947) suggested that there were no immediate health risks associated 

with the dehydration to the extent of 7-10% of body mass but there was a risk of serious 

organ failure should dehydration exceed 15%. 

It was not until a study by Wyndham & Strydom (1969) was published that athletes and 

exercise physiologists began to understand the apparent danger of inadequate fluid intake 

during exercise. These authors found that athletes competing in a marathon consumed 

significantly less fluid than was lost through sweating and hence a state of dehydration 

ensued. Furthermore, a linear relationship (r=0.67) between post race T, and percent 

dehydration (greater than 3% body mass loss) was reported in the runners. This finding 

provoked the initial suggestion that those exercising for prolonged periods of time would 

need to consume fluids to prevent significant heat injury (Wyndham, 1977). These findings 

were the incentive for the International Amateur Athletics Federation to change their rules 

in 1977 to allow greater volumes of fluid at increased intervals to be available during 

distance races. In addition, the study by Wyndham & Styrdom (1969) was cited in 

guidelines created by the influential body The American College of Sports Medicine 

(ACSM) for suggesting specific fluid intake (ACSM, 1975; 1987; Convertino et al., 1996). 

These ACSM guidelines and Position Statements/Stands have been significantly revised 

and amended over the last three decades (ACSM, 1975; 1987; Convertino et al., 1996). In 

the most recent of these (Convertino et al., 1996), it is suggested that `adequate fluid 

consumption before and during race can reduce the risk of heat illness, including 

disorientation and irrational behaviour, particularly in longer events such as the marathon, 

citing (Costill et al., 1970; Gisolfi & Copping, 1974; Wyndham & Strydom, 1969). 

Secondly, `dehydration can predispose the runner to heat exhaustion or the more dangerous 

hyperthermia and exertional heat stroke' (Hubbard & Armstrong, 1988. Pearl mutter, 1986). 

Finally, `athletes should replace their sweat losses or consume 150-300 ml ever--v 1 min' 
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(Hubbard & Armstrong, 1988; Nash, 1985). However, none of these studies were 
prospective intervention trials during which the variable in question (hydration status) was 
the only thing to change and therefore the extent of dehydration cannot be proved 

conclusively to be causative of hyperthermia. In 2000, the National Athletic Association of 
Trainers (NAAT) also published a position statement concluding that `Fluid replacement 

should approximate sweat and urine losses and at least maintain hydration at less than 2% 

body mass reduction' (Casa et al., 2000). Several studies have indicated that dehydration 

above 2% body mass results in a significant impairment in exercise performance exceeding 
90 min in both a temperate (20-21°C) (Cheuvront et al., 2003; Fallowfield et al., 
1996; McConell et al., 1997) and a hot (31-32°C) environment (Below et al., 1995; Walsh et 

al., 1994). Furthermore, given that it takes 40-60 min for ingested fluid to be evenly 
distributed throughout the body after gastric emptying, intestinal absorption and osmotic 
flow (Schedl et al., 1994), means athletes must begin drinking early to delay the onset of 
dehydration and prevent water loss exceeding 2% body mass. These facts contributed 

significantly to the ACSM and NAAT guidelines and have become the adopted dogma of 

exercise physiologists, race organisers and sports drinks companies alike. 

However, Noakes (2001) argues that the ACSM and NAAT guidelines are `not evidence- 

based, since neither refers to specific, prospective, interventional studies from which such 

definite conclusions can be drawn' (Noakes, 2005). Several studies confirm that the 

voluntary fluid intake of runners during distance races is approximately 500 ml each hour 

(Maughan, 1985; Noakes et al., 1988; Noakes, 1993; Shephard & Kavanagh, 1978), which is 

lower than the 600-1200 ml suggested by (Convertino et al., 1996). Indeed Noakes (2001) 

believes that elite athletes may drink as little as 200 to 400 ml each hour during races. So 

how can the exceptional performances of elite endurance athletes be explained despite an 

ad libitum fluid intake that is well below the established recommendations? The ACSM 

and NAAT guidelines are based on laboratory studies where the degree of heat stress 

encountered would be significantly greater than in the field (Saunders et al., 2005), perhaps 

contributing to an overestimation in suggested fluid replacement guidelines. Studies 

comparing ad libitum fluid intake to the rates of fluid ingestion set out in the ACSM 

guidelines found no difference on endurance performance (Danes et al., 2000; McConell et 

al., 1999). Essentially the only measured difference between the fluid replacement 

strategies was an increased feeling of intestinal discomfort when the rate of fluid ingestion 

was high (Daries et al., 2000; McConell et al., 1999). Indeed, there is also theoretical 

opinion that dehydration within a tolerable range will not have a negative impact on 

exercise performance, but may even confer an advantage by preventing inevitable 

increases in body mass due to consumption of large volumes of fluid (Armstrong et al., 
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1985; Noakes, 2001). Therefore, if body mass can be reduced while power output remains 
constant there will be a concomitant reduction in the energy cost of exercise, especially in 

weight bearing activities. There is also a possibility that over drinking during exercise may 
result in a progressive fluid overload, leading to dilution of blood [sodium] below 130 

mmol"L-1 and ultimately hyponatraemic encephalopathy (brain swelling and dysfunction 
due to voluntary overdrinking either before, during or after exercise), and even death 
(Noakes, 2005). However, this is more likely to occur in slow runners who take longer to 

complete the race, and thus consume substantial volumes of fluid (Almond et al., 2005). 

Thus, based on this evidence the United States of America Track and Field (USATF) 

announced that all future running races in the United States would be run according to new 

guidelines (Noakes, 2003a; 2003b; Noakes & Martin, 2002) which advocate that athletes 

should drink according to the dictates of their thirst during exercise and not to the limits of 
their individual tolerance. Clearly, the debate surrounding fluid replacement strategies 
looks set to continue for many years to come until direct observational evidence can prove 
beyond all reasonable doubt how much athletes should drink during exercise in different 

environmental conditions. 

1.4 Hyperhydration 

Given the potentially deleterious effects of dehydration on T, and exercise performance 

then logically, it would be beneficial to increase body water stores prior to exercise to 

provide a fluid reservoir. One approach has been to maintain plasma volume during 

exercise in the heat by infusion of isotonic saline. Using this method, Fortney et al. (1988) 

found an attenuated rise in T, during exercise in the heat that they attributed to a 

maintenance of central blood volume resulting in an increase in skin blood flow and 

associated convective heat loss. Several other studies using acute plasma volume 

expansion with either saline or dextran infusions reported an attenuation in the rise in heart 

rate and Tc (Deschamps et al., 1989). Indeed, Luetkemeier & Thomas (1994) reported that 

pre-exercise plasma volume expansion with intravenous dextran solution improved cycling 

performance by more than 10%. However, the medical expertise required to insert and 

maintain a venous infusion and the restricted mobility that a saline drip would incur means 

that this method of hyperhydration would be impossible during exercise in the field. 

Furthermore, the finding of similar forearm blood flow during hypervolemia in the study 

by Watt et al. (2000) led these authors to conclude that acute plasma volume expansion did 

not directly enhance thermoregulation. Other studies have also failed to show any effect of 
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plasma volume expansion on heart rate, Tc, skin blood flow or indeed performance during 

exercise in the heat (e. g. Grant et al., 1997). 

Hyperhydration prior to exercise by ingestion of water or carbohydrate/electrolyte 

solutions is less effective than infusion methods as most `excess' fluid ingested is rapidly 
filtered and excreted by the kidneys (Freund et al., 1995). On the other hand, hydrating 

agents such as Gly (1,2,3-propanetriol) have been shown to increase TBW and effectively 

minimise an exercise induced reduction in plasma volume (Murray et al., 1991). Gly is a 

naturally occurring 3-carbon alcohol metabolite that is produced in the human body and 
distributed within and between all cells at low concentrations (<0.1 mmol " L-1), with the 

exception of the cerebral spinal fluid and aqueous humor (Lin, 1977; Tourtellotte et al., 
1972). Seifert et al. (1995) reported a 701 ml increase in mean TBW after Gly ingestion, 

including a 385 ml increase in interstitial fluid and a 225 ml increase in ICW with the 

remainder distributed within the plasma. Some researchers propose this Gly-induced water 

retention is attributed to an increased concentration of ADH (Freund et al., 1995). 

However, previously reported differences in [ADH] between Gly and water interventions 

were small and only approached statistical significance (Freund et al., 1995). While an 

ADH mechanism cannot be ruled out, it is more likely that this Gly-induced water 

retention is mediated by the action of Gly on the kidneys. When blood [Gly] is at normal 

physiological levels, almost all filtered Gly is passively reabsorbed by the proximal and 

distal renal tubules of the kidneys (Sommer et al., 1993). When blood [Gly] is increased 

with exogenous Gly ingestion, there is an increase in Gly and associated water 

reabsorption (Kruhoffer & Nissen, 1963). Several studies have now concluded that a Gly 

bolus delivered 2-3 hours prior to exercise reduces thermal and cardiovascular strain 

during exercise in the heat (Anderson et al., 2001; Lyons et al., 1990; Montner et al., 1996) 

and argue these effects are due to a preservation of blood volume and cutaneous blood 

flow (Lyons et al., 1990). For example, Montner et al. (1996) reported that time to 

exhaustion was increased by approximately 23% after Gly induced hyperhydration 

compared with a placebo (P1). However, not all studies have shown such effects of Gly on 

thermoregulation during exercise in the heat (Inder et al., 1998; Latzka et al., 1998; Murray 

et al., 1991). Methodological differences, including the amount of Gly and timing of 

ingestion prior to exercise, the exercise protocol, ambient conditions, methods used to 

assess hydration status and T, are all likely to have contributed to the conflicting results. 

Creatine (methyl guanidine acetic acid) (Cr) is a naturally synthesised compound, 

important in the energy metabolism process that has been used as an ergogenic aid for 
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several years in order to improve performance in short duration, high intensity exercise 
(Casey et al., 1996; Kilduff et al., 2002). Ingestion of Cr has also been shown to have 

substantial hydrating effects (Kern et al., 2001; Kilduff et al., 2004), although the exact 
mechanisms remain uncertain. The water retention may simply be due to osmotic effects. 
cell swelling and a consequent increase in protein synthesis (Haussinger et al., 1993). 
Conversely, it may be an increase in protein synthesis that precedes the associated increase 

in water content (Kreider et al., 1998). However, unlike the whole body hydrating effects 

of Gly, Cr retains fluid predominantly in the ICW compartments (Kilduff et al., 2004). 

Like Gly, oral Cr supplementation has been shown to be effective in attenuating the rise in 

heart rate and Tc and improving performance during exercise in the heat (Kilduff et al., 
2004). These effects have been attributed to an increase in ICW resulting in an increased 

specific heat capacity of the body (Kern et al., 2001; Kilduff et al., 2004). Supplementation 

with hydrating agents such as Gly or Cr has consistently produced modest fluid retention 

of 400 to 800 ml (Kilduff et al., 2004; Montner et al., 1996). However, it seems plausible 

that a Gly-induced increase in extra-cellular water (ECW) coupled with a Cr-mediated 

increase in ICW could have synergistic effects resulting in a much larger increase in TBW 

than if either supplement was consumed alone. 

To assess acute changes in hydration status, researchers must indirectly estimate TBW as it 

is not possible to measure this parameter directly in a live human being. For example, 

measurements of body water content in muscle biopsy samples are subject to error because 

of the assumptions involved and the rapid evaporation of water after biopsy (Proctor et al., 

1999). However, isotope dilution has been successfully used to measure TBW in animals 

and humans for 80 years. Deuterium oxide was first used to estimate TBW in 1934 when 

data was published using 2 rabbits and 1 human as volunteers (Hevesy & Hofer, 1934). A 

further study compared deuterium oxide predictions of TBW against direct measurements 

using desiccation of cadavers, and reported only minor differences between measurement 

techniques equating to approximately 0.7% of body weight (Moore, 1946). Tritiated water 

(isolated by Alvarez & Cornog (1939)) has distribution properties similar to those of 

deuterium oxide and has since become the preferred method of TBW measurement (Pinson 

& Langham, 1957). Indeed, isotope dilution is now the accepted `gold standard' for 

determining TBW (O'Brien et al., 2002) and is a method commonly utilised in research 

studies (e. g. Fudge et al., 2006). However, repeat measurements of TBW using dilution 

techniques are difficult due to the necessity of a waiting period while the tracers are 

cleared from the body and therefore would not always be applicable to measure acute 

changes in TBW. Therefore, the majority of researchers to date investigating 
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hyperhydration have used the volume of urine production (and hence water retention) as an 
indirect measurement of TBW change following supplementation with either Cr or Gly 
(Freund et al., 1995; Latzka et al., 1997; 1998). However, this method is extremely limited. 

as it does not provide a measurement of the distribution of fluid within the body 

compartments. 

Bioelectrical impedance has gained much attention as a rapid, inexpensive and non- 
invasive method of estimating TBW. Bioelectrical impedance is based on the assumption 
that electricity is conducted poorly by fat and bone but well by tissues that contain 

predominantly water and electrolytes. Therefore, by passing a low level alternating current 

at a 50 kHz frequency between two parts of the body (e. g. leg to arm) the resistance to the 

current can be measured and used to predict TBW using the equation: 

Z_p*L2*V-1 

where Z is the electrical impedance, p is the resitivity, L is the height and V is the volume 

of water contained within the body. This relationship relies on certain assumptions, firstly 

that p is known and a constant and secondly that V is evenly distributed within a cylinder 

of uniform cross-sectional area. However, when applying this to the human body, these 

assumptions are violated, thereby introducing a degree of error into the estimation of 

TBW. Nevertheless, bioelectrical impedance has been shown to provide a reasonable 

prediction of TBW (r=0.86, P<0.01) compared with isotope dilution techniques and has a 

coefficient of variation for repeated measures of 2-3.4% (Lukaski et al., 1985). The recent 

development of multi-frequency bioelectrical impedance machines allows TBW 

measurements to distinguish between ECW and ICW as at low frequencies the current 

passes through ECW, but at higher frequencies it is able to penetrate the cell membrane. 

Multifrequency bioelectrical impedance has been consistently shown to provide reliable 

and repeatable estimations of TBW in euhydrated individuals if ambient temperature, 

electrode placement, subject posture and use of a non-conductive surface are standardised 

(Armstrong et al., 1997; Kushner, 1992; Kushner et al., 1992; 1996). Furthermore. 

multifrequency bioelectrical impedance has been recently shown to provide accurate 

estimates of the change in TBW following both Gly (Koulmann et al., 2000) and Cr 

(Powers et al., 2003) hyperhydration compared to the isotope dilution technique. Therefore 

it can be expected that bioelectrical impedance will provide a valid and reliable estimate of 

TBW change following combined Cr/Gly supplementation and a measure of where the 

retained fluid is distributed within fluid compartments. 
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1.5 Aims and objectives 

Given the extensive debate on the influence of hydration on exercise performance in the 
heat and the accumulating evidence of the benefits of hyperhydration, the main objectives 

of the following research were as follows: 

To investigate the effects of ingesting two different fluid retaining agents 

simultaneously on body fluid balance and in doing so determine whether 

combining Cr and Gly can induce a greater hyperhydration than either Cr or Gly 

alone. This was achieved by designing a series of studies that measured the effects 

of all combinations of supplements on TBW, ECW, ICW and plasma volume. 

ii. To develop the optimal hyperhydration strategy for use during conditions of 

restricted water access or exercise induced heat stress. This was achieved by 

comparing a Cr/Gly supplementation strategy based on previously established 

protocols from the literature with novel methodologies. 

iii. To assess the effects of these novel `water-loading' strategies on metabolism, 

cardiovascular and thermoregulatory responses and performance during exercise in 

the heat. This was achieved by examining the effects of combined Cr and Gly 

hyperhydration on physiological responses during steady state exercise in hot and 

humid environment (30°C and 70% relative humidity) and performance in a 16.1 

km time trial and in doing so provides further insight into the relationship between 

dehydration and performance. 

iv. To validate a new method of T, measurement for use outwith the laboratory in 

training and competitive situations. This was achieved by comparing T, 

measurements obtained from an ingestible telemetry pill and an infrared tympanic 

membrane thermometer with those from a rectal thermistor during rest and high 

intensity exercise conducted in a hot and humid environment (30°C and 70% 

relative humidity) intended to raise T, above 39°C. This will allow future research 

examining the effects of combined Cr and Gly hyperhydration on thermal and 

cardiovascular strain and exercise performance to be completed in the field. 
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Chapter 2 

General Methods 
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2.1 Subjects 

All experiments described in this thesis involved human volunteers who were all 

endurance trained healthy males. All experiments were approved by the University of 
Glasgow Ethics Committee and were performed according to the code of ethics of the 

World Medical Association (Declaration of Helsinki). The ethics document for Chapter 5 

is displayed in Appendix 1 and was adapted from the original ethics documents from 

Chapters 3 and 4. Subjects were questioned as to their training practices and it was 
determined that no subject was acclimatised to exercise in the heat at the time of study. 

This interview also confirmed that all subjects were Cr free for at least 8 weeks prior to the 

study. The investigators did not reveal prior to the interview that subjects would be 

excluded if they had supplemented with Cr in the previous 8 weeks. The subjects were 

fully informed of any risks and discomforts associated with the experiments and informed 

they could withdraw at any point without explanation before giving their written informed 

consent to participate (Appendix 1). 

2.2 Determination of VO2. 
a, and test workloads 

All subjects had their V02 max, WRmax and LT measured during an initial continuous 

incremental test to volitional exhaustion at standard room temperature (20-21 °C). LT was 

estimated non-invasively as the VO 
2 at which: (a) the break point in the relationship 

between CO2 production (VCO2) and Vol ('V-slope' technique, ((Beaver et al., 1986)) 

occurred and (b) the ventilatory equivalent for 02 (VE / VO2) started to increase 

systematically without a concomitant increase in ventilatory equivalent for CO2 

(VE / VCO 
2). After a5 min warm-up at 20 W the WR was gradually increased at a rate of 

15 W"min 1 using an electrically braked cycle ergometer (Excalibur Sport, Lode, The 

Netherlands) until cadence could no longer be maintained above 50 revs-min-'. Respired 

volumes were measured with a bi-directional turbine transducer (VMM; Alpha 

Technologies, Laguna Niguel, CA, U. S. A. ) calibrated with a3L syringe using a range of 

different flow profiles (Hans Rudolph, Kansas City, MO, U. S. A. ). Respired gas 

concentrations were measured every 20 ms by a quadruple mass spectrometer (QP9000. 

Morgan Medical, Gillingham, Kent, U. K. ), which was calibrated against precision- 

analysed gas mixtures. Barometric pressure was measured using a standard mercury 
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barometer. From these measurements 63% of each subject's WRY was calculated and 
used in all subsequent experimental trials. 

2.3 Dietary analysis 

Subjects followed their normal diet and weighed all food and drink consumed during each 
supplementation period using digital weighing scales readable to 1 g. The diet was 
analysed for energy intake and macronutrient content using a computerised version of 
McCance & Widdowson's food composition tables as revised by Holland et al. (1991). 
Subjects were asked to minimise caffeine intake to lessen any possible confounding effects 

of caffeine on muscle Cr loading (Vandenberghe et al., 1996). 

2.4 Experimental exercise trials (Chapters 3(a), 4(a) and 5) 

Prior to the first experimental trial, familiarisation trials were completed until the 

variability of two consecutive trials was within 5%. Subjects reported to the laboratory on 

each of day of exercise testing following a3 hour fast and having refrained from alcohol, 

caffeine and strenuous exercise the day before. Upon arrival at the laboratory, height and 

nude body mass were measured and body water compartments estimated using a Bodystat 

Multiscan 5000 Bioimpedance analyser (Bodystat Ltd, Isle of Man). This method allows 

TBW and ECW to be estimated; from these measurements ICW can also be deduced. The 

bioimpedance measurements were taken while the subjects lay comfortably in a supine 

position for 10 min on a non-conductive surface with their arms and legs slightly abducted. 

Two electrodes were attached to the right hand (one behind the knuckles and one on the 

wrist next to the ulnar head) and two attached to the right foot (one behind the toes and one 

between the lateral and medial malleoli). A current with alternating frequency was then 

passed between the electrodes on the hand and foot and the resistance calculated. The 

resistance to each current was then used to calculate TBW and ECW using the equation 

described previously (Chapter 1). There is good evidence to suggest that the estimation of 

TBW by bioimpedance is reliable and valid when subjects are euhydrated (O'Brien et at. 

2002). To date, several studies have successfully utilised this technique in order to estimate 

hyperhydration induced changes in TBW (Kern et al., 2001; Kilduff et al., 2002, Kilduff et 

al., 2004). Furthermore, the change in body mass from pre- to post-supplementation was 

determined to provide a further indirect measurement of the volume of fluid retained. 

Following the bioimpedance measurement, a flexible rectal thermistor was inserted 10 cm 

beyond the anal sphincter to measure Tre, an index of Tc and a heart rate monitor (Polar 
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Sports Tester, Polar Electro Oy, Kempele, Finland) was attached. The subject's right hand 

and forearm were immersed in water at 42-44°C for 15 min in order to allow for 

arterialisation of the venous blood (Forster et al., 1972). Following this, a 21 G cannula was 
introduced into a superficial vein on the dorsal surface of the heated hand. The subject was 
transferred to the climatic chamber (ambient temperature 30 ±1 °C with a relative humidity 

of 70 ± 3% and air velocity of approximately 1.8 m"s-) and seated on the cycle ergometer 
for 5 min. During this period, thermistors (C8600 10 channel microprocessor, Comark, 

Hertfordshire, U. K. ) were attached to the subject's chest, tricep, thigh and calf for the 
determination of weighted mean Tsk (Ramanthan, 1964). 

The subject remained seated on the cycle ergometer for a further 1 min while resting heart 

rate, Tre, Tsk were determined and a blood sample (10 ml) obtained (Figure 2.1). The 

venous cannula was kept patent by a 10 ml flush of isotonic saline between samples. 
Subjects were then instructed to begin 5 min of unloaded cycling before the WR was 
increased in a `single step' to the predetermined 63% WRmax" Subjects were required to 

maintain a pedal cadence of 70-100 revs-min-' for 40 min. Measurements of heart rate, Tre 

and Tsk were obtained at 5 min intervals throughout the 40 min period and the time trial. 

Blood samples (10 ml) were obtained every 10 min during the constant-load exercise and 

upon completion of the time trial. One min expired gas collections were made every 10 

min of the constant-load exercise and analysed within 5 min for the determination of VOZ 

VCO2 and VE. Subjects were required to consume 2.14 ml water-kg-1 body mass (e. g. 150 

ml for 70 kg subject) every 10 min throughout the 40 min constant-load exercise 

(Convertino et al., 1996). Ratings of perceived leg fatigue and dyspnoea were recorded 

every 5 min of the constant-load exercise and at the end of the time trial using the Borg 

category scale (Borg, 1982). On completion of the 40 min period, WR was decreased to 20 

W and the subject asked to maintain cadence for 1 min. After a further 4 min rest period, 

the subject was instructed to complete a 16.1 km (10 mile) self-paced time trial on a road- 

mounted cycle (King Cycle Indoor Trainer, Buckinghamshire, U. K. ). After exercise, nude 

body mass was measured and the difference before and after exercise was calculated and 

subsequently used to estimate sweat rate (change in body mass divided by the total 

exercise time) and sweat loss (total change in body mass), after correcting for respiratory 

water loss and substrate oxidation (Mitchell et al., 1972). The time trial completion time 

was recorded but withheld from the subject until all exercise tests had been completed. 
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Figure 2.1. Schematic representation of the experimental protocol (Chapters 3(a), 4(a) and 5). 

2.5 Blood treatment and analysis 

Blood was drawn into dry syringes and 6 ml dispensed into a tube containing K3EDTA and 

the remaining 4 ml dispensed into tubes without anticoagulant. Duplicate aliquots (400 µl) 

of whole blood from the K3EDTA tube was rapidly deproteinised in 800 µL of ice cold 0.3 

mol"L-1 perchloric acid, centrifuged and the supernatant used for the measurement of 

glucose and lactate using standard enzymatic methods with spectrophotometric detection 

(Mira Plus, ABX Diagnostics, Montpellier, France) (Maughan, 1982). A further aliquot of 

blood was centrifuged and the plasma obtained was separated and used for the 

measurement of Gly (Boobis & Maughan, 1983). The blood in tubes without anticoagulant 

was allowed to coagulate and then centrifuged; the serum collected was used for the 

measurement of osmolality by freezing point depression (Micro-osmometer 3300, Vitech 

Scientific, West Sussex, U. K. ) (Chapters 4 and 5). The blood from the K3EDTA tubes was 

also analysed for haemoglobin (Hb) (cyanmethaemoglobin method, Sigma, Chemical 

Company Ltd., Dorset, U. K. ) and packed cell volume (PCV) (conventional 

microhematocrit method). All blood analyses were carried out in duplicate with the 

exception of PCV, which was carried out in triplicate. Plasma volume changes during 

exercise were calculated from changes in Hb and PCV relative to initial resting values as 

described by Dill & Costill (1974). 
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2.6 Statistical analysis 

Data were expressed as the mean ± standard deviation (s. d. ) following a test for the 

normality of distribution. Statistical analysis was carried out using three factor mixed 

model ANOVA with repeated measures, followed by a simple main effects analysis for 

significant three way interactions (i. e. pre- vs. post-supplementation at each combination of 

time point and treatment) and simple main effects analysis for two way interactions 

(Chapters 3(a), 4(a) and 5). In addition, the magnitude of change (0) between experimental 

trials (PI/Pl, Pl/Gly, Cr/Pl and Cr/Gly) was examined using either a two-sample or a paired 

t-test when significance was identified using the simple main effects analysis. Pearson's 

product moment correlation coefficient (r) was used to assess the relationship between 

methods of T, measurement (Chapter 6). The limits of agreement (LOA) between Tc 

measurement methods were investigated by plotting the individual differences between 

methods against their respective means (Bland-Altman plots) (Bland & Altman, 1986). 

Heterocedasticity was examined by plotting the absolute (positive) differences against the 

individual means and calculating the correlation coefficient (Bland & Altman, 1986). If the 

heterocedasticity correlation was close to zero and the differences were normally 

distributed (Shapiro-Wilk test), the mean bias and 95% LOA were calculated as mean ± 

1.96 s. d. of the between method difference (Bland & Altman, 1986). Further analysis was 

carried out using a two factor ANOVA with repeated measures. In addition, the difference 

in Tc measurement at each time point was examined using paired-sample t-tests when 

significance was identified using the simple main effects analysis. Statistical power 

calculations (80% power) were carried out using the 0 TBW data obtained. Statistical 

significance was declared at P<_0.05. 

The intra-assay coefficient of variation (C. V. ) was calculated from the s. d. of the 

difference between double measurements of the sample expressed as a percentage of the 

total mean sample (Table 2.1). 
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Table 2.1 Coefficient of variation of blood and serum assays 

Assay Method n C. V. 

Blood glucose Maughan 1982 50 1.3 

Blood lactate Maughan 1982 50 2.3 

Blood glycerol Boobis & Maugan 1983 50 4.9 

Osmolality Freezing point depression 50 0.2 

Blood Hb Colorimetric method 50 0.4 

PCV Microhaematocrit method 50 0.7 
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Chapter 

(a) The effects of combined creatine and glycerol 

hyperhydration on metabolism, thermoregulation and 

exercise performance in the heat: Loading protocol 1. 
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3.1 Introduction 

The possible advantages of hyperhydration over euhydration during exercise in the heat 

have been extensively debated without clear consensus (Anderson et al., 2001; Kilduff et 

al., 2004; Latzka et al., 1998; Lyons et al., 1990; Montner et al., 1996; Murray et al., 1991). 

The rationale for hyperhydration stems from the traditionally accepted `cardiovascular 

model' of dehydration which contends that fluid loss during exercise reduces plasma 

volume and consequently stroke volume and increases heart rate ('cardiac drift') in order 

to maintain cardiac output (Ekelund, 1967). During strenuous exercise in the heat the 

increase in heart rate may at times be insufficient to compensate for the decrease in stroke 

volume and consequently maximal cardiac output is reduced (Gonzalez-Alonso et al., 
1995). A significant linear relationship has been reported between the reduction in skin 

blood flow and the level of dehydration (Montain & Coyle, 1992a). Therefore, according 

to the `cardiovascular model' of dehydration, a reduction in cutaneous blood flow can 

impede heat exchange and reduce the temperature regulating capacity of the body (Fortney 

et al., 1984). These physiological responses that occur in response to dehydration of over 

2% of body mass have also been associated with a reduction in exercise performance 

(Cheuvront et al., 2005). If the `cardiovascular model' holds true, then maintenance of 

blood volume and/or expansion of plasma volume should result in the preservation of 

cardiovascular and thermoregulatory function and the improvement of exercise 

performance in the heat, a matter of much research interest (Watt et al., 2000). One 

approach has been to maintain plasma volume during exercise in the heat by infusion of 

isotonic saline. Using this method, Fortney et al. (Fortney et al., 1988) found an attenuated 

rise in Tc during exercise in the heat that they attributed to a maintenance of central blood 

volume resulting in an increase in skin blood flow and associated convective heat loss. 

Several other studies using acute plasma volume expansion with either saline or dextran 

infusions reported an attenuation in the rise in heart rate and Tc e. g. (Deschamps et al., 

1989). However, the finding of similar forearm blood flow during hypervolemia in the 

study by Watt et al. (2000) led these authors to conclude that acute plasma volume 

expansion did not directly enhance thermoregulation. Other studies have also failed to 

show any effect of plasma volume expansion on heart rate, T, skin blood flow or indeed 

performance during exercise in the heat (Grant et al., 1997). 

Hyperhydration prior to exercise by ingestion of water or carbohydrate'electrolyte 

solutions is less effective than infusion methods at acutely expanding plasma volume as 

most `excess' fluid ingested is rapidly filtered and excreted by the kidneys (Freund et al.. 



48 

1995). On the other hand, hydrating agents such as Gly have been shown to effectively 

minimise the reduction in plasma volume that occurs during exercise in the heat (Murray et 
al., 1991). Seifert et al. (1995) reported a 701 ml increase in mean TBW after Gly' 
ingestion, including a 385 ml increase in interstitial fluid and a 225 ml increase in ICW 

with the remainder distributed within the plasma. Several studies have now concluded that 
Gly ingestion reduces Tc and heart rate during exercise in the heat (Anderson et al., 
2001; Lyons et al., 1990; Montner et al., 1996) and argue these effects are due to a 

preservation of blood volume and cutaneous blood flow (Lyons et al., 1990). However, not 

all studies have shown such effects of Gly on thermoregulation during exercise in the heat 

(Latzka et al., 1998; Murray et al., 1991). Methodological differences, including the 

amount of Gly and timing of ingestion prior to exercise, the exercise protocol, ambient 

conditions, methods used to assess hydration status and Tc are all likely to have contributed 

to the conflicting results. Ingestion of Cr has also been shown to have substantial hydrating 

effects (Kern et al., 2001; Kilduff et al., 2002), although the exact mechanisms remain 

uncertain. However, unlike the whole body hydrating effects of Gly, Cr retains fluid 

predominantly in the ICW compartments (Kilduff et al., 2002). Like Gly, oral Cr 

supplementation has been shown to be effective in attenuating the rise in heart rate and Tc 

during exercise in the heat (Kilduff et al., 2002). These effects have been attributed to an 

increase in ICW resulting in an increased specific heat capacity of the body (Kern et al., 

2001; Kilduff et al., 2002). Supplementation with hydrating agents such as Gly or Cr has 

consistently produced modest fluid retention of 400 to 800 ml (Kilduff et al., 

2002; Montner et al., 1996). However, it seems plausible that a Gly-induced increase in 

ECW coupled with a Cr-mediated increase in ICW could have additive effects resulting in 

a much larger increase in TBW than if either supplement was consumed alone. Therefore, 

the aim of this study was to assess the effects of this novel `water-loading' strategy on 

thermoregulation and performance during exercise in the heat. 

3.2 Methods 

3.2.1 Subjects 

Six endurance-trained males gave their written informed consent to take part in the present 

study that was approved by the local Ethics Committee and was performed according to 

the code of ethics of the World Medical Association (Declaration of Helsinki). The 

physical characteristics of the six subjects were: age 29 +5 years: height 180 ±6 cm; body 

' 
mass 79.2 ±13 kg; Vo, 

max 58 +8 ml-kg- min"'; WR,,, ýx 335 ý 32 W LT 221 + 26 `'x'. 
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3.2.2 Experimental design 

The study consisted of two supplementation regimens, each lasting 7 days and 

encompassing three cycle performance trials consisting of 40 min constant-load exercise at 
63% \VR, followed by a 16.1 km (10 mile) time trial. The methodology for the exercise 
trials is described in the general methods section of this thesis. Prior to the first of these 

experimental trials, familiarisation trials were completed until the variability of two 

consecutive trials was within 5%; no subject had to perform a third familiarisation trial to 

achieve less than 5% variability. Following this familiarisation period, subjects performed 

a pre-supplementation exercise performance trial on experimental day 1 (control) (Fig. 

3.1). The subjects were then randomly assigned into two groups (A and B). Subjects in 

group A received P1 supplementation in week 1 before crossing over and receiving Cr and 
Gly in the second week whereas subjects in group B supplemented in the opposite order 
(Fig. 3.1). However, due to the long wash out period associated with Cr supplementation 

(Vandenberghe et al., 1996), subjects receiving PI in the second week (n=2) were excluded 

from the analysis. Subjects in both groups performed an exercise trial post- 

supplementation during both supplementation regimens (on experimental days 8 and 15) 

(i. e. a total of 3 experimental exercise trials) (Fig. 3.1). The control trial was conducted at 

least 48 hours after each subject's final familiarisation trial. Each supplementation period 

started on the day after the first test and finished on the day of the second test. 

Cr/Gly supplementation consisted of 11.4 g of Cr"H2O (equivalent to 10 g Cr) and 70 g of 

glucose polymer made up in 1L of warm water and consumed twice daily for 6 days and a 

bolus of 1g Gly"kg-1 body mass diluted in 500 ml of water with 125 ml unsweetened 

diluting juice 2 hours prior to the start of the experimental trial. This Cr supplementation 

protocol has been shown to increase resting muscle phosphocreatine levels within 5 days 

(Harris et al., 1992). Each supplement was made fresh prior to consumption in order to 

prevent any degradation of Cr to creatinine. The P1 supplement consisted of 85 g of 

glucose polymer made up in 1L of warm water and consumed twice daily for 6 days and a 

bolus of 500 ml of water with 125 ml unsweetened diluting juice 2 hours prior to the 

assessment. All supplements had similar taste, texture and appearance and were placed in 

generic water bottles to ensure double blind administration. On each of the assessment 

days subjects ingested a further 500 ml of water 1 hour prior to the assessment in an 

attempt to ensure subjects were euhydrated (Convertino et al., 1996). 
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Figure 3.1 Schematic representation of the experimental design. 

3.3 Results 

3.3.1 Diet, Body mass and water compartments. 

There was no significant change in body mass from pre- to post-supplementation following 

the Pl supplementation regimen (P=0.29). Following Cr/Gly supplementation, body mass 

increased significantly from pre-supplementation (P<0.01), which was significantly greater 

than the rise in the P1 group (P=0.04) (Fig. 3.2). There were no significant changes in 

TBW, ECW or ICW following either P1 or Cr/Gly supplementation (Fig. 3.2). There were 

no significant differences in the daily diet between the two supplementation regimens (PI: 

13.6 ± 4.1 MJ"day 1,59 ± 14% carbohydrate, 26 ± 10% fat, 15 ± 7% protein; Cr/Gly: 13.0 

± 2.6 MJ"day 1,63 ± 8% carbohydrate 25 ± 7% fat, 12 ± 5% protein. 

3.3.2 Cardiopulmonary variables. 

There was a steady increase in V02 
, 

VC02 and VE throughout the constant-load exercise 

with no differences between pre- and post-supplementation in either supplementation 

regimen (Table 3.1). Respiratory exchange ratio (RER) did not change throughout the 

constant-load exercise period with no differences between pre- and post-supplementation 

in either supplementation regimen (Table 3.1). There was no difference in resting heart 

rate between any of the exercise trials (Fig. 3.3). During exercise, heart rate increased 

during all trials. There were no differences in heart rate during exercise between pre- 

supplementation and post-P1 supplementation (P=0.21) or Cr/Gly supplementation 

(P=O. 23) (Fig. 3.3). 
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3.3.3 Ratings of perceived exertion 

During exercise, RPE for both dyspnoea and leg fatigue increased during all trials (Fig. 

3.4). There were no differences in RPE for dyspnoea during exercise between pre- 

supplementation and post- Pl supplementation (P=0.42) or Cr/Gly supplementation 
(P=0.31) (Fig. 3.4). Similarly, there was no change in RPE for leg fatigue from pre- to 

post- P1 supplementation (P=0.12) or Cr/Gly supplementation (P=0.19). 

Table 3.1 Cardiopulmonary responses during constant-load exercise. 

Exercise time (mm) 

Regimen 10 20 30 40 

V02 (L-min- ) 

Control 3.03 ± 0.26 3.14 ± 0.21 3.23 ± 0.22 3.40 ± 0.31 

Pi 3.04 ± 0.26 3.10 ± 0.17 3.20 ± 0.16 3.29 ± 0.15 

Creatine/Glycerol 3.05 ± 0.22 3.20 ± 0.19 3.24 ± 0.14 3.30 ± 0.13 

VCO2 (L"min) 

Control 2.64 ± 0.20 2.74 ± 0.19 2.83 ± 0.18 2.96 ± 0.22 

P1 2.69 ± 0.15 2.77 ± 0.18 2.82 ± 0.22 2.85 ± 0.30 

Creative/Glycerol 2.66 ± 0.23 2.76 ± 0.23 2.78 ± 0.16 2.83 ± 0.19 

VE (L"min-1) 

Control 63.73 ± 9.14 69.70 ± 11.34 73.07 ± 10.58 78.15 ± 11.96 

Pi 62.83±8.64 68.49± 11.47 69.40±7.51 72.00±4.25 

Creatine/Glycerol 62.23 ± 5.31 65.01 ± 4.25 67.74 ± 4.99 71.73 ± 6.19 

RER 

Control 0.87 ± 0.06 0.87 ± 0.06 0.88 ± 0.05 0.87 ± 0.06 

Pi 0.89 ± 0.02 0.89 ± 0.03 0.87 ± 0.01 0.85 ± 0.02 

Creative/Glycerol 0.88 ± 0.02 0.86 ± 0.03 0.87 ± 0.03 0.86 ± 0.03 

Data presented as the mean ± s. d. 

3.3.4 Rectal and skin temperature responses 

There was no difference in resting Tie between the two groups or after supplementation 

(Fig. 3.5). Throughout the exercise period, Tie increased significantly during all trials (Fig. 

3.5). There were no differences in Tre during exercise between pre-supplementation and 

post-P1 supplementation (P=0.32) or Cri Gly supplementation (P=0.12) (Fig. 3.3). There 
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was a significant increase in mean Tsk from rest, with no significant differences following 

supplementation (Fig. 3.5). 

3.3.5 Sweat rates and total sweat loss during exercise 

There were no differences in sweat rate between trials (Control: 2.0 ± 0.2 L"hr"': P1: 1.7 ± 
0.6 L"hr-1; Cr/Gly: 2.1 ± 0.5 LUhr-', P=0.20). Furthermore, total sweat loss was not different 
between trials (Control: 2.1 + 0.3 L; P1: 1.8 ± 0.6 L; Cr/Gly: 2.1 ± 0.5 L, P=0.31). 

3.3.6 Blood metabolite concentrations and plasma volume changes 

Resting blood [glucose] and [lactate] were not different between experimental trials 
(P=0.56 and P=0.32 respectively) (Table 3.2). Briefly, blood [glucose] decreased 

significantly from rest to initiation of exercise before rising gradually throughout the 

constant-load exercise and peaking at the end of the time trial. There were no differences in 

blood [glucose] during exercise between experimental trials (P=0.26) (Table 3.2). The 

initial increase in blood [lactate] from rest to initiation of exercise was maintained until the 

end of the constant-load period. There was a further significant increase in blood [lactate] 

between the constant-load exercise and the end of the time trial. There were no differences 

in blood [lactate] during exercise between experimental trials (P=0.28) (Table 3.2). 

Resting plasma [Gly] was significantly higher post Cr/Gly supplementation compared to 

pre-supplementation (P<0.01) (Table 3.2). Plasma [Gly] remained significantly higher 

throughout exercise after Cr/Gly supplementation compared to the pre-supplementation 

trial. There was no difference in resting plasma [Gly] or during exercise between pre- and 

post-supplementation during the Pl supplementation regimen (P=0.69) (Table 3.2). Plasma 

volume was reduced by approximately 8% after 40 min of constant-load exercise and 13% 

after the 16.1 km time trial with no significant differences between experimental trials. 

Resting plasma volume changes following supplementation were also calculated using the 

control trial as a baseline, assuming no change in red cell mass during the 7 day 

supplementation regimen. Using this method of analysis, plasma volume was not 

significantly altered by either supplementation regimen, although there was a tendency 

(P=0.07) for plasma volume to be reduced (- 3%) after Cr/Gly supplementation. 

3.3.7 Time trial performance 

Time trial performance did not differ significantly between experimental trials (Control: 

22.40 + 1.1 min; P1: 22.33 + 0.92 min: Cr/Glv: 22.13 + 0.71 min). 



53 

3.3.8 Side effects 

In general, subjects tolerated the supplementation protocol well, with only one report of 

gastrointestinal distress and one report of muscle cramping (gastrocnemius) during the 

Cr/Gly supplementation week. Two subjects identified the supplementation they were 

receiving due to prior knowledge of the side effects while all other subjects were unsure of 

the treatment they received. 
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Figure 3.2 Changes in body mass (BM), total body water (TBW), intra-cellular water (ICW) and extra- 
cellular water (ECW) in the two groups. Data presented as the mean ± s. d. f: indicates a significant 
difference pre- vs. post-supplementation. *: indicates a significant greater change (A) in the Cr/Gly 
supplementation regimen compared to the PI supplementation regimen. 
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3.4 Discussion 

This study has demonstrated that supplementation with a combination of a Cr and Gly 

resulted in a significant increase in body mass (Fig. 3.2). Despite this, neither Pl nor 
Cr/Gly supplementation resulted in any change in TBW, ECW, ICW (Fig. 3.2), perception 

of effort (Fig. 3.4), cardiovascular (Fig. 3.3) or thermoregulatory (Fig. 3.5) responses 
during exercise in the heat. Furthermore, neither supplementation protocol had any effect 

on exercise performance. 

The mean body mass increase of 1.59 kg induced by combined Cr and Gly 

supplementation in the present study is among the highest reported in the literature to date 

(Anderson et al., 2001; Kilduff et al., 2002; 2004; Kreider et al., 1998; Lyons et al., 
1990; Montner et al., 1996; Ziegenfuss et al., 1998). However, it is puzzling as to why 

Cr/Gly supplementation resulted in a significant increase in body mass without the 

expected concomitant increase in TBW as consistently observed in previous studies with 

either Cr or Gly supplementation (Kern et al., 2001; Kilduff et al., 2002; 2004; Lyons et al., 

1990; Montner et al., 1996). A statistical power calculation using the mean change in TBW 

from pre- to post-Cr/Gly supplementation (0.32 L) revealed that 77 subjects would be 

required to identify a significant difference in TBW at 80% power (with 6 subjects a 

significant increase in TBW would only be observed if the mean increase in TBW 

exceeded 1.1 L). Therefore despite the small increase in TBW, the number of subjects 

utilised in the present study may be too low to find any significant change in body water 

parameters following hyperhydration. However, the increase in TBW observed in the 

present study is considerably lower than that reported in other hyperhydration studies (e. g. 

Freund et al., 1995; Kern et al., 2001; Kilduff et al., 2004; Lyons et al., 1990) and therefore 

there must some other explanation for the observed lack of significant TBW increase. 

Considering the homogenous diet ingested during the two supplementation periods it is 

unlikely that the increase in body mass observed in the present study could be attributed to 

an increase in fat mass. In several previous studies conducted in this laboratory (Kilduff et 

al., 2002; 2003; 2004), Cr induced body mass gains were attributed to TBW increases. For 

example Kilduff et al. (2004) observed a 0.8 kg increase in body mass following Cr 

supplementation was primarily accounted for by a 0.6 L increase in TBW. Similar findings 

have been observed in other Cr supplementation studies where an increase in body mass 

has been attributed to increases in TBW and in particular ICW compartments (Kreider et 

al., 1998, Ziegenfuss et al., 1998). Of note, it has been suggested that an increase in body 

mass of > 0.2 kg identifies a `responder' to a Cr supplementation loading programme 
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(Kilduff et al., 2003). The range of body mass increase after Cr/Gly supplementation in the 
present study was 1.00-1.98 kg suggesting that all 6 subjects were Cr responders. On the 
other hand, Gly supplementation has been previously shown to increase both ICW and 
ECW after ingestion owing to the free distribution of Gly in all body water compartments 
with the exception of cerebral spinal fluid and aqueous humor (Freund et al., 1995; Lin, 
1977; Seifert et al., 1995; Tourtellotte et al., 1972). The average peak [Gly] in the present 
study after Cr/Gly supplementation was 11.04 mmol"L-1 (range 9.89-12.92 mmol"L-1) 
(Table 3.2), which is similar to the peak concentration reported by Montner et al. (1996) 
(11.4 mmol"L-1) and Freund et al. (1995) (13.0 mmol"L-1) but higher than the concentration 

reported by Murray et al. (1991) (2.8 mmol"L"1). Differences in the size of the Gly dose 

and time between ingestion and measurement are likely to account for the noted 
differences in [Gly]. Despite the increase in plasma [Gly] observed in the current study, 
there was no change in plasma volume from pre- to post-supplementation after either P1 or 
Cr/Gly supplementation and no differences in the exercise induced percentage reduction in 

plasma volume (Fig. 3.6). The results from the present study clearly indicate that combined 
Cr and Gly supplementation resulted in a significant increase in water retention that was 

not measured by bioimpedance analysis. Whether this was due to a limitation in the ability 

of multifrequency bioimpedance to accurately measure acute changes in TBW or whether 

the Gly administered prior to exercise had in some way negated any positive increases in 

TBW gained from Cr supplementation remains uncertain. However, based on the evidence 

of the present study it is hypothesised that when Gly and Cr are consumed in unison there 

is some unknown negative interaction on the immediate fluid retaining abilities of both 

hyperhydrating agents. Clearly, further research is required to investigate the mechanism 

behind this conflict and whether a supplementation protocol can be designed such that this 

negative interaction is bypassed. 

Combined Cr and Gly supplementation in the present study was unsuccessful in 

attenuating the rise in perceived exertion and metabolic, cardiovascular and 

thermoregulatory responses during constant-load exercise in the heat (Figs. 3.3,3.4,3.5) 

(Table 3.2). Previous studies examining the effects of either Gly or Cr supplementation on 

cardiovascular and thermoregulatory responses during exercise in the heat have been 

equivocal, with some showing a reduction in heart rate (Anderson et al., 2001; Kllduff et 

al., 2004, Montner et al., 1996) and T, (Anderson et al., 2001; Kern et al., 2001: Kilduff et 

al., 2004; Lyons et al., 1990; Seifert et al., 1995) and others finding no such effect (Latzka 

et al., 1998; Murray et al., 1991). It is well established that dehydration results in an 

increased heart rate Tc during exercise (Montain & Coyle, 1992b) and thus the beneficial 

effects of hyperhydration are perpetrated by preservation of blood volume resulting in 
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maintenance of stroke volume and skin blood flow. However, the fact that Cr. 'Gly 

supplementation did not result in any significant increase in TBW means there was no 
mechanism to significantly alter the physiological responses to exercise in the conditions 
of the present study. Similarly, in a series of studies carried out by Latzka and colleagues 
no differences were observed in the increase in TBW following either Gly or water 
ingestion and consequently T, Tsk, sweat rate, cardiac output, blood pressure and heart rate 
were not different during constant-load exercise in 35°C, 45% relative humidity (Latzka et 
al., 1997; 1998). These findings led the authors to conclude that hyperhydration provides 
no meaningful physiological advantage over euhydration. 

Time trial performance in the present study was not affected by supplementation with 

either P1 or combined Cr and Gly. Several studies have indicated that the increased heart 

rate and T,, resulting from dehydration can have a negative impact on exercise performance 
(Below et al., 1995; Cheuvront et al., 2003; Cheuvront et al., 2005; Fallowfield et al., 
1996; McConell et al., 1997; Walsh et al., 1994). For example, Cheuvront et al. (2005) 

determined that hypohydration was associated with an increased T,, and heart rate and a 

significant reduction in work performed during a 30 min cycling time trial, even in a 

temperate (20°C) environment. Therefore, if dehydration could be minimised then there 

would potentially be less of an associated reduction in exercise performance. As such, 

several studies have concluded that hyperhydration is associated with a significant 

improvement in exercise performance in the heat (Anderson et al., 2001; Hitchins et al., 

1999; Kilduff et al., 2004; Montner et al., 1996). Subjects in the studies by Kilduff et al. 

(2004) and Montner et al. (1996) were required to cycle submaximally until exhaustion, 

whereas the studies by Hitchins et al. (1999) and Anderson et al. (2001) utilised a self 

paced time trial for 30 and 15 min respectively, to quantify performance. The findings of 

Hitchins et al. (1999) seem particularly surprising given that cardiovascular and 

thermoregulatory responses during exercise were not different between Gly and water 

ingestion trials, meaning the authors could provide no explanation for the observed 

ergogenic effect of Gly. Conversely, other studies find no effect of hyperhydration on 

exercise performance when compared to euhydration (Latzka et al., 1998-, Marino et al.. 

2003). For example, Marino et al. (2003) found Gly hyperhydration had no effect on a 60 

min cycling time trial in hot and humid conditions compared to pre-exercise water 

ingestion. Latzka et al. (1998) produced similar findings when subjects were asked to 

complete treadmill exercise at 551,, o /O, max until exhaustion. However, these authors also 

reported that after either Gly or water ingestion. exercise time to exhaustion «as 

significantly greater than if no water had been consumed prior to exercise. Therefore. it 
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would appear that commencing exercise in a hyperhydrated state may not confer any 

significant advantage in terms of exercise performance compared to euhydration or indeed 

modest dehydration (i. e. loss of 2-3% body mass). The results from the present study are 

compatible with such an idea although further research using a successful Cr/Gly 

hyperhydration strategy is required before any convincing conclusions can be mains. 

3.4.1 Conclusions 

This study has demonstrated that although supplementation with a combination of a Cr and 

Gly resulted in a significant increase in body mass there was no change in TBW, ICW, 

ECW or RPE, heart rate and Tc during exercise in the heat compared to pre- 

supplementation. Given that previous Cr supplementation studies performed in this 

laboratory have consistently resulted in significant increases in TBW it can be 

hypothesised that the Gly administered prior to exercise had in some way negated the Cr 

induced increase in TBW. Further research is required to develop a Cr/Gly 

supplementation protocol that results in significant increases in TBW and to examine the 

consequent effects on cardiovascular and thermoregulatory responses and performance 

during exercise in the heat. 
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(b) The effects of a novel combined creatine and glycerol 

fluid loading strategy on fluid retention and distribution. 
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3.5 Introduction 

The associated deleterious effects of dehydration on the thermoregulatory and 
cardiovascular systems and exercise performance in the heat have resulted in some athletes 
attempting to fluid-load prior to exercise to offset the development of dehydration. Fluid- 
loading with water or carbohydrate/electrolyte solutions is not effective as most `excess' 
fluid ingested is rapidly filtered and excreted by the kidneys (Freund et al., 1995), so 
hyperhydrating agents such as Cr or Gly which actively retain fluid, must also be ingested. 

Oral Cr supplementation has been consistently shown to result in significant increases in 

TBW, primarily in the ICW compartments (Kilduff et al., 2002; Kilduff et al., 
2004; Ziegenfuss et al., 1998) whereas Gly ingestion also retains water, with the fluid 

dispersed equally between ICW and ECW compartments (Lin, 1977; Seifert et al., 1995). 

Given the potential of both Cr and Gly to retain fluid it seems plausible that a Gly-induced 

increase in ECW coupled with a Cr-mediated increase in ICW could have additive effects 

resulting in a much larger increase in TBW than if either supplement was consumed alone. 

However, when Cr and Gly were ingested simultaneously, subjects experienced a 

significant increase in body mass, with no significant change in TBW (Chapter 3 (a)). It 

was concluded that although combined Cr/Gly supplementation resulted in significant fluid 

retention, the fluid was not dispersed in body compartments, perhaps due to some 

unknown negative interaction on the immediate fluid retaining abilities of both 

hyperhydrating agents. While the vast majority of Gly supplementation studies and that 

described in Chapter 3 (a) utilised a single Gly bolus delivered 2-3 hour prior to exercise, 

Koenigsberg et al. (1995) have suggested that Gly hyperhydration may be most effective if 

consumed continually over several days. Indeed, these authors have demonstrated that Gly 

hyperhydration can be sustained for at least 49 hours when consumed continually 

(Koenigsberg et al., 1995). Therefore, it is suggested that ingesting both Cr and Gly over 

several days may be the most effective method of fluid loading as there will be sufficient 

time for the retained fluid to be dispersed within body compartments. Thus, the aim of this 

study is to examine the effects of a novel method of Cr and Gly supplementation on fluid 

retention and distribution in healthy volunteers. 



65 

3.6 Methods 

3.6.1 Subjects 

2 healthy males gave their written informed consent to take part in the present study that 
was approved by the local Ethics Committee and was performed according to the code of 
ethics of the World Medical Association (Declaration of Helsinki). The physical 
characteristics of the two subjects were, subject 1: age 37 years; height 176 cm: body mass 
71.5 kg, subject 2: age 21 years; height 171 cm; body mass 64.2 kg. 

3.6.2 Experimental design 

The study consisted of one Cr/Gly supplementation regimen lasting for 7 days during 

which physiological measurements were collected daily. The supplementation period 

started immediately after the first experimental trial (day 1) and finished on the day prior to 

the final trial (day 7). Cr/Gly supplementation consisted of 11.4 g of Cr"H2O (equivalent to 

10 g Cr), 1g Gly"kg-1 body mass and 70 g of glucose polymer made up in 1L of warm 

water and consumed twice daily for 6 days. This Cr supplementation protocol has been 

shown to increase resting muscle phosphocreatine levels within 5 days (Harris et al., 

1992). Each supplement was made fresh prior to consumption in order to prevent any 

degradation of Cr to creatinine. At 9 am on each day the subjects reported to the laboratory 

having refrained from food or water in the previous 8 hours and alcohol and strenuous 

exercise in the previous 24 hours. Subjects were asked to void before nude body mass was 

recorded and body water compartments estimated using a Bodystat Multiscan 5000 

Bioimpedance analyser (Bodystat Ltd, Isle of Man) (sample A). This method allows TBW 

and ECW to be estimated; from these measurements ICW can also be deduced. The 

bioimpedance measurements were taken while the subjects lay comfortably in a supine 

position for 10 min on a non-conductive surface with their arms and legs slightly abducted. 

The subject's right hand and forearm were immersed in water at 42-44°C for 15 min in 

order to allow for arterialisation of the venous blood (Forster et al., 1972). Following this, 

a 21G cannula was introduced into a superficial vein on the dorsal surface of the heated 

hand and a baseline blood sample (10 ml) drawn. The line was kept patent with a 10 ml 

flush of isotonic saline after each blood sample was taken. Immediately after the first blood 

sample the subject was asked to consume the first litre of Cr/Gly solution. 1 hour and 30 

min (when blood Gly concentration is expected to peak following ingestion) after the 

solution was finished a further 10 ml blood sample was collected and TB\V again 
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estimated by bioimpedance (sample B). The subject was allowed to rest for 2 hours before 
ingesting the second solution. Again a final 10 ml blood sample was taken 1 hour and 30 
min after the solution had been finished and both body mass and TBW measured (sample 
C). Subjects were asked to refrain from eating or drinking anything during the hours of the 
experiment each day with the exception of the Cr/Gly solution and from drinking alcohol 
at any point during the seven days. Blood samples were analysed for [glucose], [Gly], [Hb] 
and PCV as described in Chapter 2. 

3.7 Results 

3.7.1 Body mass and water compartments. 

There was a progressive rise in body mass from day 1 (baseline) to day 7 in both subjects 
following Cr/Gly supplementation (Figs. 3.7,3.8,3.9). There were also progressive 
increases in TBW, ECW and ICW in both subjects during the supplementation regimen 
(Figs. 3.7,3.8,3.9). On each individual experimental day, body mass increased between 

sample A to sample B and was maintained to sample C before decreasing again to sample 
A on the next experimental day (Figs. 3.7,3.8). Both TBW and ICW increased 

progressively between samples A to C on the majority of experimental days before 

decreasing to sample A on the next day (Figs. 3.7,3.8). There was a small reduction in 

ECW between samples A to B before an increase in ECW was observed by sample C 

(Figs. 3.7,3.8). 

3.7.2 Blood metabolite concentrations and plasma volume changes 

Plasma volume changes were calculated using sample A on day 1 as a baseline, assuming 

no change in red cell mass during the 7 day supplementation regimen. Using this method 

of analysis, plasma volume increased by approximately 1% following 7 days of Cr/Gly 

supplementation (Fig. 3.10). On each individual experimental day, there was a small 

percentage reduction in plasma volume between samples A to B before a small increase 

between samples B and C and a larger increase to sample A on the next experimental day 

(Fig. 3.10). Following 7 days of Cr/Gly supplementation there was a small increase in 

blood [Gly] from 0.06 to 1.23 mmol"L-1 (Fig. 3.10). Blood [Gly] increased to a large extent 

between samples A and B on each experimental day with a further increase observed by 

sample C. Blood [Gly] decreased significantly from sample C to sample A on the next 
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experimental day (Fig. 3.10). Blood [glucose] was not different between day 1 and day 7 of 
the experimental trial and remained relatively stable throughout each experimental day. 
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3.8 Discussion 

This study is the first to demonstrate that ingestion of a combination of Cr and Gly utilising 

a novel supplementation protocol results in a significant increase in body mass, TBW, 

ECW and ICW (Fig. 3.9). Based on these findings it is rational to assume that 

supplementation with combined Cr and Gly will delay the onset of dehydration during 

exercise in the heat resulting in a reduced Tc and heart rate and improved exercise 

performance. 

In the present study supplementation with combined Cr and Gly for 7 days resulted in a 

mean body mass increase of approximately 1.0 kg (Fig. 3.9), which is among the highest 

reported in the literature to date (Anderson et al., 2001; Kilduff et al., 2002; 2004; Kreider et 

al., 1998; Lyons et al., 1990; Montner et al., 1996; Ziegenfuss et al., 1998) but significantly 

less than the 1.59 kg increase in body mass observed after Cr/Gly supplementation in 

Chapter 3 (a). However, subjects in the present study had a significantly lower mean body 

mass (67.9 kg) than those in Chapter 3 (a) (79.2 kg) which may have contributed to a 

smaller increase in body mass, as TBW is primarily dependent on body size. Alternatively, 

the pharmokinetics of Gly metabolism following oral Gly ingestion may also explain the 

different increases in body mass observed in Chapter 3 (a) and (b). When exogenous Gly is 

ingested, appearance of Gly in the blood is relatively rapid with a distribution half life of 

just 23 min. (Sommer et al., 1993). In the present study, plasma [Gly] increased from 0.06 

mmol"L-1 to 14.96 mmol"L-1 on day 1 of the study, 1 hour and 30 min after ingestion of the 

Cr/Gly solution. Just as Gly appears quickly in the blood, the high activity of [Gly] kinase 

in the liver and kidney leads to rapid removal of [Gly] from the circulation and subsequent 

urinary excretion (Sommer et al., 1993). Indeed plasma [Gly] in the present study 

decreased to approximately 1.0 mmol"L-1 by the first blood sample of each experimental 

day (sample A) from approximately 16 mmol"L-1 at sample C on the previous day. 

Therefore, given the significant reduction in blood [Gly] it is likely that some of the water 

retained by the osmotic action of Gly will be excreted and thus causing a reduction in body 

mass. Despite this, Cr/Gly supplementation resulted in a significant increase in TBW with 

the retained fluid dispersed equally between ICW and ECW compartments (Fig. 3.9). 

Therefore, it is suggested that ingesting both Cr and Gly over several days is the most 

effective method of fluid loading as there is sufficient time for the retained fluid to be 

dispersed within body compartments. Given that Cr supplementation has been consistently 

shown to increase ICW (Kilduff et al.. 2002.2004; Ziegenfuss et al., 1998) whereas Glv 

retains fluid in all body compartments with the exception of the cerebral spinal fluid and 
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aqueous humor (Freund et al., 1995; Lin, 1977; Seifert et al., 1995; Tourtellotte et al., 1972) 
it is reasonable to assume that the observed increases in ICW and ECW were mediated by 
Cr and Gly respectively. Although some of the fluid retained by Gly is likely to have been 

excreted by the time the final TBW measurement was recorded on day 7, the fact that 
ECW remains elevated suggests that some remains. Dill (1938) reported that 12 to 18 
hours were required before subjects returned to euhydration following a period of 
dehydration and subsequent rehydration, and thus it is unsurprising that the large volume 

of water retained by Gly distributed throughout all body tissues should take over 15 hours 

to be lost (Koenigsberg et al., 1995). However, it is tempting to suggest that had the final 

body water measurement been taken closer to the ingestion of the final supplement, the 
Cr/Gly induced increase in TBW and therefore body mass would have been greater. 

It has previously been established that heart rate and T, during exercise in the heat rise 

proportionally to the level of dehydration (Montain & Coyle, 1992a; 1992b) and that 

dehydration above 2% body mass results in a significant impairment in exercise 

performance (Cheuvront et al., 2003; Fallowfield et al., 1996; McConell et al., 1997). 

Therefore, it is reasonable to assume that a 0.9 L increase in TBW such as that induced by 

Cr/Gly supplementation in the present study would be enough to offset dehydration and 

limit the increases in heart rate and Tc induced by exercise heat stress and prevent a decline 

in exercise performance. Indeed, several previous studies have concluded that 

hyperhydration is associated with a reduction in Tc and heart rate and a significant 

improvement in performance during exercise in the heat (Anderson et al., 2001; Hitchins et 

al., 1999; Kilduff et al., 2004; Montner et al., 1996). Nevertheless, when the effects of 

Cr/Gly supplementation on thermoregulatory and cardiovascular responses and exercise 

performance were examined in a previous investigation (Chapter 3 (a)) no ergogenic effect 

was found. However, in contrast to the current study there were no reported increases in 

TBW after Cr/Gly supplementation in this previous investigation so the lack of a 

difference in physiological responses compared to euhydration is unsurprising. 

3.8.1 Conclusions 

This study has demonstrated that supplementation with a combination of Cr and Gly, using 

a novel loading protocol, resulted in a significant increase in body mass TBW, ICW and 

ECW compared to pre-supplementation. Therefore, ingesting both Cr and Gly over several 

days may be the most effective method of fluid loading as there will be sufficient time for 

the retained fluid to be dispersed within body compartments. Further research is required to 
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examine the effects of Cr/Gly hyperhydration on cardiovascular and thermoregulatory 

responses and performance during and exercise in the heat. 
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Chapter 4 

(a) The effects of combined creatine and glycerol 

hyperhydration on metabolism, thermoregulation and 

exercise performance in the heat - Loading protocol 2. 
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4.1 Introduction 

The possibility that combined Cr/Gly supplementation may result in significant water 
retention and consequently reduce T, and heart rate and improve performance during 

exercise in the heat has been previously examined and shown to be unsuccessful (Chapter 

3 (a)). However, it appears as though the observed negative interaction on fluid retention of 
both hyperhydrating agents that occurs using previously established supplementation 

protocols can be effectively counteracted by ingesting both Cr and Gly over several days 

allowing sufficient time for the retained fluid to be dispersed within body compartments 
(Chapter 3 (b)). Intuitively, this increased fluid would maintain plasma volume resulting in 

a reduction in heart rate during exercise induced heat stress. As a direct result, skin blood 

flow would be maintained allowing sufficient continuation of convective heat loss. 

Additionally, there would be sufficient body water to maintain adequate sweat production 

and optimum evaporative cooling, which overall would enhance thermoregulatory 

function. Furthermore, it is possible that the Cr-induced increase in ICW may result in an 
increase in the specific heat capacity of the body, resulting in a greater capacity to store 
heat (Kilduff et al., 2004). Thus, it is proposed that the predicted reduction in heart rate 

and T, induced by Cr/Gly hyperhydration could ultimately improve exercise performance, 

especially in the heat (Convertino et al., 1996). It seems plausible that a Gly-induced 

increase in ECW coupled with a Cr-mediated increase in ICW could have synergistic 

effects resulting in a much larger increase in TBW than if either supplement was consumed 

alone. Therefore, the primary aim of this study was to examine whether combining Cr and 

Gly can induce a greater hyperhydration than either Cr or Gly alone. If successful, a 

secondary aim of this study was to assess the effects of this novel `water-loading' strategy 

on thermoregulation and performance during exercise in the heat. 

4.2 Methods 

4.2.1 Subjects 

Six endurance-trained males (Table 4.1) gave their written informed consent to take part in 

the present study that was approved by the local Ethics Committee and was performed 

according to the code of ethics of the World Medical Association (Declaration of 

Helsinki). 
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Table 4.1. The physical characteristics, maximal oxygen uptake, lactate 
threshold and maximal work rate of the two groups of subjects. Data presented 
as the mean ± s. d. 

P1 Group Cr Group 

(n=3) (n=3) 

Age (yr) 23 ±5 25 ±9 

Height (cm) 171 ± 14 174 f9 

Weight (kg) 72.7 ± 12 74.1 ± 12 

VO 
2 max (L"mml) 4.2±0.1 4.3±0.4 

LT(W) 231± 17 243±20 

WRmax (W) 355 ± 10 382 ± 24 

4.2.2 Experimental design 

The experimental design by necessity is complicated and best understood by reference to 

Fig. 4.1. The study consisted of two supplementation regimens, each lasting 7 days and 

encompassing two cycle performance trials consisting of 40 min constant-load exercise at 

63% WRmax followed by a 16.1 km (10 mile) time trial. The methodology for the exercise 

trials is described Chapter 2 of this thesis. Prior to the first of these experimental trials, 

familiarisation trials were completed until the variability of two consecutive trials was 

within 5%; no subject had to perform a third familiarisation trial to achieve less than 5% 

variability. Following this familiarisation period, subjects were matched for body mass and 

were randomised in a double blind fashion to either a Cr or a Pl group. Subjects were 

separated into two groups due to the long wash-out period associated with oral Cr 

supplementation (Vandenberghe et al., 1996). Subjects in both groups performed an 

exercise trial pre- and post-supplementation during both supplementation regimens (i. e. a 

total of 4 experimental exercise trials) (see Fig. 4.1). The first test was conducted at least 

48 hours after each subject's final familiarisation trial. Each supplementation period started 

on the day after the first test and finished on the day of the second test. 

Cr supplementation consisted of 11.4 g of Cr"H2O (equivalent to 10 g Cr) and 70 g of 

glucose polymer made up in IL of warm water and consumed twice daily for 6 da,.,, Is and 

once more on the day of the experimental exercise trial. This protocol has been shown to 
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increase resting muscle phosphocreatine levels within 5 days (Harris et al., 1992). Each 

supplement was made fresh prior to consumption in order to prevent any degradation of Cr 
to creatinine. The Pl supplement consisted of 85 g of glucose polymer made up in 1L of 
warm water and consumed twice daily for 6 days and once more on the day of the 

experimental exercise trial. During the two supplementation regimens, subjects in both 

groups also received either 1g Gly"kg-1 body mass or an equivalent amount of Pl (i. e. 
sucrose) diluted in each 1L supplement. Therefore, four possible combinations of 
supplements were administered: Pl group: Pl/Pl and Pl/Gly; Cr Group: Cr/Pl and Cr/Gly. 

For the two post-supplementation trials, subjects began consuming the final supplement 3 
hours prior to the exercise performance trial. All supplements had similar taste, texture and 

appearance and were placed in generic water bottles to ensure double blind administration. 
On each of the experimental test days, subjects ingested 500 ml of water 2 hours prior to 

exercise and a further 500 ml of water 1 hour prior to exercise in an attempt to ensure 

subjects were euhydrated prior to all exercise trials (Convertino et al., 1996). 

0 Exercise performance trial at 30°C 

Weekl Week 2 Week 3 

GLYCEROL / PLACEBO 
SUPPLEMENTATION 

NORMAL DIET 
NO SUPPLEMENTATION 

PLACEBO/GLYCEROL 
SUPPLEMENTATION 

Creatine group (n = 3) 

Placebo group (n = 3) 

Figure 4.1 Schematic representation of the experimental design. 
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4.3 Results 

4.3.1 Diet, body mass and water compartments. 

The physical characteristics of the Pl and Cr groups were similar before supplementation 
(Table 4.1). In the Pl group, body mass increased significantly following Gly 

supplementation (P<O. 01), with no change following Pl (P=0.14) (0 body mass was greater 
following Gly supplementation; Fig. 4.2). In the Cr group, body mass increased 

significantly during both the P1 (P<0.01) and Gly (P<0.01) regimens (Fig. 4.2) with no 
difference in 0 body mass between regimens. TBW, ICW and ECW did not differ 

significantly pre- to post-supplementation in either the PI or Cr groups in either 

supplementation regimen (Fig. 4.2). There were no significant differences in the daily diet 

between the two groups or between Pl and Gly regimens (P1/Pl: 11.2 ± 3.6 MJ"day-1,65 ± 

9% carbohydrate, 23 ± 4% fat, 12 ± 4% protein; P1/Gly: 11.6 ± 3.2 MJ"day 1,66 ± 5% 

carbohydrate 22 ± 5% fat, 12 ± 4% protein; Cr/Pl: 12.2 ± 3.8 MJ-day 1,67 ± 4% 

carbohydrate, 20 ± 6% fat, 13 ± 2% protein, Cr/Gly: 12.4 ± 3.1 MJ"day-1,67 ± 5% 

carbohydrate, 21 ± 8% fat, 12 ± 6% protein). 

4.3.2 Cardiopulmonary variables. 

There was a steady increase in V02 (Table 4.2), VCO2 and VE (data not presented) 

throughout the constant-load exercise with no difference between groups before or as a 

result of supplementation. There was a steady decline in RER throughout the constant-load 

exercise period with no differences between groups before or as a result of 

supplementation (data not presented). There was no difference in resting heart rate between 

the two groups or after supplementation (Fig. 4.3). During exercise, heart rate increased 

during all trials. There were no differences in heart rate during exercise between pre- and 

post-supplementation in any of the supplementation regimens (Fig. 4.3). 
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4.3.3 Ratings of perceived exertion 

There was a progressive increase in RPE both for dyspnoea and perceived leg fatigue 
during exercise reaching near maximum ratings at the end of the time trial (Fig. 4.4). There 

were no differences in RPE either for dyspnoea or perceived leg fatigue during exercise 
between pre- and post-supplementation in any of the supplementation regimens (Fig. 4.4) 

4.3.4 Rectal and skin temperature responses 

There was no difference in resting Tre between the two groups or after supplementation 
(Fig. 4.5). Throughout the exercise period, Tre increased significantly during all trials (Fig. 

4.5). There were no differences in Tre during exercise between pre-supplementation and 

post supplementation in any of the supplementation regimens (Fig. 4.5). There was a 

significant increase in mean Tsk from rest, with no significant differences following 

supplementation in any supplementation regimen (Fig. 4.5). 

4.3.5 Sweat rates and total sweat loss during exercise 

There were no changes in sweat rate from pre- to post supplementation in either the P1 

group (P1/P1: pre 1.3 ± 0.6 L"hr-1 vs. post 1.2 ± 0.3 L"hr-1; P=0.18, Pl/Gly: pre 1.2 ± 0.3 

L"hr-1 vs. post 1.4 ± 0.5 L"hr 1; P=0.09) or the Cr group (Cr/Pl: pre 1.4 ± 0.2 L"hr-1 vs. post 

1.4 ± 0.2 L"hr-1; P=0.29, Cr/Gly: pre 1.4 ± 0.2 L"hr-1 vs. post 1.5 ± 0.1 L"hr-1; P=0.11). 

Furthermore, total sweat loss was no different pre- compared to post-supplementation in 

either the PI group (P1/Pl: pre 1.4 ± 0.6 L vs. post 1.4 ± 0.3 L; P=0.24, Pl/Gly: pre 1.4 ± 0.3 

L vs. post 1.6 ± 0.5 L; P=0.10) or the Cr group (PI/P1: pre 1.5 ± 0.2 L vs. post 1.6 ± 0.2 L; 

P=0.12, Cr/Gly: pre 1.4 ± 0.2 L vs. post 1.6 ± 0.1 L; P=0.08). 

4.3.6 Blood metabolite concentrations and plasma volume changes 

Resting blood [glucose] and [lactate] were not different between groups or following Gly 

supplementation (Table 4.3,4.4). Briefly, blood [glucose] decreased significantly from rest 

to initiation of exercise before rising gradually throughout the constant-load exercise and 

peaking at the end of the time trial (Table 4.3). Blood [glucose] during exercise was not 

different between groups or following Gly supplementation (Table 4.3). The initial 

increase in blood [lactate] from rest to initiation of exercise was maintained until the end of 

the constant-load period (Table 4.4). There was a further significant increase in blood 

[lactate] between the constant-load exercise and the end of the time trial (Table 4.4). There 
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were no differences in blood [lactate] during exercise between groups or following Gly 

supplementation (Table 4.4). Resting plasma [Gly] was significantly higher post Gl}' 

supplementation compared to pre-supplementation in both the P1 (P<0.01) and Cr (P<0.01) 

groups (Table 4.5). Plasma [Gly] remained significantly higher throughout exercise after 
Gly supplementation compared to the pre-supplementation trial in both the Cr and the Pl 

group. There was no difference in resting plasma [Gly] or during exercise between pre- 

and post-supplementation during the Pl supplementation regimen in either the Pl or the Cr 

group (Table 4.5). Plasma volume was reduced by approximately 8% after 40 min of 

constant-load exercise and 12% after the 16.1 km time trial with no significant differences 

between groups or following supplementation (Fig. 4.6). Resting plasma volume changes 

following supplementation were also calculated using the control trial as a baseline, 

assuming no change in red cell mass during the 7 day supplementation regimen. Using this 

method of analysis, plasma volume was not significantly altered following either P1/Pl or 

Cr/Pl supplementation, whereas both P1/Gly and Cr/Gly supplementation resulted in a 

small (2-3%) non-significant reduction in plasma volume (P=0.11 and P=0.09 

respectively). 

4.3.7 Osmolality. 

Resting serum osmolality was significantly higher post Gly supplementation compared to 

pre-supplementation in both the P1 (P<0.01) and the Cr (P<0.01) groups (Table 4.6). Serum 

osmolality remained significantly higher throughout exercise after Gly supplementation 

compared to the pre-supplementation trial in both the Cr and the P1 group. There were no 

other differences in serum osmolality (Table 4.6). 

4.3.8 Time trial performance 

Time trial performance was not significantly different between the groups prior to 

supplementation (P=0.22). Time trial performance did not significantly differ pre- to post- 

supplementation in either the Pl group (Pl regimen, pre vs. post: 24.7 ± 2.0 min vs. 24.8 ± 

2.2 min; Gly regimen, pre vs. post: 25.1 ± 1.9 min vs. 24.8 ± 2.4 min) or Cr group (Pl 

regimen, pre vs. post: 24.3 ± 1.8 min vs. 24.5 ± 1.8 min; Gly regimen, pre vs. post: 24.3 ± 

2.2 min vs. 24.3 ± 2.3 min) in either supplementation week. 
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4.3.8 Side effects 

In general, subjects tolerated the supplementation protocol well although there was one 
isolated incident of headache in a subject supplementing with Cr/Gly. However. symptoms 

soon disappeared and no further complaints were reported. One subject from the Cr group 

correctly identified the subject group and 3 subjects correctly identified the Glv 

supplementation regimen, while all other subjects were unsure of the treatment they 

received. 
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Figure 4.2 Changes in body mass (BM), total body water (TBW), intra-cellular water (ICW) and extra- cellular water (ECW) in the two groups. Data presented as the mean ± s. d. t: indicates a significant difference pre- vs. post-supplementation. 
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4.4 Discussion 

This study has demonstrated that supplementation with Cr, Gly and a combination of a Cr 

and Gly resulted in a significant increase in body mass (Fig. 4.2). Yet despite ingesting 
both Cr and Gly over several days to allow sufficient time for the retained fluid to be 
dispersed within body compartments neither Cr, Gly nor Cr/Gly supplementation resulted 
in any change in TBW, ECW, or ICW (Fig. 4.2). Furthermore, no supplementation 

protocol had any effect on perception of effort (Fig. 4.4), cardiovascular (Fig. 4.3) and 
thermoregulatory (Fig. 4.5) responses or performance during exercise in the heat. 

The mean body mass increase of 1.20 kg induced by combined Cr and Gly 

supplementation in the present study is among the highest reported in the literature to date 

(Anderson et al., 2001; Kilduff et al., 2002; Kilduff et al., 2004; Lyons et al., 1990). 

However, as in Chapter 3 (a), the Cr/Gly induced increase in body mass was not 

accompanied by an accompanying increase in TBW. A statistical power calculation using 

the mean change in TBW from pre- to post-Cr/Gly supplementation (0.15 L) revealed that 

349 subjects would be required to identify a significant difference in TBW at 80% power 

(with 6 subjects a significant increase in TBW would only be observed if the mean 

increase in TBW exceeded 1.1 L). Therefore despite the small increase in TBW, the 

number of subjects utilised in the present study may be too low to find any significant 

change in body water parameters following hyperhydration. However, the increase in 

TBW observed in the present study is considerably lower than that reported in other 

hyperhydration studies (e. g. Freund et al., 1995; Kern et al., 2001; Kilduff et al., 

2004; Lyons et al., 1990) and therefore there must some other explanation for the observed 

lack of TBW increase. Given that diet was homogenous throughout the supplementation 

period, it seems likely that Cr/Gly supplementation did increase water retention that was 

not measured by bioimpedance analysis. These results are in contrast with other 

hyperhydration studies that demonstrated an increase in fluid retention as reflected by a 

significant increase in TBW (Kilduff et al., 2002; Kilduff et al., 2004; Lyons et al., 1990). 

For example, subjects in the study by Kilduff et al. (2004) experienced a 0.8 kg increase in 

body mass accompanied by a 0.6 L increase in TBW after 7 days of Cr supplementation. 

Therefore, it was concluded that some unknown negative interaction of the immediate fluid 

retaining abilities of both hyperhydrating agents resulted in an increase in body water that 

was not dispersed within body water compartments. 
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In a follow up study (Chapter 3 (b)) the limitations of the Cr and Gly loading protocol were 
addressed by ingesting both Cr and Gly over several days allowing sufficient time for the 

retained fluid to be dispersed within body compartments. In this study, supplementation 
with combined Cr and Gly for 7 days resulted in a mean body mass increase of 
approximately 1.0 kg and an increase in TBW of 0.9 L split evenly between the ICW and 
ECW compartments. The only difference between the Cr and Gly loading protocols 

utilised in Chapter 3 (b) and the present study was the length of time between the ingestion 

of the final supplement and testing. Thus, it would seem apparent that a period of time in 

excess of 3 hours is required for the retained water to be distributed within body water 

compartments. Previous studies examining the effectiveness of Gly supplementation as a 
hyperhydration method have consistently utilised a single Gly bolus mixed with water and 
ingested between 2-3 hours prior to analysis (Lyons et al., 1990; Montner et al., 1996). 

However, when Gly was delivered in a similar fashion alongside a Cr hyperhydration 

protocol previously shown to be successful in our lab (Kilduff et al., 2004), no increase in 

hydration was measured (Fig. 4.2). Previous Gly hyperhydration studies have quantified 

water retention by the volume of urine produced (Anderson et al., 2001; Freund et al., 

1995), which provides no information as to where the retained water was distributed. Body 

compartment analysis by multifrequency bioimpedance combined with changes in body 

mass used in the present study, provides data indicating fluid changes in both the intra- and 

extra-cellular water compartments. Furthermore, the mechanism by which bioimpedance 

estimates body water provides insight into the confounding data from Chapter 3 (b) and the 

present study. Since hypertonic solutions such as the Cr/Gly combination (965 ± 61 

mosmol"kg-1) cause an initial net movement of fluid into the intestinal lumen (Gisolfi et al., 

1990), there is a loss of ECW and thus TBW, which ultimately leads to dehydration, albeit 

temporarily. This is confirmed by the small percentage reductions in plasma volume that 

occurred after supplementation with both Pl/Gly and Cr/Gly in both this study and Chapter 

3 (a). Interestingly, fluid changes in the trunk have little effect on bioimpedance 

measurements as the trunk only accounts for 5-12% of total body impedance (Kushner, 

1992). This is confirmed by the relatively small impact on bioimpedance measurements of 

up to 2L of fluid within the abdominal cavity (Kushner et al., 1996). Additionally, the 

profoundly high osmolality of the Cr/Gly solution may have inhibited gastric emptying 

(Costill & Saltin, 1974), further contributing to the lack of increase in TBW 2-3 hours after 

Cr/Gly ingestion as demonstrated in Chapter 3 (a) and the present study. Although Cr Gly 

supplementation results in significant water retention, a period of time greater than 3 hours 

is required after ingestion of the final Cr/Gly supplement before significant hydrating 

effects are discerned throughout the body water compartments. Furthermore, it is possible 
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that a similar effect would have been observed after Cr/Gly supplementation in Chapter 3 
(a) and the present study had a longer period of time been left between ingestion of the 
final supplement and testing. 

Combined Cr and Gly supplementation in the present study was unsuccessful in 
attenuating the rise in perceived exertion and metabolic, cardiovascular and thermal 
responses during constant-load exercise in the heat (Figs. 4.3,4.4,4.5) (Table 4.2,4.3). 
These findings are consistent with the only other study to examine the effects of combined 
Cr and Gly supplementation on metabolic, cardiovascular and thermoregulatory responses 
to exercise in the heat (Chapter 3 (a)). Given that heart rate and T" rise in proportion to the 
level of dehydration during exercise in the heat (Montain & Coyle, 1992a; 1992b) it is not 
surprising that physiological responses were the same following Cr/Gly supplementation as 
hydration status was not significantly altered. Previous studies investigating the effects of 
either Cr or Gly supplementation have reported reductions in heart rate and Tc during 

exercise in the heat, but only when TBW is significantly increased prior to commencement 

of exercise (Anderson et al., 2001; Kilduff et al., 2004). However, other studies have 

reported no difference in water retention between Gly and Pl supplementation and 

consequently no differences were observed in T, Tsk, sweat rate, cardiac output, blood 

pressure or heart rate during constant-load exercise in the heat (Latzka et al., 1997; 1998). 

Exercise performance in the present study was not significantly altered following any of 

the supplementation regimens, which would be predictable given the lack of an increase in 

TBW from pre- to post-supplementation. Several studies have indicated that the increased 

heart rate and T, resulting from dehydration can have a negative impact on exercise 

performance (Below et al., 1995; Cheuvront et al., 2003; Cheuvront et al., 2005; Fallowfield 

et al., 1996; McConell et al., 1997; Walsh et al., 1994). For example, Cheuvront et al. 

(2005) determined that hypohydration was associated with an increased T, and heart rate 

and a significant reduction in work performed during a 30 min cycling time trial, even in a 

temperate (20°C) environment. Conversely, other studies find no effect of hyperhydration 

on exercise performance when compared to euhydration (Latzka et al., 1998; Marino et al.. 

2003). For example, Marino et al. (2003) found Gly hyperhydration had no effect on a 60 

min cycling time trial in hot and humid conditions compared to pre-exercise water 

ingestion. Therefore, it is presently unknown whether the lack of performance 

improvement observed in the present study is simply due to a similar hydration status 

between experimental trials or indeed whether commencing exercise in a hyperhydrated 

state may not confer any significant advantage in terms of exercise performance compared 

to euhydration. 
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4.4.1 Conclusions 

This study has demonstrated that supplementation with Cr, Gly or a combination of Cr and 
Gly resulted in a significant increase in body mass. Yet despite ingesting both Cr and Gly 

over several days to allow sufficient time for the retained fluid to be dispersed within body 

compartments there was no change in TBW, ICW, ECW or RPE, heart rate and Tc during 

exercise in the heat compared to pre-supplementation. It is probable that ingestion of a 
hypertonic solution such as the Cr and Gly mixture resulted in slowing of gastric emptying 

and an initial efflux of water from the plasma into the intestinal lumen. Therefore, the 

timing of ingestion is evidently critical, with the final supplement requiring to be 

consumed longer than 3 hours prior to the need for hyperhydration. 
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(b) A comparison of two different combined creatine and 

glycerol fluid loading strategies on fluid retention and 

distribution 
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4.5 Introduction 

The hypothesis that simultaneous ingestion of the hyperhydrating agents Cr and Gly would 
result in a greater retention of fluid than either Cr or Gly alone and therefore result in a 
significant reduction of T, and heart rate during exercise in the heat has been previously 
examined (Chapter 3 (a), Chapter 4 (a)) and found to be unsuccessful. Initially, it was 
concluded that although combined Cr/Gly supplementation resulted in significant fluid 

retention, the fluid was not dispersed in body compartments, perhaps due to some 
unknown negative interaction on the immediate fluid retaining abilities of both 
hyperhydrating agents (Chapter 3 (a)). However, ingesting both Cr and Gly over several 
days allowing sufficient time for the retained fluid to be dispersed within body 

compartments still did not cause a significant increase in TBW (Chapter 4 (a)). Since 

hypertonic solutions such as the Cr/Gly combination (965 ± 61 mosmol"kg-1) cause an 
initial net movement of fluid into the intestinal lumen (Gisolfi et al., 1990), there is a loss 

of ECW and thus TBW, which ultimately leads to dehydration, albeit temporarily. 

Additionally, the profoundly high osmolality of the Cr/Gly solution may have inhibited 

gastric emptying (Costill & Saltin, 1974), further contributing to the lack of increase in 

TBW 2-3 hours after Cr/Gly ingestion as demonstrated in Chapter 3 (a) and 4 (a). Thus, it 

would seem apparent that a period of time in excess of 3 hours is required for the retained 

water to be distributed within body water compartments. Therefore, the aim of this study to 

examine the effects of extending the period of time between ingestion of the final Cr/Gly 

supplement on the retention and distribution of fluid. The overall aim was to develop an 

effective `fluid-loading' strategy for use during exercise in the heat. 

4.6 Methods 

4.6.1 Subjects 

4 healthy males gave their written informed consent to take part in the present study that 

was approved by the local Ethics Committee and was performed according to the code of 

ethics of the World Medical Association (Declaration of Helsinki). The physical 

characteristics of the four subjects were, age 29 +8 years; height 174 ±8 cm; body mass 

67.9±9.8kg. 
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4.6.2 Experimental design 

The study consisted of one Cr/Gly supplementation regimen lasting for 7 days with 

physiological measurements recorded pre- and post-supplementation. Subjects were 

matched for body mass and were randomised to either a `3 hour group' or a `5 hour group'. 
The supplementation period started immediately after the pre-supplementation 

measurements (day 1) and finished on the day of the post-supplementation experimental 

trial (day 7). Cr/Gly supplementation consisted of 11.4 g of Cr"H2O (equivalent to 10 g 
Cr), 1g Gly-kg 1 body mass and 70 g of glucose polymer made up in 1L of warm water 

and consumed twice daily for 6 days and once more on the day of the post- 

supplementation trial. Subjects in the `3 hour group' ingested their final Cr/Gly supplement 

3 hours prior to the post-supplementation experimental trial and those in the `5 hour group' 

ingested the final supplement 5 hours prior to the experimental trial. Each supplement was 

made fresh prior to consumption in order to prevent any degradation of Cr to creatinine. 

On each of the experimental test days, subjects ingested 500 ml of water 2 hours prior to 

measurement and a further 500 ml of water 1 hour prior to measurement in an attempt to 

ensure subjects were euhydrated prior to all exercise trials (Convertino et al., 1996). 

On the day of each experimental trial subjects reported to the laboratory having refrained 

from alcohol and strenuous exercise in the previous 24 hours. Subjects were asked to void 

before nude body mass was recorded and body water compartments estimated using a 

Bodystat Multiscan 5000 Bioimpedance analyser (Bodystat Ltd, Isle of Man). This method 

allows TBW and ECW to be estimated; from these measurements ICW can also be 

deduced. The bioimpedance measurements were taken while the subjects lay comfortably 

in a supine position for 10 min on a non-conductive surface with their arms and legs 

slightly abducted. 

4.7 Results 

4.7.1 Body mass and water compartments. 

Following Cr/Gly supplementation, there was a large increase in body mass from pre- to 

post-supplementation in both the 3 hour and the 5 hour group (Fig. 4.7). TBW increased by 

0.4 ± 0.4 L from pre- to post-supplementation in the 3-hour group but increased by a 

greater extent in the 5 hour group (1.1 ± 0.4 L). ICW increased to a similar extent in both 
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groups (3 hour group: 0.4 ± 0.2 L, 5 hour group: 0.5 ± 0.3 L) whereas ECW increased in the 
5 hour group (0.6 ± 0.3 L) but was unchanged in the 3 hour group. 
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Figure 4.7 Changes in body mass (BM), total body water (TBW), intra-cellular water (ICW) and extra- 
cellular water (ECW) in the two groups. Data presented as the mean ± s. d. 

4.8 Discussion 

This study has demonstrated that supplementation with combined Cr and Gly results in a 

significant increase in both body mass and TBW only when the final supplement is 

consumed 5 hours prior to measurement (Fig. 4.7). These findings highlight the importance 

of the timing of ingestion of the final supplement prior to exercise. Based on these results 

it is rational to assume that supplementation with combined Cr and Gly will delay the onset 

of dehydration during exercise in the heat resulting in a reduced Tc and heart rate and 

improved exercise performance. 

In the present study supplementation with combined Cr and Gly for 7 days resulted in a 

mean body mass increase of 1.6 ± 0.3 kg (Fig. 4.7) in the 3 hour group and 1.2 ± 0.4 kg in 

the 5 hour group, which are among the highest reported in the literature to date (Anderson 

et al., 2001; Kilduff et al., 2002; 2004; Kreider et al., 1998: Lyons et al., 1990; Montner et al., 

1996; Ziegenfuss et al., 1998) and similar to those reported in Chapter 3 (a), (b) and 

Chapter 4 (a). Cr/Gly supplementation resulted in a significant increase in TBW with the 

retained fluid dispersed equally between ICW and ECW compartments when the final 

supplement was consumed 5 hours prior to measurement but did not change when the final 

supplement was consumed 3 hours prior to measurement (Fig. 4.7). Given that Cr 

supplementation has been consistently shown to increase ICW (Kilduff et al.. 
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2002; 2004; Ziegenfuss et al., 1998) whereas Gly retains fluid in all body compartments 

with the exception of the cerebral spinal fluid and aqueous humor (Freund et al., 19951in, 

1977; Seifert et al., 1995; Tourtellotte et al., 1972) it is reasonable to assume that the 

observed increases in ICW and ECW were mediated by Cr and Gly respectively. 

4.8.3 Conclusion 

The results of this study indicate that consuming both Cr and Gly over several days and 
ingesting the final supplement 5 hours prior to exercise is the most effective method of 
fluid loading. This will allow sufficient time for the retained fluid to leave the stomach, 

pass across the intestinal lumen wall and be dispersed within body compartments. 
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Chapter 5 

The effects of combined creatine and glycerol 

hyperhydration on metabolism, thermoregulation and 

exercise performance in the heat: Loading protocol 3. 
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5.1 Introduction 

Previous attempts to `fluid load' prior to exercise using a combination of Cr and Glv have 
been unsuccessful due to the complex interaction between the hyperhydrating agents and 
body water compartments. Since hypertonic solutions such as the Cr/Gly combination (965 

± 61 mosmol"kg-1) cause an initial net movement of fluid into the intestinal lumen (Gisolfi 

et al., 1990), there is a loss of ECW and thus TBW, which ultimately leads to dehydration, 

albeit temporarily. Additionally, the profoundly high osmolality of the Cr/Gly solution 

may have inhibited gastric emptying (Costill & Saltin, 1974), further contributing to the 
lack of increase in TBW 2-3 hours after Cr/Gly ingestion as demonstrated in Chapter 3 (a) 

and 4 (a). Results from Chapter 4 (b) confirm that a period of at least 5 hours is required 
for the retained water to be distributed within body water compartments. Intuitively, this 

increased fluid would maintain plasma volume resulting in a reduction in heart rate during 

exercise induced heat stress. As a direct result, skin blood flow would be maintained 

allowing sufficient continuation of convective heat loss. Additionally, there would be 

sufficient body water to maintain adequate sweat production and optimum evaporative 

cooling, which overall would enhance thermoregulatory function. Furthermore, it is 

possible that the Cr-induced increase in ICW may result in an increase in the specific heat 

capacity of the body, resulting in a greater capacity to store heat (Kilduff et al., 2004). 

Thus, it is proposed that the reduction in heart rate and Tc induced by Cr/Gly 

hyperhydration should ultimately improve exercise performance, especially in the heat 

(Convertino et al., 1996). It seems plausible that a Gly-induced increase in ECW coupled 

with a Cr-mediated increase in ICW could have synergistic effects resulting in a much 

larger increase in TBW than if either supplement was consumed alone. Therefore, the 

primary aim of this study was to examine whether combining Cr and Gly can induce a 

greater hyperhydration than either Cr or Gly alone. If successful, a secondary aim of this 

study was to assess the effects of this novel `water-loading' strategy on thermoregulation 

and performance during exercise in the heat. 

5.2 Methods 

5.2.1 Subjects 

24 endurance-trained males (Table 5.1) gave their xN-ritten informed consent to take part in 

the present study which was approved by the local Ethics Committee and was performed 
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according to the code of ethics of the World Medical Association (Declaration of 
Helsinki); one subject withdrew from the study due to injury unrelated to this project. 

Table 5.1. The physical characteristics, maximal oxygen uptake and maximal 
work rate of the two groups of subjects. Data presented as the mean ± s. d. 

P1 Group Cr Group 

(n=11) (n=12) 

Age (Yr) 31 f8 31 ±6 

Height (cm) 177 f6 177 ±5 

Weight (kg) 75.2 ±7 75.0 ±6 

VO2max(Lminl) 4.3±0.5 4.2±0.4 

WRmax (W) 361 f 28 357 ± 28 

5.2.2 Experimental design 

The experimental design by necessity is complicated and best understood by reference to 

Fig. 5.1. The study consisted of two supplementation regimens, each lasting 7 days and 

encompassing two cycle performance trials consisting of 40 min constant-load exercise at 

63% WR,,, ax followed by a 16.1 km (10 mile) time trial. The methodology for the exercise 

trials is described in Chapter 2 of this thesis. Prior to the first of these experimental trials, 

familiarisation trials were completed until the variability of two consecutive trials was 

within 5%; no subject had to perform a third familiarisation trial to achieve less than 5% 

variability. Following this familiarisation period, subjects were matched for body mass and 

were randomised in a double blind fashion to either a Cr or a Pl group. Subjects were 

separated into two groups due to the long wash-out period associated with oral Cr 

supplementation (Vandenberghe et al., 1996). Subjects in both groups performed an 

exercise trial pre- and post-supplementation during both supplementation regimens (i. e. a 

total of 4 experimental exercise trials) (see Fig. 5.1). The first test was conducted at least 

48 hours after each subject's final familiarisation trial. Each supplementation period started 

on the day after the first test and finished on the day of the second test. 
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Cr supplementation consisted of 11.4 g of Cr"H2O (equivalent to 10 g Cr) and 70 ` of 
glucose polymer made up in 1L of warm water and consumed twice daily for 6 days and 
once more on the day of the experimental exercise trial. This protocol has been shown to 
increase resting muscle phosphocreatine levels within 5 days (Harris et al., 1992). Each 
supplement was made fresh prior to consumption in order to prevent any degradation of Cr 
to creatinine. The P1 supplement consisted of 85 g of glucose polymer made up in 1L of 
warm water and consumed twice daily for 6 days and once more on the day of the 
experimental exercise trial. During the two supplementation regimens, subjects in both 

groups also received either 1g Gly"kg 1 body mass or an equivalent amount of Pl (i. e. 
sucrose) diluted in each 1L supplement. Therefore, four possible combinations of 
supplements were administered: Pl group: Pl/Pl and P1/Gly; Cr Group: Cr/Pl and Cr/Gly. 
For the two post-supplementation trials, subjects began consuming the final supplement 5 
hours prior to the exercise performance trial. All supplements had similar taste, texture and 
appearance and were placed in generic water bottles to ensure double blind administration. 
On each of the experimental test days, subjects ingested 500 ml of water 3 hours prior to 

exercise and a further 500 ml of water 1 hour prior to exercise in an attempt to ensure 

subjects were euhydrated prior to all exercise trials (Convertino et al., 1996). 

0 Exercise performance trial at 30°C 

PLACEBO OR PLACEBO OR 
GLYCEROL NO SUPPLEMENTATION GLYCEROL 

SUPPLEMENTATION SUPPLEMENTATION 

Week 1 Week 2 Week 3 

Creatine group (n = 12) 

Placebo group (n = 11) 

Figure 5.1 Schematic representation of the experimental design. 
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5.3 Results 

5.3.1 Diet, body mass and water compartments. 

The physical characteristics of the two groups were similar before supplementation (Table 

5.1). In the Pl group, body mass increased significantly following Gly supplementation, 

with no change during the Pl regimen (0 body mass was greater following Gly 

supplementation; Table 5.2, Fig. 5.2). In the Cr group, body mass increased significantly 
during both the Pl and Gly regimens (Table 5.2, Fig. 5.2). Furthermore, the increase in 

body mass was significantly greater when Gly was consumed in combination with Cr than 

when Cr was consumed alone (P=0.02) (Table 5.2, Fig. 5.2). There was no difference pre- 

supplementation in TBW, ICW and ECW between groups. In the Pl group, TBW and 

ECW increased significantly following Gly supplementation, whereas TBW and ECW 

were unaltered in the P1 regimen (Fig. 5.2). There was a significant increase in ICW in the 

Pl group following Gly supplementation (P=0.01) but not during the Pl regimen (P=0.10). 

In the Cr group, TBW and ICW increased significantly during both supplementation 

regimens (Fig. 5.2), and a significant increase in ECW observed only following the Gly 

regimen (Fig 5.2). Additionally, the increase in TBW and ECW in the Cr group was 

significantly greater following Gly supplementation than P1 (P=0.02 and P<0.01, 

respectively) (Fig. 5.2). There were no significant differences in the daily diet between the 

two groups or between P1 and Gly regimens (Table 5.3). 

5.3.2 Cardiopulmonary variables. 

There was no significant change in VO 
2 (Table 5.4), VC02 or VE (data not shown) 

during constant-load exercise and no differences were found between groups before or as a 

result of supplementation. There was no difference in resting heart rate between the two 

groups or after supplementation (Fig. 5.3). During exercise, heart rate increased during all 

trials. In the P1 group, heart rate during exercise was significantly lower following Gly 

supplementation compared to pre-supplementation (P<0.01) (Fig. 5.3). No such difference 

was found in the P1 trial (Fig. 5.3). In the Cr group, heart rate was significantly lower after 

both Cr/Pl and Cr/Gly supplementation regimens compared to pre-supplementation (Fig. 

5.3). There was no difference in the 0 heart rate pre- and post-supplementation between the 

Pl and Gly supplementation regimens in the Cr group (P=0.65). 
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Table 5.2. Change in body mass from pre- to post-supplementation in each supplementation regimen 

Subject PI/Pi PI/Gly Subject Cr/P1 Cr Gly 

1 0.10 0.34 

2 -0.09 0.82 

3 -0.23 1.00 

4 0.11 0.03 

5 -0.16 0.80 

6 0.03 0.45 

7 0.45 0.85 

8 0.45 0.40 

9 0.42 0.63 

10 0.00 0.52 

11 0.00 0.45 

Mean ± s. d. 0.10 ± 0.24 0.57 ± 0.28t* 

12 0.51 1.10 

13 0.85 1.03 

14 1.03 1.37 

15 0.06 0.37 

16 0.90 1.00 

17 1.37 1.14 

18 0.35 0.84 

19 0.88 0.95 

20 1.35 1.42 

21 0.39 0.87 

22 0.97 0.75 

23 0.13 0.79 

0.73±0.441- 0.97±0.28t* 

f: indicates a significant difference pre- vs post-supplementation. *: indicates a significant greater 
change (0) in the Gly supplementation regimen compared to the PI supplementation regimen. 

Table 5.3. Composition of the average daily diet in each supplementation regimen 

Group Regimen Energy (MJ"day 1) Carbohydrate (%) Fat (%) Protein (%) 

P1 P1 12.3±2.7 64±8 24±5 12±3 

P1 Gly 12.9±3.2 65±6 22±4 13±3 

Cr PI 13.5±2.6 67±4 21±5 12±2 

Cr Gly 13.6±2.8 67±5 22±5 11+3 

Data presented as the mean ± s. d. 
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5.3.3 Ratings of perceived exertion during exercise. 

There was a progressive increase in RPE both for perceived leg fatigue (Fig. 5.4) and 
dyspnoea (Fig. 5.5) during exercise reaching near maximum ratings at the end of the time 

trial. A significant three-way interaction (P=0.04) was observed in RPE for perceived leg 

fatigue (Fig. 5.4). Significantly lower ratings of perceived leg fatigue were found in the Cr 

group following both supplementation regimens; no such effect was found in the P1 group 
(Fig. 5.4). There was also a significant three-way interaction in RPE for dyspnoea (P=0.05) 

(Fig. 5.5). Significantly lower ratings of dyspnoea were found after Cr/Gly 

supplementation (P=0.02) but not after Cr/Pl (P=0.10); no such effect was found in the Pl 

group in either supplementation regimen (Fig. 5.5). There was no difference in A RPE for 

perceived leg fatigue or dyspnoea pre- and post-supplementation between Pl and Gly 

supplementation regimens in either group. 

5.3.4. Rectal and skin temperature responses. 

There was a significant increase in mean Tsk from rest, with no significant differences 

between groups or following supplementation (Fig. 5.6). Throughout the exercise period, 

Tre increased significantly during all trials (Fig. 5.7). A simple main effects analysis 

revealed that Tre during exercise was not significantly different in the P1 group during 

either the P1 (P=0.71) or the Gly (P=0.10) supplementation regimen (Fig. 5.7). In the Cr 

group, Tre was significantly lower following both Pl (P<0.01) and Gly (P<0.01) 

supplementation regimens compared to pre-supplementation (Fig. 5.7). However, there 

was no difference in the 0 Tre pre- and post-supplementation between the Pl and Gly 

supplementation regimens in the Cr group (P=0.29). 

5.3.5. Sweat rates and total sweat loss during exercise. 

There was a significant increase in sweat rate following Gly supplementation in both the PI 

(1.4 ± 0.3 L"hr-1 vs. 1.6 ± 0.4 L"hr-1; P=0.02) and the Cr (1.3 ± 0.4 L"hr-1 vs. 1.5 + 0.4 LUhr- 

1; P<0.01) groups. No such increase was observed during the P1 supplementation regimen 

in either the PI or the Cr group. Furthermore, total sweat loss increased significantly 

following Gly supplementation in both the P1 (1.5 + 0.3 L vs. 1.7 ± 0.4 L; P=0.02) and the 

Cr (1.4 ± 0.4 L vs. 1.5 f 0.4 L; P=0.02) groups. No such increase was observed during the 

PI supplementation regimen in either the P1 or the Cr group. 
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5.3.6 Blood metabolite concentrations and plasma volume changes. 

Blood [glucose] and [lactate] at rest and during exercise were not different between groups 

or following Gly supplementation (Table 5.5 and 5.6). Resting plasma [Gly] was 

significantly higher post Gly supplementation compared to pre-supplementation in both the 

P1 (P<0.01) and Cr (P<0.01) groups (Table 5.7). Plasma [Gly] remained significantly 

higher throughout exercise after Gly supplementation compared to the pre-supplementation 

trial in both the Cr and the Pl group. There was no difference in resting plasma [Gly] or 

during exercise between pre- and post-supplementation during the P1 supplementation 

regimen in either the Pl or the Cr group (Table 5.7). Plasma [Gly] was not correlated to the 

increase in TBW after either Pl/Gly (r=0.37, P=0.48) or Cr/Gly (r=0.51, P=0.23) 

supplementation. Plasma volume was reduced by approximately 8% after 40 min of 

constant-load exercise and 12% after the 16.1 km time trial with no significant differences 

between groups or following supplementation (Fig. 5.8). Resting plasma volume changes 

following supplementation were also calculated using the control trial as a baseline, 

assuming no change in red cell mass during the 7 day supplementation regimen. Using this 

method of analysis, plasma volume was not significantly altered following either Pl/Pl or 

Cr/Pl supplementation. Both P1/Gly and Cr/Gly supplementation resulted in a percentage 

increase in plasma volume, although only after the Cr/Gly supplementation did this 

increase reach statistical significance (P=0.06 and P=0.01, respectively). 

5.3.7 Osmolality. 

Resting serum osmolality was significantly higher post Gly supplementation compared to 

pre-supplementation in both the P1 (P=0.02) and the Cr (P<0.01) groups (Table 5.8). Serum 

osmolality remained significantly higher throughout exercise after Gly supplementation 

compared to the pre-supplementation trial in both the Cr and the Pl group. There were no 

other differences in serum osmolality (Table 5.8). 

5.3.8 Time Trial Performance. 

Time trial performance was not significantly different between the groups prior to 

supplementation (P=0.62). Time trial performance did not differ significantly pre- to post- 

supplementation in either the Pl group (Pl/Pl. pre vs. post: 23.1 +1.0 min vs. 22.9 ± 1.1 

min; P1/Gly, pre vs. post: 23.1 + 1.3 min vs. 22.9 f 1.0 min) or Cr group (Cr/P1, pre vs. 

post: 23.4 + 1.5 min vs. 23.2 + 1.2 min, Cr/Gly, pre vs. post: 23.4 f 1.3 min vs. 23.0 ± 1.2 

min) in either supplementation regimen. 
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5.3.9 Side effects. 

In general, subjects tolerated the supplementation protocol well with only one report of 

gastrointestinal distress after Gly supplementation. Three subjects from each group 

correctly identified the subject group and 7 subjects correctly identified the Gly 

supplementation regimen, while all other subjects were unsure of the treatment they 

received. 
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Figure 5.2 Changes in body mass (BM), total body water (TBW), intra-cellular water (ICW) and extra- 
cellular water (ECW) in the two groups. Data presented as the mean ± s. d. f: indicates a significant 
difference pre- vs. post-supplementation. *: indicates a significant greater change (0) in the Gly 
supplementation regimen compared to the Pl supplementation regimen. 

BM TBW ECW ICW 



115 

210- 
190- 
170 
150 
130- 
110- 
go- 
70- 
50- jJ 

210 Placebo Group (with Glycerol) 
190 

Q 
170 
150 

O130 
- 

110- - 

-ttt 

90 
70 
50 

210 Creatine Group 
190- 
170- 

CL 150- 
130- 
110- mtttt 
90 
70 
50 

T - 

-., 
'. 

d/ / 1 

210 Creatine Group(with Glycerol) 
190- 

170- 
CL 150- 

130- 
C 110 ttttt 

90 
70 Time (min) 
50 

11ýý 
L 

_L 

1 

f/ 

Placebo Group 

Rest 5 10 15 20 25 30 35 40 5 10 15 20 End Ti 

Time (min) 

10 

8 

6 

4 

2m 

0i 

-2 
2 
3 

-4 

-8 

-10 
10 

8 

6 

4 

2v 

0i 

-2 3 

-4 

-8 

-10 
10 

8 

6 

4 

2d 

0= 

-2 
C. 

3 

-4 

-8 

-10 
10 

8 

6 

4 

2 cri 
D 

0i 

-2 
C 
3 

-4 

-8 

-10 
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5.4 Discussion 

This study has demonstrated that supplementation with either Cr, or a combination of Cr 

and Gly, significantly increased TBW by up to 1.4 L prior to exercise (Fig. 5.2) and 

reduced perception of effort (Fig. 5.4,5.5), cardiovascular (Fig. 5.3) and thermoregulatory 

(Fig. 5.7) responses during exercise in the heat. Furthermore, combining Gly with a 

standard Cr supplementation regimen (Harris et al., 1992) resulted in a significantly greater 

increase in TBW (0.87 ± 0.21 L) than either supplementation alone (Fig. 5.2). Gly 

supplementation alone resulted in a significant increase in TBW of 0.57 ± 0.28 L and 

attenuated heart rate during exercise without significantly influencing Tc or RPE. Despite 

the significant increase in TBW and consequently improved thermoregulatory responses 

during exercise, no hydration intervention had any effect on exercise performance. 

In the present study, subjects experienced, on average, a TBW increase of 500 ± 240 ml 

(range 200-1000 ml) over the 7 day supplementation period when Gly alone was ingested 

(P1/Gly); an average increase that falls within the range (400-800 ml) previously reported 

using a similar Gly dose (Montner et al., 1996). However, previous studies utilised a single 

Gly dose combined with a bolus of water consumed between 2 and 3 hours prior to 

measurement, whereas in the present study Gly was administered for a period of 7 days 

with the final Gly dose administered 5 hours prior to exercise. The average peak [Gly] in 

the present study after Gly supplementation was 7.6 ± 1.36 mmol-L-1 (range 5.6-9.9) 

mmol"L-1 and 7.1 ± 1.41 (range 5.7-9.8) mmol-L-1 in the Pl and Cr groups, respectively 

(Table 5.7), which is lower than the peak concentration reported by Montner et al. (1996) 

(11.4 mmol-L-1) and Freund et al. (1995) (13.0 mmol-LI) but higher than the concentration 

reported by Murray et al. (1991) (2.8 mmol"L-1). Differences in the size of the Gly dose 

and time between ingestion and measurement are likely to account for the noted 

differences in [Gly]. Gly supplementation resulted in a similar distribution of the retained 

fluid between intra- and extra-cellular water compartments (Fig. 5.2) owing to the free 

distribution of Gly in all body water compartments with the exception of cerebral spinal 

fluid and aqueous humor (Freund et al., 1995; Seifert et al., 1995; Tourtellotte et al., 1972). 

In previous Gly hyperhydration studies, water retention was quantified by measuring the 

volume of urine produced (Anderson et al., 2001; Freund et al., 1995) which gives no 

indication as to where the retained water was distributed. This Gly-induced water retention 

has been attributed to an increased concentration of ADH (Freund et al., 1995). Although 

[ADH] was not measured in the present study, previously reported differences in [ADH] 

between Gly and water interventions were small and only approached statistical 
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significance (Freund et al., 1995). While an ADH mechanism cannot be ruled out, it is 

more likely that this Gly-induced water retention is mediated by the action of Gly on the 

kidneys. When blood [Gly] is at normal physiological levels, almost all filtered Gly is 

passively reabsorbed by the proximal and distal renal tubules of the kidneys (Sommer et 

al., 1993). When blood [Gly] is increased with exogenous Gly ingestion, there is an 
increase in Gly and associated water reabsorption (Kruhoffer & Nissen, 1963). In the 

present study, Gly supplementation also induced a significant elevation in serum 

osmolality (Table 5.8), which is directly attributable to the increased plasma [Gly] as 

previously described (Freund et al., 1995; Murray et al., 1991). Cr supplementation alone 

on the other hand, significantly increased ICW with only a minor, non-significant increase 

in ECW, resulting in a TBW increase of approximately 630 ± 330 ml on average (range 

100-1200 ml) (Fig. 5.2). The increases in body mass and TBW following Cr 

supplementation in the present study were of similar magnitude when compared to a 

previous study from this laboratory (Kilduff et al., 2004) and the study by Kern et al. 

(2001). Several studies have now confirmed that the increase in TBW associated with Cr 

supplementation is confined predominantly to the intra-cellular compartments of skeletal 

muscle (Kilduff et al., 2004; Ziegenfuss et al., 1998). It has been suggested that an increase 

in body mass of greater than 0.2 kg identifies a `responder' to Cr supplementation (Kilduff 

et al., 2003). The individual increases in body mass after Cr supplementation in the present 

study (Table 5.2) would suggest that only 2 subjects were non-responders to Cr. 

The present study is the first to show that the volume of water retained by ingesting either 

Cr or Gly can be significantly enhanced by combining these two hyperhydrating agents. 

This novel `water-loading' strategy that combines Cr and Gly resulted in a mean TBW 

increase of approximately 870 + 210 ml (range 600-1400 ml), a significantly larger volume 

than either Cr or Gly alone (Fig. 5.2). Additionally, the retained water was dispersed 

equally between the intra- and extra-cellular water compartments. It seems plausible that 

the water retained by combining the ingestion of Cr and Gly was mediated via a Cr- 

induced increase in ICW and an increase in ECW as a consequence of the added Gly. This 

hyperhydration induced by combined Cr and Gly supplementation is the highest directly 

measured increase in hydration reported in the literature to date (Kilduff et al.. 

2004; Montner et al., 1996). Therefore, these data would suggest that combined Cr and Gly 

supplementation is potentially the most effective method of hyperhydrating prior to 

exercise. Furthermore, this innovate `water-loading' strategy is comprised of two agents 

that specifically target both intra- and extra-cellular body water compartments and in doing 

so overcomes the limitations of previous hyperhydration strategies. For example, Gly has 

been investigated as a potential hyperhydrating agent for a number of decades and 
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continues to be of great interest as evidenced by a number of recently published studies 
(Anderson et al., 2001; Marino et al., 2003). However, the benefits of Gly hyperhydration 

are equivocal with at least 23 original papers published on Gly hyperhydration to date 

providing conflicting results. In instances where hyperhydration was induced, the 
hydrating effects of Gly were transient due to the metabolism of Gly by the liver and 
kidneys. Of greater significance however, and major problem associated with Gly 

ingestion is the fact that it permeates the blood-brain barrier extremely slowly and thus 

causes cerebral dehydration and associated headaches (Tourtellotte et al., 1972). 

Combining Gly with Cr overcomes this major problem as in contrast to Gly, Cr is taken up 
by the brain (Matthews et al., 1999) and in doing so counteracts the negative effects 

associated with Gly ingestion, increasing the level of initial hydration but will also 

potentially prolong the period that hyperhydration will last. However, it is currently 

unknown whether Gly ingestion or infusion for prolonged periods of time may cause 

cerebral oedema. A single bolus of oral Gly supplementation is unlikely to be harmful due 

to delayed absorption by the brain and rapid metabolism by the liver and urinary excretion 

prior to Gly reaching cerebral circulation (Sommer et al., 1993; Tourtellotte et al., 1972). 

Although Gly was ingested for 7 days in the present study without incident, further 

research is required to examine the effects of Gly ingestion for prolonged periods of time 

on intracranial pressure. The mean TBW increase of 870 ± 210 ml produced by the 

combined ingestion is approximately 20% lower than the sum of the mean increase in 

TBW produced by Cr and Gly (i. e. 1130 ml), suggesting that the level achieved with the 

combined ingestion may represent the upper limit of hyperhydration. Under normal 

physiological conditions, water balance is controlled by sensitive osmoreceptors located in 

the hypothalamus possibly via ADH-mediated changes in water excretion in the urine and 

thirst-mediated changes in water ingestion (Burrell et al., 1991). For example, Freund et al. 

(1995) reported that ingestion of a bolus of water resulted in a significant reduction in 

[ADH] and a subsequent increase in free water clearance. Ingestion of a bolus of water 

combined with Gly also resulted in a significant reduction in plasma [ADH], although the 

decrease tended to be attenuated. The decrease in [ADH] occurred despite a Gly induced 

increase in plasma osmolality, that the authors attributed to the dilutional effect of 

hyperhydration on plasma [Na+]. Therefore, attempting to increase water retention further 

by hyperhydrating with combined Cr and Gly is likely to have a similar diluting effect on 

plasma [Na+] resulting in a further reduction of [ADH] and increased urine production, 

thus limiting the volume of water that can be retained. Furthermore, 5 days 

supplementation with 20 g of Cr has been reported to elevate skeletal muscle [Cr] stores by 

a margin dependent on the initial muscle [Cr] (Greenhaff et al., 1994). Continued 
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supplementation with Cr after this period will not result in any appreciable further 

increases in the skeletal muscle Cr pool (Hultman et al., 1996) and subsequently there will 
be no further increase in ICW retention. 

Hyperhydration achieved through Gly and Cr supplementation in the present study was 

successful in attenuating the increase in heart rate by up to 5 and 7 beats"min-' respectively 

during constant-load exercise in the heat (Fig. 5.3). Yet despite a further increase in TBW 

when Cr and Gly were combined (compared to Cr alone) there was no further significant 

attenuation in heart rate (heart rate was reduced by up to 9 beats-min") (Fig. 5.3). 

However, Cr/Gly supplementation increased TBW by an average of 240 ml more than 

Cr/Pl, which may not be large enough to significantly alter the physiological responses to 

exercise in the conditions of the present study. Previous studies examining the effects of 

either Gly or Cr supplementation on cardiovascular responses during exercise in the heat 

have been equivocal, with some showing a reduction in heart rate (Anderson et al., 

2001; Kilduff et al., 2004; Montner et al., 1996) and others finding no such effect (Kern et 

al., 2001; Latzka et al., 1998; Murray et al., 1991). However, it is well established that 

dehydration results in an increased heart rate and reduced stroke volume and cardiac output 

during exercise (Gonzalez-Alonso et al., 1995). Therefore, it would be expected that as the 

magnitude of body water loss increases through sweating, there would be an increase in Tc 

during exercise in the heat (Sawka et al., 2001). The fluid loss from sweat is obtained in 

varying proportions from both the intra- and extra-cellular water compartments of the body 

in order to maintain blood volume (Sawka et al., 2001). Nose et al. (1988) reported a 

strong association between the loss of water in sweat and urine and the decrease in intra- 

cellular fluid following prolonged exercise in the heat. In the present study, when Cr 

induced an increase in ICW, there was a significant attenuation in the rise in Tie by up to 

0.35°C during exercise in the heat (Fig. 5.7). It is possible that this Cr-induced increase in 

ICW may have resulted in an increase in the specific heat capacity of the body, resulting in 

a greater capacity to store heat (Kilduff et al., 2004). The potential physiological advantage 

from the hyperhydration-induced reductions in heart rate and Tc are unclear from the 

results of the present study. However, given the association between attainment of a 

`critical Tc' and the development of fatigue (Nielsen et al., 1993) it is tempting to assume 

that hyperhydration would have resulted in an increased time to exhaustion had this 

experimental protocol been utilised. Furthermore, subjects who had supplemented with Cr 

had significantly lower ratings of perceived leg fatigue during the constant-load exercise 

(Fig. 5.4), suggesting that subjects were able to discern the benefits of the reduction in Tc 

mediated by Cr supplementation. 
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There are two published reports to date that appear to confirm the reduction in Tc during 

exercise in the heat following Cr supplementation (Kern et al., 2001; Kilduff et al., 2004). 
Conversely, Gly supplementation, which increased ICW to a lesser extent, did not 
significantly reduce the rise in Tre during the exercise period (Fig. 5.7). It is therefore 

unsurprising that there is considerable debate in the literature surrounding whether Gly 
ingestion can reduce T, during exercise in the heat, with several studies reporting a reduced 
Tc during exercise (Anderson et al., 2001; Lyons et al., 1990; Seifert et al., 1995) and 
numerous other studies finding no such effect (Hitchins et al., 1999; Latzka et al., 
1998; Marino et al., 2003; Murray et al., 1991). This may also explain why several studies 
reported plasma volume expansion via saline or dextran infusion has no effect on heart 

rate, T, skin blood flow or performance during exercise in the heat (Grant et al., 
1997; Watt et al., 2000). In the current study, Gly supplementation resulted in a significant 
increase in both sweat rate and total sweat loss in both the Pl and Cr groups. It may, 
therefore, be somewhat surprising that there was no reduction in Tre due to the expected 
increase in evaporative cooling in the Pl group after Gly supplementation. To date, the vast 

majority of studies conclude that Gly has no influence on sweat loss (Hitchins et al., 
1999; Murray et al., 1991) with Lyons and colleagues the only authors to report both an 
increased sweat loss and decreased T, during exercise in the heat as a direct result of Gly 

supplementation (Lyons et al., 1990). However, the mean increase in total sweat loss in the 

investigation by Lyons et al. (1990) was significantly larger than in the present study (450 

ml vs. 210 ml respectively). 

Despite the reduction in T,,, heart rate and perceived leg fatigue during constant-load 

exercise in the present study after supplementation with Cr/Pl and Cr/Gly, time trial 

performance was not affected. Several studies have indicated that the increased heart rate 

and Tc resulting from dehydration can have a negative impact on exercise performance 

(Cheuvront et al., 2005). For example, Cheuvront et al. (2005) determined that 

hypohydration was associated with an increased Tc and heart rate and a significant 

reduction in work performed during a 30 min cycling time trial, even in a temperate (20°C) 

environment. Therefore, if dehydration could be minimised then there would potentially be 

less of an associated reduction in exercise performance. As such, several studies have 

concluded that hyperhydration is associated with a significant improvement in exercise 

performance in the heat (Anderson et al., 2001; Hitchins et al., 1999, -Kilduff et al., 

2004; Montner et al., 1996). Subjects in the studies by Kilduff et al. (2004) and Montner et 

al. (1996) were required to cycle submaximally until exhaustion, whereas the studies by' 

Hitchins et al. (1999) and Anderson et al. (2001) utilised a self paced time trial for 30 and 

15 min respectively, to quantify performance. The findings of Hitchins et al. (1999) seem 
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particularly surprising given that cardiovascular and thermoregulatory responses during 

exercise were not different between Gly and water ingestion trials, meaning the authors 

could provide no explanation for the observed ergogenic effect of Gly. Subjects in the 

study by Anderson et al. (2001) were required to complete 90 min of steady state exercise 

prior to commencement of the time trial, more than twice as long as in the present study. 
The greater degree of dehydration that would occur during this prolonged submaximal 

exercise period may explain why pre-exercise hyperhydration resulted in a significant 
improvement in time trial performance in the study by Anderson et al. (2001). Therefore, it 

seems likely that the exercise trial in the present study was not of sufficient duration and 

therefore too high an exercise intensity for hyperhydration to have a significant effect on 

performance. Similarly, other studies find no effect of hyperhydration on exercise 

performance when compared to euhydration (Latzka et al., 1998; Marino et al., 2003). For 

example, Marino et al. (2003) found Gly hyperhydration had no effect on a 60 min cycling 

time trial in hot and humid conditions compared to pre-exercise water ingestion. Latzka et 

al. (1998) produced similar findings when subjects were asked to complete treadmill 

exercise at 55% VO2 
maxuntil exhaustion. However, these authors also reported that after 

either Gly or water ingestion, exercise time to exhaustion was significantly greater than if 

no water had been consumed prior to exercise. Therefore, it would appear that 

commencing exercise in a hyperhydrated state may not confer any significant advantage in 

terms of exercise performance compared to euhydration or indeed modest dehydration (i. e. 

loss of 2-3% body mass). The results from the present study are compatible with such an 

idea, although further research is needed to determine the effects of hyperhydration on 

physiological responses and performance during a more prolonged exercise trial where a 

more marked degree of dehydration would be expected. 

5.4.1 Conclusion 

In the present study, supplementation with both Cr and combined Cr and Gly for 7 days 

was effective in increasing TBW and reducing heart rate and Tc during prolonged exercise 

in the heat. The key finding of this study was that the increase in TBW after combined Cr 

and Gly supplementation was significantly greater than Cr supplementation alone. Despite 

the increased hydration associated with combined Cr and Gly, there was no further 

attenuation in heart rate or Tre compared to Cr alone. Hyperhydrating prior to exercise 

through Cr, Gly or a combination of the two did not result in any significant improvement 

in 16.1 km time trial performance compared to euhydration. This may be because the time 

trial was too short to induce a degree of dehydration high enough to confer a significant 
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improvement in exercise performance as a result of the altered hydration status. 

Furthermore, hyperhydration may not offer any significant advantage in terms of exercise 

performance compared to euhydration or indeed modest dehydration (i. e. loss of 2-3% 

body mass). 
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Chapter 6 

Rectal, telemetry pill and tympanic membrane 

thermometry during exercise heat stress. 



IN 

6.1 Introduction 

Hyperhydration with combined Cr and Gly supplementation has been shown to result in a 
significant reduction in Tc and heart rate during exercise in a hot climate chamber (Chapter 

5). However, Noakes (2005) points out that physiological phenomena studied under 

environmental conditions have little practical application to competitive sport, and as such 
it is impossible to extrapolate research findings from the laboratory to the field. For 

example, in the study performed in Chapter 5, the facing air velocity was 6.5 km-hr-1 

significantly lower than that experienced when actually racing out of doors (Di Prampero 

et al., 1979). Recently, Saunders et al. (2005), compared the Tc of subjects cycling at 33.0 

± 0.4 °C in four different wind velocities: 0.2 km-hr-1- wind still conditions, 10 km. hr-' - to 

replicate many laboratory studies, and 100% and 150% of calculated road speed facing 

wind velocities based on the equation of DiPrampero et al. (1979). The authors reported 

that in wind still or low facing wind velocities, excessive heat storage occurs whilst 

exercising at moderate and high intensities, due to a failure of the environment to absorb 

and dissipate heat (evidenced by higher sweat rates during wind still conditions) rather 

than thermoregulatory failure. Therefore, the extent to which supplementation with Cr or 

combined Cr and Gly reduced T, and heart rate during cycling exercise in the heat may be 

significantly less when the exercise is performed outdoors in similar environmental 

conditions. Evidently, further field-based research is required to determine the `true' 

effects of combined Cr and Gly supplementation on thermoregulation and exercise 

performance in the heat. 

The development of heart rate telemetry systems and portable metabolic analyzers in the 

last two decades has enabled accurate assessment of physiological responses during 

unrestrained exercise in the field. However, until recently accurate measurement of T, 

during exercise in the field has not been possible. Esophageal and Tre temperatures are 

typically considered to reliably estimate T, during exercise (Sawka & Wenger, 1998) with 

Tre the most commonly published method in scientific research (Moran & Mendal, 2002). 

Yet, despite its widespread use, the relative invasiveness and social stigma attached to Tie 

coupled with necessary wire connections between the thermistor and the measuring device 

make Tre monitoring of subjects while exercising in the field problematic. The 

aforementioned problems of Tie measurement in the field and the need to continuously and 

accurately measure Tc during extreme conditions such as during space travel, led to rapid 

advances in this technology during the early 1990s and the subsequent development of an 

ingestible temperature sensor or `telemetry pill' by the National Aeronautics and Space 
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Agency (Rav-Acha et al., 2003). The telemetry system monitors T, via a radio wave 
signal, transmitted from the ingested pill and sent to a small external receiver (Rav-Acha et 
al., 2003). The telemetry pill has been shown to provide valid measurements of Tc 

compared to both esophageal temperature and Tre within the range of 36°C and 38°C 
during rest and prolonged cycling exercise lasting approximately 3h in both warm and 
cold-water immersion trials (O'Brien et al., 1998). However, the low exercise intensities 

(40 - 50% VO2 
max) utilized in this (O'Brien et al., 1998) and other studies (Kolka et al., 

1993; Kolka et al., 1997; Lee et al., 2000) induced only a modest degree of thermal strain, 

with a peak telemetry pill temperature (Tp) of 3 8.7°C reported in the literature (Kolka et 

al., 1997). However, as intense exercise can regularly induce a rise in Tc greater than 40°C 

(Roberts, 2000), further validation of the telemetry pill during more severe exercise heat 

stress is required. 

The telemetry pill method of temperature measurement is expensive relative to other 

methods, especially when large numbers of subjects need to be tested. On the other hand, 

Tc measurement by tympanic membrane thermometer has also been shown to accurately 

reflect Tre during hyperthermia in the clinical situation albeit in young children (van Staaij 

et at., 2003) and is relatively inexpensive. The evidence supporting the reliable use of 

tympanic temperature (Tty) during exercise is equivocal. For example, Deschamps et al. 

(1992) established that Tty was significantly lower than esophageal temperature by 

approximately 0.5°C during cycle exercise and thus concluded that Tty could not be used to 

assess exercise-induced hyperthermia. Conversely, Newsham et al. (2002) reported no 

differences between peak Tre and Tt, measurements on cessation of approximately 30 min 

stair-climbing exercise in the heat (32°C, 70% relative humidity), although Tt, increased to 

a greater extent than Tre during the exercise period. The studies by Deschamps et at. (1992) 

and Newsham et al. (2002) employed small numbers of subjects (i. e. 6 and 10) who 

completed the experimental protocol on only one occasion. The obvious disparity in the 

limited number of studies that have attempted to validate the use of a tympanic membrane 

thermometer during exercise in the heat clearly highlights the need for further research. 

Therefore, the aim of the present study was to compare Tc measurements obtained from the 

ingestible telemetry pill and the tympanic membrane thermometer with those from a rectal 

thermistor during rest and high intensity exercise conducted in a hot and humid 

environment (30°C and 70% relative humidity) intended to raise Tc above 39°C. 
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6.2 Methods 

6.2.1 Subjects. 

10 well-trained cyclists gave their written informed consent to take part in the present 
study which was approved by the local Ethics Committee. The subjects had the following 

characteristics (mean ± s. d. ): age: 31 ±6 years, height: 1.74 ± 0.4 m, weight: 74.7 ± 6.6 kg. 
Vol 

X: 4.1 ± 0.4 L"min 1. Subjects were recruited from local cycling clubs, and none were 

acclimatized to exercise in the heat at the time of study. The subjects were fully informed 

of any risks and discomforts associated with the experiments before giving their written 
informed consent to participate. 

6.2.2 Experimental design and protocols. 

Subjects completed four exercise trials consisting of 40 min constant-load exercise at 63% 

WRmax followed by a 16.1 km (10 mile) time trial at ambient temperature 30 ±1 °C with a 

relative humidity of 70 ± 3% and air velocity of approximately 1.8 m-s-1. Tests were 

performed one week apart over four consecutive weeks and at the same time of day. On 

each of the experimental test days subjects ingested 500 ml of water 3h prior to exercise 

and a further 500 ml of water 1h prior to exercise in an attempt to ensure subjects were 

adequately hydrated prior to all exercise trials (Convertino et al., 1996). A flexible rectal 

thermistor (IBLS bioelectronics unit, University of Glasgow, U. K. ) was inserted 100 mm 

beyond the anal sphincter prior to exercise and attached to a recording device (C8600 10 

channel microprocessor, Comark, Hertfordshire, U. K. ). The rectal thermistor was 

calibrated by immersion in a water bath at three temperatures (30°C, 35°C and 40°C). The 

subject remained seated on the cycle ergometer for 5 min while resting Tre, Tp and Try were 

recorded. Subjects were then instructed to begin 5 min of unloaded cycling before the WR 

was increased in a `single step' to the predetermined 63% WR1nax. Subjects were required 

to maintain a pedal cadence of 70 - 100 revs"min-' for 40 min. On completion of the 40 min 

period, WR was decreased to 20 W and the subject asked to maintain cadence for 1 min. 

After a further 4 min rest period the subject was instructed to complete a 16.1 km (10 mile) 

self-paced time trial on a road mounted cycle (King Cycle Indoor Trainer, 

Buckinghamshire, U. K. ). Tr, and Tp were recorded at 5 min intervals throughout the 

exercise period. T1 was measured every 10 min throughout the steady state exercise and 

immediately on completion of the time trial. Subjects were required to consume 2.14 ml 

cold-water"kg-1 body mass (5°C) every 10 min throughout the 40 min steady state period. 
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6.2.3 Telemetry pill system. 

Tp was monitored using a CorTempTM ingestible core body temperature pill, 20 mm in 
length and 12 mm diameter (CorTemp, HQ inc., Palmetto, Florida, U. S. A. ) that subjects 
ingested 8h before commencement of exercise (OBrien et al., 1998). Each pill transmits a 
low frequency radio wave that varies in wavelength depending on the temperature. This 

radio wave is received and converted to a digital format by a CorTempTM data recorder. 
The manufacturer calibrated each individual pill, firstly by placing each in a water bath 

maintained at 35°C and allowing stabilization of temperature and frequency rate. The water 
bath was controlled digitally and had a temperature stability of ± 0.01'C at 20°C. The 

digital temperature readout was calibrated at ± 0.05°C over the range of 35 - 45°C. Each 

pill was then placed in a water bath maintained at a constant 45°C and allowed to stabilize 
to bath temperature. The frequencies and temperatures for the low and high temperature 

baths were figured into a proprietary formula to determine sensor offset and slope, which 

together constitute the 8-digit calibration number for each pill. Pill calibration numbers 

were tested to verify 0.10C accuracy using a stabilized water bath at 40°C and a 

CorTempTM recorder to report Tp readings. Pills falling outside ± 0.10C accuracy were 

returned to the calibration process for one additional calibration and test run. These pills 

were discarded if they fell outside accuracy parameters after the second calibration and test 

run. 

6.2.4 Tympanic membrane thermometer. 

Tty was recorded using a Genius tympanic membrane thermometer (First Temp Genius 

Thermometer, Sherwood-Davis and Geck, St Louis, MO, U. S. A. ). The tympanic 

membrane thermometer measures the infrared heat generated from tissues within view of 

the probe and aims to measure the temperature from the tissues surrounding the eardrum. 

The same investigator performed each Tty measurement by pulling the ear upwards and 

backwards while inserting the probe as far as possible into the ear until a tight fit was 

achieved (van Staaij et al., 2003). Tty was recorded in rectal equivalent mode that utilizes 

an algorithm to predict Tre. However, this prediction equation is confidential because of its 

commercially sensitive nature; therefore, the equation used cannot be presented. The 

manufacturers calibrated the Genius tympanic thermometer and the calibration was 

validated by immersion in a water bath at three temperatures (30°C. 35°C and 40°C). 
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6.3 Results 

The mean temperature at 5 min time points for Tre and Tp and 10 min intervals for Tri. is 
shown in Figure 6.1. There were no differences in temperature readings between methods 
at rest (Tre: 37.2 ± 0.3°C; Tp: 37.2 ± 0.2°C; Tt,: 37.1 ± 0.3°C; P= 0.40) (Fig. 6.1) and there 
was a high correlation between methods (Tre vs. Tp: r=0.93, P<0.01; Tre vs. Tty: r=0.80, 
P<0.01). During exercise, temperature rose progressively peaking at 39.4 ± 0.4°C. 39.4 ± 
0.4°C and 38.9 ± 0.5°C for Tre, Tp and Tt,, respectively (Fig. 6.1). There were no 
differences between Tre and Tp measurements during the exercise period (P=0.32) (Fig. 
6.1) and these temperature readings overall were highly correlated (r=0.98, P<0.01) (Fig. 
6.2). There were no differences between Tre and Tty at the 10 min (P=0.11) and 20 min 
(P=0.06) time points (Fig. 6.1) and these individual time points were significantly 

correlated (r=0.67, P<0.01 and r=0.53, P<0.01 respectively). Tty was significantly lower 

than Tre at the 30 min (Tty: 37.9 ± 0.3°C; Tre: 38.2 ± 0.3°C, P<0.01), 40 min (Tty: 38.1 ± 

0.4°C; Tre: 38.5 ± 0.3°C, P<0.01) and at the end of the time trial (Tty: 38.9 ± 0.5°C; Tre: 

39.4 ± 0.4°C, P<0.01) (Fig. 6.1) and were significantly correlated (r=0.69, P<0.01; r=0.73, 
P<0.01; r=0.59, P<0.01 respectively). Tre and Tty temperature readings overall were also 

correlated (r=0.92, P<0.01) (Fig. 6.2). 

The Bland-Altman analysis of the intermethod differences in T', measurement is depicted 

in Figure 6.3 (for individual time points) and Figure 6.4 (overall). The overall mean 

difference between Tre and Tp was 0.02°C with 95% confidence interval -0.04 to 0.01'C 

and LOA -0.37 to 0.33°C indicating a high level of agreement between these two methods 

(Fig. 6.4). The overall mean difference between Tre and Try was 0.26°C with 95% 

confidence interval 0.22 to 0.30°C and the LOA -0.35 to 0.87°C (Fig. 6.4). The mean 

difference and the LOA between methods increased as temperature increased (Figs. 6.3 

and 6.4) with the largest difference between methods occurring between Tre and Tty at the 

end of the time trial (mean difference: 0.43°C; 95% confidence interval: 0.29 to 0.56°C; 

LOA: -0.38 to 1.23°C) (Figs. 6.3 and 6.4). 

Tp was not detected from a subject on one occasion prior to commencement of exercise. 

On three occasions, Tp was significantly reduced below 30°C immediately after ingestion 

of water, suggesting that the telemetry pill was still located in the upper part of the 

gastrointestinal tract and thus was being transiently cooled by the water. On all four 

occasions, these data were not included in the statistical analyses and figures. 
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6.4 Discussion 

This study examined the validity of both an infrared tympanic membrane thermometer and 
the telemetry pill system for T, measurement during rest and exercise-induced 
hyperthermia. The exercise trials were successful in inducing significant thermal strain in 

subjects with a mean peak Tre recorded at the end of exercise of 39.4°C (range: 38.8 - 
40.2°C) (Fig. 6.1). This study is the first to show that the telemetry pill system can provide 

a valid measurement of T, during periods of severe heat stress induced by exercise. 
Furthermore, the present study confirmed early observations that Tty is significantly lower 

than Tc during exercise in the heat (Deschamps et al., 1992) suggesting that a mechanism 

of selective brain cooling may be present in humans (Cabanac, 1993). 

The close agreement between Tre and Tp during exercise observed in the present study is 

consistent with most previous studies (Kolka et al., 1997; Lee et al., 2000; O'Brien et al., 
1998). However, this study is the first to offer evidence of a close agreement between TP 

and Tre when temperature exceeds 39°C (Fig. 6.1). Furthermore, Bland-Altman plots (Figs. 

6.3 and 6.4) confirm that the telemetry pill system provides similar predictions of T, to Tre 

during a period of severe thermal strain. Conversely, studies by Kolka et al. (1993) and 

Sparling et al. (1993) concluded that the ingestible telemetry pill was not a valid method of 

Tc measurement, with the latter study demonstrating consistently lower Tp readings 

compared to Tre during both rest (Tp: 36.9 ± 0.4°C; Tre: 37.5 ± 0.2°C) and 30 to 90 min of 

steady state cycle or treadmill exercise to exhaustion. However, the short time delay 

(approximately 3-9 h) between pill ingestion and commencement of exercise in some 

subjects potentially contributed to these compromised results due to probable temperature 

fluctuations in the upper part of the gastrointestinal tract (Kolka et al., 1993). Furthermore, 

telemetry pill technology was in its infancy when this study was published and all 

subsequent studies have found the telemetry pill system to accurately measure T, during 

exercise in the heat (Kolka et al., 1997; Lee et al., 2000; O'Brien et al., 1998). 

In the present study, ingestion of cold water immediately reduced Tp below normal 

physiological limits (below 30°C) on three separate occasions with no such effect observed 

on either Tre or Tty, suggesting the pill was still located in the upper part of the 

gastrointestinal tract. This possible confounding factor emphasizes the need for a long 

transition period (8-12 h) between pill ingestion and Tp measurement as suggested by 

O'Brien et al. (1998). The results from the present study confirm the accuracy of the 

telemetric pill system to monitor Tc during exercise-induced conditions of extreme heat 
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stress, however the requirement of a long delay between ingestion and accurate T, 

measurement means its use to measure Tc at the point of collapse in athletes suffering from 

suspected heat exhaustion is limited as a rapid measurement of T, is required for diagnosis. 
Additionally, once inside the gastrointestinal tract, the crystal sensor within the telemetry' 

pill vibrates producing a magnetic flux making it impossible to carry out a magnetic 
resonance imaging scans on a collapsed athlete. However, these potential limitations can 
be overcome by using the telemetry pill as a suppository. Furthermore, data from the 

present study indicates that the telemetry pill system could be employed as a preventative 

measure in order to reduce incidences of heat injury in military personnel and amateur 
athletics competitors subjected to severe environmental heat stress as suggested by Byrne 

et al. (2006). The ingestible telemetry pill system has been used in a number of recent 

studies to measure Tc of athletes exercising in the field (Edwards & Clark, 2006; Fowkes 

Godek et al., 2004; Laursen et al., 2006). Indeed, Fudge et al. (2007) recently used the 

telemetry pill system to assess thermal strain in elite Kenyan endurance athletes during a 

week of intense altitude training. 

Although the tympanic membrane thermometer provided a valid estimation of Tre during 

rest and the initial stages of exercise in the current study, differences between 

measurements began to occur as temperature exceeded 37.5°C (Fig. 6.1). The tympanic 

membrane thermometer began to significantly underestimate Tre after 30 min of exercise 

and the level of disagreement increased with further increases in temperature (Figs. 6.3 and 

6.4). Furthermore, Bland-Altman analysis reveals that Tty may be 1.23°C below or 0.38°C 

above Tie (Fig. 6.3), which has led previous authors to conclude that measurement of Tc by 

tympanic membrane thermometer is not accurate for research or clinical purposes 

(Deschamps et al., 1992). One possible explanation for the observed differences in Tc and 

Tty during hyperthermia is the presence of a selective brain cooling mechanism in humans. 

Selective brain cooling is known to occur in many species of mammals in the form of 

thermal panting, which causes water to evaporate from the upper airways and subsequent 

heat loss from the head such that brain temperature is reduced (Baker, 1979). The human 

head sweats more than the rest of the body (Cabanac & Brinnel, 1988) which when 

combined with the heat lost from the upper airways may be sufficient to cause selective 

brain cooling (Cabanac, 1993). Therefore, as the tympanic membrane shares the blood 

supply with the vasculature of the hypothalamus through the internal carotid artery 

(Benzinger, 1959; 1969), T, may actually provide a better estimation of brain temperature. 

Indeed, Mariak et al. (1994) reported a direct relationship between Tt,, and brain 

temperature during a surgical procedure in an anaesthetised subject and thus concluded that 

in most clinical situations T, offers the best approximation of brain temperature among the 
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externally accessible body temperatures (Mariak, 2002). As both Tre and Tp are measured 
some distance from the ear it is likely that these methods of T,, measurement provide a 
measurement of trunk temperature and the disparity with Tty would seem to support the 

existence of selective brain cooling in humans. Despite these findings, some researchers 
refute the existence of selective brain cooling in humans and propose that the gap between 

Tt, and Tre observed during hyperthermia is caused by contamination of Try by Tsk 
(Brengelmann, 1993). However, during short term exposure to cold air, Tty does not 

change yet Tsk drops significantly (Brinnel & Cabanac, 1989). Furthermore, when Tty and 
Tre were recorded simultaneously in comatose patients from 33°C to 42°C, they evolved 

similarly up until 3 8°C, from which point Tty became lower than Tre (Brinnel & Cabanac, 

1987). This would suggest that the disparity between Try and Tre during hyperthermia in 

humans is caused not by contamination of Tt, by a lower Tsk but instead, by the existence 

of selective brain cooling. 

These results from the present study are in stark contrast to the findings of the only 

published study to date where Ty was compared to Tre during exercise in the heat when Tty 

was recorded in rectal equivalent mode that utilizes an algorithm to predict Tre (Newsham 

et al., 2002). Newsham and colleagues established that peak Tre (38.9°C) was not 

significantly different from Ty (39.2°C) after a period of self-paced stair-climbing exercise 

in a hot environment (32°C, 70% relative humidity) (Newsham et al., 2002). However, the 

many methodological differences between the present study and that of Newsham et al. 

(2002) are likely to account for some of these differences. For example, Newsham et al. 

(2002) utilized a Thermoscan Pro-1 tympanic thermometer (San Diego, U. S. A. ) whereas a 

First Temp Genius Thermometer was used to measure Tt, in the present study. Despite 

these two brands of tympanic membrane thermometer estimating Tc in patients suffering 

from a fever by a similar degree of accuracy (Hoffinan et al., 1999), there is no existing 

data comparing different brands of tympanic membrane thermometer during exercise. 

However, this is the first study to measure the accuracy of the Genius tympanic membrane 

thermometer during exercise whereas different brands of tympanic thermometer may use 

different equations to predict Tre. The difference in exercise modalities between the study 

of Newsham et al. (2002) and the present study may also have contributed to the observed 

differences in the accuracy of Try as a predictor of Tc. As Tre is affected by blood flow from 

exercising leg muscle and thus heat transfer (Saltin et al., 1968), intense cycle exercise 

would potentially affect Tre to a greater extent than stationary stair-climb exercise due to 

the recruitment of larger muscle groups. Alternatively, the constant facing air velocity of 

1.8 m-s-1 in the present study may have artificially reduced Tt,, due to an increase in 

convective cooling, whereas experimental trials in the study by Newsham et al. (2002) 
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were conducted in a still environment. Several investigators have confirmed that changes 
in Tsk brought about by fanning or selective cooling of the skin rapidly decreases T, with 
little or no effect on Tre (Deschamps et al., 1992; Greenleaf & Castle, 1972; Livingstone et 
al., 1983). However, there is some evidence to suggest that the effect of the external 
environment on Ty can be minimized by insulating the external ear canal with cotton wool 
(Rasch & Cabanac, 1993). Although this procedure was not performed in the present study, 
Hansen et al. (1996) argue that cotton wool ear pads do not prevent decreased Tty when Tc 
is increasing, providing further evidence for the existence of selective brain cooling in 

humans. The possibility that experimental error, such as inaccurate placement of the 

tympanic membrane thermometer in either study could explain the observed differences in 

Tty accuracy does not seem likely as both groups of experimenters utilized a similar 
technique of T1 measurement. 

The extent to which the tympanic membrane thermometer underestimates T, increased 

with exercise duration peaking in a difference of 0.43 ± 0.81 °C at the end of the time trial. 

Although this difference may not be clinically significant, medical personnel assessing heat 

strain should be aware of the existence of a temperature gradient between T', and core 

temperature measured externally elsewhere in the body. Despite the documented 

differences between Ty and core temperature in this and other studies (Deschamps et al., 

1992), several other experimental trials involving exercise have been published with Tty as 

the sole measurement of core temperature (Hsu et al., 2005; Voltaire et al., 2003). 

However, experimenters should continue to use caution when employing this technique to 

measure core temperature during exercise as selective cooling of the brain may cause Ty to 

underestimate trunk temperature and thus mask the occurrence of a dangerously high body 

temperature. The differences between Tty and Tc highlighted in the present study apply 

solely to the exercise situation, whereas the accuracy of the tympanic membrane 

thermometer in the clinical situation to measure viral induced increases in Tc was outside 

the scope of this study. 

6.4.1 Conclusions 

These results demonstrate that the ingestible telemetry pill system provides valid 

measurements of Tc during both rest and exercise-induced hyperthermia up to the limits of 

T, measurement and therefore can be used in the field where Tie and esophageal 

temperatures cannot be taken. While the infrared tympanic membrane thermometer closely 

matched Tre measurements at rest and in the early stages of exercise, Tt,, appeared to 

significantly underestimate thermal strain once Tc exceeded 37.5°C. Further experimental 
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evidence is required to determine whether the disparity between Try and Tre is merely be 

due to imperfections in the tympanic membrane thermometer methodology or due to the 

existence of selective brain cooling in humans. 
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Chapter 7 

General Discussion 
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The primary objectives of the experiments described in the previous chapters were: 

To investigate the effects of ingesting two different fluid retaining agents 

simultaneously on body fluid balance and in doing so determine whether 

combining Cr and Gly can induce a greater degree of hyperhydration than either Cr 

or Gly alone. This was achieved by designing a series of studies that measured the 

effects of all combinations of supplements on TBW, ECW, ICW and plasma 

volume. 

ii. To develop the optimal hyperhydration strategy for use during conditions of 

restricted water access or exercise induced heat stress. This was achieved by 

comparing a Cr/Gly supplementation strategy based on previously established 

protocols from the literature with novel methodologies. 

iii. To assess the effects of these novel `water-loading' strategies on metabolism, 

cardiovascular and thermoregulatory responses and performance during exercise in 

the heat. This was achieved by examining the effects of combined Cr and Gly 

hyperhydration on physiological responses during steady state exercise in a hot and 

humid environment (30°C and 70% relative humidity) and performance in a 16.1 

km time trial and in doing so providing further insight into the relationship between 

dehydration and performance. 

iv. To validate a new method of T, measurement for use outwith the laboratory in 

training and competitive situations. This was achieved by comparing Tc 

measurements obtained from an ingestible telemetry pill and an infrared tympanic 

membrane thermometer with those from a rectal thermistor during rest and high 

intensity exercise conducted in a hot and humid environment (30°C and 70% 

relative humidity) intended to raise Tc above 39°C. This will allow future research 

examining the effects of Cr, Gly and combined Cr and Gly hyperhydration on Tc 

and heart rate and exercise performance to be completed in the field. 

Despite no significant increases in TBW (Figs. 3.2,4.2) or change in plasma volume after 

Cr/Gly ingestion following loading protocols 1 and 2 (LP I and LP2) described in Chapter 

3 (a) and 4 (a) respectively, there was an increase in body mass (Figs. 3.2,4.2), suggesting 

a significant retention of fluid. This may be explained by water requiring longer than 3 

hours from ingestion of the final Cr, 'Gly supplement to disperse throughout the bodNI water 

compartments (Fig. 4.7). However, because the final supplement was consumed 2 and 3 
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hours prior to exercise in LP l and LP2 respectively this explains why subjects displayed a 
significant increase in body mass without a concomitant increase in TBW. 
Supplementation with combined Cr and Gly using the third loading protocol (LP3) where 
the final supplement was ingested 5 hours prior to exercise as described in Chapter 5, 

significantly increased body mass, TBW and resulted in a percentage increase in plasma 

volume (Fig. 5.2). Additionally, this study is the first to show that the increase in TB W 

resulting from ingestion of this novel `water-loading' strategy that combines Cr and Gly 

using LP3 is significantly larger than the volume retained with either Cr or Gly alone (Fig. 

5.2). The increase in TBW by up to 1.4 L induced by combined Cr and Gly 

supplementation using LP3 also resulted in a reduction in perceived effort (Fig. 5.4,5.5), 

cardiovascular (Fig. 5.3) and thermoregulatory (Fig. 5.7) responses during exercise in the 
heat. Yet despite the reduction in physiological stress, hyperhydration via Cr and Gly did 

not improve exercise performance, assessed by a 16.1 km cycling time trial. The series of 

experiments presented in this thesis have resulted in an extremely effective `water-loading 

tool' that can be used to reduce T, and heart rate during exercise in the heat, and 

potentially reduce the risk of heat injury. Others who work in hot conditions with restricted 

access to fluids, such as rescue workers, fireman, soldiers and astronauts, may also benefit 

from prolonged periods of hyperhydration induced by this novel water loading strategy. In 

this chapter, the findings and general conclusions of this series of studies are discussed 

along with suggestions for future research. 

9.1 Hyperhydration 

Subjects experienced a body mass increase of 1.59 ± 0.21 kg after 7 days of 

supplementation with Cr/Gly in LP1 and 1.20 ± 0.37 kg in LP2 (Figs. 3.2 and 4.2 

respectively). This exceeds the 0.4-1.0 kg increase in body mass observed in other 

hyperhydration studies (Kilduff et al., 2004; Lyons et al., 1990; Montner et al., 1996). 

However, these increases in body mass were not accompanied by any increases in TBW 

indicating an increase in water retention that was not measured by bioimpedance analysis. 

These results are not in agreement with other hyperhydration studies that demonstrated an 

increase in fluid retention as reflected by a significant increase in TBW (Kern et al., 

2001, Kilduff et al., 2004; Seifert et al., 1995). For example, subjects in the study by Kilduff 

et al. (2004) experienced a 0.8 kg increase in body mass accompanied by a 0.6 L increase 

in TBW after 7 days of Cr supplementation. Conversely, combined Cr/Gly 

supplementation following LP3 resulted in a significant 0.97 ± 0.28 kg increase in body 
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mass accompanied by a 0.87 ± 0.21 L (range 0.6-1.4 L) increase in TBW (Fig. 5.2, Table 

5.2). However, it remains a possibility that the number of subjects (n=6) who completed 
LP1 and LP2 was not high enough to identify a significant increase in TBW. Nevertheless, 

the small increases in TBW resulting from Cr/Gly supplementation in LP I and LP2 (0.32 

L and 0.15 L respectively) were considerably smaller than those reported in other 
hyperhydration studies (e. g. Freund et al., 1995; Kern et al., 2001; Kilduff et al., 
2004; Lyons et al., 1990). On the other hand, a statistical power calculation utilising the 

mean TBW increase following Cr/Gly supplementation in LP3 revealed that n=6 subjects 

(80% power) would be required in order to observe a significant TBW increase (P<0.05), 

indicating that the lack of TBW increase in LP1 and LP2 may be due to a difference in the 

loading protocol methodology. The results from LP3 also demonstrate that both the 

increase in body mass and the volume of water retained by ingesting either Cr or Gly can 

be significantly enhanced by combining these two hyperhydrating agents (Fig. 5.2). 

Additionally, the retained water was dispersed equally between the intra- and extra-cellular 

water compartments (Fig. 5.2). It seems plausible that the water retained by combining Cr 

and Gly was mediated via a Cr-induced increase in ICW and a Gly-induced increase in 

ECW. This innovative `water-loading' strategy comprised of two agents that specifically 

target both ICW and ECW compartments and as such, may overcome the limitations of 

previous hyperhydration strategies. For example, the hyperhydrating effects of previous 

strategies were transient due to the metabolism of Gly by the liver and kidneys. Of greater 

concern is the potential side-effect of cerebral dehydration, due to the relatively 

impermeability of the blood-brain barrier to Gly, with resulting headaches (Tourtellotte et 

al., 1972). Combining Gly with Cr may overcome this, as in contrast to Gly, Cr is taken up 

by the brain (Matthews et al., 1999) and in doing so counteracts the negative effects 

associated with Gly ingestion, increasing the level of initial hydration but also potentially 

prolonging the period that hyperhydration will last. Furthermore, it has been suggested that 

the response to Cr supplementation is highly individual (Myburgh, 2000). Studies suggest 

that the populations that have been studied fall more or less equally (that is 25%) into one 

of four groups: nonresponders, low responders, average responders, and high responders 

(Myburgh, 2000). For example, an increase in body mass of greater than 0.2 kg identifies a 

`responder' to Cr supplementation (Kilduff et al., 2003). Therefore, subjects 

supplementing with combined Cr and Gly who are nonresponders to Cr, would still 

actively retain water due to the inclusion of Gly, and hence would still benefit during heat 

stress from Cr/Gly ingestion. There also appears to be an individualised response to water 

retention due to Gly supplementation (Koenigsberg et al., 1995), as P1/Gly 

supplementation in LP3 resulted in a mean increase in TBW of 0.57 ± 0.28 L (Fig. 5.2) 
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with a range of 0.03-1.00 L (Table 5.2). However, it is currently unknown whether the 

vastly diverse effects of Gly supplementation on fluid retention are due to anatomical. 

metabolic or genetic differences between subjects. 

A key finding of the present series of studies is the importance of the methodology that led 

to an increase in TBW. The only difference between LP2 and LP3 was the length of time 

between the ingestion of the final supplement and testing. Thus, it would seem apparent 

that a period of time in excess of 3 hours is required for the retained water to be distributed 

within body water compartments (Fig. 4.7). Gly has been investigated as a potential 
hyperhydrating agent for a number of decades (Anderson et al., 2001; Lyons et al., 1990). 

However, the benefits of Gly hyperhydration are equivocal with at least 23 original papers 

published on Gly hyperhydration providing conflicting results. Previous studies examining 

the effectiveness of Gly supplementation as a hyperhydration method have consistently 

utilised a single Gly bolus mixed with water and ingested between 2-3 hours prior to 

analysis (Lyons et al., 1990; Montner et al., 1996). However, when Gly was delivered in a 

similar fashion alongside a Cr hyperhydration protocol previously shown to be successful 

in our lab (Kilduff et al., 2004), no increase in hydration was measured (Fig. 3.2). Previous 

Gly hyperhydration studies have quantified water retention by the volume of urine 

produced (Anderson et al., 2001; Freund et al., 1995), which provides no information as to 

where the retained water was distributed. Body compartment analysis by multifrequency 

bioimpedance combined with changes in body mass used in the present study, provides 

data indicating fluid changes in both the intra- and extra-cellular water compartments. 

Furthermore, the mechanism by which bioimpedance estimates body water provides 

insight into the confounding data from LP I and LP2. Since hypertonic solutions such as 

the Cr/Gly combination (965 ± 61 mosmol"kg-1) cause an initial net movement of fluid into 

the intestinal lumen (Gisolfi et al., 1990), there is a loss of ECW and thus TBW, which 

ultimately leads to some degree of dehydration, albeit temporarily. This is confirmed by 

the small percentage reductions in plasma volume that occurred after supplementation with 

both PI/Gly and Cr/Gly in LP1 and LP2 (Chapters 3(a) and 4(a)). Interestingly, fluid 

changes in the trunk have little effect on bioimpedance measurements as the trunk only 

accounts for 5-12% of total body impedance (Kushner, 1992). This is confirmed by the 

relatively small impact on bioimpedance measurements of up to 2L of fluid within the 

abdominal cavity (Kushner et al., 1996). Additionally, the profoundly high osmolality of 

the Cr/Gly solution may have inhibited gastric emptying (Costill & Saltin, 1974). further 

contributing to the lack of increase in TBW 2-3 hours after Cr/Gly ingestion as 

demonstrated in LP 1 and LP2. Although Cr/Gly supplementation results in significant 

water retention, a period of time greater than 3 hours is required after ingestion of the final 
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Cr/Gly supplement before significant hydrating effects are discerned throughout the body 

water compartments. Furthermore, it is possible that a similar effect would have been 

observed after LP 1 and LP2 had a longer period of time been left between ingestion of the 
final supplement and testing. The results from the present series of experiments provides 

an explanation as to why the results of Gly hyperhydration studies to date have been 

equivocal in nature (e. g. Latzka et al., 1997; Lyons et al., 1990; Marino et al., 
2003; Montner et al., 1996). That is, inconsistencies with the period of time between 

ingestion of the Gly bolus and commencement of exercise (Robergs & Griffin, 1998) 

coupled with the highly individualised response to Gly ingestion (Table 5.2) has resulted in 

some but not all subjects receiving the physiological benefits of increased TB W prior to 

the exercise induced heat stress. Therefore, if the period of time between ingestion of the 

Gly bolus is short (i. e. less than 3 hours) then there will not be adequate time for the 

retained water to be dispersed within body compartments in many of the subjects. For 

example, in a set of studies by Latzka et al. (1997; 1998), 8 subjects were required to ingest 

1.2 g Gly"kg 1 body mass only 1 hour prior to exercise in a hot environment. The small 

subject number combined with the short period of time between ingestion of Gly and 

exercise commencement may explain why these researchers found no physiological 

benefits of Gly ingestion compared to water. The findings of the present series of 

investigations not only provide invaluable information to researchers but to coaches who 

wish to pursue Gly as a means to hyperhydrate athletes prior to exercise. 

Although an expansion of TBW induced by combined Cr/Gly supplementation may 

provide athletes with a physiological advantage (Figs 5.3,5.4,5.5,5.7), there has been 

some anecdotal evidence published in the media suggesting a link between Cr use and 

muscle strains, muscle cramps, heat intolerance, and other side effects (e. g. Tocci, 2005). 

Although these findings are not well supported by the scientific literature, there was one 

isolated incident of muscle cramping (gastrocnemius) during supplementation with Cr/Gly 

in the present series of studies (Chapter 3(a)). However, it is unclear whether Cr 

supplementation was causative of muscle cramping in this case. Furthermore, data from 

previous studies (Kern et al., 2001; Kilduff et al., 2004) and the present investigations 

(Chapter 5) suggest that Cr actually provides protection from heat stress as opposed to heat 

intolerance as suggested by (Tocci, 2005). The majority of studies conducted in athletes 

and soldiers indicate a substantial level safety of both short- and long-term Cr use in 

healthy adults (Bennett et al., 2001, Greenwood et al., 2003a; Greenwood et al., 

2003b, Kreider et al., 2003; Poortmans & Francaux, 1999; Robinson et al., 2000). There 

have also been some concerns that high dose Cr usage may cause kidney damage, although 

these are based solely on two case reports in which one of the affected individuals was 
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suffering from existing underlying renal disease (Koshy et al., 1999; Pritchard & Kalra, 

1998). Both comprehensive literature reviews and expert panels have maintained that there 
is no conclusive evidence to support the notion that Cr may adversely affect kidney 

function in healthy individuals (Farquhar & Zambraski, 2002; Pline & Smith, 

2005; Poortmans & Francaux, 2000; Terjung et al., 2000; Yoshizumi & Tsourounis, 2004). 

On the other hand it is currently unknown whether Gly ingestion or infusion for prolonged 

periods of time may cause cerebral oedema. A single bolus of oral Gly supplementation is 

unlikely to be harmful due to delayed absorption by the brain and rapid metabolism by the 

liver and urinary excretion prior to Gly reaching cerebral circulation (Sommer et al., 
1993; Tourtellotte et al., 1972). Although Gly was ingested for 7 days in the present series 

of experiments without incident, further research is required to examine the effects of Gly 

ingestion for prolonged periods of time on intracranial pressure. Furthermore, there is some 

concern that prolonged elevation of blood [Gly] for periods of weeks or months may pose 

a risk to kidney function and fluid regulation. However, Frank et al. (1981) reported that 

adverse reactions to Gly were associated with intravenous, subcutaneous or intraperitoneal 

injection, with no occurrences with oral ingestion. Nevertheless, individuals with diabetes, 

kidney failure, migraine, cardiovascular or liver disorders or who are pregnant should 

avoid Gly ingestion due to acute symptoms that may pose a risk for associated 

complications (Robergs & Griffin, 1998). Additionally, athletes who intend to exercise at 

high altitude should also avoid combined Cr and Gly ingestion due to reported associations 

between plasma volume expansion and the development of high altitude pulmonary 

oedema (Luks et al., 2007). 

9.2 Cardiovascular, thermoregulatory and metabolic responses 

during exercise in the heat 

There is mounting evidence to suggest that a direct relationship exists between the level of 

dehydration and the elevations in heart rate, Tc (Montain & Coyle, 1992b), muscle 

glycogen use (Hargreaves et al., 1996), blood concentrations of fluid regulating hormones 

(McConell et al., 1997) and discomfort during exercise in the heat (Noakes. 1993). 

However, it is currently unclear from the existing data whether this relationship is spurious 

or indeed if dehydration is causative of the above noted increases in physiological 

responses. The results from the present series of studies would seem to support the 

hypothesis of Montain & Coyle (1992a) that dehydration does cause an increase in Tc 

during exercise. For example, in Chapters 3 (a) and 4 (a), supplementation with combined 

Cr and Gly did not significantly alter body water levels, and subsequently physiological 
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responses during exercise in the heat were not different compared to pre-supplementation 

values. However, when Cr and Gly were ingested using LP3, TBW increased significantly 

which resulted in a significant attenuation in heart rate (Fig. 5.3), T, (Fig. 5.7) and 

perception of effort (Figs. 5.4,5.5) during exercise in the heat compared to the pre- 

supplementation exercise trial. Metabolic responses were not different following Cr/Gly 

supplementation (Table 5.4,5.5,5.6), and therefore alterations in hydration status provide 
the only reasonable explanation for the reductions in T, and heart rate reported in Chapter 

5. However, the hypothesis of Noakes et al. (1991) that metabolic rate not percentage 
dehydration is the most important determinant of T, during exercise in the heat cannot and 
indeed should not be discounted. Indeed the high correlation between relative exercise 

intensity (i. e. % V02 
x) and T, during exercise has been known for 40 years (Saltin & 

Hermansen, 1966). Furthermore, Pugh et al. (1967) measured TTe, sweat rates and body 

mass loss during a marathon run in warm conditions. The authors reported that the 

winner's compared to average race finishers mean speed was higher (16 vs. 13 km. hr-1), 

estimated Vol was higher (54 vs. 44ml"kg l. miri 1), body mass loss was double (5.23 vs. 

2.85 kg) and post-race Tre was higher (41.1 vs. 39.0 °C). Therefore, the implication of these 

findings are that successful runners who employ a higher work rate, have higher energy 

expenditure and consequently higher T, However, in the present series of investigations 

metabolic rate was not different between exercise trials (Tables 3.1,4.2,5.4) and therefore 

no valid conclusions regarding alteration of this variable can be drawn. 

Supplementation with combined Cr and Gly using LP3 also resulted in a small but 

significant increase in plasma volume of 2.4%, from pre- to post-supplementation. This is 

in contrast to the majority of previous studies that utilised Cr or Gly alone to hyperhydrate, 

which concluded that there were no changes in plasma volume compared to water or a P1 

(Freund et al., 1995; Kilduff et al., 2004; Lyons et al., 1990). In agreement with these 

previous studies, there were no appreciable changes in plasma volume in the present study 

in LP3 from pre- to post-supplementation when either Cr or Gly alone were ingested. 

However, the fact that combined Cr and Gly resulted in a significantly greater retention of 

fluid than Cr or Gly alone and the unique way in which this novel hyperhydration strategy 

retains fluid, may account for these notable differences. Nevertheless, the proposed 

benefits of an expansion in plasma volume prior to exercise in the heat remain unclear at 

present. Montain and Coyle (1992b) have indicated that plasma volume drops significantly 

during prolonged cycling at 63-67% Vol 
maxwith a corresponding rise in Tc. Therefore it is 

reasonable to assume that any expansion of plasma volume prior to exercise would be of 

cardiovascular and thermoregulatory benefit to subjects cycling in the heat as maintenance 
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of plasma volume would sustain stroke volume and provide an adequate avenue for heat 

loss. The results of the present series of experiments appear to confirm such a hypothesis 

as plasma volume dropped by approximately 12% following 40 min cycling exercise at 
63% WR, and a 16.1 km time trial (Figs. 3.6,4.6,5.8) resulting in a significant increase 

in T, However, when plasma volume was expanded by 2.4% prior to exercise via 
ingestion of Cr and Gly (Chapter 5) there was a significant attenuation in both T, (Fig, 5.7) 

and heart rate (Fig. 5.3). Nevertheless, this plasma volume hypothesis fails to explain how 

Cr supplementation alone can result in a significant attenuation in Tc and heart rate during 

exercise in the heat despite no percentage increase in initial plasma volume in both the 

present experiments (Fig. 5.7) and previous studies (Kern et al., 2001; Kilduff et al., 2004). 

Furthermore, given that plasma volume does not continue to drop beyond the initial fall 

due to postural changes during running either in the field or on a treadmill despite large 

reductions in TBW (4-7%) it is unclear what benefit, if any may be gained from plasma 

volume expansion prior to running in the heat. Therefore, it remains a distinct possibility 

that the reductions in Tc (Fig. 5.7) observed after Cr and combined Cr and Gly 

supplementation may have been due to an increased specific heat capacity of the body, 

resulting in a greater capacity to store heat (Kilduff et al., 2004). Given that it takes 0.83 

kcal of heat production per kg of body mass to increase T, by 1 °C; a Cr/Gly induced 

expansion of TBW (and hence, increase in body mass), could lead to a more efficient 

distribution of heat within the body (Kilduff et al., 2004). Several published studies lend 

support for this hypothesis, and indeed further propose that fluid ingestion enhances 

performance in the heat by increasing the heat storage capacity of the body (Kay & 

Marino, 2000; Kilduff et al., 2004; Sawka, 1992). 

The recent reports of heat related injuries and deaths in athletics competition and during 

military service have highlighted the need for an adequate intervention. Methods such as 

heat acclimatisation, pre-cooling or plasma volume expansion via saline infusion are not 

readily accessible or indeed practical for the amateur runner. Furthermore, fluid 

replacement during the race itself can be problematic; too little could potentially result in 

an elevated Tc and heat stroke, too much could result in frequent visits to the lavatory (as 

demonstrated by Paula Radcliffe stopping to urinate during the race in the London 

Marathon. 2005) and a progressive fluid overload, leading to dilution of blood [sodium] 

below 130 mmol"L-' and ultimately hyponatraemic encephalopathy and even death 

(Noakes, 2005). Therefore, increasing body water stores prior to exercise with combined 

Cr and Gly is a simple way in which to provide a fluid reservoir for each athlete, protecting 

against dehydration and limiting the volume of fluid that would have to be replaced during 

the race. However, the dissimilarity in wind conditions between laboratory conditions and 
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the external environment mean the extent by which supplementation with Cr or combined 
Cr and Gly reduced T, and heart rate during cycling exercise in the heat may be 

significantly less when the exercise is performed outdoors. Evidently, further field-based 

research using portable recording devices such as the ingestible telemetry pill, is required 
to determine the `true' effects of combined Cr and Gly supplementation on 
thermoregulation and exercise performance in the heat. 

9.3 Exercise performance 

Several studies have indicated that the increased heart rate and T, resulting from 

dehydration can have a negative impact on exercise performance (Cheuvront et al., 2005). 

Yet, despite the reductions in Tc (Fig. 5.7), heart rate (Fig. 5.3) and perceived leg fatigue 

(Fig. 5.4) during constant-load exercise induced by supplementation with Cr/Pl and 
Cr/Gly, time trial performance was not affected (Chapter 5). It seems likely that the 

exercise trial in the present study was not of sufficient duration and therefore too high an 

exercise intensity for hyperhydration to have a significant effect on performance. For 

example, the mean sweat loss recorded in the present series of studies only equated to 

2.5%, 2.0% and 2.0% of body mass in Chapters 3(a), 4(a) and 5 respectively, all within the 

so called `tolerable range' of dehydration (Cheuvront & Haymes, 2001). Therefore, it 

would appear that commencing exercise in a hyperhydrated state may not confer any 

significant advantage in terms of exercise performance compared to euhydration or indeed 

modest dehydration (i. e. loss of 2-3% body mass). The results from the present series of 

studies are compatible with such an idea, although further research is needed to determine 

the effects of hyperhydration on physiological responses and performance during a more 

prolonged exercise trial where a more marked degree of dehydration would be expected. 

There is also theoretical opinion that dehydration within a tolerable range will not have a 

negative impact on exercise performance, but may even confer an advantage by preventing 

inevitable increases in body mass due to consumption of large volumes of fluid 

(Armstrong et al., 1985; Noakes, 2001). Therefore if body mass can be reduced while 

power output remains constant there will be a concomitant reduction in the energy cost of 

exercise, especially in weight bearing activities. However, Armstrong et al. (2006) recently 

examined the effects of pronounced dehydration (-5.6% body mass) on physiological 

responses and running economy during a 10 min treadmill run at 70% and 80% Vol 
rrm in 

an ambient temperature of 23°C. Compared with euhydration, subjects in the hypohydrated 

state experienced a significantly higher heart rate and Tie concurrent with a reduction in 
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cardiac output and stroke volume. Furthermore, these authors found no differences in 

running economy between hydration conditions suggesting that dehydration in the region 

of 5.6% body mass and below will not confer any significant advantage in terms of 

reducing energy cost (Armstrong et al., 2006). However, these tests were conducted in 

thermoneutral conditions (23°C) for a relatively short period of time (10 min), resulting in 

only a small 0.6°C increase in Tre. Given that T,, can rise in excess of 39°C during exercise 
in the heat (Fig. 5.5) and even beyond 43°C following prolonged exercise (Armstrong et 

al., 1996) the possible effects of hyperthermia on V02 cannot be ignored. Further, Noakes 

(2005) argues that findings from laboratory research completed on a treadmill with no 
facing wind such as those presented by Armstrong et al. (2006) cannot be extrapolated to 

the field. It is also presently unknown whether the reductions in heart rate and Tc caused by 

combined Cr and Gly supplementation would outweigh the potential negative impact of an 

increase in body mass during weight bearing sports such as running. However, there is 

some anecdotal evidence to suggest that hyperhydration may be of benefit during elite 

endurance performance. One of the noticeable results of the recent Olympic Games in 

Athens, was American runner Deena Kastor's bronze in the women's marathon. 

Afterwards it was revealed that she had ingested a Gly solution as part of her pre-race 

preparation in a bid to enhance and maintain hydration in the scorching heat of Athens. 

Could this have been a factor in her success? Further experimental research is required to 

determine the effects of an increased body mass induced by fluid retention on running 

economy and endurance performance performed in hot and humid conditions. 

The vociferous debate surrounding the proposed benefits of rehydration on exercise 

performance in the heat (e. g. Cheuvront et al., 2003; Coyle, 2004; Maughan & Shirreffs, 

2004; Noakes, 2005; Noakes & Martin, 2002; Shirreffs et al., 2004) looks set to continue for 

several years to come. One of the main reasons for the equivocal nature of the data in this 

area is the vastly different methodological approaches employed to answer the same 

question; namely does dehydration have a negative impact on exercise performance? For 

example, in the present set of experiments reducing the extent of dehydration via Cr and 

Gly hyperhydration did not improve performance in a simulated 16.1 km cycling time trial 

in 30°C, 70% relative humidity (Chapter 5). Conversely, Cheuvront el al. (2005) concluded 

that dehydration in the region of 3% body mass significantly reduced the total amount of 

work (kJ) completed in 30 min by 7.6 ± 5.9% compared to euhydration in a 20°C 

environment. However, the opposite findings of these different experiments are clearly 

only relevant to the individual populations and conditions (environmental and 

physiological) examined in that particular study. Therefore, extrapolation to competitive 
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endurance exercise contested in different environments is not possible. Only by comparing 
the effects of different levels of dehydration in the same athletes running at the their same 
speeds in the same environmental conditions on two or more different occasions, can 
researchers determine the independent effects of dehydration when all other variables that 
could potentially influence that relationship are controlled and hence identical (Noakes, 
2005). 

9.4 Applications 

Many other vocations out with the area of sport and exercise also experience regular 
problems with fluid balance. For example, the potential danger of dehydration and 
heatstroke in the military situation have been recognised since the first half of the twentieth 

century. The first set of studies examining the effects of heat stress and dehydration on T,, 

heart rate, exercise performance and physiological well being were published in 1938 and 
1947 using soldiers as subjects (Adolph, 1938; Adolph, 1947; Adolph & Dill, 1938). These 

studies concluded that soldiers marching in desert heat developed dehydration despite free 

access to fluids, which subsequently resulted in premature fatigue. Furthermore, heart rate 

and Tc rose as a linear function of the level of dehydration. Adolph (1947) suggested that 

there were no immediate health risks associated with the dehydration to the extent of 7- 

10% of body mass but there was a risk of serious organ failure should dehydration exceed 

15%. Yet despite these early findings, half a dozen American soldiers died in 1 week 

during the recent Iraq conflict because of the mind-baking 130° heat (Wyatt, 2004). Inside 

the tents, soldiers live in a heat index of 150° plus and soldiers tell stories of dizziness and 

of passing out facedown into their food in the dining hall (Wyatt, 2004). Medics at one unit 

report treating a dozen cases of kidney stones a day caused by dehydration. The official 

statistics show that more soldiers were treated for heat stroke and dehydration than gun 

shot wounds in the recent Gulf War conflict (Wyatt, 2004). Soldiers are currently required 

to consume over 15 L of water per day to avoid dehydration (Wyatt, 2004), a strategy that 

is both time consuming and hugely impractical. Ingestion of combined Cr and Gly may 

provide the military with a more practical solution, as soldiers will actively retain a larger 

volume of the ingested fluid (Fig. 5.2). Furthermore, it is possible that a Cr-induced 

increase in ICW (Fig. 5.2) may result in an increased specific heat capacity of the body, 

which will allow a greater capacity to store heat (Kilduff et al., 2004). Therefore, soldiers 

may be provided with a greater degree of protection from heat stress than they would from 

simply replacing the fluid lost through sweat. However, further research investigating the 

effects of combined Cr and Gly on thermal and cardiovascular responses during extremc 



155 

heat stress while performing military exercises in both the laboratory and field situations. 
including in the confined space of a tank or armoured vehicle, is required before any 
definitive conclusions can be drawn. 

Space travel leads also to severe physiological stresses that have profound effects on the 

wellbeing of astronauts (Lane & Feeback, 2002). Many studies have attempted to quantify 

the exact nature of the problems encountered by astronauts during and on return from 

prolonged space travel, though few practical solutions have been offered. Astronauts 

routinely experience a reduction in body mass of 1-3 kg on return from space flight (Leach 

et al., 1996; Smith et al., 1997) with losses up to 10 kg reported after long-duration 

missions (Grigoriev et al., 1996). The cause of this loss in body mass is believed to be 

multi-factorial, with insufficient fluid and energy intake and losses in musculo-skeletal 

mass considered the main contributors (Lane & Feeback, 2002). Several studies have 

reported a significant reduction in TBW on return from space travel (Grigoriev et al., 

1996; Leach et al., 1975; Leach & Rambaut, 1977). This water loss may largely be 

accounted for by loss of body mass (Grigoriev et al., 1996) but also reflects water loss 

unrelated to muscle atrophy. Microgravity has been shown to remove all hydrostatic 

gradients within the body (Thornton et al., 1977), resulting in a cephalad fluid shift of 

approximately 1-2 L and a further shift of fluid from extra-cellular to intra-cellular water 

compartments (Leach et al., 1996). In addition, there is indirect evidence to suggest that 

the thirst response is reduced in space to such an extent that fluid lost through respiration 

and sweating is not adequately replaced, resulting in a reduction in TBW and plasma 

volume by up to 17% (Lane et al., 2000; Leach et al., 1996; Smith et al., 1997). The extent 

of plasma volume reduction incurred during space travel may be further exacerbated by the 

practice of `voluntary dehydration' undertaken by some astronauts prior to both take-off 

and re-entry to avoid the need to urinate (Seddon et al., 1994). The effects of a significant 

reduction in plasma volume may be profound, for example decreasing the 

thermoregulatory capacity of the body, resulting in an increased heart rate and Tc during 

exercise and a reduced exercise tolerance (Fortney et al., 1998). Additionally, up to two 

thirds of astronauts suffer from orthostatic intolerance (inability to maintain a standing 

posture) on return to earth (Buckey, Jr. et al., 1996b) due to the combined effects of 

reduced central venous pressure (Buckey, Jr. et al., 1996a) and skeletal muscle atrophy that 

ensues from a lack of static exercise associated with prolonged exposure to microgravity 

(Convertino et al., 1989). 

One experimental approach to maintaining plasma volume during space travel has been to 

infuse isotonic saline. In a terrestrial environment this maintained central blood volume, 
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resulting in an increased skin blood flow and associated convective heat loss (Fortney et 
al., 1988). The medical expertise required to insert and maintain a venous infusion and the 
restricted mobility that would result, makes this method of rehydration impractical during 
space travel. Currently, dehydration prior to re-entry into the earth's atmosphere is treated 
by oral intake of sodium chloride and water (Lane & Smith, 1999). However, this 
treatment has limited efficacy and may be detrimental in astronauts who have dehydration- 
induced hypernatremia. While these current fluid strategies may be partially successful in 

replacing some of the fluid loss after dehydration has occurred, it may be more desirable to 
`fluid-load' with combined Cr and Gly supplementation prior to take-off to minimise 
subsequent dehydration during flight. Furthermore, the Cr and Gly oral hyperhydration 

regimen described in Chapter 5 would provide astronauts a very simple way in which to 
increase fluid stores during the relative confinement of space travel improving the 
likelihood of astronaut compliance. 

However, given that plasma volume can decrease during space travel by as much as 17%, 

the 2.4% expansion induced by Cr and Gly in the present study (Chapter 5) may not be 
large enough to offset this deficit. Further research is required to examine whether plasma 

volume expansion via Cr and Gly hyperhydration can minimise the adverse effects of 

plasma volume reduction during space travel and orthostatic intolerance on return to earth. 
Nevertheless, combined Cr and Gly supplementation does result in a significant increase in 

body mass of up to 1.6 kg (Figs. 3.2,3.9,4.2,4.7,5.2) which would counteract the 

majority of the losses reported after a space flight (Leach et al., 1996; Smith et al., 1997). 

Furthermore, when Cr and Gly are ingested according to LP3, there is a significant 

increase in TBW (Fig. 5.2) which would potentially offset the reduction in TBW that 

occurs during space flight (Grigoriev et al., 1996; Leach et al., 1975; Leach & Rambaut, 

1977). Despite the relatively minor percentage increases in plasma volume associated with 

combined Cr and Gly ingestion (Chapter 5), astronauts encounter several other 

physiological problems during space travel that this novel hyperhydration strategy may 

potentially counteract (Lane & Feeback, 2002). For example, the effect of plasma volume 

loss in space may result in excessively high T, for astronauts wearing protective garments 

during launch and landing. Dehydrated (> 3% body mass) unacclimatised individuals will 

exhibit excessive heat strain (Tc exceeding 39°C) during the pre-launch and launch of the 

space shuttle (Pandolf et al., 1995). T, has been measured in crewmembers during landing 

and found to be significantly elevated to approximately 38°C despite the use of a liquid 

cooling garment (Rimmer et al., 1999). The finding that ingestion of Cr and Gly can 

significantly reduce heart rate (Fig. 5.3) and Tc (Fig. 5.7) during exercise induced heat 

stress insinuate that this simple hyperhydration strategy could improve physical and mental 
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performance during space travel and offer astronauts some protection from heat injure. 
Additionally, Cr supplementation prior to and during prolonged periods of immobilisation 

(hypokinesia) significantly attenuated skeletal muscle atrophy (Aoki et al., 2004). 
Hypokinesia encountered during microgravity has been shown to induce muscle atrophy, 
slow-to-fast twitch muscle fibre shift and a decrease in force generation capacity (Aoki et 
al., 2004; Caiozzo et al., 1994). One of the proposed mechanisms for the protective effect 
of Cr on skeletal muscle includes higher mitotic activity in satellite cells (Dangott et al., 
2000). In addition, it is also possible that Cr is able to activate signalling pathways, 

protecting skeletal muscle against proteolysis (Vierck et al., 2003). Alternatively, the 
increase in cellular hydration that occurs after Cr supplementation may also have a role in 

controlling protein turnover as this can act as a signal, stimulating protein synthesis and 

attenuating protein breakdown (Haussinger et al., 1993). However, further research is 

required to examine the exact effects of Cr on skeletal muscular atrophy alongside a 

structured weight-training program during prolonged space travel. 

Additionally, clinical complications arising in patients due to insufficient or incorrect 

hydration and nutritional replacement regimens during acute and chronic disease states or 

during postoperative surgical care are commonplace in many hospitals (Lennard-Jones, 

2000). Some regularly recorded effects of chronic under-nourishment and dehydration are 

reduced muscle power, diminished force of coughing, immobility, apathy, loss of morale 

and depression, cool pale peripheries with prolonged capillary return time, decreased skin 

turgor, deep breathing, increased thirst, irritability, sunken eyes, dry mucus membranes and 

sunken fontanelle (Keys et al., 1950). However, many of these conditions are reversible 

simply by delivering adequate fluid and nutrition to the affected person (Lennard-Jones, 

2000). The effects of nutritional and hydrational depletion delay recovery and increase 

liability to complications (Lennard-Jones, 2000). The physiological consequences of fluid 

depletion are well known and described elsewhere in this thesis, but a further consideration 

in a clinical situation is to maintain patient comfort by preventing them feeling thirsty. This 

symptom does not necessarily correlate with general hydration and volume of fluid intake 

and can often best be relieved by sips of fluid (Lennard-Jones, 2000). However, in many 

situations (i. e. recovery from major surgery) patients are unable to manually ingest any 

liquids and therefore must have their fluids replaced by intravenous infusion or a naso- 

jejunal enteral feeding tube (Page et al., 2002). The recent development of a procedure 

known as haemodynamic optimisation may minimise the extent of dehydration and 

resultant hypovolemia by using an ultrasonic probe inserted down the throat of the patient 

to accurately measure fluid levels in real time (Moss, 2006). This practice allows surgeons 

to replace the desired volume of fluid during the surgical procedures to prevent 
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dehydration occurring during the post-operative state (Moss, 2006). However, conscious 

patients who are subjected to periods of rigorous bed rest will remain greatly at risk from 

hydration and nutritional related concerns as they are often left to consume food and fluid 

ad libitum (Zorbas et al., 2003). Indeed several of the physiological problems associated 

with prolonged periods of bed rest are similar to those encountered during space travel, a 
fact that ground based space medicine researchers use to their advantage when examining 
the efficacy of any clinical intervention strategies. It is well established that prolonged 

exposure to bed rest results in the significant increase in excretion of fluid and electrolytes 
in urine, which as a direct result causes a reduction in plasma volume (Greenleaf et al., 
1977a; Greenleaf et al., 1977b; Zorbas et al., 2003). A chronic reduction of plasma volume 

with associated hypovolemia, and a reduction in red cell mass, can impair the function of 

the cardiovascular system and decrease human performance (Balke et al., 1954). 

Given that supplementation with combined Cr and Gly supplementation results in a 

significant increase in TBW (Fig. 5.2) and percentage increase in plasma volume (Chapter 

5) it is tempting to assume that patients exposed to prolonged periods of bed rest would 

benefit from ingestion of this unique hyperhydration strategy. The added calorific intake 

from ingesting glucose along with the Cr and Gly would also lessen the chances of patients 

developing malnutrition. Of course it is currently unknown whether a sterile Cr/Gly 

solution could be developed enabling delivery to unconscious patients by venous infusion. 

However, Page et al. (2002) have concluded that enteral feeding via a naso-jejunal tube is 

safe and well tolerated and at least as effective as intravenous hydration, and therefore 

would provide a means to deliver the Cr and Gly solution to patients in a coma or in 

recovery following a surgical procedure. Additionally, the restricted movement during bed 

rest can also cause a significant decrease in skeletal muscle mass and associated reductions 

in force production (Aoki et al., 2004; Caiozzo et al., 1994) which may be minimised via 

the anabolic effects of Cr supplementation as previously discussed (Aoki et al., 2004). 

Indeed the effects of Cr supplementation on the exercise performance and general health of 

patients suffering from chronic obstructive pulmonary disease have been recently 

examined (Fuld et al., 2005). Cr supplementation led to increases in fat-free mass, 

peripheral muscle strength and endurance, health status, but not exercise capacity 

compared to a Pl (glucose). These findings led the authors to conclude that `Cr may 

constitute a new ergogenic treatment in chronic obstructive pulmonary disease' (Fuld et 

al., 2005). However, controlled clinical trials during prolonged bed rest studies are 

required before the proposed physiological benefits of combined Cr and Gly 

supplementation can be confirmed. 



159 

9.7 General Conclusions 

A number of conclusions can be drawn from the studies presented in the previous chapters. 
Although these conclusions are based on physiological evidence from well-controlled 

cycling studies in the laboratory situation, they may not allow extrapolation of these results 
to other populations, sports and environments. 

Supplementation with a combination of a Cr and Gly using loading protocols 

previously established in the literature (20g of Cr for 6 days and 1g Gly-kg-1 body 

mass diluted in 500 ml of water 2 hours prior to the start of the experimental trial) 

resulted in a significant increase in body mass with no change in TBW, ICW, ECW 

or RPE, heart rate and Tc during exercise in the heat compared to pre- 

supplementation. Given that previous Cr supplementation studies performed in this 

laboratory have consistently resulted in significant increases in TBW it can be 

hypothesised that the Gly administered prior to exercise had in some way negated 

the Cr induced increase in TBW. 

ii. Supplementation with a combination of a Cr and Gly using a novel loading 

protocol (ingestion of both Cr and Gly for 7 days) resulted in a significant increase 

in body mass TBW, ICW and ECW compared to pre-supplementation. Therefore, 

ingesting both Cr and Gly over several days may be the most effective method of 

fluid loading as there will be sufficient time for the retained fluid to be dispersed 

within body compartments. 

iii. Supplementation with a combination of a Cr and Gly (6 days of Cr and Gly 

ingestion, with the final supplement consumed 3 hours prior to measurement) 

resulted in a significant increase in body mass. Yet despite ingesting both Cr and 

Gly over several days to allow sufficient time for the retained fluid to be dispersed 

within body compartments there was no change in TBW, ICW, ECW or RPE, heart 

rate and Tc during exercise in the heat compared to pre-supplementation. It is 

probable that ingestion of a hypertonic solution such as the Cr and Gly mixture 

resulted in slowing of gastric emptying and an initial efflux of water from the 

plasma into the intestinal lumen. Therefore, the timing of ingestion is evidently 

critical, with the final supplement requiring to be consumed longer than 3 hours 

prior to the need for hyperhydration. 
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iv. Consumption of both Cr and Gly over several days and ingestion of the final 

supplement 5 hours prior to exercise is the most effective method of fluid loading. 
This will allow sufficient time for the retained fluid to leave the stomach, pass 
across the intestinal lumen wall and be dispersed within body compartments. 

v. Supplementation with both Cr and combined Cr and Gly for 7 days using the 
loading protocol described in the previous chapter was effective in increasing TBW 

and reducing heart rate, T, and perception of effort during prolonged exercise in the 
heat. The key finding of this study was that the increase in TBW after combined Cr 

and Gly supplementation was significantly greater than either Cr or Gly 

supplementation alone. Despite the increased hydration associated with combined 
Cr and Gly, there was no further attenuation in heart rate or Tre compared to Cr 

alone. Hyperhydrating prior to exercise through Cr, Gly or a combination of the 

two did not result in any significant improvement in 16.1 km time trial performance 

compared to euhydration. This may be because the time trial was too short to 

induce a degree of dehydration high enough to confer a significant improvement in 

exercise performance as a result of the altered hydration status. Furthermore, 

hyperhydration may not offer any significant advantage in terms of exercise 

performance compared to euhydration or indeed modest dehydration (i. e. loss of 2- 

3% body mass). 

vi. An ingestible telemetry pill system provides valid measurements of T, during both 

rest and exercise-induced hyperthermia up to the limits of Tc measurement and 

therefore can be used in the field where Tre and esophageal temperatures cannot be 

taken. This will allow the effect of combined Cr and Gly supplementation on 

thermoregulatory responses during field studies to be precisely quantified. While 

the infrared tympanic membrane thermometer closely matched Tre measurements at 

rest and in the early stages of exercise, T1 appeared to significantly underestimate 

T,, once Tc exceeded 37.5°C. Further experimental evidence is required to 

determine whether the disparity between Ty and Tre is merely be due to 

imperfections in the tympanic membrane thermometer methodology or due to the 

existence of selective brain cooling in humans. 
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1. Describe the basic purposes of the research proposed. 

4ethyl gaunidine acetic acid, or creatine (Cr), is synthesised naturally in the body (1). At rest 
Zere is approximately 120 g of Cr in the body, of which 95% is located in skeletal muscle 
2). Creatine is synthesised from the amino acids arginine and glycine in a two-stage process 
1,3,4). First, an amidine group is transferred from arginine to glycine forming 
aunidinoacetic acid in a reversible reaction catalysed by the enzyme glycine transamidinase. 
'he second non-reversible stage involves the transfer of a methyl group from S- 
denosylmethionine, catalysed by gaunidinoacetate methyltransferase, resulting in the 
riethylation of guanidinoacetate and the formation of Cr. In humans, this process occurs in 
he pancreas and liver (5). While the mechanism responsible for the uptake of Cr by skeletal 
nuscle is presently unclear, tissue Cr uptake is enhanced by insulin (6,7) and muscle 
ontraction (8). There are, however, problems associated with the use of a crossover design in 
xperiments involving Cr supplementation. The long washout period for Cr from muscle 
hakes it difficult to interpret results obtained from placebo trials administered as the second 
reatment. This methodological problem has resulted in many studies using matched groups of 
ubjects. With these concerns in mind, the balance of available evidence from Cr 
upplementation studies would suggest that Cr loading has no effect on peak power output 
luring a single 30 sec maximal bout of cycling exercise (9), but can improve high intensity 
-xercise performance when repeated exercise bouts are carried out (10,11,12,13,14). A 
imding common to most studies (including a study previously approved by the ethics 
; ommittee of Glasgow University (November 1999) is a Cr-induced increase in intra-cellular 

water. 

mother method of acute hyperhydration under current study involves the consumption of a 
pall amount of glycerol [1-1.2 g/kg body mass (BM)] along with a large fluid bolus (25-35 

il/kg BM) in the hours prior to exercise. Glycerol, a three-carbon alcohol synthesised 
aturally in the body, provides the backbone to triglyceride molecules and is released during 

polysis. Normal plasma levels of glycerol are 0.05 mM at rest and may rise to 0.5 mM 
uring prolonged exercise. Within the body it is evenly distributed throughout fluid 

ompartments and exerts an osmotic pressure. When consumed orally, it is rapidly absorbed 
nd distributed among body fluid compartments before being slowly metabolised via the liver 

nd kidneys. When consumed in combination with a substantial fluid intake, the osmotic 
ressure will enhance the retention of this fluid and expansion of the various body fluid 

paces. Typically, this allows a fluid expansion or retention of -600 ml above a fluid bolus 
lone, by reducing urinary volume. A review of glycerol as a hyperhydrating agent is 

rovided by Robergs and Griffin (15). 

.s dehydration is one of the primary causes of fatigue during exercise in the heat, the aim of 

ie proposed study is to investigate the effects of a Cr-induced increase in intra-cellular water, 
long with a glycerol-induced increase in extra-cellular water, on metabolism, 

lermoregulation and exercise performance in the heat. In a recent study combining Cr and 
lycerol (approved by the ethics committee of Glasgow University), acute glycerol 
dministration reversed the Cr-induced increase in intra-cellular water in an attempt to 

iaintain osmotic balance between intra-cellular and extra-cellular water compartments. In 

lis revised proposal, we seek to build on the previous findings and repeatedly administer 
lycerol during a period of Cr supplementation in order to overcome the initial reversal by 

lycerol of the Cr-induced increase in intra-cellular water and potentially increase extra- 

ellular water. The effects of this revised Cr and glycerol regiment on metabolism and 

xercise performance in the heat will also be investigated. 
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Outline the design and methodology of the project. 

[ethods/Design of investigation 
'e propose to study 24 endurance-trained male subjects (17-35 yrs). Subjects will be in good 
; alth at the time of testing and regularly take part in strenuous exercise. Eligibility will be 
; sessed by subjects undergoing a medical examination (as previously approved by the 
niversity Ethics Committee). Subjects will also be required to read and sign the enclosed 
. 
formation sheet. 

Testing will take place in the Environmental Chamber in the West Medical Building. A series of 
assessments will be carried out. These will include (see protocols): body composition using 
>tandard anthropometric methods (biolectrical impedance); extra-cellular water and total body 
water using multifrequency biolectrical impedance; maximal O2 uptake (V02 max) and lactate 
threshold (LT); and six cycle ergometer performance tests at an ambient temperature of 30° C, 
with relative humidity maintained at 70%. The first two performance tests will be familiarisation 
trials aimed to familiarise subjects with the exercise protocol and experimental procedures. The 
our subsequent performance tests will be carried out on days 1,8,15, and 22. Subjects will be 

assigned in a double blind fashion to either a Cr group or placebo Cr group: subjects will be 
matched into pairs based on BM and randomly assigned so that one member of each pair is in 
the Cr group and the other in the placebo group. Each Cr supplement will consist of 11.4 g of Cr 
H2O (equivalent to 10 g Cr) and 75 g of glucose polymer made up in 500 mls of warm to hot 
water (x 2 times daily). The placebo supplement will consist of 170 g/d of glucose polymer (85 
gx2 times daily). During the first and third week of the experimental regimen, subjects in both 
groups will receive either 1 g/kg BM glycerol or an equivalent amount of placebo diluted in 
each of the 500 mis of Cr or placebo supplements. On each of the experimental test days (i. e. 1, 
8,15,22), subjects will ingest the glycerol or placebo 4 hrs before the start of exercise. Subjects 
will also ingest approximately 500 ml of water each subsequent hour prior to exercise. The 
placebo group will follow the same procedure as the Cr group with regard to the preparation of 
the supplements. Subjects will also be required to consume at least 2L of additional water each 

uring the supplementation period 24 hr urinary collections will be made. The volume of urine 
ºllected each 24 hr period will be measured and a representative sample stored for subsequent 
talysis of Cr and creatinine concentrations. Subjects will be instructed to carry out a weighed 
take of food and an activity diary during the study period. 

rotocols 
Taximal Incremental Exercise Test: A direct measurement of V02 max and the LT will be 

etermined on a computer controlled cycle ergometer on the first visit to the laboratory. This 

st will involve a step-wise increase in work rate (15-20 watts/min) until volitional exhaustion. 
he results from this test will allow the LT to be estimated using gas exchange criteria. Subjects 

rill be given a warm-up before the test and a warm-down after the test. Subjects will be given a 
imiliarisation trial and a warm-up before the test and a warm-down after the test. 

Cycle Ergometer Performance Trial: On all four testing days (and familiarisation trials), 

subjects will perform 40 minutes of constant-load exercise at a moderate exercise intensity 

(approximately 63% of Maximum Work Rate) at an ambient temperature of 30° C, with relative 
humidity maintained at 70%. Following this 40 minute exercise bout, the subject will then 

undertake a 16.1 km (10 mile) time trail on a specialised cycle ergometer. Heart rate, oxygen 

uptake (and related cardiorespiratory measurements) and skin and rectal temperature will be 

measured throughout exercise as previously approved by the ethics committee. 

'iolectrical impedance: Extra-cellular water and total body water will be measured prior to and 

allowing each exercise test using multifrequency biolectrical impedance (Bodystat Multiscan 

00). This non-invasive method involves placing two current-inducing electrodes and two 

etector electrodes on the dorsal surfaces of the right hand and foot and a small (and 

nperceptible) electrical current (500 Micro-Amps) introduced between these (16). 

procedures with exception of the repeated glycerol administration have been previously 

oved by the University Ethics Committee. 
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Describe the research procedures as they affect the research subject and any other parties 
'olved. 

Jl experiments will take place in the Environmental Chamber in the West Medical Building. 
ºr Yannis Pitsiladis or a qualified (CPR-trained) and experienced colleague will be present at 
ll tests. Dr Pitsiladis is a certified phlebotomist and trained in CPR and Advanced Life 
upport. 

ome subjects may experience mild discomfort during the placement of and/or sampling of 
lood from a catheter placed in a vein on the dorsum of the heated hand. In our experience, 
its is minimal because: the catheter size is small (20 G); it is only placed when the hand has 
een heated to 44° C for at least 10 min, allowing a substantial local vasodilatation of the 
uperficial blood vessels, which facilitates their cannulation; the catheter is indwelling, 
Rowing for multiple sampling; while it is safely secured in place with adhesive tape, there is 
ufficient `play' to allow sampling without `pulling' on the vessel (i. e. the catheter can slide 
asily within the vessel); upon withdrawal of the catheter at the end of the experiment, firm 
ressure is maintained over the site for at least 15 min to prevent any leakage from the vessel 
to the surrounding interstitium which could lead to local oedema and bruising. Importantly, 

fa vessel cannot be readily cannulated or if the subject is nonetheless not comfortable with 
roceeding, the experiment is halted. No more than 100 ml of blood will be sampled for each 

otential participants will be identified either by personal contact or by advertisement. They 
All be asked to meet with the investigators to discuss the project and whether they would be 
citable as a subject. All subjects will be healthy individuals without a history of any 
ignificant medical problem(s). All subjects will be endurance-trained and therefore 
ccustomed to strenuous exercise to exhaustion. The good health of each subject will be 
stablished prior to the study by subjects undergoing a medical examination (as previously 
pproved by the University Ethics Committee), which is supported by a written assurance 
-om the subject. Subjects with a history of cardiorespiratory or neurological disease will be 
xcluded from participation, as will those having an acute upper respiratory tract infection. 
ubjects who take drugs (recreational or performance enhancing drugs) or who have 

onsumed alcohol within 48 h of an experiment will be excluded. 

'lose supervision of the subject is ensured at all times by the supervising investigator. The 

cell-being of the subject is established at frequent intervals throughout all tests by asking the 
ubject "Is everything alright? " Subjects are instructed, prior to the test, to respond to this 
uestion with a thumbs-up sign if everything is fine, and a thumbs-down sign if there is 

roblem. If a problem is indicated, the investigator will ask further questions to establish 
ihether there is a technical problem that could lead to potential hazard or whether the subject 

feeling unwell. In either case, the test is immediately halted. All subjects are routinely 
istructed to cease exercising if they experience any discomfort or have any concern for their 

cell-being. 

'he risks associated with performing maximal exercise are minimal as long as the subject is 

ppropriately instructed and familiarised with the device prior to participation and also is 

ppropriately supervised during the experiment. All exercise bouts are both preceded by a5 

nin "warm-up" and by a5 min "warm-down". The latter is of particular importance during 

Ligh-intensity exercise, when the local accumulation of exercise metabolites can cause an 

expansion" (or vasodilatation) of the blood vessels in the lower limbs, which can impair the 
dequate return of blood to the heart - predisposing to fainting on dismounting from the 

rgometer. This risk is minimised by having the subject exercise at a mild level during 

ecovery to "wash away" these metabolites and therefore to restore the capacity of the 

evolved blood vessels to their resting levels. 

)me subjects experience difficulty swallowing while breathing through a mouthpiece and 

earing a noseclip, due to some transient build-up of pressure in the ears. 
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What in your opinion are the ethical considerations involved in this proposal? (You may 
sh for example to comment on issues to do with consent, confidentiality, risk to subjects. 

ise has negligible risk in healthy adults, although maximal exercise has a small risk of ing myocardial ischaemia. 

subjects will complete a medical questionnaire and provide their written consent with the 
on to withdraw from training or testing at any point. 

insertion of a catheter into a vein may rarely cause irritation at the site of insertion, 
spasm (or constriction of the cannulated vein which may lead to interference with blood 
through it) and phlebitis. These risks are minimized in this investigation by the short ion of the test and by the procedures described above. 

lood and urine will be handled, stored and disposed of according to standard health and 
Lfety procedures. 

ssible side-effects from the use of similar glycerol hyperhydration strategies include slight 
usea, gastrointestinal distress and headaches. These problems have been reported among 
ne subjects in the many published studies to date (15). No side effects were reported in our 
; viously approved study. 

Le only known 'side effect' of oral Cr supplementation that has been reported is an increase 
body weight (12,17). 

5. Outline the reasons which lead you to be satisfied that the possible benefits to be 
from the project justify any risks or discomforts involved. 

It is envisaged that this research will benefit the identification of the physiological mechanisms wl 
exercise tolerance (i. e. the ability of individuals to perform exercise) in the heat. The minimal 
discomfort associated with the above procedures are considered to be worthwhile to gain the inf 
required. 

6. Who are the investigators (including assistants) who will conduct the research al 
are their qualifications and experience? 

Dr Yannis Pitsiladis PhD MMedSci BA, Chris Easton BSc, Mr John Wilson, Mrs Heather Collie 
Technicians), and 3 BSc Honours Project Students. The principal investigators have wide ranging e) 
of exercise testing over periods of up to 10 years without incident. The principal researchers have c, 
Cr supplementation studies and exercise to exhaustion studies in relatively extreme environmental c, 
in the past. 

7. Are arrangements for the provision of clinical facilities to handle 

emergencies necessary? If so, briefly describe the arrangements made. 

In the event of an emergency, guidelines recently approved by the ethics 
committee will be followed. 

In the event of an untoward incident that is not an emergency, the supervising Principal 
Investigator will administer appropriate first aid, if necessary. The subject will not be permitted 
to leave the laboratory until he has fully recovered. The subject will be encouraged to contact 
his local GP. The subject will be told that one of the Principal Investigators will conduct a 
follow-up by telephone at the end of the same day. The subject will also be provided with 24- 
hour contact numbers for both Principal Investigators. 
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8. In cases where subjects are identified from information held by another party 
(for example, a doctor or hospital) describe the arrangements whereby you gain 
access to this information. 

N/A 

9. Specify whether subjects will include students or others in a dependent 
relationship. 

Some students may be recruited but will be under no pressure from staff to participate in the 
study. 

10. Specify whether the research will include children or those with mental 
illness, disability or handicap. If so, please explain the necessity of using these 
subjects. 

No. 

11. Will payment be made to any research subject? If so, please state the level 
of payment to be made, and the source of the funds to be used to make the 
payment. 

No. 

12. Describe the procedures to be used in obtaining a valid consent from the 
subject. Please supply a copy of the information sheet provided to the 
individual subject. 

Each subject will be provided with a consent form outlining the testing procedures, which asks 
them for their written consent to participate in the project with the option to withdraw at any 
time (see enclosed copy). A verbal explanation will also be given and any queries answered. If 

there is some doubt of the subject's eligibility for the study, the subject will be excluded. 
Information on Cr and glycerol supplementation and the placebo will be given in the 
Information Sheet. 

13. Comment on any cultural, social or gender-based characteristics of the 

subject which have affected the design of the project or which may affect its 

conduct. 
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All subjects are male. This constraint is imposed for standardisation purposes. 

14. Give details of the measures which will be adopted to maintain the 
confidentiality of the research subject. 

The information obtained will be anonymised and individual information will not be passed on 
to anyone outside the study group. The results of the tests will not be used for selection 
purposes. 

15. Will the information gained be anonymized? If not, please justify. 

Yes 

16. Will the intended group of research subjects, to your knowledge, be 
involved in other research? If so, please justify. 

No. 

17. Date on which the project will begin (September, 2003) and end 
(September, 2005) 

18. Please state location(s) where the project will be carried out. 

The Environmental Chamber and Laboratory of Human Physiology (Lab 245), West Medical 
Building. 
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INFORMATION SHEET 
Study title: The effects of combined creatine and glycerol supplementation on hydration, thermoregulation and exercise performance in the heat in endurance- 
trained subjects 

You are being invited to take part in a research study. Before you decide whether to 
participate, it is important for you to understand why the research is being done and 
what it will involve. Please take time to read the following information carefully 
and discuss it with friends, relatives and your GP if you wish. Ask us if there is 
anything that is not clear or if you would like more information. Take time to 
decide whether or not you wish to take part. 

Thank you for reading this. 

What is the purpose of the study? We wish to find out whether taking certain 
previously used (by athletes) substances may increase your ability to work hard in 
the heat, by reducing dehydration that exercise in the heat induces. We will 
measure your ability to perform strenuous exercise lasting approximately 1 hour. 
The substances you will be required to ingest orally are creatine (a food element 
found in high abundance in meat and fish but also made by the body), glycerol 
(another substance found naturally in the body, which contributes to making energy 
for exercise), and glucose (Placebo). Creatine in its pure form is commercially 
available over the counter from most health shops. This supplement is popular 
amongst athletes as it is thought to improve high intensity exercise performance 
especially when repeated bouts of exercise are required (e. g. football, rugby). 

Why have I been chosen? You have been selected as a possible participant in this 
investigation because you regularly take part in endurance activity and you are in 

good health. Twenty four volunteers are being sought. 

Do I have to take part? It is up to you to decide whether or not to take part. If you 
decide to take part you will be given this information sheet to keep and be asked to 

sign a consent form. If you decide to take part you are still free to withdraw at any 
time and without giving a reason. 

What will happen to me if I take part? You will be asked to visit the laboratory 

on seven occasions over a five week period (see Table). The first test will last 

approximately 1 hour. All subsequent tests will last approximately 2 hours. You 

will be familiarised to the cycle test during the first three visits to the laboratory. 
After this practice period you will be randomly assigned to either a creatine group 
or a placebo group for the three week experimental phase of the study. After the 
first experimental cycle test you will consume either 20 g of creatine or 20 g of 
glucose a day (to be consumed with a glucose powder dissolved in one pint of 
warm to hot water before and after each daily training session) during the first and 
third week of the experimental phase. During the first and third week of the 
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experimental regimen, you will receive either glycerol (0.75 g per kg of body mass) 
or an equivalent amount of placebo diluted in each of the 500 mis of Cr or placebo 
supplements. You will also be asked to ingest an additional 2 litres of water per 
day. You will start the first supplementation period on the day after your pre- 
supplementation cycle test (visit 4) and will finish 6 days later, on the day before 
the post-supplementation cycle test. Following this one week period you will not 
take any supplements for 6 days, and after which you will complete a cycle test. For 
the final week you will take the opposite supplement to what you were taking 
initially. So, if you were initially taking glycerol, you will then change to the 
placebo supplement. You will not know which group you are in, until all the tests 
have been completed. The protocol for the second supplement is the same as the 
first. You will take the supplement for 6 days, before completing the final post- 
supplementation cycle test. 4 hrs prior to the last two performance trials you will 
consume your appropriate solution. If you received the glycerol solution prior to 
your second trial you will get the placebo solution prior to the last performance trial 
and vice versa. 
On your first visit to the lab you will be asked to complete two confidential 
questionnaires; the first will allow us to obtain information related to your general 
health; and the second will allow us to quantify your past exercise/activity 
involvement. 

During each exercise test and at regular intervals, we would like to take a small 
amount of blood from an intravenous line in the back of your hand. Intravenous 
lines may cause some bruising and subsequent soreness over the site of puncture 
and, rarely, a small wound which takes a few days to heal. 

Your skin and core (internal) body temperature will be measured throughout 

exercise. For the measurement of core temperature, a rectal temperature probe will 
be inserted (in private and before the experiment) 10 cm beyond the anal sphincter. 
Skin temperature will also be measured by taping a probe to the chest, triceps, thigh 

and calf muscles on the right hand side of the body. This will allow core and skin 
temperature to be monitored throughout each experiment with only minor 
discomfort. 

Your height, weight and percentage body fat will also be measured on each visit to 
the lab. Your percentage body fat will be estimated by a bioelectrical impedance 

technique, which involves placing slightly adhesive small patches ("electrodes") on 

your right hand and foot and introducing a very small and imperceptible electrical 

current between these. 

In order to estimate your nutritional intake and energy expenditure, we may ask you 

to record your normal food and drink intake for 1 week and to keep a diary of your 

physical activity. 

You will be required to collect all urine passed each 24 hour period (in containers 

to be provided) throughout the supplementation period (i. e. all urine passed over 

the 7 days). The volume will be measured and a representative sample analysed for 

creatine and creatinine concentration. We plan to use this information to assess the 

amount of creatine taken up by your body. 

Finally, you will not be able to consume any alcohol 48 hours prior to each lab 

visit. You will be excluded from participating in this study if you take drugs 

(recreational or performance enhancing drugs). 
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What are the side effects of taking part? Slight nausea, gastrointestinal distress 
(i. e. diarrhea) and headaches have previously been reported among some subjects. 
The only known 'side effect' of oral creatine supplementation that has been reported 
is an increase in body weight. This increase in body weight is mostly due to an 
increase in water retention. 

What are the possible disadvantages and risks of taking part? Exercise has a 
negligible risk in healthy adults, although maximal exercise has a small risk of 
inducing myocardial ischaemia ("heart attack"). The primary symptom of 
myocardial ischaemia is chest pain on exertion. If you experience any unusual 
sensations in your chest during the experiment, you should cease exercising 
immediately. 

You will breathe through a rubber mouthpiece during the tests, in order for us to 
collect the air you breathe out. This is similar to the equipment used for snorkeling. 
You will also wear a noseclip. Your heart rate may be monitored via adhesive 
surface electrodes for the additional monitoring of the heart's electrical activity (the 
"electrocardiogram"). You may experience difficulty swallowing while breathing 
through a mouthpiece and wearing a noseclip, due to some pressure in the ears. 
Some subjects experience increased salivation when breathing through a 
mouthpiece. Some subjects experience mild discomfort from prolonged sitting on 
the seat of the cycle ergometer. 

Intravenous lines through which blood is collected, may cause some bruising and 
subsequent soreness over the site of puncture and, rarely, a small wound which 
takes a few days to heal. 

You may experience some mild discomfort when inserting the rectal probe. 

What are the possible benefits of taking part? We hope that you will find out 

more about how your body responds to supplementation with combined creatine- 

glycerol supplementation and subsequent strenuous exercise. This information may 
help us better understand the mechanisms associated with fatigue and hydration 

during strenuous exercise. 

What if something goes wrong? If you are harmed by taking part in this research 

project, there are no special compensation arrangements. If you are harmed due to 

someone's negligence, then you may have grounds for a legal action but you may 
have to pay for it. The principal investigators, although not medically qualified are 
fully trained in Advanced Life Support. In the event of an untoward incident, the 

principal investigator(s) will provide basic life support including chest 

compressions and ventilation until emergency medical staff are on hand. You may 

want to consult your GP if you are experiencing any side effects from taking part in 

the study and should also inform the Principal Investigator. 

Will my taking part in this study be kept confidential? All information about 

you that is collected during the course of the research will be kept strictly 

confidential 

What will happen to the results of the research study? Results will be published 

in a peer-reviewed scientific journal once the study is completed. You will 

automatically be sent a copy of the full publication. You will not be identified in 

any publication. 
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Table: Schedule of visits and proposed tests. 

Visit Test Duration 
(hrs) 

1 Maximal Progressive Exercise Test 1 
2 Performance Cycle Test (Familirisation 1) 2 
3 Performance Cycle Test (Familirisation 2) 2 
4 Performance Cycle Test (Pre Supplementation 1) 2 
5 Performance Cycle Test (Post Supplementation 1) 2 
6 Performance Cycle Test (No Supplementation) 2 
7 Performance Cycle Test (Post Supplementation 2) 2 

If you wish to find out more about this investigation, you can contact: 

Dr Yannis Pitsiladis 
Lecturer, Institute of Biomedical and Life Sciences 
West Medical Building 
University of Glasgow 
Glasgow, G12 8QQ 
Phone: 0141 330 3858 
Fax: 0141 330 6542 
e-mail: Y. Pitsiladis@bio. gla. ac. uk 
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Consent Form 

I ........................................................... 

give my consent to the research procedures which are outlined above, the aim, 
procedures and possible consequences of which have been outlined to me 

Signature ............................................. 

Date ............................................. 

t". i\I 




