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ABSTRACT . 

High Order Resolution and Parallel Implementation 

on Unstructured Grids. (December 1996) 

Yufeng Yao, University of Glasgow 

Supervisor: Professor B. E. Richards 

In this thesis the numerical solution of the two-dimensional compressible Navier- 

Stokes equations for the application on aerodynamic problems is tackled. The mo- 

tivation is to develop a cell-centred upwind finite volume scheme with high order 

accuracy and parallelism. 

A general description of the two-dimensional compressible Navier-Stokes equa- 

tions for application to computational fluid dynamics has been given, which forms 

the basis for the overall research throughout the thesis. 

The numerical solution of the two-dimensional inviscid Euler flow equations is 

given. The unstructured mesh is generated by the advancing front technique. A 

cell-centred upwind finite volume method has been adopted to discretize the Euler 

equations. Both explicit and point implicit time stepping algorithms are derived. The 

flux calculation using Roe's and Osher's approximate Riemann solvers are studied. 

It is shown that both the Roe and Osher's schemes produce an accurate represen- 

tation of discontinuities (e. g. shock wave). It is also shown that better convergence 

performance has been achieved by the point implicit scheme than that by the explicit 

scheme. Validations have been done for subsonic and transonic flow over airfoils, su- 

personic flow past a compression corner and hypersonic flow past cylinder and blunt 

body geometries. An adaptive remeshing procedure is also applied to the numerical 

solution with the objective of getting improved results. 

The issue of high order reconstruction on unstructured grids has been discussed. 
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The methodology of the Taylor series expansion is adopted. The calculation of the 

gradient at a reference point is carried out by the use of either the Green-Gauss 

integral formula or the least-square methods. Some recently developed limiter con- 

struction methods have been used and their performance has been demonstrated using 

the test example of the transonic flow over a RAE 2822 airfoil. It has been shown 

that similar pressure distributions are obtained by all limiters except for shock wave 

regions where the limiter is active. The convergence problem is illustrated by the 

mid-mod type limiter. It seems only the Venkatakrishnan limiter provides improved 

convergence. Other limiters do not appear to work as well as that shown in their 

original publications. Also the convergence history given by the least-square method 

appears better than that by the Green-Gauss method in the test. 

The formulation of the viscous terms in the Navier-Stokes equations and the 

implementation of a turbulence model on hybrid structured/unstructured grids are 

presented in detail. Different from the discretization method for the inviscid terms, 

the central-difference scheme is used for viscous terms. In general the unstructured 

grid is not suitable for the viscous problem, because highly stretched grids, which 

are necessary in viscous flow computation, cannot easily be created. Here a hybrid 

grid generation approach referred to here as the "skid" method is proposed. The 

resulting grid with a structured grid in the near-wall region and an unstructured grid 

in other regions has been successfully used in the laminar flow calculation. For high 

Reynolds number cases, the flow becomes turbulent. Implementation of the Baldwin- 

Lomax algebraic turbulence model in the N-S flow solver has been completed. Good 

performence has been shown by the test case of the subsonic flow over a NACA 0012 

airfoil and the transonic flow over a RAE 2822 airfoil (case 9). Excellent agreements 

with experiments have been achieved. 

The domain decomposition method on an unstructured grid has been discussed. 

The definition of the partitioning problem is illustrated. Some popularly used meth- 

ods, i. e. recursive coordinate bisection (RCB), recursive graph bisection (RGB) (to- 
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gether with the reverse Cuthill-Mckee (RCM) ordering), recursive spectral bisection 

(RSB) and multilevel graph partitioning (MGP), have been described and their per- 

formances have been illustrated by application on airfoil problems. Some pre-ordering 

and smoothing algorithms have been proposed in order to improve the partitioning 

results by RCB and RGB methods. The domain dividing technique (DDT) is also 

discussed. In general the RSB and MGP partitioning methods produce the better 

results and MGP is much cheaper than RSB. All methods have been applied on either 

single or multi-element airfoils resulting in load balanced partitioning. 

The development of the parallel code based on a cell-centred upwind finite vol- 

ume method and the domain decomposition approach has been completed. By use of 

the RSB and MGP methods, a good quality (the number of edge cuts is minimized) 

load balanced partitioning is achieved. A method of constructing the message passing 

relations and data structures is proposed. The definition of three types of elements is 

given and illustrated by the example. The N-S flow solver is parallelized by coupling 

with the standard subroutines of the parallel virtual machine (PVM) package and has 

been successfully executed on a parallel computing system based on a workstation 

cluster under the PVM environment. Performence of parallel computing on airfoil 

problems has been demonstrated. Message passing, data structure (sending and re- 

ceiving) and communication graphs have been illustrated. Reasonable efficiency in 

CPU time reduction and speedup has been achieved. 
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CHAPTER I 

INTRODUCTION 

1.1. Computational fluid dynamics: an introduction 

Fluid dynamics is fundamental to many engineering disciplines. The governing equa- 
tions of fluid flow, which are derived from the basic physical laws, are in the form 

of nonlinear partial differential equations. Analytical solutions of these equations do 

not exist except for some cases with simplified forms of equations and boundary con- 
ditions. Physicists, mathematicians and engineers were required to seek other ways 
of handling these equations. Experimental methods with special facilities, such as 
wind or water tunnels, have been used extensively to understand the behaviour of 
flow phenomena and useful results can be obtained in this way. Analysis based on 

model equations can also help the understanding of fluid flow. These methods are 

very useful but do have some disadvantages. The experimental approach is costly 

and is sometimes difficult (even impossible) to simulate the real conditions of com- 

plex problems in the laboratory environment. On the other hand, analysis cannot give 

overall solutions of realistic problems. With the growth in capabilities of the digital 

computer, an alternative approach is now coming available through the solution of 
the partial differential equations directly by using numerical discretization methods. 
This approach is termed Computational Fluid Dynamics (CFD). 

Computational fluid dynamics is now one of the largest disciplines in the field 

of numerical analysis. Started because of the demands of the aircraft industry, it 

is currently applied in a wide range of industrial fields, such as mechanical, civil, 
chemical as well as aeronautical and astronautical engineering. With the focus on 
aerospace applications only those CFD issues which deal with compressible flows will 
be mentioned in this thesis. With the development of powerful digital computers, 
the simulation of fluid flow by numerical methods is becoming commonplace and 
in most cases far less expensive than experimental observations. Through the use 

of computer simulation, fluid properties, such as the Mach number and Reynolds 

number, can easily be controlled or varied. CFD may also be used to improve the 

understanding of complex physical phenomena. 
Most problems of current interest in the aerospace industry can be satisfactorily 

modelled by the compressible Reynolds-averaged Navier-Stokes equations, or in some 
cases by its inviscid limit, the Euler equations. These equations represent the basic 

conservation laws in nature, i. e. mass, momentum and energy. The Navier-Stokes and 
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Euler equations have highly nonlinear behaviour and normally produce solutions with 
very high gradients (or discontinuities). Accurate resolution is thus crucial. Hence 
the trend is to apply CFD complementary to experimental method to reduce costs, 
especially in the preliminary stage. The responsibility of CFD researchers is then the 
development of more accurate, robust and lower cost computer codes applied to a 
wide range of flow conditions and various complex geometries. 

1.2. Historical background 

The paper published by Courant, Friedrichs and Lewy [1] in 1928 can be viewed as 
the foundation of numerical methods for fluid dynamics. The proposed characteristics 
theory and the CFL stability condition are still concepts widely used nowadays by 
CFD researchers. Following this, many schemes were developed. Those appropriate 
to be mentioned here are the Crank-Nicolson scheme [2] in 1947, the leapfrog scheme 

of Du Fort and Frankel [3] in 1953, the alternating direction implicit (ADI) scheme 
of Peaceman and Rachford [4] in 1955, the one-step Lax-Wendroff scheme [5] in 1960, 

the two-step Lax-Wendroff scheme [6] in 1963, the MacCormack explicit predictor- 

corrector scheme [7] in 1969 and the Beam-Warming scheme [8] in 1976. 
Application of the CFD approach to a real problem involves several procedures. 

First an appropriate mathematical model is selected to describe the physical problems 

properly. Secondly, methods to discretize both the physical domain of interest and 
the equation itself is chosen. The method of discretization of the physical domain into 

a series of cells or elements was developed later as a sub-discipline in CFD termed 

grid generation. Basically there are three methods used to discretize the equations, 
i. e. Finite Difference (FD), Finite Volume (FV) and Finite Element (FE) methods. 
The third step is to solve the resulting linear or nonlinear systems. The second step 
together with the third step developed for the field is called the flow solution. Finally 
flow visualization must be considered for large problems with massive output data. 
This last process is called post-processing. 

In the early days most of the numerical schemes were done by simply replac- 
ing the differential operators in the equations with finite differences without paying 
much attention to the physical property of the flow. This often lead to non-physical 
oscillations in the region of discontinuities. To overcome this, von Neumann and 
Richtmyer [9] introduced the artificial viscosity method. They added a diffusion term 

explicitly in the scheme. Later Courant et at [10] proposed another approach to the 
discretization of the equations, which was based on the physical behaviour of the 
flow. These researches set up the basis of what was called Upwinding or Upstreaming 
Differencing described later. 
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The term "Upwinding" was derived from the first application of it in numeri- 
cal weather forecasting. In upwinding, information is transported in the direction 

which is physically right. By "upwinding", an implicit viscosity is introduced into 
the scheme that damps out the high frequency oscillations. Another advantage of 
upwinding is that a boundary condition can be applied in a manner which relates 
closely to the physical aspects of the flow. The disadvantage of upwinding is that 
it only achieves first order accuracy in space. Extension of upwinding to systems 
of equations is carried out using techniques based on the Godunov theorem [11], 

which solves, over each mesh interface, the locally one-dimensional Euler equations 
for discontinuous neighbouring states, equivalent to solving a Riemann problem, by 

splitting the fluxes of the conserved quantities and choosing the correct flow infor- 

mation for each component. Within this context, Steger and Warming proposed the 
flux vector splitting method [12] in 1981, Van Leer introduced another flux vector 
splitting scheme [13] in 1982 and on the flux difference splitting schemes, those of 
Roe's [14] [15] and Osher's [16] [17] have been very successfully and widely applied. 

Upwinding schemes have been used mostly in conjunction with the finite vol- 
ume method. In such an approach the equations normally take integral forms and 
are also satisfied over a single cell (element). Generally the finite difference methods 
require a topologically quadrilateral grid. However the finite volume schemes can be 
implemented on grids of arbitrarily shaped elements, single or mixed. The main as- 
sumption in all upwinding finite volume based schemes is that the solution is updated 
by considering the effects of wave propagation in the direction normal to the sides of 
the control volume. In spite of the deficiency of the assumption of one-dimensional 
flow cross the sides of the cell (element), the upwinding schemes have been able to 
simulate rather complicated flows. This approach is used in the present research. 

The extension of upwinding to second order accuracy schemes has been devel- 

oped. The methods can be divided into two classes. The first class is that of the 
hybrid schemes in which a monotone first order scheme is combined with a high order 
scheme to exploit the advantages of both. A good example of this method is the Flux 
Corrected Transport (FCT) scheme proposed by Boris and Book [18]. The Total 
Variation Diminishing (TVD) scheme introduced by Harten [19] can be viewed as a 
one step hybridisation approach. Shu [20] has proposed the Total Variation Bounded 
(TVB) scheme which weakens the TVD property by allowing for small-scale oscilla- 
tions. The second class consists of those schemes which are based on the generalisation 
of the Godunov method [11]. High order accuracy is achieved by defining the dis- 
tribution of the variables by a set of interpolation polynomials over cells (elements). 
A good example of that is the Monotone Upstream-centred Scheme for Conservation 
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Laws (MUSCL) algorithm proposed by van Leer [21]. Another scheme such as the 
Essentially Non-Oscillatory (ENO) scheme proposed by Harten et al [22] [23] is also 
of interest. 

1.3. Flow solver and parallel computing on unstructured grids: literature 

review 

Unstructured grids together with the finite element method have long been used in 

solid mechanics applications. Recently the use of the unstructured grid has received 
much attention in CFD calculations. The reason is that they provide flexibility in 
dealing with complex geometries and the ease of adapting to flow features, such as 
shocks and boundary layers. The disadvantage of employing unstructured grid is the 
increased requirement for computational time and memory. AGARD report R-787 

gives a good introduction to unstructured grid related issues. Recently an overall sur- 

vey on flow solvers for unstructured grids has been given by Venkatakrishnan [24]. In 

this thesis the literature review only highlights issues related to the present researches. 

1.3.1. Finite volume discretization 

The concept of using arbitrary control volumes to solve numerically the conserva- 
tion laws was established by the late 1970s. For application on unstructured grids 
the first successful case is given by Jameson and Mavriplis [25]. In their paper the 
two-dimensional Euler equations are solved on regular triangular grids (obtained by 
halving the structured quadrilateral grids) by extending the similar schemes already 
applied on structured grids, i. e. cell-centred, finite volume, central-difference, ar- 
tificial dissipation and multigrid ideas. A milestone in the field of flow solvers on 
unstructured grids was achieved in 1986 when Jameson et al [26] published their ex- 
cellent paper about the calculation of inviscid transonic flow over a complete aircraft. 
Their contributions included the grid generation for a complex 3D geometry by the 
Delauney triangulation and the development of a cell-vertex concept. Since this sem- 
inal effort, significant advances have been made in grid generation and flow solvers 
on unstructured grids. 

The drawback in [26] is that only a first order scheme is considered. For most 
practical problems, a high order scheme should be adopted. This follows the same 
trend as in the structured grid area, where much effort has been made in the area 
of the construction of the high order scheme. Desideri and Dervieux [27] derived 

cell-vertex finite volume schemes for unstructured grids using MUSCL ideas. Lohner 

et al [28] tested an FEM-FCT scheme for Euler/Navier-Stokes equations. Batina [29] 
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constructed an upwind scheme for cell-centred triangular grids that also employed 
MUSCL ideas, as did Knight [30], Frink [31] and Venkatakrishnan and Barth [32]. 
All these are the simple extensions of that used on structured grids onto an unstruc- 
tured grid. In another approach Barth and Jesperson [33] proposed a novel concept by 

exploiting a one-dimensional departure to satisfy the monotonicity principles. They 

extended the monotonicity principle in multiple dimensions, namely that the recon- 
structed distributions in the control volume should be bounded everywhere by the 

values of the neighbours and satisfying such principles by constructing a so-called 
limiter. The limiter in [33] may be thought of as a generalized mid-mod type limiter, 

which in application however leads to convergence difficulties. Venkatakrishnan [34] 

has analysised this problem and proposed a modified limiter that improved the sit- 

uation at the expense of monotonicity, as also done by Bishop and Noack [35] and 
Rosendale [36]. Recently Aftosmis et al [37] have found that the Venkatakrishnan 

limiter significently improve the convergence as well as the solution accuracy in their 

test examples. Frink [31] and Frink et at [38] developed an upwind cell-centred 3D 
flow solver without using limiters. They employed a weighted averaging procedure 
that interpolated variables from the centres of cells to the vertices and using these 

vertex values to calculate the gradients in each cell. These gradients were also used 
to interpolate the variables to the centres of the faces of the cells. Although the 

procedure was linear, it seems that enough dissipation had been introduced during 

the averaging and interpolating procedures. 
For the viscous flow computation on unstructured grids, the discretization of 

viscous fluxes can be carried out either by finite volume or by finite element ap- 
proaches. In references [31] and [38] the finite volume method was used with the 

central-difference scheme for viscous terms. Barth [39] discretized the viscous terms 
by using a finite element approach. Mavriplis [40] also developed an explicit cell- 
vertex finite element multigrid scheme. All these are implemented using efficient 
edge-based data structures. 

1.3.2. Cell-centred and cell-vertex 

On a given grid one has at least two choices as to where to locate the variables, giving 
rise to the cell-centred and cell-vertex approaches. In the cell-centred approach, the 

variables are stored at the centroid of the cells, whilst in the cell-vertex approach 
they are stored at the vertices of the grid. The best choice between cell-centred vs 
cell-vertex storage is still an open question, particularly in 3D cases. In 2D the ratio 
of the number of cells to the number of vertices is 2, whereas in 3D this ratio could 
be arbitrarily larger, although it is typically round 5 or 6 for a quality mesh. In the 
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case of tetrahedral grids with a cell-vertex scheme, the flux computation can be cast 
as loops over edges, whereas for the cell-centred scheme they must loop over faces. 
The ratio of the number of faces to the number of edges is roughly 2. From this 
view-point the cell-vertex schemes seem better than the cell-centred schemes. On 
the other hand there has some evidence that on a given grid the solution quality 
by the cell-centred scheme is superior to that by the cell-vertex scheme [41]. This 
is likely because the control volume in a cell-centred scheme is smaller than that 
in a cell-vertex scheme for triangular/tetrahedral grids. It is still not clear whether 
the cell-vertex schemes require a grid that has as many vertices as the number of 
tetrahedra used by a cell-centred schemes to achieve the same quality. But it is clear 
that a cell-vertex scheme is better suited to compute viscous fluxes when coupling 
with the finite element method. 

1.3.3. Explicit and implicit schemes 

After the discretization procedure (e. g. by the cell-centred finite volume method) the 

governing equations will result in large sparse linear systems. Different ways can be 

used in the updating process. An explicit scheme involves a simple and lower-storage 

method. By coupling with the multigrid technique it gives reasonable convergence 

speed [26]. Thareja et al [42] and Hassan et al [43] have utilized a point implicit itera- 

tive procedure. Batina [44] and Anderson and Bonhaus [45] have used a Gauss-Seidel 

relaxation technique. Their results show that convergence is speeded up compared to 
that of an explicit scheme. Further it is also possible to use more sophisticated tech- 

niques for the solution of the linear system, such as Generalized Minimal RESidual 
(GMRES). Venkatakrishnan and Mavriplis [46] reported the application of GMRES 

with Incomplete LU factorization(ILU) preconditioning on 2D Navier-Stokes solution 
on an unstructured grid. Another two implicit methods that have been investigated 

are based on "snakes" [47] and "linelets" [48]. 

1.3.4. Adaption 

Adaption is one of the most important techniques to capture the complex flow phe- 
nomena. General adaptive mesh refinement (AMR) includes three distinct ways 
called r-refinement, h-refinement and p-refinement. In r-refinement the nodes are 
re-distributed so that the regions with complex fuid flows have more nodes clustered 
and thus will be better resolved. In h-refinement or so-called mesh enrichment, the 
cells are locally subdivided or merged or in some cases, a complete remeshing is done 
to replace the grid spacing in regions of interest. In p-refinement the degree of the, 
basis function is adjusted locally by matching the variation in solution. A survey 
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has been carried out recently by Powell et al [49]. Peraire et al [50] has proposed an 
adaptive remeshing procedure by re-generation of the grid using an advancing front 
technique. Barth [51] and Lo [52] proposed the adaptive method based on the use of 
solution contours. 

1.3.5. Unstructured grid for viscous flows 

The construction of a suitable unstructured grid for viscous flow simulation is still 
a field under development. The triangular grids generated by either the Delaunay 

triangulation or the advancing front technique do not naturally lend themselves to 

viscous flow computation, in which highly stretched cells are required in the viscous 
regions. It appears that it is essential to have a structured-like grid in boundary layer 

regions. Thompson and Weatherill [53] identify three categories of approaches. A brief 
description is given here. The first category is to consider the generation of a stretched 
unstructured grid by Delaunay triangulation, in which a mapping procedure is used 
to obtain a very high-aspect-ratio grid in boundary and wake regions [54] [55] [56]. 

However the extension of this approach to the 3D case has not yet proved successfully 
for general complex configurations. The second one is to use an intermediate stage 
which involves a modified form of standard unstructured grid generation. Hassan et 
al [57] and Pirzadeh [58] advocated this approach. In the third category, the approach 
is to create a thin layer around a given geometry within which a structured grid is 

created. Weatherill et al [59] and Holmes and Connell [60] tested this approach. In 

viscous flow computation the trend is to use the hybrid grid with a structured or 
semistructured grid in the near wall regions. In the 2D case a structured body-fitted 

grid is used whereas in the 3D case a prismatic grid is adopted. 

1.3.6. Turbulence Modelling 

Some popular turbulence models, such as the Baldwin-Lomax (B-L) algebraic model [61], 
have been used for implementation on unstructured grids in the early days of N-S 

solver research. Mavriplis [54] introduced a reference grid on which the B-L turbu- 
lence model is calculated and interpolated with the values on the global unstructured 
grid. Kallinderis [62] did similarly. With further development the trend is away 
from the simple algebraic model to more sophisticated field turbulence models like 
the one-equation models of Baldwin and Barth (B-B) [63] and Spalart and Allmaras 
(S-A) [64] and the two-equation models such as k-e. Mavriplis and Martinelli [65] 

reported their application of ak-e model on two-dimensional Navier-Stokes solu- 
tions. Anderson and Bonhaus [45] published some progress on the use of B-B and 
S-A one-equation models applied in multi-element airfoil flows. 
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1.3.7. Domain decomposition 

Domain decomposition (or graph partitioning) is an important problem that has 

extensively been used in many areas, particularly in parallel computing. The problem 
is to partition the vertices of a graph in p roughly equal parts, such that the number 
of edges connecting vertices in different parts is minimized. Mainly there are three 

classes of partitioning method. The first class is called recursive partitioning, which 
divides the domain into two sub-domains and each sub-domain is sub-divided into two 

more sub-domains and the process is repeated until the desired number of partitions 
is obtained. References [66] and [67] give the detailed discription and comparison of 
three recursive methods, i. e. recursive coordinate bisection (RCB), recursive graph 
bisection (RGB) and recursive spectral bisection (RSB). The RSB is improved as 
multilevel spectral bisection (MSB) by Barnard and Simon [68] in order to reduce the 

expense of RSB. The second class of graph partitioning is called geometric partitioning 
based on the geometric information of the graph. Geometric partitioning algorithms 
such as Miller et al [69] and [70] tend to be fast but often yield partitions that are 
worse than those obtained by the RSB or MSB methods. The third class of graph 
partitioning algorithm is called multilevel graph partitioning (MGP) [71] [72]. The 

MGP method works in three phases. In phase one it reduces the size of the graph (i. e. 

coarsens the graph) by collapsing vertices and edges. In phase two the partitioning of 
the small graph is completed. In phase three the graph is refined back to the original 
one. It is evident that in application the same good quality can be obtained by MGP 

as by RSB and MSB but the cost of the MGP method is much lower. 

1.3.8.. Parallel computing 

The target of CFD research is to complete the solution within a practical time period. 
In the last 15 years CFD has greatly benefited from the revolution happening both in 
the computer industry and in computer science. The appearance of parallel computer 

systems offers more powerful tools for CFD computations. Except for the partitioning 

problems mentioned above, the other issues are message passing, data structure and 
parallel algorithms. Unstructured grid flow solvers have been implemented on various 
parallel machines, such as the Connection Machine ' [73] [74], Cray and iPSC/860 

machines [75] [76]. These studies have shown that good performance may be obtained 
by paying careful attention to the issues above. "Regarding the flow solver, explicit 
and point implicit schemes contain features of almost complete parallelism, except 
for the communication between neighbouring processors. For implicit schemes good 
performance can also be yielded by careful design [77] [78]. 
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1.4. Scope of this thesis 

The theme of this thesis is to study the cell-centred upwind finite volume method for 
the solution of the compressible Euler/Navier-Stokes equations with the implemen- 
tation of high order resolution and parallel computing on unstructured grids. 

Chapter 1 gives a general review on previous relevant research. The focus is 

mainly around the flow solver on unstructured grids. 
In chapter 2, the mathematical model of the two-dimensional compressible Navier- 

Stokes equations is described. 
The cell-centred upwind finite volume schemes for the solution of the 2D Euler 

equations are presented in chapter 3. The unstructured grid is generated using the 

advancing front technique. Both the numerical fluxes of Roe and Osher are considered. 
Explicit and point implicit iterative algorithms are derived and comparisons made by 

application to a wide range of flows from subsonic to hypersonic cases. An adaptive 
remeshing procedure is applied during the calculations. 

The construction of a high order accurate scheme on unstructured grids is ad- 
dressed in chapter 4. A general method is proposed based on Taylor series expansions. 
Two key problems are the calculation of gradients and the definition of limiters. The 
Green-Gauss integral formula and the least-square method are used for the gradient 
calculations. Some limiters, such as the Barth-Jesperson limiter, Venkatakrishnan 
limiter, Albada limiter, Bishop-Noack limiter and the general Albada limiter, are 
discussed and compared in the applications to test cases. 

The discretization of the viscous terms in the upwind scheme and the implementa- 
tion of turbulence model is the subject of chapter 5. A hybrid structured/unstructured 
grid generation method is proposed to fulfill the requirements in viscous flow com- 
putations. The point implicit formulation of viscous terms is developed in detail. 
Laminar flow is considered using the NACA 0012 airfoil test case A5. The implemen- 
tation of the Baldwin-Lomax algebraic turbulence model on a hybrid grid is described. 
The performance of the hybrid grid with the NS flow solver will be demonstrated by 

application to NACA 0012 airfoil subsonic and RAE 2822 airfoil transonic turbulence 
flow (case 9) cases. 

The discussion on the domain decomposition method is made in chapter 6. The 
definition of the partitioning issue is given firstly. Several efficient and popularly used 
methods, like recursive coordinate bisection (RCB), recursive graph bisection (RGB), 
recursive spectral bisection (RSB) and multilevel graph partitioning (MGP), are dis- 
cussed and the comparisons made by the application of partitioning to unstructured 
grid problems. 

To develop a parallel version of the NS flow solver is the subject discussed in 
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chapter 7. A brief description of the graph partitioning problem is given firstly. Then 

the focus turns to the message passing issue and the construction of the data structure. 
Three types of communication elements are defined. Parallel computing is carried on 
a workstation cluster, a parallel computing system based on a distributed network, 
under a parallel virtual machine (PVM) environment. Performance optimization is 

given through comparisons of the reduction of CPU time and speed-up in efficiency. 
Finally conclusions and the suggestion of further researches are given in chapter 

8. 
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CHAPTER 2 

MATHEMATICAL MODELLING 

2.1. Introduction 

Most flow problems in aerodynamics can be suitably modelled mathematically by 
the full Navier-Stokes equations, which are originally derived from three conservation 
laws in nature, i. e. (i) Mass can be neither created nor destroyed; (ii) The time rate 
of change of momentum of a body equals the net force exerted on it; (iii) Energy 

can be neither created nor destroyed, it can only change in form. In the Navier- 
Stokes equations there are two main items, i. e. convective fluxes and diffusive fluxes. 
The convective fluxes appear in first-order derivative forms and describe the transport 

properties in the fluid flow, while the diffusive fluxes appear as second-order derivative 

terms and express the essence of the molecular diffusion phenomenon. Each of them 

will influence the mathematical feature of the Navier-Stokes equations, i. e. highly 

non-linear and mixed elliptic, parabolic and hyperbolic types of the equations. The 

solutions produced often exhibit very high-gradients or discontinuities in some cases, 

e. g. shock waves. Despite the high-complexity of the Navier-Stokes equations, solving 
the full equations is still the ultimate goal for CFD researchers. 

In the following section 2.2 the two-dimensional Navier-Stokes equations in con- 
servation law forms will be described. Section 2.3 illustrates the state equation and 
section 2.4 gives the non-dimensional form of Navier-Stokes equations. 

2.2. Navier-Stokes equations in conservation law 

The flow of a compressible heat conducting viscous fluid is governed by the Navier- 
Stokes equations. These equations represent the conservation law of mass, momentum 

and energy. The time-dependent two-dimensional Navier-Stokes equations in Carte- 

sian coordinate system (x)y) can be expressed as follows: 

The conservation law of mass: 
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The conservation law of momentum: 
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The conservation law of energy: 
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where p, u, v, p and c are the density, velocity components in the cartesian co- 
ordinates, pressure and specific total energy of the flow. Symbol r represents the 

stress tensor and q is the heat flux vector. These quantities are related to the veloc- 
ity or temperature gradients by the following relationships under the assumption of 
Newtonian fluid: 
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Here µ and A represent the viscosity coefficient and second viscosity coefficient, 
which charactizes a Newtonian fluid. The symbol k is the coefficient of thermal 
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conductivity and T is the temperature of the fluid. 
Generally we consider that the fluid behaviour is in local thermodynamic equi- 

librium, for which the Stokes relation -3µ is valid. As a result the shear stresses 
can be expressed with only the viscosity coefficient p. 

2.3. State equations 

In order to close the NS equations described above it is necessary to construct the 

relationships between the thermodynamic variables (p, p, T) as well as to relate the 
transport properties (p, k) to these thermodynamic variables. Under the assumption 

of a perfect gas the following relationship can be established. 

The state equation of a perfect gas is 

p= pRT (2.11) 

where R is the gas constant, and for standard air, R= 287m2/A2K 

Also the following relationships exist: 

ry 2.12 
cu 711 

where e is the internal energy per unit mass; h is the enthalpy per unit mass; 
c, is the specific heat at constant volume; cp is the specific heat at constant pressure 

and 'y is the ratio of specific heats. 

Further equations can be derived from equations (2.11) and (2.12) as 

p= Of - 1) p 
[C 

-2 (u2 + v2)] (2.13) 

T= ry 1 ['(22)] (2.14) 

The coefficient of viscosity µ and thermal conductivity k have to be related to the 
thermodynamic variables using kinetic theory. For example the coefficient of viscosity 
is expressed by the Sutherland's formula as 

µ=3i 
T 

(2.15) 
T+ 82 
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where sl and s2 are experimental constants. For air at moderate temperatures 
sl = 1.458 x 10-6k9/(msVK-) and s2 is taken as 110°K. 

k is related to µ through the Prandtl number which is a constant and can be 

expressed as 

Pr = 
k1' (2.16) 

For air at standard states, Pr=0.72 is assumed. 

2.4. The non-dimensional form of NS equations 

To obtain the flow behaviour around geometries with similar shape at minimum 
computational effort, it is desirable to re-write the NS equation in non-dimensional 
form. 

The following non-dimensionalizing procedures are adopted: 
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where the non-dimensional variables are denoted by an asterisk. Free-stream 

conditions are denoted by oo and L is a representative length for the problem used 
in the Reynolds number 

Rem = 
p°°U°°L (2.17) 
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If the non-dimensionalizing procedure is applied to equations (2.1), (2.2), (2.3) 

and (2.4), the following non-dimensional equations in vector form can be obtained 

aU" OF, * OF2 OG; aG2 (2.18) 
at--- + ax" + ay ax" + ay. 

where U' is the vector of conservation variables, Fl , Fz are the inviscid flux 

vectors and Gi, GZ are the viscous flux vectors. 
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The formulas of the shear stress tensor and heat flux vector in non-dimensional 
form are as follows 
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where M,,. is the free-stream Mach number defined as 

M. = 
U. 

(2.28) 
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The speed of sound in the free-stream is related to other variables through 
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The state equations of perfect gas become 
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or in terms of the Mach number by 
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For inviscid flow, equations (2.18) become the Euler equations 
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In the following chapters the asterisk will be dropped from the non-dimensional 

equation for convenience. 
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CHAPTER 3 

NUMERICAL SOLUTION OF TWO-DIMENSIONAL EULER 
EQUATION 

3.1. Introduction 

Computational fluid dynamics has now progressed to a stage where the simulation of 
compressible, inviscid flow modelled by the Euler equations, is commonplace. Such 

simulation normally includes two main parts, i. e. to generate a grid system over the 
flow domain and to develop a flow solver for the governing equations, e. g. the Euler 

equations, by numerical approximation methods. 
Generally two different types of grids, i. e. structured and unstructured grids, are 

used. Grid generation techniques have been recently reviewed in survey papers by 
Thompson and Weatherill [53] and Mavriplis [79]. Although structured grids have the 

advantage of simplicity for implementation of numerical algorithms, they still meet the 

challenges in their capability of generating grids around general complex geometries. 
Special techniques such as multi-block [108] or chimera grids are commonly used to 

solve this problem. On the other hand unstructured grids, which have long been used 
by the finite element community, offer a means of treating very complex geometries. 
And they also provide the flexibility of mesh adaptivity which is also important for 

complex flows. Because of these we mainly focus our research using the unstructured 
grid. 

There are many numerical approximation methods developed to solve flow prob- 
lems on unstructured grids. Most of them can be traced in the recent review paper 
of Venkatakrishnan [24] on flow solvers on unstructured grids. Typically in the area 
of Euler flow solvers, one approach, which has been used frequently, is upwinding 
together with the finite volume method. The strength of upwinding is its capacity 
of treating discontinuities in the flow field (e. g. shock waves) and its ability to sim- 
ulate directly the physics of the directional propagation of information. The most 
commonly used algorithms are the flux vector splitting methods of Steger and Warm- 
ing [12] and van Leer [13] and the flux difference splitting methods of Roe [14] [15] and 
Osher [16] [17]. These techniques, traditionally used on structured grids, have been 
successfully applied on unstructured grids recently [31] [32] [33] [39] [42] [44] [80]. 

Also in compressible flow there often appears a narrow region with high gradients 
embedded in large areas in which flow variables vary slowly. As the position of 
these high gradient regions is not known to the analysist a priori, it is apparent that 
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adaptive mesh techniques will play an important role in the efficient solution of such 
flow problems. 

In this chapter an upwinding-biased finite volume method with a flux differ- 

ence splitting algorithm is discussed and applied to the numerical solution of the 

compressible two-dimensional inviscid Euler equations on unstructured grids. The 
discretization method is based on the cell-centred concept with explicit and point- 
implicit time-stepping iteration procedure. ' The advancing front technique (AFT) [50] 
has been used to generate the unstructured grid. An adaptive remeshing procedure 
based on a series of successive analysis of the flow has been used to improve the qual- 
ity of simulation. The above approach will be demonstrated on problems covering a 
wide range of flow speeds. 

Section 3.2 describes the integral form of the Euler equations and its finite vol- 
ume discretization by the cell-centred concept. Section 3.3 discusses upwinding flux 
difference splitting algorithms. Both Roe and Osher's approximate Riemann solver 
on an unstructured grid will be mentioned. Section 3.4 describes the explicit and 
point-implicit iteration scheme. Section 3.5 discusses the boundary condition related 
to inviscid Euler flow. Section 3.6 describes the Monotone Upstream-centred Scheme 
for Conservation Laws (MUSCL) approach to construct the linear-resolution scheme 

on an unstructured grid. Section 3.7 describes the unstructured grid generator and an 
adaptive remeshing method. Finally some numerical results are illustrated in section 
3.8. 

3.2. Euler equation in integral form and discretization 

The numerical method employed in this chapter is an implementation of the finite 

volume (FV) method on unstructured grids. Using the finite volume technique the 
integral form of the conservation laws can be discretized directly in the physical do- 

main. It takes full advantage of adopting the arbitrary grid (e. g. single or mixed type) 

and thus avoids the transformation calculation between physical and computational 
domains, as normally do on structured grids. 

Generally the two-dimensional compressible inviscid Euler equations (2.33) in 
the conservation laws can be written in their integral form as 

(3.1) 11n ýtd9+11nCßx1+ 
äFZJd0 

=0 y 

where St represents the physical flow domain of interest. 
Under the philosophy of unstructured grid methods, the flow domain is dis- 

cretized to a series of triangular or quadrilateral elements or a mixture of both. The 
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Fig. 1. Notations of the single element 

above governing equation in integral form is also valid when applied to a single ele- 
ment "e". By using the divergence theorem the following equation can be derived 

fjdc+/Fdr=o (3.2) 

Where 12. is the area of element "e", r. is the boundary of the element. Normal 
flux is defined as F� = F{ 

" n;, in which F; = (Fl, F2) denotes the inviscid vector 
fluxes. Also r; = (nx, nb) denotes the unit vector outward normal to the boundary 
r of control volume 11e (see figure 1). 

Based on the cell-centred concept we assume a piecewise constant distribution 

of the unknown variables UJ on the single element "e", thus equation (3.2) can be 

approximated in the form as 

l 92, + Fl =0 At, 
(3.3) 

Where AU. = UU +1 - U,. The symbol U. denotes the values of Ue at time 
level t=t. U. "+' denotes the values of Uc at time level t= tn+1. The symbol 
At, = t'+l - t' is the time step and FI denotes the inviscid flux contributions 
defined as 

F' = Fndr (3.4) 

which can be evaluated by summing the contributions from each individual ele- 
anent side r,,, 

Fr =Z/.. Fndr 
ad, 

(3.5) 

Further the normal flux F,, can be replaced approximately by a numerical flux 
F� evaluated at the middle point of each side sg, so that 

Ff (3.6) 
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where dse denotes the length of side s, (figure 1). 

3.3. Upwinding flux difference splitting algorithm 

To evaluate the inviscid numerical flux F, 
a, two methods of approximate Riemann 

solver developed individually by Roe [14] [15] and Osher [16] [17] are applied locally 

at each interface between neighbouring cells, assuming a local Riemann problem in 
the normal direction of the interface. 

3.3.1. Numerical flux by Roe's approximate Riemann solver 

The numerical flux of Roe's approximate Riemann solver can be written in terms of 
two discrete Riemann states at the left (denoted by e) and right (denoted by r) side, 
with respect to the interface as: 

F� (U� U, ) =2 [F(UU) + F(U,. ) - IARoel(Ur - Ue)] (3.7) 

Where F(Ue) and F(U,. ) represent the fluxes on the left and right sides, which 
can be obtained from 

Pe(Ue)n Pr(Ur)n 

F, (Ue) 
_ 

(Peue) (Ue)n +penx 

' 
F(Ur) 

(Prur) (Ur)n +Prnx 

e 
(3. $) 

(PeVe) (Ue)n +Pefy (Prvr)(Ur)n +Prnv 

(Ue)n(Peee +Pe) (Ur)n(Prer +Pr) 

in which 

(Ue)n = Uenx + vefly (3.9) 
(Ur)n = urfz + vrny (3.10) 

And matrix Ap, e is the flux Jacobian matrix which is defined so as to satisfy the 
following properties: 
(i) F(Ue) - F(Ur) = A(Ue, Ur)(Ur - Ue) 
(ii) A(Ue, Ue) = A(Ue) 
(iii) the eigenvectors of A(Ue, Ur) are linearly independent. 

The absolute value symbols in equation (3.7) indicate that the absolute value 
of the eigenvalues were used to evalute ARoe. Furthermore matrix lARce) can be 
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decomposed in terms of its eigenvectors and eigenvalues as 

JAioeI = RJAIR-1 (3.11) 

Where R, R'1 denote the, right and left eigenvectors respectively and A is a 
diagonal matrix containing the eigenvalues A; of matrix Awe. 

The matrix of the right eigenvector R is given by 

1110 

u- cnx uu+ cnx -ny R= (3.12) 
v- cny vv+ cny nx 

H-cUn u22"' H+cUn V 

The matrix of the left eigenvector R-' is given by 

ä (bi + ý) 
2 

(-btu - ý) ! (-b2V - "c) z 

1- bi b2U b2v -b2 R'1 = (3.13) 
(bl 

- 
i) 

2(-btu+! 
) Z(-b2v+ )2 

-V -ny nx 0 

and the diagonal matrix of the eigenvalue is by 

U,, -C 000 

A 
U, a 00 

(3.14) 
00 U�+C 0 

000U, a 

In equations (3.12), (3.13) and (3.14) 
, U,, and Vt are the normal and tangential 

components of the velocity to the interface. They are defined by the following 

Un = unx + vny (3.15) 

V t, = -uny + vnx (3.16) 

In equation (3.12) above, H is total enthalpy which is defined as 

H= 'y - 
ry 

21 
(u2 + v2) (3.17) 
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and in equation (3.13), the coefficients bl and b2 are defined as 

(u i 2) y_ bi = b2 2v b2 = cZ 

1 

In order to ensure Roe's properties (i)-(iii) the flow variables in (3.12), (3.13) 

and (3.14) must use the following average state values 

u= 
ue + Rpur 

(3.18) 
1+RP 

V= 
ye + RPVr (3.19) 

1+ RO 

H_ 
He + R�Hr (3.20) 

1 +Rp 

Rp = 
Pe (3.21) 
Pr 

The corresponding speed of sound is then determined by 

c=('Y-1)(H-u22v2) (3.22) 

If the eigenvalue of matrix ARoe equals zero then the flux formula given by (3.7) 

may lead to non-physical expansion shocks. To avoid this a local expansion fan is 
introduced in the approximate Riemann solver when an expansion is detected through 

a sonic point. This can be done by restricting the mininum allowable value for Al in 

equation (3.14). According to the method proposed by Harten [81] that is : 

if (. il > Ea 
(3.23) 

0.5(. \ /Ea + E)) if l4 1< Ea 

where Ea is the eigenvalue limiter. Normally we set Ea between 0.1 to 0.3 . 

3.3.2. Numerical flux by Osher's approximate Riemann solver 

The numerical flux of Osher in terms of the left and the right states can be defined 

as 

Ur) =2 
[F(Ue) 

+ F(U*) -fur IAOaherl dQ J (3.24) 
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%W=Unlow 

�/r: 

Fig. 2. Integration path for Osher's flux 

where the fluxes at the right and left states are calculated in the same way as in 
Roe's scheme. The integration in the above expression is performed by the following 

procedure. 
Considering 2-D flow, there are four characteristic fields of which the two corre- 

sponding to A2,3 are identical. The invariant functions are: 
For a1=U,, +c we have 

2c q, 1 pW %' (3.25) 3=P'Y 4= 

For . \2,3 = Un we have 

q, 2,3 
=p ßq'3 = Un (3.26) 

For A4=U�-c we have 

Ti = U� + 
2c q, 2 =p T3 =V (3.27) 

17- 1 p7 

In the above expressions, U. and V are the normal and tangential velocities to 

the cell side defined as before. And c is the local speed of sound. 
The first and fourth characteristic fields are non-linear and the second and third 

are linear. The path of integration in the state space is as shown in figure 2. 

By writing the invariant functions along each subpath, ' we obtain eight equations 

which can be solved to get the eight variables that define the value of the intermediate 

points. They are 

(Y) 
_ 

[((Un)i 
- (Un)i-1) + Ci + Ci-1] 331 

P"- - Pi-1 (3.28) 

` C-1 [i+ (pip )(o: l)) ýý3) ((Un)i - (Un)i-1) + Ci + 
Pi-t - 

G-1 
Pik 

1 
(3.29) 

[1+ (p1) (-ß-S)1 
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7 
P1- g= Ps -1 

pi-I 
(3.30) 

Pi-i 
Pi- 7 

Pi- I= Pi 
Pig 

1 (3.31) 

(Un)i- _ (U )i-I - TZ-1 (c1-1 - ci-J) (3.32) 

(U++)i-} _ (Un)i + 
-Y 

2 
1(ci - ci-}) (3.33) 

(V )i-1 _ (Vi)i-l (3.34) 

(V)i-1 _ (V)i (3.35) 

The sonic points (denoted by "s") are determined using a similar procedure. 
There is no sonic point on the second subpath. For the first and third subpaths, 
there are 

(Pa)( 
) 

_ 
un)i- 

P (3.36) 

(P')1) ý P; _ 
(U 

(3.37) 

(Un)i-s 
Ci 

2 
1G-ý] = 

, {., 
(Un)i-l - 'Y 

(3.38) 

(Un)i-} 
,y+ 

(Un)i + 
'Y 

?1 
ci] = (3.39) 

(V°)i-1 = (V )i-1 (3.40) 

(V')i-} = (V )i (3.41) 

(Ps)i-ä = Pi-1 
) 

(3.42) 
Pc-i 

(P, )i-} = pi 
((P )i-j ry 

(3.43) 
Pt 

Having determined the intermediate and the sonic points, the integration can be 

carried out using the same formula described in [16] [17]. 

3.4. Iteration algorithms 

3.4.1. Explicit scheme 

An explicit time stepping scheme results from an evaluation of the forms in equa- 
tion (3.7) at time level n. Hence, the formulation using Roe's scheme will take the 
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Fig. 3. The definition of hs 

form 

-' firne (Ui 
- Ue )] asp (3.44 AUe =- 

ýýe 

de 

[F + F. 

While using Osher's scheme, the formulation will take the form 

I AOaher l dQ öse (3.45) 
UDUB Otý IF 

+ F- fu.. " 

where the subscripts e and r denote the value at the left and right elements 

respectively and dse is the length of the side r,, of the interface. Both equations 

above can be iterated by the local time step to steady state [82]. 

The maximum allowable time step for a two-dimensional unstructured grid is 

defined according to the maximum eigenvalue (in the form of the absolute value) 
(A, ax)s and the representative length h, at its side "se" as 

-Amnx)s 
(3.46) 

where (amax), _ IU4 +c and h, = (h, )e + (h, )T are defined in figure 3. 
The elemental local time step is then determined as the minimum of the time 

steps calculated at all its sides, i. e. 

(St)e = min((öt), ] (3.47) 

where s=1,3 for triangular element and s =1,4 for quadrilateral element. 

3.4.2. Point-implicit scheme 

Firstly we consider the Roe's scheme. If the inviscid contributions are evaluated at 
time t11+1 , equation (3.7) will lead to the fully implicit scheme as 

AU, .. 
ate EEFe +1 + ý, r +1- 4+1 1 (UT tl _ Uý t1)158e (3.48) 
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Linearization of the equation for the values of the unknowns and fluxes at time 
level (n + 1) in the terms of the time level (n) result in 

Ue +1 = Ue + AUe (3.49) 

Uf +1 = Ur + , AU, (3.50) 

FF+1 = Fn +AýDUe (3.51) 

Fr +1 = F*' + A; DUr (3.52) 

where matrix A= äF/äU is the flux Jacobian matrix defined for a general 
direction il = (nx, ny) as 

0 

a/nx - uU, a 

aßn, - vU� 

(2aß - -lc)Un 

where 

u2 + v2 
2 

nx ny 

(2 - y)unx + U,, uny - ßvnx 

vnx - Pun., (2 - y)vny + U� 

Knx - ßuU,, 'cny - QvU. 

0='y-1; ýc=rye-(7-1)a, 

0 
ßns 

ßn . 
7U. 

Replacing the above expressions into equation (3.48), result in 

AU, = RHSexp - 2ýe E[(Ar -I AToeI )DUr +I Aroe)DUe]5se 

(3.53) 

(3.54) 

The first term RHSCXp on the right hand side of the above equation is equivalent 
to the right hand side of the explicit formulation given by equation (3.44). 

This equation can be re-arranged as 

rj 
+ 

Ote E 14.15Se] AU, = RHSC2p - 
Ate 

[ýiv - (Aröeý)DUrý öSe (3.55) 
L Me 

aQ 
2Q, 

aý 

where I represents the unit matrix. 
The above system of equations can be solved in each time step, using either a 

point Gauss- Jacobi procedure resulting in 

'64 E [I 
+ ýE 

1 
oel58e] AUe +1 = RH xp - 

2St- E [(Ar 
r 

JA' 
roe 

I )AUf ] Öse (3.56) 

or a point Gauss-Seidel scheme which use the latest available value for the neigh- 
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bouring elements "r" written as 

II + -e 
> I`Qroelase] ýÜý +1 

ýýe 
[Feb + F, -I AroeI (U, * - Ve )l 5s (3.57) 

86 

where the terms denoted by an asterisk means the latest available values of the 
variables. In this case the linearization is only performed for the unknown variables 
and fluxes at the current element "e". 

Secondly we consider the Osher's scheme. After following the same procedure as 
above, equation (3.24) will lead to the fully implicit scheme as 

F-+i (v, Ur) _2 
[F+'(Ue) 

+F n+l (ur) - 
fu: 

' 
IAoaner IdQJ (3.58) 

Here we use the following approach to determine the left hand side of the implicit 

system of equations by replacing the numerical flux of Osher with a flux vector split- 
ting scheme. Consider the flux vector splitting scheme of Steger and Warming [12], 

which can be expressed as 

F(Ue, Ur) = F'+(Ue) + F(U*) (3.59) 

For an implicit formulation, this equation can be linearized and written as 

n+ D U,. (3.60) F+l(Ue' Ur)_F"(UC, Ur)+Ca üe )n 
AU'. +(a OUr 

)n 

The Jacobian matrices in the above equation can be approximated by 

8F+(UU) 
_ 

(8F(Ue)1 +_ 
A+ (3.61) 

( ) 
8U, DU' 

0F-(Ur) 
_ 

(OF(Ur)1 
A, (3.62) 

au, aU,. J 

Substituting these expressions into equation (3.60) results in the following lin- 

earization 

F''l'(Ue, Ur)=F'(Ue, UU)+AeLUe+A; AUr (3.63) 

The Jacobian matrices in the above expressions are defined as 

A+ = RA+R- (3.64) 

A- = RA-R- (3.65) 

Where A+ and A- are the diagonal matrices of positive and negative eigenvalues 
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respectively, i. e 

At = max(O, )ti) 

A; - = min(O, A, ) 

The definition of R, R- and A are the same as those in Roe's flux. 

(3.66) 

(3.67) 

Now the term at time level n on the right hand side of the above equation (3.58) 

is replaced by the numerical flux of Osher in its explicit form. Hence the linearised 

implicit finite volume formulation will be given as 

DUB = RHSexp - 
[A+ AU, + Af LUWJ öse (3.68) 

ýe 
a. 

where the term RHSexp represents the right hand side of equation (3.45). 

Taking all the terms depending on AU, to the left hand side results in the 
following point Gauss-Jacobi iterative procedure as 

I+ e` E Ae ös. J DUB +l -1ZH, Sý`p - 
eý E[A, DU* ]bae (3.69) 

`s 

Similiar to that of the numerical flux of Roe, an alternative point Gauss-Seidel 

formulation can be obtained by using the latest available values (denoted by asterisk) 
to determine the fluxes at the neighbouring elements. In this case equation (3.58) is 

written as 

1" e [Fe 
`+ Ff - 

fu. 
ll 

U' 
lAoarier)dQ 8se (3.70) [I 

+ A' dse] Au: ' AtMe 

a. as 

3.5. Boundary conditions 

All the boundary conditions used for the exterior boundary are based on the method 

of characteristics. For the wall boundary, both the method of characteristics and 

extrapolation from the interior flow field are used [83]. 

At the exterior boundary, we wish to minimize the reflection of outgoing distur- 
bances. Consider the flow normal to this boundary. Assuming it to be locally one- 
dimensional, we introduce the fixed and extrapolated Riemann invariants according 
to 1-D Riemann relations 

R. = Uooff- 
yc 

1 
(3.71) 

2c` 
Re = Urn + 

ry 
(3.72) 

-1 

corresponding to incoming and outgoing characteristics. The normal velocity 



29 

Fig. 4. The ghost element at the slip wall 

and local speed of sound may thus be determined by 

Un" =2 (Re + Rte) (3.73) 

c= 
ry 

4 
1(R, 

- Rte) (3.74) 

Two other independent conditions are needed to complete the definition of the 
outer boundary condition. These are given by the values of tangential velocity and 
entropy. For an outer flow boundary these are extrapolated from the interior values, 
whereas for an inflow boundary they are set equal to their freestream values. 

At the inner boundary, e. g. a solid wall, the appropriate boundary conditions 
are the wall slip boundary condition, which means that the normal component of 
the velocity to the wall is zero. This can be implemented numerically in two ways 
described as follows. 

3.5.1. Strong formulation 

To specify the values of the unknowns, a set of ghost elements is introduced inside 
the wall boundary. The values for the velocity variables for these elements are set 
so that the average interface value satisfy the tangency condition. i. e. U� =0 (see 
figure 4). The values of the other two parameters (density and pressure) are taken to 
be the same as the values inside the domain. They are 

Pg = Pe (3.75) 

u9 = -(Ue)nnx - (VV)tn, (3.76) 

V9 = -(Ue)nny + (VV)tnx (3.77) 

P9 = Pe (3.78) 

%%II Üg 
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3.5.2. Weak formulation 

Using the velocity tangency condition in equation (3.8) of F, i. e. U. = 0, the fluxes 

at the wall are obtained in the following expression 

0 
pwnx 

Fw= (3.79) 

I pwng 

0 

It is necessary to determine the pressure at the wall. This also means only the 
pressure contribution remains at the walls. _, 

Various methods can be applied in order to obtain the wall pressure. The ones 
mostly used are characteristic relations based on the Riemann invariant and extrap- 
olations. 

For the explicit scheme, the numerical fluxes of equation (3.79) can be imposed 
directly at the sides on the wall. 

For the implicit scheme, however, further care is needed. The Jacobian matrix 
of the transformation U. -+ F. must also be used on the left hand side of the implicit 

equation system. It is 

0000 

Aw 1) 
'2 v2x 

2 n -unx -vnx nx (3.80) 
uý v' u2 ny -uny -vny ny 

0000 

As an example, the implicit formulation for an element adjacent to the wall using 
the numerical flux of Roe is explained. Equation (3.48) is now written as 

DUB At, E2 [Fn+l FT +l ýA I (Ur +l _ Un+1)j asp + Fw+ldw (3.81) 
e 

fS. 

Aw 
J 

Using the linearizations 

Fw+1 = Fw + AwOUe (3.82) 
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Fig. 5. The diagram of MUSCL approach 

it can be re-written as (in the form of the point Gauss-Seidel method) 

AU, =- 
Ae`{a> 1[Fn +F, - IA eI(U* - U')+A. EUe 

(3.83) +ýA ýDUý]ös+ (Fw + AwODU )öw} 

The above formula, upon taking terms involving DU,, can be written as 

where 

ALU� =b (3.84) 

A=I+e 
s> 

[(Ae +I Aroel )ase + 2Awöw 

b_ Vie 
aý 

{2 ýFe + Fr -I Aroe (Ur -U )ase + týw} 

The implicit formulation for an element adjacent to wall using the numerical flux 

of Osher is carried out in a similar way. 

3.6. High order resolutions based on MUSCL approach 

High order resolution has been achieved by the use of the variable extrapolation 
method reported in [29] [30] [31]. Similar to that carried out on a structured grid, the 
variable extrapolation, i. e. MUSCL approach, is also used to determine the variables 
at both sides of the interface to calculate the Riemann solver. 

For two given neighbouring elements "e" and "r" for example and considering 
the figure 5, a kappa-parameter family of high order schemes corresponding to side 



32 

"s" can be written as 

qs = qe + {. [(i - rsi) _+ 
(1 + rsl)0+]4}. (3.85) 

where 0+ = q,. - QE, 0_ = q. - q; and 

9ý = 4r -l4 4(1 + 182) _+ 
(1 - rsz)0+]4}r (3.86) 

where 0+ = 4k - 4, and 0_ =q- 4e 
In the above equations, qe and q,. are the vectors of primitive variables at the 

centroids of elements "e" and "r" respectively and q;, qk are the vectors of primitive 
variables at the elements which are nearest to the line connecting two centroid point 
(e, r). The advantage of this method is that no approximation need be introduced 
but on the other hand searching and storing of the address of i, k is needed. Here we 
use another simple approach. Instead of using the value at elements "i" and "k", the 

values at nodes "f', "s" are used to determine the extrapolation in equations (3.85) 

and (3.86). The node value at "f' and "s" are calculated by the weighted average of 
the flow variables in all the surrounding elements. That is 

Node 
Anode =E Qjwj 

i=1 
(3.87) 

where wj is the weighted coefficient. 
By considering this change in equation (3.85) the item A_ becomes qe-qf instead 

of %-q;. Also the A+ becomes q, - qr instead of qk - qr in equation (3.86). 

The parameter rc controls a family of difference schemes by appropriately weight- 
ing A+ and A- . On structured meshes, it is easy to show that '= -1 corresponds 
to a full upwind second order scheme, rc =0 yields Fromm's scheme and rc =1 
yields a central difference scheme. The value rc = 1/3 leads to a third order accurate 
upwind-biased scheme. 

The parameter sl, s2 serves to limit high order terms in the extrapolation in 

order to avoid oscillations in the solutions at discontinuities such as shock waves. 
According to van Leer et al [84], the limiting is implemented by locally modifying the 
difference values in the extrapolation to ensure monotone extrapolation as 

_ 
20+40-4' +5 (3.88) sl (0+4)Z + (0-4)2 +S 

sZ 
20+4i-4 +a (3.89) 

(0+9)z + (0-9)2 +6 

where 6 is a small number preventing division by zero in regions of null gradients. 
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On highly stretched meshes, the formula for 0+ is modified to be 

0+ 
a+b 

(4r - 9e) (3.90 

and 0_ is also modified to be 

a2 

bb (9" - Q`) (3.91) 

where a and b are the distances from the midpoint of an edge to the centroid of 
elements "e" and "r", respectively, as shown in figure 5. 

This formula weights differentially the flow variables in the extrapolation formula, 
to account for the stretching of the mesh. For example, by substituting equation (3.90) 
into equation (3.85) and letting is = 0, sl =1 yields 

=ba q 
a+bq`+a+bqr 

(3.92) 

For the, case shown in figure 5, this means more weight in the calculation of q, 
of the flow variables at the centroid of element "e" than to the flow variables at the 
centroid of element "r", since b>a. 

3.7. Unstructured grid generator and adaptive remeshing procedure 

The algorithm for the grid generation is the advancing front technique proposed by 
Peraire et al [50] which consists the following steps. Firstly the generation process 
is started by constructing a grid called the background grid which completely covers 
the solution domain of interest and contains the definition of element size, stretch 
direction etc. Secondly the boundary curve of the domain is discretised into a set 
of segments, and boundary nodes are placed at the points of intersection of these 
segments. The segments of the exterior boundary are defined in an anti-clockwise 
fashion while the segments of the interior boundaries are specified in a clockwise 
manner. This means that the region to be triangulated always lies to the left hand 

side as the boundary curve is traversed. The third step is triangle generation. At 
the start of the process the initial front consists of the sequence of straight line 
segments which connect consecutive boundary nodes. The length of these segments 
must therefore, be consistent with the desired local distribution of grid size. This 
operation is repeated for each boundary curve in turn. The front is a dynamic data 
structure which changes continuously. During the generation process a straight line 
segment which is available to form an element side is termed active, whereas any 
segment which is no longer active is removed from the front. Thus while the domain 
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boundary will always remain the same, the generation front will change continuously 
and has to be updated whenever a new triangle is formed. The generation process 
ceases when the number of active sides in the front list is empty. The size and shape 
of the generated triangles must be consistent with the local desired size and shape of 
the final grid. 

It is known that mesh adaption is also an important procedure in numerical flow 
simulation. It offers the prospect of accurate flow field simulations without the use of 
excessively fine, computationally expensive meshes. In this case small elements are 
used only in the regions where the flow is complex whereas large elements are used 
in the rest of the domain. A general scheme using this strategy requires three steps. 
Firstly, an unstructured mesh generator, able to control the sizes of the elements 
everywhere, is needed. Secondly, the flow solver is used to calculate physical flow 

variables. Thirdly, an a posteriori error estimator or indicator is required, which 
reveals where in the flow field the mesh is deficient and requires some smaller elements 
in these region. Of the many methods available for mesh adaptation [85] the remeshing 
procedure is a fairly easy one to implement on unstructured grids and has now been 

coupled with the inviscid Euler flow solver. 
The basic idea of the adaptive remeshing procedure is to use the computed 

solution on the initial mesh to provide the information on the flow, in particular the 
region with high flow gradient values. This can be done exactly by calculating the 
gradient value across an edge, for example 

tS=Pe 
- Pr 

P. + Pr 
(3.93) 

if the density p has been chosen as the indicator, or by another way through contour 
line drawing. Clustering of contour line identifies a high gradient region. Either of 
the methods above can be used to locate the position of the high gradient region and 
the remeshing procedure is then carried out by changing the mesh size parameters. 

3.8. Results and discussions 

To validate the present inviscid Euler codes, calculations were performed on five 
typical inviscid flow test cases. They are supersonic flow over a compression corner, 
hypersonic flow over a cylinder and a blunt body, subsonic flow over a NACA 0012 
airfoil and transonic flow over a NACA 0012 and a RAE 2822 airfoil. The MUSCL 
approach is used in the computation of supersonic and hypersonic flows. The adaptive 
remeshing procedure is considered in all of the numerical test cases. 
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M=2.2 

6 -16 (deg) angle or flow deflection across an oblique shock-wave 

0 . 42.5 (deg) shock-wave angle measured from upstream flow direction 

Region A Region B 

M=2.2 M=1.58 
P=0.1475 P=0.3SS4 
P-1.0 p"l. 8382 

Fig. 6. Definition of the supersonic flow past a compression corner 

CPU time per ite Code 

(seconds) Ex-Roe PGS-Roe PGJ-Roe Ex-Osher PGS-Osher PGJ-Osher 

lst-order, sp 0.0872 0.1385 0.1497 0.1187 0.2589 0.2638 

Table I. Comparison of the CPU time on coarse mesh 

3.8.1. Supersonic flow over a compression corner 

The definitions of the corner flow can be found in figure 6. The deflection angle is 
16°. The analytical solution to this problem can be obtained from elementary gas 
dynamics. The solution consists of two different regions of constant states which are 
separated by an oblique shock wave as is sketched in figure 6. It can be seen that the 
flow remains supersonic behind the shock wave. Therefore the flowfield is supersonic 
throughout the domain. 

The initial mesh used is the coarse one which contains only 213 elements and 131 

nodes in the flow domain (figure 9). Six codes (i. e. Explicit-Roe, PGS-Roe, PGJ-Roe, 
Explicit-Osher, PGS-Osher and PGJ-Osher) are validated on this mesh and results 
are compared. Figure 7 presents two pictures of the comparison of convergence history 
by using Roe's and Osher's schemes. It is found that the implicit method converges 
nearly twice as. fast as the explicit one. Table I lists the CPU time consumed per 
iteration by each code. The calculations are performed on a SG Indy workstation. 

It is also found that the definition of precision affects the value of residual reached. 
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CPU time per ite Code 

(seconds) Ex-Roe PGS-Roe PGJ-Roe 

lst-order, sp 0.95 1.32 1.76 

lst-order, dp 1.087 1.7784 - 

2nd-order, dp 3.377 4.074 - 

Table II. Comparison of the CPU time on fine mesh 

By using single precision (sp) the value of residual will reduce to 0.5E-4 - 1. E-5 and 
then stall, while by using double precision (dp) the residual can go down further to 
nearly 1. E-14. 

Figure 9 shows the initial mesh and the corresponding pressure and Mach number 
contours obtained by the PGS-Roe code with the first order in Riemann solver. 

Application of the remeshing procedure is performed based on the results of the 
initial mesh. The numerical computation has been repeated on the refined meshes. 
The number of elements now increases to 2390 (figure 9). Most of the re-generated 
elements are concentrated in the shock wave region, located by the computational 
results on the initial mesh. Figure 8 gives the convergence history of the Explicit, 
PGS and PGJ codes using Roe's scheme. It can be seen that the PGS-Roe code 
converges faster than the Explicit-Roe code and the PGJ-Roe code. The comparison 
of the effect of single and double precision is illustrated with the PGS-Roe code. 
Table II lists the CPU time per iteration of different codes used on the fine mesh on 
the SG Indy computers. 

Figure 9 shows the fine mesh and the corresponding pressure and Mach number 
contours obtained by the PGS-Roe code with the first order approach. It is clear that 
the results on the fine mesh improved considerally more than those on the coarse 
mesh. However the shock wave is seen to be little resolved because of the first order 
approach used. To improve the capture of the shock wave with more accuracy the 
linear-resolution scheme using MUSCL approach is adopted. Figure 10 illustrates 
the comparison of convergence history between the first and high order schemes. It 
can be seen that the reconstructed high order scheme takes more iterations to reach 
the same convergence criteria. Figure 11 provides the results of pressure and Mach 
number contours using the high order scheme. It is clear that improved shock wave 
band is reached with comparison of those in figure 9. 
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3.8.2. Hypersonic flow 

(a) Hypersonic flow over a cylinder 
The test case is a hypersonic flow over a sector of a cylinder with a free stream 

Mach number of 8.0 with zero incidence. The computational results on a coarse 
mesh show there exists an arc-type shock wave through high gradient value in the 
flow domain. After remeshing, a fine mesh with 2985 elements and 1560 nodes is 
generated. Smaller elements are located mainly in the detected shock wave region. 
Figure 12 shows the unstructured mesh, the flow vector field and the contours of 
pressure, density and Mach number. Accurate simulation is reached using the PGS- 
Roe code with the MUSCL approaches. 

(b) Hypersonic flow over a blunt body 
The case is the hypersonic flow over a blunt body with a free stream Mach 

number of 10.0 and a zero angle of attack. Following the same procedure as that in 
the computation of the cylinder, a fine mesh, which contains 2697 elements and 1400 

nodes, is obtained based on the results of the coarse mesh calculation. From figure 13 
it can be seen that more elements are concentrated in the shock wave region. Also 
figure 13 illustrates the flow vector field and the contours of pressure, density and 
Mach number. The MUSCL approach together with the PGS-Roe scheme are used 
in this simulation. 

3.8.3. Subsonic flow 

The behaviour of the point Gauss-Seidel implicit scheme is examined by considering 
the case of a Mach number of 0.63 inviscid flow past a NACA 0012 airfoil with an 
incidence of 2°. The flow is subsonic everywhere. An unstructured grid consisting of 
6354 elements and 3267 nodes is employed. The far field boundary is placed at 10 

chords lengths away. Figure 14 gives the details of the mesh and the results of the 

pressure distribution along the airfoil surface. Figure 15 shows the pressure and Mach 

number contours of the flow field. It should be noted that the computation here is 
based on the first order scheme. 

3.8.4. Transonic flow 

(a) Transonic flow over NACA 0012 airfoil 
The first example considered here is the transonic flow over a NACA 0012 airfoil. 
Two test cases are considered. They are the transonic flow with the flow con- 

ditions of (i) a freestream Mach number of 0.75 and the incidence of 2° and (ii) a 
freestream Mach number of 0.80 and the incidence of 1.25°. 
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The initial mesh is shown in figure 16, which consists of 3246 elements and 1670 

nodes. The correspondent pressure and Mach number contours on an initial mesh 
are shown in figure 16. The second mesh is shown with 6354 elements and 3267 

nodes, with more elements deployed around the surface of the airfoil especially in the 
leading edge regions and it shows the improvement in pressure and Mach number 
contour definition. Figure 17 gives the meshes and results of contours of test case (ii). 

From the initial result of test case (i) it is found that there exists a high gradient 
region, i. e. shock wave on the upper surface about 40% chord. After the process of 
remeshing, smaller elements have been included in that region to simulate the shock 
wave with more accuracy. Figure 18 gives the result of the final generated mesh which 
contains 8558 elements and 4381 nodes and the pressure and Mach number contours 
calculated on that mesh with the PGS-Roe code. The result is obviously improved 

especially in the shock region. 
The same procedure is followed on test case (ii). Figure 19 provides the remeshed 

mesh with 9769 elements and 4988 nodes. More smaller elements are clustered in the 

vicinity of the 60% chord of the upper surface and 34% chord of the lower surface 
where high-gradient values are detected. Also the pressure and Mach number contours 
illustrated in this figure clearly show the improved result reached. 

Figure 20 gives the comparison of the Cp distributions on different meshes for test 

case (i) (upper) and case(ii) (lower). The results are obtained by using the PGS-Roe 

code with first order schemes. 
(b) Transonic flow over RAE 2822 airfoil 
The second example considered here is the transonic flow over a RAE 2822 airfoil 

with a freestream Mach number of 0.75 and incidence of 3° . The initial mesh is shown 
in Figure 21. This mesh consists of 6674 elements and 3426 nodes. The pressure 
and Mach number contours for this case are shown in the same figure. Following 

the adaptive remeshing procedure, a high-gradient region can be detected. Smaller 

elements are again used in that region to capture the smaller changes in it. The 

resulting fine grid, which now contains 9506 elements and 4850 nodes, together with 
the pressure and Mach number contours are shown in figure 21. The results are 
obviously improved especially in the shock region. 

Figure 22 gives the comparison of the C,, distributions on two meshes. The results 
are obtained by the first order approach using the PGS-Roe code. 

3.9. Conclusions 

Explicit and point implicit (Gauss-Seidel and Gauss-Jacobi) iteration schemes with 
the upwind cell-centred finite volume method on an unstructured grid have been 
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proposed and tested. For the inviscid Euler flow, the code with the point implicit 
scheme achieves more efficiency than that with the explicit approach. Validation 

was carried out on different geometries such as corner, cylinder, blunt body and 
airfoils and over a wide range of Mach numbers from subsonic to hypersonic flow. 
The incorporation of mesh adaptivity, i. e. using the adaptive remeshing strategy, 
substantially improves the quality of the flow simulation. 

Through calculation the following conclusions are made: 
(1) The convergence history improves quantitative when using a point implicit scheme 
instead of an explicit one. Although the implicit code takes a little more CPU time per 
iteration, the total improvement in efficiency is notable. Hence the implicit scheme 
is suggested to be used. 
(2) For single precision the residual does not decrease below 1. E-5 in the corner flow 

case, while for double precision it reaches 1. E-14. It is suggested that double precision 
be always used in the calculations. 
(3) From the test case of corner flow both Roe's and Osher's schemes give nearly 
the same satisfactory results. For the implicit scheme we prefer to use Roe's scheme 
rather than Osher's scheme as it takes less CPU time. 
(4) Both the PGS and PGJ methods give similar convergence rates on coarse mesh. 
But on fine mesh the convergence performance of the PGS method is observed to be 
better than that of the PGJ method. 
(5) The PGS-Roe code together with the MUSCL approach gives more accurate re- 
sults than that with the first order approach for corner, cylinder and blunt body flows. 
(6) Even using the first order scheme, good results are achieved in the calculation of 
the subsonic/transonic airfoil using the process of the adaptive remeshing procedure 
in capturing the shock wave region. 

The experience with above method appears quite promising. However the prob- 
lem still remains of how to implement the high order scheme to improve the accuracy 
on airfoil cases. This topic will be discussed in the next chapter. 
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Fig. 7. Convergence history of the supersonic compression corner flow on initial mesh 
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Fig. 8. Convergence history of the supersonic compression corner flow on fine mesh 
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Coarse mesh 

Pressure contours on coarse mesh 

Mach number contours on coarse mesh 

Fine mesh 

Pressure contours on fine mesh 

Mach numher contours on fine mesh 

Fig. 9. Meshes, pressure and Mach number contours of the supersonic compression 
corner flow by PGS-Roe code with the first, order scheine 
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Fig. 10. Convergence history of the supersonic compression corner flow on fine mesh 
using the first and high order schemes 

Pressure contours on fine mesh Mach number contours on fine mesh 

Fig. 11. Pressure and Mach number contours of the supersonic compression corner 
flow by the PGS-Roe code with MUSCL approach on fine mesh 
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Fig. 12. Adaptive mesh, flow vector field, pressure, density and Mach number contours 

of the hypersonic flow over a cylinder 
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Fig. 13. Adaptive mesh, flow vector field, pressure, density and Mach number contours 
of the hypersonic flow over a blunt body 
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Pressure contours 

Mach number contours 

Fig. 15. Pressure and Mach number contours of NACA 0012 airfoil under the flow 

conditions of M. = 0.63 and a= 2° 
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Pressure contours on coarse mesh 

Mach number contours on coarse mesh 

Pressure contours on middle mesh 

Mach number contours on middle mesh 

Fig. 16. Meshes, pressure and Mach number contours of the transonic flow over NACA 

0012 airfoil (Mý = 0.75 and a= 2°). 
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Pressure contours on coafse mesh 

Mach number contours on coarse mesh - Mach number contours on middle mesh 

Fig. 17. Meshes, pressure and Mach number contours of the transonic flow over NACA 

0012 airfoil (M. = 0.8 and a=1.25°). 

Middle mesh Coarse mesh 

Pressure contours on middle mesh 



50 

Fine mesh 

Mach number contours on fine mesh 

Fig. 18. Adaptive mesh, pressure and Mach number contours of the transonic flow 

over NACA 0012 airfoil (M. = 0.75 and a= 2°) 

Pressure contours online mesh 
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Fine mesh 

Pressure contours on fine mesh 

Mach number contours on fine mesh 

Fig. 19. Adaptive mesh, pressure and Mach number contours of the transonic flow 

over NACA 0012 airfoil (M. = 0.8 and a=1.250) 
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Fig. 20. Comparisons of pressure distributions on coarse and adaptive meshes. 
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Fine mesh 

Mach number contours on coarse mesh Mach number contours on fine mesh 

Fig. 21. Meshes, pressure and Mach number contours of the transonic flow over RAE 
2822 airfoil (Mý = 0.75 and a= 311) 

Pressure contours on fine mesh 
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Pressure contours on coarse mesh 
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CHAPTER 4 

HIGH ORDER RESOLUTION 

4.1. Introduction 

It has long been known in the computational fluid dynamics (CFD) community that 
the use of high order resolution can deal with practical flow problems at higher ac- 

curacy, while use of the first order scheme often cannot do so. An example of the 
latter is given in Figure 23 which illustrate the results of surface pressure distribu- 

tions and convergence history of the transonic flow over the RAE 2822 airfoil under 
the conditions of Mach number 0.729 and incidence 2.31°. These results are given 
by the Euler flow solver (PGS-Roe code) described in the previous chapter, which is 

an upwind cell-centred finite volume method on unstructured grids with first order 
scheme considered. Although the residual has been reduced rapidly to -5 orders, the 

pressure is still unreasonable because of (1) the value near the upper surface of leading 

edge is not fully recovered and (2) the size of the jump at the shock wave position 
is not sufficiently high. The same problem is also revealed by Hirsch et al in their 

recent paper [86]. So it is concluded that the high order scheme must be used in CFD 

computation. 
Concerning upwinding on structured grids, many high order reconstruction meth- 

ods have been proposed and successfully applied. Among the popular ones used are 
the Flux Corrected Transport (FCT) scheme of Boris and Book [18], the Total Varia- 

tion Diminishing (TVD) scheme of Harten [19] and the Monotonic Upstream-centered 

Scheme for Conservation Laws (MUSCL) of van Leer [21]. In recent years with the 

extension of upwind scheme to unstructured grids, more interest is focussing on how 

to reconstruct the high order scheme on such grids. The initial thinking is to ap- 

ply the same idea as that used on structured grids directly. Some researchers have 

done so. Of them Batina [29] employed the MUSCL approach to reconstruct high 

order schemes on triangular grids when using an upwind cell-centred finite volume 

method, as did Frink [31] and Venkatakrishnan and Barth [32]. In Chapter 3 we 
have discussed the MUSCL approach and successfully applied it to supersonic and 
hypersonic flow computations. Alternatively, Barth and Jespersen [33] proposed a 
novel upwind scheme for the solution of the Euler equation on unstructured grids by 

departing from the one dimensional approach for satisfying the monotone principle. 
In multi-dimensions, they employed a monotonicity principle similar to van Leer [21] 
for structured grids, namely that the reconstructed distributions on the control vol- 
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Fig. 23. Pressure distributions and convergence history of RAE2822 airfoil with the 
first order scheme 

ume cannot extend over or under the values on all its neighbouring control volumes. 
To satisfy this, they introduced a min-mod type limiter to guarantee the smooth 

oscillation-free solution on unstructured grids. However many researchers found in 

their applications that the nondifferentiable limiter function such as the min-mod type 
limiter of Barth and Jespersen (B-J) generally leads to convergence difficulties. The 
B-J limiter had once been used in the calculation of supersonic corner flow in chapter 
3. From the results in figure 11, it has also been found that the convergence stalls 
after two orders of reduction in the residual when using the variable recovery method 
(VAR) with the B-J limiter. Recently Venkatakrishnan [34] analysed this conver- 

gence problem theoretically and proposed a new limiter which has worked quite well 
in the test case' considered. A modified version of the original van Albada limiter [84] 

was also discussed in [34]. Bishop and " Noack [35] suggested the replacement of the 

min-mod type limiter function of B-J with a smooth second-degree polynomial func- 

tion, as did Venkatakrishnan in [34], but further imposing an additional constraint 
condition of first derivative continuity. Rosendale [36] described another approach of 
applying a multi-dimensional generalized form of the van Albada limiter on triangu- 
lar meshes and thought that it might be an inexpensive approach to the Essentially 
Non Oscilatory (ENO) scheme, which is still a very complex and high-cost scheme 
for unstructured grids. Besides the limiter, another problem connected with the high 
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order reconstruction procedure is the computation of gradients at the reference points 
of the control volume. Normally this is chosen as the centre points in the cell-centred 
scheme. Generally the Green-Gauss integral method is the common choice. Yet some 
researchers also found that the least-square reconstruction [39] based on the minimum 
energy principle is promising. 

The methodology of flow solver employed in this chapter is the same as that 
described in Chapter 3. Section 4.2 describes a general form of the high order scheme 
on unstructured grids. Section 4.3 focusses on two gradient computation methods, i. e. 
the Green-Gauss integral and the least-square. In section 4.4 the limiters mentioned 

above will be described individually. The effects of gradient computation method on 
accuracy and convergence history, together with limiters is described in section 4.5 
by the test case of the inviscid transonic flow over a supercritical airfoil RAE 2822. 
Finally the conclusions from this chapter are given in section 4.6. 

4.2. General form of high order scheme on unstructured grid 

In our point implicit iteration scheme described in the previous chapter the variables 
at the cell centre point of the control volume (element) are normally used as the first 

order approximation using the values at both sides of the interface to compute the 
fluxes across the interfaces in the Riemann solver. As we have shown in above section 
that this approach will produce unreasonable results by such approximation, the high 

order scheme needs to be considered. 
In general the high order accuracy of variables over an arbitrary control volume 

can be achieved by the Taylor series expansion. In the 2D case with only second order 
approximations considered, such processes will result in 

Q(x, y) = nw (x0, Yo) + VQ IXo, 
Vo AF +0 (Ox2, Aye) (4.1) 

where variable Q(x, y) means the value of second order reconstruction, Q(xo, yo) 

represents the value at the reference point (x0, ya), VQ Jx�y, means the gradient at 
the reference point (xo, yo), Or" = r"- ra means the position vector of the point r '(x, y) 

with respect to the reference point r"a (xo, yo) and O(Ox2'AY 2) means the neglected 
higher order items. 

Normally the result of the above linear reconstruction may exhibit nonphysical 

oscillations in the form of over- or under-shoots near the flow discontinuity regions. 
To prevent this a limiter 4) must be applied, which results in the final formula as 

Q(x, Y) = Q(xo, yo) + 4DVQ Jxo, vo AF +0 (zx2, Aye) (4.2) 
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Fig. 24. Green-Gauss integral routine (A-B-. " "-K) used by Barth-Jcspcrsen 

Clearly equation (4.2) implies two aspects. One is calculation of the gradient at 
the reference points (e. g. the central point of the cell). Another one is how to define 
the limiter ýD. We will discuss them individually in the following sections. 

4.3. Methods of gradient value computation 

Two commonly used gradient value computation methods used for high order recon- 
struction on unstructured grids are the Green-Gauss (G-G) integral method and the 
least-square (L2) method. 

4.3.1. Green-Gauss integral method 

The Green-Gauss integral method is based on the following formula 

AV QdQ =/ Qi1dI' (4.3) 

In this case we assume the piecewise distribution of gradient VQ on SZ with the 

reference point (xo, yo) . Then we have 

V Q)ZO, YO = St Ir 
Qf-ld[ (4.4) 

In theory any closed routine around the reference point (x� y, ) can be selected 
as the integral path. In [33] Barth and Jespersen suggested a large route (sec closed 
line of A-B-C-" " . -K in figure 24) as their integral path. It is clear that the more 
information considered to compute the gradient the more accuracy will be produced. 
However it will use more CPU time and memory. Thus there are balancing factors. 

Here we consider all information in neighbouring elements in an attempt to keep 
the cost as low as possible. Similar to Fink [31] we first use the inverse-distance 
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weighted method to compute the value at the node points with information from all 
neighbouring elements. After this the integral is evaluated using equation (4.4) along 
all edges of the current element. Taking the element "o" of figure 24 for example, we 
first find the values at its nodes 1,2 and 3 using 

nwi = 
Ei (tl Qj/rß 

i=1,2,3 (4.5) 
J(s) E, _11/rj 

where J(i) means all elements sharing the node i. Then the integral is evaluated 
by 

3 

VQIXO, vo = Q;. öse (4.6) 
s. =1 

Q% = 0.5(Q; + Q; +1) i =1,2,3 (4.7) 

4.3.2. Least-square method 

The least-square (L2) method is another one commonly used to calculate the gra- 
dients, in which all neighbouring variables can be assumed to behave linearly. This 

method is based on the minimum-energy principle [87]. 

By applying equation (4.1) on all neighbouring elements (see figure 25 as an 
example) the variables at each cell-centre point of neighbouring elements may be 

expressed as 

Qi = Q. + 
ýý I. Axi +QJ. Ays (z =1,2,..., n) (4.8) 

It can also be written in an Nx2 system of equations as 

Ax =b (4.9) 
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where 

0x1 Lyi AQi 

A_ 
0x2 DY2 22 ) 

b= 
OQ2 

(4.10) 

Oxn Fyn OQn 

Clearly this is an overdetermined system of linear equations which can be solved 
to obtain the gradients at the cell-centered point of the current element. Here the 
Gram-Schmidt process [88] is used in which the system of equations is solved by 
decomposing the matrix A into a product of an orthogonal matrix Q and an upper 
triangular matrix R, i. e. 

A= QR (4.11) 

so that the solution is obtained by 

x= R"1QTb (4.12) 

The resulting formulas for calculating the gradients at point (x� ya) are given by 

ýý 
10= >N wi (Qi - Q. ); 

"6 
1 
o= 

EN wi (Qi - Q0) (4.13) 

i=1 y i=1 

where the summation is over all neighbouring elements and the weights are given 
by 

xxrr 
W-i- lz [(yý-y, )-(x; -xo) 

12 
r 

(4.14) 
2 riir22 rlI 

12] 
w` 

rza 
hi 

- yo) ril (4.15) 

where 
N j1/2 

ril =Z (x; 
- x0)2] (4.16) 

ls_1 

r 
EN 

is =i 
(xi - x. ) (vi - Uo) (4.17) 

rll 
N 11/2 

r22 = 
lZ 

(yi - yo)2 - r12] (4.18) 
i=l 

It must be noted that all formulas above yield an unweighted least-square pro- 
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cedure in which all the variables of neighbours are considered equally. 

4.4. Limiters 

In the following subsection we will discuss the limiters mentioned in the introduction 

section to this chapter. 

4.4.1. Barth-Jesperson limiter 

The B-J limiter follows the monotonicity principle in multiple dimensions, in that the 

reconstructured distributions everywhere in the control volume must be bounded by 
the value of all the neighbours. This can be expressed mathematically as 

1 if Q; =Qo 
Q ýpi = min(1, Q s) if Qs > Q. (i =1,2, ... , n) (4.19) 

i-Qo 
mýn- 

min(1, Qo) if Q; < Qa Qi-Qo 

where Qm°x means the maximum value of all the neighbours, Q'i' means the 

minimum value of all the neighbours and Q; is the reconstructed value at node i of 
the current element by equation (4.1) without the limiter. 

The final limiter of the element is defined as = min(, cD1, (Dz, .... 4)�). 
As the B-J limiter strictly follows the monotonicity principle it will produce 

smooth oscillation-free solutions even on very stretched unstructured grids. However 

as a min-mod limiter function is used it will lead to convergence difficulties. Several 

researchers reporting on use of the B-J limiter, noted that the convergence stalled 
after one or two orders decrease in residual even though the lift coefficient had already 
converged and reasonable pressure distributions achieved. This behaviour will also 
be illustrated in this work. 

4.4.2. Venkatakrishnan limiter 

Recently Venkatakrishnan analysed this convergence difficulty theoretically and pro- 
posed a new limiter (later we shall call it the Venkat limiter in short) which improves 

the convergence situation at some expense to monotonicity. 
Insteady of using the min-mod function min(1, r), Venkatakrishnan uses the fol- 

lowing second-degree polynomial function expressed as 

r2 + 2r 
fi(r) = r2 +r+ 2 

(4.20) 
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Based on this the Venkatakrishnan limiter can be written as 

1, ifQi=Q. 

(pt= o( qý' 
) if Q. >Q0 (i=1,2,..., n) (4.21) 

o( qQq. 
) if Qc < Qo 

where Qmax, Qm{n and Q; are defined as before. The limiter function 0 is defined 

as above. 
In order to undergo transition smoothly from the application of the limiter in 

regions of high gradient to the removal of it in near-constant regions of the solution, 

a modification must be made on the limiter function resulting in 

A+ 
=11(+2)_+2z. +1 

IL J 4.22 O(0_) 
0_ p++2z +0_D++EZ 

) 

where 0+ = Qmnx _ Qo if Qi >Q. or A+ =Q"'-Q. if Qt <Q. - 
A- = Qc - Q.. 

e2 is taken to be (kzh)3. 

Here k is a constant. A value of zero for k implies that the limiter is still 
active even in the near-constant regions, whereas a very large value for k implies 

effectively no limiter at all. Ah is taken as the distance between a node point and the 

centre point of the control volume. In practical application 0_ should be replaced 
by sign(0_)(J _1 + 10-12) to avoid division by a very small value of 0_. The value 
of k depends on the test case and flow conditions. It can be defined through tests. 

4.4.3. van Albada limiter 

The original van Albada limiter takes the same definition of equation (4.21) but 
including the following form of the limiter function 0 

ýýr) = 
r2 +r 
r2+1 

(4.23) 

where r= A+/A-' A+ = Qmax(orQmin) _ Qo, A- = Qi - Qo 

Also in order to avoid clipping smooth extrema the following modification should 
be made 

0+ +A2 +2 e. 
(4.24) 

A+ I [(A+ + E2)A_ + (A? + E2)A+J 

where e2 is defined the same as that in the Venkat limiter. And 0_ is also 
replaced by sign(A_)(I0_f +10-12) to avoid the zero division. 
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4.4.4. Bishop-Noack limiter 

Firstly the B-N limiter uses a smooth approximation that is a ratio of the second- 
degree polynomials instead of the min(1, r) function. The resulting limiter function 

must satify the conditions: 0(0) = 0, q5(2) =1 (which is the second-order accuracy 

constraint) and O(oo) =1 with the constraints q5(r) < min(1, r) for 0<r<2 and 
c(r) >1 for r>2. 

The form of limiter function must be taken as 

r2 + 2r 
fi(r) = r2 +r+2 

(4.25) 

which is the same as that adopted by Venkatakrishnan. 
Secondly in the B-N limiter, an additional constraint in the first derivative of 

continuity, namely Oý(2) = 0, is imposed. The limiter function that satisfies all these 

conditions is 

q(r) 
s2 +4 with s= min(2, r) (4.26) 

Finally to de-activate the limiter in near-constant regions requires the following 

modification 

O+ 2, &+Ö_ + (4.27) 

in which 0_ = 20_, 0+ = min(20_, 0+) and E= a°fh3 applied to avoid 
application of the limiter in near zero gradient regions. The grid spacing Oh represents 
the distance between the cell centre and the node points. Then a>c is used to avoid 
division by zero where e is a small number. 

4.4.5. General van Albada limiter 

By re-writing the generalized form of the van Albada limiter on triangular meshes 
Rosendale derived the following formula to evaluate the gradients 

VQIxo, ba =w1VQi +w2VR2 + W3VQ3 (4.28) 

where VQi, VQZ and VQ3 are the gradients at node points 1,2,3 of the clement 
(see figure 24). Suppose it is already computed by the method described in the 

previous section. Suitable weights are wi, w2, w3, which obey 

wl + w2 + w3 =1 (4.29) 
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wl, W2, W3 E [0,1] (4.30) 

To preserve the original van Albada properties of not clipping extrema, the par- 
ticular choice may be 

wl = 
a2a3 + E2 (4.31) 

ala2 + a2a3 + a3a1 + 3e2 

W2 = 
a3ai + e2 (4.32) 

ala2 + a2a3 + a3a1 + 3& 

W3 = 
aia2+e2 (4.33) 

a, a2 + a2a3 + a3a1 + 3e2 

where al =II VQi 112; a2 =11 VQi 112; a3 =11 0Qä 112, and e is a small number. 

4.5. Comparisons 

In this section all limiters and gradient computation methods described above will 
be compared using the test case of the transonic inviscid flow over the RAE 2822 

aerofoil. 
The mesh employed is a regular unstructured mesh produced by halving the 

structured mesh (129 x 33) (figure 26). The airfoil is in a flow of Mach number 0.729 

and incidence of 2.31°. The normal spacing of the first grid near the wall takes 10-3 

chords which is sufficient for inviscid flow simulation. 

4.5.1. Comparison of the computation of the gradient 

Here we present the comparison of methods for calculating gradient. The limiters 

considered are confined to those of B-J and Venkat. 
Figure 27 shows very good agreements in pressure distributions using the B-J 

and Venkat limiters with both the Green-Gauss and the least-square methods. Small 
differences are found near the upper surface of leading edges illustrated by the detailed 

picture. 
Figure 28 illustrates the convergence history of the residual. It is found using 

the B-J limiter with both G-G and L2 methods the residuals are stalled after nearly 
two orders reduction in residual. However the residual is reduced to -3 by the G-G 

method and even -4.2 by the L2 method when the Venkatakrishnan limiter used. It 
improves as the iteration continues. 

Figures 29 give the history of the lift coefficients. Both the G-G and the L2 

method give nearly the same result but small differences are also found in the detailed 
C1 picture. The G-G method results in a high value of 0.88 while the L2 method results 
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in a low value of 0.865. 

4.5.2. Comparison of limiters 

Comparison is made in this section between first and high order schemes and also 
with the high order scheme with different limiters. 

From figures 30,31 and 32 we can find that (1) pressure distributions are more 
reasonable when using the high order scheme rather than the first order scheme; (2) 
the residual reduces rapidly when the first order scheme is used, while with the use of 
the high order scheme it is found more difficult to converge the residual; (3) a higher 
lift coefficient is obtained using the high order scheme compared with the first order 
scheme. 

Figure 30 illustrates the comparison of the pressure distribution for the first 

order scheme and the high order schemes with limiters. All the high order schemes 
gave nearly the same C, results except in the shock wave regions where the limiter 
is active. Different limiters result in different values of Cp in the shock wave region. 
Without a limiter strong oscillations appear. Use of limiters improves this situation. 

Figure 31 compares the convergence history of the first order scheme with the high 

order one with different limiters. With the first order scheme, the residual decreases 

rapidly below -5 order, while the high order scheme results in convergence difficulties. 
From the detailed picture it is found that: (1) without the limiter the residual can 
be reduced to near -3.0 and will be reduced further if the iteration continues; (2) 

with the B-J limiter the residual oscillates around the value of -2.2 and appears not 
to decrease further; (3) the Venkatakrishnan limiter (with k=5 used in present test 

case) results in a residual of -3.2 in the same number of iterations and decrease further 

as the iteration continues; (4) the residual using the van Albada limiter (with k=5 

used) also stalled at -2.5, with only a little improvement using the B-J limiter; (5) 
the B-N limiter did not work well in present test case, the residual with its limiter 

only reaches -1.8 and does not decrease further; (6) the general van Albada limiter 

results in nearly the same convergence result as that using the B-J limiter. 

Although in respective references all authors published very successful application 
of their limiters on the test case they selected, the results by the author did not give 
the promised favourable result, especially with regard to convergence history. Only 

the Venkatakrishnan limiter, in constrast to others, appears favourable. 

Figures 32 gives the lift coefficient history. By using the first order scheme the 
lift coefficient (Ce) is nearly 20% lower than that using the high order scheme. The 
high order scheme with different limters gives nearly the same value of C1 but small 
difference still remain when compared in detail (right picture). The B-J limiter, 
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Venkat limiter and van Albada limiter result in the higher C, value of nearly 0.88. 
Without the limiter the C, value only reaches 0.875. Both the B-N and the general 
van Albada limiters give the value of 0.86. In constrast the first order scheme results 
in only a value of C, of 0.71. 

It should be mentioned in all the above computations, the gradient value is 
calculated by the Green-Gauss method. 

4.6. Conclusions 

The following conclusions can be made through above researches: 
(1) Generally the high order scheme should be used in the flow solver, otherwise 
unreasonable results are produced; 
(2) With the limiters considered in this chapter, a similar pressure distribution is 

obtained except in the shock wave region where the limiter is active. Converged 

results of lift coefficient are achieved with little difference between methods; 
(3) The residual is very sensitive to the limiter used. Most limiters considered resulted 
in difficulty of convergence. Only the Venkatakrishnan limiter (with k=5 used) is 

superior to others resulting a residual decreasing below -3 for a similar number of 
iterations; 
(4) The selection of the computation of gradient has little influence on the value of Cp 

and C, but more influence on the convergence history. The L2 method seems better 
than the G-G method in the present test case, by which the residual can be decreased 
below -4 when using the Venkatakrishnan limiter; 
(5) The quality of limiter is problem-dependent. In our experience some limiters did 

not show as good a performance as in their original publications. 
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Fig. 26. Regular unstructured grids around RAE2822 airfoil 
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CHAPTER 5 

NUMERICAL SOLUTION OF TWO-DIMENSIONAL 
NAVIER-STOKES EQUATION 

5.1. Introduction 

Compared to the solution of the Euler equations, the solution of the Navier-Stokes 

equations has additional difficulties when using unstructured grids. The problem is 
the simulation of boundary layer flow, where the variables in the normal direction 

change rapidly compared to those in the tangential direction. The present situation 
is that the methods most used to generate unstructured grids, e. g. Delauney triangu- 
lation and the advancing front technique, by their nature, do not lend themselves to 
generating the highly stretched elements which are required in viscous flow. However 
in most approaches on structured grids this problem can be overcome using cells with 
aspect ratios typically of the order of thousands. It would appear that, similar to 
structured grids, suitable unstructured grids used in the simulation of viscous flows 

would have to include elements with very high aspect ratios. 
In the application of unstructured grids to viscous flow simulation, most of the ef- 

fort is concentrated on the construction of unstructured grids with a suitably stretched 
grid distribution in the boundary layer flow region and the development of flow so- 
lution algorithms capable of producing accurate results. Investigations have been 

carried out in developing such techniques for using unstructured grid for viscous flow. 
Three categories of recent approaches for mesh construction can be identified. The 
first category is the technique which attempts to modify a generated grid by element 
transformation and use of an intermediate mapping space. Mavriplis [54] [55] pro- 
posed the generation of unstructured triangular meshes based on a Delaunay triangu- 
lation, which is performed in a locally stretched space in order to obtain high-aspect- 

ratio triangles in the boundary layer and wake regions. Vilsmerier and Hanel [56] 
have also considered this approach and applied an intermediate mapping procedure 
to obtain strongly anisotropic grids. Although they are successful in the 2D case 
the extension of such an approach in 3D cases has not proved successful for general 
complex configurations. The second technique is to construct viscous grids using an 
intermediate stage which involves a modified form of standard unstructured grid gen- 
eration. In the paper of Weatherill et al [59] two methods, named "Node Attraction" 

and "Advancing Normals", were described in detail. Both are designed to construct 
a viscous mesh based on an unstructured mesh generated by the Delauney triangula- 
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tion or advancing front techniques. Structured grids in near-wall regions are formed 
by pulling nodes close to a solid wall and re-ranking them. A similar approach is also 
advocated by Pirzadeh [58] using the advancing layer concept to generate the struc- 
tured grid near the wall and unstructured grid in the far-field. The third approach 
is to create a "skin" around a shape within which the structured grid is developed 
as in Holmes and Connell [60]. Alternatively as in our report [89], a method of such 
a "skin" strategy is proposed to construct a hybrid mesh with a structured grid in 
the near-wall regions and an unstructured one in other regions. The difference is 
that the structured mesh is firstly constructed using an appropriate efficient and re- 
liable code (e. g. the EAGLE grid generator [90]). Then an unstructured mesh is 

generated outside the "skin" boundary using the advancing front technique [50], and 
finally an intermediate layer is used to connect the two types of meshes. It should be 

pointed out that a structured mesh, embedded within a globally unstructured mesh, 
will primarily ease the viscous flow computation, especially in the implemention of 
the turbulence model (e. g. the Baldwin-Lomax algebraic model), without any need 
of an additional reference structured grid as mentioned in [54] [55]. 

Based on the successful work on the Euler flow solver outlined in the last chapter 
and the hybrid grid generation method of [89], this chapter deals with the development 

of a Navier-Stokes flow solver. In a similar fashion to the Euler flow solver, a cell- 
centred finite-volume method is used to discretize the Navier-Stokes equations. Roe's 

approximate Riemann solver is applied for the inviscid flux computations at each cell 
interface, assuming a local 1-D Riemann problem in its normal direction. A linear 

reconstruction using gradient estimates and limiters is employed to obtain two high 

order Riemann states at the sides of the cell interface. For viscous fluxes a finite 

volume formulation for the gradient at each cell interface, which can be regarded as a 
second order central scheme, is developed. Therefore the difference between the first 

and high order schemes lies in the discretization of the inviscid terms. An implicit 

point Gauss-Seidel scheme with Roe's approximate Riemann solver is used for the 
time integration. The test case of a laminar viscous flow over NACA 0012 airfoil 
is chosen first to validate the proposed Navier-Stokes solver on several kinds of grid 
topologies including the hybrid grid. Then the Baldwin-Lomax algebraic turbulence 

model is implemented within the NS flow solver and the computational procedure 
of predicting the high-Reynolds number turbulent flow over RAE 2822 airfoil on the 
hybrid grid is considered. 

Section 5.2 gives a brief description of the hybrid grid generation technique. Sec- 
tion 5.3 gives the finite volume descritization of the Navier-Stokes equation. Section 
5.4 describes the central-difference scheme for viscous terms. Section 5.5 illustrates 
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the iteration procedure. Section 5.6 deals with boundary conditions for Navier-Stokes 

equations. Section 5.7 gives the results of NS flow solver on the laminar test case. 
Section 5.8 discusses the Baldwin-Lomax algebraic turbulence model and its imple- 

mentation on hybrid grids with the NS flow solver. Section 5.9 gives the results of 
turbulence flow of NACA 0012 and RAE 2822 airfoils. Conclusions for this diapter 

are given in section 5.10. 

5.2. Hybrid viscous grid generation 

It has been mentioned in the introductory section to this chapter of the difficulties 

appearing when dealing with viscous flow on a purely unstructured grid and that 

structured grids have particular advantages in dealing with viscous flow. It is then 
believed that the best approach is to construct a grid with the combination of both 

structured and unstructured grids thus retaining the advantages of both methods 

and suppressing the disadvantages. In reference [89] we proposed an efficient strat- 

egy, called the "skin" method, to construct a hybrid grid based on both structured and 

unstructured generators. The idea is simple and straightforward. Firstly the struc- 

tured grid with high aspect ratio grids is generated in the near-wall region where 

viscous flow regions are expected in order to fulfill the requirements of viscous flow 

computation. This will also ease the implementation of viscous flow computations, 

particularly for turbulent flow cases. Secondly an irregular unstructured grid is con- 

structed in the far-wall region, where some complex flow phenomena, such as shock 

waves, might appear. For such regions with high gradient values techniques such as 

mesh adaption need be considered. For unstructured grids, adaption is easy to imple- 

ment. Thirdly two types of grids are merged on their interface resulting in an unified 
hybrid grid. Reference [89] describes the procedures of the hybrid grid generation 

method and gives some results of Euler solver validation. The same methodology will 
be used here to deal with the viscous flow cases. 

5.3. Navier-Stokes equation in integral form and finite volume discretiza- 

tion 

The procedure, described below, is applicable for general unstructured grids composed 

of either triangular or quadrilateral elements or a combination of both. Similar to that 

described in section 3.2, considered on a single control volume flu, equation (2.18) 

can be written in its integral form as 

dSl au aFl a F2 1 (ac, O C2 
na at n. ax ay n. ax 
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By using the divergence theorem, we have 

G�dI' (5.2) ff 

Q 
d11 + ýý FndI' = Jr. 

where P,, Fe and F� are defined as before. Viscous flux is defined as G. = Gtr " il;, 
in which di = (GI, C2) denotes the viscous vector fluxes and flj = (ne, ny) denotes 
the unit vector outward normal to the boundary r, of control volume f?, 

In a cell-centred discretization we assume a piecewise constant distribution of 
the unknowns Ue on each element St,, so the discretized form of the above integral 

equation can be approximated as 

At 
e 9` + Fr __ Gv (5.3) 

where symbols are defined as before except those specifically noted and G' de- 

notes the viscous contribution as 

Gý =E G�bse 
da 

(5.4) 

where 6. denotes the approximate viscous fluxes through the side se shared by 

elements "e" and "r". 

5.4. Central-difference scheme for the viscous terms 

Differing from the inviscid terms, which are discretized using the upwinding scheme, 
the viscous terms are discretized by a central-difference type scheme. 

The definition of the viscous terms is given in equation (2.21), for a cell side "s", 

the numerical viscous flux is calculated using the average value of the variables in the 
left element "e" and right element "r" , that is 

U. = 0.5(ue + ur) (5.5) 

V3 = 0.5(v, + Vr) (5.6) 

T, = 0.5(Te +Tr) (5.7) 

The required values for µ is obtained by using T. in equation (2.15). Hence the 
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viscous contributions at side "s" are 

0 
Gr = 

(T.. ). 

1 
NO, 

us(rxx)8 + vs(Txy)s - 
(q ), 

0 

2 
NO, 

u8(7-yx)a+ v'(r ), - 
(9y), 

(5.8) 

(5.9) 

The normal viscous fluxes with respect to a side with outward normal vector are 
therefore written as 

(Gv(1))n =0 (5.10) 

(GV (2))n = (r)3n 
a+ (r ), ny (5.11) 

(G1'(3))n = (Tys), nx + (TYy)"nY (5.12) 

(G1'(4))n = ýu, (Tix)a -I- vý(Tsy)" - (9sý, ý%1s 

+ ý2ý, (Tyy), -1- vi(TYY)ý - (gy)1ýriY (5.13) 

where subscripts denote an evaluation at the sides. 
Referring to equations (2.22), (2.23), (2.24), (2.25), (2.26) and (2.27) the viscous 

stresses are determined from 

(7xx), - Rem ox 
)a - 31ýa((ox), + (oy)e)ý (5.14) 

(rrY)a = Re,,,, 
)")J (5.15) ýµ, ((ýy + (oxv 

(TYX), = (Try)8 (5.16) 

(TYY), = e_ 
[2fý, (ýy)" - 31ý, ((ýx). + (ýL)s)] (5.17) 

and the heat fluxes are 

(4x)" =- 
ire ( )ý (J. lö) 

(7 -1) MtRc71 * Fx 

/is OT 
(qy)s = ('y -1)MýRe, ol; 

)' (5.19) 
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Fig. 33. Integration path for Green's theorem 

It is clear that the evaluation of the viscous contributions requires a knowledge 

of the first derivatives of quantities, such as the velocity components (u, v) and the 
temperature T. 

5.4.1. Calculation of first derivatives 

(1) Arithematic average 
The first derivatives can be obtained by the Green-Gauss integral formula along 

the path including side "s" (figure 33). 

Based on Green's theorem, one can obtain the gradient from 

JjLdcz =/ fnzdr (5.20) 

(Here we take a scalar variable f with respect to x at an element side "s" for 

example. ) 

Assuming a constant distribution of the gradient over this domain (N1-º N4 -º 
N2 -+ N3 -+ N1), the left side becomes (ý) St and S2 denotes the area of the integral 
domain. 

The right side integration is evaluated along the path "s" , which can be repre- 
sented as 4- subpaths. Assuming each variable is constant along each subpath and is 

replaced by an average value, i. e. 

fnAT 
t 

= 
IN1 N`(f)1413+ 

J 
Ný 

N4 
(Jns)42d3 

j 
+l 

NB(f 
ns)23d3 + 

JN2 N3Ni 
/` ns)31d3 (5.21) ( 

By assuming f; j=0.5(fß +f j), thus the gradient 0/Ox is completely determined 
by writing 

(8x) 

a- 
2SZ 

[ (fl + A) (Y4 - Ui) + (f, + f2) (Y2 - Y4) 

'{ 
( 2+f3)(y3-y2)+(3+J1)(y1-Y3)] 

(5.22) 
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Fig. 34. Notations for Weighted Average Method 

For the gradient ä/äy using a similar procedure, we have 

C (fl 
'+' 

f4)(X1 - X4) '+' 
(f4 + f2)(x4 - X2) CýyJ =1 

s 
"ý 

(f2 + f3)(x2 - x3)'+' (J3 + fl)(x3 - x1)l (5.23) 

In the above expression, it requires the knowledge of the value of variables at 
node points N3 and N4. Simply from averaging the flow variables in all elements 
surrounding the node, results in 

1 idim(Node) 

f` 
idim(Node) 

fk (5.24) 

A more accurate estimation of the node value through a weighted average is 
described by equation (3.87) in chapter 3. 

Unfortunately, for a strongly stretched grid, in a region where the area of an 
element changes suddenly, there will arise errors when using the above formulation. 
Hence we have attempted to use the weighted average method below instead of the 

arithematic average method used above. 
(2) Weighted average 
A more accurate estimate of the gradient at side "s" can be obtained by a 

weighted average (see figure 34) as described by 

V f, = WeV fe +WrV fr (5.25) 

where f represents the physical quantity (i. e. u, v or T); and We is the area ratio 

of the right triangle (N1 -+ N4 -+ N2) to the quadrilateral (N1 -4 N4 -+ N2 -+ N3), 

and wr is the area ratio of the left triangle (N1 -* N2 -+ N3) to the quadrilateral 
(N1 -+ N4 -a N2 -+ N3), Vff and V f,. can be evaluated separately by the Green's 

theorem along its integral path, i. e. for the left side integral path this is (Ni -+ N2 -º 
N3 -+ Ni), and for right side integral path this is (N1 -+ N4 -4 N2 -+ N1). 
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5.5. Iteration algorithms 

5.5.1. Explicit scheme 

In a similar fashion to that described in Chapter 3 an explicit time stepping scheme 
results from an evaluation of the forms in equation (5.3) at time level n. Hence, the 
formulation of inviscid flux using Roe's scheme and viscous flux using the central- 
difference scheme will take the form 

DUe =- Me Ij'e ý' Fr - 
(Aröe ((Uý - Uý) + Gn ] 5Be (5.26) 2, 

Le a. 

Here G; is calculated at each side "s" of the element. Local time stepping is 

used to update the calculation. 
The allowable time step for the numerical solution of the Navier-Stokes equations 

can be obtained by analogy with the advection-diffusion equation as 

+ 
(5.27) 

Re�p, h, 

where the definition of h, is the same as in section 3.4 and p, and p, are deter. 

mined as the average of the values at the interface "s" with two elements "e" and "r" 

at both sides. 
As in the Euler equations, the local time step for an clement is determined from 

the minimum of the time steps calculated on all its sides. 

5.5.2. Point implicit scheme 

If the flux contributions are evaluated at time t"+1, equation (5.3) will lead to the 
fully implicit scheme as 

ue 
f? e -R(U +1) (5.28) 

At. 

By using Roe's scheme for the inviscid flux and central scheme for viscous flux, 

the right hand side term in equation (5.28) can be expressed as 

R(U +1) =1+ FT +i_ IA 
o+el 

(U +1 _ Uý +1)] +. (ýrý+11 ý3e (5.29) 

Linearization of the values of unknowns and the inviscid fluxes using the same 
procedure as in Chapter 3 and for the viscous terms we have 

G; +1 =G, °+fl Ue (5.30) 
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where B, is the Jacobian matrix of the transformation. 
Replacing the above linearization into the general finite volume formulation and 

re-arranging the terms results in a point implicit time integration scheme as 

1 
LHSinv - 

ee 
Bdäd3ý1 L Ue = 11HS + 

eý 
E d8e (5.31) 

n 
ß« 

where LHS;,, y and RHSS,,,, denote the inviscid contributions to the left hand side 
and right hand side respectively. 

The items in matrix B, can be derived by the method called the variational 
recovery process [42] [91]. They are 

where 

B11 =0 B12 =0 B13 =0 B14 =0 (5.32) 

B21 = 
g51,4ie + g2aU2e (5.33) 

B22 = (5.34) 
Pe 

B23 =- 
029 (5.35) 
Pe 

B24 =0 (5.36) 
B31 = 

c3aUle + 04, u2e (5.37) 

B32 =- 
03, 

(5.38) 

B33 =-4 
(5.39) 

B34 =0 (5.40) 

B41 
22 

= -f07a 

(UI,. + u2e)n I' -e+ 45.14, 
+ 

g6, u2e (5.41) 

B42 = -05, + 
707aule (5.42) 

Ye Ye 

B43 =- 
068 

+ 
'io78U2e (5.43) 

B44 =- 
7078 

(5.44) 

e 

01, = a(4nlb, e/3 + n2c, e) 
(5.45) 

029 = a(-2nic3e/3 + n2b, e) 
(5.46) 

03, = a(nlc. e/3 - 2n2b, e/3) 
(5.47) 

04, = a(nlbae/3 + 4n2e. e/3) 
(5.48) 
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05a = ulaOls + U243s (5.49) 

06s = U1As + U244s (5.50) 

078 = a(nlbse + n2C8e)/PT (5.51) 

a = µa/Re (5.52) 
(YN2 

- YNI) + (YN3 - YN4)(idim Nj idým Ný 
) 

bse = 20 
(5. J3) 

(XNL 
- 2N2) + (ZN4 

- 2N3)( 
11) 

idtm NI idim Ný 
Coe = 2Q 

(5.54) 

here idim(Ni) and idim(N2) are the number of elements around the node Ni 
and N2. 

Since the inviscid and viscous terms on the right hand side of equation (5.31) are 
evaluated at time level n, the procedure is equivalent to a point Gauss-Jacobi iteration. 
It also can use the most recent values to determine the viscous contributions as well as 
the inviscid terms to the right hand side and result in the point Gauss-Seidel scheme. 
For a PGS scheme, equation (5.30) is replaced by 

Gs+l = G; + BDUe (5.55) 

and equation (5.31) will become 

I LHSin� - wee E B;. 5s. 1 DU. = RHS; flu + 
e` E G;. öse (5.56) 

86 86 

where, as before, an asterisk represents an evaluation using the latest available 
values. Apart from using the latest values of variables, details of treatment will be 

similar to that of the PGJ iteration, i. e. the resulting equations can be obtained by 

substituting the superscript "n" with "*" for the elements surrounding the current 
element in equation (5.31). 

To reduce the computational work two simplifications are made. Firstly, high 

order accuracy is kept only on the right hand side of equation (5.56) while the first 

order scheme is used for the inviscid Jacobian computation. Secondly, instead of 
BI is used to avoid the complexity. Thus the iteration solution algorithm is 

actually point Gauss-Seidel for the inviscid terms and point Gauss-Jacobi for the 
viscous terms. 

5.6. Boundary conditions for Navier-Stokes equations 

The formulation of the exterior boundary is similar to that given for the Eulcr equa- 
tions. For the inner boundary, i. e. the solid wall, the boundary condition specific 
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to the Navier-Stokes equations is the no-slip wall condition which means the relative 
velocity between the fluid and the solid wall is zero. Assuming a fixed wall, all the 
velocity components at the wall are taken to be zero. For an isothermal wall, the 
temperature is fixed at the wall temperature. For an adiabatic wall, the heat flux is 
zero. In this case the temperature at the boundary is taken to be the same as the 
temperature at the adjacent element inside the domain. For the pressure, the bound- 

ary layer assumption , is employed. Other variables, in particular the density, can 
be determined from the equation of state. 

5.7. Validation of NS flow solver for laminar cases 

The approach described in the previous sections is applied to compute external tran- 

sonic viscous laminar flows. A NACA 0012 airfoil in a flow of Mach number 0.85 

at zero angle of attack and with a Reynolds number of 500 is investigated. This 

case(A5) is one of several typical test cases for validating laminar Navier-Stokes algo- 
rithms suggested in [92]. During the present study several grid topologies are used. 
The outer boundary is set to 10 chords away from the airfoil. The no-slip boundary 

condition is used on the airfoil surface and a one-dimensional characteristic analysis 
is applied to the far-field boundary. All these computations were performed on a 
SG Indy workstation using the PGS-Roe code with the high order scheme and the 
Venkatakrishnan limiter. 

Table III gives the results of lift coefficient, drag coefficient, number of iterations 

and the maximum residuals reached on each grid topology. Considering the most 
interesting results, i. e. CD values in laminar viscous flow computation, the values 
are all distributed between 0.2136 to 0.2401 in the present calculations. Conclusions 

can be made from the CD results on same test case given in table IV reproduced 
from [92]. Apart from two author's CD values of 0.0964 and 0.179, which seem 
considerally different from the results of others, the remainder are all located in a 
band from 0.2176 to 0.2420. Thus the present results appear to be in very good 
agreement with those given by most of the authors published in [92]. 

The reference numbers in table IV refer to the following author(s): 
(2) Angrand (INRIA, France); 
(3) Bristeau, Glowinski, Mantel, Periaux and Pouletty (AMD/BA, INIUA, France); 
(4) Cambier(ONERA, France); 
(5) Grasso, Jameson and Martinelli (Italy, Uni. of Princeton, USA); 
(6) Haase (Dornier Gmbh, FRG); 
(7) Kalfon, Volpert and Brocard (ONERA-CERT, France); 
(8) Kordulla (DFVLR, FRG); 
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Grid Topology C1, CD Ite Log(res) 

Regular Unstructured Grid (161 x 33) 4.44e-5 0.2138 4510 -3.456 

NE=10240 NP=5313 Edge=15522 

Structured Grid (161 x 33) 1.06e-5 0.2238 4510 -3.35 

NE=5120 NP=5313 Edge=10402 

Mixed stru/untru Grid (161 x 33) 0.38e-5 0.2136 4510 -3.35 

NE=9120 NP=5313 Edge=14402 

Regular Unstructured Grid (221 x 33) 6.0e-5 0.2383 4510 -4.01 

NE=14080 NP=7293 Edge=21342 

Structured Grid (221 x 33) 4.33e-5 0.2401 4510 -4.057 

NE=7040 NP=7293 Edge=14302 

Mixed stru/unstru Grid (221 x 33) 3.48e-5 0.2384 4510 -3.92 

NE=12540 NP=7293 Edge=19802 

AFT Unstructured Grid (half space) 0.0 0.2285 3000 -3.58 

NE=7200 NP=3821 Edge=11021 

Hybrid Grid 0.38e-5 0.2247 4510 -3.776 

NE=15652 NP=9481 Edge=24813 

Table III. Results of validating NS flow solver on test case (A5) 

Ref. No. 2 3 4 5 6 7 8 9 1() 11 

CL Le-5 Le-5 7. e-4 0.0 Le-5 0.0 4. c-4 4. e-5 0.0 1. e-4 

Co 0.2184 0.179 0.2221 0.0964 0.2176 0.23 0.242 0.2199 0.2261 0.2181 

Table IV. Other computational results on test case (A5) 
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(9) Muller, Berglind and Rizza (FFA, Sweden); 
(10) Satofuka, Morinishi and Nishida (Kyoto Inst. of Tech. Japan); 
(11) Secretan, Dhatt and Nguyen (Uni. Laval, Canada). 

Figure 35 gives the near airfoil meshes of the regular unstructured, structured and 
mixed structured/unstructured grids. Figure 36 gives pictures of the unstructured 
grid generated by the AFT and the hybrid grid generated by the author's "skin" 

method [89]. 

Figure 37 illustrates the results of the flow vector field, pressure and Mach number 
contours on the mixed structured/unstructured grid of 221 x 33 with a spacing of 0.005 

chord length at the airfoil surface and 161 points on the airfoil surface. From the map 

of the velocity vector field (upper), the velocity profiles and the development of the 

viscous wake flow can be seen clearly. The two lower pictures give the pressure and 
Mach number contours respectively. 

After reviewing the validation on the mixed grids, results on the irregular un- 

structured grid generated by the AFT method are now considered. As the present 
test case is a symmetric airfoil with a symmetric flow condition, only the now over 
half the airfoil need be considered. For the AFT generator a minimum spacing of 
0.015 chord length is used which produces 7201 elements in the flow domain (half 

space). Figure 38 gives the results of the velocity vector field, pressure and Mach 

number contours. Because the mesh distribution is irregular thus no clear velocity 

profile can be seen at a first glance. But by examining the results more closely, it can 
be seen that the velocity is reduced to zero on approach to the surface of the airfoil, 
due to the applied no-slip condition. 

Finally a hybrid grid around the NACA 0012 airfoil is generated using the method 
developed in [89]. Validation of the Navier-Stokes solver is performed on such a mesh 

with a structured grid in the near-wall region and unstructured grid in the far-wall 

region. Figure 39 shows the results. It can be seen clearly that velocity profiles are 

produced along the airfoil surface and the viscous flow develops well in the wake 

region. 
Figure 40 gives the comparison of the distribution of the skin friction coefficient 

distributions on mixed and hybrid grids. Good agreements can be seen for both grid 
topologies. 

5.8. Turbulence flow and Baldwin-Lomax algebraic model 

Up to now the Navier-Stokes flow solver is tested in laminar flow case. For turbu- 
lent flow the turbulence model must be considered. The most widely used turbu- 
lence models currently are either the field-equation or algebraic types. The use of 
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field-equation turbulence models (e. g. one-equation model such as Baldwin-Barth 
model [63] [87], Spalart-Allmaras model [45] [64] and two-equation models such as 
the k-e model [65] [93]) are in principle more general than their algebraic coun- 
terparts (such as Baldwin-Lomax model [94] [95]) and appear well suitable for use 
on unstructured grids. The additional field equations may be discretized and solved 
on the unstructured grid in the same manner as the governing equations. However 
the solution of additional field equation can be quite expensive, especially in the thin 
boundary-layer regions near the wall, where the equation can become very stiff. Al- 
gebraic turbulence models, on the other hand, are relatively inexpensive to compute 
and have demonstrated generally superior accuracy and reliability for limited classes 
of problems, such as high-Reynolds number attached flow over streamlined bodies. 
However such models typically require information concerning the distance from the 
wall. Turbulence length scales, which are related to the local boundary layer and 
wake thickness, are determined by scanning the appropriate flow values along spec- 
ified streamwise stations. In the context of a structured grid, grid points occur at 
regular streamwise locations, hence the implementation of algebraic models on such 
grids is straightforward. On the unstructured grid with irregular distributions of grid, 
such implementation is not so direct. Reference [94] proposed a method of using two 
different grids, i. e. a global unstructured grid and a local background structured 
grid, to calculate the turbulent flows using the Baldwin-Lomax algebraic turbulence 
model [61]. Here the same idea is used for the computation of turbulent flows over 
2D airfoils. Different from [94], a hybrid grid is considered in this work. The struc- 
tured grid in the near wall region is selected as the local background grid during the 
implementation. Hence no interpolation of variable values between global grid and 
background grid are needed. Thus no interpolation error will be produced. 

The turbulence model to be integrated into the present Navier-Stokes flow solver 
is a slightly modified version of the algebraic Bladwin-Lomax model [61]. The two- 
layer equilibrium model, patterned after that of Cebeci [96], defines the eddy viscosity 
th as a function of the minimum layer eddy viscosity. However the introduction of 
a hyperbolic tangent function produces a smoother more desirable eddy viscosity 
distribution, namely 

(Ptinner'\ 
µt = ýc, ýee rtanh (5.57) 

11t, outer 

In the inner region, the Prandtl-van Driest formulation is used by replacing, 
for Navier-Stokes applications, the normal derivative of the velocity profile by the 
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absolute values of the vorticity as 

µt, inner = p121WI (5.58) 

where 

I= Ky(1- e-4) (5.59) 

rc = 0.4 
0.5 

yý _ 
(PwaUITwaZII) 

Awn/l 
y 

A+ = 26.0 

The expression contained within the parentheses is the van Driest damping factor, 

whilst Iwo is the magnitude of the vorticity which for two dimensional flows reads 

äu Dv (5. G0) 

is is the von Karman constant and y is the normal distance from the wall. 
For the outer layer, alternate expressions for the eddy-viscosity are proposed as 

i t, outer = KCepFwnkeFKteb (5.61) 

s CwkYmazUdi,, 
Fwake = min(ymaxFina, f%mas 

where Cp = 1.6 and Cwk = 0.25. 

It should be noted here that the original value for C., t = 0.25, defined in the 
Baldwin-Lomax 1978 paper, has been changed for some computations to Cwk = 
1.0. The higher values yield considerably stronger interactions between shock and 
boundary layer. 

The Clauser parameter, K, is generally assigned to be a constant, i. e. K 
0.0168, although it varies slightly in the low-momentum Reynolds number range. 

The smallest values for Fwake in equation (5.62) have to be taken. The quantities 
F,,,. and y�, ax are determined from the function F= ylwI(1- e- ). 

In wakes the exponential term is set to zero. The quantity F,, is the maximum 
value of F that occurs in the velocity profile and consequently y,,, Q= defines the y- 
location where F equals Finax. However as y,,, ax is the characteristic length in the 

outer boundary layer, peak values of F in the near wall region are ignored. 

Also in the equation (5.62), Udiff is the difference between maximum and mini- 
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mum velocity in the profile 

Udif f= Umax - Umin (5"63) 

where u�. i,, is always taken to be zero except in wake regions. 
Furthermore the Klebanoff intermittency factor FKIe6 is given by 

Fxle6 =1 (5.64) 
1+5.5( 1l h)e 

Ymas 
With CKleb = 0.3. 

The algebraic turbulence models described here are two-layer eddy-viscosity mod- 

els. This means that according to the eddy-viscosity concept, in terms of the Navier- 

Stokes equations for laminar flow, the molecular viscosity /4 is replaced by j4 = it, +/it 

while in heat-flux terms P is replaced by y=+ with the Prandtl numbers PrI Pre 
chosen to be Prt = 0.72 for the laminar flow and Prt = 0.9 for the turbulent flow. 

The second coefficient of viscosity A is also replaced by A= -2(µt+/k). However 

some researchers still leave the second coefficient of viscosity unchanged. 

5.9. Validation for turbulence cases 

The implementation of the algebraic B-L turbulence model described in the previous 
sections is combined with the PGS-Roe code to simulate two-dimensional turbulent 
flows. The high order scheme with the Venkatakrishnan limiter is also considered. 
Three examples of turbulent airfoil flows are tested. 

The first example is a subsonic flow over the NACA 0012 airfoil with the flow 

conditions of Mach number of 0.5, zero incidence and Reynolds number of 2.89 x 106. 
The calculation is carried out on the mixed structured/unstructured grid of 221 x 33 

with 161 points on the airfoil surface. The mixed grid is constructed in this way. 
After the generation of a structured C-type grid over the airfoil using the EAGLE 

grid generator, the inner 20 layers of structured grids are fixed and the outer 13 
layers of structured grids are converted to the regular unstructured grid by halving 

them. In the calculation, the turbulence model is only considered on the background 

reference grid, i. e. the inner layers with a structured grid. Figure 41 gives the 

computational result of the developed NS-turbulence solver which compared very 
well with the experimental data given in [97]. 

The second example considered is also a subsonic flow over a NACA 0012 airfoil 
with the flow conditions of Mach number of 0.502, incidence of 1.77° and Reynolds 

number of 2.91 x 106. The mixed grid adopted is the same as that used in the first 

example. Figure 42 gives the comparison of present computational results with the 
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experiment data of reference [97]. Good agreement is shown. 
The third example tested is a transonic flow over the RAE 2822 airfoil. The 

selected test example is case 9 which is widely used for the CFD code validation. The 

experimental condition is a Mach number of 0.730, incidence of 3.19° and Reynolds 

number of 6.5 x 106. A slightly different flow condition is used in the computation, 
i. e. Mach number of 0.729, incidence of 2.31° and Reynolds number of 6.5 x 106, 

as most researchers have used [65] [94]. Figure 43 illustrates the hybrid grid used 
in the calculation, which is constructured by the "skin" method proposed in [89]. 
The hybrid grid contains 6599 elements, 4937 nodes and 104 points on the airfoil 
surface. The local structured C-type background grid has 20 layers within which the 
turbulence model is considered. Beside the hybrid grid, other grid topologies such 
as structured and mixed structured/unstructured grids mentioned in laminar flow 

validation section have also been adopted in the present calculations. Figure 44 gives 
the pressure distributions obtained by our NS-turbulence code on structured, mixed 
and hybrid grids. Excellent agreement of the computational results with experiments 
have been achieved. Figure 45 shows the skin friction distributions along the chord of 
the airfoil. Comparisons are made of the computational results with the experiments. 

5.10. Conclusions 

From the study above the following conclusions can be made: 
(1) The viscous laminar and turbulent flows have been successfully simulated by the 
Navier-Stokes equations on an unstructured grid; 
(2) An efficient hybrid grid generation method named the "skin" method is proposed 
and successfully applied in the viscous flow simulation; 
(3) Discretization of inviscid fluxes for the Navier-Stokes equation were performed by 

use of a high order upwind cell-centred finite volume method with Il. oe's approximate 
Riemann solver, while the viscous term was discretized through the central-difference 

scheme. At each time step the linear system of equations which arises through the 
linearization of the fluxes is approximately solved with a point implicit Gauss-Seidel 

iteration algorithm; 
(4) The procedure of implementation of the algebraic Baldwin-Lomax turbulence 

model is discussed and successful computation is achieved by the application on tur- 
bulent flows over NACA 0012 and RAE 2822 airfoils on the mixed and hybrid grids. 

Up to now a complete framework has been built up within which the method of 
the high order upwind cell-centred finite volume scheme of Navier-Stokes equations 
with the implementation of algebraic turbulence model on unstructured grid has been 
developed. However compared to those on structured grid, the CFD code based on 



88 

unstructured grid still requires the challenge of more memory requirements and large 
CPU time consumption. With the appearance of parallel computers and the parallel 
computing technique these two problems can now be overcome. In the next two 

chapters some parallel issues connected with the flow simulation on unstructured 
grids will be discussed. Some initial test results will be given. The prospects in this 
field will be shown. 
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CHAPTER G 

DOMAIN DECOMPOSITION METHOD OF UNSTRUCTURED GRID 

6.1. Introduction 

In recent years there has been an increasing interest in large scale computations us- 
ing unstructured discrete computational grids, because of their abilities for dealing 

with complex geometries and providing simple grid adaption. In the area of aerody- 
namics a typical example is the flow simulation over a complete vehicle, such as an 
aircraft, using finite volume methods of computational fluid dynamics (CFD) based 

on unstructured grids. In such cases many millions of elements must be used when 
discretizing the flow domain [75]. Hence huge memories are required and large CI'U 
times will be consumed during the simulation procedure. At the present stage it is 
difficult to complete such massive problems on a single conventional computer. 

With advances in parallel computers and the parallel computing technique, it 
becomes realistic to calculate such large scale problems based on supercomputers or 
even clusters of workstations by implementing a parallel computation procedure of the 
CFD code. The idea behind parallelism is simple. Many computers or processors are 
employed simultaneously in the computation. Generally there are two ways to achieve 
parallelism, one is called the job-based parallelism, i. e. to divide one job into several 
sub-jobs and each computer or processor takes one sub-job. The other is named the 
domain-based parallelism, i. e. to divide one working domain into several sub-domains 
with each computer or processor do the same job within each sub-domain. In parallel 
CFD computing the domain-based approach is normally used. The first issue will be 

the domain decomposition. 
For those domains discretized with a structured mesh the partitioning will he 

simple and straightforward. However for those domains discretized with an unstruc- 
tured mesh the partitioning is not easy and direct. The reason is that generally for 

unstructured meshes, the elements are ranked in a random order. It is not straight. 
forward to find a cutting point or line within a natural ordering. Hence the first 

problem when implementing such large scale unstructured grid problems with i aral- 
lel computing is the efficient decomposition of the underlying computational domain. 
This will be the focus of the discussion in this chapter. 

Here we will investigate some widely used algorithms to partition unstructured 
domains. The first class of algorithms considered are recursive [66], i. e. the compu- 
tational domain is subdivided by some strategy into two subdomains and then the 
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same strategy is applied to the subdomains in a similar way. In this way a partition 
into p= 2k subdomains is obtained after carrying out k of these recursive partitioning 
steps. These algorithms thus only differ by the partition strategy of a single domain 
into two subdomains. The three algorithms considered here arc: 
1) recursive coordinate (or angular) bisection (RCB or RAB); 
2) recursive graph bisection (RGB); 
3) recursive spectral bisection (RSB). 

The RCB and RGB algorithms have been used by a number of researchers. In 
particular RCB is a very direct approach, which comes immediately Into mind, when 
considering the partitioning problem. A similar method, named the RAI3 method, 
is also discussed when considering the ordering of angles instead of the ordering of 
coordinates. The third method named recursive spectral bisection (IlSB), developed 
by Pothen, Simon and Liou [66], will also be discussed. The RSB method is based 

on the computation of an eigenvector of the Laplacian matrix associated with the 
graph. Compared to the RCB(RAB) and RGB algorithms, significant improvement 
is achieved by the RSB algorithm. However the cost of the spectral partitioning Is still 
high (even using the Lanczos algorithm to compute the eigenvalue problem). Contri- 
butions to improve the efficiency of the RSB partitioning has been made by the pro- 
posed multilevel spectral bisection (MSB) [68]. Another class of partition algorithm 
is called multilevel graph partitioning (MGP). ICarypis and Kumar [99] of Minnesota 
University have completed a series of researches on partitioning problems by mutilevel 
graph partitioning methods. The resulting package named Metis, version 2.0 Is avail. 
able in the public domain (http: //www. cs. umn. edu/ karypis/metis/metis. fit till). 

In section 6.2, we formulate a general framework for the partitioning problem 
based on some graph theory notation. In section 6.3, the three partitioning algo- 
rithms, RCB(RAB), RGB and RSB, are introduced and discussed firstly, and then 
the MGP method will be described later. Section 6.4 discusses in particular some pro 
ordering and smoothing techniques coupled with the procedure of the RCB(ItAi3) and 
RGB method to obtain a 'good' partitioning result. In section 6.5 we discuss another 
interesting method, i. e. the domain dividing technique (DDT). Section 6.6 gives some 
quantitative comparisons of algorithmic applications on 2D CFD problems. Section 
6.7 offers conclusions. 

6.2. The partitioning problem 

So-called "efficient" partitionings are both dependent on the problem and the com- 
puter considered. Given NP, the number of processors, one generally would like to 
partition the given problem into Np sub-problems of about equal size (this process is 
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called load balancing) and at the same time minimize the amount of communication 
information needed between processors in a parallel computation. Minimizing the 
communication is a function of both the length of the boundary of the subdomains, 
as well as of the number of neighbouring subdomains. For an explicit algorithm, 
the achievement of good load balancing is probably more important than minimizing 
communication costs, whereas for an implicit algorithm with high communication 
requirements the situation may be the reverse. 

In this work the main target is the implementation on a workstation cluster -a 
parallel computer system based on a distributed network in which each workstation 
represents one processor. The target application is to test the approach of explicit 
and point implicit two dimensional Euler/Navier-Stokes solvers on unstructured grids 
as described in the previous chapters. With this computer/application combination 
in mind the partitioning problem can be defined more precisely. 

The partitioning problem can be considered as a generalization of the graph 
bisection problem, which is defined as follows: Given an undirected graph C, with 
the set of vertices V (either nodes or centre points of each element) and the set of 

edges E, G= (V, E) , partition V= Vi U V2 , V1 f1 V2 =0, such that 

JEel = {ele E E; e= (vl, v2); Vi E VI; V2 E V2} (6.1) 

is minimized, subject to some constraint on the partition. I[ere we choose II 
1V21, ifn=IVI is even and IVII=IV2 -1, ifnisodd. 

The assumption that the underlying problem can be expressed as an undirected 
graph is in no way restrictive. For example, for our target application, the upwind cell. 
centred finite-volume flow solver for the Euler/NS equations, the solution variables 
are associated with each element and the flux computation is performed at the edges 

of each non-overlapping control volume. Each edge connects a pair of control volumes. 
In the partitioning which we are planning to use, mesh triangles are assigned to a 
particular processor. Fluxes are computed by the individual processors w ociated 
with the triangles. Communication is required along the common edges, which are 
shared between the adjacent triangles residing in different processors. Hence for 

the purposes of establishing the partitioning of the problem, i. e., the assignment of 
triangles to different processors, we consider the dual graph. The triangles of the 

original mesh are vertices of the dual graph, and two triangles are considerml to be 

adjacent vertices of the graph, if and only if they share an edge in the original mesh. 
A graph partitioning of this dual graph will thus yield an assignment of triangles to 

processors. In a similar way most general partitioning problems can be transformed 
to a graph partitioning problem. The approach used here is thus quite generally 
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1 Determine the longest expansion of the domain (x, y, or z direction) 

2 Sort the vertices according to coordinates in the selected direction 

3 Assign half of the vertices to each subdomain 

4 Repeat recursively ( divide and conquer ) 

Table V. Algorithm of recursive coordinate bisection (ItCI3) 

applicable. 
The relationship between the unstructured mesh and its dual graph is shown in 

Figure 46 and Figure 47. 

6.3. Partitioning algorithms 

The general idea behind the first three partitioning algorithms is to use it strategy to 

partition a domain into two subdomains, and then to apply the same algorithms recur- 
sively for k steps until p= 2k subdomains have been obtained. The algorithms thus 

only differ in the partitioning strategy for a single domain into two subdomains. The 
last algorithm described is named the multilevel graph partitioning (AMGI') method. 

6.3.1. Recursive coordinate bisection (RCB) or angular bisection (IRAB) 

This algorithm is very simple conceptually. It is based on the assumption that along 
with the set of vertices V= (vl, v2, ..., v�), there are also two or three dimensional 

coordinates available for the vertices. For each vi EV we thus have an associated 
duple v; = (xi, yj) or triple v; = (xi, yj, Z{), depending on whether we have a two 

or three dimensional model. A simple bisection strategy for the domain is then to 
determine the coordinate direction of longest expansion of the domain. Without 
loss of generality, assuming that this is the x-direction, then all vertices are sorted 
according to their x-coordinate. Half of the vertices with small x-coordinates are 
assigned to one domain, the other half with the large x-coordinates are assigned to 
the second subdomain. The algorithm for RCB is summarized in table V. 

Figure 50 gives an example of application of the RCB algorithm on an unstruc. 
tured mesh used for the calculation of the flow over a NACA 0012 airfoil resulting in 

8 partitioning. 
Similar to RCB, an alternative method, named RAB, is also considered. The 

only difference is that it selects the angle ordering instead of the coordinate ordering. 
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The algorithm of RAB is the same as that of RCB except for the ordering procedure. 
Figure 52 gives the results of RAB applied to the unstructured mesh over an NACA 
0012 airfoil shape resulting in 8 sub-domains. 

6.3.2. Recursive graph bisection (RGB) 

The weakness of both RCB and RAB is that the algorithm does not take full advan- 
tage of the connectivity information given by the graph. For efficiency, the main goal 
is to minimize the number of graph edges, which are connecting different subdomains. 
Thus instead of using the Euclidean distance between the vertex coordinates, a better 

way is to consider the graph distance between a vertex given by d(vv, v1) = shorted 
path connecting v; and vv. With this change one can define a new partitioning algo- 

rithm, which is called recursive graph bisection (RGB). 
First two vertices of maximal or near maximal distance in the graph are deter- 

mined. Then all other vertices are sorted in the order of increasing distance from one 

of the extremal vertices. Finally vertices are assigned to two sub-domains according 
to the graph distance. The only difficulty is the determination of the diameter (or 

at least of a pseudo-diameter) of the graph. However there exist some very good 
heuristic algorithms for that purpose. These algorithms are also quite well-known in 
the engineering structures community, since they can also be used for reducing the 

storage requirements of sparse matrices in envelope or skyline storage format. Here 

the reverse Cuthill-McKee (RCM) algorithm of SPAIiSPAK [100] is used. 
The RCM algorithm first finds two pseudo-peripheral vertices in the graph (I. e. 

vertices which have a very large distance, but which are not necessarily the pair of 
vertices with maximum distance). Then starting from one of the vertices, the root 

vertex, a so-called level structure is constructed. The level structure is a convenient 

way of orginizing the vertices in the graph in sets of increasing distance frone the 

root. Hence the level structure delivered by the RCM algorithm forms the basis 

for the recursive graph bisection algorithm. Half of the vertices, the ones which 
lie closer to the root are assigned to one subdomain, the remaining vertices to the 

other subdomain. If we start out with a connected graph then by construction it is 

guaranteed that at least one of the two subdomains (the one including the root) is 

connected. The algorithm of RCM is summarized in table VI. 

Figures 48 and 49 illustrate non-zero entries of Laplacian matrix produced from 

natural ordering and RCM ordering. It shows that the band of the matrix is signiG- 

cantly reduced using RCM ordering. 
By using RCM the algorithm of RGB can be summarized in table VII. 

Figure 54 gives the results of the RGB algorithm for a NACA 0012 airfoil resulting 
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1 Find vertex with lowest degree. This is the ROOT vertex. 
2 Find all neighbouring vertices connecting to the ROOT by incident 

edges. Order them by increasing vertex degree. This forms level 1. 

3 Form level k by finding all neighbouring vertices of level k-1 which 

have not been previously ordered. Order these new vertices by 

increasing vertex degree. 

4 If vertices remain, go to 3. 

Table VI. Algorithm of reverse Cuthill-Mckee ordering 

1 Use the RCM algorithm to compute a level structure 

2 Sort vertices according to the RCM level structure 

3 Assign half of the vertices to each sub-domain 

4 Repeat recursively (divide and occupy) 

Table VII. Algorithm of recursive graph bisection (RGI3) 
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in 8 sub-domains. 

6.3.3. Recursive spectial bisection (RSB) 

The recursive spectral bisection algorithm (RSB) is derived from a graph bisection 
strategy developed by Pothen, Simon and Liou [66], which is based on the compu- 
tation of a specific "second" eigenvalue of the Laplacian matrix associated with the 
graph G. The Laplacian matrix L(G) = (li f), i, j =1, ... ,n is defined by 

+1 if (v;, v j) EE 

ltd _ -deg(vi) if i=j (6.2) 

0 otherwise 

It is easily seen that 

L(G) = -D +A (6.3) 

where A is the standard adjacency matrix of the graph 

1+1 if (v;, v j) EE 
A; 5_ (6.4) 

0 otherwise 

and D is the diagonal matrix with the entries equal to the degree of each vertex, 
Di = deg(v; ). From this definition, it is clear that the sum in each row of L Is zero. 
Define an N-vector, s= [1,1,1,... ]T 

. By construction we have that 

Ls =0 (6.5) 

This means that at least one eigenvalue is zero with s as an cigenvector. If C 
is connected then )2, the second largest eigenvalue, is negative. The magnitude of 
A2 is a measure of connectivity of the grpah. The eigenvector associated with Az Is 

called Fielder vector for short. The Lanczos algorithm [101) is used to calculate the 
Fielder vector. Detailed description of the RSB method can be found in [66]. 

The objective of the spectral partitioning is to divide any kind of mesh into 
two partitions with equal size such that the numbers of edges cut by the partition 
boundary is approximately minimized. In summary the recursive spectral bisection 

algorithm is given by table VIII. 
The RSB has been applied to the NACA 0012 airfoil. The 8 partition is obtained 

in figure 57, which shows that the domains obtained from RSB are connected (even 
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1 Compute Fielder vector for graph using the Lanczos algorithm 

2 Sort vertices according to the size of entries in the Fielder vector 

3 Assign half of the vertices to each sub-domain 

4 Repeat recursively (divide and occupy) 

Table VIII. Algorithm of recursive spectral bisection (ItSI3) 

though there is no theoretical proof for it), nicely rounded and compact compared to 
that given by the RCB and RGB method. The second example is a multi-element 
Subdoo (4 elements) airfoil. Figure 58 shows the unstructured grid over the airfoil, 
which includes 8018 elements and 4147 node points. The results of 8 partition is given 
in figure 59. Although the quality by the RSB method is good, it still suffers from 

the problem of more CPU time consumed because of the calculation of the Fielder 

vector. In [68] an improved algorithm named multilevel spectral bisection (MSB) 

is proposed. In the next sub-section a brief description will be given with another 
efficient method called multilevel graph partitioning, which runs even faster than the 
MSB code and the partitioning quality remains the same. 

6.3.4. Multilevel graph partitioning (MGP) 

Different from the recursive type schemes discussed above another class of graph par- 
titioning algorithm is called the multilevel graph partitioning scheme, which reduces 
the size of the graph by collapsing vertices and edges, partitions the smaller graph 
and then refines it to construct a partition for the original graph. Surveys and details 

about the MGP algorithm can be found in [99]. Here only a brief description is given. 
Compared to section 6.2 a more general definition of graph partitioning, i. e. the 

k-way graph partitioning problem is given as follows: 
Given a graph G= (V, E), with the set of vertices (VI =n and the set of edges 

E, partition V into k subsets, Vi, V2, ..., Vk such that Vn 1f =0 for i 54 j, 'j = n/k, 
and U; Y = V, and the number of cut edges of E whose incident vertices belong to 
different subsets is minimized. By this definition those three schemes discussed above. 
can be called 2-way partitioning or bisection. 

The basic idea of the multilevel graph partitioning algorithm is simple. The graph 
G is first coarsened down to a few hundred vertices, a bisection of this much smaller 
graph is computed. and then this partition is projected back towards the original 
graph (fine graph), by periodically refining the partition. Since the finer graph has 
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1 read in the mesh file 

2 list and number elements in 1-D natural ordering 

3 select an ordering rule, i. e. the barycentre of element, 

the minimum coordinate value of its node, etc. 

4 pre-order all elements according the rule selected. 

Table IX. Algorithm of pre-ordering 

more degrees of freedom, such refinements usually decrease the number of edge cuts. 
The process consists of three phases, i. e. the coarsening phase, the partitioning phase 
and the refining phase. Details can be found in [99]. The results of application of the 
MGP method can be found in figure 60, which shows 8 partitions on the Subdoo 4 

elements airfoil. 

6.4. Pre-ordering and smoothing technique 

Although the RCB (RAB) and RGB schemes can guarantee a load balance, it is still 
difficult to obtain a 'good' partitioning result, i. e. connectivity of the sub-domain 
and smoothness of the cutting line. From the results obtained, some problems are 
revealed. One is that singular elements are sometimes found in the results of the 
RGB partitioning. This is obviously not a 'good' partitioning. The reason is that 
theoretically the RGB partitioning can only guarantee ONE sub-domain ill which 
a root vertex is connected. Another problem is that the cutting line will normally 
take the saw-tooth shape (figures 50,52 and 54) resulting in an increase in the cost 
of communications. These two phenomena are also reported in reference [87). To 

date however the method of overcoming these shortcomings appears not to have been 

addressed. Here two algorithms are proposed to improve them. 
One technique tested is pre-ordering. Generally the mesh generated by the ad- 

vancing front technique or Delaunay triangulation is in a random order. hence the 

graph of the mesh is also ordered randomly. This will result in the plieinonemon 

of isolated element (figure 54). We found that such isolated element sometimes can 
be avoided by carrying out a pre-ordering step before implementing the partitioning. 
The algorithm of pre-ordering can be found in table IX. 

The results of RGB are found to be improved by a pre-ordering technique. This 

can be seen in Figure 55 with pre-ordering when compared to figure 54. 
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1 do the partitioning using either RCB, RAB or RGB 

giving the initial sub-domain ( without smoothing ) 

2 Flag each vertex with the number the same as 

that of the sub-domain it belongs to 
3 do loop over each sub-domain ( for each vertex counting the identity of 

its neighbouring vertex. If the identity of all its neighbours did not 

belong to this sub-domain then it means this vertex is separated from 

its sub-domain. Find out where it belongs and change its identity. 

If more neighbouring vertices belong to same neighbouring sub-domain found 

then this vertex is better belonging to that sub-domain. 

Change their identity. ) end the do loop 

4 re-counting the number of vertices in each sub-domain 
(this may result in a small lack of balance. ) 

5 output the sub-domain depending on its flag number 

Table X. Algorithm of smoothing 

Another technique is called smoothing. After partitioning the domain under the 
rule of load balancing using a particular strategy, there will normally be produced a 
saw-tooth shape boundary between sub-domains. The smoothing algorithm is used 
to adjust some vertices and change their identity, which will result in a cutting line 

with relative smoothness. The algorithm of smoothing is described in table X. 
Figures 50,52 and 54 give the result with smoothing and pro-ordering. Com- 

pared with their counterparts without using smoothing and pre-ordering techniques 
it can be seen that the partitioning results are improved. 

6.5. Domain dividing technique 

All the above discussions are based on certain pre-conditions, i. e. given a domain 

of interest, firstly construct the unstructured mesh, then partition the mesh using it 
particular strategy. The advantage of using this approach is that the load balance can 
be retained, although pre-ordering and smoothing need be considered as discussed 
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1 Define the interested domain 

2 Divide the domain into several sub-domain 

3 for each sub-domain use Delaunay triangulation (DT) to construct 

the unstructured mesh. As the DT method always takes the given 

boundary points as its triangular node, hence there will be no 

over-lapping points occuring in the common line between 

neighbouring sub-domains 

4 Construct the relationship between the sub-domains and 

the data structure of the communication information 

Table XI. Algorithm of domain dividing tcchniquc(DDT) 

above. The shortcoming is a lack of knowledge of the quality of the partitioning 
results, i. e. the relationship between each sub-domain and the shape of cutting lines. 
Hence another approach is to consider the reverse way. For the given domain, divide 
it first into several sub-domains. In this way we can organise the relationships of the 
sub-domains and make the connections as well as the shape of cutting lines as simple 
as possible. Secondly we can construct the unstructured tnesh in each sub-dotnain. 
Unfortunately one cannot guarantee strictly the load balancing in this way. This 

strategy is called the domain dividing technique (DDT). The algorithm of the DDT 

method is shown in table XI. 
Figure 56 gives an example for the NACA 0012 airfoil shape with 4 sub-domains 

using the DDT method. 

6.6. Comparisons 

In this section firstly we will give some quantitative comparisons between three al- 
gorithms i. e. RCB, RAB and RGB. Before embarking on this we will make some 
general observations of the algorithms: both RCB and ItAI produce long and nar- 
row sub-domains; RGB creates slightly more compact sub-domains, but sometimes 
they will have disconnected sub-domains. Hence in order to get a "good" partition- 
ing, a smoothing technique is needed for the RCB and IiAIl algorithms, while both 

pre-ordering and smoothing techniques are necessary for the II, GI3 algorithm. 
To obtain a more quantitative comparison, the number of cutting edges, named 
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Method JO 
S elements in number of sub-domain E E 

RCB No No 606 607 607 607 606 607 607 607 232 

RCB No Yes 605 606 606 608 607 608 607 607 227 

RAB No No 606 607 607 607 606 607 607 607 262 

RAB No Yes 596 611 604 605 601 619 599 619 206 

RGB No No 606 607 607 607 606 607 607 607 330 

RGB Yes No 606 607 607 607 606 607 607 607 366 

RGB No Yes 591 603 597 626 586 612 616 623 255 

RGB Yes Yes 591 603 607 616 593 605 613 626 253 

Table XII. Partitioning results of application RCB, RAB and RGB on airfoil problems: 

nelem=4854 node=2504 

EE, in each sub-domains will be presented. Under the condition of balanced load the 
value of EE represents the information exchange cost. The greater the value E,,, the 
more CPU time will be consumed during the communications. 

Table XII gives the number of elements in each sub-domain and the number of 
cutting edges (Ec) for the three algorithms RCB, RAB and RGB with or without 
pre-ordering and smoothing. The unstructured mesh around the NACA 0012 airfoil 
shape considered here is generated by the AFT method. It results in 4854 elements 
and 2504 nodes. 

Table XIII illustrates the results on a fine mesh which includes 21152 elements. 
It should be noted in the above two tables that '0' represents pre-ordering and 

'S' represents smoothing. 
Table XII shows that RGB will normally create more cutting edges than ItCB 

and RAB. By using a smoothing technique EE will reduce in each of the RCB, ItAI3 

and RGB methods. For the RGB algorithm in particular, by using both smoothing 
and pre-ordering, EE reduces by 25% compared to that without its use. On the 
other hand the change in load balance is only 3%. Hence the benefit is clear. From 
Table XIII the same conclusions can be obtained. 

Then the results of the DDT method will be discussed. The size and shape of sub- 
domains depend on the domain dividing strategy chosen. More compact, connected 
sub-domains can be achieved under careful investigation. The problem is how to 



109 

I Method O S elements in number of sub-domain Ec 

RCB No No 2644 2644 2644 2644 2644 2644 2644 2644 504 

RCB No Yes 2643 2644 2646 2643 2643 2644 2643 2646 499 

RAB No No 2644 2644 2644 2644 2644 2644 2644 2644 594 

RAB No Yes 2617 2644 2644 2641 2645 2655 2629 2677 501 

RGB(8) No No 2644 2644 2644 2644 2644 2644 2644 2644 805 

RGB(8) Yes Yes 2598 2629 2620 2661 2603 2682 2657 2702 595 

RGB(16) No No 1322 1322 1322 1322 1322 1322 1322 1322 

1322 1322 1322 1322 1322 1322 1322 1322 1210 

RGB(16) Yes Yes 1274 1324 1297 1333 1309 1311 1308 1352 

1296 1307 1331 1351 1311 1346 1336 1366 928 

Table XIII. Partitioning results of application RCB, RAB and ßGß on airfoil prob- 
lems: nelem = 21152 node = 10666 

Method elements in sub-domain EE 

DDT 1040 J 1178 11184 I 1090 200 

Table XIV. Partitioning results by DDT method 

achieve load balance between sub-domains. 
Table XIV illustrates the 4-subdomain partitioning results using the DDT method. 

Also we are interested in comparing the number of elements in each sub-domain and 
the number of cutting edges. Here we use Delauncy triangulation to generate the 
unstructured mesh in each sub-domain. 

Table XIV shows that the number of elements in each sub-domain is different 
(min=1040 max=1184). By using the DDT method one can define the position of the 
boundary points (edges) resulting in the same number and position on the boundary. 
However it is not possible to know how many elements will be generated within the 
defined domain. Thus how to retain a reasonable load balance when using DDT needs 
still to be investigated. 
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Method Partition 

48 16 32 64 
J128 

RSB 178 293 481 789 1269 1879 2744 

MGP 139 259 428 800 1265 1827 2715 

Table XV. The number of edge cuts EE on Subdoo 4 elements airfoil 

Method Partition 

2 4 8 16 32 64 128 

RSB 2.421 5.763 8.48 10.981 13.815 16.468 20.362 

MGP 1.55 1.57 1.61 1.8 1.9 2.74 2.8 

Table XVI. The CPU time (seconds) for partitioning on Subdoo 4 elements airfoil 

At last the comparison of the application of the RSB and MGP methods on large 

problems will be illustrated. It should mentioned here that the RSB code (version 
2.2) has been kindly supplied by Dr. Simon of SG (he was formerly with NASA) 

and the MGP code (version 2.0) developed by Drs. Karypis and Kumar has been 
downloaded from the public domain source mentioned above. The example is the 
Subdoo 4-elements airfoil with an unstructured grid generated by the AFT method. 
The grid includes 29849 elements and 15183 nodes. The quality (the number of edge 
cuts) and the efficiency (CPU time) for partitioning this problem with ßSB and MCP 

are given in the table XV and XVI. 
The results in table XV demonstrate the same quality achieved by the RSI3 and 

MGP codes on large problems. From table XVI it can be seen that more efficiency is 
delivered by the MGP method. The rate of speed-up increases with the increase of 
the number of partitions. With 2 partitions the ratio of CPU time used is 1.56 and 
with 128 partition the ratio increases to 7.27. 

6.7. Conclusions 

From the above research the following conclusions are made: 
1) RCB, RAB and RGB are three simple and easily used methods for partitioning 
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an unstructured mesh; 
2) With a pre-ordering and smoothing technique the quality of partitioning by 

RCB, RAB and RGB can be considerably improved; 
3) The DDT is a potential method of partitioning. But the achievement of good 

load balancing still needs further investigation; 
4) The RSB and MGP are the two partitioning methods that produce the best 

quality. Compared to the other three methods they offer far better partitioning 
results, however the RSB consumes more CPU time because of the calculation of the 
Fielder vector. The MGP method offers a faster speed to achieve the results. Both 
methods supply nearly the same quality of partition. 

Following partitioning, the next step is to implement the parallel procedure with 
the Euler/NS flow solver on an unstructured mesh. The major challenge remaining 
is how to construct an efficient message communication model between sub-domains. 
A data structure need be constructed to fulfill this requirement. 
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Fig. 46. Unstructured grids around NACA 0012 airfoil generated by AFT method 

Fig. 47. Dual graph around NACA 0012 airfoil 
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Fig. 48. Nonzero entries of Laplacian matrix from natural ordering 

Fig. 49. Nonzero entries of Laplacian matrix after reverse Cuthill-Mckcc ordering 
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Fig. 50. RCB 8 sub-domain partitioning without smoothing 

Fig. 51. RCB 8 sub-domain partitioning with smoothing 
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Fig. 52. RAB 8 sub-domain partitioning without smoothing 

Fig. 53. RAB 8 sub-domain partitioning with smoothing 
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Fig. 54. RGB 8 sub-domain partitioning without smoothing and pre-ordering 

Fig. 55. RGB 8 sub-domain partitioning with smoothing and pre-ordering 
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Fig. 56. DDT 4 partitioning with unstructured grids in sub-domain generated by Do. 
launey triangulation method 

Fig. 57. RSB 8 sub-domain partitioning on NACA 0012 airfoil 
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Fig. 58. Unstructured grids around subdoo 4-elements airfoil generated by AFT 
method 
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Fig. 59. RSB 8 sub-domain partitioning on subdoo 4clcmcnts airfoil 

Fig. 60. MGP 8 sub-domain partitioning on subdoo 4-elements airfoil 
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CHAPTER 7 

PARALLEL COMPUTING ON UNSTRUCTURED GRID 

7.1. Introduction 

Computational fluid dynamics (CFD) as its name implies is inevitably linked with 
computing problems, such as processing power, memory technology, networking and 
accessibility. To complete the simulation of fluid flow within limited wall-clock time Is 
always the goal for every CFD researcher. In the last fifteen years CFD has obtained 
considerable benefit from the revolution happening in the computing science and 
the computer industry. The simulation of complex three-dimensional flows, which 
seemed impossible on sequential computers a few years ago, now becomes possible 
with the development of vector supercomputers. The appearance of distributed. 

memory parallel computers offers the next cost-effective leap forward in terms of 
computing power and size of memory. 

Much research has been carried out in the field of unstructured grid compu- 
tations on parallel platforms. Apart from the pre-processing procedures, Le. the 
interface with the geometry producing package and parallel grid generation, and the 
post-processing procedures, i. e. parallel flow visualization and interface with other 
application softwares, the issues connected with the parallelism of the flow solver are 
grid partitioning, message communication, data structure and parallel algorithms. 
The partitioning of unstructured grids for parallel computing has been Investigated 
by many researchers. The methods, as described in the previous chapter, can be 
broadly classified into geometry-based and graph-based algorithms. It appears that 
the graph-based algorithms, in particular, the recursive spectral bisection (IR. SI3) tech- 

nique of Pothen, Simon and Liou [66] and the multilevel graph partitioning (AMGP) 

of Karypis and Kumar [99], produce improved partitioning results. After lpartition- 
ing the next problem is message communication. Well-designed lower-storaged data 

structures need to be constructed. Message exchange between neighbouring sub- 
domains need be done at speed during the iteration. Finally the CFD code need be 

paralleled. 
Unstructured grid flow solvers have been implemented on various parallel ina- 

chines [74], [76], [78] and [102]. These studies have shown that good performance 
may be obtained by paying careful attention to the issues mentioned above. In par. 
ticular flow solvers with explicit and point implicit schemes possess almost complete 
parallelism in their nature. They require only simple update procedures that in. 
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volve local dependencies. On a parallel computer, such schemes typically require 
the communications only between the first nearest elements (in case of inviscid first 
order schemes considered), the first and second nearest elements (in case of viscous 
first order schemes considered) and all three types of nearest elements (in case of 
high order scheme considered). The definition of the nearest element is given in 
figure 62. Mavriplis, Das, Saltz and Vermeland [102] reported the impressive per- 
formance using explicit schemes with the multigrid method. Similar researches have 
been done by Venkatakrishnan, Simon and Barth [76] and Hammond and Barth [103] 

using an explicit scheme with the finite volume method on an unstructured grid. On 
the other hand the implicit scheme requires the solution of coupled equations which 
involves global dependencies. Thus the design of an implicit scheme on distributed- 

memory parallel computers is a little more difficult. Researches of Johan et al [74] and 
Venkatakrishnan [78] have shown that the implicit schemes can be designed carefully 
to produce good performance when solving unstructured grid problems on parallel 
computers. 

Following this, in section 7.2 we discuss briefly the partitioning issue of unstruc- 
tured grids. Then in section 7.3 the message communication patterns together with 
the data structure are described. In section 7.4 the issues involved in parallelizing cell. 
centred finite volume schemes for solving the Navier-Stokes equations on triangular 
unstructured grids on a workstation cluster -a parallel computer system based on 
a workstation network under the parallel environment supported by parallel virtual 
machine (PVM) software is explained. Section 7.5 gives sonic application examples 
and section 7.6 makes some conclusions to this chapter. 

7.2. Partitioning problems 

An efficient partitioning of unstructured grids for a distributed memory machine is one 
that ensures an equal distribution of computational workload among the processors 
(normally termed load balancing) and minimizes the amount of time spent in inter- 

processor communications. Thus the total execution or wall clock time including the 

sum of the time required for computation and communication will be minimized. 
In most CFD solvers with cell-centred schemes on unstructured grids, the com- 

putational time is typically a function of the number of elements and sometimes the 

shape of the domain as well. The computational work involved in the computation 
of residuals is directly proportional to the number of edges which is linearly related 
to the number of elements in that domain. In the case that the load were not equally 
distributed, some processors will have to sit idle and waste time waiting for other 
processors to catch up. 
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The actual cost of communication between processors can often be accurately 
modelled by the linear relationship as 

Communication Cost =a+ ßm (7.1) 

where a is the time required to start-up (also known as latency) a message, ß 
is the rate of data-transfer between two neighbouring processor and m is the length. 
For n messages, the total cost should be 

Total Communication Cost = E(a + Qm) (7.2) 
n 

Obviously this cost can be reduced in two ways. One is to reduce the number of 
messages to be communicated. The other is to reduce the individual message lengths. 
In practice it is difficult to partition the unstructured grids while simultaneously 
minimizing the number and lengths of messages. On most modern parallel computers, 
the latency is small enough that minimizing the number of neighbours is not nece saryy. 
Hence most of the partitioning methods follow the definition of minimizing the length 

of messages under the condition of load balancing. 
The partitioning methods, e. g. recursive type algorithms (RCB, RGB and 1St3) 

and multilevel graph partitioning (MGP), will create subdomains which have bal- 

anced computational loads in each processor. It should be noted that our particular 
application is on parallel CFD computing using the cell-centred finite volume schemes 
with unknown variables at the centre of the element. Hence to partition the domain 
into sub-domains means to separate the elements. Also note that whatever the par- 
titioning algorithms are used the resulting sub-domains will be flagged with integer 

numbers. Those elements with same flag number mean they belong to the same sub- 
domain. Those edges shared by elements with different flag numbers imply they are 
the interfaces of the sub-domains. 

The discussion and application of RCB, RGB, RSB and MGP on partitioning the 

two-dimensional airfoil cases can be found in the previous chapter. Here only some 

comments are given. Normally the RCB gives extreme efficiency as the sorting is done 

in logN operations, where N is the total number of vertices. But such techniques 

sometimes lead to disconnected subdomains which imply higher cost for message 
transfer. The RGB technique by level sets (e. g. Cuthill-Mckee algorithm) produces 

partitions with long boundaries because it uses a breadth-first search to define the level 

sets. The RSB technique produces uniform, mostly connected sub-domains with short 
boundaries. Theoretical results by Fielder (summarized in [101) show that one of the 

two sub-domains formed by RSB partitioning is always connected. As the spectral 
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Fig. 61.8-way partitioning of domain and its associated partition communication 
graph 

partitioning results in shorter length messages it will reduce the communication costs. 
However the RSB method is expensive due to the use of the computation of the Fielder 

vector. Improvements have been made by Barnard and Simon [68] of multilevel 
spectral bisection (MSB). A different partitioning strategy based on multilevel graph 
partitioning (MGP) method has been investigated by Karypis and Kumar [99]. The 
developed package Metis V2.0 achieves the same quality as that obtained by RSl3 

and MSB methods but the execution time is reduced by nearly one order. 

7.3. Message communication 

A global element-node connectivity data structure is used to define the unstructured 
grid. After partitioning, each element is coloured with a flag number. Those elements 
with the same flag number belong to same the sub-domain and will be posted to one 
processor. For simplicity we keep the global data structure and index unchanged, thus 
the local data sets can be derived with the global indices. The relation of sub-domains 
can be illustrated by the communication graph of figure 61. 

Table XVII shows the adjacent processor listing in the communication graph 
of figure 61 and Table XVIII presents the message communication relations among 
the sub-domains (processors) in figure 61. It means that, for example, processor 1 
has six adjacent processors (0,2,3,4,6 and 7). The message communication will be 
done between adjacent processors. 
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Processor Adjacent Processor 

0 17 

1 023467 

2 31 

3 241 

4 5361 

5 46 

6 7541 

7 601 

Table XVII. Adjacent processor list in communication graph 

Processor Permuted Processor 

0 1 7 - - - - 

1 0 2 3 4 6 7 

2 3 1 - - - - 

3 2 4 1 - - - 

4 5 3 6 1 - - 

5 4 6 - - - - 

6 7 5 4 - 1 - 

7 6 0 - - - 1 

Table XVIII. Message communication relations in communication graph 
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During implementation, each local data set must contain two kind of commu- 
nication information, i. e. (1) those messages required to be sent to other processors 
sharing common interface boundaries; and (2) those messages needed to be received 
from other processors sharing common interface boundaries, thus the computation 
problem within each processor becomes well-defined and the iteration can proceed. 
Those sending and receiving messages in each processor for communication consist of 
the following: 
(i)NADJPROC: Number of ADJacent PROCessors (processors handling the adjacent 

partitions); 
(ii)NBVS: Number of Boundary Vertices in common interface with processor NAD- 
JPROC that need to Send message; 
(iii)NINTBVS(*, 1): Local indices for the vertices sending message on present proces- 
sor, length NBVS(NADJPROC); 
(iv)NINTBVS(*, 2): Local indices on adjacent processor receiving information, length 
NBVS(NADJPROC); 
(v)NBVR: Number of Boundary Vertices in common interface with processor NAD- 

JPROC that need to receive message; 
(vi)NINTBVR(*, 1): Local indices for the vertices on present processor receiving Ines- 
sage, length NBVR(NADJPROC); 
(vii)NINTBVR(*, 2): Local indices on adjacent processor sending information, length 
NBVR(NADJPROC). 

The data structures will be illustrated by three examples, which represent three 

communication patterns, i. e. inviscid first order, viscous first order and high order 
patterns. At first we will give the definition of three types of nearest neighbour 

elements. The first-nearest neighbour elements are those sharing the common edge 

with elements belonging to different sub-domains (denoted by sl and rl in figure 62). 

The second-nearest neighbour elements are those sharing the common node points 

with elements belonging to different sub-domains (denoted by s2 and r2 in figure 62). 

The third-nearest neighbour elements are those holding the node opposite to the 

common edge with elements belonging to different sub-domains (denoted by s3 and 

r3 in figure 62). It is thus clear that for the flow solver with a cell-centred finite 

volume scheme on an unstructured grid, only the first-nearest elements need to be 

sent and received in case of inviscid first order scheme; both first and second nearest 

neighbour elements need to be exchanged between adjacent processors for viscous 
flow with a first order scheme and all three types of nearest neighbour elements are 

required to communicate between adjacent processors in case of high order schemes 
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Pattern 1 NADJPROC = 2,3 NBVS = 16,16 NBVR = 16,16 

Pattern 2 NADJPROC = 2,3 NBVS = 32,32 NBVR = 36,36 

Pattern 3 NADJPROC = 2,3 NBVS = 52,52 NBVR = 68,68 

Table XIX. Three patterns of data structure for processor 1 

used. 
Figure 62 shows a three-way partition with the interface boundaries indicated by 

thick lines. Each of the elements shown is stored by two or three processors depending 

on which case is considered. The entries of the data structures for processor 1 are 
shown in table XIX. 

It can be seen for communication pattern 1 (inviscid first order case) the sending 
and receiving data appears in pairs as the element sharing the common edge always 
has one-to-one correspondent relations. But for pattern 2 (viscous first order case) 
and pattern 3 (high order case) the numbers of sending and receiving are normally 
different. 

It should be noted that the partitioning procedure is separated from the flow 

solver as a pre-processing step. The resulting flag file will then be read by in the 

solver code. As we keep the global address unchanged so no local address is used. 
The flow solver is constructed in an edge-based data structure so that each edge also 
needs to be flagged. This is done before the do-loop over the edges begins. Finally 

the data structure required for communication at the interface of adjacent processors 
is set up before the do-loop started. 

7.4. Parallelism of the flow solver 

The parallel implementation for the developed Navier-Stokes flow solver described 

in chapters 2,3,4 and 5 is completed under the environment of the parallel virtual 

machine (PVM) package installed on the workstation cluster of the Department of 
Aerospace Engineering at Glasgow University. In the following we will first briefly 

describe the PVM software. Then the implementation procedure will be described. 

PVM (parallel virtual machine) is designed as a software package which permits 

a heterogeneous collection of serial, parallel and vector computers which are linked to 

a network to appear as one large computing resource. Hence PVM collects the power 

of a number of computers and may be used to solve the previously unsolvable "grand 

challenge" problems. Overall PVM has the following main features: (1) it provides a 
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sl: First-nearest sending elements 
s2: Second-nearest sending elements 
s3: Third-nearest sending elements 

rl: First-nearest receiving elements 
r2: Second-nearest receiving elements 
r3: Third-nearest receiving elements 

Fig. 62. Three-way partitioning and sending and receiving elements along the interface 
boundary for processor 1 
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unified framework within which parallel programs can be developed efficiently using 
existing hardware; (2) it transparently handles all message routines, data conversions 
and task schedulings across a network of incompatible computer architectures; (3) 
the programming interface is straightforward allowing simple program structures to 
be implemented in an intuitive manner; and (4) the user can easily write his own 
application as a collection of co-operating tasks which access PVM resources through 

a library of standard interface routines. For parallelising CFD codes, the most useful 
routines in PVM involve sending and receiving messages between adjacent processors. 
In PVM sending a message includes a three step process: (1) initialize a buffer (a 

set of messages) using the pvmfinitsend; (2) pack the data into the buffer using 
pvmfpack; and (3) send the contents of the buffer to another process using pvmfscnd 
or to a number of processes (multi-cast) using pvmfmcast. The receiving a message 
is a two step process: (1) call the blocking routine pvmfreev or the non-blocking 
routine pvmfnrecv; and (2) unpack the message buffer using pvmfunpack. A detailed 
description of the PVM software and its routines can be found in [104]. 

The implementation procedure is illustrated as follows. When the code is first 

started it needs to define a host computer (also termed the parent computer) by 

calling the routine "pvmfmytid". Then an identification number is given by calling 
"pvmfparent". After that the parent computer will spawn a few child computers 
depending on'the number of processor required. In parallel computing there are two 

ways. One is called the master-slave model. That means that master machine (or 

parent computer) assigns the work to each slave machine (or child computer) and 

collects the resulting messages from the slave machine. The message passing is only 
done between master and slave. There is no communication between slaves. The 
drawback of this method is that the master will be idle when the slave machine is 

working. The other one is called the master-master model. This means that every 

machine including the parent and child computers are all the master. They do the 

work within their own domain and communicate with each other. On load-balanced 

partitions this method can make use of the computing power providing great efficiency. 
The master-master model is used in present research. The flow solver is con- 

structed based on the unstructured grid by the cell-centred finite volume method. 
The efficient edge-based data structure is used. The flux computation is carried out 

on edges. Following the input of the flag file from the partitioning preprocessing step, 
the process of flagging the edge needs to be done before the loop over the edge begins. 

The construction of the message passing data structure is then done. As discussed 

in the previous section the data sets can be built in three patterns depending on the 

computational cases considered, i. e. inviscid first order, viscous first order and high 
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order cases. The message buffer of the viscous first order case is nearly twice that 
in the inviscid first order cases and the message in the high order case is nearly four 
times that required in the inviscid first order case. Before the edge loop begins, all 
necessary data need to be communicated between processors by calling the message 
sending and receiving routines. Then the computational problem on each processor 
is completely defined and can start the loop over the edge within the sub-domain 
with which it is dealing. After the calculation on all edges is over, the values at the 

centre of the elements will be updated within each processor and the message passing 
routine (sending and receiving) will be called again to update the data in the data 

structure pattern. The iteration, update and message passing will continue until the 

convergence criteria is reached. Finally the parallel process will be ended by calling 
"pvmfexit". 

7.5. Application of transonic airfoil parallel computing problems on work- 

station cluster 

We consider the example of a transonic flow past a NACA 0012 airfoil with a freesteatn 

Mach number M,, = 0.75 and an angle of attack of 2°. The performance is presented 
for one mesh size with four different cases, i. e. inviscid flow with the first order scheme, 
viscous flow with the first order scheme, inviscid flow with the high order scheme and 

viscous flow with the high order scheme. The mesh contains 6354 triangles, 3267 

vortices and 9441 edges. The mesh and its computational results for the inviscid first 

order case by sequential code can be found in chapter 3. Here we consider the same 

example using the parallel code. 
The partitioning methods used are recursive spectral bisection (Il. SI3) and mul- 

tilevel graph partitioning (MGP). The quality (the number of edge cuts) and the 

efficiency (CPU time) for partitioning this problem with RSI3 and MCP are given in 

tables XX and XXI. The results in table XX demonstrate the same good quality 

achieved both by the RSB and MGP methods. The efficiency of the MGI3 method is 

higher than that of the RSB method (see table XXI). For example the MOP method 
is nearly four times faster than the RSB method when 8 partitioning considered. 

Figure 63 gives the communication graphs for k-way (k=2,3,4,5,6 and 8) 

partitioning by the RSB method for the present example. Also figure 64 shows the 

communication graphs for k-way (k=2,3,4,5,6 and 8) partitioning by the NIGI' 

method. It is clear that different partitioning methods result in different coininuni- 

cation graphs. 
The message communication data structure is constructed in the way as described 

in section 7.3. Here only the results of 8-way partition data structure are illustrated 
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Method Partition 

2345G8 

RSB 49 100 118 153 180 231 

MGP 55 99 128 148 183 222 

Table XX. The number of edge cuts EE on NACA 0012 airfoil with 6354 triangles, 
3267 vortices and 9441 edges 

Method Partition 

2 3 4 5 6 8 

RSB 0.56 1.021 1.143 1.388 1.488 1.674 

MGP 0.32 0.34 0.37 0.39 0.40 0.42 

Table XXI. The CPU time (seconds) for partitioning on NACA 0012 airfoil with 6354 
triangles, 3267 vortices and 9441 edges 
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Fig. 63. k-way partitioning of domain and its associated partition coin munication 
graph by RSB method 
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Fig. 64. k-way partitioning of domain and its associated partition communication 

graph by MGP method 

by tables XXII, XXIII, XXIV, XXV, XXVI, XXVII, XXVIII, XXIX, XXX, 

and XXXI for all test cases. Table XXII represents the message communication 
between 8 processors for the inviscid first order case using the RSB partitionings. It 

means that, for example, processor 0 needs to send (or receive) 28 messages to (or 
from) processor 1; no message communications between processor 0 and processor 2; 

processor 0 needs to send (or receive) 4 messages to (or from) processor 3; processor 
0 needs to send (or receive) 2 messages to (or from) processor 4; no message comrnu- 
nications between processor 0 and processor 5; processor 0 needs to send (or receive) 
21 messages to (or from) processor 6; and processor 0 needs to send (or receive) 3 

messages to (or from) processor 7. As the inviscid first order case considered, the 

messages of sending and receiving are the same. Table XXIII and XXIV represent 
the message communication between 8 processors for the viscous first order case using 
the RSB partitionings. It can be illustrated that, for example, processor 0 needs to 

send 55 messages to processor 1 but receive 57 messages from processor 1; no [ties. 
sage communications between processor 0 and processor 2; processor 0 needs to send 
8 messages to processor 3 but receive 9 messages from processor 3; processor 0 needs 
to send 6 messages to processor 4 but receive 5 messages from processor 4; no message 

communications between processor 0 and processor 5; processor 0 needs to send 4G 

messages to processor 6 but receive 45 messages from processor G; and processor 0 
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Processors Processors 

0 1 2 3 4 5 ii 6 i± 
0 - 28 - 4 2 - 21 3 

1 28 - - 31 - - - - 

2 - - - 35 13 - - - 
3 4 31 35 - 10 - - - 

4 2 - 13 10 - 27 - 9 

5 - - - - 27 - - 25 

6 21 - - - - - - 23 

7 3 - - - 9 25 23 - 

Table XXII. 8-way message passing (sending and receiving) for pattern 1(inviscid first 

order case) by RSB partitioning 

needs to send 8 messages to processor 7 but receive 6 messages from processor 7. 
As the viscous first order case considered, the messages of sending and receiving are 
different. Other tables can be explained in the similar way. 

Finally the parallel computing is completed on the cluster with the support of 
PVM software. Table XXXII gives the results of CPU time per iteration in seconds of 
four different cases and with the single and multi-processors. The partitioning result 
of the RSB method is used in this calculation. Table XXXIII show the results with 
the same considerations but using the partitioning results of the AMGII method. Small 

differences are found due to the same good quality partitioning. Here the speedup 
is defined as the ratio of the time with which a sequential code and its parallel 

equivalent finishes per iteration. Figure 65 shows that the CPU time decreases and 
speedup increases by parallel computing for all four test cases of RSB partitioning 

results. The speedup value of 6 has been achieved when using 8 processors on the 

cluster. Figure 66 shows the similar results when the MGP partitioning method is 

used. Similarly speedup of 6 is achieved. 
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Processors Processors 

0 1 2 3 4 5 6 7 

0 - 55 - 8 6 - 46 8 

1 57 - - 62 - - - - 

2 - - - 69 28 - - - 
3 9 65 72 - 22 - - - 

4 5 - 28 22 - 55 - 19 

5 - - - - 58 - - 51 

6 45 - - - - - - 47 

7 6 - - - 20 52 47 - 

Table XXIII. 8-way sending messages for pattern 2 (viscous first order case) by ItSI3 

partitioning 

Processors Processors 

0 1 2 3 4 5 6 7 

0 - 57 - 9 5 45 6 

1 55 - - 65 - 

2 - - - 72 28 - - - 

3 8 62 69 - 22 - - - 

4 6 - 28 22 - 58 - 20 

5 - - - - 55 - - 52 

6 46 - - - - - - 47 

7 8 - - - 19 51 47 - 

Table XXIV. 8-way receiving messages for pattern 2 (viscous first order case) by ItSB 

partitioning 
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Processors Processors 

0 1 2 3 4 5 6 7 

0 - 93 - 17 10 - 78 14 

1 94 - - 116 - - - - 

2 - - - 114 49 - - - 

3 16 122 120 - 40 - - - 

4 8 - 49 37 - 82 - 34 

5 - - - - 91 - - 85 

6 74 - - - - - - 88 

7 9 - - - 35 89 90 - 

Table XXV. 8-way sending messages for pattern 3 (high order case) by II. Si3 partition. 
ing 

Processors Processors 

0 1 2 3 4 5 G 7 

0 - 94 16 8 74 9 

1 93 - 112 - - - - 
2 - - - 120 49 - - - 

3 17 116 114 - 37 - - - 

4 10 - 49 40 - 91 - 35 

5 - - - - 82 - - 89 

6 78 - - - - - - DO 

7 14 - - - 34 85 88 - 

Table XXVI. 8-way receiving messages for pattern 3 (high order case) by IISI3 parti. 
tioning 
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Processors Processors 

0 1 2 3 4 5 G 7 

0 - 25 - 22 - - - - 

1 25 3 4 5 1 13 13 

2 - 3 - 24 - 24 - - 

3 22 4 24 - - - - - 

4 - 5 - - - 22 - 36 

5 - 1 24 - 22 - - - 

6 - 13 - - - - - 30 

7 - 13 - - 3G - 30 - 

Table XXVII. 8-way message passing (sending and receiving) for pattern 1 (itrviscid 

first order case) by MGP partitioning 

Processors Processors 

0 1 2 3 4 5 6 7 

0 - 50 - 46 - - - - 

1 52 - 10 11 13 3 27 29 

2 - 7 - 51 - 53 - - 

3 47 10 51 - - - - - 
4 - 11 - - - 47 - 74 

5 - 4 52 - 44 - - - 

6 - - - - - 61 

7 - 

±29 

- - 73 - 64 - 

Table XXVIII. 8-way sending messages for pattern 2 (viscous first order case) by MOP 
partitioning 
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Processors Processors 

01 
i i 

1i 
E L ft E 

0 - 52 - 47 - - - - 

1 50 - 7 10 11 4 29 29 

2 - 10 - 51 - 52 - - 

3 46 11 51 - - - - - 

4 - 13 - - - 44 - 73 

5 - 3 53 - 47 - - - 
6 - 27 - - - - - 64 

7 - 29 - - 74 - 61 - 

Table XXIX. 8-way receiving messages for pattern 2 (viscous first order case) by TMG1' 

partitioning 

Processors Processors 

0 1 2 3 4 5 6 7 

0 - 82 - 76 - - - - 

1 91 - 18 24 22 5 50 53 

2 - 11 - 86 - 81 - - 
3 82 22 91 - - - - - 

4 - 21 - - - 79 - 127 

5 - 7 89 - 78 - - - 

6 - 54 - - - - - 102 

7 - 53 - - 128 - 108 - 

Table XXX. 8-way sending messages for pattern 3 (high order case) by MG1' parti- 
tioning 
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Processors Processors 

0 1 2 3 4 5 6 7 

0 - 91 - 82 - - - - 

1 82 - 11 22 21 7 54 53 

2 - 18 - 91 - 89 - - 

3 76 24 86 - - - - - 

4 - 22 - - - 78 - 128 

5 - 5 81 - 79 - - - 

6 - 50 - - - - - 108 

7 - 53 - - 127 - 102 - 

Table XXXI. 8-way receiving messages for pattern 3 (high order case) by AMGI' parti- 
tioning 

Cases Processors 

1 2 3 4 5 6 8 

case 1 0.899 0.478 0.340 0.260 0.217 0.184 0.149 

case 2 1.269 0.710 0.473 0.378 0.305 0.262 0.222 

case 3 1.711 0.978 0.610 0.479 0.408 0.337 0.269 

case 4 2.077 1.194 0.800 0.603 0.495 0.422 0.329 

Table XXXII. Performance of parallel computing based on ItSlJ partitioning 
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Cases Processors 

1 2 3 4 5 6 8 

case 1 0.899 0.482 0.335 0.259 0.210 0.191 0.145 

case 2 1.269 0.706 0.487 0.376 0.304 0.257 0.209 

case 3 1.711 0.963 0.668 0.478 0.388 0.343 0.294 

case 4 2.077 1.214 0.815 0.635 0.499 0.410 0.338 

Table XXXIII. Performance of parallel computing based on MGP partitioning 
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7.6. Conclusions 

Implementation of Navier-Stokes code on a parallel cluster is discussed. A summary 

of partitioning issues on unstructured grids is given. Construction of an efficient data 

structure is illustrated in detail which has been implemented in a flow solver as a 

pre-processer. Demonstration has been done with the NS flow solver applied on a 

transonic flow over NACA 0012 airfoil with inviscid first order, viscous first order, 

inviscid high order and viscous high order cases considered. Reasonable efficiency and 

speedups of 6 on 8 processors is achieved. 

Z468 10 
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CHAPTER 8 

CONCLUDING REMARKS AND FURTHER RESEARCH 

8.1. Concluding remarks 

In the present research, two main topics have been discussed. One is the development 

and evaluation of a discretisation scheme for the solution of the two-dimensional 

compressible Euler equations on unstructured grids and Navier-Stokes equations on 
hybrid structured/unstructured grids. Such a scheme is based on the extension of first 

order upwinding to second order accuracy by Taylor series expansion together with 
gradient calculations and limiters. The viscous flow problems, both laminar flow with 
lower Reynolds number and the turbulent flow with higher Reynolds number, have 
been successfully simulated by the use of the proposed hybrid structured/unstructured 
grid. The other topic is the implementation of the developed Euler/Navier-Stokes 
flow solver with powerful state-of-art parallel computing techniques on unstructured 

grids. Several efficient domain partitioning methods on unstructured grids have been 
discussed and applied. Reasonable speedup performance has been achieved by the 
test example executed on a cluster: a parallel computing system based on workstation 
networks under the parallel virtual machine (PVM) environment. Some conclusions 
from the research are listed as follows: 

(1) A general description of the two-dimensional compressible Navier-Stokes 

equations relating to computational fluid dynamics was carried out in Chapter 2, 

which sets up the basis of the overall researches throughout this thesis; 
(2) Chapter 3 gives the numerical solution of the two-dimensional inviscid Euler 

flow equations for various configurations of the aerospace industry interest. The mesh 
used is the unstructured grid generated by the advancing front technique. A cell- 

centred finite volume method has been used to discretize the equations. Both explicit 

and point implicit iteration algorithms are derived. The flux calculation using Roe's 

and Osher's approximate Riemann solver are studied. It was shown that both the 

schemes of Roe and Osher lead to an accurate representation of discontinuities (e. g. 
shock waves). It was also shown that the point implicit scheme performs better in 

convergence than did the explicit scheme. Validation exercises have been carried out 
for the following cases: subsonic and transonic flow over airfoils; supersonic flow past a 
compression corner; and hypersonic flow past a cylinder and a blunt body. Numerical 

results of supersonic and hypersonic flows are improved by adding to these codes 
a high order reconstruction method based on the MUSCL approach. An adaptive 
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remeshing procedure is also applied in test cases in order to get improved solutions; 
(3) The general method of high order reconstruction on unstructured grids is 

discussed in Chapter 4. The Taylor series expansion is adopted to implement this. 
The calculation of the gradient value at a reference point is carried out using either 
the Green-Gauss integral or the least-square methods. Five recently proposed limiter 

construction methods have been used and performance has been compared using the 
test example of transonic flow over a RAE 2822 airfoil. It has been shown that similar 

pressure distribution results are obtained by all limiters except within regions in the 

vicinity of shock waves where the limiter is active. The difficulty In convergence 
behaviour is demonstrated using a mid-mod type limiter such as the Barth-Jesperson 
limiter. It seems that only the Venkatakrishnan limiter works well in the improvement 

of residual convergence. Other limiters do not work as well in the present work as 
was shown in their original publications. Also the convergence history given by the 
least-square method seems better than that given by the Green-Gauss method in the 
test; 

(4) The formulation of viscous terms in the Navier-Stokes equations and im- 

plementation of a turbulence model on hybrid structured/unstructured grids were 

presented in detail in Chapter 5. Different from the discretization of inviscid terms, 

the central-difference scheme is used in viscous term discretization. The unstructured 

grid is generally not suitable for the viscous problem, because of the feature that it 

cannot easily create highly stretched grids which is necessary for viscous flow compu- 
tation. Here a hybrid grid generation method named the "skin" method is proposed. 
The resulting grid with a structured grid in the near-wall surface and an unstructured 

grid in other regions has been successfully used in the laminar flow calculation. For 

the high Reynolds number case, flow is likely to become turbulent. A Baldwin-Lomax 

algebraic turbulence model is implemented in the NS flow solver. Good performance 
has been shown by the test case of subsonic flow over a NACA 0012 airfoil and tran- 

sonic flow over a RAE 2822 airfoil (case 9). Good agreement with experiment has 

been achieved; 
(5) Discussion on domain partitioning on unstructured grids has been given in 

Chapter 6. The definition of the partitioning problem is illustrated. Then several 

currently used partitioning methods, i. e. recursive coordinate bisection (RCB), re- 

cursive graph bisection (RGB) (together with reverse Cuthill-Mckee (RCM) order- 
ing), recursive spectral bisection (RSB) and multilevel graph partitioning (NIGI'), 

have been described and performance of their application on airfoil problems has 

been illustrated. Some pre-ordering and smoothing algorithms have been proposed 

and developed in order to improve the partitioning quality by RCB and RGB. The 
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domain dividing technique (DDT) is also mentioned. Generally, the RSB and MGP 
partitioning methods give better results, and also the MGP method has been found 
to be much cheaper to run than the RSB method. All methods have been applied 
on either single or multi-element airfoils, resulting in load balanced partitioning. The 
quality of partitioning, judged by the number of edge cuts, is similar in all cases; 

(6) The development of the parallel code for the numerical methods described 
in Chapters 2,3,4 and 5 and the domain decomposition method of Chapter 6 has 
been completed in Chapter 7. Through using the RSB and MGP methods, a load 
balanced partitioning result with good quality (number of edge cuts minimized) is 
achieved. A method of construction of the message passing data structure is pro- 
posed. The definition of three types of so-called nearest elements is given and also 
illustrated in the examples. The NS flow solver is parallelized by coupling with the 
standard subroutines of PVM software and has been successfully executed on a clus- 
ter: a parallel computer system developed on a network of workstations using the 
PVM environment. Performance of parallel computing on airfoil problems has been 
demonstrated on up to 8 processors. Message passing data structures (sending and 
receiving) and communication graphs have been illustrated by tables and graphs. 
Promising speedup results have been achieved. 

8.2. Suggestion for further research 

The ultimate goal of CFD code is to complete computations with more accuracy 
and less cpu time. Hence research work could be carried out to further these two 

aspirations. 

8.2.1. The improvement of computational accuracy 

Higher Order Discretized Schemes: The temporal accuracy of the discretiza- 

tion of unknowns can be improved by using second order schemes such as devel- 

oped by Batina [44] and Hwang and Liu [105]. Also the spatial accuracy of the 
discretization of inviscid terms can be replaced by higher than second order schemes. 
For example in the finite volume community, Barth [51] [87] derived a higher order 
scheme that involved the reconstruction of variables satisfying the property of con- 
servation of mean, k-exactness. The k-exactness refers to the property of being able 
to reconstruct exactly polynomials of degree < k. The key idea is to extend the 
scheme to enable the coefficients in the polynomial to be determined. Chakravarthy 

et al [106] also proposed a similar approach to achieve higher order accuracy. Harten 

and Chakravarthy [23] have proposed a framework for applying ENO schemes on 
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unstructured grids. 

Multi-Dimensional Upwinding Scheme: Assuming a one-dimensional Itiemann 

property to resolve the discontinuities across cell interfaces in a multi-dimensional 
problem is certainly not the most accurate approach. Thus multi-dimensional Rie- 
mann solvers based on replacing the propagation of the disturbances by a limited 

number of waves should be considered. Reference to this techque can be found in [107]. 

Turbulence Modelling: Although the Baldwin-Lomax algebraic turbulence model 
has been successfully applied in the present research with the help of the hybrid grid, 
field turbulence models, such as one- and two- equations are still a topic for further 
development. The k-e model has been successfully applied on unstructured grids 
in [65]. Two fairly new one-equation models, i. e. the Baldwin-Barth model [63] and 
the Spalart-Allmaras model [64], have become popular, particularly for unstructured 
grid applications [45]. 

Adaption: The adaption has been used in this research based on the adaptive 
remeshing procedure proposed by Peraire et at [50]. Other adaptive techniques, es. 
pecially adaptive mesh refinement (AMR), should be considered. A survey on AMII, 
technique was given by Powell et al [49]. 

8.2.2. The improvement of convergence speed 

With unstructured grids the convergence to steady state is usually unacceptably slow 
compared to its structured grid counterpart. Therefore acceleration techniques are 
required. 

Multigrid Method: The multigrid method has been demonstrated as an efficient 

way to obtain the steady-state solutions of compressible Navier-Stokes equations on 
unstructured grids. The multigrid approach concerns convergence acceleration by 

time stepping on successively coarser meshes. The idea behind this methodology is 

the error associated with the different bands of frequencies being damped on different 

sizes of mesh. For structured grids a coarse grid can be easily derived from a fine 

grid. In the case of unstructured grids, special approaches must be considered [24]. 

Implicit Scheme: Implicit schemes for compressible Navier-Stokes equations have 
been developed to accelerate the convergence. Throughout this thesis a point implicit 



144 

iterative procedure is used. It is also possible to further this by using more sophis- 
ticated fully implicit schemes such as the Generalized Minimal RESidual (GMRES). 

Venkatakrishnan and Mavriplis [46] have tested a family of implicit schemes on un- 
structured grids by GMRES with ILU preconditioning. Another two implicit method 
that have been investigated are based on the use of "snakes" [47] and "linclets" [48]. 

Parallel Computing: Alongside the developments of advanced algorithms of CFD, 

the recent appearance of parallel computing also supplies an avenue to achieve acce- 
laration of computation within reasonable wall clock time. Some of the issues that 

need be addressed are partitioning of the grid, message patterns, data structures and 
design of parallel algorithms. In Chapters 6 and 7 some initial researches in parallel 

computing on unstructured grids have been given. Father research is needed in this 

most active area. 

8.2.3. Extend to 3D cases 

More realistic applications require a 3D flow solver. Technically, the proposed scheme 
in this thesis can be extended to the 3D case without much qualitative modification. 
The first thing be considered is 3D unstructured grid generation. Some well-designed 

commercial packages with an interface to CAD platforms, suitable to deal with real 
3D problems and producing reasonable unstructured grids with less efforts for users 

are available. The Geomesh P-cube and Tgrid software of the Rampant package (a 

product of Fluent) were tested by the author to generate satisfactorily 3D unstructurd 

grids over an M6 wing with 70,000 tetrahedral elements. The generation procedure 
is completed within several minutes by a SG Indy workstation. Figure 67 illustrates 

the result. However a hybrid grid generation method needs to be extended to the 3D 

case in order to calculate viscous flows. 
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Fig. 67.3D unstructured grids generated by Geomesh I'-cube and Tgrid 
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