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Abstract 

In order to avoid the damaging climatic consequences of rising atmospheric 

CO2, and reduce current atmospheric CO2 concentrations to pre-industrial levels, 

anthropogenic CO2 emissions must be mitigated by capturing CO2 at power plants 

and storing it for thousands of years. Underground storage within deep geological 

formations, such as depleted gas and oil fields or deep saline aquifers, is the best 

understood solution for storage of CO2. In order for this method to gain more 

public and political acceptance it is important to characterise the potential causes, 

quantities and rates of CO2 release that could result if leakage were to occur from 

anthropogenic storage projects. 

This study examines two sites in the Colorado Plateau where faulted and 

actively leaking CO2 reservoirs provide natural analogues for failed anthropogenic 

storage sites. The two sites in question, the Little Grand Wash and northern Salt 

Wash graben faults are situated at the northern end of the Paradox Basin in Utah 

and represent classic three way traps due to juxtaposition of the shallow, north 

plunging Green River anticline against a set of east-west trending normal faults. In 

addition to active leakage sites in each area there are numerous fossilised 

travertine deposits. Along the Little Grand Wash fault the ancient mounds are 

restricted to the fault trace whereas ancient travertine mounds associated with the 

northern fault of the Salt Wash graben are far more numerous and occur up to 

~530 m into the footwall of the fault. This more diffuse pattern of flow is due to the 

outcropping of unconfined aquifer units at the surface. A total of 45 U-Th dates 

from the majority of these travertine mounds provides a unique data set. The 

oldest deposits from the Little Grand Wash and northern Salt Wash graben faults 

produced ages of 113,912 ± 604 and 413,474 ± 15,127 years respectively. Repeat 

ages show reasonable reproducibility and analytical errors on results are of the 

order of 1% of the ages. The coupling of travertine elevation measurements with 

their radiometric ages gives an incision rate for each site. A rate of 0.342 m/ka for 

the Little Grand Wash fault relates directly to Green River incision and agrees with 

previous work on the Colorado Plateau, providing a further data point for 

characterisation of uplift of the province. For the northern fault of the Salt Wash 

graben a rate of 0.168 m/ka for the tributaries running through the area gives a 

robust method with which to estimate ages for un-dated mounds. 
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The results of radiometric dating and incision rate age estimation of 

travertine mounds shows that leakage can last for timescales of 100,000’s of 

years, while high resolution U-Th dating of an individual mound demonstrated that 

leakage from a single point can last for a minimum of ~11,000 years. A range of 

travertine ages show that leakage to the surface has constantly switched location 

through time, while the presence of three mounds of distinct age at one location 

demonstrate that pathways can become repeatedly re-used over periods of 

~45,000 years. There is no evidence of temporal periodicity in travertine deposition 

but there is a distinct spatial pattern of leakage as shown by localised similarities 

in the initial uranium chemistries of travertine mounds. Initial leakage is proximally 

located to the axial trace of the Green River anticline and subsequent leakage 

spreads from this central point along the fault plane in both east and west 

directions. The switching of fluid flow pathways to the surface can be explained by 

three main mechanisms: mineralisation, 3-phase interference of CO2 related fluid 

flow and seismically triggered alteration in dynamic strain acting upon the 

hydrology of the faults. These mechanisms have differing influences in each area - 

demonstrating that the behaviour of fluid flow switching in a system confined to 

damage zone fractures (Little Grand Wash fault) is different to a system leaking 

through an unconfined aquifer (northern fault of the Salt Wash graben).  

Coupling of travertine ages with estimates of their volumes provided a total 

worse case scenario for quantity of CO2 leakage of 6.2 x 106 ± 1.7 x 106 tonnes for 

the Little Grand Wash fault and 7.4 x 106 ± 2 x 106 tonnes for the northern fault of 

the Salt Wash graben. From these totals time averaged leakage rates of 55 ± 15 

and 47 ± 13 tonnes/year were estimated for each fault. The leakage rate for the 

actively precipitating Crystal Geyser travertine (which is the result of 

anthropogenic exploration drilling) is estimated to be 3,153 ± 851 tonnes/year. 

These total and modern rates provide analogues for leakage via caprock failure 

and catastrophic wellbore failure. Applying them to large scale storage sites such 

as Weyburn and Gorgon revealed that for caprock failure complete leakage of 

these reservoirs will take place over timescales of 105-106 years, while for 

catastrophic failure of a single well complete leakage of these reservoirs could 

occur over as little as 103 – 104 years. This finding has important implications for 

the successful monitoring of anthropogenic storage sites. 
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1 Introduction 

World wide power generation from the combustion of fossil fuels such as 

oil, natural gas and coal currently discharges in excess of 11.4 billion tonnes of 

CO2 per year into the Earth’s atmosphere (CARMA, 2008). Because of the 

expanded use of fossil fuels, the atmospheric concentration of CO2 has risen from 

preindustrial levels of 280 ppm to a present day value of approximately 365 ppm 

(Anderson and Bows 2008). It is no coincidence that as industry has developed 

over the last 100 years the Earth’s surface has warmed by 0.6°C (Hulme and 

Jenkins, 1998). To stabilise the climate global emissions of CO2 must be 

significantly reduced to pre-industrial levels. In order to achieve this whilst 

maintaining our current dependence on fossil fuels, bridging technologies such as 

CO2 capture and storage must be utilised whilst alternative low emission energy 

production techniques, that use renewable sources such as wind and tidal power, 

are developed to the stage were they are economically competitive and able to 

meet current global energy demands. 

Several possible methods exist for the storage of CO2; burial in geological 

reservoirs and unmineable coal seams, and disposal in the deep sea, lakes 

beneath ice caps or in layered basalt provinces are just some of the suggested 

options (Baines and Worden, 2004; Broecker, 2008). Most of these strategies 

raise concerns regarding practicality, safety, and economics. Of the various 

options, storage underground in geological reservoirs, such as abandoned gas 

and oil fields or deep saline aquifers, is the best understood (Allis et al., 2001; 

Chadwick et al., 2004; Bachu, 2008). Large amounts of natural gas are already 

stored within these reservoirs and the existence of long-lived natural 

accumulations of CO2 suggests that these storage systems are very stable 

(Holloway et al., 2007). In addition, injection of CO2 into depleted oil reservoirs 

may allow for enhanced oil recovery which provides an economic incentive. 

However, there are signs that the general public are sceptical of the merits of 

geological storage due to the potential risk of leakage from anthropogenic CO2 

reservoirs (Van Noorden, 2010). It is therefore important to determine how leakage 

of CO2 storage systems can occur and what the possible quantities and rates of 

CO2 leakage will be so that the effects of CO2 release at potential storage sites 

can be better understood. 
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Carbon dioxide reservoirs associated with the Little Grand Wash and 

northern Salt Wash graben faults, in Utah, USA, provide natural analogues for 

leaky anthropogenic storage sites. In these locations fault related flow of CO2-

charged waters to the surface demonstrates the effects of CO2 leakage from a 

subsurface aquifer unit. The presence of numerous fault related travertine mounds 

in these areas makes them unique sites where the history of leakage over 

timescales of 100,000’s of years can be studied. Within this thesis the fluid flow 

history of these faults has been quantitatively determined by U-Th dating of the 

travertine mounds. Coupling of radiometric ages with measurement of the 

dimensions of travertine mounds has also allowed for an estimation of the volume 

and rates of leakage of CO2 to the surface. The results presented throughout this 

thesis therefore have potentially important implications for the acceptance of 

geological storage as a viable means of abating CO2 emissions into the Earth’s 

atmosphere. A brief summary of the thesis structure is provided in the following 

paragraphs. 

The remainder of this chapter introduces the two main themes of this study- 

fault influenced fluid flow and radiometric dating. The aim of this thesis is to bring 

these themes together in order to quantify the history of fluid flow along the Little 

Grand Wash fault and the northern fault of the Salt Wash graben. The discussion 

of the control of fault zones on fluid flow mainly focuses on vertical flow as the 

migrationary pathways of CO2 charged waters to the surface along both the Little 

Grand Wash fault and the northern fault of the Salt Wash Graben are sub-parallel 

to the fault plane. The second part of the chapter is dedicated to the theory and 

application of the U-Th dating technique utilised in the study of the travertine 

deposits found within the field areas. 

Chapter 2 presents an individual case study which involved dating of 

Cladocora caespitosa coral specimens in order to assess a slip rates on the South 

Alkyonides fault segment on the Perachora Peninsula in the Gulf of Corinth, 

Greece. This was carried out in order to assess the U-series dating technique and 

to investigate active slip on a large normal fault. As coral is commonly used for 

application of U-Th age determination within palaeo-climate and palaeo-ocean 

studies this chapter also contains a critique of the suitability of coral for use in this 

type of analysis.  
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The Little Grand Wash and Salt Wash graben field sites are introduced in 

Chapter 3. In order to characterise the geological setting and tectonic history for 

the areas a discussion of previous work on these field sites and the Colorado 

Plateau is carried out. Building upon previous work, new observations from the 

field are then used to provide a detailed explanation of travertine formation for 

these particular areas. Within this explanation an insight into the components 

required for travertine construction and their possible sources is presented. Finally, 

an assessment of the timing of fault movement on both the Little Grand Wash fault 

and the northern fault of the Salt Wash graben is carried out using field evidence 

from geomorphological observations involving travertine and ancient river terrace 

deposits. 

The results of U-Th dating of travertine are presented in Chapter 4. An 

examination of which travertine facies are suitable for dating is carried out in order 

to determine which gives the most reliable age results. The major aim of age 

analysis was to provide a data set with which to decipher the history of fluid flow to 

the surface along each fault, to this end a discussion of the evolution of leakage to 

the surface through time is presented. The size and quality of the data set also 

allowed for further use in several subsidiary studies. Age results of samples were 

used to help assess field observations, focussed dating of a single mound was 

implemented in order to learn more about life-spans of travertine mounds, whilst 

variation in chemistries of samples were used to determine the source of uranium 

within the deposits. By combining the U-Th age results with elevation 

measurements and thickness estimates an incision rate for each area was 

calculated and volume and lifespan estimates for each travertine mound were 

determined. This allowed for the age estimation of un-dated mounds and provided 

information for the comparison of travertine deposits across the Little Grand Wash 

and northern Salt Wash graben field sites. 

The implications of U-Th results for fluid flow evolution along the Little 

Grand Wash and northern Salt Wash graben faults are discussed in Chapter 5. 

This chapter examines the cause of the switching of fluid pathways to the surface 

throughout the history of flow. The potential causes of switching are presented 

within two categories- external and internal forcing. External factors include 

seismic activity and climatic variation, whilst internal factors include local fault 

structure and mineral precipitation effects. These processes are investigated in 
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order to assess which is the most likely mechanism to cause the fluid flow 

switching observed from the results of Chapter 4. 

The leakage of CO2 along the Little Grand Wash and northern Salt Wash 

graben faults and the risk it poses is discussed in Chapter 6. In this chapter the 

total volume of CO2 leaked to the surface in each field area is estimated. By 

combining these total leakage estimates with the radiometric dating of travertine 

leakage rates were calculated for the total length of fluid flow history on each fault 

and for current sites of active precipitation. These two separate rates represent 

proxies for caprock failure and wellbore failure and can therefore be used to 

discuss the implications of these two varieties of leakage for current anthropogenic 

storage examples. With emphasis placed on the findings of this thesis a review of 

site characterisation, and monitoring and verification of leakage for geological 

storage sites is carried out. To conclude, an assessment of the risk posed by 

leakage at the Little Grand Wash and northern Salt Wash graben faults is 

presented and recommended steps are suggested for the monitoring and 

remediation of the leakage displayed by these systems. 

1.1 The control of fault zones on fluid flow 

The following section presents a review of both the physical parameters 

and structural factors that can effect fluid migration, with particular emphasis on 

vertical fluid flow along faults. Direct observations of fault related fluid flow are 

infrequent; however, a wide range of information is available if both direct and 

indirect observations are integrated from a range of industries and research areas. 

The subsections comprising the first part of this chapter are therefore an overview 

of current research into, and observations of, fault controlled fluid flow. The 

physical properties of fluid flow are discussed within subsection 1.2. The influence 

of faults in fluid migration is then considered in subsection 1.3, with subsection 1.4 

further developing this topic by discussing temporal variability in fault zone 

permeability. This section formed part of a position paper commissioned by Statoil 

Hydro. Though the following represents my own contribution to the report it was 

considerably aided by discussion with the co-authors of that paper; Zoe Shipton, 

Rebecca Lunn and Jerry Fairley. 
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1.2 Properties of fluid flow that influence the sub surface 

migration of fluids 

1.2.1 Introduction 

An important control on the migration of fluids is the fluid flow properties of 

rocks. The primary driver of subsurface fluid flow is gradients in hydraulic head 

between points, although other gradients, such as temperature and density, may 

also drive fluid flow. Relevant aspects to consider for predicting flow rate and 

direction depend on the number of fluid phases present. This is an especially 

important consideration for CO2 systems where several phase combinations 

between liquid, aqueous, gaseous and supercritical CO2, may be present. If two or 

more of these phases are present (e.g. water-gas/water-supercritical CO2) 

multiphase flow properties such as relative permeability and capillary entry 

pressure of the rock system are more important. 

1.2.2 Single fluid phase 

The porosity of an earth material is the percentage of the rock or soil that is 

void of material and is dependant on grain size and distribution, arrangement of 

grains, and cementation (Fetter, 2001). Porosity of fault gouge, for example, may 

be lower than the host rock because brittle fracturing reduces the grain size and 

produces a wider grain size distribution. The shape of grains also has an affect 

with well rounded grains potentially creating low porosity due to their ability to pack 

closely together, whilst irregular grains can lead to higher porosities (Meinzer, 

1923). An important aspect for flow through rocks is the size and interconnected 

nature of the pore spaces, so effective porosity is of potentially greater importance 

for fluid flow than the total porosity of a material. This property considers only the 

porosity that is available for fluid flow, excluding pores that are not large enough to 

contain water molecules and those that are not interconnected. Faulting and 

fracturing of rock during brittle deformation can lead to generation of further 

interconnected porosity, and lead to higher intrinsic permeabilities within affected 

rock. Intrinsic permeability is the ability of a material to permit fluid to flow through 

it. The size of pore throats, the degree of pore and fracture interconnection, and 

the amount of open space are all significant factors (Fetter, 1993). Intrinsic 



Chapter 1  Introduction 

March 2010  Neil M. Burnside 6 

permeability is often used in preference to other measures of the ease of fluid flow, 

such as hydraulic conductivity, because it is independent of the properties of the 

fluid and depends only on the properties of the rock. 

1.2.3 Multiple fluid phases 

The increased complexity introduced by two-phase flow places more 

importance on relative permeability and interfacial pressure in the determination of 

fluid flow. Relative permeability, the ratio of intrinsic permeability of fluid at given 

saturation ratio to total intrinsic permeability of the rock, provides a comprehensive 

description of the ease with which various phases can migrate because pore 

spaces tend to not be occupied by any one phase (Fetter, 1993). Most models of 

relative permeability include a provision for a residual saturation. This is the level 

of saturation below which a phase becomes disconnected and immobile. As a 

result of the presence of phases at or near the residual saturation the sum of the 

relative permeabilities for all phases is almost always less than one. Commonly 

used models of relative permeability for two-phase systems have been proposed 

by a number of authors (e.g., Mualem, 1976, Ringrose et al., 2003; Manzocchi et 

al., 2002; Pruess, 2004). There are fewer models for relative permeability in three-

phase systems, in part due to the difficulty and expense of laboratory studies for 

such systems (Stone, 1970; 1973). This makes it more difficult to assess the 

effects on permeability of the presence of three CO2 phases at any one time. 

When two or more phases are present the influence of interfacial pressure 

(often referred to as capillary pressure) must be considered. When two immiscible 

substances are in contact, a curved surface will tend to develop at the interface. 

The curvature of this interface is a function of the difference between the pore 

pressures of the two fluids, and the contact angle of the fluids with the surrounding 

rock. The contact angle is the angle formed between the solid and a drop of liquid 

placed on the solid. It is a function of the surface free energy of the liquid and the 

change in area of the solid covered by the liquid (Adamson, 1990). If the contact 

angle between the solid and the liquid is greater than 90° the solid is deemed to be 

‘not wet’. Geological materials are commonly found to be “water wet” (the contact 

angle between water and most rocks is very nearly 0°). In order to invade a pore 

filled with a wetting phase, the interfacial pressure of the non-wetting phase must 
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equal or exceed that of the wetting phase, a pressure differential known as the 

‘capillary threshold’ or ‘pore entry pressure’. 

1.2.4  Properties of CO 2 at depth 

Carbon dioxide exhibits complex thermodynamic behaviour in the 

subsurface, where it may be present in a number of phases in several 

combinations (Pruess, 2003; 2005). For the range of temperature and pressure 

conditions found in normal crustal settings, CO2 can be a gas, liquid or 

supercritical fluid. Below the CO2 critical point (temperatures <31.04 ºC and 

pressures <73.82 bars; Vargaftik, 1975) CO2 can coexist as a free phase (gas or 

liquid) and in solution in the pore waters (Pruess and Garcia, 2002). With time, 

CO2 will be chemically bound in solid minerals, though numerical modelling is 

needed to quantify this process adequately (Johnson et al., 2004). CO2 will be 

governed by single-phase flow if it is completely dissolved in groundwater. Two-

phase flow becomes prevalent if there is a drop in the pressure, caused by ascent 

of the fluid or fault movement, which releases CO2 from solution. Alternatively, if 

the groundwater becomes supersaturated with CO2 and a separate phase of gas 

or liquid CO2 is present, the phases are immiscible (Pruess and Garcia, 2002) and 

will flow in two fluid phases. 

To define the likely phase of CO2 at a given location and time, the 

temperature and pressure must be known or estimated.  Defining the proportion of 

CO2 that is free or dissolved in the local groundwater is more difficult. Depending 

on CO2 discharge-recharge rates, individual reservoirs could be free phase 

dominated, aqueous phase dominated or mixed. Free-phase CO2 present within a 

reservoir will partition into the liquid phases over time. A drop in pressure, 

however, can release CO2 from solution to return to a multiphase situation. Such a 

drop in pressure can be caused by fault movement and a subsequent change in 

effective stress; dilation caused by this change in effective stress can also change 

the rock properties and lead to a drop in pressure. The CO2 phase(s) present can 

also cause changes in fault rock properties over time. For example, dissolved CO2 

decreases pH in the aqueous phase, leading to the dissolution of some types of 

fault rocks and subsequent changes in fracture porosity and permeability 

(Andreani et al., 2008; Detwiler, 2008).  In other cases capture of CO2 by 
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mineralization may locally decrease permeability by clogging pore space 

(Srivastava et al., 2000). 

1.3 The influence of fault zones on fluid migration  

1.3.1 Introduction 

Faults normally represent complex zones composed of many fault 

segments, multiple fault strands, Riedel shears, splay faults, dilatational jogs, and 

relay ramps (Price and Cosgrove, 1990; van der Zee, 2002; Koledoye et al., 2003; 

Boutareaud et al., 2008). As such they can act as barriers to flow, conduits to flow, 

or combined conduit/barrier systems as their hydraulic properties vary in both 

space and time (Pratsch, 1991; Lopez et al., 1995; 1996; Braun et al., 2003; 

Malkovsky and Pek, 2004). A substantial body of research has focussed on 

predicting the across-fault flow properties of fault zones in oil and gas reservoirs 

(Fisher et al., 2001; Knipe et al., 1998). However, there is limited knowledge of 

fault influence on long-term vertical fluid migration through reservoirs. 

Observations of vertical fault flow are predominantly in crystalline basement rocks, 

where localised mineral deposition indicates that faults are commonly conduits for 

fluids migrating under thermal and chemical gradients. It is important to note that 

fault properties influence vertical fluid flow at two spatial scales; the individual fault 

zone and areas of fault interaction or network. The following subsections the 

influence of faults on fluid flow at both of these scales are examined. 

1.3.2 Fault zone architecture 

Upper crustal brittle fault zone fluid flow depends, in part, on fault zone 

architecture and permeability structure. Brittle fault zones are lithologically 

heterogeneous and anisotropic discontinuities (Martel et al., 1998; Antonellini and 

Aydin, 1994; Faulkner and Rutter, 2003; Shipton and Cowie, 2001; Rawling et al., 

2001; Brogi, 2007). Individual fault planes can also show high variation in 

complexity along strike or down dip, even over relatively short distances (Childs et 

al., 1997; Schulz and Evans, 1998; van der Zee, 2002, Lunn et al., 2008). A three 

component fault zone model proposed by Caine et al. (1996) after Chester and 

Logan (1986a) splits the structure of a fault zone into fault core, damage zone and 

protolith (Figure 1.1), although not all of these components need be present in 
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every fault zone (Wibberley et al., 2008). Both the fault core and the damage zone 

are mechanically related to the growth of the fault zone (Sibson, 1977; Scholtz and 

Anders, 1994). 

 
Figure 1.1: The fault zone conceptual model of Cain e et al. (1996). 

The figure depicts a fault zone with the protolith removed (after Chester and Logan, 1986; 
Smith et al., 1990) Ellipse represents relative mag nitude and orientation of the bulk two- 
dimensional permeability tensor that might be assoc iated with each distinct architectural 
component of fault zone. 

 

The fault core is the central component of a fault zone where most of the 

fault slip has been accommodated. This portion of the fault zone may include 

single slip surfaces (Caine et al., 1991); unconsolidated clay-rich gouge zones 

(Anderson et al., 1983) brecciated and geochemically altered zones (Sibson, 

1977) or highly indurated cataclasite zones (Chester and Logan, 1986b). Fluid flow 

properties of fault core are controlled by isotropic variation in thickness coupled 

with the composition of present lithologies (Caine et al., 1996). Reducing grain 

size during fault slip or mineral precipitation by fault induced fluid flow produces 

fault core with lower porosity and permeability than the surrounding protolith 

(Chester and Logan 1986a; Antonellini and Aydin, 1994), and leads fault core to 

act as a barrier to across fault flow. 

The damage zone is an interconnected 3D network of subsidiary structures, 

including small faults, fractures, veins, deformation bands, cleavage and folds, that 

bound the fault core and may enhance fault zone permeability relative to the core 

and the undeformed protolith (Bruhn et al., 1994; Knipe et al., 1998; Shipton and 

Cowie, 2001; Shipton et al., 2002, 2006; Jourde et al., 2002; Brosch and Kurz, 
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2008). This component can be viewed as being composed of ‘onion skins’ (Knipe 

et al., 1998) each with different densities, architectures and connectivities between 

potential barriers. Damage zones can consist of two main domains, outer and 

inner, which often have different flow properties (Figure 1.2). The inner zone 

comprises of a higher volume of fault related subsidiary structures, the intensity of 

which gradually decreases toward the outer zone. An interconnected 3D array of 

fractures can be generated by the structural density and architecture of this inner 

zone. If the fault damage zone elements act as an effective barrier then fluid flow 

is controlled by tortuosity of interconnected host rock pathways within the damage 

zone (Hesthammer and Fossen, 2000). 

On approaching the undeformed host rock, or protolith, there is commonly a 

diffuse boundary between the damage zone and the host rock, with a gradual 

decrease in fracture intensity and sometimes a change in fracture strike 

(Gudmundsson, 2001; Billi et al., 2003). 

 
Figure 1.2: Schematic of the main structural elemen ts of a fault damage zone.  

Figure after Knipe et al. (1998). The zone is compr ised of a cluster of deformation features 
around a large offset fault. Note that the juxtapos itions seen differ from those that would 
occur if only a single fault was present and that t he presence of an array of deformation 
features can induce the development of micro-compar tments or sealed cells in the fault 
zone. 

 

1.3.2.1 The effect of fault zone components on flui d flow 

The amount and distribution of each fault zone component controls fluid 

flow within and near the fault zone. Permeability values of fault core and damage 

zone recorded from the same fault may contrast by as much as 10-6 m2 (Forster 

and Evans, 1991). Fluid flow properties of a fault zone may change through time. 



Chapter 1  Introduction 

March 2010  Neil M. Burnside 11 

For example, a fault core may act as a conduit during deformation and as a barrier 

when open pore space is filled by mineral precipitation following deformation 

(Caine et al, 1996; Claesson et al., 2007). It is important therefore to consider the 

evolutionary stage of a fault when evaluating its fluid flow properties. The 

permeability of fault core is affected by the present lithology and its degree of 

alteration. In the example of core rock consisting of sedimentary units lithologies 

with the lowest phyllosilicate content will generally have the highest permeability. 

Laboratory determined permeabilities for natural fault core materials show a range 

of variation of approximately 10 orders of magnitude (10-12 to 10-22 m2 from Smith 

et al., 1990). 

Estimates of damage zone fracture permeability carried out by Caine et al. 

(1996) using the estimation methods of Oda et al. (1987) and Bruhn (1993) for 

both the Dixie Valley fault Zone and Triall Ø fault 6, East Greenland, are 2-3 

orders of magnitude greater than the fractured protolith and 4-6 orders of 

magnitude greater than the fault core and imply that the damage zone acts as a 

conduit for fluid flow in these examples. Similar findings in other fault studies 

would be dependant on the composition of the damage zone components. For 

example zones comprised of a large volume of clay or salt may lead to a damage 

zone of lower permeability than the protolith (Figure 1.2).  

Areas of fault interaction may provide the most important pathways for fluid 

flow in a basin (Gartrell et al., 2003, Ligtenberg, 2005). High permeability zones 

may be produced at locations where smaller subsidiary fault structures are in 

contact with the main fault or places where steps or bends occur (Gartrell et al., 

2004). Depending on the geometry of the step these are the locations at which 

extensional, open structures may form that constitute zones of enhanced 

permeability (Price & Cosgrove, 1990; Curewitz and Karson, 1997; Gartrell et al., 

2003; Ligtenberg et al., 2005, Lunn et al., 2008). High sheer strain at fault planes 

normally results in the production of high volumes of fault gouge (Ligtenberg, 

2005). Numerical modelling of the mechanical behaviour of faults demonstrates 

that at fault intersections the shear strain is low in relation to the fault planes 

involved (Gartrell et al., 2003; 2004). Due to the resultant reduced fault gouge 

production small open folds and faults can become highly concentrated and 

potentially form relatively open sub-vertical dilation zones which can enhance fluid 

migration pathways (Figure 1.3). The regional effect of fault intersections on 
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focusing vertical flow into distinct channels is demonstrated by data from 

Ligtenberg (2005) in Figure 1.4. 

 
Figure 1.3: 3D numerical modelling of the mechanica l behaviour of fault intersections. 

Figure from Gartrell et al. (2003). A zone of high dilatation and low shear strain is created in 
the area of fault intersection, providing an ideal location for high fluid flux. 

 

 
Figure 1.4: Time-slice through a seismic data cube of a large scale fault system. 

Figure from Ligtenberg, 2005. Faults are highlighte d in grey, whilst the yellow zones 
correspond to large gas chimneys with high fluid fl ux. Increased fluid activity is observed at 
fault intersections and along several faults, indic ating leakage. Faults without enhanced 
fluid activity are interpreted to be sealing or hav ing very low fluid flux.  
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1.3.2.2 Juxtaposition and cap rock seals  

Juxtaposition of reservoir rock against low-permeability clay-rich non-

reservoir rock can create juxtaposition seals (Watts, 1987; Allan, 1989; Knipe, 

1997). The seal capacity of the trap is therefore related to the capillary properties 

of the juxtaposed unit (Hesthammer and Fossen, 2000; Fisher et al., 2001). If the 

pore pressure of the wetting phase is greater than that of the non-wetting phase 

and capillary entry pressure cannot be overcome then a lateral membrane seal will 

be formed (Underschultz, 2007). If the distribution of throw on a fault is known, 

Allan diagrams can be used to analyse the nature of fault juxtapositions across a 

fault plane (Allan, 1989). In order to aid the analysis of fault juxtaposition and 

sealing, Knipe (1997) developed triangle diagrams, based on the interaction of 

rock lithology and the fault throw magnitude. The advantage of triangle diagrams is 

that they can be constructed without detailed 3D mapping of stratigraphical 

horizons and fault planes, and allow rapid initial characterization of juxtaposition 

and fault seal types. Fault seal diagrams can be used as the basis for estimates of 

permeability, sealing capacity, critical fault displacements and transmissibility of 

fault zones. 

For vertical migration, buoyant fluid must find a way of breaking through 

confining layers or cap-rock (that is if the damage zone has not provided an 

adequate conduit for flow). There are two main methods of cap-rock sealing, 

membrane and hydraulic seals. Membrane seals are controlled by the capillary 

properties of the caprock which acts as a kind of membrane with the weakest seal 

areas located around interconnected pore throats (Underschultz, 2007). Hydraulic 

sealing occurs when the capillary entry pressure is so high (e.g. for tight shales or 

some evaporites) that failure can only occur by fracturing of the caprock or 

wedging open of faults (Watts, 1987). The only way to fail this caprock is to 

increase pore pressure at the cap-rock reservoir interface so that the effective 

minimum stress reduced to zero, or even below zero, to overcome the tensile 

strength of the rock. 

1.3.2.3 Vertical fluid migration 

Current practice with respect to analysis of fluid flow in fault zones is almost 

entirely concerned with across fault flow, with emphasis based on modelling the 

effects of faults on fluid flow using quantities such as transmissibility multipliers 
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(Manzocchi et al., 1999; Manzocchi et al., 2002; Harris et al., 2002), or predictive 

algorithms such as the Shale Gouge Ratio (Yielding et al., 1997; Yielding, 2002; 

Manzocchi et al., 2008). Driven entirely by the hydrocarbon industry, much of this 

work is concerned with finding upscaled values for properties derived from host 

rock and fault properties for input into workflows at reservoir modelling grid block 

scales (~15 x 15 m). Information gained from studies in this area can have 

important implications for vertical fluid flow, as established low permeability fault 

zone components that retard across fault flow may encourage fluid flow along fault 

planes. 

Direct observation of vertical fluid flow itself in faults is limited. Therefore, it 

is important to examine indirect evidence from a range of industries and research 

areas. Observations that link fault zones to vertical fluid flux are listed below. It 

should be noted that, to date, no studies have integrated evidence across these 

subject areas.  

1) Springs (This study; Curewitz and Karson, 1997; Shipton et al., 2005; 

Rowland et al., 2008), mud mounds (Berryhill, 1986), hydrate mounds 

(Roberts et al., 2000) and pockmark craters (Heggland, 1997; Ligtenberg, 

2005, Van Rensbergen et al., 2007) aligned along fault planes.  

2) Temperature anomalies above faults (Kumar, 1977; Fairley and Hinds, 

2004b; Becker et al., 2008) or within fault rocks (Roberts et al., 1996; 

Losh et al., 1999).  

3) Fluid pressure distributions across faults (Berg and Habeck, 1982; 

Claesson et al., 2007; Jin and Johnson, 2008). 

4) Pore water salinity (Lin and Nunn, 1997) or turbidity (Shipton et al., 2006) 

anomalies.  

5) Hydrothermal deposits (Hedenquist and Henley, 1985), cementing phases 

(Eichhubl and Boles, 2000; Moore et al., 2005) or travertine mounds (This 

study; Doelling, 1994; Hancock et al., 1999; Shipton et al., 2004) 

associated with faults. 

6) Clustering of gas-related amplitude anomalies stacked vertically in 

footwall or hanging wall traps along single wall faults (Heggland, 1997; 

Ligtenberg, 2005). 
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7) Reservoir induced seismicity due to fluid flow through faults beneath 

surface water reservoirs (Simpson et al., 1988; Gupta et al., 1997; 

Talwani, 2000; Chen and Talwani, 2001; Nascimento et al., 2005a, b). 

8) Earthquake triggering (Muir Wood, 1994; Miller et al., 2004, Collettini, 

2002, Collettini and Trippetta, 2007; Scholz, 2002; Rice and Coco, 2007). 

1.4 Temporal variations in fault permeability 

1.4.1 Introduction 

Contradictory evidence for fault conductivity is found in various studies 

(Galloway, 1982; Morton and Land, 1987; Bodner and Sharp, 1988; Sibson, 1992; 

1995; Kitagawa et al., 2007). Temporal permeability is a potential theory which 

explains the observed permeability discrepancies (Hooper, 1991). This theory 

suggests that a fault can act as both a conduit and a barrier to fluid flow through 

time due to temporal fluctuations in permeability and fluid potential. As a fault 

becomes active, and fluid movement is concentrated, a fluid potential gradient 

forms between the fault plane and the surrounding rocks (Hooper, 1991; Haney et 

al., 2005). This has been documented by the work of Losh et al. (1999) on the ‘A’ 

fault, a large growth fault on the South Eugene Island block 330 field, offshore 

Louisiana. They found that localised palaeothermal (from vitrinite reflectance data) 

and fluid pressure anomalies existed within the fault zone and deduced that this 

was the result of pulses of fluid sourced from a highly overpressured source below 

the reservoir. Such pulses of fluid may be expected to be at elevated pressure 

relative to the fluids either side of the fault, creating an envelope of low effective 

stress which could increase the permeability of the fault. If the fluid ascends a 

portion of the fault which is in contact with an aquifer its high pressure might 

increase permeability in nearby splay faults, which typically exist adjacent to any 

significant fault (Weber et al., 1978; Micklethwaite and Cox, 2004; 2006), driving 

flow into the lower pressure reservoir. The greater the pressure differential 

between the fault and the surrounding reservoir the greater the tendency of fluid to 

escape laterally from the fault during fluid flow; however, as fluid escapes into the 

reservoir pressure in the fault decreases and the fault is effectively shut off for 

further flow (Figure 1.5).  
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Figure 1.5: Schematic fluid flow model for temporal  permeability.  

Figure after Losh et al. (1999). Pf = fluid pressur e. 
 

1.4.2 Evidence of temporal flow   

Several lines of evidence exist for periodic fluid flow along faults: 

1) Geomechanical behaviour of faults demonstrated by episodic fluid flow 

effects, such as oxidation and reduction fronts, on faulted sedimentary 

rocks (Galloway, 1982); and fault reactivation caused by production of 

reservoirs (Wiprut and Zoback, 2000; Teanby et al., 2004; De Meersman et 

al., 2007). 

2) Thermal signature of upwelling fluids. This is particularly evident in meteoric 

dominated regimes where ground water recharge has a relatively low 

temperature whilst upwelling fluids from depth have a higher heat flux 

(Bodner and Sharp, 1988; Fairley et al., 2003; Anderson and Fairley, 2008). 

3) Salinity anomalies recorded within migrating fluids. Upwelling brine has 

been shown to be variable in its salinity content, with low saline waters 

associated with periods of lesser fault activity, allowing upward flow to be 

retarded and encouraging dilution by connate fresh water (Morton and 

Land, 1987; Keucher et al., 2001). 
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4) Mineral precipitation during episodes of fluid flow (this can also lead to 

mechanical changes in fault rock properties). Deposition of travertine or 

calcite veins in response to intermittent fluid flow (This study; Eichhubl et 

al., 2009; Uysal et al., 2009); precipitation of quartz altering deformation 

elements in the fault zone (Johansen et al., 2005); and faulted alluvial 

sediment acting as lithified material after fluid flow associated precipitation 

(Heffner and Fairley, 2006). 

1.4.3 Processes which lead to episodic fluid flow a long faults 

There are three main mechanisms which can lead to the permeability (and 

therefore conductivity) of fault planes increasing as faults become more active 

(Hooper, 1991; Losh and Haney, 2006): 

1. Dilation-increased permeability.  

2. Re-fracturing or dissolution of mineral zones. 

3. Seismic pumping. 

At stresses close to failure micro cracks can form parallel to the fault plane 

causing dilation and increasing fault conductivity. If the fluid potential gradient is 

simultaneously parallel to the fault plane fluid will preferentially flow along the 

increased zone of permeability created by dilation. If the zone of increased 

permeability is wide (>200 m) relatively small increases in hydrostatic stress can 

lead to the fault forming a significant conduit for fluid flow (Hooper, 1990). 

Re-fracturing or dissolution of mineralised zones can increase fault 

conductivity if previously cemented fractures are re-opened. This could potentially 

be caused by seismic activity or introduction of a fluid of different chemistry to the 

depositional fluid. The fractured host rock must be moderately to well consolidated 

in order for the cracks to remain open and increased permeability to be 

maintained. Evidence of this mechanism comes from the presence of cemented 

breccias within fault associated veins which implies several episodes of movement 

(Sibson et al., 1975). 

Increase of fluid potentials within fault zones, as a result of seismic 

pumping, can promote the conductivity of associated faults (Scholtz and Krantz, 
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1974). This mechanism is initiated by rising tectonic shear stress of faults prior to 

seismic activity. This causes dilation around the focal points of earthquakes by 

opening extension cracks and fractures normal to the least principal compressive 

stress (Sibson et al., 1975). Dilation causes a drop in fluid pressure and a rise in 

frictional resistance to shear along the fault as migrating fluid fills the cracks fluid 

pressure rises and frictional resistance decreases. When the rising shear stress 

equals the frictional resistance, seismic failure occurs which leads to a relief of 

shear stress and a closure of dilational fractures (Sibson et al., 1975). This 

relaxation of fractures forces fluid to flow rapidly in the direction of least ambient 

pressurisation. The observation of spring flow around fault zones after 

earthquakes suggests that this is largely in the upwards direction (Muir Wood and 

Geoffrey, 1993, Esposito et al., 2001). 

1.5 Addressing the gaps in our understanding 

Although plenty of work has been carried out on across fault flow it is clear 

that there is still a lot to be learnt about fault parallel fluid flow. The properties of 

fluid flow and the effects of multiple fluid phases on permeability are well 

understood. This is important as within CO2 systems several phases of CO2 may 

present in various combinations depend on the pressure and temperature 

conditions. It is also generally accepted that faults are usually complex structures 

comprised of different components, core, damage zone and protolith, whose 

properties can vary both along strike and down dip. The varying properties of 

these components allow faults to act as barriers, conduits of combined barrier and 

conduit systems with relation to fluid flow. Due to gouge production and 

geochemical alteration during fault slip, fault core usually forms a low permeability 

barrier to across fault flow. The damage zone, an area of highly concentrated 

small faults, fold and fractures, may provide permeable pathways for fluid flow 

parallel to faults depending on the degree of interconnection between the 

subsidiary structures. Depending on the orientation of the ambient stress field 

during fault slip irregularities in a fault plane, such as bends and relay ramps, may 

be subjected to lesser shear strains in relation to the fault plane allowing for 

formation of relatively open zones of dilation that encourage the channelling of 

fluid flow through relatively impermeable media. 
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Direct observations of fluid flow are limited and therefore the understanding 

of the processes that instigate fluid flow has thus far been mainly based on indirect 

observations. Episodic fluid flow is also poorly understood as the causes and 

timescales involved are hard to determine for fluid flow in active fault zones. The 

work presented in this thesis presents a unique data set with the goal of answering 

some of these issues on fault parallel fluid flow. By studying the position of 

travertine mounds, which are the result of sub-vertical flow of CO2-charged waters 

to the surface, in relation to two normal fault structures, the Little Grand Wash and 

northern Salt Wash graben faults, information can be gained on the subsurface 

pathways that allow for fluid flow to the surface. Radiometric dating of these 

travertine deposits provides information on the timescales of leakage along faults 

and for individual fluid flow pathways. By combining age data of travertine mounds 

with geological observation from the field the timescales and reasons for the 

closure and creation of fluid flow pathways can be determined. This information 

can be used to provide an increased understanding of the structure of faults and 

their fluid flow properties. 

1.6 The U-series dating technique 

In order to determine the ages of travertine deposits related to the Little 

Grand Wash and northern Salt Wash graben faults, and therefore quantitatively 

constrain the timing of fluid flow to the surface along these faults, uranium series 

dating was utilised. This also allowed the time spans between successive mounds 

to be determined which was key for developing an understanding of the processes 

that may be instigating changes in fluid flow pathways in the subsurface and gave 

an insight into evolution of fault structure through time. 

U-series dating has been routinely applied to coral, speleothem and calcite 

veins for palaeoclimatic studies (Garnett et al., 2004; Placzek et al., 2006a; 2006b; 

Uysal et al., 2007; Alcaraz-Pelegrina et al., 2007), and has also found uses in 

topics as varied as magma chamber evolution; human evolution (through dating of 

bone) and ground water evolution (Van Calsteren and Thomas, 2006). It is 

increasingly common for this dating technique to be applied to palaeoseismic 

studies (e.g. Morewood and Roberts, 1999; Leeder et al., 2003; Cooper et al., 

2007; Uysal et al., 2007). Dating carbonates that are deposited along the surface 

of faults or in fractures created by seismic activity can allow the history of 
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movement of these features to be deduced (Szabo and Rosholt, 1982). The use of 

this information can lead to the establishment of recurrence intervals of late 

Quaternary and prehistoric earthquake events (Uysal et al, 2007) and the slip 

rates on faults between these events (Roberts et al., 2009). There is a paucity of 

references in the literature to utilising U-series for the study of fluid flow, which is 

the main premise of this thesis. 

The uranium decay series contain radioactive isotopes of many elements, 

the varied geochemical properties of which cause the nuclides in the chain to be 

fractionated in different geological environments. U-series disequilibrium dating 

methods are based on the measurement of the degree of restoration of radioactive 

equilibrium in a radioactive decay series following this fractionation. U-series 

measurements allow investigation of processes occurring on time scales from 

days to 105 years and offer some of the only quantitative constraints on time 

scales applicable to the physical processes that take place on the Earth. Several 

criteria, common to most types of radiometric clocks (Ivanovich, 1982b), must be 

satisfied for U-series dating before a particular method can be considered a 

geologically useful chronometer: 

• Decay constants (or half lives) of the radionuclides must be accurately 

known. 

• The analysed sample must be representative of the geological system for 

which the age is desired. 

• The sample must be free of intermediary decay products and final daughter 

product during its initial formation. 

• The system must remain closed with respect to migration of the parent and 

daughter nuclides since its time of formation. 

The following sections provide a more in-depth introduction to the aspects 

involved with U-series dating, focusing on the 234U/230Th technique. A description 

of the basic principles of radioactivity is presented in subsection 1.7 which 

provides the basis of the theory behind U-series techniques. A discussion of the 

practical application of the U-Th dating method is then presented in section 1.8. 

Finally, a short section on analytical procedure is presented in section 1.9 to 

discuss the techniques used during the dating process. 
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1.7 The phenomenon of radioactivity 

1.7.1 Introduction 

Of the approximately three-hundred-and-fifty naturally occurring nuclides, 

most that occur are stable and do not change with time, but there are many like U, 

which are radioactive (Dalrymple, 1991). A radioactive nucleus is one which at any 

instant may change spontaneously into a different nuclear type. This is a statistical 

process called radioactive decay, whereby the decay is proportional to the number 

of radioactive nuclei of a particular kind at any time t. The constant of 

proportionality, λ termed the decay constant, is the probability of decay per unit 

time interval (Ivanovich, 1982a). It is related to the half-life of a radionuclide (which 

is the time required for the decay of exactly one half of the original number of its 

nuclei) by Equation 1.1;  

21t
6930

/

.=λ  

Equation 1.1 

1.7.2 Radioactive decay 

Radioactive decay is the process of transformation from a parent to a 

daughter nuclide. It is brought about by two alternative types of particle emission: 

either the moderately heavy alpha particle or the light beta particle. Due to the 

great energy released along with these particles, gamma rays are often produced, 

which like X-rays, are a form of penetrating electromagnetic radiation.  

Alpha particles are nuclei of He atoms, two protons and two neutrons 

(supplying a positive charge of two units and an atomic mass of four), which when 

emitted causes a nucleus of atomic number Z and mass A to lose two protons and 

thus transform into an element of atomic number Z-2 and mass A-4. An example 

of this is the alpha decay of 234U92 into 230Th90 (Figure 1.6). The rate of alpha decay 

is highly dependant on the available energy. Increasing atomic number tends to 

provide more energy, though it is only for elements above Pb (Z = 82) that alpha 

decay is the dominant source of radiation.  

Beta particles are electrons of negligible mass in comparison to a nucleon 

and carry a charge of -1. A nucleus of atomic number Z which emits a beta particle 
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loses a unit of negative charge which is equivalent to gaining one positive charge 

with no gain in mass. For example 234Th90 emits a beta particle to become 234Pa91 

which in turn decays to 234U92 with the loss of a further beta particle. 

1.7.3 The U-series decay chain 

Most of the long-lived, heavy radioactive elements decay into daughter 

products that are radioactive themselves. These decay in turn and thus form 

series (or chains) which eventually end in a stable daughter nuclide. The process 

by which radioactive isotopes decay is known as ‘activity’, which is equal to the 

relevant decay constant multiplied by the number of atoms of a nuclide (Nλ), 

where the decay constant represents the fraction of radioactive atoms that decays 

per unit time (Equation 1.2).  

The atomic ratio of two isotopes is the ratio of the number of atoms in 

comparison to one another. To help differentiate between atomic and activity 

ratios, from this point forward all activity ratios will be highlighted by square 

parenthesis. All alpha-emitting nuclides can be divided into four independent 

decay series (all of which occur naturally bar the neptunium series: Ivanovich, 

1982a). An essential characteristic of these decay-chains is that the process 

begins with a radiogenic actinide nuclide of much longer half life (>0.7Ga) than all 

the intermediate daughters and ends with a stable daughter isotope of lead 

(Bourdon et al., 2003). The U series chain is the longest decay series beginning 

with 238U and ending with 206Pb. It is of the sequence type 4n+2 as every atom in 

the chain has a mass number that is two greater than a multiple of four (Ivanovich, 

1982a) (Figure 1.6). The members of this decay chain utilised for U-Th dating are 
234U (t1/2= 245ka) and 230Th (t1/2= 75ka). The relatively long half lives make these 

nuclides particularly suited to investigating many geological processes that occur 

over time scales similar to their decay period (Bourdon et al., 2003). 

1.7.4 Geochemistry of the actinides and their daugh ters 

Knowledge of the chemical properties of the U-series nuclides is essential 

to any understanding of the fractionation within the U-series chains. Most of the U-

series nuclides are metals, with five of them belonging to the actinide family 

(Bourdon et al., 2003). The actinides are the heaviest naturally occurring elements 

in nature. Isotopes of the lowest members (Ac, Pa, Th, and U) are derived from 
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three parent nuclides 238U, 235U and 232Th, which are sufficiently long lived to 

survive in abundance at the present time (Gascoyne, 1982). This group takes its 

name from actinium, the first in a series of elements which are characterised by 

infilling of the 5f electron shell (Gascoyne, 1982). The filling order of the electron 

orbitals of U-series atoms affects the possible oxidation states of their associated 

nuclide. The preferred oxidation state of each nuclide is reached when its 

electronic configuration matches that of the closest rare gas, radon (Bourdon et 

al., 2003). 

An important chemical property of relevance to geochemistry is the ionic 

radius in different coordination. In general, Th has a larger ionic radius than U 

despite U having a larger atomic mass; this phenomenon is known as actinide 

contraction (Bourdon et al., 2003). In general the heavier actinides should be more 

easily accommodated in minerals than the lighter ones at a given oxidation state 

(Gascoyne, 1982). 

1.7.5 Secular equilibrium and Disequilibrium 

If the activity of the parent nuclide is equal to the activity of its subsequent 

daughter, a state of radioactive or secular equilibrium is reached: 

1
2

1
2 NN 
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
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≈ λ
λ  

Equation 1.2 
 

Where N1, N2, λ1 and λ2 represent the number and the decay constants of 

the respective parent and daughter isotopes. Secular equilibrium between a parent 

and daughter implies an activity ratio of 1. The number of atoms of each 

intermediate daughter produced is in direct proportion to the daughter atom’s half 

life or inverse proportion to its respective decay constant. The amount of stable 

daughter product at the end of the series will continue to increase with time but at 

a decreasing rate (Ivanovich, 1982b). In a system in which there is an initial 

disequilibrium in the chain a return to secular equilibrium will occur after roughly 

six half lives of the daughter nuclide (Bordon et al., 2003).  
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Figure 1.6: The U-series decay chain.  

(A) The chain in its entirety. It begins with the n uclide 238U and passes a second time 
through Z=92 as a consequence of an alpha-beta-beta  sequence repeated twice so that the 
U-series terminates on the lightest of the radiogen ic Pb isotopes, 206Pb. 238U is the chief 
constituent of natural U (99.27% abundance) and the  progenitor of the 4n+2 series. (B) A 
more detailed look at the start of the U-series cha in complete with isotopic half lives. Note 
that for 234Pa the half life shown is the most common form (99. 86% of transitions); an 
isomeric form with a half life of 6.66 hours consti tutes the remaining transitions. Half lives 
are taken from Jaffey et al. (1971), Knight and Mac hlin (1948), and Cheng et al. (2000). 
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In most geological environments the natural radioactive series are often in a 

state of near equilibrium, but instances where they are not are common. Due to 

the chemical difference between parent and daughter nuclei, it is possible for them 

to become naturally separated by ordinary geochemical processes. The nature 

and degree of this fractionation between different members within a decay chain, 

referred to as ‘disequilibrium’, frequently offers a clue to the geological history of a 

sample (Ivanovich, 1982b). 

1.7.6 Cause of Disequilibria 

1.7.6.1 Introduction 

Radioactive disequilibrium results from geochemical sorting or 

differentiation processes, whereby one decay series daughter is more mobile than 

another. The U-series decay chain contains many elements that are subjected to 

fractionation by environmental and geological processes. Half lives of radioactive 

isotopes of such elements range from seconds to many millennia, so the degree of 

disequilibrium will depend on the natural timeframe of the fractionation process or 

the elapsed time (Van Calsteren and Thomas, 2006). Since large fractionation 

between 234U and 238U in rocks and their leach solutions has been observed 

(Cherdyntsev, 1955) and a small excess of 234U in ocean water has been 

discovered (Thurber, 1962), disequilibrium between 234U and 238U has been found 

to be the rule rather than the exception (Gascoyne, 1982). Most examples of U-

series disequilibrium observed in nature have their origin in the hydrosphere 

(Osmond and Cowart, 1982). Especially important are the ground water and 

aquifer environments where water and minerals are intimately mixed (i.e. where 

porosity, surface area, and residence times have large values) and where both 

chemical and physical differentiation have an opportunity to operate. Several 

culprits for this disequilibrium have been discussed (Harmon and Rosholt, 1982; 

Gascoyne, 1982; Osmond and Cowart, 1982; Bourdon et al., 2003; Van Calsteren 

and Thomas, 2006; Kaufman, 1993) with the following subsections highlighting 

some of the most important. 
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1.7.6.2 Oxidation  

In the near surface environment, and at low temperature, both uranium and 

thorium are quadrivalent and chemically immobile. Uranium however, can become 

mobilized by oxidation to the hexavalent (+6) uranyl ion (Langmuir, 1978). 

−+++ ++=+ e2H4UOOH2U 2
22
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Equation 1.3 
 

This increase in oxidation state of 234U may occur either by removal of 

orbital electrons in the emission of alpha and beta particles, or by changes in 

energy levels between original and dislocated sites (Bourdon et al., 2003). 

Hexavalent uranium is fairly soluble as UO2 (CO3)3
- and similar ionic complexes, 

whilst thorium remains quadrivalent and insoluble (Van Calsteren and Thomas, 

2006), and therefore uranium is preferentially leached. Further complexing of the 

uranyl ion may also occur depending on pH and presence of other ions 

(Gascoyne, 1982). 

1.7.6.3 Weathering 

During weathering, fractionation of uranium and thorium is a very efficient 

process because thorium is extremely insoluble while in oxidising conditions 

hexavalent uranium is relatively soluble (Rosholt, 1982). Thorium tends to remain 

in the mineral grains during weathering because its partition coefficient (the ratio of 

the concentrations of an element, parent or daughter, before and after a 

fractionation process) is large in comparison to uranium (Van Calsteren and 

Thomas, 2006). However, thorium may still be mobilised by becoming bound in 

insoluble detrital minerals or adsorbed on to the surface of clay minerals as it is 

highly particle reactive (i.e. it has a high affinity for solid substances; Gascoyne, 

1982; Moran et al., 2002). The movement of U and Th as particulate matter is 

controlled only by the physical properties and flow velocity of the transporting 

medium, except where chemical interaction occurs across the phase boundary 

between solid particles and associated fluid (Gascoyne, 1982). The most 

important factor in U transport and partitioning of U/Th is the solubility the of the 

uranyl complex ions (UO2
2+). Uranium can be removed from water during the 

precipitation of carbonates and phosphates, but also when it returns to the 

uranous state under reducing conditions that occur with the accumulation of 
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organic matter (Van Calsteren and Thomas, 2006). Thus weathering of rocks and 

mineral results in efficient leaching of uranium into the water where it can be 

transported in the form of carbonic or humic complexes (Gascoyne, 1982). 

1.7.6.4 Alpha recoil into solution  

Radioactive decay of 238U to 234U involves the emission of one alpha and 

two beta particles. Ejection of the former has the effect of damaging the crystal 

lattice around the parent 238U atom. 234Th, the daughter of 238U, can be dislocated 

from its original site and ejected into the medium surrounding the grain by this 

‘recoil’. This displacement is not trivial (10-110 nm for 238U to 234Th) and it leaves a 

tube in the crystal of that length (Van Calsteren and Thomas, 2006). As a result, 
234Th is more exposed to removal by corrosive fluids (rainwater, groundwater, 

hydrothermal solutions, and others). Subsequent decay of 234Th to 234U leads to an 

increase of the 234U/238U ratio of the surrounding medium. Enrichment of 234U via 

the alpha recoil effect is counteracted by the relatively short lifespan of 234Th (35 

days) and its insoluble nature which makes it likely to hydrolyse or absorb onto a 

solid surface before decaying to 234U. 

1.7.6.5 Leaching from radiation damaged sites  

This mechanism was first proposed by Cherdyntsev (1955) to account for 

the small excess of 234U in river water. It is also known as the Szilard-Chalmers, or 

‘hot-atom’, effect and is especially hard to isolate and identify (Gascoyne, 1982; 

Osmond and Cowart, 1982). This occurs when a daughter is resident in an 

inhospitable lattice damaged by recoil. As the result of nuclear transformation this 

nuclide may also exhibit an unstable electronic configuration, thus making it more 

vulnerable to leaching than its neighbouring atoms. 

1.7.6.6 Biological Activity 

Microbiological activity in soils and waters has an important role in the 

mobility of U (Chabaux et al., 2003). Iron and sulphate reducing bacteria can 

reduce uranium from its uranyl to its less soluble uranous form (Spear et al., 1999; 

Fredrikson et al., 2000). Numerous mechanisms of U accumulation by microbes 

exist; these are divided into metabolism-dependant and metabolism-independent 

systems (Suzuki and Banfield, 1999). Metabolism-dependant mechanisms can 
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involve the activity of enzymes to encourage reduction or precipitation of U, or 

complexion by chelating molecules such as siderophores (Chabaux et al., 2003). 

The second grouping involves both live and dead cells and the physio-chemical 

interaction between their negatively charged microbial sites and species of U in 

the cationic form. 

1.7.6.7 Further processes 

Also worth mentioning in relation to disequilibrium are the processes of; 

solution plus precipitation, diffusion, and fixation. Solution and precipitation, a 

common differentiation process, occurs when ground water percolates past solid 

mineral grains and selectively leaches ions in an aquifer or soil (Osmond and 

Cowart, 1982). Diffusion involves the escape of short lived gaseous daughters of 

Radon and Radium in the U-series decay chain (Gascoyne, 1982). The fixation of 

radionuclides by colloids (which range in size from 1 to 1000 nm), encompassing a 

large variety of organic and inorganic components, is another important 

mechanism influencing the fractionation of the U-series nuclides (Chabaux et al., 

2003). 

1.8 Uranium Series Dating 

1.8.1 Introduction 

The U-series dating methods are based on the measurement of the activity 

of U and its various daughter nuclides. In any naturally occurring material which 

contains U and which has remained undisturbed for millennia, a state of secular 

equilibrium between the parent and the daughter will be formed. When a 

sedimentary deposit is formed various geochemical processes can cause isotopic 

and elemental fractionation initiating a state of disequilibrium between parent and 

daughter molecules (see section 1.7.6). If no diagenetic changes or other 

migrationary mechanisms occur after the initial formation of the deposit in this 

state of disequilibrium it is possible, in principle, to determine the time of the 

original event by measuring the extent to which the radionuclide system has 

returned to the state of secular equilibrium (Ivanovich, 1982b). 
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1.8.2 The U-Th dating method  

 The U-Th method is based the accumulation of 230Th, the direct 

daughter decay product via emission of an alpha particle, from 234U. Because of 

the relatively short half lives of 230Th in comparison to 234U, its concentration is 

several orders of magnitude less. For this technique to work the parent nuclide 

must be deposited free of its daughters, and migration of nuclides must not have 

occurred (Gascoyne, 1982; Chabaux et al., 2003). This is what is known as a 

closed system, and with no radiogenic 230Th in the deposit, the radiometric clock 

effectively starts at zero (Van Calsteren and Thomas, 2006). The age of the 

deposit can be determined from the extent of growth of daughters into secular 

equilibrium with their parent (Ivanovich, 1982b), If a sample contains no 230Th at 

the time of formation, then at any later time, the 230Th/234U ratio is given by the 

relationship;  

( )t
234230

230

e1
UU

1
1

UU

e1
UTh

234230

230
238234238234

t
234230 )(

//
/ λλ

λ

λλ
λ −−

−

−
−








 −+−=  

Equation 1.4 
 

Where t= time and λ= decay constant (the fraction of radioactive atoms that 

decays per unit time). 

Figure 1.7 is an isochron plot showing a graphical solution of Equation 1.4. 

It illustrates the relationship between [230Th/234U] and [234U/238U] for closed 

systems of varying initial [234U/238U] (Ivanovich, 1982b). In the age range of less 

than 3x104y, the relation between the 230Th/234U activity ratio and age is virtually 

independent of the [234U/238U] in the sample. [234U/238U] has a much smaller effect 

on age, usually by more than an order of magnitude, than the [230Th/234U] ratio 

(Kaufman, 1993). In this range the equation is reduced to the form (Ivanovich, 

1982b):  

)(/ t234230 230e1UTh λ−−=  

Equation 1.5 
 

If, after fractionation of nuclides, the decay chain remains undisturbed for a 

period of approximately five times the longest half-lived intermediate nuclide, then 

it will return to a state of secular equilibrium (Bourdon et al., 2003). This factor 

provides radiometric clocks, such as the U-series, with dating limits. In practice, 
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the effective dating range for this method is considered to be around 350 ka (the 

length of 6 half lives of the daughter product 230Th), if however an excess of 234U is 

present, and the [234U/238U] is adequately high, as is the case with travertine 

samples from Utah (Chapter 3), then dating of material older than 350 ka is 

possible. 

 

Figure 1.7: Variation of [ 234U/238U] and [ 230Th/234U] with time in a closed system. 

Isochron plot after Ivanovich, (1982a). The near ve rtical lines are isochrons (lines of 
constant age) obtained from Equation 1.4. The near horizontal lines show change in the 
nuclide activity ratios as age increases for differ ent initial 234U/238U activity ratios. The 
circles show the isotopic evolution of a carbonate with an initial [ 234U/238U] of 2.8 and 
[230Th/234U] of zero (as there is no initial 230Th). As the carbonate ages uranium series 
nuclides decay into their daughter products changin g the isotopic and therefore activity 
ratios (as indicated by the red arrows), this has t he effect of decreasing the [ 234U/238U] and 
increasing the [ 230Th/234U] with time. For the carbonate example shown this leads to a 
[234U/238U] of 2.4 and [ 230Th/234U] of 0.65 at 100ky and leads to a [ 234U/238U] of 2.0 and 
[230Th/234U] of 0.93 at 200ky. 
 

1.8.3 Uranium series application 

1.8.3.1 Requirements for dating 

Any process that is fast relative to the time that has elapsed may be an 

‘event’ that can be ‘dated’ by U-series (Van Calsteren and Thomas, 2006), as long 

as the deposited material contains 234U and lacks its daughter 230Th. This 
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principally occurs in authigenic phases where U is incorporated in the mineral 

structure or simply co-precipitated. The predominant minerals are calcite and 

aragonite, both forms of CaCO3. 

For accurate determination of U-series ages for carbonate deposits, 

samples should demonstrate that they have remained ideal, closed systems 

throughout their geological history. The extent to which this closed system 

requirement applies is subject to varying criteria for different types of samples, and 

these are discussed in detail for speleothems, travertine and coral by many 

different authors (e.g. Kaufman et al., 1998; Szabo et al., 1996; Stirling and 

Anderson., 2009). These criteria are listed below: 

• The sample should be free of 232Th as this would indicate the present of detrital 

contamination of samples and the addition of non-radiogenic 230Th. 

• The samples should be impermeable to sea or groundwater because the flow 

of water through the system may cause alteration to the U or Th content. 

• There should be no evidence of weathering in the sample. 

• There should be no evidence of recrystalisation and/or deposition of void-filling 

cement. 

• The 234U/238U ratio should be consistent with the 230Th/234U ratio in samples of 

different age from the same system (i.e. should show a systematic decrease 

with sample age). 

• The 230Th/234U ages should be consistent with the stratigraphic position of the 

samples. 

1.8.3.2 Checks on the validity of samples for datin g  

Any contamination of a sample can be checked by calculating its 

[230Th/232Th]. Ratios less than 15 to 20 (Bischoff and Fitzpatrick, 1991; Geyh, 

2008) are thought to significantly effect the age analysis of a sample by making it 

appear older (Bischoff and Fitzpatrick, 1991). There are no simple chemical or 

physical means to separate the carbonate from non-carbonate detrital 

contaminants completely (Gascoyne and Schwarcz, 1982), primarily due to 

contamination of samples by detrital 230Th (Kaufman, 1993). Relatively few 
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published works have indicated success in dating ‘dirty’ samples- though two main 

approaches have emerged- chemical separation techniques and isochron dating. 

Different chemical separation and analyses methods of single and multiple 

leachates, residues and combination of all of these have been compiled by 

Schwarcz and Latham (1989), and Kaufman (1993). These methods involve a 

series of assumptions about the ratio of the concentrations of the relevant nuclides 

between different dissolved fractions and in the detrital material. In a study of 

palaeolake carbonates from the Bolivian Altiplano Placzek et al. (2006) found that 

initial Th may have two sources: (1) a siliciclastic fraction, and (2) ‘unsupported’ or 

‘hydrogenous’ Th. They employed various Th isotope ratios to correct for single 

sample carbonates, with the simplest of these to assume that [230Th/232Th] is equal 

to the upper continental crustal value of ~0.8 (Polyak and Asmerom, 2001). 

However, this assumption can be problematic as [230Th/232Th] values for 

siliciclastic materials originating from soils, dust and alluvium can range from 0.25 

to 1.7 (Szabo and Rosholt, 1982; Kaufman, 1993). High resolution dating of 

Holocene tufa has been reported by Garnett et al. (2004) to be problematic due to 

detrital contamination combined with short time for growth of radiogenic Th. They 

also found that a single value of [230Th/232Th] to correct for the presence of detrital 
230Th is not appropriate (as there is considerable variability in the isotopic 

composition of the detritus) in their study and suggest that this may apply to most 

Holocene tufa. 

Isochron dating is a mathematical method of predicting a ‘clean’ age 

(Bischoff and Fitzpatrick, 1991; Przybylowicz et al., 1991; Placzek et al, 2006). It 

requires multiple subsamples of the same age, but with variable degrees of 

contamination, to be obtained and analysed. This coupled with the need to make 

an independent test of the range of isotopic variability of detritus at the sample site 

has the potential to turn this into a long and relatively time consuming process. 

1.9 Analytical Procedure 

1.9.1 Introduction 

After appropriate samples had been selected for dating they had to be 

rendered into a form appropriate for analysis. Preliminary extraction of U-series 

elements from a sample is a straight forward procedure. Subsequent separation of 
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the desired nuclides, 234U and 230Th, from other chemically similar nuclides in the 

group and obtaining them at desired concentrations for age analysis (234U and 
230Th at ppm and ppb levels respectively) required a lengthy chemical procedure. 

Once in a form suitable the samples were analysed by mass spectrometer and the 

resultant counts of nuclides were then used to calculate an age for the sample. 

The analysis process therefore involved four key stages; preconcentration of U 

and Th, separation of U and Th, analysis of samples using mass spectroscopy and 

processing of results for age calculation. 

1.9.2 Preconcentration 

Initially the sample was ground as finely as possible and well mixed in order 

to homogenize the sample before an aliquot is taken for analysis. Complete 

dissolution of the sample was achieved by nitric acid digestion. A mixed 229Th-236U 

spike solution, an internal tracer containing known quantities of 229Th, 232Th, and 
236U, was added at the start of the procedure, before the sample had been 

subjected to any further chemical treatment. This was done in order to help assess 

the mass bias of the sample during analysis, and to achieve ion beams of 

desirable voltage for counting of nuclides during mass spectroscopy. No 235U/238U 

was incorporated into the spike as a natural atomic ratio is assumed for these 

isotopes and corrected accordingly. In order to remove any organic components 

from dissolved samples they were treated with hydrogen peroxide, in cases were 

the sample was rich in organics (and produced an orange or purple leachate) 

perchloric acid was used. 

1.9.3 Separation Scheme 

The column separation method outlined in the first stage of the separation 

procedure described by Yokoyama et al. (1999) was used to separate 234U and 
230Th. This involved the use of an ion exchange resin (Eichrom Industries Inc. 

U/TEVA.spec resin), which utilises a synthetic high molecular weight polymer that 

contains a large amount of diamyl, amylphosphonate (DAAP) functional groups. In 

the ionic form these act as labile/unstable ions, capable of exchanging with ions in 

the surrounding medium without any major physical change taking place in the 

structure (Lally, 1982). Matrix elements of the sample were eluted with 4 M HNO3, 
230Th eluted with 5 M HCl and 234U with 0.1 M HNO3. Five molar HCl was used to 
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prevent the carry-over of 230Th into the 234U fraction and optimise U-Th separation 

(Ellam and Keefe, 2006). This step is critical with concerns to the integrity of the 
229Th/232Th mass bias correction- it is essential that no 230Th is left over to 

contaminate the separated 234U fraction. After separation the U faction was diluted 

with 5% HNO3 in order to achieve an appropriate concentration of 234U (~50 ppb) 

for analysis. Similarly 50 ppb of certified reference material (CRM) NBL112-A 

(obtained from the US Department of Energy, New Brunswick Laboratory) is 

added to the 230Th faction. 

1.9.4 Mass Spectrometry 

1.9.4.1 Variety of techniques available 

Once separated, aliquots of uranium and thorium were subjected to 

analysis by mass spectrometer. Four different mass spectrometry (MS) techniques 

are in use: thermal ionisation (TIMS), plasma ionisation using a quadruple mass 

filter (ICP-QMS), plasma ionisation using a sector magnet with a single detector 

system (SD-ICP-MS) or a multi-collector system (MC-ICP-MS). In all instruments, 

the nuclides of interest are ionised, separated according to mass, passed through 

ion multipliers, and detected using Faraday detectors (Van Calsteren and Thomas, 

2006). For analysis of the samples involved in this study the MC-ICP-MS 

technique was utilised, whilst many previous studies referred to in this thesis have 

used TIMS. It is therefore useful to compare these two techniques. 

1.9.4.2 Comparison of the TIMS and ICP-MS spectrome tric techniques 

Among the different mass spectrometric techniques for precise isotope ratio 

measurements TIMS used to be the dominant one, however since the start of their 

commercial availability in 1983 ICP-MS have increasingly become more 

favourable for analysis (Gabler, 2002; Becker, 2003). ICP based systems have 

orders of magnitude better sensitivity than TIMS systems for both U and Th (Van 

Calsteren and Thomas, 2006), which leads to smaller required sample size and 

higher sample throughput (Shen et al., 2002). This is due to the superior ionization 

efficiency (the ratio of charged ions generated to neutral atoms evaporated) of 

ICP-MS (Luo et al., 1997; Potter et al., 2005). In TIMS this is inversely proportional 

to the first ionization potential of the analyte which for both 234U (6.14 eV) and 
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230Th (6.08 eV) is quite high. Typical ionisation efficiencies for 234U are low (ca. 

0.01%) and show a tendency to decrease with larger sample size (Chen et al., 

1992; Ellam and Keefe, 2006). Due to this inefficiency TIMS analysis requires high 

purity samples in relation to ICP-MS. Another disadvantage of TIMS is 

instrumental mass fractionation which preferentially ionizes light isotopes as a 

sample is progressively evaporated and ionized from the mass spectrometer 

filament ion source. This is detrimental to the precision of the measurement; 

however accuracy can be improved depending on the ability to correct for the 

effect (Ellam and Keefe, 2006).  The ICP-MS method also requires fewer 

preparation steps and shorter measurement times (Shen et al., 2002). 

Measurement of fairly intense isotope count signals over short acquisition times 

are less vulnerable to background than relatively low intensity TIMS 

measurements with longer time periods.  

1.9.4.3 MC-ICP-MS analysis 

Multiple-collector instruments are different in concept from single collector 

ICP instruments. Whereas the latter measures signals sequentially or at high 

speed over a broad mass range, the former simultaneously measures ion beams 

over a restricted mass range to obtain accurate and precise isotope ratios 

(Halliday et al., 1998). In the present study a MC-ICP-MS was used at the SUERC 

laboratories. Analysis of samples was carried out on an upgraded Micromass (now 

GV instruments) Isoprobe equipped with 9 Faraday collectors and an ion counting 

Daly-photo-multiplier detector located behind a wide-access retarding potential 

(WARP) filter. An Elemental Scientific Inc. Apex-Q device equipped with an ACM 

desolvating membrane was used to introduce the sample to the plasma source. 

An elemental Scientific Inc. PFA-ST nebuliser operated at a flow rate of 50 µl min-1 

connects directly to the sample probe of a Ceta Technologies ASX-500 auto 

sampler controlled by the instrument software. Additional operating conditions are 

shown in Table 1.1. 
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Table 1.1: Operating conditions for the MC-ICP-MS ( Ellam and Keefe, 2006). 
 

ICP-MS plasma uses many more times the energy required to overcome 

the first ionisation energy of both U and Th. This creates nuclides of various 

ionisation states with a ±30 eV variance in energy. The plasma is collided with 

argon gas in a Hexapole collision cell to lessen the effect of this variance, dropping 

it to ±1 eV on entering the magnetic sector. The plasma beam is then separated 

into multiple beams of various atomic masses by the energy of the magnet, before 

reaching the WARP filter with concentrations of ~25ppm for the nuclides to be 

measured. This filter rejects any ions that have lost energy relative to their 

departure from the hexapole cell and greatly improves the abundance of sensitivity 

of the instrument (i.e. the ability to separate the tail of a minor peak from an 

adjacent major peak) from > 20 ppm at -1 atomic mass unit (amu) for the Faraday 

detectors to <200ppb at the Daly photomultiplier detector (Ellam and Keefe, 2006). 

Since the background noise of the Faraday cups is on the order of 10-14 amps, 

smaller signals need to be counted on the Daly detector. This is essentially a 

polished knob, sitting behind the Faraday cups, producing a charge of -25 kV. The 

Daly detector attracts ions which on collision produce electrons and a pulse of light 

for each arrival. A photomultiplier is used to amplify this signal for counting. The 

background on the Daly is essentially zero (6 counts per minute).  

Spiking of the sample helps to achieve ion beams of approximately 0.2 V 

for 229Th and 232Th and 1-2 V for 238U during analysis. For U runs 235U, 236U 
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(spike), and 238U are counted simultaneously using Faraday detectors in dynamic 

collection mode. This involves two counts in which each nuclide is counted on a 

different Faraday cup. The Daly detector is used during the first count to measure 
234U and during the second count to measure 235U. For Th analysis the Faraday 

detector measures 229Th (spike), 232Th, 235U and 238U. During the first count 229Th 

is measured on the Daly, whilst this detector is utilised to measure 230Th during the 

second count. For these two separate analysis runs 234U and 230Th are measured 

on the Daly photomultiplier detector with a beam intensity of about 4,000 cps.  

All measurements are corrected for mass bias and Daly-Faraday gain. 

During the first counting stage of both U and Th runs 235U and 238U are measured 

on separate Faraday cups. Instrumental mass bias on these measurements is 

corrected by assuming natural 235U/238U = 0.007257 and using an exponential 

fractionation law (Ellam and Keefe, 2006). The determined mass bias correction is 

then applied to the rest of the atomic measurements. Daly-Faraday gain is the 

measurement of the efficiency of the Daly Photomultiplier in relation to that of the 

Faraday, which is around 97% with a temporal drift on the order of <0.1% per 

hour. This bias is corrected for by measurement of either 235U or 229Th on both the 

Daly and Faraday detectors across the two counting stages. In addition all ion 

beams were corrected for background using on-peak zeroes measured in blank 

5% HNO3 for 60s prior to each analysis. Data for both samples and bracketing 

standards were collected as five blocks of 20 x 5 second cycles, with each 

analysis taking approximately 10 minutes and 20 minutes (allowing for sample to 

aspirate from the auto sampler tube to the plasma) for U and Th respectively. 

1.9.4.4 Processing of results and error on measurem ents 

Ages of the samples are calculated using the decay constants of Cheng et 

al. (2000) and Isoplot/Ex rev. 2.49 (Ludwig, 2001) (Figure 1.8). Measured atomic 

ratios of 236U/238U, 234U/238U 230Th/229Th and 232Th/229Th are entered in to a U-Th 

dating spreadsheet. Within this spreadsheet the 230Th/238U atomic ratio is 

calculated from regression of the 230Th/229Th and 236U/238U atomic ratios coupled 

with the known concentrations of nuclides in the spike. The decay constants of the 

relevant isotopes are then used to determine the [230Th/238U] and [234U/238U] 

activity ratios to two standard errors. This information is then entered into the 

Isoplot/Ex rev. 2.49 program which uses a single-analysis array function called 
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‘Th230AgeAndInitial’ to plot the data on a [230Th/234U] evolution diagram (which is 

the result of a 2-D isochron of [230Th/238U] against [234U/238U]), which produces the 

age and initial chemistries of samples. The decay constant errors of 230Th and 234U 

are propagated into the age-error calculation along with errors on the activity ratio 

to provide final errors on the ages of sample. 

As well as age results the Isoplot processing stage produces a value for the 

initial uranium, which is back calculated from the [234U/238U] of the sample. Initial 

uranium is the activity ratio of uranium, [234U/238U] or δ234U, at the time of formation 

of the sample. The symbol for this term, which is used extensively in subsequent 

chapters, is 0δ234U. The results of the samples in this study are accompanied by 

2σ analytical error envelopes on the isotope ratios and decay constants. 

Uncertainty on measured isotope ratios reflects counting errors and variability 

within a single MC-ICP-MS analysis, whilst decay constant error envelopes are 

after Cheng et al (2000). The analytical error provided for each sample, which is 

symmetrical in both the older and younger direction, is of the order of 0.5 – 1% of 

the age measurement. In chapters 2 and 3 further sources of error are discussed 

which may have an affect on the age result of samples. 

 
Figure 1.8: Work flow for processing of U-Th result s. 
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2 U-series methodology: a case study from the 

Gulf of Corinth, Greece. 

2.1 Introduction 

In order to test the methods for U-Th dating outlined in Chapter 1, a study 

was carried out on coral which is a material that is commonly used for 

palaeoclimate and palaeo-ocean studies (Dumas et al., 2006; Stirling and 

Anderson, 2009). Samples of Cladocora caespitosa from the Gulf of Corinth, 

Greece, are investigated. This area is of particular interest as deposits that contain 

the ancient remains of C.caespitosa have been used to determine the slip rates of 

large normal faults (Collier et al., 1992; Dia et al., 1997; Morewood and Roberts, 

1999; Haughton et al., 2003; Leeder et al., 2003; 2005; Roberts et al., 2009). 

Section 2.2 presents the issue of correlation of U-Th coral ages with sea 

level highstand, an important factor for calculation of fault slip rate. U-series dating 

of coral specimens is discussed in Section 2.3, with emphasis on how uranium is 

incorporated into coral skeleton and checks on the validity of samples for analysis. 

Section 2.4 provides a background to previous work carried out in the Gulf of 

Corinth and outlines the parameters required to determine a slip rate for the main 

fault in question, the South Alkyonides fault segment. An in-depth review of the 

field locations from which the coral samples came from is also provided within this 

section. The results of U-Th dating of C.caespitosa samples are presented in 

section 2.5. Interpretation of these results is carried out by investigating the factors 

that can affect initial uranium (0δ234U) of coral specimens. As age results of coral 

are commonly interpreted to be representative of the nearest historical sea level 

highstand an overview of the uncertainties involved with both sea level curves and 

coral growth depths is presented in section 2.6. Section 2.7 discusses whether this 

study has formed a successful test for the dating method detailed in Chapter 1; 

reviews the suitability of coral in general as a tool for tectonic study, and assesses 

whether age information gained from coral in this particular region can be used 

with confidence for fault slip-rate calculations. Finally the results of this study are 

used to re-assess previous publish slip rate values for the South Alkyonides fault 

segment. 
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2.2 Sea level highstand and correlation with coral age 

 The timings of ancient sea level highstand are determined from δ18O 

isotopic records which have been compiled in order to produce global relative sea 

level curves (Siddall et al., 2003; Waelbrook et al., 2002). The presence of corals, 

on present day contemporary reef flats together with the frequent occurrence of 

their fossil equivalents throughout recent history suggests that the accretion of 

reefs closely tracks rising sea level and therefore represent periods of sea level 

highstand (Bryan and Stephens, 1993; Kench et al., 2009). As such ancient coral 

deposits should reflect the age of recognised highstand when dated. Eleven 

separate global sea level highstand are currently recognised within the time limits 

of U-Th dating (present day, 76, 100, 125, 175, 200, 216, 240, 290, 310 and 340 

ka). U-series studies on coral often correlate their results to the closest timing of 

highstand even if the radiometric age of the sample does not closely match the 

highstand age within error (e.g. Stein et al., 1991; Wehmiller et al., 2004; Omura et 

al., 2004). This practice highlights a real issue with the U-series dating of corals- if 

age results do not match with highstand ages then either there is a problem with 

the U-series technique or a problem with coral as a tool for U-Th dating. 

2.3 U-series dating of coral 

Coral is a colonial organism that takes up uranium from the water 

surrounding it during construction of its aragonite skeleton. Coral skeleton can 

contain U in concentrations of between 2-3.5 ppm (Shen and Dunbar, 1995), but is 

essentially free of 230Th at the time of formation (Barnes et al, 1956; Swart and 

Hubbard, 1982) allowing it to be utilised for age determination by U-Th analysis. 

Uranium concentrations recorded by coral samples are thought to accurately 

reflect the uranium concentration of the environment of growth. Analysis of modern 

coral collected in open seawater environments from various locations including, 

Barbados, Galapagos, Tobago and Vanuatu, demonstrate the initial uranium 

activity ratio (0δ234U) of seawater accurately (Bard et al., 1991). The location of 

uranium within the coral skeleton has yet to be determined though it is possible 

that it substitutes for calcium in the mineral phase (Amiel et al., 1973a; 1973b; 

Swart et al., 1982; Pingitore Jr et al., 2002). Large variations in U concentration in 

sections of individual living corals have been observed from fission track analysis, 
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with high concentrations corresponding to low coral growth rates and vice versa 

(Schroeder et al., 1970, Robinson et al., 2006). 

As coral grows in marine environments the known excess of [234U] in 

seawater (14-15% over [238U], Veeh and Burnett, 1982) can be used as a 

convenient check on the closed system assumption, and therefore reliability, when 

dating coral samples. This excess 234U in ocean water has been ascribed to input 

by river water (average [234U/238U] approx 1.20, Cherdyntsev et al, 1955; Thurber, 

1962) and diffusion of 234U from deep sea sediments (Ku, 1965): This results in a 

greater than unity [234U/238U] of 1.145 ± 2‰ (Hamelin et al., 1991; Bard et al., 

1991), a value that has remained constant for at least the past 800 ky in the open 

ocean (Henderson, 2002). 

Of the criteria on U-series dating highlighted in section 1.8.3.1 of Chapter 1, 

coral and marine carbonates frequently violate the following stipulations: 

• The samples should be impermeable to sea or groundwater because 

the flow of water through the system may cause alteration to the U or 

Th content. 

• There should be no evidence of weathering in the sample. 

• There should be no evidence of recrystalisation and/or deposition of 

void-filling cement. 

The delicate structure of coral skeleton, short diffusion distance across the 

septa and porosity increasing degradation of inter-crystalline organic material are 

all factors which can contribute to open system behaviour of U-Th decay (Van 

Calsteren and Thomas, 2006). Despite these issues reliable ages can be obtained 

from carefully selected samples. Visual and microscopic inspection must be 

carried out to assess the absence of detritus, and XRD can be utilised to 

determine absence of re-crystallisation. After initial selection and sample analysis, 

it is usually assumed that if the initial [234U/238U] in the carbonate is the same as 

the surrounding seawater, the system has remained ‘closed’ (Henderson, 2002). 

Samples outwith the 2‰ error are considered as suspect and should be treated 

with caution. This can be potentially caused by initial 231Pa in the corals (Imai and 

Sakanoue, 1973) or post depositional adsorption of 231Pa and 230Th into the corals 

from the surrounding sedimentary matrix (Veeh and Burnett, 1982). Restricted 
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basins with reduced salinity or hydrothermal input may have a different [234U/238U] 

to that of the open ocean (Van Calsteren and Thomas, 2006), so sample source 

and environment should also be taken into account when back-checking the initial 

uranium activity, 0δ234U. 

2.4 The South Alkyonides fault segment 

2.4.1 Introduction 

Palaeoshorelines uplifted in the footwall of the South Alkyonides fault 

segment, central Greece (Figure 2.1) can potentially be used to assess its slip rate 

history relative to other faults in the area by dating of coral situated within them 

(e.g. Collier et al., 1992; Morewood and Roberts, 1998; McNeill et al., 2004). 

Central Greece is one of the most rapidly extending parts of the Earth’s continental 

crust, with 10-15 mm/yr N-S extension localised within a <30km wide E-W zone 

associated with the Gulf of Corinth (Roberts et al., 2009). The South Alkyonides 

fault segment is an active E-W trending normal fault with downthrow to the north. 

These faults have been ruptured by seven >Ms 6.0 normal faulting earthquakes 

since 1909 (Ambraseys and Jackson, 1990), and last ruptured in 1981 (Ms 6.9- 

6.7) leaving a chasm 10-20cm wide and a vertical offset of up to 1.5 m. Uplifted 

Quaternary and Holocene palaeoshorelines decrease in elevation towards the 

western tip of the fault, exhibiting larger tilt angles with apparent age, showing that 

palaeoshoreline uplift is due to progressive fault slip (Roberts et al. 2009). 

In order to estimate the slip rate of the South Alkyonides fault segment 

three parameters need to be understood: (i) the present day elevation of the 

palaeoshoreline inner edge, (ii) its absolute age and (iii) relative sea level during 

formation of the marine terrace. The first two parameters can be obtained from 

field work and laboratory analyses, but the third relies on the use of the relative 

sea level curve. This chapter details the suitability of coral for slip rate study in this 

region, focusing on the U-Th and Sr chemistry of the samples and discussing the 

accuracy of published relative sea level curves, addressing parameters (ii) and (iii) 

above. Parameter (i) above is addressed for each sample during a review of the 

sample areas below in section 2.4.2 and a discussion of correlation between U-Th 

dating results of corals and sea level highstand in section 2.6.6. 
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Figure 2.1: Gulf of Corinth and the Perachora Penin sula.  

(A) Map of central Greece with the Gulf of Corinth highlighted by the dashed box. (B) Large 
scale view of the Gulf of Corinth after Haughton et  al. (2003) showing major onshore and 
offshore faults. RS and IC stand for Rio Straits an d Isthmus of Corinth respectively, whilst 
the letters represent the different study sites ref erred to in Table 2.2: A- Psathopyrgos fault, 
B- South Corinth basin, C- Megara basin, D (and das hed box)- Perachora Peninsula. (C) 
Detailed map of Perachora Peninsula from Roberts et  al. (2009) showing the trace of the 
South Alkyonides fault segment and the locations of  the sites in this study referred to in the 
text and in Table 2.1: 1- Cape Heraion, 2- SE of La ke Vouligameni, 3- Agriliou Bay, 4- Hotel 
complex. The separate locations of samples 1A, 2A a nd 3B are also shown at Cape Heraion 
by the small black labels. 

 

2.4.2 C.caespitosa sample sites and U-Th results 

A total of twelve age analyses of C. caespitosa from four separate locations 

associated with the South Alkyonides fault segment on the Perachora Peninsula 

were carried out (Table 2.1, Figure 2.1C). This section will discuss each of these 

samples in terms of their location, relation to one another and also relation to 

reported ages and associated highstand from the same sites in previous studies. 

Cape Heraion 

Three samples, 1A, 2A and 3B, were dated from this location (Location 1 in 

Figure 2.1). The tip of Cape Heraion is defined by two E-W trending faults. If these 
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faults hosted a normal sense of slip during seismic events then the tip of the Cape 

could represent an uplifted horst structure. In order to determine if the central part 

of the Cape was indeed a horst block coral from atop the central section and from 

palaeoshorelines each side were sampled for age determination- if all the sections 

provided a matching age it would confirm the presence of this structure. Samples 

1A and 3B were taken from two in-situ coral colonies from the north and south 

segments of the tip at similar elevations (7-8 m). Sample 2A was taken from the 

central section of the tip at 46 m. No in-situ coral was found at this location, and 

indeed sample 2A was the only coral found, consisting of a badly weathered 

looking single corallite within a layer of marine sediment. Optical microscope 

inspection of this sample showed it to be badly worn (Figure 2.5A) with the outer 

wall of the corallite completely smooth rather than ribbed.  

The samples returned ages of 142.6 ± 1.2, 138 ± 1.2 and 277.3 ± 7.7 ka for 

1A, 3B and 2A respectively. The ages of 1A and 3B match well, suggesting they 

represent the same period of coral formation, whilst the age for 2A is markedly 

older. Optical inspection of 2A coupled with geochemical results (section 2.5.4) 

make its U-Th age suspect. This sample demonstrated a high Th concentration 

and high [230Th/232Th]. Its U concentration is also elevated in comparison to 

samples 1A and 3B (Table 2.1). As sample 2A did not provide a reliable age the 

present study cannot confirm Cape Heraion as a horst structure. 

Both Roberts et al. (2009) and Leeder et al. (2005) report ages from the 

immediate area of this location. Roberts et al. (2009) provide two dates of 116 ± 

1.4 and 141 ± 1.7 ka. They report low confidence in both dates as they found a 

trace of gypsum associated with the younger sample and the older age was 

provided by analysis of coral septa as opposed to the more robust wall. The 

younger 116ka sample provides a large 0δ234U of 1.324 in comparison to coral of 

similar age (Figure 2.3C), whilst the older 141 ka date, although from coral septa 

provides similar chemistries to that of the samples in the present study (0δ234U of 

1.221, and a high [230Th/232Th]). Leeder et al. (2005) report two dates from the tip 

of the Cape of 136.5+13.6
-12.1 and 181.7+16.6

-14.3 ka. The former agrees well with the 

results of this study, while the latter seems marginally high. They record the 

elevation of the samples as +8 m MSL, similar to the findings of this study, and 

correlate these deposits to identical deposits higher in the cliff to the NE at an 

elevation of +23 m MSL suggesting that post depositional faulting has occurred at 
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this location. Due to its elevation this upper palaeoshoreline is interpreted by 

Leeder et al. (2005) to be a product of the 125 ka highstand.  

South east of Lake Vouligameni 

Sample 11A comes from a location that represents one of the upper 

terraces near the trace of the South Alkyonides fault segment (Location 2 in Figure 

2.1C). The U-Th dating of this sample returned an age of 269.8 ± 13.3 ka. No 

previous geochronology has been carried out on coral from this location, but the 

sampling elevation of this sample at +73 m MSL and it’s location in relation to the 

mapping of Roberts et al. (2009) would suggest that this palaeoshoreline belongs 

to the 340ka highstand. However, its elevation lies closer to the Roberts et al. 

(2009) modelled shoreline estimate of +80 m MSL associated with the 290 ka 

highstand. 

Agriliou Bay 

Two samples were collected from Agriliou Bay (Location 3 in Figure 2.1). 

The first, sample 8A was from a colony that seemed undisturbed and in life 

position at the edge of an excavated area. The second, 10A, could not be 

correlated directly below 8A but occurred ~2 m lower in elevation on the path 

required to reach 8A. It is hard to determine if 10A was in life position but it was 

from a lower stratigraphic layer than 8A. Sample 8A produced an age of 158 ± 2.9 

ka and its repeat analysis an age of 153 ± 1.6 ka. As the errors on these ages 

overlap good reproducibility of dating is demonstrated. Sample 10A produced an 

age of 169.2 ± 2.3 ka. Sample 8A was taken from an elevation of +34 m MSL, and 

could be traced to terrace deposits up to +51 m MSL. This location is mapped as 

the 125 ka highstand by Roberts et al. (2009). 

Hotel Complex 

A total of five samples were dated from an excavated car park (Location 4 

in Figure 2.1), two from a logged section reported in Roberts et al. (2009) on the 

west face of the excavation and three from the previously undated east face of the 

excavation. Samples 5A and 6A were taken from two additional C.caespitosa 

colonies, one from above and one from below the three layers reported, in the 

logged section of Roberts et al. (2009) from this location. Roberts et al. (2009) 



Chapter 2  U-series case study: The Gulf of Corinth 

March 2010  Neil M. Burnside 46 

report ages of 178 ± 6.4, 201+3.4
-3.3 and 211+4.3

-4.4 ka which they correlate to the 

175, 200 and 216 ka highstand respectively. The layers above and below, if in life 

position, should therefore provide a younger and an older age than these reported 

dates. Roberts et al. (2009) predict these layers to represent the 125 ka and 340 

ka highstands. Sample 5A from above these layers, and 6A from below these 

layers return U-Th ages of 232.9 ±6.1 and 247.0 ±4.6 ka respectively. The age for 

6A matches well with the previous dated layers whereas 5A gives a date that is 

out of stratigraphical order. Due to the small vertical distance between them 

sample 5A is interpreted as a reworked deposit of lower layer that 6A was 

sampled from. Since there are three layers in between the upper reworked layer 

and the bottom layer to which it correlates, it is reasonable to assume that the 

upper layer is likely a combination of reworked deposits of the four layers below it. 

The ages of these samples fall close to the 240 ka highstand. 

Samples 4A, 4B, and 4C, were sampled from a single layer from the east 

face of the excavation (Figure 2.2). This layer did not consist of a continuous coral 

deposit along the face like the west side; instead these samples were small 

isolated colonies up to 7.5 m apart. These three specimens provide ages of 165.9 

± 1.6, 152.1 ±1.4, and 147 ±10.6 ka for 4A, 4B and 4C respectively. Whilst 4B and 

4C overlap within error, the dates are quite distinct considering the samples 

originate from the same layer. This can perhaps be explained by varying degrees 

of alteration of the small coral colonies on this side of the excavation, with sample 

4C coming from a heavily cemented section of carbonate mud. 

 

 

 

 

Figure 2.2:  Log of the east wall of the hotel comp lex excavation. 

The log shows the relationship of samples 4A, 4B an d 4C, and a correlation plus 
interpretation of the sedimentary units that are ex posed in this wall of the excavation. 
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Table 2.1: U-Th chemical and isotopic data for C. caespitosa coral samples 

Location numbers refer to the locations in section 2.4.2 and are shown in Figure 2.1C. Numbers represe nt the following sites: 1- Cape Heraion, 2-- 
southeast of Lake Vouligameni 3- Agriliou Bay, 4 – Hotel Complex. A.H stands for assigned highstand- s ee section 2.6.6 for discussion. 
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Table 2.2: Comparison of several U-Th coral studies  from the Gulf of Corinth. 

The data shown are both the largest and smallest 0δ
234U for the samples from each study and the deviation  from the 0δ

234U of present day 
seawater (Henderson, 2002) in percent. ‘n’ refers t o the number of samples presented in each study. Sa mple locations correspond to site 
locations in Figure 2.1B. The analysis from other s tudies provides results from both Alpha Spectrometr y (Collier et al., 2005; Leeder et al., 2005) 
and TIMS (Houghton et al., 2003; Roberts et al., 20 09; Dia et al., 1997; Leeder et al., 2005). All ana lysis was carried out on Cladocora caespitosa, 
bar the Collier et al. (2002) study which used anot her scleractinia order coral, Acropora sp. Modern c oral analyses include: (a) specimen from 
Roberts et al. (2009) which was picked up from the discards of broken coral from local fisherman’s net s, and (b) specimen from Leeder et al. 
(2005) which is attributed as a late Holocene coral  trawled from the shallow Gulf. 
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2.5 Discussion of U-series results 

The results of U-Th dating, along with Sr87/Sr86 data, for C.caespitosa 

samples analysed in the present study are shown in Table 2.1, whilst results from 

previous studies within the Gulf of Corinth are shown in Table 2.2. The coral 

samples utilised in this study, despite their overall pristine appearance, deviate 

from seawater δ234U quite considerably, ranging from 3.5 – 12% above δ234U = 

1.145. This is a common trend in previous U-Th analysis carried out on coral in the 

Gulf of Corinth; indeed other studies illustrate similar deviations from this value 

(Figure 2.3). 

As stated in section 2.3, samples with 0δ234U outwith 2‰ of modern 

seawater should be treated with caution. Previous studies using Corinth coral do 

take note of the large deviations of their analyses from this value, however they 

dismiss the significance of this check because samples with similar age produce 

widely different 0δ234U (Haughton et al., 2003) or due to independent geological 

constraints such as stratigraphic position of the coral (Roberts et al., 2009; Collier 

et al., 2002; Leeder et al., 2005). Another control on the suitability of samples for 

dating, and dismissing the 0δ234U, is the correlation of sample ages to sea level 

high stands. Sediments containing the coral are trangressive marine units which, 

in the absence of evidence for syndepositional tectonic subsidence, can only have 

formed during high stand sea level phases (Collier et al., 1992; Roberts et al., 

2009). This sedimentological setting coupled with assumptions about the accuracy 

of the sea level curve and coral depth, which are discussed later in sections 2.6.2 

and 2.6.3, have led previous workers to conclude that the variation in 0δ234U is not 

important. The following sections in this chapter will discuss the possible 

geochemical reasons for this deviation, negating the need for such assumptions 

and providing a sound reasoning for the departure from seawater chemistry of 

C.caespitosa specimens in this study. 

2.5.1 Initial Uranium of coral through time 

The δ234U of modern day seawater is well defined, and recent coral 

samples reflect this ratio accurately. This tendency dissipates with time as older 

corals tend to produce higher 0δ234U (Dia et al., 1997; Bard et al., 1991), a trend 

reflected by the data in the present study, and others from the Gulf of Corinth 
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(Figure 2.3A and C). Indeed elevated 0δ234U of ancient coral analysis from 

locations from around the globe is the norm rather than the exception (Stein et al., 

1991; El Moursi et al., 1994; Stirling et al., 1995; Omura et al., 2004- Figure 2.3D). 

This deviation from modern seawater δ234U starts to become apparent in samples 

older than 70 ka (Chen et al., 1991; Bard et al., 1991). In a study of samples from 

the Galapagos, Barbados, Haiti and Curaçao Hamelin et al. (1991) showed that 

0δ234U for pristine samples 70-140 ka in age have a larger spread and higher 

mean value (1.160 with a standard deviation of 0.011) than present-day seawater 

and corals younger than 30 ka in age. Plots for these age ranges produced two 

distinct histograms with little overlap between the two distributions. Two 

possibilities exist to explain this global discrepancy; a change of global seawater 

δ234U through time, or diagenetic alteration. With respect to samples from the Gulf 

of Corinth, the regional geology must also be taken into account when considering 

reasons for anomalous 0δ234U. 

2.5.2 Variation in global seawater 0δδδδ234U through time 

It has been suggested that variation in weathering rates and mean river 

fluxes may have caused a small decrease in the δ234U of seawater during the last 

100ka (Hamelin et al., 1991). This would give the simplest explanation of the 

observation that ancient corals have elevated 0δ234U. However, the response of 

uranium isotope composition of the oceans is likely to be slow because of the high 

solubility of uranium in seawater (Bard et al., 1991; Richter and Turekian, 1993), 

and resultant residence time of ~300,000 ka (Ku et al., 1977). As the mean 

modern δ234U of river waters ranges from 1.2 to 1.3 (Collier et al., 1992) it is hard 

to see how uranium delivered to the oceans in this manner could generate the 

observed deviation. Further, the mixing time of oceans is fairly rapid (~1.5ka) 

global change in δ234U of seawater should produce uniform δ234U values for 

samples of the same age, which is not seen when comparing studies from 

different localities (Dia et al., 1997). In addition, Henderson (2002) provides 

evidence from U-rich slope sediments from the Bahamas which show a scatter of 

δ234U around the modern seawater value which does not increase with age of 

sample. This suggests that the δ234U of the open ocean has remained within 15‰ 

of the modern value for the last 360ky. Over the time period from 360-800ky 

Henderson (2002) found a rather large diagenetic scatter of 0δ234U, but found no 



Chapter 2  U-series case study: The Gulf of Corinth 

March 2010  Neil M. Burnside 52 

indication of a trend in seawater δ234U with age, or any evidence for higher values 

of δ234U. This lack of evidence for seawater δ234U above modern values suggests 

that the physical weathering has not been higher than at present for any extended 

period during the last 800ka. 

2.5.3 Diagenetic effects on coral 0δδδδ234U and their implications for 

U-Th dating 

Living coral skeletons are homogeneous in uranium distribution (Amiel et 

al., 1973a; 1973b), whereas dead skeletons have been shown to contain a 

heterogeneous uranium distribution (Hamelin et al., 1991). Swart and Hubbard 

(1982) found that scleractinian skeletons in which the organic material had been 

removed readily exchange uranium with their environment. Experimentation shows 

that this occurs preferentially along septa and skeletal margins. Alteration of 

uranium concentration away from the margins and axes indicates the passage of 

fluids between adjacent crystals. These experiments therefore identify possible 

pathways for potential diagenetic fluid through the coral. Repeat analyses of two 

pieces of the same coral carried out by Hamelin et al. (1991) produced different 

δ234U, uranium concentrations and a significantly different age. The authors 

concluded that the sample was heterogeneous due to diagenetic effects.  This 

evidence suggests that variability in 0δ234U of ancient coral samples may be 

explained by diagenetic effects that lead to open system behaviour. The 

processes of δ234U addition, δ234U loss, and 230Th addition have been suggested 

by Hamelin et al. (1991) to account for such variations. 

Chemical or isotopic exchange with percolating groundwaters containing 

continental uranium enriched in 234U during weathering may add δ234U to the coral 

skeleton. Since ancient corals have been exposed to such weathering for 

hundreds of thousands of years it is likely that this diagenetic alteration has been a 

continuous process. The effects of this process can be bracketed between 

extreme cases of instantaneous addition, either early after the formation of the 

coral, or very recently. Early contamination would not change the calculated age 

dramatically as the U/Th ratio of the coral would evolve along a different evolution 

curve to that of seawater. In the case of recent U contamination, the [230Th/234U] 

would decrease resulting in a younger U-Th age (Figure 2.4). 
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Figure 2.3: Plots of Uranium chemistry for coral st udies.  

(A) Plot of 0δδδδ234U against age for samples from this study alone inc luding 2 σ error on both 
measurements. The red arrow indicates how far sampl e 2A, which contains significant 
diagenetic contamination, falls from the line of be st fit for the other samples. (B) Plot of 
0δδδδ234U against uranium concentration for samples in this  study. The lack of trend between 
the two suggests that there is no simple contaminat ion model to explain the deviation of U 
chemistry from modern day value. (C) Plot of 0δδδδ234U against age for all Gulf of Corinth 
studies. (D) Plot of 0δδδδ234U against age for several studies from around the w orld (see text for 
discussion) - errors (which range from 0.5-22% of t he age) have been omitted for clarity. 
Modern seawater value of 1.145 for δδδδ234U from Henderson (2002) is also shown for 
comparison. Note the similarities between the gradi ents of lines of best fit in B, C and D. 
The larger gradient shown by Gulf of Corinth exampl es may be a result of its geological 
setting as a restricted basin (see section 2.5.5). 
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Figure 2.4: Model evolution curves for diagenetic e ffects on coral 0δδδδ234U. 

[234U/238U] against [ 230Th/234U] isochron plot showing different examples of open  system 
behaviour (base isochron from Hamelin et al., 1991) . The black dashed line shows the 
isotopic progression of a 200 ky old coral that has  remained a closed system. Red line 
demonstrates the evolution path of a coral contamin ated by immediate U addition, as the 
curve has followed a path similar to that of the cl osed system example the age is not too 
dissimilar, ~190 ky. The green line shows late U ad dition which lowers [ 230Th/234U] and 
makes the age significantly younger, ~130 ky. The b lue line demonstrates the effect of U 
loss or Th addition which both cause [ 230Th/234U] to increase quickly causing an older age 
(~75 ky as compared to 50 ky for the closed system example). The grey lines and X’s 
demonstrate that when 0δδδδ234U is back calculated from each of these contaminati on 
possibilities a higher value than the original is f ound. 
 

Continuous loss of uranium from coral, due to interaction with leaching 

fluids, causes [230Th/234U] to increase faster than expected under closed system 

conditions. This causes calculated δ234U to be higher than the original ratio and 

results in an older calculated U-Th age than the true formation age of the coral 

(Figure 2.4). Collier et al. (1992) find clear evidence for uranium loss in Gulf of 

Corinth coral samples. They find specimens with a [230Th/234U] of 1.15, a value 

which is much higher than could be obtained by radioactive decay in a closed 

system. 
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Addition of 230Th can also lead to an increase of the calculated 0δ234U by 

raising the [230Th/234U] of specimens (Figure 2.4). This process can be caused by 

scavenging of 230Th from the water column by the coral skeleton whilst still below 

sea level. Thorium concentrations of the samples in this study are generally similar 

to the abundances of 0.1 – 4 ppb found in open ocean corals (Stein et al., 1991; 

Hamelin et al., 1991). Some samples have concentrations of up to 11 ppb (sample 

2A 97 ppb) which is relatively high in comparison.  However the low 232Th content 

of the samples, as alluded to by the high [230Th/232Th], rules out direct precipitation 

of Th from seawater. Due to the extremely high [232Th/230Th] of seawater (Chen et 

al., 1991), even a very low level of contamination would dramatically increase their 
232Th content, and subsequently decrease [230Th/232Th]. 

2.5.4 Evidence for diagenesis of coral samples 

The samples in this study have been directly exposed to precipitation 

and/or ground waters since their formation, giving plenty of time for potential 

diagenetic alteration. These effects are, in principle, detectable by independent 

mineralogical or chemical criteria. Common checks for alteration include 

determination of the presence of secondary calcite or recrystalised aragonite, 

variations in Sr and Mg content, and measurement of 232Th of the samples 

(Hamelin et al., 1991; Collier et al., 1992; Henderson et al., 1993). 

In this study, each sample of C. caespitosa was split into corallite wall and 

septa samples. This was done because septa are very thin (<0.2 mm) whilst 

corallite walls are between 0.3-0.5 mm thick and are likely to be less prone to 

alteration. This is demonstrated by photomicrograph images (Figure 2.5) and 

comparative analysis of wall and septa for the specimen in Roberts et al. (2009). 

Coral walls from the samples were extensively mechanically and chemically 

cleaned following standard methods (Houghton et al, 2003; Edwards et al., 1987) 

to ensure they consisted of pure aragonite. Prepared samples were then assessed 

for physical alteration using XRD and EBSD. All XRD analysis for samples showed 

pure aragonite mineralogy apart from sample 2A (Figure 2.6). This sample showed 

a calcite peak above background, providing doubts for its integrity with respect to 

age analysis (for further discussion of this specimen see section 2.4.2). Further 

EBSD analysis of two unprepared samples showed low total calcite compositions 

of 0.1% and 0.3% (Figure 2.7). 
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Values for [230Th/232Th] are greater than 884 for all samples except sample 

2A, which has a [230Th/232Th] of 91. Typically, a value of <20 for [230Th/232Th] 

indicates the presence of detrital Th (section 1.8.3.2) this is not the case for 

samples in this study and shows that both cleaning and sample integrity were 

excellent. All of the coral samples in this study, bar sample 2A, thus have the 

appearance of being well preserved.  

 

 

Figure 2.5: Photomicrograph images of C. caespitosa  samples.  

(A) An image of specimen 2A. Note its smooth weathe red appearance in comparison to the 
well defined ribbed texture demonstrated by sample 10A, shown in (B). (C) & (D) Thin 
section images of sample 6A. Large euhedral overgro wths are clearly visible on the septa of 
the coral. The grains of these overgrowths are much  larger than those of the coral skeleton 
suggesting formation after skeleton construction. S epta were removed during preparation 
of samples for analysis and according to XRD scanni ng no calcite was present (bar sample 
2A) after cleaning of coral. Due to the lack of cal cite found in EBSD analysis, which was 
carried out on powdered samples of whole corallites  (i.e. both walls and septa), it is 
possible that these overgrowths are aragonite.  

 

It should be noted that the presence of pure aragonite does not necessarily 

discount diagenetic alteration of samples, as aragonite itself may be found as a 

product of diagenesis (Dia et al., 1997; Saller and Moore, 1989). The former 

observe aragonite overgrowths on coral, whilst the latter found microporous 



Chapter 2  U-series case study: The Gulf of Corinth 

March 2010  Neil M. Burnside 57 

aragonite in limestone and concluded that the formation of microporous aragonite 

preceded that of calcite during diagenesis. Gvirtzman et al. (1973) also report the 

precipitation of inorganic aragonite in coral voids. 

 

 

Figure 2.6: XRD analysis results of U-Th dated cora l samples.  

Sample numbers are indicated in the top left hand s ide of each XRD analysis. Sample 1A, 
which produced a result typical of the rest of the samples, is shown in comparison to 
sample 2A. For complete results of all analysis see  Appendix B. Green lines and red lines 
represent calcite and aragonite markers respectivel y. The blue arrows show the presence of 
calcite peaks above background for sample 2A. This sample was also noted by the XRD 
technician to be brown after powdering further sugg esting detrital contamination. 



Chapter 2  U-series case study: The Gulf of Corinth 

March 2010  Neil M. Burnside 58 

 

Figure 2.7: EBSD phase map images of C. caespitosa  samples.  

Electron backscatter diffraction (EBSD) scans of sa mples 6A and 11A adjusted to exclude 
Confidence Index values of <0.1. Black sections of the images are due to the software being 
unable to index these areas. This can potentially o ccur due to the introduction of dust from 
polishing procedure, voids in the sample, or repres ent interphases between grain 
boundaries. Note the low fraction of calcite phases , highlighted in green, of 0.1 to 0.3%. This 
suggests that these samples are pristine with respe ct to potential re-crystallisation of 
aragonite. 
 

Sr isotope composition provides a further check on of sample validity. In the 

Gulf of Corinth modern day seawater has an 87Sr/86Sr of 0.709185 ± 6, which is 

indistinguishable from that of the North Atlantic (Dia et al., 1997). Sr isotope ratios 

for the coral in the present study range from 0.709120 to 0.709151, which is in 

agreement to the range found by Dia et al. (1997) of 0.709037 to 0.709134 in the 

Gulf of Corinth. Both of these ranges are significantly below the modern value 

(Figure 2.8). A similar trend exists in 87Sr/86Sr of coral of comparable age from 

Barbados and New Guinea, which range from 0.709155 to 0.709176 (Dia et al., 

1992). The difference in these two ranges also shows that Gulf of Corinth coral 

has significantly lower 87Sr/86Sr value than coral of comparable age from the open 

ocean. A similar trend is found by Roberts et al. (2009), Sr concentration in their 

coral analyses ranged from 5600-7700 ppm. The upper limits of this range only 

slightly overlap the range reported by Stein et al. (1993) of 7300-9800 ppm for 

several studies on Indo-Pacific and Atlantic coral. Indeed the range of Roberts et 

al. (2009) falls below the mean value of Stein et al. (1993) of 7870 ± 300 ppm. The 
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discrepancy displayed by this study, and previous work on Corinth coral could 

potentially result from one of two processes. It is possible that circulation between 

the Gulf of Corinth, a marginal basin, and the open ocean may have been 

restricted at certain high stands (section 2.5.5). Alternatively the lower 87Sr/86Sr 

could be the result of diagenetic effects. 

 

Figure 2.8: Strontium analysis results for coral sa mples.  

(A) Comparison of 87Sr/86Sr ratio data from the present study including the results of Dia et 
al. (1997). The modern seawater value is from the a nalysis of a modern coral in Dia et al. 
(1997), and the range of 87Sr/86Sr of coral from Barbados and New Guinea (Dia et al ., 1992) is 
shown by the blue box. Errors from both studies are  presented as 2 σ. The general trend is 
for older samples to have 87Sr/86Sr ratios that progressively decrease from the mode rn 
value. (B) Plot of 87Sr/86Sr against 0δδδδ234U for samples in the present study. Lower 87Sr/86Sr 
seems to correspond with higher 0δδδδ234U suggesting progressive alteration with age. 
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2.5.5 Further complications- geological setting of the Gulf of 

Corinth 

The geological evolution of the Gulf of Corinth during the history of coral 

growth is another factor to take into account when considering potential causes of 

anomalous δ234U. The low Sr isotope ratio of the coral samples in relationship to 

ancient coral of comparative age in the open ocean suggests that the Gulf of 

Corinth may have behaved like a marginal marine basin and therefore had 

restricted circulation with the open ocean. If simple two end member river-ocean 

water mixing is assumed, the low 87Sr/86Sr values result from extensive dilution of 

basin water by terrestrial waters (Flecker et al., 2002). This suggests that the 

isotopic composition of the seawater may have been altered by mixing with fluvial 

water or submarine spring waters derived from the carbonate basement rocks. 

The high δ234U of river water between 1.2 and 1.3 (section 2.5.2) and 

groundwaters, often >2 and exceptionally >10 (Osmond and Cowart, 1982) may 

have been able to raise the δ234U of the basin during times of restriction. This 

heightened initial U ratio may have been maintained into periods of high stand as 

open circulation took time to mix and lower the δ234U. The dilution of re-entering 

seawater by freshwater from the large number of rivers draining the Peloponese 

Peninsula and entering the south side of the Gulf of Corinth could have contributed 

to a slow re-equilibration of open ocean seawater chemistry. As the corals were all 

growing near the shore of this essentially landlocked basin they will reflect the 

deviated isotopic signature of its waters (with respect to the open ocean). 

Modelling of the entry of the sea into the Gulf of Corinth via the Rio Straits and 

Isthmus of Corinth through time by Roberts et al. (2009) also demonstrate this 

restricted circulation idea (Figure 2.9).  

Potential further complication of the chemistry of basin seawater is the 

presence of hot springs and fumaroles at Sousaki and the Methana volcano to the 

east (Figure 2.9). Sea-water re-entering the basin from the Isthmus of Corinth after 

a period of restriction would have to move past these active volcanic sites, which 

could provide a hydrothermal chemical aspect to the mix. It is possible that the 

basin was completely restricted during periods of sea level low stand, though 

modelling by Flecker et al. (2002) demonstrates that complete isolation is not 

necessary to explain Sr isotopic offset from coeval ocean samples. 
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Figure 2.9: Hydrological evolution of the Gulf of C orinth through time.  

This speculative figure, after Roberts et al. (2009 ), is based on modelling of the entry of the 
sea into the Gulf of Corinth via the Rio Straits an d the Isthmus of Corinth through time by 
the same authors. During periods of closed or non-c irculation δδδδ234U increases in the basin 
due to continual input from terrestrial run-off. Se a level rises and the basin becomes 
connected to the open ocean once more open circulat ion occurs. This will lower the δδδδ234U as 
mixing of the once closed Lake Corinth and open oce an progresses. The timescale of this 
mixing towards an open ocean δδδδ234U is unknown. 

 

Also of importance is the situation of the coral themselves. Corinth corals 

did not grow as extensive reefs, but rather small isolated colonies, on Miocene 

carbonate (Dia et al., 1997). Optical examination of the underlying older massive 

carbonate revealed it has suffered extensively from diagenetic alteration (J.A. 

Dickson, reported in Dia et al., 1997). This hints at the possibility that exchange of 

Sr took place between the older carbonate and the coral, and could be responsible 

for the low Sr isotope ratio. However, it is unclear at what stage in its history the 

Miocene carbonate suffered alteration and it could have pre-dated coral formation. 

Seasonal variation in growth rates and thickening of corallite, combined with other 
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physiological effects, may also lead to a distortion of the environmental signal 

recorded by the coral (Silenzi et al., 2005). 

2.6 Accuracy of Sea level curve and coral growth de pth 

2.6.1 Introduction 

Previous workers have dismissed the anomalous chemistries of C. 

caespitosa in the Gulf of Corinth as the U-Th ages have been deemed significantly 

robust to link with eustatic sea level highstand. Similarly, the U-Th ages in the 

present study do not correlate closely with sea level highstand (Figure 2.10). As 

discussed in previous sections diagenetic alteration of C. caespitosa samples 

since their formation is likely to be playing a role in this observed disagreement. In 

addition to chemical alteration, discrepancies in the palaeobathymetry of C. 

caespitosa and accuracy of the sea level curves must be taken into account. The 

following section discusses both of these factors before suggesting a method with 

which to correlate coral ages with sea level highstand. The resulting conceptual 

model was produced in order to provide a useful tool for studies involving ancient 

coral. 

2.6.2 Uncertainty in growth depth of C. caespitosa 

Cladocora caespitosa is the main zooxanthellate colonial coral endemic in 

the Mediterranean Sea, abundant in both past and recent times (Rudolfo-Metalpa 

et al., 2008). In order to correlate deposits of this coral with sea level highstand the 

actual growth position of C. caespitosa in relation to sea level must be 

constrained. Whilst the exact depth of growth is strongly influenced by local factors 

including wave energy, sedimentation rate, predation and substrate, several 

independent studies report similar ranges for the growth depth of C. caespitosa. 

Montagna et al. (2007) found that C. caespitosa is restricted to the eutrophic, or 

light penetrating, zone ranging in depth from a few metres to around 40 m. More 

accuracy on growth in this range is suggested by Peirano et al. (2004) and 

Rudolfo-Metalpa et al. (2008) who commonly observed this species of coral 

growing in depths of 4-10 m and 7-15 m respectively. Both studies state that C. 

caespitosa can be found at depths of 40 m though this is a rarer occurrence due to 

the lower levels of radiance at these greater depths. Occurrence of the coral is 



Chapter 2  U-series case study: The Gulf of Corinth 

March 2010  Neil M. Burnside 63 

confirmed in this range by Silenzi et al. (2005) who describe C. caespitosa growing 

at a depth of 28 m.  

 
Figure 2.10: Relative sea level curve with marked a ges of C. caespitosa samples. 

Relative sea level shortened between 100 and 300 ky  in order to clearly show position of C. 
caespitosa sample  ages in relation to periods of sea level highstand.  

 

Studies that report U-Th ages in order to discuss tectonic history of faults in 

the Gulf of Corinth vary widely in their estimation of coral growth depth. Dia et al. 

(1997) estimate the palaeobathymetry of the corals as 10±10 m, whilst Leeder et 

al. (2005) provide a preferred growth depth of 5-25 m below sea level. Roberts et 

al. (2009) do not supply a depth range for C. caespitosa growth but have 

estimated that colonies were growing in depths of 50-79 meters according to 

calculations carried out to constrain contemporary shorelines (Pers comm., 

Birkbeck College Field trip to Gulf of Corinth guide). This would imply that the 
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corallites were once inhabited by non-photosynthetic polyps, azooxanthellate, as 

light cannot penetrate to this depth range. Unfortunately there is no test that can 

be carried out on the ancient samples to determine the type of polyp that 

constructed the corallite as zooxanthellate and azooxanthellate form similar 

structures. However, this final estimate of growth depth does not agree with any of 

the previous work in the area, and is well below observations in C. caespitosa 

studies in general. The first two studies suggest growth depths that agree well with 

independent study of C. caespitosa, which suggests that their estimates are more 

accurate. In the Corinth studies above, growth depth uncertainties of up to 29 m 

provide a significant error when trying to correlate coral growth to sea level 

maximum. 

2.6.3 Uncertainty in the sea level curve 

The accuracy of the relative sea level curves that these highstands are 

based on must also be considered. Records based on oxygen isotopes from 

sediment cores can contain major uncertainties. It is commonly accepted that a 

variation of 0.1‰ of the δ18O corresponds to a variation of about 10 m in sea level 

(Caputo, 2007), with studies reporting uncertainties of up to ±30 m (Siddall et al. 

2003; Waelbrook et al., 2002). Roberts et al. (2009) use the sea level curves of 

Siddall et al. (2003) in their study to correlate their data to sea level highstand. The 

sea-level reconstruction in that paper is derived from inter-calibrated δ18O 

measurements of benthic foraminifera from Red Sea sediment cores. δ18O can 

vary as a function of many factors among which the more important are the 

variation of water temperature, the difference in isotopic composition between the 

cored and insitu sediment, and local hydrological effects within the oceans. 

Indeed, the δ18O recorded in foraminifera shell also depends on the calcification 

temperature and the influence of local currents, which may affect the water 

temperature, the salinity and hence isotopic composition (Caputo, 2007). Taking 

potential variation in δ18O and combining it with the sensitivity of their sea-level 

method to climatic effects, Siddall et al. (2003), calculate a confidence limit to an 

accuracy of ±12 m on their sea-level reconstruction. Real analysis of the 

uncertainties associated with the proposed relative sea level curve is rarely 

presented in full (Caputo, 2007) so due to the above list of potential sources of 

error the uncertainties relative to sea level height presented by Siddall et al. 

(2003), as with many others, probably underestimate the real ones. 
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Uncertainties in relative sea level curves can also occur along the time axis. 

Imbrie et al. (1984) find that the accuracy of the astronomically tuned SPECMAP-

stack timescale is ±5 ka, whilst Petit et al. (1999) conclude that this value is only 

applicable to the last 110 ka and that time accuracy is up to ±15 ka for the last 

420ka. In a review of multiple (12 in total) RSL curves, including those of Siddall et 

al. (2003), Caputo (2007) found that several disparities occurred: 

• Differences of up to 18 ka and 35 m can be observed in 

correspondence with major interglacial peaks (at 125, 240, 340 and 

420 ka). 

• The position (height and age) and the number of interstadial peaks 

differ markedly from curve to curve. 

• In correspondence with the interstadial and/or interglacial periods, 

some curves represent a major couplet with peaks sometimes 

differing more than 15 ka. 

2.6.4 Conceptual model for correlation of ancient c oral ages with 

sea-level highstand 

Figure 2.11 combines the sources and scales of potential error detailed 

above for coral growth and relative sea-level curves. Areas of uncertainty on sea 

level highstand overlap for the 175, 200, 216 and 240 ka highstands, and also the 

290, 310 and 340 ka highstands. The majority of the overlaps between these 

uncertainties are ~5 ka, with the overlap between the 200 ka and 216 ka 

highstands quite significant (~14 ka) due to the ±15 ka confidence limits in sea 

level highstand dates. If a coral age falls with in one of these overlaps then it 

would be hard to say to which highstand the coral correlated to, even if it was 

closer in age to one high stand than the other. For example coral ages falling 

around the 190ka mark, although seemingly closer to the 200 ka highstand, could 

equally represent the 175 ka highstand as they would fall with in the area of 

uncertainty for this earlier highstand. Unequivocal stratigraphic evidence would be 

required to separate the two.  
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Figure 2.11: Global sea level curve up to 350 ky co mplete with areas of uncertainty around 
sea level highstand. The area of uncertainty is der ived from ambiguity of coral growth depth 
and sea level elevation for the vertical uncertaint y and age variation for the horizontal 
uncertainty. The key shows the breakdown of these d ifferent aspects. For the vertical 
uncertainty, a ±12 m accuracy for sea level elevati on from Siddall et al. (2003) is included 
along with the various depth ranges of C. caespitosa  growth quoted by various studies 
which includes values of 10 m (Dia et al., 1997 ), 20 m (Leeder et al., 2005)and 29 m (Roberts 
et al., 2009). When combined these give a total unc ertainty on depth of growth of 22 m, 32 m 
and 41 m. Age uncertainty of sea level highstand is  ±15 ka from Petit et al. (1999). The 
sample ages have been omitted for clarity of the fi gure, these can been seen marked on 
Figure 2.10 and in Table 2.1. 

 

2.6.5 Implications for correlation of previous Cori nth studies 

Previous published results correlated to highstands can either be confirmed 

or altered by the method outlined above. Roberts et al. (2009) correlate sample 

ages of 201 and 211 ka, from the Hotel Complex, with the 200 and 216 ka 

highstands respectively- these ages fall with in the large area of uncertainty 

between these two highstands so they could belong to either. However, the 

stratigraphic relationships of the layers that contain the coral confirm that their 

interpretation is correct. In the same study samples dated at 161 and 162 ka are 

interpreted as belonging to the 175 ka horizon- this is confirmed as they would plot 

within the uncertainty envelope of only the 175 ka highstand. They also correlated 

an age of 356 to the 340 ka highstand, this age falls right on the edge of the 340 

ka highstand even without taking into account the large errors (+50, -32 ka) on the 

date.  

From a single location just south of Lake Vouligameni Roberts et al. (2009) 

report ages of 122+1.2
-1.2, 139+2.4

-2.4, 154+1.9
-1.8 and 156+2.0

-1.9 ka. This location 

therefore provides a problem as the first two of the ages fall with the uncertainty of 

the 125 ka highstand and the latter two with in the 175 ka highstand. They 

correlate this location with the 125 ka highstand as the sediments can be mapped 

to a nearby location dated by Leeder et al. (2003; 2005) between 108.5 ± 0.7 to 

134 ± 3 ka. Therefore it is likely that this correlation is correct and that the older 

samples are the result of reworked deposits from the 175 ka highstand.  

In the same location at Cape Heraion as samples 1A and 3B from the 

present study, Leeder et al. (2005) report an age of 136.5+13.6
-12.1 ka, which agrees 

with the ages reported in this study. Similar to the samples in the present study, 

this date would plot with the error envelope of the 125ka highstand. Leeder et al. 

(2005) also report two dates of 194.5 ± 0.8 and 189.5 ± 4.8 ka from the west side 
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of Lake Vouligameni. The authors interpret these coral as representing either the 

200 or 216 ka highstand- I would suggest that the former is most likely as these 

ages do not fall within the uncertainty of the 216 ka highstand.  

2.6.6 Implication for correlation in the present st udy  

The field observations of section 2.4.2 can be used in conjunction with the 

conceptual model shown in Figure 2.11 to assign a sea level highstand to each 

location. These locations can therefore be used with greater confidence for slip 

rate calculations of the South Alkyonides fault segment. Despite not immediately 

seeming to correlate with highstand most of the samples fall within the error 

envelopes projected on to the relative sea level curve.  

Of the samples from Cape Heraion, the ages of 1A (142.7 ± 1.2 ka) and 3B 

match well (138.1 ± 1.3 ka), suggesting they represent the same period of coral 

formation, whilst the age for 2A is markedly different (277.3 ± 7.7 ka). Sample 3B 

falls within the 125 ka highstand whilst sample 1A is right on the edge of this box- 

if the error on this sample age is taken into account then it overlaps this highstand 

uncertainty. Sample 2A was not plotted as the [230Th/232Th] chemistry of this 

sample indicates that it has been detritally contaminated (Table 2.1, Figure 2.6). 

Including the results of Leeder et al. (2005) a total of six dates are reported for this 

location, of which five fall within the error envelope surrounding the 125 ka 

highstand. 

At the sample location south east of Lake Vouligameni the U-Th dating of 

11A returned an age of 269.8 ± 13.3 ka. This palaeoshoreline is mapped by 

Roberts et al. (2009) as the 340 ka highstand. As the error associated with the age 

overlaps the area of uncertainty of the 290 ka highstand the coral sample is more 

likely to be related to this highstand. 

Three age results, including one from a repeat analysis, were obtained from 

two Agriliou Bay samples. Sample 8A produced ages of 158 ± 2.9ka and 153 ± 1.6 

ka, whilst sample 10A produced an age of 169.2 ± 2.3 ka. Both of these age 

results, when age error is taken into account, fall with the area of uncertainty 

surrounding the 175 ka highstand suggesting that they can only come from that 

highstand. This means that it is likely that sample 10A was not in life position, as 

originally thought (section 2.4.2). It is possible that this sample has been removed 
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by excavation and embedded in co-excavated sediment downhill of its original 

location. This uncovering of the sample and subsequent exposure to the open 

environment may have led to increased weathering hence the deviation in age of 

10A from 8A. 

The Hotel Complex locality provided five separate samples for dating. From 

the west side of the site samples 5A and 6A, at 232.9 ±6.1 and 247.0 ±4.6 ka in 

age, both fall within the 240 ka highstand uncertainty, which agrees with their 

stratigraphic position. Samples 4A, 4B and 4C from the east wall of the site 

produced ages of 165.9 ± 1.6, 152.1 ±1.4, and 147 ±10.6 ka respectively. Samples 

4A and 4B plot within the error envelope surrounding the 175 ka highstand so they 

are interpreted as being representative of this highstand. The only sample in this 

study that does not fall within any of the uncertainties surround sea level highstand 

is 4C. From Table 2.1 it can be seen that this sample has an order of magnitude 

larger error on U-Th age (due to similar scale of larger error on δ234U) with respect 

to samples of a similar age. As discussed in section 2.5.1, despite their pristine 

nature, δ234U and Sr isotope ratios suggest diagenetic alteration of samples; it is 

possible that sample 4C has been altered more than most. This is backed up by 

the field observation that this sample was extracted from a heavily carbonate 

cemented block which indicates post depositional alteration of the surrounding 

substrate (section 2.4.2). This suggests definite contact of this sample to 

diagenetic fluids. Due to its clear stratigraphic relationship with samples 4A and 4B 

(Figure 2.2), sample 4C must represent the same 175 ka highstand. 

2.7 Summary: U-series methodology and slip rate 

2.7.1 U-series methodology 

The initial focus of this chapter was to test the application of the U-Th dating 

technique outlined in section 1.9. An appreciation of the stages involved with 

sample preparation and age analysis, and the timing required to take a sample 

through the entire process was gained during dating of coral samples from the 

Gulf of Corinth. As such several procedures for sample selection and preparation 

where noted. 
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• At each desirable site for dating, sample selection should focus on the 

most pristine examples of the material to be dated and aim to avoid 

areas of obvious contact with post depositional ground waters. 

• Samples should be prepared in a clean lab area which must be cleaned 

thoroughly between each sample preparation to guard against cross-

contamination. 

• Any fragile sections of samples, such as coral septa, should be removed 

as their fine structure is easily altered by diagenetic fluids, which may 

have encouraged open system migration of 234U and/or 230Th. 

• Samples should be inspected and cleaned thoroughly, any soft sections, 

areas of Fe staining, or internal detritus should be removed. Samples 

should then be re-inspected and cleaned again if there is still any hint of 

alteration. This process may have to be repeated several times. 

The above stages can be very time consuming but are necessary to ensure 

that only pure samples are carried through to the next stage of preparation for U-

Th age analysis, which was outlined in section 1.9.2. 

Unfortunately, despite rigorous selection and preparation of samples, the 

radiometric results, as mainly demonstrated by 0δ234U, showed that the samples 

had been contaminated by non parent and daughter isotopes. This indicated that 

the coral has acted as an open system with respect to the uranium series decay 

chain. The original plan was to date these specimens and to check their accuracy 

with published sea level highstands. Due to the contamination the ages produced 

from analysis are deemed inaccurate and so direct correlation with high stands as 

a check on the ages, and of the dating technique, could not be carried out. One 

positive of dating these samples for testing the dating technique of Chapter 1 was 

the repeat analysis of coral sample 8A. Analysis results of this sample produced 

ages of 158.1 ± 2.9 and 153.7 ± 1.6 ka, which overlap within error and 

demonstrate good reproducibility of results. 

2.7.2 Calculating slip rates of the South Alkyonide s fault segment  

In order to calculate a slip-rate for the South Alkyonides fault segment, or 

indeed any fault in the Gulf of Corinth region, three key components must be 
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addressed; (i) the elevation of palaeoshoreline inner edge, (ii) its absolute age and 

(iii) level of formative sea level highstand relative to present sea level. The first 

factor can be addressed by extensive and accurate mapping of marine terrace 

deposits. Roberts et al. (2009) and to a lesser extent Leeder et al. (2005) have 

mapped the Perachora Peninsula in great detail. Of the four sampling sites in this 

study, two (southeast of Lake Vouligameni and Agriliou Bay) can be traced 

upslope to the inner edge termination of the marine terrace whilst the Cape 

Heraion site has been correlated by Leeder et al. (2005) to identical deposits 

which display inner edge termination. Although there is a discrepancy in elevation 

between these identical deposits and the sample site in the present study (likely 

due to post-depositional faulting- section 2.4.2) the elevation of the correlated 

Leeder et al. (2005) deposits provides a further data point for calculation of slip 

rate for the South Alkyonides fault segment.  

A further goal of this chapter was to address factor (ii) above and determine 

the suitability of coral in this region for dating terrace ages and hence, fault 

movement. The results of this study show that C. caespitosa specimens from the 

Gulf of Corinth are not robust enough for precise U-Th age analysis. Their U-Th 

and Sr chemistries suggest diagenetic alteration of samples, whilst geological 

factors at the time of formation may also have played a part in the anomalous 

ratios. Indeed this is a trend seen in previous studies involving ancient corals from 

the Gulf of Corinth, whose 0δ234U deviate from modern day values with age at a 

similar rate (Figure 2.3D), and show distinctly lower 87Sr/86Sr than coral of similar 

age from the open ocean (Figure 2.8). This makes the accuracy of the ages of 

coral in this region highly suspect, which leads me to conclude that taken in 

isolation U-Th ages determination of these samples is not enough to correlate 

them to sea level highstand, a key factor in using these marine organisms for slip 

rate calculation of the South Alkyonides fault segment. In previous works in the 

region it has thus far been a common practice to ignore these facts and assign C. 

caespitosa age results with highstand well outside the error of the age based on 

solely on stratigraphic relationships, which can leave interpretations of correlation 

with highstand open to criticism. 

However, the work within this chapter has reviewed all of the likely errors 

involved with the ages of coral samples and highstand dates and has found that 

large areas of uncertainty exist around each sea level highstand (Figure 2.11). 
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This uncertainty is formed from a combination of the large growth depth range of 

C. caespitosa and the inherently large inaccuracies on both sea level elevation 

and timing of sea level highstand associated with relative sea level curves. Despite 

their initial mismatch with highstand ages, C. caespitosa age results of eleven 

separate samples in the present study fall within the large error envelopes 

associated with sea level highstand. This finding therefore makes it possible to 

determine a slip rate for the South Alkyonides fault segment from the three 

sampling sites that can be traced or correlated to the inner edge terminations of 

marine terraces. 

 

Figure 2.12: Slip rate calculation for the South Al kyonides fault segment. 

Slip rate is calculated by using a plot of the elev ation of the inner edge of the marine terrace 
correlated to the sample site against the age of th e sea level highstand associated with each 
of the sample sites. Each point is marked with the sample numbers and associated 
highstand. As can be seen from the trend lines slip  rate between 175 and 125ka (0.56 mm/yr) 
is greater than that between 290 and 175 ka (0.19 m m/yr). 
 

Figure 2.12 shows the results of slip rate calculation between these sites. 

The trend lines between each of the points suggest that the slip rate on the fault 

has increased from between 290 and 175 ka to between 175 and 125 ka. Though 

it should be remembered that only three data points are being used in this 

estimation, the pattern displayed matches well with that found in the work of 

Roberts et al. (2009). Through construction of topographic profiles and use of 
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iterative calculation Roberts et al. (2009) found slip rates to be 0.1 to 0.16 mm/yr 

from west to east for the time period before 175 ka and from 0.3 to 0.52 mm/yr 

from west to east for the time period since 175 ka. The rates found in the present 

study are estimated from three locations that are not immediately stratigraphically 

related to each other and that stretch over a ~5.5 km section of the coast line. As 

such they span across several of the Roberts et al. (2009) slip profiles which 

demonstrate variable slip along strike. However, if the results of the present study 

of 0.19 mm/yr between 290 and 175 ka and 0.56 mm/yr between 175 and 125 ka 

are considered as a general slip rate for the South Alkyonides fault segment then 

they agree well with the findings of Roberts et al. (2009). 

The method demonstrated in this chapter acts as an important tool as it 

validates the approach of previous Gulf of Corinth studies and allows for further 

justification of assigning these otherwise uncertain samples to periods of sea level 

highstand; a key pre-requisite for calculation of slip rate of faulting in the region. As 

clearly elevated 0δ234U of ancient coral samples is common around the globe, 

indicating open system behaviour with respect to U-Th decay, it is suggested that 

coral based studies in other locations should follow the example shown by the 

work in this chapter. 

• Take into account the chemistry of sample analysis results and 

attempt to find the causes of any observed deviation of atomic or 

activity ratios.  

• Research any potential source of error in recognised sea levels in 

the local sea level record or relative sea level curve. 

• Find the range of depths that the coral particular to study grows 

between. 

By combining the above steps a real understanding of the uncertainty 

involved with the correlation of sample elevations with previous highstand can be 

achieved and a conceptual model, such as Figure 2.11, can be combined with 

observations, such as stratigraphic relationship, in order to provide a more 

accurate correlation between samples and associated highstands. 
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3 The Little Grand Wash fault and northern fault of  

the Salt Wash graben 

3.1 Introduction  

The Little Grand Wash and the Salt Wash graben field areas are of 

particular interest as they contain multiple modern and ancient fault related 

travertine mounds, which are the direct result of past and present leakage of CO2 

rich fluid to the surface along both fault zones. Parts of the travertine mounds 

provide pristine samples for uranium series dating. Results of analyses carried out 

on the mounds, presented in the next chapter, provide a unique data set with 

which to quantitatively characterise the fluid flow history of a pair of faults which 

provide vertical pathways for leakage from a natural accumulation of CO2.  

This introduction to the Little Grand Wash fault and Salt Wash graben field 

sites is divided into four sections. In section 3.2 an overview of the geology and 

tectonic events that shaped the region around the Little Grand Wash fault and Salt 

Wash graben is presented. Lithologies of particular importance to the thesis will be 

discussed in section 3.3, with reference to the source of CO2 and groundwaters 

that precipitate the travertine. The process behind travertine formation, published 

literature on travertine in this area, and an introduction to the five separate units 

that form travertine mounds in this study is presented in section 3.4. In the final 

section, 3.5, new field observations and interpretations of travertine morphology in 

both sites are presented in order to evaluate the field relationships of the separate 

facies and to determine if the faults have been active during the history of 

travertine deposition. This is an important question to answer as it gives insights to 

the potential mechanisms that cause switching of fluid flow pathways to the 

surface. The interpretation of travertine mounds, combined with an understanding 

of river gravel deposits, suggests that there has been no surface offset on the 

faults during the deposition of travertine mounds. 

3.2 Geological setting 

The Little Grand Wash and Salt Wash graben faults are situated at the 

northern end of the Paradox basin in east central Utah (Figure 3.1). This late 
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Palaeozoic to Mesozoic intracratonic basin forms part of the Colorado Plateau and 

is defined by the extent of organic rich Pennsylvanian and Permian limestones, 

shales and evaporites which cover a large area of southern Utah and western 

Colorado (Baars and Stevenson, 1981). Rocks exposed within the basin range in 

age from Late Pennsylvanian to Early Cretaceous. The basin is bordered by a 

series of monoclines and structural highs (Figure 3.1) and can be generally be 

divided into three areas: the Paradox fold and fault belt in the north, the Blanding 

sub-basin in the south-southwest, and the Aneth platform in south easternmost 

Utah (Chidsey and Morgan, 2005). The field areas are bracketed by the San 

Rafael Swell to the west and the Uncompahgre uplift to the east. The San Rafael 

Swell is an arcuate anticline with a broad west limb and a steep east limb (Hintze, 

1993), whilst the Uncompahgre uplift is a near rectangular, northwest-trending 

anticline (Barbeau, 2003). Both of the studied faults cut the open, north plunging 

Green River anticline (Figure 3.2). 

Within the basin the middle Pennsylvanian Paradox Formation contains 

nearly 2km of evaporites deformed into a series of salt anticlines and faults by 

Pennsylvanian to Permian uplift of the Uncompahgre Plateau (Doelling et al., 

1988; Dockrill and Shipton, 2010). Salt related anticlines in the carbonate and 

clastic sedimentary rocks overlying the evaporites have proved to be ideal traps 

for the accumulation of natural CO2-rich gas. Numerous accumulations have been 

discovered (Figure 3.1) and commonly have CO2 concentrations in excess of 90% 

with the remainder a mixture of nitrogen, helium and/or hydrocarbon gases (Cappa 

and Rice, 1995; Allis et al., 2001; Gilfillan et al., 2008; Wilkinson et al., 2008). 

Dominant reservoir lithologies include sandstone, dolomite and fractured 

basement, while overlying sealing lithologies range from low permeability 

mudstones to anhydrites (Allis et al., 2001). There are at least nine producing or 

abandoned CO2 fields containing up to 8.5 trillion cubic meters of CO2 gas (Allis et 

al., 2001). Five of these (Bravo Dome, McElmo Dome, Sheep Mountain, Big 

Piney-LaBarge and McCallum) are currently being exploited for enhanced oil 

recovery, dry ice and industrial uses (Allis et al., 2001). Also present in the 

Paradox basin are a number of actively producing oil and methane fields, including 

the Lisbon and McElmo Dome fields (Chidsey and Morgan, 2005; Morgan et al., 

2007). Immediately to the south of the study area is the abandoned Salt Wash oil 

field (Peterson, 1973). Many of the active methane fields, present in the San 
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Rafael Swell to the north, also produce large volumes of CO2 (Cappa and Rice, 

1995), much of which is vented into the atmosphere (Allis et al., 2001). 

 

Figure 3.1: Geological features of the Paradox Basi n and surrounding region. 

Figure after Shipton et al., (2005), Nuccio and Con don (1996) and Cappa and Rice (1995). 
The extent of the basin is shown by the black line.  Dashed box to the north of the basin 
displays the location of Figure 3.2. The area outli ned in grey within this box represents the 
extent of the Salt Wash oil field (after Peterson, 1973). Inset shows location of basin within 
the mid-western USA.   

 

The dominance of northwest to north-northwest striking normal faults within 

the Colorado Plateau suggests that maximum principal stress across the area is 

close to vertical and that the Plateau is currently undergoing northeast to 

southwest trending extension (Wong and Humphrey, 1989). The strike of both the 

Little Grand Wash fault (west-east) and northern fault of the Salt Wash graben 

(northwest – southeast) suggests that they are close to optimally oriented within 

the current regional stress field, and it is therefore possible that they are 

accommodating active slip. However, evidence based on field observations and 

interpretation of U-Th dating of travertine (discussed in section 5.2.1.2) suggests 
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there has been no recent movement, at least throughout the history of travertine 

deposition.  

The Little Grand Wash fault is a 70-80° south dippi ng arcuate normal fault 

with a surface trace of 61km (Shipton et al., 2005). In the region of the axial trace 

of the Green River anticline the fault consists of main two strands which stretch 

from 3.2km east to 0.1km west of the Green River (Figure 3.3A), the rest of the 

fault trace only has one strand (Shipton et al., 2004). In the field area this is further 

complicated as the fault zone consists of several anastomosing normal faults 

defining structural terraces with varying dips (Vroljik et al., 2005; Dockrill and 

Shipton, 2010). Travertine mounds situated along this fault all occur in the 

immediate footwall which suggests that fluid flow has been restricted to the 

damage zone. This is likely to be the result of upwelling CO2 rich waters having to 

migrate through fractures in several low permeability sealing lithologies from their 

immediate source in the Navajo Aquifer (section 3.4.2). Fracture analysis along 

the fault demonstrates a higher fracture density around relay zones than in 

structurally simpler sections of the fault (Dockrill and Shipton, 2010). Further to this 

travertine mounds are also confined to fault bends and relay zones. These 

observations suggest that permeability pathways may be preferentially associated 

with more structurally complex sections of the fault. 

The total vertical separation on the fault is ~260 m, most of which is 

accommodated by the southern fault strand (Dockrill and Shipton, 2010). Both 

strands of the fault were encountered at depth in an abandoned well (Amerada 

Hess, Green River number 2 drilled in 1949 to a depth of 1798 m, Figure 3.2B). 

Drilling records state that the deeper of the two faults has Permian Cutler Group 

sediments in the hanging wall and Pennsylvanian Hermosa Group sediments in 

the footwall (Shipton et al., 2004). It is unclear what the offset of the fault is at this 

depth, or whether it cuts the Paradox formation.  
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Figure 3.2: Regional geology of the Little Grand Wa sh and northern Salt Wash faults. 

Figure after Shipton et al. (2004). (A) Geological map compiled from Doelling (2001), 
Williams (1964) and Williams and Hackman (1971). Gr id co-ordinates are given in UTM using 
the NAD83 datum. (B) Cross section of line A-B from  Figure (A). Also shown is the location 
of exploration wells that have been used to deciphe r stratigraphy at depth. 
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Figure 3.3: Surface geology of the Little Grand Was h and Salt Wash graben field sites.  

Figure after Dockrill (2006). Maps show distributio n of both active and ancient travertine 
along the (A) Little Grand Wash fault and (B) Salt Wash Graben. Insets show the relative 
location of the maps along each fault. For GPS coor dinates of each travertine mound see 
Appendix D. A sketch cross section of the Little Gr and Wash fault, taken within the plane of 
the fault and focusing on the relationship of quate rnary deposits, is shown in Figure 3.4. 

 

The Salt Wash graben is a shallow, 15km long, 290° striking dip-slip graben 

with a left stepping relay zone to the east (Shipton et al., 2005; Dockrill and 

Shipton, 2010). It may be structurally linked to the Moab fault system to the 

southeast (Shipton et al., 2004). Maximum vertical separation on the northern fault 

of the Salt Wash Graben is ~366 m (Dockrill and Shipton, 2010).This fault offsets 

the Jurassic Entrada Sandstone in the footwall against Cretaceous and Jurassic 

Cedar Mountain Formation in the centre of the graben (Figure 3.3B). The depth to 

which the faults extend is uncertain but they may sole into the Paradox Salt 

sequence (Shipton et al., 2004) (Figure 3.2B). Unlike the Little Grand Wash fault, 

travertine associated with this fault are not restricted to the immediate footwall and 

can be found up to ~530 m north of the fault trace (Figure 3.3B). This is likely due 
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to the simpler stratigraphy present above the immediate spring source in this area. 

Upward migrating fluid has only to penetrate a single sealing lithology (the Carmel 

Formation) before it can travel uninterrupted to the surface through the Entrada 

Sandstone, which is an unconfined aquifer unit (Figure 3.5). The observations that 

constrain the different fluid flow patterns in the Little Grand Wash fault 

(representing leakage confined to damage zone fractures) and the northern Salt 

Wash graben (representing leakage through an unconfined aquifer) is discussed in 

greater detail in sections 5.3 and 5.4 of Chapter 5. 

In both field sites faulting of the Green River anticline has created a series 

of stacked three-way anticlinal closures in the footwalls of the faults, which creates 

a series of multiple stacked traps. This is also true of most of the other CO2 

reservoirs in the basin (Allis et al., 2001). Many of these reservoirs are good 

natural analogues for anthropogenic storage of CO2 as they have successfully 

accumulated the gas since its formation. The Little Grand Wash and northern Salt 

Wash graben faults however have provided pathways for the vertical migration of 

CO2 rich fluid from depth. This has allowed large volumes of CO2 to leak from an 

accumulation at depth to the surface and escape into the atmosphere. Both of 

these faults therefore provide analogues for failed CO2 storage attempts. 

3.2.1 Tectonic history of the Paradox Basin 

The development of the Paradox Basin began in the mid-Proterozoic, at 

1700 to 1600 Ma, when movement on high-angle basement faults and fractures 

initiated the formation of large scale north-westerly trending anticlines within the 

Paradox fold and fault belt (Stevenson and Baars, 1986). During the Cambrian 

and Mississippian, this region, along with most of eastern Utah, was the site of thin 

marine deposition within the mid-continental U.S. craton while thick deposits 

accumulated on the continental margin to the west (Hintze, 1993).  

Major changes occurred at the start of the Pennsylvanian. A series of 

basins and fault-bounded uplifts developed from Utah to Oklahoma as a result of 

the collision of the South America, Africa, and south-eastern North American 

continents (Kluth and Coney, 1981; Kluth, 1986; Dickerson, 2003); or from a 

smaller scale collision of a microcontinent with south-central North America (Harry 

and Mickus, 1998; Dickinson and Lawton, 2003). This tectonic event initiated the 

uplift of the ancestral Rocky Mountain orogeny and the crystalline Uncompahgre 
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Plateau in the in the central part of the western United States (Stevenson and 

Baars, 1986). This latter event, caused by northwest orientated reverse faulting, 

created an asymmetric basin to the immediate west complete with a peripheral 

uplift-parallel bulge ~200km southwest of the plateau (Barbeau, 2003). Flow of 

marine waters into the basin was restricted by this bulge, leading to accumulation 

of thick evaporite-shale-carbonate successions which would later become the 

Paradox Formation. Near shore carbonates and terrestrial siliclastic sediments 

shed from the highland area to the northeast infilled the basin during the later 

stages of subsidence (300-260 Ma) (Hintze, 1993; Barbeau, 2003).  

Sedimentary loading of the Paradox Formation coupled with reactivation of 

basement faults below the Paradox Basin initiated displacement and flow of 

evaporites, creating a series of northwest-trending, salt-cored anticlines and 

pillows sometime during the late Pennsylvanian (Doelling, 1988). Seismic surveys 

and exploration drilling have identified northwest-striking, high angle basement 

faults beneath several of the salt-cored anticlines (Chidsey and Morgan, 2005; 

Morgan et al., 2007). Movement of the evaporites continued until the late Triassic 

(Doelling, 1988), with the rising salt anticlines being buried by sediments sourced 

from the Uncompahgre uplift. As a result, thickness of the overlying sediments 

varies significantly with upper Pennsylvanian to mid Jurassic units being thin to 

absent over some salt anticlines and much thicker in the intervening synclines 

(Doelling, 1988; Condon, 1997), an observation which is supported by isopach 

modelling of Permian to late Jurassic strata (Dockrill, 2006).  

Reactivation and uplift of the Uncompahgre Plateau and the formation of a 

series of basement fault-cored monoclines bordering the Paradox Basin occurred 

throughout the Laramide orogeny between 70-40 Ma (Davis, 1978; Heyman et al, 

1986). Regional north to northwest trending open folds formed during this period 

superimposed on the salt-induced anticlines (Cater, 1970; Doelling, 1988). 

Prominent faults within the sedimentary cover, such as the Moab and Lisbon 

Faults, were also preferentially formed along the margins of thick salt bodies or 

reactivated during this period (Doelling, 1988; Foxford et al., 1996). 

Since the late Cenozoic, the salt-cored anticlines have been brought close 

to the surface or exhumed by regional erosion related to epeirogenic uplift of the 

Colorado Plateau (Pederson et al., 2002; Moucha et al., 2009). Infiltration of 

ground waters through fractures and joints has dissolved the salt bodies, causing 
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collapse of some anticlines and formation of valley and graben structures, 

bordered by escarpments, and since infilled with Quaternary deposits (Doelling, 

1988).   

3.3 Stratigraphy and lithology 

3.3.1 Stratigraphy within the field areas 

Lithologies present in the Little Grand Wash and Salt Wash Graben field 

areas range in age from middle Pennsylvanian to Cretaceous whilst the surface 

lithology consists of middle Jurassic to Cretaceous strata. Figure 3.5 shows a 

stratigraphic section of the formations present in the area, with units of particular 

interest to this study highlighted. A large unconformity spanning ~ 70 Ma in age 

exists between the most recent deposits and ancient lithologies. The presence of 

Upper Cretaceous and Tertiary stratum in the Book cliffs to the north suggests that 

they were once present in the study area. Based on this assumption Nuccio and 

Condon (1996) have estimated that ~2,500 m of Cretaceous and Tertiary rocks 

have been removed by erosion. The following section explores the key lithologies 

of interest to this thesis. For a more detailed review of the stratigraphy the reader 

is directed to Trimble and Doelling (1978) and Nuccio and Condon (1996). The 

lithologies discussed below are of importance as they provide the pathways and 

storage sites for groundwater that supply the springs and the CO2 that leaks to the 

surface. Strata present at the surface in each area are noteworthy for the 

discussion of concentrated and diffuse flow to the surface later in the thesis 

(Chapter 5).  

3.3.2 Important lithologies  

Of the thick sedimentary sequence that composes the stratigraphy of the 

field sites several key units are of particular interest to this thesis. These are 

namely the rocks that produce the CO2 within the areas, and good 

aquifer/reservoir units plus their top seals. Regionally important aquifers are 

formed by the Glen Canyon Group sandstones, which are defined as the ‘Navajo 

aquifer’ by Naftz et al. (1997), and the Permian White Rim Sandstone. Highly 

permeable lithologies are also found outcropping in the field sites and include the 

Entrada Sandstone and Curtis Formation (Table 3.1 and Figure 3.5). The White 
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Rim Sandstone aquifer is capped by the Kaibab Limestone which is composed of 

inter-bedded dolomites and limestones (Condon, 1997). The Navajo aquifer is 

situated below the mixed fossiliferous marine sequence that composes the Carmel 

Formation aquitard (Trimble and Doelling, 1978). Throughout the region in places 

where the Entrada and Curtis Formation sandstones are not exposed at the 

surface they are capped by the gypsiferous siltstones and mudstones of the 

Summerville Formation. The strata above the Summerville Formation mainly 

consists of shales, siltstones and low permeability sandstones (Hood and 

Patterson, 1984) up to the youngest formation exposed in the field area, the Lower 

Cretaceous Mancos Shale, a dark organic rich marine deposit (Johnson, 2003). 

Recent deposits in the field areas range in age from Late Pleistocene 

through to the present day, and sit unconformably on top of Jurassic and 

Cretaceous strata exposed at the surface. These deposits include travertine 

formed by emergence of CO2 charged water at the lands surface, gravels 

deposited by the Green River and its tributaries, and alluvial fans and scree slopes 

formed by erosion and deposition of debris from buttes and cliff faces (Figure 3.4). 

The two former are especially significant to this thesis as interpretation of the 

morphology of both gravel and travertine deposits and determination of travertine 

ages provide the tools with which to determine field relationships and quantify the 

history of fluid flow along the faults. These deposits are discussed in more detail 

later in the thesis in sections 3.4 (travertine) and 5.2.1.2 (river gravels). 

 

 

Figure 3.4: Sketch cross section of the geomorpholo gy of the Little Grand Wash.  

Section is shown in the plane of the Little Grand W ash Fault. A detailed understanding of 
the geomorphology of river gravel deposits and trav ertine becomes important later on 
within chapters 4 and 5. 
 



Chapter 3  The LGW and northern SWG faults 

March 2010  Neil M. Burnside 84 

 

Figure 3.5: Generalised stratigraphic section down to the upper Mississippian for the Green 
River area.  

Figure modified from Dockrill (2006). Thickness dat a is compiled from Trimble and Doelling 
(1978) and Hintze (1993).Good reservoir units withi n the succession are highlighted by 
yellow. Within the age period column ‘QU’ stands fo r Quaternary whilst ‘M’ stands for 
Mississippian.  
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Table 3.1: Permeability and porosity of lithologies  present in the field areas.  

The Navajo sandstone, Kayenta Fm, and Wingate sands tone make up the main aquifer 
supplying the springs in the field areas- the Navaj o aquifer. Also included is data from the 
Entrada Sandstone, one of the surface lithologies o f the Salt Wash graben, and Permian and 
Triassic strata. The Moss Back member is a conglome rate of the Chinle Fm, whilst the 
Sinbad limestone is a 10-15 m thick section of lime stone from the Moenkopi Fm. The Kaibab 
limestone is late Permian. Data collated from Hood and Patterson (1984).  
 

3.4 Travertine 

At distinct locations along both the Little Grand Wash fault and northern 

fault of the Salt Wash graben evidence of leakage of CO2 enriched waters is 

present in the shape of ancient and actively precipitating travertine mounds. The 

following section investigates the origin of the CO2 and water that the travertine in 

the present study is precipitated from; provides a definition of travertine and 

discusses its formation. A review of previous work on the travertine of the Little 

Grand Wash and Salt Wash graben is carried out and a conceptual model of 

travertine evolution is presented. Finally, the separate units present within the 

travertine of this area will be examined and the interaction between them 

considered.  
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3.4.1 Source of CO 2 

Unusual volumes of CO2 are generated within the Paradox Basin (Evans et 

al., 2004); however uncertainty surrounds the source of this CO2. Geochemical 

work on the composition of CO2 within the basin from several studies allows for 

likely scenarios for the mechanism that triggered formation of the CO2, and 

provides candidates for the rocks from which the gas is sourced.  

Potential sources of CO2 within basins include bacterial degradation of 

organic matter, metamorphism or decarbonation of carbonate sediments, 

hydrocarbon maturation, and mantle degassing (Wycherley et al., 1999). Bacterial 

degradation of organic matter typically produces a gas that is < 20% CO2, 

measurements from the study area show that the gas percentage of CO2 are 

>95% (Heath et al., 2002), thus bacteria is not the major contributor to CO2 

formation. This conclusion is supported by the lack of hydrogen sulphide and 

methane within gases analysed from the field sites (Heath et al., 2009). Maturation 

of hydrocarbons can also be excluded based on measurement of δ13C of the CO2 

gas in comparison to that of an oil seep within the footwall of the Little Grand 

Wash fault located roughly 1km east of the Green River (Heath et al., 2009). Low 

helium isotope and CO2/
3He ratios measured from springs in both areas suggests 

only a minor component of mantle derived helium (Heath et al., 2002; Heath et al., 

2009; Wilkinson et al., 2008), which rules out a mantle source for the CO2.  

The most likely source for the CO2 is clay carbonate diagenetic reactions, 

which can involve silicate hydrolysis and carbonate dissolution (Heath et al. 2004). 

These reactions could have been instigated at temperatures of about 100 to 200°C 

(Evans et al., 2004) during deep burial of impure carbonate sedimentary rocks 

during the burial of the Colorado Plateau from the middle Cretaceous to the end of 

the Miocene (Nuccio and Condon, 1996). The work of Heath et al. (2009) shows 

that if isotopic equilibrium is assumed between the source carbonates and the 

gases then clay-carbonate reactions involving rocks with δ13C CaCO3 values of +1 

to -3‰ (i.e. marine carbonates) could have produced the CO2. The δ13C values of 

the gas are close to the range of values for carbonate samples from the 

Pennsylvanian Honaker trail formation and the Permian White Rim Sandstone. 

Other evidence from petrography and observation of free phase CO2 accumulation 
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in other regions of the Paradox Basin suggests that the source of CO2 could be 

the deeper Mississippian Leadville Limestone (Figure 3.6) (Kampman et al., 2009). 

 

Figure 3.6: Generalised cross section of ground wat er sources for spring deposits. 

Figure adapted from Kampman et al. (2009). Section is shown along the plane of the Little 
Grand Wash fault. 

 

3.4.2 Source of water supplying springs 

Assuming the waters supplying the springs did not cool during ascent, their 

low emergence temperature (15.7- 18.0°C) suggests a  shallow source. Stable 

isotopes of δD and δ18O from modern day springs occurring in the field areas 

indicate that the waters are mainly meteoric in origin with a small brine contribution 

(up to 20%) coming from  a deep saline aquifer, possibly situated within the 

Paradox Formation (Wilkinson et al., 2008; Heath et al., 2009; Kampman et al., 

2009). The large meteoric component suggests that the waters haven’t exceeded 

temperatures of 100˚C (Shipton et al., 2005), which given local geothermal 

gradients (Reitler et al., 1979; Nuccio and Condon, 1996), means that the 

groundwaters are likely to have originated from the Navajo aquifer (Evans et al., 

2004). The source of this large meteoric component, as evidenced by southeast 

directed regional ground water flow (Hood and Patterson, 1984), is precipitation on 

the San Rafael Swell where the Navajo aquifer crops out some 35km west of the 

Green River (Figure 3.6). Groundwater pools within the four-way structural closure 

formed by the juxtaposition of the Green River anticline against the faults (Shipton 

et al., 2004) where it becomes charged with CO2 migrating vertically from below or 

within the Paradox salts.  



Chapter 3  The LGW and northern SWG faults 

March 2010  Neil M. Burnside 88 

Stable isotope data indicates that travertine deposits along both faults have 

resulted from a common CO2 rich fluid (Shipton et al., 2005). Geologic and 

isotopic evidence shows that leakage is confined to the footwalls of both faults. 

Ancient and modern travertine deposits are only ever found in the footwall of the 

faults, whilst there are geochemical differences in spring waters either side of the 

faults (Heath et al., 2004). To the north, spring water is highly saline, acidic, and 

supersaturated with respect to bicarbonate whilst to the south; waters are alkaline 

with low salinities and bicarbonate contents. The location and chemistries of 

springs and travertine therefore suggests that although both faults form effective 

barriers to lateral fluid flow, fracturing of the cap rock in the damage zone above 

reservoir units allows for vertical migration of CO2 charged fluid to the surface. 

3.4.3 Classification of travertine  

The definition of travertine in the literature varies widely depending on 

hydrological setting, temperature and formation process. Definitions are often 

insufficiently precise as they tend to be site specific and fail to completely describe 

all of the aspects involved with travertine formation. Recent work from Pentecost 

(2005b) provides an all-encompassing description of travertine which is as follows: 

“A chemically-precipitated continental limestone formed around seepages 

and springs, consisting of calcite or aragonite, of low to moderate intercrystalline 

porosity and often high moldic or framework porosity within a vadose or 

occasionally phreatic environment. Precipitation results primarily through the 

transfer of carbon dioxide from or to a groundwater source leading to calcium 

carbonate supersaturation, with nucleation/crystal growth occurring upon a 

submerged surface.” 

This definition emphasises inorganic processes, with reactions involving 

gaseous carbon dioxide and calcium bicarbonate rich solutions being the main 

source of precipitation of calcium carbonate in a terrestrial setting. Biological 

processes and evaporation are not discounted but they are considered as 

subsidiary effects. Depending on temperature of the source waters travertine can 

be subdivided into three main categories; hot spring (waters warmer than 36.7˚C, 

the core human body temperature), ambient spring (waters ~equal to mean annual 

air temperature [MAAT]), and cold spring (waters below MAAT) (Pentecost, 1995a; 

Pentecost, 2005a). As the spring waters actively forming travertine deposits in the 
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field range from 16.4 - 18.0°C, and the MAAT for ce ntral Utah is ~17°C (Pope and 

Brough, 1996) the travertine in these field areas are ambient in nature. Spring-

deposited travertine can be further subdivided based on morphology into mound, 

fissure ridge or plaudal deposits (Li and Riding, 1999; Chafetz and Guidry, 2003; 

Pentecost, 2005b). The travertine in this study form sub-circular domes around 

spring vents, reaching up to 6 m in thickness and 600 m in perimeter, and so fall 

into the mound category. 

3.4.4 Formation of travertine  

Waters giving rise to travertine deposits undergo rapid chemical change 

upon contact with the near-surface atmosphere. This is due to a decrease in 

hydrostatic pressure as saturated fluids rise to the surface which leads to the 

reduction of the partial pressure of CO2 and results in degassing of CO2 according 

to Equation 3.1. 

)()()()(2)( 2233
2 gCOlOHsCaCOaqHCOaqCa ++⇔+ −+

 

Equation 3.1 
 

This is the carbonate equilibrium equation (Clark and Fritz, 1997). 

Degassing, or loss of CO2 from solution, causes displacement of this equation to 

the right. Other factors that can have a similar effect are evaporation of water, and 

an increase of Ca2+ activity via breakdown of complexing ligands or dissociation of 

Ca complexes (Gascoyne and Swartz, 1982). This is a very simplified description 

of the chemical equilibria in the low temperature system Ca-H-C-O. The degree of 

calcite saturation can also be influenced by factors such as temperature, pH, 

kinetic factors and concentration of other ions in solution (Herman and Lorah, 

1987; Dreybrodt et al., 1992; Zaihua et al., 1995; Janssen et al., 1999; Fouke et 

al., 2000; Zhang et al., 2001; Xu et al., 2003; Jamtveit et al., 2006). Carbonate 

precipitation can also be mediated organically by the microbes and algae that 

flourish in the CO2 rich water (Chafetz and Folk, 1984; Pentecost, 1995b; Ford and 

Pedley, 1996; Chafetz and Guidry, 1999; Merz-Preiß and Riding, 1999; Van 

Calsteren and Thomas, 2006). Biotic effects such as these greatly influence 

travertine deposition in ambient conditions (Pentecost, 2003; 2005b) as are found 

in within the present study areas. 
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Some authors suggest that calcium carbonate does not precipitate out of 

solution straight away (Zhang et al., 2001; Hammer et al., 2005) but is lost 

according to the reaction: 

)()(2)( 323 aqCOHaqHCOaqH ⇒+ −+
 

 

)()()( 2232 gCOlOHaqCOH +⇒
 

Equation 3.2 

 
The escape of CO2 leads to the consumption of H+ and HCO3

- and an 

increase in CO3
2-. Over a period of time the solution will become supersaturated 

with CaCO3 until nucleation occurs: 

)()()( 3
2

32 sCaCOaqCOaqCa ⇒+ −+
 

Equation 3.3 

 
Once nucleation begins reaction 3.2 simplifies to reaction 3.1 (Viles and 

Goudie, 1990).  

Travertine deposits have a lifespan of geologically short duration (Alcaraz-

Pelegrina and Martinez-Aguirre, 2007; Zentmyer et al., 2008; Zhao et al., 2009) 

and in contrast with most of the land surface, are constructive in nature during 

active precipitation. Once inactive, mounds can become rapidly affected by 

erosion. Travertine can therefore be uniquely utilised to investigate the events of 

deposition and erosion simultaneously side by side, which makes this carbonate 

an important tool for geomorphological studies (Pederson et al., 2002; Marks et 

al., 2006). Travertine is commonly found along or in close proximity to fault traces 

with precipitation generally being concentrated in high-flow, structurally complex 

zones such as fault tips or intersections (Hancock et al., 1999; Uysal et al., 2007; 

Faccenna et al., 2008; Uysal et al., 2009). This structural affinity allows travertine 

to be exploited in the field of neotectonics (Hancock et al., 1999; Minissale et al., 

2002; Piper et al., 2007; Haluk Selim and Yanik, 2009). Travertine precipitated 

from meteoric and surface waters have also been utilised for palaeohydrology 

(Gasse and Fontes, 1989; Minissale et al., 2002; Anzalone et al., 2007) and 

palaeoclimatology (Szabo, 1990; Winograd et al., 1992; O’Brien et al., 2006; Sun 

and Liu, 2010). 
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3.4.5 Previous work on travertine of the Little Gra nd Wash and 

northern Salt Wash Graben faults 

Recognition of travertine deposition within the field areas may stretch back 

as far as 1867 when John Wesley Powell documented the presence of “satin spar” 

during an expedition down the Green River (Powell, 1895). This could have been a 

description of fossil mound terraces or bright white calcite veins visible in some of 

the ancient mounds from the river within the Little Grand Wash (Shipton et al., 

2004). The first published description of travertine deposits for the Little Grand 

Wash area is provided by Baer and Rigby (1978). It is likely that the deposits were 

recognised as travertine before this time as hydrocarbon exploration in the area 

dates from 1935. Indeed the Glen Ruby #1-X petroleum test well was drilled during 

this time. As this well is spudded into an ancient travertine mound it suggests that 

the drillers had picked this site due to evidence of prior leakage. Since its inception 

the Glen Ruby #1-X test well has provided a conduit to the surface which has led 

to the formation of the spectacular Crystal Geyser (section 3.5.3). Baer and Rigby 

(1978) recognised difference in ages of the travertine deposits and separated 

them into three separate groups, or levels, based on their elevation. Actively 

precipitating mounds were consigned to ‘Level 3’. Ancient mounds that occurred 

just above this base elevation were termed ‘Level 2’. Finally older fossil deposits 

found at significantly higher elevations, up to 37 m above level 3, were grouped 

together as ‘Level 1’. Recognition of travertine in the Salt Wash Graben was first 

published by Doelling (1994), whilst extensive mapping of both the Little Grand 

Wash and Salt Wash Graben areas was first completed by Doelling (2002). 

Little Grand Wash and Salt Wash Graben travertine were first viewed as a 

tool for studying CO2 leakage from a natural reservoir by Shipton et al. (2004). 

Subsequent work by Shipton et al. (2005) and Dockrill and Shipton (2010) further 

characterises the area and discusses structural controls on the leakage of CO2 

charged waters and the deposition of travertine. Dockrill et al. (in review) provide 

great detail on the formation of mounds from these particular sites and provide a 

conceptual model for travertine evolution. An updated version of this model, taking 

into account new investigation, is detailed in the following section. 
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3.4.6 Travertine lithofacies 

3.4.6.1 Introduction 

The model of Dockrill et al. (in review) is based on field interpretation 

coupled with petrological and geochemical analyses. By combining observations 

from these areas the travertine deposits were found to be composed of four 

distinct lithofacies; (1) cemented conglomerate, (2) layered carbonate mats, (3) 

white-banded veins, and (4) brown-banded veins. The cemented conglomerate 

facies was described as having ‘sub-angular to sub-rounded pebbles’ and to 

‘extend up to 200 m away from the main travertine deposit’. Further detailed field 

investigation carried out during the present study has since found relict river 

terraces associated with numerous travertine mounds in both field sites (3.5.4.2). 

The main travertine deposit referred to is the most prominent mound in the Little 

Grand Wash and largest ancient travertine across both areas. The L-shaped 

conglomerate deposit that extends south of this mound is actually the well 

carbonate cemented remains of a palaeo-stream channel (section 5.2.1.2). As its 

likely that the sub-rounded conglomerate described by Dockrill (2006) is a river 

derived deposit, and in order to avoid confusion during discussion of river gravels 

later ‘cemented conglomerate’ facies will be described as ‘cemented breccia’ for 

the remainder of the thesis.  

Surrounding the base of numerous travertine deposits in the field is host 

sandstone well cemented by carbonate. As this altered host rock appears to be 

closely associated with the travertine mounds I will include it as a fifth variety of 

lithofacies in addition to the original four proposed by Dockrill et al (in review). The 

following subsections provide a description of each facies and discuss their 

interaction. This is followed by conceptual model of travertine mound evolution, 

based on that of Dockrill et al. (in review), but updated to take into consideration 

further work in field interpretation carried out during the present study. 

3.4.6.2 Altered host rock 

The host rock at the base of the ancient travertine mounds is generally 

altered in close proximity to fractures and bedding planes. The formation of 

carbonate cement within the host sandstone makes it more robust and resistant to 
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weathering. In severely eroded travertine mounds, where layered mats have been 

completely removed, this facies is often the only remnant. Altered host rocks tend 

to display a distinct orange colouration which makes them stand out from the 

surrounding outcropping sandstone. The texture of the cement ranges from 

massive to poikilotopic. This latter texture involves the entrapment of mineral 

grains of the host sandstone within larger crystals of carbonate and gives a distinct 

appearance (Figure 3.7A-C). Within sandstone-dominated lithologies bedding 

planes are exploited by white-banded veins up to 15 cm thick. In mud-dominated 

lithologies, networks of fine scale box-work veins (5 to 10 mm thick) locally 

overprint and even destroy the host rock fabrics Figure 3.9. 

3.4.6.3 Cemented breccia 

Cemented breccia is found on top of the altered host rock and is overlain by 

layered mats. This facies comprises of locally derived colluvium cemented by 

carbonate. Clasts within this unit are angular to sub-angular and consist of poorly 

sorted rock fragments and quartz grains (Figure 3.7D). Some horizons within this 

facies contain sedimentary structures such as planar cross bedding and 

imbricated lenticular clasts. 

The relative positions of cemented breccia and layered mats suggests that 

vertical and lateral cementation of the breccia by emanating CO2 charged waters 

supplied a relatively inpermeable substrate for the growth of the layered mats. A 

transitional zone exists between these two facies. At the centre of the deposits this 

zone consists of well-defined layers of each unit that repeatedly alternate. The 

transition zone gradually thickens away from the central part of the deposits and 

the boundaries of layering between the facies become harder to define. Layered 

mats become thinner and more discontinuous, whilst the breccia layers become 

thicker, from the centre to the outer edge of the mounds. This transition between 

the two facies may be due to extended periods of spring and non-spring activity or 

episodic flooding of the travertine by non-spring waters. The proximity of streams 

and rivers to the ancient deposits and the presence of sedimentary structures 

within the breccia suggest that episodic flooding is the most likely reason. 
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3.4.6.4 Layered mats 

Layered mats consist of sub-horizontal, layered carbonate deposits with 

moderate to highly visible porosity. It is this facies that truly defines a travertine 

mound as it is universally present in all reported travertine deposits from across 

the globe, where it is commonly referred to as tufa or travertine (e.g. Chafetz and 

Folk, 1984; Ford and Pedley, 1996; Faccenna et al., 2008). As travertine is used 

as the all encompassing term for the five separate units that comprise the mounds 

in the present study the term layered mats is used to describe this surficial 

expression of the deposit. 

Layered mats are generally composed of alternating layers of porous and 

dense horizons that have a gently dipping surface which demonstrate the direction 

of flow from the conduit which supplied the CO2 rich waters. The porous horizons 

consist of vertically stacked layers that range from 5 to 50 mm thick (Figure 3.8). 

Each sub-horizontal layer has an irregular, sinuous shape formed by dendritic 

precipitate which is composed of elongate blocky calcite crystals that branch and 

terminate in rounded knobbly shrub-like structures (Figure 3.8). The irregular 

sinuous shapes create mm-deep pools and raised rims, forming hemispherical 

ponds which en-mass produce microterraces. The rims of the hemispherical pools 

always form sub-horizontally regardless of whether they are formed on relatively 

flat platforms or on steeply slanted slopes (Figure 3.13). The dense horizons are 

composed of fine-grained micrite that partially to completely envelope the shrub 

texture of the porous horizon. Thicker micrite horizons commonly contain angular 

to sub-rounded clasts of fine to medium-grained detrital quartz and feldspar grains, 

plus the occasional detached piece of substrate from the porous horizons. 
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Figure 3.7: Field photographs of travertine facies.   

(A) Image of an altered section of Entrada Sandston e host rock (orange) compared to its 
unaltered appearance (red). (B) Further alteration leads to a poikilotopic texture, as the 
amount of carbonate cement increases a further colo ur alteration from orange to dull white 
occurs. (C) As carbonate crystals increase in size they start to give a joined up appearance 
that encloses entire faces of outcrops. (D) Initial  surface stage of travertine formation, 
cemented breccia, which consists of angular pieces of surface colluvium entrained within 
carbonate cement. (E) Example of fossilised layered  mat facies. The rim pool structures that 
can be seen in modern examples are often well worn in ancient deposits. (F) Rare example 
of pristine preservation of ancient layered mat fac ies. Images (A-C) taken from mound S39, 
(D-E) from mound L4 and (F) from mound S16. For loc ation of these mounds see Figure 
3.12. 
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Shrub fabrics were first described by Kitano (1963) and have been 

subsequently documented in many other studies (Chafetz and Folk, 1984; Guo 

and Riding, 1994; Ford and Pedley, 1996; Fouke et al., 2000). Chafetz and Guidry 

(1999) distinguish three varieties of shrub: bacterial, crystal and ray crystal. The 

former is solely due to biotic process while the later were thought to be formed by 

a combination of bacterial and abiotic processes. Dockrill (2006) found that shrub 

fabric of the travertine from these field sites was petrologically similar to the spar-

rhomb and micritic components of Guo and Riding (1994), who attributed biotic 

and abiotic precipitation for the formation of this texture. These interpretations 

suggest that the layered mats in the present study precipitate from a combination 

of abiotic and biotic processes. 

Shrubs form preferentially in quiescent shallow pools on travertine slopes 

and are also known to coat grains (Pentecost, 2005b).  A continual supply of 

supersaturated waters is required to replenish the pools and provide the 

environment needed for shrub growth (Chafetz and Folk, 1984), with precipitation 

ceasing once supersaturated waters are evaporated from the pools. Extended 

periods of little or no flow of supersaturated waters allow for deposition of dense 

horizons of micrite on top of the more porous shrub horizons. Clastics within the 

micrite may have been transported by aeolian processes or flooding of the deposit 

from periods of high rainfall or increased discharge of adjacent streams and rivers. 

The switching between deposition of porous shrub and dense micrite horizons 

could potentially be a result of periods of spring and non-spring activity, occasional 

flooding of the deposit by non-spring waters, or a combination of both. 

In the majority of ancient deposits across both field sites the layered mats 

unit is poorly preserved, whilst in several mounds found along the northern fault of 

the Salt Wash graben it is completely absent. These potentially incomplete 

mounds consist of bodies of altered host rock and veining, but as they don’t 

contain all or most of the travertine facies, especially the layered mats, outlined in 

this section they could potentially be the result of some other fluid flow process 

that is unrelated to leakage along the fault. This poses a problem for confirmation 

of these mounds as travertine for use in the study of the fluid flow history of this 

fault, and is discussed in further detail in section 3.5.4.  
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Ancient layered mats that are present generally consist of a thin, weathered 

crust in which demonstrates poorly defined features. Some examples, however, 

have beautifully preserved features that look very similar to the pool-and-rim 

geometries of microterraces on active travertine deposits (Figure 3.7E-F). As the 

rims of the ponds within microterraces form horizontally, regardless of the slope of 

the surface they form on, they can be used to deduce if ancient layered mats are 

have remained insitu since the mound ceased activity. 

3.4.6.5 White banded veins 

A series of dense aragonite veins that are composed of bands of white 

crystals cut through the layered mats, cemented breccia and altered host rock 

facies. These white banded veins mainly range in thickness from 5cm to 50 cm, 

though main veins within mounds may reach up to 2.5 m. Banding within each 

vein is up to ~30 mm thick and is composed of acicular to columnar crystals that 

are orientated perpendicular to the depositional surface and increase in size with 

direction of growth (Figure 3.10A). Within each band the crystals radiate out in a 

fan pattern (Figure 3.10B) to form a mammilated surface (Figure 3.10C). Thin 

 

Figure 3.8: EBSD image of layered mat facies.  

Radiating shrub like growth is shown by the white a rrows. Knobbly and rounded shrub 
textures are regularly coated by a layer of elongat ed micritic crystals (yellow arrows). 
Denser micrite horizons often contain angular to su b-rounded clasts which have been 
transported in from the surrounding country rock an d have become engulfed in the layered 
mat structure (white box). 



Chapter 3  The LGW and northern SWG faults 

March 2010  Neil M. Burnside 98 

laminations, ranging in colour from orange to dark brown, can be found parallel to 

the growth surface in most veins. 

Sub-horizontal veins are thicker, more common and tend to exploit bedding 

surfaces within other facies, though some crosscut horizons (Figure 3.9A). Vertical 

veins are usually thinner and line fractures walls or minor faults, and mostly 

terminate at the base of thicker horizontal veins. Thick vertical veins do exist at the 

base of some mounds, though they become sub-horizontal at shallower levels. 

Veins often have a paired symmetrical appearance (Figure 3.9E) that is 

occasionally separated by a central cavity which can be tens of centimetres wide 

and contain sub-vertical speleothems up to 10cm in length. In some instances, an 

outer layer of white-banded vein material has precipitated over the speleothems. 

This suggests alternating intervals of growth within flooded and drained fractures, 

perhaps due to periods of waning flow. Cavities within mounds would have been 

ideal for fluid flow and so are likely to represent the main conduits through which 

CO2 charged water migrated to the surface. 

Sub-surface vein deposits have not been described in previous travertine 

studies; however, deposits demonstrating a similar morphology have been 

documented as surficial features formed by rapid loss of CO2 in areas of extremely 

agitated waters (Folk et al., 1985; Guo and Riding, 1994). Similar findings are 

reported by Uysal et al. (2007) who describe substantial δ13C enrichment within 

samples of detritus free fracture-filling vein travertine which most likely represents 

isotope fractionation during rapid CO2 degassing. It is therefore probable that rapid 

degassing of CO2 from highly agitated subsurface waters is the mechanism for the 

precipitation of the banded veins within the travertine mounds of the Little Grand 

Wash and northern Salt Wash graben faults. 

3.4.6.6 Brown banded veins 

All of the units previously described are crosscut by sub-vertical brown 

banded veins that often display dendritic terminations (Figure 3.9F). These veins 

are similar to white banded veins in that each band consists of radial fans formed 

from acicular crystals; however, they differ in colour as they are constructed from 

alternating brown, orange, and white bands up to 3cm in thickness.  
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Microscopic comparisons of white and brown banded veins, carried out by 

Dockrill (2006), revealed fine-scale differences between the two lithofacies. Brown 

banded veins were found to possess significantly thinner bands and a much higher 

proportion of iron-rich laminations, which were found to terminate underlying 

crystal growth and promote precipitation of finer-grained crystals on top of the 

lamination (Figure 3.10D). Iron can inhibit carbonate growth when it is adsorbed 

onto crystal surfaces as it blocks nucleation and growth sites (Meyer, 1984; 

Gutjhar et al., 1996).  

The higher proportion of iron-rich laminations in the brown-banded veins 

could indicate a change in precipitation conditions to that of the white banded 

veins. It is probable that continual recharge of CO2-charged groundwater leads to 

the precipitation of aragonite. If this recharge wanes or stops altogether 

incompatible elements precipitate out of the waters to form the iron oxide in the 

laminations. Such fluctuations in recharge would imply episodic fluid-flow 

conditions and therefore a period of alternating spring and non-spring activity. 

Sporadic channelling of supersaturated waters through the travertine mound may 

be a precursor to the changing of the fluid migration pathway at depth. If this is the 

case, then the brown banded veins likely represent the terminal stages of 

travertine precipitation. 
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Figure 3.9: Field photographs of banded vein facies .  

The images are all taken from the Little Grand Wash  field site, for location of deposits see 
Figure 3.12. (A) View of veins destroying the soft fabric of the clay rich Brushy Basin 
Member in the hanging wall of the Little Grand Wash  fault beneath mound L8. (B) Image of 
horizontally orientated main vein and subsidiary ve in within layered mat facies of mound L6. 
(C) The main white banded vein of travertine mound L4. (D) Finer scaled white banded vein 
within mound L4 exploiting a weak horizon within th e layered mat facies. (E) Transitional 
stage between cemented breccia and layered mats whi ch consists interlayered examples of 
each facies. Also present in this section within th e cemented breccia is a white banded vein. 
(F) Vertically orientated brown banded vein display ing dendritic termination from mound L4. 
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Figure 3.10: Photomicrographs of banded vein morpho logies. 

Images A, B and D from Dockrill (2006), image C cou rtesy of Zoe Shipton. (A) Image of white 
banded vein showing multiple bands of radiating col umnar to acicular aragonite crystals. 
(B) Increased magnification of a single aragonitic band that demonstrates the radial fan 
pattern formed by aragonite crystals. (C) Layers of  white banded veins in the field 
demonstrating a mammilated surface texture. (D) Bro wn banded vein with yellow arrows 
highlighting the dark coloured iron rich lamination s that terminate the growth of aragonitic 
crystals. 
 
3.4.7 Conceptual model of travertine mound evolutio n 

Illustrated in Figure 3.11 and documented below is a reappraisal of the 

facies model of Dockrill (2006) based on new field interpretations. The model 

provides a mode of formation for the travertine deposits by describing their 

physical and geochemical evolution as well as the interaction between the five 

distinct lithofacies that have been detailed in the previous subsections. 

1. Supersaturated carbonate-rich waters migrate to the surface via a fault-

related fracture network and initiate a cold-water spring. The carbonate-rich 

waters emerge from the spring vent and flow into the surrounding colluvium, 

progressively infilling pore spaces within surface sediments and capturing 

any present angular clasts within carbonate cement to form a breccia. Just 

beneath the surface some of the upward migrating fluid diffusely flows into 

the outcropping sandstones, infilling open pore spaces with carbonate 
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cement. This process alters the colouration of host rocks from buffs and 

browns to orange (Figure 3.11A). 

2. As the carbonate cemented breccia develops around the spring vent, it 

forms a relatively impermeable horizon enabling the waters to flow across 

the surface and precipitate layered carbonate mats by abiotic and biotic 

processes (Figure 3.11B). The layered mats gradually extend from the 

spring vent, limited by the development of the underlying breccia, to form a 

surficial terraced deposit with hemispherical ponds. Contemporaneously, 

highly agitated waters migrate through conduits to the spring vent and 

penetrate weak horizontal bedding horizons within the host sandstone. 

Bands of white aragonite veins are precipitated within the altered host rock. 

Each set of bands grows parallel to the surface of deposition, increasing in 

crystal grain size to produce a white banded vein morphology. 

3. Continued precipitation of carbonates in the distal colluvium and proximal 

mound expand and thicken the travertine mound (Figure 3.11C). Rapidly 

flowing waters start to penetrate sub-horizontal bedding contacts and sub-

vertical fractures within the layered mats and breccia, producing bands of 

radiating aragonite crystals within these facies. 

4. In the later stages of activity for the spring system, the supply of carbonate-

rich waters to the spring becomes episodic, leading to unstable and 

alternating environmental conditions reflecting periods of spring and non-

spring activity. The drop in kinetic energy of vertical fluid flow allows the 

precipitation of white banded veins on conduit walls, perpendicular to the 

substrate. These variable conditions also result in the development of a late 

set of brown-banded veins characterised by numerous iron-rich laminations 

interspersed between thinner bands of radial aragonite crystals (Figure 

3.11D). 

5. Eventually, the spring system dries up and the travertine deposit becomes 

inactive. Subsequent erosion can remove the deposit, though in the study 

area they have tended to provide a resistant cap to form a series of buttes 

that display cross-sectional exposures of the internal and external 

components of ancient deposits. 
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Figure 3.11: Conceptual model of travertine mound e volution. 

Figure modified from Dockrill (2006). (A) CO 2 charged waters migrate up through damage zone (DZ)  within the footwall of the fault, reach the surfac e 
and initiate a spring. Emanating spring waters perc olate through the colluvium surrounding the point o f discharge and precipitate carbonate cement 
to produce a breccia (BR), whilst defuse flow of wa ter into the host sandstone creating carbonate ceme nt and altering the host rock (AHR). (B) Lateral 
expansion of the cemented breccia results in a rela tively impermeable surface which provides a platfor m for the formation of layered mats (LM) which 
produce a series of terraces as the mound grows. Wh ite-banded veins (WBV) are precipitated by agitated  waters that exploit layering within the host 
rock. (C) Layered mats continue to spread as far as  the underlying altered host rock will allow and th icken resulting in further growth of the white-
banded veins, which start to penetrate bedding hori zons within the layered mats of the mound. (D) Duri ng the later stages of growth of the mound 
supply of CO 2-rich water to the discharge point becomes more epi sodic. This results in the precipitation brown band ed veins (BBV), which crosscut 
the earlier developed lithofacies. Eventually the s pring becomes inactive, and deposition ceases, allo wing erosion of the travertine mound to begin. 
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3.5 Observations from the field 

3.5.1 Introduction 

The following section focuses on field work carried out in order to 

characterise travertine morphology and spatial occurrence of mounds along both 

faults. Travertine deposits, both modern and relict, from both the Little Grand 

Wash and Salt Wash graben are examined in detail. This characterisation of 

travertine morphology allows for a close and definite correlation between layered 

mat and white banded vein facies. This proof of association is important as several 

mounds within the Salt Wash graben are badly weathered and consist of only 

white banded vein and altered host rock lithofacies (3.5.2). 

3.5.2 Travertine deposits 

A total of fifty-six modern and ancient deposits are present in the two field 

areas (Table 3.2). Each travertine mound was given a unique identifier as shown 

in Figure 3.12. In the Little Grand Wash one actively precipitating travertine 

mound, supplied by the Crystal Geyser, and seven ancient deposits occur along a 

~3km stretch of the fault (Figure 3.12A). The majority of travertine deposits are on 

the east bank of the Green River. One small remnant (L2.1- Figure 3.12a) on the 

western shore of the Green River suggests that there may potentially be further 

travertine deposits buried underneath the thick stack of river gravels on the inside 

of the west sweeping meander bend (Figure 3.4). All travertine occurrence is 

restricted to the eastern limb of the Green River anticline (which may be due to the 

gravels), unlike the Salt Wash graben where travertine are equally distributed to 

either side of the anticlinal axis. Along the northern fault of the Salt Wash graben 

41 fossil travertine mounds and 6 actively precipitating springs are present (Figure 

3.12B). The deposits in this area cover a greater extent of the fault, ~6km along 

strike, and tend to be smaller and more prone to erosion suggesting they are of a 

more fragile nature than travertine on the Little Grand Wash. 
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Table 3.2: Breakdown of ancient travertine mounds. 

Table includes deposits from both the Little Grand Wash fault (LGW) and the northern fault 
of the Salt Wash graben (SWG). NE equals no exposur e of lithology in the field area. 
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Figure 3.12: The Little Grand Wash and Salt Wash gr aben field sites. 

Maps are based on the geological maps of Dockrill ( 2006). Only the location of travertine 
mounds, the surface traces of the respective faults  and the location of the Green River 
anticline are shown. The key shows the colour coded  breakdown of the facies present in 
each mound and also an explanation to the travertin e numbering. For a breakdown of the 
number of travertine that fall into each category s ee Table 3.2. The inset on the Salt Wash 
graben map (figure B) shows the two field sites hig hlighted by dashed boxes. In the Salt 
Wash area the three main locations of active traver tine precipitation are shown by mounds 
S42, S43 and S44 (The Three Sisters); S45 and S46 ( Ten Mile); and S47 (Torrey’s). For GPS 
coordinates of each travertine deposit see Appendix  D. 
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Figure 3.13: The Crystal Geyser (mound L1). 

(A) View of the extent of the modern travertine dep osit from the top of the Salt Wash bluff 
looking west. (B) Picture, looking north, showing t he outward progression of terrace lobe 
growth from the geyser towards the Green River. Not e the multiple hemispherical ponds 
each complete with pool and raised rim. (C) Close u p of a large hemispherical pool showing 
the presence of bacterially formed pisoids up to 4 mm in diameter. (D) Lobe downstream of 
the geyser submerged by runoff of freshly erupted g eyser waters. Note that in both (C) and 
(D) show horizontally orientated hemispherical rims  growing on the steeply sloping edge of 
a microterrace. (E) Runoff along one of the main fl ow paths of erupted waters- the green 
pools indicate the presence of green algae. (F) The  side vent of the Crystal Geyser situated 
to the north east of the main leakage point.  These  springs bubble periodically throughout 
the eruption cycle of the main vent suggesting that  they are closely associated. 
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3.5.3 Actively precipitating travertine 

Travertine is being presently formed in several locations in the two field 

sites. All active travertine precipitation is occurring at the lowest elevation, or base 

level, of local topography.  In the Little Grand Wash there is currently only one 

actively forming deposit, known as the Crystal Geyser (L1, Figure 3.12A), situated 

on the east bank of the Green River in the immediate footwall of the Little Grand 

Wash fault (Figure 3.13). The waters here erupt from an abandoned exploration 

hydrocarbon well, Glen Ruby #1-X, drilled in 1935 to the base of the Triassic 

section (TD 801 m) (McKnight, 1940). This site was probably chosen for drilling 

due to its close proximity to the structural high formed by the 3-way trap and the 

presence of ancient travertine deposit hinting at past leakage. The geyser is 

powered by CO2 charged waters that erupt cold water (up to 18°C) to heights of 10 

m over intervals of 4 to 12 hours (Shipton et al., 2005). Drilling records for the well 

document the thickness of this pre-existing travertine as 21.5 m (Baer and Rigby, 

1978). Given that the surrounding landscape is being actively eroded that would 

imply that precipitation of this mound originally occurred in a deep depression in 

the landscape. Considering that this mound is proximal to the Green River its initial 

inception would have to have been below the base level of the river, which is 

highly unlikely. The 21.5 m recorded in the Glen Ruby # 1-X well therefore is more 

likely to represent the depth of veins and carbonate cemented altered host rock 

within the Curtis sandstone beneath the mound.  

Eruptions from this geyser have resulted in the development of a large 

ochre-coloured terrace deposit that is ~70 m wide by 80 m long and ~3 m thick. 

During geysering events water covers most of the western flank of the mound and 

eventually drains into the Green River via a series of channels that connect the 

upper surfaces of down-stepping terrace lobes. Three other springs within 10 m of 

the geyser effuse periodically throughout geyser eruption and so are closely linked 

to the plumbing of the geyser. The pools could represent the location of pre-well 

CO2 charged springs or could be due to the escape of CO2 charged waters from 

the abandoned pipeline at shallow levels (Shipton et al., 2005). Along the trace of 

the fault in the Green River bubbles highlight intermittent CO2 leakage from the 

river bed. 
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The Salt Wash graben currently hosts six active sites of orange coloured 

travertine precipitation. These have been reported to be the result of a mix of 

natural and drilling induced emergence of saturated waters (Shipton et al., 2004). 

Only one deposit, the Ten Mile Geyser (S45, figure 10B), has evidence of being 

man-made as it has well casing around its orifice (Figure 3.14E), however no 

drilling records exist for this location. Torrey’s Spring is possibly the result of the 

exploratory Delany Petroleum Corporation Well #1 drilled in 1949 (Dockrill, 2006). 

Many of the other deposits have a natural appearance (Figure 3.14) but the small 

size of the travertine deposits, which suggests a recent onset of precipitation, 

coupled with the poor exploration records in this area means that a drilling origin 

can not be ruled out for any of the modern deposits. All sites are formed by CO2 

charged cold water (~15 to 16°C) and are situated i n the footwall bar the Ten Mile 

Geyser (S45, figure 10B), which is situated around 200 m into the hanging wall. 

The geochemistry of its waters suggests that it penetrates the fault at depth and 

taps into ground water from the footwall side (Heath et al., 2004). 

Active travertine mounds along the northern fault of the Salt Wash graben 

are generally low, thin and poorly developed in comparison to the Crystal Geyser 

deposit. Thin salt crusts are common around drier sections of the actively 

precipitating travertine. The mounds are restricted to three main locations along 

the northern fault of the Salt Wash graben- Three Sisters, Ten Mile and Torrey’s 

(Figure 3.12B). The Three Sisters to the west of the field area consists of the Big 

Bubbling spring (S44) and the northern (S42) and southern (S43) Small Bubbling 

springs (Figure 3.14A-C).  Central to the field area, Ten Mile hosts the Ten Mile 

Geyser (which erupts up to a height of ~1.5 m) within the hanging wall of the fault 

and Ten Mile Spring (S46, Figure 3.12B) which is located due north of the geyser 

100 m into the footwall of the fault. Torrey’s spring (Figure 3.14D) is situated ~350 

m into the footwall of the fault and ~2,200 m to the east of the anticline (S47, 

Figure 3.12B). 
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Figure 3.14: Active springs of the Salt Wash graben .  

(A) The main pool of the Big Bubbling spring (mound  S44) showing the encroachment of 
light grey salt deposits. (B) Close-up of the edge of the Big Bubbling spring showing the 
presence of both green and red algae in its waters.  (C) Southern Small Bubbling spring 
(mound S43) shown during geyser-style eruption of w aters. (D) Picture taken, looking east, 
from above Torrey’s spring (mound S47) showing exte nt and circular character of this 
spring. (E) Pool of water and well casing around Te n Mile Geyser (mound S46), this is the 
only travertine deposit located with in the hanging  wall of either fault. (F) Image of pool 
supplied by the Ten Mile spring (mound S45) showing  the formation of layered mats in the 
surface waters of the pool. These formations start as small thin crusts and eventually grow 
to form large plates up to 10 cm thick and a meter in diameter. Once they reach this they 
become dense enough to sink to the bottom of the po ol.  

 



Chapter 3  The LGW and northern SWG faults 

March 2010  Neil M. Burnside 111 

3.5.4 Ancient travertine deposits 

3.5.4.1 Ancient travertine occurrence and preservat ion 

Fossil travertine is usually easily distinguishable in the field as the solid 

carbonate provides a good barrier to erosion and caps high buttes and terraces of 

local host sandstone that sit proud of the general landscape (Figure 3.15 and 

Figure 3.16). Along the Little Grand Wash fault mounds form in the immediate 

footwall, where the Summerville and Curtis Formation sandstones are exposed at 

the surface, and drape over the fault into the hanging wall. Travertine deposits that 

occur along the northern fault of the Salt Wash graben are predominantly confined 

to the footwall rocks of the Curtis Formation and Entrada Sandstone, occasionally 

draping into the adjacent graben. Of the forty-one ancient mounds on the Salt 

Wash, only twenty-three have clear evidence of layered mat facies (Table 3.2), 

with most of these comprising of thin poorly-developed deposits ranging from 0.3 

to 1.2 m thick. The remaining eighteen are distinguished from the surrounding 

landscape by the presence of white banded vein and significantly altered host 

rock. These mounds are confirmed as travertine by the close association of 

layered mats and white banded veins in better preserved mounds (Section 

3.5.4.2). All seven fossil travertine deposits on the Little Grand Wash fault display 

evidence of both layered mat and white banded vein facies (Figure 3.15). Mounds 

in this area tend to be better developed and thicker, ranging from 0.5 to 6 m, than 

those on the Salt Wash graben, so are therefore more robust and resistant to the 

effect of erosion (Figure 3.15 and Figure 3.16). 

Travertine deposits on the Little Grand Wash fault are all closely associated 

with the surface expression of the fault (Figure 3.12A). The location of the mounds 

in this field site appears to be restricted to fault bends and relay zones which have 

greater fracture intensity in comparison to structurally simpler sections of the fault 

(Dockrill and Shipton, 2010). This may suggest that the damage zone of the Little 

Grand Wash fault is creating zones of increased permeability around areas of 

increased structural complexity for fluid flow to exploit (section 5.3.1.3). Mounds in 

the Salt Wash graben are more numerous and not restricted to the surface trace of 

fault, with some occurring a significant distance into the footwall (Figure 3.12B). 

The more diffuse nature of flow is likely to be due to the highly porous nature of 

the Entrada Sandstone (Table 3.1; Hood and Patterson, 1984) which is the 
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surface lithology in the immediate footwall of the fault. This may be a key factor in 

the greater spread of travertine in this area and could be one cause of the Salt 

Wash travertine being smaller and more fragile than their Little Grand Wash 

contemporaries. Travertine that occur away from the fault, up to 530 m into the 

footwall, appear to be related to the trace of the Green River anticline. Structural 

flexure along the axis of the anticline is ruled out as a cause of this association as 

the anticline has a gentle inter-limb angle of ~172˚. Leakage through exposed 

aquifer or bedding surfaces that lead away from the fault is a more likely scenario 

(section 5.3.1.2). 

3.5.4.2 Association of layered mat and white banded  vein facies 

Layered mats are found associated with all travertine deposits on the Little 

Grand Wash fault. One of the problems encountered in the Salt Wash graben field 

is the presence of veining and altered host rock without clear evidence of layered 

mat facies in nearly half of the present mounds (Table 3.2). To interpret these 

mounds as travertine, which is important for later discussion, the white banded 

vein present in complete mounds must be demonstrated to be associated with the 

layered mat facies. 

 

 

 

 

Figure 3.15: Ancient travertine mounds on the Littl e Grand Wash fault. 

(A) Panoramic photograph, looking north, of the wes tern end of the Little Grand Wash field 
area showing mounds L1 to L4. Note the difference i n elevation of the deposits with the 
younger mounds becoming successfully lower, with ag e increasing from L1 (~0ka), L2 
(~5ka), L3 (~50ka) and finally L4 (~114ka). (B) Ima ge taken from the west bank of the Green 
River looking east. Note the ochre colour of the ac tively precipitating Crystal Geyser in 
comparison to the dull brown colour of the ancient mound L2. Parts of the Crystal geyser 
travertine have been altered from ochre to light gr ey by submersion under the waters of the 
Green River during periods of high flow. An island of vein debris in the middle of the river 
adds further evidence to the association of L2.1 an d L2.2. (C) Well developed mounds L5 
and L6 (looking east) which demonstrate all travert ine facies and are 0.6 and 5 m thick 
respectively. (D) Picture of mound L8, again lookin g east, with extent of layered mats, which 
are 2.5 m thick, highlighted in yellow. 



Chapter 3  The LGW and northern SWG faults 

March 2010  Neil M. Burnside 113 

 



Chapter 3  The LGW and northern SWG faults 

March 2010  Neil M. Burnside 114 

 
 

 

Figure 3.16: Ancient travertine along the northern fault of the Salt Wash graben.  

(A) Picture of mound S5, the oldest deposit in the area. This mound is situated on the bluff 
between the Salt Wash and Big Bubbling tributaries.  It stands proud of the flat bluff surface, 
and like several of the deposits in the area consis ts of only altered host rock and white 
banded veins. (B) Northern side of travertine depos it S2. Here veining can be clearly seen 
running horizontally within the altered host rock b eneath the layer mat unit, which is 1 m 
thick. (C) Image looking south of the very thin and  poorly developed mound S14 in the 
foreground and the prominent S11 in the background.  Note the difference in height of the 
older S11 mound (~93ka) above younger S14 mound (~3 4ka). (D) Small and poorly 
developed 0.4 m thick S13 mound looking east. (E) M ound S10, looking east, this mound 
lacks layered mats and is composed of only white ba nded veins and well altered host rock 
(in this case Entrada Sandstone). (F) Image of moun d S11 looking east. Despite its large 
number of horizontally orientated veins running thr ough the host rock up to 9 m below the 
travertine, its layered mats are only 1 m thick.    
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In the field several pieces of evidence point to a clear association of layered 

mats and white banded vein. In the mounds with both facies present the white 

banded veins are present throughout the layered mats and also the host rock 

underlying the travertine (Figure 3.9, Figure 3.15, Figure 3.16; section 3.4.7). 

Numerous mounds across both field areas have carbonate cemented river gravels 

beneath them (section 4.5). These gravels mainly consist of well rounded clasts of 

the local country rocks and in several examples clasts of layered mats and white 

banded vein are also present (Figure 3.17). In two locations on the Salt Wash 

graben layered mats and white banded vein can be found in close proximity in the 

same gravel. The gravels preserved within mounds in the Salt Wash graben are 

fossilised river terraces of minor tributaries, the Salt Wash and Big Bubbling 

streams, which drain into the Green River to the west. The small pebbles 

entrained within these gravels suggest that the tributaries are low energy and have 

a low carrying capacity (section 5.2.1.2). Since it is likely that the clasts of layered 

mat and white banded vein have not been transported far it makes it likely that 

those found in close proximity originate from the same mound. 

Further evidence is provided by one key locality on the northern fault of the 

Salt Wash graben. Sample location S21 is like several of the mounds in the Salt 

Wash graben in that it consists of a butte of altered host rock complete with white 

banded veins. Unlike the other altered host rock buttes in the area S21 has a large 

block of layered mat facies 1.5 m thick situated half way down its southern scree 

slope roughly 5 m from the main mound. The block contains two episodes of 

layered mat growth, which have different dip angles in their layering, and has a 

layer of river gravel at its base (Figure 3.17F). The layering of both episodes of 

layered mat growth is sub-vertical which gives this block a tilted appearance; it is 

also surrounded by scree derived from the main part of the mound which all 

suggests that this block has slid down the scree slope from the main part of the 

mound. However, the hemispherical pool texture has not been well preserved on 

the surface of the layered mats and as this facies (section 3.4.6.4; Figure 3.13) 

can form on slopes it is hard to conclusively determine its original orientation so an 

insitu deposit can not ruled out. 
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Figure 3.17: Evidence for association of layered ma ts and white banded veins.  

In the images of gravel with clasts of both facies white banded vein and layered mat 
segments are indicated by yellow and black arrow re spectively. (A - E) Evidence of facies in 
gravels from mounds S31, S17, L4, S29, and S6. Note  that mound S29 depicted in (D) is 
devoid of insitu layered mats so the evidence of th is facies within gravel associated with 
this mound suggests the former presence of layered mats on this mound. (F) Image of 
detached block from mound S21. Note the two separat e episodes of growth which are 
demonstrated by the two separate dip angles of the layered mat ‘sections’. 
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4 Results of U-series analysis of travertine 

deposits 

4.1 Introduction 

Radiometric age analysis of travertine mounds has allowed the timing of 

CO2 leakage to the surface along both Little Grand Wash and northern Salt Wash 

graben faults to be characterised. A total of forty-five samples from both field areas 

were analysed by U-series dating (Section 1.6) giving a unique data set for 

investigation of fault related fluid flow later in Chapter 5. Specific problems with U-

series dating of travertine are presented in section 4.2. Here the source of uranium 

present within travertine is considered and the suitability of each travertine facies 

for U-Th age determination is examined. Section 4.3 discusses in detail the 

radiometric results with respect to several facets of interest, including; (1) repeat 

analyses of samples from three separate locations of distinct age in order to check 

the reproducibility of the analysis; (2) multiple analyses from a single mound in 

order to determine its lifespan and precipitation rates; (3) dating of separate 

remnants suspected to comprise the same mound in order to confirm field 

interpretation; (4) age analysis of layered mat samples in order to determine their 

suitability for dating and confirm if they are clearly associated with the white 

banded veins present in the travertine mounds. Spatial variation in 0δ
234U of 

samples, and potential cause of this variation, is discussed in section 4.4. The 

work carried out within this section provides clues to the potential near-surface 

fluid flow pathways utilised by the CO2 charged water creating the travertine. 

The travertine U-Th age results allow determination of accurate incision 

rates in each area; these are presented in section 4.5. Whilst giving the first 

quantitatively determined incision rates for both sites, this information also permits 

the calculation of robust estimations of the age of undated mounds along the 

northern fault of the Salt Wash graben. These ages are used in Chapter 5 to 

discuss the implications for fluid flow highlighted by the U-series results. In section 

4.6 volume estimates of the travertine mounds are presented. This allows for a 

comparison of travertine deposits, both for individual mounds and total travertine 

volume, between the two field sites. The results of this section are the basis for 

calculation of volumes and rates of CO2 leakage to the surface along the Little 
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Grand Wash and northern Salt Wash graben faults, which are presented in 

Chapter 6. The lifespan of each individual mound is also estimated, by combining 

volume measurements with the minimum lifespan of mound L4 (subsection 4.3.3), 

which allows for further comparison between the field sites. 

The overall results of the above sections are discussed in section 4.7, 

which also goes into detail on what these results mean for the timing of flow to the 

surface. Finally, the conclusions of this chapter are presented in section 4.8.  

4.2 U-series analysis of travertine deposits 

4.2.1 Uranium incorporation into travertine mounds 

Uranium is readily transported in ground water mainly as carbonate 

complexes, whilst thorium hydrolyses readily and precipitates or absorbs on to the 

matrix material through which the ground water passes (section 1.7.6). Uranium 

complexes are formed in waters that have passed through aquifers that are 

capable of contributing Ca2+, CO3
2-, and SO4

2- ions, and which are saturated or 

supersaturated with respect to calcite, aragonite and/or dolomite (Gascoyne and 

Schwarcz, 1982). This mainly occurs in areas where the bedrock is a carbonate 

and ground or surface waters have had extensive opportunity to react with the 

rock. The dissolved load is controlled by factors such as the temperature, the 

amount of CO2 available for dissolution in the water, the presence of other ions 

which can form stable complexes with calcium and the rate at which water moves 

through the aquifer (Gascoyne and Schwarcz, 1982).  

Surficial spring deposits may be composed of either calcite or aragonite 

(depending on the molar concentration of Mg2+ or SO4
2-, section 3.4.4). Both 

varieties of calcium carbonate are useable for age determination as all calcium 

carbonate polymorphs behave similarly with respect to U-series dating (Bischoff 

and Fyfe, 1968). 

4.2.2 Travertine morphologies useful for dating 

Travertine mound morphology must be examined in order to determine 

which travertine facies are suitable for U-Th dating. According to the model of 

travertine evolution devised by Dockrill (2006), and re-evaluated in section 3.4.7, 
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mounds are composed of five prominent travertine lithofacies: (1) altered host 

rock; (2) cemented breccia; (3) layered mats; (4) white banded veins; and (5) 

brown banded veins. Samples for age determination are selected primarily based 

on the criteria for U-series analysis outlined in section 1.7.6: they must represent 

the geological system to be dated, be free of final daughter product during initial 

formation, and have been a closed system with respect to migration of parent and 

daughter nuclides since formation. 

 

Figure 4.1: EBSD images of layered mats from mound L1.  

(A) Shows the shrub like texture of layered mats wi th micritic calcite crystals radiating 
outward. Several darker coloured grains, blown in f rom the surrounding environment, are 
also present. The white dashed box highlights an ex ample of carbonate overgrowth 
incorporating these grains into the structure of th is layered mat sample. (B) An image of 
three times increased magnification showing the pre sence of quartz (grey arrows) and 
feldspar (white arrow), which carry non radiogenic thorium, within the layered mat. 

 

Carbonate cemented breccia, formed by initial leakage of CO2 rich fluid to 

the surface, consists of a such a fine grained clast supported matrix that it is 

impossible to separate the intergranular carbonate cement from the clasts, which 

will contain significant detrital 230Th. Layered mats can prove to be extremely 

impure. They are generally very porous and permeable because they have been 

deposited on a mat of vegetation which later decays away, leaving an open 

framework of casts and moulds (Gascoyne and Schwarcz, 1982). Due to their 

deposition in an open air environment this facies is prone to detrital contamination 

by wind, streams, and colluvial transport (Figure 4.1). The extent of this 

contamination can vary, but since the allogenic material is likely close to secular 

equilibrium (with respect to [234U/238U]) it can be assumed that it carries a 

significant amount of non-radiogenic 230Th (section 1.8.3.2). The open, porous 
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structure and association with algal and cyanobacteria mats can also facilitate 

sediment trapping. Secondary overgrowths of calcite may occur as calcite-

saturated waters continue to percolate through the older travertine deposits, 

leading to a gradual infill of pore spaces (Gascoyne and Schwarcz, 1982). Another 

consequence of this relatively open structure is that radionuclides in the U-series 

may be added or subtracted by water percolating through the rock (Mallick and 

Frank, 2002). 

These components of travertine mound construction are not present in all 

deposits in the field. Only the most developed mounds that have been eroded to 

produce to create a clear cross section, such as L4 (section 4.3.3), tend to display 

the initial breccia stage. Layered mats are more common but are missing from 

numerous travertine deposits, which have been eroded, along the northern fault of 

the Salt Wash graben (section 3.5.4). 

Brown banded veins represent the latest stage of travertine evolution and 

consist of thinner bands of aragonite crystals which have been retarded in their 

growth by numerous iron-rich laminations. This facies is rare across the field areas 

and the fine layering tends to be quite incohesive with individual crystals easily 

separating on removal. The fine scale gaps in the boundary between crystals may 

allow for percolation of meteoric water through the vein especially after 

exhumation. During their formation episodic fluid flow conditions also created an 

unstable and alternating environment (Dockrill, 2006). Coupled with the scarcity of 

brown banded veins these two factors are likely to lead to an open system with 

respect to migration of nuclides considering the variation in conditions they 

suggest since the time of precipitation. 

White banded veins are common in the field, being present in all ancient 

travertine deposits. Due to their dense nature, and their formation in fractures and 

faults (i.e. sub-surface deposition) white banded veins tend to form detritus-free 

calcium carbonates making samples from this facies ideal candidate for U-Th 

analysis. This is supported by a study of tectonic movements in Nevada by Szabo 

et al. (1981) who report dating results from over thirty vein samples that yielded 

ages in agreement with 40K/40Ar dating. The fact that this facies consists of pure 

and clean layers of aragonite means that white banded vein meets all the 

requirements required for precise U-series dating. 
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Some mounds only consist of plentiful white banded vein running through 

altered host rock. In order to confirm these outcrops as true travertine deposits a 

close association must be demonstrated between the white banded vein and 

layered mats facies as layered mats conclusively indicate the presence of a fossil 

mound (section 3.5.4.2). Of the forty ancient samples selected for age 

determination thirty-seven were of white banded vein facies. A total of three 

samples from the Little Grand Wash fault consisted of fossil layered mat deposits 

in order to check its validity for age determination. This work has important 

implications for locations of travertine accumulation where layered mat facies is 

abundant but white banded vein faces is absent (such as above the proven CO2 

reservoir at St.Johns, Arizona). 

 

 

 

Figure 4.2: Travertine maps of the Little Grand Was h and Salt Wash graben field sites. 

Maps (which are adapted from Dockrill, 2006) show t he location of mounds, the surface 
traces of the respective faults and the location of  the Green River anticline. The travertine is 
colour coded to show the breakdown of facies presen t in each mound. Individual travertine 
deposits have each been assigned a unique sample id entifier which corresponds to the 
samples numbers shown in Table 4.1 and Table 4.2. F or GPS coordinates of mounds see 
Appendix D. 
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Table 4.1: Age results of radiometric dating of tra vertine samples from the Little Grand Wash fault. 

Location of mound deposits can be seen in Figure 4. 2. Facies acronyms stand for layered mat (LM) and w hite banded vein (WBV), with LM* 
signifying samples precipitated from modern waters in the lab. ‘+’ Indicates repeat analysis of a sing le sample. 
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Table 4.2: Age results of radiometric dating of tra vertine samples from the northern fault of the Salt  Wash graben.  

All analysed samples are of white banded vein facie s bar sample S45 which was a layered mat sample pre cipitated from modern Ten Mile Geyser 
waters in the lab. For location of mound deposits s ee Figure 4.2. 
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4.3 Discussion of U-series age results 

4.3.1 Introduction 

A total of forty-five U-series analyses were carried out on samples from 

both field areas. Results of analyses are shown in Table 4.1 and Table 4.2. The 

Little Grand Wash fault, with seven distinct ancient travertine mounds and one 

active deposit, was covered by high resolution sampling. Of the twenty-two 

analyses from this site four were carried out on layered mat facies, three on 

modern precipitates from water samples, and fifteen analyses on white banded 

vein samples from eight distinct mounds (Table 4.1). To assess the reproducibility 

of travertine ages three samples from this area were used for repeat analysis 

(Table 4.3). Along the northern fault of the Salt Wash graben forty-one fossil 

travertine mounds and six actively precipitating springs are present (Section 

3.5.2). Twenty-three samples were analysed from the northern fault of the Salt 

Wash graben (Table 4.2). These comprised one water sample from Ten Mile 

geyser and the rest from individual ancient mounds in order to gain the best spatial 

resolution possible for the northern fault of the Salt Wash graben. 

4.3.2 Reproducibility 

Repeat measurements were carried out on three samples from mounds of 

distinct age (L2, L6, and L8; Table 4.3) to test that sample selection procedure and 

subsequent preparation for analysis was sound. Considering the small analytical 

errors on ages the results demonstrated good levels of reproducibility, with repeat 

sample ages within a range of 2.5 to 11% of each other (Table 4.3, Figure 4.5). In 

general small differences in repeat isotopic measurements may reflect natural 

variation in the sample, variation in the measurement process between analyses, 

variation inadvertently caused by the person making the measurement, or a 

combination of these factors (Davis, 2002). New work utilising U-series dating 

suggests that the main factor in obtaining precision for U-Th dates depends on the 

samples and not the mass spectrometry (Thompson, 2010). Natural variation 

within the white banded vein samples is therefore likely to be the main reason for 

the discrepancies between ages. The coral age result reported in Chapter 2 

(section 2.5), which provided a repeat age within analytical error (158.1 ± 2.9 and 

153.7 ± 1.6 ka), was produced from a completely dissolved C.caespitosa coralite 
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sample. In contrast, subsamples of individual white banded veins were cut by rock 

saw (to ~1 g cubes), crushed into a coarse powder, and dissolved in nitric acid for 

dating (section 1.9.2). Repeat specimens came from adjacent saw-cut cubes, care 

was taken to sample from the same lamination. It is possible that these samples 

could have come from a relatively heterogeneous section of the vein, so that the 

difference in ages of adjacent samples reflects real changes in age of the vein 

material. Further detailed dating of a single vein would be necessary to constrain 

the age distribution properly, in particular to confirm if an individual vein lamination 

has a single age. 

During ICP-MS analysis younger samples are more prone to systematic 

sources of error. This is because 230Th becomes a more difficult measurement due 

to the low amount of 230Th within the samples. The low 230Th content makes 

younger samples susceptible to problems with blanks. Any small variation in the 

blank measurement, which is not corrected for, may cause exaggerated 

discrepancies in the ages of younger samples. This effect is evident as the repeat 

of the youngest sample, L2, produced the worst reproducibility. Older samples are 

less likely to provide good reproducibility as there is an increased chance that the 

U-Th chronometer has been affected (section 1.7.6), again the effects of this can 

be seen when comparing samples from travertines L6 and L8 in Table 4.3.  

 

 

 

Table 4.3: Table of repeat U-series analysis.  

This table shows the repeat analyses of three sampl es of distinct age from the Little Grand 
Wash. The reproducibility of age analysis is shown as a percentage (R%) and represents the 
difference between the two repeats. Reproducibility  including the error envelopes on the 
ages is also included (%R with 2 σ). 
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4.3.3 Detailed study of travertine L4 

Multiple samples were analysed from mound L4 as it is the best preserved 

mound in the field area and demonstrates clear examples of all of the travertine 

facies (subsection 3.5.4.1; Figure 4.3). A total of five separate samples were dated 

from this mound incorporating four white banded vein samples and a single 

layered mat sample (Figure 4.3). The four vein samples came from three separate 

veins within the mound with two of the samples coming from the inner and outer 

edge of the main vein. This was done to gain an understanding of the order of vein 

precipitation and to find out how long it takes for an individual vein to form. The 

two samples from the main vein, LG.03.42AF and LG.03.42AD (B and C on Figure 

4.3) provided ages of 113,912 ± 604 for the outside edge of the vein and 109,614 

± 901 for the inner edge giving a time span for of precipitation of 4,298+604
-901. Due 

to the banded nature of the veins (Figure 3.10) it is likely that vein growth occurs 

stochastically over several deposition events. Using the ages of the inner and 

outer edges of this 2.5 m thick vein therefore gives a time averaged precipitation 

rate of 0.58 mm per year. When errors on the two ages that bracket this vein are 

taken into account the time averaged precipitation rate ranges from between 0.51 

and 0.74 mm per year.  

The other two dated white banded vein samples were taken from thin 

horizontal veins within the transitional zone of the travertine (Figure 4.3). Sample 

LG.03.42AZ, adjacent to the main vein (D on Figure 4.3), gave an age of 103,172 

± 1,486 making it 6,442+901
-1,486 years younger than the main vein. Sample 

LG.03.42AX from the boundary of the layered mats and transitional zone (A and  

Figure 4.3) produced an age of 106,526 ± 175. This demonstrates that veins 

higher in the sequence are not always the youngest and that veining searches out 

areas of weakness in the mound to exploit. Between the oldest and youngest 

samples from this mound an age difference of 10,740+604
-1,486 years is apparent. 

This gives a minimum estimate of the lifespan of the deposit and tells us that 

leakage at a single point on the fault may be active for a minimum of ~11,000 

years.  
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Figure 4.3: Field image and schematic of the L4 tra vertine mound.  

(A) Shows a photograph of this mound taken looking east. (B) Schematic of mound L4 (after 
Dockrill, 2006) showing location of samples used fo r U-series analysis. Inlet shows ages 
complete with error, with A to D representing white  banded vein samples (with B and C being 
from the same vein) and E representing the layered mat sample. Fault is shown in red with 
the footwall on the left hand side and the downthro wn hanging wall to the right.  
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4.3.4 Age analysis to support field observations 

Travertine mounds L2 and L3 both contain two distinct sections which were 

believed to be correlated due to field relationships. The two segments of L2 are 

located at the same elevation either side of the Green River. In the middle of the 

river a small pile of white banded vein chunks is visible between the two, 

suggesting that both segments may represent the same mound (Figure 4.4B). Age 

dating confirmed the hypothesis with segment L2.1 giving an age of 5,029 ± 29 

years and a repeat analysis of segment L2.2 providing ages of 5,699 ± 8 and 

5,060 ± 38 years (giving an average of 5,380 ± 23 years). The difference between 

the age of L2.1 and the average of L2.2 is 6.5% (Table 4.4), which is below the 

reproducibility shown during the analysis of L2.2 (11%-section 4.3.2). The two 

sections of mound L3 are only separated by ~10 m and sit at a similar elevation 

surrounded by the same scree slope (Figure 4.4A). A slight dip in the topography 

of the scree slope between the segments implies that the centre of a once 

complete mound may have been removed by erosion. The closely matching age 

results of these two segments, with L3.1 and L3.2 produce dates of 50,890 ± 351 

and 49, 088 ± 96 (average of 49, 989 ± 224), which are within 3.5% of each other 

and further suggest that these remnants are part of the same mound.  

 

 

 

 

 

 

Table 4.4: U-Th ages for testing field observations . 

Age results for mounds L2 and L3. The closeness of age analysis from the separate 
remnants of these mounds is shown as the percentage  difference (Age %) between the two 
ages. Percentage difference including the error env elopes on the ages is also included (Age 
% with 2 σ). 
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Figure 4.4: Field images of mounds L2 and L3. 

(A) The two remnants of travertine deposit L3. (B) The remnants of deposit L2 separated by 
the Green River. A pile of white banded vein segmen ts, which form a small island when the 
river level is low, is indicated by the yellow arro w. The location of these deposits is shown 
in Figure 4.2. 
 
4.3.5 Layered mat analysis 

Age analysis of several layered mat samples was carried out to check the 

feasibility of this facies for U-Th dating and to determine the relationship of layered 

mats with white banded veins. This latter point is necessary as a key problem with 

travertine in the Salt Wash graben field area is that in nearly half of the mounds 

only veining and altered host rock are present and there is no clear evidence of 

layered mat facies (Table 3.2). To interpret these as the eroded remnants of 

travertine mounds the white banded vein present in complete mounds must be 

demonstrated to be associated with the layered mat facies. The supporting 

evidence from field observations have been discussed previously (Section 3.5.4.2) 

so the latter part of this section will examine possible geochemical trends which 

may further support this claim. 
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4.3.5.1 Suitability of layered mat facies for age d etermination  

The modern formation of the Crystal Geyser travertine (L1) shows us that 

the hemi-spherical pools of the precipitating layered mats on the surface of the 

deposit are open to contamination from the surrounding environment and may 

entrain windblown deposits/debris in their layers. Preparation of samples included 

an extra stage of hydrogen peroxide addition and in some cases the use of 

perchloric acid to remove the large amount of organics present.  

 
Table 4.5: Comparison of layered mat and white band ed vein results. 

Analyses of layered mat and white banded vein speci mens from the same mounds, with 
layered mat results highlighted in yellow. The clos eness of age analysis from the two 
different facies is shown as the percentage differe nce (Age %) between the two ages. 
Percentage difference including the error envelopes  on the ages is also included (Age % 
with 2 σ). For mound L4, which has multiple dated samples, the percentage difference in age 
is shown between the layered mat sample and the you ngest, oldest and average of all white 
banded vein sample results from this mound. 

 
A sample from the modern day L1 mound produced an age of 842 ± 7 

years. The Glen Ruby #1-X well that created the Crystal Geyser was drilled in 

1935 meaning that age analysis from a ‘clean’ sample from this mound should 

range from 0 – 72 years. The radiometric age result of this sample was 842 ± 7 

years (Table 4.1). A [230Th/232Th] of 2.3 for this sample revealed that it had been 

significantly contaminated with non radiogenic 230Th. As outlined in subsection 

1.8.3.2, activity ratios of less than 15 to 20 have been found to significantly affect 

the age analysis of a sample by making it appear older. 

Samples analysed from L2.1 and L2.2 produced ages of 6,927 ± 14 and 

8,629 ± 26 years, which are older than the white banded vein specimens from the 

same sites by 22.3 and 41.8%. The percentage difference in age between layered 

mats and white banded veins is between two and four times greater than the 

repeat percentage demonstrated by L2.2 (section 4.3.2). Again [230Th/232Th] of 

11.1 and 1.5 (Table 4.1) suggests the presence of a significant level of detrital 

thorium leading to an apparently older age result.  
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The L4 layered mat sample was dated at 114,098 ± 263 years (Table 4.5). 

This is within error of the oldest white banded vein sample of 113,912 ± 152 years 

and 9.6% of the youngest white banded vein age of 103,172 ± 1,486 years. It is 

also within 5.1% of the average age of all four white banded vein samples and 

below the repeat percentages of 11.1 and 7.8% displayed by mounds L2 and L6. 

This may suggest that the layered mat sample provides a reliable U-Th age. 

However, the [230Th/232Th] of this sample was 13.5 (Table 4.1). This number is 

below the [230Th/232Th] of 15-20 thought to significantly affect age analysis (Section 

1.8.3.1) and the [230Th/232Th] of 91 from a contaminated sample from C.caespitosa 

coral known to have significant levels of non-radiogenic thorium present due to the 

quality of the sample and presence of detrital mud (Section 2.5). 

 

 

 

 

 

Figure 4.5: Comparison of 0δ
234U for layered mat and white banded vein facies.  

Plot of age (in ka) against 0δ
234U for all Little Grand Wash travertine samples. Mou nd 

numbers on the chart highlight which travertine the  points belong to. The multiple samples 
from mounds L1, L2 and L4 have been circled by red dashes. Analytical errors on both age 
and 0δ

234U are smaller than the points 
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4.3.5.2 Geochemical association of layered mats and  white banded 

vein 

As has been determined above, the presence of significant amounts of non-

radiogenic thorium within layered mat facies renders this facies inappropriate for 

age determination. Therefore any comparison of the ages of layered mats and 

white banded veins from the same mound is not valid. However, the supporting 

chemistry from the U-Th age analysis technique, specifically the 0δ
234U, can be 

used to compare the uranium content of the formation waters of each facies. On 

comparing the 0δ
234U of layered mats with white banded veins samples it can be 

seen that these are similar for the same mound (Figure 4.5). For the modern 

mound, L1, the results of the travertine precipitated in the field (sample LG.06.3E- 

Table 4.1) and the average of the travertine samples precipitated in the lab (3A- 

3C) for δ234U are 4.594 ± 0.012 and 4.960 ± 0.013 respectively. The 0δ
234U results 

of L2 averaged out for each facies gave similar values of 4.517 ± 0.012 for layered 

mats and 4.130 ± 0.013 for white banded vein. Mound L4 produced an average 

δ
234U of 4.699 ± 0.014 for the four white banded vein samples which is higher than 

the 0δ
234U of 3.716 ± 0.008 for the single layered mat sample analysed. The white 

banded vein samples for this mound range over a total of 10,740 years which is far 

greater than the 670 years difference between the oldest and youngest L2 white 

banded vein samples. On comparison of the oldest white banded vein specimen 

for L4 and the layered mat specimen, whose ages overlap within error, 0δ
234U 

results are 4.012 ± 0.002 and 3.716 ± 0.009. Relatively closely matching 0δ
234U of 

white banded vein and layered mats within the same mound suggests that white 

banded vein and layered mats are closely associated components of an ancient 

travertine mound that precipitated from the same source waters. 

4.4 Variation of uranium chemistry between mounds 

4.4.1 Introduction 

Travertine mounds in the field are relatively rich in uranium compared to 

normal continental crustal levels (average 1.4ppm). Concentrations of 2-4 ppm are 

common and values up to 8ppm occur. The validity of U-Th dating on coral 

specimens is checked using 0δ
234U, which in a closed system reflect the 

composition of seawater that has a known and consistent value, 1.145 ± 2‰, 
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through time (Section 2.5.2). Terrestrial carbonates, such as travertine, cannot be 

checked in this way as the δ234U of groundwater can vary from 0.5 to above 30 

(Frolich, 1990). Other checks such as purity of sample and [230Th/232Th] must be 

used in this case to confirm the presence of a closed system. White banded veins 

from the present study provide pure aragonite samples with high [230Th/232Th] and 

therefore demonstrate U-Th decay within a closed system. As such, the variable 

0δ
234U across the samples can be used to give information on the composition of 

the fluid with any variation suggesting evolution of fluid through time or spatial 

discrepancies. The 0δ
234U of the dated samples varies from 3.626 ± 0.009 to 7.418 

± 0.019 in the Little Grand Wash and from 2.021 ± 0.005 to 7.154 ± 0.017 in the 

Salt Wash graben.  

4.4.2 Variation in 0δ
234U 

The considerable variation of 0δ
234U suggests that the composition of the 

ground water has changed quite considerably between the travertine deposits. On 

a plot of 0δ
234U against age of the sample a random scattering of points occurs 

suggesting that there is no trend with time (Figure 4.6A), ruling out variation of 

δ
234U with evolution of fluid composition over the last 413 ka. Plotting 0δ

234U 

results against the distance from the axial trace of the Green River anticline 

reveals a spatial signal with 0δ
234U increasing from west to east (Figure 4.6B; C). 

This pattern is clearly evident in the Little Grand Wash where a trend line of 

best fit has an R2 = 0.96. The trend line for the northern fault of the Salt Wash 

graben has an R2 of a little under 0.5 as it contains a couple of low lying outliers. 

The similar 0δ
234U of travertine mounds in close proximity, such as L5 to L7 and 

S7 to S9 (Table 4.1; Table 4.2; Figure 4.6), further supports a spatial trend in the 

initial uranium composition of the precipitating fluids.  

The increasing 0δ
234U to the east signifies an increase in 234U within the 

groundwater supplying the travertine mounds. Uranium 234 is a particularly mobile 

nuclide in aqueous conditions as it is oxidised to a hexavalent state (+6) and 

preferentially leached from rocks over thorium. In addition alpha recoil, the process 

of ejection and subsequent decay of the short lived 234Th isotope, can increase the 
234U concentration of surrounding waters. Alpha recoil also has the effect of 

damaging the crystal lattice hosting the 234U making it more vulnerable to leaching 

than neighbouring atoms (Section 1.7.6). 
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Figure 4.6: Variation of 0δ

234U vs. time and space. 

(A) 0δ
234U against age of sample (ka). Samples from both are as are plotted on the graph with 

modern waters from mound L1, the Crystal Geyser, an d S45, Ten Mile Geyser, shown by 
orange and green points respectively. (B) Little Gr and Wash fault and (C) northern fault of 
the Salt Wash graben plots showing 0δ

234U against distance from the Green River anticline 
(m) for each field site. Colours for points are the  same as with (A) with the addition for a 
distinction of travertine in the Salt Wash graben t hat occur away from the fault (pink 
diamonds). 
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4.4.3 Spatial trend of 0δ
234U 

Two models are presented for the cause of the increasing trend of 0δ
234U 

from west to east (Figure 4.7). Model A involves mixing of old deep brine water 

carrying a low δ234U and meteoric waters carrying a high concentration of 234U in 

the Navajo aquifer. Model B is less dependant on mixing and involves increased 

leaching of 234U above the aquifer as flow paths to the surface increase. Both 

models imply a source of old brine water from depth with a low δ234U, possibly 

close to secular equilibrium (δ234U = 1), migrating up the faults and into the Navajo 

aquifer somewhere to the west of the travertine deposits. 

 

Figure 4.7: Conceptual models for observed variatio ns in 0δ
234U chemistry 

Cartoon cross section running parallel to the Littl e Grand Wash fault. Model A involves 
leaching of 234U by meteoric waters sourced from the San Rafael Sw ell. In this case mixing 
with low δ234U brine waters (which flow into the Navajo aquifer from depth) is a gradual 
process from west to east. Multiple breaches throug h the Carmel Formation top seal allow 
ground waters of various δ

234U compositions to migrate to the surface. Model B i nvolves old 
brine waters with low δ

234U to migrate from depth straight through the Navajo  aquifer to a 
single leak point in the Carmel Formation caprock. Fluid pathways that travel further to the 
east are longer and therefore have the opportunity to leach more 234U from the sedimentary 
sequence that they travel through.  

 

Model A centres on mixing within the Navajo aquifer, which is the main 

source of the emanating waters that supplied the travertine mounds. The Navajo 

aquifer, which is at a depth of 600-800 m in the field (Shipton et al., 2005), is 

charged by meteoric water in the San Rafael Swell where the rocks outcrop ~ 

35km west of the field areas. Decreasing potentiometric head in the Navajo aquifer 

from the San Rafael swell eastwards demonstrates that regional ground water flow 

is coming from the northwest, approximately parallel to the strike direction of the 

faults (Hood and Patterson, 1984). Leaching of 234U from the sandstone along this 
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travel path may be providing meteoric water of high δ234U to mix with the influx of 

low δ234U from deep brines into the aquifer close to the field areas. Increased 

mixing of brine with meteoric water down the regional flow direction to the west 

should result in an increased meteoric signal as δ234U from younger waters 

becomes increasingly mixed with δ234U from older brine waters. Unfortunately I 

have found no records of the uranium concentration of the sedimentary rocks 

within this aquifer, though general estimates for sandstones which have uranium in 

secular equilibrium range from 0.45- 3.2ppm (Levinson, 1980) to 1ppm (Frolich, 

1990).  

High uranium content has been ascribed to Permian and Triassic rocks in 

the area such as the Kaibab Limestone of the Permian Cutler formation, Sinbad 

Limestone of the Moenkopi formation and the Moss Back member of the Chinle 

Formation (Doelling, 1967; Morrison and Parry, 1988); whilst uranium ore bodies 

are common in upper Jurassic strata such as the Salt Wash and Brushy Basin 

members of the Morrison Formation (Buranek, 1942; Trimble and Doelling, 1978; 

Mohammed, 1986). Uranium ore bodies have also been mentioned in connection 

to the Navajo in southern Utah (Beltier et al., 2005) and Wingate sandstone at 

Temple Mountain in the San Rafael Swell (Morrison and Parry, 1988). Considering 

that Temple Mountain is situated in the south east of the San Rafael Swell, directly 

between the Swell and the Salt Wash graben, there could potentially be ore bodies 

present near the source of the meteoric water for the Navajo aquifer. This could 

provide a highly concentrated source of uranium, up to 3,000ppm (Doelling, 1969), 

for the water to pass through and leach. 

Model B involves an increase in 0δ
234U to the east due to interaction of fluid 

escaping out of the Navajo aquifer with rock it encounters on its way to the 

surface. This would mean that leakage from the Navajo aquifer is occurring at a 

single or series of proximal points to the west of the travertine mounds, with more 

easterly travertine deposits having a higher δ234U as a result of the fluid using a 

longer pathway to reach the surface. These longer pathways give the opportunity 

for fluid to potentially leach more 234U from sandstones and shales in the layers 

above the aquifer. The strata between the Navajo aquifer and the surface in the 

footwalls of the faults include the inter-layered shales and limestones of the 

Carmel Formation, the Entrada Sandstone (which has a shale rich base) and the 

Curtis formation sandstone in the Salt Wash graben, whilst the less eroded 
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sequence of sediments at the Little Grand Wash also includes the Summerville 

formation. Given the general uranium concentration of sandstone, 0.45-3.2ppm, 

and concentrations of 2.2ppm for limestone and 4.5ppm for shale (Frolich, 1990) 

the rocks above the aquifer could provide a plentiful source of uranium from which 

to leach 234U. 

4.4.4  Analysis of modern waters 

Three water samples were collected in the field during one eruption cycle of 

the Crystal Geyser (L1) and from all of the springs in the Salt Wash graben at 

varying points of the eruption cycle. Of the Salt Wash graben samples the 10 Mile 

Geyser (S45) water was chosen for analysis because the sample was from the 

actively flowing spring vent. Crystal Geyser samples comprised of pre, during and 

post eruption waters. Water was collected using 0.5 litre air-tight bottles. After six 

months of refrigeration it was found that travertine flakes had precipitated in these 

bottles (Table 4.1 and Table 4.2). After analysis of the waters on a Quadripole 

ICP-MS returned values of zero for uranium content, the precipitated travertine 

was removed from the bottles dried down and analysed on a MC-ICP-MS (Section 

1.9.4.3).  

Results and descriptions of these samples are given in Table 4.1 and Table 

4.2. Ages ranged from 223 ± 2 to 252 ± 3 years for the Crystal geyser (L1) and 

285 ± 5 for Ten Mile geyser (S45), giving ages that are older than the true ~ zero 

age of the precipitated carbonate. As these samples have very low 230Th content 

these results could be due to blank problems (section 4.3.2). Alternatively these 

ages could be the result of low [230Th/232Th]. The Ten Mile geyser sample 

produced an activity ratio of 2.9 and the results of the Crystal Geyser samples 

ranged between 37 and 86. Although above the 15-20 limit thought to affect age 

dating (section 1.8.3.2) the Crystal Geyser activity ratios are similar to the C. 

caespitosa sample ([230Th/232Th] = 91) known to have non-radiogenic thorium 

contamination from the Gulf of Corinth study (section 2.5.4). These activity ratios 

are also well below the [230Th/232Th] recorded for white banded vein samples and 

therefore have higher detrital 230Th present (Table 4.1 and Table 4.2).  

Alternatively the age results of the freshly precipitated travertine may 

provide an age for mobilisation of uranium in the ground waters supplying the 

geyser. The thorium present is potentially a result of decay of 234U in the water as 



Chapter 4  Results of U-series analysis 

March 2010  Neil M. Burnside 138 

it flows from source to site of precipitation, with either the active flow of water 

keeping the thorium in suspension or the thorium becoming bound in small 

insoluble particles present in the water (Section 1.7.6.3). If this is the case then the 

ages provided by the water samples may represent the travel time from source of 

the waters to deposition of travertine. The waters supplying the springs are 90% 

meteoric (Wilkinson et al, 2008) and are likely sourced from the San Rafael Swell 

35km to the west where the Navajo aquifer outcrops. Combining this distance with 

the recorded ages provides a flow rate of 3.9 to 4.9 x 10-6 m/s which is a typical 

rate for a sandstone aquifer (Anderson, 2007). 

4.5 Age estimation of un-dated travertine 

4.5.1 Introduction 

In the field areas ancient travertine mounds cap buttes of varying elevation 

above the general topography. U-series dating of travertine mounds has shown 

that older mounds occur at higher elevations than younger mounds (Figure 4.9). 

This provides a qualitative check on the age dating technique as mounds with 

common base level should give ages that agree with their stratigraphic order. 

However due to the differing extents of erosion on each mound, with some missing 

layered mat deposits, it is hard to find a common point from the mound facies 

alone that represents base level during precipitation of each mound. In addition to 

travertine facies numerous mounds in both the Little Grand Wash and Salt Wash 

graben also contain well cemented ancient river gravel terraces (Figure 4.11). 

These gravels have been syn-depositionally cemented below the mound by 

passing bodies of flowing water, providing a key indicator of base level when the 

travertine was actively precipitated. The slopes of the better-preserved terrace 

landforms indicate transport directed from the local Morrison slopes which 

suggests that these terraces are composed of piedmont gravels (Joel Pederson, 

personal communication; section 5.2.1.2). The immature sediment texture, poor 

sorting and local composition of clasts suggests that the cemented gravels once 

belonged to the tributaries of the Green River that drain each field area (Figure 4.8 

and Figure 4.10).  

 Measurement of the elevation of cemented terraces above the current 

elevation of the nearest drainage allows a calculation of incision rates for individual 
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mounds, which when plotted together for each field area gives an overall incision 

rate for the Little Grand Wash (Figure 4.8) and Salt Wash graben field sites 

(Figure 4.10). All elevation measurements were carried out using a Trimble 

differential GPS. 

4.5.2 Incision on the Little Grand Wash 

In the Little Grand Wash four travertine mounds have cemented piedmont 

gravel from the Little Grand Wash tributary (Figure 4.8, Figure 4.11, Table 3.2). 

The elevation of these gravels was measured relative to the closest point of the 

tributary. The Little Grand Wash travertine river gravels are directly related to the 

Little Grand Wash tributary by palaeo-current directions and the relatively fine size 

and nature of the clasts present within them. Some locations include finer-grained 

gravel which is likely to be the result of small run-off channels coming directly from 

the Morrison cliffs to the north akin to the present day. A series of six river terraces 

is present on the west bank of the Green River. These terraces generally obscure 

the fault and possibly any extent of travertine mounds present on this side of the 

river. The river terraces mainly consist of Green River mainstream gravels stacked 

one on top of the next, with the occasional piedmont deposit present (Section 

5.2.1.2). The clearest example of gravel deposits is provided by the oldest mound, 

L4, where a large L-shaped ‘tongue’ ~70 m in length stretches out from the 

southern end of the mound and then turns west (Figure 4.11). Today the Little 

Grand Wash tributary has its mouth just ~600 m south of this older remnant 

(Figure 4.8), as it currently flows from east to west it must have swept to the north 

of its present location ~114 ka ago to leave these deposits. The elevation of this 

piedmont terrace is similar to the stratigraphic horizon of the M4 gravel on the west 

bank of the river so I have labelled it ‘P4’. The P4 gravel was right at the palaeo-

mouth of the tributary and at the same elevation as the mainstream Green River 

during its deposition, which makes it a proxy for the mainstream Green River. An 

incision rate of 0.342 m/ka demonstrated by comparison of the elevation of these 

terraces against the age of their associated deposit (Figure 4.9) therefore provides 

an incision rate for the Green River itself in this location. 
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Figure 4.8: Satellite image of the Little Grand Was h tributary. 

The image, provided by Google Earth, shows the trib utary in relation to the Green River and 
travertine deposits. The Little Grand Wash tributar y is highlighted in blue, ancient travertine 
in yellow, active travertine in red and the fault i n navy blue. Also indicated are the 
succession of mainstream Green River gravels on the  west bank (in red) and the location of 
the P4 terrace associated with the L4 travertine de posit (white dashes). 
 

 

Figure 4.9: Incision rate graph for the Little Gran d Wash.  

Incision rate for the Green River as recorded by fo ur separate travertine mounds (L2, L3, L4 
and L5) along the Little Grand Wash fault. 
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4.5.3 Incision on the Salt Wash graben  

The Salt Wash graben river gravel deposits are related to the small 

tributaries which run through this field area and drain into the Green River to the 

west. There are two tributaries, the Salt Wash and the Big Bubbling wash, with the 

latter a tributary to the former (Figure 4.10). Travertine deposits are related to each 

stream by their presence within the associated wash. Mounds that occur at greater 

elevations on the high ground between the two streams are attributed to the most 

proximal tributary. The closest travertine to the Green River is S1 on the Big 

Bubbling tributary, over 3 km up the stream channel from the mainstream. Long 

profiles of these streams are in dynamic equilibrium (section 5.2.1.4.2) indicating 

that they are graded to the mainstream Green River in the area of travertine 

deposition (Figure 4.12A). Graded is a term used to describe a stream which has a 

mouth at the same elevation as the mainstream channel (Charlton, 2008). If the 

tributary streams here had been unsuccessful in keeping up with mainstream 

incision, knick points would form along them and show up on the long profiles. As 

these streams are in equilibrium with the Green River it suggests that differences 

in elevation between entrained gravels and modern drainage in this field area 

provide an accurate incision rate that is not solely a minimum estimate. A total of 

fifteen mounds on the Salt Wash graben have cemented gravel of which nine have 

been dated (Figure 4.2; Table 3.2, Table 4.2). One of these mounds is not in situ 

(mound S21, section 3.5.4.2), so of these dated mounds eight can be used to 

calculate an incision rate for this field area of 0.168 m/ka (Figure 4.12B). 
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Figure 4.10: Satellite image of the Salt Wash grabe n tributaries.  

The image, provided by Google Earth, shows the trib utaries in relation to the Green River and traverti ne deposits. The Big Bubbling and Salt Wash 
tributaries are highlighted in blue, ancient traver tine in yellow, active travertine in red and the fa ults in black.  
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Figure 4.11: River terraces associated with the tra vertine mounds.  

(A) Panoramic view of the L4 travertine mound. (B) Close up of the piedmont gravels on top 
of the large river gravel tongue that protrudes fro m L4. (C) Cemented gravel from L3. (D) 
Close association of layered mats, white banded vei ns and river gravels found in L2.1. (E) 
Interlayered gravels and layered mats from L5. (F) Piedmont gravel from the Salt Wash 
Tributary in mound S32. (G) Gravel that has been cu t by carbonate veining in mound S31. 
For locations of travertine mounds see Figure 4.2. 
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Figure 4.12: Incision rate graphs for the Salt Wash  graben. 

Key shows the colour coding for both of the tributa ries with the Salt Wash represented by 
blue and the Big Bubbling wash by red in all plots.  Overall incision rates are shown by black 
trend lines. (A) Long profiles of the tributaries. The eight dated mounds complete with 
gravel are plotted as colour coded squares. Dashed lines show which mounds are related to 
which tributary and in doing so show the relative s urface topography above each tributary. 
(B) Salt Wash graben incision rate calculated by th e elevation of river gravels entrained 
within travertine deposits. Incisions rates for bot h washes plus an overall rate are shown. 
(C) Salt Wash graben incision estimated from elevat ion of dated mounds alone. This 
measurement was taken from either the base of layer ed mats or from the maximum 
elevation of the peak of the mound (if mound was de void of layered mats). 
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4.5.4 Travertine age estimate results 

By taking the incision rate of the Salt Wash graben and the elevation of the 

non-dated mounds above their nearest point of drainage, ages for these mounds 

were estimated. Elevation of the non-dated mounds was measured from the base 

of cemented gravel if it was present. Mounds without gravel were measured from 

either the base of layered mats or the peak of the extent of altered host rock if 

layered mats were not present. This is a less than ideal measurement but in the 

absence of layered mats the elevation of the top of altered host rock provides the 

minimum possible elevation for eroded layered mats.  

A plot of estimated elevation against age for all dated mounds provides a 

similar incision rate to that provided by river gravel erosion (0.152 m/ka, Figure 

4.12C). The similar rates of erosion further confirm that travertine mounds along 

the northern fault of the Salt Wash graben are thin deposits. Age estimates for non 

dated mounds from both of these incision rates are shown in Table 4.6. These 

estimates are based on the forced assumption that incision rate has been constant 

through time. The ages provided calculated from the gravel incision are 

considered to be more accurate as this incision rate is based on definite evidence 

of base level during precipitation of ancient travertine mounds.  

Figure 4.13 shows a time line of mound occurrence for the Little Grand 

Wash and northern Salt Wash graben faults. Using age estimates for un-dated 

mounds from Table 4.6 provided a complete coverage of Salt Wash graben 

travertine and allowed a more detailed history of fluid flow to be deduced for this 

area. This allowed for a more complete comparison to be made for the timing of 

fluid flow to the surface throughout the history of leakage along the Little Grand 

Wash and northern Salt Wash graben faults (section 4.7.6). 
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Table 4.6: Age estimation of non-dated mounds.  

All non-dated mounds are located along the northern  fault of the Salt Wash graben. 
Elevation measurements are in meters above sea leve l and drainage elevation 
measurements were taken from the nearest tributary to the travertine mound. Age estimates 
are calculated from the incision rate of 0.152 m/ka  for mound incision from Figure 4.12C and 
0.168 m/ka for gravel incision from Figure 4.12B. 

 

 

 

Figure 4.13: Timing of travertine activity.  

Coloured bars represent occurrence of individual tr avertine mounds. Bars are an arbitrary 
width and analytical errors (which are mainly small er than the bar widths) are left out for 
clarity. Dated deposits for the Little Grand Wash f ault (LGW) travertine are green whilst 
mounds from the northern fault of the Salt Wash gra ben (SWG) are shown in red. Blue bars 
represent estimated age of un-dated mounds from the  Salt Wash graben as calculated from 
the gravel incision rate (Table 4.6). Beige highlig hted section in the Little Grand Wash fault 
timeline indicates the lifespan of mound L4. The li ght green bar shows the average age 
(108,306 ± 884 years) of the four samples dated fro m this mound. 
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4.6 Travertine Volumetrics 

4.6.1 Introduction 

Estimations of the volume of travertine preserved along the footwalls of the 

Little Grand Wash and northern Salt Wash graben faults provides a tool with which 

to compare and contrast the travertine deposits of the two different areas. 

Combination of total travertine volume estimate with the minimum age of mound 

L4 provides a proxy for all travertine mounds which allows for estimation of 

minimum life spans of all travertine deposits across both areas.  

4.6.2 Volume and lifespan estimates of travertine m ounds 

Measurement of both thickness and area of travertine deposits allowed for 

the volume of each mound to be estimated. Within these volume estimations 

travertine was assumed to have a cylindrical shape. This shape was chosen as it 

represented the simplest appropriate geometry applicable to all travertine mounds 

across both field areas. Volumetric calculations of the Little Grand Wash fault 

travertine had been previously carried out by Dockrill (2006). In these calculations 

the thickness of the Crystal Geyser travertine was taken from the Glen Ruby # 1-X 

well record (McKnight, 1940), which was drilled as a wild-cat petroleum well 

through the mound in 1935 and recorded travertine to a depth of 11 m below the 

surface. The close proximity of this deposit to the Green River makes it likely that 

this measurement represents the depth of white banded veins associated with this 

mound in the host Curtis sandstone (Section 3.5.3). Given the likelihood that this 

well was spudded into a section of the adjacent ancient mound the same thickness 

has been attributed to the Crystal Geyser travertine. Thickness, area and volume 

estimates for the travertine of the Little Grand Wash are shown in Figure 4.14 and 

Table 4.7. 

Volumes for travertine in the Salt Wash graben were calculated from 

digitised outcrop maps in ImageJ and multiplying with their respective thicknesses 

measured in the field (Table 4.8). Due to the variables involved an error of 8% was 

attributed to thickness measurements and 19% attributed to area measurements 

(which included both field mapping and ImageJ) which provided a total error of ± 

27% on volume estimations. The depositional thickness of mounds with no layered 
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mat morphology preserved was estimated by attributing the average thickness of 

layered mats in more complete mounds to the average area of these mounds, 

giving a depositional thickness of 0.8 ± 0.07 m of layered mats for every 2,275 ± 

432 m2 of travertine mound. This is based on the forced assumption that the 

thickness of travertine mound increases with lateral extent as the mound grows, 

and that the preservation of layered mats facies in the more complete mounds is 

100%. 

 
Figure 4.14: Volume estimates for the Little Grand Wash travertine. 

Estimated area (A), thickness (T) and volume (V) me asurements of travertine in the footwall 
of the Little Grand Wash fault from Dockrill (2006) . Values are from field measurements of 
Dockrill whilst inset shows the relative location o f field area along the fault. Errors on 
individual deposits, which can be seen in Table 4.7 , are left out for clarity. Errors on total 
measurements are ± 19% for area and ± 27% for volum e. 

 

 
Table 4.7: Volume estimates for the Little Grand Wa sh travertine.  

Estimated area, thickness, and volume measurements of travertine along the Little Grand 
Wash fault. Measurement of the active L1 deposit is  shown in blue, whilst multiple 
measurements from the separate remnants of L2 and L 3 are highlighted in green and pink 
respectively. Area error comes from both mapping an d ImageJ interpretation while 
thickness error is based on potential measurement e rrors. Volume error is the sum of area 
and thickness errors. Averages, which further allow  for comparison between the field sites, 
are for ancient travertine only. 
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Table 4.8: Volume estimates for the Salt Wash grabe n travertine. 

Estimated area, thickness, and volume measurements of travertine on the northern fault of 
the Salt Wash graben. Mound numbers S23 to S41 have  ages estimated from gravel incision 
rates (subsection 4.5.4), whilst mounds S42 to S47,  highlighted in blue, represent modern 
mounds. Deposits devoid of layered mats and therefo re with minimum estimated 
thicknesses and volumes are highlighted in yellow ( see text for details). Averages include 
ancient travertine of known area and thickness only . 



Chapter 4  Results of U-series analysis 

March 2010  Neil M. Burnside 150 

Estimated minimum life-spans of all travertine deposits were calculated by 

using the measured volume, 69,660 m3, and known lifespan, 10,740+604
-1,486 years, 

of the L4 travertine mound (section 4.3.3). By taking the error on this lifespan from 

radiometric dating and combining it with error from volume estimates, total error on 

lifespan estimations equals +32%, -41%. Since these calculations are based on 

the volume of mounds, poorly preserved travertine deposits give an apparently 

short lifespan (Table 4.9 and Table 4.10), for instance it is hardly likely that 

mounds L7, S4 and S10 were active < 10 years. Active deposits are completely 

intact in both areas which mean that life span estimates may be more applicable to 

modern travertine. Rates of modern precipitation may differ from ancient mounds 

however, due to their anthropogenic source (section 3.5.3). 

 

 
Table 4.9: Lifespan estimates of Little Grand Wash travertine. 

Life span calculations for both field areas are bas ed on the measured volume (a) and known 
lifespan (b) of travertine L4 (section 4.3.3). The active L1 deposit is highlighted in blue. For 
mounds with repeat and multiple analyses average ag es of all analyses are shown (c). 
Averages quoted include only ancient deposits. 
 
 
 
 
 
 
 
 

Table 4.10: Lifespan estimates of Salt Wash graben travertine. 

All active travertine deposits are termed ‘modern’ under age and highlighted in blue, with 
the radiometrically analysed S45 deposit, the Ten M ile Geyser, indicated (*). Travertine 
deposits that have had layered mats completely remo ved by erosion and so have estimated 
volumes are highlighted in yellow. Averages quoted include only ancient deposits. 
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4.6.3 Volume and number of travertine through time 

Cumulative plots of volume and travertine occurrence for both areas are 

presented in Figure 4.15. The slope of a straight line between any two points on 

these plots represents the average precipitation rate (for volume) or number of 

events (mound occurrence) per unit of time for the interval between the two points.  

Patterns of flow can be potentially deduced from these plots. If flow to the 

surface is constant through time then volumes plots should provide lines of near 

constant gradient, whereas intermittent flow will produce lines with clear changes 

in gradient. Similarly a relatively constant precipitation rate of travertine through 

time will produce a straight line through the volume plots whilst alternating 

precipitation rates, perhaps brought about by climate or salinity variation, will 

produce a line of more variable gradient. This latter factor may produce a smaller 

signal on top of flow consistency, as it is unlikely any pattern in precipitation will be 

noticeable unless flow is constant through time. Variation in precipitation of 

travertine, as construed from section 4.3.3, ranges from 0.51 - 0.74 mm/y. 

Changes of this order may affect the volume of travertine at any given time by up 

to 31%. Even taking all of these potential signals into account, erosion will have 

the largest influence on these plots because ancient travertine mounds are not 

completely preserved and therefore represent less than their initial precipitated 

volume. Erosional affects can be taken into account by comparing volume and 

occurrence plots for each field site because erosion will have a lesser effect on 

mound number than volume of mounds. Any changes in rate of volume 

accumulation can be compared and contrasted with the occurrence of travertine 

deposits- if number of mounds increases rapidly whilst volume remains relatively 

constant then it is possible that erosion is having a major effect in the travertine 

record at that particular time. 

As there are only eight mounds in the Little Grand Wash and the oldest is 

by far the largest, cumulative volume of travertine has a steady gradient through 

time which may reflect constant flow. Slight pickups occur toward mound L6 at ~60 

ka and the currently active Crystal Geyser (L1) travertine. This may hint that in 

between these larger deposits fluid flow to the surface has not been as strong and 

smaller mounds have been deposited that are not as resistant to erosion. The 

cumulative mound profile for this area is relatively constant.  
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The forty-seven travertine mounds of the northern fault of the Salt Wash 

graben provide a much larger data set to work with. In the plot of cumulative 

volume several sharp changes in the gradient of the line allude to periods of higher 

and lower production of travertine and hence leakage to the surface. Cumulative 

volume shows a gentle gradient from the start of leakage at ~414 ka up to ~135 

ka, a trend that is reflected in the cumulative number of mounds plot. At this stage 

a sharp increase in total volume occurs, this coincides with a change in gradient in 

the number of mounds. This change in gradient may highlight an increase in the 

number of mounds becoming active and the onset of more continual leakage in 

the Salt Wash graben. Volume of mounds then plateaus from 130 to 120 ka which 

may reflect a period of non-deposition or erosion could have since removed 

evidence of mounds from this time period. The rate of volume accumulation 

remains relatively constant from 120 to 75 ka which may suggest relatively 

constant flow to the surface. After a minor plateau up to 65 ka, which is during the 

activity of five separate mounds, a sharp increase in volume then occurs up to ~57 

ka. Volume of travertine deposited from ~57 to 13 ka is very low despite ten 

mounds being deposited during this time period. This may reflect the deposition of 

small friable mounds that have proved vulnerable to erosion. A sharp rise in total 

volume then remains until the present day which may be a result of there being 

lesser time for erosion to take place on these younger mounds. 

Closer inspection of the trends just discussed for the northern fault of the 

Salt Wash graben is provided by Figure 4.15C which shows a direct comparison of 

the number of mounds and the volumes being precipitated during 10 ka intervals. 

It should be kept in mind that the numbers provided in this figure are very 

dependant on the assumptions made during estimation of volumes for the 

travertine mounds. It is likely that erosion of mounds has a huge influence on 

these results. However, if erosion has been constant across all mounds in this 

area, intervals which have large volumes in comparison to the number of mounds 

may be highlighting periods of increased activity. If this is the case then larger 

quantities of leakage may have occurred during the interval between 140 and 130 

ka and for a more extended period of time between 110 and 70 ka. 
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Figure 4.15: Cumulative plots for number and volume  of travertine deposits. 

(A) Cumulative plot for the Little Grand Wash trave rtine with time (B.P) plotted against both 
number of mounds (left axis) and estimated total vo lume of mounds (right axis). (B) 
Cumulative plot for mounds associated with the nort hern fault of the Salt Wash graben, 
same axis used as for the Little Grand Wash. Y-axis  scales do no match so the lines for 
each aspect are not intimately related, rather grad ients on lines are compared and 
contrasted. It is worth noting that the scale of mo und volume for each site is similar whilst 
the number of mounds along the northern fault of th e Salt Wash graben is far greater- this is 
likely to be a result of more diffuse flow to the s urface in this area. (C) Bar chart showing 
both the frequency and volume of travertine deposit s on the Salt Wash graben divided into 
10 ka time periods. Errors on volume, which are ± 2 7%, have been omitted from all three 
graphs for clarity.  
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4.7 Discussion 

4.7.1 U-Th age analysis of travertine 

Travertine morphology consists of four separate facies, of which three 

(breccia, layered mats, and brown banded veins) are unsuitable for U-series 

analysis due to violation of the criteria desired for accurate age determination and 

a scarcity of field examples. The white banded vein facies meets these 

requirements and is abundant in all fossil deposits making it suitable for U-Th 

dating of individual mounds. Dating of multiple mounds was carried out to gain a 

good spatial resolution of leakage along the faults through time. All seven mounds 

on the Little Grand fault were dated at least once to give a complete coverage of 

this area. Travertine mounds in footwall of the northern fault of the Salt Wash 

graben are far more common. In this area travertine is not restricted to the fault 

and occurs up to 530 m into the footwall. Over half of the forty-two deposits have 

been dated in this area. Good spatial resolution was achieved by dating travertine 

mounds stretching the length and breadth of the area. 

A more comprehensive analysis of travertine from the Little Grand Wash 

involving a total of twenty-two samples allows for a more intensive investigation of 

the travertine mounds and the technique used to date them. Repeat age analyses 

of three mounds of distinct age demonstrate the excellent reproducibility of 

analysis and prove the robust nature of the preparation and U-series age 

determination techniques used. Detailed study of a single large and well defined 

mound involved analysis of five samples. A spread of ~11,000 years on the ages 

of the samples gives a minimum estimate for the lifespan of this deposit. This also 

suggests that leakage from a single discrete point on the fault may be active for a 

minimum of 11,000 years.  

Dating of the inner and outer edges of the main vein present in this mound 

gave an age difference of 4,300 years which translates into a time averaged 

precipitation rate of 0.6 mm per year. Ages from veins above and below this main 

vein demonstrate that separate veins do not get younger up sequence, with veins 

seemingly exploiting the areas of weakness in the layered mat horizons.  

Layered mats theoretically provide poor samples for dating. Analyses of this 

facies from two separate mounds of very distinct age were carried out to 
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determine if this was the case. The main motivation behind this was the lack of 

white banded veins but abundance of layered mats in other field areas of interest 

to the investigation of CO2 leakage such as St. Johns, Arizona. Though it was 

confirmed that U-Th dating of layered mats alone produces dubious results, the 

comparison of layered mats with white banded veins from the same mound 

produced valuable findings. Closely matching δ234U of white banded veins and 

layered mats suggest these facies are closely associated components of an 

ancient travertine mound. These geochemical results back up field observations 

and help to provide a sound case for confirming eroded mounds in the Salt Wash, 

devoid of layered mats, as legitimate travertine deposits. 

4.7.2 Implications for determination of incision ra te 

River terraces are geomorphologically important because they and their 

associated deposits provide information about the sedimentological, hydrologic 

and erosional history of a river channel. As such they can provide a key to 

understanding the effect of base level change on landscapes and provide 

important information on incision rates when they can be numerically dated. The 

occurrence of fossil stream terraces within several of the travertine mounds in the 

Little Grand Wash and Salt Wash graben coupled with the U-Th age of their host 

travertine deposits allows quantitative constraint of the incision rate over tens of 

thousands of years in these areas. A rate of 0.169 m/ka for the Salt Wash graben 

agrees well with the findings of Dethier (2001) who calculated a regional incision 

rate of 0.15 m/ka. The Little Grand Wash produces a rate of 0.342 m/ka which is 

twice that of the Salt Wash graben. This is likely to reflect the incision rate of the 

Green River which agrees well with the work of Garvin et al. (2005) and Marchetti 

et al. (2005) who found incision rates of 0.4 and 0.43 m/ka from measurements 

downstream on the Colorado and Fremont rivers.  

Based on the assumption that travertine age is proportional to the height of 

mound above present day base level, the calculation of incision rate on the Salt 

Wash graben allows ages of the remaining nineteen undated travertine deposits to 

be estimated. Previous studies used regional erosion rates to estimate the age of 

deposits along both faults (Baer and Rigby, 1978) with resulting maximum age 

estimates ranging from 190,000 to 200,000 years. This is an over-estimate for the 

Little Grand Wash and underestimates for the Salt Wash graben, but the present 
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study has a better understanding of incision rates in these areas due to both 

geomorphologic interpretation and radiometric dating. 

4.7.3 Volumetric comparison of Little Grand Wash an d Salt Wash 

graben travertine deposits 

Thickness, area, and volume estimates for each mound in the Little Grand 

Wash are shown in Figure 4.14 and Table 4.7, and results from the Salt Wash 

graben are shown in Table 4.8. A summary table of total and average volumes is 

shown below in Table 4.11. For the calculation of volumes the shape of travertine 

mounds was treated as cylindrical. This is because this is the simplest geometry to 

attribute to the travertine mounds which grow horizontally during leakage of CO2 

charged waters to the surface. This method assumes that the travertine is equally 

thick across its area and so may overestimate the volume of relict mounds. 

However, this is counteracted by the fact that ancient travertine mounds are 

weathered, and so are missing potentially significant volumes of original material; 

it also doesn’t account for subsurface veining, which in some cases is extensive 

and comprises a large volume of carbonate.  

The total volume for travertine along the Little Grand Wash fault is 107,510 

± 29,028 m3 and the total volume of travertine along the northern Salt Wash 

graben fault is 79,809 ± 21,548 m3. A similar volume of travertine is precipitated 

along each fault (Figure 4.16). This suggests that a similar volume of CO2 has 

leaked to the surface in each area. However it should be noted that the 

preservation potential of mounds in the Salt Wash graben is far less than that of 

the Little Grand Wash (subsection 3.5.4.1). The seven ancient mounds present in 

the Little Grand Wash show recognisable preservation of both veining and layered 

mat facies. A total of forty-one travertine mounds are present in the Salt Wash 

graben, with eighteen of these mounds lacking layered mat preservation. 

The largest mound along the Little Grand Wash fault, travertine L4, at 

69,660 ± 18,808 m3 is an order of magnitude larger than the largest fully measured 

travertine in the Salt Wash graben, S15, at 6,006 ± 1,622 m3 (Table 4.7 and Table 

4.8). These two mounds have identical mapped areas (11,610 m2 ± 2,206 to 

12,013 ± 2,282 m2) so the volume difference may be due to the length of activity, 

with L4 being active for significantly longer and therefore producing a much thicker 

deposit. This trend is also seen when comparing the averaged dimensions of 
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ancient travertine across the two areas. Travertine along the Little Grand Wash 

fault is on average 2.1 ± 0.2 m thick, 2,303 ± 437 m2 in area, and 8,932 ± 2,412 m3 

in volume; whilst mounds complete with layered mats along the northern fault of 

the Salt Wash graben give values of 0.8 ± 0.07 m, 2,275 ± 432 m2, and 963 ± 260 

m3 for thickness, area and volume respectively. The smaller ratio of area to 

volume in the Salt Wash graben further suggests that mounds on the Little Grand 

Wash may have been active for longer or are more resistant to erosion. A 

comparison of vein thickness in deposits across the two areas, with the L4 

mound’s main vein of 2.5 m being five times greater than the thickest vein of 

mound S11 (0.5 m), suggests that Little Grand Wash travertine have a longer 

lifespan, providing that precipitation rates are constant across all mounds. 

 

Table 4.11: Summary of travertine volumes and lifes pan. 

Totals and averages of travertine in both the Littl e Grand Wash fault and the northern fault 
of the Salt Wash graben. Sources of error are provi ded in section 4.6.1. 
 

 
Figure 4.16: Travertine volume maps. 

Maps show volume of travertine along the Little Gra nd Wash fault and the northern fault of 
the Salt Wash graben. Inset on the Salt Wash graben  map shows the legend of mound 
volumes. Red circles represent active deposits. Bot h maps are to the same scale 



Chapter 4  Results of U-series analysis 

March 2010  Neil M. Burnside 159 

4.7.4 Actively precipitating travertine 

Active precipitation of travertine in along the northern fault of the Salt Wash 

graben forms relatively thin layered mat crusts with estimates of total thickness of 

these deposits ranging from 0.2 – 0.5 m (Table 4.8). This is in contrast to the 

Crystal Geyser travertine which may be up to 3 m thick (Table 4.7) and has a 

clearly higher volume of fluid flowing to the surface. Though all of the active 

springs in both areas may be man-made they may be analogous to the 

precipitation of the ancient mounds as ancient deposits along the northern fault of 

the Salt Wash graben are also significantly thinner than deposits along the Little 

Grand Wash fault. The concentrated nature of modern flow shown by L1 in 

comparison to the more diffuse flow of the active Salt Wash graben springs may 

also reflect the more diffuse nature of flow to the surface throughout the fluid flow 

history of the northern Salt Wash graben fault. Actively precipitating mounds in the 

Salt Wash graben with the exception of the Big Bubbling spring (mound S44) have 

life span estimates of fewer than 87 years which would place their maximum age 

within the last 100 years, contemporaneous with exploration in the area. This 

further suggests that the six active springs of the Salt Wash graben are likely to 

have been caused by anthropogenic drilling. 

4.7.5 Pattern of flow to the surface 

High resolution U-series dating of travertine mounds on the Little Grand 

Wash fault and northern fault of the Salt Wash graben allows for further 

investigation into the pattern of fluid flow. With each mound there is a distinct 

change in location of leakage to the surface along the extent of travertine 

deposition on both faults. The following section will discuss possible temporal and 

spatial trends in the travertine data which may lead to an explanation of the 

observed location of mounds in the field sites and give an insight into the fluid flow 

pathways in the subsurface.  

4.7.6 Timing of fluid flow as recorded by U-series results  

A complete record of fluid flow to the surface through time exists for both 

field sites (Figure 4.17). As can be seen from the time lines of travertine 

occurrence there are gaps present between travertine on the Little Grand Wash 
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fault while the travertine of the northern fault of the Salt Wash graben is more 

numerous and more continuous with time (Figure 4.15). Gaps between mounds on 

the Little Grand Wash fault are up to 32 ka in length between the two oldest 

mounds; L4 and L7 (Figure 4.17B). From 75 ka to the present day timing of 

mounds alters between longer gaps of 17, 19 and 22 ka and shorter gaps in 

deposition of 9 and 4 ka. The forty one mounds of the northern fault of the Salt 

Wash graben provide a record of nearly constant leakage up until 135 ka before 

large gaps start occurring between deposition of mounds. Over this time there are 

at least four recognisable gaps between apparent periods of constant leakage. 

These gaps, mainly lasting in the region of 10 ka, occur between 13-28 ka, 39-49 

ka, 83-93 ka and 120-130 ka. Further back than 135 ka and up to 413 ka there are 

gaps as large as 101ka present between the seven travertine mounds deposited in 

this time frame. On closer inspection of both areas over the same time frame it can 

be seen that there is a potential overlap of travertine activity across the Little 

Grand Wash fault and the northern fault of the Salt Wash graben with what 

appears to be four distinct periods of activity (Figure 4.17B). 

4.7.6.1 Statistical Analysis of timing of travertin e deposition 

Although there initially appears to be a correlation between the two areas, a 

more detailed statistical analysis has been carried out to confirm if there are any 

trends in the timing of the travertine deposits, or if what we are seeing is a random 

pattern of occurrence. Figure 4.18 shows logarithmic plots of the empirical survivor 

function (ESF) for both field areas. The points in each of these plots represent the 

percentage of intervals between travertine occurrences longer than the specified 

number of years (along the x-axis). If events occur randomly in time the ESF will 

be close to exponential in form, whilst departures from randomness will appear as 

deviations from the straight line form of the plot. The two larger time gaps (of 93 

and 101 ka) between deposition of travertine over 200,000 years old on the 

northern Salt Wash graben fault show a deviation from a straight line plot and give 

the entire data set an R2 = 0.73 with respect to the best fit exponential trend line. 

Of the forty intervals present between mound precipitation thirty-eight are 29 ka or 

less, and if the two oldest time gaps are left out, these plot as a straight line with 

an R2 = 0.90, which suggests a random pattern of deposition with respect to time 

over at least the last ~135 ka. The Little Grand Wash ESF has an R2 value of 0.95 

when compared to an exponential trend line.  



C
hapter 4 

 
R

esults of U
-series analysis 

M
arch 2010  

N
eil M

. B
urnside 

161 

 

Figure 4.17: Timing of travertine occurrence for bo th field areas.  

(A) Total timelines for the Little Grand Wash and S alt Wash graben fault travertine. Lengths of gaps i n deposition are signified by grey text. In the Sal t Wash 
graben grey numbers are used up until ~175ka to sho w times of quiescence between periods of more conti nual flow. Black numbers show the length of 
time represented by these periods of nearly continu al activity. (B) Comparative timelines for the enti re history of the Little Grand Wash fault. Colour c ode 
for different travertine the same as in Figure 4.13 . Areas of potential overlap of timing of precipita tion in each area are highlighted by grey boxes. 
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Figure 4.18: Statistical analysis of mound timing.  

(A) Empirical survivor function (ESF) plot for the Little Grand Wash fault travertine deposits. 
An exponential line of best fit is also plotted in red with R 2 value. (B) ESF plot for mounds of 
the northern fault of the Salt Wash graben. Exponen tial lines of best fit are shown for both 
the total data set and for time gaps of 29 ka or le ss between successive travertine mounds. 
(C) Scatter diagram of serial correlation of succes sive intervals between mound 
occurrences for both field sites. The degree of cor respondence between the length of an 
interval and the length of the immediately precedin g interval is shown by plotting x i = t i + 1 - t i 
against y i =  t i - t i – 1 where t i is the time of occurrence of the ith event. 
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A further statistical analysis known as a Serial Correlation was carried out 

to compare the length of time between successive intervals (Figure 4.18C). This 

scatter diagram reveals the tendency for intervals to be followed by intervals of 

similar length. A scatter diagram with a relatively high concentration of points near 

the axis and a large dispersal of points is typical of a random series of events. 

Intervals between occurrences of Salt Wash graben travertine are typical of this 

random distribution with almost 50% of points falling close to the axis and a large 

dispersal of points. For Little Grand Wash intervals however, while showing a large 

dispersal, have no points close to the axis due to the large time gaps between 

deposits. 

4.7.6.2  Gaps in the record 

The above statistical analysis suggests a distinct lack of periodicity in the 

deposition of travertine mounds in the Little Grand Wash and Salt Wash graben. 

However these analyses should be treated with caution as the travertine record for 

both field areas is incomplete. We have no constraint on how long each dated 

mound was active for as only one mound, the L4 deposit from the Little Grand 

Wash, has multiple dates. The age results of samples from this mound, ranging 

from 113.9 ± 0.6 to 103.1 ± 1.4 ka, provide only a minimum estimate for the life 

span of the mound. It is also hard to use the time span and size of this mound to 

provide time span estimates for all of the other mounds in this study. This is due to 

the varying preservation potential of each individual mound. As some mounds 

have been eroded more than others, it is difficult comparing size of mound to 

gauge the length of activity. For the northern fault of the Salt Wash Graben there is 

a more continuous record of leakage up to ~200 ka along this fault before large 

gaps appear between mound occurrences. The poor preservation of several 

mounds, especially the oldest present, suggests that it is possible that some 

travertine deposits have become completely removed by erosion. The large gaps 

recorded between later mounds may reflect periods of time where travertine has 

not been preserved rather than not been precipitated. The lack of data points in 

the Little Grand Wash travertine makes it easy to find a trend in that data. 

Although mounds are better developed and more robust with concerns to erosion 

it is possible that several mounds may be present on the west bank of the Green 

River buried beneath the relict river terraces. Alternatively any travertine once 
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present on that side of the river, along the western limb of the anticline, could have 

been completely removed by the river. 

4.7.7 Spatial relationships of travertine deposits 

Travertine mounds in both areas are restricted to short stretches of the 

faults centred near the axial trace of the Green River anticline. U-series analysis of 

the travertine may allow an insight into the layout and structure of fluid flow 

pathways supplying these leakage sites in the subsurface. Both age results of 

travertine deposits and the supporting geochemical results provided by 0δ
234U are 

discussed below with reference to potential structure of leakage pathways. 

4.7.7.1 Relationships from U-Th age analysis  

Figure 4.19 shows the radiometric age results of travertine in both areas in 

a simplified geological map and as plots of age against distance from the Green 

River anticline. This feature was chosen as it is common to both field areas. The 

results for the Little Grand Wash fault show that travertine age decreases away 

from each side of the oldest mound, L4 (Figure 4.19A). This suggests that leakage 

to surface in this area may have spread out from a central initial point. Mounds L5, 

L6, and L7 are meters apart and occur in same link point between fault limbs. The 

three distinct ages of these mounds, which range over ~45 ka, and their three 

distinct elevations suggests that pathways may be becoming re-used throughout 

the leakage history of this fault. 

Of the 41 ancient mounds on the Salt Wash graben a total 22 were dated 

while estimates of the non-dated mounds have been provided by using a local 

calculated incision rate (Section 4.5.4). The results from these analyses and 

calculations show a more complex picture than the Little Grand Wash (Figure 

4.19B). Similar to the Little Grand Wash fault initiation of leakage occurs centrally 

with the oldest deposits occurring near to the trace of the Green River anticline. 

Although the timing of initiation of leakage gradually decreases with time from this 

central point to both the west and east, like the Little Grand Wash, younger 

mounds are not restricted to the outer edges of this progression and occur 

throughout the total extent of travertine deposition. Figure 4.19B confirms the 

close association of travertine mounds occurring away from the fault with the trace 

of the Green River anticline. When age estimates of non-dated mounds are 
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included in the plot of age against distance from the axial trace of the anticline the 

story doesn’t change. Estimated mounds generally fit into this sequence of the 

initiation of travertine deposit getting younger away from the anticline (Figure 

4.20).  

4.7.7.2 Relationships from 0δ
234U 

Two speculatory models were put forward in section 4.4.2 in order to try to 

explain the observed spatial pattern of 0δ
234U of dated travertine mounds rising to 

the east of each field area. Model A involved mixing of old deep brine water 

carrying a low δ234U and meteoric waters carrying a high concentration of 234U in 

the Navajo aquifer, and multiple leakage points in the caprock above the aquifer. 

Model B was based on brine migrating through the aquifer to a single leakage 

point in the caprock to the west of each field site. Increased 0δ
234U to the east in 

this case would be a function of pathways increasing in length from the single leak 

point and having greater opportunity to leach 234U from the lithologies above the 

aquifer. 

The close association of travertine with fault traces and more specifically 

with points of increased structural complexity in the Little Grand Wash suggest that 

upward migrating fluids are taking advantage of discrete areas of high permeability 

within the fault zones. It is unlikely therefore unlikely that upwelling fluid will have 

the chance to interact significantly with rock in the 600 to 800 m of strata between 

the surface and the Navajo aquifer. Model B also implies minimal mixing of 

meteoric and deep brine waters with the δ234U of the brine water being maintained 

during migration of deep waters through the Navajo aquifer. Evidence from stable 

isotopes of δD and δ18O from modern day springs occurring in the field areas 

suggest a deep brine contribution of 10-20% mixed with a meteoric component of 

80-90% in the source waters of the springs (Wilkinson et al., 2008). This suggests 

mixing of the two varieties of waters with a significant component of meteoric 

water, which favours Model A. It is therefore likely that δ234U concentration in the 

meteoric waters is having a significant effect on the 0δ
234U recorded in the ancient 

travertine mounds with an increased meteoric signal to the west as incoming 

regional ground water mixes with water within the three way trap provided by the 

Green River anticline and the Little Grand Wash and northern Salt Wash graben 

faults. 
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Figure 4.19: Age maps and distance plots of U-serie s results.  

(A) and (B) show simplified geological maps showing  only travertine mounds, faults, and 
Green River anticline. Results of U-Th dating are s hown in white boxes with error omitted 
for clarity. The plots below the maps show results plotted as age against distance from the 
Green River anticline. Error on the ages, which is often smaller than the size of the points, is 
omitted for clarity. For the northern fault of the Salt Wash graben all travertine mounds that 
are located over 50 m away from the mapped fault tr ace are classed as ‘off fault’ travertine. 

 

Further evidence for Model A is the horizontal distance of 35 km from the 

start of the source meteoric waters to the Green River anticline, which is almost 

sixty times greater than the vertical distance between the aquifer and the surface. 

This provides a greater opportunity for the leaching of readily soluble 234U from the 

sandstone present in the Navajo aquifer. The potential presence of uranium rich 

ore bodies, with concentrations of up to 3,000 ppm, near the source of this water 

provides a uranium rich source from which to leach further 234U. 

 

 

Figure 4.20: Age distance plot for the Salt Wash gr aben including estimated ages. 

Estimated ages of un-dated mounds (calculated from incision rate) along the northern fault 
of the Salt Wash graben are indicated by green circ les. Analytical errors on ages are 
generally smaller than the point on the plot and so  have been omitted for clarity.  

 

4.8 Summary: Lessons from U-Th dating 

U-series dating of travertine deposits along the Little Grand Wash Fault and 

the northern fault of the Salt Wash Graben provide a unique data set with which to 

study fault related fluid flow. Subsurface formed white banded veins within these 

deposits provide pristine samples for U-Th analysis as they are precipitated in a 
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closed system. The surface layered mats facies of travertine mounds provide poor 

samples for dating as they are prone to introduction of non-radiogenic nuclides 

and so form in an open system environment. This is confirmed by the low 

[230Th/232Th] present in samples analysed from this facies. The supporting 0δ
234U 

chemistries of layered mat samples matches that of white banded vein samples 

from the same mound indicating that they are formed from the same spring 

waters. Coupled with observations form the field confirm their close association 

with white banded veins. This allows for well weathered mounds, devoid of layered 

mats, to be validated as travertine deposits. 

Study of the interaction between uplift and erosion is a major theme of 

geology (Pederson et al., 2002), but understanding of their interplay is often limited 

by a lack of quantitative data. The data set obtained in this study coupled with the 

presence of relict river terraces allows for local incision rates to be calculated in 

each field site. This can provide further information into the study of incision of 

rivers in the area and uplift of the Colorado Plateau. Calculation of incision rates in 

the Salt Wash graben has also allowed for the age estimation of non-dated 

mounds in this area to provide a complete coverage of travertine.  

The location of mounds on the Little Grand Wash faults appears to be 

clustered around areas of intersection between different fault strands. This 

suggests that flow to the surface is located along discrete vertical pathways in the 

fault. This may be due to increased fracture density at these points of intersection, 

but without knowledge of fault structure at depth this is hard to conclude. The 

proximal occurrence of three mounds of distinct age ranging over 45,000 years 

suggests that fluid flow pathways can be repeatedly reused over time scales of 

tens of thousands of years. From the onset of leakage 114,000 years ago leakage 

points have spread from a central point decreasing in age towards the extremities 

of travertine occurrence. It may be the case that once travertine mounds reach the 

end of their lifespan that new leakage spreads to the closest available high 

permeability pathway up the fault. 

Age results for the northern fault of the Salt Wash graben, similar to the 

Little Grand Wash, show that initiation of leakage spreads from a central point 

near the Green River anticline. However, unlike the Little Grand Wash, younger 

deposits do not solely form progressively further out from this central point and 

occur throughout the area covered by travertine precipitation. Deposits also occur 
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away from the fault trace but are always closely associated with the anticlinal axis. 

The greater number of travertine in the Salt Wash graben and their less restricted 

locations, in comparison to the Little Grand Wash, suggests that there is a more 

distributed pattern of flow. Leakage away from the fault may be due to fracturing of 

the caprock away from the fault due to structural flexure at the crest of the 

anticline. Alternatively diffuse flow may be due to leakage through the exposed 

aquifer unit of the highly porous Entrada Sandstone. These ideas are further 

discussed in Chapter 5 which goes into further detail on the implications that the 

results presented in this chapter have for fluid flow and leakage to the surface.  

What is clear in both areas is that flow to the surface does not follow a 

constant direction throughout leakage history. Mound locations change to both the 

east and west along each fault repeatedly through time. The oldest deposit occurs 

at the centre of travertine extent in each area, with initiation of leakage spreading 

out from this central point. Timelines of travertine occurrence for both areas 

suggests that fluid flow may not have been constant through time and that there 

may have been several gaps of non-deposition in the record. However, when 

estimated ages are included for the northern fault of the Salt Wash graben and the 

likely lifespans of mounds are taken into account then is can be seen that a nearly 

constant record of fluid flow exists for this fault over the last ~120 ka. It should also 

be remembered that the effects of erosion are likely to be having a large influence 

and some mounds may have been completely removed from the record. Statistical 

plots show that there is no temporal trend in the history of travertine precipitation 

and that timing of mounds appears to be random. Increasing 0δ
234U from west to 

east across both the Little Grand Wash fault and the northern fault of the Salt 

Wash graben suggests a spatial trend in the leaking waters supplying travertine 

formation at the surface. This is likely to be due to mixing of 234U rich meteoric 

water coming in from the San Rafael Swell to the west and brine water with low 

0δ
234U leaking into the Navajo aquifer from the Permian White rim sandstone at 

depth. The closely matching 0δ
234U of nearby travertine deposits that are 

separated in age by 1,000’s of years confirms a spatial pattern in source waters. 

The results of U-series dating provide an excellent record of travertine precipitation 

history which clearly shows that fluid flow pathways to the surface are switching 

throughout both time and space.  
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5 Implications for fluid flow 

5.1 Introduction 

The history of palaeo-fluid flow preserved in ancient travertine deposits 

along the northern fault of the Salt Wash graben and the Little Grand Wash fault 

show a record of switching of leakage of CO2 rich waters to the surface over the 

last 100- 400 ky. Mound deposition is spread over an along-strike distance of 2.5 

km on the Little Grand Wash fault and 6 km on the northern Salt Wash graben 

fault. The location of leakage along each fault has switched repeatedly through 

time, with some travertine deposits appearing kilometres away from the previous 

leakage site. Particular locations have also been reoccupied after extended 

periods of time, with flow sometimes returning after several other leakage events 

elsewhere. 

Potential causes of switching can be split into external and internal factors. 

External factors, which are discussed in section 5.2, are events outwith the fault 

system, such as seismic triggering and climatic control, which can have an 

influence on the system’s hydrology. If external factors are playing a role in the 

switching of fluid flow pathways then it is possible effects should be seen on both 

faults simultaneously. In section 5.3 the direct influence of internal factors on the 

fluid flow history of the Little Grand Wash and northern Salt Wash graben faults 

will be considered. Fault structure, fluid flow properties and mineral precipitation 

are all internal factors which have the potential to affect fluid flow. Because internal 

factors are dependant on an individual fault, the effects will not be correlated 

between sites. 

5.2 External factors 

5.2.1 Seismic activity 

Two varieties of seismic activity are considered within this section: activity 

of the two fault systems in question and hydrological change seismically triggered 

by large scale seismic activity on distant faults. Seismic activity has been known to 

affect hydrological systems for at least 2000 years (Esposito et al., 2001). 

Hydrological changes, such as dramatically changing water level and spring 
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discharge, which follow major earthquakes, depend on the style of faulting with the 

most significant response associated with slip on normal faults (Muir-wood and 

King, 1993) like those in the present study. Changes observed at the time of 

earthquakes suggest that earthquake-induced stress is the cause of hydrological 

variation (Elkhoury et al., 2006). Changes in the static stress field and the dynamic 

stress from seismic waves are both possible causes for seismically induced stress.  

Static stress change within the crust surrounding a fault is generated by 

offset on the fault. The strain involved has the same signal as the first motion on 

seismograms, and can include both extension and compression. Brittle rock, 

sediment and soil become permanently deformed at shear strains from 10-4 to 10-3 

MPa with even greater strains of 10-2 MPa and above leading to complete failure 

(Manga and Wang, 2007). Deformation of porous solids in response to static 

stress can instigate change in pore pressures and allow pore fluids to flow (Manga 

and Wang, 2007). 

An induced change in permeability caused by the shaking motions of 

seismic waves is known as dynamic stress change. As seismic waves produce 

spatial variation in strain, they also result in spatial variation in pore pressure. This 

leads to pore pressure oscillations which can induce temporary increases in 

effective permeability. The magnitude of this increase scales with the amplitude of 

pore pressure oscillation (Liu and Manga, 2009). As permeability recovery 

following dynamic stressing occurs as the inverse square root of time, permeability 

change can persist well after the stress perturbation (Elkhoury et al., in press). 

This recovery suggests that a reversible mechanism such as clogging/unclogging 

of fractures causes the permeability increase. 

Static and dynamic stresses increase with seismic activity of an earthquake 

but decay differently with distance, r, from the seismic event (Stein and 

Wysession, 2003; Felzer and Brodsky, 2006). Static stresses decrease as 1/r3 

whereas dynamic stresses, which follow a standard empirical relationship between 

surface wave amplitude and magnitude, dissipate more gradually as 1/r1.66 (Manga 

and Wang, 2007). 

Several attempts to model the hydrological effects of different styles of 

earthquakes have been proposed (Muir-wood and King, 1993). Most have been 

concerned only with saturated pores in the protolith; however, recent work has 

attempted to address the presence of water filled fractures. These play a key role 
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in hydrology as they open and close throughout earthquake cycles (Renard et al., 

2000; Petit et al., 1999).  

Elkhoury et al. (in press) experimented with dynamic stress on dry in-situ 

fractured sandstone samples by forcing deionised water through the resulting 

fractures during steady and oscillating pore pressure. Experimental conditions set 

the dynamic stress at 10-2 to 10-1 MPa. They found that pore pressure oscillations 

induced an increase in the effective permeability of the samples of up to 50% 

which persisted well after the stress perturbation. From these experiments 

Elkhoury et al. (in press) suggest that recovery of permeability following dynamic 

stressing occurs as the inverse square root of time (i.e. the magnitude of 

permeability recovery is inversely proportional to the square of the travel time from 

the dynamic stress source). The permeability recovery indicated that a reversible 

mechanism, such as clogging/unclogging of fractures by particles produced by the 

initial fracturing of the sandstone, caused the permeability increase. 

In a series of contemporary experiments Liu and Manga (2009) investigated 

the evolution of permeability in saturated fractures within sandstones in response 

to dynamic stress. They also added silt sized particles to some fractures to asses 

the role of mobile particles. Liu and Manga (2009) found that permeability 

decreased after shaking and that fracture apertures decreased within the samples. 

Fractures with added particles showed a larger change in permeability suggesting 

compacting and trapping of the mobile particles effectively clogged the sample, 

particularly at the narrowest constrictions along flow paths. 

Although changes in pathway have not been investigated, these 

experiments can perhaps gives clues to the behaviour of discrete channels of fluid 

flow in response to seismic stress. The experiments of Elkhoury et al. (in press) 

involved fracturing under dry conditions and so perhaps are analogous to 

fracturing and failure of sealing lithologies, such as the Carmel Formation above 

the Navajo aquifer. The experiments of Liu and Manga (2009) were carried out 

using completely saturated fractures so could be taken to represent an active fluid 

flow pathway. In both cases the effects of unblocking and blocking of pathways is 

enhanced by the presence of loose particles. Clogging by compaction and 

trapping of particles in sections of pathways resulted in a decrease in permeability, 

whilst remobilisation of particles was found to produce two competing effects. The 

removal of blockages created permeability by opening up pathways; however, if 
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the particles moved away from regions where they were maintaining the width of a 

pathway then the pathway contracted and permeability was decreased. 

The following subsections will go into detail on possible earthquake activity 

on the Little Grand Wash and northern Salt Wash graben faults and then go onto 

discuss seismic triggering and compare the palaeoseismic record of distant faults 

with switching of pathways on the faults in the present study. 

5.2.1.1 Earthquake activity on the Little Grand Was h and northern Salt 

Wash graben faults 

The Little Grand Wash and Salt Wash graben faults are listed on the USGS 

Quaternary fault index as ‘not active’ (USGS and UGS 2007, Hecker, 1993). 

However, there is history of seismicity in the local area. In the nearby Canyonlands 

region, 80km due south of Green River, over 150 events were recorded between 

1979 and 1987 (Wong and Humphrey, 1989). The largest of these was M 1.8, so 

nowhere near enough to induce surface rupture (McCalpin, 1996), and the poorly 

constrained focal depths appeared generally deep (15 to 25km). Microearthquakes 

have also been observed near the Shay Graben faults, the only faults to display 

Quaternary displacement in the Canyonlands region. Again however, the exact 

location and cause of these minor seismic events is unclear (Wong and 

Humphrey, 1989). 

The main piece of palaeoseismic evidence that would suggest recent 

seismic activity on the Little Grand Wash and Salt Wash graben faults would be 

the presence of a surface rupture. Surface ruptures can be instigated by five 

separate modes of faulting, ranging from coseismic slip to steady creep (Sibson, 

1983). The mode that occurs during earthquakes depends primarily on the speed 

of its occurrence, or characteristic rise time, which is defined as the time for 90% 

of the slip to occur at a point on the fault (Sibson, 1983). Bonilla (1988) reclassifies 

Sibson’s five modes of faulting into two all encompassing definitions; coseismic 

slip in which rupturing occurs suddenly with a rise time of a few seconds; and 

seismic creep in which rupturing occurs gradually with a rise time of minutes to 

days. Surface rupture for coseismic slip events has only been observed in historic 

earthquakes above a moment magnitude (Mw) of 5 (McCalpin, 1996), while 

seismic creep events have been reported to show surface rupture for earthquakes 

with Mw of 2.5 or greater (Bonilla, 1988).  
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Shipton et al. (2004) state that the structural relationship between the Little 

Grand Wash and northern Salt Wash graben faults and their travertine deposits 

are consistent with recent fault movement offsetting the surface. This is based on 

field observation that some of the travertine mounds appeared to be nestled within 

a hanging wall half-graben, which they attribute to syn-depositional movement 

along the faults. They find that the thickness of mound L4 is greater in the hanging 

wall of the fault and suggest that the Little Grand Wash fault may be cutting a pre-

existing deposit. 

5.2.1.2 Geomorphological constraint on fault moveme nt 

Detailed field investigation coupled with radiometric dating of deposits in the 

present study provides new insights into the faults and their associated travertine 

mounds. Direct contacts between travertine mounds and the fault are often 

obscured by scree slopes of angular travertine clasts or fine-grained fault gouge. 

Despite this, several mounds across both areas have a clear contact between their 

base and both the footwall and hanging wall sides of the faults. This allowed for 

potential offset within the mounds to be observed. River terrace deposits from the 

Little Grand Wash fault and long profiles of the tributary streams of the northern 

fault of the Salt Wash graben were also utilised in order to provide a further 

geomorphological constraint for movement of the Little Grand Wash and northern 

Salt Wash graben faults. 

5.2.1.3 Constraining movement on the Little Grand W ash fault  

5.2.1.3.1 Evidence from travertine deposits 

All travertine mounds in the Little Grand Wash area straddle the fault trace 

with no evidence of being offset. A schematic of the oldest L4 mound straddling 

the Little Grand Wash fault is shown in Figure 5.1. The layering of the travertine 

itself shows no offset, though a slight fault scarp exists in the host rock either side 

of the fault. This scarp is likely to be a pre-travertine erosional feature due to the 

relative rock hardness of the Brushy Basin Member sandstone in the footwall and 

the softer and more easily erodible Mancos Shale Member in the hanging wall of 

the fault. 
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5.2.1.3.2 Evidence from river terrace deposits 

River terraces are formed and preserved as a stream changes activity 

between incision, lateral planation and alluviation (Reading, 1978). These changes 

are commonly thought of in terms of balance between the driving forces of 

available stream power and the resisting forces that must be overcome to 

transport the sediment load. River gravels deposited by the Green River, like those 

deposited on the west bank in the Little Grand Wash area are termed mainstream 

(M) gravels (Charlton, 2008). The more minor gravels deposited from the tributary 

streams of main rivers are termed piedmont (P) deposits (Charlton, 2008). 

Piedmont terraces are less mature, have a finer grain size, and are composed only 

of poorly sorted clasts of local outcropping rock. 

The river terraces on the west bank of the Green River in the Little Grand 

Wash are also not offset by the fault. Field mapping led to the determination of six 

separate ancient mainstream channels of the Green River stacked upon one 

another (Figure 5.1A and C). These were numbered according to stratigraphic age 

ranging from the most recent, M1, ~1.5 m above the present day river level, to the 

oldest, M6, ~55 m in elevation above the present day river level (Figure 5.2). The 

deposits are dominated by imbricated small pebbles, interspersed with the 

occasional sand lens. Exposures of the M5 terrace in a quarried gravel pit and 

along big N-S gullies show that this terrace has a planar basal contact on top of 

the fault and is undisturbed (Figure 5.1D). If the fault was moving at even a mild 

pace (e.g. a time averaged slip rate of 0.005-0.01 mm/yr would produce a total 

offset of between 0.5-1 m for the last 100 ky) the M5 gravel would show evidence 

of dip down into and towards the fault, or would be bent upward as it approached 

the fault due to drag and downward movement in the hanging wall (McCalpin, 

1996). The gently sloping land surface of local hill slope piedmont gravel and gully 

deposits coming down from the Morrison bluffs immediately to the north out onto 

the M5 gravel is undeformed and shows no sign of a fault scarp. Piedmont slopes 

of small and weak drainage systems such as this would not be able to denude or 

destroy a scarp over time. There is no evidence of a break in vegetation or gullying 

following the fault trace. These geomorphological indicators provide further solid 

evidence of negligible movement on the Little Grand Wash fault.  
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Figure 5.1: Evidence for lack of recent movement on  the Little Grand Wash fault.  

(A) Location map (base taken from Google Earth) sho wing Holocene river terraces present 
on the west bank of the Green River as mapped by my self and Joel Pederson. Mainstream 
terraces are labelled M1 to M6, and piedmont gravel s P4 and P6. Travertine mounds L1, L2, 
L3 and L4 are highlighted with gravel P4 protruding  from L4. Letter D shows the location of 
figure (D). (B) Schematic of mound L4 (after Dockri ll, 2006) showing the lack of disruption of 
travertine layers and reason for apparent scarp of host rocks. (C) View of terraces looking 
west from edge of P4 with thickness of each terrace  in brackets. (D) Closer investigation of 
the M5 river terrace showing no offset across the f ault. Location of picture shown in (A).  
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Figure 5.2: Sketch cross section of the geomorpholo gy of the Little Grand Wash.  

Section is shown in the plane of the Little Grand W ash Fault. Immediate footwall lithology in 
this section of the fault, Curtis Formation and Sum merville Formation, are grouped together 
as emphasis is on surficial Quaternary deposits. 
 

5.2.1.4 Constraining movement on the northern Salt Wash graben fault 

5.2.1.4.1 Evidence from travertine deposits 

Mound S12 occurs right on the banks of the modern day Salt Wash graben 

tributary. This mound appears to have two distinct lobes of layered mats with an 

older orange coloured section occurring on top of the footwall side of the fault and 

a grey section covering the hill slope from the fault down to the tributary (Figure 

5.3A). The angle of rim pools of the layered mats on the surface and the presence 

of stalactites on the grey section confirm that it is insitu (Figure 5.3B). This 

segment of the mound abruptly stops at the fault where a ~2 m section of the 

footwall is exposed. Altered host rock comprises ~0.5 to 1 m of this vertical wall 

along the extent of the mound with the remaining thickness made up of orange 

layered mats. The grey colouring of the lower section may hint that it is a different 

age, however this ‘bleaching’ of layered mats is visible at the modern Crystal 

Geyser (L1) at points were solidified layered mats has been submerged for 

presumably extensive periods of time beneath the Green River (Figure 3.15). The 

colouration difference is therefore likely to be a result of the submergence of this 

section of the mound under the surface waters of the Salt Wash graben tributary 

during precipitation of the mound.  

As previously discussed (section 3.5.4.2) mound S21 has no insitu layered 

mats. However the altered host rock here sits at an angle of roughly 45° across 

the top of the fault and there is no offset in the white banded veins suggesting no 
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fault movement for the lifespan of this mound (Figure 5.3C). The fault is also 

visible beneath travertine deposit S33. Similar to L4 in the Little Grand Wash this 

mound has a thicker extent of travertine in the footwall of the fault (Figure 5.3D). 

Again there is a fault scarp present but the undisturbed nature of the layering 

suggests this is a pre-mound erosional feature and indicates that there has been 

no movement on the fault since the formation of this mound. 

5.2.1.4.2 Evidence from stream profiles 

A river is said to be in equilibrium when the driving and resisting forces 

acting upon it are balanced such that nether aggrades or incises and takes its 

characteristic long term profile (Griffiths et al., 1996). Tell tale signs of fault 

movement can be picked up by sharp disturbances or ‘knick points’ in the long 

profile of a river. Knick points highlight locations in a river where there is a sharp 

change in channel gradient, such as a waterfall or lake, resulting from different 

rates of erosion above and below the knick point.  

The long profile of the Big Bubbling Wash, which crosses the fault between 

mounds S24 and S25 (Figure 4.2), provides further evidence of recent quiescence 

of the northern fault of the Salt Wash graben (Figure 5.3E). The steady gradient of 

its profile shows no evidence of a knick point and therefore no evidence of a sharp 

change in channel slope. Due to the small size of this stream it is unlikely that 

incision across the fault would be strong enough to remove any evidence of fault 

slip and resultant scarp at the surface. 

5.2.1.5 Qualitative and quantitative estimates of f ault quiescence 

Several travertine mounds that straddle the faults in both areas show no 

evidence of being offset. Radiometric dating of some of these mounds therefore 

gives minimum estimates for the time since last activity on the two faults. In the 

Little Grand Wash area the oldest and most prominent L4 mound shows a clear 

contact with the fault trace, age analysis of this deposit suggests that this fault has 

not moved for at least ~114 ka (L4 study, section 4.3.3). U-series age 

determination of travertine S21, which straddles the northern fault of the Salt Wash 

graben confirm there has been no fault movement for a minimum of ~116 ka 

(section 4.3). Based on incision rate calculation, the age estimate of the non-dated 

S33 mound in the Salt Wash graben extends this period of fault inactivity to 

around 190 ka (section 4.5.3). 
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Figure 5.3: Evidence for lack of recent movement on  the northern Salt Wash graben fault.  

(A) Image of mound S12 taken looking north showing the orange segment of the mound 
situated in the footwall and the grey lobe protrudi ng out from the fault. (B) Base of the grey 
lobe from this mound demonstrating stalactites. (C)  Mound S21 looking west, showing the 
tilt of travertine and the isolated block that has slide part way down the scree slope on its 
northern side. (D) Image of mound S33 with the faul t highlighted in yellow. Similar to mound 
L4 a thicker section of travertine occurs in the ha nging wall. (E) Long profiles of tributaries 
associated with the northern fault of the Salt Wash  graben. 
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Further qualitative evidence against fault movement in the Little Grand 

Wash comes from a thick sequence of six separate river terraces comprising of 

gravels deposited by the Green River. Here the second oldest terrace, M5, has a 

basal contact with the fault trace and shows no sign of offset. Stratigraphical 

correlation of the younger M4 terrace deposit with piedmont gravel (P4) of similar 

elevation entrained within mound L4 suggests that terrace M5 is older than any 

travertine deposit in this location (Figure 5.2). By taking the elevation of this 

deposit and applying the calculated incision rate for the Little Grand Wash area 

(section 4.5.2) the age of terrace M5 is estimated to be 137 ka, which further 

increases the minimum estimate of quiescence on the Little Grand Wash fault. In 

the Salt Wash graben area the long profile of the Big Bubbling Wash, which runs 

over the fault has a smooth gradient and shows no sign of any knick points. The 

small scale of this wash coupled with a long profile that is in equilibrium provides 

further support for a recent lack of movement at the surface along this fault. 

However, it should be noted that seismic activity has been reported to occur 

with no evidence of surface rupture. Archaeological and historical records indicate 

a number of destructive earthquakes during Roman times which suggest a 2,000 

year history of large scale seismic activity along the Pamukkale Range Fault, 

Turkey (Hancock and Altunel, 1997). No significant surface rupture or related 

travertine deposition occurred during this time (Uysal et al., 2007). So, it is not 

possible to rule out seismic activity at depth that has affected the hydrology of the 

faults but not instigated surface rupture. 

5.2.1.6 Hydrological changes induced by seismicity on other faults 

5.2.1.6.1 Introduction  

Seismic activity on distant faults can potentially alter the hydrology of 

inactive fault zones. Localised earthquakes and fluctuations in geyser and spring 

systems associated with large earthquakes on distant faults have been well 

recorded across the United States (e.g. Rowland et al., 2008; Rubenstein et al., 

2009; Manga and Rowland, 2009). Sustained change in ground water pressure, 

often an order of magnitude larger than can be explained by static stress change, 

can be attributed to distant earthquake activity (Brodsky et al., 2003). This effect is 

produced by the interaction of seismic waves with aquifers, which can produce 

sustained changes in pore pressure 100s of kilometres from an earthquake (King 

et al., 1999). The distance involved with many of these triggering events makes it 
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likely that dynamic rather than static stress change is the key factor. This is 

because static displacement decays more rapidly with distance from the 

earthquake (Stein and Wysession, 2003; Felzer and Brodsky, 2006). The 

redistribution of pore pressure by seismic triggering can potentially generate 

crustal deformation (Brodsky, 2006; Johnston et al., 1995) which has implications 

for the alteration of fluid flow pathways.  

Previous work on regional scale seismic triggering suggests that seismic 

waves generate pore pressure changes in geothermal areas that in turn generate 

changes in hydrology (Hill et al., 1993; Stark and Davis, 1996). For hydrological 

systems to be affected by seismically induced pore pressure changes they 

generally need to meet three separate criteria; (1) have low matrix specific 

storage, (2) contain fractures or faults, and (3) have a source of material available 

for clogging (Brodsky et al., 2003). The Little Grand Wash fault and the northern 

fault of the Salt Wash graben meet all three criteria. Specific storage, the volume 

of fluid a unit volume of aquifer releases under a unit decrease in head (Fetter, 

2001), is not well recorded for strata in the field areas. Hood and Danielson (1981) 

do present a generalised value of 1 x 103 for the Navajo sandstone which is at the 

upper end of aquifer specific storage values. Being the most permeable aquifer 

unit in the field (Table 5.1) it is very likely that the rest of the strata have lesser 

values. Faults are prominent features of both field sites whilst the presence of 

numerous travertine deposits demonstrates the abundance of calcium carbonate, 

which is a potential clogging agent. 

Due to the poor seismic record and lack of evidence for seismic activity in 

the Little Grand Wash fault and Salt Wash graben it is hard to say whether 

permeability changes were generated on these faults in response to activity on 

distant faults. The hydrological regimes in question however meet the criteria listed 

above so it is not inconceivable that pore pressures within these systems were 

affected by seismic activity tens of kilometres distant. In the following sections the 

stress state of the faults will be discussed in order to determine if they have the 

potential to be affected by distant activity. Occurrences of induced seismicity will 

then be examined, focusing on Yellowstone National Park. Finally a review is 

undertaken of the timing of distant regional seismic events and their potential 

effects on the Little Grand Wash and northern Salt Wash graben faults. 
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Table 5.1: Permeability and porosity of strata pres ent in the field.  

The Navajo sandstone, Kayenta Fm, and Wingate sands tone make up the main aquifer 
supplying the springs in the field areas- the Navaj o aquifer. Also included is data from the 
Entrada Sandstone, one of the surface lithologies o f the Salt Wash graben, and Permian and 
Triassic strata. The Moss Black member is a conglom erate of the Chinle Fm, whilst the 
Sinbad limestone is a 10-15 m thick section of lime stone from the Moenkopi Fm. The Kaibab 
limestone is late Permian. Data collated from Hood and Patterson (1984). Included in the 
table is the Boyle's law porosity of some of the st rata. This measurement is carried out on 
cored rock samples and determined by injection of a  gas, usually air or helium, into a 
porosimeter. Boyle’s law, expressed by the equation  P1V1 = P2V2, states that under 
conditions of fixed gas quantity and constant tempe rature the product of the pressure and 
volume stay constant. 

 

5.2.1.6.2 Stress orientation of the Little Grand Wa sh and northern Salt Wash 
graben faults  

The permanent and dynamic stress changes inferred to trigger earthquakes 

are usually orders of magnitude smaller than the stresses relaxed by the 

earthquakes themselves, implying that triggering occurs on critically stressed 

faults (Hill et al., 1993; Gomberg et al., 2004). It is therefore important to determine 

whether the Little Grand Wash and northern Salt Wash graben faults are optimally 

primed for failure. This can be achieved by looking at the orientation of the faults 

and comparing this to the ambient stress field for the surrounding region (Sibson, 

1985; 1990). The contemporary seismicity of the Colorado Plateau is typified by 

widely distributed earthquakes of small to moderate magnitude, the largest of 

which have been observed to have a Mw of 5-6 (Wong and Humphrey, 1989). Very 

few of these events can be associated with geologic structures and so appear to 

be associated with the reactivation of pre-existing faults that lack surficial 
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exposure. Predominance of nearly vertical maximum principal stress indicates that 

normal faulting is the dominant style of seismic slip within the plateau (Wong and 

Humphrey, 1989). This is supported by the work of several further researchers 

whose collated work around the Colorado Plateau is shown compiled as part of 

the World Stress Map (Figure 5.4).  

The present day state of stress in the Colorado plateau is characterised by 

a uniform northeast to southwest trending extension (Wong and Humphrey, 1989). 

This is demonstrated by the dominance of northwest to north-northwest striking 

normal faults within the Colorado Plateau (Figure 5.4). The Little Grand Wash fault 

(striking west-east) and northern fault of the Salt Wash graben (striking northwest 

– southeast) are therefore optimally oriented for failure and are potential 

candidates for seismic triggering. 

5.2.1.6.3 Yellowstone case study 

The recent effects of earthquakes on the Denali fault, Alaska (2002) and 

Landers fault zone, Mojave Desert, California (1992), on geyser activity at 

Yellowstone National Park are well documented. Numerical simulation of geyser 

systems by Ingebritsen and Rojstaczer (1993, 1996) suggest that their existence 

depends on a combination of rock properties, and thermal and hydrological 

conditions; and also intimate that the deeper parts of geyser conduits are likely to 

consist of anastomising fracture networks. Within these conditions eruption 

frequency is highly sensitive to the intrinsic permeabilities of geyser conduits and 

their surrounding rock matrix, and the pressure gradients within the system.  

The findings of Ingebritsen and Rojstaczer (1993, 1996) show that the 

geyser system at Yellowstone can be used as an analogue for the hydrological 

systems in the present study because fluid flow in both instances is dominated by 

a highly fractured medium containing highly pressurised multiphase fluids. While 

the phases at Yellowstone consist of steam and liquid, there is potentially a range 

of phases present in the Little Grand Wash and northern Salt Wash graben fault 

cases, with liquid, gas and supercritical fluid in various combinations a possibility. 

Unlike the field areas in the present study, in which carbonate is the main 

precipitate, fractures in hydrothermal areas are clogged by rapid precipitation of 

silica. Similarly though, loosening of these mineral deposits can reopen existing 

fractures and alter permeability, thus changing fluid flow pathways.  
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Figure 5.4: Data from World Stress Map and Location  of major regional faults.  

Image is a 3D topographic image of the states of Ut ah, Colorado, Arizona, and New Mexico 
(SAHRA, 2007) with data from the World Stress Map ( USGS and UGS, 2007; Heidbach et al., 
2008) compiled from various researchers. The yellow  star marks the location of the field 
areas whilst the black dashed outline marks the bou ndary of the Colorado Plateau 
(Pederson et al., 2002). Dated sections of faults m entioned in the text are signified by 
lettering; A- Wasatch Fault; B- Hurricane fault, C-  Parajito fault, D- Calabacillas fault, E- 
Hubbell Spring fault, F- La Jencia fault. Faults C- F are situated within the Rio Grande Rift. 
Fault traces are from the works of Lund et al., 200 2; Chang and Smith, 2002; McCalpin, 2005; 
McCalpin, 2000; Personius and Mahan, 2003; and Mach ette, 1986. Quality of stress data 
record from the World Stress Map is ranked accordin g to the scheme introduced by Zoback 
and Zoback (1989), and Zoback and Zoback (1991), an d refined and extended by Sperner et 
al. (2003). Groupings of this scheme refer to the o rientation of the maximum horizontal 
compressional stress (S H) and are accurate to within ±15° for ‘A’ quality, ±20° for ‘B’ quality 
and ±25° for ‘C’ quality. 
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Geyser periodicity has been observed to be sensitive to small strains (of 

0.01 to 1 microstrain) in the Earth and so can potentially be influenced by 

seismicity, caldera resurgence and deflation, Earth tides, barometric pressure, 

availability of meteoric recharge and wind (Ingebritsen and Rojstaczer, 1996). In a 

field study of Upper Geyser Basin, Yellowstone, Rojstaczer et al. (2003), found 

most of these aspects do not have any influence on eruptive periodicity. No 

statistically significant evidence of Earth tide or atmospheric-pressure influence 

was observed, leading to the conclusion that geyser periodicity was insensitive to 

deformation on the order of less than 20-100 nanostrain. This suggests that in 

order for geyser periodicity to respond to seismic activity an earthquake event 

must be create a strain signal greater than this range of values. 

The Denali earthquake, associated with a surface rupture of 340km and a 

Mw of 7.9, was one of the strongest strike-slip events to be observed in North 

America over the last 150 years (Eberhart-Phillips et al., 2003). Evidence of 

induced seismicity in response to this event was recorded up to 3,385 km from the 

epicentre (Gomberg et al., 2004). More than 200 small earthquakes were triggered 

within 18 hours in Yellowstone, 3,100 km south-east of the epicentre. 

Subsequently more than 1,000 earthquakes were recorded over the course of a 

week, with earthquake swarms occurring simultaneously close to different major 

geyser basins (Husen et al., 2004). These tremors, ranging from Mw 0.5 to 3.0, 

could not be located accurately enough to determine the epicentre or depth of their 

origin (Smith, 2004). Coupled with this triggered seismicity, the alteration in the 

eruption cycle of several geysers was observed within hours of main shock. It is 

likely that these events were induced by the arrival of large amplitude surface 

waves which caused dynamic stresses of up to ~470 nanostrain (Husen et al., 

2004). 

The Landers earthquake, an Mw 7.3 right lateral strike-slip event, occurred 

on the 28th of June 1992 in the Yucca Valley, South California. This was the 

largest seismic event to occur in California for 40 years and was accompanied by 

an Mw 6.1 foreshock and Mw 6.2 aftershock (Hauksson et al., 1993). The main 

event produced surficial offsets of up to 6 m and a rupture length of 85 km (Sieh et 

al., 1993), though it is reported that over 100 km of the sequence was ruptured if 

concealed faults are also taken into account (Hauksson et al., 1993). Seismic 

activity 1,250 km to the north-east at Yellowstone was found to be triggered by the 

main event (Hill et al., 1993). This was the most distant associated activity and 
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occurred in a small cluster 15 km north-west of the Yellowstone caldera within the 

Yellowstone National Park. Static stress changes calculated for elastic models of 

the earthquake, by Hill et al. (1993), appear to be too small to have caused this 

triggering. The authors of this study propose that large dynamic strains associated 

with seismic waves emanating from the main shock may have triggered this further 

and far reaching seismic activity. Stark and Davis (1996) suggest the Landers 

event may have been particularly efficient at generating remotely triggered swarms 

throughout the western United States because of its size and shallow focal depth, 

which would promote large surface waves. 

It should be noted that changes in geyser activity at Yellowstone have not 

been restricted to these two seismic events. Significant changes in eruption 

patterns have also been observed following large regional (<200 km) earthquakes, 

such as Hebgen Lake, Montana, (Mw 7.5, 17th August, 1959) and Borah Peak, 

Idaho, (Mw 7.3, 28th October, 1983). The Borah Peak event, which has been 

estimated to have produced a static strain of 100 nanostrain (Okada, 1992), was 

observed to alter the interval between eruptions at Old Faithful geyser. Rojstaczer 

et al (2003) suggest that this response was due to dynamic ground motions 

affecting in the physical state of the geysers leading to, at least temporarily, 

alteration in local permeability. 

The Denali and Landers events were also observed to affect locations 

closer to the field sites in the present study. Stark and Davis (1996) report minor 

activity in response to the Landers earthquake at Geysers geothermal field in 

California, which is an identical distance from the main shock as the Little Grand 

Wash fault (760 km to 763 km). This event also triggered an earthquake swarm 

near Cedar City in south-west Utah, 490 km from the epicentre and only 290 km 

from the Little Grand Wash fault. More than sixty earthquakes were triggered here 

with at least seven of them felt locally in the Hurricane fault zone (Hill et al., 1993). 

It has also been suggested that the Denali event triggered small quakes in 

northern Utah, occurring near little-known hot springs along the Wasatch fault 

(University of Utah Science Daily release, 2004), which is only 265 km from the 

Little Grand Wash fault. While changes in geyser periodicity appear synchronous 

with major earthquakes in the examples outlined above, it is important to note that 

identification of tectonically induced changes in permeability requires seismic 

events to be synchronous with a period of otherwise relative quiescence in geyser 

eruptive variability (Rojstaczer et al., 2003). 
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5.2.1.6.4 Potential sources for triggering of seism icity at the Little Grand 
Wash and Salt Wash graben faults 

As seismic triggering on distant hydrological systems is well documented 

and the Little Grand Wash and northern Salt Wash graben faults are optimally 

orientated within the present day Colorado Plateau stress regime, potential 

sources capable of triggering variation in hydrology along these faults were 

investigated. Due to the far reaching distance of the recorded affects of the Denali 

and Landers events, it is conceivable that any major earthquake within ~3,000km 

may potentially have had an influence on the permeability of fluid flow pathways in 

the Little Grand Wash and northern Salt Wash graben faults. Due to time 

constraints the investigation of potential triggers focused on the palaeoseismic 

history of large active fault zones within ~500 km of the field sites. The three key 

fault zones within this proximity were identified, all of which were known to have 

hosted large seismic events in the recent past: the Rio Grande Rift in New Mexico, 

the Hurricane Fault in south-west Utah and the Wasatch Front in northern Utah 

(Figure 5.4, Figure 5.5). All of these faults have a normal sense of slip and strike ~ 

north to south, and so are typical of faults in the northeast - southwest extensional 

regime of the Colorado Plateau. The Hurricane fault and Wasatch front are both 

situated within a prominent north-south trending zone of earthquakes within the 

western United States interior known as the Intermountain Seismic Belt (ISB). This 

zone marks an intraplate extensional regime extending 1,300km from Montana to 

Northern Arizona (Smith and Sbar, 1974; Chang and Smith, 2002).  

Dynamic stress change was found to be the trigger of seismicity of the two 

examples discussed above (Section 5.2.1.6.3). It should be noted that this 

mechanism should be enhanced in directions where rupture directivity focuses 

radiated energy (Gomberg et al., 2004). For the palaeo-earthquake examples 

highlighted in this section it is impossible to deduce the direction of the energy 

released from the events, therefore it is hard to say for certainty which, if any, has 

the most potential for triggering permeability changes on the Little Grand Wash 

and northern Salt Wash graben faults. 
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Figure 5.5: Timeline of travertine occurrence again st regional seismic activity.  

The top two rows demonstrate the occurrence of trav ertine in the Little Grand Wash and Salt Wash grabe n. U-Th dated mounds (the errors of which are 
smaller than the width of the bars) shown as red ba rs and age estimated mounds from the northern fault  of the Salt Wash graben shown as blue bars. 
The four separate ages from mound L4 are shown with  the area between them shaded to show the life span  of the mound and with a light green bar to 
show its average age. Seismic activity segment of t he figure shows dated and speculated seismic events  that have occurred on distant faults. (a) Data 
from Chang and Smith (2002) and McCalpin and Nelson  (2001). (b) Data from Lund et al. (2002), Lund et al. (2007), and Amoroso et al. (2004). (c) Data 
from McCalpin (2005). (d) Data from McCalpin (2000) . (e) Data from Personius and Mahan (2003). (f) Dat a from Machette (1986). For details on dating 
techniques used in each case see Appendix C and loc ations of the faults see Figure 5.4 
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The top two rows demonstrate the occurrence of travertine in the Little 

Grand Wash and Salt Wash graben. U-Th dated mounds (the errors of which are 

smaller than the width of the bars) shown as red bars and age estimated mounds 

from the northern fault of the Salt Wash graben shown as blue bars. The four 

separate ages from mound L4 are shown with the area between them shaded to 

show the life span of the mound and with a light green bar to show its average 

age. Seismic activity segment of the figure shows dated and speculated seismic 

events that have occurred on distant faults. (a) Data from Chang and Smith (2002) 

and McCalpin and Nelson (2001). (b) Data from Lund et al. (2002), Lund (2007), 

and Amoroso et al. (2004). (c) Data from McCalpin (2005). (d) Data from McCalpin 

(2000). (e) Data from Personius and Mahan (2003). (f) Data from Machette (1986). 

For details on dating techniques used in each case see Appendix C and locations 

of the faults see Figure 5.4 

It is hard to draw correlations between the timing of activities on these 

distant faults and switching of fluid flow along the Little Grand Wash and northern 

Salt Wash graben faults because the palaeoseismic record is sparse and 

inaccurate (Figure 5.5). The records of each distant fault and the dating 

techniques used to deduce past activity is presented in Appendix C. Information 

gained from the historical record is far too recent to provide an accurate estimate 

of the complete seismic cycle, especially in this case when time scales in the order 

of 100,000's of years are desired. Sparseness of the record is a result of the time 

period involved because relatively few age dating techniques can accurately deal 

with late Pleistocene to Holocene deposits, and even then particular materials 

required for each dating technique must be present. 

Over the distant faults taken into consideration a wide variety of techniques 

were implemented in order to determine past seismic events. Only one 

radiometrically determined event, from 13C on the Hurricane fault, is published 

(Amoroso et al., 2004). The rest of the data are either from qualitative techniques 

that involve large errors on age such as thermo and infrared stimulated 

luminescence, or quantitative techniques like the soil development index (Harden, 

1982) and geologic observations. 

The absence of radiometric ages is not surprising for these faults as 

radiometrically datable materials such as charcoal or volcanic ash are not often 

preserved in critical surface exposure or in excavations dug specifically for dating 
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purposes (Machette, 1986). Of the published luminescence analysis, ages are 

either provided as approximations with no error (McCalpin, 2000; McCalpin, 2005) 

or as rounded ages with up to 20% error (Personius and Mahan, 2003).  

Movement of fault scarps in the literature for these distant faults are often 

estimated from offset of stratigraphy (Chang and Smith, 2002) or the juxtaposition 

of soils with faulted sediments (Machette, 1986; McCalpin, 2005). The technique 

used to date this later aspect; the soil development index (Harden, 1982) has 

many variables and can only provide an estimate of age of scarp forming events. 

The huge inaccuracy of these techniques, excluding the single radiometric date, 

makes them poor methods to compare and correlate events across numerous 

faults. 

5.2.2 Climatic Effects 

A second possible external influence on the switching of pathways along 

the Little Grand Wash and northern Salt Wash graben faults is climate. Relatively 

warm and cold periods during the history of the area will have had a direct 

influence on precipitation rates which in turn could potentially affect water table 

height and supply of water to the springs that deposit the travertine mounds. In 

order to compare the travertine mounds in this study to any climatic information we 

must be certain that the mounds can potentially reflect climatic cycles.  

If change in ground water discharge is not the result of seismic activity then 

spring-deposited travertine growth could potentially reflect climatic fluctuation as 

travertine has been reported to represent effectively wetter periods than the 

present (Livnat and Kronfeld, 1985). Past climate records, stretching back tens of 

thousands of years are well established on a global scale, with δD data from the 

Vostok ice core and δ18O record from SPECMAP (Winograd et al., 1992; Lorius et 

al., 1985). However the climatic record for this region and indeed the Colorado 

Plateau in general is sparse over the time frame of travertine deposition in this 

study. Dendrochronology, the science of tree-ring dating, on conifers from the El 

Malpais National Monument, New Mexico, has produced an accurate short term 

record of rainfall for the last couple of thousand years (Grissino-Mayer et al., 

1997). Beyond this record one must rely upon various studies that may lack 

precision but nevertheless can provide some information to the past climate of the 

Colorado Plateau.  
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5.2.2.1 The past climate of the Colorado Plateau 

Situated between the Rocky Mountains to the east and north, and the Basin 

and Range to the west and south, the Colorado Plateau is a unique 

physiographical province (Figure 5.4). It presently straddles the transition between 

summer-wet and summer-dry climatic regimes to the south and north-west 

respectively (Anderson et al., 2000). This coupled with the topographic diversity 

has led to the production of diverse environments and plant communities. The 

palaeo-ecological record of the plateau is poorly known, but there are numerous 

potential sources for analysis. Records are mainly split into two varieties, both of 

which provide a record of the last ~35 ka; stratigraphic deposits and animal traces.  

Stratigraphic deposits mainly come from high elevation locations (>2,200 m) 

and include sediments from lakes, bogs, alluvium, and caves. From 34-30 ka 

depositional hiatuses in lake deposits indicate a dry period of minimal rainfall 

(Anderson, 1993). Water levels in lakes were higher than present day between 

~30-24 ka suggesting a wetter climate, whilst temperature records also indicate a 

cooler climate (3-4ºC colder than present). Change in vegetation recorded 

between 18 and 14 ka indicates a drop in temperature to a colder climate (5ºC 

cooler than present), with near modern vegetation being established by 12.4 ka.  

Animal traces, such as pack-rat middens and bat guano, are common at 

low elevations (<2,200 m). Changes of vegetation found within middens suggest a 

full glacial climate between 27.5 and 17 ka (Long et al., 1990; Thompson et al., 

1990). This agrees well with radiocarbon dates of rock varnish in the Sierra 

Nevada, California (Dorn et al., 1987). Late glacial type vegetation became 

dominant between ~18 to 14 ka. Finally, increasing temperature and increased 

rainfall between ~14 to 10 ka instigated a transitional period toward modern 

vegetation occurred (Jackson et al., 2005). Isotopic δ13C and δD values recorded 

in guano from the Grand Canyon confirm this pattern of warming through to the 

early Holocene until ~9 ka (Wurster et al., 2008). Decrease in both isotopic values 

around 8 ka suggests a rapid change in atmospheric circulation and a cooler and 

dryer climate. 

Anderson (2000) suggests that the highest elevations of the Colorado 

Plateau (above 3,600 m) were probably ice covered for much of the duration of the 

last Ice Age (from ~110 to 13 ka). These changes in atmospheric circulation are 



Chapter 5  Implications for fluid flow 

March 2010  Neil M. Burnside 193 

the result of the size and position of the Laurentide ice sheet, which covered much 

of Canada and the northern United States during this time (Bartlien et al., 1998; 

Dyke et al., 2002). Simulation models by COMAP (Kutzbach et al, 1993) between 

~18 and 14 ka suggest that the polar jet stream reached ~20º south of its present 

position. Coupled with stronger inshore upper level winds along the west coast 

these conditions produced colder winters and summers than present, and greater 

winter precipitation. The warming of the climate since this time can be attributed to 

northward shift of the jet stream as continental ice sheets retreated (Thompson et 

al., 1993; Shuman et al., 2002). 

A further climatic record available in the Colorado Plateau comes from 

measurement of palaeo-recharge. This measurement reveals variability in spring 

discharge, which has been reported to respond to precipitation trends on multi-

year time scales (King et al., 1994). Palaeo-groundwater-flow records from Black 

Mesa, northern Arizona, suggest that between 31 and 11 ka recharge rates were 

higher than today, with the maximum pulse of 2-3 higher than today occurring 

between 17 and 14 ka (Zhu et al., 1998) (Figure 5.6). This coincides with evidence 

for retreating ice sheets seen elsewhere (section 5.2.2.1). Numerical simulations 

of ground water flow executed by these authors suggest that thousands of years 

are required for water levels to fully respond to changes in recharge. It is therefore 

possible that any climatic record recorded by spring deposited travertine may be 

delayed in relation to changes in climate. 

Figure 5.6: Timeline of travertine occurrence again st climatic records. 

Timeline includes both regional and world-wide reco rds. Colour coding of travertine 
occurrence in the Little Grand Wash and Salt Wash g raben areas is the same as in Figure 
5.5. Grey boxes highlight potential overlap of timi ng of precipitation in each field area, after 
Figure 4.17. (a) Eastern Grand Canyon travertine da ta from Szabo (1990). This information is 
included as the occurrence of mounds is attributed to period of increased relative wetness. 
The source of error on younger ages is not discusse d in Szabo (1990), while samples with 
age errors in excess ±10ka are calculated from isoc hron plot ages using data from both acid 
soluble and acid insoluble derived residue fraction s. Blue lines represent the average age of 
each group of travertine provided by Szabo (1990). (b) Data from Anderson (1993) and 
Jackson et al. (2005). The yellow represent key cha nges in vegetation on the Colorado 
Plateau whilst the grey box highlights dry period i ndicated by lake sediments. (c) Data from 
Zhu et al. (1988). (d) Data from Anderson et al. (2 000). (e) Data from Winograd et al. (1992). (f) 
Data from Rahmstrof (2003). Heinrich events are cau sed by a ~1,470 year cycle in dramatic 
climate variation. (g) Milankovitch precession is i ncluded as the gaps between deposition of 
several mounds in the Little Grand Wash fall close to the precession cycle period of ~21.6 to 
25.7 ky (generally 23 ky). (h) Data from Lisieki an d Raymo (2005). This information is a 
section of the climate record constructed by these authors using benthic δ

18O records from 
57 globally distributed sites, the grey bars indica te interglacial periods. 
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5.2.2.2 Comparison with regional and global climati c records 

Figure 5.6 shows a timeline comparing the occurrence of travertine on the 

Little Grand Wash and northern Salt Wash graben faults with both regional and 

global records. If climate is having an effect on the switching of these travertine 

mounds then it would be likely that a similar pattern of deposition/precipitation will 

be seen in the Little Grand Wash and Salt Wash graben field areas, and with 

spring deposits elsewhere in the region.  

A study on travertine deposits by Szabo (1990) from the Grand Canyon 

produced thirteen travertine U-series dates, of which nine cover a similar timescale 

to the mounds in the present study. Szabo (1990) divides these nine dated 

mounds into three distinct groups which he attributes to being controlled by long-

term fluctuations in the regional climatic pattern, especially in periods of increased 

effective wetness. As can be seen from Figure 5.6 at first glance there appears to 

be a potential overlap of the mounds in the present study with the groups of Szabo 

(1988). However, the youngest group of Szabo (1990) spans a ‘gap’ in the 

potential overlap of precipitation between the Little Grand Wash and Salt Wash 

graben field sites. Plus the timing of travertine mound precipitation in the present 

study occurs throughout the predicted dry spells of Szabo’s travertine groupings. It 

is also apparent that travertine deposition has occurred throughout a period of arid 

conditions in the region as highlighted by dried out lake sediments (Jackson et al., 

2005). 

Further to a lack of a trend with local climate records, the statistical analysis 

carried out in section 4.7.6.1 showed no evidence of periodicity in either area. This 

random distribution of travertine precipitation through time should rule out climatic 

influence which tends to have a periodic pattern due to the influence of 

Milankovitch cycles such as obliquity and precession (Martinson et al., 1987). 

However, for any climate signal to be apparent in the travertine it must be 

remembered that the mound will reflect a climatic signal of the precipitation 

supplying the mound, which, as highlighted above may take thousands of years to 

travel from its source (Zhu et al., 1998). Analysis of lab precipitates from modern 

waters from both areas may represent the travel time of the meteoric water 

supplying the springs from its source ~35 km to the west (section 4.4.4). The ages 

provided by this analysis ranged from 223 ± 2 to 285 ± 5 years. This apparent 

time-lag is small enough to quickly demonstrate any climatic signal and so seems 
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to further suggest that climate is having little influence on the timing of travertine 

deposits. 

Figure 5.6 demonstrates the lack of correlation between fluid flow history on 

these faults and available climate records. This finding further backs up the results 

of statistical analysis from Section 4.7.6.1, which shows the timing of travertine 

deposition at the surface to be random. 

5.3 Internal forcing factors 

5.3.1 Fault structure and fluid flow effects 

In this section the internal features of faults will be examined in order to 

investigate their potential influence on the spatial and temporal distribution of 

travertine mounds along the Little Grand Wash and northern Salt Wash graben 

faults. The following subsections will deal with three main aspects; variation in fault 

structure, variation in fault permeability and potential fluid flow regime. As part of 

these subsections structural control on spring location, maintenance of fracture 

permeability, and the effect of CO2 on fluid flow will be discussed.   

5.3.1.1 Variation in fault structure 

Despite its importance, vertical fluid flow in faults is still not completely 

understood (section 1.3). The generally accepted three component fault zone 

model, discussed in section 1.3.2, views faults as comprising a generally low 

permeability core, surrounded by a generally high permeability damage zone of 

fractured rock that grades into undamaged protolith (Chester and Logan, 1986b; 

Antonellini and Aydin, 1994; Caine et al., 1996). Faults have been demonstrated to 

be highly heterogeneous and have complex permeability structures whose 

properties can vary both spatially and temporally (Smith et al., 1990; Forster and 

Evans, 1991; Bentley, 2008; Wibberley et al., 2008). Fluid outflow from faults 

occurs most commonly at areas of high fault propagation and interaction which 

forms sites of elevated stress termed breakdown regions (Curewitz and Karson, 

1997). This concentration of stress can lead to active fracturing and continual 

reopening of fluid-flow conduits, permitting long lived flow despite potential 

clogging of fractures due to mineral precipitation (section 5.3.2). 
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5.3.1.2 Structural setting of springs  

Modelling and field studies of fault related springs suggest that spatial 

variation in permeability strongly influences spring location (Rowland et al., 2008). 

Curewitz and Karson (1997) suggest six specific structural settings within fault 

zones which can instigate low permeability and provide ideal locations for springs; 

(1) fault terminations; (2) fault overlaps or double tip interaction; (3) ‘locked’ fault 

intersections; (4) ‘slipping’ fault-intersections; (5) fault traces; and (6) asystematic 

with respect to the fault (Figure 5.7). Examples of these regimes can be found 

throughout the central part of the western U.S. Both ambient and hydrothermal 

fault related fluid flow within southern Utah and the Basin and Range province of 

north-west Nevada are reported to be preferentially associated with areas of fault 

intersection, overlap and termination (Fossen et al., 2005; Faulds et al., 2006; 

Hintz et al., 2008). 

 

 

Figure 5.7: Structural settings of springs associat ed with faulting.  

Stars indicate the location of springs in each sett ing with breakdown regions highlighted by 
shading. (A) Fault tip, (B) Fault tip interaction a rea, (C) Locked fault, (D) Fault trace, (E) 
Slipping fault intersection, (F) Asystematic. Setti ngs A-C dynamically maintained, D-E 
kinematically maintained. After Curewitz and Karson  (1997) and Anderson and Fairley 
(2008). 
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In the present study ancient and modern travertine deposits along the Little 

Grand Wash and northern Salt Wash graben faults are mainly located in the 

immediate footwall. Fault traces mark the intersection of fault planes with the 

Earth’s surface and can show the topographic expression of an active fault or 

deep levels of an inactive fault exposed by erosion. In addition to occurring on the 

fault trace travertine mounds in the Salt Wash graben occur significant distances 

away (up to 530 m) from the fault. These deposits fall under the asystematic 

regime of Curewitz and Karson (1997) as they are not closely associated with the 

northern Salt Wash graben fault trace. The host rock for these mounds is the 

highly porous Entrada Sandstone (Table 5.1). It is likely that this exposed aquifer 

unit is providing high permeability conduits for fluid flow away from fault. This 

theory is supported by the close proximity of travertine deposits to reduced host 

sandstone which suggests previous fluid flow (Dockrill and Shipton, 2010). 

5.3.1.3 Variations in fault permeability 

Previous work carried out to characterise permeability variations within fault 

zones is sparse (Lopez and Smith, 1996). Concentration of flow through areas of 

structural complexity is demonstrated by work on an active fault zone in the Great 

Basin extensional province in Idaho by Fairley et al., (2003), Fairley and Hinds 

(2004a; 2004b), and Anderson and Fairley (2008). Although active, the faults 

described in this area are analogous to those in this study as they are all normal 

dip-slip faults with a predominantly low permeability fault zone. Springs are found 

above a relatively few, spatially discrete, high permeability channels. Variation in 

temperature of both springs and soil in the area of the Idaho faults highlight the 

presence of these channels. Temperature in this case was treated as a proxy for 

permeability, as the two are roughly proportional, at least over a limited range 

(Fairley et al., 2003; Fairley and Hinds, 2004b). Variogram modelling, indicator 

kriging and Gaussian simulation allowed for a geostatistical analysis and the 

production of a composite image of the temperature distributions emanating from 

the discharge of hydrothermal fluids along the faults (Anderson and Fairley, 2008). 

As permeable pathways in hydrothermal systems are generally maintained by 

fracturing (Hintze et al., 2008), high temperature areas were postulated to 

correspond to areas of increased fracture propagation. Even with this advanced 

information on fault structure and fluid flow in comparison to the present study, 

Anderson and Fairley (2008) found this data to still be insufficient to uniquely 
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determine the structural setting of the springs. They base their final conclusion on 

the observed distribution of temperatures, which is consistent with the location of 

the study area in a fault tip-line region or a releasing step with in an obliquely 

slipping fault interaction area (Anderson and Fairley, 2008). 

5.3.1.4 Maintenance of fracture permeability 

Fault slip can give rise to anisotropic permeability as bands of fault gouge 

and cataclasite develop into highly fractured conduits of rock parallel to the fault 

zone (Scholtz and Anders, 1994; Dockrill, 2006; Wibberley et al., 2008). This 

mechanism may create fracture permeability along irregular fault surfaces and 

promote the channelling of fluid flow vertically up the fault zone to the surface 

(section 1.3.2.3).  

The permeability of fluid flow channels in faults can be maintained by one of 

two main mechanisms- ‘dynamic’ or ‘kinematic’ (Figure 5.7, Curewitz and Karson, 

1997). Fracture permeability maintained by kinematic systems is limited to the 

immediate vicinity of the fault and depends on active slip of the fault to re-open 

pre-existing fracture networks. Of the structural setting discussed earlier (section 

5.3.1.2) Curewitz and Karson (1997) state that slipping fault intersection and fault 

trace regimes are maintained by this system. Dynamic maintenance of fluid flow 

pathways is dependant on continued fault propagation or interaction. As this 

system leads to stress concentration and fracturing away from the fault it is usually 

associated with the fault propagation, fault interaction and locked fault intersection 

regimes (Curewitz and Karson, 1997). 

The location of spring deposits along the normal faults in the present study 

is mainly indicative of a fault trace structural regime. As highlighted above this is 

regime is mainly associated with kinematic fracture maintenance, which relies on 

continual fault movement. However, as discussed previously (section 5.2.1.1) both 

geomorphological and radiometric evidence suggests there has been no 

movement on the faults in this study for at least 190 ka, ruling out this method of 

pathway maintenance. Evidence for stress build up in dynamically maintained 

cases can include microearthquake swarms, aftershock concentrations and arrays 

of microfaults and fractures (Curewitz and Karson, 1997). Historical records of 

activity on both faults are poor and the subsurface structure of the faults is poorly 

understood, as such there are no specific data for stress build up on either fault. 
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Due to the evidence against recent movement on these faults (section 5.2.1.2) and 

the lack of evidence for continual fracture propagation it is unlikely that the fluid 

flow pathways in this study are being dynamically maintained. There must be 

some other mechanism at play which allows for maintenance of the fluid flow 

pathways in static fault conditions. Fracture analysis along the Little Grand Wash 

fault demonstrate higher fracture density around relay zones than in structurally 

simpler sections of the fault (Dockrill and Shipton, 2010). Travertine mounds on 

the clay rich host rocks of the Summerville and Morrison Formations are also 

restricted to fault bends and relay zones. Both of these observations suggest that 

permeability pathways are preferentially associated with more structurally complex 

sections of the fault (Dockrill and Shipton, 2010). It is possible that irregularities on 

the fault plane are creating small pressure shadows with small shear strain in 

comparison to the rest of the fault (Gartrell et al., 2003). Relief of shear strain 

around these zones of structural complexity may allow for the maintenance of 

fracture width within them and lead to the promotion of fluid flow.  

5.3.1.5 Potential fluid flow regime 

Fluid flow patterns can be affected by both pressure and temperature 

gradients and the permeability of the rocks encountered by the fluids (Xu et al., 

2003). Mathematical and numerical models constructed by Lopez and Smith 

(1995; 1996) to map permeability space provide four possible fluid flow regimes 

within a fault zone: conductive, advective, steady convective and unsteady 

convective. The regime present in a particular fault zone depends on the 

permeability of both the protolith and the fault zone components. Conduction can 

only occur at low fluid velocities because molecule motion in the fluid becomes 

less random and more directed by higher fluid flow rates. Further increase in 

velocity of fluid flow leads to an advective regime in which fluid flow in the protolith 

is directed towards the fault plane and fluid is discharged vertically at the fault 

trace. As the fault zone becomes more permeable convective circulation is 

established. This can take one of two forms which depend on the permeability of 

the fault zone. Steady convection dominates at lower permeabilities and can 

establish a large scale steady flow pattern whereas unsteady convection creates 

smaller more chaotic fluid flow cells at high velocities. Lopez and Smith plot the 

relationship of these regimes in a base diagram of country rock permeability 

against fault rock permeability (Figure 5.8). 



Chapter 5  Implications for fluid flow 

March 2010  Neil M. Burnside 201 

 

Figure 5.8: Plot of protolith against fault permeab ility for fluid flow regimes 

Figure expanded from the base case of Lopez and Smi th (1995). The four different regimes 
are shown constrained by the range of permeabilitie s of the protolith and fault that support 
them. The permeability of the Navajo aquifer is sho wn by the red line. Boundaries between 
the regimes can vary with length, depth and width o f the fault zone. Even with changing the 
parameters of the fault zone, the Navajo aquifer al ways plots in the advective regime. 

 
The average permeability of the Navajo aquifer, the main source of waters 

to the springs in both the Little Grand Wash and Salt Wash graben (Section 3.4.2), 

is 4.5 x 10-13 m2 (Table 5.1, Figure 5.8). When this is plotted against the base 

diagram of Lopez and Smith (1995) it occurs in the advective regime for all fault 

permeabilities. This may form a good approximation of the fluid flow regime in the 

Little Grand Wash and northern Salt Wash graben faults as Lopez and Smith 

(1995) state that as permeability is the dominant factor, results plotted in 

permeability space can provide general guidance in anticipating large scale 

hydrologic features of a fault zone. However, solely taking the permeability of the 

Navajo aquifer as the bulk protolith value provides only an idealised homogeneous 

case when in reality vertical fluid flow up the Little Grand Wash and northern Salt 

Wash graben faults encounters a series of stacked aquifers separated by 

impermeable limestone and clay rich shales. The fact that both faults in the 

present study demonstrate evidence of heterogeneous permeability along strike 
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(Dockrill and Shipton, 2010) adds further complications to any generalisation of 

fluid flow regime. In a second paper Lopez and Smith (1996) do add anisotropic 

fault permeability to their fluid flow model by altering vertical permeability with 

respect to horizontal permeability. However, permeability variation in either of 

these orientations is not modelled or discussed. 

For heterogeneous faults with isotropic permeability the location of springs 

in the advective regime is determined by the large scale alignment of higher 

permeability zones in the dip direction of the fault. This alignment of higher 

permeability zones can be defined in terms of connected pathways along which 

the permeability is everywhere greater than the effective permeability of the fault 

zone (Silliman and Wright, 1988; Lopez and Smith, 1996). A combination of the 

spatial variation in permeability, the depth of the fault zone and the spatial 

distribution of fluid input from the country rock could form a control on the spacing 

between springs at the trace of a fault zone. Smaller lengths between permeable 

pathways lead to more defuse flow, with closely spaced discharge sites having a 

relatively lower rate of groundwater discharge. The travertine of the northern fault 

of the Salt Wash graben may reflect this pattern as their locations are more tightly 

spaced in comparison to Little Grand Wash fault travertine (Figure 4.2), they are 

generally smaller and thinner than the Little Grand Wash travertine (section 4.7.3) 

and they are also the result of more diffuse flow to the surface due the porous 

Entrada Sandstone host rock (section 5.3.1.2).  

5.3.1.6 The effect of CO 2 on fluid flow 

The fluid flowing to the surface of the field areas is rich in CO2 therefore it is 

crucial to take into account the effects that the various forms of CO2 could be 

having on the fluid flow system. Three different phases of CO2: aqueous, liquid 

and gas can be present in several different combinations in a water-CO2 system 

above freezing point (Figure 5.9). At typical subsurface conditions of temperature 

and pressure, CO2 is always less dense than aqueous fluids, therefore buoyancy 

forces will tend to drive CO2 upward towards the land surface whenever increased 

vertical permeability is available in areas of increased fracture density (Agosta et 

al., 2008; Pruess, 2005). 

An analogue for CO2 migration in a fault associated hydrological system is 

provided by the modelling of Pruess (2003; 2005) which investigates CO2 injection 
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into a geological disposal reservoir. Pruess implements numerical modelling of an 

idealized homogeneous fault zone with the simple assumption that leakage from 

the primary storage reservoir will cause the CO2 to be present at a constant 

overpressure in a small subvolume of the fault zone. The parameter of upward 

CO2 migration through permeable formations is input at rates so small so as to 

cause negligible disturbance of the in-situ pressure and temperature conditions of 

a typical crustal setting (i.e. a hydrostatic gradient of ≈10 MPa/km, and a 

geothermal gradient ≈ 30˚C/km). Geothermal gradients measured near the study 

sites provide a mean of 27.8˚C and reflect this typical value (Reitler et al., 1979; 

Smouse, 1993; Nuccio and Condon, 1996). 

 

Figure 5.9: Possible phase conditions of two compon ent water- CO 2 systems. 

Figure adapted from Pruess (2005). Letters stand fo r; a- aqueous, l- liquid CO 2, g- gaseous 
CO2. There are a total of seven separate phase combina tions including three single phase 
states (circled), three two –phase states (in squar es) and a three-phase state (large circle in 
middle). 

 
The timescale of these models is up to ~1 ka, which is two orders of 

magnitude shorter than the fluid flow history of the Little Grand Wash and northern 

Salt Wash graben faults. As discussed above in section 5.3.1.5 neither of these 

faults are as simple as an idealized homogeneous fault zone as they are 

heterogeneous with respect to vertical permeability and cut through stacked 

aquifers and caprocks of widely variable permeabilities. This model also does not 

explain the behaviour of CO2 migration pathways through fracture dominated 

caprock. Nonetheless, the models of Pruess are based on numerical simulations 

of the behaviour of water-CO2 mixtures in permeable media under typical 

temperature and pressure conditions, and therefore can provide insights to what 

happens during leakage of a CO2 charged system through a permeable pathway. 
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Figure 5.10: CO 2 saturation line and fluid pressure- temperature pr ofiles for a setting with 
typical geothermal profile. 

Figure altered from Pruess (2005). The red lines sh ow hydrostatic profiles for surface 
temperatures of 5°C and 15°C. As can be seen the pr ofile for 15°C does not pass through 
the CO 2 saturation line so flow is continual to the surfac e. For the profile of 5°C the 
saturation line is reached at a depth of ~630 m. At  this point two phase flow become three-
phase (see text) and fluid mobility drops impeding flow to the surface. 

 
When temperature at the land’s surface is increased to 15˚C in the model of 

Pruess (2005) the hydrostatic profile of rising CO2 does not pass the saturation 

line (Figure 5.10). This migration negates the liquid phase meaning that CO2 can 

pass from supercritical to gaseous conditions without a phase change. Absence of 

a 3-phase zone in this case means there is no region of severely reduced fluid 

mobility; therefore no resistance to up-flow of CO2 occurs (as seen in the early 

stage T1 of Figure 5.11). This is especially apparent near the centre of flow where 

phase interference had been the most severe during modelling of a surface 

temperature of 5˚C. As a consequence to this less plume broadening was 

observed and CO2 fluxes to the land surface had a more pronounced and 

persistent maximum flux above the CO2 leakage point. Variation in mobility of 

upwelling fluids caused by changes in ambient temperature at the surface 

suggests that climatic variation may have a direct effect on the evolution of 

pathways. As discussed in section 5.2.2.2 however there is no climatic signal 

evident in the travertine deposits of the Little Grand Wash or northern Salt Wash 

graben faults. 
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Figure 5.11: Flow through time for CO 2 rich fluid 

Figure based on a hydrostatic profile with surface temperature of 5˚C. T1- Flow is 
uninterrupted to the surface. CO 2 is initially present as the liquid phase in the up welling 
fluid and boils into the gaseous phase as it reache s the CO 2 saturation line at a depth of 
roughly 630 m. T2- As latent heat is absorbed by th e phase change process and Joule-
Thompson effect cause further cooling which interru pts phase change from liquid to 
gaseous CO 2 and a third phase, aqueous CO 2, results creating a three phase zone. As the 
size of this three phase zone increases the interfe rence between the separate phases 
strongly reduces fluid mobility and flow is impeded . T3- With time this three phase zone 
increases further and gives rise to lateral plume b roadening. An increased volume of 
upwelling fluid gets diverted around the three phas e zone and leads to more dispersed 
pattern of leakage at the surface. T4- Eventually t his diversion of flow reduces the flux of 
CO2 and cooling rates in the three phase zone. This al lows temperatures to recover, and 
boiling of liquid phase CO 2 resumes. CO 2 flux is increased and more focused as 
thermodynamic conditions return to a two phase syst em. 
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In these conditions, modelled with a surface temperature of 5˚C, CO2 

migrating from depth will remain in the liquid phase until it reaches the CO2 

saturation line (which is at temperature/pressure conditions of 31.04˚C and 7.4 

MPa- Vargaftik, 1975), where it boils into gas (Figure 5.10). This transition causes 

a large increase in volume and decrease in viscosity (Pruess, 2005). If this 

process occurs at a finite rate, it will cause formation temperatures to decline as 

latent heat is absorbed by the phase change process. Additional temperature 

decline occurs from Joule-Thompson cooling as the gaseous CO2 depressurizes 

and expands as it migrates toward the surface. As there is always an aqueous 

phase present, the region with liquid-gas CO2 conditions becomes a 3-phase 

zone. Due to temperature decline from Joule-Thompson cooling and associated 

condensation effects, the volume of this 3-phase zone increases with time. 

Interference between the separate phases leads to a decrease in the relative 

permeability of each phase and strongly reduces fluid mobility. As a consequence, 

up-flow in the CO2 charged system is impeded locally in the three phase zone 

reducing flow rate in the vertical direction and slows advancement of the liquid 

CO2. This gives rise to lateral plume broadening and over time an increasing 

fraction of the up-flowing CO2 is diverted sideways around the zone giving rise to 

dispersed CO2 discharge at the land surface. This diversion of flow reduces the 

flux of CO2 and cooling rates in the 3-phase zone, allowing temperatures to 

recover by heat conduction from the wall rocks, causing liquid CO2 to boil away. 

This will cause thermodynamic conditions to return to a two-phase system 

(aqueous-gas), increasing fluid mobility and CO2 flux. The result is a temporal 

trend in 3-phase conditions which leads to a periodicity in CO2 flux and fluid flow to 

the surface (Figure 5.11). 

Leakage rates within these models may be affected by phase change of 

CO2 as density is much lower for the gaseous than for the liquid state. A transition 

to gaseous conditions greatly increases the buoyancy forces and could accelerate 

fluid leakage, as well as causing a rapid increase in fluid pressures at shallower 

levels. This increase in fluid pressure would inevitably lead to an increase in the 

ambient pore pressure of the system. Build up of pore pressure is limited by the 

least principal stress plus the tensile strength of the pathway hosting rock (Nur and 

Walder, 1992). If this limiting stress level is exceeded hydrofracture may occur 

creating short lived but significant pathways for upward migration of fluid. This is 

accompanied by a short episode of fluid expulsion or pressure pulse followed by a 
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drop in pore pressure and sealing of the system. After another build up period, 

hydrofracture can once again occur, taking advantage of pre-existing fractures 

creating a periodic pattern in permeability of the pathway and leakage to the 

surface. Dimensional analysis of Nur and Walder (1992) estimates that these 

‘pulses’ of migrating fluid can last for 103 – 105 years which is more than adequate 

for the maximum duration of travertine deposits in the Little Grand Wash and Salt 

Wash graben. 

5.3.2 The potential effects of mineral precipitatio n 

Mineral precipitation is very efficient at filling fractures and void spaces. 

Significant mineral precipitation may occur over hundreds of years and lead to a 

reduction of permeability in fractures, inhibiting fluid circulation, and ultimately 

block discharge in the absence of any physical mechanism of permeability 

maintenance (Sibson, 1987; Anderson and Fairley, 2008; Eichhubl et al., 2009). 

The abundance of calcium carbonate in the waters leaking to the surface in along 

the Little Grand Wash fault and the northern fault of the Salt Wash graben is clear 

to see in the field with the presence of numerous travertine mounds in both 

locations. As these waters are rich with respect to calcium carbonate they provide 

a large volume of mineralising agent for the potential clogging of subsurface 

pathways.  

5.3.2.1 Mineralisation observed in the field  

Fluid pathways can become blocked by the precipitation of carbonate 

through degassing of fluid migrating from depth. Upon blockage of a pathway the 

upwelling fluid finds the next point of least resistance and flows to the surface 

along that pathway until it becomes blocked and so on. An indicator of 

mineralisation driven switching could therefore be a continuous fluid flow history 

along the Little Grand Wash fault and the northern fault of the Salt Wash graben. 

The timelines for the history of mound occurrence (e.g. Figure 5.6) demonstrate 

gaps in deposition between deposits which initially suggests that there have been 

periods of time were there has been no fluid flow to the surface. However, the 

gaps in the record have been discussed previously in section 4.7.6.2, and it is 

possible that they are actually due to one of the following factors:  
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• It is unsure how long each travertine mound has been active for as 

radiometric ages provide only a single point in time during which 

each dated mound was active. 

• An estimated minimum lifespan is available for mound L4, but the 

preservation of other mounds varies and so it is difficult to use the 

size of a mound to estimated length of activity. 

• Possible that mounds have been completely eroded away meaning 

that gaps in the record may reflect periods non-preservation rather 

than non- precipitation. 

If the gaps in the time line truly reflect time intervals of non-leakage at the 

surface then they could potentially be explained if it takes an extended period of 

time for up-welling fluid to find and exploit a new pathway once a previous 

pathway has become completely blocked by mineral precipitation. 

Investigation of travertine deposits in the northern Salt Wash graben fault 

field site gives insights to where mineralised blockage of pathways to the surface 

may be occurring. If the blockage was occurring near the surface then flow of CO2-

charged waters to the surface would be diverted around a particular leakage point 

but would remain localised to the blocked pathway due to the highly permeable 

host rocks of the Entrada Sandstone and Curtis Formation. This would give rise to 

nearby or subsidiary mounds of slightly younger age than the original spring 

deposit. There is only one location in the Salt Wash field site where there is 

evidence of similarly aged mounds in close proximity- mounds S7 and S8 (Figure 

4.2). These two deposits are 100,378 ± 562 and 106,088 ± 660 years in age and 

separated by a distance of ~ 20 m. Despite there being several other locations 

where separate mounds are found within 20 m of each other there is no further 

evidence of similarly aged mounds next to one another. The overall trend therefore 

suggests that any potential blockage of pathways is likely to be happening below 

the Entrada Sandstone and in the fault-associated damage zone fractures within 

the low permeability shales and limestones of the Carmel Formation which caps 

the Navajo aquifer. 
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5.3.2.2 Previous work on precipitation 

Published work looking at precipitation rates of veins has mainly focused on 

silica; however some of these findings along with work carried out on calcite can 

be applied to the present study. The amount of vein precipitation from a given 

volume of fluid can be influenced by several factors including; pressure, ambient 

geothermal gradient, initial saturation state, flow velocity, activity coefficients of 

ions, relative concentrations of dissolved components, the presence of reaction 

inhibitors, and in the specific case of calcite veins, PCO2 (Xu et al., 2003; Lee and 

Morse, 1999)  

Analogues for natural precipitation can be found in the work of Lowell et al. 

(1993) who use analytical models to look at isolated fractures in hydrothermal up 

flow zones and the effects of silica precipitation within them. Temperature was 

kept constant, both spatially and temporally, during this modelling in order to 

investigate the effects of both fluid flow velocity and saturation state of waters with 

respect to silica. Whilst constant temperature is not realistic in the hydrothermal 

systems that Lowell et al. (1993) are considering it may be an appropriate 

assumption for the system in the present study which is of a normal geothermal 

gradient. Precipitation rate was found to be mainly driven by degree of fluid 

supersaturation with respect to silica which in turn was found to be dependant on 

the average velocity of fluid flow as this controlled the flux of silica to the site of 

precipitation. For high flow velocities, large fracture widths, or slow reaction 

kinetics the dissolved silica gradient is diminished and no precipitation occurs. 

5.3.2.3 Precipitation rates 

Calcite is a common vein-filling mineral in rocks; however, due to a lack of 

data from subsurface fracture systems and an incomplete understanding of the 

kinetics of vein-filling, the fluid volumes and timescales required for calcite vein 

formation are hard to predict (Morse and Mackenzie, 1993). Lee and Morse (1999) 

try to resolve this situation by looking at the time and fluid volume necessary to 

form calcite veins in a synthetic situation. Their long term experiments, carried out 

at constant pressure and temperature conditions, were conducted to simulate 

calcite precipitation in veins at various flow velocities and initial solution saturation 

states with respect to calcite. The results showed that the solution to calcite 

volume ratio dramatically decreased with increasing solution saturation state for a 
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constant flow velocity. This indicates that extremely large volumes of fluid are 

required to precipitate calcite at low saturation states.  

When veins develop by fracture-channelled flow, the velocity of fluid flow 

must be fast enough to prevent uneven flow distribution along a fracture and the 

fluid has to be slightly saturated with respect to calcite with natural veins typically 

having solution to calcite volume ratios of 105 - 106 (Lee et al., 1996). Factors such 

as solution carrying capacity, the rate constant k and vein size can all influence the 

solution to calcite volume ratio (Lee et al., 1996). Taking these factors into account 

Lee and Morse (1999) suggest that timescales for vein precipitation for a given 

flow velocity may vary by an order of magnitude and so estimate precipitation 

rates of 102 ± 1
 years for cm-scale veins and 104 ± 1 years for meter-scaled veins. 

This range of estimated time scales agrees with work carried out by Fisher and 

Brantley (1992) who suggest that mm scale crack-seal veins can develop over 102 

to 104 years.  

In the present study the inner and outer edges of a 2.5 m thick vein from 

mound L4 were sampled and dated in order to determine the length of time 

required for its precipitation. The radiometric age results demonstrated that the 

vein had been precipitated over 4,298+604
-901 years (Section 4.3.3). This timescale, 

which is of the order of 4.3 x 103 years, agrees within error to the estimates of Lee 

and Morse (1999) for meter scale veins. The time averaged rate of precipitation of 

this vein, 0.51- 0.74 mm/year, may therefore represent a good approximation of 

the length of time required to completely seal fractures within the Carmel 

Formation and force up-welling CO2 charged waters to find an alternative route to 

the surface. 

5.4 Summary: The likely causes of switching 

Upon looking at the aspects discussed above it is clear that there may be a 

number of interacting factors having an effect on the switch of fluid flow along the 

Little Grand Wash and northern Salt Wash graben faults. An in-depth look at the 

climatic history of the surrounding region reveals evidence of distinct periods of 

temperature change causing intermittent periods of relative wetness. Work by 

Szabo (1988) suggests that travertine mounds deposited in the Grand Canyon 

reflect this climatic signal. Plots of the timing of travertine mounds in the present 

study against various regional and global climate records show that the timing of 
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travertine in both field sites does not seem to be concurrent with observed 

changes in the climate. As evidenced from other studies (Winograd et al., 1992; 

Zhu et al., 1998) time-lags in climatic signals due to the length of time required for 

meteoric waters to travel from their source in the San Rafael Swell to the site of 

precipitation some 35km to the east could potentially cause this discrepancy. 

However, even taking this into consideration, results of statistical analysis on the 

history of travertine deposition along both the Little Grand Wash and the northern 

fault of the Salt Wash graben do not show any evidence of periodicity in the timing 

of mounds. As no periodicity in travertine deposition exists and there appears to 

be no correlation between travertine mounds and major climatic events, this 

external forcing factor is completely ruled out as a cause of switching of pathways. 

Seismic activity on the Little Grand Wash and northern Salt Wash graben 

faults also appears an unlikely cause as radiometric and geomorphological 

evidence suggest there has been no surface rupturing on the Little Grand Wash 

fault for a minimum of ~ 137 ka and on the northern fault of the Salt Wash graben 

for at least ~190 ka. However, evidence from Yellowstone and the Geysers 

geothermal field demonstrate that large scale earthquakes can alter the 

hydrological systems up to 3,100 km distant. In order for these systems to have 

been affected the stress change resulting from seismic events must have been 

greater than 20-100 nanostrain (Rojstaczer et al., 2003). Elastic models of the 

Denali earthquake show that the resulting static stress change would have been 

too small to exceed this threshold and cause any triggering effects (Hill et al., 

1993). Large amplitude surface waves from both the Denali and Landers 

earthquakes are therefore most likely cause of triggering as they instigated 

dynamic stresses of up to 470 nanostrain (Hill et al., 1993; Rojstaczer et al., 2003; 

Husen et al., 2004). 

As both the Little Grand Wash fault and the northern fault of the Salt Wash 

graben are optimally orientated for failure in the present day ambient stress field of 

the Colorado Plateau they are potential candidates for seismic triggering. As such 

the timing of travertine mound deposition was compared to the palaeoseismic 

record of several major faults in the local region (Figure 5.5). However, due to the 

poor availability of dateable materials the palaeoseismic record for each of these 

faults has a real paucity of data extending back over the timeframe of travertine 

deposition.  
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Although it is hard to draw any correlation between earthquake events on 

these faults with switching of travertine location along either the Little Grand Wash 

or northern Salt Wash graben faults, seismic triggering is not ruled out as a 

potential cause. This is because of the sheer distance that the effects of seismic 

events can reach. It is very possible that earthquakes on faults outwith the 500 km 

radius of distant faults investigated in the present study could have created 

enough dynamic stress change for alteration of the hydrological systems in 

question, provided the seismic event’s radiated energy was focused in the 

direction of the Little Grand Wash and northern Salt Wash graben faults. 

The structure of the Little Grand Wash and northern Salt Wash graben 

faults are no doubt playing a sizeable role in at least the formation of fluid flow 

pathways. Areas of increased fracture density around fault bends and relay zones 

create regions of relatively high permeability which provide sub-vertical channels 

for migrating fluid to reach the surface. As permeability pathways are preferentially 

associated with more structurally complex sections of fracture interaction active 

pathways to the surface have potentially been maintained by zones of low shear 

strain in relation to the rest of the fault plane. 

Fluid flow effects may be a major factor in pathway switching especially with 

the hydrological systems in question being rich in CO2. Numerical modelling of 

fault related fluid flow regimes has been carried out by Lopez and Smith (1995; 

1996). Permeability is the dominant factor in these models, so results plotted in 

permeability space should provide guidance in anticipating the large scale 

hydrologic features of fault zones such as the Little Grand Wash and northern Salt 

Wash graben faults. When the Navajo aquifer is plotted on Lopez and Smith’s 

(1995) base diagram of country rock permeability against fault rock permeability it 

plots in the advective regime for all fault permeabilities. The same result occurs 

when the Navajo is plotted on the updated anisotropic version (Lopez and Smith, 

1996) which has vertical permeability four times greater than horizontal 

permeability.  

However, it should be taken into consideration that although the Navajo is 

the main source for the springs in the present study, the geological stratigraphy of 

the field area is far to complex for a singular bulk value of protolith permeability to 

be considered for accurately predicting a fluid flow regime to the surface. 

Comparisons of the fluid flow system in the present study, and indeed any system, 
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therefore require consideration of the site specific conditions for both the protolith 

and fault zone. In the case of the Little Grand Wash and northern Salt Wash 

graben faults variability in protolith values is due to the presence of strata of 

varying thickness (ranging from ~ 10-150 m for each unit- section 3.3.1) and 

composition (ranging from shales to sandstones- section 3.3.2). For the faults 

themselves the physical properties of the fault zone, such as width, depth and slip, 

and their effect on the heterogeneity of the faults permeability need to be known. 

This is discussed and speculated in sections 3.2 and 4.7.5 for the Little Grand 

Wash and northern Salt Wash graben faults, however far more detail and further 

measurement is required in order to give a conclusive answer on the fluid flow 

regime taking place. 

The various phases that fluid can take on in a water- CO2 system can play a 

key part in migration of the fluid to the surface. Numerical simulations by Pruess 

(2003; 2005) suggest that CO2 leaking along heavily permeable pathways from 

deep accumulations may demonstrate cyclical behaviour. As upwardly migrating 

liquid CO2 reaches the CO2 saturation line and it boils into gas leading to an 

increase in volume plus a decrease in viscosity. The resulting cooling of the Joule-

Thompson effect and phase interference between liquid, aqueous and gaseous 

CO2 results in a strong reduction of fluid mobility. CO2 flux above the original 

leakage point declines and up-welling fluid is diverted around the 3-phase zone 

creating new leakage points at the surface. Diversion of flow allows temperatures 

to recover in the 3-phase zone, which leads to a reestablishment of two-phase 

flow to the original leak point. The simulation timescales of Pruess (2003; 2005) 

are two orders of magnitude shorter than the fluid flow history recorded along the 

Little Grand Wash and northern Salt Wash graben faults, however they are long 

enough to provide an insight into the localised switching of pathways between 

mounds of similar age (i.e. <10,000 years). Above the CO2 saturation line 

increased pore pressure caused by the build up of gaseous CO2 may lead to 

hydrofracture of any blockage and the re-activation of mineralised pathways. 

Given the normal pressure and temperature conditions demonstrated by 

measurement from near the field sites (section 5.3.1.6) it is likely that the local 

CO2 saturation line will be at a similar depth, ~630 m, to that used in the 

simulations of Pruess (2003; 2005). As the depth of the Navajo aquifer is between 

600 – 800 m (Shipton et al., 2005) it is likely that the Carmel Formation will be 
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below the CO2 saturation line and that hydrofracture by this method is therefore an 

unlikely mechanism in the present study. 

Precipitation effects could also have a significant influence in the switching 

of pathways by clogging viable pathways to the surface and forcing upwelling fluid 

to find alternative routes. The histories of travertine deposition in both field sites do 

not show a continuous record of flow to the surface, however gaps in the timelines 

may be due to one or a combination of: preservation issues, uncertainties around 

the lifespans of deposits or the removal of mounds from the record by erosion. 

Alternatively these gaps may be explained if it takes considerable periods of time 

(up to 1,000s of years) for up-welling fluid to establish a new pathway to the 

surface. Work by Lee and Morse (1999) and Fisher and Brantley (1992) suggest 

that calcite veining can completely infill fractures on time scales of 102 ± 1 to 104 ± 1 

years. Radiometric dating of the inner and outer edges of the main vein of 

travertine mound L4 from the Little Grand Wash supplies an age of 4,298+604
-901 

years, which agrees with this range. The calculated lifespan of 10,740+3,544
-4,403 

years from multiple radiometric age analysis of this deposit may provide an 

analogue for how long it can take for pathways to become completely blocked by 

mineralisation at depth within the Carmel Formation. This is a minimum estimate 

for the lifespan of L4, so it is likely that this mound was actually active for longer 

than this timeframe. However, as L4 is by far the largest mound in the field, even 

with taking erosional affects into consideration, its lifespan can be taken to be the 

maximum possible age of all other travertine deposits across both field areas and 

therefore the longest timeframe required to block pathways by mineralisation. 

From the reasoning above there are realistically three separate 

mechanisms for switching of fluid flow pathways along the Little Grand Wash and 

northern Salt Wash graben faults: mineralisation, 3-phase interference and 

dynamic strain. In order to determine which of these factors was the most likely the 

timing between switching of successive travertine deposits was plotted against the 

distance between these successive mounds for both field areas (Figure 5.12). 

Upper limits of each mechanism were deduced and plotted onto the graphs in 

order to highlight zones in which they may be having an affect. The limits of the 3-

phase interference zone were based on the distance of displacement of CO2 flux 

to the surface from the longest running model of Pruess (2003). Mineralisation was 

deemed to influence switches of any distance as it is solely a ‘switching off’ 

mechanism. An upper time limit is placed on this zone by the minimum lifespan of 
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mound L4 plus its positive error (14,069 years – sections 4.3.3, 4.6.2). As dynamic 

strain is an external influence it is possible that any section of the hydrological 

system in either field site could be affected, therefore this mechanism is deemed 

capable of causing a switch in pathway of any length or any distance. 

 

Figure 5.12 shows that 3-phase interference is having a minimal effect on 

the pathways of the Little Grand Wash fault, but may be playing a decisive role 

along the northern fault of the Salt Wash graben. Eight possible switches between 

leakage points at the surface at this site occur within this zone. Examples include 

the switch sequences from mounds S7 - S35 - S8 and S2 - S28 - S26. The 

 

Figure 5.12: Plot of potential switching mechanisms . 

Plots of the age difference between successive trav ertine deposits against the distance 
between them. Each deposit was given the same maxim um lifespan (i.e. the lifespan plus 
the positive error) as the longest lived mound in e ach field area (14,069 years from L4 and 
3,593 years from S37- section 4.6.2) in order to pr ovide an estimate of the smallest possible 
time-gap between deposition of successive mounds. L ifespans that overlapped were given 
an age difference of zero. The potential mechanisms  that may have instigated the switching 
of pathway to the surface are shown by colour coded  zones. The red and green zones 
highlight the potential reach of influence of 3-pha se interference and mineralisation 
respectively (note that these overlap in the bottom  left corner). Dynamic strains, which are 
triggered by distant seismic events, are capable of  causing a switch in pathway of any 
length or any distance. Demonstration of how these switching events can occur and 
possible examples of each are given in Figure 5.13.  For clarity two switches of pathway 
from the northern fault of the Salt Wash graben hav e been omitted from the plots. These 
gaps are both >93ka and so plot solely in the dynam ic strain regime. 
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difference in the potential role of 3-phase interference in each field area is not 

surprising. This is because the flow to the surface in the Little Grand Wash will be 

restricted to damage zone fractures due to the presence of several low 

permeability sealing units between the Navajo aquifer and the surface. The 

northern fault of the Salt Wash graben is less restricted as once flow has 

penetrated the sealing Carmel Formation it only has to pass through the Entrada 

Sandstone, and unconfined aquifer unit, to reach the surface. 

As it is solely a ‘switching off’ mechanism mineral precipitation is the 

simplest method to explain changes in flow to the surface and it is likely to be the 

main cause of switching between mounds less than ~10 ka apart. This is shown by 

Figure 5.12 which shows that most of the switches in both field areas fall within 

this zone. Switches with zero time gap (when lifespans are taken into 

consideration) between precipitation of one mound and the next suggest periods 

of ~ continual flow to the surface and are the most likely to have been caused 

blockage of pathways due to mineralisation. 

Dynamic strain can affect any switch shown by fluid flow pathways in both field 

areas. What is interesting from Figure 5.12 is that there are several switches in 

pathway outside of the zones of precipitation and 3-phase interference which 

implies that four of the switches on the northern Salt Wash graben fault and one of 

the switches on the Little Grand Wash fault are likely to be the result of triggering 

by dynamic seismic strain. This suggests that for these switches dynamic strain 

isn’t only unblocking mineralised fractures associated with the current leakage of 

CO2 charged ground waters, but is creating new pathways for the present fluid 

flow system. It is possible therefore that induced seismicity may be able to further 

rupture tight fracture sets or previous episodes of veining with the caprocks (which 

are not associated with the current fluid system) of the Little Grand Wash and 

northern Salt Wash graben faults. 

Though it should be noted that the zones only provide guidelines on what 

mechanisms could be causing the switching of pathways the fact that there is 

potentially a difference in the dominance of mechanism in each field area 

highlights an important point. Most modelling of fluid flow and fault systems looks 

at ideally homogenised faults within a single, usually permeable media or protolith. 

As discussed above this is not representative of natural systems which will show 

significant variation in structure and permeability. The case presented here shows 
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that the behaviour of fluid flow switching in a system confined to damage zone 

fractures, the Little Grand Wash fault, and a system leaking through an unconfined 

aquifer and perhaps analogous to previous modelling attempts, the northern fault 

of the Salt Wash graben, may be different. This means that a large number of 

previous simulation and modelling on fault systems are inappropriate for cap rock 

failure within systems of more complicated stratigraphy. The present study also 

provides an insight as to how fracture controlled permeability can evolve in space 

and time and shows that fluid flow pathways can switch along multiple locations on 

faults, therefore demonstrating that leakage through sealing lithology doesn’t 

necessarily have to be restricted to a single point. 

 

 

 

Figure 5.13: Methods for switching of fluid flow pa thways. 

Conceptual models for switching of pathways via min eral precipitation, 3-phase interference 
and dynamic strain. (A) Precipitation of calcite wi thin the damage zone fractures of the 
Carmel Formation, the sealing lithology of the Nava jo aquifer, can lead top blockage of fluid 
flow pathways at depth and abandonment of travertin e precipitation at the surface. As 
shown from Figure 4.19 leakage starts at a central point around the axis of the Green River 
anticline and spreads outwards in both directions a long strike of the faults with time. This is 
consistent with the central point of the anticline supporting the thickest accumulation of 
CO2 charged ground water and therefore the greatest he ad. (B) Phase interference between 
gaseous, aqueous and liquid CO 2 within the up-welling groundwaters can lead to a z one of 
low fluid mobility around the CO 2 saturation line due to the temperature drop associ ated 
with the boiling of liquid CO 2 and the Joule-Thompson effect. This can divert flo w of up-
welling fluid to the surface. Drop in flow to the c entre of the zone of phase interference 
allows temperatures to recover and the 3-phase zone  to dissipate, allowing for fluid flow to 
resume along the original pathway. Eventually the p athway will become blocked by 
mineralisation within the Carmel Formation. A possi ble example of this method of switching 
is shown by mounds S7, S8 and S35 (Figure 4.2B) alo ng the northern fault of the Salt Wash 
graben. (C) Dynamic strain, induced by dynamic wave s from distant seismic events can lead 
to the unblocking of mineralised pathways and the r e-establishment of former fluid flow 
pathways. This can allow once abandoned sites to be come re-activated at the surface. 
Mounds L5, L6 and L7, which all occur within ~50 m of each other along the Little Grand 
Wash fault (Figure 4.2A) demonstrate that fluid flo w pathways may become re-used. 
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Figure 5.13: Methods for switching of fluid flow pa thways. 
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6 Calculation and risk assessment of CO 2 leakage 

6.1 Introduction 

Dating and measurement of the physical dimensions of travertine deposits 

along both the Little Grand Wash and northern Salt Wash graben faults has 

allowed approximate values for proportion and rate of CO2 leakage to the surface 

to be determined for both field sites. These values come with an appreciation of 

the large errors involved with the estimation of the volume of travertine deposits 

(which include area and thickness measurement- section 4.6). This chapter will 

demonstrate the necessary calculations in section 6.2 before going on to discuss 

the results for both the faults in the present study and their implications for 

anthropogenic storage sites in section 6.3 . Finally, to conclude, section 6.4 will 

form a risk assessment of the leakage along the Little Grand Wash fault and the 

northern fault of the Salt Wash graben and go on to present general findings 

applicable to the consideration of leakage in anthropogenic CO2 storage sites. 

6.2 Quantity and leakage rates of CO 2  

6.2.1 Total volume of leaked CO 2  

To convert the volumes into CO2 mass leaked to the surface, a series of 

basic calculations need to be conducted (Dockrill, 2006). Firstly, the total mass of 

travertine along each fault is calculated by: 

3330 CaCOCaCOCaC VM ρ=  

Equation 6.1 

 

Where ρCaCO3 equals the average density of calcium carbonate (2,800 

kg/m3) and VCaCO3 is the total volume of travertine. The total proportion of CO2 

within this mass is calculated as follows; 
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Where MMCaCO3 is the mass of travertine, MMCO2 is the molar mass of 

carbon dioxide (44 g) and MCaCO3 is the molar mass of calcium carbonate (100.1 

g). The total mass of CO2 that has leaked to the surface along each fault is 

calculated by: 

2

2
2

CO

CO
TCO X

M
M =  

Equation 6.3 

 
Where MCO2 is the mass of CO2 precipitated in the travertine and XCO2 is the 

proportion of CO2 leaked to the surface that is precipitated as travertine. 

Geochemical modelling using measured water chemistry from the Crystal Geyser 

by Heath (2004) suggests that approximately 10% of leaked CO2 is precipitated 

while the remainder is either vented as a free gas into the atmosphere or retained 

in solution. This value is based on the assumption that no free phase CO2- gas is 

present and that there is no calcite in solution, which may be appropriate due to 

the likely hood of the Navajo aquifer being below the CO2 saturation line. Heath 

(2004) used Phreeqc 2.8 to model the solution, which was equilibrated with 

respect to calcite and atmospheric CO2 (PCO2 = 10-3.5 atm). Although no errors on 

this estimate are provided a sensitivity of ± 5% (equal to an error of ± 50%) on 

Heath’s (2004) XCO2 is applied to the results of the present study in order to 

produce a likely range for fixation of CO2 during precipitation of travertine mounds. 

The results of these calculations for total and modern leakage in both field 

areas are presented in Table 6.1 and Figure 6.1. Also included within these results 

are the leakage estimates of mound L4 and for the last ~113 ka of the northern 

fault of the Salt Wash graben, which was calculated to provide further comparison 

between the two field sites. The estimated total amount of CO2 to have leaked 

(taking XCO2 = 10%) along the Little Grand Wash and Salt Wash graben faults 

since the precipitation of the oldest remaining travertine deposits each area is 1.3 

x 106 ± 3.6 x 105 tonnes and 9.8 x 105 ± 2.7 x 105 tonnes respectively. For the last 

~113 ka the total CO2 to have leaked from the Salt Wash graben is 7.4 x 105 ± 2 x 

105 tonnes, a total that is just over half of the volume of CO2 leaked from the Little 

Grand Wash fault over the same time period. Indeed the total amount of CO2 

leaked from mound L4, 8.6 x 105 ± 2.3 x 105 tonnes on the Little Grand Wash fault 

is greater than this. These conservative estimates of leakage, due to all ancient 

mounds having been eroded to a varying degree, may be demonstrating that less 
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CO2 has been leaked to the surface in the Salt Wash graben or, as discussed 

previously in the thesis, that erosion may have had a greater affect on travertine 

along the northern fault of the Salt Wash graben (sections 3.5.4.1 and 4.7.3).  

In order to give a maximum value, and test the two theories above, worst 

case scenarios for proportion of leakage in both field areas were estimated by 

attributing each mound across the two field areas with the same dimensions as 

that of the largest mound in each area (L4 and S37). The results of these 

calculations, which are presented in Table 6.2, were deduced by considering every 

ancient mound to have the same dimensions as that of the largest deposit in each 

field area. The results of this scenario produced a total leaked mass of CO2 almost 

five times greater than the minimum estimate for the Little Grand Wash fault (6.2 x 

106 ± 1.7 x 106 tonnes) and over seven times that of for the northern fault of the 

Salt Wash graben. (7.4 x 106 ± 2 x 106 tonnes). These estimates of maximum 

volumes of leakage show that the Salt Wash graben could have leaked a greater 

mass of CO2 into the atmosphere over its entire history than the Little Grand Wash 

fault. However, when only the last ~113 ka of Salt Wash graben leakage (5.3 x 106 

± 1.4 x 106 tonnes) is compared to the Little Grand Wash it can been seen that for 

the same timescales of worse case leakage scenario that the Little Grand Wash 

has still leaked a larger amount of CO2. 

Larger scale leakage on the Little Grand Wash fault is also reflected by the 

amount of CO2 leaked from currently active travertine spring deposits. The mass 

of CO2 leaked from the Little Grand Wash (2.2 x 105 ± 6 x 104) is over five times 

greater than that of the northern fault of the Salt Wash graben (4.1 x 104 ± 1.1 x 

104), despite there only being one site of active leakage there in comparison to six. 

This may be an unfair comparison as mound L1, the Crystal Geyser, is definitely 

the result of anthropogenic drilling as evidenced by drilling records of the Glen 

Ruby #1-X exploration well (section 3.4.5). Though it is not totally certain whether 

all of the active Salt Wash graben deposits are man-made or natural, the presence 

of well casing around mound S45, the Ten Mile Geyser, and the low estimated 

lifespans (<87 years) of the rest of the deposits suggests that are all the result of 

exploration drilling (section 4.7.4). Nevertheless drilling records for any of these 

sites are non-existent so total depths and the stratigraphy they intercept is 

unknown.  
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Table 6.1 CO 2 leakage and flux estimates. 

Totals are derived from the calculations of equatio ns 6.1 – 6.4. Every value based on the volume of de posits is attributed with a ±27% error, 
whilst flux is attributed a total error of ± 46% as  it is calculated from volume of CO 2 leaked (±27%) and the area of deposits (±19%). Lea ked CO 2, 
CO2 leakage rate and CO 2 flux are all presented with the estimation of Heat h (2004) for CO 2 precipitated within travertine mounds ( XCO2 = 10%) 
and also with a sensitivity of ±5% on this value. F lux was considered for switching on/off of leakage at the surface by taking into account the 
sum of all the mound lifespans in each field area a nd using this value for time in the flux calculatio n. This value is therefore the time averaged 
flux for the minimum length of time of travertine p roduction through out the history of leakage. 
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Table 6.2: Worst case scenario for leakage and flux  of CO 2. 

To determine the worst case scenario figures for le akage from ancient travertine every 
mound was attributed with the same volume and area of that of the largest deposit of each 
area, L4 (69,660 ± 18,808 m 3/ 11,610 ± 2,206 m2) and S37 (14,768 ± 3,987 m 3/ 6,296 ± 1,196 
m2). Intermittent flux is calculated by superimposing  the lifespans of mounds L4 and S37 on 
the rest of the travertine mounds from the Little G rand Wash and northern Salt Wash graben 
fault field sites respectively. 
 
6.2.2 Leakage rates and Flux 

The estimates of CO2 mass leaked to the surface along the Little Grand 

Wash and northern Salt Wash graben faults carried out above enables calculation 

of leakage rates and flux for both ancient and modern travertine deposition. The 

maximum travertine age for each field site combined with the calculated mass of 

leaked CO2 gives a time averaged leak rate of 11.6 ± 3.1 tonnes/year and 2.4 ± 

0.6 tonnes/year for each fault, while taking only the last 113 ka for the northern 

fault of the Salt Wash graben, a timescale which matches the total length of 

activity for the Little Grand Wash fault, a leak rate of 6.5 ± 1.8 tonnes/year is 

apparent (Table 6.1, Figure 6.1). Taking the worse case scenarios into account the 

Little Grand Wash fault (55 ± 15 tonnes/year) and the last 113 ka for the northern 

fault of the Salt Wash graben (47 ± 13 tonnes/year) produce similar results (Table 

6.2). This suggests that natural leakage in both areas may have progressed at a 

similar rate over time.  

The leakage rate of mound L4 was estimated as radiometric dating of 

multiple samples provided a minimum lifespan for this deposit (section 4.3.3). This 

individual mound provides a CO2 leakage rate of 79.8 ± 21.6 tonnes/year which is 
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eight times more than the time averaged leakage rates for all mounds over the last 

114 ka along the Little Grand Wash. As the total represents the leakage rate for 

the entire lifespan of a deposit it may provide a good estimate of actual leakage 

rate during natural travertine deposition. This would suggest that individual 

mounds represent leakage rates that can vary widely from the overall leakage of 

the faults.  

Modern leakage rates are far in excess of the leakage rates provided by 

ancient deposits (Figure 6.1). Mound L1, the Crystal Geyser, produces a leak rate 

of 3,153 ± 851 tonnes/year, whilst the combined total for the six active mounds of 

the northern fault of the Salt Wash graben gives a rate of 578 ± 156 tonnes/year. 

As this latter rate is far in excess of the worse case scenario for the northern Salt 

Wash graben fault and that calculated from the ancient L4 mound it further 

suggests that these deposits are man-made in nature. 

An alternative measurement of CO2 leakage commonly used in risk 

assessment is flux (Oldenburg and Unger, 2005). Flux is a measure of the rate at 

which CO2 passes out of the ground per unit area; 

tAMFLUX //=  

Equation 6.4 

 
Where M is the leaked mass of CO2, A is the area of emission at the 

surface defined by the areal extent of travertine deposits and t is the total duration 

of leakage. The time averaged CO2 flux over the entire histories of the Little Grand 

Wash and northern Salt Wash graben faults are 1.1 ± 0.5 and 0.07 ± 0.03 

g/m2/day respectively. Over the last 113ka, flux for the northern fault of the Salt 

Wash graben increases to 0.26 ± 0.12 g/m2/day. As the flux values for each area 

are time averaged values they represent an underestimate due to the forced 

assumption that all travertine sites were active after initiation. Additionally, the fact 

that the cross-sectional area of the vent at each mound will be smaller than the 

total mound area makes these values lower bounds to the total time-averaged flux.  
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Figure 6.1: Plots of total leakage and leakage rate s. 

For both plots data from the Little Grand Wash faul t is shown in green and data from the northern faul t of the Salt Wash graben 
in red. (A) Plot of total leakage. (B) Plot of leak age rates. Note that the y-axis is logarithmic in scale in order to show all r ates.  
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By taking the sum of all the estimated lifespans of travertine in each area an 

appreciation of flux during only periods of travertine deposition can be obtained. 

This is shown in Table 6.1 as the flux value for the switching on and off of leakage 

to the surface (as the totalled lifespans are less than the recorded history of 

leakage along each of the faults), and results in an increase flux value for both 

field sites. In the worst case scenario for leakage shown in Table 6.2 these 

switching on and off flux values are severely reduced because the summed 

lifespan of all the mounds (which have all been attributed with the same lifespans 

of that of the longest lived travertine deposits) in this scenario are far greater than 

the sum of estimated lifespans in Table 6.1. Perhaps a far more useful tool in this 

case for flux during the precipitation of natural travertine deposits is the CO2 flux 

result for mound L4, 18.8 ± 8.7 g/m2/day. The estimated CO2 flux of modern 

springs along both the Little Grand Wash (1,472 ± 677 g/m2/day) and northern Salt 

Wash graben (180 ± 83 g/m2/day) faults provide an indication of the present day 

flux values and are again far greater than the flux calculated from the ancient 

deposits (Table 6.1). 

6.3 Discussion 

6.3.1 Comparison with other leakage rate estimates on LGW 

A contemporary study using aerometric measurements to quantify the mass 

of CO2 emitted from the Crystal Geyser estimated a discharge rate from 48 hours 

of observation of ~12,000 tonnes of CO2 per year (Gouveia et al., 2005). The 

discrepancy between this estimate and the values found in the present study could 

be down to various factors. The leakage rates within the present study have used 

a value of 10% from the modelling of Heath (2004) for the proportion of CO2 

leaked that is precipitated within the travertine mounds. It is possible that this 

could be an over-estimation. When a sensitivity of 50% is taken into consideration 

for Heath’s (2004) results and the amount of leaked CO2 considered to be 

captured by travertine deposition is lowered to 5% then a leakage rate of 6,307 ± 

1,703 tonnes/year is resultant for mound L1 (Table 6.1). However, this is still half 

the rate found by Gouveia et al. (2005) so other effects must be taken into 

consideration. There is also evidence that suggests not all the CO2 migrating to 

the surface comes from discharge of the Crystal Geyser. Soil flux measurements 

from along the Little Grand Wash fault showed anomalies above background 
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coinciding with the fault trace (Allis et al., 2005). The highest flux, >700 g/m2/day 

CO2, which translates to >256 tonnes/year from this single point, was located on 

an outcrop of L2 close to the active L1. Supporting evidence for leakage of gas to 

the surface comes from the observation of gas bubbles along a ~50 m stretch of 

the Green River from the fresh travertine below the geyser to the remnant of 

mound L2 on the opposite shore.  

Alternatively the rate found by Gouveia et al. (2005) may be an over-

estimation as the sampling of the Crystal Geyser was only carried out over 48 

hours. It is possible that this was a particularly active 48 hours in comparison to 

the long term or even yearly average. Clarification of this difference could 

potentially be solved through more in-depth monitoring and measurement of 

emissions of the Crystal Geyser over a longer time period, say several months to a 

year, to gain a more accurate estimate. 

6.3.2 Comparison with other natural CO 2 sources 

Despite the relatively high modern leakage rates outlined in section 6.2.2 

the impact of CO2 leakage to the surrounding environment of both the Little Grand 

Wash and Salt Wash graben is minimal. To put this leakage into perspective, the 

various flux measures are presented in Table 6.3 in comparison to flux rates 

reported from other sedimentary basins, geothermal fields and observation of 

other natural sources of CO2 emission. 

The Mátraderecske field, situated in northern Hungary, leaks gas with 95% 

CO2 content from a strongly weathered Eocene andesite aquifer from a depth of 

~500m (Streit and Watson, 2004). Leakage to the surface mainly occurs vertically 

through fault conduits in the overlying Eocene and Oligocene clays and sands, 

and the CO2 is thought to originate either from nearby deep polymetallic copper-

zinc mineralisation (Pearce et al., 2002) or from volcanic CO2 (Streit and Watson, 

2004). The CO2 in this field is leaking from a largely unconfined aquifer unit with 

sections of missing local sealing lithologies that allows gas to escape directly 

(Pearce et al., 2002). The average CO2 flux to the surface in the area is 235 - 470 

g/m2/day (Pearce et al., 2002). 
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The Rapolano fault forms the eastern border of the Siena-Radicofani basin 

in Tuscany. This is one of the most vigorous CO2 leakage sites in Italy due to the 

highly permeable Pliocene sandstones and high CO2 pressure gradients due to a 

deep geothermal reservoir (Etiope et al., 2005). Leakage of CO2 is unconfined in 

this area as confining Pliocene clay caprocks found elsewhere in the Siena-

Radicofani basin are absent (Etiope et al., 2005). The source of the CO2 is thought 

to be sourced from low enthalpy geothermal fluids (Etiope and Lombardi, 1995; 

1997). Similar to the present study, previous leakage of CO2 to the surface is 

evidenced by ancient travertine deposition in the form of a 150m long ridge along 

the fault at Terme S. Giovanni (Etiope et al., 2005). CO2 flux from this fault is of 

the order of 2.3 – 3,076 g/m2/day (Morner and Etiope, 2002) whilst leakage rates 

solely from gas vents is estimated to total ~ 7,900 tonnes/year (Etiope et al., 

2005).  

The Rekjanes geothermal area is the western most system in Iceland’s 

western neo-volcanic zone. CO2 emissions from this area are localised around 3-5 

elongated north-south trending fault zones which are all thought to support a right 

 

Table 6.3: CO 2 flux measurement comparisons.  

Table showing comparison of CO 2 flux results from the present study and those foun d for 
various CO 2 sources in previous works. (a) Flux shown for tota l leakage of the northern fault of 
the Salt Wash graben is for the last ~113ka. (b) Fl ux estimates converted from µmol/m 2/s 
format to g/m 2/day format for the purpose of comparison.  
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lateral strike-slip sense of motion (Fridriksson et al., 2006). Degassing of mantle-

derived magma at a depth of 1,000 – 1,200 m is the sole source of CO2 in the area 

(Ármannsson et al., 2005). The area is devoid of any sealing units as the 

stratigraphy between the CO2 source and the surface consists of hyaloclastites 

and highly permeable Holocene lavas (Fridriksson et al., 2006). Three general 

pathways; soil diffuse degassing, steam vent discharge and gas bubbling through 

heated pools; are responsible for CO2 emissions in the Rekjanes area 

(Ármannsson et al., 2005). The combined leakage of CO2 to the surface from 

these pathways is 5,060 tonnes/year, which relates to a flux of 6,849 g/m2/day 

(Fridriksson, 2006). 

The flux measurements from the above sites are generally far greater than 

the estimated time averaged flux from the faults in the present study (Table 6.3). It 

should be noted that CO2 leakage is happening on a far larger scale at these sites 

due to the lack of confining caprocks above the CO2 sources. Further to this the 

Rekjanes geothermal area and the Rapolano fault both display enhanced CO2 

fluxes across wide areas as the leaking CO2 is actively being produced directly 

and indirectly via magmatic sources. Despite the unconfined nature of the leakage 

and the continual supply of CO2 displayed by the sites above it is interesting to 

note that the flux rates (235 to 6,849 g/m2/day) and leakage estimates (~5,060 to 

7,900 tonnes year) are of the same magnitude to that of modern day 

anthropogenic leakage at the Crystal Geyser (1,472 ± 677 g/m2/day and 3,153 ± 

851 tonnes/year) on the Little Grand Wash fault (Table 6.3).  

At maximum and minimum time averaged flux rates of 1.1 ± 0.5 to 1.7 ± 0.8 

g/m2/day for the Little Grand Wash and 0.3 ± 0.1 to 0.7 ± 0.3 g/m2/day for the Salt 

Wash graben for the last ~113 ka, natural leakage along these faults is 

comparable to natural flux from vegetated areas. An individual flux of 18.8 ± 8.7 

g/m2/day for the lifespan of mound L4 is still less than CO2 background soil flux 

recorded from highly vegetated areas above effectively sealed natural CO2 

reservoirs at Farnham Dome, Utah, and Springerville - St. Johns, Arizona, and 

towards the lower end of flux levels recorded from forest floors (Table 6.3). 

However, it must be emphasised that the flux measurements are calculated 

assuming the entire mound area rather than the vent area (which cannot be 

measured for the majority of the ancient mounds), so these are lower bounds.  
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Modern anthropogenic leakage since the drilling of exploration wells in each 

area is much higher at 1,472 ± 677 g/m2/day for the Little Grand Wash fault and 

180 ± 83 g/m2/day for the northern fault of the Salt Wash graben. Despite these 

relatively high leak rates, comparative with fumerole activity and tree kill (Table 

6.3), there appears to be no plant mortality around any of the leak sites; in fact 

slightly enhanced growth of salt tolerant plants is actually evident at some modern 

leakage sites because of the increase in water at the surface in this desert 

environment (Shipton et al., 2005). In addition there are no reports of human 

casualty in the local historical record in relation to CO2 leakage at the Crystal 

Geyser even though the area has been popular with locals and tourists since 1935 

(Shipton et al., 2005). This all suggests that CO2 leakage, even with the relatively 

high modern rates, along both the Little Grand Wash and northern Salt Wash 

graben faults poses no threat to the local ecosystem or human activity. 

Before using examples from natural accumulations in order to gain data to 

predict possible outcomes of long term anthropogenic storage, the difficulties in 

comparing different CO2 accumulations should be appreciated. This is highlighted 

by the examples used in this section because each location has different sources 

and volumes of CO2, with some leakage sites still being driven by active, present-

day production of CO2 at depth. The geology and pressure gradients are also 

different in each case, with the presence or lack of competent seals and depth of 

CO2 reservoir both having huge effects on leakage rates and flux. It is therefore 

important to note that each of these cases are likely site-specific. For a true 

appreciation of leakage potential in future engineered storage sites, good base line 

data are essential, for instance; reservoir volume, pressure gradients, porosity, 

permeability and mechanical strength of potential pathways (caprock failure, 

damage zone failure, wellbore failure), natural in-place CO2 volume and 

generation. 

6.3.3 Implications for anthropogenic storage sites 

In order to meet global demand for reduction of CO2 emission several 

geological storage projects have been implemented and many more planned in 

order to investigate the suitability and effectiveness of CO2 capture and storage for 

cutting CO2 emissions into the atmosphere whilst allowing for the continued use of 

fossil fuels. By comparison of the Little Grand Wash and northern Salt Wash 
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graben fault systems with current anthropogenic storage sites the leakage rates 

found within this chapter can be placed further into context. Three main examples, 

the Sleipner, Weyburn and Gorgon projects, will be used within the following 

section to discuss the possible implications of the leakage rates calculated from 

the present study. These three have been chosen due to the availability of data 

and their different geological situations. In order to discuss potential leakage in 

better detail for these examples the leakage rates calculated above can be 

considered as end member analogues for caprock failure and well bore failure for 

total and modern leakage rates respectively. Since the initiation of leakage, 

migrating CO2 charged waters have used fractures within impermeable sealing 

lithologies in the damage zones of the two faults- this makes the calculated total 

leakage rates an ideal representation of leakage via caprock failure above a CO2 

storage reservoir. Although storage site may have been chosen in areas where 

fractures within caprock are deemed unlikely, such as those thought to be devoid 

of faulting, there may be previously undetected structural heterogeneities within 

the reservoir that only become apparent after injection. There is also the possibility 

of overpressuring depleted reservoirs during injection and inciting hydrofracture of 

once competent sealing lithologies. As modern leakage of mound L1, the Crystal 

Geyser, is far greater than the active mounds along the northern fault of the Salt 

Wash graben and it is definitely attributed to anthropogenic drilling- the leakage 

rates calculated from this deposit are treated as a proxy for catastrophic well 

failure. 

The Sleipner field, located in the North Sea and operated by Statoil, is used 

to store CO2 separated from natural gas production at the Sleipner West facility in 

Stavanger, Norway. Since 1996 around 1 million tonnes of CO2 have been 

injected into the base of an off-shore saline aquifer, and by the end of 2008 almost 

11 million tonnes had been stored (Hermanrud et al., 2009, Chadwick et al., 2009). 

The storage reservoir being used, the Utsira Formation is a 200-250 m thick 

massive sandstone formation located at a depth of 800-1000 m beneath the 

seabed (Chadwick et al., 2004; Zweigel et al., 2004). This is a similar depth and 

thickness to the Navajo aquifer supplying the springs in this study. Taking the 

worst case scenario for total leakage from the Little Grand Wash, it would take 

18,298 ± 4,940 years for every 1 million tonnes of CO2injected to escape from the 

storage reservoir and 201,278 ± 54,345 for the storage reservoir to become 

completely emptied via caprock failure of the sealing lithology. Taking modern 
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leakage rates, it would take 317 ± 86 years for every Mt CO2 injected or 3,488 ± 

942 years for the entire reservoir to come up a single well that failed in the style of 

the Crystal Geyser. 

The Weyburn oilfield, situated in Saskatchewan Canada, is currently being 

subjected to CO2 injection for enhanced oil recovery (EOR). Injection was initiated 

in the year 2000 and is expected to continue in phases until 2015 (Preston et al., 

2005). Currently 5,000 tonnes of CO2 are injected per day and taking into 

consideration the full length of the project it is expected that 20 million tonnes will 

be stored in the Weyburn reservoir. The injected CO2 is anthropogenically sourced 

and transported via pipeline from a coal gasification plant in Beulah, North Dakota 

320 km to the southeast. The CO2 is injected into unconformably capped Midale 

Beds reservoir, which consists of Mississippian-aged shallow marine carbonates 

1,300-1,500 m below the surface. CO2 injection is carried out to increase recovery 

of heavy oil from about 35% to 50% (Cantucci et al., 2009). Recycled CO2 

accompanying produced oil is re-captured and re-injected into the reservoir in an 

attempt to permanently store the anthropogenic CO2 in the subsurface (Jensen et 

al., 2009). The Weyburn site currently has a total of 963 active and 146 

abandoned wells within the oilfield. Although most of the estimated 20 million 

tonnes of total stored CO2 should be sequestered in left behind heavy oil, it is still 

worth noting that if one of the many active wells failed or one of the abandoned 

wells was reactivated by some means (e.g. corrosion) then it would take 1.6 ± 0.4 

years to leak back a days worth of injected CO2, or as little for 6,342 ± 1,712 years 

for the total intended stored CO2 to leak back to the surface. Should caprock 

failure occur above the reservoir at some point it would take 91 ± 25 years for a 

days worth of injection and 365,961 ± 98,809 years for the total stored CO2 to leak 

from the reservoir. 

The Gorgon project, operated by Chevron with ExxonMobil and Royal 

Dutch Shell as stake holders, is a Liquefied Natural Gas (LNG) development 

currently under development offshore of the northwest coast of Australia and is 

due to be operational within the next five years (Cook, 2009). The goal of this 

project is to tap into 40 trillion cubic feet of natural gas reservoirs within the Jansz 

and Gorgon fields to supply gas to the Western Australian domestic market 

(Reidy, 2008). Liquefaction for easier subsequent transport is carried out on the 

remote Barrow Island which is over 1,200 km from Perth, the nearest logistical 



Chapter 6  CO2 leakage 

March 2010  Neil M. Burnside 233 

staging point (Flett et al., 2009). Up to 14% of the gas transported to Barrow Island 

from the reservoirs is CO2, which has to be removed as CO2 becomes solid and 

can damage equipment during the LNG process. The CO2 will be injected into the 

sandstones and siltstones of the 500 m thick Dupuy Formation at the northern end 

of Barrow Island 2,300 m beneath the surface. The Dupuy Formation is a saline 

aquifer overlain with a thick shale caprock seal, and is intersected by the Barrow 

Island fault at the Southern end of the island. It is planned that a total of 125 

million tonnes of CO2 will be injected into the Dupuy aquifer over the lifetime of the 

project at a rate of 3.3 million tonnes per year (Cook, 2009). Although the CO2 will 

be injected at a depth of 2.7 to 3 km (and so will behave as a super-critical fluid) 

well away from the fault, should the CO2 manage to reach the fault and leak 

through fractures in the caprock at any point during active storage then using the 

rates from this study it would take 60,384 ± 16,304 years for a years worth of 

injection to escape. Should leakage occur at some point in the future after 

completion of the project it would take a total of 2,287,255 ± 617,559 years for the 

stored CO2 to completely leak to the surface. However, should the injection well or 

any sealed exploration wells in the area fail then leakage for a years worth of 

injected CO2 would take only 1,046 ± 283 years or 39,640 ± 10,703 for complete 

escape of the planned total of CO2 to be stored. 

6.3.4 Monitoring and verification of leakage 

The perfect reservoir and trap rarely exist; with most reservoirs capable of 

leaking to some degree- monitoring of anthropogenic storage sites during and 

after completion of CO2 injection is therefore vital in order to confirm the durability 

of specific sites and the feasibility of CO2 storage in geological media as a whole. 

Although monitoring is obviously already a key component of current and planned 

storage projects the leakage results from the faults in the present study may 

provide further information which can help aid the monitoring process and provide 

further guidance as to what to look out for in terms of potential leakage patterns. 

There is a range of monitoring techniques currently in use for CO2 storage projects 

(Chadwick et al., 2007) the following paragraphs discuss the efficiency of some of 

the main processes, which are applied remotely, in the subsurface or from the 

surface, in light of the findings of the present study. 
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Time lapse gravity and seismic profiles of storage sites are two methods 

that have been commonly implemented to provide a detailed characterisation of 

CO2 bodies, or plumes, and the evolution of the geology of storage reservoirs and 

caprocks in response to stored CO2 (Arts et al., 2004a; 2004b; 2008; Riddiford et 

al., 2005; Juhlin et al., 2007; Loseth et al., 2009). For offshore storage sites, such 

as Sleipner, 4D seismic can be utilised for monitoring. However, this process is 

relatively expensive and is hard to implement for onshore storage sites due to 

problems with changing weather, soil humidity and contact conditions (Michael et 

al. in press). 4D gravity is a cheaper monitoring method which works well for 

quantitative estimates of CO2 saturation in the subsurface (Arts et al., 2004a). This 

method requires a detailed understanding of the geology surrounding the storage 

site and a well characterised model for the entire geological system (Michael et al., 

in press). The scale of these methods provides a problem for the channelled and 

discrete leakage of CO2 that is evident in the present study. Seismic scan lines 

have a resolution on a scale of 10’s of meters which may miss even meter scale 

heterogeneities in structures such as faults and would certainly overlook the 

discrete pathways in this study which are likely to be of sub-meter scale. 

Microseismic monitoring is a possible way to increase resolution but this would 

involve an increased number of monitoring wells in close proximity (Teanby et al., 

2004) which may be impractical due to the scale of a storage project or inhibitively 

expensive to operate. 

Methods that rely on monitoring wells in addition to injector wells such as 

temperature and pressure profiling, geophysics and tracer fingerprinting have also 

been investigated for use in monitoring (Prevedel et al., 2009). 4D vertical seismic 

profiling and pulsed neutron logging are just two examples of geophysical methods 

(Muller et al., 2007; Daley et al., 2008) which allow for quantitative tracking of CO2 

plumes. Geophysical methods such as these run into problems when application 

to commercial scale projects with larger CO2 plumes are considered as the 

transmission distance between injection and monitoring wells may become too big 

to provide desired levels of resolution for monitoring (Chadwick et al., 2009). 

Fingerprinting of stored CO2 with non-reactive elements such as noble gases 

(Gilfillan et al., 2008; Lafortune, 2009) can allow for the verification of CO2 break 

through at monitoring wells and in various environments between the storage 

horizon and the ground surface (Stalker et al., 2009). The sheer number of wells 

required in these methods to provide a good coverage of leakage monitoring 
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above a CO2 storage site could again be impractical and costly. In addition the 

geology of the storage site would have to be intimately known so that specific 

locations where leakage is more likely to occur can be highlighted and monitored 

more intensively. 

Monitoring of CO2 leakage at the ground surface is non-invasive and can 

vary from technologies as diverse as soil flux measurement to satellite imagery. 

Soil flux has been discussed in previous sections of this chapter. Work by Allis et 

al. (2004) show CO2 soil fluxes above proven CO2 reservoirs including the field 

areas within the present study. Ordinary soil flux above Farnham Dome suggests 

that there may not be any leaking CO2, however normal fluxes are also generally 

found above St.Johns and both the Little Grand Wash and northern Salt Wash 

graben fault sites which all have evidence of leakage in the shape of travertine 

deposits. Anomalous flux levels are found next to clear examples of leakage at 

active travertine sites but the flux measurements elsewhere along the fault do not 

highlight any major leaking of gaseous CO2 to the surface. Satellite imagery, such 

as Interferometric Synthetic Aperture Radar (InSAR) had been proven to show 

increases in surface elevation in the order of 5 mm/year above CO2 injection wells 

(Mathieson et al., 2009; Onuma and Ohkawa, 2009). This method may have 

application for detecting forced increases in volume of shallower reservoirs due to 

increased pore pressures instigated by injection, which may lead to either failure of 

the injection well or hydrofracture of caprocks. However any possible variations in 

surface deformation brought about by discrete channel of leakage to the surface, 

such as demonstrated by the leakage patterns in the present study would be so 

small that they would be hard to distinguish from background variations. 

Leakage of onshore storage reservoirs will lead to CO2 release directly into 

the atmosphere. For offshore storage reservoirs, or reservoirs with large lakes 

above possible leakage, additional monitoring techniques may be required. If 

overlain by water it is possible that CO2 could dissolve upon leaking and then 

eventually discharge into the atmosphere by diffusion (Nihous et al., 2005), these 

steady leakage events would need to leave evidence of gas-release pockmarks on 

the seafloor large enough to pick up or geophysical surveys or subsurface 

pathways at a detectable scale for seismic survey (Ligtenberg, 2005; Cartwright et 

al., 2007) in order to be detected. If the leakage took place in water deep and cold 

enough then it may form hydrates on the seafloor or large supercritical bubbles of 
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CO2 which should be detectable from the monitoring of pH (Shitashima, 2008). For 

sufficiently high leakage rates CO2 may bubble through the water column and be 

discharged directly into the atmosphere (Benson and Hepple, 2005). As well as 

monitoring for pockmarks and pipes in this case satellite or aerial surveillance may 

be able to detect bubble streams to the surface. 

From the above discussion it can be seen that although several different 

technologies exist that can be used to monitor CO2 leakage from a number of 

different angles, however, taken in isolation these technologies are inadequate for 

full scale monitoring of an anthropogenic CO2 storage site during injection or after 

completion of the project. Taking the footprints of leakage only for the immediate 

area of travertine deposition surrounding the faults (~2.3 x 106 and ~6.9 x 106 m2 

for the Little Grand Wash and northern Salt Wash graben faults) in the present 

study it is evident that travertine only covers between 1 to 1.5% of each area. This 

number is even smaller when considering the well failure analogue of modern 

leakage which is between 0.1 to 0.3%. Taking these leakage patterns ground 

penetrating methods such as 4D seismic simply do not have the resolution to 

confidently detect leakage along discrete channels of high permeability. Detection 

techniques that require multiple intrusive monitoring wells also produce problems 

as without a large quantity of wells through out the storage reservoir it would be 

hard to detect leakage pathways. By introducing more wells more potential 

channels of leakage are also being introduced to a storage reservoir. This could 

be countered by having a detailed knowledge of the surrounding geology of the 

reservoir so a few key site of likely leakage can be identified and less wells need 

to be used. Surface based detection methods such as soil flux may be 

complicated by relatively high natural CO2 fluctuations within the biosphere and 

atmosphere, plus again a detailed geology must be known, especially of 

subsurface structures, so that measurement can be concentrated above likely 

areas of leakage. 

6.4 Leakage risks for storage sites 

Calculation of total leakage and leakage rates of CO2 from the Little Grand 

Wash and northern Salt Wash graben faults and an analysis of monitoring 

techniques allows for conclusions to be drawn for risk assessment of the leakage 

of CO2 in the present study, which may have important implications for 
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consideration of leakage in anthropogenic storage sites. Assessing the risk of CO2 

leaking from a storage site and the consequences of this leakage are of 

paramount importance to ensure that a geological storage reservoir is both safe 

and effective. All of the information available to a project must be used 

systematically in order to identify the sources of potential CO2 leakage and 

estimate the probability and magnitude of leakage.  

6.4.1 Site characterisation 

Both engineered and natural systems can be a very complex association of 

the geology of the reservoir unit and the stratigraphy surrounding it, structural 

features, groundwater flow regimes, fluid phase characteristics and varying well 

types. A detailed knowledge of the properties of each of these factors and the 

interaction between them should be known. Although it is desirable to select 

storage reservoirs that are structurally homogeneous it is hard to find areas 

completely devoid of faulting. Increasing formation pressures due to the injection 

of CO2 can potentially open fractures and cause slip on faults that exist in the 

reservoir (Wiprut and Zoback, 2000: Streit et al., 2005). As this can potentially lead 

to the formation of highly permeable conduits for leakage of CO2 it is especially 

important that any potential fault slip is identified. This can be achieved by 

geomechanical modelling providing that the frictional strengths of both the fault 

and protolith are known (Streit and Hillis, 2003). Firstly the state of stress, 

including stress orientation and magnitude, should be determined for all faults to 

determine if they are optimally orientated for failure within the ambient stress 

regime of the reservoir area. An analysis of pre-injection slip tendency on any 

present faults can then be carried out. If the faults are favourably orientated for 

reactivation the maximum sustainable pore fluid pressure that can be sustained 

during injection without reactivating the existing faults or inducing new fractures in 

sealing lithologies within the reservoir can be estimated (Streit and Hillis, 2003). 

The determination of factors that may affect the storage of CO2 should not 

stop at the planning stage, but rather should continue through to the completion of 

injection. This is supported by the findings of continual site characterisation of the 

Weyburn reservoir, which despite being subjected to numerous investigations of 

hydrological, geological and geochemical factors during the planning and early 

implementation phase from 2000 - 2004 (Khan and Rostron, 2004; Preston et al., 
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2005; Cantucci et al., 2009) is still being built upon by new work resulting from the 

latest phase which focuses on continual injection and monitoring. Use of additional 

wells has allowed for further information on hydrology and connectivity of 

Mississippian aquifers and the variably thick anhydrite and dolostone zones that 

cap the reservoir to be implemented into previous fluid flow models investigating 

long term fluid behaviour in the Midale Formation aquifer (Jensen et al., 2009). 

Continual characterisation is also important as features that may have originally 

gone undetected, such as subsurface and subseismic scale faulting, may be 

present and interact with the reservoir during the desired lifespan of storage to 

allow leakage. 

6.4.2 Escape scenarios 

As geological CO2 storage is a developing technology there is currently a 

lack of knowledge from which to extract historical data on all leakage risks. 

However, this should not stop potential storage sites from attempting to have as 

great an appreciation as possible for escape scenarios from the storage reservoir. 

In order to achieve this an analysis of features, events and processes (FEP) can 

be carried out (Arts and Winthaegen, 2005). Features are the physical 

characteristics of a system that can change with time such as rock, 

hydrogeological and CO2 properties. Events are discrete occurrences influencing a 

system such as seismic activity, climate change and future drilling activities. 

Processes identify the physics of a change within a system such as diffusion of 

CO2, dissolution of minerals and groundwater chemistry. The FEP’s identified for 

the present study are presented in Table 6.4. 

Some of these aspects have been discounted throughout this thesis; 

however, they were all taken into consideration for possible leakage scenarios and 

studied thoroughly in order to constrain the likelihood that they were having an 

effect on the Little Grand Wash and northern Salt Wash graben fault systems. For 

example fault activity and climatic changes have been found to be playing a 

minimal role, if any at all, on the leakage of CO2 charged water along these fault 

systems (section 5.4). The present study also demonstrates that the above factors 

can vary through time and therefore may not be constant. This is especially 

important to consider when attempting to forecast the behaviour of reservoirs once 

storage projects have been completed.  
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Table 6.4: FEP analysis for the faults in this stud y. 

 

6.4.3 Risk assessment and lessons for anthropogenic  storage 

In order for storage sites to be deemed safe and effective it must be proven 

that they can store captured CO2 on the order of thousands of years. The scale of 

the total volume of CO2 leaked from the Little Grand Wash and the northern Salt 

Wash graben fault systems (105 – 106 tonnes) is of a similar scale to the desired 

volumes of storage for small to medium scale anthropogenic sites. The worst case 

scenario for total leakage rates for these two systems over the lifespan of Little 

Grand Wash leakage is 55 ± 15 and 47 ± 13 tonnes/year and the modern day 

leakage rates of active precipitation is 3,153 ± 851 and 578 ± 156 tonnes/year. 

These two separate leakage rates provide analogues for leakage via caprock rock 

failure and for catastrophic wellbore failure as they represent the leakage of the 

natural systems and of anthropogenic exploration.  

The time averaged flux of CO2 for both field areas, even for the scenario of 

switching on and off of leakage through time, is within the rates of flux 

demonstrated by areas of natural vegetation. Salt tolerant plants thrive around 

active precipitation sites and there have thus far been no reports of human 

casualty in relation to CO2 release at the most active leakage point, the Crystal 
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Geyser. It is therefore apparent that leakage of CO2 along the Little Grand Wash 

and northern Salt Wash graben faults, even at the relatively high modern rates, 

has no adverse effect on the local environment. It should also be noted that of the 

total CO2 leaked to the surface ~10% is immediately sequestered within travertine 

deposition. This provides a relatively stable storage facility of this fraction of leaked 

CO2 although eventual erosion of mounds may lead to its eventual release into the 

atmosphere. 

Although the leakage at the Little Grand Wash and Salt Wash graben field 

sites has had no short term effect on the environment surrounding the sites, the 

radiometric dating of travertine mounds suggests that leakage has been 

consistently occurring for time periods spanning 100,000s of years. The 

recognition of this potentially constant leakage and the rates of leakage calculated 

for the present study give important information on the effects of two different 

kinds of leakage, caprock failure and well failure, on potential storage sites. Taking 

the calculated leakage rates and applying them to large scale anthropogenic 

storage sites such as Weyburn or Gorgon, which plan to capture up to 125 million 

tonnes of CO2 during their lifespans, reveals that for caprock failure complete 

leakage of these reservoirs will take place over timescales of 105-106 years. For 

catastrophic failure of a single well complete leakage of these reservoirs could 

occur over as little as 103 – 104 years. 

These figures suggest that monitoring should focus on leakage via well 

failure as the rates of leakage for caprock failure are so minimal that they are 

unlikely to compromise the net storage of a reservoir over the desired effective 

storage timescales. This is an important result for monitoring purposes as caprock 

failure could occur at any location of structural heterogeneity, which may or may 

not have been characterised in the potential storage site, and could support 

variable or switching leakage pathways over multiple locations through time, like 

those found in the present study. Even for potential storage sites of high borehole 

density the locations of abandoned wells are likely to be well documented and so 

high risk leakage sites should be readily identifiable and monitored intensely 

during and post injection of CO2.  

Several monitoring techniques should be used in order to give the best 

possible means with which to detect any leakage. The variety of monitoring 

techniques suited for a particular site can be determined from a FEP analysis of all 
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the possible leakage scenarios. For example in the present study the key feature 

of leakage to the surface is the integrity of the Summerville Formation caprock. 

Chapter 5 discussed in detail the possible causes of switching of the leakage 

pathways through time and found that new leakage pathways may be instigated by 

either mineral precipitation of other more high permeability fractures or dynamic 

stress induced by distant earthquakes refracturing calcite mineralised blockages or 

rupturing tighter low permeability fracture sets. Of the monitoring techniques 

described in section 6.3.4, only microseismics would be able to detect the non-

surface rupturing seismic waves from distant earthquake events, whilst none 

would be able to detect mineralisation at depth which would lead to a new leakage 

pathway. For monitoring of borehole failure detection of leakage is much easier as 

simple pH detectors could be utilised. This places further onus on active and 

abandoned wells as not only do they present the highest risk for leakage and are 

easier to monitor due to their known locations, the requirements for monitoring 

them are much simpler than for caprock failure. 

Leakage of any kind is not desirable for anthropogenic CO2 storage sites. If 

monitoring successfully detects leakage then remediation will need to be carried 

out in order to abate emissions into the atmosphere. Several remediation 

techniques are available depending on the type of leakage encountered. For the 

present study for example remediation of leakage from the storage reservoir and 

leakage from wells would have to be addressed. For remediation of leakage from 

the storage reservoir the pressure in the storage formation, the Navajo aquifer 

could be reduced (Benson and Hepple, 2005). This could be achieved by 

removing water from the reservoir or by injecting water or brine above the leakage 

point and increasing the upgradient pressure. This would help to stop the leaking 

by reducing the pressure gradient driving the CO2 charged water out of the Navajo 

aquifer and allowing pressure build-up on fractures within the Summerville 

Formation to dissipate which may allow them to close. 

Attempted remediation for the leakage from the abandoned wells could 

follow one of several methods, such as the injection of heavy mud or cement, 

developed for the repair of wells in the oil and gas industries (Benson and Hepple, 

2005). Alternatively research from the geotechnical industry has demonstrated that 

biological remediation of groundwater contamination can be effective (Warren et 

al., 2001; Ferris et al., 2004). These studies show that ureolytic bacteria can 
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rapidly precipitate calcite during the hydrolysis of urea. Sampling of waters during 

field work (section 4.4.4) and subsequent analysis has confirmed the presence of 

urea hydrolysing bacteria at all active leakage locations (Vernon Phoenix, personal 

communication). If also present at depth at the bases of the abandoned wells all 

that would be required would be the injection of urea to instigate calcite formation 

and blockage of the borehole. This technology may provide a better and more long 

term solution to the blockage of wells at CO2 sequestration sites as heavy mud is 

only a short term solution and cement is susceptible to degradation by factors 

such as sulphate attack, mechanical fatigue, leaching and carbonation (Preston et 

la., 2005). 
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7 Concluding remarks and suggestions for future 

work  

7.1 Conclusions 

The conclusions resulting from the work carried out within this thesis span a 

wide range of topics from radiometric dating, to geomorphology, and to vertical 

fluid flow in faults but come together to provide information about quantities and 

rates of leakage of CO2 from geological reservoirs. As the geological reservoirs in 

this study provide natural analogues for anthropogenic storage sites, the 

conclusions gained from this study have important implications for the engineered 

storage of CO2. The following general conclusions have resulted from this study. 

• Preliminary work carried out in the Gulf of Corinth, Greece, allowed for an 

evaluation of the U-series dating technique on C. caespitosa and for a slip 

rate of the South Alkyonides fault segment to be calculated. The resultant 

coral ages do not closely match sea level highstand ages. The 0δ
234U 

values of samples do not match that of seawater and get progressively 

larger with age. This shows that C. caespitosa samples form an open 

system with respect to 234U decay, a trend that appears throughout the 

published literature. Despite this trend previous works have neglected the 

anomalous chemistries and simply correlated the U-Th of coral the nearest 

sea level highstand. However, C. caespitosa specimens do not produce 

robust samples for U-series dating and can not be used in solitude for 

highstand correlation. A detailed investigation into the accuracy of sea level 

curves and of growth depth of C. caespitosa produced sizeable areas of 

uncertainty around sea level highstand age, which allows for coral of initially 

non-matching ages to be correlated to highstands. This information may 

allow coral specimens in future work to be correlated to highstand with 

more confidence. For the present study it allowed a slip rate to be 

calculated, which showed that slip rate has increased from 290 - 175 ka to 

175 - 125 ka in agreement with the results of Roberts et al. (2009). 

• There are a total of fifty-four currently active and fossil travertine deposits 

associated with the Little Grand Wash and northern Salt Wash graben 
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faults. All travertine mounds are located within the footwall of the faults and 

the geochemistry of modern spring waters are significantly different to north 

and south of each fault (Heath et al., 2009), demonstrating that the two 

faults are acting as barriers to across-fault fluid flow. The ancient travertines 

of the Little Grand Wash fault appear to be associated with areas of 

increased structural complexity, such as fault bends and relay zones. This 

suggests that fluid flow is being channelled sub-vertically up discrete 

pathways of relatively high permeability in the damage zone of the fault. 

Travertine deposits associated with the northern fault of the Salt Wash 

graben are not solely restricted to the trace of the fault due to the presence 

of unconfined aquifer units at the surface. This may explain the greater 

number of travertine deposits and more diffuse flow pattern shown by this 

area. All travertines that occur away from the fault are closely associated to 

the axial trace of the open, shallowly north-plunging Green River anticline. 

• Travertine is a terrestrial carbonate deposit formed by the emergence of 

CO2-rich groundwaters at the surface from a combination of abiotic (de-

gassing) and biotic (bacterially mediated) effects. The travertine in this 

study is composed of five distinct lithofacies, four of which are unsuitable for 

U-Th age dating as they form an open system with respect to decay of 234U 

or are prone to detrital contamination which introduces non-radiogenic 230Th 

to potential samples. The white banded vein facies provides excellent 

samples for U-Th dating as it meets all the desired criteria for geologically 

useful chronometers and is abundant in all fossil mounds. Dating of all 

travertine deposits along the Little Grand Wash fault indicates that this fault 

has facilitated the leakage of CO2-charged waters for at least 113,912 ± 604 

years, whilst dating of over half the mounds along the northern fault of the 

Salt Wash graben suggests that leakage has occurred for at least 413,474 

± 15,127 years. 

• The increasing 0δ
234U of dated samples from west to east indicates that the 

main source of 234U in the waters is likely to be leaching from the sandstone 

units of the Navajo aquifer as meteoric water travels from its source, in the 

San Rafael Swell 35 km to the northwest, to the location of precipitation in 

the field sites. This further backs up previous work which suggests that the 

source of the springs is mainly meteoric with a small contribution of brine 
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(Heath et al., 2009; Wilkinson et al., 2008; Kampman et al., 2009). The 

model of spatial pattern that best suited this scenario further suggests that 

pathways are emanating from several different locations of fracturing in the 

Navajo aquifer’s caprock, the Carmel Formation. 

• Detailed dating of a single mound (deposit L4) shows that leakage points at 

the surface may be active for a minimum of 10,740 +604
-1,486 years. This 

suggests that when fluid flow pathways are channelled through discreet 

zones of relatively high permeability in the damage zone of a fault they may 

naturally last for at least this amount of time before they become inactive. 

The dating of the inner and outer edges of the main vein from the same 

deposit gave a time average precipitation rate of 0.51 to 0.74 mm/y. This 

rate agrees with previous work on fracture sealing vein precipitation (Fisher 

and Brantley, 1992; Lee and Morse, 1999) and therefore may represent a 

good approximation of the length of time required to completely seal 

fractures within low permeability sealing lithologies, such as the Carmel 

Formation, above sub-surface aquifer units. 

• Because some mounds along the northern fault of the Salt Wash graben 

are completely devoid of layered mats, U-Th dating of this facies was 

carried out in order to quantitatively determine how closely they are 

associated with white banded veins. Ages for layered mats from Little 

Grand Wash travertine were up to 41.2% older than white banded veins 

from the same mound. This coupled with the high [230Th/232Th] of layered 

mat samples rendered this facies inappropriate of dating purposes. 

However, relatively closely matching 0δ
234U of white banded vein and 

layered mats from the same mound indicate that they were formed from the 

same waters and geochemically prove their intimate association. The 

mounds of the northern fault of the Salt Wash graben that are devoid of 

layered mats are therefore confirmed as travertine deposits.  

• The presence of carbonate-cemented river gravels within travertine mounds 

allowed for the calculation of local incision rates. These provided results of 

0.342 mm/y for incision of the Green River in the Little Grand Wash and 

0.158 mm/y for the incision of Green River tributaries in the Salt Wash 

graben. The former rate provides a further data point for river incision rates 

across the Colorado Plateau and can therefore contribute to studies on the 
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uplift of this province. The latter allowed for the ages of un-dated mounds 

along the northern fault of the Salt Wash graben to be estimated and 

therefore extended the data set for study of patterns of fluid flow to the 

surface. 

• Study of relict terraces of the Green River in the Little Grand Wash and long 

profile of the Big Bubbling tributary in the Salt Wash graben coupled with 

radiometric dating of travertine mounds rules out recent movement on both 

faults. The un-offset nature of dated travertine along the Little Grand Wash 

and northern fault of the Salt Wash graben confirms there has been no 

surface offset for at least 113,912 ± 604 and 116,788 ± 691 respectively on 

these faults. Determination of incision rates for each area allowed age 

estimates to be made for river terrace M5 in the Little Grand Wash and the 

un-dated S33 mound in the Salt Wash graben which further stretches back 

evidence of quiescence on the Little Grand Wash fault to ~ 137,000 years 

and on the northern fault of the Salt Wash graben to ~ 190,000 years. 

• Radiometric dating coupled with estimated ages (from incision rates) of 

travertine along the Little Grand Wash and northern Salt Wash graben 

faults show that the locations of fluid flow to the surface have switched 

repeatedly through time. Along the Little Grand Wash fault timing of leakage 

decreases away from a central point proximal to the axial trace of the Green 

River anticline. This suggests that initial leakage occurs from the structural 

high of the three-way trap provided by the juxtaposition of the Green River 

anticline with the Little Grand Wash fault. The northern fault of the Salt 

Wash graben demonstrates a similar pattern; however, unlike the Little 

Grand Wash fault younger deposits do not solely occur with progressive 

distance from the initial central leakage point but crop up throughout the 

area covered by travertine precipitation. The proximal occurrence of three 

mounds of distinct elevation and age, ranging ~45,000, suggests that fluid 

flow pathways can also be repeatedly re-used over time scales of tens of 

thousands of years. 

• Estimation of travertine volumes, by using thickness and area 

measurements, allowed the deposits of the Little Grand Wash and the 

northern Salt Wash graben faults to be compared. A similar volume of 

travertine has been deposited along each fault with the Little Grand Wash 
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fault having a total volume of 1.1 x 105 m3 and the northern fault of the Salt 

Wash graben having a total volume of 0.8 x 105 m3. Comparison between 

individual mounds in both areas shows that the average area of travertine is 

similar (2,303 ± 437 m2 for the Little Grand Wash and 2,275 ± 432 m2 for 

the Salt Wash graben). However, there is a distinct difference in the 

average thickness of mounds with Little Grand Wash deposits being over 

twice as thick (2.1 ± 0.2 m in comparison to 0.8 ± 0.1 m) which also leads to 

Little Grand Wash travertine having a greater average volume (8,932 ± 

2,412 m3 in comparison to 963 ± 260 m3). The fact that some of the 

northern Salt Wash graben travertine mounds are devoid of layered mats 

facies initially suggests that they may be less resistant to erosion. The 

comparative thickness of white banded vein between the two largest 

deposits in each area (with L4 measuring 2.5 m in comparison to 0.5 m of 

S11) also indicates that travertine along the Little Grand Wash fault have a 

longer lifespan. It is therefore likely that the effects of erosion are similar in 

both areas and it is the initial smaller volume of Salt Wash graben travertine 

that makes it easier to be completely removed by erosion. 

• The switching of leakage points at the surface through time is likely to be 

the result of three separate forcing mechanisms: mineralisation, 3-phase 

flow interference and dynamic strain alteration by distant earthquake 

events. Mineralisation is the simplest mechanism as it solely provides a 

‘switching off’ effect and is likely to be the main cause of pathway switching 

events less than 10 ka apart but don’t permit the re-using of pathways. 3-

phase interference has a minimal effect on pathways of the Little Grand 

Wash fault but may play a decisive role along the northern fault of the Salt 

Wash graben. This is because flow to the surface in Little Grand Wash fault 

is restricted to the damage zone (due to the presence of several low 

permeability sealing units in the stratigraphy), while flow in the northern fault 

of the Salt Wash graben only has to penetrate a single sealing lithology (the 

Carmel Formation) before migrating to the surface through unconfined 

aquifer units. Seismically induced changes in dynamic strain have far 

reaching affects and so can potentially cause any of the switches between 

leakage points. Analysis of the time between successive leakage events 

suggests that at least five observed switches are the result of this 

mechanism, this means that it is creating new pathways for fluid flow either 
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by rupturing tight fracture sets or previous episodes of veining within the 

caprocks. 

• The work within the present study demonstrates that the behaviour of fluid 

flow switching in a system confined to damage zone fractures, the Little 

Grand Wash fault, and a system leaking through an unconfined aquifer, the 

northern fault of the Salt Wash graben, may be different. This means that a 

large number of previous simulation and modelling on fault systems, which 

look at ideally homogenised faults within a single, usually permeable media, 

are inappropriate for cap rock failure within systems of more complicated 

stratigraphy. The present study also provides an insight as to how fracture 

controlled permeability can evolve in space and time by showing that fluid 

flow pathways can switch along multiple locations on faults and 

demonstrating that leakage through sealing lithology doesn’t necessarily 

have to be restricted to a single point. 

• The total volumes of CO2 to have leaked from the Little Grand Wash and 

northern Salt Wash graben faults are estimated as 1.3 x 106 ± 3.6 x 105 and 

9.8 x 105 ± 2.7 x 105 tonnes respectively. The worst case scenario for each 

area, calculated by attributing the dimensions of the largest mound in each 

area to every other travertine, gave a total leaked volume of 6.2 x 106 ± 1.7 

x 106 tonnes for the Little Grand Wash fault and 7.4 x 106 ± 2 x 106 tonnes 

for the northern fault of the Salt Wash graben. If leakage for the northern 

fault of the Salt Wash graben is only considered over the same timescale 

as leakage along the Little Grand Wash fault then the total CO2 leaked 

equals 5.3 x 106 ± 1.4 x 106. This suggests that for the same timescale a 

similar volume of CO2 has been leaked from each fault.  

• Calculation of time averaged leak rates for the worst case scenario of 

leakage along the Little Grand Wash and northern fault of the Salt Wash 

graben faults produced 55 ± 15 and 47 ± 13 tonnes/year respectively. 

Leakage rates for actively precipitating travertine (which are the result of oil 

exploration drilling) are estimated to be 3,153 ± 851 tonnes/year for the 

Little Grand Wash fault and 578 ± 156 tonnes/year for the northern fault of 

the Salt Wash graben. If these fault systems are treated as analogues to 

current anthropogenic storage sites then the total and modern leakage 

rates from the Little Grand Wash fault can be taken as analogues for 
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leakage via caprock failure and catastrophic wellbore failure respectively. 

Taking the calculated leakage rates and applying them to large scale 

storage sites such as Weyburn or Gorgon, which plan to capture up to 125 

million tonnes of CO2 during their lifespans, reveals that for caprock failure 

complete leakage of these reservoirs could take place over timescales of 

105-106 years if similar along-fault pathways exist at these sites. For 

catastrophic failure of a single well complete leakage of these reservoirs 

could occur over as little as 103 – 104 years. 

• The relatively high modern rates of leakage appear to have no adverse 

effects on the local environment and there is no historic evidence of human 

fatality as a result of release of CO2 from active sites. However, the 

radiometric dating of travertine suggests that leakage has been consistently 

occurring for time periods spanning 100,000’s of years. If CO2 is allowed to 

leak from anthropogenic storage sites over these time scales then the net 

storage of these sites will be compromised. Monitoring of storage sites is 

therefore very important. The results of this study emphasise that 

monitoring should focus on areas where well failure is possible as this is the 

largest risk with concerns to leakage. This is a positive result for monitoring 

as the locations of active and abandoned wells are likely to be well 

documented for potential storage sites (especially offshore). This means 

high risk leakage sites should be readily identifiable and can be monitored 

closely during and post injection of CO2. The results of this study also 

demonstrate that the physical characteristics of a storage system, such as 

rock, hydrological and CO2 properties, can vary through time. This is 

especially important to consider when attempting to forecast the behaviour 

of reservoirs once storage projects have been completed. 

7.2 Future work 

Several topics for further work emerged throughout the multiple topics that 

are addressed within this thesis. However, if the multiple lines of enquiry could be 

further pursued then some of the themes discussed could become better 

developed and provide a greater insight into the causes of switching of fluid flow 

pathways and understanding of CO2 leakage. Detailed below are several 
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suggestions for future work that would build on the results found in the present 

study. 

7.2.1 Future work at the Utah field sites 

• Further U-Th dating of travertine deposits could be carried out in order to 

achieve a full coverage of ages for the un-dated mounds of the northern 

fault of the Salt Wash graben. This would allow a more confident history of 

travertine occurrence, and therefore leakage to the surface, to be 

developed. It would also confirm whether the incision rate calculated in the 

present study provided a good method for estimation of ages. Dating of 

multiple samples from a range of individual mounds would also allow 

travertine lifespan estimations to be further developed and provide a true 

basis for comparison across the Little Grand Wash and northern Salt Wash 

graben fault travertine.  

• It is speculated within this thesis that U-Th ages obtained from travertine 

precipitated in the lab from water samples may record the time taken for the 

precipitating groundwaters to migrate from their source. Further dating of 

spring waters by more conventional groundwater dating techniques could 

provide a check on this speculation and determine its merit. One such 

technique is 14C dating which utilises the ratio of radioactive atmospheric 
14C to dissolved 12C acquired by meteoric water as it percolates through soil 

and rock its way to an aquifer. The ~50 ka age limit of this technique 

(Frolich, 1990) should be more than adequate to date the travel time of the 

waters in question. 

• Though layered mats in general provide poor samples for dating due to 

their open system behaviour with respect to decay of 234U decay, dating of 

a layered mat sample from the oldest deposit along the Little Grand Wash, 

mound L4, produced a result that was within 5.1% of the average age of the 

deposit. Whilst the difficulty of calculating a single value of [230Th/232Th] to 

correct for the presence of non-radiogenic 230Th, due to the variable 

possible sources, has been documented (Garnett et al., 2004) the 

closeness of the age of the layered mat sample and white banded vein 

samples from L4 leaves room for further investigation. If a solution could be 

found then dating of travertine in areas where only layered mat facies is 
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present, such as above the proven CO2 reservoir at St. Johns in Arizona 

(Figure 7.1), could potentially be carried out. 

 

Figure 7.1: Travertine deposit from the St.Johns ar ea. 

 
• Dating of the river gravels associated with mounds and deposited in 

terraces by the Green River on its western shore bank in the Little Grand 

Wash by luminescence techniques, such as optically stimulated 

luminescence, would aid incision rate studies for these areas and provide 

further quantitative evidence for the minimum period of non-movement on 

the Little Grand Wash fault. For gravels associated with travertine mounds it 

could also possibly provide a further dating technique with which to confirm 

the validity of U-Th ages. 

• Further information on the causes of switching between points of leakage 

could be achieved with more detailed field investigation of the presence of 

brown banded vein facies in travertine mounds. This rare facies was only 

noted in a handful of mounds as it wasn’t particularly being sought out in 

this study. The focus of field work was the locations of the mounds and 

determining the presence of layered mats and gravels. As brown banded 

vein facies consists of alternating layers of aragonite and iron-rich 
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laminations it represents fluctuations in fluid flow and the terminal stages of 

travertine mound development. Their presence would indicate that flow to a 

mound slowly switched off and would rule out the mechanisms of triggered 

dynamic strain and 3-phase flow, which should instigate relatively rapid 

switching off of pathways, for switching between that particular leakage 

point and the next.  

• Further developed statistical analysis which combines position (in relation to 

the fault) and timing of travertine mounds would allow for a greater 

understanding of the pattern of leakage which would lead to better 

determination of the causes for switching between pathways. Despite 

posing this idea to several statisticians and asking for aid at the 2009 EAGE 

Faults and Top Seals conference no one has been able to aid me in 

developing such a statistical test for the data provided by the travertine in 

this study. 

• Better characterisation of the sub-surface geology of the field sites would 

potentially allow for an accurate depth of the Navajo aquifer and the volume 

of CO2 at depth to be determined. The top of the Navajo aquifer is currently 

thought to be at a depth of ~ 600 to 800 m (Shipton et al., 2005) but no 

accurate measurements exists for the depth of this aquifer in either of the 

field areas. Knowledge of the depth of this aquifer would allow for better 

determination of the possible phases of CO2 present within in and provide 

further information on the viability of 3-phase interference for switching of 

pathways. A conservative estimate of 0.6 to 6.3 million tonnes for the total 

CO2 storage capacity of aquifers within the aquifers sealed by the Little 

Grand Wash fault was produced by Dockrill (2006). However, this was 

based on the assumption that CO2 is present as a free gas within the 

aquifers. Subsequent work on the geochemistry of the groundwaters by 

Wilkinson et al. (2008) suggests that there is no free gas present at depth. 

Work in this study, given the normal geothermal profile of the local area, 

agrees with this finding as the CO2 saturation line (at a depth of ~ 600 m) 

will be above the Navajo aquifer. Attempted characterisation of the 

subsurface geology has been attempted using seismic lines- however these 

yielded no results due to poor coupling with the host rock (Peter Vroljik, 
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personal communication). Geophysical surveys may be a good option for 

these locations due to the simple stratigraphy. 

• Better sub-surface characterisation of faults would provide more information 

on the potential pathways that CO2-charged waters are using to reach the 

surface. Measurement of pore fluid pressures and the normal and shear 

stresses acting upon the Little Grand Wash and northern Salt Wash graben 

faults would allow for an analysis of fault slip tendency to be carried out 

which would accurately determine if these faults are primed for failure. 

Stress data could be measured by obtaining image logs and analysing the 

orientation of borehole breakouts and integrating information from density 

logs over depth, while pore pressures could be measured using drill stem or 

repeat formation tests (Streit and Hillis, 2003). 

• Further and long term monitoring and measurement of emissions of the 

Crystal Geyser (mound L1) would allow for more detailed active leakage 

rates to be determined. This would allow for better estimation of how long it 

would take for anthropogenic storage reservoirs to become completely 

depleted in the event of catastrophic wellbore failure. The best method for 

this would be aerometric measurements, such as carried out by Gouveia et 

al. (2005), carried out over a time period spanning several years. 

7.2.2 Future work on CO 2 leakage in general 

• Formation of a database containing detailed baseline data of all naturally 

leaking CO2 storage sites would provide a good source of reference when 

attempting to predict long term integrity of potential anthropogenic storage 

sites. The problem at the moment is that each natural location has a 

specific set of conditions particular to that site. Good baseline data for 

numerous natural locations; including aspects such as local geology and 

stratigraphy, knowledge of local stress field and presence of structural 

features, volumes and source of CO2, and depth and pressure gradient of 

the reservoir; could provide a valuable source of information for a range of 

conditions. This data can then be combined (using multivariate statistics) to 

provide statistically significant predictive tools which can then be applied to 

predictions for anthropogenic sites. 
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• Field scale experiments where CO2 is injected into a reservoir and tracked 

back to the surface would allow leakage rates to be better constrained. This 

could be achieved by finger-printing injected CO2, and measuring the time it 

takes to return to the surface; or by close investigation of the fate of injected 

CO2 via a monitoring technique such as seismic surveys. Finger-printing 

could be achieved by addition of un-reactive components, such as 

perfluorocarbon tracers or noble gases, to any injected CO2 (Smith, 2004; 

Gilfillan et al, 2008). A project utilising finger-printed CO2, sponsored by the 

U.S. Department of Energy, is currently underway at West Pearl Queen field 

in south-eastern New Mexico (Pawar et al., 2006). In this case 

perfluorocarbon tracers are being used and monitored for by capillary 

absorption tube samplers at the surface (Smith, 2004). Seismic surveys are 

also currently in use to monitor the movement of plumes from the CO2 

injected at the Sleipner field (Baines and Worden, 2004; Arts et al., 2008); 

however the resolution is not good enough to provide accurate leakage 

rates though the reservoir. 

• Greater appreciation of errors on CO2 leakage and flux estimates are 

crucial for inputs to modelling, site safety cases and estimation of any 

leakage impacts. Future work on CO2 leakage should follow the examples 

set by this thesis in attempting to show all possible sources of error and 

including these in the final results. Currently most published work either 

provides rough estimates or show no errors on measurement whatsoever. 

In addition, standardised units of measurement for leakage and flux of CO2 

should be used across the globe. At the moment several different 

measurement units are used which makes it hard to compare results 

between sites. 

• Any injected CO2 will eventually leak within geological timescales. 

Therefore a greater understanding of the impact of CO2 leakage to the 

surface must be obtained in order to understand the potential risks and 

consequences of leakage from storage reservoirs. This has economic 

implications for companies injecting CO2 as they must weigh up the 

financial implications of storage of CO2 verses how long it is likely to be 

competently stored for. 
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• Additionally further work must be done to establish the role of local CO2 

emissions to both the atmosphere and the local environment. The case in 

the present study demonstrates a scenario where there is no detriment to 

the local environment due to leakage of CO2. However, it must be 

remembered that leakage in this case is in a desert environment with very 

little cover and therefore easy dispersion by the wind. Salt tolerant plants, 

which thrive in this environment, take advantage of the presence of water at 

the surface to flourish. In lush environments where forests and greater plant 

coverage is present plant mortality may occur. If CO2 was leaking into an 

environment of little wind or into a well shielded area then deadly plumes of 

CO2 may accumulate at the surface. This has been demonstrated at sites 

such as the Rapolano fault in Italy (Etiope et al., 2005), so it is paramount 

that great care is taken to assess the potential hazards in the specific 

environment above an anthropogenic storage site. 
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Appendix A 

Standard data for uranium and thorium analyses 

A-1 Uranium standards 
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A-2 Thorium standards 
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Appendix B 

XRD results of C.caespitosa  samples 
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Appendix C 

Seismic record of major regional faults 

C-1 The Hurricane fault 

The Hurricane fault is one of the longest and most active of several large, 

late Cenozoic, west-dipping normal faults within the 150 km wide structural and 

seismic transitional zone between the Colorado Plateau and Basin and Range 

physiographic provinces (Lund et al., 2007). The fault comprises six segments, 

and is 250 km long stretching from Cedar City, Utah, to south of the Grand 

Canyon, Arizona (Figure 2). Displacement on the fault is over 2,500 m in Utah, 

where it cuts into the Colorado Plateau (Lund et al., 2002). Palaeoseismic 

investigations have recently been carried out by the Utah Geological survey in 

order to assess the seismic hazard of the Hurricane fault in response to 

construction and population boom in south-western Utah and nearby areas of 

north-western Arizona and south-eastern Nevada (Lund et al., 2002; 2007). No 

ages of seismic events resulted from this study, though a long term slip rate of 

0.44 to 0.57 mm/yr was calculated, decreasing to <0.01 - 0.35 mm/yr in the late 

Pleistocene and Holocene. This slowing of slip rate on the Hurricane fault, which is 

thought to have begun more than 350 ka, suggests that fewer surface-faulting 

earthquakes have been generated in more recent geologic time. A single 

radiocarbon date for activity on this fault, from the central Shivwits section, of 

9300+1070
-430 ka has been produced by Amoroso et al. (2004). They go on to 

suggest that a further two rupture events occurred between 15 and 78 ka, and 

state that the penultimate event was likely to have been ≤10 (e.g. equal to or less 

than the time since the most recent event), and provide a recurrence rate of 9 to 

15 ky for M 7.0-7.2 events. The Earth Science Association, 1982 (as reported by 

Lund et al., 2002) state a recurrence rate of 1 to 10 ky for large surface faulting 

earthquakes (M 7.5) for the entire Hurricane fault, based on historical seismicity 

and existing geologic data.  
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C-2 The Wasatch Front 

The Wasatch Front consists encompasses the 370 km long N-S trending 

Wasatch fault and surrounding faults in central Utah. Some of the highest 

extensional slip rates in the Western U.S. (1-2 mm/yr for the Holocene) come from 

the Wasatch fault zone (Machette et al., 2000). The main fault consists of 6-10 

individual segments of which at least 6 have shown activity during the Holocene, 

with the youngest surface rupturing about 600 years ago on the Provo segment 

(Hecker, 1993). Ages and locations of the Wasatch fault palaeoseismic data imply 

17 single or 11 multisegment ruptures in the past 5.6 ky (Chang and Smith, 2002). 

McCalpin and Nishenko (1996) suggest an average recurrence interval of 350 

years for M> 7 earthquakes on the fault for this time period. They prefer the multi-

segment model because historically most of the large normal faulting earthquakes 

within the ISB have been multisegment ruptures. The most recent 

paleoearthquake investigation on the Wasatch fault, the 1999 ‘mega trench’ is 

reported by McCalpin and Nelson (2001). This deep trench exposed 26m of 

vertical section across a 30 m wide zone containing two sub-parallel scarps of the 

Salt Lake City (SLC) segment. The study revealed a 6.0 ± 1.2 ky period of no 

scarp-forming earthquakes, suggesting fault inactivity between ~9.0 and 15.5 ka. 

This period corresponds to the unloading of the hanging wall during the 

desiccation of Lake Bonneville; the lake was at its highest about 15.5 ka ago and 

dropped almost 1,000 feet by 9 ka. This quiescence is four to five times longer 

than the average M6.6 earthquake recurrence of 1.4 ± 1.2 ky for the last 5.6 ky of 

this segment suggested by Chang and Smith (2002) by using seismic, geologic 

and geodetic observations. This magnitude is used as it is the commonly used 

minimum-threshold magnitude of surface-ruptured earthquakes in the Basin and 

Range province (de Polo, 1994). 

C-3 The Rio Grande Rift 

The Rio Grande Rift (referred to as RGR for the rest of this appendix) is an 

east tilted half graben stretching north from Mexico, near El Paso, Texas through 

New Mexico into central Colorado (Keller and Baldridge, 1999). It is dominated by 

large-displacement normal faults that form a prominent footwall uplift comprising 

the Sandia, Manzanita and Manzano Mountains east of Albuquerque in north-

central New Mexico (Personius and Mahan, 2003). Most Quaternary faults in the 
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rift have low slip rates (<0.2 mm/yr, but commonly 0.01-0.02 mm/yr), consistent 

with occurrence of primarily low- to moderate-magnitude earthquakes that have 

been recorded or felt historically in New Mexico (Machette, 1998). Average slip 

rates on the most active faults in the rift are commonly <0.1-0.2 mm/yr, which may 

be typical of faulting in extensional regimes of the Western U.S. (Wong and 

Humphrey, 1984). The palaeoseismic record for the RGR is much better than that 

of any other faults investigated here as scarp forming events have been recorded 

on several segments. The following paragraphs provide a brief discussion of 

published work from some of these segments in order of north to south.  

C-4 The Pajarito fault  

The Pajarito fault is located on the western margin of the RGR in north-

central New Mexico. McCalpin (2005) provides data from a total of 14 trenches 

along this complex fault zone, with two on the main fault scarp and the rest from 

minor subsidiary faults. These two main trenches provide evidence of 7 events 

and 8 scarp forming events respectively. Only one event (~25 ka) seems to have 

been record in both trenches. Dates are from radiocarbon and luminescence 

analysis on disturbed soils, and from also using the soil development index (SDI) 

of Harden (1982). McCalpin (2005) does state however that event horizons are 

inefficiently preserved to identify and date paleoearthquakes with confidence. This 

preservation issue is mainly due to overprinting of the homogeneous colluvium 

with other strong textural soil horizons. This perhaps explains why only one event 

is record across both main scarp trenches.  

C-5 The Calabacillas fault  

A 40 km long east dipping normal fault, trending N-S and located on the 

western edge of the Llano de Albuquerque. Palaeoseismic data is provided from 

OSL analysis of offset aoelian sands by McCalpin (2000) of samples from a 27 m 

high east facing fault scarp. The four ages provided by this study, 14, 32, 77 and 

151 ka are approximations and no errors are supplied.  

C-6 The Hubbell Spring fault  

A 16m wide faults zone located on the eastern margin of the RGR. 

Personius and Mahan (2003) suggest there have been four large surface rupturing 
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earthquakes at this location. Using displacements and rupture lengths they 

postulate the palaeomagnitude of these earth quakes to be 6.8-7.1. Three of the 

suggested four events have been dated successfully, at 56 ± 6, 29 ± 3 and 12 ± 1 

ka, by a combination of thermoluminescence and infrared-stimulated 

luminescence. Given numerous assumptions (and a precision on TL of 5-20%, 

Forman et al., 2000 reported in Personius and Mahan, 2003) incorporated into 

these analyses rounded ages and 10% errors were used to estimate probable 

ages. The authors estimate the oldest event to have occurred 92 to 244 ka.  

C-7 The La Jencia fault 

The La Jencia fault is a 35 km long major basin-marginal fault that bounds 

the west edge of the RGR as reported by Machette (1986). This fault consists of 6 

segments that have produced a minimum of 5 separate scarp forming events 

between 3 to 33 ka, though this is potentially 6 if movement along the different 

segments is non-synchronous. These events over an interval of about 30 ka 

produce an average recurrence interval of between 6 and 7.5 ka. The SDI appears 

to have been used to date these younger events, though this is not stated in the 

text. The author suggests previous events based on offset of stratigraphy at 150 

ka and 500 ka, with the event at 150 ka has being supported by colluvium dating. 

Machette calculates the magnitude of these events as MW 6.9-7.1 based on the 

length of rupture and amount of surface offset. No explanation of errors is 

provided.  

The palaeoseismic record for the mid-western United States is sparse and 

inaccurate. Information gained from the historical record is far too recent to provide 

an accurate estimate of the complete seismic cycle, especially in this case when 

time scales in the order of 1000s of years are desired. Sparseness of the record is 

a result of the time period involved because relatively few age dating techniques 

can accurately deal with late Pleistocene to Holocene deposits, and even then the 

particular materials required for each dating technique must be present. 

Radiometrically datable materials such as charcoal, bone, and volcanic ash are 

not often preserved in critical surface exposure or in excavations dug specifically 

for dating purposes (Machette, 1986). Movement of fault scarps are often 

estimated from offset of stratigraphy, more specifically the juxtaposition of soils 

with faulted sediments. Soils are ubiquitous in surficial deposits, and their degree 

of development can reflect their age- to this end Harden (1982) developed the soil 
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development index (SDI) for use as a tool in age determination of seismic events. 

It is an index based on several soil characteristics which help to differentiate 

between young poorly developed soils of recently eroded sites, and older well 

developed soils associated with more geomorphologically stable landforms. The 

SDI may provide a valuable tool in the estimation of earthquake recurrence for 

faults with no dateable material but with so many variables involved and the 

inaccuracy of ages reported from this technique, such as seen in Machete (1986) 

and McCalpin (2005), it is not a great method to compare and correlate events 

across numerous faults. 
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Appendix D 

GPS reference points for travertine mounds 

 All GPS information is given as UTM grid values using the NAD83 datum. In 

Appendix D-2 travertine mounds are colour coded as followed: white- ancient 

mounds complete with layered mats; yellow- ancient mounds devoid of layered 

mats; blue- actively precipitating travertine mounds. 

D-1 The Little Grand Wash fault 
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D-2 The northern fault of the Salt Wash graben 
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