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ABSTRACT 

Understanding and controlling the flowfield in and around a cavity has challenged 

researchers for a number of years. The presence of a cavity on a body has been observed 
to significantly increase the mean drag, cause flow-induced vibrations and give rise to 

strong acoustic production. Of particular interest here are the flow structure and 
dynamics associated with open shallow rectangular cavities at low Mach numbers for 

various length-to-depth ratios. At the Reynolds number investigated, it is the presence 

of convective instabilities through the process of feedback disturbance that gives rise to 

a globally unstable flowfield. 

Using an instrumented wing model with a cut-out an experimental investigation of a 

cavity flowfield exhibiting `fluid-dynamic' phenomenon has been completed. A post- 

processing module for the PIV image data was constructed which optimised the data 

fidelity and accuracy while improving upon velocity spatial resolution. These 

improvements were necessary to capture the flow scales of interest and minimise the 

measurement error for the presentation of velocity, velocity-derivative and turbulent 

statistics. 

It is shown that the hydrodynamic instability that is intrinsic to the cavity flowfield at 

these inflow conditions organises the oscillation of small- and large-scale vortical 

structures. The impingent scenario at the downstream edge is seen to be crucially 

important to the cavity oscillation and during the mass addition phase a jet-edge is seen 

to form over the rear bulkhead and floor. In some instances this jet-like flow is observed 

to traverse the total internal perimeter of the cavity and interact with the shear layer at 

the leading edge of the cavity, this disturbs the normal growth of the shear layer and 

instigates an increase in fluctuation. The coexistence and interplay between a lower 

frequency mode dominant within the cavity zone and the shear layer mode is seen to 

shed large-scale eddies from the cavity. This modulation imposes a modification to the 

feedback signal strength such that two distinct states of the shear layer are noted. 

Concepts for the passive reduction of internal cavity fluctuation are successful although 

modifications to the shear layer unsteadiness are encountered; an increase in drag is 

implied. 
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NOTATION 

A, B empirical constants 

a speed of sound, m/s 

CD drag coefficient 

Co image contrast, Co = lmean 1 mean 

CP pressure coefficient, Cp = (Pc - Ps )I (PT - Ps ) 

Cf skin friction coefficient 

c random error gradient 

Cr total measurement error, pixels 

D cavity depth, mm 

DA aperture diameter, mm 

d displacement vector, d= dXj + d,. 
j 

d actual displacement, pixels 

d measured displacement, pixels 

dc diameter of the cylinder / height of floor section in configuration 3/ 

height of vertical fence in configurations 4,5 and 6, mm 

dp seeding particle diameter, µm 

dr diameter of pixel, µm 

dt particle image diameter, µm 

Ad measured displacement error, pixels, Ad =d-d 

E, F empirical constants 

FA lens focal length, mm 

f frequency, Hz 

f# f-number, f#= FA/DA 

H boundary layer shape parameter, H= 6*/0 

1 intensity 

K length of pixel area, pixels 

k wave number 

L cavity length, mm 

1, local length scale 
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M, magnification 

M Mach number, M= U/a 

m mode number 

N sample size 

NV, T% domain size, percentage tolerance for post-processing algorithm rules 

Ni mean number of particle images on a square tile, where K= 32 pixels 

N min. number of particle images on a square tile, where K= 32 pixels 

N. mean number of particle images on the CCD 

PC, Ps. PT channel static pressure, static pressure and total pressure, N/m` 

Pj probability of track between particles i and j 

P,. * probability of no track match 

R range, R* = I*max I- I*min 

Re Reynolds number, Re = pU. xlµ 

Rc radius of rigidity between particle movement 

RS radius of interest for image 1, pixels 

R� radius of flow coherence, pixels 

R� correlation value 

SPL sound pressure level, dB 

St Strouhal number, St = fx/Ux 

s standard deviation 

s2 variance 

t, At time, time delay, s 

T temperature, K 

TI turbulent intensity 

U. freestream velocity, m/s 

U velocity vector, u=u; + vj 

u, v, w velocity components for x, y, z directions, m/s 

cr', v', w' velocity fluctuation for x, y, z directions, m/s 

W cavity width, mm 

_z, 11J 7 Cartesian coordinates 
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Greek symbols 

a confidence parameter 
fundamental of the most unstable frequency of the cavity shear layer 

spacing between measurement points 

IT circulation, m2/s 

b boundary layer height, mm 

boundary layer displacement thickness, mm 

E error 

streamline, s_ 1 

y empirical phase between instabilities in the shear layer and pressure 

waves, a function of L/D 

A wavelength of laser light, nm 

µ dynamic viscosity, kg/ms 

upop population mean 

0 boundary layer momentum thickness, mm 

p density, kg/m3 

Cr2 POP population variance 

v kinematic viscosity, m2/s 

cv vorticity, s-l 

empirical ratio of shear layer velocity and freestream velocities a 

function of M. 

real part of complex wave vector in x-direction, from Block 1976. 

Superscripts 

B background 

N noise 

n iteration number 

P particle 
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Subscripts 

a acoustic 
bias bias contribution 

c cylinder 

chord wing chord as length parameter 

L cavity length as length parameter 

max maximum value 

mean average value 

min minimum value 

px measured in pixels 

x, y, z relative direction 

0 momentum thickness at cavity leading edge as length parameter 

00 freestream conditions 
1,2 respective image pair number 

Abbreviations 

AT Anatomy building wind tunnel 

CCD charged coupled device 

CPP correct particle pickup 

DC direct correlation 

DOF depth of field 

DSR dynamic spatial range 

DVR dynamic velocity range 

DWO discrete window offset 

DyR dynamic range 

FFT fast fourier transform 

FRTT forward/reverse tile-testing 

HPT Handley-Page wind tunnel 

IPP incorrect particle pickup 

PIV particle image velocimetry 

PTV particle tracking velocimetry 

rms root mean square 

SNR signal-to-noise ratio 
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CHAPTER 1: AN INTRODUCTION TO CAVITY FLOW 
This chapter is used to introduce the salient features of cavity flow with specific focus 

being given to the behaviour of the flow at low subsonic speeds. A summary of the 

pertinent research publications is included and some of the unresolved issues are 
identified and discussed. This chapter ends with an appraisal of what this particular 

experimental investigation hopes to achieve and introduces some specific industrial 

applications. 

1.0 General Introduction 

A cavity configuration illustrates that a simple geometry does not necessarily imply a 

simple flow behaviour. The presence of a cavity in a surface bounding a fluid flow can 

cause large fluctuations of pressure, velocity and density in the flow in its vicinity, as 

well as strong propagating acoustic waves. For many cases involving cavity flow it is 

possible to give rise to self-sustained oscillations, as experienced by Soundhaus in 1854 

during an investigation of edge-tones. These cavity oscillations are the origin of the 

acoustic production that may cause flow-induced vibrations (if the structure is 

sufficiently flexible) and alter the mean drag. For most applications the inclusion of a 

cavity is pernicious. A schematic of some common cavity flow interactions is shown in 

figure 1.1. 

One of the first dedicated investigations of flow oscillations caused by surface cut-outs 

was pursed by King et al. 1958 in which the application was to improve the flow quality 

through the test-section of a slotted wall wind-tunnel. Nowadays the most commonly 

associated problem of cavity flows is to bomb-bay doors on aircraft. In such cases the 

internal pressure oscillations may affect the dynamics and safety of store release, 

increase the radar profile of the aircraft, cause accelerated structural fatigue around the 

store compartment and affect nearby electronic equipment, Krishnamurty 1955 and 

Heller and Bliss 1975 and Heller et al. 1996 for example. More diverse applications of 

the cavity problem do exist, for instance the pressure vents (cavities) on the Space 

Shuttle have been seen to cause extremely high internal noise levels during ascent that 

may affect the actual payload specifications, Tanner 1984. For a typical passenger 

airliner, for example the A320, the increase in drag associated with slots and cutouts 

(usually for instrument housing) on the skin surface accounts for 3% of the total drag. A 



737-SP adapted to an airborne observatory requires a telescope to be housed inside a 
square cavity, Srinivasan 2000. In this instance the 2% drag increase caused by the 

cavity is acceptable although the sound pressure levels generated at the rear bulkhead of 
the cavity cause vibrations in the telescope itself, which then requires an aerodynamic 

control strategy to suppress the structural vibrations. There are similar issues for laser 

targeting devices whereby the turbulent density fluctuation inside the shear layer 

imposes structural vibration and also causes the refractive index to vary at high Mach 

number (thereby increasing scattering losses), Sutton 1969 and Shen 1979. However, 

there are applications in which the uncontrolled cavity flow regimes are beneficial such 

as increasing the convective heat transfer rates between electronic chips, Sparrow 1983. 

In the application of high-speed trains the join between two coaches will cause a cavity 

to exist, see figure 1.2. It is expected that the shear layer interaction with the slower 

moving internal flow causes large vortical structures to be cast off downstream along 

the train skin. This typically causes the downstream boundary layer to thicken and 
increases the profile drag, there are also issues concerning vortical interaction with other 

structures that increase the radiated noise form the train, which can become severe at 
high-speeds, Takehisa 1998. Such problems are currently faced by the Maglev and 

Skinkanson train projects in Japan' where the top speeds are currently 550km/h and 

300km/h respectively. Due to environmental concerns there is ongoing research aimed 

at reducing the radiated noise from these inter-car gaps, bogies and pantograph 

assemblies, Fremion et al. 2000 and Noger et al. 2000 respectively. 

A brief background containing relevant research material that has progressed the 

understanding of cavity flow is now given. 

1.1 The classification of Cavity Flow 

The problem of self-sustained oscillations in impinging flows is unique in fluid 

mechanics and as such has been the subject of much research over many years; 

Komerath et al. 1987 provides a good review. For a cavity subjected to freestream 

parallel conditions the upstream boundary layer separates at the leading edge of the 

cavity and causes a free-shear layer to develop across the open mouth of the cavity. For 

See for instance www. rtri. oi-. jp 

2 



such a separation Kelvin-Helmholtz instabilities, Betchov 1967 are inherent and cause 

amplification in the initial disturbance as it progresses downstream. This shear layer 

will then reattach either to the rear bulkhead of the cavity or downstream of the cavity 
itself, as shown in figure 1.1. As the vorticity in the shear layer exits the cavity domain, 

the shear layer bends into the cavity itself forcing fluid to enter the cavity that causes a 

pressure pulse to be sent upstream inside the cavity. Oscillation of the shear layer 

permits mass efflux from the cavity also. 

Flow oscillations are born out of the evolving organised structure in the cavity shear 

layer that are generated by the selective amplification of extraneous disturbances. These 

oscillations may be self-sustained, implying the existence of a feedback mechanism that 

can be the result of aerodynamic and/or acoustic effects. Since there are a number of 

permutations possible for the cavity flow regimes they are now classified according to 

the definition of Rockwell and Naudascher 1978. In essence there are three interactions 

possible: fluid dynamic, arising from the intrinsic instability of the flow; fluid-resonant, 

influenced by resonant waves; and fluid elastic, requiring a coupling with the motion of 

a solid boundary. 

(i) Fluid-dynamic interactions 

Purely fluid-dynamic oscillations involve coupling between the shear layer developed 

over the cavity and the flow inside the cavity. The selective amplification of the shear 

layer is not a pre-requisite to instigate feedback. However, pressure waves from the 

downstream corner must travel upstream and agitate the leading edge, causing vorticity 

fluctuations and thus enhanced disturbances through shear layer amplification. This 

interaction is observed so long as the cavity length to acoustic wavelength remains very 

small. Standing acoustic modes are not involved and the need for flow compressibility 

is not necessary. 

(ii) Fluid resonant interactions 

For a fluid resonant cavity to exist, the acoustic wavelength must be the same order of 

magnitude or smaller than the cavity length or depth. These are the flow oscillations that 

are controlled by the acoustic modes of the cavity. The Helmholtz resonator is the 

perfect example since it is a large volume with a short cavity face. An open sunroof on a 

vehicle, Kook et al. 1997 and aircraft landing gears, Tam et al. 1978 are examples of 



possible fluid-resonant interactions. Such interactions are subjected to further 

classification that is determined by the direction of the waves produced. When the 
length-to-depth ratio (L/D) is sufficiently large longitudinal oscillatory modes may 

exist and the cavity flow is generalized to `shallow', as illustrated in figure 1.3. If the 
LID ratio is small transverse waves may be present and the cavity is denoted as 'deep'. 

The most appropriate simplification for this study was given by Heller et at. 1971 in 

which it was stated that any LID smaller than unity is `deep' and any other is `shallow'. 

(iii) Fluid-elastic interactions 

When there are interactions between the shear layer oscillation and the elastic 
boundaries of the cavity, fluid-elastic interactions may exist. Thus the inertia, elastic 

and damping characteristics of the structure have a decisive influence on the dynamics 

of the flow itself. An example of this would be Goldman et al. 1968 who used freely 

oscillating control surfaces with a specific rigidity to improve the stability performance 

of re-entry vehicles. The data for unstable shear layers of finite thickness past flexible 

cavities would provide insight into the basic coupling between fluid-dynamic and fluid- 

elastic oscillations, Rockwell et al. 1978. 

For higher freestream Mach numbers it is possible for fluid resonant oscillations to exist 

alone or with fluid-dynamic interactions (and even fluid-elastic interactions). In these 

instances it is difficult to determine when standing waves will occur since it is 

complicated by the behaviour of the cavity shear layer and the mass exchange at the 

cavity trailing edge. Since the determination of the cavity regime is ambiguous it is 

more reasonable to pursue classification based solely on the pressure trace on the cavity 

floor, Plentovich et al. 1993. These flowfield types are now included for completeness. 

When the shear layer bridges the open face of the cavity it is identified as being `open', 

(see figure 1.4), which is broadly the case for L/D < 8. This flow state can be identified 

when the static pressure distribution on the cavity floor is nearly uniform, in comparison 

to other states. It is possible for open cavity flow to exhibit resonance in a high Mach 

number flow, which is caused by the reinforcement of the shear layer instabilities and 

the upstream travelling pressure waves. Conversely, missile bays on fighter aircraft 

experience `closed' cavity flow (frequently when L/D > 13) whereby the stagnation 
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streamline that previously bridged the open face of the cavity now impinges on the 

cavity floor, thus forming two well defined regions of recirculation. This can be 

identified by a mean static pressure distribution with low pressure at the upstream 

corner a pressure plateau in the middle section and high pressure to the aft. For a missile 
bay the separating store has been seen to experience a large pitching moment that turns 

the store nose into the cavity (to catastrophic effect). It has not yet been clearly defined 

if acoustic tones can exist within the `closed' cavity flow structure, although they are 

not commonly observed. 

1.1.1 Mach number 
As the Mach number increases from low subsonic flow to supersonic flow the reflected 

acoustic waves will begin to predominate the feedback mechanism. The existence of 

shock waves causes the directivity of the sound to increase and forces the shear layer to 

oscillate in a more orderly manner. An approximate limit that bounds fluid-dynamic and 

fluid-resonant behaviour was discovered by Block 1976 who described it as an 

expression that related cavity L/D to Mach number using two empirical constants 

(adapted from Rossiter 1966). A change in Mach number is seen to affect the limits of 

`open' and `closed' cavity flow although the largest changes are discovered in the so- 

called `transitional' regime that bridges these two flow states. In the absence of shock 

waves transitional flow can be easily defined from the static pressure measurement on 

the cavity floor, where the distinction can be made by inspection of the inflection points 

in the pressure coefficient profile, see figure 1.4. With high Mach numbers the 

transitional regime is categorized more rigorously according to the shock wave 

locations. 

In the supersonic flow regime closed cavity flow can be clearly identified by the 

location of an impingement shock at the leading corner of the cavity and a shock wave 

at the aft wall of the cavity. As the length of the cavity decreases the shock waves 

collapse into one single shock wave located at the point of shear layer impingement on 

the cavity floor, this is termed `transitional-closed' flow. With a further (small) decrease 

in cavity length this single shock wave splits into a series of compression waves 

indicating shear layer deflection with no stagnation impingement, this is called 

`transitional-open' flow. The acoustic properties of these transitional flow regimes 
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remain undetermined, Tracey et al. 1997. Further reductions in cavity length force the 
flow back to an open regime which is characterized by oblique shock waves at the 
leading and trailing edges of the cavity that respond to shear layer deflection with a 

periodic travelling wave pattern over (and under) the shear layer itself, Heller and Bliss 

1975. A complete description of these physical feedback mechanisms for supersonic 

cavity flow with the aid of Schlieren optical spark photography is given in Heller et 

al. 1996 and Zhang et al. 1998. 

1.1.2 Reynolds number 
As the Reynolds number increases the energy transforming and dissipating scales 

become more distinct from one another. This is because more small-scale structures are 

generated which then intervene between the process of energy extraction and viscous 

dissipation. Over the Reynolds number range the large eddy structures remain similar 

even though the small-scale content is changed considerably. The general conclusion is 

that beyond the transition region there is no significant influence of Reynolds number to 

be seen. Roshko 1976 has demonstrated that it is possible to maintain similarity in a 

free-shear layer flow for Reynolds number ranging from 600 to 850,000. A study by 

Sarohia 1977 indicated the lack of sensitivity of oscillatory characteristics of a cavity 

flow to changes in Reynolds number, although the oscillatory behaviour was affected by 

the upstream boundary layer height (that is when 61D < 0.5). Ho et al. 1984 later 

emphasised that a relationship between Reynolds number and the formation of coherent 

structures in a free-shear layer does indeed exist with reference to the stability theory of 

Hussain et al. 1977. Therefore for the purposes of this study (knowing a priori that there 

are no acoustic resonance effects) the Reynolds number is presented in terms of the 

upstream boundary layer momentum thickness. This is an appropriate definition since 

the change of the separating boundary layer at the cavity leading edge to an inflection 

profile and its stability thereafter are intrinsically linked to the initial state of the 

boundary layer. 

1.2 The Cavity Problem 

From the first extensive report on cavity flow by Krishnamurty 1955 to the latest full- 

field investigation by Lin et al. 2001, efforts are continually being made to understand, 

model and modify the behaviour of cavity flow. Such an interest remains because 
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techniques for predicting the dominant frequency of operation or calculating the 

amplitude of a particular oscillatory mode remain under development. Through these 
investigations much has been learned about the nature of cavity oscillations and some of 
the more interesting observations from the literature are now included. 

1.2.1 Early benchmark work 
As previously stated Krishnamurty 1955 undertook the first study of tones generated by 

cavity flow in a blowdown tunnel, and with this made the most significant observation 

about cavity oscillations. He discovered that the wavelength of the cavity oscillations 

were proportional to the cavity length except in the case where the cavity length was so 

small that the shear layer could not impinge on the downstream wall (and no tone would 

be generated). Sarohia 1977 was able to map this relationship between oscillations and 

cavity length using linear stability theory with some success (the amplitude data was 

obviously poor), Kook et al. 2002 and Hankey et al. 1980 later provided more rigorous 

clarification. Another early benchmark study was conducted by Roshko 1955 who was 

able to identify the stagnation pressure caused by the shear layer impingement on the 

downstream wall as the main contributor to the drag caused by a cavity. Plumbee et al. 

1962 then conducted the largest study of that time by presenting results from both 

experimental and theoretical work. He studied the response of the cavity through the 

Mach number range of 0.2 to 5 where it was noted that the discrete tone frequency 

increased with Mach number, but it was not linear, and the static pressure in the cavity 

increased with increasing cavity depth. It was then expected that short cavities would 

exhibit depth modes in resonance and shallow cavities would display lengthwise modes. 

The theoretical description used by Plumbee et al. 1962 considered the shear layer 

turbulence as the driving mechanism for the cavity which was contrary to the 

observations of both Krishnamurty 1955 and later Heller et al. 1971 who noted that the 

oscillations in the cavity were much stronger when the shear layer was laminar as 

opposed to turbulent. 

East 1966 noticed that cavity resonance would only be produced when the shear layer 

oscillations were amplified through acoustic coupling between the shear layer pressure 

fluctuations and the cavity modes. His experimental results were in good agreement 

with Plumbee et al. 1962 and confirmation of these observations was later provided by 

Tam et al. 1978 and Ahuja et al. 1995. 
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1.2.2 Prediction of cavity oscillation 
Using high-speed shadowgraph motion pictures Rossiter 1966 was able to visualise 
discrete vortices being shed periodically from the cavity leading edge, which was 

confirmation of earlier postulations made in Rossiter 1962 about cavity wave 
interactions and confirmation of experimental results from Rossiter 1964. From these 

studies it was possible to fit an empirical equation to the experimental data although no 

explanation was given regarding the physical mechanisms at work, equation 1.1. This 

equation would recognise available oscillation frequencies but not determine the actual 

operating mode. 

StL ==M -Y [l. l] 
U. 1+M. 

where, m=1,1,2,3,..., y=0.25, ý=0.66 and StL is the Strouhal number for that particular 

mode. 

Rossiter's equation represented his observations that approximately one-quarter period 

after a shear layer vortex hit the trailing edge and left the cavity, a new vortex would be 

shed from the leading edge, thus y=0.25. ý represents the convection of the shear 

layer structures as a fraction of the freestream velocity. The formula and the underlying 

instability process are similar to that which occurs in edgetones, Powell 1961. Rossiter 

1966 was in agreement with Plumbee et al. 1962 when he identified the principal source 

of acoustic radiation being close to the trailing edge of the cavity. At the same time 

Spee 1966 was able to illustrate from his subsonic Schlieren photographs that the 

periodic inflow and outflow at the trailing edge of the cavity was accompanied by 

lateral displacement of the shear layer, although he was unable to verify Rossiter's 

observation that discrete vortex shedding was occurring at the leading edge. The first 

verification for this shedding came from McGregor et al. 1970 who also included 

balance data that measured a 250% increase in drag when cavity resonance occurred. In 

a simplification to Rossiter's equation (equation 1.1), Heller et al. 1971 demonstrated 

that the temperature (thus the speed of sound) approached stagnation values inside the 

cavity. Using the remaining empirical constants it was possible to accommodate either 

fluid-dynamic or fluid-resonant interactions within this formula, however at low Mach 

numbers the dependence of the shear layer instability characteristics on the frequency of 

oscillation reduced the accuracy of prediction. 
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1.2.3 The feedback mechanism 
Heller and Bliss 1975 presented the next benchmark report regarding self-excited cavity 

oscillations. In this report a complete description of the feedback mechanism was given 
in which a typical cavity cycle would see discrete vortices cast off from the leading 

edge and convected downstream at a fraction of the freestream speed. An impulsive 

disturbance is then generated when the vortex reaches the downstream edge and travels 

back upstream to initiate the formation of a new vortex at the leading edge. Therefore 

by using this rear bulkhead `pseudopiston' analogy a direct relation for the frequency of 

the shear layer oscillation was possible although in reality it is necessary to incorporate 

an additional frequency-dependent time delay to account for phase lags induced by the 

fluid-structure interactions at the edges. Heller also noted the effects of stronger wave 

receptivity of higher Mach numbers. Values for the convection speed of shear layer 

vortices have seen some change although the best prediction criterion has probably been 

described by Ahuja et al. 1995. It should be noted that Heller and Bliss 1975 viewed the 

spatial amplification rate of the cavity wave travelling downstream as a function of the 

finite-thickness shear-layer instability characteristics (for values of M, 
x < 2.0). 

Although the subject is not free from controversy, there are certain aspects of the 

complete feedback mechanism that are now generally accepted. The generic description 

of the physical mechanisms of self-excited cavity oscillations given by Rockwell et al. 

1978 (updated in Rockwell et al. 1979,1983 and 1998) is adopted here. This is 

described as follows and is adapted from the original description given by Rossiter 

1964: 

(i). There is an interaction of a vorticity concentration(s) with the downstream corner. 

(ii). A disturbance travels upstream from this downstream corner to the shear layer 

separation position at the upstream corner. 

(iii). There is a conversion from this upstream influence to a fluctuation in the shear 

layer as it arrives at the corner. 

(iv). There is an amplification of this fluctuation in the shear layer as it develops in the 

streamwise direction. 
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For the design of oscillation suppression devices the role of the downstream corner 

geometry could clearly be seen and direct manipulation of the mass exchange stroke at 
the downstream corner was indeed successful, Ethembabaoglu 1973 and Maurer 1976. 

1.2.4 Numerical predictions 

There were two common approaches of modelling the complex interactions associated 

with cavity flow to predict the modes of oscillation. Fluid-dynamic interactions were 
typically predicted from the `feedback' phase angle condition already described 

(equation 1.1) and King et al. 1958, Martin et al. 1975 and Rockwell 1977 pursed other 

numerical studies performed in the this manner. King et al. 1958 modelled the shear 
layer as being infinitesimally thin since this was a good approximation for his 2d flow 

over a perforated slot. Martin et al. 1975 and Rockwell 1977 went to great efforts in 

modelling the shear layer as accurately as they could although the drawback was that no 
description of an impingement surface was included, prohibiting the collection of useful 

amplitude data and resonance effects. Rockwell 1977 and Sarohia 1977 provided the 

most important work of that time by providing an equation that would determine if self- 

sustained oscillation would occur and if so the capability to determine the predominate 

mode. 

The other approximation used was to model the shear layer as being infinitesimally thin 

so that the inclusion of fluid-mass exchange, wave propagation and elastic effects could 

be facilitated. From the studies of King et al 1958 (where this condition is valid), 

Bilanin et al. 1973 and Block 1976 it was established that these models were 

particularly good at predicting fluid resonance (when a number of coexisting 

frequencies are evident) and at high Mach number where the wave effects are strongest 

(as predicted by Heller and Bliss 1975). The analysis of Bilanin and Covert 1973 

yielded a relation for the Strouhal number with the same general form as the Rossiter 

equation, but with no empirical constants. It was found that there was excellent 

agreement the range 0.8 < Mc < 3.0 even though there was no coupling between the 

cavity wave structure and the shear layer motion. 

Block 1976 extended the work of Bilanin and Covert 1973 to include wave reflections 

from the floor of the cavity and the prediction found good agreement with previous 
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experimental studies by East 1966 and Covert 1970. Of particular interest in this study 
was the observed coupling between the lengthwise and depthwise modes at particular 
Mach number and L/D ratio. This allowed Block to determine the maximum-amplitude 
Mach number as when there was reinforcement in the two directions of oscillation. This 
is given in equation 1.2 and indicated in figure 1.5, it may be seen that this maximum 

amplitude criterion is prevalent when L/D < 2.0. 

IL 

M= rD [1.2] 

4mI1+A(ý)eI_(L -0.5141 
l1 

where, m =1,2,3,..., A=0.65, B=0.75 and ý represents the longitudinal wave number. 
determined by Block 1976. 

In a similar fashion Tam 1976 also modelled the acoustic modes of a cavity and derived 

a minimum Mach number below which flow-induced cavity tones could not become 

self-sustained. Further development of this model by Tam and Block 1978 to combine 

the effects of longitudinal and transverse waves then found evidence that it was possible 
for tones to be generated by the normal mode resonance mechanism for M0 < 0.2. 

Numerical prediction then changed to the full solution of the unsteady Navier-Stokes 

equations where Hankey et al. 1980 determined that the maximum intensity of pressure 

oscillations over an open cavity occurred at a Mach number of one. Brandesis 1982 

used a similar approach to make some observations about the behaviour of the shear 

layer for different cavity lengths at supersonic speeds. Investigations then continued 

with Ghadder et al. 1986, Zhang et al. 1988, Najm et al. 1991 and Pereira et al. 1993, 

who each provided computational solutions for their particular cavity flow problem. In 

each case it was realised that there were interactions between the internal cavity 

structure and the shear layer, to further quantify this Pereira et al. 1995 used Laser- 

Doppler anemometry in conjunction with a numerical simulation. Using this he 

discovered that large amplitude organised oscillations were due to fluid-dynamic 

instabilities, while the visualisation and unsteady prediction elucidated the instability 

process as involving a complex coupling between the shear layer and the recirculating 

flowfield dynamics. Using large eddy simulation Takakura et al. 1996 investigated the 

unsteady features of supersonic flow past a cavity (ReL = 843000 for L/D = 2.0) where 



it was evident there was a formation of a wall jet flow along the vertical and bottom 

faces of the cavity. 

1.2.5 The origin of jitter 

Plumbee et al. 1962 was the first to notice a low frequency interaction of the shear layer 

vortices with the downstream cavity corner, which was then properly investigated by 

Rockwell et al. 1979 and Knisely and Rockwell 1982. In these studies it is observed that 

an approaching vortical structure may experience one of three possible events: complete 

clipping, whereby the structure is swept down into the cavity; partial clipping, which 

results in severing of the vortex; or escape, involving deformation of the vortex while it 

is swept intact over the downstream corner. Each possible event (or `jitter') is illustrated 

in figure 1.6, taken from Rockwell et al. 1979. It was also determined that there was a 

substantial increase in transverse velocity just upstream of the edge and that each event 

at the downstream corner would have a consequence at the leading edge via the internal 

pressure wave propagation. These may be the origin of several instability frequencies 

present within the shear layer that do not exist when the downstream edge is removed. 

In the absence of resonance the organised nature of the shear layer oscillation is relaxed 

and it is the presence of other coexisting agents that determine the oscillatory process of 

the cavity shear layer at the downstream edge. This eddy shedding that can be observed 

from the recirculation zone may be caused by the modulation of the shear layer imposed 

by the larger (more energetic) recirculation region. It is possible that there is some level 

of phase compatibility through other nonlinear interactions between the shear layer and 

the recirculation region that commits the edge interaction to a certain fate (complete 

clipping, partial clipping or escape). If this is the case then in the description of the 

feedback mechanism it is important to monitor the shear layer amplification to the jitter 

event such that better understanding can be found (and control may be enforced). Such 

research requires the accumulation of full flowfield information although this 

experimental data remains, at best, sparse. 

1.3 Cavity Acoustics 

Even though it is possible to predict the possible frequencies of cavity oscillations over 

a large Mach number range the capability of predicting cavity noise tone is far from 

complete. There continues to be much interest in such predictions since high amplitude 
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oscillations may produce tones that produce acoustic fatigue; measurements that are 
now commonly requested by environmental law. For the cavity there is a general 

understanding of the near-field noise generated and the pressure fluctuations within the 

cavity, while prediction methods have been reported. See for example Moore 1977, 

Lepicovsky et al. 1985 and Vakili et al. 1993. 

It is the generation of a shear tone that facilitates the amplification of other tones for a 

cavity. This shear tone is generated by the instabilities in the separated shear layer that 
interact with a downstream edge causing pressure waves that are propagated back 

upstream to the point of initial separation. If the upstream propagating disturbance is in 

phase with the instability formed at shear separation, then amplification will occur, 

Ethembabaoglu 1973 and Rockwell 1977. Woolley et al. 1974 was able to stipulate a 

criterion for tone selection by realising they would only be generated in modes where 

the integrated amplification was greater than unity. There are three possible types of 

interaction that the shear tone may take with the underlying cavity structure: these are 

cavity tone, Helmholtz resonance and cavity resonance. These are now explained. 

(i) Cavity tone 

The presence of a cavity under the shear layer imposes a condition stating the mass of 

fluid inside the cavity must remain constant (at least for incompressible flow). This 

means that the periodic mass addition and removal at the trailing edge of the cavity will 

have a direct affect on the movement of the shear layer at the upstream separation 

position. At certain frequencies this unsteady mass stroke at the upstream station may 

amplify the instability in the shear layer and cause the generation of a tone. Since this 

feedback depends on the presence of a cavity, it is referred to as a cavity tone, Sarohia 

1977 and Courtney 1994. Some aerodynamic frame noise on trains and noise associated 

with turbo-machinery is generated by cavity tones. The challenge here is then to isolate 

the cavities or grooves causing the noise and determine at what speed the cavity tone 

becomes excited. It is then possible to quieten the structure, Maruta et al. 2000 and 

Sagawa 1999. 

(ii) Helmholtz resonance 

The generation of Helmholtz resonance for a cavity is dependent on the volume of the 

cavity. Therefore if the frequency of the shear tone across the opening of the cavity is 
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close to or equal to the Helmholtz resonance frequency, amplification of the shear tone 

will occur, Elder 1978 and Nelson et al. 1983. A popular example of this is the `wind 

throb' phenomenon when a vehicle cabin with an open window or sunroof causes a low 

frequency high-pressure oscillation inside the cabin itself. It is possible to exceed 130dB 

in the passenger cabin in such a fashion without exceeding 70mph, Inagaki 2002. 

(iii) Cavity resonance 
A shear tone is generated when two frequencies of the cavity couple together and cause 

an increase in the generated tone, East 1966 and Elder 1978. As previously noted by 

Block 1976 for values of L/D < 2.0 it is possible for depthwise resonance mode and the 

feedback mode to couple together and increase the amplitude of oscillation at distinct 

Mach numbers, as described by equation 1.2. In such an instance it is the vortical 

shedding in the shear layer that is purely reinforced by the oscillations of the duct 

resonance mode. Such interactions have been seen to exist in aircraft landing wheel 

wells, Bliss et al. 1976. 

The sound produced by nominally steady, high Reynolds number flow over an aperture 

or cavity in a wall often consists of a sequence of discrete tones, Howe 1997. Tonal 

amplitude is solely dependent on flow speed and can change abruptly between modes as 

the flow speed is varied; in fact Rossiter 1962, East 1966 and Komerath 1987 all 

noticed mode switching effects in their data. The main theoretical models used for 

estimating sound generation have already been briefly explained (Heller et al. 1971, 

Bliss et al. 1976 and Block 1976), while in each instance good agreement was found for 

the Mach number range of interest there was no generic prediction scheme found. The 

most notable recent progress has been made by Hardin et al. 1993 and Kriesels 1995 

and Ahuja et al. 1995 who has performed the most extensive study of farfield sound 

generation to date (for the purpose of validating new aeroacoustic codes). From these 

studies it was confirmed that shallower cavities radiate sound more uniformly, whereas 

deeper cavities appear to be more directional. It was also implied that it might be 

possible to eliminate all cavity tones by thickening the upstream boundary layer, while 

narrower transitional cavities tend more towards closed flow (where the potential for 

resonance is reduced). Tracey et al. 1997 although in agreement with Rossiter 1966 and 

Block 1976 that resonant frequencies decrease with increasing L/D, has demonstrated 
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that resonance is still possible for closed cavity flow, which has concerns for missile 
bay applications. Henderson et al. 2001 has used a computational investigation of 
subsonic and transonic open turbulent flows to provide acoustic data that is in good 

agreement with past experimental studies, while Tam et al. 2001 have pursued the 
development of specific computational aeroacoustic (CAA) codes to determine sound 

pressure levels around various geometries. 

The prediction of cavity noise is far from complete because this phenomenon is seen to 
be a strong function of upstream boundary layer state, while the sound generated is 

highly dependent on the three-dimensional flow state, Lele 1997. For instance Ahuja et 

al. 1995 sound pressure level (SPL) results pertaining to narrow three-dimensional 

cavities are in direct contradiction to the findings of Block 1976, possibly caused by the 

difference in boundary layer momentum thickness at the cavity leading edge. 

1.4 The cavity energy source 

The origin of the energy required to maintain cavity oscillations requires clarification. 

As briefly mentioned earlier Plumbee et al. 1962 suggested that the energy was a result 

of broadband turbulence, while Tam and Block 1978 postulated that the energy transfer 

to the cavity came purely from the shear layer instabilities. Some clarification of this 

problem has recently came from Disimile et al. 1998 and 2000 who determined that 

although there was transfer of energy between oscillation frequencies as the cavity span 

was decreased, the total energy obtained from the mean flow was increased. This was 

measured in relative sound pressure level, (RSPL) taken to represent the acoustic 

energy. By measuring the upstream boundary layer using a hot-wire probe the 

maximum dissipation was seen to occur at an energy region responsible for viscous 

forces, thus leaving little energy for fluid-dynamic excitation. With the shear layer 

containing vortical structures with energy two orders of magnitude greater, coupling to 

oscillations is more tenable. It appears that the hypothesis of Tam and Block 1978 is 

now well supported. 

1.5 Three-dimensionalities 

Two-dimensional cavity flow implies that the flow is uniform across the entire span. As 

a result, a coherent shear layer is expected to form across the entire span of the cavity. 

For three-dimensional cavities closed systems of recirculating flow cannot exist, Hunt et 
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al. 1978, and so the flow regimes are considerably more complicated with fluid entering 
the cavity and vorticity being shed from it. It is expedient for an experimental set-up to 
try and predict the level of encroachment or interaction that three-dimensional effects 

would bring. 

Several researchers have examined the case of a fully three-dimensional rectangular 

cavity in the past. In the work of Friesing 1971, Gaudet et al. 1973 and Young et al. 
1981 the purpose of the research was simply to ascertain drag data that may be used for 

design purposes and as such no explanation was given about the flow regimes present. 
For Sinha et al. 1982 and Kaufman et al. 1983 the purpose of their investigations was 

very specific to their particular applications and no discussion was given to the origins 

of three-dimensionalities. The work performed by Plentovich 1990 and Ahuja et al. 

1995 did present pressure distribution measurements and made efforts to understand the 

effects of cavity width on the direction and amplitude of tones at high Mach number. 

Given the nature of these studies it was sufficient to state that reductions in span do not 

affect the main frequency of oscillation while Q-factor` increases. Roshko 1955 

measured the presence of spanwise gradients only for completeness. This leaves the 

work of Maull and East 1963, Rockwell et al. 1980 and a dedicated study by Savory 

1993 and Disimile 2000 as the only work to actively purse the description of three- 

dimensionalities in subsonic flow conditions. 

Using oil flow visualization and surface static-pressure distributions Maull and East 

1963 found strong evidence to suggest regular three-dimensional flow across the cavity 

floor. An example of the cellular structures visualised are shown in figure 1.7. In these 

experiments it was found that for particular L/D ratios this spanwise cellular structure 

would collapse causing increased fluctuations in the lengthwise oscillations. It was also 

discovered that large values of L/W did not necessarily imply the damping of spanwise 

effects. A later study by East 1966 reported no discernable changes to the cavity 

oscillations by the spanwise effects although the range of LID and L/W covered was 

not as extensive. 

2 Q-factor is the quality factor, which is the ratio of the centre frequency to the bandwidth of the 

surrounding peaks. 
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Miksad 1972 measured the three-dimensional character of free-shear layers and 
discovered that the spanwise variation in wavelength is associated with the streamwise 
location in the flow and to the primary wavelength. Using the hydrogen bubble 

technique Rockwell et al. 1980 was able to record the spanwise variation of a free-shear 
layer along the mouth of a cavity where the oscillation were better defined because 

vortex pairing in the shear layer was inhibited, as shown in figure 1.8. It was discovered 

that there was strong coupling between longitudinal and spanwise vortices that caused 

severe, but ordered, spanwise distortion of the primary vortex. This was found to be in 

agreement with stability study carried out by Browand 1979 and data from Breidenthal 

1979 and 1980. 

When calculating drag for cavities over a number of configurations Savory et al. 1993 

noticed that the pressure distribution on the floor of the cavity showed remarkable 
lateral uniformity with no noticeable three-dimensionality (as opposed to the studies 

above). Disimile et al. 2000 studied the effects of cavity span on the flow oscillations 

that occur in a low-speed open cavity (with L/D = 1.0). He noticed that a state of fluid- 

dynamic resonance was observed at small L/W ratio that progressed to fluid-acoustic 

resonance as L/W increased. This was determined as a depth mode acoustic response 

using a relationship adopted from East 1966. No relationship between the acoustics of 

the cavity and the formation of spanwise vorticity has ever been pursued. 

1.6 Flow Control 

With the exception of studies to design wind instruments and other sound sources, the 

objective of most work concerning cavity flow is to achieve the eventual suppression of 

oscillations and thus sound generation. In the initial study by King et al. 1958 to reduce 

the instability caused by slots on wind tunnel walls Mabey 1970 found a practical 

solution by covering the slots with perforated screens. With the addition of a spoiler at 

the trailing edge of the cavity Rossiter 1966 found that oscillations were suppressed. In 

fact the addition of the spoiler served to destroy the interaction between the shear layer 

vortices and the trailing edge and as such reduced feedback to the cavity leading edge. 

The optical distortion and vibration caused by the shear layer at high Mach number as 

noted by Shen 1979 was alleviated for a particular Mach number (Mx = 3.2) with 

installation of a wedge shaped lip at the cavity trailing edge. Another possible solution 
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to this problem was demonstrated by Parmentier et al. 1973 who used directional 

upstream mass injection to reduce the impact of the shear layer at the cavity trailing 

edge. Miksad 1972 disproved the notion that relaminarisation of the boundary layer at 
the leading edge would be beneficial by suppressing shear layer amplification. He 

calculated that the shear layer would once again become turbulent-inflectional at 

approximately 27 times the laminar boundary layer height downstream. 

Heller and Bliss 1975 documented a variety of suppression devices for 

transonic/supersonic flow that intended to either stabilize the shear layer and/or prevent 

the periodic trailing edge mass addition process. Shear layer stabilization was achieved 

either through the introduction of vorticity from an upstream-vortex generator (spoilers) 

or by the provision of an inherently stabilizing trailing edge geometry (slanted rear 

bulkhead). Both of these examples were successful and are included in figure 1.9a and 

b. The slanting trailing edge is successful because the stagnation streamline is not 

perpendicular to the rear bulkhead and as such compensating the impingement angle 

with an angled surface will force the shear layer into a steadier state by virtue of weaker 

growth amplification. A detached cowl, shown in figure 1.9c suppresses the mass 

addition and removal process by causing enough lift such that the shear layer is 

accelerated over the cowl itself. The location and orientation of this cowl is very critical 

to the operating Mach number. Reductions in fluctuating pressure coefficients of more 

than one hundred percent and attenuations of SPL by 35dB have been achieved by using 

appropriate combinations of these devices, Rockwell 1978 and Franke and Can 1975. 

The acoustic pressure loads experienced by current fighter and attack aircraft is higher 

than ever since more severe manoeuvres are possible. Jacobs 1990 used a linear model 

with non-dimensional scaling to develop a universal design tool that predicts the size of 

sawtooth spoiler required to reduce the SPL within a given cavity and operational Mach 

number range. 

Sarohia 1976 studied the effect of mass flow injection at the leading edge of a cavity 

and discovered that it was possible to delay the onset of a given mode of oscillation. 

Experimental studies by Sarno et al. 1994 and Vakili et al. 1994 have shown that 

attenuation of cavity flow oscillations in this manner is possible when the instability 

characteristics of the shear layer are directly affected. Therefore by thickening the shear 

layer the preferred vortex roll-up frequency is shifted outside the natural frequencies of 

18 



the cavity. Navier-Stokes simulations of passive control techniques have also been 

pursed although no comparison to experiments has been made, Zhang et al. 1999. For 

both active and passive suppression schemes once the device is located and orientated at 

the desired location, success can only be assured over a small Mach number, LID and 

L/W range. 

By changing the geometry of the downstream impingement edge Pereira et al. 1994 was 

able to modify the `clipping' fate of the impinging vortex as previously defined by 

Rockwell et al. 1979 and Knisely and Rockwell 1982. Using LDA it was determined 

that by facilitating nearly perpendicular impingement of the stagnation streamline on the 

rear cavity bulkhead the primary vortex would increase in size. It was also noticed that 

any geometrical changes to the downstream corner did not affect the dominant 

frequency of oscillation, indicating that the primary recirculating flowfield has very 

little effect on the inner shear layer structure. 

Kuo et al. 2001 reported that banking the floor of the cavity itself could change the 

oscillation characteristics of the shear layer. They found that by sloping the floor of the 

cavity (higher on the leading edge side) and thus imposing an adverse pressure gradient 

on the primary vortex, the oscillation of the shear layer was significantly reduced. 

Another interpretation on the success of floor banking would be that by constricting the 

primary vortex in the upstream portion of the cavity the shear layer vortical structures 

are generally incipient, thus less prone to low frequency modulation. 

Gharib 1987 has demonstrated that it is possible to excite a naturally nonoscillating 

shear layer through addition of Tollmien-Schlichting waves to the upstream boundary 

layer that transform into Kelvin-Helmholtz waves. The success of this work has 

motivated several more studies on active control of cavity oscillations using loww'- 

dimensional systems. For further reference (and review), the most success so far has 

been attributed to Kergerise et al. 1999 and 2002 for self-tuning of weapons bays using 

a flap assembly. There has been no deviation of strategies based on gain/phase/delay 

controllers although more sophisticated model-based schemes may be expected soon, 

Rowley et al. 2000. 
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1.7 The aerodynamics of trains 
In this work particular interest is given to the study of airflow between the inter-coach 

spacing on trains. It is therefore appropriate to include a brief summary concerning the 
aerodynamics of trains and the expected benefits that a study on inter-car gaps would 
bring to a complete train configuration. 

The total resistance of motion for a train is composed of rolling mechanical resistance, 
air momentum drag (for combustion and air conditioning) and aerodynamic resistance, 
Gawthorpe 1978. The coefficient of drag (based on frontal area) can range from -I for 

streamlined trains to - 15 for freight trains. Taking the case of a streamlined train 

operating between 250-300 km/h isolated in the open with no crosswinds, it can be 

expected that 75-80% of the total resistance is caused by external aerodynamic drag. 

Breaking this up into constituent parts, about 30% of the aerodynamic drag is caused by 

skin friction, about 8-13% by nose and tail pressure drag, 38-47% by bogie and 

associated interference drag, and 8-20% by pantograph and roof equipment drag, Peters 

1983 and Schetz 2001. Some cavity areas around the train are shown in the schematic of 
figure 1.10. 

The reduction of pressure drag possible on the nose and tail sections is very small once 

the general profile is long and slender and without sharp edges, Schetz 2001. If a 

particular nose shape (for instance the aero-wedge, Gawthorpe 1998) generates pressure 

waves that exceed environmental requirements in tunnels the problem is dealt with by 

modifying the geometry of the tunnel entrance and exits rather than sacrifice drag 

reduction by modifying the nose shape. To reduce the rolling resistance a more radical 

change has been pursed based on magnetic levitation (or Maglev) technology. Using 

electromagnetic suspension (EMS) the vehicle undercarriage either wraps around the 

track or rides within a trough with approximately 10mm (full-scale) levitation ground 

clearance, Pulliam et al. 1996. From the initial studies by Germany in the 1930's 

Maglev trains are now at full-scale test demonstrations in France, Germany, US and 

Korea. Japan has already set a deadline for commercial availability in 2004 while China 

are already operating a 430km/h service in Shanghai3. It is to be expected then that any 

3 See for instance www. transrapid. de 
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future improvements in train efficiency will come solely from a reduction in the drag 

caused by pantograph and roof equipment and skin friction. 

Reducing the effects of viscous drag on high-speed rolling trains, such as the ICE 

(InterCity Express) and TGV (train ä grande vitesse) is still a very important problem 
for rail researchers. Direct manipulation of the boundary layer by application of Lar(Ye 

Eddy Break-up devices (LEBU) and vane vortex generators (VVG) have fallen short on 

reliability although longitudinal riblets have found good application on the train surface, 
Guezennec et al. 1985 and Bechert et al. 1997 respectively. For experimentalists the 

complications are that the flat plate law does not hold for a discontinuous fusiform4 

body like the train and there are scaling effects for friction measurement that are not yet 

understood, Baker 1985. In fact the typical argument embraced by rail researchers 

regarding drag reduction is to maintain a thin boundary layer around the train, 

Gawthorpe 1983. However it is plausible that unimpeded boundary layer development 

along the train surface will decrease the skin friction, although this will increase the 

boundary layer displacement thickness and as such increase pressure drag at the tail. 

It has been shown in several studies (most notably in Gaylard et al. 1994) that there is 

significant thickening of the boundary layer by bogies and inter-car gaps caused by low- 

energy fluid being fed into the boundary layer. Based on the results of Sockel 1996 for 

an ICE it can be seen that these cavities (and possibly other skin protrusions) are 

causing the boundary layer to double in thickness over a 100m span (where the 

boundary layer height has been measured at approximately 1500mm). At this position 

along the train the effective cross-sectional area is expected to have increased by around 

14-20% from the growth of the boundary layer. These values are expected to be much 

larger at the tail of a high-speed train where the total length is commonly in excess of 

200m. So although a thick boundary layer is beneficial for reduced viscous drag its 

growth should not be left unchecked along the entire length of the train. Essentially 

there remains an optimal balance between the constituent aerodynamic drag components 

even though the body is in fact streamlined. 

' Tapering at each end, spindle shaped 
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Another issue worth mentioning is the level of noise generated by a typical high-speed 

train. In this case the rolling noise of the train is exceeded by the aerodynamic noise 
from inter-car gaps, pantograph recesses and bogies, all of which may be modelled as 

cavities, Noger et al. 2000 and see figure 1.10. It is expected that some fraction of the 

noise generated by the pantograph is in fact caused by vortex escape from the inter-car 

gaps and as such requires some control. In some cases the electrical connection between 

the pantograph and the overhead cables can actually be lost due to these oscillations. 
New environmental laws in Japan state that the noise generated by a passing train must 
be less than 75dB at a distance 25m from the track wayside. This has recently restricted 

the top-speed of all their high-speed trains; in particular the Skinkanson (flagship) train, 

which was forced to operate at 220km/h. Noise reductions were subsequently reduced 

below the safe limit when particular attention was paid to pantograph assemblies and 

the vortical escape from the inter-car gap, Sagawa et al. 1999 and references cited 

within. 

As an example of the detrimental impact that a cavity can have at this geometrical scale 

and this Reynolds number range it was found in a study by Saunders et al. 1993 that the 

drag caused by a compliment of fully loaded ore wagons in transport was in fact the 

same as that generated by empty unsheeted wagons. Therefore after delivery the benefit 

of the reduction in weight (or rolling resistance) was augmented by the increase in 

profile drag encountered by towing a cascade of cavities. 

1.8 The Present Work 

Previous quantitative measurements of the unsteady flow between the upstream corner 

and the downstream corner of the cavity have involved pointwise measurements and in 

most cases it is the time-averaged or phase-averaged data that is presented. It then 

seems suitable to pursue the measurement of cavity vortical interactions using Particle 

Image Velocimetry (PIV) for a wing with a cutout. As previously stated there are 

substantial amounts of cycle-to-cycle variation of the flow pattern for a typical cavity 

oscillation, which may be caused by a low frequency modulation in the internal cavity 

structure interacting with the shear layer at the downstream corner of the cavity. It 

would therefore be progressive to obtain instantaneous measurements over the entire 
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region for a range of L/D thus providing comparable quantitative measurement of the 

coexisting structures, growth, and their interaction with the shear layer. 

Prior to the study of the cavity flowfield a post-processing module is designed that can 
adequately measure the spatial scales of interest. Any increase in the spatial resolution 
that this system provides over traditional systems must not compromise the accuracy of 
the measurements and procedures are introduced that seek to maintain both accuracy 

and fidelity. Consequently, any improvements must be mindful of the dynamic range 

metric, which can be maximised through software modifications and experimental 

procedures. The development of a popular PTV scheme to a hybrid PIV-PTV scheme is 

completed and tested. This gives more flexibility in the investigation of cavity flow and 

promises better system spatial resolution. A decent appraisal of the new algorithms are 
finalized with two test-cases, the near wake of the circular cylinder and the shear layer 

region of the cavity at L/D = 2.0. 

A sample set of instantaneous velocity data is accumulated for the cavity at various 

L/D. This is of sufficient size so that the statistical average and deviation can be 

presented with good confidence while the wind-tunnel testing process remains efficient. 

Of primary importance is the coexisting oscillation between the separated shear layer 

and the recirculation zone within the cavity walls. The use of instantaneous flowfield 

data gains an insight into the coupling processes between the different scales and an 

appreciation of the cycle-to-cycle variation in the oscillation. With a rotation of the 

wind-tunnel model, an insight into the cavity three-dimensional effects can be 

interpreted and the level of encroachment these structures have on the normal plane data 

can be measured. 

The flowfield within an inter-car gap for a train is studied using simple geometrical 

modifications to the clean cavity cases. Of particular interest is the reduction of skin 

friction downstream of the gap and a suppression of the migration of large vortical 

structures from the gap. Finally, two other passive control strategies are tested and 

comments made. 
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Figure 1.1. The presence of a cavity in freestream flow conditions causes the boundary 

layer to separate at the leading edge of the cavity and roll-up into a shear layer. It is the 

interaction of the shear layer at the downstream corner that produces pressure wave 

feedback inside the cavity and acoustic propagation into the farfield. The green dot 

indicates the origin of the coordinate axis (shown above). Freestream direction will be 

from left to right unless otherwise stated. 

approximating a clean protrusion evident on sloping floor 

cavity with LID =1.0 . the cavity floor. configuration with 

L/D -1.5. 

Figure 1.2. Some inter-car gap configurations for common passenger trains. 
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b. Deep cavity exhibiting acoustic depth modes. 

(4 

c. Shallow cavity in resonance. 

Schlieren photograph for Ma = 0.7 

CO Rowley et al. 2000 

d. Deep cavity in duct mode. 

Channel flow with L/D = 0.5 

© Colonius et al. 1999 

Figure 1.3. Shallow and deep cavities in fluid resonance. The oscillatory flow of 

shallow cavities are strongly influenced by the characteristics of the shear layer and it is 

the internal dimensions of the cavity that affect the oscillations of a depth mode. 
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a. Open cavity flow. The shear layer bridges the open face of the cavity. The static 

pressure profile on the cavity floor is very weak. 

-Cp 

x/L 

b. Transitional cavity flow. The stagnation streamline is deflected into the cavity 

-Cp 

xIL 

c. Closed cavity flow. The stagnation streamline impinges onto the cavity floor creating 

two distinct separating regions, one downstream of the forward face and one upstream 

of the rear face. 

Figure 1.4. Open, transitional and closed cavity flow descriptions. The general 

behaviour of streamlines (including the stagnation streamline) is illustrated to the left 

hand side and the pressure coefficient profiles associated with the description are 

included to the right. It is the formation of the plateau pressure region that determines 

closed cavity flow. 
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Figure 1.5. The prediction of Strouhal number for lengthwise vortical-acoustic 

oscillation (black lines) and depthwise standing-wave modes (blue lines) based on 

cavity L/D for a range of Mach numbers. The red dots indicate the maximum 

amplitude Mach number as defined by Block 1976. 
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e. Flow without edge. 

Figure 1.6. An approaching vortical structure to the downstream corner may experience 

one of three possible fates, described as `jitter'. Complete clipping (b) describes the 

approaching vortex (a) as being swept into the cavity. Partial clipping (c) is the instance 

where the vortex is severed by the downstream corner causing a partial vortex to be cast 

over the cavity face and convected downstream. Complete escape of the vortex (d) is 

also possible and is noted when the vortical structure skips over the rear face deformed 

but intact. Pictures from Rockwell et al. 1979. 
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Figure 1.7. Oil pattern formed on the floor of the cavity. The effect of changing the span 

was to change the number of cells present both on the cavity floor and on the 
downstream wall (not shown). Picture from Maull and East 1963. 
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Figure 1.8. A depiction of the curvature of the core of the primary vortex and associated 

streamwise vorticity. The impinging nature of the vortex on the downstream edge would 

be analogous to partial clipping. Picture from Rockwell et al. 1980 
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Freestream Direction 

a. Upstream Spoiler. The addition of a vortex generator modifies the growth of the 

shear layer as it travels downstream, thus reducing the feedback strength to the shear 
layer origin. 

Freestream Direction 

Stagnation streamline 

b. Slanted rear bulkhead. Flow impingement on the rear bulkhead must have some 

curvature since there is a velocity gradient across the shear layer. The angle of the 

stagnation streamline can be balanced with a change in impingement angle, yielding a 

more steady state. 

Freestream Direction 
val 

c. Slanted rear bulkhead with detached cowl. The optimum cowl position for subsonic 

speeds is above the plane of the cavity. Mass addition at the trailing edge is suppressed 

by effectively operating two mass strokes at the same time. 

Figure 1.9. Some concepts that have been used for suppressing the oscillations inherent 

in cavity flow. 
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Freestream Direction 

Figure 1.10. Examples of the cavity flow scenario for a normal high-speed train 

configuration. 

1. Pantograph and cavity, estimated to generate 37% of the total aerodynamic drag 

from the above configuration, from Considine 1998. 

2. Inter-car gap, pressure drag imposed by flow stagnation accounts for 3% of the 

total drag. The effects on downstream skin-friction caused by the thickening of 

the boundary layer over the cavity are substantial, Gaylard et al. 1994. 

3. Bogie and cavity cascade, accounts for 50% of the total aerodynamic drag from 

the above configuration. The load bearing and powered part of the bogie are 

mounted onto a series of cavities for support. 

31 



CHAPTER 2: THE DEVELOPMENT OF A DIGITAL PARTICLE 
IMAGE VELOCIMETRY SYSTEM 

The interplay of the flow in and around a cavity is known to have a broad range of 
length scales and a number of periodic oscillations that interact to yield a non-linear 
(unsteady) fluid flow problem. While this type of challenge brings out the strength of 
the PIV method by being able to sample the entire flowfield instantaneously it also 

exposes its weakness associated with measurement error. Another relevant issue is the 

choice of using a fully digital system for this type of problem, which although ideal for 

capturing large data ensembles lacks the final accuracy of a wet-film system. It is the 

purpose of this chapter to qualify the approach made in investigating the cavity 
flowfield and to implement different approaches for improving the performance of the 

system. 

This chapter begins with a description of the image capture system available at the 

University of Glasgow with a brief mention of the typical analysis procedures 

implemented for PIV. The development of the software to improve the accuracy over 

the entire dynamic range of the system is described and the expected measurement 

errors for these new procedures are quantified. In this study the error analysis is 

performed using synthetic images (or Monte Carlo simulations) to provide a more 

reliable estimation of the errors. A new post-processing methodology is presented that 

serves to preserve the quality of measurement and there is a brief mention of the flow 

derivatives used. The penultimate section documents the development of a new hybrid 

PIV-particle tracking method that will allow better spatial representation of the 

important turbulent statistics for the cavity problem. This chapter ends with an estimate 

of the statistical confidence and expected derivative errors. 

2.0 General introduction 

Flow visualization has always been an integral tool in fluid mechanics; Yang 2001 

provides a compendium of visualization approaches using interesting fluid flow 

interactions. Evolving from a qualitative imaging system to one that will provide 

quantitative measurements of complex instantaneous velocity fields has only been 

possible over the last twenty years. With recent scientific and technical advances in 
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optics, lasers, electronics, video and computer techniques particle imaging has been able 
to evolve quickly and are now a popular family of non-intrusive quantitative flow 

visualisation schemes that provide instantaneous velocity field information for fluid 
flow. PIV has become a well-known and effective technique for measuring two- 
dimensional flow fields instantaneously. It was introduced in the 1970's as the laser 

speckle technique, Barker and Fourney 1977 and Simpkins and Dudderar 1978 and 

since then many investigations have been carried out to improve its performance. The 

performance of a PIV system is defined by its spatial resolution, detection rate and 

accuracy. 

PIV consists of obtaining the velocity of a fluid by measuring the movement of tracer 

particles suspended in the flow. Typically flows are seeded with micro particles and a 

planar region of the flow is illuminated with a high intensity strobe, usually a pulsed 
laser. The tracer positions can then be recorded as a function of time in doubly or 

multiple exposure photographs, the visible particles can then be used to measure the 

tracer displacement. Knowledge of the strobe period with the physical displacement of 

the tracer particles will then yield the local velocity. A typical PIV set-up for a wind 

tunnel is shown in figure 2.1. For correlation PIV the image is broken up into measuring 

volumes, or tiles as shown in figure 2.2, which allows the velocity to be evaluated at 

discrete positions throughout the image plane. The resulting velocity field consists of 

vectors on a rectangular grid with each vector representing a spatially averaged velocity 

measurement. 

PIV is traditionally distinguished from laser speckle velocimetry (LSV) and particle- 

tracking velocimetry (PTV) by the seeding concentration used, Adrian 1984. LSV was 

conceived as an extension to speckle metrology and uses a very high seeding density 

that causes an interference pattern to occur in the image plane of the camera. This 

speckle pattern may then be interrogated to resolve the particle displacements, see Grant 

1994 for a complete review. In ideal operating conditions for PIV the tracer 

concentration is high enough such that a large number of particles exist within a 

specified measuring volume that is considered to contain adequately uniform flow, 

Lourenco et al. 1986. This local velocity is then taken to be the average velocity over 

the measuring volume. In its simplest form PTV follows the progress of an individual 

particle through a series of instantaneous observations or pictures; as used by Prandtl in 
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1934 to more sophisticated applications by Agüi et al. 1987. Using a low seeding 
density with a simple PTV algorithm ensures that individual particles are not confused 
with one another, although there is currently scope for improving the spatial resolution 
of PTV by raising the seeding density used. The merits of this PTV approach are 
discussed later. 

There are several methods in use that will resolve the local velocity within a measuring 

volume for PIV. Young's fringe, auto-correlation and cross-correlation may all be used 
to extract velocities from sequentially double- or multi-exposed particles on a single 

picture. Autocorrelation is the digital implementation of the Young's fringe analysis and 
is a popular procedure for the calculation of tracer displacement, although complexities 

arise when trying to resolve the directional ambiguity, Burch et al. 1968 and Liu et al. 
1991. For double/multi- exposed PIV images on double/multiple pictures the gradient 

method can be used to address the compromise between accuracy and processing speed 
by using simple image plane subtraction or addition correlation, Tan et al. 2001. Cross- 

correlation has useful application in both single and multi-exposure capture systems, 

Cho 1989. Using multiple-pictures this technique removes the directional ambiguity 

inherent in both the Young's fringes and auto-correlation techniques, Utami et at. 1991. 

Using this type of fast image acquisition became popular with the advent of the digital 

camera since a single traditional SLR camera cannot capture two sequential pictures in 

the time frame required. Although there are advantages to this Digital PIV (DPIV) 

technique, such as eliminating the need for the photographic and opto-mechanical 

processing steps, there remain significant challenges and constraints to the PIV user 

regarding the inherent bias errors involved when using a CCD chip. 

Photographic film has a tremendous resolving power with a 125mm x 100mm piece of 

film containing as much as 3Gbytes of information. A current state of the art dual- 

exposure progressive scan interline CCD camera will contain 4.2Mbytes of information. 

This mismatch in available information will have an impact on the accuracy of DPIV. 

although it has been perhaps the single main aim of the research community to improve 

the spatial resolution of results using `super-resolution' algorithms, Keane et al. 1995. 

For image processing, spatial resolution is taken to mean the ability to distinguish 

between images of two different particles in the image plane that are originally distinct 

or separated in the object plane. For PIV the term spatial resolution relates to the 
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smallest velocity structures that can be resolved or measured in the flow field, or using 
the definition of Adrian 1988 is just the size of the interrogation spot in the fluid. A 
physical measurement volume side length of Kphy (µm) will be able to identify 

structures of the order, 

l= 
KPhy 

_ 
Kd, 

a M, M, [2.1] 

where, K is the side length of the interrogation area in pixels and dr is the diameter of 
the pixels on the CCD array, µm 

The spatial resolution is always bounded by the size of the measurement volume, which 
is determined by the intersection of the illumination light sheet with the interrogation 

spot density distribution. This minimum resolvable scale is crucially important in DPIV 

and some super-resolution techniques used to measure smaller length scales are 
included in later sections. Although there are rigid constraints concerning the usage of a 
DPIV system it remains a viable competitor to wet-film PIV since these systems require 

a significant amount of optimisation at the image capture stage. In fact it may take 

several experimental iterations to establish whether there is sufficient light, proper 
focusing, adequate seeding and an appropriate laser time delay because they are non- 

integrated and non real-time. It is these economical and efficiency reasons that have 

caused the common mode of operation for PIV systems to migrate to fully digital 

systems. 

There are three modular stages involved with the application of a PIV system from wind 

tunnel to flow derivative. The capture of the seeded images from a camera synchronised 

with a laser is the first and most crucial stage of the system. Any inadequacy of image 

quality with the capture of the scattered light from the particles will result in an 

irrecoverable loss in accuracy. Secondly the calculation of the velocity vectors from 

image interrogation is performed with the final stage being the evaluation of other 

quantitative flow information. The total performance of the whole system is dependent 

on each of these steps. If the intention is to apply DPIV to a measurement problem 

characterized by 3D motion with broad ranges in length scale (such as the flow in and 

around that of a cavity), then close attention must be paid to achieving the best possible 

accuracy given a certain sampling resolution, Fincham and Spedding 1997. It is the 
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intention in the remainder of this chapter to document the modifications made to the 
current DPIV system that will improve both spatial resolution and accuracy. The third 
performance criterion of detection rate is not a predominate issue although it will be 
addressed at appropriate points in the text if the computational cost becomes especially 
excessive. 

2.1 Image capture 
The current image capture system at the University of Glasgow is capable of performing 
several modes of operation since the system has at its disposal two lasers and two 
cameras. The illumination source is provided by a pair of Spectra-Physics GCR-130-10 
frequency doubled, double-pulsed Nd: YAG lasers running at a nominal repetition rate 
of 10Hz with a wavelength of 532nm. With this laser unit operating in a single pulsed 
mode the manufacturer reports an approximate pulse power of 240 mJ. The images are 
recorded using two 8-bit Kodak Megaplus ES 1.0 digital cameras, of 1kx1k resolution, 
operating in a triggered double exposure mode with a 60% pixel fill ratio. To enhance 
the fill ratio an array of microlenses are deposited on the sensor that will improve the 
light sensitivity of each pixel. The images are captured using two National Instruments 

PCI 1424 digital frame grabbers, the cameras, frame grabbers and laser synchronisation 

are managed using a Pentium 3 (1 GHz) PC through a LabVIEW interface. 

A Brewster plate beam combiner may be used to produce two collinear beams for a twin 

laser set-up. In this instance the lasers may be operated in single-pulsed or double- 

pulsed modes and polarizing filters fitted to the camera lens may be used to distinguish 

between each laser head if necessary. The laser is then delivered into the wind tunnel 

test-section using a beam-shaping telescope with cylindrical lens. The minimum time 

delay between two pulses using a single laser head is 35µs while both lasers operating 

in single pulse mode can provide a minimum time delay of 12µs (using the beam 

combiner to set up collinear planes of illumination). The pulse length is 8ns. The output 

energy of the laser is sufficient to illuminate a 250x250mm object region using a lens f- 

number of 4.2 (written f 44.2). Each experimental scenario used will be explained more 

precisely in chapter 4. Both Nikon 50mm fixed focal length lenses and Navitar Zoom 

lenses are available and suitable for the size of CCD chip used on the Kodak ES 1.0. The 

Nikon lenses provide an f-number range of f#2.8 to f# 16 while the Navitar zoom lens 
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extends from 18mm to 108mm, with a range of f '2.5 to f* 16. At maximum zoom 
(108mm) the effective f-number reduces to f*4.2 for a fully open aperture. 
Experiments are calibrated using a 5mm pitch graticule slide placed in the field of view. 
Based on this image a conversion between pixel displacements and spatial 
displacements is possible. Additionally a transfer function is computed which accounts 
for camera lens distortion (that is stretching and rotation) as the displacements are 
projected into the physical domain. 

Seeding is provided by a C. F. Taylor smoke generator. This unit vaporizes Shell Ondina 
E. L. oil to provide an oil mist with a nominal particle diameter of 2mm. Höcker et al 
1990, Meyers 1991 and Melling 1997 have pursued investigations into ideal tracer 

particle diameter. They concluded a particle diameter of approximately 1 mm would 
follow the flow faithfully, their results indicate there is very little difference for the 

particle diameter used here. Seeding was introduced through the breather slot which 

ensured a good seeding concentration in the closed return wind-tunnels. If it can be 

assured that the particles are neutrally buoyant, are effectively exposed instantaneously 

(no blurring and no saturation) and there is no optical distortion or contamination of the 

scattered light before it reaches the pixel array (caused by lens aberrations or unclean 

glass surfaces) then there are no errors associated with the general wind-tunnel set-up. 
This then means that the error of the velocity measurement is solely dependent on the 

accuracy by which the particle positions can be determined on the image sensor. 

2.2 Image analysis 

A simple appraisal of the error sources present when determining the particle position 

on the image sensor shows that inadequate pixel resolution can give rise to mean bias 

error while imperfections in the particles, the recording process, electronic noise in the 

camera, the interrogation method and the peak location technique is responsible for 

random errors in the system. If the hardware of the system has already been designed 

then improvements to the accuracy of the system can only be accomplished with 

changes to the interrogation method and the peak location technique (reducing the mean 

bias error is an issue for section 2.3). It is then possible to minimize these error types 

with an optimized implementation of the PIV technique and improved analysis 

procedures after the image capture procedure. This section deals with these issues. 
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2.2.1 Optimising the PIV technique 

The displacement information calculated by a standard double-exposure correlation 

analysis can only deliver first order information (that is no rotation or deformation). 

Therefore if the curvature of the particles cannot be recovered then it is prudent to 

reduce the time delay between successive image captures such that the measured 
displacement and the real displacement are more similar (see figure 2.3). When there is 

a broad range of velocities present within the measured flowfield a compromise must be 

made. 

To resolve the local velocity within a measuring volume for DPIV the cross-correlation 

algorithm is used since the digital system is capable of capturing multi sequential 
images. For correlation analysis Keane and Adrian 1990 and 1992 have demonstrated 

that there are several criteria necessary to guarantee an adequate signal-to-noise ratio 
(SNR) and thus guarantee accuracy for the mean velocity over the tile. Of particular 

importance is the velocity variation error within the measuring volume or `gradient 

biasing'. Because the smaller displaced particle pairs have a higher probability of 

remaining in the second image tile the result may be biased towards lower values. This 

can be alleviated by an adequate seeding tile density (Ni) optimised inter-pulse delay 

and correct optical depth of field (DOF ), see Keane 1991 and 1995, Willert 1991 and 

Grant 1997 for more details. The measurement bias is enhanced when a velocity 

gradient exists across the interrogation window, which causes the correlation peak to 

broaden and deviate from the dT /-Jdr cross-sectional profile expected and may even 

split the peak into several peaks, Westerweel 1993a (dr is the physical particle image 

diameter). Keane 1995 and Westerweel 1997a give practical solutions for this problem. 

2.2.2 The correlation algorithm 

The displacement can be estimated using the discrete cross-correlation function that 

statistically finds the best match between any two-image tiles; this direct formulation is 

given in equation 2.2. 
KL K,. 

R11 =I 
jI1(i,. 1)I2(i+x, j+y) [2.2] 

i=-Kx j--Ky 

The variables I, and I2 are the intensity values of the tiles and R� is the correlation 

value. As illustrated in figure 2.4 the correlation plane typically comprises a single peak 
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and a number of smaller peaks, Keane 1992. The distance between the highest detected 

peak and the centre of the tile then provides the average particle displacement. Since 

this function is a true measure of the best statistical match of image pairs in the 

measurement volume the correlation peak may be measured to sub-pixel accuracy using 

a variety of methods, see Westerweel 1993a for further reading on this issue. To reduce 

the computational cost with little reduction in accuracy it is typical to implement the 

convolution theorem such that the direct correlation is replaced with a Fast Fourier 

Transform (FFT), Nussbaumer 1982, Utami 1991 and Huang 1993a. Since the image 

data has no complex part it is possible to further quicken this calculation time by 

stacking the transform, Press et al. 1993. Therefore the basic calculation of 1000 vectors 

can be reduced from 180 seconds (direct correlation) to 0.5 seconds (circular/FFT 

correlation)'. Finally, a weighting function is used (that is the convolution of the 

sampling weighting functions) to remove the bias artefact associated 

with the frequency domain. In this study it is also beneficial to quantify the degree of 

correlation between samples and this is provided by a normalization of the correlation 

plane data. For the direct correlation the technique employed by Raffel 1998 is used and 

for the circular correlation a first order accurate method derived by Brigham 1974 is 

used. 

2.2.3 The need for further improvement 

The primary limitation of conventional PIV is imposed by the velocity gradients present 

within the flow to be measured, Huang 1993a and b. For optimal PIV performance (see 

section 2.2.1 and references therein) the velocity gradient across any interrogation tile 

cannot exceed the diameter of the imaged particles themselves (that is IDul/u < d7 ). The 

most obvious solution to this problem is to reduce the camera field of view by 

increasing magnification, which is fine as long as the field of view remains large 

enough to image the region of interest within the flowfield (usually not the case). Both 

Willert 1991 and Prasad et al. 1992 have investigated the effect of velocity gradient and 

spatial resolution on accuracy and have suggested two other approaches for coping with 

velocity gradients. The first approach is to actually predict the deformation present in 

the flow while the second is to simply reduce the pixel area of the interrogation tiles 

used. These two approaches are now briefly discussed. 

1 Pentium 3 (700MHz) PC 
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Predicting the deformation present in the flow can be achieved using two distinct 

methods. The first approach was introduced by Huang 1993b in which groups of 

particles are tracked and their deformation measured (termed particle image pattern). 
Using a different approach Jambunathan et al. 1995 used an improved cross correlation 
technique that would iteratively rebuild the second image such that elevated levels of 
deformation could be tolerated. As a recent extension to these two approaches Noguena 

et al. 1999 and 200lb developed local field correction PIV (LFCPIV) that improves 

spatial resolution by manipulating the actual particle pattern using the displacement 

field from a previous evaluation. This system avoids instabilities caused by wavelengths 

smaller than the interrogation window by using proprietary weighting in the correlation 

process, while the resolution is limited only by the average distance between particle 

pairs. This technique represents the most sophisticated and successful algorithm using 

this type of approach. Even though these techniques have experienced considerable 

success (especially in shearing flows) their algorithms remain complicated and rely on 

velocity fields with low deformation and small velocity dynamic ranges. Even though 

there have been recent advances towards a much simpler algorithm this technique is not 

chosen for this study. 

By simply increasing the spatial resolution of the velocity vector map it is possible to 

cope better with excessive velocity gradients within the flowfield. This approach has 

been converged upon by several researchers over recent years and has been given the 

name `super-resolution'. This type of approach was initially proposed by Keane et al. 

1995 (adapted from Guezennec and Kiritsis 1990) to bridge the quality issues between 

photographic film and CCD such that large sample sizes of data could be acquired with 

good accuracy. Therefore, although current CCD technology does not facilitate these 

super-resolution techniques to comprehensively optimise a PIV system it can improve 

the spatial resolution of a vector field by up to an order of magnitude. The most 

important issue for a super-resolution scheme is to maintain accuracy in the velocity 

measurement as the spatial resolution increases. Since there may be considerable 

reductions in the lb measurable in the flowfield and it can be added in a modular 

fashion to a traditional correlation process it is the chosen method for coping with 

velocity gradients in this study. A complete description of the implemented super- 

resolution method is given in section 2.2.5 while this issue of measurement fidelity is 
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given further consideration using reference to synthetic imaging (or simulated image) 

results. 

2.2.4 Synthetic imaging 

To properly conclude the accuracy of a particular PIV algorithm it is important to test 

the procedures on an image environment that is fully controlled. Normal experimental 

conditions are not ideal in such instances since the noise incurred will obviate the 

system's true accuracy. In such a scenario it can be expected that the recorded optical 
images will not be perfect circular distributions but will instead be irregular in shape as 

a result of background speckle, aberrations of the lenses or noise in the image-recording 

medium. Videographic media will impact noise to image also through electronic noise 

in the circuits and shot noise in the photo detection process. Highly idealized 

experimental conditions have found some application in testing a system, Fincham and 

Spedding 1997 but essentially the errors are inferred rather than calculated. By using 

synthetic images rather than real ones, all the parameters involved can be controlled and 

varied as needed in order to systematically study their influence. The objective is then to 

produce realistic images that are numerous enough to accumulate reliable statistics of 

the results for any given test case. This approach has been taken by several researchers 

to date, including and Keane and Adrian 1992 and Keane et al. 1995. 

The synthetic (or Monte Carlo) simulation generates images fields of randomly located 

particles, governed by Poisson statistics (Bendat 1958) embedded in some kind of flow 

field. The imposed three-dimensional flowfield then displaces the particles over a pre- 

determined time-delay to the their final location via. Lagrangian integration, thus 

generating pairs of image fields for analysis. The mean particle image size, (d 
i 
/d, )mean' 

distribution, R" and the particle image density, N; is specified with the simulated laser 

sheet thickness (thus simulating the optical DOF). The continuous images of all 

particles have a two-dimensional Gaussian shape with the discrete pixel gray values of 

the discrete image found through integration of the continuous image for each pixel. 

The bit depth is set at 8 bits per pixel (256 gray levels) with the light sheet illumination 

intensity modeled as a top-hat function. Controlling the size of the field of view and 

inter-pulse delay serves to modulate the in-plane motion, out-of-plane displacement and 

the inter-tile velocity gradient. Alternatively these parameters may be preset and the 
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synthetic CCD size and inter-pulse delay are automatically determined. Other image 

parameters are the mean grey level maximum intensity of the particle pixels, Impean 
'the 

mean grey level intensity of the background pixels, Iman and the standard deviation of 

the image noise, s". The contrast for a particular image is the difference between the 

mean grey level of the particle pixels and the background, thus Co =1 neun -I,, . It 
is 

also helpful to impose a function that allows the synthetic image to be seeded with non- 

colliding particles. 

The imposed velocity field should represent challenging spatial and velocity dynamic 

ranges to accentuate the error type under investigation. In particular isolated Burgers 

vortices make excellent test cases since there is a significant variation in vorticity 

permitting detailed analysis of the effects of the local fluid deformation. The method of 

`kinematic simulation', Fung et al. 1992 and Westerweel et al. 1997b, yields a velocity 

field with the kinematic characteristics of isotropic turbulence, which is ideal for 

exposing bias error and testing super-resolution algorithms. 

Each simulation will result in a characteristic variation of error with displacement. The 

error in displacement is Ad =d-d, where, d represents the measured displacement and 

d represents the actual displacement. 

NNN2 

(Ad)2 
fý(i, 

f)2 j) 

rms(e, ) = k°' [2.3] rms(e2) = k=I k-º [2.4] 
N-1 N(N-1) 

1N 

mean(e) 
I Md(i, j) [2.5] 
k=1 

For the errors, equation [2.3] represents the rms error from the real displacement, 

equation [2.4] represents the rms error from the local measurement mean and equation 

[2.5] represents the average mean error. All results are based on sample sizes of more 

than 500,000 vectors, which is approximately 1000 individual vector fields (with a 

typical processing time of -100 minutest) 

A simplified representation for the performance characteristics of any DPIV system can 

be developed from a non-dimensional analysis. Of particular interest here is the analysis 
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from Keane and Adrian 1992 and Stitou et al. 2001 b and demonstrates how critical an 
imposed noise source, (noise intensity/image contrast) can be on the correlation process 
and on subsequent individual particle identification required for hybrid PIV-PTV. The 

noise in synthetic images is typically modelled as Gaussian additive noise because of its 

predictability, generality and similarity to actual camera noise. In real applications the 

error sources that contribute to noise may be more efficiently and appropriately 

quantified through experimental observation. This can then allow the noise to be 

modelled more accurately thus making the need for extensive parametric noise studies 

redundant. Therefore, following the work of Stitou et al. 200 lb and using the particle 
identification technique summarized in section 2.6.1 experimental values for the noise 

source are estimated to be Imean = 80 and Imean ~ 16, thus Co = 64. 

Each algorithm used or developed was also tested on the standard image database, 

Okamoto et al. 20003. 

2.2.5 Super-resolution PIV 

For this study a DPIV system without a super-resolution module will deliver a spatial 

resolution of approximately 10-2m-1, which is a considerable disadvantage since Laser 

Doppler Anemometry (LDA) and hot wire anemometry have a resolving power of 100 

and 1000 times higher, Willert 1991 and Adrian 1991. The criterion for this super- 

resolution system is clear, to deliver as high a spatial resolution as possible without a 

reduction in the measurement accuracy, Keane 1995, Vogt 1996 and Westerweel 1997b. 

To do this the current algorithms should be reviewed and adapted. 

Super-resolution techniques may be categorized into several distinct definitions, 

Nogueira, 2001 a. Hybrid systems are those that apply conventional correlation PIV 

techniques for the first iterations and then switch to particle tracking (PTV) for 

improved spatial resolution, Cowen et al. 1997 among others. Multigrid PIV uses 

circular correlation in an iterative procedure that continually reduces the size of the 

interrogation window, the discrete window shifting (DWO) stage benefits from an 

increase in SNR for a given tile size, Soria 1996, Hart 1999, Scarano and Reithmuller 

1999 and 2000 and Lecordier et al. 1999. Multigrid direct correlation PIV (or DCPIV) 

3 Examples may be found on http: 'vsi. or. i. ppiv 
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is analogous to the former procedure but can use a more flexible shape of interrogation 

window, Fincham and Spedding 1997. Recent work performed by Gui and Merzkirch 

1998 and 2000 to allow arbitrary sized windows to be used with circular correlation (i. e. 

not radix-2) are bringing the strengths of the Multigrid PIV and DCPIV strategies closer 
together although both will continue to suffer from bias errors (known as peak locking). 

Preventative strategies for this are available and mentioned in section 2.3. 

The foundation of the current study is based on the discrete window offset (DWO) 

technique first proposed by Keane and Adrian 1993 and then applied to DPIV by 

Westerweel et al. 1997b and has since found application in all the most robust super- 

resolution techniques. The classical performance limitation for PIV is between the 

dynamic range and the spatial resolution (termed the `one quarter rule'); this can be 

negated by the DWO procedure. DWO is a scheme that uses the initial correlated 

displacement field as an input to a second pass whereby each of the second interrogation 

tiles are offset by the previous integer displacement information. The residual 

displacement is then only the fractional amount of the particle-image displacement, thus 

it avoids the elevated rms error expected from large particle displacements since, 

Ad « (d x dr ), for a more detailed analysis see Westerweel 1993a. This improved 

performance is possible since window shifting minimizes the in-plane loss of pairs and 

thus increases the detectability of the displacement correlation peak. Measurements of 

both low and high turbulent intensity benefit from this type of analysis and it can be 

expected that a three-fold reduction in signal noise is possible. 

It has been observed here that Ad depends on the particle image diameter dT and the 

interrogation window size K, thus the DWO algorithm may be combined with a 

reduction of the window size in such a way that the variation of the measurement error 

remains at a constant level. Therefore DWO with a reduced interrogation window size 

would yield a result with an improved spatial resolution for the same SNR, thus 

preserving measurement fidelity. Figure 2.5 illustrates the DWO procedure with 

interrogation tile reduction. The smaller scale structures observed are now more 

apparent because of the improved spatial sampling. It was also found that the DWO 

algorithm used in conjunction with reduced tile sizing could work efficiently as an 

iterative scheme. In this each window offset was driven by the previous local 
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measurement to the convergence of a particular local displacement. It was found that the 

most expedient way to avoid non-converging window displacements (and hence reduce 
computation time) was to limit the number of iterations possible and to validate each 
iterative prediction using the local displacement. This is called iterative discrete window 

offset (ITDWO). A similar scheme called window displacement iterative multigrid 
(WIDIM) has been developed by Scarano et al. 1999 and 2000. 

It was observed here that a higher seeding density was required for ITDWO to be truly 

effective, since smaller boxes contain less particle information. Through simulation it 

was seen that the optimal seeding density, Ni for a standard tile (32x32 pixels) in a 

strong velocity gradient must increase from -12 particle pairs to greater than 20 particle 

pairs per tile, this is in line with the probability results of Keane et al. 1995 and 

Westerweel et al. 1997b. If an inadequate seeding density is encountered, ITDWO 

would stop and that particular position would be flagged for post-processing attention. 

When the velocity gradient is excessively high the SNR decreases and the correlation 

plane will start to splinter and separate. In such instances it is beneficial to restore the 

signal strength, preserve measurement fidelity and maintain the local spatial resolution. 

The best way to achieve this is to instruct the calculation to perform an adaptive 

Multigrid PIV pass, or tile skewing, first mentioned by Lecordier et al. 1999. Adaptive 

multigrid analysis increases the SNR of the correlation by skewing the interrogation 

tiles into the local flowfield. Figure 2.6 shows the progression of the calculation from 

initial correlation to tile skewing during ITDWO. The new dimension of the 

interrogation tile is a function of the local velocity and typically leads to elongated tile 

dimensions that further preserve the in-plane motion. Figure 2.7 demonstrates a global 

application of the second iteration step of the tile skewing technique used here for the 

case of flow over the rear portion of a hatchback car. This figure also contrasts the 

increase in SNR for a result composed only of ITDWO-DC to one that has used 

additional tile skewing during window offset. It can be seen that there are global 

increases in the signal strength over the whole flowfield with sustained improvements in 

the thick shear layer region. The only stipulation required for this procedure is a 

minimum tile dimension such that the measurement volumes are prevented from 

converging to streaklines when one velocity component dominates (for example in 
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freestream conditions). Florio et al. 2002 has recently presented a more flexible 

algorithm that seeks to integrate the strengths of the approaches developed. 

In conclusion to this section a comparison between the standard correlation procedure 

and the new super-resolution technique is illustrated in figure 2.8. Using an 
instantaneous result from the cavity study (L/D = 3.0 and figure 2.8a) some measure of 

the optimization present in the experiment can be predicted, as indicated in figure 2.8b. 

Without any improvements in spatial resolution it is clear to see that the most important 

regions in a typical cavity flowfield are not being measured correctly. The proportion of 

the flowfield that is poorly sampled is dramatically reduced when applying the 

algorithms described in this section. Even though the benefits of such a well-optimized 

experiment are obvious the spatial resolution improvements for a digital system is 

known to magnify the bias errors present in the system. Techniques to suppress these 

errors are now given. 

2.3 Suppression of peak locking and estimated dynamic range 

In the pursuit of accuracy for DPIV it is the effects of peak locking that may cause the 

greatest accumulation of measurement error, Nogueria et al. 2001 a. Incurring locking 

errors is a consequence of those systems that use low-resolution techniques to sample 

the PIV image. Thus with the advent of the DPIV, locking errors have obviously been 

accentuated at the price of speed and ease of use. These errors will systematically bias 

the calculated displacements toward integral values, inflicting a measurement accuracy 

of ±0.5 pixels, which is unacceptable for flowfields with high velocity dynamic ranges. 

In this study effort must be made to reduce peak locking effects to a minimum since 

some portions of the flowfield inside the cavity amount to particle displacements that 

are typically small, sometimes only fractions of a pixel in length. There have been three 

sources of peak locking identified to date, these are from the CCD sensor geometry, 

from the chosen interrogation tile dimensions and from the subpixel estimation. 

2.3.1 Sensor geometry 

Nowadays it is common to record PIV images directly onto image sensors (viz. CCD 

arrays). It is then that the discretization of the image may no longer match the Nyquist 

sampling criterion and the measurement precision becomes a function of the physical 
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geometry of the image sensor. The number of pixels defining a particular particle and 
the pixel fill ratio (fraction of the pixel which is light sensitive) now become important 

parameters in the experiment, Fincham and Spedding 1997. 

The relationship between particle diameter and measurement accuracy is strongly 

coupled. If there are too few pixels characterizing the particles then bias error will 
dominate the sub-pixel accuracy and peak locking is inflicted on the measured 
displacement. If there is too much spatial sampling of the particle then the measurement 

error is dominated by increased random error, Westerweel 1999. In this scenario the 

user must find the proper balance between these two-error types prior to the experiment, 

that is, at the juncture when the bias error is equivalent to the random error. Using 

synthetic image simulations with an isotropic turbulence model it is possible to quantify 

this prediction. The mean bias error may be quantified by taking a sufficient number of 

vector fields (in this case 500) and the random error may be estimated by calculating the 

deviation from the calculated mean value, defined as rms(e2) . 
These findings are 

presented in figure 2.9, which confirm the above error behaviour and suggest that the 

limit 1.6 < dt Idr < 1.9 is the optimum particle diameter for peak locking suppression 

without respect to the correlation procedure. In order for this relationship to remain true 

any deviation from a 100% pixel fill ratio must be met with a similar increase in laser 

illumination, Wernet and Pline 1993. 

It is already known from Prasad 1992 that the random error is related to the particle 

diameter by a constant representing electronic noise and the correlation procedure, 

while a lower random error is expected for the direct correlation. In this study a random 

error gradient of c=0.07 is encountered when the FFT is used, as opposed to c=0.055 

when the direct method is chosen. To confirm the reliability of the synthetic results the 

flow through an empty wind-tunnel test-section at U. = 28m/s with TI - 0.31 % (see 

appendix A) and using a high magnification Navitar zoom lens (M, = 0.26) was 

completed. By changing the particle pixel diameter (by varying f ") an estimate of the 

total measurement error could be made to an uncertainty of ±0.02 pixels. These results 

are included in figure 2.10. It appears that there is an expected dip in the error range 

indicated by the simulated results and the error values are very similar, although the 

random error component appears to be slightly underestimated. Since there is adequate 
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credibility given to the simulated data results the predefined optimum particle diameter 

range should be sought for better accuracy. 

Stipulating the laser wavelength, A and the physical size of a CCD pixel, d, and noting 

the seeding particle size, dp then following the working by Adrian 1984 and Goodman 

1968 a relationship between, f* and image magnification, M, may be expressed. For 

peak locking suppression when M, = 0.1 (for a field of view of 90 x 90mm) the camera 

should be set-up such that f*> 10. Early experimental tests indicated that the laser 

illumination was only sufficient for f*5.6, which is not optimal and yields an error 

estimate of approximately 0.17 pixels. For the majority of the image capture performed 
it was possible to use this value of f-number (twin laser set-up), although towards the 

end of this study a lower f-number had to be used (single laser set-up). Figure 2.11 

illustrates the test matrix completed in this study using the magnification, particle 

diameter and f-number data only. The measurement accuracy has been compromised by 

this reduction in particle image diameter although none of the data accumulated at these 

reduced f-numbers were used in the presentation of turbulent statistics. It should be 

noted that the notion of defocusing the camera in order to increase the effective size of 

the imaged particles is severely flawed, Browand and Plocher 1985. Although this 

causes an apparent increase in measurement clarity, it is usually the case that the 

systematic errors are then being obscured by elevated random errors. 

2.3.2 Particle truncation 

Associated with the interrogation window size this error source has an amplified effect 

on measurements when super-resolution techniques are being used. As the perimeter of 

an interrogation tile decreases with respect to the area of the tile a larger fraction of the 

particles are being truncated at the tile perimeter, this causes a loss in correlation peak 

symmetry and a locking bias towards zero displacement. A correction for recovering the 

symmetry, first noted by Huang 1997 is given by Nogueria et al 2001 a and is adopted 

here. The procedure is to converge the sub-pixel estimate to a stable result using a 

symmetric correlation and a bi-parabolic interpolator to suppress random error; usage of 

this algorithm appends Symmetric (or S) to the technique already in use. A simple error 

analysis using simulated images (with no additive noise) is shown in figure 2.12. It can 

be seen that for small window sizes SDCPIV outperforms FFTPIV because of this peak 
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locking suppression. It seems then that better accuracy can be attained by any super- 

resolution strategy if the final iterative passes are calculated using SDCPIV. In 

summary, it would then be typical to find a calculation scheme that begins with an 
ITDWO super-resolution scheme using a direct correlation that switches to a symmetric 

correlation at the final stage of the iteration (given the name ITDWO-DC-SDCPIV). 

So far the improvements in spatial resolution and the preservation of accuracy have 

been made without regard for the computational cost. Therefore, at this point the 

behaviour between normalized CPU time and rms error (rms(e, )) for several possible 

interrogation strategies is presented in figure 2.13 (the spatial resolution is predefined). 

The optimal super-resolution calculation is described by ITDWO-FFT-SDCPIV since 

ITDWO-DCC-SDCPIV delivers only marginal improvements in accuracy for a large 

increase in computational cost. In real time the calculation times for one vector field 

was 2.5 minutes and 10.4 minutes respectively4. ITDWO-FFT-SDCPIV is then the 

chosen strategy for super-resolution PIV in this study. 

2.3.3 Subpixel estimation 

When the resolution of the particle diameter (dr /d,. ) is greater than 1.8 the sensor 

geometry is no longer a source of error and the difference in sub-pixel estimates is less 

than 0.1 pixels, Willert and Gharib 1991, Prasad et al. 1992, Westerweel 1993a, 

Lourenco and Krothapalli 1995 and Cowen and Monismith 1997. As shown in figure 

2.11 the particle diameter is below this value and the specifics of the sub-pixel operator 

are now more important. 

Efforts for decreasing the random error in sub-pixel estimation have already been made 

although the systematic errors remain (matching the functional form of the curve to the 

actual particle profile). It was found here that in the particle diameter range of 

0.7 < d., /d, < 1.5 both Cardinal interpolation (or Whittaker's reconstruction), Stearns 

and Hush 1990 and a thin shell smoothed spline function perform equally well. 

However, it is the more generic choice of Gaussian peak-fitting, Westerweel 1993a that 

is the best function fit for such a particle diameter limit, although there exists a well- 

documented bias against integer pixel values. It should be noted that if the recursive 
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iterations of the symmetric super-resolution technique are successful (stable) it would 
eventually record a null real displacement at which there is no difference between any 
sub-pixel estimators. 

2.3.4 Dynamic range 
The dynamic velocity range (DVR) is defined as the maximum range that can be 

measured with a fixed set of instrumental parameters divided by the minimum 

resolvable velocity measurement, Adrian 1997. Whereas the accuracy and spatial 

resolution describe the usefulness of a PIV system the dynamic velocity range 

encapsulates the measurement range of a particular system. Moreover the dynamic 

spatial range (DSR) is the field of view of the object space divided by the smallest 

resolvable spatial variation. From the interpretation of the PIV uncertainty principle by 

Adrian 1986 it can be expected that the capability of a PIV system may then be 

described by, 

(DVR) x (DSR) = DyR = 
KCCD 

[2.6] 
c.. d7 

where KcCD is the dimension in the recording plane, in this case the size of the CCD 

chip, which determines its capacity to hold information, and DyR is the overall dynamic 

range metric for the system. The constant cT is a measure of the ability of the analysis 

procedure to determine the correct displacement between images. The larger the value 

of DyR the more suited the PIV system is to resolving small-scale variation embedded 

in larger scale motion. It can be expected that a standard 35mm film (TMAX400) will 

have a DyR metric of 62610, which is ideal for measuring several decades of a 

turbulent spectrum. A standard DPIV configuration will yield a DyR value of 

approximately 5000. 

By using a twin-camera set-up whereby each camera views one half of the image plane 

at the same magnification, the physical area (KccD) of the recording plane can be 

doubled (the vector fields are later interlaced). For a specified spatial resolution, the 

implementation of the super-resolution scheme with additional bias error reduction 

(ITDWO-FFT-SDCPIV) increases the ability of the system to reconstruct the actual 

velocity field (thus reducing cr). In addition to this, the whole experiment may be re- 

optimized when algorithms such as the tile-skewing algorithm are being used, since a 
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larger velocity range may be accommodated within a given image area. As a direct 

effect of these changes, the dynamic range value has been increased to approximately 
21000 without any modifications to the hardware of the system. An illustration of these 
improvements is presented in figure 2.14 where the displacement histogram of two 

separate experimental tests (one optimized, one non-optimized) for a cavity with 
L/D = 2.0 is shown. It is clear that without optimization the data suffers from severe 

peak locking effects. 

2.4 Post-processing methodology 
The vector output from PIV can be classified into two groups (1) false measurements or 

spurious vectors (2) correct measurements with uncertainty, as defined by Westerweel 

1994. Spurious vectors tend to originate from interrogation windows that have 

insufficient particle pairs or a low signal-to-noise ratio, resulting in the peak detection 

algorithm pointing to an incorrect peak on the correlation plane. This causes highly 

localized deviations from the surrounding flow nature. Spurious vectors may also 

originate from any parameter that detracts from ideal experimental conditions, such as 

turbulence, seeding inhomogeneities, bad focusing, stray light etc. If unchecked these 

`wild vectors' will reduce the quality of the results and preclude the calculation of 

derived flow properties. Some false vectors can clearly be identified in figure 2.15, 

which illustrates the flow downstream of a cambered aerofoil with gurney flap. It is 

important that the PIV system is able to automatically detect these bad vectors and 

replace them with a suitable estimate. 

The approach taken for the removal of these wild vectors may fall into one of two 

categories, namely reliability or post-interrogation. Reliability checking either measures 

the SNR of each measurement, Keane and Adrian 1990 or determines the quality of the 

correlation, Huang and Fielder 1993a. In both instances it is quite difficult to impose a 

global tolerance that will suffice for any problem and as such valid vectors may be 

rejected. Thus reliability checking is seldom used in isolation. Post-interrogation data 

validation is usually performed by a close neighbourhood scheme that calculates the 

local mean and variance and compares this to a preset tolerance that then determines 

acceptability. Some relevant techniques that determine these residuals for detection and 

replacement are Raffel et al. 1992, Westerweel 1994, Fujita and Kaizu 1995 and Raffet 

and Kompenhans 1996. When there are a high proportion of bad vectors in the local 
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neighbourhood (roughly when there are >5% bad vectors in the whole image) the failure 
of this type of algorithm is anticipated. 

A much-improved way of dealing with false vector detection and replacement was 
proposed by Nogueira et al. 1997b. For improved detection, zones of local coherence 

are iteratively identified within the measurement using a preset tolerance T% and then 

validated by the count of a particular zone, NV. It has been shown that both T67% and 
NV have a low sensitivity making it a very robust operator. For the correction stage an 
interpolating filter defined as `C' in Nogueira et al. 1997 was used here. This 

replacement and interpolating scheme is used for comparison in this section. 

Each validation methodology so far described essentially operates as a low pass filter, 

therefore it can be expected that sometimes too few measurements are checked or too 

many measurements are replaced, ultimately reducing the quality of results. However, 

the richest source of information about the flow itself remains on the image plane and it 

is reasonable to expect that fidelity of the velocity vector map can be improved using 

more effective means of extracting data from the images. This technique is called FRTT 

(forward/reverse tile testing), Green et al. 2000 and operates using both correlation and 

neighbourhood comparisons to improve fidelity through validation. This technique is 

distinct from the DWO strategy proposed by Westerweel et al. 1997 since that is 

concerned with increased accuracy for improved fidelity. FRTT is now described in 

more detail. 

The FRTT algorithm shares the same methodology as the post-interrogation techniques 

already described, in that a tolerable level of coherence must exist between clusters of 

vectors. The difference with FRTT lies in the driving principle behind the validation 

method, where the comparisons are made with two grid-shifted correlation positions, as 

shown in figure 2.16 and not between the original vector set. The displacement vector 

of the central tile locates these extra measurement positions in a forward and reverse 

shifting manner. Therefore these new tile positions should correspond to the physical 

particle movement in the flow and as such a degree of flow similarity is expected 

between each result. Any deviation from these three individual correlations forces the 

replacement algorithm to be implemented. A procedural description of the technique is 

as follows: 
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(1) The displacement vector for a specific tile is calculated using the normal technique. 
This position is named the central tile. 

(2) Both a forward tile and reverse tile are located based on the projection of the central 
tile's displacement vector in a positive and negative sense. These two directions account 
for out-of and into tile motions between the two exposures. 
(3) The displacement vector for the forward and reverse tiles are calculated and 

compared to the central tile value. If there is suitable coherence between each result 

then the central tile result is preserved and the calculation moves forward to the next 

tile. If there is not suitable agreement then further work is necessary: It follows, 

(a) If the central vector shares a common motion with either the forward or 

reverse measurement then the central tile result is preserved. 

(b) If both the forward and reverse vectors are in agreement but not the central 

tile then the central tile result is deemed erroneous and requires replacement. 

The original central correlation plane is then re-scanned for peaks of `high- 

detectability' and if such a peak is discovered in proximity to the average 

location of the forward reverse displacements, it is taken as the displacement 

with good quality. If this is not the case the central value is replaced with the 

average of the forward reverse displacements. 

(c) When all three vectors disagree then it can be expected that the SNR in that 

particular region is poor and is probably caused by seeding inhomogeneities 

(for a well optimized experiment). To improve the signal a larger tile size is 

selected (4 pixel increase for DC, while the tile size is doubled for FFT) and 

the process is repeated. If no agreement is found after several iterations the 

vector is replaced by an interpolated value using filter `C' from Nogueria et 

al. 1997. 

This validation methodology has been slightly modified from the FRTT procedure 

described in Green et al. 2000 so that accuracy and spatial resolution are better 

preserved. Each validation decision is designated a particular flag such that the quality 

of the result may be monitored, especially important when the tile sizes are forcibly 

increased. The system requires only one input parameter, which dictates the level of 

tolerance between neighbouring vectors. Using the central tile displacement and the 

amount of tolerable shear possible without correlation peak splintering. Grant 1997 it is 

possible to preset the metric, although its effectiveness is broadly insensitive to change. 
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In Green et al. 2000 it has been shown that FRTT is ideal for regions in the flow where 
the seeding is sparse (Ni < 7) and thus where large groups of spurious vectors will 
exist. Although in the current study the seeding concentration is much higher there will 
still exist seeding inhomogeneities that will locally reduce the Ni value toward this 

range. Additionally, the cavity problem displays a larger velocity dynamic range than 
that covered in the publication and there are more spatial wavelengths evident that will 
distort the performance of the replacement algorithm. Therefore for completeness, 
sparsely seeded and instantaneous Taylor-Green vortex interactions were modeled to 
compare the modified FRTT scheme to the coherence scheme already mentioned. For 
this study the effects of seeding density and displacement range (defined as 
Rd = Idmax I -1dmin 

I) are covered, these results are presented in figure 2.17. By increasing 

the seeding density within an experiment it can be expected that the rms error will 

reduce as the SNR of each interrogation tile increases, and this is confirmed by the 
`basic analysis' curve shown in the figure, here Rd = 16. It can be seen that the FRTT 

scheme is consistently more accurate than the coherence scheme over the seeding 

concentration range specified, with the largest contrast in performances between 

3< Ni < 7). This confirms the previous study in Green et al. 2000. To quantify the 

behaviour of the replacement strategies the velocity range within the flowfield was 

changed while the seeding concentration was set at Ni = 16. Since the FRTT scheme 

interrogates the raw image plane at the appropriate positions a good estimate of the 

correct velocity is typically acquired (at some computational cost). Although the 

interpolating filter used for the coherence has been proven to have excellent 

performance over an extensive frequency range (see Nogueria et al 1997) some errors 

are inevitable especially when the spurious points are clustered and/or coherent. The 

FRTT scheme manages to improve upon the filter scheme because it re-samples the 

flowfield and has a structured heuristic to follow. 

For the synthetic model used in this study the seeding was distributed in a random 

manner throughout the image. This type of modelling therefore favours validation 

schemes that can seek out bad vectors in an otherwise correct local neighbourhood. For 

real flow interactions, seeding is typically forced from vortex structures leading to 

clusters of bad vectors, such as that shown in figure 2.15. Using this test case a final 

observation was made on the ability of FRTT and coherence with this more realistic 
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problem. As shown in figure 2.18 the coherence algorithm still performs very well with 

approximately 90% of the bad vectors automatically identified and replaced. However, 

in figure 2.19 it is shown that the FRTT scheme makes a correct decision about every 

central vector while the reconstruction of the vector field is superior in clusters of bad 

data. 

2.5 Vector field operators 

The planar velocity field obtained by standard (2D) PIV can be used to estimate other 
fluid mechanically relevant quantities by means of differentiation or integration. For 

derivative computation a compromise has to be made between the order of the filter, the 

number of points used for derivation, the frequency response and the noise 

amplification, Lecuona et al. 1997 and Foucaut 2002 among others. The purpose of the 

derivative computation here is for maximum feature extraction with minimum error. 

There have been numerous studies concerning the accuracy of various computational 

methods used to calculate flow derivatives. Agüi and Jimenez 1987, Sinha and 

Kulhman 1992 and Spedding and Rignot 1993 are the most pertinent studies regarding 

PIV. The adaptive Richardson's extrapolation principle from Fouras and Soria 1998 is 

used here. 

The purpose of this algorithm is to minimize the total derivative error by reducing the 

truncation error to the upper limit of the measurement error. The grid state of the 

derivative is shown in appendix B. 

Vorticity 

Vorticity measures the rotation of the fluid. Each of the vorticity components can be 

computed from correspondingly measured in-plane velocity vector field data using its 

basic definition, Batchelor 1967. With a standard PIV system one component is 

measured at one time, denoted by w` 5 which is pointing in the positive z-direction of an 5 

x-y-z Cartesian coordinate frame, 
al' au 

ax ay 

In section 4 .2 the vorticity in the y-direction is calculated by illuminating the x-z plane 

[2.7] 
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where u and v are the velocity component in the x- and y-directions of the x-y-z 
coordinate frame respectively. 

Shear Stress 

Shear stress represents the irreversible viscous transfer of momentum in a fluid. Shear 

stress forces shear strain, which is the non-rigid body deformation of a fluid element. 
For the standard PIV system used here one component is measured, denoted by -rig, 

given by the following expression, 

au av 
tom' a+ ax 

[2.8] 
y 

Streamlines 

A streamline cpn is defined as a path whose tangent at any point is aligned with the 

velocity vector at that point. 

cp = udx - vdy [2.9] 

It was found that a well conditioned second order polynomial (usually termed y13) fit to 

the two orthogonal velocity components should be used to smooth the data, Press et al. 

1993. This type of smoothing prior to the streamline calculation suppresses the random 

error transmission from velocity to streamlines. Although this increases the bias error a 

confidence estimate (the Cholesky factor) is monitored, allowing good feature 

extraction. 

2.6 A hybrid PIV-PTV technique 

The spatial difference between particle tracking velocimetry and correlation particle 

image velocimetry is the localization of the measured velocity within the limit of the 

traceability of particles, as opposed to a mean velocity measurement based on a group 

of particles. This is depicted in figure 2.20. With this increase in spatial resolution it is 

also possible to neglect the `gradient biasing' error of PIV that was mentioned in section 

2.2, allowing improved measurement of highly deformed flows. The price to pay is a 

more complex algorithm with longer computing times yielding low reliability in 

comparison to PIV. However, these disadvantages have recently been alleviated by the 

development of hybrid PIV-PTV, Cowen and Monismith 1997, Shan and Gharib 1998 

and Zimmer et al. 1999. In this procedure the standard tracking algorithm is preceded by 
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a correlation analysis allowing an improvement in computation cost while increasing 

the performance reliability, Stitou et al. 200lb. The distinction with the hybrid PIV- 

PTV analysis required here is that for the first time the PTV module must be able to 

cope with PIV imaging conditions and not vice versa, as with these other 

methodologies. With such a system it would be possible to present turbulent statistics 

with improved accuracy and up to a 9-fold increase in spatial sampling. A typical hybrid 

strategy is summarized in figure 2.21. 

There are two typical performance indicators for the evaluation of a PTV module; 

reliability, which is a measure of accuracy and yield, which is a measure of the spatial 

resolution success. These are defined as follows, 

Reliability = 
number of correct vectors determined by tracking method [2.10] 

number of correct vectors determined by tracking method Yield = total number of true vectors 

total number of vectors determined by tracking method 

[2.11] 

Classical PTV algorithms such as Kobayashi et al. 1989 and Hassan and Canaan 1991, 

used a low density of distributed particles to present simplistic and reliable techniques, 

although low rates of recovery were expected. For this particular hybrid scheme the 

seeding concentrations are an order of magnitude greater and as such a successful 

particle identification system must be implemented. When the seeding concentrations 

are at this level the incorrect identification of a particle on the image plane is just as 

detrimental to the tracking process as a missed particle. A measure of the particle 

identification success is included as, 

CPP = 
number of correctly identified particles [2.12] 

IPP = 

total number of particles 

number of incorrectly identified particles 
total number of particles 

where CPP is the ratio of correct particle pickup and IPP is the ratio of incorrect 

particle pickup. The required performance of a hybrid system is now included. 

2.6.1 Requirements of the hybrid system 

[2.13] 

The usefulness of a hybrid PIV-PTV scheme in this study is obvious, it can be used to 

improve the fidelity of the presented turbulent statistics. Since the velocity data is being 

supplemented with a multigrid analysis it may be possible to neglect the need to 
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redistribute the velocity data onto a regular grid using the methods of Agüi and Jimenez 
1987, Spedding and Rignot 1993 or Stitou and Riethmuller 2001 a for instance. This is 

convenient since the improvement in accuracy gained from the hybrid analysis is not 
then obviated by interpolation error, Hesselink 1988 and Cowen and Monismith 1997. 

The proposed technique is simple, after each particle is successfully tracked its location 

is shuffled into the centre of the nearest `t-tile' (or measurement volume), see figure 

2.22. These t-tiles (or `bins') are much smaller than the interrogation tiles used in super- 

resolution PIV and as such any vector relocation may be regarded as interpolation with 

zero-order. It would be advantageous if each t-tile area would yield one velocity 

measurement per image pair, and by assuming homogeneous seeding it is possible to 

assess the potential for such a scenario, as shown in figure 2.23. From inspection of this 

data it may be seen that for a seeding density of N, -- 25 a t-tile dimension of 6x6 

pixels will just about fulfil the criteria, which is advantageous since this matches the 

minimum seeding conditions for super-resolution PIV. Because the t-tile size presented 

so far is not calibrated, it is important to look at the physical shift required for each 

individual cavity case. This data is collated in table 2.2. For a 6x6 pixel t-tile the 

maximum vector movement is 0.25mm (one half of the physical t-tile length), which is 

encountered for the L/D = 3.0 cavity case. The remaining data in this table illustrates 

the relocation error present for other t-tile dimensions; this is included for the purposes 

of chapter 5. In conclusion, it appears that this method of presenting turbulent statistics 

is viable as long as the assumption of homogeneous seeding is not overly optimistic. To 

investigate this assumption a sequence of 110 image pairs were interrogated (for a 

cavity with LID = 3.0) and the number of particles within each t-tile (of 6x6 pixels) 

from the first frame image was recorded, this data is shown in figure 2.24. From this it 

appears that there is sufficient seeding being entrained into the cavity, although portions 

of the flowfield are clearly not evenly seeded. Therefore, at these seeding concentrations 

for this type of flowfield the statistical sample size and the number of images captured 

will clearly not be the same. 

2.6.2 Particle detection 

A particle density of Ni = 25 will invoke a 54% probability of particle overlap for a 3- 

point sub-pixel estimation scheme. This implies that a suitable particle identification 
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scheme must be able to discriminate between contiguous particle images. Less 

important image facets to this study are out-of-focus particles, flocks and lineaments. 

Particle detection is broken up into two stages, that is general particle identification 

(pixel estimate of particle location) and particle peak location (the sub-pixel 

calculation). These are now discussed. 

2.6.2.1 Particle identification 

The subtle difference between a particle identification scheme that provides good yield 

and reliability and bad yield and reliability is in its CPP and IPPperformance. This is 

illustrated by a test case in figure 2.25 where the same tracking algorithm (Barnard and 

Thompson 1980) has been implemented using particle data identified from two different 

schemes. It is clear from this simple test case that tracking algorithms will only deliver 

good yield and reliability if the particle identification scheme preceding it is successful. 

If CPP can be preserved while IPP is minimized the particle identification scheme is 

deemed successful. 

Particle identification schemes that have found application in traditional PTV operate by 

simply subtracting globally (standard threshold binarization, STB) or locally (multiple 

threshold binarization, MTB) weighted intensity values. Such schemes will not be 

successful when high seeding concentrations are prevalent. More pertinent methods are 

those proposed by Maas et al. 1993, called here MTBM and Ohmi and Li 1999, called 

here MORTB. Although these methods can cope with the PIV imaging conditions the 

particle diameter range expected here (1.0 s d, /dr s 1.5) seriously reduces their 

effectiveness. In this study it was found that dynamic threshold binarization (DTB), 

Ohmi and Li 2000 and particle mask correlation (PMC), Etoh and Takehara 1998 were 

the most reliable and robust schemes available. DTB is successful since it uses an 

adaptive contrast thresholding, thus allowing less bright particles to be identified also, 

although it faltered for small particles. PMC was found to return the highest values of 

CPP since it uses a 3-point Gaussian fit for identification using a correlation match but 

this also makes it very susceptible to noise, causing an elevated number of IPP. Each of 

the particle identification schemes mentioned so far were tested on the standard image 

database and the results are posted in table 2.2 
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The particle identification scheme used here is a mixture of the DTB and P. \IC methods 
and is called reconstruction threshold binarization (RTB). This is now briefly 

mentioned. As with DTB the RTB algorithm works on a contrast threshold value to 
identify local dominant intensity peaks. Since this requires a global threshold value to 
be set it is beneficial to initially correct the image for uneven illumination using a white 
top hat procedure with improved rendering. A weighted morphological structuring 

element (an image template) is then used to identify the most prominent intensity peaks 
for that particular contrast value and see if they are morphologically particle like. This 

stage is equivalent to the analysis performed in the PMC scheme. After each contrast 
level has been interrogated the images is scanned for contiguous particles. By using the 

spline fitting technique suggested by Fincham and Delerce 1999 within the 

neighbourhood of particle clusters it is possible to increase the spatial resolution of the 

primary particle neighbourhood to more clearly identify possible particle overlap. When 

particles are identified in this manner there may be a high particle peak detection error 

since the particle is typically under sampled (causing large random error) but the CPP 

has been improved which sustains the yield and reliability. The RTB performance is 

included at the foot of table 2.2. 

Using a series of simple synthetic images with a particle diameter range of 

1.0: 5 d, /dr s 2.0 is a convenient way to compare the performance between PMC, DTB 

and RTB. Figure 2.26 indicates the response of the filters for images with zero noise 

and figure 2.27 represents those with realistic noise added. It can be expected that the 

performance of both the PMC and RTB operators will be overestimated since all 

particles are described by a Gaussian profile in a simulated image. Therefore as 

expected in figure 2.26 the CPP values for PMC and RTB are very similar, although 

IPP for RTB is slightly higher. When a noise source is imposed, as shown in figure 

2.27 the benefits of the PMC filter are quickly reduced with a 25-fold increase in IPP 

and some loss in CPP performance. The DTB operator reduces in effectiveness almost 

linearly as the seeding concentration increases, caused by the increasing proportion of 

contiguous particles present in the flow. The best performer is RTB, which is able to 

provide a 95% CPP for only 8% IPP at the seeding concentration expected in the 

experiments. 
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2.6.2.2 Particle peak location 

After the object data has been located on the image plane the sub-pixel particle peak 
location is calculated. Most particle profile fitting schemes will have similar accuracy 
when the peak is well sampled (that is d7 /d, > 2.0 ), Lourenco and Krothapalli 1995 

, 
however this choice is reduced when the seeding concentration is high. Five-point sub- 
pixel estimation routines cannot be used since this will increase the fraction of 

overlapping particles. It is generally accepted from the analytic work carried out by 

Westerweel 1993a and b and from the numerous synthetic image simulations, Willert 

and Gharib 1991, Prasad et al. 1992 Cowen and Monismith 1997 and Stanislas et al. 
1999 and 2000, that the Gaussian sub-pixel peak fitting operation is optimal for the 

current experimental conditions. In a study performed here it was found that typical 

Gaussian fitting and a less established method of bidimensional Gaussian fitting6, Udrea 

et al. 1996 and Press et al. 1993, recurrently delivered the lowest errors or `tracking 

bias' as defined by Westerweel 1993a, see figure 2.28. Between these two operators it is 

the typical Gaussian peak fitting routine that suffers least from tracking bias in this 

particle diameter range. This was the method used by the hybrid system and has an 

accuracy of approximately 0.12 pixels for Ni = 25. 

It was found that the bidimensional Gaussian peak fitting technique had a significant 

accuracy advantage over other sub-pixel estimators when the flow is in high shear 

and/or when there is a high seeding concentration, Ni > 30, although there is a high 

computational cost. 

2.6.3 A particle tracking algorithm 

The PTV module required for measurement in a cavity must be able to cope with fluid 

flow subjected to strong deformations, which are modelled here as rotation, shear and 

expansion. An ideal tracking module is one that uses the multigrid PIV to speed up the 

tracking calculation without depleting the yield and reliability of the original tracking 

system. It is also important not to inherit any if the inadequacies of the PIV step into the 

PTV step. Uemura et al 1989, Kobayashi et al 1989 and Nishino et al. 1989 presented 

the first tracking algorithms. The binary image cross correlation (BICC) method from 

Uemura et al. 1989 became known as the high speed two-frame tracking method 

6 Using a Nelder-Meade (downhill simplex) non-linear fitting method, Neider and Meade 1965 
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because it tracked particles using a strict highest similarity pattern. Quick calculation 
times were achieved? because the algorithm used the binarized image plane output 
(typically from STB), but there was very little permitted deformation from parallel flow. 
BICC has remained a good benchmark for other tracking algorithms. Both Kobayashi et 
al 1989 and Nishino et al. 1989 used the classical four-frame in-line tracking methods, 

which delivered a low yield with good reliability 

Two-frame particle cluster matching operates using a deformation index to represent the 

movement of the target particle neighbourhood in which both rotation and shearing is 

permitted. Some relevant works are Ohyama et al 1993, Okamoto et al. 1995 and 
Ishikawa et al. 1997. The velocity gradient tensor method by Ishikawa et al. 2000 and 
Yamamoto et al. 1996 is probably one of the best tracking algorithms available, 

although its success remains susceptible to non-paired particles. The spring model 

tracking technique (SMT) proposed by Okamoto et al. 1995 is a similar scheme to the 

those mentioned above and calculates the deformation index by relating particles to one 

another using a series of spring-models. The smallest total spring force yields the 

tracked particle. This method is relatively easy to implement and is used for 

comparative purposes in this section. 

There exist other tracking algorithms that are either optimized for one type of fluid 

deformation or have strict stipulations for effectiveness. For example Song et al. 1999 

uses Delaunay triangulation to follow rotation only and Labonte 1999 uses a neural 

network scheme to cope with strong out-of-plane components. In this vein, Baek and 

Lee 1996 have utilized probability tracking (adapted from Banard and Thompson 1980 

image recognition procedure) that is tolerant of rotation, shear and expansion but cannot 

cope with non-pairing particles. After efforts by Ohmi and Dao Hai Lam 1998 and 

Ohmi et al. 2000 this algorithm is more resilient and is the tracking scheme adopted 

here. Because of the functionality of the procedure it will dramatically benefit from a 

PIV precursor step, it is named Barnard and Thompson tracking (BTT) in this report. 

BTT is based on the iterative estimation of positive match probability, P, j and no match 

probability P; * that measures the matching degree (the nomenclature of Ohmi et at. 2000 

7 1200 vectors in 5 seconds for a Pentium 3 (700MHz) PC 
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is used here). The principle particle i in the first frame initially preselects its 

neighbouring particles in the second frame using a locality condition based on some 

radius Rc, as shown in figure 2.29a. Then Pý denotes the probability of particle i in the 

first frame-matching particle j in the sectioned second frame area, while at the same 

time the probability of the second frame particle disappearing is P1*. The probabilities 

are normalized at the end of each iteration, 

P; i+P; 
* =1.0 [2.14] 

There are several way to estimate the initial probabilities such that convergence times 

are improved (that is the definition of P. (°' and P. *`O') and for this study both the y 

normalized cross-correlation coefficient and local FRTT parameters were used to good 

effect. The particle matching probability is updated by using the probability values of 

the neighbouring particles (first frame particle k to second frame particle 1) defined to 

exist within a radius Rn of the principle particle i, as seen in figure 2.29b. 

p(n) = P`jn-1) A+ BL 

LP ýn-1) 

[2.15] 

kI 

It is this insistence of quasi-parallel particle motion (k to 1) within the globally 

predefined radius value Rn that must remain with another radius defined as R, (called 

the relaxation area) that causes a reduced performance of this algorithm; this is shown 

for completeness in figure 2.29c. P. (") denotes the updated probability for that iteration 

n. Using the updated value of no match probability (via the new method stated by Ohmi 

et al. 2000) the next iteration may be implemented after simple re-normalization of Pinn 

and P; *("). Both A and B (A = 0.3 and B=3.0) are weighting constants predicted by 

Barnard and Thompson 1980. Using this version of the technique it can be expected that 

a first frame global particle density of N, will require O(N: ) probability tracks to be 

formed. Images acquired in this study (for Ni = 25) will require approximately 20' 

minutes to calculate. 

By using the hybrid analysis a better estimation of RS can be endorsed that improves 

convergence times by reducing the number of possible second frame particles j, while 

R,, and Rc may be better estimated to increase yield and reliability. Since the local 

8 700MHz Pentium 3 PC 
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direction of motion is known from the PIV pass (ITDWO-FFT) the search radius RS can 
be reduced and set to an offset position, as seen in figure 2.30. The offset is taken as the 
locally interpolated displacement for that particle, but the new value of RS is more 
complicated to decipher. To increase the probability of a correct track, as discussed by 
Keane et al. 1995 the second search radius area should be of approximate size, 

R 
2+ 2 

S dr 
[2.16] 

where, dp, =d1+ dvJ 
. and is the local vector pixel displacement for that particle (spline 

interpolated from the PIV results) . 

Although the probability study performed by Keane et al 1995 was for a different type 

of super-resolution system the seeding concentration used are similar and as such the 

relationship works well. A correct value of Rn should encapsulate the common quasi- 

rigid motion of the second frame particles while maintaining enough particles to enable 

the probability calculation to converge on a solution (as opposed to a no match particle). 

Essentially Rn should be larger than R, although as the seeding concentration increases 

these two values can become more similar. It was found that the calculation of the 

correct matching area benefits from an observation of the extensional strain, E,,, .A good 

compromise was found in the equation, 

R,, E., 
PXI)RS 

R,, R, 

R� =1.2RS R� <1.2RS 

Rn = 
(1.5- I er,, 

pX 
I) Rs 

[2.17] 

Strictly speaking, a local increase in strain corresponds to a smaller area of particles 

obeying the common motion heuristic and the radius of motion similarity should be 

decreased with respect to a variable that describes the local strain rate (that is R,, x Ems. 

It is possible to control the tracking in this manner because the seeding concentration is 

high enough such that any local changes in R,, is not detrimental to the probability 

convergence since there will always be sufficient number of particles, this is also 

maintained by the lower limit Rn > 1.2RS. 

The quasi-rigidity threshold R, indicates the degree of flexibility within which a 

particle can wonder from the predetermined vector of the principle particle. It is 

therefore the relaxation of similar movement allowed within the radius R, It can be 

q Rn > 1.2RS 
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expected that the improved estimate of Rn from the PIV analysis makes Rc less 
important for good tracking. The optimal value for Rc is then adapted from the 
improvements stipulated by Ohmi et al. 2000. In this instance the local flow speed is 

scaled proportionally to Rc in the fashion, 

Rc =E+FI dPx 1 [2.18] 

where E=2.0 and is image dependent and F=0.2, which is a proportionality 

constant. The proportionality term clearly helps to increase the reliability of the system 

particularly in strong shearing flows. 

The current project of interest is that of cavity flow and as such any test case for the 

tracking procedure must contain strong regions of shear and rotation. Therefore the 

Barnard and Thompson algorithm was tested using instantaneous pictures of the Taylor- 

Green vortex interaction, shown in figure 2.31, which is an analytical solution of the 

Navier-Stokes equation. This problem is ideal because a comprehensive study of the 

standard scheme and the hybrid driven tracking scheme can be evaluated with respect to 

the wave number, k. In all cases CPP = 100% and IPP = 0%. The response to seeding 

concentration is shown in figure 2.32. In this instance it appear as if the Hybrid BTT 

technique can maintain a good yield over a satisfactory seeding concentration range, 

which is principally due to the reduction in RS imparted by the hybrid technique causing 

the number of possible second 
frame particles to be reduced. In contrast, with the BTT tracking set at RS = 16 clusters 

of spurious data or no-match particles will exist within regions of strong velocity 

gradient. 

The results shown in figure 2.33 are ideal for illustrating the hybrid BTT's ability to 

establish optimal values of the neighbourhood radii. In particular, determining an 

accurate value for Rn means that the tracking can carefully establish areas of locally 

coherent flow and follow it precisely, thus the common motion heuristic is not violated 

and higher wave numbers can be followed with better success. In addition to this there 

is quite an improvement in computational time for the hybrid BTT. Figure 2.34 shows 

that for the expected PIV seeding concentration the convergence times will improve by 

at least a factor of 5, which is important since it will be used mainly to calculate 

turbulent statistics. Using a full set of images the hybrid algorithm can process a 
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Reynolds stress calculation (using t-tiling) in 8.2 hours (for L/D = 2.0 ), whereas the 
standard BTT procedure takes 45.7 hours. 

Motivated by the work of Ishikawa et al. 2000 the hybrid BTT scheme was further 

compared to the SMT and BICC schemes using synthetic models exhibiting expansion, 
shear and rotation in isolation. The results from these tests are extensive although the 
main finding is evident using only figure 2.35. It is shown in this figure that the 

performance of the other tracking schemes is acceptable for the conditions they were 
designed for although only the hybrid BTT scheme that can operate with a high yield 
recovery in the presence of PIV imaging conditions. 

2.7 Confidence and the estimation of error 
There remain a few experimental issues pertaining to the measurement of cavity flow 

with DPIV. These are the quantification of the uncertainty of turbulent statistics and the 

actual error in velocity and vorticity estimates. 

When first and second moment calculations of the velocity data are being presented the 

uncertainty in the turbulent statistics must be addressed. So for a given a sample space 

of size N, the confidence interval for the computed statistic (i. e. mean variance etc. ) 

must be calculated. If it can be assumed that the sample space is always larger than 30, 

sampling theory dictates that it is not important if the variance of the sample is known 

or unknown and a normal distribution can be used, Walpole 1998. If we further assume 

that the sample variance (observation relative to the sample mean), o, ' is used in place 

of the population variance, o',, and 
(d) (the sample mean) is used as an estimate of 

,l t1 (the population mean), we can be (1- a)100% confident that the error will not 

exceed a specified amount E when the mean sample size, Nµ is, 

NF, _ 
(z/2sd i 

[2.19] 

where z, /, is the z- value of the normal distribution leaving an area of a/2 to the right, 

a is the confidence parameter and s, is the standard deviation computed from the 

sample space. 
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The number of samples required to report the standard deviation to a given accuracy 
level is independent of the local turbulence level, Grant and Owens 1990. The 
(1- a)100% confidence interval for c r' a normal population can also be calculated POP 
and suitably rearranged to [2.20] if it can be assumed that the number of sample 
required for the mean is always less than that required for the standard deviation (valid 

when the measured turbulence intensity remains below 30%). 

No =Nµ 2s2 j 
[2.20] 

where Na is the number of samples required for the standard deviation while adopting 

the same confidence levels and accuracy as stated in equation [2.19]. 

Using a hot-wire measurements were made in the shear layer at x/L = 0.1 for L/D = 3.0 

and Re. = 1664 (ReL = 275000) since the shear layer region is the source of the highest 

sample standard deviation in the flow regime. A value of QPop /Yp0P - 0.1 was measured 

at this particular location. A confidence level of 95% was selected with an expected 

error level in the mean velocity of 5%. In such an instance the number of samples 

required for the mean velocity to satisfy these conditions is 0(102) and the number of 

samples required for the variance of velocity fluctuation of the sample to be within 5% 

of that of the population is 003). This was seen to be the case throughout the entire 

shear region; the exact measurements are presented in table 2.3. 

To confirm these estimates the test case described above was measured using the DPIV 

system to capture 1000 image pairs. Figure 2.36 shows the convergence of the mean 

velocity, (u) mean vorticity, ((o) and the turbulent intensity. From this it can be seen 

that the mean velocity varies by less than 5% after approximately 100 samples. For the 

mean vorticity the same level of accuracy can be observed after approximately 250 

samples and the turbulent stress requires more than 800 samples, as expected. However, 

such a large amount of image storage for variance calculation is prohibitive to the 

testing procedure. Therefore it was decided that a fixed sample size of N= 250 would 

be used and accuracy of measurement ultimately calculated (at the 95% confidence 

level). These results are presented to the right of table 2.3 and indicate that it is possible 

to maintain accuracy to within 10% if the sample size is reduced to 250. 
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An estimate for the total uncertainty associated with a velocity measurement can be 

calculated by adding the variances of the various known contributors, Soria 2002. The 

ratio of vorticity bias error to the exact value for a thirteen point least-squares fit is 

related to the sample separation, Fouras and Soria 1998, and is given by, 
1.96 

£= 
wbýas 

= -0.748 
A Ij wnýuý 

Wmax 16 
[2.21] 

where 0� is the distance between adjacent velocity measurements (taken in this case as 

16 pixels) and lb is an appropriate measure of the local length scale. The ratio of the 

uncertainty in the in-plane velocity vector to the uncertainty in the out-of-plane vorticity 
for a thirteen point least-squares fit is given by the following relationship 

ýw =lh [2.22] 
5 0jß 

so that e Wrand :- wE urand and is specific to the scheme used here, see section 2.5. 

The random and bias components of the velocity and vorticity error may therefore be 

estimated at any point in the domain. For this example the two points in the cavity shear 

layer will be once again used, the results are included in table 2.4. For the calculation of 

the total error in velocity measurement, Eu it is assumed that the scale error and 

temporal error are both <<1%, thus leaving only the error in displacement measurement. 

This error has already been calculated in section 2.3 and is now given the value 0.14 

pixels :: L 0.05 pixels in the 95% confidence limit (ITDWO-FFT-SDCPIV), following a 

benchmark working from Soria 1996. The complete results are shown in table 2.5. 

Table 2.4 shows that although it is possible to image the whole cavity flowfield it is 

difficult to get reliable measurements in all regions using the same image. In particular 

the vorticity accuracy within the shear layer at x/L = 0.1 has a possible bias error of up 

to 48.3%. Such elevated errors are caused by the difference of scales present between 

shear layer separation and shear layer interaction with the rear face of the cavity. The 

example chosen for this study (L/D = 3.0) represents the test case with the largest 

accumulated errors since the resolution (pixels/mm) is at its lowest. 
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Beam Shaping 
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z 

Particles visible in laser 
light sheet 

Figure 2.1. An illustration of a typical PIV set-up in a wind tunnel. In this scenario the 

particles are moving through a laser light sheet while being recorded by a camera 

situated in the wind-tunnel itself. 

69 

- ------ ---------- 
Wind Tunnel ......:... 
Tact CPrtinn 



IMAGF 

time, t 

iNIv(f, 

TILE 1 extracted from 
IMAGE 1 

time, t+Ot 

TILE 2 extracted from 
IMAGE 2 

Figure 2.2. Image 1 is captured at a set time, t with image 2 captured a small time 

increment later, t+dt. The two images are then each split into a number of interrogation 

tiles. Each image 1 tile is then individually correlated with its image 2 tile partner. 

particle trajectory 

pathline 

Figure 2.3. It is the red vector that indicates the actual measured velocity between the 

first position P; (x, y, t) and the second position P; (x, y, t+ At). This is an approximation 

to the actual velocity at that point, U1,, it's accuracy is determined by the laser pulse 

delay At . 
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Figure 2.4. The standard correlation procedure used for image analysis. In this instance 

the direct correlation is used and reveals a correlation plane larger than the image plane 

itself. The average displacement is measured as the offset of the highest correlation peak 

from the centre of the tile. 
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a. Standard FFT correlation result from a 32x32 pixel interrogation tile procedure. 
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b. Standard FFT treatment for a 32x32 

pixel tile yielding approximately 1 

vector every 2mm. every 1 mm. 

Figure 2.5. Instantaneous flowfield experienced over the deck of a ship with open deck 

cargo (equivalent to a backward facing step), the flow is through the light sheet and 

shows from port to starboard at x /X = 0.4. The region indicated by the dashed box is 

shown magnified in (b) and (c). 
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c. Implementing the DWO (FFT) 

treatment yields a velocity measurement 
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c. Tile skewing 

Figure 2.6. Application of successive super-resolution techniques to build a result with 

improved spatial resolution and good signal strength. Showing the progression of only 

the top left hand segment from the standard interrogation tile to the tile skewing 

procedure. The spatial resolution has been increased by a factor of 16. 
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c. SNR of ITDWO-DC algorithm. 

704- 

640, 

576- 

512 

448 - 

3 384 
n 

720- 

256- 

192 

128 

64 

0 

16 
i 

SNR 

3 

1ý 

d. SNR of ITDWO-DC algorithm with 

tile skewing. 

Figure 2.7. Flowfield measured behind a hatchback car model for a flow from left to 

right. Using the result from (a) tile skewing may be performed, shown in (b) which 

increases the signal strength across the measurement domain, as shown in (c) and (d). 

An increase in signal strength may be interpreted as an increase in accuracy. 
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a. Vorticity calculated for a clean cavity configuration with L/D = 3.0. The flow is 

travelling from left to right. 
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b. Dots indicating where the criteria for correct correlation sampling break down due 

to the magnitude of the inter-tile velocity gradient. 
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Figure 2.8. Super-resolution techniques applied to real clean cavity test case. 
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Figure 2.9. The behaviour of bias error and random error components with respect to 

particle diameter. The different gradients of the random error component shown 

correspond to circular, c=0.055 and direct correlation, c=0.07 methods. 
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Figure 2.10. Comparison of the rms error component with experimental results. The 

triangles and dots indicate the total error (with error bars) and sample-averaged results 

for each f-number test respectively. Because the SNR is lower for actual experiments 

the random error component is increased, although deviations in the bias error 

component are not expected. 
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Figure 2.11. The effect of magnification on the projection of the particle diameter onto 
the CCD array. The symbols represent the various image capture set-ups used. 

O Twin-camera, twin-laser set-up (single pulse) 
d Twin-camera, single-laser set-up (double pulse) 
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Figure 2.12. Comparison of the rms error incurred in comparison to the side length, K 

of the interrogation tile. The SDCPIV suppresses the bias error. 
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Figure 2.13. Comparison of some of the possible methodologies that yield a spatial 

resolution of 16 pixels against the number of computational operations required and 

accuracy obtained. Results are taken from a synthetic Oseen vortex with no noise. It 

appears beneficial to introduce DC only at the latter stages of calculation, which is when 

performing SDCPIV. 
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M, =0.1, f#=5.6 

ITDWO-DC-SDCPIV (16 pixel). 

Figure 2.14. Histograms of the velocity component presented by two different DPIV 

set-ups for the case of flow over a cavity L/D = 2.0. For the standard/non-optimised 

experiment (a) the effects of peak locking (bias error) are discernible as peaks around 

integer pixel displacements. 
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Figure 2.15. PIV measurement of flow downstream of a NACA 23015 section with 4% 

gurney flap (shown to the left of the picture) and angle of attack 12.0 deg 

Rec. hord =1.2 x 105, the flow is from left to right. In this example 6% of the measurement 

(143 vectors) were deemed to be bad vectors. These spurious vectors tend to cluster in 

regions of poor seeding, such as the flow immediately aft of the gurney flap. 

- ----------- 

forward tile projection 

d y -d 
dx 

reverse tile projection 
'------------- 

Figure 2.16. Tile shifting notation. The forward projected tile is shifted relative to the 

central tile by the displacement d (d = drl + d,,. ) of the central vector. The reverse 

projected tile is moved in the opposite sense. 
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Figure 2.17. The effect of changing the seeding density (when R`' = 16) and the flow 

displacement range (when Ni = 8), on the rms error. 
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Figure 2.18. Application of the coherence algorithm to the flowfield shown in figure 

2.15 (with streamlines). In this instance there was very little change in the response of 

the technique over T% E (20%, 35%) and NV E (5%, 20%). In the best case 140 of the 

vectors previously judged to be spurious have been identified, although the replacement 

routine in the clusters has caused distortion to the streamlines. 
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Figure 2.19. Application of the FRTT algorithm to the flowfield shown in figure 2.15 

(with streamlines). All vectors deemed to be spurious from figure 2.15 have been 

identified and replaced. Here the replacement strategy has been able to preserve the 

distinct counter-rotating vortices downstream of the gurney and the off surface saddle 

point that defines the near wake region. 
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Figure 2.20. The principle of the hybrid approach to particle velocimetry. Whereas PIV 

returns a reliable measurement averaged over a single interrogation tile, PTV has the 

potential to increase the spatial resolution of velocity vectors by measuring the 

individual particle traces. 
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Figure 2.21. Procedure for a hybrid PIV-PTV system using the multigrid analysis 

presented in section 2.2.5. 
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Figure 2.23. Typical number of image pairs required before a tracked particle falls 

within a given t-tile. The results are based on homogeneous seeding for any given 

flowfield. N* and N* represent the minimum seeding requirements for standard and ILIM 
I SLIM 2 

multigrid PIV respectively. 

t -tile size 6x6 px t -tile size 0.3 x 0.3rnm 

L/D t-tile length 

(mm) 

Vectors per 

image pair 

relocation 

error (mm) 

t-tile length 

(px) 

Vectors per 

image pair 

relocation 

error (mm) 

1.0 0.24 1.00 ±0.12 25 1.37 +0.15 

1.5 0.30 1.00 +0.15 20 0.87 +0.15 

2.0 0.38 1.00 +0.19 16 0.56 ±0.15 

2.5 0.43 1.00 +0.22 14 0.43 ±0.15 

3.0 0.5 1.00 ±0.25 12 0.31 +0.15 

Table 2.1. For a realistic seeding density of Ni = 25 the number of measurement per t- 

tile dimension is shown. The t-tile dimension required to return one measurement per 

image is shown on the left and the images required for a single measurement for a t-tile 

of set physical size is shown on the right. 
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Figure 2.24. The number of particles counted within each t-tile for a series of first frame 

images. The sample size is 110 images with t-tile size 6x6 px for cavity size 

L/D = 3.0. Surprisingly there is reasonably uniform seeding inside the cavity itself; the 

largest seeding inhomogeneities are in the downstream freestream area and at shear 

layer impingement on the downstream corner. 
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picked up in image 1 with the blue dots indicating particles picked up in image 2. 

Distortion in the camera lenses is causing poor particle recognition at the periphery of 

the image. The results indicate that a system identifying a high population of particles is 

not necessarily a successful particle identification scheme. 
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Standard image database image reference 

piv01 
_1 

CM2-2874 

Algorithm Particles counted CPP (%) IPP (%) 

STB 1178 (/ 16Q) 56 21 

MTBM 1503 64 19 
MORTB 1996 87 5 

DTB 2348 (233S) 93 1 
PMC 2391 (1134) 92 7 

R"1 13 2415 95 

Table 2.2. The results of the various threshold operators being applied to standard 
images. The red italic text represents the results published by Ohmi et al. 1999. Image 

CM2-2873 has a particle diameter range 1.0! -. di/d, s 2.0 with N, = 25. 
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Figure 2.26. For a simulated diameter range of 1.0: 5 d-r/d, s 2.0 the performance of 

each particle identification technique is worsened in comparison to the optimal range 

(typically 1.3 s dt/d, s 2.3). IPP is generally unaffected through the range of seeding 

concentrations although CPP for PMC and DTB is much reduced. 
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Figure 2.27. Using a particle diameter range of 1.0 s dt/d, s 2.0 and introducing a 

simulated noise level the IPP count increases rapidly while CPP remains stable. The 

RTB technique keep a good balance between the two counts and performs best through 

the whole seeding range modelled. 
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Figure 2.28. The behaviour of two sub-pixel estimation schemes. The particles were 

displaced through a 3% shear and Ni = 12. Higher RMS errors are expected as the 

Nyquist sampling criterion breaks down (shown in blue here). 
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0: Primary particle i in first frame 
0: Neighbouring particles in the second frame 

I%: Neighbouring particles in the first frame 
0: Candidate particle j in the second frame 

a. The primary particle selects 

particles of interest from the 

second frame using a radius 

threshold, R. 

0 

b. Particles within R� are expected to 

preserve the general flow nature of the 

particle in the first frame. 

.ý 

r 
o-. 

Or 

- rý 

O 

O 
ý'r 

0 

c. Any motion that repeats the primary flow motion (blue vector) is used to update the 

particle matching probability. Relaxation R, is afforded between particles k and 1 

illustrated with a black vector such that the motion is quasi-parallel. 

Figure 2.29. Construction of the probability matrix using the radius criterion. 
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a. The particle match probability matrix is based on the first and second frame particle 
information within predefined radii. R,. encompasses the second frame candidate 

particles with no knowledge of actual displacement only maximum expected 
displacement, RS 

. 

i 
dpx - -_-_ý i 

0: Primary particle i in first frame 
O: Neighbouring particles in the second frame 
": PIV projection of primary particle location 

in the second frame 

b. By using a multigrid pass prior to the PTV calculation it is possible to both shift and 

reduce the search window for second frame candidate particles to R52 such that the 

computational work can be reduced. 

Figure 2.30. Using the hybrid approach to the Barnard and Thompson tracking allows a 

much-reduced Rs value to be applied for similar tracking success. 
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Figure 2.31. Velocity map of the Taylor-Green vortex interaction, k=1.0. It can be seen 
that high dynamic velocity ranges are possible with pertinent vortex interactions. 
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Figure 2.32. Test carried out on the Taylor-Green vortex, k=1.0 showing the 

relationship between yield and seeding concentration, Ni. The R`' is 16 pixels. Values 

for the BTT algorithm were R, = 16, R� = 20 and R, = 4. 
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Figure 2.33. Test carried out on the Taylor-Green vortex, N, = 25 showing the 

relationship between yield and wave number, k. The displacement range and values for 

the BTT algorithm are the same for those described in figure 2.32. 
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Figure 2.34. Test carried out on the Taylor-Green vortex, k=1.0 showing the 

relationship between computational time (P4 1 GHz PC) and seeding concentration, N,. 

As expected the arbitrary radii decisions made for standard BTT cause the 

computational times to rapidly increase with particle population. 
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Figure 2.35. Test carried out on the Taylor-Green vortex, k=1.0 showing the 

relationship between yield and seeding concentration, Ni . 
For BICC, interrogation window length= I 6pixels and the search radius=l6pixels. 

95% Confidence limit for 95% Confidence limit for 

within 5% accuracy sample size of 250 

x/L /µ Samples req. Samples req. Expected error Expected error /) /) 
for mean for variance in mean (%) in variance (%) 

0.1 0.1 16 801 <1 <10% 

0.8 0.24 89 773 <1 <10% 

Table 2.3. All values are calculated such that the estimations fall within the 95% 

confidence interval. To accommodate the fixed sample size of N= 250 and maintain 

confidence in the measurement the expected error was increased. 
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Figure 2.36. The convergence of various flow measurement over a range of sample 

widths at x/L = 0.8. Both the mean velocity and mean vorticity appear to be converging 

rapidly enough to be well measured in this study. 

x IL la (m) A' /l e� (%) E(Oh(%) /1. ffl 
0.1 0.0015 0.8 1.0 48.3 0.56 0.56 

0.8 0.015 0.08 1.3 0.53 5.59 7.27 

Table 2.4. Error estimation for two different stations along the cavity shear layer. The 

length of the structures, la present at x/L = 0.1 was not measured in the current study 

and as such the boundary layer displacement thickness (at x/L = 0) was used. 

Scheme Accuracy at the 95% confidence level 

ITDWO-FFT 0.17+0.05 

ITDWO-DC 0.15+0.05 

ITDWO-FFT-SDCPIV 0.14±0.05 

Hybrid BTT 0.11±0.05 

Table 2.5. Results are based on the average uncertainty over a R" = 16 pixels. The 

particles are subject to translation in the u and vdirection independently. This 

benchmark is adopted from Soria et al. 1996. 
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CHAPTER 3: MODEL DESIGN AND INSTRUMENTATION 

This chapter describes the design and build of a simple cavity model required to deliver 

both surface and flowfield information. The range of cavity geometries that may be 

included in this study is then dictated by this design criterion and by the wind-tunnel 
facilities that are to be used. A brief description of the pressure measurement system is 

also included along with other pertinent experimental issues. The Glasgow UniversitV 

2.13x 1.61 metre `Handley Page' tunnel (HPT) was used for the measurement of static 

pressure data both longitudinally and spanwise along the cavity model. Limited use of 

surface-mounted pressure-transducers was also made to provide a modal description of 

the internal cavity flowfield. The Glasgow University 1.15x0.85 metre `Anatomy' 

tunnel (A 7) was used for PIV measurements, while skin friction data was obtained 

downstream of the cavity using a Preston tube set-up. Measurement of the boundary 

layer both upstream and downstream of the cavity section was conducted using a 

specially constructed rake probe. 

3.0 Model description 

A simple symmetric wing-section with flap assembly was chosen as the parent body for 

a rectangular, three-dimensional cavity. The appropriate dimensional definitions are 

included in figure 3.1. The cavity model would have to be of sufficient width/span such 

that any inboard three-dimensional wing effects are suppressed, while the cut-out must 

be located in such a fashion that it is optically accessible for the PIV system. The 

physical cavity dimensions were ultimately dictated by the solid blockage and the 

expected wake blockage in the smaller of the two wind tunnels (AT). 

The primary requirement of the model design are that the boundary layer profile 

immediately upstream of the cavity leading edge should be turbulent, stable and have a 

good repeatability in shape factor. Therefore the model nose section geometry was 

designed such that the pressure gradient in this region was minimal and the local 

pressure coefficient was as small as the solid blockage would allow. To ensure this 

behaviour for the proposed model nose two fluid simulations were undertaken. First the 

SPARV_V9.0 panel method, BAE 1997 was used to determine the optimal nose profile, 

then the PMB2D V3.0 RANS flow solver, Badcock et al. 1998 was used for 
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comparison using a grid independence study. The results from these simulations are 
shown in figure 3.2 and indicate good agreement for the chosen elliptic profile of 1: 4 
(major axis : minor axis) with only a slight pressure gradient predicted at the cavity 
leading edge. These simulations included the proximity of the wind-tunnel walls. 

Using this nose section profile the remainder of the model dimensions were determined 
by blockage and mounting considerations. The width of the model was fixed at 840mm 

so that it was possible to install the model both horizontally and vertically in the AT, 

while this also improved the two-dimensional flow behaviour along the centreline 

section of the model. When fixed horizontally the model was supported in the centre of 
the test-section using four legs of which the front two were faired to reduce tare drag 

(and wake blockage). The model chord line was set approximately equal to the test- 

section vertical centreline (rather than below it) thus reducing the flap angle required to 

balance the model when testing (and minimize wake blockage). The model thickness 

was set to 60mm, which imposed a total solid blockage value of 5.2% and complies 

with good experimental procedures for closed return type wind tunnels, Barlow et al. 

1999 (the solid blockage for the HPT was less than 2% including leg sections). Based 

on the smallest test section length and the hardware capabilities of the PIV system the 

maximum cavity length was estimated to be 150mm (L/D = 3.0). A flat plate section 

downstream of the cavity was necessary for measuring the state of the flow after it had 

encountered the cavity section and to shift the flap section (attached via the boat tail) 

away from the region of interest. This distributed the wake blockage sufficiently far 

enough downstream to ensure better flow quality in the region of interest. The final 

model designs for pressure and PIV measurement are shown in figures 3.3 and 3.4 

respectively. 

The base of the cavity and the model legs were constructed from aluminium and 

anodised black to reduce laser reflection. The nose section was constructed from 

mahogany while the main body of the model was made from marine ply and was hollow 

in construction to facilitate easier instrumentation. Each wooden section was painted 

matt black and rubbed smooth with a cloth. 
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A boundary-layer transition strip was applied to the leading edge of the nose section to 
ensure that the flow entering the cavity was fully turbulent for all test conditions. In 

order to preserve repeatability between test runs it was decided that a thin strip of 
sandpaper would be used instead of applying grit to wet adhesive. Based on the reports 
by Braslow et al. 1958 and 1966 a 4mm strip of No. 36 grit was required for a good 
three-dimensional trip at 3.5% chord (x = -195mm). It was found that this 

corresponded to P 1200A silicon carbide paper (English Abrasive and Chemical Ltd. ). 

Although the P600A product represents the closest nominal roughness to No. 36 grit an 

oil flow study' immediately downstream of this strip indicated that this transition was 
two-dimensional in nature. The P 1200A product was also more resilient to the oil 

saturation expected during the PIV tests. 

It was predicted that the minimum boundary layer height at the cavity leading edge 

would be 9mm and that the flap area required for balancing the maximum cavity 

volume was roughly 0.24m2 for a flap angle of 12 degrees. 

3.1 Test conditions 

The tests were conducted at an angle of attack of 0° and a yaw angle of 0°. The wind- 

tunnel freestream speed was set to 28 m /s, which corresponds to a unit Reynolds 

number of 1.9x106 /m. Five test cases were chosen in this study that varied between 

L/D = 1.0 to L/D = 3.0, the physical dimensions of the cavity are shown in table 3.1 

and the Reynolds number based on cavity length is included in table 3.2 for reference. A 

qualitative assessment of the flow around the model was completed using surface-flow 

visualization. It was observed that there were no separated regions upstream of the 

cavity section on the parent wing and there was no unexpected flow behaviour 

downstream of the cutout for each of the test cases. Using this technique it was also 

possible to determine the correct height of the end plate required to suppress three- 

dimensional effects at the outboard sections of the model. Some results from this 

particular study are included in figure 3.5 and show the elimination of a corner vortex in 

the x-z plane by using a larger endplate section. By reducing such effects a better 

' For these studies a mixture of motor oil and fluorescent dye was carefully painted onto 
the model surface, illuminated using a UV lamp and photographed using TMAX 35mm 

film (IS02400) with a skylight filter. 
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repeatability in the experimental process is assured. The endplate section actually used 
is shown in figure 3.6f. The AT was configured such that the freestream turbulent 
intensity was approximately 0.23%, while the HPT was expected to be -0.6% at the 
freestream speed indicated, Rae et al. 1984; see appendix A for more details. 

3.2 Pressure measurement 
Both static and dynamic pressure measurements were recorded in this study. The 
instrumentation required is now described and the physical locations of the surface 
mounted probes are included in appendix C for reference. 

3.2.1 Surface static pressure 
The parent cavity model was instrumented with 85 permanent static-pressure orifices 

arranged into four distinct measurement locations, as shown in figure 3.3. Each area of 

measurement is now briefly described. In order to balance the model correctly using the 
flap assembly a series of 9 static pressure orifices were required around the nose section 
(in the x-y plane, NSXI'), these locations are listed in table Cl (appendix Q. For the 

measurement of upstream spanwise effects 11 pressure measurements were recorded 

along the entire nose section (in the x-z plane, NSXZ), these locations are listed in table 

C2. To measure any three-dimensional effects on the cavity floor 28 static pressure 

measurements were made spanwise through the entire cavity section (in the x-z plane, 
CA VXZ), these locations are listed in table C3. Finally, 37 longitudinal pressure 

measurements were taken through the cavity section, (in the x-y plane, CA VXY), these 

locations are listed in table C4. The blue text in the table indicates pressure orifices 

located on the front and rear bulkheads of the cavity. In order to measure the static 

pressure profile for cavities of L/D = 2.5,2.0,1.5 and 1.0, instrumented aluminium 

blocks were inserted to the back of the original cavity, thus changing the effective 

cavity length. The static pressure orifice locations for each individual cavity length are 

listed in tables C5 to C8; the red text indicates measurements taken from the aluminium 

insert. Figure 3.6a and 3.6b show the model set-up in the Handley-Page tunnel (looking 

downstream) and a spanwise view of an aluminium insert respectively. 

Each static pressure orifice was flush mounted onto the surface of the model with a 

diameter of 1.0 mm and was connected to a scanivalve assembly through a2 metre 
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length of nylon tubing. A Scanivalve Corp. model PDCR24 differential pressure 
transducer was used with a model 48S solenoid stepper drive. A model CTLR2 solenoid 

controller was used for both units and the gains were optimised for the expected 

measurement range. The scanivalve assembly, shown connected in figure 3.6c was 
located under the tunnel and comprised of two individual pressure transducers mounted 

on two separate units. Each unit has 48 input lines for measurement making it possible 
to scan 96 channels sequentially each referenced to the tunnel static pressure. 

The scanivalves were controlled through a NI NAQCard-700 using a Toshiba 110 

(Pentium 1) series laptop. A LabVIEW interface was constructed that could fully 

control the scanivalve environment and also had the functionality for individual 

transducer calibration against a Druck DPI 610 pressure calibrator. This configuration 

was specific to the current study. With careful attention to the travelling volume and 

length of nylon tubing used it was found that a scan rate of approximately 10 pressures 

per second was possible for 99.9% stability (although this discounts actual channel 

sampling time). The transducer has a quoted accuracy of +0.12% F. S. (±0.5mmH2O), 

which translates to ACp±0.002. Plentovich 1990 and Dix 1987 among others have 

reported unsteadiness in the unaveraged static pressure for open cavity flow. A quick 

study for each of the cavity configurations indicated that a3 second sampling period 

with greater than a 30Hz-sampling rate was sufficient to ensure repeatable results. A 

Matlab (C) program handled the raw data produced. 

3.2.2 Unsteady pressure 
The model was instrumented with 2 miniature Sensym SCCOSGSMT pressure 

transducers at the locations shown in figure 3.3 (PTL) and listed in table C9. These 

transducers have a frequency response of 10kHz. The transducers were connected to a 

surface orifice of 1.0mm diameter and connected to the transducer through a small 

length of plastic tubing (approximately 3mm in length). It was calculated that the tubing 

would cause no attenuation or phase shift, uncertainty in the pressure coefficients is 

expected to be 0.5%. The second transducer was mounted on an aluminium insert that 

could be changed in length such that measurements could be taken for every 

configuration listed in table 3.1. The transducers were controlled using the LabVIEW 

interface (as described above) while a Matlab program performed the required signal 

analysis. 
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3.3 PIV measurement 
The model designed for pressure measurement was adapted for PIV tests using some 

simple modifications. The flat plate section immediately aft of the cavity itself was 

replaced with a clean flat wooden section that could be translated in the x-direction. The 

rear bulkhead of the cavity was attached to this moving part, which then enabled the 

effective length of the cavity section to be changed without the need for inserts; these 

moving parts are outlined with blue in figure 3.4. The space created beside the boat-tail 

section was covered with an aluminium sheet. A 160 x 240mm rectangle was cut from 

the floor of the cavity centred on a spanwise ordinate of -130mm. A similarly sized 

section was cut from the moveable flat plate section behind the cavity. During the PIV 

tests these regions were fitted with 6mm thick glass sections, part of the rear bulkhead 

was replaced with a glass section also. 

As described in chapter 2 the illumination power of the laser may at best facilitate an f- 

number of 5.6. However, such a large aperture diameter causes considerable saturation 

of the images at any solid boundaries and renders the local velocity measurement 

invalid (affecting over 16,000 pixels in the image). Although these effects may be 

alleviated by the use of a polarizing filter it is still the case that regions of highly 

localized spurious vectors tend to occur in salient parts of the flowfield. The perspective 

of the camera may also compound the effects of glare. By introducing removable glass 

sections the laser strike is able to pass through the solid boundary and minimise solid 

reflections. Figure 3.7 illustrates the difference these glass sections make for automatic 

edge detection and particle identification. For this example the edges are automatically 

detected using a Sobel algorithm, Henk 1998 (with some additional structured element 

filtering procedures) and the particles are detected using MTB. 

The roof of the wind tunnel was replaced with a 7mm thick circular Perspex' GS 100 

window. This laser window reduces laser refraction and transmission losses. By 

mounting the optics onto an assembly of runners and sliders it was possible to have 

optical access to all regions of the test-section. An interchangeable glass section on the 

wind-tunnel door allowed camera access into the test section. Replacing the starboard 

endplate on the model with a 6mm glass section then allowed camera access into the 

cavity section, as shown in figure 3.6f. 
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3.4 Skin friction measurement 
Making further use of the interchangeable slots constructed for the PIV tests, the glass 
inserts were replaced with smooth aluminium sections instrumented for pressure 
measurement. Using a Preston tube, Preston 1954 this allowed a complete set of surface 
friction measurements to be extracted from a seamless flat plate section downstream of 
the cavity. 

The first aluminium section was instrumented with 50 static pressure orifices that were 
flush mounted onto the surface of the model. These had a diameter of 1.0mm and their 

locations are included in table C 10 (longitudinal positions) and table C 11 (spanwise 

positions). Each channel is connected to a multiplexor unit through a 2metre length of 

nylon tubing. A moveable pitot probe was then attached to the aluminium section and 

differential measurements are taken between the local static measurement and the 

corresponding total pressure measurement. Correct operation of the Preston tube 

requires the validity of the logarithmic law of a turbulent flow above a wall. For flows 

with pressure gradients this region becomes smaller and as such the probe diameter 

must be carefully considered, Bechert 1996. Based on observations by Chue 1975 the 

internal-to-external diameter ratio of the probe used was 0.6 and the physical probe 

diameter was 2.0mm (round). The output pressures were then sequentially measured by 

a factory calibrated Furness Control manometer (model FCO 12). The transducer has a 

quoted accuracy of +0.5% F. S. (+1. OmmH2O). 

Calibration of the Preston tube is traditionally done using the three definitive empirical 

equations listed by Patel 1965 (corresponding to the wall law regions). For this work the 

interpretation of Head and Ram 1971 is preferred since it removes implicitness and 

yields a calibration accuracy of ±1 %. By defining an inner pressure gradient parameter 

Patel 1965 was able to identify limits on the prescribed accuracy of the Preston tube in 

adverse (and favourable) pressure gradients. Considering pressure gradient effects in 

isolation a maximum error of 6% is expected downstream of the cavity section. 

3.5 Boundary layer measurement 

A rake probe was constructed to measure the total pressure inside the boundary layer 

both upstream and downstream of the cavity section. The probe was designed with 

reference to specifications listed in Pankhurst et al. 1971. The probe constructed is 
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shown in figure 3.8 and shown mounted in figure 3.6g. For this boundary layer study a 
correction for wall proximity effects was included in the reading for square ended 
probes and a correction for the total pressure (based on internal probe diameter) has also 
been used. These corrections were adopted from Chue 1975 (from Young and Maas 
1936 also). There is approximately a ±15° yaw tolerance for this probe (given a 99% 

dynamic pressure accuracy). 

Each channel was recorded in the same fashion as the Preston tube measurements while 
downstream of the cavity the probe position was controlled using a traverse positioned 
to the starboard (under-) side of the model. Solid blockage was increased by 1% in this 

scenario. The traverse was controlled using a pre-programmed Macintosh computer 

running LabVIEW with an RS232 connection. Downstream measurements were made 

on a clean aluminium insert, as shown in figure 3.6h. The cantilever arm used for probe 

movement was faired using a shroud sleeve and the arm root was positioned 
downstream relative to the measurement plane to reduce interference. 

The boundary layer thickness was estimated by using the traditional definition whereby 

the edge of the boundary layer is defined to be the height above the surface at which 

u/Uoc = 0.99. The boundary layer displacement thickness, b* the momentum thickness, 

8 and the shape factor (or form parameter), H are then calculated as described in 

Kuethe and Chow 1998. 

3.6 Preliminary results 

Each of the quantities mentioned above were measured regularly throughout the wind 

tunnel tests and their average values are included in table 3.3. For the HPT the shape 

factor was seen to vary in the range H =1.18 ± 0.18, and for the AT it was 

H=0.88 ± 0.11. The normalized centreline velocity profiles experienced in each of the 

wind tunnels are included in figure 3.9. Measuring at different spanwise locations 

within ±300mm (z/W = ±0.36) of the model centreline it was seen that the upstream 

boundary layer profile had a 93% similarity and 96% similarity for the HPT and AT 

respectively. These spanwise profile differences appear to originate from the pressure 

gradient experienced along the nose of the model, as shown in figure 3.10. The error 

bars included in the figure represent the deviation from the average pressure profile 
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experienced from all of the experiments and as such is a good measure of experimental 

repeatability. 

Figure 3.11 shows the measured static pressures around the model nose section for each 

cavity length after the flap assembly balances the model2. It can be seen that in each 

case the suction pressure around the nose is sufficiently far upstream to allow a pressure 

plateau to persist just in front of the cavity. There is good agreement between these 

results and those of the simulation performed in section 3.1 (figure 3.2), which 

vindicates the use of a flap to rebalance a wing with cut out. 

2A symmetric wing profile with a cavity on the upper surface will produce lift 
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Figure 3.1. Definition of the cavity dimensions. The endplates are indicated in light blue 

with the origin of the axes system indicated in green. 
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Figure 3.2. The pressures distribution around the proposed parent body for the cavity 

flow study. The SPARV panel method was used to quickly determine a suitable nose 

profile, PMB2D was then used for further verification. Both results indicate a slight 

pressure gradient immediately upstream of the cavity leading edge (x = Own). 
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Figure 3.3 Schematic diagram of wind-tunnel cavity model showing dimensions and 

positions of static and dynamic pressure measurement. A plan view of model the is 

shown at the top and the elevation is shown to the bottom. Scale 1: 6. 

a: Static tappings along cavity section (CAVXY) 

": Spanwise static tappings on nose section (NSXZ) 

Static tappings around nose section (NSXY) 

Spanwise static tappings on cavity floor (CAVXZ) 

: Pressure transducer locations (PTL) 
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Figure 3.4. Schematic diagram of wind-tunnel cavity model used for PIV measurement. 
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regions indicate the moving part of the model used to modify the effective cavity length. 

A plan view of model is shown at the top and the elevation is shown to the bottom. 

Scale 1: 6. 
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L (mm) D (mm) W (mm) L/D W IL 

50.00 50.00 840.00 1.00 16.80 
75.00 50.00 840.00 1.50 11.20 
100.00 50.00 840.00 2.00 8.40 
125.00 50.00 

- 
840.00 

- 
2.50 6.72 

150.00 50.00 
t 

840.00 3.00 5.60 

Table 3.1. Cavity dimensions used in this study 

L/D ReL 

1.00 94500 
1.50 141800 
2.00 189000 
2.50 236275 
3.00 283500 

Table 3.2. Reynolds number range based on physical length of the cavity, L. 

Figure 3.5. Surface flow visualization of the cavity floor taken at the port side of the cut 

out. The bottom left hand (physical) coordinates of the pictures are 

(-420, -150, -50) mm, the flow direction is from top to bottom. (a) indicates a region of 

strong recirculation in the x-z plane caused by the model edge effects, (b) demonstrates 

better two-dimensionality by using larger endplates (shown in figure 3.6f). 
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a. No endplates. 

b. Endplates (300mm x 200mm). 
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Figure 3.7. A comparison of images captured using wood and glass for the walls of the 

cavity model. The location of the boundary and local particle identification is clearer 

when the laser reflection is reduced at the wall. Although these regions of glare may 

only equate from 1 to 5mm in height their presence will impose biased measurements 

and/or clusters of spurious data that are difficult to fix. 
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Figure 3.8. Design of a total-head probe used for measuring the upstream boundary 

layer profile and downstream of the cavity section. The orifice diameter (not shown) 

was 0.6mm. Scale 1: 1. 
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Facility U. (m/s) Mx 6, (mm) 6" (mm) 80 (mm) H Red 

HPT 28.00 0.08 13.00 1.27 1.08 1.18 2390.00 

AT 28.00 0.08 11.00 1.10 0.88 1.25 1664.00 

DIe0 6ý /D 

46.30 0.03 

56.82 0.02 

Table 3.3. Experimental boundary conditions for the cavity flow tests performed in the 

two different wind tunnels. The boundary layer rake was positioned 5mm upstream of 

the cavity leading edge. These values are based on typical temperature and pressure 

values recorded in the wind tunnel laboratory (T = 20°C, P =1020mB). 
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Figure 3.9. Normalized velocity profile measured 5mm upstream of the cavity leading 

edge. There are differences in the two boundary layer measurements although there was 

good repeatability for each profile. 
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Figure 3.10. The pressure coefficient profile measured upstream and parallel to the 

cavity section. For both tunnel facilities the spanwise pressure gradient was acceptably 

two-dimensional within the region of interest (that is ±300mm). The error bars represent 

the deviation from the average condition. 
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Figure 3.11. The pressure coefficient profile measured upstream of the cavity section for 

each cavity geometry. It may be seen that the pressure gradient upstream of the cavity 

section is reasonably weak and similar for each case. Slight movement of the suction 

peak profile over the wing nose section is noted. 
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CHAPTER 4: MEASUREMENT OF THE CAVITY FLOWFIELD 

This chapter begins with two appropriate test cases that seek to validate the accuracy 
and usefulness of the correlation and tracking algorithms developed in chapter 2. The 

effects of possible phase biasing are also given mention at this juncture. An 
investigation of the spanwise effects inside the cavity is then pursued that helps to 

reconstruct the three-dimensional behaviour of the flow in the cavity itself. This chapter 
ends with a lengthy discussion of the data accumulated for the flowfield sampled in and 
around a number of cavities with different lengths. Of particular interest is the 
interaction of the cavity internal structures with the shear layer spanning the open face. 

In order to supplement the observations made by the PIV system both static and 

unsteady pressure measurements have been recorded inside the cavity. For the relevant 
figures the freestream velocity direction is from left to right unless stated otherwise. 

4.0 Test case 
The criterion required for a test case in these circumstances is that it should be a popular 

and well-documented flow interaction, and it should share characteristics with the main 
flowfield of interest. As such, the flow in the near wake of a circular cylinder and point- 

wise data sampled from the cavity shear layer are used for comparison with PIV data. 

4.0.1 The near wake of a circular cylinder at Re = 70000 

The unsteady separated flow around a circular cylinder is perhaps the most widely 

investigated flowfield in fluid mechanics and as such makes a convenient test for the 

PIV algorithms developed here. In addition to the attention shown by researchers that 

will allow proper measurement validation the formation of the flow structures in the 

cylinder near wake for this Reynolds number are somewhat similar in scale to those 

found within the cavity flowfield itself. 

As noted by Roshko et al. 1969 for the flow around a circular cylinder it is possible for 

the transition from laminar to turbulent flow to occur in the wake, the shear layer or the 

boundary layer and is dependent on Reynolds number. For the case investigated here 

(that is for Re = 70000 based on cylinder diameter, d, ) the transition occurs in the free 

shear layer and is more specifically termed the upper subcritical regime, Bloor and 
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Gerrard 1966, Hanson and Richardson 1968 and Zdravkovich 1997. An immediate 

transition of turbulence close to the cylinder and a short eddy formation region that 
produces a wide near wake characterizes this state, which immediately precedes the 
precritical transition in the boundary layer. There are no transition eddies in the free 

shear layers and it should be expected that the transition to turbulence is reduced to a 
spot of sudden burst in the free shear layer close to the cylinder. This will take place at 
approximately 0.02 < x/d, < 0.29, from Bloor 1964 where x is measured from the 

cylinder centre. 

A simple illustration of the model set-up and nomenclature used is shown in figure 4.1. 
The cylinder was positioned horizontally and in the centre of the wind-tunnel test- 

section (AT) and was constructed from a smooth Perspex tube with diameter 80mm and 

width 400mm, thus We /dc =5 with the freestream speed set to 13m/s. The cylinder was 
held on a cantilever (with no endplates) away from the main supports to reduce glare 

and optical obstruction while flowfield measurement were taken in the spanwise 

centreline plane. The turbulence intensity in the tunnel was estimated to be 0.34% for 

this test and the blockage was low (<4%). 250 image pairs of the near wake were 

captured in the downstream range 0.25 <x/d, < 0.75 such that quantitative and 

qualitative measurement validation could be sought from Maekawa and Mizuno 1967, 

Hanson and Richardson 1965,1968 and Toebes 1967,1969. It is expected that there 

will be two well defined regions in the near wake, a turbulent region (extending to 

approximately 1.5d, ) and an intermittent free shear layer bounded within a predefined 

region. 

Figure 4.2 indicates a typical instantaneous measurement obtained from the study. In 

this instance it can be seen that the thin shear layer (with high initial vorticity) is 

oscillating laterally in the rhythm of eddy shedding (indicated from the superimposed 

vectors). Rapid dissipation of the free shear eddies are also observed which is caused by 

the freestream entrainment into the progressively thicker shear layer. The mean 

characteristics of the near field region are in qualitative agreement to that presented by 

Hanson and Richardson 1968. The rms of the image set is calculated and the results are 

shown in figure 4.3. The expected boundary of the intermittent shear layer as calculated 

by Maekawa and Mizuno 1967 is included in the plot and it can be seen that this 
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contains the maximum amplitude rms values for the current study. Further qualitative 

agreement with the rms values from Hanson and Richardson 1968 is also found. The 

high rms values at x/dc - 0.3 and y/dc = 0.5 may indicate the burst to turbulence as 

described by Bloor 1964 although measurements taken further upstream indicate that 

this area of high rms extends between 0< x/dc < 0.3 (for the same y-station). This long 

smeared region of unsteadiness is characteristic of transition. The high rrns values 

indicated to the far right hand side of the plot are caused by the increased unsteadiness 

in the v-component of velocity eventually culminating in the (steady-state) closure of 

the near wake prior to 1.5dc. 

From the study of Toebes 1967 and 1969 (Re = 68000 and further data from Hanson 

and Richardson 1965) a comparison between the accumulated statistics from PIV data 

(correlation and tracking) and hot-wire data was made. The position of simultaneous 

hot-wire measurement made by Toebes 1969 are indicated as white filled dots in figure 

4.2. It may be seen from figure 4.4 that there is good agreement between the two sets of 

results and the amplitude of fluctuation is particularly well measured by the PIV system. 

A small deviation from the peak rms values between the point probe and PIV data is 

shown in the plot and cannot be fully accounted for. One possible explanation is that the 

upper subcritical regime is seen to be much more three-dimensional than the preceding 

regimes and as such spanwise variation in the burst to turbulence is possible and 

perhaps even random, Werle 1974 and Yokoi et al. 1993. Toebes 1969 used a cylinder 

with W, /d, = 12 and as such the spanwise behaviour at the cylinder centreline may 

differ slightly between the two experiments, causing a slight shift of the peak rms 

values. 

Because the hybrid BTT tracking method is dependent on local seeding concentrations 

and correct tracking the increase in spatial resolution it offers typically reduces the 

number of useful samples it yields. For the current case it was possible to accumulate 

170 samples from the 250 image pairs captured and as such demonstrates that a close 

inspection of statistical confidence must be maintained. In this instance it appears that 

the increase in spatial resolution provided by the hybrid BTT scheme has reduced the 

bias error inherent in the typical correlation (ITDWO-FFT-SDCPIV) resulting in a 

better-defined rms peak and augmented amplitude. 
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4.0.2 The random sampling assumption 
The normal efficient mode of operation for the image capture phase of the PIV system 
is best described as intermittent-cinematic. Essentially this means that the image pair 

accumulation is not truly random in process but is comprised of a series of random 

capture bursts of 30 image pairs taken at 10Hz (laser flash lamp signal). The issue then 

exists that phase biasing of the accumulated image pairs is possible and further 

investigation should be pursued. 

It was found that the best procedure to dispel the issue of phase biasing was to procure 

two individual sets of data each of which 250 samples in length, one of which is truly 

randomly sampled (camera and laser triggered at an arbitrary time) and the other 

sampled in the more convenient manner described above. A direct comparison of the 

statistical and ensemble-averaged properties of this data should be a sufficient indicator 

on the degree of convergence between the two. In the case of the near wake of a circular 

cylinder figure 4.3 represents the rms for an intermittent-cinematic capture and figure 

4.5 represents the difference in measured rms between that data and the measured rms 

using a truly random capture criterion. The predicted Strouhal number for the upper 

subcritical regime of a circular cylinder is roughly 0.21, which yields a frequency of 

instability of approximately 32 Hz (this puts the time spacing of images acquired for the 

intermittent-cinematic series, 0.1 Is, close to a multiple of shedding). However in this 

case at least the comparison between the two data ensembles does not seem to deviate in 

a fashion that represents phase biasing (the local levels of rms are very similar with no 

localized reductions). The maximum rms difference between the two data sets is 

approximately 0.04, which falls well within the error limits for the confidence interval 

stated, as discussed in section 2.7. 

For the case of flow over a cavity the instability frequency in the shear layer is much 

higher than that of the circular cylinder, while the frequency of oscillation inside the 

cavity is much lower. So although in principle it appears that phase biasing is 

unintentionally very difficult to maintain another comparison above was made for 

L/D = 2.0. This is included in section 4.3. 
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4.0.3 Point-probe measurement of the cavity shear layer 
A point-probe measurement of the shear layer developing across a cavity for L/D = 2.5 

was made and compared to the statistical PIV data obtained for the same case, using 
250 instantaneous image pairs. Two stations in the shear layer were chosen at 
x/L = 0.16 and x/L = 0.4 and a hot-wire probe was passed from the freestream into the 

cavity through 21 positions (with 2mm increments), as shown in figure 4.6. The data 

was taken at the centreline of the model (z =0 mm) and the probe was mounted onto a 
traverse by two holes drilled in the cavity floor. The hot-wire recorded 2 blocks of 4096 

samples for each point, which is an order of magnitude greater than the PIV sample 

size. The PIV image data used for comparison was captured using a magnification of 
0.12, an f-number of 5.6 and was correlated in the normal fashion (ITDWO-FFT- 

SDCPIV) and as such it is typical of all the cavity flowfield data presented herein. The 

Reynolds shear stress (u'v') is used for comparison (the sample average is indicated by 

the brackets ( )). 

At the first location measured (x/L = 0.16) it can be expected that the Kelvin- 

Helmholtz instability waves will be evolving into a periodic array of compact 

streamwise vortices moving at some proportion of the freestream velocity. This means 

that the Reynolds shear stress profile through the shear layer will measure a local peak 

at the mean position of the stagnation streamline where the vortex roll-up is occurring 

(typically the height of the leading edge corner). Figure 4.7a presents the measurement 

comparison for this position where it can be seen that this is the case (normalized with 

respect to the freestream speed). In comparing the two data sets it appears that the PIV 

system has overestimated the point of maximum Reynolds stress. This is perhaps 

expected since the shear layer roll-up is so thin and as such not sufficiently (spatially) 

measured leading to bias error in the correlated result, as briefly discussed in section 

2.7. At the second position of point measurement (x/L = 0.4) the length scales of the 

flow will be approximately doubled (from the general similarity property) and a better- 

sampled profile from the PIV system is expected. From figure 4.7b it can be seen that 

the PIV data does match the hot-wire data much more closely while the amplification 

and growth in the shear layer is represented by the increase in Reynolds stress. The 

degree of similarity between the two data sets does indicate that it is possible to obtain 

very accurate statistical information using a carefully set-up PIV system of limited 
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sample depth. The movement of the captive vortex in the cavity itself causes the shear 
stress profile discernable below the shear layer. 

It would appear from this representative case that proper measurement of the developing 

free shear layer will not be completely possible in this study. Instead, what will be 

found is good statistical measurement after the initial separation region of the boundary 

layer, estimated to be x> 20mm. The entrainment of the shear downstream of this point 

will provide larger scales and thus better measurement. 

4.1 Observations of the spanwise structure in the cavity 
From the observations of Maull and East 1963 and Rockwell 1980 it seems possible that 

there will be a transverse instability wave present within some of the cavity 

configurations included in this study. It has not yet been fully investigated whether or 

not a fully turbulent shear layer at separation can give rise to organized transverse 

waves in the cavity, Wyganshi et al. 1979 and Rockwell 1983. If they do exist these 

spanwise effects have important consequences for structural loading and heat transfer, 

while it is important to quantify the encroachment of such effects onto the x-y plane 

data that is presented in the remaining sections. 

4.1.1 Oil flow and pressure measurement 

The cavity model was mounted in the wind tunnel (AT) in the normal fashion, as shown 

in figure 3.6 d and e. From initial oil flow investigations it was immediately apparent 

that for some cases the flow was not two-dimensional in the cavity but was instead of a 

regular three-dimensional nature. Figure 4.8 shows some oil-flow visualization taken on 

the cavity floor with U. = 28 m is and various L/D and W IL ratios (width reduced by 

inserting pairs of wooden blocks into the cavity with periphery sealed). In every case a 

collection of oil has pooled at the location of separation of the primary vortex from the 

cavity floor and it can be seen that this line is wavy, indicating a spanwise variation in 

separation position. It is also apparent from these pictures that the spanwise wavelength 

is approximately equal to the cavity length (as indicated). 

The oil flow patterns recorded were in qualitative agreement with the measured 

spanwise pressure profiles, which was taken in both wind tunnel facilities and good 

118 



repeatability was found. Pressure data alone was then collected to estimate the spanwise 
behaviour in the flow. Some of the data collected is included in figure 4.9 and 4.24 for a 

cavity with L/D = 1.5 and variable width and it can be seen that the transverse 

wavelength may still be well-estimated using static pressures. The lengthwise pressure 
data is obviously affected by the spanwise cellular gradient. For the five cases of 
interest here (LID from 1.0 to 3.0) the pressure transducer on the cavity floor indicated 

a pressure coefficient of low frequency and large amplitude that could correspond to the 

movement of the transverse structure. In contrast there was no discernable movement in 

the separation line using the oil flow visualisation, the static Cp profiles are shown in 

figure 4.10. The amplitude of these pressure coefficient values appear small since they 

are normalized using the tunnel static pressure, although their influence on the primary 

vortex structure may be considerable. It was noted that for two of the cavity 

configurations (L/D = 1.5 and LID = 2.0) the transverse wavelength is present and 

approximately equal to the cavity length. A higher-pressure location in the wave is 

indicative of compression to the primary vortex, while a lower pressure indicates an 

expanded primary vortex. A schematic diagram is included in figure 4.11 for 

illustration. It appears from the results that the occurrence of three-dimensional 

behaviour is in agreement with the observation of Maull and East 1963 (where the 

Reynolds number is comparable), in which transverse waves are observed within the 

range 1.2 < L/D < 2.2. It should be noted that these results were repeatable in both 

wind-tunnel facilities (HPT and AT) over a period of several months and the presence 

of the static pressure orifices along the nose section was not seen to affect the spanwise 

development. 

4.1.2 The transverse instability 

It appears that the most likely origin of this spanwise cellular behaviour is from some 

organisation and/or amplification of instabilities from the shear layer. The spanwise 

extent of large scale features (that is streamwise vorticity) for an initially laminar 

mixing layer have been investigated on a number of occasions, see for instance Brown 

and Roshko 1974, Browand et al. 1980 and Huang and Ho 1990. It appears that the fluid 

entrained in the turbulent mixing layer by the large two-dimensional (spanwise) 

structures actually causes very little mixing. Konrad 1976 and Breidenthal 1980 

observed that the level of mixing increases drastically as the onset of three-dimensional 
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activity begins in the shear layer. In accordance with this Miksad 1972 reported that for 
a free shear layer the onset of spanwise activity coincided with a noticeable decay in 
fundamental mode energy, thus indicating a spanwise redistribution of energy at the 
instance of nonlinear disturbance growth. From this it appears that shear layers exist as 
complex three-dimensional structures. Using a three-dimensional model for a 
transitional free-shear layer Jimenez et al. 1985 proposed that both spanwise and 
streamwise vortical structures can co-exist, and some experimental agreement was 
found by Daily et al. 1984. The origin and the evolution of the streamwise vorticity 
remains the topic of further research. 

In a study of three-dimensional free shear layers Lasheras et al. 1986 used Laser 
Induced Fluorescence (LIF) to record the qualitative spanwise profiles of the mixing 
layer. From this he was able to determine that in the braids of the primary spanwise 

shear layer roll-up (see figure 4.11), well-organized counter-rotating pairs of streamwise 

vortices of approximately similar strengths existed. Numerical calculations by Corcos 

1979 indicated that this streamwise vorticity would evolve into concentrated round 

vortices for certain values of strain. Additional numerical modelling by Corcos and Lin 

1984 identified the concentration of streamwise vorticity as the main contributor to the 

mixing transition phase of the shear layer, which appeared to be in agreement with 

experimental observations of Jimenez et al. 1979 and Bernal 1981. It seems therefore 

that in order to elucidate on the cellular structures that exist spanwise along the cavity 

some quantitative measurement of the flowfield streamwise vortical structures must be 

made. 

4.1.3 PIV measurement of the spanwise plane 

A rudimentary PIV test was performed to measure the flow velocities across a number 

of spanwise planes within the L/D = 1.5 cavity. For this test only the cavity model was 

mounted from floor to roof in the wind tunnel such that the laser light sheet could 

illuminate the x-z plane while being able to traverse through a number of y-elevations, 

as shown in figure 4.12. Spanwise pressure measurements indicated that the cellular 

structures were maintained for this model orientation. The laser light sheet was 

thickened to 3mm and the inter-pulse delay on the laser head was suitably reduced such 

that any out-of-plane motions were minimized. From the initial results in figure 4.13 it 
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appears that the spanwise pressure oscillations are caused by a channelling of a high- 

velocity core being re-circulated back across the cavity floor after interaction with the 

cavity rear-bulkhead. Calculation of these average velocities was performed at each 
spatial coordinate by considering the average of the two particular instantaneous 

velocities for that plane, that is: 
1N 

u, (x, y) Ni=I 

1N 

-Iv, (x, y) 
i-I 

1" 
Wi (x, Z) 

, =, 
[4.! ] 

where this ensemble average is taken over a number of samples, N. This jet edge type 

of interaction with the cavity rear wall is later seen to instigate and modulate the 

primary recirculation in the x-y plane. It appears that this interaction at the rear wall is 

transmitting instability from the shear layer into the transverse direction of the cavity. 

Measuring a number of other y-planes in the cavity reaffirms this observation, as shown 
in figure 4.14. A progressive cutting of the cavity from the floor to the shear layer 

indicates that pairs of counter-rotating vortices are formed in the mid-plane of the cavity 

(y ID = -0.5) from vorticity that is cast into the cavity from the shear layer itself The 

dashed line drawn across each plot highlights the line of symmetry for this contra- 

rotating vortex pair and it seems to correspond to the position of deflection symmetry in 

the shear layer (y ID = -0.1). Further investigation indicated that these pairs of counter- 

rotating vortices were repeated along the cavity width as expected and in each case their 

vorticity was equal and opposite in strength. Each vortex in the pair corresponds to a 

positive or negative strain from the shear layer created by the spanwise vortices. For a 

typical free shear layer the spanwise non-uniformities decay in the downstream 

direction because the cores are continually rotating as they are being convected. In this 

instance the interaction with the cavity rear face instigates a pattern whereby the shear 

layer streamwise vorticity is being fed into the cavity structure, as shown in figure 4.15. 

With this organized periodic mass-flux into the cavity a steady cellular structure may 

exist, as opposed to the more erratic nature observed for free-shear layers; see Ashurst 

and Meiburg 1988 for instance. Unsteady pressure measurement on the cavity floor 

indicates that these vortex structures exhibit a second frequency that is similar to that 

measured in the shear layer spanning the cavity face, thus giving credibility to its 

proposed origin. 
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Metcalfe et al. 1987 showed that spanwise instability modes that are triggered by 

upstream non-uniformities in the spanwise vorticity are convected with the flow and 
grow at similar rates as the two-dimensional modes. In addition to this Lasheras et al. 
1986 noted that even though the location of the first manifestation of the streamwise 
vortices varied, they were always found on the braids between spanwise vortices. 
Recalling the feedback loop described by Rockwell et al. 1978 an interaction of 
vorticity concentration at the downstream corner causes shear layer fluctuation at the 

upstream corner. Therefore the braid portion of the shear layer is fixed as the cavity 
length/mode number, and with similar amplification rates in both planes the transverse 

wavelength will then adopt a similar wavelength disturbance. This also suggests the 

shear layer interaction at the impingement edge will vary in the spanwise direction, 

which affects the feedback. Spanwise differences in the x-y plane measurements are 

then expected. 

Figure 4.16 presents the calculation of the Reynolds shear stress (as defined in equation 

4.2) for the mid-plane of the shear layer spanning the cavity face (y /L = 0). From this it 

appears that at the rear cavity face the small-scale spanwise velocity correlation is 

organized around the symmetry point for each contra-rotating vortex pair. This type of 

fluctuation localization was observed spanwise across the cavity face for each of these 

corresponding saddle positions. This is in agreement with the observations of Bernal et 

al. 1981, Bernal and Roshko 1986 and Jimenez 1983 who realized a time-averaged 

velocity `corrugation' across the free shear layer. The Reynolds stress for y IL =0 and 

y IL = -0.8 were found to be of a similar magnitude and localization, while the planes 

measured in-between these was much lower (((u'V')/Uý) 
max 

- 0.00 1). Aided with the 

knowledge of the mean flow behaviour it appears that the rear wall interaction with the 

shear layer is transmitting fluctuation directly down, onto and across the cavity floor. 

The instability is then being propagated (weaker) back up into the cavity by the motion 

of the primary recirculation structure. 
N 

(u'v') -1 ui(x, y) - (u(x, y))] [v1(x, y) 
N ; _, 

It was also found that placing a small vortex generator upstream along the nose section 

could change the origin of these vortex pairs. Although this is not to say that upstream 

non-uniformities are responsible for the generation of streamwise vorticity. The origin 
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of the instability mode is still the topic of further research although an intrinsic 
instability in the shear layer vortices appears to be the most commonly accepted origin, 
Nygaard and Glezer 1990 and 1991 and references therein. 

Some irregular transverse oscillation is measured for L/D = 1.0, as noted from figure 

4.10. In this instance it is probably the case that the cavity length is not sufficiently long 

to facilitate the level of strain required in the shear layer braid to develop a strong three- 
dimensional motion, Corcos'mechanism 1979. This is not the case when LID > 2.2 

where it appears that the transverse instability disappears, and a more two-dimensional 

pressure profile is measured on the cavity floor. Huang and Ho 1990 have shown in 

their study that the shear layer vortex merging process is seen to suppress the activity of 
the streamwise vortices since this causes a marked reduction in the positive and 

negative straining rates between the (spanwise) vortex cores. These results have also 
been numerically verified by Corcos and Lin 1984 and Metcalfe et al. 1987. This may 
then indicate that the strength of the cavity feedback loop is attenuated for these longer 

cavities. This seems possible since an increase in Reynolds number to Re. = 3841 

during testing was seen to re-establish the cellular pattern on the cavity floor for 

L/D > 2.5. Another possibility is that the distance between the spanwise vortices is such 

that the streamwise vorticity is imported into spanwise cores themselves, Lasheras et al. 

1986. If this were the case then the transverse instability would be more weakened by a 

vortex escape at the cavity trailing edge. Further investigation is required to vindicate 

these points. It is the case however that such three-dimensional instability is inviscid, 

Benney and Lin 1960, but the actual formation of the spanwise cellular structures may 

be Reynolds number dependent. 

4.1.4 Effect on the x-y plane data 

The remaining issue is to determine the effects this three-dimensional flow structure 

will have on the x-y plane data to be looked at in this study. It appears that for 

L/D = 1.0,2.5 and 3.0 at the Reynolds number of interest, the flow is typically two- 

dimensional and any plane close to the mid-span of the model would suffice for proper 

measurement. For the remaining two scenarios (L/D = 1.5 and 2.0) evidence suggests 

that the through plane component of velocity (w) for the x-y plane data will be 

dependent on the z-station of the laser light sheet. For instance figure 4.17 shows two 
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ensemble averaged spanwise vorticity results in the cavity at two different z-locations 
for L/D = 1.5. These correspond to primary vortex expansion (4.17a) and compression 
(4.17b). The ensemble average vorticity is calculated according to equation 4.3. 

N 

H= 11 w; (X, y t_1 
[4.3] 

In figure 4.17 the contours are chosen in a manner such that the shear layer vorticity 
does not dominate the colour mapping. It remains evident that there is a spanwise 
distortion in the shear layer spanning the cavity face (as expected). For the case of 
primary vortex expansion (4.17a) the captive recirculation fills the majority of the 

cavity, which will have a prominent effect on the amplification growth of the shear 
layer. For the case of primary vortex compression (4.17b) a stronger jet-like flow into 

the cavity at the trailing edge is observed and it carries with it more vorticity. This 

transported vorticity has a more pronounced effect over the cavity floor and along the 

cavity front wall, which confines the primary vortex to a smaller area of recirculation 

making the primary vorticity region stronger. For experimental convenience it was 
decided that z= 40mm would be taken as the location for x-y plane data for all cases. 
This location corresponded closely to the average spanwise pressure coefficient values 
for all cases, including those that demonstrated steady cellular behaviour. 

It is not satisfactory to try and explain the three-dimensionalities present in the cavity 

flowfield using a two-component PIV measurement that is orientated in planes both 

perpendicular and parallel to the freestream direction. For a more thorough investigation 

a stereoscopic PIV system is required. This allows simultaneous viewing with two 

cameras to reconstruct all three components in the planar region; see Prasad 2000 for 

instance. A more rigorous interpretation of the results can then be made without the 

inference that follows two-component measurement and would impart some 

information about the orientation of these vortex pairs inside the cavity. For instance 

figure 4.14 (y ID = -0.5) demonstrates a re-reversal of the flow at x/L =0 for the next 

vortex pair, which suggest a pairing formation similar to that shown in figure 4.18. 

Obviously more investigation is required to be sure of this hypothesis. More 

investigation is also required for various W IL ratios since it appears from the oil-flow 

visualization that the transverse instability is sometimes not steady. That is to say that in 

some instances the cellular structure undergoes a transition to another transverse 
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wavelength, which is maintained for a period and then changes to another, thus 

exhibiting the behaviour of a chaotic attractor. The most frequently observed scenario is 

that the wavelength of the cellular structure modulate between the cavity length and 
twice the cavity length, see for instance figure 4.9 for W IL = 8.53. 

4.2 The cavity case 

Over recent years a number of numerical investigations have addressed the issue of the 

possibility that coexisting structures within the cavity couple together to form 

complicated hydrodynamic quasi-periodic flow phenomena. Most recently Lin and 

Rockwell 2001 added an experimental investigation that sought to complement some of 

the observations of these simulations and vindicate previous qualitative work on shear 

layer-edge interactions, Ziada and Rockwell 1982a and 1982b. What is clear from these 

results is that a fully turbulent inflow boundary layer at nearly zero Mach number may 

still give rise to organized oscillations within the cavity, although the exact formation 

and progression of eddy structures below the shear layer is still not really understood. 

For experimentalists it appears that any further work should escape from point-wise 

measurement and instead try to resolve the cycle-to-cycle variations that persist in this 

flow. The `clipping' phenomenon discussed in section 1.2.5 is of particular interest here 

since the coupling of different flow scales is a possible cause. At this test Mach number 

the current investigation is typically devoid of elements that seek to organise the cavity 

interactions, that is Mach wave reflections, elastic effects and strong acoustic resonance. 

In reiteration, it is known from the work of Sarohia 1977 and Rockwell 1979 that when 

a critical value of the Reynolds number is exceeded self-sustained oscillations are 

expected in the shear layer, generated by the selective amplification of extraneous 

disturbances. In addition to these oscillations, a feedback mechanism exists whereby 

vortical structures impinge on the downstream cavity corner causing the propagation of 

pressure waves upstream, thus sustaining the oscillation. An explanation of the full 

dynamical system is sought in this section that takes into account the small scales of the 

shear layer and the larger scales of the recirculating cavity eddy. The central case of 

L/D = 2.0 is used for this purpose, with other cases mentioned when necessary. To the 

author's knowledge the common literature contains no prior wind tunnel investigations 

that detail the whole flowfield in and around the cavity at any Reynolds number. 
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For each of the cavity geometries considered in this study it can be expected that the 

characteristics of the flow structure classify these as shallow and open (as defined in 

section 1.1). That is, even though these tests are conducted in a wind tunnel the ratio 
between the cavity length and acoustic wavelength of standing waves is still small 
therefore generating `pseudo-sound', Knisely and Rockwell 1982a. In addition it can be 

expected that the dividing streamline at any time will not impinge on the cavity floor. 

These cavity oscillations are also categorised as `fluid dynamic', which may incorporate 

shear layer mode or wake mode. The model was orientated in the tunnel as shown in 

figure 4.19 with the laser light sheet being directed down into the cavity section. The 

mean flow vectors and streamlines, measured within and above the cavity for L/D = 2.0 

are shown in figure 4.20. From this it is apparent that the mean flow in the cavity is 

characterised by a large recirculation zone that fills the entire cavity. Closer inspection 

of the velocity magnitudes indicate that flow close to the rear cavity wall experiences a 

mean flow velocity of approximately 25% of freestream speed, while there still appears 

to be a strong flow movement along the floor and a weakened core directed up the front 

face of the cavity. An exact centre of the recirculation zone cannot be easily determined 

and as such it is possible that there is significant modulation of the internal cavity 

structure during the shear layer oscillation mode. 

The mean pressure coefficient on the lower cavity wall is shown in figure 4.21 and is 

included with other acquisition runs for repeatability testing, while in figure 4.22 it is 

shown with the other cavity configurations tested. Pressure data over the front, aft and 

floor of the cavity is included in these plots. At these Reynolds numbers the pressure 

profile imposed on the cavity wall fits into the categorization of an open cavity flow (as 

discussed previously in section 1.1). Even though there is clearly a well-defined 

pressure distribution on the cavity floor it would be considered a uniform distribution 

with regard to the small values of suction actually generated. However one point of 

interest is that there is no pressure plateau evident prior to the stronger recirculating 

motion, which is indicated by a concave pressure region on the cavity floor. At these 

Reynolds numbers it appears that the entire extent of the cavity is affected by a 

recirculation within the cavity; that is there are no apparent zones of sedentary flow. For 

each L/D the strongest effects of the cavity recirculation zone are localized within 

0.4 <x IL < 0.9. Figure 4.23 includes an approximate calculation of the normalized 
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circulation for the internal cavity recirculation structure. The integration path for the 
calculation of circulation was defined in each case by a streamline released at 
(x, y) = (L/2, D). As the cavity length is seen to increase the centre of rotation moves 

aft, while the average recirculation strengthens. As expected the pressure is seen to 
increase close to the rear cavity face as the flow stagnates. The pressure measured along 
the aft wall indicates that there is a strong vertical inflow into the cavity, as already 

suggested by the mean velocity vectors. In general the peak-measured pressure on the 

aft wall occurs at the pressure orifice nearest the cavity trailing edge corner. This 

indicates a proximity to the dividing streamline for the open cavity flow regime, already 
defined by Plentovich 1993 and there is no evidence of a wake mode oscillation. Each 

test was conducted at the W IL as mentioned in table 3.1. It is known that a reduction in 

this parameter will increase the suction profile on the cavity floor, thus increasing the 

strength of the steady state circulation inside the cavity, as demonstrated by figure 4.23. 

The pressure data indicates that the centre of the recirculation zone remains stationary 

relative to the cavity rear face as the cavity length increases (approximately at a distance 

D/2 from the wall). Even though this is consistent with other pressure measurement 

studies the flowfield velocity data in figure 4.20 indicates that the recirculation core is 

actually much further forward at approximately (x/L, y/L) = (0.35, -0.25) denoting a 

discrepancy between the two sets of data, which is borne out for each L/D greater than 

unity. Since these observations are based on sample-averaged data only a better analysis 

of the problem is now sought with unsteady and instantaneous measurement. 

4.2.1 Shear layer mode 
Looking at the spectral distributions of fluctuations using unsteady pressure 

measurement at the shear layer impingement on the rear cavity face Rockwell 1977 was 

able to determine the existence of different modes of oscillation. These modes of 

oscillation are important in determining the fluctuation behaviour of the cavity itself. In 

this experiment the unsteady pressure data was acquired in two runs of 32000 samples 

at a frequency of 10kHz. The data was Fourier analysed with a Hanning window and the 

resulting spectral densities were averaged. For comparison with the work mentioned 

earlier by Block et al. 1976 the results are plotted with Mach number and Strouhal 

number based on cavity length in figure 4.25 (for this plot only), for the transducer 
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mounted on the cavity aft wall. The evidence from this plot suggests that this semi- 

empirical relationship used to predict the Strouhal number of fluid-resonant oscillations 
is adequate enough to predict the Strouhal number for fluid-dynamic oscillations also. 

For M. = 0.08 the predominant mode of oscillation is in the second mode (in agreement 

with other hot-wire data taken) and it is a number of modes that is present for each 

cavity configuration. For the second mode (m = 2) the system is usually denoted a two- 

eddy system and is characterized by the presence of two eddies evolving simultaneously 

within the impingement length. The Kelvin-Helmholtz instability is responsible for this 

roll-up inside the shear layer. 

It is the case that there are two modes present at any one time, with L/D < 2.0 

oscillating in the first and second modes and L/D > 2.0 oscillating in the second and 

third modes. One caveat to these observations is for LID = 1.5, which does not have a 

dominant mode at a Strouhal number of approximately unity and the preferred (primary) 

state of oscillation is at StL - 0.6 (corresponding to m= 1). This is indicative of a single 

eddy roll-up occurring in the shear layer. From the plot this mode switch does not 

appear to be caused by a depthwise resonance effect since the oscillation would then 

adopt a much higher (rather than lower) oscillation frequency. It can also be seen that 

this behaviour does not persist as the Mach number increases (at M. = 0.13 the 

fundamental mode is at m= 2). Figure 4.26 presents the modal data with the more 

expected reference to momentum thickness and Reynolds number; the blue numbering 

indicates the SPL (sound pressure level) for that particular mode calculated using 

equation 4.1. 

SPL = 20loglo 
Pr"`ss 

2x10- 
[4.1] 

From figure 4.26 it appears as if the both modes present have a similar strength (in fact 

less that 0.5dB of a difference) and it was deemed that the blade passing frequency of 

the wind-tunnel fan was sufficiently distant enough from the shear layer oscillation 

frequency (and harmonics) to affect their measurement. From the studies of Knisely and 

Rockwell 1982a and Cattafesta et al. 1998 the capture of data over long time intervals 

was able to expose the possibility of mode switching. In these studies the data was 

subjected to a bicoherence analysis and other sophisticated signal processing techniques 

to reveal the recurrence of mode switching. Indeed this may be the case here, although 
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the signal durations taken in this instance are too short to make any proper judgement 

and is an issue for further work. What is established here is that the hydrodynamic 

instability of the separated shear layer causes more than one mode to be generated. Of 

particular interest here is how these modes interact with the modulation of the internal 

cavity structures and how these modes may be related to changes in concentration of 

vorticity (e. g. distension) at the impingement corner. 

From the pressure transducer on the cavity floor it appears as though there is a very 

persistent low-frequency component that is stronger than the main shear layer mode 
(even though the SPL's are lower) as shown on the sub-axis of figure 4.26. As the 

cavity length is increased the Strouhal number and oscillation strength appear to 

decrease. This low frequency oscillation is not apparent from the transducer on the rear 

wall, although this alone is not sufficient to discount it as a structural vibration (proper 

accelerometer measurements are needed for this). The resonant acoustic frequencies of 

the working section were approximated from an expression more typical to that of ducts 

and enclosures and as expected it was found that the frequencies detected are much 

lower than those possible from an acoustic response of the test-section. 

It is hypothesised here that the three-dimensional movement in the cavity itself, already 

mentioned in the previous section, is at least in part responsible for these oscillations. 

The decrease in Strouhal number as the cavity length increases coincides with a typical 

fluid dynamic oscillation, while there is a severe reduction in strength as the LID 

increases beyond 2.0; the limit at which the static spanwise cellular structure is seen to 

collapse. At an increased Reynolds number (tests conducted at M. = 0.13) the SPL of 

this low frequency component did not undergo any severe reductions after this limit, 

again coinciding with the observations from the static pressure measurements. 

Consequently it seems reasonable to attribute this energy to this fluid movement. 

4.2.2 Self-sustained low-frequency components 

While the fundamental component of the shear layer is seen to exist there are a number 

of other lower-frequency components present in the upstream and downstream 

travelling waves, as shown in figure 4.27 for LID = 1.5. This plot is indicative of all the 

other cavity geometries in that there are three sub-harmonic components of the first 
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shear layer mode with another intermittent frequency between the first and second shear 
layer modes. The first shear layer mode is seen to be the strongest on the cavity floor 

and as such predicates the motion of a one-eddy system in this region. The other low- 

frequency components conform to /3/4, ß/2 and 3P/4 (indicated with an arrow and 

circle in figure 4.27) where /3 is the strongest shear layer mode detected (or m= 1). The 

magnitudes are similar for each L/D also, with /3/4 being slightly less than the 

magnitude of the fundamental; the remaining components are taken to be sub- 
harmonics. Knisely and Rockwell 1982a have already observed such behaviour and 
interpreted their results with the aid of linearized, inviscid stability theory (applicable to 

laminar flow only). However their work was concerned only with laminar inflow 

boundary conditions and it is interesting to note that this behaviour persists for a 

turbulent inflow condition with a much higher Reynolds number than previously used. 
In the configurations tested here these well-defined low-frequency components suggest 

that there is a particular mechanism generating these sub-harmonics. Knisely and 

Rockwell 1982a were able to ascertain that these low-frequency components may 

interact with the shear layer mode to either reinforce itself or to produce an additional 

(weaker) low-frequency component. Therefore they are perhaps the result of a self- 

selection process whereby a cyclic displacement of the shear layer at impingement gives 

rise to a low-frequency component whose overall phase difference is compatible with 

the cavity length. It is known from previous investigations, for instance Woolley and 

Karamcheti 1974, that these oscillations have a similar phase as the fundamental and 

that there is the possibility for strong non-linear coupling also. In this study these 

modulations are also recorded by the transducer at the rear cavity corner, which seems 

to indicate that these frequencies correspond to an oscillation in the whole cavity that 

imposed vorticity fluctuations at the rear cavity face. The part that these low-frequency 

components may play on the manifestation of one of the three possible impingement 

events at the cavity trailing (that is compete clipping, partial clipping or complete 

escape as previously discussed) will be pursued later. 

It can then be hypothesised that the shear layer oscillation will act to selectively amplify 

low-frequency components within the cavity such that they may travel downstream with 

the travelling wave. It has also been noted that these sub-harmonics are evident by the 

transducer on the cavity floor affirming their presence around the whole cavity, 
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indicating that the growth of these components is not localized simply to the 

neighbourhood of the shear layer. The extent to which these sub-harmonics modulate 
the internal structure of the cavity is now investigated using a dual-laser/camera PIV 

system. This dual system PIV mode is briefly mentioned. 

The maximum PIV image capture rate from one laser and one camera is controlled by 

the maximum flash lamp frequency on the laser head itself, which is set by the 

manufacturer at 10Hz in this case. Recording higher frequency oscillations is possible 

with a dual laser/camera system whereby two lasers are set-up to be coplanar (using a 

beam combiner) and two cameras are positioned to capture the same field of view, as 

shown in figure 4.28a. In this way a data ensemble can be gathered at any number of 

pre-defined time delays (or Ott from figure 4.28c). This system may then allow the 

capture of sequential image pairs at a time-delay corresponding to any of the 

frequencies of interest described by figure 4.27, for instance the ß/4 subharmonic. 

Therefore if Ott = 4/ß and the flowfield beneath the shear layer is isolated and 

dominated by this mode (as expected) this data pair should approximate a phase-locked 

result. Each sequential data pair captured in this way should yield the same result 

similarity, thus allowing a data ensemble (of typically 100 image pairs) to be collated at 

one particular time-delay. Figure 4.29 illustrates the capture at this frequency for 

LID= 1.5 (that is Ott = 0.0 14 seconds) with rows one and three (labelled `RAW') of 

interest here. It can be seen that in both instances the flow within the cavity is 

dominated by a single recirculation structure that appears to be in a similar state of 

maturity and location; it appears there is good `matching' between the two velocity 

fields. 

The level of `matching' observed between two results captured at a specific time-delay 

is indeed subjective and a more rigorous parameter is sought here. It was found that the 

individual (normalized) correlation of each component of velocity between the two 

results, sample averaged and multiplied together provided an adequate `matching' 

parameter between two velocity fields (represented as (R11. )(R11)). In other efforts the 

velocity magnitude and velocity derivatives were deemed either to have insufficient 

information or too noisy to provide a clearly defined correlation peak. Additionally, it is 

not possible to use data windowing procedures since it biases the final result. As in 
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every correlation the offset information of the correlation peak is important and is 

recorded here as the product of the displacement of the individual correlations 

normalized by the cavity length (represented as I du - d, 11L). 

By accumulating a series of images at a number of different time-delays (At2) it is 

possible to build up a profile of temporal events inside the cavity for comparison. Figure 

4.30 presents the data obtained from such a study in a three-dimensional plot showing 

time-delay with correlation strength and the correlation displacement, while figure 4.33 

presents a slice of this data using only time-delay and correlation strength (once again 
for LID = 1.5). The triangular filled markers indicate information that is extracted from 

the base 10Hz frequency (that is corresponding to Ott = 0.1,0.2,0.3,... etc). If there is a 

large-scale coherent oscillation inside the cavity it will be characterised by a point that 

indicates high `matching' at a small measured shift (similar to phase locking). Closer 

inspection of the data yields four points that fit these criteria and are emphasised using 

circular filled markers with stems. The best match is observed when At2 = 0.015 

seconds, which closely corresponds to the ß/4 sub-harmonic component previously 

measured by the pressure transducer. Although the correlation value is not particularly 

strong it still indicates that the internal velocity field structure of the cavity is dominated 

by a pervasive coherent structure of low-frequency oscillation. The low-level of 

correlation is expected since it is known there are a number of other possibly non-linear 

interactions present within the cavity oscillation, causing some cycle-to-cycle variation. 

It is possible to retain only the most energetic large-scale features of the flow by using 

the technique of proper orthogonal decomposition (POD), also known as Karhunen- 

Loeve expansion. In this way it is possible to filter out the small-scale features present 

within a typical oscillation and improve the `matching' quality between velocity vector 

fields that previously exhibited decent levels of similarity. Specific details of the 

snapshot POD method will not be covered here although Holmes et al. 1996 provides a 

comprehensive review, while application to numerical simulation and experimental data 

is provided by Gillies 1998 and Cipolla et al. 1998 respectively. In this method the 

coherent velocity structures can be extracted from the flowfield from which the 

resulting eigenfunctions are capable of reconstructing the original flow in an optimal 

way. Thus a low-order model may be presented since it is possible to retain only the 
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most energetic eigenfunctions. In developing this low-dimensional system it is 
important to keep as few modes as possible, although enough modes should be retained 
in the expansion to maintain an accurate dynamical representation of the flow system. 
Even though the reconstruction error decreases as the number of modes retained 
increases, using too many snapshots will reduce the performance of the technique due to 

the inevitable noise present in the calculated higher eigenmodes (projection of the 

velocity data on the eigenfunctions or expansion coefficients). The main plot in figure 

4.31 a illustrates this point for 20,30 and 40 snapshots. Using this data it was decided 

that 30 snapshots (that is 30 instantaneous PIV pictures) was sufficient, of which the 

first fifteen modes capture approximately 85% of the total fluctuation energy. The 

expansion coefficients for the two most energetic modes are included in the subplot of 

this figure and the representative eigenfunctions are included in figures 4.31 b and c. 

Using the technique described the velocity fields previously mentioned in figure 4.29 

(labelled `RAW') are reconstructed (using the first fifteen modes) and included in the 

intermediate figure rows (labelled `POD'). The changes to the velocity field are quite 

apparent and the level of matching between each pair appears to be better. By then 

repeating the more rigorous correlation methodology it can be seen from figure 4.32 that 

there has been an improvement in the performance of this technique. Once again the 

points displaying the best correlation strength with minimal displacement are shown 

using circular filled markers in this plot while a comparison between both data sets 

('RAW' and `POD') are included in figure 4.33. The reconstructed data reaffirms the 

observations already made whereby the point closest to the ß/4 subharmonic 

(At2 = 0.015 seconds) shows the highest level of correlation, while the harmonics of 

this component all show an improvement in matching (on average a 3-fold increase in 

strength). 

There is then a clear indication that the low-frequency subharmonic component of 

interest does correspond to a large-scale coherent fluid fluctuation beneath the shear 

layer. There has also been a reasonable amount of validation given to the performance 

of the spatial correlation technique in identifying temporal modes of the cavity 

oscillation using velocity data only. Knowing that one particular type of oscillation 
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dominates the internal cavity fluctuation aids the interpretation of the instantaneous PIN' 
results discussed in the following section. 

4.2.3 Internal cavity structure 
Structures that are formed by the shear layer impingement at the cavity rear wall and 
floor are forced back into the shear layer by the mechanism of fluid entrainment, 
demanded by the oscillating shear layer itself. The envelopment of such structures into 

the shear layer will modify the disturbance arriving at the downstream corner and thus 

affect the next oscillation cycle amplitude through feedback. This will subject any shear 
layer spanning a cavity to a certain amount of (non-linear) amplitude modulation. In a 

study by Ziada and Rockwell 1982 a shear layer was seen to impinge upon a wedge 
(and as such no cavity was formed underneath). The presence of this impingement edge 

organized the shear layer oscillation through the feedback mechanism as expected and 

there was a repeatable vortical interaction at the downstream wedge (although some 
`jitter' effects were always present). This is because there was no opportunity for other 

structures to be entrained below the shear region. In order to understand the amplitude- 

modulated nature of the shear layer spanning a cavity, the structures that form and 

persist beneath the shear layer itself must first be understood. Therefore this section on 

the observations of the internal cavity structure precedes a discussion about the 

behaviour of the shear layer itself. 

Both the pressure data and the velocity correlation procedure has given credibility to the 

concept that the internal structure of the cavity is dominated by large-scale coherent 

oscillations that appear to be driven by the shear layer mode, selected to correspond to 

the phase characteristics of the oscillating shear layer. Figure 4.34 shows the average 

vorticity calculated for the central case. From this figure it is apparent that the mean 

flow within the cavity is dominated by a jet-like flow along the rear and bottom walls of 

the cavity as revealed by the zone of negative vorticity (as indicated). This jet-edge 

effect is present in all the cases investigated in this study and has a different level of 

upstream propagation depending on the specific cavity L/D. Figures 4.35 and 4.36 

include the average vorticity for L/D = 1.5 and LID = 3.0 where these effects are 

particularly evident. The importance of this particular interaction will be reiterated later 

in the section since it is crucial to the internal flow oscillation. 
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The highest values of vorticity are generated immediately downstream of the front 

corner and at the downstream corner, where there is impingement of the shear laver. 

Positive vorticity extends along each of the cavity walls with a lip of negative vorticity 

extending well upstream along the cavity floor. Lin et al. 2001 discovered a similar flow 

pattern in which it is described as a wall jet, having a boundary layer on one side and a 
free separated layer on the other. In this instance the discontinuity of the jet-like flow 

into the cavity is starker making the perimeter of the jet more discernable, which 

encapsulates a single clockwise rotating structure in the right hand side of the cavity. 

The flow rate associated with this jet-like flow into the cavity must satisfy the 

entrainment demands of the shear layer that spans the cavity (which will be discussed in 

the next section). From inspection of the instantaneous vector plots the momentum of 

this wall jet is strong enough to travel the complete length of the cavity floor and turn 

upwards as it meets the cavity front wall. It then has a direct effect on the initial 

development of the shear layer. It seems therefore that there are perhaps a number of 

effects present that will modulate the development of the shear layer. The first type is 

the feedback mechanism in addition to the expected Biot-Savart induction, the next is 

that caused by pockets of vorticity cast from this wall jet colliding with the underside of 

the shear layer and finally by a more direct jet impingement back into the underside of 

the shear layer in proximity to the separation location. The latter two interactions are 

primarily the reason that self-similar free turbulent jets have constant maximum shear 

stress while those formed over a cavity do not, even thought the shear layer thickness 

still increases linearly with distance. As opposed to the feedback mechanism these latter 

two effects cause an upstream influence only after a certain time-delay, these effects are 

now discussed. 

4.2.3.1 The cavity oscillation 

A complete oscillation of the internal cavity structures is described with the aid of 

figures 4.37 to figure 4.44 using the dual PIV system described in section 4.3.2. 

Although the feedback mechanism described in section 1.2.3 is not disputed a new 

explanation of the low-frequency oscillatory motion is given. In contrast to the mean 

flow vectors already shown there is no stationary vortex present within the cavity at any 

time. As previously discussed the shear layer interaction with the cavity trailing edge 

causes mass addition and mass removal from the cavity itself. During mass addition the 

stagnation streamline is deflected into the cavity and a jet-edge is formed along the rear 
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cavity wall that will continue to convect along the cavity floor. By the time this vorticity 
interacts with the cavity front wall a vortex is formed that will be further strengthened 
by a successive incoming jet edge (mass addition stroke) and the upward entrainment 
demanded by the region of exponential (or even linear) growth at the shear layer 

separation (figure 4.37). A large recirculation region is formed in proximity to the 

cavity front wall (figure 4.38), although the vorticity levels are relatively low. At this 
time this primary recirculation extends from the cavity floor to the separated shear laver 

and as such is being strongly influenced by the fundamental shear layer oscillation. This 

structure will move forward through the cavity (figure 4.39) at an instance 

corresponding with phase agreement of the shear layer and at the same convective 

velocity. Over these latter two stages it is possible that further vortices are cast along the 

cavity wall and coalesce with this recirculation region. At this time the internal cavity 

structure and the shear layer oscillation are coupled. Evidence that coupling indeed 

occurs is presented in section 4.3.4. 

As this primary recirculation region is convected downstream the shear layer is drawn 

upward by the incoming rotation at the rear corner (figure 4.40) and there is large-scale 

mass expulsion from the cavity (figure 4.41). This goes some way to reaffirming the 

predicted coupling between the shear layer and the internal motion since the entire 

extent of the shear layer is deflected upward and the volume underneath undergoes a 

common motion of mass expulsion (forming a large-scale clockwise rotation) from the 

cavity. After the structure has encountered the rear cavity corner the modulation of the 

internal structure may take on any one of two possible scenarios. The type of vortex- 

edge interaction that has preceded it dictates each specific scenario. 

The first possibility is that the vortex-edge interaction has facilitated a complete vortex 

escape and as such there are no discernable small-scale structures left in the cavity as a 

new jet edge forms along the cavity floor for the next mass addition stroke (figure 4.42 

and figure 4.43). As can be seen more clearly in figure 4.43 this is typically associated 

with a strong discontinuous jet-edge forming once again along the cavity floor. The 

second possibility is that the approaching vortex experiences some degree of distension 

or severing by the rear edge and as such some artefacts from that vorticity cluster 

remains in proximity to the corner even after the large scale mass expulsion of figure 

4.41. Thereafter (figure 4.44) the vorticity clusters of the `clipped' vortex will either 
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amalgamate with the incoming shear layer to be eventually cast downstream with it or 
will be swept back into the cavity by virtue of the jet-edge formed during mass addition 
to the cavity. Figure 4.45 illustrates the `clipped' interaction with the rear corner 

whereby the vorticity cast downstream can be seen at the periphery of the image while 

packets of vorticity persist (forming a fully rolled-up coherent vortex) at the edge of the 

cavity. In figure 4.46a and 4.46b the same structure is shown, as it is being distorted and 

swept back down along the cavity rear wall. 

Because the flow in the cavity is then obviously not quiescent `roll-out' behaviour of 
the internal cavity structures will account for the well-documented low frequency 

flapping of the shear layer. The details of the internal periodic flow recirculation is 

different to the findings of low Reynolds number computational studies, in particular 
Pereira and Sousa 1993 and Najm and Ghoniem 1991. In some instances the cavity 

oscillation shows a better similarity to findings from transonic and supersonic cavity 

studies, as in Takakura 1996 for instance (this is pursued further by Lin et al. 2001). 

What is congruent between these studies and the work presented here is that the 

recirculation zone takes the form of a large-scale eddy that migrates downstream while 

temporarily dominating the motion of the smaller-scale vortices. 

4.2.3.2 Perturbation of the shear layer via jet impingement 

The interpretation of a perturbed shear layer is taken to describe some interaction that 

the shear layer encounters out-with that of normal fluid entrainment. For instance the 

typical interaction seen here is shown in figure 4.47 and figure 4.48 whereby the mass 

addition stroke has such momentum that the jet-edge is able to travel the total internal 

perimeter of the cavity and osculate the shear layer itself. The unsteadiness imposed on 

the shear layer in this region will significantly contribute to the modulation and 

amplification of the shear layer as it progresses downstream, and is a point for further 

discussion in section 4.3.4. This impingement appears to be periodic where a similar 

interaction is shown to be repeatable through the sample set taken at a time delay 

corresponding to P/4. 

The nature of the internal oscillation already given for the central case is generally noted 

in the other cavity geometries studied, although it is this disruption caused by the wall 
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jet-impingement back onto the underside of the newly separated shear layer that 
disseminates the precise internal modulation observed. It is judged that as the cavity 
length decreases (say L/D < 2.0) the effect of the jet-edge with the separated shear layer 

becomes a more dominant interaction, while for longer cavities (say LID a 2.0) the 

described internal interactions are more prevalent to the articulation of the shear layer. 

Figure 4.49 illustrates the `roll-out' interaction where the internal recirculation structure 
locks onto the shear layer convection and effectively `empties' the cavity of the primary 

recirculation and any satellite vortices (operating at the /3/4 frequency in each case). As 

it can be seen in each case the motion of this `roll-out' adopts a similar interplay with 
the surrounding fluid. The wall jet already formed along the cavity floor is enveloped 
into the shear layer and thus forms a nearly discontinuous (vertical) edge within the 

cavity. Thus, as the cavity effectively `empties' it leaves near stagnant flow upstream of 

this edge. In each case A, B and C indicate the centre of this roll-up shown in figure 

4.49. 

As the length of the cavity increases the backflow range of the jet-edge along the cavity 

floor decreases and there is much less impact with the cavity front wall. Instead the 

backflow motion is more immediately entrained into the shear layer, thus balancing the 

larger amplitude mass stroke with the higher entrainment demands of the longer shear 

layer. Looking at the Reynolds stress calculated for each of the individual cavities will 

serve to show the magnitude of these effects on the formation of the flow in and around 

the cavity. These contour plots are shown in figures 4.50 to 4.54, note that the colour 

bar limits float to accommodate each measured Reynolds stress. 

For the shortest of cavities (L/D = 1.0 and figure 4.50) the measured negative stresses 

are at their lowest. In this and every other case the level of stress in the shear layer is 

much higher than anywhere else in the cavity with their dominance characterized by a 

number of high-stress small-scale segments along the span of the shear layer. This is 

consistent with the recognized dynamics of the separated shear layer, which is known to 

roll-up into small vortical structures. Already mentioned a number of times is the 

formation of a jet edge along the vertical and bottom walls of the cavity and it can be 

seen from each plot that this jet-edge carries with it a substantial amount of positive 

momentum fluctuation. One important point is that the value of positive velocity 
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correlation along the rear wall does not seem to change appreciably with respect to the 

cavity length although the Reynolds stresses at impingement are seen to nearly triple in 

magnitude between L/D = 1.0 to L/D = 3.0. However, this does not necessarily 

intimate that the unsteady loading of the rear face is similar in every instance, since the 

mass addition and removal is much more violent (inducing more momentum into the 

cavity) for the longer cavities. A longer shear layer amplifies disturbances more, so the 

final amplitude of oscillation is larger, thus increasing the Reynolds stress. As shown 

for the limiting cases in figure 4.55 there is a stronger (mean) jet flow along the rear 

face as the cavity length increases. 

In each instance of the presented Reynolds stress there is a discernable lip of high 

fluctuation that forms from the cavity floor back up into the shear layer, and represents a 

typical recirculation of the internal flow. For the smallest cavity case there is very little 

velocity correlation in this lip (or elsewhere internally) because the vortex neatly fills 

the whole cavity (known as a captive vortex) and the agitation of the flow is minimized, 

although the low frequency component is maintained. As the length of the cavity 

increases the distortion of this recirculation lip increases until the momentum transport 

of the jet is drawn back into the shear layer after smaller upstream propagations, which 

is in agreement with the vorticity and vector plots already shown. For instance in figure 

4.52 the jet-edge is displaced from the cavity floor at approximately x/L = 0.5 and 

travels further upstream to eventually encroach onto to the underside of the shear layer 

at the same location. With reference to figure 4.34 it can be seen that the loci of 

maximum Reynolds stress in figure 4.52 corresponds to the location of the jet-edge. 

This is expected since this edge is seen to convect small vortical structures directly from 

the shear layer that increase the velocity fluctuation at these locations, this is consistent 

with the observations of Fiedler et al. 1981 for a number of different fluid interactions. 

It can be seen that there are similar observations for the remaining cavity cases. As 

already noted, this leaves an increasing proportion of the cavity at the front wall with 

very low velocity fluctuations causing less modulation to the incipient shear layer 

region. A fuller discussion of the shear layer will be presented in the next section. 

As already expressed in section 4.1.2 some quantification of the chosen acquisition 

procedure must be mentioned at this stage. Figure 4.56 includes the two methods of 
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image acquisition for acquiring statistical data, that being by random image capture and 
that using a base 10Hz frequency (with L/D =2 /0). It is shown in the calculation of the 

RMS that there is remarkably little difference between the two methods described, thus 

vindicating the use of the more convenient 10Hz-sampling rate used in this study. In 

figure 4.56c the PTV `t-tiling' methodology is presented using the RMS calculation and 
it is apparent that there is good similarity between this and the other data although there 
is some reduction in the RMS levels in the vicinity of the shear layer. Any discrepancies 

between the RMS levels of the correlated and tracked data are caused by the inclusion 

of bias error in the (correlated) results. In this instance the bias error entices the 

correlated RMS results to be elevated especially in areas of excessive velocity gradient. 

4.2.4 The separated shear layer 

The large-scale instability of the shear layer along the cavity is a convective instability 

of the entire separating turbulent boundary layer. Since energy can travel upstream to 

form a self- excited oscillation this type of parallel flow is better described as being 

globally unstable. Even though it is well known that the inclusion of an impingement 

edge can change the measured pressure signal in the shear layer from a non-stationary 

/convectively unstable process (Dimotakis and Brown 1976) to a deterministic/globally 

unstable process (Knisely and Rockwell 1982a) there is still the need for further 

research. It is how the shear layer coexists with a recirculation zone spanning its entire 

length that is the topic of this section. 

4.2.4.1 The shear layer state 

The single most striking feature that is apparent from the instantaneous PIV results is 

that the shear layer may take on either of two possible states. In the first state the 

parallel flow reaches the upstream corner of the cavity and begins to continually 

generate vorticity and it is then the presence of the Kelvin-Helmholtz instability that 

causes small-scale vorticity pockets to roll-up and amalgamate together encouraging 

larger clusters of vorticity to progress downstream, see figure 4.57a for example. A 

region of weaker vorticity is seen to envelope the entire extent of the shear layer and 

depending on the shear layer mode of oscillation, any other large scale clusters of 

vorticity. It is the impingement of these vorticity clusters with the downstream corner 

that provides the actual feedback signal. Further, it is the roll-up of the shear layer that 
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causes it to undulate and amplify as it progresses downstream, while the wavelength is 

strongly related to the cavity length. In the second state the wavelength of the shear 
layer is substantially smaller than the length of the cavity, sometimes even an order of 

magnitude so. This type of shear layer structure, shown in figure 4.57b does not appear 

to organize itself in a fashion corresponding to a globally unstable parallel flow. In fact 

the apparent loss of feedback in the shear layer spanning the cavity makes it appear 

more similar to a free shear layer. Lin et al. 2001 encountered similar small-scale 

structures in their study and identified hairpin vortices in the upstream boundary layer 

as a possible source. In this study the pressure transducer at the rear cavity corner has 

already identified the shear layer modes and movement of the larger internal cavity 

structures. This leaves one unidentified oscillatory component in the spectrum at 

Ste = 0.028 ± 0.005 and is curious in that the frequency has very little variation over the 

complete range of cavity LID. If this component were in some way linked to the shear 

layer mode the Strouhal number would be expected to decrease as the cavity length 

increases. So it appears then that this frequency is probably related to movement in the 

upstream boundary layer and is able to persist within the shear layer along the length of 

the cavity when the feedback signal is attenuated. These two states of the shear layer are 

encountered in every case; figure 4.58 includes the case for L/D = 1.0 where the shear 

layer second mode is extremely close to this component, but remains very distinct. 

From observations with the dual-PIV set-up there is one particular stage in the 

oscillation that is concomitant with the existence of this second state of the shear layer. 

Once again the behaviour of the shear layer is intrinsically linked with the recirculation 

structure beneath it and is now explained. In figures 4.57a and 4.58a and b the first state 

of the shear layer is present when the recirculation region is forming from the mass 

addition to the cavity. The rim of the recirculation region caused by this jet-edge 

interaction is clearly distinguishable in figure 4.57a as a rim of negative vorticity (at 

x/L = 0.25) that partitions a zone of positive vorticity upstream of it. For figures 4.58a 

and b this is congruent with a centred (nearly rigid) vortex structure in the cavity, noted 

by the presence of a negative vorticity region at (x/L, y/L) = (0.25,0.25) and positive 

vorticity established at the upstream cavity face (lower quadrant). As can be seen in 

figures 4.57b and 4.58c and d the second state of the shear layer is characterised either 

by a lack of any coherent vortical flow beneath it or by some marginal inflow along the 
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cavity rear corner, noted by a layer of negative vorticity in proximity to the rear wall 
abutting a layer of positive vorticity. It appears then that the global mass expulsion from 

the cavity (figure 4.41) immediately precedes the small-scale instability in the shear 
layer. This seems reasonable since the feedback signal would be attenuated when the 

stronger vorticity in the shear layer is lifted away from the rear cavity corner. This is 

also in accord with Knisely and Rockwell 1979 who found that an upward (or 

downward) displacement of 680 of the shear layer at the impingement corner was 

enough to reduce the transverse fluctuation by half. In fact the vorticity strength of the 

exiting recirculating structure is seen to be less than half of that in the shear layer 

(where, (o, 00 1U. - 0.025), thus dramatically affecting the transmitted upstream 

agitation. A more concise measurement would be of the circulation in the exiting 

recirculation, although this is complicated by the cavity geometry and straining of the 

structure. 

4.2.4.2 The potential for vortex coalescence 

When the feedback signal is attenuated and the shear layer is in the second state its 

behaviour is more akin to that of a free shear layer. In this instance there is the 

possibility for neighbouring shear layer vortices to coalesce as they travel downstream, 

which would otherwise be impossible for any other forced shear layer. If this 

coalescence were present there would be expected changes both in the loading of the 

downstream corner and in acoustic propagation. Vortex coalescence is the classical 

process that governs the growth of a free shear layer and using linear stability theory the 

instability frequency that this occurs at is approximately Ste - 0.0 17 (for laminar inflow 

conditions). Lin et al. 2001 indicated in their study that their measured small-scale 

instability corresponded to a Strouhal number an order of magnitude higher, which is 

clearly not the case here (where, Ste = 0.028). It is important therefore to gauge the 

potential for vortex coalescence being present in the shear layer. 

In an effort to corroborate the complexity that these two shear layer states bring to the 

cavity oscillation some results from the hybrid BTT technique are presented here. It is 

expected that these results are not from the common mode of oscillation, but are taken 

from the non-linear type interactions that are present. In figure 4.59a the instant at 

which global mass expulsion has just occurred is shown with a portion of the freestream 
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velocity removed for clarity. Using trial and error it was found that the best reference 
frame to interpret individual shear layer roll-up is at a frame moving at 0.25Ux 

. 
The 

argument for a suitable reference frame rests with the distinction between streaklines 

and timelines and as such a moving frame should yield additional information about the 
flowfield, see for instance Gursul et al. 1990. The criterion set here was for each cluster 

of vorticity to correspond to individual swirls in the velocity vectors. Figure 4.59b 

presents the same result as shown in figure 4.59a with the frame moving. It can be seen 

that there is large-scale vortical motion in the shear layer even after global mass 

expulsion (not noted in figure 4.42 for example) insinuating the presence of vortex 

coalescence. In figure 4.60 the presence of small-scale vortices upstream in the shear 

layer and larger vortices in the downstream region again alludes to the fact that vortex 

coalescence is perhaps present. What is clear from this study is that the proximity of the 

cavity corner does not facilitate the use of the normal means to identify vortex 

agglomeration, that is vortex nutation and sign changes in Reynolds stress, Ho and 

Huerre 1984. While this particular issue requires further investigation, it is certain is 

that this second state of the shear layer is not the dominant state. 

One final note is with regard to the modulation of the shear layer and processes that 

exist beneath it. For the spatial correlation calculation (where L/D = 1.5) a decent 

amount of structure similarity was present during the oscillation of the cavity and this 

was reaffirmed by the POD analysis. However, as the cavity length increases the shear 

layer is subjected to larger amplitudes of oscillation and thus exposed to longer periods 

in the two states of the shear layer. It is probable that this effect contributes to the cycle- 

to-cycle variation of the flow pattern and possibly to the clipping fate at the rear face. In 

figure 4.61 structures with a wavelength similar to those observed in the second state of 

the shear layer (labelled A, B, C and D) are seen to convect back upstream into the 

recirculation region of the cavity. This is dissimilar to the feedback mechanism 

previously mentioned and would impose some cycle-to-cycle variation. 

4.2.4.3 The interaction with the shear layer on roll-out 

It has already been mentioned that there is phase agreement between the exiting internal 

recirculation and the vortices in the shear layer itself. Some evidence is now included to 

satisfy this conjecture. When the large recirculation region inside the cavity migrates 
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downstream it does so at the same speed as the vortices in the shear layer. Figure 4.62 is 

a repeatable observation and indicates that the recirculation region (indicated by 'C' on 
the figure) is drawn into the braid region of the shear layer, which is the thin vorticity 
layers that are positively strained and transmit mass addition to the shear layer vortices 
(indicated by `A' and `B' on the figure). As this vortex evolves downstream (as it rolls- 

out of the cavity) it entrains the vorticity of the recirculation eddy-region and as such 
develops into a much larger and stronger structure than a typical vortex progression 

would have. In contrast vortices that are following this larger vortex e. g. vortex `A' may 

only entrain typical non-vortical fluid and as such are much weaker than normal. 

Using the dual-PIV system two sequential sets of results are used in figure 4.63 to 

illustrate a low frequency flapping of the shear layer. It can be seen that as the vortex of 

interest is convected downstream (indicated with the prefix `A') it entrains by mutual 

induction the large recirculation region underneath, while the next vortex is much 

smaller and weaker by comparison. In summary, roll-up `B 1' is a typical shear layer 

structure that precedes the roll-up `A*'. Roll-up `A*' coincides with the entrainment 

cycle while the roll-up `C*' succeeds the large-scale interactions of `A'. This type of 

feeding mechanism between the shear layer and the internal cavity fluid is typical of 

part of the bluff-body vortex shedding mechanism, more commonly visible downstream 

of a circular cylinder, Gerrard 1966. Figure 4.64 compares a normal shear layer roll-up 

and an entrained roll-up at the same physical position along the cavity. As expected the 

roll-up that entrains the internal recirculation is causing much higher rates of positive 

strain across the open face of the cavity than that of the normal roll-up. It is interesting 

to note that these effects are not localised to the adjoining braid but instead affects the 

entire extent of the cavity at this time. These high rates of positive strain persist until 

there is a global mass expulsion from the cavity. 

4.2.4.4 The shear layer oscillation with respect to (uv) 

With regards to the jet-edge interaction with the shear layer at the upstream separation 

corner some further points can be made. Using the hybrid BTT t-tiling scheme the 

distribution of (uv)/U. ' is calculated along the open face of the cavity (at v/L = 0) and 

shown in figure 4.65. In general each cavity modulation is characterised by a region of 

inflow along the initial portion of the shear layer that is balanced by a region of outflow 
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in proximity to the downstream corner. The integration of the mean momentum transfer 

along this line will always be negative, since it makes a positive contribution to the 
drag. There is a good degree of similarity between these profiles for LID; -- 2.0 where 

there is a broad region of outflow along approximately the first 75% of the cavity 
length. As expected there is an increasing level of inflow at the downstream corner as 
the cavity length increases, caused by the maturation in the shear layer roll-up. In the 

remaining cases (in particular LID = 1.5) there is a much higher and localised level of 

outflow at the upstream corner of the cavity that is caused by the jet-edge impingement 

on the underside of the shear layer. It is interesting to note the repercussions that this 

has on the development of the shear layer since an augmented region of inflow must 

then balance this. In fact most of the outflow occurs very close to the upstream corner 

rather than over a broader region of the cavity face and there is a disproportionate 

amount of inflow at the downstream corner for the actual cavity case. In the captive 

vortex case (L/D = 1.0) the internal structure is better described as a vortex since the 

recirculation region neatly fills the entire cavity and there is negative vorticity present in 

and around the structure. This causes the jet-edge formed over the cavity rear wall to be 

more easily induced into the established steady-state recirculation and reduces the effect 

of jet-edge impingement at the front corner. This is conformed by the Reynolds stress 

calculated in figure 4.50 that shows very little fluctuation along the upstream wall. For 

L/D = 1.5 the cavity oscillation mechanism is much stronger causing a stronger outflow 

over the first 10% of the cavity face. 

In the pursuit of shear layer amplification attenuation it is seen that the internal 

modulation of the cavity must be controlled in order to have any steady-state 

improvements on the state of the shear layer. Any actual improvements are 

characterised by the vortex-edge interaction at the cavity trailing edge and the 

conversion of these disturbances at the sensitive region of the shear layer. In the final 

chapter passive control techniques are used on cavity cases to reduce velocity 

fluctuation inside the cavity itself and to reduce mass expulsion from the cavity. These 

suppressions are pertinent to the case of aircraft stores and the inter-car gap on trains 

respectively. 
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Cantilever 

Laser sheet 

; ion of interest 

a. Isometric view of model used for 

flow around a circular cylinder. 

Although not indicated, shrouds were 

placed around the model struts. 

b. Elevation indicating position of laser 

light sheet and region measured. 

Figure 4.1. Experimental set-up used for the PIV measurement of the near wake of a 

circular cylinder. 
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Figure 4.2. A typical instantaneous normalized vorticity measurement in the near wake 

of the circular cylinder. Velocity vectors are superimposed to indicate the position of the 

free shear layer eddies. The white dots indicate hot-wire measurement positions from 

Toebes 1969 used for comparison in figure 4.4. 
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Figure 4.3. Rms calculation of the near wake normalized using the freestream speed. 

The dotted lines indicate the approximate position of the typical wave form region as 

defined by Maekawa and Mizuno 1967. 
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Figure 4.4. Comparison of the normalized rms values for x/dd. = 0.6. The hot-wire 

signal is normalized rather than calibrated. 

rms(u)/U,,, 
0.8 0.04 

0.7 

06 

V 
V 

T 

0.31 

0,2 -0 01 

0,11 ý1-- 
M-002 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

x/dc 

Figure 4.5. The difference in measured rms for the near wake of a circular cylinder 

between an intermittent-cinematic capture ensemble (figure 4.3) and a truly randomly 

captured image ensemble. The interval between each image pair was greater than 10 

seconds (total capture time 45 minutes). 
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a. Elevation view of probe positioning and movement using the traverse assembly. The 

hot-wire components are indicated in red. 

b. Plan view of the port side of the model. The traverse was positioned under the model 

and added approximately 1% to the tunnel blockage. Two holes were cut in the floor of 

the cavity to allow probe mounting onto the traverse. 

Figure 4.6. Set-up used for hot-wire measurement through the shear layer at two x- 

positions. 
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b. Measurement of the Reynolds stress at x/L = 0.4. 

Figure 4.7. Turbulent measurements at two different locations along the cavity shear 

layer for L/D = 2.5. 
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Figure 4.9. The coefficient of pressure measured for L/D = 1.5 as the cavity width is 

decreased (from top). Apart from W IL = 8.53 the transverse wavelength is consistently 

well approximated by the length of the cavity. 
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Figure 4.10. Pressure coefficient measured for each of the cavity geometries of interest 

in this study. Steady cellular behaviour was observed spanwise along the cavity floor 

for cases L/D =1.5 and L/D = 2.0. 
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Figure 4.11. Schematic diagram showing the transverse wave instability and its effect 

on the primary vortex shape. 
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Figure 4.12. Diagram representing the installation orientation of the model in the test- 

section of the wind tunnel. The laser light sheet is directed in a plane parallel to the floor 

of the cavity. 
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Figure 4.13. Static pressure measurement compared with the captured flowfield 

information showing average velocity magnitude at y/D = -0.8 for LID = 1.5. The 

black dots indicate the position of the static pressure ports on the cavity floor. 
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Figure 4.15. The instantaneous measurement of the velocity and vorticity in a spanwise 

plane. At this elevation the pockets of vorticity are much smaller and stronger and 

propagate up into the cavity. There is considerable streamwise meander of vorticity at 

this height, smearing the data of figure 4.14. u, �ax 
/U, = 0.22. 
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Figure 4.16. Calculation of the Reynolds shear stress through the mid-plane of the shear 

layer spanning the cavity face for LID = 1.5. Two localized regions of energy are 

developed on either side of the dashed line, as plotted in figure 4.14. 
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Figure 4.17. The calculation of the average spanwise vorticity at two different z- 

positions along the cavity model for L/D = 1.5. The limits of the colourbar have been 

set to make the structures inside the cavity more visible. 
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Figure 4.18. A schematic diagram indicating the probable three-dimensional cavity 

structure based on the strictly two-component data accumulated in this study. The blue 

ovals indicate the typical orientation of the transverse vortex pairs inside the cavity. 
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Region of interest 

Figure 4.19. Diagram representing the installation orientation of the model in the test- 

section of the wind tunnel. The laser light sheet is directed in a plane normal to the floor 

of the cavity. 
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Figure 4.20. Mean flow properties in the cavity for L/D = 2.0. Streamlines are shown 

with velocity vectors superimposed in the cavity itself (flow is from left to right). The 

average internal cavity flow is characterised by a stagnant zone surrounded by a much 

stronger recirculation flow along walls and the open face. 
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Figure 4.21. Pressure coefficient measured along the cavity forward wall, aft wall and 

cavity floor for L/D = 2.0. As a test for acquisition repeatability three runs are shown. 

There appears to be very little measured difference between each set. 
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Figure 4.22. Pressure coefficient measured in the same manner already mentioned. Each 

cavity L/D included in this study is shown in the graph. 
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Figure 4.23. Circulation plotted against L/D. The integration was performed around a 

path implied from the streamline calculation and as such is approximate. Error bars 

indicate the spanwise variation in circulation strength, 
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Figure 4.24. Pressure coefficient measured along the cavity forward wall, aft wall and 

cavity floor for L/D = 1.5 using a number of W IL ratios. 
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Figure 4.25. Strouhal numbers calculated from the tests with predicted Strouhal 

numbers from Block et al. 1976. Note that two sets of Mach number have been included 

in the experimental data, M,,, = 0.08 and Mý = 0.13. Filled markers indicate the 

dominant mode of oscillation. 
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Figure 4.26. Data for test matrix only showing cavity L/D against St6. As expected the 

Strouhal number decreases as the LID increases. The numbers next to each data point 

indicate the measured SPL for that particular oscillation. 
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Figure 4.27. Raw data of the unsteady pressure measurement from the cavity floor. The 

top right hand axes illustrate a zoomed in portion of the main axes while the shear layer 

modes are identified with mode number, m. 
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a. Wind-tunnel set-up for dual laser/camera operation. 

b. Single laser/camera operation. 

- Fluid oscillation mode 
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c. Dual laser/camera operation. 

Figure 4.28. Two laser beams are channelled into one plane using the beam combiner as 

shown in (a). Parts (b) and (c) illustrate the sampling procedure for an idealized fluid 

oscillation. For the normal laser/camera operation (b) the inter-pulse delay (At, ) is 

dictated by the velocity dynamic range (section 2.3.4), while the second time delay 

(At2) is imposed by the laser flash lamp. In the dual set-up (c) it is possible to control 

the second time delay although the fundamental capture frequency is still dictated by the 

flash lamp delay. 

164 



-0.25 
J 

-0.5 

-0.75 

0 

-0.25 
J 

-0.5 

-0.75 

' 
VA1` \Vý """ttt 

(ri 
1t ý`tý1Yl ýý ll 

aý 
r, 1i 

1! } 1 
fA4ý . bra ! 41 

" 41 

t=0.000 s 

RAW 1 

I 
t= 

POD 

-0.25 J 

-0.5 

-0.75 

0 

-0.25 
J 

-0.5 

-0.75 

POD 

t=0.100 s 

RAW 
1 

ý}rý 

_rý__ý_ra+ý-rte 

\lý1 

tTl 11TýTCF 
ýi ýýi: ý1 ý 1'L 1ý r 

nn1P 

0 0.25 0.5 0.75 100.25 0.5 0.75 1 
x/L x/L 

Figure 4.29. A sequence of results captured using the dual laser/camera set-up. 

Ott = 0.0 15 seconds, which corresponds approximately to the ß/4 subharmonic 

frequency of the fundamental shear layer oscillation (Ste = 0.0023). `RAW' and `POD' 

indicate whether the results are obtained directly from a typical correlation or 

reconstructed using Proper Orthogonal Decomposition. Streamline positions are seeded 

at (x IL, y IL) = (0.25, -0.33; 0.5, -0.33; 0.75, -0.33) for the `RAW' data. 
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Figure 4.30. Velocity data at a number of time-delays is acquired. Normalized cross- 

correlation is performed on the components of velocity independently and then 

multiplied together to provide the `matching' factor. The displacement position where 

the best match is found (Idu - dJ /L ) is included in the plot. 
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a. The distribution of the eigenvalue energy fraction is shown with amplitude data 

included on the sub-axis for L/D =1.5 
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Figure 4.31. The main plot (a) indicates the change in the distribution of modal energy 

observed using a variable number of snapshots. The expansion coefficient data for the 

two most energetic modes of the projection using 30-snapshots is included to the bottom 

right of this plot (a) with the corresponding eigenfunctions included in (b) and (c) for 

reference. 
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Figure 4.32. Normalized cross-correlation of reconstructed POD data. The positions that 

indicate a `phase lock' are the same as those shown in figure 4.30 although in this 

instance the correlation is much stronger. 
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Figure 4.33.2D slice of the data plotted in figure 4.30 and figure 4.32. The filled 

markers indicate the position where the offset was closest to zero. 
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Figure 4.34. Average normalized vorticity for the central case (L/D = 2.0). The cavity 

is dominated by a jet-like flow along the rear and bottom walls of the cavity. 
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Figure 4.35. Average normalized vorticity for L/D = 1.5. 

The same contour limits and contour levels are used as in figure 4.34. 
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Figure 4.36. Average normalized vorticity for L/D = 3.0. 

The same contour limits and contour levels are used as in figure 4.34. 
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Figure 4.37. Instantaneous velocity and vorticity for L/D = 2.0. The initial stages of the 

internal oscillation show a vortex forming at the front wall of the cavity. I/ 16th of the 

total vectors are shown. 
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Figure 4.38. Instantaneous velocity and vorticity for L/D = 2.0. Packets of vorticity cast 

into the cavity from the trailing edge shear interaction coalesce at the front wall. 
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Figure 4.39. Instantaneous velocity and vorticity for L/D = 2.0. When the primary 

cavity vortex has gained sufficient strength and size it rolls forward through the cavity 

(having locked phase with the shear layer). 
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Figure 4.40. Instantaneous velocity vectors for L/D = 2.0. (zoomed in portion of the 

trailing edge). Immediately prior to a violent mass expulsion cycle the primary vortex 

progresses toward the rear corner as the shear layer is deflected upward. 
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Figure 4.41. Instantaneous velocity and vorticity for L/D = 2.0. The primary 

recirculation region escapes from the cavity after an interaction with the trailing edge. 
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Figure 4.42. Instantaneous velocity and vorticity for L/D = 2.0. After the complete 

primary recirculation is expelled from the cavity the mass addition to the cavity will 

convect along the cavity floor to reform a vortex at the front wall. 

-0.2 

-0.25 

-0.3 
J 
>%-0.35 

-0.4 

-0.45 

_n 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

x/L 

Figure 4.43. Instantaneous velocity vectors for L/D = 2.0 (zoomed in portion of figure 

4.42). A strong jet edge along the cavity floor is conducive to a prior complete escape 

from the cavity. All correlated vectors are shown. 
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Figure 4.44. Instantaneous velocity and vorticity for L/D = 2.0. If complete escape of 

the primary vortex from the cavity is not successful then artefacts from the prior 

oscillation will persist at the trailing edge. 
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Figure 4.45. Instantaneous velocity and vorticity for L/D = 2.0 (zoomed in portion of 

figure 4.44). Mass from the partial escape of the primary vortex can be seen leaving the 

field of view, while other structures are held at the cavity trailing edge. 
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a. In some instances it is possible that not all the vorticity is cast from the cavity during 

the low-frequency flapping of the shear layer. 
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b. In some instances the clipped recirculation is convected back into the cavity itself to 

coalesce with the upstream recirculation. Time-delay is 0.004 seconds. 

Figure 4.46. Instantaneous velocity and vorticity for LID = 2.0. It is interactions such as 

this that cause the cycle-to-cycle variation in the low-frequency oscillation of the cavity. 

175 

ýýz6 oiu 



0.5 

0.25 r ---------- 

i 
i 

0 
J 

A 

-0.25 

-0.5 

-0.75' 0 

I" 

0.25 0.5 0.75 
x/L 

coz 01 U- 

Figure 4.47. The instantaneous vorticity for L/D = 1.5. The dashed box indicates the 

velocity vector region displayed in figure 4.48a. 
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Figure 4.48. A closer look at the cavity leading edge for L/D = 1.5 shows that the wall 

edge jet directly impinges onto the initial development region of the shear layer. 
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Figure 4.49. Each picture in the series corresponds to the `roll-out' of the primary 

vortex for various L/D ratios. The approximate centre for this `roll-out' is indicated A, 

B and C in each figure respectively. The effective backflow into the cavity is reduced 

for the longer cavities. The hollow black rectangle indicates the position of the pressure 

transducer. 
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Figure 4.50. Reynolds stress for L/D = 1.0. 
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Figure 4.51. Reynolds stress for L/D 1.5. 
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Figure 4.52. Reynolds stress for L/D = 2.0. 
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Figure 4.53. Reynolds stress for L/D = 2.5. 
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Figure 4.54. Reynolds stress for L/D = 3.0. 
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a. Velocity magnitude for L/D 1.0. Colour bar limits are preset. 
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b. Velocity magnitude for L/D = 3.0. Colour bar limits are preset. 

Figure 4.55. The mean velocity magnitude plots show that the jet edge and core along 

the rear and bottom walls becomes stronger as the cavity length increases. This accounts 

for the increase in drag experienced by the longer cavities. The colourbar limits are 

chosen to delineate the main features of interest. 
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a. Vorticity is continually being generated at the cavity leading edge while the Kelvin- 
Helmholtz instability noticeably acts to roll-up the shear layer after some progression 

downstream. 
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b. In a different type of shedding the shear layer is punctuated with small-scale high 

vorticity segments. This effectively illustrates the change in shedding frequency after 

actual separation. 

Figure 4.57. Instantaneous vorticity for L/D = 2.0. The colour bar limits are set. 
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In this case the freshly separated shear layer displays lip of similar strength vorticity 

that begins the process of entrainment and roll-up. 
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c. d. 

It is also possible that immediately after separation the shear layer displays a tendency 

to break apart into small-scale pockets of strong vorticity. This does not facilitate a 

large-scale roll-up process. 

Figure 4.58. Instantaneous vorticity for L/D = 1.0. The colour bar limits are set. 
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a. Immediately after global mass expulsion from the cavity the shear layer returns to the 

downstream corner. 

0.25 

J 

-0.25 

yep' 1 '' 
Rlýc _"5 

_ýr -5 ? `i 

ý1\ý ý` ýSý \\\r ri1`ýýr 
ý" 

r ?. X1,1 5TH -- 

0 0.25 0.5 u. 15 

x/L 

b. With the frame moving at 0.25Uc it is easier to spot the presence of individual 

structures in the shear layer, these are at (0.2,0), (0.5,0) and (1.0,0). 

Figure 4.59. Instantaneous velocity vectors for L/D = 3.0 using the hybrid BTT 

scheme. 
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Figure 4.60. Instantaneous velocity vectors for L/D = 3.0 using the hybrid BTT scheme 

with the frame moving at 0.25U,,,,. Once again the mass expulsion cycle succeeds the 

formation of several coexisting swirl patterns in the shear region. The tracking 

algorithm implies that there are two swirl pockets saddled around the point (0.25,0) 

with others at (0.6,0) and (0.75,0). 
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Figure 4.61. Instantaneous velocity vectors for LID = 3.0 using the hybrid BTT 

scheme. The features A, B, C and D indicate the centre of small satellite vortices cast 

into the cavity during a mass addition stroke to the cavity when the shear layer is still in 

the second state. The primary roll-up is indicated by feature E. 
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Figure 4.62. Instantaneous velocity vectors and vorticity for L/D = 2.0 with the frame 

moving at 0.25U,,,,. Features A and B indicate two separate regions of roll-up in the 

shear layer. A lip of positive vorticity (feature C) indicates the relative position of the 

recirculation wavefront (also indicated by a hollow arrowhead in the vector plot above). 

The lower portion of the figure is included in its entirety in figure 4.57a. 
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Figure 4.63. Instantaneous velocity vectors for L/D = 2.0. The series is made up of two 

sets of sequentially acquired data used to illustrate a typical interaction between the 

shear layer and the internal cavity recirculation zone. Al and A2 indicates the roll-up of 

interest in the shear layer, while the arrow designates the approximate position of the 

recirculation wave front. The roll-up region that is `locked-on' experiences increased 

entrainment and as such grows much larger. 
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Figure 4.64. Instantaneous shear strain for L/D = 2.0. In both cases the roll-up of a 

shear layer vortex is located at (0.6,0), as indicated by the dashed line. For the first case 

(a) a typical Kelvin-Helmholtz shear layer vortex is rolling-up, while in the second case 

(b) the entire cavity flow is being entrained into the roll-up of a shear layer vortex, 

causing much higher rates of positive strain from the separation location to just before 

the centre of the roll-up. 
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Figure 4.65. Distribution of the mean momentum transfer for each cavity case along the 

line y/L = o. 
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CHAPTER 5: AERODYNAMICS OF THE INTER-CAR GAP A. ND 
SOME PASSIVE CONTROL STRATEGIES 

A derivative of the flowfield experienced in and around a normal (rectangular) cavity 

geometry is that of the inter-car gap on a train. A small geometrical modification to the 

cavity walls of chapter 4 (now termed the `clean' cavity cases) can impose distinct 

changes to the measured fluctuation of the flowfield, and as such merits a brief 

investigation here. This problem is particularly interesting since it is beneficial to reduce 

skin-friction downstream of an inter-car gap, which does not necessarily demand 

diminution of flow fluctuation inside the cavity itself. Velocity field data for a number 

of standard cavity geometries are recorded and proposals for better performance are 

made. In addition some mainstream passive control strategies are tested for the central 

clean cavity case and observations are made. The results presented in this section are 

not supplemented by pressure data while the statistical data is produced with the hybrid 

`t-tiling' scheme using the required amount of image pairs to generate a 250-sample size 

set. The physical `t-tile' dimension was preset to that indicated in the right hand side of 

table 2.1. 

5.0 The inter-car gap 
According to simple flat plate theory the immediate downstream vicinity of an inter-car 

gap on a train will result in a local increase of skin friction. In fact using the logarithmic 

theory of Von Karman it is predicted that approximately 14% of the total skin friction 

imposed by a typical carriage of a Pendolino S220 train will be generated within a 

single cavity length downstream of the inter-car gap (for typical operating conditions). 

At first it appears that design modifications to the gap may improve the skin friction 

drag in this vicinity and have a noticeable improvement in the overall drag. However, 

the boundary layer grows quickly, after approximately three carriages downstream the 

boundary layer is taller than the inter-car gap itself, and the skin friction is much 

reduced anyway. Therefore, the drag improvements obtained from design modifications 

to the cavity will diminish downstream and for a common 12-car assembly the 

reduction of skin-friction drag should only be very slight (perhaps 1% or less). 

Nevertheless, it may be the case that distinct reductions in skin-friction are possible 

courtesy of a subtler mechanism associated with cavity flow unsteadiness. 
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With the prerequisite of cavity oscillations being detected once the shear layer has 

reattached to the downstream wall the distribution of Reynolds stress through the zone 

close to the wall is changed in comparison to a typical boundary layer. That is the 

organisation and growth of the shear layer structures encourage an elevation in 

Reynolds stress very close to the wall, which has been seen to increase the local value 

of skin friction. It is well known from past research, Bechert et al. 1997 and references 

therein that this type of momentum transfer (in particular the tangential Reynolds stress) 

close to the wall is responsible for approximately 80% of skin friction generated in wall 
bounded shear flow. In fact almost all skin friction reduction devices work by actually 

impeding the fluctuating velocity at the wall and thus reducing the low speed streak 

generation, ejection and bursting in the boundary layer, Kerho 2002. It is also pertinent 

to mention that a majority of train manufacturers use riblets as a passive skin friction 

reducing technique and the optimal performance of these devices is only assured when 

the approaching flow is wall bounded and steady. In essence, there may be benefits to 

designing an inter-car gap that minimizes the transmitted fluctuation from the shear 

layer into the downstream flat plate regions. In addition to this the suppression of vortex 

escape from the cavity itself is beneficial in reducing the overall radiated noise from an 

inter-car gap / pantograph assembly. 

5.0.1 Modelling the inter-car gap 

There appears to be three common types of inter-car gap configuration used by current 

train manufacturers, Johnston 2001. In all instances the modifications made to the 

internal geometry of the cavity is symmetrical about the vertical centreline such that 

bidirectional efficiency is preserved. For the first type the front and rear bulkheads are 

slanted in opposite directions, which is common for inter-car gaps within the range 

1.0 s L/D s 2.0. In the second case the floor of the cavity is slanted inward and 

downward, which is common to an inter-car gap of LID = 2.0. The third common 

design concept is typically observed when LID < 1.5, where a portion of the cavity 

floor is elevated to accommodate passenger movement between cars (sometimes termed 

the `concertina' section). 
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5.0.1.1 Configuration 1: Slanted front and rear bulkheads 
The effect of chamfered/slanted rear faces has been seen to attenuate the oscillation 
amplitude from cavities in gate slots, Ethembabaoglu 1973 to supersonic resonating 
cavity flow, Heller and Bliss 1975. In each instance amplitude attenuation is encouraged 
by manipulating similar aspects of the fluid nature, that is a reduction of the feedback 

strength from the rear corner. For the case of gate slots additional attenuation is 

encouraged by reducing the effective roll-up length of the hydrodynamic instability. 

For the purpose of simple classification the L/D of the investigated cavity types are 
determined by the exposed length of the cavity floor. Therefore a cavity geometry of 
LID = 2.0 in configuration 1 will actually have an effective shear layer length 

equivalent to LID = 2.8, while for L/D = 1.5 the exposed shear layer length is actually 

L/D = 2.1. The average vorticity and Reynolds stresses are calculated for these 

particular cases and are included in figures 5.1 and 5.2. With added reference to figures 

4.51 and 4.52 and table 5.1 it is observed that in comparison to the clean configuration 

the average circulation within the cavity increases (based on the mean case) and the 

centre of the internal recirculation region is positioned further downstream. The average 

vorticity indicates that the formation of a jet-edge along the cavity rear wall and floor 

persists for this configuration, while the shear layer impingement is distributed over the 

slanted rear face. Simple oil flow visualization was repeated, this indicated a very weak 

cellular behaviour that was barely discernable when L/D = 2.0. The most apparent 

change is the increase of maximum agitation experienced by the shear layer spanning 

the open face of the cavity. The reason for this is that the entrainment demands of the 

longer shear layer require a larger mass exchange at the rear face since the cavity 

volume has only been moderately increased. It should be noted if the Reynolds stresses 

of these cavities are compared to the clean cavity cases of a comparable shear layer 

length (that is compared to figures 4.52 and 4.53 where LID = 2.0 and LID = 2.5 

respectively) the unsteadiness of the shear layer is actually reduced. However as already 

stipulated the cavity dimensions are defined using the exposed floor length. 

As mentioned in chapter 1a clean cavity shear layer vortex may experience one of three 

possible events at the downstream corner, complete clipping, partial clipping and 

escape. When the rear face is slanted the stagnation streamline is exposed to a surface 
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area that facilitates a normal impingement for the inflectional shear layer profile and 
inherently reduces the oscillation amplitude (best indicated in figure 5.4a). The most 
infrequent event then becomes partial clipping since there are no sharp corners to sever 
the impinging vortical structures. In the absence of point-probe measurement the 
frequency of particular clipping events are difficult to confirm even though the 
hypothesis seems logical. For the purposes of this study a simple filter was applied to 
the instantaneous velocity data that would seek out regions of velocity swirl, and 
measure them accordingly (based upon vector topology and swirl age). These results 
were then confirmed through visual inspection of each instantaneous velocity record, 
these results are presented in figure 5.5. It can be seen in the clean cavity case that small 

pockets of swirl velocity are noted along the shear layer, down into the cavity, across 

the cavity floor and then within a particular upstream zone of the cavity. The larger 

swirl scales are seen to be present within this zone also and then almost exclusively at 

the downstream corner region of the cavity. This progression of scales is concurrent 

with the shear layer interaction with the internal cavity motion, as already mentioned in 

chapter 4. For configuration 1 the location of swirl pockets in and around the cavity are 

similar to those of the clean case although in this occasion there are more instances 

whereby the smaller scales of the shear layer are convected back into the cavity along 

the slanted bulkhead. This is suggested by the Reynolds stress calculations presented in 

figure 5.1 and 5.2, in which the distributions of Reynolds stress are not self-similar 

between configuration 1 and the clean case. In fact for configuration 1 there is a notable 

reduction in shear layer agitation for x/L > 0.9. 

It is plausible that by biasing the clipping fate of the shear layer vortices in this way will 

increase the mean inflow into the cavity, as indicated by figure 5.3 (and illustrated in 

figure 5.4b) where even in comparison to L/D = 3.0 the average inflow at the trailing 

edge is markedly increased. This subsequently increases the (average) internal 

circulation (indicated in table 5.1) and implies' an increase in pressure drag imposed by 

the cavity. In addition, the slanted front face increases the effective length of the shear 

layer and as such the maturity of the vortical roll-up is greater at any given location in 

comparison to the clean case. Since the low-frequency modulation is observed to persist 

(exclusively from instantaneous velocity data using the dual-PIV set-up) a stronger 
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internal recirculation structure (figure 5.4c) will roll-out of the cavity in phase with a 
more mature shear layer vortex. Therefore the escape event associated with the low- 
frequency modulation of the cavity increases in amplitude, as shown in figure 5.4b. 
From an inspection of the instantaneous velocity results for configuration 1 it is 

apparent that the instability growth in the shear layer is less amplified than for the clean 
case of a comparable shear layer length, see for instance figure 4.53 and 5.2d. This is 

caused by a change in the amplitude-modulated fluctuations that are induced into the 

sensitive region near separation (or `pseudo-sound') caused by the slanting of the 
bulkheads. Most studies concerned with disturbance generation and growth are 

approached using unsteady pressure measurement since it is the induced forcing that is 

of principal importance, see for instance Ziada and Rockwell 1982a and 1982b. 

Although the usefulness of solitary flowfield measurements is limited, the dual laser- 

camera set-up positioned at the front and rear corners of the cavity may crudely observe 

the disturbance conversion phenomenon that is required for feedback. Using a camera 

time-delay of At, = 70ms between the vortical interaction event at the rear face and the 

separation corner capture the induction of the fluctuation into the sensitive region near 

separation will have grown sufficiently to be measured adequately by the PIV system. 

These results are included in figure 5.6. The clean cavity shear layer interaction of 

figure 5.6b demonstrates a lower instantaneous velocity fluctuation at the trailing edge 

than in the case of configuration 1 (figure 5.6d) although the (delayed) upstream 

fluctuation is similar in strength. These results are entirely repeatable2 and agree with 

the results of Morkovin and Paranjape 1971 (included in the review of Rockwell 1983) 

that stated the conversion of disturbance incident upon an edge becomes more efficient 

as the edge becomes sharper. On an additional note, it is not possible to imply the 

induced force at the rear cavity face using only fluctuating velocity data. 

There is evidence to suggest that the low-frequency modulation of the cavity may 

facilitate the propagation of intact and relatively undistorted vortices from the cavity 

that will impose modified induced loading, vibration and sound generation3. From the 

work by Howe 1995 it is actually possible to relate the unsteady loading to the 

I No static pressure measurements were made in this configuration and the skin friction 

on the cavity floor is unknown. 
2 If the events of direct jet impingement are neglected (covered in section 4.2.3.2). 
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distortion of the incident vortical structures in incompressible viscous flow, although 
this is a topic for further research. The issue of sound generation will be mentioned 
later. 

Figure 5.10 and 5.11 illustrates the first three POD modes and energy data for the clean 

case and configurations 1 and 2 for L/D = 2.0. Previous POD studies of cavity flow, 

Rowely et al. 2000 and forced shear layer oscillations, Rajaee et al. 1994 have shown 
that the phenomena can be characterised with relatively few POD modes. For the results 

presented here it appears that the cavity oscillations still exhibit phenomena 

characteristic of a low-dimensional nonlinear dynamical system although the energy 
distribution is more similar to that of a jet-flow where both large and small scales in the 

flowfield play an equally important role, as in Bernero et al. 2000 for instance. This is 

borne out in the energy distribution plot of figure 5.11 where it can be seen that over 30 

modes are needed to reconstruct 75% of the total fluctuation energy. The distribution of 

POD mode energy is similar for each case (figure 5.11). The first mode represents the 

interaction of the shear layer with the downstream corner and the primary recirculation 

within the cavity itself. The modes following this are then concerned with the next 

largest scale, for instance the upstream corner and other impingement events at the 

downstream corner. As the modes progress the areas of fluctuation move further 

upstream along the shear layer. In the case of configuration 2 it can be seen that the first 

three POD modes are with the rear bulkhead indicating a change in the impingement 

scenario. 

Using a Preston tube the skin friction was measured downstream of the cavity for each 

configuration and compared to the clean cavity cases. Any parasitic effects are removed 

by inserting a smooth aluminium plate aft of the cavity section (shown in figure 3.6h), 

while the same plate was used in each instance to remove parasitic porosity effects. It 

was found that the quality of the shear stress measurements on the plate deteriorated as 

the Preston tube was traversed upstream (the prerequisite of wall-bounded flow breaks 

down), although the geometrical constraints of the model and a strengthening adverse 

pressure gradient meant a compromise had to be made. Therefore for each case no data 

3 The surface loading will predominately be a function of vortex circulation and weakly 
dependent on the actual vorticity distribution. 
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is presented within the first 50mm downstream of the cavity. In the case of 

configuration 1 it is apparent from figure 5.12 that as the cavity length increases there is 

more skin friction generated downstream of the gap. It is also significant to mention that 

the skin friction gradient (dCf /dx) experienced in each case is comparable. For 

configuration 2 the skin friction distribution generated downstream is greater than that 

for the clean cavity case. This is perhaps caused by a more mature roll-up in the shear 

layer transmitting larger fluctuations (tangential Reynolds stress) across the flat plate 

section. One pertinent observation is that configuration 2 (with an effective shear layer 

length of LID = 2.8) invokes a smaller skin friction distribution than a clean cavity with 

L/D = 2.5. 

5.0.1.2 Configuration 2: Slanted cavity floor 

With reference to the linear (spatial) instability theory of Michalke 1965 any 

disturbances just downstream of the cavity leading edge are amplified first 

exponentially with streamwise distance and then by finite-amplitude effects. Therefore 

if the amplification of the unsteadiness in the shear layer is attenuated then it is probable 

that one or both of these effects have been subdued. Configuration 2 illustrates the point 

that the suppression of one type of mechanism can intensify another, causing an overall 

increase in unsteadiness. The floor of configuration 2 is slanted into the clean geometry 

(reducing cavity volume), which causes a small reduction in perpendicular impingement 

area that will incur some diminution to the feedback signal generated. From inspection 

of figure 5.7a and b it can be seen that this sloped floor is promoting the tongue of 

vorticity formed by the jet-edge along the cavity floor to extend essentially further 

upstream and closer to the separation position. Thus there is an increase in the influence 

that the internal structures impart on the growth of the shear layer. This is indicated in 

figure 5.3 for configuration 2 where the positive mean momentum transfer is amplified 

over the initial 20% of the open face of the cavity (indicated by a distinct plateau 

region). With reference to figure 5.7c and d it appears as though the distribution of 

Reynolds stress within the shear layer for the clean and sloped floor cavity are in fact 

very different (the clean case is 0.002 lower in maximum stress). 

A crucial benefit in this type of cavity geometry is the attenuation of the low-frequency 

oscillation inside the cavity that lead to the `roll-out' and global mass expulsion 
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phenomena noted for the clean cavity case. In figure 5.7d there are small-scale regions 

of high velocity correlations along the two-sloped surfaces actually increasing in 

amplitude (and changing sign) as it progresses upstream. The average circulation of the 

internal recirculation zone is also much smaller than for the clean case (see table 5.1) 

since the sloped bottom geometry inhibits both growth and movement of structures 

equivalent to the cavity depth. Figure 5.7b shows this recirculation zone being perched 

on the adverse pressure gradient side of the slope. Using the dual-PIV system it is 

apparent that the high Reynolds stress along the internal perimeter correspond to 

vorticity being cast into the cavity at the trailing edge (during the mass addition stroke) 

which then travels unhindered upstream. These are indicated in figure 5.8a as regions A, 

B, C and D and appear as velocity swirl patterns. When region D arrives underneath the 

separation position of the shear layer it may be entrained immediately into a convecting 

shear layer instability or there will be a short delay, depending upon phase compatibility 

of the two structures (similar to the discussion of section 4.2.4.3). This typical 

oscillation is the reason why there is a strong dissimilarity between the velocity 

correlation of the shear layers for configuration 2 and the clean cavity case. 

If it were possible to measure the unsteady pressure on the cavity floor in this 

configuration then a sub-harmonic of the shear layer oscillations would still be 

expected. The reason for this is illustrated in figures 5.8b and c where previously 

agglomerated regions of vorticity (regions E and F) in the shear layer are clipped back 

into the cavity for another internal cycle (the same regions are followed between 

figures). This type of interaction is carefully noted to only occur with pairs of vortices 

and it disrupts the entire process of upstream shear layer entrainment described in the 

previous paragraph4. The first three POD modes for this configuration are shown in 

figure 5.10. These are in agreement with the predicted oscillation where the downstream 

corner is responsible for the majority of the fluctuation energy (mode 1) and the 

progression of small scales along the sloped cavity floor become more dominant (mode 

3), indicated by a loci of maximum velocity magnitude along the cavity floor. 

It is thought by reducing (by half) the height of the vertical face in this cavity 

configuration will considerably reduce the unsteadiness in the shear layer. The cost is 

4 Repeatable in over 25 (10%) of the samples taken. 
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that the deleterious effects of shear layer osculation will be amplified since the internal 

perimeter of the cavity is reduced. Not only will the feedback strength be attenuated but 

also the internal oscillation of the recirculation structures will be more confined to the 

upstream wall since the pressure gradient is stronger. From the calculation of Reynolds 

stress shown in figure 5.9a there does appear to be a small reduction in velocity 

correlation across the shear layer and a smaller fluctuation inside the cavity itself. In 

addition to this the comparison of figures 5.9b and c indicate that the unsteadiness 

convected downstream of the cavity section is considerably reduced (presented as 

tangential Reynolds stress). Inspection of figure 5.12 signifies very little discrepancy 

between the skin friction encountered for the clean cavity case and that for 

configuration 2. For the modified case configuration 2 shown in figure 5.13 there is a 

reduction in skin friction, albeit small. It was found through the course of this study that 

the measurement of the Reynolds stresses reflected the magnitude of the skin friction 

generated downstream of the cavity. This relationship between the inhomogeneous 

Reynolds stress contribution and skin friction is well known (see Fukagata et al. 2002 

for example) although the flowfield PIV data can only imply a tendency in skin friction 

unless the entire boundary layer shape is well sampled. 

The amount of skin friction drag generated by configuration 2 is comparable to the 

clean cavity case, although the low-frequency roll-out and global mass expulsion has 

been suppressed. Any acoustic effects caused by the expulsion of such structures have 

therefore been inhibited, thus improving the acoustic profile of this configuration. 

5.0.1.3 Configuration 3: Modified cavity floor 

The third and final cavity configuration is for the clean cavity of LID = 1.0 with the 

inclusion of a concertina section on the cavity floor. In most cases this floor block 

section will stand no greater than 30% of the total clean cavity depth (or d, ID : r. 0.3). 

For the purposes of this study three scenarios of configuration 3 will be included for 

compari son; these are dd /D = 0.1,0.2 and 0.3, or L/(D - dj =1.11,1.25 and 1.43. The 

effect of increasing the concertina height is to reduce the size of the mean recirculation 

zone beneath the shear layer (to D-d, ) as illustrated in figure 5.14. This increase in 

height will then sequentially weaken the primary recirculation strength as indicated in 

table 5.1. For the average cases there are small vortices located in the lower corners of 

199 



the cavity that grow stronger as the side cavities deepen. The instantaneous velocity data 
imply that these eddies appear cyclically and that those formed in the downstream 

section are stronger than those formed at the upstream corner. 

Throughout these cases there are no significant changes to the level of velocity 

correlation within the shear layer itself, although there appears to be a difference in the 
distribution of the Reynolds stress across the open face, as shown in figure 5.15. 

Additionally there is no evidence from figure 5.14 that there is a strong (discontinuous) 

jet-edge being formed over the internal cavity walls. This is expected since the physical 
length of the shear layer is shorter thus reducing the oscillation and fluid entrainment 

required. The mass-addition cycle for the clean case remains discernable from the 

velocity correlation of figure 5.15a. It can be seen that negative vorticity small-scale 

structures are continually ingested into the stronger (more steady) negative vorticity 

captive vortex structure that is formed within the cavity walls. For the central case of 
dd /D = 0.2 it can be seen in figure 5.15c that the jet-edge (indicated by the maximum 

fluctuation loci) impinges onto the downstream edge of the elevated floor section, 

which causes a contra-rotating vortex to be formed in the corner. With energy extracted 

from the jet-edge the Reynolds stresses are now reduced and there is a much weaker 

unsteadiness transmitted upstream over the cavity floor and upstream wall. 

There are distinct changes to the oscillation of the internal vortex structure. By locating 

the regions of swirl within the cases of interest the interaction of the small and large 

scales may be better understood, as shown in figure 5.16. For the clean case (figure 

5.16a) there are no small-scale regions of roll-up indicated within the cavity and the 

primary eddy is centred in the cavity. As the floor section increases in height the 

movement of the primary eddy increases and there are more instances of small-scale 

vortices at the cavity corners and around the primary eddy. For the case d, /D = 0.3 

(figure 5.16d) there is an obvious progression of the central recirculation area to the 

downstream corner, although the roll-up oscillation and global mass expulsion noted in 

chapter 4 does not appear to be present. Using the dual-PIV system it can be seen that 

the periodic mass-inflow to the cavity causes the downstream corner vortex to increase 

in strength (dependent upon d /D) as seen in figure 5.17a. It is then reintroduced into 

the primary recirculation zone (figure 5.17b). This entrainment of positive vorticity 
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causes distortion and weakening to the primary eddy, which is forced down into the 
cavity. When this smaller eddy is forced upstream by another inflow-cycle the flow 

sometimes bifurcates at the upstream wall, causing a second contra-rotating vortex to be 
formed at the upstream corner. The impedance caused by the two corner regions 

maintains the clean case level of Reynolds stress within the shear layer, since it not only 

reduces the strength of the primary eddy but it diminishes the formation of a jet-edge 

along the floor and front wall. From the POD modes shown in figure 5.18 mode 2 and 

mode 3 (in configuration 2) the same spatial structures are characterized by a phase shift 

of approximately one half-wavelength, that is when one mode reaches its maximum 

energy state the other reaches its minimum energy state. This then describes a cyclic 

process of the jet-edge forming along the rear wall that is temporally constrained by the 

downstream corner, which is then re-injected into the main recirculation zone. This is 

indicative of all the cases in this configuration. The cumulative energy in the 

fluctuations shown in figure 5.19 indicates there are only slight changes to the energy 

accounted for a particular POD mode. The sub-plot of figure 5.19 represents the actual 

energy fraction for a particular mode and shows that modes 2 and 3 share an equal 

amount of energy, which increases in fraction as the volume between the concertina 

section increases. 

A sequential increase in floor section height is seen to systematically increase the level 

of skin friction measured along the downstream flat plate section, as shown in figure 

5.20. In this configuration the vortical structures cast-off from the shear layer 

impingement at the rear corner maintains their integrity for a short duration 

downstream. These structures are observed as waves of positive vorticity (shown for 

example in figure 5.21) and are thought to persist because of the relatively incipient 

state of the instability for this LID. The vorticity strength of these waves increases as 

the concertina height increases. 

5.0.1.4 The potential generation of acoustic power 

For the purposes of this study it is too specific a problem to deal with one particular 

train model at one particular operating speed, and it is useful to impose some 

generalities. Therefore, if it is accepted that the typical inter-car gap range will be 

1.0 < L/D < 2.0 and the train will operate in the range 0.1 < M. < 0.25 then with 
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reference to figure 1.5 there appears to be several potential instances where reinforced 
high amplitude tones are expected (coupling of the lengthwise vortical shedding and 
duct resonance mode). This interaction represents the maximum amplitude response of 
the cavity and as such should be offset or weakened using geometrical changes to the 

cavity itself e. g. slanting the bulkheads. This range of cavity L/D and Mach number is 

interesting because of the presence of both length-wise and depth-wise propagating 

waves within the cavity. According to the results of Tam and Block 1978 there is a 

smooth transition between the normal mode resonance and the lengthwise tones 
(neglecting coupling) as the cavity changes from deep to shallow. This presents an 

opportunity for interpreting the contribution that the hydrodynamic velocity and 

vorticity bring to the acoustic propagation. 

If it is assumed that the instantaneous hydrodynamic velocity and vorticity fields 

already measured in the study would exist within a resonant acoustic field with only 

slight modification, a sense of the hydrodynamic acoustic contribution may be 

predicted5. These instantaneous measurements have already been shown to play a 

central role in determining the acoustic power generation in situations where the 

resonant acoustic mode is present at the instance of vortex impingement at the rear 

cavity bulkhead, Lin et al. 2001. Using the formulation of Howe 1975 and 1980 

(equation [5.1 ]) it is possible to gain a sense of the hydrodynamic contribution without 

specific details of the vector acoustic velocity, ua, 

P= -pf 
(Wz xU)"ua dV [5.1] 

where P is the instantaneous acoustic power generated in a volume V, wZ is the 

vorticity through the z-plane, U is the instantaneous full-field velocity determined by 

the PIV system. 

For the clean cavity case with L/D = 2.0 it is shown in figure 5.22 that the contribution 

of the a )z U term produces vectors predominately orientated in the negative vertical 

direction along the extent of the shear layer. This type of behaviour is consistent with all 

the cavity configurations investigated here. The magnitude of the cross-product term is 

indicated by the contour levels and has an increment of 0.01. Additionally it is seen that 

5 Compressibility effects are required in the feedback mode 
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during the mass addition stroke to the cavity there are elevated levels of the c)_ xU term 

along the downstream wall of the cavity. It is predicted that if this cavity were 

resonating it would do so in the horizontal direction and this would then contribute to 

the overall acoustic power provided there is phase agreement (since the value of the dot 

product is maximum). This method of acoustic radiation has already been noted by 

Bilanin and Covert 1973, while by comparison the acoustic response of the large-scale 

recirculation structures does not seem to be strong in figure 5.22. Figure 5.23 indicates 

that the magnitude of the cross-product term for a clean cavity with L/D = 1.0 is much 

reduced around the vicinity of the cavity although normal mode resonance is expected 
(vertical acoustic velocity vector). Therefore, irrespective of any phase agreement the 

shear layer and the sink like pattern of the internal recirculation will consistently 

contribute to the acoustic power making this geometry particularly efficient at acoustic 

radiation. 

Energy is extracted from the acoustic field when vorticity is generated and it is possible 

to take advantage of this to attenuate the acoustic field, as demonstrated by Howe 1978. 

As shown in figure 5.24 the geometry of the first cavity configuration facilitates the 

production of small-scale concentrations of vorticity with large contributions to the 

acoustic power. These sinks are then able to roll-off the rear-slanted bulkhead into the 

mean flow where they would no longer interact with the acoustic field and the kinetic 

energy would be dissipated as heat. This is ideal for reducing the acoustic power of the 

cavity so long as the vorticity cast from the shear layer does not impinge onto another 

surface where the acoustic field will be modified (such as a pantograph). 

5.1 Concepts for reducing cavity unsteadiness 
In this final section two common concepts for internal cavity oscillation suppression are 

investigated using exclusively the PIV system for L/D = 2.0. These cases model the 

inclusion of a fence on the floor of the cavity (configurations 4,5 and 6) and a nose 

section added to the rear cavity wall (cases 7 and 8). The suppression of the internal 

cavity flowfield is of primary importance and as such there is no skin friction data 

presented. 
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5.1.1 Configurations 4,5 and 6: Cavity floor fence 
Following the study of Kuo et al. 2001 (where Rea = 194) it appears that a significant 

reduction in the level of fluctuation within the cavity can be achieved with the inclusion 

of small fence on the cavity floor. In this case the study focuses on fences orientated at 
90°, 45° and -45° (configuration 4,5 and 6 respectively) positioned at x/L = 0.5, the 

fence height is d, /D = 0.2. From an inspection of the vorticity and streamlines of figure 

5.25 it is apparent that the inclusion of this device separates the internal cavity flowfield 

into two distinct regions, now termed zone 1 (approximately Os x/L < 0.5) and zone 2 

(approximately 0.5: 5 x/L s 1.0). In each of these configurations there are two well- 

defined regions of fluid rotation experienced within the cavity, with counter-clockwise 

rotation in zone 1 and clockwise rotation in zone 2. From table 5.2 it can be seen that 

the strongest zone 2 circulation (invariably the strongest zone) is encountered by 

configuration 6 (fence -45°) since the fence orientation does not directly inhibit the 

progression of the jet-edge. With reference to the Reynolds stress of figure 5.26 there 

are perceptible reductions in flow fluctuation within the cavity for each configuration 

(with configuration 5 being the best), although there are dramatic increases in the 

velocity correlation of the shear layer (with configuration 6 showing the largest 

increase). This partitioning of the internal flow causes zone 2 to be much more unsteady 

than zone 1, which will be effective at nullifying the roll-out cycle of this cavity. 

However, the increase in shear layer unsteadiness is a direct result of the re-orientation 

of the jet-edge along the cavity floor. 

In contrast to the low Reynolds number study of Kao et al. 2001 the inclusion of a 

vertical fence on the floor of the cavity imposes an enlarged oscillating amplitude on the 

shear layer. The reason for this is simple, Reynolds number effects are important since 

this dictates the scale and amplification of the shear layer at the downstream corner and 

thus the level of fluid entrained into the cavity. With a large mass addition cycle at the 

trailing edge the momentum of the jet-edge formed over the rear wall is considerably 

increased allowing it to be more resistive to entrainment with permeation further into 

the cavity zones. The mean momentum transfer shown in figure 5.27 indicates 

significantly modified profiles across the open face with distinct inflections in mean 

momentum at x/L = 0.67,0.7 and 0.6 for configuration 4,5 and 6 respectively. It is 

clear from the instantaneous velocity fields of figure 5.28 and the POD modes of the N- 
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velocity in figure 5.29 that these mean momentum maxima indicate the position of jet- 
edge impingement underneath the shear layer. For configuration 4 the vertical fence 

redirects the jet-edge to perturb the shear layer slightly downstream of the fence 
(convected by the shear layer velocity). It is evident from figure 5.28a that this scenario 
is entirely unsteady, and this discontinuous vortical edge may proceed upstream and 
contribute to the circulation of zone 1. The positive inclination of the fence 
(configuration 5) shifts the mean impingement location of the edge downstream, while 
the negative inclination (configuration 6) redirects it further upstream. The Reynolds 

stress indicates that there is very little fluctuation in zone 1 and, in fact, the lip of 
velocity correlation extending from the fence edge in each case describes the typical 
interaction to be one of entrainment into the shear layer (shown for instance in 5.28a(ii), 

5.28b(iii) and 5.28c(ii)). As the size of the recirculation in zone 2 gets smaller 
(configuration 6 to 4 to 5) the extent of the positive vorticity tongue increases in length 

(from figure 5.25), signifying a reduction in the shear layer fluctuation over these 

regions (as clarified by the Reynolds stress). This is accord with Kuo et al. 2001 and 

vindicates the point that fence orientation will determine the scale and upstream 

movement of the recirculating flow. 

Using the data from the first four POD modes (figure 5.29) it is possible to add 

clarification to these points. For the clean case it is obvious that the most energetic 

structures in the flowfield belong to the large scale recirculation roll-ups beneath the 

shear layer. The dark red regions represent the maximum positive value, upward flow 

and the dark blue regions represent the maximum negative value, downward flow. 

There is a contribution to this scale from each of the 4 modes shown, with the first POD 

mode being responsible for 29% of the total fluctuation energy. For configuration 4 and 

5 the first 3 POD modes are entirely made up of contributions from the energy in the 

shear layer (indicating little movement within the cavity) and show a marked similarly. 

For these two cases the maxima of mode 1 represents the approximate location of jet- 

edge impingement into the shear layer. Modes 2 and 3 for these cases describe an 

energy exchange process whereby one mode is in its maximum energy state as the other 

is in its minimum energy state, thus propagating the flow pattern. One significant 

difference is with the first POD mode of configuration 6 where a 20.1 % of the energy 

fluctuation has a contribution from the coherent structures within the cavity. This 

indicates a return of the low-frequency oscillation of the internal structures (that is 
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global mass expulsion). As evidenced by figures 5.28c(ii) and (iii) the jet-edge is able to 
find phase compatibility with a convecting instability in the shear layer that entrains the 
edge and rolls-out a portion of the recirculation in zone 2. 

With decent pointwise measurement in the shear layer for a two-dimensional flo vfield 
it is possible to approximate the steady drag coefficient of the cavity by calculating the 

momentum flux out of the cavity, as shown in equation [5.2]. 

Co=? L 
-(UV)-(u 

>+vd(u) )dx 5.2 Lf U2 u2 /ý 
wx dJ 

The viscous stress term can be neglected in this case leaving the drag coefficient as the 

sum of the mean momentum flux and Reynolds stresses across the open cavity face. In 

this case the integral has been performed using 1000 image pairs with ITDWO-FFT- 

SDCPIV with a spatial resolution of 1 vector per mm. The accuracy of the integral is 

obviously an issue even though the spanwise effects of the clean case have been 

quantified using errorbars; the results are presented in figure 5.30. From this data it can 
be seen that there is a tremendous increase in drag coefficient for the fence 

configurations investigated. For the clean case the drag contribution from the mean and 

correlated fluctuation part are approximately equivalent although for the fence 

configuration the entire contribution is made up from Reynolds stress alone (the mean 

part is approximately zero). Therefore in all cases the cost of a reduction in internal 

oscillation amplitude is an increase in drag coefficient. 

5.1.2 Configurations 7 and 8: Trailing edge nose section 

The usefulness of a trailing edge nose section is to modify the clipping fate of the shear 

layer vortex such that the feedback signal is attenuated and the disturbance growth can 

be reduced. In this study the nose geometries are formed from a 1: 2 and 1: 4 ellipse 

shape (configuration 7 and 8 respectively). From inspection of figure 5.32 where 

L/D = 2.0 the average vorticity and streamlines specify the existence of two zones, one 

underneath the open face of the cavity and one beneath the nose section itself (once 

again denoted zone 1 and 2). The results indicate that the jet-edge is formed into the 

cavity as with the clean case with negative vorticity contained in zone 1 and positive 

vorticity in zone 2. As the nose section increases in length the circulation of zone 1 

reduces as zone 2 becomes both larger and stronger (for L/D = 2.0). In a lower 
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Reynolds number study of cavity flow (Reo = 3360) Pereira et al. 1994 found that a 

nose shape geometry (circular section) produced decreased circulation within the cavity 
(thus implied a decrease in drag). 

The Reynolds stress for these configurations is included in figure 5.33 and is in direct 

contrast to those of the previous section. In this instance the velocity correlation across 
the entire span of the shear region has decreased below that of the clean cavity case. It is 

obvious the feedback signal has been attenuated since these Reynolds stresses are lower 

than for a shorter shear layer span (see L/D = 1.5 for example, figure 4.51). The internal 

oscillation is also markedly reduced, through inspection of the instantaneous vector 
fields it appears that the two zones of flow are steady and persistent. The fate of a 
downstream travelling vortex is between complete clipping and complete escape, while 

the global mass expulsion cycle is completely suppressed. As the nose section increases 

in length the shear layer instability has less time to mature and the Reynolds stress are 

sequentially reduced. In addition the jet-edge is formed further from the rear wall and 

during the mass addition cycle to the cavity the jet bifurcates on the cavity floor, thus 

sectioning the two zones. The mean momentum transfer across the open face of the 

cavity is shown in figure 5.31. The mean momentum transfer across configurations 7 

and 8 is greater than that for the clean cavity case, with the latter being comparable to 

the mean mass transfer for L/D = 3.0 (clean). This cause of this will be related to the 

modified clipping fate experienced by the shear layer vortices at the trailing edge. In 

contrast to the fence configuration the majority of the drag experienced in this case 

originates from the mean momentum transfer term and not the Reynolds stresses. In 

figure 5.30 it can be seen that these geometrical changes to the cavity have once again 

significantly increased the drag coefficient. In the range 2.0 s LID s 3.0 the shorter 

nose section imposed less drag on the cavity and maintained a significant reduction in 

Reynolds stress in and around the cavity. 
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L/D CONFIGURATION -F/UxL 
2.0 CLEAN -0.6194-0.04 
2.0 1 -0.7091 
1.5 CLEAN -0.5966--0.06 
1.5 1 -0.6271 
2.0 2 -0.4612 
1.0 CLEAN -0.7226 
1.0 3 (d, /D = 0.1) -0.6882 

1.0 3 (d, /D = 0.2) -0.6139 

1.0 3 (d, /D = 0.3) -0.5352 

Table 5.1. The normalized average internal recirculation strength present with the cavity 

for various cavity configurations. The clean data has been pre-plotted in figure 4.23. 
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Figure 5.3. Distribution of the mean momentum transfer for clean cavity cases 

L/D = 2.0 and L/D = 3.0 and configurations 1 and 2 along the line y/L = 0. 
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Figure 5.4. Instantaneous vorticity and velocity for L/D = 2.0 in configuration 1. 
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Figure 5.8. Instantaneous vorticity and velocity for L/D = 2.0 in configuration 2. 
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some clean cavity configurations and for configuration 1 and 2 (L/D = 2.0). 
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Figure 5.12. Measurement of the skin friction downstream of the cavity for a number of 
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when the cavity section is filled. 
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L/D = 2.0. 
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Figure 5.25. A comparison of the vorticity and streamlines for the clean and fence 

configurations (4,5 and 6) for L/D = 2.0. 
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L/D CONFIGURATION -F/UL 

Zone 1 Zone 2 

2.0 CLEAN 0.6194±0.04 -- 

2.0 4 -0.1063 0.4010 

2.0 5 -0.0960 0.2911 

2.0 6 -0.1010 0.4821 

2.0 7 0.5436 -0.0055 

2.0 8 0.3406 -0.051 
2.5 CLEAN 0.6504 -- 

2.5 7 0.5225 -0.0032 

2.5 8 0.4294 -0.0335 

3.0 CLEAN 0.7014 -- 

3.0 7 0.4831 -- 

3.0 8 0.4038 -0.0180 

Table 5.2. The normalized average internal recirculation strength present with the cavity 

for various cavity configurations. The clean data has been pre-plotted in figure 4.23. 
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Figure 5.32. A comparison of the vorticity and streamlines for the clean and nose 

configurations (7 and 8) for L/D = 2.0. 
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CHAPTER 6: CONCLUSIONS AND FURTHER WORK 

The current experimental investigation of cavity flow has raised a number of issues 

concerning aspects of the measurement procedure, data interpretation and the central 
findings from the wind-tunnel tests. These will be dealt with in chronological order. 

It is well known from previous research that the behaviour of the cavity flowfield is 

complicated, not only by the various interactions that take place, but through the large 

amount of cycle-to-cycle variation possible within a number of fluid oscillations. 
Therefore, within such an investigation it is essential to accumulate an ensemble of data 

that is substantial enough to encapsulate each oscillation permutation. Using a DPIV 

system to capture the cavity flowfield is beneficial and progressive since it can present a 

collection of full-field instantaneous velocity data. However, this convenience comes at 

the price of reduced measurement accuracy in comparison to wet-film PIV and LDA 

from a pointwise sense. Therefore at the initial stages of this work a concentrated effort 

was made to construct a post-processing module that sought to maximise the accuracy 

and fidelity of the digital system and deliver an adequate dynamic range metric that 

could encapsulate the essential characteristics of the flowfield. With careful attention to 

both the bias and random error components using synthetic imaging it is possible to 

optimise the image capture and correlation algorithms to improve upon velocity 

accuracy and increase the spatial resolution, which ultimately increases this metric. 

Application of a tile-skewing procedure is seen to be essential in maintaining the 

correlation signal quality as a finer velocity (spatial) resolution is converged upon. The 

measurement fidelity is enhanced with application of the FRTT scheme that is superior 

to other schemes at adapting to regions of poor particle seeding density, which are 

commonplace within a eddy populated flowfield such as this. It has been possible to 

design an apposite post-processing module because details of the flowfield of interest 

have been measured, estimated and simulated. 

With the persistent of peak locking errors and random errors in the correlation and 

imaging set-up the estimation of total error is included for the new calculation scheme. 

This is complemented by a confidence estimate in the measurements aided by a hot- 

wire traverse of the shear layer. This estimate is an extremely important verification of 
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the improved system accuracy and benchmarks the confidence, a requisite for the proper 
interpretation of results. This also draws attention to sampling inadequacies at the 

incipient region of the shear layer where the light sheet thickness is very large compared 

to the length scale at which the gradients vary. 

The use of PTV has long been dedicated to low Reynolds number investigations where 

the velocity dynamic range is low and all particle matching is implied using simple 

robust algorithm sets. A hybrid PIV-PTV scheme where the imaging conditions are 

optimised for super-resolution PIV is presented. Application of the Barnard and 

Thompson probability-tracking algorithm has found success in these conditions only 

after careful and faithful identification of the particles on the image plane. A tracking 

algorithm is a useful tool since it combines the strengths of improved spatial resolution 

with the elimination of gradient bias errors from correlation assessment. Experimental 

validation of the tracking is fundamentally important, albeit difficult, and the simulated 

data results afford the scheme an over-predicted accuracy than actually expected. Any 

divergence of the scheme is hindered by the correlation scheme precursor, which 

reselects and hones the pertinent particle neighbourhood localized between the frame 

pair. In contrast to the principle correlation scheme the calculation time is an issue for 

PTV, and dramatic improvements have been made using the developed algorithms. 

When there is excessive out-of-plane loss of particle pairs (three-dimensional nature of 

the flow is increased, e. g. LID = 1.5) the tracking scheme is stalled by excessive loss of 

particle data between frame pairs. This is difficult to counter since the dynamic velocity 

range of the flowfield demands a large inter-pulse delay between frames. As opposed to 

interpolation onto a regular grid for statistical processing a `t-tiling' procedure was 

constructed to take full advantage of irregularly spaced data with a good yield and 

reliability that encounters only systematic errors in subpixel estimation. It was found 

that for inhomogeneous seeding conditions to achieve the required statistical bin length 

of 250 samples a larger number of image pairs had to be acquired. This compounded 

testing exigencies although the outcome was a compendium of Reynolds stress data 

with improved accuracy. The Glasgow University PIV system has since been upgraded 

to accommodate vast amounts of image data. 
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During a series of separate wind-tunnel runs both static and dynamic pressure data was 

accumulated in and around the cavity. The static data was essential for proper 

classification and repeatability of the cavity flowfield and gave an insight into the mean 

flow behaviour of the cavity. The unsteady pressure measurement was restricted to 2 

pressure transducers, one on the rear cavity bulkhead and one on the cavity floor. It was 

found that these pressure signals exhibited both amplitude- and frequency-modulated 

features, although the frequency of formation of large-scale structures was well 

predicted by common semi-empirical formulae. A lower frequency mode was observed 

to coexist with the separating shear layer mode (as a sub-harmonic ß/4) and some 

clarification as to its behaviour was necessary. Since this internal oscillation occurred 

more frequently that the laser-pulse repetition a dual-laser/camera PIV system was 

utilised, this was capable of capturing two complete sets of velocity data in rapid 

succession. At the /3/4 oscillation frequency (At2 = 4/ß) this technique proved 

successful at consistently matching vortical structures at similar positions within the 

cavity zone. With a sequential increase in the time delay between lasers (&2), it was 

possible to track the movement of the larger structures and gain an understanding of the 

0/4 cycle. As an automated procedure this technique has some merit since it has been 

shown that the matching of velocity data sets has a maxima at this sample period. Using 

the method of POD to optimally reconstruct a fraction of the energy in the velocity data 

a better matching quality can be achieved, although careful extraction of the shear layer 

from the data is essential. 

The central findings of the present study are as follows: 

1. At the Reynolds number tested with this model design the cavity has a fully turbulent 

inflow, which evolves through the presence of a Kelvin-Helmholtz instability into a 

pattern of well-organized vortical structures. With the exception of L/D = 1.5 each 

clean cavity case investigated oscillated in the second mode where the SPL is highest, 

corresponding to two-eddies existing simultaneously within L. With the exception of 

L/D = 1.0 the normalized circulation within the cavity walls is seen to increase with 

LID, and corresponds to a stronger suction profile imposed on the cavity floor. The 

internal flowfield of the cavity is not quiescent and is dominated by the periodic 

formation of a jet-edge along the rear bulkhead that travels upstream along the cavity 
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floor. The edge of this jet is discontinuous and with negative vorticity, formed during 

the mass addition cycle to the cavity. The upstream convection of this jet is related to 

the impingement scenario at the downstream corner (which is in turn related back to the 

feedback strength). 

2. A transverse wave instability is present across the span of the cavity for cases 

LID = 1.5 and 2.0. Using quantitative and qualitative flow visualization with static and 

dynamic pressure data it was found that the transverse wavelength is approximately 

equal to the cavity length and most likely oscillates at a Strouhal number where 

Ste < 0.0001. PIV data from the x-z plane shows this instability to form into well- 

defined pairs of contra-rotating velocity swirl (most pronounced at y/D = 0.5) that fills 

the entire cavity length. During the mass addition stroke to the cavity the instability 

from the shear layer is transmitted along the rear wall and cavity floor (verified by 

unsteady pressure measurement). It is therefore probable that the spanwise instabilities, 

which grow at a similar rate as the lengthwise instabilities are also being convected into 

the cavity during this stroke. These exist between the braids of the spanwise vortices 

and form into pairs of streamwise vortices, thus the transverse wavelength is unrelated 

to the shear layer mode number. Consequently the transverse wavelengths of LID = 1.5 

and LID = 2.0 are the same even though their dominant modes are different. Cellular 

variations in velocity and Reynolds stress across the shear layer itself (y/D = 0) 

supports these clams as to its origin and also indicates that there will be spanwise 

variations in signal feedback. These effects manifest themselves as a spanwise variation 

in shear layer growth and recirculation eddy morphology within the cavity. 

3. As the LID of the cavity increases a lower frequency mode of ß/4 is seen to coexist 

with the separating shear layer mode. It was found that this component is responsible 

for the oscillation of the recirculation zone and consequently the low-frequency flapping 

of the shear layer. From the PIV data an explanation of this oscillatory component was 

presented. During the mass addition cycle the shear layer dips into the cavity, causing 

the formation of a jet-edge over the rear bulkhead. This region of positive vorticity 

convects the extent of the cavity floor and a recirculation region is formed at the 

upstream corner. The strength and size of this zone may be consequently strengthened 

by the coalescence of further vorticity, courtesy of sequential mass addition strokes. As 
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the shear layer grows it entrains this coherent vortical fluid through the braid, and with 

phase agreement convects the entire structure across the cavity (or roll-out). At the 

downstream corner the shear layer is drawn upward by the clockwise rotation and there 

is large-scale (global) mass expulsion from the cavity (complete-escape scenario). This 

development becomes more violent as the L/D increases. As described this coupling 

more closely resembles the behaviour of transonic and supersonic cavity flow rather 

than that of low Reynolds number studies. 

4. A coexisting low-frequency oscillation explains some of the cycle-to-cycle variation 

observed in the cavity flow phenomenon. It is apparent that the shear layer entrains 

typically vortical fluid that modifies the growth of the shear layer eddy and 

subsequently the clipping fate at the downstream corner. Osculation at the incipient 

region of the shear layer from the jet-edge is also prevalent; this is seen to amplify the 

shear layer disturbance. 

The frequency of formation of the large organized vortical structures in the shear layer 

are well approximated by inviscid stability theory, which is in agreement with previous 

studies. The shear layer is seen to take another state whereby the organized vortical 

structures are shed at a much higher frequency causing small pocket of vorticity to be 

cast downstream where their persistence is variable. This state of the shear layer 

emerges after the feedback signal has been attenuated during the global mass expulsion 

stroke. 

5. The common inter-car gap for a train was summarized into three basic configurations. 

(i) For the first configuration (slanted front and rear bulkheads) the common oscillation 

of the clean cavity persisted. A modification to the clipping fate at the downstream 

corner is noted and a reduction in velocity perturbation at the upstream corner via 

feedback is observed. The low-frequency flapping of the shear layer is amplified 

allowing relatively undistorted eddies to be cast off downstream. The skin-friction 

generated downstream is increased and there is an increased likelihood of generated 

sound. 

(ii) In the second configuration (slanted cavity floor) there is a suppression of the 

coexisting recirculation zone oscillation noted for the clean case. An increase to the 
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Reynolds stress in the shear layer is attributed to an increase in shear layer osculation 
from jet impingement. The internal zone is steadier and the feedback signal is 

attenuated, the skin friction generated is comparable to the clean case. 

(iii) For configuration three (modified cavity floor) the increase in height of the 

concertina section is seen to increase the downstream skin-friction value. The 

progression of the jet-edge is hindered and the primary eddy is weakened through the 

cyclic expulsion of fluid from the downstream corner section. The primary eddy is no 

longer captive and an internal oscillation is re-established. 

6. The addition of a fence on the cavity floor at x/L = 0.5 is seen to reduce the 

unsteadiness within the internal cavity volume and increase the fluctuation within the 

shear layer. Using fence configurations 4 and 5 it is possible to suppress the low- 

frequency modulation of the cavity. In each case the reorientation of the jet-edge is 

significant and perturbs the shear layer causing significant changes to the mean 

momentum transfer across the open face of the cavity. With an increased unsteadiness 

in the shear layer the drag contribution from Reynolds stress is markedly increased, 

each controlled cavity produces significantly more drag that the clean case. Use of a 

downstream nose section is observed to increase the partial and complete clipping 

vortex scenario at the downstream edge. The cavity flowfield is distinctly steady 

although an increase of the mean momentum transfer to the cavity zone increases the 

drag produced. 

Substantial progression of the current work may be achieved with little expense. 

It is recommended that a synchronous pressure-PIV study will yield significantly more 

information regarding the shear layer interaction at the rear cavity corner. The 

simultaneous measurement of pressure and velocity at the downstream edge can provide 

information on the loading at the rear corner with respect to the impinging vortical 

structure. In addition it has been shown that the dual-PIV system is capable of capturing 

the conduction of the feedback signal into a velocity perturbation at the cavity leading 

edge. There is then the opportunity to extensively research feedback attenuation 

concepts. Use of parallel pressure-velocity measurement also releases the burden of 

individual inspection of velocity data. 

241 



The application of a stereoscopic PIV system would also be beneficial. These systems 

use simultaneous viewing with two cameras to reconstruct all three components of the 

velocity in a planar cross section of the observed flow. Initial wind-tunnel tests have 

been completed on an in-house system' and the required software updates are complete. 
With a careful optical arrangement it will be possible to interrogate planes though the 

cavity and gain a better understanding of the full three-dimensional behaviour. It has 

been shown that the hydrodynamic contribution to the acoustic field is useful in the case 

of cavity flow. If a more detailed study is required then it is possible to use a finite 

element model to simulate the acoustic particle velocity within the cavity, which can 

then be included with the velocity data to provide the acoustic power. Scrutinising the 

persistence of vortices downstream of the cavity may give some insight into the sound 

generated by a pantograph assembly for a train. CFD simulations can provide this 

information also. 

Improvements to the 2D post-processing module should not be required. However, in 

the pursuit of bias error suppression a camera that can provide a reduction in pixel size 

with an increase in CCD chip size will be beneficial to future work (increases di Id, ). 

The dual-PIV system used here is capable of taking two frame pairs over a preset time- 

delay, while new generation PIV systems are capable of capturing a sequence of images 

over similar time-delays. However, their operation comes at a cost of camera image 

quality (baud limit) and reduction in the field of view (imposed by reduced laser 

power). For example, to sample the shear layer second mode 10 times over a single 

oscillation can be done with a region of interest of 0.5 mega-pixels for a field of view of 

15x 15mm. Improved skin friction measurement is also essential. Measurements taken 

with the Preston tube are quick and easy although the assumption of wall-bounded flow 

can significantly reduce the accuracy of the data, while the limitations of pressure 

gradient are also prohibitive. The use of a flush mounted film probe can provide reliable 

time-resolved comparative friction data, while liquid crystal measurement can provide 

data over an entire surface. A more inexpensive route would be in the use of oil-film 

interferometry, which is easy to apply and is capable of measuring positions 

downstream of re-attachment and reversed flow. 

'Using the angular method (Scheimpflug condition) 
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APPENDIX A: A DESCRIPTION OF THE TEST FACILITIES. 

This appendix includes a brief description of the `Handley Page' wind tunnel (HP7) 

used to conduct the pressure tests recorded for this study. Also included is a description 

of the `Anatomy Building' wind tunnel (AT), which was used for additional pressure 

measurement and extensive PIV measurement. Because of the locality and accessibility 

of the `Anatomy building' wind tunnel it was possible to more rigorously determine the 
flow characteristics expected of this facility. 

The Handley Page tunnel 

The `Handley-Page' low-speed wind tunnel is an atmospheric-pressure closed-return 

type with a 2.13 x 1.61 m octagonal working section that has a maximum operating 

speed of 61 m/s. A plan view of this facility is shown in figure Al. Measurements 

included in Rae et al. 1984 indicate a turbulence intensity value of approximately 0.6% 

for the HPT. 

The tunnel speed was set using the difference in static pressure readings between the 

settling chamber and the working section. Thus factoring in the correction coefficient 

the tunnel velocity was to be found using equation Al. 

/_AhRTK U= (Pb x 5.1 

where, 

[Al] 

Ah : the difference in mmh20 of the static measurements in the settling chamber and 

working section respectively. 

R: the gas constant (287m2/s2 K for air). 

T: temperature in K. 

K: tunnel correction. 

Pb : Barometric pressure measured in mB. 

This equation uses the appropriate measuring devices accessible in the wind tunnel 

vicinity. 

Al 



The Anatomy building tunnel 

The `Anatomy building' low-speed wind tunnel is an atmospheric-pressure closed- 
return type with a 1.15 x 0.85 in octagonal working section that has a maximum 
operating speed of 33m/s. A plan view of this facility is shown in figure A2. 

For the purposes of this study it is appropriate to quantify the turbulence intensity 

present in the AT working section. This was conducted using a hot-wire probe, the 

turbulence sphere technique and the PIV system. Because the hot-wire system used here 

has been included in other comparative studies in this report it is now briefly mentioned. 

The hot-wire measurements were made using a TSI IFA-300 constant temperature 

anemometer system using DANTEC P61 cross-wire probes. The probes used 5µm 

diameter plated tungsten wires with a length-to-diameter ratio of 250. The measuring 

volume of each probe was approximately 0.8mm in diameter and 0.5mm in height. The 

probe was calibrated in a special vertical flow wind tunnel dedicated to this purpose. 

During calibration, the probe was rotated in 3-degree increments through ±30 degrees in 

the plane of the sensor wires to determine yaw sensitivity. 

Estimates from the turbulent sphere technique are taken to estimate the whole test- 

section. The hot-wire probe was mounted on a traverse and as such measurements were 

made over 18 different positions. In each instance the period of acquisition 

corresponded to four or five circuits of the tunnel. The PIV system accumulated volume 

averaged results over a number of samples (total sample length > 400*400). The 

spatially averaged results are presented at this time. 

Using a number of screen configurations a profile of the test-section turbulence 

intensity was constructed, this data is shown in table A 1. For completeness some results 

from the turbulence sphere are shown also in figure A3. The flow resistance of the wire 

screens used are proportional to the square of the local flow speed and as such the 

decision was made to limit the number of screens in any given arrangement to two. 

Using more and/or additional devices for guiding the flow would impose a static 

pressure loss that could not be balanced by an increase in motor power (for the 

freestream setting in this work). From the accumulated data it appears that the desired 

scenario is to use both screens 1 and 2 such that a turbulence intensity value of 

A2 



approximately 0.22% is reached. To ensure good repeatability between tests runs each 
screen was tightened and cleaned regularly. 

Using this configuration a study of the static pressure gradient in the test-section was 
made at several heights and locations. The definition of the X-Y-Z coordinate system 

used here is noted in figure A2. Figures A4 and A5 indicate the static pressure gradient 

associated with the flow through the test section for a particular Y elevation and figure 

A6 illustrates the gradient measured in the Y-Z plane at different X stations. In each 
instance the expected location of the cut-out on the wing model is indicated using 
dashed lines. It is typically not good practice to measure the static pressure through the 

test-section using wall mounted probes. However, these probes were inserted into the 

test-section wall for the purpose of this study and additional care was taken to smooth 

the wall on this side. These measurements are only included to complement the pressure 

measurements made using a pitot-static tube traversed through the test-section. 

The static pressure gradient through the test-section shows nothing unexpected in either 

the X-Y or Y-Z planes. In the longitudinal direction (X-Y plane) it appears that the 

insert of corner fillets have been carefully used to control the horizontal buoyancy. It 

can therefore be expected that there will be a minimal interaction between the pressure 

gradient caused by the model and that of the clean test-section. Effects caused by the 

lateral boundaries are therefore minimized. The results in the Y-Z plane indicate that 

there is good flow uniformity in this direction also. There profile also indicates that 

there will be a uniform spanwise distribution of lift experienced on the flap assembly. 

The full data ensemble was made up of traverse readings taken at Y-heights (for the X- 

Y plane) of 250,350,450,550,650 mm and X-ordinates (for the X-Z plane) of 500, 

720,870,1000,1230 and 1380mm. No abrupt changes in static pressure gradient were 

observed at these locations. 

A measurement of the flow angularity in the X-Y and Y-Z planes into the test-section 

required careful orientation calibration of the hot-wire probe on the traverse. In this 

instance the error margin can only be expected to be ±2° although the results are 

mentioned here for completeness. Using screens 1 and 2 with a freestream speed of 

28m/s the flow angle in the X-Y plane (for Z=Omm) was measured at 0.0°, which 

indicates good parallel flow. In the Y-Z plane (at X=720mm) the flow angle measured 

A3 



89.5°, once again indicating flow parallel to the solid boundaries. Rotating the probe 
head 90° and resampling the flowfield yielded the final value of 0.6° for the X-Z plane. 
The period of acquisition corresponded to five tunnel circuits while the maximum 

standard deviation equated to less than 1.0°. 

A measurement of the static pressure through the first diffuser and the first corner 

turning vanes indicate that both the length and the angle of the diffuser are not ideal for 

freestream speeds greater than 20m/s. The solution to this problem is to replace the 

constant area second leg with another diffuser section and/or to realign the angle of the 

turning vanes through the first corner for more efficient turning, Eckert et al. 1976. 

There was no possibility of amending these problems for the current study. The 

problems associated with this part of the tunnel will manifest themselves as an increase 

power demand on the fan motor and slight degradation of the tunnel flow quality. This 

explains why using no screens in the configuration of the tunnel incurs a turbulence 

intensity of approximately 0.45%, while the Y-Z and X-Z flow angles into the test- 

section are 89.5°±2° and 0.6°±2° respectively. 

The tunnel speed was set using the difference in static pressure readings between the 

settling chamber and the working section (appropriate for the solid blockage present), as 

already shown in shown in equation A 1. For the screen configuration used K =1.12 . 
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Figure Al. Plan view of the Glasgow University `Handley Page' 2.13m x 1.61 m wind 

tunnel (HPT). 
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Figure A2. Plan view of the Glasgow University `Anatomy building' 1. l 5m x 0.85 in 

wind tunnel (AT). 
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Screen 

configuration 

Turbulent Intensity, % 

1 2 3 Hot-Wire Probe Turbulence Sphere PIV 
0.43 0.51 0.42 
0.32 0.32 0.30 
0.32 0.34 0.31 
0.35 0.29 0.28 
0.31 0.32 0.26 
0.23 0.20 0.22 

Table Al. The calculation of the turbulence intensity values measured in the middle 

section of the AT test-section for various screen configurations. The PIV results can be 

confirmed to have an accuracy of ±0.04% turbulence intensity. 
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Figure A3. An example of the turbulence intensity calculation using the turbulence 

sphere. A sphere diameter of 0.225m was selected for the study, the corresponding 

critical Reynolds number for Ap/q = 1.21 relates to the turbulence factor, Barlow et al. 

1999. 
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Figure A4. Static pressure gradient measured in the AT for U. = 28m is with screens 1 

and 2 up. The results from the wall tappings are shown in comparison to those measured 

on the traverse a small distance away for the same X-ordinate. 
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Figure A5. Static pressure gradient measured in the AT for a range of freestream 

velocity values for screens 1 and 2 up. 

For figures A4 and A5 the static pressure tapping at X= 850mm was broken. 
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Figure A6. The static pressure profile recorded spanwise along the clean test section. 

Three measurement positions were chosen to correspond to locations for the model. 

These are the cavity entrance (X = 720mm) the cavity rear wall (X = 870mm) and 75% 

of the model chord (X = 1230mm). Dashed lines indicate the width of the model. 
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APPENDIX B: THE DERIVATIVE SCHEME 

The accuracy of the derivative field measurement (in particular Wz) depends primarily 
on the spatial sampling distance between the velocity data points (i. e. the spatial 
resolution between the in-plane velocity vector samples, 0�) and on the accuracy of the 
velocity vector field measurements. Consequently these two factors depend on the 
measurement method employed to measure the velocity vector field samples. Thus in 
turn, the accuracy of velocity measurement depends on parameters set at the image 

acquisition phase such as the imaging spatial resolution, the ratio of seed particle 
diameter to vorticity distribution length scale and the seeding density. Only the 

computational method used to calculate wZ can change the accuracy after image 

capture. 

In principle the wZ error can be decomposed into a bias error and a random error 

contribution. The velocity sampling separation is found to have a profound effect on the 

precise determination of wZ by introducing a bias error. This bias error results in an 

underestimation of the peak vorticity. The random error transmission factor and the bias 

error cannot be minimized simultaneously since both depend on the velocity sampling 

separation with opposing effects. 

For instance denoting c as the absolute error, the measured velocity components 

become, u* =u+e and v* =v+E. Applying this to the second order central difference 

scheme, equation [B I] it can be observed that the error in the measurement of vorticity 

depends on two components of a different nature. 

av au 
_ 

V. +I - vi -i + AxZgt +-- u"I - ui-, + AYZ9t + 
[B 1] 

ax ay 
x. Y 

2& Ox 2äy AY 

where 91 stands for higher order terms, from Lourenco et at. 1995. 

The equation shows that the truncation error associated with the finite difference 

scheme is of the order (Ax2, Ay2) while the absolute uncertainty in the velocity 

measurement is if the order (1/Ax, 1/iy). Thus we can expect a reduction in truncation 

error for an increase in spatial resolution, but an increase in the velocity uncertainty. For 

a given measurement error, E, there exists a grid of optimal spacing which will 
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minimize the total error. The Richardson's extrapolation scheme seeks to take 
advantage of this behaviour. 

If efforts are made to reduce the uncertainties in the velocity measurement, e at the 
recording and processing stage it is possible to noticeably decrease the truncation error. 
Such errors are the inaccuracies due to the processing algorithm, bias introduced by 
large velocity gradients (Adrian 1988, Keane and Adrian 1990) and three-dimensional 

effects. Lesser errors are the distortion of the camera lens, the film resolution and 
optical aberrations. 

The Richardson's extrapolation increases the order of the truncation error, and thus the 

accuracy of the derivative estimate, by combining values of derivatives evaluated in two 
different grids. For instance using the velocity component u: 

fg = 
UJ 8- UJ 8= fex, 

ct +E+ 64aoh2 + 4096a, h4 + ... [B2] 
16h 8h 

f4 
_ 

uj+4 - uj-4 

= 
fexact 

+£+ 16aoh2 + 256a, h4 + ... 
[B3] 

8h 4h 

eliminating the second order term yields, 

f= 
4f4 f8 

+ 
7E 

+ 1024a h4 + ... 
[B4] 

43 24h ' 

This process can proceed by calculating f2 , thus the forth order truncation error can be 

eliminated by f2 *= f2 - f4 and so on. The experimental error affecting each estimate 

remains the same and as such application of the scheme stops when the experimental 

uncertainty exceeds the truncation error. This is achieved by comparing derivative 

estimates of the same experimental error with derivative estimates of the same order 

truncation error. For the analysis shown above this would proceed as follows, 

[f8-f: 
<f8-f4]f: 

[f4-f: 
<f: -f; 

]=f 
2 

[B5] 

s* [ffrr 
_ 

: s1 ýsss 
2 -f2 <f2 

where the left hand side indicates the derivative with the same experimental uncertainty 

and the right hand side represents the same order truncation error. By representing the 

velocity field using a local second order polynomial-fitting scheme (y 3), see figure B1 

it is possible to converge on a non-grid specific solution, allowing better error 
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minimisation. Incorporating the accuracy study performed by Fouras et al. 1998 it is 

possible to show that this procedure is more accurate than most other schemes by 

providing a balance between derivative profile and maximum derivative values. 

" Point of interest and sampling point 
X Local sampling point locations 

X 

XXX 

xx"x i-l, 
j 

fi, 
j 

fi+I, 
j 

XX 
J i. j-I 

X 

X 

Ay 

Figure B 1. Grid pattern used for the y; fit method on a regular Cartesian grid. These 12 

local sampling points are used to fit a second order polynomial to the point of interest 

thus making the velocity field non-discrete allowing better truncation error reduction for 

a negligible increase in experimental error. 

Ax=Av=h 

Ax 
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APPENDIX C: PRESSURE PORT POSITIONS ON CAVITY 
MODEL 

NSXY 
Static port number x (mm) y(mm) z (mm) 

NI -110.00 -0.10 0.00 
N2 -140.00 -1.72 0.00 
N3 -170.00 -5.63 0.00 
N4 -200.00 -13.42 0.00 
N5 -220.00 -30.00 0.00 
N6 -200.00 -46.58 0.00 
N7 -170.00 -54.36 0.00 
N8 -140.00 -58.28 0.00 
N9 -110.00 -59.90 0.00 

Table C 1. Physical location of the spanwise static pressure measurement ports around 
the model nose section. 

NSXZ 

Static port number x (mm) y(mm) z (mm) 

N 10 -110.00 -0.10 -350.00 
N II -110.00 -0.10 -280.00 
N12 -110.00 -0.10 -210.00 
N13 -110.00 -0.10 -140.00 
N14 -110.00 -0.10 -70.00 
N15 -110.00 -0.10 0.00 
N16 -110.00 -0.10 70.00 
N17 -110.00 -0.10 140.00 
N18 -110.00 -0.10 210.00 
N19 -110.00 -0.10 280.00 
N20 -110.00 -0.10 350.00 

Table C2. Physical location of the spanwise static pressure measurement ports along the 

model nose section. 
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CAVXZ 

Port x y z y/S x/L 
(mm) (mm) (mm) L/D=1.0 L/D=1.5 L/D=2.0 L/D=3.0 

Cl 25.00 -50.00 -415.00 -0.49 0.50 0.33 0.25 0.17 
C2 25.00 -50.00 -390.00 -0.46 0.50 0.33 0.25 0.17 
C3 25.00 -50.00 -360.00 -0.43 0.50 0.33 0.25 0.17 
C4 25.00 -50.00 -330.00 -0.39 0.50 0.33 0.25 0.17 
C5 25.00 -50.00 -300.00 -0.36 0.50 0.33 0.25 0.17 
C6 25.00 -50.00 -270.00 -0.32 0.50 0.33 0.25 0.17 
C7 25.00 -50.00 -240.00 -0.29 0.50 0.33 0.25 0.17 
C8 25.00 -50.00 -210.00 -0.25 0.50 0.33 0.25 0.17 
C9 25.00 -50.00 -180.00 -0.21 0.50 0.33 0.25 0.17 
CIO 25.00 -50.00 -150.00 -0.18 0.50 0.33 0.25 0.17 
C11 25.00 -50.00 -120.00 -0.14 0.50 0.33 0.25 0.17 
C 12 25.00 -50.00 -90.00 -0.11 0.50 0.33 0.25 0.17 
C13 25.00 -50.00 -60.00 -0.07 0.50 0.33 0.25 0.17 
C 14 25.00 -50.00 -30.00 -0.04 0.50 0.33 0.25 0.17 
C15 25.00 -50.00 30.00 0.04 0.50 0.33 0.25 0.17 
C16 25.00 -50.00 60.00 0.07 0.50 0.33 0.25 0.17 
C17 25.00 -50.00 90.00 0.11 0.50 0.33 0.25 0.17 
C18 25.00 -50.00 120.00 0.14 0.50 0.33 0.25 0.17 
C19 25.00 -50.00 150.00 0.18 0.50 0.33 0.25 0.17 
C20 25.00 -50.00 180.00 0.21 0.50 0.33 0.25 0.17 
C21 25.00 -50.00 210.00 0.25 0.50 0.33 0.25 0.17 
C22 25.00 -50.00 240.00 0.29 0.50 0.33 0.25 0.17 
C23 25.00 -50.00 270.00 0.32 0.50 0.33 0.25 0.17 
C24 25.00 -50.00 300.00 0.36 0.50 0.33 0.25 0.17 
C25 25.00 -50.00 330.00 0.39 0.50 0.33 0.25 0.17 
C26 25.00 -50.00 360.00 0.43 0.50 0.33 0.25 0.17 
C27 25.00 -50.00 390.00 0.46 0.50 0.33 0.25 0.17 
C28 25.00 -50.00 415.00 0.49 0.50 0.33 0.25 0.17 

Table C3. Physical location of the spanwise static pressure measurement ports along the 

cavity floor. 
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(..: AVXY (L/D=3.0) 
Port x (mm) y(mm) z (mm) x/L 
Ll -50.00 0.00 0.00 -0.33 L2 -35.00 0.00 0.00 -0.23 L3 -20.00 0.00 0.00 -0.13 L4 -5.00 0.00 0.00 -0.03 Lý 0.00 -10.00 ýº. ýº(º 0. OO 
L6 0.00 -20.00 O. OO (1. O(º 
L7 0.00 -30.00 0.00 0.0O 
L8 10.00 -50.00 0.00 0.07 
L9 15.00 -50.00 0.00 0.10 

L 10 20.00 -50.00 0.00 0.13 
L 11 25.00 -50.00 0.00 0.17 
L12 40.00 -50.00 0.00 0.27 
L13 45.00 -50.00 0.00 0.30 
L 14 50.00 -50.00 0.00 0.33 
L15 55.00 -50.00 0.00 0.37 
L16 65.00 -50.00 0.00 0.43 
L17 75.00 -50.00 0.00 0.50 
L18 80.00 -50.00 0.00 0.53 
L19 90.00 -50.00 0.00 0.60 
L20 95.00 -50.00 0.00 0.63 
L21 100.00 -50.00 0.00 0.67 
L22 110.00 -50.00 0.00 0.73 
L23 125.00 -50.00 0.00 0.83 
L24 135.00 -50.00 0.00 0.90 
L25 150.00 -30.00 O. 00 1.00 
L26 150.00 -20.00 O. 00 1.00 
L27 150.00 -10.00 O. 00 1.00 

L28 155.00 0.00 0.00 1.03 

L29 170.00 0.00 0.00 1.13 

L30 185.00 0.00 0.00 1.23 
L31 200.00 0.00 0.00 1.33 

L32 215.00 0.00 0.00 1.43 

L33 230.00 0.00 0.00 1.53 

L34 245.00 0.00 0.00 1.63 

L35 275.00 0.00 0.00 1.83 

L36 305.00 0.00 0.00 2.03 

L37 335.00 0.00 0.00 2.23 

Table C4. Physical location of the longitudinal static pressure measurement ports across 

the cavity when L/D = 3.0. 
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LAVXY (L/D=2.5) 
Port x (mm) y(mm) z (mm) x/L, 
L1 -50.00 0.00 0.00 -0.40 L2 -35.00 0.00 0.00 -0.28 L3 -20.00 0.00 0.00 -0.16 L4 -5.00 0.00 0.00 -0.04 L5 0,00 -10.00 0.00 0.00 
L6 0.00 -20.00 0.00 0.00 
L7 0.00 -30.00 0.00 0.00 
L8 10.00 -50.00 0.00 0.08 
L9 15.00 -50.00 0.00 0.12 

L10 20.00 -50.00 0.00 0.16 
L II 25.00 -50.00 0.00 0.20 
L12 40.00 -50.00 0.00 0.32 
L13 45.00 -50.00 0.00 0.36 
L 14 50.00 -50.00 0.00 0.40 
L15 55.00 -50.00 0.00 0.44 
L16 65.00 -50.00 0.00 0.52 
L17 75.00 -50.00 0.00 0.60 
L18 80.00 -50.00 0.00 0.64 
L19 90.00 -50.00 0.00 0.72 
L20 95.00 -50.00 0.00 0.76 
L21 100.00 -50.00 0.00 0.80 
L22 110.00 -50.00 0.00 0.88 
S1 125.00 -30.0O 0.00 1.00 
S2 125.00 -20.00 0.00 1.00 
S3 125.00 -10.0O 0.00 1.00 
S4 I ý0. (lýº 0.00 0.00 1.04 
S5 135.00 0.00 0.00 1.08 
S6 140.00 0.00 0.00 1.12 
S7 145.00 0.00 0.001 1.16 

L28 155.00 0.00 0.00 1.24 
L29 170.00 0.00 0.00 1.36 
L30 185.00 0.00 0.00 1.48 
L31 200.00 0.00 0.00 1.60 
L32 215.00 0.00 0.00 1.72 
L33 230.00 0.00 0.00 1.84 
L34 245.00 0.00 0.00 1.96 

L35 275.00 0.00 0.00 2.20 

L36 305.00 0.00 0.00 2.44 

L37 335.00 0.00 0.00 2.68 

Table C5. Physical location of the longitudinal static pressure measurement ports across 

the cavity when L/D = 2.5. 
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CAVXY (L/D=2.0) 

Port x (mm) y(mm) z (mm) x/L 
LI -50.00 0.00 0.00 -0.50 L2 -35.00 0.00 0.00 -0.35 L3 -20.00 0.00 0.00 -0.20 L4 -5.00 0.00 0.00 -0.05 L5 0.00 -10.00 0.00 0.00 
LO 0.00 -20.00 0.00 O _). 
L7 0 00 -1)0.00 0.00 _ 0.00 
L8 10.00 -50.00 0.00 0.10 
L9 15.00 -50.00 0.00 0.15 
L10 20.00 -50.00 0.00 0.20 
L II 25.00 -50.00 0.00 0.25 
L 12 40.00 -50.00 0.00 0.40 
L13 45.00 -50.00 0.00 0.45 
L14 50.00 -50.00 0.00 0.50 
L15 55.00 -50.00 0.00 0.55 
L16 65.00 -50.00 0.00 0.65 
L17 75.00 -50.00 0.00 0.75 
L18 80.00 -50.00 0.00 0.80 
L 19 90.00 -50.00 0.00 0.90 
L20 95.00 -50.00 0.00 0.95 
S8 100.00 -30.00 ftOO I. 0O 
S9 100.00 -20.00 0.00 1.00 

SI0 1O0.00 -10.0O 0.00 1.00 
S II 105.00 0.00 0.00 1.05 
1,12 10.0O 0.00 0.00 1.1O 

s13 1 15.00 0.00 0.00 1.15 
s14 120.00 0.00 0.00 I. 20 

S15 130.00 0.00 0.00 1.30 
s16 I40.00 0.00 0.00 1.40 

L28 155.00 0.00 0.00 1.55 
L29 170.00 0.00 0.00 1.70 
L30 185.00 0.00 0.00 1.85 

L31 200.00 0.00 0.00 2.00 

L32 215.00 0.00 0.00 2.15 

L33 230.00 0.00 0.00 2.30 

L34 245.00 0.00 0.00 2.45 

L35 275.00 0.00 0.00 2.75 

L36 305.00 0.00 0.00 3.05 

L37 335.00 0.00 0.00 3.35 

Table C6. Physical location of the longitudinal static pressure measurement ports across 

the cavity when L/D = 2.0. 
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CAVXY (L/D=1.5 ) 
Port x (mm) y(mm) z (mm) x/L 
LI -50.00 0.00 0.00 -0.67 L2 -35.00 0.00 0.00 -0.47 L3 -20.00 0.00 0.00 -0.27 L4 -5.00 0.00 0.00 -0.07 L5 0.00 

-10.0O 0.00 11.1)(1 
L6 0.0O -20.00 0.00 II. 00 
L7 0.00 -30.00 0.00 0.00 
L8 10.00 -50.00 0.00 0.13 
L9 15.00 -50.00 0.00 0.20 

L 10 20.00 -50.00 0.00 0.27 
L11 25.00 -50.00 0.00 0.33 
L12 40.00 -50.00 0.00 0.53 
L13 45.00 -50.00 0.00 0.60 
L14 50.00 -50.00 0.00 0.67 
L15 55.00 -50.00 0.00 0.73 
L16 65.00 -50.00 0.00 0.87 
S17 75.00 -30.00 O. 00 1,00 
s18 75.00 --"(). 0() 0.00 I 

. 
00 

12119 75.00 -10.00 0.00 1.00 
S20 80.00 ft. 00 0.00 1.07 
S21 85.00 Il. (I(I fl. OO 1.13 
S22 90.00 0.0 0 II. 00 I. 20 
S23 95.00 0.00 0.00 1.27 
S24 105.00 0.00 0.00 1.40 

S25 1 15.00 0.00 0.00 1.53 
S26 125.00 0.00 0.00 1.67 

S27 135.00 0 0O ýº. 00 1.80 

L28 155.00 0.00 0.00 2.07 
L29 170.00 0.00 0.00 2.27 
L30 185.00 0.00 0.00 2.47 
L31 200.00 0.00 0.00 2.67 
L32 215.00 0.00 0.00 2.87 

L33 230.00 0.00 0.00 3.07 
L34 245.00 0.00 0.00 3.27 

L35 275.00 0.00 0.00 3.67 

L36 305.00 0.00 0.00 4.07 

L37 335.00 0.00 0.00 4.47 

Table C7. Physical location of the longitudinal static pressure measurement ports across 

the cavity when L/D = 1.5. 
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1 AVXY (L/D=1.0) 
Port x (mm) y(mm) z (mm) x/L 
LI -50.00 0.00 0.00 -1.00 L2 -35.00 0.00 0.00 -0.70 L3 -20.00 0.00 0.00 -0.40 L4 -5.00 0.00 0.00 -0.10 L5 0.00 -10.00 0.00 0.0O 
L6 0.00 -20.00 0.00 0.00 
L7 0.00 -30.00 0.00 0.0() 
L8 10.00 -50.00 0.00 0.20 
L9 15.00 -50.00 0.00 0.30 

L10 20.00 -50.00 0.00 0.40 
L II 25.00 -50.00 0.00 0.50 
L12 40.00 -50.00 0.00 0.80 
L13 45.00 -50.00 0.00 0.90 
S28 50.00 -30.00 0.0 0 1.00 
S29 50.00 -20.00 O. 00 1.00 
S _0 50.00 -10.00 0.00 1.00 
S3 I 55.0() (). 00 0.00 1.10 
S32 60.00 0.00 0.00 1.20 
S33 65.0 0.00 0.00 1.30 
S34 70.00 0.00 i º. 0O 1.40 
s35 SI0.00 0.00 0.00 1.60 
S36 90.00 0.00 0.00 I. NO 
S3 7 100.00 º º. 00 0.00 2.00 
S3K 1 10. (10 o. 0O 0.00 2.20 
S39 120.00 0.0O 0.00 2.40 
S40 130.00 rº(º0 0.00 2.60 
S4 I 140.0( 0.00 O. 0O 2.80 

L28 155.00 0.00 0.00 3.10 
L29 170.00 0.00 0.00 3.40 

L30 185.00 0.00 0.00 3.70 
L31 200.00 0.00 0.00 4.00 
L32 215.00 0.00 0.00 4.30 

L33 230.00 0.00 0.00 4.60 

L34 245.00 0.00 0.00 4.90 

L35 275.00 0.00 0.00 5.50 

L36 305.00 0.00 0.00 6.10 

L37 335.00 0.00 0.00 6.70 

Table C8. Physical location of the longitudinal static pressure measurement ports across 

the cavity when L/D =1.0 . 
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Transducer xy 
(mm) (mm) 

1 25.00 -50.00 
2L -45.00 

Z 
X/L 

(mm) L/D=1.0 L/D=1.5 L/D=2.0 L/D=2.5 L D=3.0 
0.00 0.50 0.33 0.25 0.20 0.17 
0.00 1.00 1.00 1.00 1.00 1.00 

Table C9. Physical location of longitudinal dynamic pressure measurement. 

Port x-L y z x/L 
(mm) (mm) (mm) L/D=1.0 L/D=1.5 L/D=2.0 L/D=2.5 L/D=3.0 

Pl 5.00 0.00 100.00 1.10 1.07 1.05 1.04 1.03 
P2 10.00 0.00 100.00 1.20 1.13 1.10 1.08 1.07 
P3 15.00 0.00 100.00 1.30 1.20 1.15 1.12 1.10 
P4 20.00 0.00 100.00 1.40 1.27 1.20 1.16 1.13 
P5 25.00 0.00 100.00 1.50 1.33 1.25 1.20 1.17 
P6 30.00 0.00 100.00 1.60 1.40 1.30 1.24 1.20 
P7 35.00 0.00 100.00 1.70 1.47 1.35 1.28 1.23 
P8 40.00 0.00 100.00 1.80 1.53 1.40 1.32 1.27 
P9 45.00 0.00 100.00 1.90 1.60 1.45 1.36 1.30 
P 10 50.00 0.00 100.00 2.00 1.67 1.50 1.40 1.33 
P II 55.00 0.00 100.00 2.10 1.73 1.55 1.44 1.37 
P12 60.00 0.00 100.00 2.20 1.80 1.60 1.48 1.40 
P13 65.00 0.00 100.00 2.30 1.87 1.65 1.52 1.43 
P 14 70.00 0.00 100.00 2.40 1.93 1.70 1.56 1.47 
P15 75.00 0.00 100.00 2.50 2.00 1.75 1.60 1.50 
P16 80.00 0.00 100.00 2.60 2.07 1.80 1.64 1.53 
P17 85.00 0.00 100.00 2.70 2.13 1.85 1.68 1.57 
P18 90.00 0.00 100.00 2.80 2.20 1.90 1.72 1.60 
p19 95.00 0.00 100.00 2.90 2.27 1.95 1.76 1.63 
P20 100.00 0.00 100.00 3.00 2.33 2.00 1.80 1.67 
P21 110.00 0.00 100.00 3.20 2.47 2.10 1.88 1.73 
P22 120.00 0.00 100.00 3.40 2.60 2.20 1.96 1.80 
P23 130.00 0.00 100.00 3.60 2.73 2.30 2.04 1.87 
P24 140.00 0.00 100.00 3.80 2.87 2.40 2.12 1.93 
P25 150.00 0.00 100.00 4.00 3.00 2.50 2.20 2.00 
P26 160.00 0.00 100.00 4.20 3.13 2.60 2.28 2.07 
P27 170.00 0.00 100.00 4.40 3.27 2.70 2.36 2.13 

P28 180.00 0.00 100.00 4.60 3.40 2.80 2.44 2.20 

P29 190.00 0.00 100.00 4.80 3.53 2.90 2.52 2.2713 

Table C 10. Physical location of the longitudinal static pressure measurement ports for 

Preston tube measurements. The total head probe was located at the same (x, y, z) 

positions. 
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Port x-L 
(mm) 

y (mm) z (mm) 

P30 20.00 0.00 -100.00 
P31 20.00 0.00 -90.00 
P32 20.00 0.00 -80.00 
P33 20.00 0.00 -70.00 
P34 20.00 0.00 -60.00 
P35 20.00 0.00 -50.00 
P36 20.00 0.00 -40.00 
P37 20.00 0.00 -30.00 
P38 20.00 0.00 -20.00 
P39 20.00 0.00 -10.00 
P40 20.00 0.00 0.00 

P41 20.00 0.00 10.00 

P42 20.00 0.00 20.00 

P43 20.00 0.00 30.00 

P44 20.00 0.00 40.00 

P45 20.00 0.00 50.00 

P46 20.00 0.00 60.00 

P47 20.00 0.00 70.00 

P48 20.00 0.00 80.00 

P49 20.00 0.00 90.00 

P50 20.00 0.00 100.00 

Table C 11. Physical location of the spanwise static pressure measurement ports for 

Preston tube measurements. The total head probe was located at the same (x, y, z) 

positions. 
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