
Boundary-value problems for

transversely isotropic hyperelastic

solids

by

Fotios Kassianidis

A thesis submitted to the

Faculty of Information and Mathematical Sciences

at the University of Glasgow

for the degree of

Doctor of Philosophy

July 2007

c© F. Kassianidis 2007



i

Acknowledgements

I wish to express my sincere gratitude to my supervisor, Prof. Raymond W. Ogden, for

his endless encouragement and guidance throughout my research but, most of all, for his

kindness during my staying in Glasgow.

I would also like to thank Dr. David M. Haughton from the University of Glasgow,

Department of Mathematics, and Prof. Luis Dorfmann from Tufts University, Department

of Civil and Environmental Engineering, for their valuable suggestions and comments on

my work. Furthermore, I am very thankful to Dr. Jose Merodio from the Polytechnic
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Summary

In this thesis we examine three boundary-value problems combined with the presence of

dead-load tractions in respect of transversely isotropic elastic materials.

In particular, Chapter 1 mainly consists of existing preliminary remarks on the contin-

uum (phenomenological) approach used here to study the mechanical response of elastic

materials under large strains. More specifically, we discuss, always within the continuous

framework, basic kinematical concepts, fundamental stress principles as well as balance

laws; those also being appropriately specialized for material bodies under the state of

equilibrium, i.e. for static problems. Description of the governing constitutive theory for

Cauchy elastic isotropic and transversely isotropic solids follows, with reference to which,

the notion of a hyperelastic solid is then prescribed. Further, the necessary connections

with the classical linear theory of transversely isotropic solids are generated and finally

some typical constitutive inequalities are summarized.

Then, in Chapter 2, we examine the classical problem of finite bending of a rectangular

block of elastic material into a sector of a circular cylindrical tube in respect of compressible

transversely isotropic elastic materials. More specifically, we consider the possible existence

of isochoric solutions. In contrast to the corresponding problem for isotropic materials, for

which such solutions do not exist for a compressible material [38], we determine conditions

on the form of the strain-energy function for which isochoric solutions are possible. Based

on those conditions, some general forms of strain-energy functions that admit isochoric

bending are derived. We also, for the considered geometry and deformation, examine

aspects of stability predicated on the notion of strong ellipticity. Expressly, for plane

strain, we provide necessary and sufficient conditions for strong ellipticity to hold. The

material incorporated in this chapter has been accepted for publication in [42].

In Chapter 3 we study the problem of (plane strain) azimuthal shear of a circular cylin-
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drical tube of incompressible transversely isotropic elastic material subject to finite defor-

mation. The preferred direction associated with the transverse isotropy lies in the planes

normal to the tube axis and is disposed so as to preserve the cylindrical symmetry. For

a general form of strain-energy function the considered deformation yields simple expres-

sions for the azimuthal shear stress and the associated strong ellipticity condition in terms

of the azimuthal shear strain. These apply for a sense of shear that is either ‘with’ or

‘against’ the preferred direction (anti-clockwise and clockwise, respectively), so that ma-

terial line elements locally in the preferred direction either extend or (at least initially)

contract, respectively. For some specific strain-energy functions we then examine local loss

of uniqueness of the shear stress-strain relationship and failure of ellipticity for the case of

contraction and the dependence on the geometry of the preferred direction. In particular,

for a widely used reinforced neo-Hookean material (see, e.g., [77, 63, 62, 47, 48]), we ob-

tain closed-form solutions that determine the domain of strong ellipticity in terms of the

relationship between the shear strain and the angle (in general, a function of the radius)

between the tangent to the preferred direction and the undeformed radial direction. It

is shown, in particular, that as the magnitude of the applied shear stress increases then,

after loss of ellipticity, there are two admissible values for the shear strain at certain radial

locations. Absolutely stable deformations involve the lower magnitude value outside a cer-

tain radius and the higher magnitude value within this radius. The radius that separates

the two values increases with increasing magnitude of the shear stress. The results are

illustrated graphically for two specific forms of energy function. The work of this chapter

has been accepted for publication and will appear in [41]. Also, parts of this work have

already been presented in SES-Penn State (2006) by the third author.

In Chapter 4 we are concerned with circular cylindrical tubes composed of incompressible

transversely isotropic elastic material subject to simultaneous finite axial extension, infla-

tion and torsion. Here, a great deal of attention is given to the actual kinematics of the

problem. Due to the incompressibility constraint, three independent deformations quan-

tities associated with each one of the processes comprising the combined deformation are

identified. These serve, in essence, to measure stretch in the axial and azimuthal direction

of the body as well as the amount of shear in the planes normal to its radial direction and

hence they suffice to fully characterize the resulting strain. Analogously to the azimuthal

shear problem examined in the previous chapter, the preferred direction associated with

the transverse isotropy is distributed in the planes normal to the tube axis and is disposed
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so as, in any case, to preserve the cylindrical symmetry. For the considered geometry, the

material line elements in the preferred direction always contract when axial extension of

the tube is applied. Assuming that the body is held fixed in that extended state, inflation

of the tube may be responsible for either further contraction (at least in early stages of the

process) or relaxation of the preferred direction. In this situation, the sense of shear is of

no importance since the torsional aspect of the deformation has no actual impact on the

length of line aliments in that direction. The cylindrical polar components of the Cauchy

stress tensor are written down by means of a general form of strain-energy function and

then a new universal relation applying for the considered geometry and deformation is gen-

erated. In the special situation where the preferred direction lies along, in the undeformed

configuration, the radial direction of the body, coaxiality between the Cauchy stress and

the left stretch tensors is accomplished and the latter constitutive relation, under appro-

priate specialization, recovers a well known result holding in the corresponding isotropic

theory (see, e.g., [32]). Finally, based on the governing equilibrium equations and in con-

junction with the kinematics of the problem, we provide general formulas for the applied

loads necessary to support the combined deformation. These are found to apply for a

wide range of transversely isotropic materials as well as for isotropic materials. Analogous

remarks are briefly made with respect to a specific class of cylindrically orthotropic tubes.
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Chapter 1

Continuum basis and elasticity

1.1 Kinematics

1.1.1 Principles of a continuous media

Within the framework of continuum mechanics, a body B is defined as a set of elements

projected upon a three dimensional Euclidean point space E . Each element of B, referred

to as particle or material point, has a unique representation in E and the region B ⊂ E ,

say, occupied by the images of the particles is called configuration of B.

We assume that the body B moves (continuously) with time t, occupying various

regions in E . Then, if for each t we associate a unique configuration Bt of B the family of

configurations {Bt : t ∈ I ⊂ R} prescribes a motion of B. In practice, physical observations

of the body B are made in specific configurations and it is therefore convenient to identify

a reference configuration, namely Br, which is a fixed, yet arbitrarily chosen, configuration

of B. In this way, any particle P of B may be labelled by its position vector X relative to

some origin O.

As the body moves with time the configuration and hence the position of P changes.

Thus, by denoting Bt the configuration of B at time t, we similarly reference the new place

of P in that configuration with a vector x relative to an origin o which does not necessarily

coincide with O. We refer to Bt as the current configuration.

The physical properties of a material body B may equivalently be qualified on referring

to either Br or Bt. In fact, the terminology referential (or Lagrangian) description is often

used in the literature (see, e.g., Ogden [56]) when all the quantities, which may be scalar,

vector or tensor fields, that serve to represent the physical status of B are strictly referred

1
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to variables in respect of Br. This description implies no dependence between X and t.

On the other hand, a spatial (or Eulerian) description involves determination of all the

relevant fields in respect of Bt followed by dependence of x on t.

1.1.2 Deformation, velocity and acceleration

The path followed in order for P to move from X to the position x through time t is

defined by the invertible scalar mapping χ : Br → Bt such that

x = χ(X, t) for all X ∈ Br, t ∈ I, (1.1)

where I ⊂ R. In essence, the mapping χ describes the motion of each particle P , char-

acterised by X, as it proceeds with time and it is called a deformation of the body from

Br to Bt. We mention that since P is generic χ is, consequently, meant to describe the

motion of B with t as a parameter. It is worth clarifying that, as discussed in Truesdell

and Noll [79], the notion of ‘deformation’ has a general sense including changes both in the

shape and the orientation of B while, for consistency with the definition (1.1), a reference

configuration always needs to be introduced [56, 79].

x

P

Bt

X

O o

Br

P

Figure 1.1: Position of a material particle P of B labelled with X and x in Br and Bt, respectively.

In the referential description, the rate of change of position of P , also referred to as

the velocity v of P is defined via the vector field

v = ẋ ≡ ∂χ(X, t)
∂t

(1.2)

for a given X and the acceleration a of P is then given by

a = v̇ ≡ ∂2χ(X, t)
∂t2

. (1.3)

Similarly, by denoting χ−1
t : Bt → Br the inverse mapping of χ, obeying

X = χ−1
t (x) for all x ∈ Bt, t ∈ I (1.4)
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with I ⊂ R, we may assign a new function , Ψ say, such that

Ψ(x, t) ≡ χ(χ−1
t (x), t), (1.5)

to define both v and a in spatial description as

v = ẋ =
∂Ψ(x, t)

∂t
+

∂x
∂t
· ∇Ψ(x, t), (1.6)

a = v̇ =
∂v
∂t

+ (v · ∇)v, (1.7)

respectively. Here, the symbol ∇ denotes the gradient operator with respect to x.

1.1.3 The deformation gradient tensor and its implications

The discussion provided in the foregoing section clearly suggests that the mapping χ may

assumed to be at least differentiable with respect to X. In the literature, χ is often

regarded as twice-continuously differentiable both with resect to X and t, yet, under

specific circumstances this assertion needs to be suppressed. More details concerning

nonsmooth modes of deformation will be given in later chapters.

Accordingly, the differential of (1.1) yields the connection

dx = Gradχ(X, t)dX, (1.8)

where Grad is the gradient operator in the reference configuration, i.e. with respect to X,

being defined as

Gradχ(X, t) ≡ ∂x
∂X

. (1.9)

The entry (1.9) states that the quantity Gradχ(X, t) is a second-order tensor field known

as the deformation gradient tensor depending, in general, both on X and t. In the special

case where the deformation gradient tensor is constant, i.e. Gradχ(X, t) does not depend

on X for a fixed t, the deformation is referred to as homogeneous. Henceforth, the standard

notation F = ∂x/∂X is adopted for compactness.

It is usually convenient to express the deformation gradient in components form. For

this, let Xj and xi be the components of the position vectors of the particle P with respect

to rectangular Cartesian bases {Ej} and {ei}, (j, i = 1, 2, 3) in the reference and current

configuration, respectively. Then, if Fij denotes the associated components of F, the

argument (1.9) determines Fij = ∂xi/∂Xj and

F = Fijei ⊗Ej , (1.10)
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where summation over the repeated indices i and j is implied. When the basis {Ej} and/or

{ei} is taken other than Cartesian, the latter can be easily rearranged analogously. Note

that, in general, the tensor F is not symmetric, in other words Fij 6= Fji for i 6= j.

In the principles of non-linear field theories and especially in that of continuum solid

mechanics the deformation gradient tensor F has a significant role to play since, amongst

others, it describes how small line elements, infinitesimal surface areas and infinitesimal

volumes change from the reference to the current configuration during the deformation

process. Indeed, as shown in (1.8), F operates on a small line element dX at X ∈ Br to

linearly transform it into dx at x ∈ Bt. Similarly, supposing a surface Sr in Br deforms

into St in Bt, the deformation gradient tensor establishes the relation

nda = det(F)F−TNdA (1.11)

known as Nanson’s formula, where dA and da are infinitesimally small area elements on

Sr and St respectively, and N and n are their associated unit normals at X ∈ Sr and

x ∈ St. Further, the connection

dv = det(F)dV (1.12)

prescribes how infinitesimal volume elements dV in Br are transformed by F into dv in

Bt. Although the entries (1.11) and (1.12) are purely local, they can easily be put in

global forms. Specifically, by letting ∂Br denote the boundary surface of Br and ∂Bt

the corresponding boundary associated with Bt, the linkages (1.11) and (1.12) may be

alternatively be written as
∫

∂Bt

nda =
∫

∂Br

det(F)F−TNdA, (1.13)

∫

Bt

dv =
∫

Br

det(F)dV, (1.14)

respectively, describing how the area and the volume of a body change when this undergoes

deformation from Br to Bt. Then, following Ogden [56], the divergence theorem is used to

provide that (1.13) is equivalent to

0 =
∫

Br

Div(det(F)F−1)dV, for all X ∈ Br, (1.15)

which, due to regularity assumed here for χ, yields the additional local result

Div(det(F)F−1) = 0, for all X ∈ Br. (1.16)
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Here the symbol Div denotes the divergence operator with respect to the reference con-

figuration.

Another important issue that should be clarified at this point is, in view of (1.8)-(1.12),

the qualities of F and especially that of det(F). Starting from (1.8), the conventional re-

quirement det(F) 6= 0 needs to be imposed on F since, otherwise, non-zero line elements in

the reference configuration are mapped into line elements with zero length in the current

configuration. In other words, taking det(F) 6= 0 disqualifies the possibility of annihilation

of a line element by the deformation process. This assertion is further justified through

(1.11) whereas the existence of the inverse mapping F−1 involved in the latter necessitates

non-singular deformation gradients (i.e. det(F) 6= 0) in the first place, while, the case of

a vanishing surface area element due to deformation is also excluded. Nevertheless, this

assumption is not sufficient to ensure a sustainable deformation from a physical perspec-

tive. Truly, seeing (1.12), the term det(F) is clearly understood to be a measure of the

change in volume under the deformation and if, by convention, we define volume elements

to be positive the more restrictive constraint det(F) > 0 needs to be adopted. For future

reference we introduce the standard notation and convention

J = det(F) > 0. (1.17)

In that respect, if the volume is not to change due to deformation, then

J = det(F) = 1 (1.18)

and the deformation is said to be isochoric. In reality, materials capable of preserving their

volume under (large) deformations do not exist˙ however, for a number of deformations

(1.18) is found to provide a good approximation to material behaviour and it is adopted

as an idealization. A material which (ideally) satisfies (1.18) for all deformations is called

incompressible otherwise it is called compressible. Probably, the most representative ex-

ample of an incompressible material is natural rubber. In this thesis, both compressible

and incompressible materials are under consideration.

1.1.4 Resolution of stretch and shear

The local attributes of F may further be considered to provide results of fundamental

importance in the development of the theory of continuum mechanics.

First, bearing (1.17) in mind, the property (1.8) is used to establish the relation

|dx|2 = dX · (FTF)dX, (1.19)
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which serves to measure the change in length of line elements from the reference to the

current configuration. In a similar manner, by letting dX, dX′ denote a pair of line elements

based at X ∈ Br and dx, dx′ their corresponding images at x ∈ Bt, the inner product

dx · dx′ = dX · (FTF)dX′, (1.20)

measures changes in angle between two line elements due to deformation.

Given the direction of dX and dX′ in Br, both (1.19) and (1.20) are properly reformu-

lated, yielding more transparent and exploitable conclusions. Expressly, if dX is taken to

lie along the unit vector i1, say, then dX = i1|dX|, dx = (Fi1)|dX| and (1.19) becomes

|dx|2 = i1 · (FTFi1)|dX|2. (1.21)

On using (1.21), we may therefore introduce the scalar field λ(i1) ∈ (0,∞), defined by

λ(i1) ≡ |Fi1| = [i1 · (FTFi1)]1/2 =
|dx|
|dX| , (1.22)

which is called the stretch in the direction i1 at X. Accordingly, the unit vector i2 is chosen

as dX′ = i2|dX′|, so that dx′ = (Fi2)|dX′| and then (1.20) gives

dx · dx′ = [i1 · (FTFi2)]|dX||dX′|. (1.23)

Supposing that Φ is the angle between i1 and i2 in the reference configuration, i.e. i1 · i2 =

cos Φ, and φ that after deformation, the entry (1.23) in conjunction with (1.22) contributes

cosφ =
dx · dx′
|dx||dx′| =

i1 · (FTFi2)
λ(i1)λ(i2)

. (1.24)

The change in angle Φ− φ > 0 (< 0) is called the shear of the directions i1 and i2 in the

plane of shear defined by the pair (i1, i2).

1.1.5 Measurement of deformation: Strain

In practice, experimental tests carried out on material specimens enable us to achieve

local measurements in stretch and shear in order to have a better understanding of the

mechanical response of solids under deformation. As a matter of fact, significant conclu-

sions regarding the behaviour and the status of a material body undergoing deformation

are based on reckoning the difference between the squared lengths of a line element in the

reference and current configuration. Translated into mathematical language, this is taken

to be given as

|dx|2 − |dX|2 = dX · (FTF− I)dX, (1.25)
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arising directly from (1.21) after a simple rearrangement. Here, I is the identity tensor.

Local measurements of the change in |dx|2− |dX|2 prescribe the strain on a material as a

result of deformation and hence, through (1.25), the tensor FTF− I constitutes a measure

of strain. This prompts us to introduce the so-called Green (or Lagrangian) strain tensor,

namely E, defined by

E =
1
2
(FTF− I). (1.26)

In components form, the latter is given as

Eij =
1
2
(FpiFpj − δij) =

1
2

(
∂xp

∂Xi

∂xp

∂Xj
− δij

)
, (1.27)

where the symbol δij denotes Kronecker’s delta.

Strain, however, can also be measured in the current configuration whereas the as-

sumption (1.17) validates the formula dX = F−1dx on use of which (1.25) is alternatively

written

|dx|2 − |dX|2 = dx · (I− F−TF−1)dx. (1.28)

Thus, the counterpart of E in the current configuration is being defined by the Eulerian

strain tensor e, namely

e =
1
2
(I− F−TF−1), (1.29)

with components

eij =
1
2

[
δij − (F−TF−1)ij

]
=

1
2

(
δij − ∂Xp

∂xi

∂Xp

∂xj

)
. (1.30)

The relation between E and e will be established shortly. We observe that, unlike F,

the strain tensors E and e are symmetric since, from (1.27) and (1.30) we easily obtain

Eij = Eji and eij = eji respectively.

A material is said to be unstrained at X if the lengths of all line elements dX based

at X remain unchanged. Obviously, this implies |dx| = |dX| for all dX or, equivalently

dX · (FTF− I)dX = 0 for all dX, (1.31)

and therefore FTF − I = 0 being the zero tensor. Hence, through (1.22), we may also

easily derive that the material is unstrained at X when

λ(i1) = 1 for all unit vectors i1, (1.32)

which, in accordance with (1.26), holds if and only if

E = 0. (1.33)
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It is worth noting that in the situation where the deformation is just a rotation, i.e. F

is simply a proper orthogonal tensor independent of the position X, the conditions (1.18)

and FTF − I = 0 are automatically satisfied, yielding (1.33). Actually, it can be shown

that for such deformations the latter is satisfied for all X in Br in which case the body is

said to be unstrained. For more details we referred to the work of Ogden [56].

In addition, in the case where λ(i1) > 1 the material is said to be extended at X, or

undergoes extension at X, in the direction i1. Analogously, when λ(i1) < 1 we say that

the material is contracted at X, or undergoes contraction at X, in the direction i1.

An alternative way to measure strain is through the spatial derivatives of the displace-

ment u of a particle X from the reference to the current configuration. This is defined

as

u = x−X, (1.34)

from which follows

x = u + X. (1.35)

Thus, if we denote by D the displacement gradient tensor, namely Gradu ≡ ∂u/∂X, the

definitions (1.35) and (1.9) are combined to give

F = I + D. (1.36)

Then, the tensor (1.26) can be expressed as

E =
1
2
(D + DT + DTD) (1.37)

and, equivalently, in component form

Eij =
1
2

(
∂ui

∂Xj
+

∂uj

∂Xi
+

∂up

∂Xi

∂up

∂Xj

)
, (1.38)

with ui being the components of u with respect to the reference basis {Ei}.
In the same spirit, the definition (1.34) can be used to obtain

F−1 = I− d, (1.39)

where d is the gradient operator gradu ≡ ∂u/∂x and the Eulerian strain tensor (1.29)

becomes

e =
1
2
(d + dT − dTd). (1.40)

If now ũi denotes the components of u with respect to the current basis {ei}, the coun-

terparts of (1.30) are

eij =
1
2

(
∂ũi

∂xj
+

∂ũj

∂xi
− ∂ũp

∂xi

∂ũp

∂xj

)
. (1.41)
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1.1.6 Polar decomposition of the deformation gradient

Two important theorems, namely the square root and the polar decomposition theorem,

predicated on the algebra of second-order symmetric tensors are now demonstrated to

highlight a few other elements of the local nature of the deformation and especially that

of its geometrical interpretation. Expressly, the result of the first, in the order given,

theorem is used to establish the arguments of the second˙ however, no details concerning

their proofs are provided here since these can widely be found in the literature. We cite

here, for example, the books by Ogden [56, 57] and Jaunzemis [36].

The square root theorem

For any positive definite, symmetric second-order tensor, S say, there exists a unique,

positive definite, symmetric second-order tensor denoted T, such that T2 = S.

The polar decomposition theorem

Consider a second-order Cartesian tensor F embodying the property det(F) > 0. Then,

there exist unique, positive definite, symmetric second-order tensors, U and V, as well as

a proper orthogonal tensor R, such that

F = RU = VR. (1.42)

Clearly, due to the conventional assumption (1.17), the latter may directly be applied

to the deformation gradient and then the tensors U and V involved in (1.42) respectively

are called the right and left stretch tensors. In fact, the tensor U lies in the reference

configuration and V in the current configuration, yet, both of them serve to measure stretch

along their principal directions and hence the terminology stretch tensors, while the proper

orthogonal tensor R is employed to rotate their principal axes from one configuration to

the other.

To demonstrate this, we first avail of the square root theorem to establish the relations

U2 = FTF = C, V2 = FFT = B, (1.43)

where now the tensors C and B are referred to as the right and left Cauchy-Green defor-

mation tensors, respectively, both of which serve to measure deformation. The role of C

is undoubtedly justified via (1.25), implying that the Lagrangian strain tensor becomes

E =
1
2
(C− I) =

1
2
(U2 − I). (1.44)
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In a like manner, the involvement of B in (1.28) comprehends that the Eulerian strain

tensor may be conveyed to

e =
1
2
(I−B−1) =

1
2
(I−V−2). (1.45)

Undoubtedly, since CT = (FTF)T = FTF = C and in accordance with (1.19), (1.43)1,

the tensor C is, similar to U, symmetric and positive definite. In fact, the aforementioned

properties of U lead to the conclusion that the latter can be written in the spectral form

U =
3∑

i=1

λiu(i) ⊗ u(i), (1.46)

where the scalar quantities λi > 0 are the eigenvalues of U and u(i) are the associated

(unit) eigenvectors. In other words λi signify the principal values of U with principal

directions u(i) such that Uu(i) = λiu(i). This, in conjunction with (1.43)1 and (1.22)

results in

λ(u(i)) = [u(i) · (FTFu(i))]1/2 = [u(i) · (U2u(i))]

= [(Uu(i)) · (Uu(i))]1/2 = [(λiu(i)) · (λiu(i))]1/2 = λi

and hence the eigenvalues of the right stretch tensor indeed measure stretch in the direc-

tions u(i). Accordingly, we refer to λi as the principal stretches of the deformation while

the principal axes u(i) of U are often referred to as the Lagrangian principal axes.

Next, from (1.42), we have

V(Ru(i)) = VRu(i) = RUu(i) = R(λiu(i)) = λi(Ru(i)),

which shows that λi are also the principal values of V relative to the principal directions

Ru(i). Thus, by denoting v(i) = Ru(i), we may analogously obtain the expression

V =
3∑

i=1

λiv(i) ⊗ v(i), (1.47)

where again V is symmetric and positive definite and v(i) are called the Eulerian principal

axes.

Consequently, the polar decomposition theorem states that the deformation gradient F

can sufficiently be regarded as a two-phase process consisting of a rotation and a stretching.

In any case, the order in which the rotation and the stretch take place does not matter.

Truly, while F = RU comprehends stretch of line elements along the u(i) directions and



CHAPTER 1. CONTINUUM BASIS AND ELASTICITY 11

then rotation of those to the positions v(i), the equivalent formula F = VR implies

transition from u(i) to v(i) which is followed by a stretch in these final directions.

We remark that connection of C with U and of B with V readily provide the formulas

C =
3∑

i=1

λ2
i u

(i) ⊗ u(i), (1.48)

B =
3∑

i=1

λ2
i v

(i) ⊗ v(i). (1.49)

In this connection, the strain tensors (1.44) and (1.45) can also be expressed in terms of

the principal stretches, as

E =
1
2

3∑

i=1

(λ2
i − 1)u(i) ⊗ u(i), e =

1
2

3∑

i=1

(1− λ−2
i )v(i) ⊗ v(i), (1.50)

respectively.

Another direct consequence of the polar decomposition theorem is that the determinant

J , given in (1.17), can equivalently be defined by

J = det(U) =
√

det(C) = det(V) =
√

det(B) = λ1λ2λ3, (1.51)

while the linkages (1.42) are also used to derive

U = RTVR, V = RURT. (1.52)

These are now combined with (1.43) to obtain

C = RTBR, B = RCRT, (1.53)

and due to (1.44) and (1.45) the tensors E and e are then found to satisfy

E =
1
2
[RT(I− 2e)−1R− I], e =

1
2
[I−R(I + 2E)−1RT]. (1.54)

Finally in this section it is useful to note that if no rotation of the principal axes occurs

during the deformation i.e. R = I we have F = U = V,C = B as well as E = e and the

deformation is known as pure strain.

1.2 Stress principles, balance laws and equilibrium

1.2.1 Applied forces and torques

We consider a motion of a deforming material body B caused by the action of a system of

applied forces. Applied forces are, by definition, measured in the current configuration Bt

and they are considered as the resultant force of body and contact forces.
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The body forces, locally measured per unit mass, are distributed throughout the con-

tinuum i.e. act directly on each particle of the body in Bt and are (locally) described by

a vector field b. Such forces may be associated with gravity or the existence of magnetic

fields, for example. The concept of contact forces, on the other hand, demonstrates the

effect of the mutual actions of parts of the body which is assumed to (locally) occur across

a separating closed surface embedded in B. We mention, for example, pressure.

Rt

S
dS

t(n)
n

Bt

Figure 1.2: Traction t(n) exerted on material Rt ⊂ Bt at a point of a surface element dS ⊂ S ≡
∂Rt, with unit normal n.

In this respect, we let S denote a surface enclosing material occupying Rt ⊂ Bt with

mass

m(Rt) =
∫

Rt

ρdv, (1.55)

where here the volume element dv is relevant to Rt while the quantity ρ is an Eulerian

scalar field referred to as the mass density of the material composing B. Then, as shown

in Figure 1.2, the contact force exerted by material Bt \ Rt on the material Rt at a fixed

point x ∈ S ≡ ∂Rt is defined by a vector field t(n) called the traction or stress vector

field per unit surface area. Obviously, the nature of t(n) is purely local and applies on

an infinitesimal surface area element dS of S. It is also apparent that one may consider

infinite surfaces with the above mentioned properties. Thus, depending on the orientation

of each surface, the traction t(n) acting on x will, in general, vary. Hence, it is assumed to

depend continuously on n with the latter being the outward unit normal to S (and dS).

Accordingly, the contribution of the body and contact forces to the applied force, T (Rt)

say, acting on the material occupying Rt are given by
∫

Rt

ρbdv,

∫

∂Rt

t(n)dS

respectively, and hence

T (Rt) =
∫

Rt

ρbdv +
∫

∂Rt

t(n)dS. (1.56)

The action of body forces on Rt justifies the presence of body torques
∫

Rt

ρ(x× b)dv, (1.57)
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while contact forces yield contact torques
∫

∂Rt

x× t(n)dS. (1.58)

Thus, analogously to the resultant force, the resultant torque, denoted L(Rt; o), is formu-

lated as

L(Rt; o) =
∫

Rt

ρ(x× b)dv +
∫

∂Rt

x× t(n)dS. (1.59)

We remark, however, that due to the rotational nature of (1.57) and (1.58) the vector field

L, unlike T , now depends on the choice of an origin o relevant to Rt.

1.2.2 Balance of mass, linear and angular momentum

For a moving material body the mass density is, in general, assumed to depend continu-

ously both on position and time, i.e. ρ = ρ(x, t) and therefore, referring to the foregoing

paragraph, on Rt. By contrast, the mass m(Rt) itself, and despite the notation adopted

here, is presumed to be strictly independent of configuration. In other words, the region

Rt changes during the motion of the body, yet, still comprises of the same material. This

conveys that the mass remains unchanged as the body moves, which, in mathematical

terms, corresponds with the mass conservation or mass balance equation, given by

d

dt
m(Rt) = 0. (1.60)

For a smooth ρ the latter may be combined with (1.55) to give the local formula

dρ

dt
+ ρdivv = 0, (1.61)

known as the continuity equation, where v is the velocity as defined in (1.2), div is the

divergence operator with respect to x ∈ Rt and dρ/dt = (∂ρ/∂t) + v · ∇ρ; the symbol

∇ denoting the gradient operator with respect to x. In fact, validity of the continuity

equation requires continuity of the term ∂(ρJ)/∂t that, indeed, coincides with the left-

hand side of (1.61). This assertion arises from the property

Jdivv =
∂J

∂t
, (1.62)

on the use of which (1.61) is integrated to give the alternative local connection

Jρ = ρ0, (1.63)

with ρ0 = ρ0(X) being the counterpart of ρ in the reference configuration. Then, we recall

(1.17) to deduce ρ0/ρ > 0.
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In view of (1.63) we further obtain that for an isochoric deformation, where J = 1, the

mass density embodies the property ρ = ρ0 while, from (1.62), we deduce divv = ∂J/∂t =

0. Thus, by virtue of (1.51), this can be rearranged in the form

∂J

∂t
≡ λ−1

1

∂λ1

∂t
+ λ−1

2

∂λ2

∂t
+ λ−1

3

∂λ3

∂t
= 0. (1.64)

Two basic dynamical measures of motion are the linear and angular momentum. For

a material occupying Rt ⊂ Bt, these are taken as

M(Rt) =
∫

Rt

ρvdv, H(Rt; o) =
∫

Rt

x× (ρv)dv, (1.65)

respectively, where, again, the symbol o involved in H signifies dependence with respect

to an origin in Rt.

Based on Newton’s second law of motion, Euler proposed two fundamental principles

of mechanics applicable to all finitely deformable bodies, namely the balance of linear

momentum
dM
dt

= T , (1.66)

and the balance of angular momentum

dH
dt

= L, (1.67)

together referred to as Euler’s laws of motion. Coherently, the formulas (1.66) and (1.67)

are appropriate to moving material bodies in respect of a system of applied forces as

prescribed in Section 1.2.1.

Accordingly, substitution of (1.56) and (1.65)1 into (1.66) and, in like manner, of (1.59)

and (1.65)2 into (1.67) enables us to respectively obtain Euler’s laws of motion in the full

forms
∫

Rt

ρ(a− b)dv =
∫

∂Rt

t(n)dS, (1.68)

∫

Rt

ρx× (a− b)dv =
∫

∂Rt

x× t(n)dS. (1.69)

Recall that a is the acceleration of a particle with position x now associated with the

region Rt.

1.2.3 Cauchy’s theory of stress

Following Cauchy’s theorem, the linear dependence of the stress vector field t(n) on n,

assumed so far, justifies the existence of a second-order tensor field σ that, for each unit
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vector n and for all x in Rt, satisfies

t(n) = σTn. (1.70)

The tensor σ, measuring force per deformed area, is called the Cauchy stress tensor and

it strictly depends on the point x at which t(n) acts but not on n i.e. σ = σ(x).

Since the Cauchy stress tensor σ , in essence, arises from the presence of contact

forces, the formula (1.70) has to satisfy Euler’s laws of motion. Expressly, under suitable

continuity conditions placed upon ρ,b and a, equation (1.70) is used to establish that

(1.68) and (1.69) hold if and only if

divσT+ρb = ρa, (1.71)

σT = σ. (1.72)

Equation (1.71) is known as Cauchy’s first law of motion and is the necessary and suffi-

cient condition for the linear momentum balance to be in place. The angular momentum

balance, on the other hand, is justified by the Cauchy’s second law of motion, namely

(1.72), which necessitates symmetry in σ.

We emphasise, however, that the nature of problems that we will be dealing with in the

forthcoming chapters are purely static while body forces are considered to be negligible.

In this regard, we take a = b = 0 for all x ∈ Rt and the entries (1.71) and (1.72) are

written together in the compact form

divσ = 0. (1.73)

This is known as the equilibrium equation.

It is worth noting that the stress tensor σ incorporates, in general, nine components.

Precisely, as demonstrated in Figure 1.3 when these are referred to rectangular Cartesian

coordinates the notation σij (i, j = 1, 2, 3) is used to indicate the force acting in the

direction i at a point x in the current configuration on a surface whose normal lies along

the direction j. Therefore, the diagonal components, namely σii (no sum over i), of σ are

parallel to the normal of the surface on which they act and are called normal stresses while

the remaining components σij (i 6= j), called the shear stresses, are distributed along the

planes of action i.e. are tangent to these surfaces. Notwithstanding, in accordance with

(1.72), only six components of σ are independent and sufficient to interpret the contact

forces associated with a motion of a material body.
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e1 e2

e3

σ22σ12

σ32

σ23σ13

σ33

σ11 σ21

σ31

Figure 1.3: Components of the Cauchy stress tensor σ acting on three elementary material surfaces

normal to e1, e2 and e3 in the current configuration.

Of course, analogous conclusions hold on using different coordinate systems to describe

the position of each particle in the current configuration.

With reference to rectangular Cartesian coordinates, the equilibrium equation (4.3.3)

may also be written down in components form as

∂σij

∂xj
= 0, i ∈ {1, 2, 3} (sum over j) (1.74)

which can be expanded to give

∂σ11

∂x1
+

∂σ12

∂x2
+

∂σ13

∂x3
= 0,

∂σ12

∂x1
+

∂σ22

∂x2
+

∂σ23

∂x3
= 0, (1.75)

∂σ13

∂x1
+

∂σ23

∂x2
+

∂σ33

∂x3
= 0.

Alternatively, in terms of cylindrical polar coordinates (r, θ, z) the counterparts of (1.75)

become

∂σrr

∂r
+

1
r

∂σrθ

∂θ
+

∂σrz

∂z
+

1
r
(σrr − σθθ) = 0,

∂σrθ

∂r
+

1
r

∂σθθ

∂θ
+

∂σθz

∂z
+

2
r
σrθ = 0, (1.76)

∂σrz

∂r
+

1
r

∂σθz

∂θ
+

∂σzz

∂z
+

1
r
σrz = 0.

1.2.4 Energy balance

Based on Cauchy’s first and second laws of motion, additional conclusions, now regarding

the energy of a deforming body material, can be derived. Actually, as in the classical
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theory, where the rate of change of the kinetic energy of a moving body is equal to the

rate of working of the applied forces, the continuum approach adopted here is used to

establish parallel results. In this case, however, another form of energy, referred to as

elastic strain energy, is also taken into account.

In point of fact, by denoting

Ekin(Rt) =
∫

Rt

1
2
ρv · vdv,

the kinetic energy of the material occupying the region Rt, and

P (Rt) =
∫

Rt

ρb · vdv +
∫

∂Rt

t(n) · vdS,

the rate of working of the forces acting on this part of material, equations (1.71), (1.72)

are combined with (1.12), (1.63) and (1.70) to provide the relation

P (Rt) =
d

dt
Ekin(Rt) +

∫

Rt

tr(σD)dv, (1.77)

where now the term D is a symmetric second order tensor called the (Eulerian) strain-

rate or rate of stretching tensor. This is defined via the velocity gradient tensor, namely

L = gradv, such that

D =
1
2
(L + LT). (1.78)

Now, the integral ∫

Rt

tr(σD)dv, (1.79)

appearing in the right hand side of (1.77) is the rate of working of the stresses (or stress

power) on the region Rt of the body and it states that, apart from kinetic energy, the work

done by body and surfaces forces is also converted into an internal potential energy which,

in later sections, we refer to as elastic strain energy. The latter argument is in reality a

special case and it is substantiated when the mechanical behaviour of the material under

examination is considered to be elastic. Then, equation (1.77) constitutes the mechanical

energy balance equation. For materials whose nature is not as such, however, the quantity

(1.79) can be taken to incorporated heat dissipation phenomena. For a more detailed

discussion on the latter approach we refer to the work of Truesdell and Noll [79] and

Coleman and Noll [13].

1.2.5 The nominal stress tensor

In some situations it is more convenient to measure the contact forces acting on a deforming

body material with respect to the reference configuration. For this, we employ Nanson’s
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formula (1.11) and (1.17), (1.72) to rearrange (1.70) as

t(n)dS = σndS = STNdS0, (1.80)

where now dS0 is the projection of dS ⊂ S ≡ ∂Rt in the reference configuration and

S = JF−1σ, (1.81)

represents the so-called nominal or engineering stress tensor. The tensor S, and in par-

ticular its transpose ST, introduces the notion of force per unit reference area, and unlike

σ, is not in general symmetric. However, it satisfies the connection

FS = STFT,

arising from the symmetry (1.72) of σ. The transpose of S is sometimes referred to as the

first Piola-Kirchoff stress tensor but we do not use this terminology here.

Further, in accordance with the discussion given in Section 1.2.3 for σ, the components

Sij of S represent the force (per unit reference area) acting in the direction j at a point

x in the current configuration on a surface whose normal was in the direction i in the

reference configuration.

On use of (1.80), Cauchy’s first law of motion (1.68), and hence the equilibrium equa-

tion (4.3.3), can be expressed in terms of the nominal stress tensor S. Precisely, by denoting

R0 the counterpart of Rt in the reference configuration, equation (1.80) is applied on the

right hand-side of (1.68) to interpret the contact forces over the boundary S0 ≡ ∂R0 as
∫

∂Rt

t(n)dS =
∫

∂Rt

σndS =
∫

∂R0

STNdS0.

At the same time, the entry (1.12) is combined with (1.63) to obtain ρdv = ρ0dV . This

enables the transformation
∫

Rt

ρ(a− b)dv =
∫

R0

ρ0(a0 − b0)dV,

with a0,b0 being the counterparts of a and b in the reference configuration, respectively.

As a result, equation (1.68) may equivalently be written in its Lagrangian description as
∫

R0

ρ0(a0 − b0)dV =
∫

∂R0

STNdS0 (1.82)

and, by the divergence theorem, the analogues of (1.71) and (4.3.3) become

DivS + ρ0b0 = ρ0a0, (1.83)

DivS = 0, (1.84)
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respectively.

Thereafter, similarly to (1.74), the latter may be written in components notation as

∂Sij

∂Xi
= 0, j ∈ {1, 2, 3} (sum over i) (1.85)

provided the indices i and j are both related to rectangular Cartesian bases or, in full

form,

∂S11

∂X1
+

∂S21

∂X2
+

∂S31

∂X3
= 0,

∂S12

∂X1
+

∂S22

∂X2
+

∂S32

∂X3
= 0, (1.86)

∂S13

∂X1
+

∂S23

∂X2
+

∂S33

∂X3
= 0.

It is worth noting that if cylindrical polar coordinates (R, Θ, Z) and (r, θ, z), respec-

tively associated with the basis {ER,EΘ,EZ} in the reference configuration and the basis

{er, eθ, ez} in the current configuration, are used to characterize the status of the deform-

ing body under examination, the connections (see also Kirkinis [43])

∂er

∂R
=

∂θ

∂R
eθ,

∂er

∂Θ
=

∂θ

∂Θ
eθ,

∂er

∂Z
=

∂θ

∂Z
eθ, (1.87)

∂eθ

∂R
= − ∂θ

∂R
er,

∂eθ

∂Θ
= − ∂θ

∂Θ
er,

∂eθ

∂Z
= − ∂θ

∂Z
er, (1.88)

constitute that (1.84) may be decomposed as

∂SRr

∂R
+

1
R

∂SΘr

∂Θ
+

∂SZr

∂Z
+

1
R

(SRr − SΘθ
∂θ

∂Θ
)− (SRθ

∂θ

∂R
+ SZθ

∂θ

∂R
) = 0,

∂SRθ

∂R
+

1
R

∂SΘθ

∂Θ
+

∂SZθ

∂Z
+

1
R

(SRθ + SΘr
∂θ

∂Θ
) + SRr

∂θ

∂R
+ SZr

∂θ

∂Z
= 0, (1.89)

∂SRz

∂R
+

1
R

∂SΘz

∂Θ
+

∂SZz

∂Z
+

1
R

SRz = 0.

Undoubtedly, on deriving (1.87)-(1.89) we have assumed the general situation where θ =

θ(R, Θ, Z), yet, depending on the geometry of the deformation for each particular problem

this might not be the case and these should be rearranged and/or simplified analogously.

We also mention that (1.83) can be used to deliver an alternative, yet equivalent

Lagrangian formulation of the mechanical energy balance equation (1.77). This is written

as
∫

R0

ρ0b0 · χ̇dV +
∫

∂R0

(STN) · χ̇dS0 =
d

dt

∫

R0

1
2
ρ0χ̇ · χ̇dV +

∫

R0

tr(SḞ)dV, (1.90)
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where the notations χ̇ ≡ ∂χ(X, t)/∂t and Ḟ ≡ ∂F/∂t have been adopted for compactness.

Now, by noting the connection Ḟ = LF, both the symmetry of σ as well as (1.78) and

(1.81) are engaged to obtain the identities

Jtr(σD) = Jtr(σL) = tr(FSL) = tr(SLF) = tr(SḞ), (1.91)

and hence, through (1.12) with det(F) = J , the stress power (1.79) can alternatively be

written over the (referential) volume of R0 in the form
∫

Rt

tr(σD)dv =
∫

R0

Jtr(σD)dV =
∫

R0

Jtr(σL)dV =
∫

R0

tr(SḞ)dV. (1.92)

Due to (1.92), the equivalence between (1.77) and (1.90) is well established. Note that

the integrand tr(σD) appearing in the left-hand side of (1.92) expresses the power of

stress per unit deformed volume, otherwise called the power density, and accordingly

Jtr(σD)(= Jtr(σL) = tr(SḞ)) that per unit reference volume.

1.3 Constitutive laws for Cauchy elastic materials

1.3.1 Definition of a Cauchy elastic material

We now introduce the general considerations for a special class of ideal materials called

Cauchy elastic materials. The basic principle that characterizes the nature of these mate-

rials is the strict dependence of their local state of stress in the current configuration on

the state of deformation in that configuration.

In mathematical terms, the mechanical behaviour of such materials is described by the

constitutive equation

σ = g(F), (1.93)

where g is a symmetric tensor-valued function, which is referred to as the response function

of the material. According to the definition (1.93) the stress σ at a point x in the current

configuration of the body is solely determined by the deformation gradient F at X. How-

ever, this stress relation does not account for intermediate stages of deformation; in other

words, the path of deformation that X follows in order to reach x is not to be considered.

On the other hand, the connection between g and F does indeed imply dependence of the

response of the body on the choice of reference configuration. Thus, the form of g is, in

general, defined appropriate to Br.
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When the stress is removed the body returns to its natural state i.e. that in the

reference configuration, so that F = I and g(I) = 0. Although the latter assertion cannot

be taken as a generalization since residual stresses may be present.

1.3.2 The principle of material frame-indifference

In this section we discuss the principle of material frame-indifference [55, 79] according to

which the mechanical behaviour of a material obeying (1.93) remains invariant to super-

imposed rigid-body motions and/or to changes in the external frame of reference used to

describe the constitutive equation (1.93).

To demonstrate this, let us assume that a body is deformed from its current configu-

ration Br to Bt, so that x = χ(X, t). Then, another deformation is superimposed on the

body and suppose this occupies the configuration B∗
t , so that

x∗ = Q(t)x + c(t). (1.94)

Here, the quantity Q(t) is a proper orthogonal second-order tensor which represents a

rotation while c(t) is a vector field that describes a translation. Note that (1.94) may

equivalently be understood to describe an observer transformation.

Following the present notation, we denote F the deformation gradient from Br to Bt

and similarly F∗, that from Br to B∗
t . Thus,

F =
∂x
∂X

, F∗ =
∂x∗

∂X
, (1.95)

and due to (1.94) we derive

F∗ = QF. (1.96)

Now, if g is the response function of the material relative to Br and σ, σ∗ the stresses

associated with the deformations F and F∗, respectively, the constitutive law (1.93) pro-

vides

σ = g(F), σ∗ = g(F∗). (1.97)

Accordingly, if n represents the unit normal on the boundary ∂Bt, the transition from

Bt to B∗
t yields the transformation n∗ = Qn while, the traction t(n) similarly becomes

t(n∗) = Qt(n). Bearing in mind that t(n) = σn and t(n∗) = σ∗n∗, we therefore conclude

the relation

(Qσ − σ∗Q)n = 0,
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being in place for all arbitrary unit vectors n, and hence

σ∗ = QσQT. (1.98)

Clearly, the entries (1.96)-(1.98) deliver the required result

g(F∗) ≡ g(QF) = Qg(F)QT, (1.99)

which states that the constitutive law for elastic materials is objective.

1.3.3 Material symmetry

Whereas material frame-indifference requires that the mechanical response of an elastic

body remains unchanged due to rotations in the current configuration the actual form

of g and hence of σ relies on the symmetries that a material might exhibit relative to

some reference configuration. As already mentioned in Section 1.3.1, this implies that a

change in the reference configuration affects, in general, the status of stress in the current

configuration.

Now, our intention is to identify the appropriate mathematical restrictions that should

be placed upon the response function g so that the choice of reference configuration has

no influence on the state of σ.

In order to succeed that we consider a material body which is deformed from two

distinct configurations, Br and B̄r say, to the same current configuration Bt and under

the assumption that, for both deformations, the stress is equally given by σ. In this

case, if F,g respectively denote the deformation gradient and the response function of

the material relative to Br and analogously F̄, ḡ the deformation gradient and response

function relative to B̄r, the constitutive law (1.93) requires

σ = g(F) = ḡ(F̄), (1.100)

where

F =
∂x
∂X

, F̄ =
∂x
∂X̄

, (1.101)

given that X ∈ Br, X̄ ∈ B̄r and x ∈ Bt.

The transition from the configuration Br to B̄r may then, in a similar manner, be

defined through the deformation gradient

H =
∂X
∂X̄

, (1.102)
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which, in view of (1.101), is found to satisfy

F = F̄H. (1.103)

Thus, using (1.103), the requirement (1.100) becomes

g(F̄H) = ḡ(F̄). (1.104)

Since the response functions g and ḡ are defined with respect to different reference

configurations occupied by the same body, we expect to have g 6= ḡ in general. In some

situations, however, it is possible to determine suitable deformations H such that g = ḡ.

By putting this argument in fact, equation (1.104) suggests the relation

g(F̄H) = g(F̄), (1.105)

for all deformations F̄ and for all such H. Subsequently, the stress (1.100) is finally given

by

σ = g(F) = g(F̄). (1.106)

From the discussion provided so far, we understand that the role of the tensor H is

to identify all the possible deformations for which the mechanical response of the body

is compatible with (1.105) and therefore with (1.106). In this respect, the set of such

tensors substantiating the aforementioned properties serves to characterize all the possible

reference configurations that are, in terms of the response of the body, indistinguishable.

Accordingly, we may introduce the set H whose elements H satisfy

g(FH) = g(F) (1.107)

for all deformation gradients F, which defines the symmetry of the material relative to Br.

In particular, by recalling the conventional assumption (1.17) i.e. det(H) > 0, it is easy to

show that H is a multiplicative group called the symmetry group of the material relative

to Br.

It should be emphasized that since the symmetry group of a material consists of de-

formation gradients a change in the reference configuration corresponds, in general, to a

different symmetry group of the same material. It is interesting, however, that in the

present notation the structure of the symmetry group, H̄ say, of the material relative to

B̄r can be characterized by means of H according to Noll’s rule. This states that if K is

the deformation gradient from Br to B̄r, then

H̄ = KHK−1. (1.108)
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The latter connection can be obtained via (1.104) after some manipulation (see, e.g., [57])

but we do not pursue any details here. Seeing (1.108), it is straightforward to derive

that in the special cases where either K ∈ H or, K = KI with K > 0 (i.e. K is a

pure dilatation) the symmetry group of the material cannot be affected due to change of

reference configuration since we then have H̄ = H.

1.3.4 Material specification: isotropic and anisotropic elastic solids

At this point, and with reference to the symmetry operations that constitute the symmetry

group of a Cauchy elastic material relative to some reference configuration, two important

classes of real entities commonly understood as solids are introduced.

Isotropic elastic solids

A Cauchy elastic material whose symmetry group H (relative to Br) coincides with the

proper orthogonal group is said to be an isotropic elastic solid relative to Br. Accordingly,

for such materials all the elements H ≡ Q of H are proper orthogonal second order tensors

which satisfy (1.107) for every deformation gradient F. Thus, due to the rotational nature

of Q, the (local) mechanical response of an isotropic elastic solid and hence the stress

appears to have no awareness of the orientation of the body in Br.

Further justification for the latter argument may easily be established by following

Noll’s rule. In this case, if the deformation gradient K accounts for a rotation Q, the

formula (1.108) readily suggests H̄ = H.

Isotropy applies to a wide range of solid materials and especially to those known as

rubberlike solids. Obviously, the symmetry operations that these materials exhibit are not

perfectly isotropic but their mechanical behaviour can be very well approximated under

such an assumption.

Anisotropic elastic solids

On the other hand, not all solid materials can be sufficiently characterized by isotropy.

Both in nature as well in industrial applications several materials whose symmetry oper-

ations relative to specific reference configurations cannot construct the proper orthogonal

group itself, but only strict subgroups of it, are met. We mention, for instance, some

biological soft tissues such as arteries and fibre-reinforced composites. These are called

anisotropic elastic solid materials which, unlike isotropic elastic solids, display signifi-
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cantly different (local) mechanical behaviour in certain directions; the latter referred to as

preferred directions.

In general, depending on the structure of the body under examination, the number

of preferred directions that should be taken into account varies. This fact is actually

the criterion that defines the anisotropy symmetry group of such a material relative to

some reference configuration and is used to provide a more precise identity to anisotropic

elastic solids. For example, anisotropic solids featuring a single preferred direction, either

locally or from a macroscopic point of view, are known as transversely isotropic solids since

they follow for the case of transverse isotropy with respect to this direction. Accordingly,

a Cauchy elastic material with a preferred direction M defines a transversely isotropic

elastic solid if its symmetry group, G say, relative to Br consists of proper orthogonal

second order tensors Q, such that

QM = ±M. (1.109)

Therefore, under transverse isotropy the mechanical response of the body may only remain

unaffected due to arbitrary rotations about the direction of M and due to reflections about

the planes lying perpendicular to this direction. Obviously, combination of the two cannot

be excluded. Rotational deformations Q substantiating (1.109) are said to describe the

isotropic planes for a transversely isotropic solid. Hence, if H corresponds to isotropy, we

easily understand that G ⊂ H. It is further apparent that in the present situation any

transition from a reference configuration Br to B̄r, now associated with the symmetry

group Ḡ, yields via (1.108) the connection Ḡ = G for all rotational deformations K ≡ Q

being consistent with (1.109).

It is also worthwhile noting that the symmetry group G relative to Br can essentially

be established by two general classes of rotational deformations. Let {q1,q2,q3} define

an arbitrary orthogonal vector basis relative to some origin in Br, with q1 × q2 = q3.

In addition assume that, without loss of generality, the basis consists of unit vectors and

that the preferred direction M at this point of the body lies along q3. Then, any element

Q of G that satisfies QM = M transforms q1,q2 into q̄1, q̄2, respectively, while leaving

M ≡ q3 unchanged. Thus, if φ is the angle between q1 and q̄1 (and between q2 and q̄2),

all the possible rotations Q about M may be generated by the class of second order proper

orthogonal tensors denoted Q(1)
M (φ), with matrix representation
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Q
(1)
M (φ) =




cosφ sinφ 0

− sinφ cosφ 0

0 0 1




and φ ∈ [0, 2π). Now, supposing that a reflection about the plane normal to M is (locally)

superimposed on the body, the vector q̄1 becomes −q̄1 (i.e. q1 rotates through φ + π), q̄2

remains unchanged and the preferred direction is given by −M(≡ −q3). As a result, all

the tensors Q signifying QM = −M can analogously be prescribed by the class Q(2)
M (φ),

with matrix representation

Q
(2)
M (φ) =




cos(φ + π) sin(φ + π) 0

− sinφ cosφ 0

0 0 −1


 =




− cosφ − sinφ 0

− sinφ cosφ 0

0 0 −1


 ,

where again φ ∈ [0, 2π). Undoubtedly, for a pure reflection we have φ = 0 and the latter are

rearranged analogously. Consequently, the anisotropy symmetry group G may sufficiently

be generated by Q(1)
M (φ) and Q(2)

M (φ) so, we may write

G = {Q(1)
M (φ),Q(2)

M (φ)}, φ ∈ [0, 2π). (1.110)

A schematic of the above mentioned facts is now given in Figure 1.4.

In the same spirit, anisotropic solids with two preferred directions are said to be or-

thotropic solids while the possibility of having even more preferred directions is also fea-

sible. Here, however, we are mainly concerned with transversely isotropic solids and some

further remarks on the case of orthotropy are only made in the later chapters.
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Figure 1.4: Geometrical interpretation of the operations of the tensor Q when this is regarded as

(a) a member of the class Q(1)
M (φ) and (b) as member of Q(2)

M (φ).
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Undistorted configurations

For an isotropic elastic solid the reference configurations relative to which the symme-

try operations satisfying (1.107) are capable of establishing the symmetry group H (i.e.

the proper orthogonal group) are called undistorted states or undistorted configurations.

In parallel, under transverse isotropy, undistorted states are characterized by reference

configurations which comply with the symmetry group G. In that sense, starting from

a reference configuration Br with the above mentioned properties, we are interested in

determining those deformations that bring the body into the state B̄r without changing

its initial ‘physical’ symmetry operations.

Both for isotropic and transversely isotropic solids, Truesdell and Noll [79] have shown

that (1.108) may be combined with the formula K = RU (as prescribed by the polar

decomposition theorem) to deduce that the entry

U = QTUQ, (1.111)

constitutes the appropriate restrictions that should be placed between the reference config-

urations Br and B̄r so as to ensure that every element of H̄ and/or Ḡ is a proper orthogonal

tensor. In addition, the same authors derived that (1.111) is in place if and only if the

stretch tensor U that relates the configurations Br and B̄r is of the form

U = αI, (1.112)

for the case of isotropy, and

U = αI + βM⊗M, (1.113)

under transverse isotropy. Note that the parameters α and β are scalar fields. Identical

restrictions also apply on the response function g when this is evaluated for F ≡ K = I

(i.e. in the configuration Br), in which case (1.111) recasts to

g(I) = QTg(I)Q. (1.114)

The latter suggests

g(I) = α̃I, (1.115)

for isotropic solids, and

g(I) = α̃I + β̃M⊗M, (1.116)

for transversely isotropic. Analogously to α and β, the parameters α̃ and β̃ are scalars. A

detailed exposition of the methodology followed in order to obtain (1.112) and (1.115) is
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given in [56]. Here, we mention in passing that the expression (1.113) and its counterpart

(1.116) arise on choosing this member of the class Q(1)
M (φ) associated with the value φ =

π/2 and a second member from Q(2)
M (φ) corresponding to the angle φ = 0. These two

rotations are sufficient to establish biuniqueness between (1.111), (1.113) and between

(1.114), (1.116) under transverse isotropy.

It is straight forward from (1.46) that (1.112) is substantiated if and only if the prin-

cipal stretches satisfy λ1 = λ2 = λ3 = α (> 0). As a result and bearing in mind the

decomposition (1.42), the deformation gradient connecting Br with B̄r is written down as

K = RU = αR, (1.117)

signifying a pure dilatation αI combined, in general, with a rotation R. Here, the stress

(1.115) associated with Br is hydrostatic. On the other hand, validity of (1.113) requires

M to be a principal direction of U and the principal stretches in the two remaining

principal directions of the same tensor to coincide. Thus, by taking M ≡ u(3) for example,

the expression (1.113) incorporates λ1 = λ2 = α together with λ3 = α + β which, in

fact, requires both α and α + β to be positive. Hence, for a transversely isotropic solid,

two arbitrary undistorted states are connected with a deformation comprising of a pure

dilatation, an extension along the preferred direction M and, due to (1.42), a rotation R.

In line with (1.117) we now write

K = RU = αR + β(RM)⊗M. (1.118)

Once more, the stress in Br needs to be hydrostatic. Physically, the connection (1.116)

is often used to describe the existence of (local) residual stress in unloaded equilibrium

configurations of transversely isotropic solids with zero traction on the boundary of the

body (see, e.g., [14, 30, 31]). This is not, however, the case for (1.115) since isotropic

elastic solids obeying such boundary conditions cannot support constitutive equations

with residual stress [57].

As recorded in the book by Ogden [56], the deformation gradient (1.117) which con-

nects two undistorted states Br, B̄r of an isotropic solid with symmetry groups H and H̄,

respectively, may further be combined with (1.108) to assign the relation

H̄ = RHRT, (1.119)

where R is an arbitrary rotation. If now the body under examination features transverse

isotropy and the symmetry groups G, Ḡ are related to the undistorted states Br and B̄r,
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respectively,the inverse of (1.118) can be arranged in the form

K−1 =
1
α
RT −

(
β

α + β

)
M⊗ (RM), (1.120)

in which case, through (1.118) and (1.120), the entry (1.108) contributes

Ḡ = RGRT. (1.121)

It is interesting that the transformation of G into Ḡ resulting from the deformation (1.118)

is in full analogy with that of H into H̄ as prescribed via (1.119). Again, the rotational

tensor R involved in (1.121) needs to be proper orthogonal but, apart from that, no other

restriction is imposed.

1.3.5 Further remarks on the response of elastic solids

It is evident that the notions of material frame-indifference and material symmetry have a

role to play in the mechanics of elastic deforming solids since they, in essence, impose par-

ticular restrictions on the constitutive law; recall that material frame-indifference qualifies

the invariance character of the mechanical response of elastic materials due to arbitrary ro-

tations in the current configuration while, analogously, material symmetry identifies those

reference configurations which should be regarded as indistinguishable when measuring

the stress the current configuration.

In this connection, it is useful to note that for an isotropic elastic solid the implications

of these principles are manifest through the identities

σ = g(F) = g(V) = g(VQT), (1.122)

g(QVQT) = Qg(V)QT, (1.123)

that hold for all proper orthogonal Q and for any (arbitrary) positive definite symmetric

V. Constructively, the stress (1.122) depends strictly on V and, in parallel with (1.47), the

mechanical response of an isotropic material may solely be determined by measuring the

stretches along the Eulerian principal axes. In addition, (1.123) states that the response

function of the considered materials is an isotropic tensor function, in which case it follows

that g is coaxial with V. It is important to note that, using (1.42) and (1.43), both (1.122)

and (1.123) may equivalently be rearranged in various, yet, equivalent forms [25, 54, 71]

where instead of the argument V we can either have U or even B or C. Overall, the
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Cauchy stress admits the representation

σ =
3∑

i=1

σiv(i) ⊗ v(i), (1.124)

where σi ≡ σi(λ1, λ2, λ3) are called the principal stresses being the components of σ along

the Eulerian principal axes v(i). For a detailed discussion on deriving (1.124) we refer to

the work of Ogden [56].

A transversely isotropic solid, on the other hand, does not in general support the

previous assertions. A simple way to clarify this point is by noting that (1.122) arise from

(1.107) on substituting F = VR,H = RT and H = RTQT respectively, while (1.123)

emerges from (1.122) through (1.103) and (1.104). It is therefore understood that, relative

to an undistorted configuration Br with symmetry group G, the stress σ = g(F) meets

(1.122) and its subsequent (1.123) only for these rotations Q which comply with (1.109),

i.e. for all Q ∈ G. Correspondingly, under transverse isotropy the Cauchy stress cannot, in

general, be sufficiently determined by measuring the stretches along the principal directions

of V alone, but measurements of deformation related to the deformed preferred direction,

namely

m = FM, (1.125)

are also required [18]. It is evident that here the response function is not an isotropic tensor

function and not, in general, coaxial with V. Thus, the spectral decomposition (1.124)

does not apply for transversely isotropic solids. Actually, as we will shortly discuss in the

coming section, the stress-strain coaxiality criterion (1.124) may only apply for particular

deformations.

Owing to the latter properties of the Cauchy stress it is appropriate to adopt the

notation

σ = g(F,M⊗M), (1.126)

when referring to transversely isotropic elastic solids. Here, the tensors F and M ⊗ M

should be treated as independent quantities whereas the second in the order given term

does not have a deformation character but serves to qualify the dependance between the

status of stress in the current configuration and the presence of a preferred direction in the

associated reference configuration. For convenience, and without losing generality, M can

always be considered to be a unit vector which is not in general the case for its counterpart

m, given by (1.125), in the current configuration.
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Finally, it is important to clarify that, in arrangement with (1.93), isotropic elastic

solids can be characterized as homogeneous materials. This reflects the fact that, despite

the local nature of stress, the response function g depends exclusively on F, yet not on

X. On the other hand, by noting that the vector field M involved in (1.126) depends, in

principle, on the position X, transversely isotropic solids and more generally anisotropic

solids (i.e. featuring more than one preferred direction) are characterized as inhomoge-

neous materials. Notwithstanding, the possibility of having M independent of X cannot

be eliminated in which case the constituent mechanical properties of these materials are

consider to be homogeneous. Particular examples of transversely isotropic solids with both

homogeneous and inhomogeneous mechanical properties are given in Chapters 2,3,4.

1.4 Hyperelastic materials

1.4.1 Constitutive formulation in terms of the strain-energy function

Henceforth, we focus our analysis on a special category of Cauchy elastic materials referred

to as hyperelastic or Green elastic materials. The notion of a hyperelastic material involves

an ‘energy-based’ approach for determining the mechanical response of a Cauchy elastic

material under large deformations. In reality, this is a relatively abstract and yet practi-

cally useful concept which implicates the existence of a scalar-valued function of tensorial

variables commonly known as the strain-energy function.

Specifically, by initially assuming that the materials under consideration are perfectly

elastic and homogeneous, we recall (1.91) to rewrite the energy balance equation (1.77) in

the full form
∫

Rt

ρb · vdv +
∫

∂Rt

t(n) · vdS =
d

dt

∫

Rt

1
2
ρv · vdv +

∫

Rt

tr(σL)dv. (1.127)

Now, in line with (1.90)-(1.92) and (1.127), we are urged to introduce a scalar function

of F, namely W (F), in such a way that satisfies the relation [56, 57]

∂

∂t
W (F) = Jtr(σL) = tr(SḞ). (1.128)

Then, from (1.128) and on using once more (1.12) with det(F) = J , we write
∫

Rt

tr(σL)dv =
∫

R0

∂

∂t
W (F)dV =

d

dt

∫

R0

W (F)dV =
d

dt

∫

Rt

J−1W (F)dv. (1.129)



CHAPTER 1. CONTINUUM BASIS AND ELASTICITY 32

Thus, (1.90) and (1.127) become
∫

R0

ρ0b0 · χ̇dV +
∫

∂R0

(STN) · χ̇dS0 =
d

dt

∫

R0

[
1
2
ρ0χ̇ · χ̇ + W (F)]dV, (1.130)

∫

Rt

ρb · vdv +
∫

∂Rt

t(n) · vdS =
d

dt

∫

Rt

[
1
2
ρv · v + J−1W (F)]dv, (1.131)

respectively. As a result, the rate of working of the applied force, measured either in

R0 ⊂ Br or in Rt ⊂ Bt as respectively expounded in the left-hand side of (1.130) and

(1.131), is possible to be determined through the rate of change of the total mechanical

energy of the body. Precisely, the right-hand side of (1.130) states clearly that, apart

from kinetic energy, this energy also incorporates potential energy W (F) per unit volume

in Br. In particular, bearing in mind that W (F) is founded on the basis of a purely

elastic mechanical behaviour it is understood to interpret a measure of stored energy in

the material resulting from the deformation process. As further shown in (1.128) the rate

of change of W (F) measures the stress power per unit reference volume.

In this connection the function W (F) is referred to as the elastic stored energy per

unit reference volume or simply strain-energy function. Of course, the nature of W (F) is

strictly local and thus the integrals
∫

R0

W (F)dV =
∫

Rt

J−1W (F)dv, (1.132)

are accordingly employed to prescribe the total elastic stored energy in the regions R0 and

Rt.

At this point, it is very important to note that equations (1.128) can be solved com-

pletely to deliver explicit formulas both for σ and S in terms of the strain-energy function.

Expressly, due to the strict dependence of W on F, the rate ∂W (F)/∂t can be suitably

manipulated to provide the relation

∂W

∂t
= tr

(
F

∂W

∂F
L

)
,

in which case comparison with (1.128) yields the expression

σ = J−1F
∂W

∂F
(1.133)

for the Cauchy stress tensor. In a similar manner, the nominal stress tensor is found to

satisfy

S =
∂W

∂F
. (1.134)

As expected, the forms of σ and S are now in full consistency with (1.81) and vice versa.



CHAPTER 1. CONTINUUM BASIS AND ELASTICITY 33

It should also be emphasized that in this treatise the components of the second-order

tensor ∂W/∂F involved in both (1.133) and (1.134) are taken to be given in accordance

with the convention (
∂W

∂F

)

ij

=
∂W

∂Fji
. (1.135)

This implies the notations

σij = J−1Fik
∂W

∂Fjk
, Sij =

∂W

∂Fji
. (1.136)

Since a hyperelastic material is in essence a Cauchy elastic material endowed with a

strain-energy energy function W , the principle of material frame-indifference (1.99) is now

conveyed by means of (1.133) to contribute

∂W ∗

∂F∗
=

∂W

∂F
QT, (1.137)

where F∗ is being given by (1.96) and W ∗ ≡ W (F∗) = W (QF). Thus, on noting that

∂F/∂F∗ = QT, application of the chain rule in the left-hand side of (1.137) gives

∂W ∗

∂F
=

∂W

∂F
. (1.138)

Recall that the objective character of g is effected for any deformation gradient F and for

all rotations Q so long as these follow det(F) > 0 and QQT = QTQ = I with det(Q) = 1.

In that respect, (1.138), being equivalent to (1.99), is integrated to give W ∗ = W , i.e.

W (QF) = W (F), (1.139)

for all F and any Q with the above mentioned properties. It is then shown that the

invariance nature of g due to arbitrary rotations in the current configuration is directly

carried over to W . Note, however, that (1.139) is based on the premise that the constitutive

law satisfies g(I) = 0 or, equivalently, via (1.139) W (Q) = W (I) = 0.

On the grounds of material symmetry, the strain-energy function W once more appears

to follow a similar pattern to that of g. Truly, if apart from homogeneous and elastic, the

material under consideration is also taken to be isotropic relative to a reference configu-

ration Br with symmetry group H, then

W (FQ) = W (F), (1.140)

for any deformation gradient F and for all proper orthogonal Q in H. Parallel to (1.122),

(1.123), here (1.139) and (1.140) yield

W (F) = W (V) = W (QVQT), (1.141)
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while, also

W (F) = W (U) = W (QUQT). (1.142)

Thus, analogously to g, the strain-energy function is an isotropic (scalar) function both

by means of V and U while, in view of (1.43)-(1.45), the same conclusion applies in terms

of B,C,E and e. It then follows that W admits the representations (see, e.g., [57])

W = w̆(i1, i2, i3) = w̄(I1, I2, I3), (1.143)

where i1, i2 and i3 are the principal invariants of U (and also of V), namely

i1 = tr(U), i2 =
1
2
[tr(U)2 − tr(U2)], i3 = det(U) ≡ J (1.144)

and I1, I2, I3 those of C (and also of B), given by

I1 = tr(C), I2 =
1
2
[tr(C)2 − tr(C2)], I3 = det(C) ≡ J2. (1.145)

Using the representation (1.46) for U the invariants (1.144) can be put in the forms

i1 = λ1 + λ2 + λ3, i2 = λ1λ2 + λ1λ3 + λ2λ3, i3 = λ1λ2λ3, (1.146)

while, from (1.49), the invariants (1.145) become

I1 = λ2
1 + λ2

2 + λ2
3, I2 = λ2

1λ
2
2 + λ2

1λ
2
3 + λ2

2λ
2
3, I3 = λ2

1λ
2
2λ

2
3. (1.147)

It follows that (see, e.g., [74, 76])

I1 = i21 − 2i2, I2 = i22 − 2i1i3, I3 = i23. (1.148)

It is now apparent from (1.143), (1.146) and (1.147) that the strain-energy function

W may equivalently be expressed as a symmetric function of the principal stretches,

ŵ(λ1, λ2, λ3) say, such that

W = ŵ(λ1, λ2, λ3) = ŵ(λ1, λ3, λ2) = ŵ(λ3, λ1, λ2), (1.149)

for all λ1, λ2, λ3 ∈ (0,∞).

In the same spirit, inhomogeneous materials accounting for (1.126) satisfy again the

requirements (1.90)-(1.92) and (1.127), hence, the hypothesis (1.128) substantiating the

existence of a strain-energy function W can also be adopted here. Thus, the identities

(1.129) and consequently (1.130)-(1.139) are further validated for the case of a transversely

isotropic solid. As for the response function g, the strain-energy function now has to
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remain invariant strictly for those rotations Q (in the reference configuration) for which

QM = ±M. This implies the dependence W (F,M⊗M) and therefore

W (FQ,QM⊗QM) = W (F,M⊗M), (1.150)

for any deformation gradient F and for all proper orthogonal tensors Q being elements of

the symmetry group G relative to an undistorted configuration Br. Based on the argument

(1.142), and since U2 = C, the explicit dependence of W on F and M⊗M is now found

to equivalently be expressed as

W (F,M⊗M) = W (C,M⊗M) = W (QCQT,QM⊗QM), (1.151)

for proper orthogonal Q ∈ G. This states that W is required to be an isotropic invariant

of both C and M ⊗M jointly while it is also apparent that, as for the isotropic theory,

the same conclusions apply by interchanging C with E.

According to Spencer [73] (see also references therein), (1.151) now implies that W

can be expressed as a function of either (i1, i2, i3) or (I1, I2, I3) together with two more

invariants, namely I4 and I5, which depend on M and embody the anisotropic attribute

of the material. These are taken to be respectively given by

I4 = M · (CM), I5 = M · (C2M). (1.152)

Bearing in mind (1.48), the latter may be read off as

I4 = λ2
1M

2
1 + λ2

2M
2
2 + λ2

3M
2
3 , I5 = λ4

1M
2
1 + λ4

2M
2
2 + λ4

3M
2
3 , (1.153)

respectively where here the notations (M1,M2,M3) are used to represent the components

of M referred to the Lagrangian principal axes. We also note that, through (1.43),(1.125)

and (1.152), I4 and I5 can alternatively be written as

I4 = m ·m, I5 = m · (Bm). (1.154)

In this case, if (m1,m2, m3) denote the components of m with respect to the Eulerian

principal axes, (1.49) and (1.154) are combined to give

I4 = m2
1 + m2

2 + m2
3, I5 = λ2

1m
2
1 + λ2

2m
2
2 + λ2

3m
2
3. (1.155)

Note that in line with the definition (1.22) the kinematical interpretation of I4 is none

other than measuring stretch along the preferred direction M. Indeed, since C = FTF

and λ(M) ≡ |FM| we readily derive

λ(M) ≡ |FM| = [(FM) · (FM)]1/2 = [M · (CM)]1/2 =
√

I4. (1.156)
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We therefore deduce that the material undergoes extension at X along the direction of

M when I4 > 1 while, for I4 < 1, we have contraction at the associated material points

towards the preferred direction.

The exact role of I5 on the other hand cannot be completely comprehended directly

from (1.152)2 and/or (1.154)2. Notwithstanding, Merodio and Ogden [48] have shown that

in some situations I5 may be perceived to register shearing deformation on the preferred

direction through the non-diagonal components (i.e. the shear components) of C. Truly,

if Cij (i, j = 1, 2, 3) denote the components of C relative to a rectangular Cartesian basis

{E1,E2,E3} and the preferred direction is taken to be, for example, M ≡ E1, then (1.152)

specialize to I4 = C11 and I5 = I2
4 + C2

12 + C2
13 respectively. Thus, the previous assertion

is justified implicitly through the difference I5 − I2
4 but only under the premise that M is

not an eigenvector of C. If M is an eigenvector of C then C12 = C13 = 0. Clearly, the

analogous inference can be drawn by choosing M = E2,E3. The same authors have also

demonstrated [47, 48] the involvement of I5 to the way that surface elements transform

under deformation. We now illustrate this matter by writing down Nanson’s formula (1.11)

as

nda =
√

I3F−TMdA, (1.157)

implying that an infinitesimal area element dA originated at X with unit normal M be-

comes da with unit normal n based at x, and the Cayley-Hamilton theorem (see, e.g., [36])

appropriated for C, namely

C3 − I1C2 + I2C− I3I = 0. (1.158)

Since n,M are unit vectors and C−1 = F−1F−T it is straightforward from (1.157) that

da =
√

I3|F−TM|dA =
√

I3[(F−TM) · (F−TM)]1/2dA =
√

I3[M · (C−1M)]1/2dA,

thus, (
da

dA

)2

= I3M · (C−1M). (1.159)

In line with the definitions (1.152), the entry (1.158) is now suitably manipulated to deliver

I5 = I1I4 − I2 + I3M · (C−1M). (1.160)

Hence, combination of (1.159) and (1.160) yields directly to

I5 = I1I4 − I2 +
(

da

dA

)2

. (1.161)
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We distinguish that here the unit vector n does not serve to describe the orientation of

the deformed preferred direction m defined in (1.125). Indeed, by using (1.161), we express

the ratio da/dA by means of the invariants I1, I2, I4 and I5 which is then substituted into

(1.157) to define

n =
√

I3

I5 + I2 − I1I4
B−1m =

√
I3I4

(I5 + I2 − I1I4)
B−1m0, (1.162)

where m0 = |FM|−1m ≡ I
−1/2
4 m. An expression similar to (1.162) has also been obtained

by Peng et. al. [19]. Based on that we may also take the inner product

n ·m0 =

√
I3

(I5 + I2 − I1I4)I4
,

which actually suggests that the area element, dα say, whose unit normal m0 is based at

the same point x as n, satisfies the connection

dα = (n ·m0)da =

√
I3

(I5 + I2 − I1I4)I4
da

and hence, from (1.161) (
dα

dA

)2

=
I3

I4
. (1.163)

With reference to the work of Spencer [72] we now illustrate that by assigning a positive

scalar function, namely δ0 = δ0(X), to represent the mass density per unit reference area

distributed normal to the direction of M and δ = δ(x, t) the density per unit deformed area

lying normal to m0 then, since the mass is to be conserved, δ0dA = δdα which through

(1.161) enables the interpretation (
δ0

δ

)2

=
I3

I4
. (1.164)

In view of the above discussion, the elastic stored energy (per unit reference volume) of

a transversely isotropic elastic solid is represented either in terms of the invariants based

on V and B or, equivalently based on U and C, such that

W = W̆ (i1, i2, i3, I4, I5) = W̄ (I1, I2, I3, I4, I5), (1.165)

including the two additional invariants to express the contribution due to the presence of

the preferred direction.

It should be emphasized that in the isotropic theory the invariants (i1, i2, i3) de-

fined above are treated, in general, as independent (positive) scalar quantities and so

are (I1, I2, I3) and (λ1, λ2, λ3). Under transverse isotropy, we similarly have that all
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the relevant arguments used to express the elastic stored energy, i.e. (i1, i2, i3, I4, I5)

or (I1, I2, I3, I4, I5), are again taken to vary independently. We note, however, that in

this case W cannot sufficiently be prescribed in terms of the principal stretches alone. As

clearly shown in (1.153), this is only possible in the special case where M is independent

of X. Even then, W cannot in general be regarded as a symmetric function of λ1, λ2

and λ3 apart from when M1 = M2 = M3(= ±√3/3). Following that, we easily obtain

the connections I4 = I1/3, I5 = (I2
1 − 2I2)/3 or, using (1.148), I4 = (i21 − 2i2)2/3 and

I5 = (i41 − 4i21i2 + 2i22 + 4i1i3)/3 requiring only three out of the five invariants expressing

the elastic stored energy to remain independent.

In concluding this section it is also useful to note that, both for isotropic as well as for

transversely isotropic materials, several other invariant-based representations of W have

been reported in the literature but it is not of our purpose to record them here. We

exceptionally refer to an interesting recent formulation presented by Steigmann [75] who,

in particular, determined the elastic stored energy of a transversely isotropic solid as a

function of invariants based exclusively on U, namely W = ˘̄w(i1, i2, i3, i4, i5), where now

i4 = |UM| and i5 = i3|U−1M|. Nonetheless, we only make formal use of (1.165) whereas

Steigmann’s approach appears to be much more complicated regarding the scope of this

treatise. Indeed, following (1.46) and since I3 = i23 = λ2
1λ

2
2λ

2
3, i4 and i5 may be decomposed

as

i4 =
√

λ2
1M

2
1 + λ2

2M
2
2 + λ2

3M
2
3 , i5 =

√
λ2

2λ
2
3M

2
1 + λ2

1λ
2
3M

2
2 + λ2

1λ
2
2M

2
3 ,

respectively, where again (M1,M2,M3) are the components of M associated with the the

Lagrangian principal axes. In addition, incorporation of i4, i5 instead of I4 and I5 into

W does not provide any further information regarding the response of the body under

deformation. To justify this matter we recall (1.43) to obtain i4 = [M · (CM)]1/2 and

i5 = [I3M · (C−1M)]1/2 (with I3 = i23). Hence, comparison of the latter expressions with

(1.156) and (1.160) respectively, yields

i4 =
√

I4 ≡ λ(M), i5 =
√

I5 + I2 − I1I4 ≡ da

dA
,

from which the kinematical interpretations of i4 and i5 are completely understood.

1.4.2 Stress-deformation relations

We now illustrate that, using the definitions (1.43)2, the principal invariants (1.145) may

equivalently be written in terms of the components of the deformation gradient tensor F,
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namely Fij , in the form

I1 = FijFij , I2 =
1
2
[(FijFij)2 − FijFkjFkpFip], I3 = (εijkF1iF2jF3k)2. (1.166)

Note that the above notations imply summation over the indices i, j, k, p ∈ {1, 2, 3} while

εijk denotes the alternating symbol. Thus, in consistency with the convention (1.135),

expressions (1.166) enable us to calculate the derivatives

∂I1

∂F
= 2FT,

∂I2

∂F
= 2I1FT − 2FTFFT,

∂I3

∂F
= 2I3F−1, (1.167)

and hence, for an isotropic hyperelastic solid possessing a strain-energy function W =

w̄(I1, I2, I3), the stress tensors (1.133) and (1.134) can be defined explicitly through

σ = J−1[2w̄1B + 2w̄2(I1I−B)B + 2I3w̄3I], (1.168)

S = 2w̄1FT + 2w̄2(I1I−C)FT + 2I3w̄3F−1, (1.169)

respectively. Here, the indices 1, 2, 3 on w̄ indicate differentiation with respect to I1, I2

and I3 respectively.

If, on the other hand, the representation W = w̆(i1, i2, i3) is used instead, the counter-

parts of (1.167) required in this case to express the stresses by means of the strain-energy

function become

∂i1
∂F

= RT,
∂i2
∂F

= i1RT − FT,
∂i3
∂F

= i3F−1. (1.170)

Then

σ = i−1
3 [w̆1V + w̆2(i1I−V)V + i3w̆3I], (1.171)

S = w̆1RT + w̆2(i1RT − FT) + i3w̆3F−1, (1.172)

where now w̆p = ∂w̆/∂ip for p ∈ {1, 2, 3}. Note, however, that the manipulations needed

in order to derive (1.170) and hence (1.171) and (1.172) are very much involved. In fact,

these require resolution of the non-linear algebraic system (1.148) in the first place which,

as shown by Sawyers [70], possesses a unique solution by means of i1, i2, i3. An alternative

derivation of the above results has also been given by Steigmann [74] recently but we do

not pursue any details here.

Since in the isotropic theory the elastic stored energy can also be defined by W =

ŵ(λ1, λ2, λ3), it is straight forward to show

λi
∂ŵ

∂λi
= λiw̆1 + (λii1 − λ2

i )w̆2 + i3w̆3 = 2λ2
i w̄1 + 2(I2 − λ−2

i I3)w̄2 + 2I3w̄3, (1.173)
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for all i ∈ {1, 2, 3}. Based on the latter, comparison of (1.124) with (1.168) and (1.171)

leads to the representations

Jσi = λi
∂ŵ

∂λi
, i ∈ {1, 2, 3} (1.174)

for the principal components of the Cauchy stress tensor. We clarify that the repeated

index i appearing in (1.173) and (1.174) does not imply summation.

Evidently, for a transversely isotropic solid whose elastic stored energy is defined

through (1.165), determination of the stresses requires the derivatives (1.167) and/or

(1.170) together with ∂I4/∂F and ∂I5/∂F. Thus, alike (1.166) and due to (1.43)1 the

invariants (1.152) are respectively written as

I4 = FijFikMjMk, I5 = FpiFpjFsiFskMjMk, (1.175)

from which follows

∂I4

∂F
= 2M⊗ FM,

∂I5

∂F
= 2(M⊗ FCM + CM⊗ FM), (1.176)

always in consistency with (1.135). Hence, the stress tensors (1.133) and (1.134) are

respectively read off as

σ =J−1[2W̄1B + 2W̄2(I1I−B)B + 2I3W̄3I

+ 2W̄4m⊗m + 2W̄5(m⊗Bm + Bm⊗m)], (1.177)

S =2W̄1FT + 2W̄2(I1I−C)FT + 2I3W̄3F−1

+ 2W̄4M⊗ FM + 2W̄5(M⊗ FCM + CM⊗ FM), (1.178)

in the case where the strain-energy function is taken to be given by W = W̄ (I1, I2, I3, I4, I5),

and

σ =W̆1V + W̆2(i1I−V)V + i3W̆3I

+ 2W̆4m⊗m + 2W̆5(m⊗Bm + Bm⊗m), (1.179)

S =W̆1RT + W̆2(i1RT − FT) + i3W̆3F−1

+ 2W̆4M⊗ FM + 2W̆5(M⊗ FCM + CM⊗ FM), (1.180)

for W = W̆ (i1, i2, i3, I4, I5). As before, we adopt the notations Wp = ∂W̄/∂Ip for p ∈
{1, 2, 3, 4, 5}, while W̆q = ∂W̆/∂iq for q ∈ {1, 2, 3} and W̆s = ∂W̆/∂Is for s ∈ {4, 5}. We

note that the results (1.177), (1.178) are due to Ericksen and Rivlin [18] and Spencer [73]
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while the formulations (1.179), (1.180) essentially arise by simply combining the work of

the same authors together with the aforementioned results obtained by Steigmann [74].

As already mentioned in earlier sections, for a generic Cauchy elastic solid material

featuring a preferred direction M the Cauchy stress tensor σ is not, in principle and in

contrast to the isotropic theory, coaxial with V. Especially for the case of a hyperelastic

transversely isotropic solid this fact is clearly reflected through the entries (1.177) and

(1.179). From the same expressions, however, we deduce that coaxiality between σ and

V is established if and only if the deformed preferred direction m is an eigenvector of B

or, equivalently, through (1.53) and (1.125), M is an eigenvector of C. Thus, if for a fixed

i ∈ {1, 2, 3} we take M ≡ u(i), the definition (1.48) yields CM = λiM for all relevant

λi > 0. Accordingly, the formulas (1.152) read

I4 = λ2
i , I5 = I2

4 , (1.181)

for all λi > 0 and therefore W can be represented as a (non-symmetric) function of

λ1, λ2, λ3. We now write

W = W̆ (i1, i2, i3, I4, I5) = W̄ (I1, I2, I3, I4, I5) = Ŵ (λ1, λ2, λ3), (1.182)

wherein the notation Ŵ has been introduced. Analogously to (1.173), the connections

(1.181) and (1.182) deliver

λi
∂Ŵ

∂λi
=λiW̆1 + (λii1 − λ2

i )W̆2 + i3W̆3 + 2(λ2
jW̆4 + 2λ4

jW̆5)δij

=2λ2
i W̄1 + 2(I2 − λ−2

i I3)W̄2 + 2I3W̄3 + 2(λ2
jW̄4 + 2λ4

jW̄5)δij ,

(1.183)

where δij is the Kronecker delta. Now, comparison of (1.183) with (1.177) and (1.179)

illustrates that the Cauchy stress tensor σ admits the spectral decomposition (1.124)

in which case the principal stresses, namely σ1, σ2, σ3, are defined through (1.174) by

substituting Ŵ in the place of ŵ. We emphasize, however, that this conclusion applies only

when M is directed along a principal direction u(i) corresponding to a fixed i ∈ {1, 2, 3}
and it cannot be considered as a generalization. A further discussion on this matter

including additional results associated with the linear theory of transversely isotropic solids

is provided in Chapter 2.

1.4.3 Internal material constraints

Until now the materials under consideration were silently assumed to posses no limitations

in their mechanical behaviour other than those imposed by the constitutive law. In partic-
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ular, the restrictions of material frame-indifference and material symmetry forced into the

response functions g in previous sections were directly reflected to the case of a hyperelas-

tic material yielding the elastic stored energy to sufficiently be determined through specific

(independent) scalar deformation variables. Seeing, however, that both for isotropic and

transversely isotropic solids the strain-energy function is taken to be dependent on the

invariant I3 (= i23 ≡ J2) it is clearly understood that our previous assertions account for

materials admitting change in volume as a result of deformation, i.e. compressible mate-

rials. From that perspective, a slight modification of the constitutive theory described in

Sections 1.4.1 and 1.4.2 needs to be done for incompressible materials where we ideally

adopt the kinematical constraint (1.18) and hence i3 = I3 = 1, for all deformations and at

each point of the material.

As a matter of fact, in order to represent the elastic stored energy (per unit volume in

Br) for an incompressible hyperelastic solid material, we write the strain energy function

in the updated general form

W (F)− p(J − 1). (1.184)

Here p is a Lagrange multiplier, i.e. an arbitrary scalar parameter associated with the

incompressibility constraint which cannot be determined a priori by the deformation. In

physical terms, p is acknowledged as the hydrostatic pressure necessary to conserve the

volume of the deforming body. Other than that, the role of p is insignificant in the actual

mechanical behaviour of a deforming body, whereas, using (1.184), the rate of working

of the stresses remains unaffected from the presence of this parameter. Truly, for an

incompressible solid where any deformation is assumed isochoric (J = 1), the linkages

(1.128) alter to
∂

∂t
[W (F)− p(J − 1)]

∣∣∣∣
J=1

= tr(σL) = tr(SḞ), (1.185)

while through (1.64) the latter directly becomes

∂

∂t
W (F)

∣∣∣∣
J=1

= tr(σL) = tr(SḞ),

providing justification of our assertion.

Special attention should now be given to the interpretation of (1.184) since the function

W (F) involved therein is generic and does not serve to incorporate materials which display

particular symmetries in the reference configuration. In that sense, (1.184) is applicable

for both isotropic and anisotropic solids.
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Now, similarly to the compressible theory, equation (1.185) may be resolved to con-

tribute the expressions

σ = F
∂W

∂F
− pI, S =

∂W

∂F
− pF−1, (1.186)

being, in the order given, the counterparts of (1.133) and (1.134) appropriated for the

incompressible case.

Evidently, by virtue of (1.18) and (1.51), the incompressibility constraint i3 = I3 = 1

may equivalently be expressed through the connection

J ≡ λ1λ2λ3 = 1, (1.187)

holding at each point of the material. From this follows that for an incompressible material

only two out of the three principal stretches of the deformation are in fact independent.

Thus, when specializing to incompressible isotropic solids and in line with the discus-

sion provided in Section 1.4.1, the elastic stored energy can, in general, be determined

by expressing the strain-energy function in terms of two independent scalar deformation

quantities. Expressly, here we extend the notations (1.143) to write W as

W = w̆(i1, i2) = w̄(I1, I2), (1.188)

arising from elimination of the variables i3 and I3 respectively. The latter equalities in

conjunction with (1.170), (1.167) (evaluated for i3 = I3 = 1) are now employed to express

the stresses (1.186) in the forms

σ = w̆1V + w̆2(i1I−V)V − p̆I

= 2w̄1B + 2w̄2(I1I−B)B− p̄I,
(1.189)

S = w̆1RT + w̆2(i1RT − FT)− p̆F−1

= 2w̄1FT + 2w̄2(I1I−C)FT − p̄F−1,
(1.190)

where the notations p̆ and p̄ are implemented to interpret p with respect to the pairs of

invariants (i1, i2) and (I1, I2) respectively since, in general, we have p̆ 6= p̄.

Finally, in view of (1.149) and (1.184) the internal constraint (1.184) is equivalently

expressed by ŵ(λ1, λ2, λ3)− p(λ1λ2λ3 − 1) and in this connection we write (1.174) as

σi = λi
∂

∂λi
[ŵ(λ1, λ2, λ3)− p(λ1λ2λ3 − 1)] = λi

∂ŵ

∂λi
− p, i ∈ {1, 2, 3}, (1.191)

where p may be either p̆ or p̄. A much more detailed and thorough discussion on the way

that (1.189)-(1.191) are derived is demonstrated in [57]. The reader is also referred to [56]
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for an extensive analysis on the constitutive formulation of the mechanics of incompressible

isotropic solids.

We expand our discussion to the case of transversely isotropic solids subject to the

same constraint and we modify (1.165) in an analogous manner, namely

W = W̆ (i1, i2, I4, I5) = W̄ (I1, I2, I4, I5). (1.192)

With reference to (1.192), the derivatives (1.170), (1.167) accompanied by (1.176) are now

exploited to particularize (1.186) such that (see, also [72])

σ =W̆1V + W̆2(i1I−V)V + 2W̆4m⊗m

+ 2W̆5(m⊗Bm + Bm⊗m)− p̆I

=2W̄1B + 2W̄2(I1I−B)B + 2W̄4m⊗m

+ 2W̄5(m⊗Bm + Bm⊗m)− p̄I,

(1.193)

S =W̆1RT + W̆2(i1RT − FT) + 2W̆4M⊗ FM

+ 2W̆5(M⊗ FCM + CM⊗ FM)− p̆F−1

=2W̄1FT + 2W̄2(I1I−C)FT + 2W̄4M⊗ FM

+ 2W̄5(M⊗ FCM + CM⊗ FM)− p̄F−1,

(1.194)

where, similar to the isotropic theory, p̆ and p̄ are associated with the manifolds (i1, i2, I4, I5)

and (I1, I2, I4, I5) respectively.

We note in passing that, apart from the incompressibility constraint, other kinematical

restrictions serving to encapsulate the nature of the mechanical response of particular

classes of hyperelastic materials may be imposed into the constitutive law. A typical

constraint is that of inextensibility, often met in studies concerned with highly anisotropic

solids and especially with composite structures incorporating a single or multiple fibre

families of extremely high stiffness. We cite for instance the work of Adkins and Rivlin [5]

and Green and Adkins [24] who analyzed the response of hyperelastic sheets reinforced by

a network of high strength cords (fibres). Further aspects of elastic structures featuring

inextensibility as a result of (strong) fibre reinforcement were investigated by Beatty [11]

while several contributions on this matter are due to Spencer (see., e.g., [72, 73]).

Although the above mentioned materials are likely capable of undergoing large defor-

mations, such a possibility is disqualified along the direction of each fibre family associated

with a unit vector field, namely the preferred direction, which is regarded as modelling

the fibres as a continuous distribution. In that sense, if M is a preferred direction of the
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material, inextensibility can be ideally expressed as

`(F) ≡ |FM|2 − 1 = 0, (1.195)

for all deformation gradients F and then the material is said to be inextensible in the

direction of M. In order to incorporate the inextensibility constraint in terms of the

elastic stored energy we write W in the modified form

W (F)− q`(F), (1.196)

where again q is a Lagrange multiplier. If the material is transversely isotropic, this leads

directly to I4 = 1 and then W may be represented by means of the remaining invariants

discussed in Section 1.4.1.

1.5 Constitutive restrictions under transverse isotropy

Henceforth, we mainly focus our analysis on transversely isotropic solids. Our first im-

perative is to introduce the appropriate restrictions on the strain-energy function which

provide consistency with the classical linear theory of transversely isotropic elasticity. The

issue of physically admissible modes of deformation is then of our concern. In the context

of a realistic material behaviour we summarize a number of mathematical statements,

previously proposed by various other authors, which aim to establish compatibility be-

tween the nature of the deformation and the actual response of the body predicated by

the constitutive laws.

1.5.1 Connection to the linear theory

For a purely elastic body material undergoing ‘small’ deformations the strain tensors E

and e are quantitatively indistinguishable since all the non-linear terms appearing in both

(1.38) and (1.41) are at our disposal, i.e.

Eij
∼= 1

2

(
∂ui

∂Xj
+

∂uj

∂Xi

)
eij

∼= 1
2

(
∂ũi

∂xj
+

∂ũj

∂xi

)
, (1.197)

while, in the same grounds, we have

∂ui

∂Xj
=

∂ũi

∂xp

∂up

∂Xj
+

∂ũi

∂xp
δpj

∼= ∂ũi

∂xj
. (1.198)

For the purposes of the current section, it is therefore convenient to determine the strain

through the symmetric second order tensor ε whose components, namely

εij =
1
2

(
∂ui

∂Xj
+

∂uj

∂Xi

)
=

1
2

(
∂ũi

∂xj
+

∂ũi

∂xj

)
, (1.199)
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may equivalently be perceived as either being Lagrangian or Eulerian.

Accordingly, whereas in the non-linear approach we have W (F) = W (E) = W (e), here

the elastic stored energy will, in general, be treated as a function depending exclusively

on ε, i.e. W = W (ε). Following that, we write

∂

∂t
W (ε) =

∂W

∂εij

∂εij

∂t
≡ tr

(
∂W

∂ε
L

)
, (1.200)

together with J = det(F) = det(I + L) ∼= 1 + tr(L) and tr(L) ≡ tr(ε). This in turn

suggests Jtr(σL) ∼= tr(σL) and, as a result, the first equation in (1.128) is now written

in the approximate form

tr
(

∂W

∂ε
L

)
= tr(σL), (1.201)

implying that, for a compressible hyperelastic solid, the associated linearized Cauchy stress

tensor can be determined through

σ =
∂W

∂ε
,

or, equivalently, in index form

σij =
∂W

∂εij
. (1.202)

Within the linear regime, however, Hooke’s law prescribes that, for deformations taking

place in one dimension, the stress has always to remain proportional to the strain. For

general three-dimensional deformations, this is analogously expressed by the constitutive

relation

σij = Cijklεkl, (1.203)

where the parameters Cijkl, (i, j, k, l) ∈ {1, 2, 3}, are the components of the so-called stiff-

ness matrix which, by arguments similar to those stated in Section 1.3.2 and 1.3.3, appear

to possess the symmetries

Cijkl = Cklij = Cjikl = Cijlk. (1.204)

Thus, from (1.202) and (1.203) we easily deduce that ∂W/∂εij = Cijklεkl and hence, given

that W = 0 for ε = 0, integration of the latter equation yields

W =
1
2
Cijklεijεkl. (1.205)

We clarify that the parameters Cijkl are associated with extension and shear moduli

as well as with Poisson’s ratios and hence they serve to characterize the elastic properties

of each hyperelastic material. Thus, for a transversely isotropic solid, they are expected to
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distinguish position and orientation. In other words, the distinctive directional qualities

of materials of this kind are now incorporated through the parameters Cijkl which, in

particular, depend on the distribution of the preferred direction M at each material particle

in the reference configuration and hence, in general, on X.

Evidently, when we are concerned with small deformations the invariant based repre-

sentations of the elastic stored energy discussed in Section 1.4.1 are required to be in full

agreement with the one adopted here. This readily suggests that, in order to establish

compatibility between (1.165) and (1.205), we have to express W̆ and W̄ by means of the

components of ε.Starting from the case where W = W̄ (I1, I2, I3, I4, I5) we first clarify that

for any arbitrarily chosen fixed point X in the reference configuration we have F = I,

which, through (1.22), provides λ1 = λ2 = λ3 = 1, and hence, from (1.147), (1.153),

we obtain I1 = I2 = 3 and I3 = I4 = I5 = 1. Thus, assuming that suitable continuity

conditions are placed upon W = W̄ , we are prompted to express the elastic stored en-

ergy as a Taylor series about an arbitrary fixed point X in Br, i.e. in a neighborhood of

(I1, I2, I3, I4, I5) = (3, 3, 1, 1, 1), such as

W =





∞∑

k=0

1
k!




5∑

p=1

(Ip − Īp)
∂

∂Īp




k

W̄ (Ī1, Ī2, Ī3, Ī4, Ī5)





Ī1=Ī2=3,Ī3=Ī4=Ī5=1

. (1.206)

Seeing, however, the form of (1.205) and bearing in mind the entries (1.44), (1.145),

(1.152), (1.197)1 and (1.199) we deduce that the linear counterpart of (1.206) can only

incorporate those terms corresponding to κ 6 2. In particular, now we are making use of

the linkages

I1 − 3 = 2tr(ε), I2 − 3 = 2[2tr(ε) + tr(ε)2 − tr(ε2)],

I3 − 1 = 2[tr(ε) + tr(ε)2 − tr(ε2)], I4 − 1 = 2M · (εM),

I5 − 1 = 4[M · (εM) + M · (ε2M)], (I1 − 3)2 = 4tr(ε)2,

(I2 − 3)2 = 16tr(ε)2, (I3 − 1)2 = 4tr(ε)2,

(I4 − 1)2 = 4[M · (εM)]2, (I5 − 1)2 = 16[M · (εM)]2,

(I1 − 3)(I2 − 3) = 8tr(ε)2, (I1 − 3)(I3 − 1) = 4tr(ε)2,

(I1 − 3)(I4 − 1) = 4tr(ε)M · (εM), (I1 − 3)(I5 − 1) = 8tr(ε)M · (εM),

(I2 − 3)(I3 − 1) = 8tr(ε)2, (I2 − 3)(I4 − 1) = 8tr(ε)M · (εM),

(I2 − 3)(I5 − 1) = 16tr(ε)M · (εM), (I3 − 1)(I4 − 1) = 4tr(ε)M · (εM),

(I3 − 1)(I5 − 1) = 8tr(ε)M · (εM), (I4 − 1)(I5 − 1) = 8[M · (εM)]2,

(1.207)
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to recast W in the form

W = W̄ + 2tr(ε)(W̄1 + 2W̄2 + W̄3)− 2tr(ε2)(W̄2 + W̄3)

+ 2tr(ε)2(W̄2 + W̄3 + W̄11 + 4W̄22 + W̄33 + 2W̄13 + 4W̄12 + 4W̄23)

+ 4tr(ε)M · (εM)(W̄14 + 2W̄15 + 2W̄24 + 4W̄25 + W̄34 + 2W̄35)

+ 2M · (εM)(W̄4 + 2W̄5) + 4M · (ε2M)W̄5

+ 2[M · (εM)]2(W̄44 + 4W̄55 + 4W̄45),

(1.208)

where the subscripts 1, ..., 5 on W̄ indicate differentiation with respect to I1, ..., I5, re-

spectively, each one of which derivatives has been evaluated in the reference configuration

(where I1 = I2 = 3 and I3 = I4 = I5 = 1). Hence, by writing

tr(ε) = εii, tr(ε2) = εijεji, M·(εM) = εijMiMj , M·(ε2M) = εikεkjMiMj , (1.209)

comparison of (1.205) with (1.208) leads directly to the requirements

W̄ = 0, W̄1 + 2W̄2 + W̄3 = 0, W̄4 + 2W̄5 = 0, (1.210)

while also

Cijkl =2(W̄1 + W̄2)(δikδjl + δjkδil) + 4(W̄44 + 4W̄55 + 4W̄45)MiMjMkMl

+ 4(W̄2 + W̄3 + W̄11 + 4W̄22 + W̄33 + 2W̄13 + 4W̄12 + 4W̄23)δijδkl

+ 4(W̄14 + 2W̄15 + 2W̄24 + 4W̄25 + W̄34 + 2W̄35)(MkMlδij + MiMjδkl)

+ 2W̄5(MiMkδjl + MiMlδjk + MjMkδil + MjMlδik).

(1.211)

We remark that the connections (1.211) are tantamount to those presented by Spencer

[73]. In essence, the only difference is that here the parameters Cijkl are directly related to

five independent combinations in terms of the derivatives of W̄ instead of five, in general

undetermined, independent material constants as suggested by Spencer.

On the other hand, when the formulation W = W̆ (i1, i2, i3, I4, I5) is used, we recall

the identities (1.148) to write

W̆ (i1, i2, i3, I4, I5) = W̄ (i21 − 2i2, i
2
2 − 2i1i3, i

2
3, I4, I5). (1.212)

Now, since for λ1 = λ2 = λ3 = 1 the invariants (1.146) reduce to i1 = i2 = 3, i3 = 1, it

easy to show that the analogues of (1.210) become

W̆ = 0, W̆1 + 2W̆2 + W̆3 = 0, W̆4 + 2W̆5 = 0, (1.213)
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respectively, while (1.211) transform into

Cijkl =(W̆1 + W̆2)(δikδjl + δjkδil)/2 + 4(W̆44 + 4W̆55 + 4W̆45)MiMjMkMl

+ (W̆2 + W̆3 + W̆11 + 4W̆22 + W̆33 + 2W̆13 + 4W̆12 + 4W̆23)δijδkl

+ 2(W̆14 + 2W̆15 + 2W̆24 + 4W̆25 + W̆34 + 2W̆35)(MkMlδij + MiMjδkl)

+ 2W̆5(MiMkδjl + MiMlδjk + MjMkδil + MjMlδik).

(1.214)

It is apparent that here the subscripts 1, 2 and 3 on W̆ are used to denote differentiation

with respect to the arguments i1, i2 and i3, respectively, whereas 4 and 5 are associated

with the invariants I4 and I5 as before.

At this point it is important to note that (1.210) and (1.213) serve to stipulate the

necessity of a material body whose stress and energy vanish in the reference configu-

ration. These assertions may well be established by recalling the discussion provided in

Section 1.4.1 in order to signify (1.139) together with the definitions (1.165) and the stress-

strain relationships (1.177), (1.179) (accounting for W̆ and W̄ respectively) when these

are evaluated for λ1 = λ2 = λ3 = 1 and hence, from (1.47) and (1.49), for V = B = I. At

the same time, the conditions (1.211) and/or (1.214) result in additional restrictions on

the strain-energy function when this is evaluated in the reference configuration so as to

preserve its invariant (isotropic) character with respect to rotations and reflections about

the preferred direction M.

Parallel to (1.184), the elastic stored energy of an incompressible material undergoing

small deformations is expressed through

W =
1
2
Cijklεijεkl − pεss, (1.215)

with J − 1 ∼= tr(ε) = εss while, analogously, the components (1.202) of σ are given by

σij =
∂W

∂εij
= Cijklεkl − pδij . (1.216)

Further, since, for an isochoric deformation, we have I3 = 1 at each point of the body

(either in Br or Bt), the difference I3 − 1 listed in (1.207) prescribes the identity

tr(ε) + tr(ε)2 − tr(ε2) = 0. (1.217)

This can be expanded in components form to give

ε11 + ε22 + ε33 + 2(ε11ε22 + ε11ε33 + ε22ε33 − ε2
12 − ε2

23 − ε2
13) = 0, (1.218)
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wherefrom, after some simple manipulation, we obtain

tr(ε)2 = tr(ε)M · (εM) = 0, (1.219)

followed by

tr(ε)2 − tr(ε2) = −2(ε2
11 + ε2

22 + ε11ε22 + ε2
12 + ε2

23 + ε2
13)

= −2(ε2
11 + ε2

33 + ε11ε33 + ε2
12 + ε2

23 + ε2
13)

= −2(ε2
22 + ε2

33 + ε22ε33 + ε2
12 + ε2

23 + ε2
13).

(1.220)

In view of (1.218) and (1.220) we conclude that, due to the incompressibility constraint,

only two of the principal components of ε remain independent. Hence, by following the

same methodology used to derive (1.208) the corresponding expression, now appropriated

for W = W̄ (I1, I2, I4, I5), cannot be defined in a unique manner. Consequently, depending

on the component of ε that we choose to eliminate each time, the connections between the

parameters Cijkl and the derivatives of W̄ , these evaluated in the reference configuration,

will vary analogously. It is apparent that the same conclusion applies when the the elastic

energy is taken to be determined as a function of the principal invariants (i1, i2, I4, I4) as

prescribed in (1.192), where, in this case, the counterpart of (1.212) specializes to

W̆ (i1, i2, I4, I5) = W̄ (i21 − 2i2, i
2
2 − 2i1, I4, I5). (1.221)

The same issue actually arises from the point at which the incompressibility condition

is used. We clarify this argument by once more referring to the work of Spencer [73] who,

in particular, defined the elastic stored energy of an incompressible transversely isotropic

hyperelastic solid as a function of the non-zero terms tr(ε2), [M · (εM)]2 and M · (ε2M)

including an arbitrary multiple of tr(ε), namely −ptr(ε), in order to incorporate the

hydrostatic pressure. Spencer’s approach may be declared directly from (1.208) by making

instant use of the properties (1.217), (1.219) and by also omitting the term M · (εM)

which, unlike (1.215), is clearly linear in terms of the components of ε since J − 1 ∼= tr(ε)

is negligible anyway. By these means, the associated stress tensor σ is easily found to be a

function of ε, [M · (εM)]M⊗M,M⊗ (εM) and (εM)⊗M where, for obvious reasons, the

term −pI is also included. Notwithstanding, if the incompressibility constraint is applied

after the stress σ is calculated, the latter appears to be a function of the aforementioned

quantities but now conjoined with [M · (εM)]I. Thus, in line with (1.216) and despite the

fact the additional argument can be absorbed into −pI (i.e. p is arbitrary), the parameters

Cijkl will be of a different form compared to those arising from Spencer’s design.
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In any case, from the above discussion it can easily be drawn that now, unlike the

compressible theory, the parameters Cijkl can sufficiently be associated, and yet not in a

unique manner, with only three independent combinations of derivatives of W̄ and/or W̆

all of which are evaluated in the reference configuration. One of these possible formulations

will be presented in Chapter 2 for more particular geometries of the preferred direction

M.

Independently of the above mentioned facts we will, however, assume that in the

reference configuration the conditions

W̄ = 0, 2W̄1 + 4W̄2 = p̄0, W̄4 + 2W̄5 = 0, (1.222)

W̆ = 0, 2W̆1 + 4W̆2 = p̆0, W̆4 + 2W̆5 = 0, (1.223)

are always in place so as to ensure that the body remains stress and energy free. In

particular, the first equalities in both (1.222) and (1.223) are justified in the same way

as (1.210)1 and (1.213)1, respectively, while also, given that σ = 0 in Br, the remaining

requirements are taken in consistency with the expressions (1.193) when these are evaluated

for λ1 = λ2 = λ3 = 1, implying, as already mentioned, that V = B = I. In that sense,

here the symbols p̄0 and p̆0 have been introduced to characterise the values of p̄ and p̆,

respectively, in Br.

1.5.2 Constitutive inequalities

In this section we are concerned with boundary-value problems of transversely isotropic

hyperelastic solids undergoing non-homogeneous deformations. In particular, we consider

deforming material bodies in the absence of body forces whose state of stress is determined

on resolving the equilibrium equation, as prescribed from either (4.3.3) or (1.84), now

coupled with appropriate boundary conditions.

Since the nature of the materials under examination is assumed to be hyperelastic,

the entry (1.134) accounting for a general (i.e. not necessarily transversely isotropic)

unconstrained material is employed to rewrite the equilibrium equation, namely DivS = 0,

into the equivalent component form

Aαiβjxj,αβ = 0, (1.224)

while for the incompressible case the formula (1.186) analogously delivers

Aαiβjxj,αβ − p,i = 0. (1.225)
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Here the notations

Aαiβj =
∂2W

∂Fiα∂Fjβ
, xj,αβ =

∂2xj

∂Xα∂Xβ
, p,i =

∂p

∂xi
, (1.226)

have been adopted for convenience with the Greek and Latin indices being used in associ-

ation with the reference and current configuration respectively.

In the light of (1.224) and (1.225) it is understood that the equilibrium equation, this

combined with appropriate boundary conditions, forms a coupled system of three highly

nonlinear second-order partial differential equations for the components of the position

vector x ∈ Bt. On this basis, the form of the strain-energy function used to represent each

hyperelastic solid has an important role to play regarding the resolution and hence the

implications, in the sense of a realistic material behaviour, of (1.224) and/or (1.225).

From that perspective, the issues of existence, prescribed by the principle of station-

ary potential energy†[56], and uniqueness of solution of the equilibrium equation, both in

a local as well in a global scale, have been a subject of research. In fact, these aspects

in conjunction with the notion of a stable solution, the latter tending to render equilib-

rium configurations associated with minimum potential energy while compatible with the

boundary conditions (see, e.g., [29]), have been, amongst other, the main motivating fac-

tors that led the researchers to impose various limitations on the form of the strain-energy

function. It is important to distinguish that the above mentioned postulates can be used

as the main criteria for identification of the class of deformations that can be admitted by

a particular strain-energy function W . Conversely, given the deformation is known, they

can either yield certain limitations on an assigned strain-energy function or even suggest

appropriate forms for W (i.e. by means of constitutive modelling) that are consistent with

the nature of the deformation under investigation. In what follows we are engrossed in

such considerations but mainly within the scope of how these aim to restrict the consti-

tutive law, whether for all or for some subset of deformations, so as to deliver physically

realistic solutions of the equilibrium equation. Restrictions of this nature that function in

the form of inequalities are known as constitutive inequalities and these are of particular

interest here.

A typical example of a restriction of this kind was introduced by Baker and Ericksen
†The same principle has been recorded in a variety of textbooks sometimes under a different name. We

mention, for example, the book by Truesdell and Noll [79] where there the authors used the terminology

first variational theorem.
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[8] who, in particular, suggested the inequalities

(σi − σj)(λi − λj) > 0, λi 6= λj (1.227)

implying that the principal stretches are in the same ascending numerical order as that

of the associated principal stresses. Expressed otherwise, the inequalities (1.227) assert

that the greater principal stress always occurs in the same direction with the greater

principal stretch and vice versa. In the case of transverse isotropy, and especially when

this is associated with fibre reinforcement, the inequalities (1.227) do not, in general,

establish physically realistic material behaviour. Truly, assume that a fibre-reinforced

hyperelastic composite, this now characterised by a single family of fibres, is deformed in

such a way that the left Cauchy-Green deformation tensor B is coaxial with the deformed

preferred direction m. As already mentioned in Section 1.4.2 this establishes coaxiality

between the Cauchy stress tensor σ and left stretch tensor V. Accordingly, all the shear

components of σ vanish while it is diagonal with respect to the Eulerian principal axes,

i.e. σi = σii (no sum over i). The inequalities (1.227) then require that if σ11 > σ22

the resulting strain and hence the stretch λ1 in the direction v(1) has, in any case, to

be greater compared to the stretch λ2 in the direction v(2). In other words, even if

|σ11| is infinitesimally greater than |σ22| the material undergoes larger deformation in

the planes parallel to v(1). However, this conflicts with the strong directional mechanical

properties that such materials normally embody; the later incorporating stiffening response

in the fibre direction. The same restrictions, on the other hand, appear to be physically

meaningful in the context of isotropic materials but we do not pursue this design idea

here. We only illustrate that, using either (1.174) or (1.191), these can be written in the

equivalent compact form
λiŵi − λjŵj

λ2
i − λ2

j

> 0, λi 6= λj (1.228)

in terms of the strain-energy function ŵ(λ1, λ2, λ3) where now ŵp = ∂ŵ/∂λp. Similarly,

bearing in mind (1.173), the inequalities (1.227) recast to

w̆1 + w̆2λi > 0, i = 1, 2, 3 (1.229)

w̄1 + w̄2λ
2
i > 0, i = 1, 2, 3 (1.230)

by means of the functions w̆(i1, i2, i3) and w̄(I1, I2, I3) respectively. In a like manner,

(1.229) and (1.230) are easily found apply for the case where the material is taken to

be incompressible, yet, now appropriated for w̆(i1, i2) and w̄(I1, I2) respectively. For a
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detailed discussion regarding the implications of (1.227) in respect of both compressible

and incompressible isotropic hyperelastic solids we refer to the work of Truesdell and

Toupin [80] and Truesdell [78].

Another widely adopted constitutive inequality relies on the hypothesis that the strain-

energy function W should be restricted within the class of strictly convex functions of the

deformation gradient tensor F. Given that W is twice-continuously differentiable with

respect to F and the latter is defined on a convex (open) subset of the Euclidian vector-

space, this constitutive assumption is assigned though the requirement

tr
{

(
∂2W

∂F∂F
A)A

}
> 0, A 6= 0 (1.231)

holding for each such F. The implementation of the (strict) convexity constraint as a

constitutive requirement placed upon W is sufficient to ensure uniqueness of solution

of the equilibrium equation for boundary value problems combined with the presence

of dead-load tractions [29], these being surface tractions independent of the deformation

gradient F which act on part of the boundary ∂Br. Precisely, in the case of dead loading,

the inequality (1.231) further suffices for uniqueness of solution in respect of incremental

boundary-value problems [56]. Accordingly, strict convexity of W supports the argument

that if a stable solution for such problems exists then this is unique, while, obviously,

smoothness of the strain energy (i.e to the degree desired by the equilibrium equation)

and hence of the stress is ensured a priori. Constructively, in respect of real material

response, the possibility of buckling and the occurrence of instability phenomena, such

as formulations of kink-bands in fibre-reinforced composites (see, e.g. [82]), associated in

general with discontinuous modes of deformation is excluded. In addition, as first noted by

Coleman and Noll [13] and then by Truesdell and Noll [79], the statement (1.231) can, in

some situations, be inconsistent with the principle of material frame indifference, namely

(1.139) when applied to W , while it cannot either preclude that finite amount of energy is

required to reduce the volume of an infinitesimal material specimen into zero. As clearly

explained by Ball [9] the latter contradicts such natural conditions as

W (F) → +∞ as det(F) → 0+, (1.232)

which, amongst others, is normally expected to be satisfied by the constitutive law (i.e.

for unconstrained materials). Similarly, strict convexity appears to be problematic for

incompressible materials where det(F) = 1. We remark that (1.232) essentially assigns a
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singularity to W under severe strains and it can also be interpreted to state that: infinite

stress should be accompanied by infinite strains.

It is therefore evident that the concept of strict convexity of W turns out to be too

restrictive since it fails to incorporate certain behavioural material aspects which are in-

deed likely to occur. We mention, however, that this is not the case for the weaker and

yet invariant constitutive hypothesis known as the strong ellipticity condition. This is

expressed through the requirement

tr
{

[
∂2W

∂F∂F
(s⊗ n)](s⊗ n)

}
> 0, (1.233)

for any pair of arbitrary non-vanishing vectors s and n. Provided the form of the strain-

energy function is given, a deformation gradient F satisfying (1.233) for all s ⊗ n 6= 0 is

said to be a strongly elliptic deformation for that W . If, also, all the deformations that

can be supported by a particularised W are strongly elliptic, then the material itself is

called a strongly elliptic material.

In view of (1.231), it is apparent that (1.233) is a rank-one convexity condition for

W . Thus, strict convexity implies strong ellipticity but the opposite is not necessarily

true. Accordingly, by means of the solutions to the equilibrium equation, strong ellipticity

cannot in general guarantee either uniqueness or stability of solution for dead-load traction

boundary-value problems. Notwithstanding, this according to the incremental stability

criterion, every stable solution for such problems (which, as noted in [79], need not be

unique) satisfies the strong ellipticity condition.

Despite these matters, the notion of strong ellipticity has been associated with a num-

ber of interesting mechanical issues in regard to the response of hyperelastic materials.

For example, substantiation of strong ellipticity ensures smoothness of the solutions of

the governing equilibrium equations while, in the context of isotropic materials, it implies

other physically meaningful constitutive inequalities (see, e.g. [80, 79]) amongst which

the requirements (1.227) introduced earlier in this section. Strong ellipticity is also the

necessary and sufficient condition for travelling waves to be propagated within a medium

with real and positive speeds [78]. In an analogous manner, the concept of failure of

strong ellipticity can be put into parallelism with various material instabilities. Indeed,

breakdown of strong ellipticity entails the possibility of the emergence of singular surfaces

across which either the second derivative of the deformation field becomes discontinuous

or the deformation gradient F suffers a finite jump. Such surfaces are known as surfaces of

weak and strong discontinuity, respectively. Conversely, the existence of surfaces of weak
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or strong discontinuity typify loss of strong ellipticity. In these grounds, given the form of

W , the equation that defines the onset of ellipticity failure determines both the deforma-

tion associated with such surfaces and the direction of the normal to that surfaces. In the

case of fibre reinforced hyperelastic solids the angle between the deformed preferred direc-

tion and the normal to the direction of the above mentioned surfaces may then be used

as a criterion for identification of particular failure mechanisms taking place during the

deformation processes. For an extensive discussion and further references regarding the

interpretation of non-elliptic modes of deformation with respect to instability phenomena

in fibre reinforced materials we refer to the work of Merodio and Ogden [47, 48].

The issue of strong ellipticity, including particular references in association with the

linear theory presented in Section 1.5.1, is also discussed in Chapter 2 in respect of bending

deformations of transversely isotropic elastic blocks. It also receives a great deal of atten-

tion in Chapter 3 where we study the problem of azimuthal shear of a circular cylindrical

tube of incompressible transversely isotropic elastic material subject to finite deformation.



Chapter 2

Bending of transversely isotropic

blocks

2.1 Introduction

The problem of finite bending of a rectangular elastic block into a sector of a circular

cylindrical tube has been examined by many researchers, almost exclusively for isotropic

materials. First, in Rivlin [66], necessary and sufficient conditions for the solution of this

problem in terms of the boundary data were derived for incompressible Mooney-Rivlin and

neo-Hookean materials by assuming that the block remains in its deformed state in the

absence of applied tractions on its curved surfaces but with appropriate tractions applied

on its other surfaces. Corresponding results for a general incompressible isotropic material

were given by Rivlin [67]. A similar analysis was presented by Green and Zerna [26] and by

Green and Adkins [24]. Green and Adkins also examined the problem for incompressible

transversely isotropic, initially curved incompressible isotropic and compressible isotropic

rectangular blocks. Formulation of the governing equilibrium equations in respect of com-

pressible isotropic materials and the derivation of closed-form solutions for the general class

of the so-called harmonic materials were given in Ogden [56], wherein the incompressible

case is also discussed. Furthermore, several classes of compressible isotropic materials were

investigated by Jiang [38], in which it was shown that finite isochoric bending of a block is

only sustainable for incompressible materials. The problem of bending in the compressible

theory was also discussed by Aron and Wang [7], who used constant modified stretches

to express the total energy as a function of the deformed volume V and to deduce that

(under plane strain) it attains a minimum at a certain value V0 of V . In addition, a stabil-

57
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ity analysis for semi-linear harmonic materials (under plane strain) was discussed by the

same authors in [6]. In a recent paper, Bruhns et al. [12] examined the same problem for

compressible and incompressible isotropic Hencky materials.

In the present analysis, we consider the problem of bending for transversely isotropic

elastic materials. In Section 2.2, the bending deformation is formulated and, under the

appropriate specialization for particular directions of the axis of transverse isotropy, the

governing differential equations are derived. As expected for the considered deformation,

the expressions obtained have the same structure as for the case of compressible isotropic

materials given in [56], except that material properties, expressed in terms of a strain-

energy function, are different.

Specialization to isochoric bending is then discussed in Section 2.3, and attention is

confined mainly to the case of plane strain. The remaining equilibrium equation identifies

necessary and sufficient conditions on the energy function for the considered deformation

to be sustainable, and, in particular, restrictions on the classical (linear) elastic constants

are imposed. In this connection it is interesting to examine the status of so-called rein-

forcing models, for which an isotropic energy function is augmented by an added function

that reflects the transverse isotropy as a basic model representing the influence of reinforc-

ing fibres. The linear specialization of the strong ellipticity inequalities (see, for example,

Payton [60] and Merodio and Ogden [49]) shows that the considered bending deformation

cannot, in general, be achieved for such materials for realistic forms of the reinforcement

model. Along the lines of the work of Jiang and Ogden [39, 40], some general forms of

strain-energy functions that admit isochoric bending are derived. Some specific forms of

these strain energies are then chosen to illustrate the results, and some closed-form solu-

tions are obtained. Numerical calculations are used to demonstrate the stress distributions

in the deformed block for two specific energy functions.

In Section 2.4 we examine aspects of the stability of the block for the considered

deformation as embodied in the notion of strong ellipticity. For plane strain we provide

necessary and sufficient conditions for strong ellipticity to hold.

Finally, Section 2.5 contains a brief discussion of the incompressible counterpart of the

analysis presented here.
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2.2 Formulation of the problem

2.2.1 Definition and kinematics of the bending deformation

Consider a (stress-free) rectangular block defined, in its reference configuration Br, by

−A 6 X1 6 A, −B 6 X2 6 B, −C 6 X3 6 C, (2.1)

where (X1, X2, X3) are rectangular Cartesian coordinates relative to the basis vectors

{Ei}, i ∈ {1, 2, 3}. Suppose that the body is deformed so that the planes X1 = constant

become sectors of the cylindrical surface r = constant, planes X2 = constant become

planes θ = constant and planes X3 = constant become planes z = constant, where (r, θ, z)

are cylindrical polar coordinates.

The equations describing the deformation may be written

r = f(X1), θ = g(X2), z = λX3, (2.2)

where λ is a constant and the functions f and g are to be determined. We assume that

the deformation is symmetric about the X1 axis, so that g(−X2) = −g(X2), and, for

definiteness, we take f(A) > f(−A). For convenience we set the notations

f(−A) = a1, f(A) = a2, g(B) = α, (2.3)

so that a2 > a1.

If we let {ea}, a ∈ {r, θ, z} be the cylindrical polar basis vectors in the deformed

configuration Bt, then the position vector of a particle in this configuration is given by

x = rer + zez, and the deformation gradient tensor F takes the form

F = f ′(X1)er ⊗E1 + f(X1)g′(X2)eθ ⊗E2 + λez ⊗E3. (2.4)

Equivalently, as discussed in Section 1.1.6, the deformation gradient can be decomposed

as F = RU = VR, where now

U = f ′E1 ⊗E1 + fg′E2 ⊗E2 + λE3 ⊗E3, (2.5)

V = f ′er ⊗ er + fg′eθ ⊗ eθ + λez ⊗ ez, (2.6)

R = er ⊗E1 + eθ ⊗E2 + ez ⊗E3. (2.7)

From equations (2.5)–(2.7) we deduce that the Lagrangian principal axes coincide with

the Cartesian basis vectors {Ei}, while the Eulerian principal axes are aligned with the
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cylindrical polar basis vectors {ei}. Seeing (1.46) and (1.47), the associated principal

stretches can therefore be identified as

λ1 = f ′(X1), λ2 = f(X1)g′(X2), λ3 = λ. (2.8)

Accordingly, the right and left Cauchy-Green deformation tensors (1.43) (see also

(1.48), (1.49)) are then given by

C = λ2
1E1 ⊗E1 + λ2

2E2 ⊗E2 + λ2
3E3 ⊗E3, (2.9)

B = λ2
1er ⊗ er + λ2

2eθ ⊗ eθ + λ2
3ez ⊗ ez, (2.10)

respectively.

2.2.2 Some restrictions on the constitutive law

We now assume that the body material features a preferred direction which is locally

prescribed by a unit vector M. In particular, we let M lie in the (X1, X2)-plane. As

illustrated in Section 1.4.2, for a transversely isotropic elastic solid the Cauchy stress σ

is coaxial with V if and only if the deformed preferred direction, namely m = FM, is an

eigenvector of B or, equivalently, M is an eigenvector of C.

Thus, if M is directed along the X1 axis, the expression (2.9) yields CM = λ2
1M for

all λ1 > 0. The invariants (1.152) then specialize parallel to (1.181), and in particular

I4 = λ2
1, I5 = I2

4 . (2.11)

As a result, the Cauchy stress tensor can be written in the spectral form

σ = σ1er ⊗ er + σ2eθ ⊗ eθ + σ3ez ⊗ ez, (2.12)

with

σi = J−1λi
∂W

∂λi
, i ∈ {1, 2, 3}, (2.13)

and now we may represent W as a function of λ1, λ2, λ3. Bearing in mind (1.182), we write

W = W̄ (I1, I2, I3, I4, I5) = Ŵ (λ1, λ2, λ3), (2.14)

but now the representation W̆ (i1, i2, i3, I4, I5) is excluded from consideration. We once

more emphasize that, in contrast to W̄ (I1, I2, I3, I4, I5), the formulation Ŵ (λ1, λ2, λ3)

applies for specific deformations such as the one considered here and is not in general

valid. Note that shear stresses are not required to achieve the considered deformation.
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Since the body under examination is taken to be initially unstrained, the elastic stored

energy and the stress should vanish in Br. For this we require the properties (1.210), now

written together in the compact form as

W̄ = W̄1 + 2W̄2 + W̄3 = W̄4 + 2W̄5 = 0. (2.15)

Further, when M is chosen as above, then, for consistency with (1.211), the conditions

W̄11 + 4W̄12 + 4W̄22 + 4W̄23 + 2W̄13 + W̄33 = c22/4, (2.16)

W̄14 + 2W̄15 + 2W̄24 + 4W̄25 + W̄34 + 2W̄35 = (c12 − c23)/4, (2.17)

W̄44 + 4W̄55 + 4W̄45 + 2W̄5 = (c11 − c22 + 2c23 − 2c12)/4, (2.18)

W̄1 + W̄2 + W̄5 = c55/2, (2.19)

W̄2 + W̄3 = (c23 − c22)/4, (2.20)

should also be satisfied in the reference configuration, where now all the non-zero material

parameters Cijkl are expressed via the connections

cij = Ciijj , i, j ∈ {1, 2, 3}, c22 = c33, c12 = c13,

c44 = c55 = C1212 = C1313, c66 = C2323 = (c22 − c23)/2,

(2.21)

which constitute the standard notation for the elastic constants used in the classical theory

of transverse isotropy for the case in which E1 is the direction of transverse isotropy [46].

We mention that the counterparts of (2.16)–(2.20) with E3 as the direction of transverse

isotropy were given in [48]. It is also worth mentioning that when the special strain-energy

function W = Ŵ (λ1, λ2, λ3) is used, the restrictions (2.15) become

Ŵ = Ŵ1 = Ŵ2 = Ŵ3 = 0, (2.22)

while the analogues of (2.16)–(2.20) recast into

Ŵ11 = c11, Ŵ12 = Ŵ13 = c12,

Ŵ23 = c23, Ŵ22 = Ŵ33 = c22.

In this case, the subscripts 1, 2 and 3 on Ŵ imply differentiation with respect to the

principal stretches λ1, λ2 and λ3, respectively. Note that here the elastic constant c55 is

not involved.
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Finally, we illustrate that, by virtue of (1.205), the strong ellipticity condition (1.233)

suggests that the elastic constants c11, ..., c55 prescribed in (2.21) should always be taken

to be consistent with

Cijklninksjsl > 0, (2.23)

for all non-zero vectors n = (n1, n2, n3) and s = (s1, s2, s3). We remark, however, that the

strong ellipticity condition may in general be analyzed in terms of the so-called acoustic

tensor (see, e.g., [78, 79]), denoted Q(n), whose components are (in the linear theory)

defined by

Qjl(n) = Cijklnink. (2.24)

Seeing (2.24), the inequality (2.23) may then be established if and only if Q(n) is positive

define for each non-vanishing vector n. Note that, without loss of generality, n can be

regarded as a unit vector.

Following that, we require the inequalities

Qii(n) > 0, i ∈ {1, 2, 3} (2.25)

together with

Qii(n)Qjj(n)−Qij(n)2 > 0, i 6= j ∈ {1, 2, 3} (2.26)

and

det[Q(n)] > 0, (2.27)

to hold jointly for all unit vectors n. Thus, for the particular choice of M, the components

(2.24) of the tensor Q(n) may be written in the explicit forms

Q11(n) = c11n
2
1 + c55(n2

2 + n2
3), Q22(n) = c22n

2
2 + c55n1n2 + (c22 − c23)n2

3/2, (2.28)

Q33(n) = c55n
2
1 + (c22 − c23)n2

2/2 + c22n
2
3, Q12(n) = (c12 + c55)n1n2, (2.29)

Q13(n) = (c12 + c55)n1n3, Q23(n) = (c22 + c23)n2n3/2, (2.30)

which are then, as appropriate, substituted into (2.25)–(2.27) to identify that the inequal-

ities

c11 > 0, c22 > 0, c55 > 0, c22 > c23 (2.31)

and

| c12 + c55 |< c55 +
√

c11c22, (2.32)

are necessary and sufficient conditions for strong ellipticity to hold in the classical theory

(see, e.g., [49, 60]).
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If we consider that the preferred direction is parallel to the X2 axis then CM = λ2
2M

for all λ2 > 0, while equations (2.11) are replaced by

I4 = λ2
2, I5 = I2

4 , (2.33)

and appropriate changes are needed in the subscripts in (2.31) and (2.32) for this case.

2.2.3 Reduction of the equilibrium equations

As discussed in Section 1.2.3, when cylindrical polar coordinates are used to character-

ize the status of a deforming material body in some current configuration Bt, then the

equilibrium equation divσ = 0 (in the absence of body forces) yields the three scalar

equations (1.76). For the considered deformation, where no shear stress is required and

also σrr = σ1, σθθ = σ2, σzz = σ3, the latter reduce to

∂σ1

∂r
+

1
r
(σ1 − σ2) = 0,

∂σ2

∂θ
= 0. (2.34)

Since λ3 is a constant and λ1 depends only on X1 it follows from equations (2.34)2 and

(2.8) that
∂σ2

∂λ2
g′′(X2) = 0. (2.35)

Hence, assuming that ∂σ2/∂λ2 6= 0, which, in view of the above inequalities, certainly

holds in the reference configuration, we deduce that

g(X2) = βX2, (2.36)

where β is a constant, which will be determined through the boundary conditions (2.3)3

such that β = α/B > 0. (Note that if, instead of the X1 axis, the X2 axis is chosen to

identify the direction of transverse isotropy then g has the same form.)

A combination of (2.36) and (2.8) leads to

λ2 = βf(X1),
dλ2

dX1
= βλ1. (2.37)

Hence, each of λ1 and λ2 depends only on X1. Then, through use of (2.8)1, (2.13), (2.37)

and some manipulation, equation (2.34)1 simplifies to

dŴ1

dX1
= βŴ2, (2.38)

where we are using the representation W = Ŵ (λ1, λ2, λ3) and the subscripts 1 and 2 on Ŵ

signify differentiation with respect to λ1 and λ2, respectively. It follows, on use of (2.37)2,
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that
d

dX1
(λ1Ŵ1) =

d
dX1

(Ŵ ). (2.39)

Since, from (2.22), we have Ŵ = Ŵ1 = 0 in the reference configuration and the result of

integrating (2.39) must hold for all deformations of the considered form, we obtain

Ŵ = λ1Ŵ1, (2.40)

which is an (implicit) first-order differential equation for f(X1) for any given form of

strain-energy function. This equation is the same as that arising for an isotropic material

except that here Ŵ does not in general possess the symmetry in (λ1, λ2, λ3) that holds in

the isotropic situation (see, e.g., [56, 38]).

As we have already mentioned, it was first shown by Rivlin [66, 67] and then by

several other authors (see, e.g., [24, 26, 56]) that it is possible to hold the body in its

current configuration even if there are no tractions on the curved surfaces r = a1, a2 of the

deformed block. This requires σ1 = 0 on X1 = ±A, which, because of (2.13) and (2.40),

can be expressed in terms of the strain-energy function as

W = 0 on X1 = ±A, (2.41)

where W is either W̄ or Ŵ , as appropriate.

2.3 Isochoric specialization

If the deformation is considered to be isochoric then λ1λ2λ3 = 1 and from (2.8) we therefore

have

f ′(X1)f(X1)g′(X2)λ3 = 1. (2.42)

As discussed by Rivlin [66, 67], solution of the preceding equation leads to

f(X1)2 = 2X1/(βλ3) + a, g(X2) = βX2,

where the constant β > 0 is again given via (2.3)3 and

a = (a2
1 + a2

2)/2, a2
2 = 4A/(βλ3) + a2

1. (2.43)

It then follows that the deformation can be described by

r =

√
a +

2X1

βλ3
, θ = βX2, z = λ3X3, (2.44)
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and we deduce that the principal stretches can be written as

λ1 = 1/βλ3r, λ2 = βr, λ3 = λ. (2.45)

Application of (2.42) and (2.45) to (2.13) shows that σ1 and σ2 depend only on X1

while θ depends only on X2. Therefore, for an isochoric deformation, (2.34)2 is satisfied

identically while (2.34)1 again leads to the equation Ŵ = λ1Ŵ1. We emphasize that we are

considering here an isochoric deformation in a compressible material, not an incompressible

material.

Furthermore, we note that the solutions (2.44) arising from the kinematical restriction

(2.42) are universal solutions since they apply independently of the constitutive law. Thus,

in this case, the radial equilibrium equation (2.40) serves to identify the possible forms of

W that admit the isochoric bending deformation.

2.3.1 Plane strain specialization

Henceforth, we confine our analysis to the plane strain specialization. We consider that

the deformation is in the (X1, X2) coordinate plane, such that z = X3, with (r, θ) being

independent of X3, and the direction M is parallel to the considered plane. The compo-

nents of F and C satisfy F33 = C33 = 1, and the out-of-plane principal stretch is now

λ3 = 1. The principal invariants (1.147) reduce to

I1 = λ2
1 + λ2

2 + 1, I2 = λ2
1λ

2
2 + λ2

1 + λ2
2, I3 = λ2

1λ
2
2, (2.46)

and we rewrite (2.11) and (2.33) together compactly as

I4 = λ2
κ, I5 = I2

4 , κ ∈ {1, 2}, (2.47)

wherein the subscript κ has been introduced to identify the orientation of the unit vector

field M in the undeformed configuration.

For either κ = 1 or 2 we deduce from (2.46) and (2.47) the connections

I2 = I1 + I3 − 1, I5 = (I1 − 1)I4 − I3, (2.48)

and it follows that, for plane strain, the function W̄ introduced in (2.14) depends only

on the invariants I1, I3 and I4. Accordingly, we may introduce a reduced strain-energy

function, denoted ¯̄W and defined by

¯̄W (I1, I3, I4) = W̄ (I1, I1 + I3 − 1, I3, I4, (I1 − 1)I4 − I3), (2.49)
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for either value of κ.

Now, if F denotes the corresponding in-plane deformation gradient, the associated

restricted expressions for the nominal and the Cauchy stress tensors are given by

σ = J−1[2 ¯̄W1B + 2I3
¯̄W3I + 2 ¯̄W4m⊗m], (2.50)

S = 2 ¯̄W1FT + 2I3
¯̄W3F−1 + 2 ¯̄W4M⊗ FM. (2.51)

Note that in order to maintain the plane strain deformation the out-of-plane stress com-

ponents σ33 and S33 are in general non-zero. These are not given by (2.50), (2.51), but, if

needed, they may be calculated from (1.177) and (1.178), respectively, evaluated for the

considered plane strain specialization.

The counterparts of (2.15) for ¯̄W are

¯̄W = ¯̄W1 + ¯̄W3 = ¯̄W4 = 0 (2.52)

for κ = 1, 2, while (2.16)–(2.20) specialize to

¯̄W11 + 2 ¯̄W13 + ¯̄W33 = c22/4, ¯̄W44 − 2 ¯̄W3 = (c11 + c22 − 2c12)/4, (2.53)

2 ¯̄W14 + 2 ¯̄W34 + ¯̄W44 = (c11 − c22)/4, ¯̄W3 = −c55/2, (2.54)

with the derivatives of ¯̄W being evaluated for (I1, I3, I4) = (3, 1, 1) (see also [48]). Finally,

the properties (2.31) that the elastic constants should satisfy are reduced to

c11 > 0, c22 > 0, c55 > 0, (2.55)

while (2.32) is still in place. We recall that the properties (2.53)–(2.55) and (2.32) corre-

spond to κ = 1.

2.3.2 Certain classes of materials

As discussed in Jiang [38], a finite isochoric bending deformation of a rectangular block is

not sustainable for compressible isotropic materials. Here, we present two specific classes

of transversely isotropic compressible materials, depending on the choice of κ, for which

the considered isochoric bending deformation can be achieved.

For this purpose, we substitute (2.49) into (2.40) to obtain

¯̄W (I1, I3, I4) = 2λ2
1

¯̄W1(I1, I3, I4) + 2I3
¯̄W3(I1, I3, I4) + 2λ2

1
¯̄W4(I1, I3, I4)δ1κ, (2.56)

where δ1κ is the Kronecker delta, with κ ∈ {1, 2}.
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Since the deformation is considered to be isochoric, equation (2.56) for κ = 1 applies

for

I1 = λ2
1 + λ−2

1 + 1, I3 = 1, I4 = λ2
1 (2.57)

for all λ1 > 0. Differentiation of (2.56) with respect to λ1 yields

2(λ1 − λ−3
1 )(2λ2

1
¯̄W11 + 2 ¯̄W13 + 2λ2

1
¯̄W14 − ¯̄W1)

+4λ3
1(

¯̄W14 + ¯̄W44) + 2λ1(2 ¯̄W1 + ¯̄W4 + 2 ¯̄W34) = 0, (2.58)

for all λ1 > 0.

On use of (2.52)–(2.54), we see that in the limit λ1 → 1 equation (2.58) holds if and

only if

c11 = c12. (2.59)

This is a necessary restriction on the class of compressible transversely isotropic materials

for which an isochoric bending deformation of a rectangular block can be achieved. We

note that for this class of materials the conditions (2.55) and (2.32) can be reduced to

c22 > c11 > 0, c55 > 0. (2.60)

For κ = 2, equation (2.56) with I4 = λ−2
1 gives, analogously to (2.58), the connection

2λ−3
1 ( ¯̄W4 − 2 ¯̄W34) + 4λ1( ¯̄W1 − λ−2

1
¯̄W14) + 2(λ1 − λ−3

1 )(2λ2
1

¯̄W11 + 2 ¯̄W13 − ¯̄W1) = 0, (2.61)

for all λ1 > 0. This leads again to the restriction (2.59), and the corresponding inequalities

that the elastic constants satisfy are

c22 > c11 > 0, c44 > 0. (2.62)

It is also worth noting that the inequalities (2.60)1 show that for κ = 1 the materials

have “low” anisotropy, since the elastic modulus c11, which is directly related to the

stiffness in the X1 direction, is less than c22, which is defined with respect to the isotropic

planes of the body.

2.3.3 A note on reinforcing models

At this point, it is useful to remark that several authors (see, e.g., [77, 62, 63, 47, 48])

have considered a decomposition of the strain-energy function of the form

¯̄W = ¯̄Wiso(I1, I3) + ¯̄Wfib(I4), (2.63)
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in which the first term ¯̄Wiso represents the isotropic base material, while the additional

term ¯̄Wfib represents the reinforcement associated with a family of fibres whose referential

direction is the preferred direction M.

The properties (2.53)2 and (2.54) show that the class of strain-energy functions (2.63)

must satisfy the connection

c22 − c12 = 2c55 (2.64)

when κ = 1, and

c11 − c12 = 2c44 (2.65)

for κ = 2. The first of these requirements is consistent with (2.59) and the inequalities

(2.60), but the second is not consistent with (2.59) and (2.62). However, the conditions

(2.53)2, (2.54) and (2.60)3 show that the class of materials (2.64) can admit the isochoric

bending deformation only for κ = 1 and then such that

¯̄W ′′
fib(1) < 0, (2.66)

implying non-convexity of ¯̄Wfib in a neighbourhood of I4 = 1.

This is not consistent with the models adopted in the above-cited papers, where the

anisotropic part of the strain-energy has been taken to satisfy

¯̄Wfib(1) = ¯̄W ′
fib(1) = 0, ¯̄W ′′

fib(1) > 0, (2.67)

for κ ∈ {1, 2}. However, in such cases the models used provide reinforcement, i.e. the

stiffness in the preferred direction is larger than in the transverse directions, in contrast

to the situation here. It can therefore be concluded that the considered deformation is

not possible for strictly reinforcing models. Such models are studied in detail in Chap-

ters 3 and 4 by means of incompressible transversely isotropic solids undergoing shearing

deformations.

2.3.4 Some specific strain-energy functions

In this section we present two examples of strain-energy functions that can admit an

isochoric bending deformation. The relevant necessary and sufficient condition is obtained

from (2.56) in each case, with I1, I3 and I4 given by

I1 = λ2
1 + λ−2

1 + 1, I3 = 1, I4 = λ2
κ. (2.68)
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Since I3 = 1, we may write I1 = I4 + I−1
4 + 1, for κ ∈ {1, 2}, although in the present

analysis we do not make formal use of this connection. The specializations of (2.56) for

κ = 1 and κ = 2 may be written as

¯̄W = 2I4
¯̄W1 + 2 ¯̄W3 + 2I4

¯̄W4 (2.69)

and

I4
¯̄W = 2 ¯̄W1 + 2I4

¯̄W3, (2.70)

respectively, evaluated for I3 = 1.

In the following we adopt an approach towards the construction of forms of W used

by Jiang and Ogden [39, 40], and the particular forms of energy function considered are

motivated by those examined in these references.

Case (1): κ = 1.

First, we consider the class of strain-energy functions for which ¯̄W has the form

¯̄W (I1, I3, I4) = h1(I1 − I4 + I3)g0(I3) + h2(I1 − I4)
√

I3 + C0I4(
√

I3)−1, (2.71)

where h1 is a function to be determined, C0 is a material constant and the functions h2

and g0 are to be consistent with the requirements (2.52)–(2.54).

If, without loss of generality, we set g0(1) = 1 then substitution of (2.71) into (2.69)

leads to the differential equation

h′1(Ī) + qh1(Ī) = 0, (2.72)

where q and Ī are defined by

2q = 2g′0(1)− 1, Ī = I1 − I4 + 1. (2.73)

The general solution of (2.72) is

h1(Ī) = C1e−qĪ , (2.74)

where C1 is a constant. In respect of (2.71) the requirements (2.52)–(2.54) give C0 = c55/2,

together with

h2(2) + h1(3) = −c55/2, h′2(2)− qh1(3) = c55/2, (2.75)

h′′2(2) + q2h1(3) = (c22 − c11 − 4c55)/4, (2.76)

4h′′2(2)− h2(2) + 4h′2(2)− 8qh1(3) + 4h1(3)g′′0(1) = c22 − 3c55/2. (2.77)



CHAPTER 2. BENDING OF TRANSVERSELY ISOTROPIC BLOCKS 70

The class of strain-energy functions (2.71) admitting isochoric bending deformation is

now specialized to

¯̄W (I1, I3, I4) = C1e−q(I1−I4+I3)g0(I3) + h2(I1 − I4)
√

I3 + (c55/2)I4(
√

I3)−1 (2.78)

for any choice of the parameter q and non-zero C1, and for any functions g0 and h2 that

satisfy (2.75)–(2.77). In particular, for any given C1 and q, which can in general be chosen

independently, equations (2.75)–(2.77) simply serve to identify the properties that g0 and

h2 should satisfy in the reference configuration, but no restriction otherwise on the forms of

these functions is imposed. The expression (2.78), together with (2.75)–(2.77), represents

a large class of functions admitting isochoric bending deformation. Finally, we note that

for C1 = 0 the requirements (2.77) and (2.76) lead to c11 = −4c55, in which case the

properties (2.60) are violated. For this reason the possibility C1 = 0 is excluded from

consideration.

Note, however, that the specialization q = 0 is admissible, in which case the strain-

energy function (2.78) reduces to

¯̄W (I1, I3, I4) = C1g0(I3) + h2(I1 − I4)
√

I3 + (c55/2)I4(
√

I3)−1, (2.79)

which is valid for all non-zero disposable parameters C1 and all functions h2 and g0 that

satisfy the appropriate specializations of (2.75)–(2.77).

Case (2): κ = 2.

Next, we examine the class of strain-energy functions of the form

¯̄W (I1, I3, I4) = h3(I1I4)g1(I3) + h4(I4)
√

I3. (2.80)

Similarly to the previous case, by taking g1(1) = 1 and setting 2η = 2g′1(1)− 1, we follow

the same procedure in respect of (2.70) to particularize h3(I1I4). This leads to

h3(I1I4) = C2e−ηI1I4 , (2.81)

where again, C2 is a material parameter and h3, h4, g1 satisfy

h3(3) = −c44/2η, h3(3) + h4(1) = 0, h′4(1) = −3c44/2, (2.82)

h′′4(1) + 9η2h3(3) = (c22 − c11 − 4c44)/4, (2.83)

4η(η + 1)h3(3)− 4h3(3)g′′1(1) = −c11 − c44/2η. (2.84)
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Hence, in this case, equation (2.80) is replaced by

¯̄W (I1, I3, I4) = C2e−ηI1I4g1(I3) + h4(I4)
√

I3 (2.85)

for all non-zero parameters η and C2 that satisfy (2.82)-(2.84) in respect of (2.81). As

for the case of the functions (2.78), these serve to determine the conditions that g1 and

h4 should satisfy in the reference configuration. In addition, we emphasize that the class

of strain-energy functions (2.80) fails to admit isochoric bending deformation for C2 = 0

and/or η = 0 since in either case we deduce that c44 = 0 and the strong ellipticity condition

(2.62)3 is then violated.

2.3.5 Application of the boundary conditions

As we have already mentioned, the solutions (2.78), (2.79), (2.85) derived in the previous

section correspond to large classes of transversely isotropic materials admitting the con-

sidered isochoric bending deformation under plane strain. However, these solutions are

not necessarily compatible with the boundary conditions (2.41) imposed on our problem.

In this respect, the arbitrary functions h2 and h4 involved need to be properly specified

to ensure that the deformed body is traction free on the boundaries X1 = ±A.

For illustration, we now examine the strain-energy functions (2.79) by taking

h2(I1 − I4) = −(c55/8) (I1 − I4 − 4)2 − C1, (2.86)

noting that this is compatible with (2.75) and (2.76) for q = 0, and the nonlinear algebraic

system (2.41) can be solved analytically in respect of the data a and β. The equilibrium

equation (2.71) is then satisfied identically with

σ1 = −(c55/8)[(λ−2
1 − 2)2 − 2(λ−2

1 + 2λ2
1) + 5], (2.87)

while σ2 and σ3 take the forms

σ2 = −(c55/8)(4λ2
1 − 18λ−2

1 + 5λ−4
1 + 9),

σ3 = −(c55/8)(4λ2
1 − 2λ−2

1 + λ−4
1 − 3).

(2.88)

It should be noted, however, that the properties (2.75) and (2.76) impose the further

restriction 3c55 = c22 − c11, which is compatible with (2.60). From (2.77) a condition on

g′′0(1) may also be derived but we do not need it here.

By recalling the expressions (2.44)1 and (2.45)1 (now with λ3 = 1), the system (2.41)

is solved to give

a = (40/9)A2, β = 3/(4A), (2.89)
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Figure 2.1: Plots of (a) the stretch λ1 and (b) the dimensionless stress components σ∗1 , σ∗2 and σ∗3

vs X̄1.

and from (2.3)1,2 we obtain

a1 = 2a2 = (8/3)A. (2.90)

Moreover, the range of λ1 = λ1(X1) for which such a deformation is sustainable may also

be identified via (2.89), (2.44)1 and (2.45)1 as

λ1(A) = 0.5 6 λ1(X1) 6 1 = λ1(−A), (2.91)

for all A > 0 and −A 6 X1 6 A. Consequently, from (2.47)1 (i.e. for κ = 1) and (2.91) it

follows that the material is compressed in the X1 direction for X1 > −A. The resulting

stretch distribution as a function of the dimensionless coordinate X̄1 = X1/A is depicted

in Figure 2.1(a). We observe that the inequalities (2.91) hold independently of the value

of A.

In addition, the stress components σ1, σ2 and σ3 are plotted in Figure 2.1(b) as functions

of X̄ in dimensionless form σ∗i = σi/c55, i ∈ {1, 2, 3}. The non-monotonic nature of

σ1, σ2, σ3 is now evident. We note that σ1 vanishes for X̄1 = ±1, as prescribed, and takes

its maximum value for λ1 ≈ 0.605 (equivalently, for X̄1 ≈ 0.155). Also, σ2 and σ3 vanish

on the boundary X̄1 = −1 of the block, where λ1 = 1, while additionally σ2 = 0 for

λ1 ≈ 0.589 (X̄1 ≈ 0.252) and σ3 = 0 at λ1 ≈ 0.625 (X̄1 ≈ 0.041).
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Figure 2.2: Plots of (a) the stretch λ2 and (b) the dimensionless stress components σ∗1 , σ∗2 and σ∗3

vs X̄1.

Finally, the moment of the stress σ2 (about the origin r = θ = 0) that maintain the

material in its deformed state is now calculated from the formula

M = 2C

∫ A

−A
rλ1σ2dX1, (2.92)

which can be evaluated explicitly to give M ≈ −(0.318/β2)Cc55 ≈ −0.566A2Cc55.

Next we consider the class of materials (2.85) for the case in which the function h4 is

chosen as

h4(I4) = (c44/2η)eη(2−I4−I2
4 ) − c1(I−1

4 − 2)2 + c1I
2
4 . (2.93)

The form of (2.93) satisfies the required restrictions, and the counterparts of (2.87) and

(2.88) are

σ1 = −c1

[
(λ2

1 − 2)2 − λ−4
1

]
, (2.94)

and

σ2 = c1(3λ4
1 − 4λ2

1 + 5λ−4
1 − 4), (2.95)

σ3 = c44eη(2−λ−2
1 −λ−4

1 )(λ−2
1 − 1)− c1(λ4

1 − 4λ2
1 − λ−4

1 + 4), (2.96)

wherein the notation c1 = (c22 − c11 + 3c44)/16 has been introduced.

On use of (2.94), solution of the system (2.41) yields

a = 4(4 + 3
√

2)A2, β = (2−
√

2)/(4A), (2.97)
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with

a1 =
√

2 + 2
√

2a2 − 2
√

2A = 2(2 +
√

2)A. (2.98)

We observe that for the particular choice of h3 the deformation is sustainable only

within the range

λ1(A) = 1 6 λ1(X1) 6 1.554 ≈ λ1(−A), (2.99)

for all A > 0 and −A 6 X1 6 A. We recall, however, that since in this case the direction

of transverse isotropy is in the X2 direction, we have I4 = λ2
2 = λ−2

1 . The obvious inference

is that there is contraction in the X2 direction for all values of X1 except X1 = A. The

distribution of the stretch λ2 = λ−1
1 as a function of X̄1 is plotted in Figure 2.2(a).

Corresponding plots of the stress components σ1, σ2, σ3 are given in Figure 2.2(b) where,

analogously to the previous case, we use the dimensionless forms σ∗i = σi/c1, i ∈ {1, 2, 3}.
It can now easily be derived from (2.94) and (2.95) that σ1 and σ2 are non-monotonic as

functions of λ2 or, equivalently, of X1. Indeed, σ1 reaches a maximum value at λ2 ≈ 0.737,

corresponding to X̄1 ≈ −0.558 while, σ2 has a minimum at λ2 ≈ 0.861, corresponding to

X̄1 ≈ 0.119. Furthermore, we notice that σ2 vanishes for the values λ2 ≈ 0.748 and 1 and

hence for X̄1 ≈ −0.504 and X̄1 = 1.

We now observe that σ3 is the only principal stress component that depends on the

three parameters c44, η and c1. Essentially, both the nature and the magnitude of this

component is adjusting due to different classes of strain energies and with respect to

various extension and shear moduli so that the body can undergo an isochoric deformation

while, at the same time, the boundary conditions (2.41) are satisfied. For illustration, the

curves (σ∗3, X̄1) are presented here for η = 0.5 and c2 = 0.5, 1, 1.5, where c2 is defined as

c2 = c44/c1.

Finally, the moment M is in this case calculated as

M = 2C

∫ A

−A
rλ1σ2dX1 ≈ −(0.078/β2)Cc1 ≈ −3.627A2Cc1. (2.100)

2.4 Strongly elliptic modes of deformation

2.4.1 Necessary and sufficient conditions for strong ellipticity

The issue of stability of modes of deformation such as that considered in the foregoing

sections is an important one, and, in particular, the notion of loss of strong ellipticity has

a role to play in this regard. In this section we examine the strong ellipticity condition
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for the considered deformation. For transversely isotropic compressible elastic solids this

has been discussed by Merodio and Ogden [48] and, in particular, they gave a general

expression for the strong ellipticity condition for plane strain. As for the linear theory

discussed earlier in Section 2.2.2, the strong ellipticity condition may be analyzed in terms

of the acoustic tensor Q(n), whose components are quadratic in the components of the

unit vector n (for a general discussion we refer to the work of Truesdell and Noll [78]).

Analogously to (2.25)–(2.27), but now confined to two dimensions, expressly in the (1, 2)

plane with n lying in that plane, necessary and sufficient conditions for strong ellipticity

are

Q11(n) > 0, Q11(n)Q22(n)− [Q12(n)]2 > 0 (2.101)

for all unit vectors n = (n1, n2, 0).

For a compressible material the components of Q(n) for plane strain (λ3 = 1) are,

from Merodio and Ogden [48] but in the present notation, given by

Qij =4 ¯̄W 11λ
2
i λ

2
jninj + 4I3

¯̄W 13(λ2
i + λ2

j )ninj + 4I2
3

¯̄W 33ninj

+ 4I3
¯̄W 34(n ·m)(nimj + njmi) + 4 ¯̄W 14(n ·m)(λ2

i nimj + λ2
jnjmi) (2.102)

+ 4 ¯̄W 44(n ·m)2mimj + 2 ¯̄W 1δij(λ2
1n

2
1 + λ2

2n
2
2) + 2I3

¯̄W 3ninj + 2 ¯̄W 4δij(n ·m)2,

for i, j ∈ {1, 2}. When specialized to the considered deformation and on use of the (plane

strain) energy function defined by ˆ̂
W (λ1, λ2) = Ŵ (λ1, λ2, 1), we obtain simply

Q11 = λ2
1

ˆ̂
W11n

2
1 + 2 ¯̄W1λ

2
2n

2
2, (2.103)

Q22 = λ2
2

ˆ̂
W22n

2
2 + 2( ¯̄W1 + ¯̄W4)λ2

1n
2
1, (2.104)

Q12 = λ1λ2
ˆ̂
W12n1n2 − 2I3

¯̄W3n1n2, (2.105)

where ˆ̂
Wij = ∂2 ˆ̂

W/∂λi∂λj .

After a little manipulation using (2.105) it can be shown that the inequalities (2.101)

lead to

ˆ̂
W11 > 0,

ˆ̂
W22 > 0, ¯̄W1 > 0, ¯̄W1 + ¯̄W4 > 0, (2.106)√

ˆ̂
W11

ˆ̂
W22 − ˆ̂

W12 + 2
√

¯̄W1( ¯̄W1 + ¯̄W4) + 2
√

I3
¯̄W3 > 0, (2.107)

√
ˆ̂
W11

ˆ̂
W22 + ˆ̂

W12 + 2
√

¯̄W1( ¯̄W1 + ¯̄W4)− 2
√

I3
¯̄W3 > 0, (2.108)

which, jointly, are necessary and sufficient conditions on the material properties for strong

ellipticity to hold for the considered deformation. Note that both ˆ̂
W and ¯̄W are used here

since the expressions are simpler in this form.
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It is worth noting in passing that for an isotropic material the above inequalities, when

expressed entirely in terms of ˆ̂
W , reduce to

ˆ̂
W11 > 0,

ˆ̂
W22 > 0,

λ1
ˆ̂
W1 − λ2

ˆ̂
W2

λ2
1 − λ2

2

> 0, (2.109)

√
ˆ̂
W11

ˆ̂
W22 − ˆ̂

W12 +
ˆ̂
W1 + ˆ̂

W2

λ1 + λ2
> 0, (2.110)

√
ˆ̂
W11

ˆ̂
W22 + ˆ̂

W12 −
ˆ̂
W1 + ˆ̂

W2

λ1 + λ2
> 0, (2.111)

as obtained by [16].

2.4.2 Numerical illustration and additional remarks

For illustration, the ellipticity status of the strain-energy function (2.79) undergoing iso-

choric bending, with h2 being given by (2.86), is now discussed. For the considered

materials, we deduce via (2.60)1 that the first and the fourth requirements (2.106) are

automatically satisfied within the range of admissible values of λ1, as defined in (2.91).

On the other hand, the second of these inequalities fails if and only if the dimensionless

quantity c3 = (c11/c55) > 0 does not exceed the approximate value 21.75. In this connec-

tion, the inequality (2.106)2 fails earlier (for values of λ1 closer to 1) when c3 is close to

zero, corresponding to λ1 ≈ 0.724 (X̄1 ≈ −0.394). Note that an increase in the ratio c3

amounts to a decrease in the value of λ1 for which (2.106)2 first fails. In the same spirit,

it can easily be shown that breakdown of (2.106)3 occurs when λ1 reaches the value
√

3/3,

independently of the magnitude of the associated elastic material parameters.

It is now interesting that the status of (2.107) depends on c3 in a similar way as for

(2.106)2. Once more, small values of c3 correspond to larger values of λ1 for which (2.107)

is violated. We emphasize, however, that if c3 is taken close to zero, (2.107) fails instantly

for λ1 close to 1 (X̄ ≈ −1) while, also, the restriction c3 > 21.75 is not in this case

influential. We further observe that for any fixed value of c3, violation of (2.107) occurs

for values of λ1 closer to 1 than for those associated with the failure of (2.106)2 or (2.106)3.

Finally, bearing in mind (2.91) we readily deduce that (2.108) always holds.

Therefore, for a deformation with the considered properties, the inequality (2.107)

alone is sufficient to asses the failure of ellipticity. In that respect, the influence of c3

on the onset of loss of strong ellipticity is exemplified in Figure 2.3(a) in terms of the

coordinate X̄1. It is worth noting that when c3 exceeds the approximate value 1.785 loss

of strong ellipticity is always expected close to λ1 ≈ 0.75, or, equivalently at X̄1 ≈ −0.481.
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It is now evident that, in terms of the components of the acoustic tensor, the onset of

failure of ellipticity is strictly associated with breakdown of (2.101)2. For the considered

strain-energy function this gives explicitly

4c3λ
10
1 n4

1 + (3λ2
1 − 1)(2λ6

1 + 2c3λ
4
1 + 9λ2

1 − 5)n4
2

+ [4c3λ
10
1 + 6λ8

1 + (6c3 − 2)λ6
1 − 3(2c3 + 3)λ4

1 + 6λ2
1 − 1]n2

1n
2
2 = 0. (2.112)

The implications of (2.112) are illustrated in Figure 2.3(b), in which n2
1 is plotted against

X̄1 for two distinct values of c3. This then identifies the direction of the unit vector n for

which ellipticity fails. Clearly, decrease in the value of the ratio c3 induces ellipticity to

fail first for X̄1 closer to −1 also corresponding to values of n1 closer to 1. If c3 exceeds

the value 1.785 this fact is only consequential regarding those solutions of (2.112) lying

close to n1 = 0, in which case the smaller c3 is the closer to X̄1 = −1 ellipticity fails

initially. However, it appears that this assertion is valid only for a relatively small range

of c3 > 1.785 since, as c3 increases, the solutions of (2.112) in terms of n2
1 tend to stabilize.

Specifically, in the limit n1 → 0, (2.112) reduces to

¯̄W1
ˆ̂
W22 ≡ 1

8
c2
55λ

4
2(3λ2

1 − 1)(2λ6
1 + 2c3λ

4
1 + 9λ2

1 − 5) = 0 (2.113)

and hence, for 0 < c3 < 21.75 loss of ellipticity is initiated from λ1 ≈ 0.724 (X̄1 ≈ −0.394)

when c3 → 0, and, for c3 > 21.75, from λ1 =
√

3/3 (X̄1 ≈ 0.333) independently of the

value of c3.

At this point, it should be clarified that the necessary and sufficient conditions (2.106)-

(2.108) adopted here for strong ellipticity to hold, and therefore the analysis provided so far

for a specific class of the strain-energies (2.79), are local. Nevertheless, for the considered

deformation, the geometry of the deformed body furnishes that any surface r = constant,

across which ellipticity is lost, should be circular cylindrical. This fact now necessitates

n = er and it is therefore apparent that strongly elliptic modes of bending deformation

are sustainable if and only if the simple requirements

ˆ̂
W11 > 0, ¯̄W1 + ¯̄W4 > 0, (2.114)

hold simultaneously.

Accordingly, for the material model examined above we have the interesting conclusion

that ellipticity failure is possible only in the case where the deformed body becomes non-

symmetric, since, as already mentioned, the latter inequalities hold automatically. It is
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Figure 2.3: Plots of (a) the dimensionless coordinate X̄1 at which ellipticity is lost as a function

of the dimensionless material parameter c3 and (b) the corresponding value of n2
1 as a function of

X̄1.

worth noting, however, that if n is taken not strictly radial but very close to the direction

of er, failure of ellipticity is likely to occur. This fact is illustrated in Figure 2.4 where we

plot the solutions X̄1 of (2.112) by means of the variation of c3 for three fixed values of

n1 close to 1.

2.5 Incompressible materials

If the considered material is incompressible then the deformation gradient must satisfy

the internal constraint detF ≡ λ1λ2λ3 = 1 at each point of the material. Thus, given the

preferred direction M is an eigenvector of C, i.e. the connections (2.47) are established

for each κ ∈ {1, 2}, the Cauchy stress follows the spectral decomposition (2.12) with the

only difference that here its principal components are defined by

σi = λi
∂W

∂λi
− p, i ∈ {1, 2, 3}. (2.115)

As before, p is a Lagrange multiplier associated with the incompressibility constraint. In

fact, the latter can be either p̄ or p̂ whereas, analogously to the compressible theory (in

three dimensions), the elastic stored energy may now be represented through

W = W̄ (I1, I2, I4, I5) = Ŵ (λ1, λ2, λ3). (2.116)
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Figure 2.4: Plots of the dimensionless coordinate X̄1 at which ellipticity is lost as a function of

the dimensionless material parameter c3 for three fixed values of n1 close to 1.

In this case we recall that the connections (1.222), namely W̄ = W̄4 + 2W̄5 = 0 and

2W̄1 +4W̄2 = p̄0 this being the value of p̄ in Br, justify the argument of an initially energy

and stress-free material while, using (1.219) and (1.220), the corresponding properties of

(2.16)–(2.20) are reduced to (see, also, [50])

W̄1 + W̄2 = (c22 − c23)/4, (2.117)

W̄1 + W̄2 + W̄5 = c55/2, (2.118)

W̄44 + 4W̄45 + 4W̄55 = (c11 + c22 − 2c12 − 4c55)/4, (2.119)

with the derivatives of W̄ being evaluated for (I1, I2, I4, I5) = (3, 3, 1, 1). Based on the

grounds of (1.219) and (1.220), we also employ (1.215) and we follow the same procedure

as the one discussed in Section 2.2.2 to deduce that now the inequalities

c22 > c23, c55 > 0, c11 + c22 − 2c12 > 0, (2.120)

are necessary and sufficient conditions for strong ellipticity to hold in the classical incom-

pressible theory when M is directed along the X1 axis.

Due to the incompressibility constraint it is now evident that the connections (2.42)–

(2.45), obtained in Section 2.3, are still valid. Thus, through (2.115), the equilibrium

equation (2.34)2 provides that the Lagrange multiplier should, for each choice of κ ∈ {1, 2}
and regardless the representation of the strain energy, depend strictly on X1 while the first

of these equations yields again (2.38). Accordingly, when W = Ŵ (λ1, λ2, λ3), combination

of the latter with (2.44), (2.45) and (2.115) delivers

dŴ

dX1
= λ1(σ2 − σ1)/r =

dσ1

dX1
,
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which is then integrated to give

Ŵ = σ1,

or, equivalently

Ŵ = λ1Ŵ1 − p̂. (2.121)

for each κ ∈ {1, 2}. We note that the integration constant which should normally appear

in the latter connection is omitted since it is trivial to show that this takes the value zero.

As expected, equation (2.121) is of the same form as the one arising in the incompressible

isotropic case (see, e.g., [56]) only now Ŵ is not symmetric in (λ1, λ2, λ3).

It is apparent that here the equilibrium equation imposes no restriction on the strain-

energy function but simply serves to determine the Lagrange multiplier prescribed either

by p̄ or p̂. Hence, for the incompressible theory and with reference to the work of Jiang and

Ogden [39, 40], general forms of strain-energy functions in respect of bending deformation

(under plane strain) for transversely isotropic elastic materials may be identified. For this

purpose and bearing in mind (2.48), (2.49), now both evaluated for I3 = 1, we define the

strain-energy functions ˆ̄W (I1, I4) = ¯̄W (I1, 1, I4) and Ŵ (λ1) = ˆ̂
W (λ1, λ2), where ˆ̄W can, for

example, be one of the functions discussed in Section 4.2 or any other function satisfying

the required conditions. By these means, when specializing to plane strain, equation

(2.121) is appropriately rearranged to identify the form of the Lagrange multiplier, which

along with ˆ̄W is denoted ˆ̄p, involved in the counterpart of (2.50) and/or (2.51) given by

σ = 2 ˆ̄W1B + 2 ˆ̄W4m⊗m− ˆ̄pI, (2.122)

S = 2 ˆ̄W1FT + 2 ˆ̄W4M⊗ FM− ˆ̄pF−1, (2.123)

respectively, where I is the (two-dimensional) identity tensor.

As a result the specialization (2.63) discussed in the Section 2.3.3 is also now admissible

and may be written as
ˆ̄W = ˆ̄Wiso(I1) + ˆ̄Wfib(I4). (2.124)

This is one possibility amongst within a very wide class of incompressible transversely

materials that may be examined under the considered bending deformation.



Chapter 3

Azimuthal shear of a transversely

isotropic tube

3.1 Introduction

The problem of azimuthal shear of a circular cylindrical tube composed of elastic material

has been discussed in many publications since the pioneering work of Rivlin [67], primarily

for isotropic elastic solids, compressible or incompressible. A review of the literature is

provided by Jiang and Ogden [39], to which reference can be made for detailed citations. To

the best of our knowledge, relatively little has been done for anisotropic bodies undergoing

azimuthal shear deformation, although Jiang and Beatty [37] examined the helical shear

problem (of which the azimuthal shear problem is a special case) for transversely elastic

materials whose direction of transverse isotropy is either axial, circumferential or helical;

also, for transversely isotropic materials, Tsai and Fan [81] analyzed the anti-plane shear

problem. In both cases the attention of these authors was focussed mainly on constructing

classes of strain-energy functions capable of undergoing the considered deformations. See

also the recent contribution by Merodio et al. [35] concerned with the rectilinear shear of

a slab of fiber-reinforced elastic material.

In the work of Abeyaratne [2] the azimuthal shear problem has been studied in detail

for incompressible, isotropic elastic materials from the point of view of loss of ellipticity.

Specifically, loss of ellipticity, at intermediate ranges of loading applied at the boundaries

of the tube heralds the emergence of certain non-smooth solutions. The existence of such

solutions requires that the strain energy be non-convex as a function of the shear strain.

In this chapter we examine the problem of azimuthal shear for a circular cylindrical tube

81
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of transversely isotropic elastic material in terms of loss of ellipticity, which requires loss

of strict convexity of the strain energy as a function of the shear strain. The direction of

transverse isotropy (the preferred direction) is taken to lie in planes normal to the axis

of the tube so that the problem has a plane strain character. Moreover, this direction

depends (in general) only on the radius through the material so that circular symmetry is

maintained.

In Section 3.2, the geometry of the problem and the kinematics associated with the

azimuthal shear deformation are introduced, while the form of the strain-energy function

for a transversely isotropic material with the restriction to plane strain is given together

with the (in-plane) Cauchy stress tensor and its polar components in Section 3.3. The

components of the equilibrium equation are then summarized in Section 3.4. In Section

3.5 the form of the strong ellipticity condition appropriate for the considered specialization

is stated. We consider a special class of material models consisting of an isotropic base

material augmented by a reinforcement dependent on the preferred direction. As is known

from the isotropic problem [2], loss of ellipticity requires loss of monotonicity of the shear

stress versus shear strain relationship; in other words, a strain energy that is a non-convex

function of the amount of shear. This is also the case here although the chosen energy

function is non-convex only for negative shear strain.

The well-known neo-Hookean model augmented with the so-called standard reinforcing

model (see, e.g., [77, 63, 62, 47, 48]) is then the focus of attention in Section 3.6. The

notion of strong ellipticity is studied in terms of the magnitude and direction of the applied

(azimuthal shear) loading and the resulting shear strain in the material. Closed-form

solutions are derived that determine the domain of strong ellipticity, on the boundaries of

which ellipticity is lost. Analysis of the azimuthal governing equation yields conclusions

relating loss of strict convexity of the considered strain-energy function to the existence

of multiple solutions. In particular, there are in some circumstances three choices for the

shear strain, only two of which are admissible. The degree of anisotropy and the geometry

of the preferred direction at each point of the body serve to characterize the nature of the

surfaces of discontinuity (strong or weak) emerging from the failure of strong ellipticity,

which may only happen when the preferred direction undergoes contraction. The surfaces

of discontinuity are circular cylinders concentric with the tube. In the special case in which

the preferred direction is taken to be radial the azimuthal shear causes extension of the

preferred direction for either sense of the shear (and no loss of ellipticity). More generally,
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we consider a preferred direction that depends on the radius in such a fashion that it

extends for positive (anticlockwise) shear, but for which in negative (clockwise) shear it

may either extend or contract. In the case of negative shear, the distinction between

extension and contraction is dependent on the radial position, the precise disposition of

the fibers, the degree of anisotropy and the magnitude of the applied shear stress.

For the same reinforcement, the Varga model is then, in Section 3.7, chosen to represent

the isotropic base material. In this case closed-form solutions are not readily obtainable,

and we therefore present numerical results that are parallel to those for the neo-Hookean

material. In particular, we again determine a relationship between loss of ellipticity and

the existence of non-smooth and multiple solutions that turns out to be very similar to

that obtained for the reinforced neo-Hookean model. Unlike the previous case, however,

negative shear always leads to ellipticity failure regardless the degree of anisotropy of the

considered material.

Finally, several numerical examples are used in Section 3.8 to illustrate some of the as-

pects discussed in the foregoing paragraphs, and the overall response of a body undergoing

such a deformation is also highlighted. As in the isotropic material case, a unique energy

minimizing deformation can be associated with each value of applied shear stress (or twist

angle), and deformations containing a surface of discontinuity are confined to a particular

interval of this shear stress. However, in contrast to the case of loss of ellipticity in isotropic

tubes [2], certain radial variations of the preferred direction give loss of ellipticity that is

always confined to a small region of the tube. This includes cases in which ellipticity can

be lost at only a single internal radius and cases in which loss of ellipticity occurs over

an interval of internal radii. In the latter case, a surface of discontinuity emerges in the

interior of the tube, increases its radius under increasing twist, and then disappears while

still strictly interior to the tube.

3.2 The azimuthal shear deformation

3.2.1 Definition of the deformation

Consider a circular cylindrical tube composed of incompressible hyperelastic material with

reference geometry defined by

A 6 R 6 B, 0 6 Θ 6 2π, 0 6 Z 6 L, (3.1)
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where (R, Θ, Z) are cylindrical polar coordinates in the reference configuration (assumed

free of stress) relative to a cylindrical polar basis {EI}, I ∈ {R, Θ, Z}.
The deformation of pure azimuthal shear is defined by

r = R, θ = Θ + g(R), z = Z, (3.2)

where (r, θ, z) are cylindrical polar coordinates in the deformed configuration associated

with the cylindrical polar basis {ei}, i ∈ {r, θ, z}, and g(R) = g(r) is a function to be

determined. We suppose that

g(a) = 0, g(b) = ψ, (3.3)

where ψ, which may be positive or negative, is the angle of rotation of the outer boundary

r = b = B relative to r = a = A.

3.2.2 Kinematics of the problem

For the considered material geometry (3.1) and deformation (3.2), the deformation gradient

tensor F takes the form

F = R + γeθ ⊗ER, (3.4)

where R = er ⊗ ER + eθ ⊗ EΘ + ez ⊗ EZ , while the corresponding left Cauchy-Green

tensor, introduced in (1.43)2, is

B = I + γ(er ⊗ eθ + eθ ⊗ er) + γ2eθ ⊗ eθ, (3.5)

where I is the identity tensor, γ = rg′(r) is the amount of shear (locally a simple shear

in the planes normal to ez) and the prime on g indicates differentiation with respect to

r = R.

Let M be a unit vector, defined in the reference configuration, that identifies locally

a preferred direction. In particular, we suppose that M lies in (R, Θ)-planes, so that we

may write

M = MRER + MΘEΘ, M2
R + M2

Θ = 1. (3.6)

The geometrical nature of the preferred direction may be characterized in terms of the

scalar bijection mapping G : [A,B] −→ [0,Θ1 −Θ0] via the equation

Θ = G(R) + Θ0, G(A) = 0, G(B) = Θ1 −Θ0, (3.7)

where Θ0 ∈ [0, 2π] and Θ1 −Θ0 > 0 is fixed independently of Θ0.
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Then,

MR =
1√

(RG′(R))2 + 1
, MΘ =

RG′(R)√
(RG′(R))2 + 1

, (3.8)

and G′(R) = dG(R)/dR. We assume here that G′(R) > 0. A schematic of a possible

geometrical arrangement of the preferred direction is depicted in Figure 3.1. Note that

MR and MΘ are functions of the radius R only. It will sometimes be convenient to identify

the preferred direction in terms of the angle α = α(R), with α ∈ [0, π/2] defined by

tanα = MΘ/MR = RG′(R). (3.9)
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Figure 3.1: Illustration of a possible arrangement of the preferred direction in the reference

configuration according to equation (3.7). The angle α is identified by noting that MR = cos α.

Under the considered deformation M becomes m which, according to (1.125), (3.4)

and (3.6)1, is now given by

m = MRer + (MΘ + γMR)eθ. (3.10)

Further, the kinematic invariants of interest identified with the considered deformation are

now prescribed by I1 and I4, these being calculated as

I1 = trB = 3 + γ2, I4 = m ·m = 1 + 2γMRMΘ + γ2M2
R, (3.11)

respectively. Note that (3.11)2 reduces to I4 = 1+γ2 when M = ER (α = 0), while I4 = 1

if M = EΘ (α = π/2). In the latter case the deformation corresponds to simple shear in the

preferred direction. We recall that, in general, for an incompressible transversely isotropic

material (in three dimensions) there are four independent invariants associated with the

deformation and the preferred direction M. As noted in Section 2.5, however, when those

invariants are chosen to be represented by the manifold (I1, I2, I4, I5) and the deformation
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is restricted to plane strain, it is not necessary to consider I2 and I5 separately from I1 and

I4. Indeed, it is easy to show that in plane strain, and wether or not M is an eigenvector

of C (and equivalently m an eigenvector of B), the connections (2.48) derived earlier for

the associated compressible are always validated. Following that, we now incorporate the

incompressibility constraint (I3 = 1) in (2.48) and we write

I2 = I1, I5 = (I1 − 1)I4 − 1. (3.12)

Since MR > 0 (with equality for G′(R) → ∞) and MΘ > 0 then for positive shear

(γ > 0) we have I4 > 1 for R ∈ [A,B]. On the other hand, for negative shear (γ < 0) and

α 6= 0, π/2,

I4 R 1 according as γ(γ + 2 tan α) R 0. (3.13)

Now, for γ < 0, with α 6= 0, it follows from (3.13) that I4 < 1 for γ > −2 tanα and

I4 > 1 for γ < −2 tanα. Note that α may be a constant, a monotonic increasing or

decreasing function of R or none of these. If α is a constant then RG′(R) is a constant

and the resulting curve is a logarithmic spiral, with G(R) given by

G(R) = (Θ1 −Θ0) log(R/A)/ log(B/A). (3.14)

Suppose, for illustration, that α is either a constant or an increasing function of r = R

and that |γ| is a decreasing function of r. In fact, it is shown in Section 5 that if α is

constant then the latter condition holds whenever the strong ellipticity condition holds

(but otherwise it may or may not hold depending on the material properties and the

dependence of α on r). Then, at the inner boundary r = a, as γ decreases from zero, I4

steadily decreases from 1 until it reaches its minimum value at γ = − tanα and then starts

to increase. Therefore, due to monotonicity of |γ|, we have I4 < 1 for a 6 r 6 b but when

γ = −2 tanα at the inner boundary, I4 returns to the value 1, but remains less than 1 for

a < r 6 b. Thereafter, I4 is greater than 1 at the inner boundary and there is a value of

r ∈ (a, b), denoted rα, at which γ = −2 tanα, so that I4 > 1 for a 6 r < rα and I4 < 1 for

rα < r 6 b. The radial location rα increases with |γ|. At sufficiently large |γ|, rα reaches

the value b and thereafter I4 is greater than 1 for a 6 r 6 b.

3.3 Constitutive law: transverse isotropy

Owing to the linkages (3.12), it is evident that for a transversely isotropic incompressible

elastic solid, when restricted to the plane strain specialization, the strain-energy function
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W may be treated in general as a function of I1 and I4 alone. In particular, bearing

in mind the last expression in (1.192) and following closely the methodology provided in

Chapter 2, we are prompted to write

W = ¯̄W (I1, I4), (3.15)

such that ¯̄W (I1, I4) = W̄ (I1, I1, I4, (I1 − 1)I4 − 1). Due to (3.15), the associated in-plane

Cauchy and nominal stress tensors σ and S are then of the form (2.122) and (2.123),

respectively, but in the present notation are written down as

σ = 2 ¯̄W1B + 2 ¯̄W4m⊗m− ¯̄pI, (3.16)

S = 2 ¯̄W1FT + 2 ¯̄W4M⊗ FM− ¯̄pF−1. (3.17)

As before, I and B are the in-plane identity and left Cauchy-Green tensors, respectively, ¯̄p

is the corresponding Lagrange multiplier associated with the incompressibility constraint

and ¯̄W1 = ∂ ¯̄W/∂I1,
¯̄W4 = ∂ ¯̄W/∂I4.

Accordingly, for a material body whose energy and stress vanish in Br (where I1 = 3

and I4 = 1), we require
¯̄W = ¯̄W4 = 0, ¯̄W1 = ¯̄p0, (3.18)

where ¯̄p0 is the value of ¯̄p in that configuration. It is also worthwhile noting that, when M

is defined by (3.6), consistency with the classical linear incompressible theory discussed in

Section 1.5.1 can be established through the connections

¯̄W1 = [c13 − c12 + c23 − c33 + c44 + 2(c55 + c66)]/6, (3.19)

¯̄W44 = [3(c11 + c22)− 8(c13 + c23 − c33)− 16(c55 + c66) + 2c12 + 4c44]/12, (3.20)

with the derivatives of ¯̄W evaluated for (I1, I4) = (3, 1). Now, the correlation between

(3.18)1 and (3.19) is apparent. We emphasize that here the parameters c11, ..., c66 are, in

general, functions of the angle α = α(R) and are defined similarly to (2.21), yet do not

necessarily embody the symmetries presented there. Precisely, assuming that MR and MΘ

are strictly positive, the aforemention material quantities are identified as

cij = Ciijj , i, j ∈ {1, 2, 3},

c44 = C1212 c55 = C1313, c66 = C2323,

(3.21)

where now, due to the symmetries of the body under examination and the dependence

of M on α = α(R), the subscripts 1, 2 and 3 on the parameters Cijkl are associated with
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the cylindrical polar coordinates (R, Θ, Z) respectively. We remark that the quantities

(3.21) may be found to satisfy particular symmetries which may lead to a different set of

parameters, including, for example, the non-vanishing terms c77 = C1112, c88 = C1222, c99 =

C1323, appearing in the right-hand side of (3.19) and (3.20). Although these symmetries

can be written down explicitly, they are too complicated since they require the involvement

of the components of MR and MΘ of M and for this reason they are not presented here.

However, they can be used to identify that, in the special case where MR = 1 (i.e. α =

0), the connections (2.21) are re-established and hence (3.19) and (3.20) specialize to
¯̄W1 = c55/2 and ¯̄W44 = (c11 + c22−2c12−4c55)/4, respectively. In fact, by substituting ¯̄W

with ˆ̄W , the two latter conditions may be regarded as the specializations of (2.117)–(2.119)

introduced earlier in Section 2.5 for the bending problem when the considered deformation

is restricted to plane strain. Analogous conclusions can easily be drawn for the case where

MΘ = 1 (i.e. α = π/2).

The (in-plane) cylindrical polar components of σ are read off as

σrr = 2 ¯̄W1 + 2 ¯̄W4M
2
R − ¯̄p, (3.22)

σθθ = 2 ¯̄W1(1 + γ2) + 2 ¯̄W4(MΘ + γMR)2 − ¯̄p, (3.23)

σrθ = 2 ¯̄W1γ + 2 ¯̄W4MR(MΘ + γMR), (3.24)

from which it is easy to show that

σθθ − σrr = γσrθ + 2 ¯̄W4(γMRMΘ + M2
Θ −M2

R). (3.25)

In view of (3.11) and (3.9) we may now introduce a new function, denoted W̃ , such

that

W̃ (γ, α) = ¯̄W (I1, I4), (3.26)

and differentiation of (3.26) yields the simple formula

σrθ =
∂W̃

∂γ
(3.27)

for the shear stress. We note in passing that for any elastic material for which the strain

energy can be regarded as a function of the single deformation variable γ for the considered

deformation the formula (3.27) applies. In (3.26) we should remark that α is a material

parameter, not a deformation variable, and its inclusion reflects the fact that the material

properties are inhomogeneous if α depends on R. With this in mind we note that the
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connection (3.25) can be rewritten in the form

∂W̃

∂α
= γ2σrθ + γ(σrr − σθθ). (3.28)

3.4 Equilibrium equations

For the deformation and constitutive law discussed in the foregoing sections the equilibrium

equation divσ = 0 (in the absence of body forces) has just two non-trivial components,

namely the radial equation
dσrr

dr
+

1
r
(σrr − σθθ) = 0 (3.29)

and the azimuthal equation
d
dr

(r2σrθ) = 0 (3.30)

both of which arise on specializing the expressions (1.76) demonstrated in Section 1.2.3.

The azimuthal equation (3.30) integrates to give, in conjunction with (3.27),

σrθ ≡ ∂W̃

∂γ
=

τθb
2

r2
, (3.31)

which, for any given form of W̃ , serves to determine γ as a function of r, and hence, via

γ = rg′(r), the deformation function g(r), subject to the boundary conditions (3.3). We

emphasize that the form of the function g(r) depends on the form of the strain-energy

function. The parameter τθ in (3.31) is a constant, representing the value of the azimuthal

stress component on the boundary r = b. In addition, the quantity 2πτθb
2 represents

the resultant torque (twisting moment). Either τθ or ψ in (3.3)2 (but not both) can be

regarded as providing the boundary condition on r = b.

For the isotropic theory, as discussed by Jiang and Ogden [39], positive γ (i.e. positive

ψ) is associated with τθ > 0 while γ < 0 is related to τθ < 0. This assertion, in conjunction

with (3.31), clearly suggests that

σrθ ≡ ∂W̃

∂γ
R 0 according as γ T 0. (3.32)

We adopt these restrictions in what follows, and more detailed commentary on them is

provided after equation (3.50).

Once γ is determined, the role of the radial equation (3.29) is to determine σrr, or

equivalently p. Integration of equation (3.29), on use of (3.28) and (3.31), yields

σrr(r) = σrr(a) +
∫ r

a

(
g′τθb

2 − (g′)−1 ∂W̃

∂α

)
dR

R2
, (3.33)
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in which R is used as the integration variable. Because of the incompressibility constraint

the value of σrr(a) is at our disposal. If required, the normal component σθθ can now be

obtained from (3.29).

At this point, it is worth mentioning that, for a transversely isotropic material, unlike

the situation in the isotropic theory, equation (3.31) might have an alternative role. Specif-

ically, if a certain shear-stress-strain response and distribution is required, then equation

(3.31) can be used to identify the preferred directions, in other words the components (3.8)

or G(R) itself, for which such a deformation is sustainable. We do not pursue this design

idea in the present analysis, however.

3.5 Strong ellipticity and a class of reinforcing models

3.5.1 Local and global considerations for strong ellipticity

We now discuss the strong ellipticity condition for the considered azimuthal shear defor-

mation and constitutive law. For this purpose we draw on the general plane strain strong

ellipticity condition for transversely isotropic materials given by Merodio and Ogden [47]

for a strain-energy function of the form ¯̄W (I1, I4). In the present notation, this may be

written

2 ¯̄W 11[n · (Ba)]2 + 4 ¯̄W 14n · (Ba)(n ·m)(n×m)3

+ 2 ¯̄W 44(n ·m)2(n×m)23 + ¯̄W 1n · (Bn) + ¯̄W 4(n ·m)2 > 0 (3.34)

for all in-plane unit vectors n and a satisfying a · n = 0, where (n×m)3 = n1m2 − n2m1,

(n1, n2) and (m1,m2) being the components of n and m, respectively.

Where ellipticity fails n defines the normal to the associated (weak or strong) surface

of discontinuity. While the inequality (3.34) is local, for the present problem we have to

consider the global implications of the constraints imposed by the geometry. In particular,

analogously to the situation described in Section 2.4.2 for the case of elastic blocks under-

going bending deformations, if the circular geometry is to be maintained then any surface

of discontinuity is necessarily constrained to be circular cylindrical and concentric with the

tube. Thus, we may take n = er and a = eθ. Then, n·(Bn) = 1, (n×m)3 = (MΘ+γMR),

n · (Ba) = γ, n ·m = MR , and (3.34) therefore reduces to

2 ¯̄W 11γ
2 + 4 ¯̄W 14γMR(MΘ + γMR) + 2 ¯̄W 44M

2
R(MΘ + γMR)2 + ¯̄W 1 + ¯̄W 4M

2
R ≡

1
2
W̃γγ > 0,
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where a subscript γ signifies the partial derivative ∂/∂γ. Thus, for the considered problem,

strong ellipticity is equivalent to the simple inequality W̃γγ > 0, and loss of ellipticity

therefore occurs, if at all, at a value of r for which W̃γγ = 0. We note in passing that,

based on the same arguments, the inequality (3.34) specializes to

¯̄W 1 + 2 ¯̄W 44M
2
RM2

Θ ≡ W̃γγ/2 > 0 (3.35)

when evaluated in the reference configuration, where (I1, I4) = (3, 1) (i.e. from (3.18)2
¯̄W4 = 0) and/or γ = 0. Hence, since, in the reference configuration, the terms ¯̄W 1 and
¯̄W 44 are constants, strong ellipticity is possible to provide restrictions on the geometry of

the preferred direction. Specifically, if ¯̄W 1 + 2 ¯̄W 44 and ¯̄W 44 are positive, the inequality

(3.35) then requires

M0
1 < MR < M0

2 , (3.36)

with

M0
1 =

√√√√ ¯̄W44 −
√

2 ¯̄W 1
¯̄W 44 + ¯̄W

2

44

2
, M0

2 =

√√√√ ¯̄W44 +
√

2 ¯̄W 1
¯̄W 44 + ¯̄W

2

44

2
,

when ¯̄W1 6 0, while for ¯̄W1 > 0, (3.36) becomes

M0
2 < MR < M0

1 . (3.37)

Finally, for either ¯̄W 1 +2 ¯̄W 44 or ¯̄W 44 equals zero, (3.35) is established for all MR 6=
√

2/2.

Clearly, by virtue of (3.19) and (3.20), the status of (3.35) can be analyzed in terms of

the parameters c11, ..., c66 but we do not use this approach here. We only remark that,

interestingly but not surprisingly, when MR = 1, i.e. the symmetries (2.21) are validated,

(3.35) is satisfied if and only if c11 + c22 − 2c12 > 0, the latter being identical with the

requirement (2.120)3 given in Section 2.5. Although the implications of (3.35) can be

put into parallelism with the results that are presented in Section 3.6 and thereafter, we

henceforth deliberately consider (for simplicity) material models which satisfy the strong

ellipticity condition in the reference configuration.

Expressed otherwise, strong ellipticity is equivalent to the strain-energy function being

a strictly locally convex function of γ. Thus,

W̃γγ ≡ ∂σrθ

∂γ
> 0. (3.38)

This is easily confirmed in the case of an isotropic material, for which we write (3.15)

as Ŵ = E(I1). Then, necessary and sufficient conditions for (3.34) are [1, 47]

2(I1 − 3)E′′(I1) + E′(I1) > 0, E′(I1) > 0. (3.39)
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But, since I1 = 3 + γ2, we introduce the notation Ẽ(γ) defined by Ẽ(γ) = E(I1). The

inequalities (3.39) then become

Ẽ′′(γ) > 0, Ẽ′(γ) T 0 for γ T 0. (3.40)

Note, however, that the latter is equivalent to the adopted condition (3.32), and hence,

for isotropic materials, the remaining strong ellipticity condition is simply Ẽ′′(γ) > 0.

It should be emphasized that for the deformation under examination, and as for the

isotropic theory [39], the ellipticity requirement (3.38), if it holds for all γ, ensures, for any

given τθ, uniqueness of the solution of (3.31) for γ provided the growth condition W̃γ →∞
as γ →∞ holds. Loss of ellipticity is therefore closely related to loss of uniqueness of the

solution for γ.

Finally in this section, we note that

W̃γγ
dγ

dr
+ W̃γα

dα

dr
= −2

τθb
2

r3
, (3.41)

and recall that by (3.31) and (3.32) τθ has the same sign as γ. This shows that if (3.38)

holds and if α is independent of r then dγ/dr T 0 according as τθ S 0. Thus, |γ| is

a decreasing function of r whenever strong ellipticity holds. If α depends on r then, in

general, whether or not |γ| is monotonic depends both on the nature of this dependence

and on how W̃ depends on α. An example of non-monotonicity is illustrated in Section

3.8.2.

3.5.2 Strain-energy functions of separable form

In order to examine loss of ellipticity in detail we focus attention on two particular strain-

energy functions within the general class characterized by the separable form

¯̄W (I1, I4) = E(I1) + F (I4), (3.42)

in which the first term E(I1) represents the isotropic base material and the additional term

F (I4) represents the reinforcement associated with the transversely isotropic nature of the

considered materials, the invariant I4 being associated with the preferred direction M.

Recall that such specializations of the strain-energy function have been briefly discussed

in Chapter 2 but under a different notation. As noted there (see the discussion provided

in Sections 2.3.3 and 2.5 and also the references therein), several authors have considered

a decomposition of the form (3.42), or specializations thereof, where, in each case, the
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reinforcing contribution F (I4) has been taken to satisfy

F ′(I4) > 0 (< 0) for I4 > 1 (< 1), F ′(1) = 0. (3.43)

These conditions ensure that the contribution of F (I4) to the component of the Cauchy

stress tensor (3.16) in the deformed preferred direction is positive (negative) under exten-

sion (contraction) of the preferred direction.

It is useful in what follows to examine certain properties of the energy function ¯̄W (I1, I4)

specified in (3.42) in respect of its dependence on γ and to write

W̃ (γ) = Ẽ(γ) + F̃ (γ), (3.44)

dropping the explicit dependence on α. It is similarly convenient to use the notation

σrθ = s(r) so as to emphasize the dependence of the shear stress on r, whence, from

(3.31),
τθb

2

r2
= s(r) = Ẽ′(γ) + F̃ ′(γ). (3.45)

We emphasize that for a strain-energy function of the form (3.42) satisfying (3.43), the

properties of Ẽ(γ) have to be consistent with (3.32), where in general Ẽ(γ) need not be a

convex function. Thus, loss of ellipticity of the base material may occur with E′(I1) = 0

for either positive or negative γ whatever the sign of Ẽ′′(γ).

For γ > 0, and hence s(r) > 0, we have I4 > 1 and from (3.43) with ∂I4/∂γ =

2 cosα(sinα + γ cosα) we obtain F̃ ′(γ) > 0, and the possibility of Ẽ′(γ) 6 0 is therefore

admitted, i.e. the isotropic base material in isolation may lose ellipticity for some value of

r.

For γ < 0, and hence s(r) < 0, on the other hand, depending on the magnitude of

γ, as we have seen, either extension or contraction of the preferred direction may arise.

Specifically, for −2 tanα < γ < 0 and α 6= 0, we recall from (3.13) that I4 < 1 and

then F̃ ′(γ) < 0 for γ > − tanα, and equation (3.45)2 again admits the possibility that

Ẽ′(γ) may be positive, negative or zero. However, when, with increasing |γ|, I4 reaches

its minimum value (at γ = − tanα) we have F̃ ′(γ) = 0 and hence s(r) = Ẽ′(γ), which

excludes the possibility of Ẽ′(γ) > 0. If, however, −2 tanα < γ < − tanα then F̃ ′(γ) > 0

and hence we must have Ẽ′(γ) < s(r) < 0, while in the limiting case γ = −2 tanα, I4 = 1

and s(r) = Ẽ′(γ). Finally, for γ < −2 tanα, I4 > 1, F̃ ′(γ) < 0 and Ẽ′(γ) may take either

sign.

For the special case in which α = π/2 we have I4 = 1 for both positive and negative γ,

and then s(r) = Ẽ′(γ) since F̃ ′(γ) = F ′(1) = 0 for any γ. In this case, for the considered
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deformation to be admissible Ẽ′(γ) must have the same sign as γ. On the other hand,

if α = 0 (and the preferred direction is radial) then I4 > 1 and there is no distinction

between the effect of positive and negative γ.

In concluding this section, we remark that for the specific class of strain-energy func-

tions (3.42) considered here, the properties of the isotropic base material (elliptic or not)

have to be consistent with the requirements discussed above in order for the considered

deformation to be admissible. However, we restrict attention henceforth to conventional

isotropic base material functions. Much more detail on the possibilities for loss of elliptic-

ity due to the properties of Ẽ(γ) and F̃ (γ) can be gleaned from the work of Merodio and

Ogden [47].

3.6 The reinforced neo-Hookean model

In this section we examine in detail the ellipticity status of the neo-Hookean isotropic ma-

terial augmented with the so-called standard reinforcing model under the pure azimuthal

shear deformation. In particular, the breakdown of strong ellipticity and loss of strict local

convexity of W̃ = ¯̄W are associated here with the existence of non-unique solutions of the

boundary-value problem.

Equation (3.42) is now specialized to

¯̄W (I1, I4) =
1
2
µ

[
I1 − 3 + ρ(I4 − 1)2

]
, (3.46)

so that

E(I1) =
1
2
µ(I1 − 3), F (I4) =

1
2
µρ(I4 − 1)2, (3.47)

where the constant µ (> 0) represents the shear modulus of the isotropic base material

and ρ (> 0) is a material constant that characterizes the degree of anisotropy associated

with the presence of the preferred direction. Clearly, using (3.19) and (3.20), both µ and ρ

can be expressed in terms of the parameters c11, ..., c66 but we do not use this connections

here. For the considered deformation we have

I1 − 3 = γ2, I4 − 1 = γ cosα(2 sinα + γ cosα). (3.48)

It follows that

W̃γ = µγ
(
2ρ cos4 α γ2 + 6ρ cos3 α sinα γ + 4ρ cos2 α sin2 α + 1

)
, (3.49)
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and it is then easy to show that the inequalities (3.32) hold if and only if

ρ sin2 2α < 8. (3.50)

Although the inequalities (3.32) could be relaxed to provide an alternative route to

loss of ellipticity, here we assume that they hold and that loss of ellipticity is associated

solely with the condition W̃γγ = 0. The restriction (3.50) on the parameter ρ and the

angle α reflects the very special choice of strain-energy function.

More specifically, as discussed in [63] (see Figure 12 therein), ρ > 8 offers the possibility

that shearing with respect to a particular range of reinforcing orientations gives a resolved

shear stress with opposite sign to that of the amount of shear. Similar phenomena are

noted in [50] and would likely render the considered radially symmetric solutions unstable

with respect to more general deformations that are beyond the scope of this thesis. Here

attention is restricted to (3.50), and more generally (3.32), so as to justify exclusive focus

on the pure azimuthal shear deformations (3.2).

We remark that to the extent that the transverse isotropy studied here is associated

with fiber reinforcement, constancy of the reinforcing parameter ρ might be regarded as

associated with a constant fiber density (independent of r). More generally, however,

one could consider ρ to depend on r and the subsequent analysis given in the present

chapter for constant ρ could provide a point of entry for the consideration of any such

generalization.

3.6.1 Multiple solutions

Here we investigate the existence of multiple solutions of the azimuthal equilibrium equa-

tion (3.31) for γ for given values of the applied shear loading τθ. For this purpose it is

convenient to use the notations defined by

σ(γ) = W̃γ/µ, τ(r) = s(r)/µ = τθb
2/µr2. (3.51)

In respect of (3.46), equation (3.31) yields the cubic

σ(γ) ≡ 2ρM4
Rγ3 + 6ρM3

RMΘγ2 + (4ρM2
RM2

Θ + 1)γ = τ(r) (3.52)

for γ. An immediate useful observation is that both γ = − tanα and γ = −2 tanα cause

the reinforcing term in (3.52) to vanish, thus yielding σ = τ = γ for these two special

values of γ. For γ = −2 tanα, in which case I4 = 1, this correspondence is a consequence
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of F ′(1) = 0 in (3.43). For γ = − tanα it is a consequence of ∂I4/∂γ = 0, which in turn

renders F̃ ′(γ) = 0.

In the special case MR = 0, equation (3.52) yields γ = τ(r) and the solution is exactly

that arising in the isotropic theory, i.e. the anisotropy has no influence, either for positive

or negative τ(r). Henceforth, we assume MR 6= 0 (α 6= π/2).

If τθ > 0 then τ(r) > 0 and, according to (3.32), we must have γ > 0, in which case

the left-hand side of (3.52) is a monotonic increasing function of γ, W̃ is a locally strictly

convex function of γ and the strong ellipticity condition holds. Hence, (3.52) yields a

unique value for γ. We shall not pursue discussion of this case.

The situation of particular interest is when τθ < 0 so that τ(r) < 0 and, by (3.32),

γ < 0. First, it is easy to show that if ρ sin2 2α < 2 then the left-hand side of equation

(3.52) is again a monotonic increasing function of γ. Hence (3.52) has a unique negative

solution, γ = γ1 say, defined for all MR ∈ (0, 1] (and all r ∈ [a, b]). This solution is given

explicitly by

γ1 = − tanα +
6−2/3Q2 − 6−1/3ρM4

R(1− 2ρM2
RM2

Θ)
ρM4

RQ
, (3.53)

for all a 6 r 6 b with MR ∈ (0, 1] and for any value of τ = τ(r) < 0 with real Q ≡ Q(r)

being given by

Q3 = 9ρ2M7
R(τMR + MΘ) + 31/2ρ3/2M6

R

√
27ρM2

R(τMR + MΘ)2 + 2(1− 2ρM2
RM2

Θ)3.

(3.54)

Note that when ρ = 2 and α = π/4 equation (3.52) simplifies to (γ + 1)3 = τ + 1, and

hence γ = γ1 = −1 + (τ + 1)1/3. This is negative for τ < 0 and yields the same result as

the specialization of (3.53) with (3.54).

For a 6 r 6 b, the (unique) deformation function, g1(r) say, is determined by integra-

tion of the equation rg′1(r) = γ1 with the boundary conditions (3.3).

Second, for τ < 0, loss of uniqueness of solution of (3.52) may occur when ρ sin2 2α

exceeds the value 2. Then, independently of the magnitude of τ < 0, γ is again given by

(3.53), but only for values of r for which

either 0 < MR < M1 or M2 < MR 6 1, (3.55)

where

M1 =
√(

ρ−
√

ρ2 − 2ρ
)/

2ρ, M2 =
√(

ρ +
√

ρ2 − 2ρ
)/

2ρ. (3.56)

The formula for γ1 is also valid when MR = M1 or MR = M2, including the special case

τ = − tanα, for which γ1 = − tanα is a triple root.
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Non-uniqueness of the roots γ for τ < 0 is possible only if ρ > 2 and only for values of

r such that ρ sin2 2α > 2, or equivalently

M1 < MR < M2, (3.57)

which is, in fact, anticipated on the basis of equation (4.16) in [63].

We now consider the effect of increasing the magnitude of the shear stress τθ on the

boundary r = b, or equivalently of τ(b) = τθ/µ. In Figure 3.2 we plot, for a series of given

values of τ(r), the function σ(γ) − τ(r) against γ, where σ(γ) is defined in (3.52). Since

σ(0) = 0 the intercept on the vertical axis is −τ(r).

For small values of |τ(r)| the equation σ(γ) − τ(r) = 0 clearly has a single solution,

which is the value γ1 identified in (3.53). As |τ(r)| increases a second solution of (3.52)

emerges when the curve (the lower dashed curve in Figure 3.2) just touches the horizontal

axis. At this point the two roots for γ, denoted γ2 and γ3, are given by

γ2 = − tanα +

√
6
√

2ρM2
RM2

Θ − 1

3
√

ρM2
R

, (3.58)

γ3 = − tanα−
√

6
√

2ρM2
RM2

Θ − 1

6
√

ρM2
R

. (3.59)

The value γ2 is the specialization of γ1, while γ3 is the double root associated with the

maximum point on the curve.

The corresponding value of τ(r) at this point is denoted τ1 and is given by

τ1 = − tanα +

√
6ρ

(
2ρM2

RM2
Θ − 1

)3

9ρM2
R

. (3.60)

Note that, in general, α depends on r and so, therefore, does the value τ1.

As |τ(r)| increases further then three distinct real roots for γ are obtained. However,

Q in (3.54) is now complex and some manipulations are required to rewrite (3.53) in the

simplified form

γ1 = − tanα +
6−2/3

ρM4
R

(Q + Q̄), (3.61)

where Q̄ is the complex conjugate of Q. The other two (real) roots, denoted γ4 and γ5,

are given similarly by

γ4 = − tanα− 6−2/3

2ρM4
R

[Q + Q̄− i
√

3(Q− Q̄)], (3.62)

γ5 = − tanα− 6−2/3

2ρM4
R

[Q + Q̄ + i
√

3(Q− Q̄)]. (3.63)
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Figure 3.2: Plot of the cubic σ(γ) − τ(r) from (3.52) against γ for different values of τ(r): from

bottom to top, τ(r) > τ1, τ(r) = τ1 (lower dashed curve), τ2 < τ(r) < τ1, τ(r) = τ2 (upper

dashed curve), τ(r) < τ2. The values γ2, γ3, γ6, γ7 are identified by the • symbol, while γ1, γ4, γ5

are ordered according to γ5 6 γ3, γ3 6 γ4 6 γ7, γ7 6 γ1 6 0. Note that W̃γγ < 0 for γ3 < γ < γ7.

It is convenient to label these two roots so that γ5 6 γ4 (< 0), noting that they are both

equal to γ3 when τ(r) = τ1. Then, with reference to Figure 3.2, it is easy to show that

for τ2 < τ(r) < τ1, the following orderings hold: γ5 < γ3 < − tanα (< 0), γ3 < γ4 (< 0).

These imply that γ5 + tanα < 0 (and hence Q + Q̄ > 0), while γ4 + tanα may be either

positive or negative.

The roots γ1 and γ4 merge when τ(r) reaches the value τ2 given by

τ2 = − tanα−

√
6ρ(2ρM2

RM2
Θ − 1)3

9ρM2
R

, (3.64)

which corresponds to the upper dashed curve in Figure 3.2 and depends on r if α does.

The two roots in this case, denoted γ6, γ7, are given by

γ6 = − tanα−
√

6
√

2ρM2
RM2

Θ − 1

3
√

ρM2
R

, (3.65)

γ7 = − tanα +

√
6
√

2ρM2
RM2

Θ − 1

6
√

ρM2
R

. (3.66)

The (double) root γ7 is the specialization of γ1 (and γ4) for this case and γ6 is the most

negative root. Note that for τ2 < τ(r) < τ1 we have γ4 < γ7 < γ1 (< 0), γ6 < γ5 and

γ7 + tanα > 0, while for τ(r) < τ2 there is again only one real root for γ, which we label
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Figure 3.3: (a) Plots of the critical values τ1 (upper curve) and τ2 (lower curve) against MR in

(MR, τ) space for ρ = 4; (b) plots of the critical values γ2, γ6 (dotted curves) and γ3, γ7 (continuous

curves) in (MR, γ) space for ρ = 4. The dashed curves and the symbols τ∗, γ∗, γ∗∗ are identified

in Section 3.6.3.

as γ5 (< γ6). We note in passing that γ2 and γ6 correspond to the same value of I4, which

may be written 1 − γ2γ6 cos2 α. Similarly, for γ3 and γ7 we have I4 = 1 − γ3γ7 cos2 α.

Moreover, I4 is less for γ3 than for γ2. Note that γ6 > −2 tanα provided (3.50) holds.

Since τ and (in general) α depend on r the above results are purely local, i.e. they

apply for fixed values of r. While |τ |, as defined in (3.51), is a decreasing function of

r, neither τ1 nor τ2 is in general a monotonic function of α. Thus, the disposition of

possible shear strains for r ∈ (a, b) can be quite complex. To illustrate to possibilities we

show, in Figure 3.3(a), the nature of the values τ1 and τ2 defined by (3.60) and (3.64),

respectively, as functions of MR. In Figure 3.3(b) the corresponding values γ2, γ3 and γ6, γ7

are shown, in each case for ρ = 4. If α is a monotonic increasing (decreasing) function of

r, and therefore MR monotonic decreasing (increasing), the curves in Figure 3.3 can be

interpreted as illustrating qualitatively the dependence of these values on the radius r.

Clearly, the values τ1 and τ2 are critical for determining the existence of multiple values

for γ and hence non-unique continuous deformation fields g(r) in (3.2). For τ(r) between

τ1 and τ2, non-uniqueness is possible. Subject to the restriction ρ sin2 2α < 8, an increase

in the parameter ρ > 2 corresponds to expansion of the domain where non-uniqueness of

γ is possible since τ1 is a monotonic increasing function and τ2 a monotonic decreasing

function of ρ. For comparison with Figure 3.3, Figure 3.4 shows corresponding results for
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Figure 3.4: (a) Plots of the critical values τ1 (upper curve) and τ2 (lower curve) against MR in

(MR, τ) space for ρ = 9; (b) plots of the critical values γ2, γ6 (dotted curves) and γ3, γ7 (continuous

curves) in (MR, γ) space for ρ = 9. The interval MR ∈ [
√

3/3,
√

6/3] is excluded since the inequality

(3.50) is violated. The inadmissible shear strains γ∗4 and γ∗5 are within this interval. The dashed

curves and the symbols τ∗, γ∗, γ∗∗ are identified in Section 3.6.3.

ρ = 9. For this value of ρ we have to ensure that the inequality (3.50) is satisfied. It is

provided MR <
√

3/3 ≈ 0.577 or MR >
√

6/3 ≈ 0.817. In Figure 3.4(a) the τ1 curve cuts

the axis τ = 0 at the values MR =
√

3/3,
√

6/3 and the interval MR ∈ [
√

3/3,
√

6/3] is

therefore excluded from consideration. This applies equally in Figure 3.4(b), which, for

the same interval, reveals inadmissible values for γ, denoted γ∗4 and γ∗5 , that are obtained

from the formulas (3.62) and (3.63) for γ4 and γ5 with (3.54) for τ = 0. Note that τ1 is

not here a monotonic function of MR.

We remark that, for a certain range of values of ρ > 2, τ1 is monotonically increasing

in the component MR, as is evident in the example in Figure 3.3. This means that loss of

uniqueness is initiated for points with MR close to M2 since the latter is associated with

the minimum possible value of |τ1|. More specifically, when ρ exceeds the approximate

value 5.39, τ1 loses its monotonic character; however, the least value of |τ | for which loss

of uniqueness first occurs is still close to MR = M2 until ρ reaches the approximate value

6.19. Thereafter, multiplicity of choices for γ first occurs away from M2, and, in particular,

for MR ≈ 0.764 < M2 ≈ 0.956, while any further increase in ρ results in a decrease in the

value of MR for which |τ1| is minimized.

The dashed curves in Figures 3.3 and 3.4 have a special significance, which will be
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discussed in Section 3.6.3.

In order to simplify the discussion of multiplicity, we now focus on the case in which

α is independent of r. Then, τ1 and τ2 are also independent of r, and, with reference to

Figure 3.2, we may determine the effect of increasing |τ(r)| as follows.

We note that |τ(r)| has its largest value at r = a. For 0 > τ(a) > τ1 there is a unique

value γ = γ1 that applies for a 6 r 6 b. For τ(a) = τ1 this value (= γ2) again applies for

a 6 r 6 b, but a second value γ3 becomes possible at r = a. For τ(b) > τ1 > τ(a) > τ2,

three values are possible, corresponding to the intercepts of the central curve in Figure

3.2 with the horizontal axis. These are γ1 in (3.61) and γ4 and γ5 in (3.62) and (3.63),

respectively, labelled so that γ5 < γ4 < γ1. There is then a value of r ∈ (a, b), r∗ say, such

that τ(r∗) = τ1. For r > r∗ the value γ1 is the only one possible, but for r < r∗ three

values, namely γ1, γ4 and γ5, are possible. As we shall discuss further in Section 3.6.3, any

use of the choice γ4 in the construction of the function g(r) gives rise to an energetically

unstable deformation by all conventional stability criteria. Hence the choice γ4 will not

be admitted. Thus, for r < r∗ only the two values γ1 and γ5 are admissible. Even so, the

possibility of γ having a jump from γ1 to γ5 arises, whereupon the determination of the

point or points at which such a jump occurs requires further discussion. This will also be

provided in Section 3.6.3 in relation to the stability status of the different values of γ. Such

jumps are called elastostatic shocks in [2] and, in the context of fiber reinforced materials,

are referred to as kink surfaces in [52, 53, 20]. With further increase in |τθ|, the possibility

of two admissible values of γ is retained provided τ(b) reaches the value τ1 before τ(a)

reaches the value τ2. If, however, τ(a) reaches τ2 before τ(b) reaches τ1 a further increase

in τθ will generate two circles, of radii r∗ and r∗∗ < r∗, say, such that there is only a single

value (γ5) for a < r < r∗∗, two admissible values (γ1 and γ5) for r∗∗ < r < r∗ and only

one (γ1) for r∗ < r < b.

The situation described above mirrors that studied by Abeyaratne [2] in the context of

the isotropic problem with a non-monotone shear stress response function. As shown for

the isotropic material problem in [2], it will generally be the case that smooth solutions will

not exist for certain values of ψ, which in turn motivates the explicit need for deformations

involving such a discontinuity surface. Once such elastostatic shock solutions are admitted,

one then typically obtains a multiplicity of solutions for certain values of ψ whereupon

the issue of selecting solutions of physical significance becomes central to further progress.

As elaborated in Section 3.6.3 we shall here follow [2] by invoking an absolute stability
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selection criterion that essentially selects global energy minimizers within the class of

azimuthal shear deformations (2). As discussed further in what follows, such solutions have

an equivalent interpretation of dissipation free shock motion when the problem is viewed

quasi-statically for a time varying ψ. As shown in [2], an immediate consequence is that a

unique solution g(r), which may or may not involve an elastostatic shock, follows for each

value ψ and the same solution is obtained for the quasi-static interpretation of the problem

irrespective of whether ψ is increasing or decreasing. Indeed, Abeyaratne provides full

details for associating any boundary value ψ to such a solution for the isotropic problem.

In the present analysis we do not provide the same focus on mapping the boundary value

ψ onto solutions and instead refer the reader to [2] for more detail on how to treat this

aspect of the problem. This allows us to retain our focus on the new issues pertaining to

the effect of the fiber reinforcement associated with transverse isotropy.

The possibilities just described are reflected in Figure 3.3, for example. For values of

MR between M1 = (
√

2−√2)/2 ≈ 0.383 and M2 = (
√

2 +
√

2)/2 ≈ 0.924 (for ρ = 4),

we see that as τ decreases from zero there is initially one value for γ, namely γ1 > γ2.

Two values, γ2 and γ3, become possible when τ reaches τ1. As τ decreases further, three

values of γ become possible: one (γ1) is found between γ2 and γ7, a second (γ4) between

γ7 and γ3 and a third (γ5) between γ3 and γ6. The value γ4, as mentioned already, is not

admissible. After τ reaches τ2 (and γ reaches γ7) there is again uniqueness. Thus, with

reference to Figure 3.3(b), we see that outside the closed curve defined by γ2 and γ6 the

value of γ is uniquely determined, while inside this curve two admissible choices (γ1 and

γ5) are possible.

In constructing any such discontinuity surface across which the shear strain γ jumps

between γ1 and γ5 it is to be remarked that there is no associated change in the value of

τθ even though τθ appeared originally as an integration constant in (3.31). Continuity of

τθ is necessary for continuity of σrθ. Continuity of σrr follows from (3.33), which in turn

ensures traction continuity across the discontinuity surface.

The case α = 0. Finally in this section, we consider the exceptional case for which the

preferred direction is taken to be radial for r ∈ [a, b], i.e. α ≡ 0. Then γ may be computed

from (3.53) for any τ (positive or negative) and ρ > 0, whilst (3.54) reduces to

Q3 = 9ρ2τ +
√

81ρ4τ2 + 6ρ3. (3.67)
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After some manipulation it can be shown that γ = γ1 has the form

γ1 = 3
61/3ρτ

q
2/3
+ + q

2/3
− + 61/3ρ

, (3.68)

where q± =
√

81ρ4τ2 + 6ρ3 ± 9ρ2τ . The antisymmetry of γ1 with respect to the change

of sign of τ is then apparent. The equation rg′1(r) = γ1 is solved to give

g1(r) = L(r)− L(a) (3.69)

for a 6 r 6 b, where

√
2ρL(r) = −

√
3

2
(x− x−1) + tan−1

(
x− x−1

√
3

)
, (3.70)

x (> 0) is defined by x = Q/(6ρ3)1/6, Q > 0, and we recall that τ = τθb
2/µr2.

3.6.2 Loss of ellipticity

The loss of uniqueness discussed in the foregoing section is closely related to loss of ellip-

ticity, and the connection will be elaborated in the present section. Strict local convexity

of W̃ ≡ ¯̄W as a function of γ is equivalent to the strong ellipticity condition W̃γγ > 0, and

for the considered reinforced neo-Hookean model (3.46) this yields

6ρM4
Rγ2 + 12ρM3

RMΘγ + 4ρM2
RM2

Θ + 1 > 0. (3.71)

This holds for γ > 0, while for it to hold for all γ it is necessary and sufficient that

ρ sin2 2α < 2. (3.72)

Thus, bearing in mind the restriction (3.50), failure of ellipticity requires

2 6 ρ sin2 2α < 8. (3.73)

Note, in particular, that the left-hand inequality in (3.73) cannot hold unless ρ > 2. For

ρ = 2 only equality can hold and it requires that α = π/4.

Failure of the inequality (3.71) can occur for those r for which M1 6 MR 6 M2 and

only when γ is such that γ3 6 γ 6 γ7. In particular, W̃γγ = 0 for γ = γ3 and γ = γ7,

which correspond to τ = τ1 and τ = τ2, respectively. Thus, the emergence of a second

value for γ when τ = τ1 coincides with loss of ellipticity. For the case of constant α, as |τ |
increases ellipticity fails first on r = a and thereafter on a circle of radius r = r∗, which

increases until r = b is reached. The (unique) value γ1 applies for r∗ < r < b, while for
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γ3 γ7γ6 γ2− tanα
••

−2 tanα

I4

γ
0

1

Figure 3.5: Plot of the invariant I4 against γ showing the relative positions of γ2, γ3, γ6, γ7. The

value I4 = 1 is shown as the dashed line, which cuts the I4 curve at γ = −2 tan α. The minimum

of I4 occurs at γ = − tan α. The values − tan α and −2 tan α are indicated by the symbol • on the

γ axis.

a < r < r∗ an alternative value is possible, i.e. γ1 can jump to γ5. For each of γ1 and

γ5 strong ellipticity holds (i.e. the slope of the central curve in Figure 3.2 is positive for

each of these values). The middle value γ4 is not admissible since at this point W̃γγ < 0,

i.e. it is unstable. Indeed, W̃γγ < 0 for γ3 < γ < γ7, as can be seen in Figure 3.2. For the

model under examination, loss of uniqueness of the solution of (3.52) for γ < 0 implies

failure of strong ellipticity, but the converse is not true in general since, for ρ sin2 2α = 2,

the roots for γ all coincide at a horizontal point of inflection (γ = − tanα). Such a

situation corresponds to a weak discontinuity, with γ continuous but dγ/dr discontinuous

at the value of r in question. This can happen only for MR = M1 or MR = M2 with

γ3 = γ7 = − tanα (= τ1 = τ2).

We now examine the ellipticity status in terms of the invariant I4 since it is clear

that breakdown of ellipticity is always associated with I4 < 1. The relative placements

of the values γ6, γ3, γ7, γ2 are shown in Figure 3.5 together with a plot of the invariant

I4 as a function of γ. For the considered material model and deformation, W̃γγ < 0 for

γ3 < γ < γ7, and I4 < 1 for all r for which γ3 6 γ 6 γ7 holds. On the other hand, I4 < 1

does not, in general, imply W̃γγ < 0. Indeed, W̃γγ > 0 for either −2 tanα < γ < γ3 or

γ7 < γ < 0, for which intervals I4 < 1.
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Figure 3.6: Plots of the invariant I4 against τ 6 0 for MR = 0.5, 0.65 with ρ = 5 showing the

locations of the different γ values. Note that γ4 is located in the region of non-convex W̃ .

Thus, it is generally the case that if loss of ellipticity takes place it will first occur

before I4 reaches its minimum value. The exception is for the non-generic situation in

which γ7 = γ4 = γ3 = − tanα, corresponding to MR = M1 = M2. In such a situation,

any subsequent change in the boundary condition generally causes I4 to cease to be at

its minimum value, whereupon ellipticity is regained. An example of this transient loss of

ellipticity is presented in Section 3.8.2. In Figure 3.6, for ρ = 5 and MR = 0.5, 0.65, the

dependence of I4 6 1 on τ 6 0 is plotted, with the locations of the different values for γ

identified.

3.6.3 Energy minimal solutions

Consider a programme of loading such that σ and correspondingly γ decreases from zero.

For −σ < −τ1, as we have seen, there is only one solution of (3.52) for γ, namely the

root γ1. We focus on the values of σ such that −τ1 < −σ < −τ2, when there are two

roots, γ1 and γ5 < γ1. With reference to Figure 3.7, let τ∗ be the value of σ for which

the horizontal line σ = τ∗ cuts the σ curve to form two closed regions with equal areas.

This is, of course, the well-known Maxwell line. Let γ∗ and γ∗∗ < γ∗ be the corresponding

values of γ1 and γ5. The Maxwell line is therefore defined by the equality (viz. equations
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−σ

γ
∗

γ
∗∗

−τ
∗

= tan α

−τ2

−τ1

γ

�

K

K

γ1

γ5

− tan α

Figure 3.7: Representative plot of −σ(γ), as given by (3.52), against γ (< 0). As −σ increases

from zero the continuous curve is followed until −σ reaches the value −τ∗ > −τ1, at which point

this path loses stability and the solution jumps to the left-hand continuous part of the curve, which

is stable as −σ increases further. The stable path is indicated by the arrows. The horizontal dashed

line at σ = τ∗ is the Maxwell line, for which the two closed regions cut off the curve have equal

areas. The dashed part of the curve and the continuous parts for γ7 6 γ1 < γ∗ and γ∗∗ < γ5 6 γ3

correspond to unstable solutions.

(3.2)–(3.4) in [17])

W̃ (γ∗∗)− W̃ (γ∗)− τ∗(γ∗∗ − γ∗) = 0. (3.74)

The dashed curves in Figures 3.3(a) and 3.4(a) are plots of the relevant values of τ∗ for

the examples therein against MR, and in Figures 3.3(b) and 3.4(b) the associated curves

of γ∗ and γ∗∗ are shown.

For solutions containing a discontinuity surface involving transition between γ1 and γ5,

the Maxwell stress τ∗ provides the only value of σ at which such a surface can be located

if the solution is to be stable in an absolute sense. In the event that τ∗ is independent

of r, it then follows from (3.51) and (3.52) that there is at most one radial location at

which σ = τ∗, and this location varies with the applied external shear stress τ(b) or,

equivalently, the twist ψ in (3.3). This is the case for homogeneous, isotropic materials,

as discussed in Abeyaratne [2], and also for the materials considered here provided that

all constitutive parameters (including α) are independent of r. More general possibilities

apply if α depends on r.

The sense in which such solutions are absolutely stable is as described in [2], namely,
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Figure 3.8: Plot of the angle β∗(> 0) against MR for ρ = 3, 5, 7.

for the same boundary conditions, such a solution minimizes the overall energy with re-

spect to all other deformations, either smooth solutions or those containing one or more

discontinuity surfaces. This eliminates consideration of the branch of solutions associated

with any descending branch in Figure 3.2, i.e. γ4, and also eliminates γ1 if γ7 < γ1 < γ∗

and γ5 if γ∗∗ < γ5 < γ3. It is worth observing here that such unstable γ1 and γ5 can be

regarded as metastable in the sense that solutions involving these values are minimizers

with respect to continuously differentiable variations in the twist function g(r) in (3.2).

Since, however, such continuously differentiable variations permit neither the formation

of new discontinuity surfaces nor the alternative placement of existing discontinuity sur-

faces, they do not address the absolutely stable solutions that we consider here. Hence

the condition for the stability of the shear strain γ1 (and instability of γ5) is

W̃ (γ5)− W̃ (γ1)− σ(γ5 − γ1) > 0, (3.75)

where σ = σ(γ1) = σ(γ5). In the context of isotropic elasticity the stability analysis has

been discussed in detail by Abeyaratne [2] and the present situation follows closely that

analysis.

We remark here that equation (3.74) is the specialization of the admissibility condition

[[W I − FTST]]N = 0 for equilibrium shocks [3], where [[ ]] indicates the jump in the

enclosed quantity across the surface with unit normal N in the reference configuration, I
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is the identity tensor and S = F−1σ is the nominal stress tensor. This guarantees that

quasi-static motion of an equilibrium shock (i.e. the surface of strain discontinuity) is

dissipation free.

It is easily shown from (3.52) that σ(−γ − 2 tanα) + 2 tanα = −σ(γ), which means

that σ(γ) is antisymmetric about the point γ = − tanα, σ = − tanα. It follows that (3.74)

provides the explicit Maxwell values τ∗ = − tanα and

γ∗ = − tanα +

√
2ρM2

RM2
Θ − 1

√
2ρM2

R

, γ∗∗ = − tanα−

√
2ρM2

RM2
Θ − 1

√
2ρM2

R

. (3.76)

Note that γ∗ is negative by virtue of (3.73).

Now, from (3.2)2, (3.7)1, (3.9) and (3.10), we find that

r
dθ

dr
= rG′(r) + rg′(r) = tan α + γ = tanβ, (3.77)

where tanβ = mθ/mr, i.e. β is the angle (measured counterclockwise) between the de-

formed fiber direction and the radial direction er. Let β∗ and β∗∗ be the values of β

corresponding to the values γ∗ and γ∗∗ in (3.76). It follows that tanβ∗ > 0, tanβ∗∗ < 0

and β∗∗ + β∗ = 0. This means that the deformed fiber directions on the two sides of the

circle of discontinuity are symmetrically disposed relative to the er direction. Note that

er is normal to the direction of shear. A similar symmetry arises in the rectilinear shear

problem examined by Merodio et al. [35]. Note that β∗ (and hence β∗∗) is non-monotonic

as a function of MR = cosα and has a maximum (minimum) at MR = 1/
√

ρ (ρ > 2).

Figure 3.8 shows the behaviour of β∗ as a function of MR for three different values of

ρ > 2.

We close this section with a remark regarding the issue of selecting solutions since it is

worth mentioning that other means for selecting solutions involving an elastostatic shock

are also possible [53, 4]. Such alternative selection criteria have received a great deal of

attention in the recent literature, especially as it relates to the continuum mechanical mod-

elling of solid-solid phase transformations. In these alternative resolutions, it is necessary

to ensure that the selection criterion is consistent with the second law of thermodynamics

[45]. Furthermore, unlike the absolutely stable solutions considered here, such alternative

resolutions would typically provide some hysteresis in the solution dependence on ψ.
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3.7 The reinforced Varga model

An alternative representation for the strain-energy function is examined at this point.

Instead of I1, we use the principal invariant i1 (= trV) of the stretch tensor V = B1/2.

Analogously to (3.42), we consider the class of strain-energy functions

W̆ (i1, I4) = Ĕ(i1) + F (I4), (3.78)

and we note the connection I1 = i21 − 2i1. Then,

Ŵ (I1, I4) = W̃ (γ, α) = W̆ (i1, I4), E(I1) = Ĕ(i1). (3.79)

For the problem under examination, we then have, on use of (3.11)1,

i1 = 1 +
√

4 + γ2. (3.80)

As a particular example, we now focus on the so-called Varga model, defined by

Ĕ(i1) = 2µ(i1 − 3) = 2µ
√

4 + γ2 − 2 = Ẽ(γ), (3.81)

augmented by the same reinforcement (3.47)2 in order to characterize the response of a

transversely isotropic circular cylindrical tube under the pure azimuthal shear deformation.

As for the neo-Hookean model, the parameter µ involved in (3.81) is the shear modulus

of the isotropic base material, and the counterpart of (3.46) is

W̆ (i1, I4) =
1
2
µ

[
4(i1 − 3) + ρ(I4 − 1)2

]
. (3.82)

Since Ẽ′(γ) = 2µγ/
√

1 + γ2 the monotonic nature of the function σ(γ) associated with

the Varga base material is apparent. Note, however, that, in contrast to the neo-Hookean

base material Ẽ′ tends to a finite value as γ →∞.

The azimuthal equation (3.31) now specializes to

σ(γ) ≡ 2γ(4 + γ2)−1/2 + 2ρM2
Rγ(M2

Rγ2 + 3MRMΘγ + 2M2
Θ) = τ(r). (3.83)

Note that the finite asymptote for σ(γ) persists for either ρ = 0 or MR = 0. More generally,

however, σ(γ) → ±∞ as γ → ±∞. Unlike its counterpart (3.52), equation (3.83) does

not admit explicit expressions for γ, so that necessary and sufficient conditions for the

uniqueness of γ are not in general obtainable in closed form. However, for γ > 0 it is easy

to show that σ(γ) is a monotonic increasing function, and hence γ is determined uniquely

for τ > 0. Possible loss of uniqueness is, as for the model (3.46), strictly associated
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with negative γ. When τ(r) < 0 equation (3.83) may have multiple roots for γ (< 0)

even for very small values of the parameter ρ. As expected, an increase in ρ results in

a decrease in the value of τ for which loss of uniqueness is initiated. In other words, we

see that the analogues of τ1(r) and |τ2(r)|, denoted τ̆1(r) and |τ̆2(r)|, respectively, are

monotonically increasing with ρ, so that larger values of ρ result in an expansion of the

region encompassing multiple choices for γ.

It is therefore clear that the general qualitative properties of the boundary τ̆1(r) are

very similar to those of τ1(r). Let us quantify the maximal set of points for which multi-

plicity of γ occurs, analogously to (3.57), by the inequalities

M̆1 < MR < M̆2, (3.84)

where M̆1 = M̆1(ρ) and M̆2 = M̆2(ρ). Then, for any fixed ρ > 2 we obtain the nesting

M̆1 < M1 6 M2 < M̆2, (3.85)

which, for all relevant r, leads to

τ1(r) < τ̆1(r) < 0, (3.86)

but the relative disposition of τ2(r) and τ̆2(r) is not immediately clear and depends on r.

In the limiting cases where M is either radial or circumferential uniqueness of γ is, as

for the model (3.46), guaranteed. For MR = 0, (3.83) may be solved to give

γ = 2τ(4− τ2)−1/2, (3.87)

γ and τ having the same sign, so there is clearly an upper bound on |τ | for which the

considered deformation is admissible, a point observed previously for the purely isotropic

Varga model (see, for example, the general discussion in [39], which includes results for the

Varga material as a special case). For MΘ = 0, on the other hand, a closed-form solution

of (3.83) is not obtainable.

The variations of the boundaries τ̆1(r) and τ̆2(r) with respect to the component MR

are illustrated in Figure 3.9 for three fixed values of ρ. Also shown are the plots of the

Maxwell stress τ̆∗(r) against MR.

The requirement for (3.82) to be strongly elliptic is

ρM2
R(3M2

Rγ2 + 6MRMΘγ + 2M2
Θ)(4 + γ2)3/2 + 4 > 0, (3.88)
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Figure 3.9: Plots of the limiting functions τ̆1 and τ̆2 against the component MR for ρ = 2, 4, 7 for

the reinforced Varga material. The dashed curves are plots of the Maxwell value τ̆∗.

which is, as for its counterpart (3.71), automatically satisfied throughout the body for

positive γ. For negative γ, on the other hand, violation of (3.88) may now occur for any

ρ > 0, although the associated non-strongly-elliptic domain cannot be identified explicitly.

Numerical calculations, however, show that the correlation between ellipticity failure and

the existence of multiple values for γ is entirely analogous to that for the reinforced neo-

Hookean model. Thus, the properties

τ̆2(r) 6 τ(r) 6 τ̆1(r) (3.89)

associated with (3.84) serve to characterize the domain for which multiple values of γ arise

and on the boundary of which ellipticity fails.

It is worth mentioning here that, as for (3.71), breakdown of (3.88) is also possible at

the limiting values M̆1 and M̆2, although there is no associated discontinuity in γ. This

again corresponds to the emergence of a weak discontinuity in γ, i.e. a discontinuity in

dγ/dr, at the appropriate value of r. Finally, we note that the possibility that (3.83) yields

negative, and therefore physically inadmissible, values of γ for positive τ(r) may also arise

here. More specifically, for ρ greater than about 6 there exists a subinterval of (3.84) in

which multiplicity of γ, in conjunction with loss of ellipticity, occurs. For this subinterval,

which varies with ρ, the boundaries of the domain where positive shear stress results in

negative γ are determined via equation (3.83) by resolving the latter in the limit τ → 0−.

In the case ρ = 7, illustrated in the right-hand plot in Figure 3.10, such a subinterval can

be observed.

The ellipticity status of the material model (3.82) is illustrated in Figure 3.10 for three

values of ρ. The notations γ̆2, γ̆3, γ̆6, γ̆7 and γ̆∗4 , γ̆∗5 have been adopted in parallel with
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for the material model (3.82) in terms of the shear γ (vertical axis) and MR (horizontal axis) for

ρ = 2, 4, 7: the curves are given by γ̆2 and γ̆6. Also shown (continuous curves) are γ̆3 and γ̆7, within

which the inequality (3.88) is reversed. The dotted loop in the right-hand plot is defined by the

inadmissible values γ̆∗4 and γ̆∗5 . Also shown for ρ = 2, 4, 7 are the (dashed) curves of the Maxwell

values γ̆∗ and γ̆∗∗ corresponding to τ̆∗.

those used in Section 3.6.3. In particular, the counterparts of Figures 3.3(b) and 3.4(b)

are plotted for ρ = 2, 4, 7 in order both to highlight the connection between the existence

of multiple values for γ and the notion of strong ellipticity. Plots of the values of γ̆∗, γ̆∗∗

associated with the Maxwell stress τ̆∗ are also shown.

3.8 Numerical examples and discussion

In this section we illustrate some aspects of the response of the model (3.46) under the

considered deformation. For numerical purposes we fix the radial dimensions at a = A = 1

(units) and b = B = 6 (units), while the parameters ρ and τ(b) are specified separately

for each example. Our main aim is to highlight the influence of the anisotropy parameter

ρ and the preferred direction M on the overall response of the body.

3.8.1 Radial reinforcement

First, we examine the simple case in which M is radial. Then, bearing in mind that

(3.46) is convex as a function of γ in this case, the solution for γ is unique and smooth.

We observe that |γ| is a monotonic decreasing function of r, while, as expected, the

corresponding solution |g(r)| increases with r. Furthermore, for fixed τ(b), an increase in

ρ results in a decrease in the value of |γ| and hence of |g(r)| at any point of the body,
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Figure 3.11: Plots of (a) the shear γ, and (b) the function g(r) against the radius r for the

reinforced neo-Hookean model (3.46) with ρ = 2, 4, M = ER and τ(b) = ±0.4. In (c) the resulting

rotation angle ψ = g(b) is plotted against τ(b) for ρ = 2, 4.

whilst larger values of τ(b) yield larger strains. Clearly, because of the nature of the radial

anisotropy considered here, the material response is the same for either sense of the shear.

In Figure 3.11 we plot (a) the amount of shear γ and (b) the associated rotation function

g(r) against the radius r for ρ = 2, 4 while in (c) the dependence of the rotation angle ψ

on τ(b) is illustrated, again for ρ = 2, 4. Both positive and negative shears are included so

as to compare, in subsequent sections, with the unsymmetric situation between positive

and negative shears when M is not radial.
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Figure 3.12: Plots of (a) the dimensionless stress difference σ̂, and (b) the invariant I4 as functions

of the radius r for the model (3.46) with ρ = 2, 4, M = ER and τ(b) = 0.4.
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(a) (b) (c)

Figure 3.13: Cross-section of a tube undergoing positive (anticlockwise) pure azimuthal shear

deformation: (a) the undeformed (stress-free) configuration with M = ER; (b) ρ = 2, τ(b) = 0.2;

(c) ρ = 2, τ(b) = 1.2.

In addition, for the same values of τ(b) and ρ, the dimensionless stress difference

σ̂ = (σθθ−σrr)/µ ≡ r(dσrr/dr)/µ and the invariant I4 are plotted against r in Figure 3.12.

We observe that both σ̂ and I4 (> 1) are larger on the inner boundary of the body. Unlike

γ, σ̂ and I4 are invariant under change of sign of τ(b). In Figure 3.13 we demonstrate the

results of the considered deformation on a cross section of a tube for a fixed value of the

parameter ρ (= 2) and for two values of τ(b) (> 0) so as to illustrate how the preferred

direction changes under the deformation.

3.8.2 Reinforcement with radially varying α

For definiteness, we now consider the preferred direction to be defined by the family of

curves

R = c1(Θ−Θ0) + c2, (3.90)

where c1 and c2 are constants. In respect of (3.90) the function G(R), according to the

definition (3.7), takes the simple form

G(R) = (R− c2)/c1. (3.91)

We choose Θ0 = 0 (radians) and, with reference to (3.7), Θ1 = 2 (rad), and then, for the

specific values of A and B adopted here, we obtain c1 = 2.5 and c2 = 1. Thus, from (3.91)

the components (3.8) of M are given by

MR =
1√

(2R/5)2 + 1
, MΘ =

2R/5√
(2R/5)2 + 1

. (3.92)

For this geometry, on application of positive shear, the overall response of the body is

found to be similar to that for M = ER. In fact, for τ > 0, equation (3.52) guarantees
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Figure 3.14: Plots of (a) the shear γ and (b) g(r) versus the radius r for the model (3.46), with the

anisotropy defined by the geometry (3.92): ρ = 2, 4, τ(b) = 0.4. In (c) the rotation angle ψ = g(b)

is plotted as a function of τ(b) (> 0): ρ = 2, 4.

smooth and unique values for γ. Moreover, γ and g are also monotonic functions of r,

and changes in τ(b) (> 0) and ρ have an analogous impact on the overall response of the

body, as for the case of radial reinforcement. However, we remark that the dependence of

M on r leads to stronger reinforcement of the material since the value of γ1 is smaller at

any r than for M = ER at the same shear stress and for the same value of ρ. It is also

apparent that the values of σ̂ and I4 follow a similar pattern as functions of r. Results

for the considered geometry are illustrated in Figure 3.14, in which the amount of shear

and the function g are plotted against r for the same values of τ(b) (> 0) and ρ as used in

Figure 3.11. The dependence of the rotation angle ψ on τ(b) is also shown. The results

should be compared with those in the upper halves of the plots in Figure 3.11.

The benign response of the material (37) with reinforcement (83) that was found to hold

sway for positive shear does not always persist for negative shear. Specifically, as we now

show, there is the possibility of loss of ellipticity, multiple values of γ and the emergence

of discontinuity surfaces. For ρ < 2, the (unique, smooth) root γ1 is now given by (3.53)

with (3.92), but is not necessarily a monotonic function of r. In fact, monotonicity is only

to be expected for sufficiently small values of |τ(b)| and for materials with a small value

of ρ. Indeed, as ρ increases, loss of monotonicity of γ, associated with smaller magnitudes

of the shear stress, is initiated closer to the inner boundary r = a of the body, while an

increase in |τ(b)| results in translation of such a point closer to r = b. Nevertheless, by

writing γ = γ(r) to indicate the dependence of γ on r, the property |γ(a)| > |γ(b)| always

holds. We emphasize, on the other hand, that the possible non-monotonic nature of γ is
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Figure 3.15: Plots of (a) the shear γ and (b) the function g(r) versus the radius r for the model

(3.46) with the anisotropy defined by the geometry (3.92): ρ = 0.8, 1.8, τ(b) = −0.4. In (a) the

(dotted) lines show the transitional values − tanα and −2 tan α, which depend linearly on r. In

(c) the rotation angle ψ = g(b) is plotted against τ(b) (< 0).

not reflected in that of g, which is monotonic in r, while variation of the parameter τ(b)

does not modify these conclusions.

By contrast, the parameter ρ has a very crucial role. For a fixed value of τ(b),

an increase in ρ leads to a decrease in the value of |γ|, but only for points for which

τ(r) > − tan α. If there is a point for which τ(r) = − tanα then γ would also take

the value − tanα there independently of the value of ρ (< 2), while, for points for which

−2 tanα < τ(r) < − tanα, larger values of ρ correspond to smaller |γ| until τ(r) reaches

the value −2 tanα, at which point we have γ = −2 tanα, again independently of the value

of ρ. For τ(r) < −2 tanα, the initial correlation between ρ and γ is recovered for all

relevant r. Note that the above analysis applies for any M that depends on r. The conse-

quences of negative shearing on a material incorporating the properties (3.46) and (3.92)

are illustrated in Figure 3.15, in which the curves γ1 and g are plotted as functions of r

for a fixed value τ(b) (< 0) and for two values of ρ (< 2). Also plotted, in Figure 3.15(c),

are the corresponding results for the rotation angle ψ as a function of τ(b). These plots

should be contrasted with those in the lower halves of the plots in Figure 3.11.

In Figure 3.16, analogously to Figure 3.12, σ̂ and I4, are plotted against r for the

same values of τ(b) and ρ used above to illustrate the variation of γ1, while Figure 3.17

shows the effect of the deformation on the preferred direction for a tube cross-section

with material characterized by (3.46) with (3.92). These plots should be contrasted with

those in Figures 3.12 and 3.13, respectively. Although, on the scale shown here, there
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appears to be an abrupt change in the gradient of the deformed preferred direction in

Figure 3.17(c) and an associated abrupt change in the corresponding curve for I4 for

ρ = 1.8 in Figure 3.16(b), in fact, since ρ < 2, the deformation is still smooth (there is no

discontinuity in γ). As we show next, however, this smoothness is lost for ρ > 2.

Attention is now turned to the case where ρ > 2, for which, as explained previously in

Section 3.6, negative shear may be associated with failure of strong ellipticity. For ρ = 2,

the formulas (3.92) indicate that loss of ellipticity is confined to the surface r = 2.5 and

only for the value τ(b) = −(2.5/6)2 ≈ −0.174. For τ(b) both less than or greater than

this value the deformation is everywhere elliptic. We recall that for ρ = 2 uniqueness

and continuity of the shear strain γ = γ1, as given by (3.53), holds for all r. The value

τ(b) = −0.174 gives the temporary appearance of a cusp in the plot of I4 at r = 2.5. These

effects are shown in Figure 3.18. It should also be noted that high slopes in the γ1 and σ̂

curves are to be expected for points where γ = − tanα, or, equivalently, τ(r) = − tanα,

while for the same points the curves of I4 exhibit rapid change. However, a true kink

obtains only for the specific value τ(b) = −0.174, at which ellipticity is temporarily lost.

As ρ increases, the domain M1 6 MR 6 M2 expands and therefore strong ellipticity

can fail both for a wider range of loading values τ(b) and a wider range of locations r. This

is exhibited in Figure 3.19, which shows how the region of non-strong-ellipticity, which is

quite narrow, expands with ρ in a plot of τ(b) against r. The previously discussed case
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Figure 3.16: Plots of (a) the dimensionless stress difference σ̂, and (b) the invariant I4 against

the radius r for the model (3.46) with (3.92) for τ(b) = −0.4 and ρ = 0.8, 1.8.
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(a) (b) (c)

Figure 3.17: Cross-section of a tube undergoing a negative (clockwise) pure azimuthal shear

deformation for the model (3.46) with the preferred direction defined by (3.92): (a) undeformed

(stress-free) configuration; (b) deformed configuration with (b) ρ = 0.8 and τ(b) = −0.4 and (c)

ρ = 1.8 and τ(b) = −0.4.
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Figure 3.18: Plots of (a) the shear γ, (b) the dimensionless stress difference σ̂, and (c) the

invariant I4 versus radius r for the model (3.46) with (3.92), for ρ = 2 and, in each case, τ(b) =

−0.02,−0.174,−0.6. Only τ(b) = −0.174 is associated with loss of ellipticity. In (a) the point of

loss of ellipticity on the dotted line − tan α is shown; the corresponding point in (b) and (c) is

shown on the dotted curves indicated by σ̂∗ and I∗4 , respectively.

of ρ = 2 gives the single point (r, τ(b)) = (2.5,−0.174), whereas the ρ > 2 regions are

nested within each other. This is not apparent from the figure since in order to distinguish

the curves they are shifted vertically by different amounts. At ρ = 3.9668 the nonelliptic

region first encounters one of the external boundaries, namely r = 6, while the boundary

r = 1 is reached for ρ = 4.205. For ρ > 4.205 strong ellipticity can fail at any point of the

body.

We now focus attention on the case ρ = 3 for which we note, as reflected in Figure
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Figure 3.19: Plots of the values of |τ(b)| corresponding to loss of ellipticity against the radius r

∈ [1, 6] for ρ = 2, 3, 3.9668, 4.205, 5. For ρ = 2 there is an isolated point at r = 2.5, τ(b) = −0.174;

ρ = 3.9968 corresponds to the value at which the curve just reaches the boundary r = 6; similarly

for ρ = 4.205 and the boundary r = 1. The plots are nested, with each successive curve (for

increasing ρ) enclosing the previous one, but have been shifted vertically, by 0.1, 0.5, 1.1, 1.8, 2.5,

respectively, to enable them to be distinguished.

3.19, that failure of ellipticity is associated with the radial values

1.294 . r . 4.829, (3.93)

and the associated range of loadings

0.0241 . |τ(b)| . 1.2517. (3.94)

As shown in Figure 3.20(a), in which γ is plotted as a function of r, loss of convexity of the

strain energy (3.46) at r ≈ 1.294, requiring |τ(b)| ≈ 0.0241, does not yield a discontinuity

in γ. On the other hand, for any τ(b) such that 0.0241 < |τ(b)| < 1.2517 the inequality

W̃γγ 6 0 always holds within a subinterval of 1.294 < r < 4.829, leading to multiple values

for γ. In each case, however, it is possible to construct a unique non-smooth stable solution

through the body by placing an elastostatic shock at the location where σ matches the

Maxwell value τ∗. Figure 3.20(b) shows the consequence of the non-smooth solution on

the curve g(r) (discontinuity in the tangent), while the rotation (twist) angle ψ is plotted

as a function of τ(b) in Figure 3.20(c). On close inspection a kink in the latter curve at

τ(b) = −0.0241 can be discerned.

Clearly, since both σ̂ and I4 depend on γ, any discontinuity in γ is reflected in the curves
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Figure 3.20: Plots of (a) the shear γ and (b) the function g(r) versus the radius r for the model

(3.46) with anisotropy defined by the geometry (3.92): ρ = 3 and τ(b) = −0.0241,−0.5. In (c)

the rotation angle ψ = g(b) is plotted against τ(b) (< 0). The dotted curves in (a) are plots of

γ2, γ3, γ6, γ7, γ
∗, γ∗∗, as indicated.

σ̂ and I4 that are plotted in Figures 3.21(a) and (b), respectively. In (a) the notations

σ̂2, σ̂3, σ̂6, σ̂7, σ̂∗, σ̂∗∗ serve to identify the values of σ̂ associated with γ2, γ3, γ6, γ7, γ
∗, γ∗∗,

respectively. Similarly, the symbols I4,2, I4,3, I4,6, I4,7, I4,∗, I4,∗∗ identify the corresponding

values of I4 in (b). Note, however, that a jump in σ̂ is due to that in σθθ since σrr is

continuous.

For the following discussion we use the notation τf and τs, respectively, for the values

τ(b) = −0.0241 and τ(b) = −1.2517, the subscripts indicating ‘first’ and ‘second’. It follows

that absolutely stable solutions contain an equilibrium shock for τs < τ < τf < 0. Imagine

therefore that the originally undeformed cylinder is subject to decreasing (dimensionless)

shear stress τ(b) and consider the associated quasi-static progression of absolutely stable

solutions. The associated deformations are continuous and smooth until τ(b) = τf at

which point loss of ellipticity takes place at r = 1.294. Further decrease in τ(b) gives

rise to an elastostatic shock, initially at r = 1.294, which separates the two different

elliptic values γ = γ1 and γ = γ5. Under continued decrease in τ(b), this discontinuity

surface increases its radial location, before eventually disappearing at r = 4.829 when

τ(b) = τs. For τ(b) < τs the deformation is again classically smooth. The connection

between the radial location r of the elastostatic shock and τ(b) is given simply by the

formula τ(r) = τ∗ = − tanα, which, since τ(r) = τ(b)b2/r2 and tanα = 2r/5, yields

r3 = −90τ(b). The discontinuity is highlighted in Figure 3.22, which shows the deformed

cross-section of the tube for two values of τ(b) compared with the reference configuration.
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Figure 3.21: Plots of (a) the dimensionless stress difference σ̂, and (b) the invariant I4 in terms

of the radius r for the model (3.46) with (3.92) and ρ = 3 for τ(b) = −0.0241,−0.5. In (a) the

symbols σ̂2, σ̂3, σ̂6, σ̂7, σ̂∗, σ̂∗∗ identify the values of σ̂ associated with γ2, γ3, γ6, γ7, γ
∗, γ∗∗; in (b)

the corresponding values of I4 are labelled I4,2, I4,3, I4,6, I4,7, I4,∗, I4,∗∗.

The first, τ(b) = −0.0241, heralds the emergence of the shock, whereas the shock has

both increased its strength and its radial location at the second value τ(b) = −0.5. Note

that the associated kink in the case τ(b) = −0.0241 (Figure 3.22(b)) is close to the inner

boundary and is hardly noticeable in the figure. Across the shock the angles made by

the two deformed preferred directions are symmetrically disposed with respect to the local

radial direction in accordance with the discussion in Section 3.6.3. We recall that Figure

3.8 shows the kink angle β∗ as a function of MR, including the case ρ = 3 considered

here. Since, for the considered geometry, tanα = 0.4r we have MR = 1/
√

1 + 0.16r2, from

which the behaviour of β∗ as a function of r can be deduced. The preferred direction is

found to be maximally kinked at r ≈ 3.536, corresponding to τ(b) ≈ −0.491.

It is worth emphasizing that by taking α = α(r) the tube has been rendered effectively

inhomogeneous. This has permitted the quasi-static shock discussed above in connection

with Figure 3.21 to remain confined within the tube interior regardless of the magni-

tude of the twist ψ (equivalently of τ(b)). This contrasts with the situation described by

Abeyaratne [2] in which the shock always emerges at the inner radius and travels all the

way to the outer radius as the twist magnitude increases. From a practical perspective,
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Figure 3.22: Cross-section of a tube undergoing negative (clockwise) pure azimuthal shear de-

formation for the model (3.46) with the preferred direction defined by (3.92): (a) undeformed

(stress-free) configuration; deformed configuration with (b) ρ = 3 and τ(b) = −0.0241 and (c)

ρ = 3 and τ(b) = −0.5.

such internally confined shocks could present challenges for the assessment of any damage

associated with shock formation and movement.

Broadly similar results to those described above for the reinforced neo-Hookean model

(3.46) have been obtained for the material model (3.82) and we do not report them sepa-

rately. Generally, the Varga model represents a material whose energy absorption capacity

is low, and even for very small values of ρ a negative shear deformation yields almost im-

mediate ellipticity breakdown.



Chapter 4

Combined extension, inflation and

torsion of anisotropic elastic tubes

4.1 Introduction

In this chapter we examine the problem of the combined extension, inflation and torsional

deformation of a transversely isotropic circular cylindrical tube composed of incompressible

elastic material. Several authors have studied the latter deformations, mainly separately,

from many different aspects in the past. In brief, torsional deformations for incompressible

isotropic materials were first examined by Rivlin in a series of papers [66, 67, 65] while

also in [64] and [68] experimental data were provided. Torsional tests as well as theoretical

studies for some special classes of incompressible isotropic materials were presented by

Green and Adkins [24] and a similar discussion may be found in Green and Zerna [26].

Furthermore, Gent and Rivlin [23] have considered the case of combined uniform extension,

uniform inflation and torsion for a class of cylindrically isotropic incompressible circular

tubes. It should be mentioned, however, that these results were mainly based on small

amounts of torsional strain whereas the presence of the uniform inflation was directed to

retain the inner radius of the considered body unchanged.

Comparison of the well know Ogden model for rubber-like solids with the data given in

[68] for rigid and tubular cylinders composed of natural rubber under combined extension

and torsional deformation has been presented by Ogden and Chadwick [58]. In addition,

Haughton and Ogden [27, 28] presented a detailed analysis for combined extension and

inflation of such materials including bifurcation into non-circular cylindrical modes of

deformation. More recently, Horgan and Saccomandi [69] signified the necessity of more

123
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sophisticated material models in order to capture the hardening response (i.e. materials

with limiting chain extensibility) of elastic incompressible materials under large strain

torsional deformations.

In the compressible isotropic theory a wide class of materials admitting isochoric pure

torsion deformation was proposed by Polignone and Horgan [61]. In the same spirit,

Kirkinis and Ogden [44] derived analogous solutions but also introduced a methodology

to generate their results for the incompressible theory. Different aspects in respect of pure

torsion, concerning special classes of compressible materials and loss of ellipticity have also

been studied in [10] and [33], respectively, amongst others.

To the best of my knowledge, very few authors have studied analogous problems with

respect to incompressible anisotropic (fibre-reinforced) elastic solids. Under the restric-

tion of idealized fibre-reinforcement (i.e. inextensible fibres), Spencer [72] discussed the

problem of extension and torsion of rigid elastic cylinders augmented with one and two

families of helical fibres. For two symmetric fibre families situated in helical mode, re-

marks on the extension and inflation of hollow cylinders can also be found in [73], yet the

analysis is mainly restricted to the linear theory. The same problem with respect to large

deformations and for materials composed of soft tissues (arteries), has been examined by

Ogden and Schulze-Bauer [59], where the helical fibre-reinforcement was used to model

the anisotropic contribution of the collagen to the overall response of the tissue. In the

same spirit, Horgan and Saccomandi [34] discussed the combined extension and inflation

problem for soft tissues by taking into account limiting chain extensibility. A thorough

analysis, concerning again the mechanical response of arteries, for simultaneous uniform

extension, inflation and torsion, is given in Holzapfel et. al. [32] and more recently in

Gasser et. al. [21].

In the present analysis, we consider the problem of combined finite extension, in-

flation and torsion with special attention to transversely isotropic materials with non-

homogeneous elastic properties as those discussed in Chapter 3. Distinctively, in Sec-

tion 4.2 we introduce and analyze the appropriate kinematics associated with the combined

deformation. We establish formulas for the principal stretches of the deformation in terms

of the three deformation quantities which (locally) serve to characterize each one of the

processes composing the combined deformation. Similarly, we provide an appropriate for-

mula for the angle of shear as a continuous function of the aforementioned quantities and

we further substantiate that, within the incompressible framework, those may be treated
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as independent parameters. At the same time, although the shearing deformation taking

place in the planes normal to the radial direction of the deformed body is a result of tor-

sion, we highlight the significant contribution of the axial extension and uniform inflation

deformations on the way that the angle of shear changes.

In Section 4.3, we particularize our discussion for the case of transversely isotropic

materials. The preferred direction associated with the transverse isotropy lies in the planes

normal to the tube axis and is disposed so as to preserve the cylindrical symmetry. Under

the premise that the tangent to the preferred direction and the undeformed radial direction

form an angle, denoted α (this, in general, being a function of the radius), the influence

of the combined deformation on the status of the preferred direction is examined. In any

case, axial extension of the tube brings the preferred direction into a compressive mode,

the degree of which, however, is independent of the distribution of α. By contrast, the

inflation process may be responsible for either further contraction or relaxation of the

preferred direction. For a certain range of α, inflation of the tube always causes additional

contraction of the preferred direction down to its minimal possible length, at least in early

stages of the inflation process, before it reaches its path to relaxation. On the other hand,

for a specified range of α, immediate relaxation of the preferred direction due to inflation

is guaranteed. Within this class of materials, incorporation of the torsional aspect of the

deformation has no actual impact on the length of the preferred direction, yet the status

of the latter is related to the degree of influence of the shearing effect in that direction.

Note that here, unlike the azimuthal shear problem, the sense of shear (i.e. clockwise and

anticlockwise, respectively) is of no importance since the shearing deformation is taking

place normal to the planes of distribution of the preferred direction.

Thereafter, using a generic strain-energy function for a transversely isotropic material

and always assuming that the preferred direction is distributed as above, we determine

the cylindrical polar components of the Cauchy stress tensor identified with the consid-

ered combined deformation. With the only exceptions of a radially and circumferentially

distributed preferred direction, the considered geometry and deformation necessitates the

presence of axial and azimuthal shear stresses with the help of which a universal relation is

accomplished. As a matter of fact, the latter universal relation may well be specialized for

a body whose preferred direction is radially distributed. In this case coaxiality between

the Cauchy stress tensor and the left stretch tensor is established and hence the latter

relation is found to hold just as for an isotropic material. Based on the above arguments
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and in conjunction with the kinematics of the problem, conditions sufficient to establish

a sustainable deformation are derived. Resolution of the associated equilibrium equations

follows and the axial and azimuthal shear stress components are determined completely

as inversely proportional functions of the deformed radius of the tube. The latter fact,

enables the exclusion of two subclasses of materials whose preferred direction is locally

aligned either with the radial or with the circumferential direction of the undeformed

body since in those cases the equilibrium equations are no longer substantiated. Further,

we provide expressions for the applied loads, namely for the internal pressure, the axial

force and the resultant moment, that are required to support the extension, inflation and

torsional deformation. After some simple manipulation, these formulas, also applying for

isotropic materials, are found to recover the expressions derived in [57] (see also references

therein) when the body is subjected to axial extension and inflation alone. Finally, a brief

discussion is presented for separate classes of transversely isotropic materials with the pre-

ferred direction taken to lie in the planes parallel to the planes of the shearing deformation

while a small reference to orthotropic materials with analogous properties is also made.

4.2 Combined extension, inflation and torsion

4.2.1 Description of the problem

Consider a (stress-free) circular cylindrical tube composed of incompressible elastic mate-

rial with reference geometry defined by

A 6 R 6 B, 0 6 Θ 6 2π, 0 6 Z 6 L, (4.1)

where (R, Θ, Z) are cylindrical polar coordinates in the reference configuration relative to

a cylindrical polar basis {EI}, I ∈ {R, Θ, Z}.
We now assume that three independent deformations are imposed on the body. In

particular, we initially consider that the tube is uniformly extended to length l = λzL.

While the body is held fixed to that state, the plane face z = l is rotated through an angle

τz and, at the same time, uniform pressure of amount P (> 0) is applied on its inner

surface. With the twist per unit length of the deformed tube, namely τ , being positive,

negative, or zero, the torsional deformation is directed in such a way that the plane face

z = 0 remains fixed and the plane sections of the tube normal to its axis remain plane.

Also, the pressure P is regarded as being applied along the radial direction of the body and
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it is considered to be of such magnitude that it causes inflation of the tube. On the other

hand, in the same direction, the outer surface of the body is assumed to be traction-free.

In any case, we adopt the hypothesis that the circular cylindrical geometry of the body is

always maintained.

Provided that the deformed body occupies the space

a 6 r 6 b, 0 6 θ 6 2π, 0 6 z 6 l, (4.2)

this being identified with respect to cylindrical polar coordinates (r, θ, z) associated with

the polar basis {ei}, i ∈ {r, θ, z}, in the current configuration, the combined deformation

is defined by

r2 − a2 = λ−1
z (R2 −A2), θ = Θ + τλzZ, z = λzZ, (4.3)

together with the radial boundary conditions

σrr =




−P on r = a

0 on r = b

(4.4)

corresponding to pressure P on the inside of the tube and zero traction on the outside.

Clearly, here σrr represents the radial components of the Cauchy stress tensor σ.

4.2.2 Kinematics and analysis of the combined deformation

The kinematical interpretation of the combined deformation, as this is prescribed in (4.3),

now provides that the deformation gradient tensor F takes the form

F = λrer ⊗ER + λθeθ ⊗EΘ + λzez ⊗EZ + λzγeθ ⊗EZ , (4.5)

where the notations

λr = (λzλθ)−1, λθ = r/R, γ = τr, (4.6)

have been adopted for compactness. The deformation gradient (4.5) may equivalently

be decomposed by means of three second-order tensors, denoted F1,F2 and F3, such as

F = F3F2F1, where, in particular

F1 = er ⊗ER + eθ ⊗EΘ + ez ⊗EZ , (4.7)

accounts for a transition from the basis {EI} to {ei} (i.e. it describes a rotation arising

from the torsional process), further

F2 = λrer ⊗ er + λθeθ ⊗ eθ + λzez ⊗ ez, (4.8)
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implicates that uniform extension and, as we will shortly clarify, presumably inflation are

taking place in the body, while the presence of

F3 = I + γeθ ⊗ ez (4.9)

justifies the existence a simple shear deformation of amount γ in the planes normal to

er. It is then understood that F3, along with F1, serve to incorporate the torsional part

of the combined deformation into F. Similarly to the discussion provided in Chapter 3,

here we illustrate that positive shear (γ > 0) is associated with an anticlockwise twisting

deformation of the tube about its axis. Analogous conclusions hold for negative shear

(γ < 0).

By virtue of (4.5) and (4.6), the right and the left Cauchy-Green deformation tensors,

those defined in (1.43), are then easily found to take the forms

C = λ2
rER ⊗ER + λ2

θEΘ ⊗EΘ + λ2
z(1 + γ2)EZ ⊗EZ

+ γλzλθ(EZ ⊗EΘ + EΘ ⊗EZ), (4.10)

B = λ2
rer ⊗ er + (λ2

θ + γ2λ2
z)eθ ⊗ eθ + λ2

zez ⊗ ez

+ γλ2
z(ez ⊗ eθ + eθ ⊗ ez), (4.11)

respectively.

It is important to clarify that here the quantities λθ and λz are not in general the

principal stretches of the deformation. In fact, as clearly demonstrated in (4.8), λθ and

λz are strictly associated with the part of the deformation process that is responsible for

the uniform extension and inflation of the tube. Indeed, it is apparent that λθ and λz

are measures of stretch in the circumferential (equivalently azimuthal) and axial direction

of the body, respectively, while the combination of the two, namely λr = (λzλθ)−1, ex-

presses the corresponding stretch in the radial direction. If now no torsional deformation

is involved, then τ = 0 and hence, from (4.6)3, γ = 0. Following that, (4.9) specializes

to F3 = I and also, obviously, (4.5) reduces to F = F2F1. Note, however, that F can be

identified as being identical to F2 since, in the absence of shearing deformation and while

extending and inflating the tube, equation (4.3)2, i.e. evaluated for τ = 0, ensures that

the direction of every (non-zero) line element lying in the planes normal to the axis of the

body remains invariant. This, in conjunction with the pronounced connection ez = EZ ,

suffices for er = ER and eθ = EΘ, both resulting in F1 = I and F = F2. Accordingly,

from (4.10) and (4.11), we deduce that the tensors C and B coincide and, in particular,
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that they can be put into the diagonal form

C = B = λ2
rer ⊗ er + λ2

θeθ ⊗ eθ + λ2
zez ⊗ ez.

It is easily understood from the latter that, in the case where γ = 0, the quantities λr, λθ

and λz represent the principal stretches of the deformation, those associated with the

principal directions er, eθ and ez, respectively, which may equivalently be perceived as

either being Lagrangian or Eulerian.

It is also very important to distinguish that even when the torsional aspect of the

combined deformation is taken into consideration, the involvement of γ (6= 0) in one of

the components of F, namely in the FθR (= λzγ) component, has no actual influence

regarding the preservation of the volume of the body; the latter statement is attributed

to the incompressible nature of the material in examination. This is easily justified in two

ways. First, using (4.5) and along with (4.7)–(4.9), we readily obtain

J = det(F) = det(F3) det(F2) det(F1) = det(F2) = λrλθλz,

in which case the incompressibility constraint discussed earlier in Section 1.4.3 asserts that

(see also [32])

λrλθλz = 1. (4.12)

Undoubtedly, due to (4.6)1, equation (4.12) holds automatically for all R ∈ [A,B] or,

equivalently, through (4.2)1, (4.3)1 and (4.6)2, for all r ∈ [a, b]. Despite this fact, (4.12)

states that the space occupied by the body at each phase of the combined deformation (i.e.

independently of the amount of the pressure and of the shearing load applied on the tube)

is solely directed by the axial and azimuthal stretch. Exactly analogously conclusions can

also be drawn on use of (4.3)1 which simply provides the geometrical interpretation of the

incompressibility constraint for the considered body and deformation. Precisely, following

the work of Ogden [56], the aforementioned argument is established implicitly through the

identities

λzλ
2
a − 1 =

R2

A2
(λzλ

2
θ − 1) =

B2

A2
(λzλ

2
b − 1), (4.13)

arising, in the light of (4.6)2, from (4.3)1, where now λa and λb are defined by

λa = a/A, λb = b/B, (4.14)

respectively.
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We emphasize that once the body is extended to length l and held there fixed, inflation

of the tube may only take place if

λzλ
2
a > 1, (4.15)

where, in particular, the equality in (4.15) serves to identify the value of the inner radius

of the tube before such a deformation is initiated. With these in mind, it is easily under-

stood that, when extension and inflation occur, λθ is necessarily a decreasingly monotonic

function of either R or r, i.e.

λa > λθ > λb, (4.16)

and also, from (4.13) and (4.15), that

λzλ
2
θ > 1, (4.17)

for all R ∈ [A,B]. From the latter further follows that, if there is no inflation then λθ =

λ
−1/2
z for all R ∈ [A,B] and hence (4.16) become strict equalities. In the situation where

the tube is kept to maintain its original length, i.e. that in the reference configuration, the

subsequent analysis becomes simply a special case of what we have discussed so far with

the only difference that λz should be taken equal to unity.

Bearing (4.11) in mind, we now explicate that during the deformation process one

of the Eulerian principal axis, v(1) say, remains aligned with er and corresponds to the

principal stretch λ1 = λr. The two remaining principal directions, namely v(2) and v(3),

are then distributed in the (θ, z) plane and may be related to eθ, ez as

v(2) = cosφ eθ + sinφ ez, v(3) = − sinφ eθ + cosφ ez. (4.18)

Here, the term φ signifies the orientation of v(2),v(3) with respect to eθ, ez. We also

remark that since, as already mentioned, for γ = 0 both eθ and ez are distributed along

the principal directions of the deformation (i.e. φ = 0 with v(2) = eθ and v(3) = ez),

then, for γ > 0 (< 0), the quantity φ is understood to measure the shear in the (θ, z)

planes of the (deformed) body. To avoid any confusion with the terminology used for γ,

we henceforth refer to φ as the angle of shear.

The entries (4.18) now prompt us to introduce a second-order proper orthogonal tensor

Q = er ⊗ er + cosφ(eθ ⊗ eθ + ez ⊗ ez) + sinφ(ez ⊗ eθ − eθ ⊗ ez), (4.19)

which, in view of (4.11) and due to the fact that the left stretch tensor V admits the
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spectral decomposition

V =
3∑

i=1

λiv(i) ⊗ v(i), (4.20)

enables the connections

B = QTV2Q, V2 = QBQT. (4.21)

Clearly, the quantities λ2 and λ3 incorporated in (4.20) represent the principal stretches

of the deformation associated with the directions v(2) and v(3), respectively. Accordingly,

the first connection in (4.21) yields the conclusion that the components of B and V have

to satisfy the relations

λ2
2 cos2 φ + λ2

3 sin2 φ = λ2
θ + λ2

zγ
2, (4.22)

λ2
2 sin2 φ + λ2

3 cos2 φ = λ2
z, (4.23)

(λ2
2 − λ2

3) sinφ cosφ = λ2
zγ, (4.24)

from which, after some manipulation, we deduce that

(λ2
2 − λ2

z)(λ
2
z − λ2

3) = λ4
zγ

2, λ2λ3 = λzλθ, λ2
2 + λ2

3 = λ2
θ + λ2

zγ
2 + λ2

z, (4.25)

together with

sin 2φ =
2γλ2

z

λ2
2 − λ2

3

, cos 2φ =
λ2

2 + λ2
3 − 2λ2

z

λ2
2 − λ2

3

(4.26)

and hence (see also Holzaphel et al. [32])

tan 2φ =
2γλ2

z

λ2
θ + γ2λ2

z − λ2
z

. (4.27)

Seeing (4.25), the strict dependence of both λ2 and λ3 on r (equivalently on R) is apparent.

Note, however, that in the presence of the torsional deformation (γ 6= 0), the principal

stretches λ2 and λ3 can never become equal at a fixed r ∈ [a, b] since this then would imply

violation of the requirement (4.25)1.

Formulation of the principal stretches λ2, λ3 as explicit functions of λθ, λz and γ may

also be succeeded in a similar manner. Truly, it is straightforward to show that, by virtue

of (4.11), (4.19) and (4.20), the entry (4.21)2 now submits to

λ2 =
√

λ2
θ cos2 φ + λ2

z(γ cosφ + sin φ)2 , (4.28)

λ3 =
√

λ2
θ sin2 φ + λ2

z(γ sinφ− cosφ)2 . (4.29)
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Figure 4.1: Plots of the angle of shear φ, as this is prescribed in (4.31), against γ and λθ for (a)

λz = 1.1 and (b) λz = 1.2. We note that, in both cases, the dotted curve represents the contour

λθ = λz of the surface φ = φ(γ, λθ) for which |γ0| → 0+ and φmax = 45o.

Here, φ is possible to be defined in many different ways. Notwithstanding, the possibility

of representing the angle of shear based on (4.27) alone is excluded from consideration;

whereas it is clear that if

λ2
θ = λ2

z(1− γ2), (4.30)

then φ, hence, λ2 and λ3, and consequently F, become discontinuous. Thus, to avoid such

a situation, we are making use of (4.26)2 together with (4.25)2,3 and we write

φ =
1
4

cos−1

[
2(λ2

θ + γ2λ2
z − λ2

z)
2

λ4
θ + λ4

z(γ2 + 1)2 + 2λ2
zλ

2
θ(γ

2 − 1)
− 1

]
. (4.31)

In view of (4.31) it easy to deduce that in the reference configuration, where γ = 0

and λθ = λz = 1, we have φ = 0 for all R ∈ [A,B] and hence from (4.28) and (4.29)

λ2 = λ3 = 1.

As the deformation process begins, all three deformation quantities, namely γ, λθ and

λz, have a significant contribution to the way that the angle of shear changes. We clarify,

however, that no distinction between anticlockwise and clockwise twisting deformation

(i.e. between positive and negative γ respectively) has to be made here since, from (4.31),

the angle of shear φ appears to be an even function of γ. In order to illustrate the range of

the effect of each one of those terms on φ, we conduct our analysis in a local scale; that is

for a fixed r ∈ [a, b] in the deformed configuration. Let’s first assume that the axial stretch

λz (> 1) is prescribed and that the azimuthal stretch λθ associated with an identified
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fixed point remains unchanged. Expressed otherwise, we initially consider that the body

is axially extended and inflated up to a certain degree and while the torsional deformation

takes place the applied pressure P (> 0) and the axial load N , this to be discussed in more

detail shortly, are directed in such a way that both the radial and the axial dimensions of

the tube are held fixed. Then, by taking |τ | or, equivalently |γ|, to increase gradually from

zero, the angle of shear is analogously increasing from zero until it reaches a maximum

point, φmax say, associated with the value |τ0| and/ or |γ0|. Any further increase in |τ |
beyond the value |τ0| clearly yields an increase in |γ| which exceeds the value |γ0|, yet,

the angle of shear starts to decrease. As |τ | → ∞ and hence |γ| → ∞, the angle of shear

becomes φ = 0. It should be emphasized that the non-monotonic (local) behaviour of φ

described here may be associated with any r ∈ [a, b] and hence with any value of λθ being

consistent with (4.13)–(4.17). In fact, we will shortly demonstrate that there exists only

one isolated value of λθ where the nature of φ is purely decreasingly monotonic in respect

of γ. In any case, the range of variation of φ depends to a great extent on the disposition

of the point r relative to the boundaries a and b, hence, on the disposition of λθ relative

to λa and λb. We illustrate this matter by noting that if the point of selection is taken to

satisfy

λ−1/2
z 6 λθ 6 λz, (4.32)

then the greater the value of λθ is, i.e. for r closer to the inner boundary a, the smaller

amount of shear |γ| (but not necessarily smaller twist |τ |) is required to effect an increase

in φ. Accordingly, as λθ increases from the value λ
− 1

2
z to λz, the amount of shear, namely

|γ0|, identified with the maximum angle of shear constantly decreases. In other words, |γ0|
can be perceived as a decreasingly monotonic function of λθ. In particular, when (4.32)

are substantiated, the value |γ0| is always prescribed from (4.30) in which case we readily

deduce that

|γ0| =
√

1− λ−2
z λ2

θ . (4.33)

Thus, if λθ = λ
− 1

2
z we obtain |γ0| =

√
1− λ−3

z and once λθ reaches the upper boundary λz,

we have |γ0| → 0+. From the latter follows that, in the special situation where λθ = λz,

the angle of shear is gradually decreasing from φmax to 0 at the same time in which |γ|
increases from 0 to∞. The connection (4.33) further yields the interesting conclusion that,

for these points r ∈ [a, b] being consistent with (4.32), the maximum value of φ is always

found to be φmax = π/4. Based on the same arguments, we also remark that, by keeping

λθ to be fixed, an increase in λz implicates an increase in |γ0| apart from obviously when



CHAPTER 4. EXTENSION, INFLATION AND TORSION OF A TUBE 134

λθ = λz. It is apparent, however, that depending on the degree of extension and inflation

of the body there may or may not exist a point r ∈ [a, b] for which the corresponding

value of λθ satisfies (4.32). We therefore clarify that for the latter to be substantiated for

at least one r ∈ [a, b] we must necessarily have λb 6 λz. Analogously, the possibility of

having

λθ > λz (4.34)

for some fixed r ∈ [a, b] is also feasible and it requires λa > λz with λb being either greater

or smaller than λz. In such a situation the non-monotonic behaviour of φ with respect to

|γ| is still preserved for each distinct value of λθ (i.e. for all such r ∈ [a, b] with λθ > λz)

and λz. Notwithstanding, here the counterpart of (4.33) is defined by

|γ0| =
√
−1 + λ−2

z λ2
θ (4.35)

the latter implying that, under the assumption that λz is held fixed and finite, the angle

of shear can never reach the value π/4 and also that the value of |γ0| increases with λθ; yet

the corresponding value of φmax decreases. By contrast, we detect that, for each r corre-

sponding to a fixed λθ (> λz), larger values of λz contribute larger φmax, this accompanied

by smaller |γ0|. The results of the combined deformation on the actual behaviour of the

angle of shear, as this defined in (4.31), are now demonstrated in Figures 4.1 where, in

particular, we plot φ against γ and λθ for two distinct values of the axial stretch, namely

λz = 1.1, 1.2. Further, for the same values of λz, Figure 4.2 (a) shows the nature of

variation of |γ0| and (b) that of φmax in terms of the azimuthal stretch λθ, where in both

cases we are making use of the expressions (4.33), (4.35) associated with (4.32) and (4.34),

respectively.

Following the above discussion, a number of conclusions regarding the way that the

principal stretches λ2 and λ3 change during the combined deformation can be derived. Such

an analysis, however, is very much involved and we do not refer to any details here. We only

note in passing that, unlike the angle of shear, the stretches λ2 and λ3 do depend on the

sense of the shearing deformation. Obviously, for an isotropic material, such a distinction

(i.e. considering γ > 0 and γ < 0 separately) is of no importance, since, in any case,

the material response will be identical. As shown in Chapter 3, however, the direction of

shear can be consequential in respect of the mechanical response of a transversely isotropic

material. A further discussion on this subject is presented in Section 3.3.

In concluding this section we clarify that the expressions (4.22)–(4.35) are likewise
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Figure 4.2: Plots of (a) the amount of shear |γ0| and (b) the maximum angle of shear φmax against

the azimuthal stretch λθ for λz = 1.1, 1.2.

validated for the case where the material is taken to be compressible. In such a situation,

however, the azimuthal stretch λθ, prescribed in (4.6), cannot be expressed a priori as an

explicit function of either R or r. Indeed, for unconstrained materials, equation (4.3)1 is

replaced by a general expression r = r(R) which simply states the strict dependence of the

deformed radius r on R. In this case, the form of r is determined by resolving the associated

governing equations; these, assuming that we are concerned with a static problem, obtained

from the equilibrium equations discussed in Chapter 1 in conjunction with the boundary

conditions (4.4). The subsequent analysis follows closely to the discussion provided by

Kirkinis and Ogden [44] to which reference can be made for more details.

4.2.3 Consequences of the incompressibility constraint

In line with the discussion provided in Holzaphel et al. [32], we now illustrate that the com-

bined extension, inflation and torsional deformation can, in general, be represented by four

deformation quantities, namely by the cylindrical polar components ERR, EΘΘ, EZZ and

EΘZ of the Lagrangian strain tensor E, those, due to (1.44) and (4.10), being determined

through

λ2
r = 2ERR + 1, λ2

θ = 2EΘΘ + 1, λ2
z(1 + γ2) = 2EZZ + 1, γλzλθ = EΘZ , (4.36)
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respectively. Thus, if, in a like manner, we let E1, E2 and E3 denote the principal compo-

nents of E, the connections (1.44) and (4.10) can further be used to assign the relations

λi = 2Ei + 1, i ∈ {1, 2, 3} (4.37)

and therefore the incompressibility constraint λ1λ2λ3 = 1 may equivalently be written as

(2E1 + 1)(2E2 + 1)(2E3 + 1) = 1. (4.38)

Bearing in mind the connections (4.28), (4.29) derived earlier in Section 4.2.2 for the

principal stretches λ2 and λ3, respectively, and since, as already mentioned, λ1 = λr, it is

now easily understood through (4.36) and (4.37) that connections between the principal

and the cylindrical polar components of the strain tensor E may indeed be established.

In fact, it is straightforward to show here that E1 = ERR; the latter also implying that

the referential basis vector ER is distributed along the Lagriangian principal vector u(1).

Therefore, if, by virtue of (4.38), the component ERR is eliminated, the deformation

may be sufficiently prescribed by means of the three remaining independent deformation

quantities EΘΘ, EZZ and EΘZ alone, in which case, in view of (4.36), it is apparent that

the quantities λθ, λz and γ may be taken to vary independently during the combined

deformation.

Thereupon, we cite the properties

λθ
∂λ2

∂λθ
+ γ

∂λ2

∂γ
= λ2 cos2 φ, λθ

∂λ2

∂λθ
+ λz

∂λ2

∂λz
= λ2, (4.39)

λθ
∂λ3

∂λθ
+ γ

∂λ3

∂γ
= λ3 sin2 φ, λθ

∂λ3

∂λθ
+ λz

∂λ3

∂λz
= λ3, (4.40)

arising from (4.28), (4.29) and (4.31).

4.3 Transversely isotropic materials

In what follows, the mechanical response of incompressible transversely isotropic elastic

solid tubes undergoing a combined extension, inflation and torsional deformation is exam-

ined. In particular, following closely the investigation presented in Chapter 3, here we are

mainly concerned with material bodies featuring inhomogeneous elastic properties.

4.3.1 Materials with inhomogeneous properties

We begin our analysis by considering a unit vector M, defined in the reference configura-

tion, serving to identify locally a preferred direction. Further, we assume that M lies in
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the (R, Θ)-planes of the undeformed body and, in particular, that it is characterized by

the properties (3.6)–(3.9).

The nature of the combined deformation, as this is predicated on the deformation

gradient tensor (4.5), now furnishes that, when the body is brought to its deformed state,

the vector M becomes m, this defined by

m = FM = (λzλθ)−1MRer + λθMΘeθ. (4.41)

The three dimensional character of the problem illustrated in the previous section,

in conjunction with the incompressible and anisotropic attribute of the materials under

consideration, qualify the presence of four independent invariants, namely

I1 = tr(B) = (λzλθ)−2 + λ2
θ + λ2

z(γ
2 + 1), (4.42)

I2 =
1
2
[tr(B)2 − tr(B2)] = λ−2

θ (γ2 + 1) + (λzλθ)2 + λ−2
z , (4.43)

I4 = m ·m = (λzλθ)−2M2
R + λ2

θM
2
Θ, (4.44)

I5 = m · (Bm) = (λzλθ)−4M2
R + (λ4

θ + γ2λ2
zλ

2
θ)M

2
Θ, (4.45)

associated with the deformation and the preferred direction M. We note that the invariants

(4.44), (4.45) reduce to I4 =
√

I5 = (λzλθ)−2 when M = ER (i.e. α(R) = 0) and

analogously, for M = EΘ (i.e. α(R) = π/2), they specialize to I4 = λ2
θ and I5 = λ4

θ +

γ2λ2
zλ

2
θ, respectively. In these two cases, the torsional deformation corresponds to a simple

shear deformation normal and parallel to the direction of M, respectively. For the time

being, however, we adopt the restrictions MR,MΘ ∈ (0, 1) or, equivalently α(R) ∈ (0, π/2),

for all R ∈ [A,B], since we will shortly clarify that the aforementioned cases may be

accountable for unsustainable modes of deformation.

In any case, here we observe that, unlike the pure azimuthal shear problem examined in

Chapter 3, the torsional deformation incorporated in our problem has no actual influence

on the length of the line elements distributed along the preferred direction of the body.

Indeed, it is apparent from (4.44) that the invariant I4, being responsible for measuring

stretch in the direction of M, depends only on λz and λθ. In other words, only the

extension and inflation processes can generate a change in I4 the status of which, for each

distinct point r ∈ [α, b], depends to a great extend on the orientation of M at each relevant

point R ∈ [A,B] in the reference configuration.

Let us first assume that the body is subjected to uniaxial extension and held there

fixed. In that configuration, where λθ = λ
− 1

2
z throughout the body, it is straightforward
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from (4.41) that m = λ
− 1

2
z M, thus (4.44) assigns I4 = λ−1

z (< 1) and hence contraction (of

the same degree) is taking place in the M direction at each point of the tube. Accordingly,

at this stage of the process the distribution of α(R) is not consequential in I4. By contrast,

when we apply pressure P of such amount that causes inflation of the tube, the angle α(R)

plays a critical role in the status of I4. For this reason it is important to recall the discussion

provided in Section 3.2.2 where there it was clearly explained that tanα = MΘ/MR, hence

α(R) can be a constant, a monotonic increasing or decreasing function of R or none of

these. Nevertheless, we now assume for convenience that α(R) increases with R. Keeping

that in mind, we now explicate that, as the inflation begins, the nature of I4 appears to

be non-monotonic in λθ, yet only for those points which, in the reference configuration,

are associated with α(R) ∈ (0, π/4). Expressly, for such geometries of the angle α(R), it

follows from (4.44) that, as λθ increases from the value λ
− 1

2
z , the resulting value of I4 is

steadily decreasing from λ−1
z until it reaches it minimum value, namely Imin

4 = λ−1
z sin(2α),

corresponding to the stretch

λmin = (λz tanα)−
1
2 . (4.46)

Thereafter, for λθ > λmin, the invariant I4 becomes monotonic increasing and, in partic-

ular, it regains its initial status I4 = λ−1
z (i.e. just before the inflation begins) when the

azimuthal stretch attains the value

λ∗ =

√√√√1 +
√

1− 4M2
RM2

Θ

2λzM2
Θ

, (4.47)

following the route to I4 = 1 at λθ = λ∗, where

λ∗ =

√√√√1 +
√

λ2
z − 4M2

RM2
Θ

2M2
Θ

. (4.48)

Finally, once λθ exceeds λ∗, extension of the preferred direction is taking place since then

I4 becomes greater than 1. For α(R) ∈ [π/4, π/2), on the other hand, inflation of the tube

is always associated with a monotonically increasing I4. More specifically, equation (4.44)

now prescribes that I4 starts from its minimum value, that being I4 = λ−1
z at λθ = λ

− 1
2

z ,

steadily increases as λθ becomes larger and then, analogously to the previous case, I4 > 1

according as λθ > λ∗.

In Figure 4.3, the relative placements of the values λmin, λ∗, λ∗ are shown together with

a plot of I4 as a function of λθ. It is important to clarify that, given α ∈ (0, π/2), the

formula (4.44) always yields ∂I4/∂α > 0 with the equality holding only for λθ = λ
− 1

2
z .
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Figure 4.3: Plot of the invariant I4 against λθ showing the relative positions of λmin, λ∗, λ∗. Note

that the symbol • represents the above mentioned critical values of the stretch λθ associated with

those points which, in the reference configuration, correspond to α(R) ∈ (0, π/4). Analogously, for

α ∈ [π/4, π/2) the only critical value of λθ, namely λ∗, is represented by the symbol ◦.

Since all the above mentioned results have a purely local character, i.e. they apply only

for fixed values of either R or r, the latter remark furnishes that, for a prescribed value of

λθ corresponding to a point r ∈ [a, b], the values of I4 will in general be greater if the point

of selection is associated with a larger α(R) in the reference configuration. We emphasize,

however, that even under the premise that α is increasing with R, largest values of I4 are

not necessarily to be expected either closer to the boundary R = B (equivalently r = b) or

closer to R = A (equivalently r = a); the is latter always associated with the largest λθ. In

order to illustrate this matter we first show, in Figure 4.4, the nature of the values λmin, λ∗

and λ∗ defined by (4.46), (4.47) and (4.48), respectively, as functions of MR which, for a

monotonically increasing α(R), may be perceived to decrease with R. It is there clearly

demonstrated that when MR =
√

2/2 (i.e. α = π/4) we have λmin = λ∗ = λ
− 1

2
z and as MR

becomes greater, implying that α decreases from π/4, these quantities gradually increase

and always comply with λ∗ > λmin. Similarly, the value of λ∗ (> λ
− 1

2
z ), this being defined

for MR ∈ (0, 1), has a monotonically increasing character. Note that for any MR >
√

2/2

we obtain the nesting λ∗ > λ∗ > λmin. It is therefore obvious that, analogously to λθ,

all the terms λ∗, λ∗, λmin can be treated as monotonically decreasing functions of R and

equivalently of r. Hence, although the azimuthal stretch is always larger for those r closer

to the inner boundary a (i.e. for MR closer to 1), the preferred direction is more likely
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(4.48) and (4.49)–(4.51), respectively, against the component MR in (λθ,MR) space for λz = 1.1.

Note that in the case where MR =
√

2/2 (i.e. α = π/4) we have λ∗ = λmin = λ̄∗ = λ̄min = λ
− 1

2
z .

to undergo contraction (I4 < 1), if not being I4 < λ−1
z , since for such points the values

of all λ∗, λ∗, λmin become extremely large. Especially in the limiting situations where the

boundary r = a is taken to be associated with MR → 1− we obtain λmin → +∞ and

hence, for a finite inflation, it is unlikely to have I4 > λ−1
z at the inner surface of the

tube. On the hand, as we approach r = b, the component MR decreases and so does the

critical value λ∗, where I4 = 1, and eventually, for MR → 0+, it becomes λ∗ → 1. Thus,

here relative small stretch is sufficient to generate extension of the preferred direction. We

remark however that a necessary condition for I4 > 1 to be substantiated at some r ∈ [a, b]

is λa > 1 and yet extension of the preferred direction is not necessarily initiated at the

inner boundary r = a.

In contrast to the situation described for I4, the torsional part of the combined de-

formation is incorporated in the invariant I5. Indeed, it is apparent through (4.45) that,

apart from λθ and λz, the invariant I5 also depends on the amount of shear γ. Note, how-
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ever, that here both positive and negative γ effect on I5 in exactly the same way. We now

remark that, when the body is subjected to uniform axial extension alone, this requiring

λθ = λ
− 1

2
z and γ = 0 throughout the body, equation (4.45) reduces to I5 = λ−2

z (= I2
4 ) and

it is therefore clear that at this stage of the process we have I5 < I4 < 1. Further, it is

a straightforward task to deduce that when the inflation begins, with γ = 0, the qualities

of I5 are exactly analogous with those provided earlier for I4. In passing, assuming that

α ∈ (0, π/4), we have I5 to decrease from its starting value, namely I5 = λ−2
z , until when

λθ reaches the value

λ̄min = (λ2
z tanα)−

1
4 , (4.49)

corresponding to the minimum Imin
5 = λ−2

z sin(2α). After that, I5 gradually increases with

an increasing λθ (> λ̄min) and, in particular, in the case where the azimuthal stretch takes

the value

λ̄∗ =


1 +

√
1− 4M2

RM2
Θ

2λzM2
Θ




1/4

, (4.50)

it regains the value I5 = λ−2
z . Finally, when λθ reaches the value λ̄∗, the latter defined by

λ̄∗ =


1 +

√
λ2

z − 4M2
RM2

Θ

2M2
Θ




1/4

, (4.51)

the invariant I5 becomes equal to 1, while for λθ > λ̄∗ we obtain I5 > 1. On the other

hand, and parallel to the behaviour of I4, whenever α ∈ [π/4, π/2) the invariant I5 (> λ−2
z )

is always increasing with λθ (> λ
− 1

2
z ). Note that once more the quantity λ̄∗ serves to

render this value of λθ identified with I5 = 1. Analogously to their counterparts, denoted

λmin, λ∗, λ∗, the critical values (4.49)–(4.51) of the stretch λθ associated with I5 are found

to satisfy λ̄∗ < λ̄∗ 6 λ̄min with the equality holding strictly for α = π/4. For illustration,

these quantities are also plotted in Figure 4.4 as functions of the component MR. It is

also worth mentioning the connections

λ̄min =
√

λ
− 1

2
z λmin, λ̄∗ =

√
λ∗, λ̄∗ =

√
λ∗, (4.52)

wherefrom the behaviour of I5 can be studied in parallel with that of I4.

At this point, we explicate that in the case where the torsional deformation is also

taken into account, the resulting simple shear (locally) taking place normal to the radial

direction of the deformed body always entails an increase in I5; that regardless the nature

of the angle α(R). As a matter of fact, a straightforward differentiation of (4.45) with
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respect to γ shows that, if the azimuthal and the axial stretches are prescribed (i.e. the

body is extended and inflated up to a certain degree), the invariant I5 complies with

∂I5/∂γ > 0 provided that α(R) ∈ (0, π/2) and γ 6= 0. We remark, however, that, not

surprisingly, for those points which, in the reference configuration, are associated with

larger α, the shearing effect is more pronounced on I5 whereas, as for I4, here we have

∂I5/∂α > 0. Evidently, during the combined deformation, and given that λz is held fixed,

the invariant I5 is apprehended as a function of the deformation quantities λθ and γ,

those, as explained in Section 4.2.3, taken to vary independently. Despite this matter, it

is important to clarify that, depending on the contribution of γ, larger λθ may or may

not submit larger I5. As a matter of fact, in line with the results obtained in the previous

paragraphs, we now deduce that, no matter what the value of γ might be, the invariant I5

is always found to increase monotonically with λθ, yet strictly for those r ∈ [a, b] being in

conformity with α(R) ∈ [π/4, π/2) in the reference configuration. For the points associated

with α(R) ∈ (0, π/4), however, the contribution of γ has a significant effect on the way

that I5 changes with λθ whereas the presence of the shearing deformation now establishes

that

∂I5

∂λθ
R 0 according as |γ| R

√
2(1− λ4

zλ
8
θ tan2 α)

λ3
zλ

3
θ tan α

. (4.53)

We remark that (4.53) is substantial only for λ
− 1

2
z 6 λθ < λ̄min since, otherwise, we obtain

∂I5/∂λθ > 0 with the equality holding strictly for λθ = λ̄min which, following (4.53)2,

requires γ = 0 and hence I5 = Imin
5 . Accordingly, we deduce that whenever λ

− 1
2

z 6 λθ <

λ̄min with the second part of (4.53) holding as an equality the derivative ∂I5/∂λθ vanishes

but the invariant I5 does not attain a minimum since, for any γ 6= 0, we have ∂I5/∂γ > 0.

Nevertheless, it is worth mentioning that, the connections λ
− 1

2
z 6 λθ < λ̄min can be used

to identify the range of r ∈ [a, b] for which I5 is possible to decrease with λθ while, in the

same grounds, the condition

|γ| <
√

2(cot2 α− 1)
λ3

z

,

furnishes the maximal range of |τ | corresponding to each one of those r so as the previous

argument is possible to be substantiated.

In concluding this section it is also worth mentioning in passing that, due to the

contribution of γ, it is possible to have I5 > 1 even for very small values of λθ. This

fact maintains arguably that the condition I4 > 1 yields I5 > 1 but the opposite is not

necessarily true.
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4.3.2 Strain-energy function and Cauchy stress

By recalling the discussion provided in Section 1.4.3, we may now write down the strain-

energy function, namely W , in the general form

W = W̄ (I1, I2, I4, I5), (4.54)

from which follows that the Cauchy stress tensor admits the representation

σ = 2W̄1B + 2W̄2(I1I−B)B + 2W̄4m⊗m + 2W̄5(m⊗Bm + Bm⊗m)− p̄I, (4.55)

with p̄ denoting the Lagrange multiplier associated with the incompressible nature of the

materials under study, I being the identity tensor and W̄i = ∂W̄/∂Ii, i ∈ {1, 2, 4, 5}.
Accordingly, as clearly explained in Section 1.5.1, the connections (4.54) and (4.55) then

implicate the restrictions

W̄ = 0, 2W̄1 + 4W̄2 = p̄0, W̄4 + 2W̄5 = 0, (4.56)

which designate a body whose energy and stress vanish in the reference configuration (i.e.

where I1 = I2 = 3 and I4 = I5 = 1) with p̄0 now representing the value of p̄ in that

configuration. Note that the restrictions (4.56) may also accompanied with

W̄1 + W̄2 = [c12 − c13 − c23 + c33 − c44 + c55 + c66]/6,

W̄1 + W̄2 + W̄5 = [c13 − c12 + c23 − c33 + c44 + 2(c55 + c66)]/6, (4.57)

W̄44 + 4W̄45 + 4W̄55 = [3(c11 + c22)− 8(c13 + c23 − c33)− 16(c55 + c66) + 2c12 + 4c44]/12,

which constitute the necessary conditions that W should satisfy having regard to the lin-

ear theory of incompressible transversely isotropic materials whose preferred direction is

taken to be defined by M = MRER + MΘEΘ. In particular, the connections (4.57) are

apprehended as the counterparts of (3.19), (3.19) for the case where the deformation is

considered to take place in three dimensions; this being the situation for the combined de-

formation examined in this chapter. Analogously to the discussion provided in Section 3.3,

the parameters c11, ..., c66 are in general functions of the angle α(R) and are identified with

the properties (3.21), those, in particular, defined once more in the reference configuration

with the cylindrical polar coordinates (R, Θ, Z). It should also be emphasized that, on

the basis of the results demonstrated in Section 1.5.1, the derivatives of W may be found

to satisfy different and yet equivalent conditions in the reference configuration apart from

those derived here. Indeed, appropriate restriction on the strain-energy function may well
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be imposed by means of a different set of elastic parameters which, nevertheless, due the

symmetries of W , are possible to be put into correspondence with the ones appearing

in (4.57). In any case, the present approach is mainly used for consistency with the no-

tation adopted in the previous chapters and in particular with the results presented in

Section 2.5 since in the special case where MR = 1 (i.e. α = 0) the connections (2.21) are

again validated and hence (4.57) are easily found to specialize to (2.117)–(2.119).

We now substitute (4.11) and (4.42) into (4.55) to deduce that, for the problem under

examination, the cylindrical polar components of σ can be read off as

σrr =2W̄1(λzλθ)−2 + 2W̄2[λ−2
z + λ−2

θ (γ2 + 1)]

+ [2W̄4(λzλθ)−2 + 4W̄5(λzλθ)−4]M2
R − p̄, (4.58)

σθθ =2W̄1(λ2
θ + λ2

zγ
2) + 2W̄2(λ−2

z + γ2λ−2
θ + λ2

zλ
2
θ)

+ [2W̄4λ
2
θ + 4W̄5(λ4

θ + γ2λ2
zλ

2
θ)]M

2
Θ − p̄, (4.59)

σzz =2W̄1λ
2
z + 2W̄2(λ−2

θ + λ2
zλ

2
θ)− p̄, (4.60)

σθz =2W̄1(γλ2
z) + 2W̄2(γλ−2

θ ) + 2W̄5(γλ2
zλ

2
θ)M

2
Θ, (4.61)

σrθ =[2W̄4λ
−1
z + 2W̄5(λ−1

z λ2
θ + γ2λz + λ−3

z λ−2
θ )]MRMΘ, (4.62)

σrz =2W̄5(γλz)MRMΘ. (4.63)

In view of the connections (4.42)–(4.45) and whereas tanα = MΘ/MR, we are, analo-

gously to the methodology provided in Chapter 3, prompted to introduce a new function,

namely W̃ , such that

W̃ (λθ, λz, γ, α) = W̄ (I1, I2, I4, I5). (4.64)

Then, differentiation of (4.64) yields the simple connections

σθθ − σrr = λθ
∂W̃

∂λθ
+ γ

∂W̃

∂γ
, (4.65)

σθθ + σzz − 2σrr = λθ
∂W̃

∂λθ
+ λz

∂W̃

∂λz
, (4.66)

for the normal stresses, while

σθz =
∂W̃

∂γ
. (4.67)

As we will shortly see, the expressions (4.65)–(4.67) are of significant importance for

determining the applied forces required to maintain the combined deformation. In what

follows, we also establish that for any elastic material for which the strain energy can

be regarded as a function of the deformation variables λθ, λz and γ for the considered

deformation the formulas (4.65)–(4.67) apply. Clearly, given that the preferred direction
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M varies with R, the quantity α is incorporated in (4.64) as a material parameter, not as

a deformation variable, and, as in (3.26), its inclusion reflects the fact that the material

properties are inhomogeneous. Following that, we are able to deduce that the explicit

dependence of the strain-energy on α enables the linkages

λzλ
2
θ

∂W̃

∂α
= (λ2

zλ
4
θ − 1)σrθ + γσrz, (4.68)

2γλ3
zσθz = {γλ3

z(σθθ − σzz)− tanα[γλ4
zλ

2
θσrθ + (λ4

zλ
2
θ − 1)σrz]} tan 2φ, (4.69)

with φ being given in (4.31). We comment that if the preferred direction M coincides with

the direction of the basis vector ER (i.e. α = 0) then the connections (4.62) and (4.63)

ensure that (4.68) is satisfied identically while, at the same time, the connection (4.69)

agrees with the universal relation (see also [32])

tan 2φ =
2σθz

σθθ − σzz
. (4.70)

As a matter of fact, it is worth clarifying that, when M is chosen as above, the explicit

dependance of W̃ on α may be dropped and hence the strain energy can sufficiently be

prescribed by means of the deformation quantities λθ, λz and γ. This further implies that

M becomes an eigenvector of C (and m of B) and that the strain-energy can treated as

a function of the principal stretches λ1, λ2 and λ3 or, equivalently, as a function of the

principal invariants invariants I1, I2 and I4 alone since, as already mentioned, in such a

case we obtain the connection I5 =
√

I4 = (λzλθ)−2. Thus, the entry (4.64) may now be

replaced by

W = W (λ1, λ2, λ3) = W̃ (λθ, λz, γ) = W̄ (I1, I2, I4), (4.71)

while the Cauchy stress tensor can be written down in the spectral form

σ =
3∑

i=1

σiv(i) ⊗ v(i), (4.72)

with the principal stresses, namely σi, being defined through

σi = λi
∂W

∂λi
− p, i ∈ {1, 2, 3}. (4.73)

Note that here p is again a Lagrange multiplier which is, in general, different from the one

appearing in (4.55) and/or (4.58)–(4.60). Thus, by virtue of (4.72), it is a straightforward

task to deduce that all the non-zero cylindrical polar components of σ now satisfy

σrr = σ1, σθz = (σ2 − σ3) cos φ sinφ, (4.74)

σθθ = σ2 cos2 φ + σ3 sin2 φ, σzz = σ2 sin2 φ + σ3 cos2 φ, (4.75)
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wherefrom, after some simple manipulation, the relation (4.70) may once more be estab-

lished. Combination of (4.73)–(4.75) in addition yields

σθθ − σrr = λ2
∂W

∂λ2
cos2 φ + λ3

∂W

∂λ3
sin2 φ− λ1

∂W

∂λ1
, (4.76)

σθθ + σzz − 2σrr = λ2
∂W

∂λ2
+ λ3

∂W

∂λ3
− 2λ1

∂W

∂λ1
, (4.77)

σθz =
(

λ2
∂W

∂λ2
− λ3

∂W

∂λ3

)
cosφ sinφ, (4.78)

those, due to (4.71), (4.39) and (4.40), being identical with (4.65)–(4.67) respectively.

Evidently, exactly the same conclusions may be derived for the case where the material is

taken to be isotropic with the only difference that, unlike the present situation, W then has

to be symmetric in λ1, λ2 and λ3 and similarly W̄ has to depend strictly on the invariants

I1 and I2.

If, on the other hand, the preferred direction complies with M = EΘ (i.e. α = π/2) then

both (4.68) and (4.69) are automatically satisfied. Note, however, that such a specialization

does not imply that M becomes an eigenvector of C and hence (4.71)–(4.78) are no longer

validated. In particular, since the choice M = EΘ renders a constant α, the strain energy

can still be determined by means of the principal stretches of the deformation and yet the

invariants I4 and I5 remain independent; those being determined through I4 = λ2
θ and

I5 = λ4
θ + γ2λ2

θλ
2
z, respectively. Even then, the expressions (4.65)–(4.67) are valid but the

stress components σθθ, σzz and σθz are no longer consistent with (4.70).

It is finally worth mentioning that, in line with (4.13)–(4.17), the connections (4.68)

and (4.69) may be further used to identify that, during the combined deformation, the

conditions

F1(r) > 0, F2(r) > 0, (4.79)

with

F1(r) = (λzλ
2
θ

∂W̃

∂α
− γσrz)σrθ, (4.80)

F2(r) = {[σθθ − σzz − 2σθz cot 2φ− σrθ tanα]γ cotα + (λ−3
z − 1)σrz}(σrz + γσrθ), (4.81)

should always hold at each r ∈ [a, b]. This means that, for the deformation to be sus-

tainable, the data λz, a and τ which, as shown in (4.3) are necessary to fully characterize

the position of each material particle in the deformed configuration (i.e. the deformation

itself), have to be chosen in such a way that the constitutive law is consistent with the

conditions (4.79).
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4.3.3 Resolution of the equilibrium equations and applied forces

Despite the three-dimensional character of the deformation under consideration, the strict

dependence of the strain-energy function on either the deformed radial component r or,

equivalently, on the referential radial component R of the body, is evident. Owing to that

and assuming the absence of body forces, the equilibrium equation divσ = 0 has three

non-trivial components, namely the radial equation

dσrr

dr
+

1
r
(σrr − σθθ) = 0, (4.82)

conjoined with
d(r2σrθ)

dr
= 0,

d(rσrz)
dr

= 0, (4.83)

referred to as the azimuthal and the axial equation, respectively.

It is then apparent that, using the boundary conditions (4.4) introduced earlier in

Section 4.2.1, the radial equation may be integrated to deliver the expression

P =
∫ b

a
(σθθ − σrr)

dr

r
, (4.84)

through which the necessary pressure required to cause inflation of the cylindrical tube can

be calculated. In a like manner, integration of the equations (4.83) enable the formulations

σrθ =
τθb

2

r2
, σrz =

τzb

r
, (4.85)

for the azimuthal and axial stress respectively. Note that the parameters τθ, τz in (4.85)

are constants representing the values of σrθ and σrz, respectively, on the outer boundary

r = b of the deformed tube. Depending on the data available, equations (4.85) have

a multiple role to play. First, for a body whose preferred direction is specified, those

serve to determine the shearing forces required to be applied on the boundary r = b, i.e.

the forces identified with the values τθ and τz, so as, for certain stress-strain response

and distribution associated with a certain degree of extension, inflation and torsion, the

circular cylindrical shape of the body to be maintained. Alternatively, assuming that the

shearing response of the body in the planes θ = constant and z = constant is directed

in a specific manner and that the body is subjected to a certain degree of uniform axial

extension (i.e. the values of τθ, τz and λz are known), they may be used to determine

the pair (λθ, γ) and consequently identify the data (a, τ) associated with the response

of the body due to inflation and twisting deformation. Analogously, the pair (α, λz) or

(τ, λz) may also be calculated given the data τ or α, respectively. Further to that, if
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a certain overall stress-strain response and distribution is required during the combined

deformation, then equations (4.85) can be used to identify the preferred directions, in

other words the components MR and MΘ or G(R) itself, for which such a deformation is

sustainable. It is important to emphasize, however, that no matter what the implications

and/or the interpretations of (4.85) might be, the stress components σrθ and σrz have, in

any case, to be consistent with (4.79)–(4.81).

From a different point of view, another important result may also be gleaned on the

basis of the aforementioned equations. Precisely, in view of (4.62) and (4.63) it is apparent

that if the components MR and MΘ are taken to vanish locally (i.e. clearly not simulta-

neously) at some point in the reference configuration then, in the deformed configuration,

the corresponding values of both shear stress components σrθ and σrz have to vanish as

well. Following (4.85), we are then to deduce that τθ = τz = 0 and hence the conditions

σrθ = σrz = 0 should be substantiated throughout the deformed body; that is for all

r ∈ [a, b]. The latter, however, implicates the requirements

W̄4 = W̄5 = 0, for all r ∈ [a, b], (4.86)

those yielding the false conclusion that, independently of the broad distribution of M

in the reference configuration, the actual contribution of the preferred direction in the

overall response of the deforming body has to be negligible, i.e. the anisotropy has no

influence during the combined deformation. As a result, we readily infer that the combined

deformation cannot be sustainable for these materials which locally embody the properties

MR = 0 or MΘ = 0 and equivalently α = 0, π/2.

We now illustrate that, apart from the applied pressure prescribed in (4.84), application

of the coupled forces N and M , those respectively defined via

N = 2π

∫ b

a
σzzrdr, M = 2π

∫ b

a
σθzr

2dr,

is also required for the body to be held in its deformed state. In particular, here N expresses

the axial load that needs to be applied on the ends of the tube so that this maintains the

length l = λzL and M is the corresponding twisting moment of the stress σθz (about the

axis r = 0) owing exclusively to the torsional part of the combined deformation. After

some simple manipulation, the connections (4.65)–(4.67) may be used to contribute the



CHAPTER 4. EXTENSION, INFLATION AND TORSION OF A TUBE 149

formulas

P =
∫ b

a

(
λθ

∂W̃

∂λθ
+ γ

∂W̃

∂γ

)
dr

r
, (4.87)

N =π

∫ b

a

(
2λz

∂W̃

∂λz
− λθ

∂W̃

∂λθ
− 3γ

∂W̃

∂γ

)
rdr + Pa2π, (4.88)

M =2π

∫ b

a

∂W̃

∂γ
r2dr, (4.89)

for these forces which, according to the discussion provided earlier, apply for any geometry

α(R) ∈ [0, π/2]. Obviously, the situation in which α = 0, π/2 implies MR = 1, 0 for

all R ∈ [A,B]. Also, by recalling (4.68) and (4.69), it is easily understood that, given

α(R) ∈ [0, π/2), the quantities (4.87)–(4.89) are possible to be expressed in various and

yet equivalent forms but we do not present any details here.

In view of (4.87)–(4.89) we may further conclude that the necessary loads that should

be applied on the body in order to support the combined deformation are found to satisfy

N = Pa2π − 3
2
Mτ + π

∫ b

α

(
2λz

∂W̃

∂λz
− λθ

∂W̃

∂λθ

)
rdr. (4.90)

Therefore, by denoting Nral = N − Pa2π the so-called reduced axial load describing the

actual measured force at the edges of the tube (see, e.g., [57, 32]), the linkage (4.90) assigns

the relation

Nral = −3
2
Mτ + π

∫ b

α

(
2λz

∂W̃

∂λz
− λθ

∂W̃

∂λθ

)
rdr. (4.91)

We remark that, by virtue of (4.87)–(4.89) and their subsequent expression (4.90) and/or

(4.91), the assertion of a material which is incapable of distinguishing between negative and

positive sense of shearing deformation is once more justified. Indeed, for the considered

class of transversely isotropic materials, the arguments (4.42)–(4.45), in conjunction with

(4.64), readily suggest that both the pressure and the axial load associated with the

combined deformation remain invariant when interchanging the direction of the twist,

namely τ . In other words the integrals (4.87) and (4.88) appear to be even functions

of the parameter τ , i.e. P (−τ) = P (τ) and N(−τ) = N(τ). On the other hand, the

resultant moment M does, not surprisingly, depend on the direction of shear. Note,

however, that (4.89) states M(−τ) = −M(τ); the latter implying that the force associated

exclusively with the torsional part of the combined deformation changes its direction in

parallel with the direction of the twist, yet its actual magnitude depends solely on the

value of |τ |. Exactly the same conclusion can be gleaned through (4.91) whereas, based
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on the qualities of P and N , it is apparent that Nral(−τ) = Nral(τ), from which the

previous argument follows as a direct consequence. This fact now establishes that the

overall mechanical response of the materials under investigation is, unlike the situation

described in Chapter 3 for the case of the pure azimuthal shear deformation, invariant to

the direction of the torsional deformation.

From the discussion provided so far it is easily understood that for specific forms of the

strain-energy function we may be led to unsustainable modes of deformation. Precisely,

we illustrate that the conditions (4.79) introduced in the previous section are not sufficient

to establish the requirement P > 0 and hence additional restrictions on the constitutive

law may be imposed to do so. Evidently, for the pressure to retain its non-negative nature,

the constraint

σθθ − σrr > 0, for all r ∈ [a, b], (4.92)

would be a legitimate limitation to adopt while, assuming the growth conditions

∂W̃

∂γ
→ ±∞, for γ → ±∞,

and bearing in mind the form of M it would also be appropriate to adopt

σθz ≡ ∂W̃

∂γ
R 0 according as γ T 0. (4.93)

Interestingly, for the case of pure torsion, where from (4.69) and (4.27) it is evident that

γσθz = σθθ − σzz − tanασrθ, the restrictions (4.93) analogously imply

σθθ − σzz R tan ασrθ according as γ T 0.

When the axial extension and/or inflation of the tube is taken into account, we may, on the

basis of (4.92), (4.93) and in conjunction with (4.68) and (4.69), derive further restrictions

on the components of σ and/or on the form of the strain-energy function sufficient to ensure

a mechanically bearable material response. We remark, however, that the above mentioned

requirements are sufficient and not necessary to establish a meaningful deformation and

therefore they appear to be too restrictive. Instead, when appropriate, i.e. depending on

form of the strain-energy function, suitable restrictions on the data a, λz and τ may be

imposed, those, in particular, varying with respect to the elastic properties of the materials

under investigation.

For the general combined deformation we finally illustrate that, following the work of

Ogden [57] (see also references therein), the identities (4.13) and (4.14) may be suitably
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manipulated to provide the connection

r
dλθ

dr
= −λθ(λzλ

2
θ − 1), (4.94)

which can then be applied to (4.87)–(4.89) and change the independent variable from r to

λθ. In particular, if there is no torsion involved (i.e. γ = 0), equation (4.94) enables us to

exactly recover the formulations for both P and N derived in [57] for the case where the

tube is subjected to extension and inflation only now the material properties are, in general,

considered to be inhomogeneous. In the same spirit, assuming that all three independent

deformation processes are taken into account, we can alternatively interchange the variable

r incorporated in the integrands of the above mentioned quantities with γ since γ = τr

and hence dr = τdγ.

4.3.4 A different class of anisotropic materials

In this section we present a brief discussion for another class of transversely isotropic

materials under combined extension, inflation and torsional deformation. Specifically,

here we are once more concerned with circular cylindrical structures featuring a single

preferred direction which is, in the reference configuration, locally characterized by a unit

vector M. This is now defined by

M = MΘEΘ + MZEZ . (4.95)

Note that in (4.95) the components MΘ and MZ serve in essence to identify the angle, ψ

say, between the preferred direction and the circumferential direction of the tube. Accord-

ingly, we may write MΘ = cosψ and MZ = sinψ and hence tanψ = MZ/MΘ. Generally

speaking, it is apparent that the angle ψ may be taken to vary with position (i.e. it may

depend on one or more of R, Θ and Z), yet here we assume for simplicity that ψ = constant

throughout the undeformed tube; this indicating materials whose mechanical properties

are homogeneous. We remark that to the extent that the transverse isotropy studied here

is associated with fibre reinforcement, the vector field (4.95) may be perceived to model

(in a continuous manner) a single family of helical fibres (spirals) situated in a circular

cylindrical tube. Analogous fibre geometries (mainly two symmetric spiral families) are

often met in the literature [73, 15, 72] in respect of deformable elastic solids and especially

lately for the study of the mechanical response of soft tissues (see, e.g., [32, 21]).

In view of the above discussion we may, without loss of generality, adopt the restriction

ψ ∈ [0, π/2]. In particular, for ψ = π/2 the preferred direction (4.95) reduces to M = EZ
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and it can therefore be accounted to represent a family of perfectly straight fibres aligned

with the axis of the tube. For ψ = 0, on the other hand, (4.95) becomes M = EΘ, this, as

for the previously mentioned case associated with α = π/2, being understood to represent

a family of circular fibres distributed on the (R, Θ)-planes of the tube which are, in fact,

centered at (R, Θ) = (0, 0).

For the considered geometry and deformation, the status of the preferred direction in

the deformed configuration is now characterized by the vector field

m = (λθ cosψ + γλz sinψ)eθ + λz sinψez. (4.96)

The actual contribution of M in the response of the body is, in this case, incorporated

through the invariants

I4 =(λθ cosψ + γλz sinψ)2 + λ2
z sin2 ψ, (4.97)

I5 =(λ2
θ cosψ + γλzλθ sinψ)2 + (γλzλθ cosψ + λ2

z sinψ)2

+ λ4
z(γ

4 + 2γ2) sin2 ψ + γ3λ3
zλθ sin(2ψ), (4.98)

while the invariants I1, I2 are still being given by (4.42) and (4.43), respectively. Not

surprisingly, here we observer that, unlike their counterparts (4.44) and (4.45), the invari-

ants I4 and I5 do (in general) distinguish between positive and negative sense of shearing

deformation. This argument is not, however, factual when ψ = 0 since then (4.97) and

(4.98) specialize to I4 = λ2
θ and I5 = λ4

θ + γ2λ2
zλ

2
θ, respectively. Although the formulas

(4.97) and (4.98) may be further used to assign the exact (local) effect of the combined

deformation on the preferred direction such an investigation is beyond the scopes of this

thesis. We remark, however, that many details regarding the variation of I4 in respect of

the considered deformation and geometry may be understood on the basis of the analysis

provided by Qiu and Pence [63], while, for the invariant I5, the present situation follows

closely the work presented by Merodio and Ogden [51] to which reference can be made for

a more extensive discussion.

In line with (4.54) and (4.64), the strain-energy function may now be expressed through

W = ˜̄W (λθ, λz, γ, ψ) = W̄ (I1, I2, I4, I5), (4.99)

where again the quantity ψ is incorporated in ˜̄W as a material parameter and not as a

deformation variable. Accordingly, when M is defined as above, the formula (4.55) once

validates the restrictions (4.56) provided that, in the reference configuration, the body
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is taken to be free of energy and stress, while, for consistency with the linear theory,

expressions similar to (4.57) can also be derived but we do not need them here. In any

case, we remark that, due to the different qualities of W , the form and/or the value of the

Lagrange multiplier (i.e. both in the reference and deformed configurations) incorporated

in (4.55) will now be different compared to the one applying for the strain-energies (4.64).

Owing to (4.95)–(4.99), the non-trivial cylindrical polar components of σ are now given

by

σrr =2W̄1(λzλθ)−2 + 2W̄2[λ−2
z + λ−2

θ (γ2 + 1)]− p̄, (4.100)

σθθ =2W̄1(λ2
θ + λ2

zγ
2) + 2W̄2(λ−2

z + γ2λ−2
θ + λ2

zλ
2
θ)

+ (λθ cosψ + γλz sinψ){2W̄4(λθ cosψ + γλz sinψ)

+ 4W̄5[(λ2
θ + γ2λ2

z)(λθ cosψ + γλz sinψ) + γλ3
z sinψ} − p̄, (4.101)

σzz =2W̄1λ
2
z + 2W̄2(λ−2

θ + λ2
zλ

2
θ) + λ2

z sinψ{2W̄4 sinψ

+ 4W̄5[γλθλz cosψ + λ2
z(γ

2 + 1) sinψ]} − p̄, (4.102)

σθz =2W̄1(γλ2
z) + 2W̃2(γλ−2

θ ) + 2W̄4[λz sinψ(λθ cosψ + γλz sinψ)]

+ 2W̄5{λz(λθ cosψ + γλz sinψ)[(2γ2λ2
z + λ2

θ + λ2
z) sin ψ

+ γλzλθ cosψ] + γλ4
z sin2 ψ}, (4.103)

from which it is evident that, for the considered class of materials, the presence of the axial

and azimuthal shear stress components σrθ, σrz is unnecessary to support the combined

deformation. Despite this fact, the formulas (4.101)–(4.103) are now unable to appoint a

connection between σθθ, σzz and σθz. Such connections may only be derived by involving

additional combinations of the partial derivatives W̄4 and W̄5. The same conclusion applies

even for the simple cases where ψ = π/2, 0.

It is interesting however that, for once more, a set of straightforward differentiations on

(4.99) and comparison with the entries (4.100)–(4.103) yields the connections (4.65)–(4.67)

with ˜̄W in the place of W̃ . Thence, due to the absence of the shear stresses σrθ and σrz,

it is apparent that here the equilibrium equation reduces only to (4.82) (i.e. ˜̄W is strictly

a function of r) while it also arises that the applied pressure P , the axial load N and the

resultant moment M are formulated again by the analogous of (4.87), (4.88) and (4.89),

respectively, wherefrom (4.91) is once more substantiated. It also is worthwhile noting that

for pure torsion the homogeneous properties of the materials under consideration enable,

analogously to the discussion provided in the previous section, the formulation P = [ ˜̄W ]γb
γa .

In concluding this section, we further remark that significant qualitative and quantitative
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differences in P, N and M are to be expected here in respect of positive and negative sense

of shearing deformation and especially when the angle ψ is taken to be sufficiently large;

in such cases the overall response of the body under deformation is profoundly different

by means of positive and negative γ.

Although in this thesis our main focus is on transversely isotropic materials, it is

worthwhile noting that by considering incompressible elastic tubes reinforced with two

families of helical fibres (i.e. featuring two preferred direction) we are able to derive

exactly the analogous formulas as those given in (4.65)–(4.67). It is therefore understood

that the expressions (4.87)–(4.89) derived earlier for P, N and M , respectively, further

apply for the case of cylindrically orthotropic materials. We mention in passing that, for

such materials, we may, apart from (4.95), identify a second preferred direction, defined

by the unit vector

M′ = M ′
ΘEΘ + M ′

ZEZ

such that M ′
Θ = cosβ and M ′

Z = − sinβ. Clearly, here β is the counterpart of ψ serving

to designate the angle between the direction of M′ and the circumferential direction of the

undeformed body. Accordingly, the strain-energy function can here be expressed as

W = ˆ̄W (λθ, λz, γ, ψ, β) = ¯̄W (I1, I2, I4, I5, I6, I7, I8, I9), (4.104)

with the invariants I1, I2, I4, I5 being given by (4.42), (4.43), (4.97), (4.98), respectively,

while the remaining invariants are defined through

I6 = M′ · (CM′), I7 = M′ · (C2M′), I8 = M · (CM′), I9 = (M ·M′)2. (4.105)

In the light of (4.104) and (4.105) we may therefore use the same methodology provided

earlier to justify our assertions concerning the form of P, N and M for the specific class

of orthotropic materials.

We summarize our results by noting that the approach used here, this being established

on the basis of treating the deformation quantities γ, λθ and λz independently, enables a

unified formulation of the quantities P, N and M in respect of a very large range of incom-

pressible materials (i.e. including isotropic and anisotropic) under combined extension,

inflation and torsion. We mention, however, that this may be alternatively be done by

means of two, by definition independent, principal stretches, λ2, λ3 say, yet use of the

quantities λθ, λz and γ allows us to have a better understanding of the degree of the in-

fluence of each one of the deformations separately. We finally mention that use of the
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quantities λθ, λz and γ may possibly provide the way to examine even more complicated

reinforcements; by considering, for example, three or four fibre families at the same time.

This part is, however, still under examination and will be presented elsewhere.

4.4 Numerical illustrations

In this section we illustrate some of the kinematical aspects of the combined extension,

inflation and torsional deformation discussed so far together with their implications in

respect of the response of circular cylindrical tubes within the class of materials featuring

the qualities described in Section 4.3.1. For numerical purposes we fix the radial dimensions

of the undeformed body and in particular, for consistency with Section 3.8, we take A = 1

(units) and B = 6 (units). In order to keep our calculations simple, we consider that, in

any case, the strain-energy function is of the separable form

W̄ (I1, I2, I4, I5) = E(I1) + T (I5), (4.106)

from which it is apparent that the explicit dependence of the strain energy on the invariants

I2 and I4 is essentially dropped. Precisely, we adopt the formulation introduced in Merodio

and Ogden [51] by specializing the latter so that E(I1) is taken to be represented by the

neo-Hookean isotropic material model augmented with T (I5), this being the counterpart

for I5 of the standard reinforcing model used in Chapter 3. Accordingly, we write

E(I1) =
1
2
µ(I1 − 3), T (I5) =

1
2
µρ(I5 − 1)2, (4.107)

thus, equation (4.106) specializes to

W̄ =
1
2
µ

[
I1 − 3 + ρ(I5 − 1)2

]
. (4.108)

We remark once more that the parameter µ (> 0) is a constant which represents the shear

modulus of the isotropic base material and ρ (> 0) is a material constant that characterizes

the degree of anisotropy associated with the presence of the preferred direction. Depending

on way that M is distributed in the undeformed configuration, both µ and ρ may be

appropriately expressed by means of the parameters c11, ..., c66, but we do not use this

approach here.

4.4.1 Radial reinforcement

First we assume a circular cylindrical tube with a radial M. Here, the qualities of the

preferred direction signify the absence of the shear stresses σrθ and σrz and hence, accord-
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ing to the analysis provided in Section 4.3.2, there is no need to restrict the strain-energy

function as suggested through (4.79)–(4.81) in order to accomplish a sustainable combined

deformation. Clearly, the kinematical restrictions (4.16)–(4.17) are still required for the

inflation to take place but apart from those the combined deformation is in any case eli-

gible since for the particular geometry of M the inequalities (4.92) and (4.93) are always

satisfied automatically. Recall that, when M is chosen as above, the shearing deformation

has no actual impact on the status of the preferred direction while it is also unnecessary

to distinguish between positive and negative γ whereas in both cases the quantities P,Nral

and M appear essentially to be identical.

In what follows, the material model (4.108) is used to exemplify the nature of the forces,

namely P, Nral and M , necessary to support the combined deformation. Expressly, in the

light of (4.87)–(4.91) and since, from (4.3)1, we have b = [a2 +λ−1
z (B2−A2)]1/2, it is clear

that W̃ (= W̄ ) depends strictly on the deformation variables λθ, λz and γ and obviously

that all P, Nral and M may be treated as functions of the parameters a, τ and λz. On

these grounds, the implications of each one of the aforementioned deformation parameters

in the mechanical response of radially reinforced tubes is demonstrated in Figures 4.5–4.9.

In detail, in Figure 4.5(a) the applied pressure, now prescribed in the dimensionless

form P ∗ = P/µ, is plotted in respect of the material model (4.106) against the inner

deformed radius a for a fixed amount of axial extension, namely λz = 1.15. There, three

separate cases, associated with three values, τ = 0, 0.1, 0.15, of the twist are also consid-

ered, while the degree of anisotropy of the materials under examination is taken to be

identified with ρ = 1.5. Note that the isotropic case is also included for comparison. Bear-

ing in mind the restrictions (4.15)–(4.17), it is then shown that, for the specific choice of

the above mentioned parameters and as the inflation process begins, the applied pressure

P ∗ is initially increasing with a (> λ
−1/2
z A ≈ 0.9325), it reaches a maximum and there-

after gradually decreases. Evidently, for very large a the pressure required to inflate an

isotropic and an anisotropic tube appears to be identical. This non-monotonic behaviour

of P ∗ is not, however, surprising, since the particular choice of M implies that whenever

severe contraction is taking place along the radial direction (i.e. this is obviously the case

here), the fibre reinforcement, as attributed to (4.107), reaches a minimum at I5 = 1/2.

Accordingly, the contribution of T (I5) to the dimensionless radial stress component σrr/µ,

this predicated on 4I5W̄5/µ = 4I5T
′(I5)/µ, becomes maximum at that stage and this is

directly reflected in P ∗ = σrr(a)/µ. It is important to distinguish that the twist τ has no
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Figure 4.5: Plots of the dimensionless pressure P ∗ against the deformed inner radius a of the

tube for the radially reinforced material model (4.108) as well as for the isotropic neo-Hookean

model. In (a) the curves (P ∗, a) are identified with λz = 1.15 while the twist is assumed to be

prescribed by three distinct values, namely τ = 0, 0.1, 0.15. Similarly, in (b) the (P ∗, a) curves are

demonstrated for τ = 0.1 and λz = 2, 3.

actual impact on the qualitative properties of the curves (P ∗, a). Indeed, for any choice of

λz and ρ, an increase in τ always results in higher pressure P ∗ for each a, yet the nature

of the curves (P ∗, a) remains unchanged and strictly dependent on the axial extension and

the degree of anisotropy characterizing the body. We mention, for instance, that given

λz = 1.15 and ρ = 1.5, the pressure P ∗ always attains a maximum at a ≈ 1.244 regardless

the value of τ . On the other hand, depending on the amount of axial extension and the

degree of anisotropy, the pressure P ∗ may appear to have a completely different character

while changing with an increasing a.

Generally speaking, for any fixed ρ, larger values of λz are responsible for reduction

in P ∗ and especially when the inflation process is associated with relatively large a. We

clarify this matter by noting that, for each ρ, there exists a certain range of λz for which

P ∗ behaves non-monotonically with a. When λz and ρ are as such, larger axial extension

is initially expected to cause an increase in P ∗, i.e. compared to that required to cause the

same degree of inflation for smaller λz. Thereafter, however, the deformed inner radius

reaches a certain value, this varying with ρ, beyond which less pressure is sufficient to
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Figure 4.6: Plots of (a) the value of a at which the dimensionless pressure P ∗ is maximized and

(b) the maximal possible axial stretch λz establishing a non-monotonic relation of P ∗ with a as

functions of the parameter ρ for the material model (4.106) and provided that M = ER. In (a)

the curves (a, ρ) are demonstrated for λz = 1, 1.15, 1.3.

prescribe the same inflation deformation compared to that associated with smaller λz.

Having said that, it is apparent that when, for each distinct ρ, the axial stretch λz exceeds

that certain value, any further increase of the latter effects a monotonic relation between

P ∗ and a and accordingly larger λz are followed by a vertical transition (i.e. downwards)

of the curves (P ∗, a). Those arguments are now clearly demonstrated in Figure 4.5(b)

where P ∗ is plotted against a for ρ = 1.5 and λz = 2, 3. Note that no twist is taken to be

incorporated there since, as already explained, the torsional deformation has no influence

on the qualities of P ∗. We emphasize that for extremely large λz the non-monotonic

relation of P ∗ and a is possible to be re-established, yet now associated with the presence

of a minimum in P ∗ and followed by an upward transition of the curve (P ∗, a) compared to

that corresponding to smaller λz. Nevertheless, such situations are not taken into account

here since these are most likely to render unstable modes of deformation.

The dependence of the variation of the value of a at which P ∗ attains a maximum

on the parameter ρ is also depicted in Figure 4.6(a) for λz = 1, 1.15, 1.3. We observe

that for larger ρ and λz the internal pressure P ∗ is maximized at smaller a. Finally, in

Figure 4.6(b) the curve (λz, ρ) provides the upper limit of λz associated with each ρ for
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Figure 4.7: Plots of the dimensionless reduced axial load N∗
ral versus the deformed inner radius

a for the isotropic neo-Hookean as well as for the radially reinforced material model (4.108); this

being characterized by ρ = 1.5. In (a) the curves (N∗
ral, a) are demonstrated for λz = 1.15 and

τ = 0, 0.1, 0.15 while in (b) for λz = 2, 3 together with τ = 0.1.

which the pressure P ∗ exhibits a non-monotonic relation with a as that demonstrated in

Figure 4.5(a).

In an analogous manner, the behaviour of the reduced axial for both the radial re-

inforced as well for the isotropic body under the considered combined deformation is

demonstrated in Figures 4.7 and 4.8. Precisely, in 4.7(a), the quantity N∗
ral = Nral/µ is

plotted against the deformed inner radius a with the parameters of interest being once more

specified as λz = 1.15 and τ = 0, 0.2, 0.15 as mentioned above while, for the anisotropic

case, we have chosen again ρ = 1.5. Accordingly, we notice that the qualitative properties

of the pressure P ∗ are directly reflected upon the reduced axial load N∗
ral. Indeed, the

non-monotonic relation between N∗
ral and a is also detected here for the case of the radial

reinforced tube. It should be noted that the value of a for which N∗
ral possesses a maximum

is, in general, different for that corresponding to maximum pressure P ∗ and yet again both

quantities appear to respond in a very similar manner in respect of the various choices of

λz and ρ. In Figure 4.7(b), we see, for example, that by keeping ρ to be fixed, larger λz

constitute a monotonic N∗
ral when this is taken to vary with a. We remark, however, that

here the twist τ has a significant influence on the qualities of the curves (N∗
ral, a), whereas,
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Figure 4.8: Plots of (a) the value of a at which the dimensionless reduced axial load N∗
ral is

maximized given the twist τ = 0, 0.1 and (b) the maximal possible twist τ establishing a non-

monotonic relation of N∗
ral with a as functions of the parameter ρ for the material model (4.106)

and provided that M = ER. Note that in both (a) and (b) the curves (a, ρ) and (τ, ρ) are

respectively demonstrated for λz = 1, 1.15, 1.3.

as shown in Figure 4.8(a), for an increasing τ and by keeping λz and ρ fixed, the value

of a rendering a maximum N∗
ral gradually decreases. Similarly, the maximal range of λz

in which N∗
ral changes non-monotonically with a now appears to depend both on τ and

ρ. This dependence is demonstrated implicitly in Figure 4.8(b), where, in particular, for

three fixed values of λz we identify the upper boundary of τ associated with each distinct

ρ where a non-monotonic relation between N∗
ral and a is to be expected.

Finally, for the geometry, deformation and material model under examination the

character of the dimensionless resultant moment M∗ = M/µ is exemplified on the basis of

Figures 4.9. It is important to clarify, however, that due to the arrangement of the preferred

direction here the moment cannot distinguish between isotropic and anisotropic tubes and

hence M∗ essentially serves to encapsulate the mechanical response of the isotropic neo-

Hookean material. Bearing that in mind, it is then shown in 4.9(a) that M∗ may always be

seen as an increasing function of both a and τ regardless the choice of λz. By contrast, we

remark that an intensive axial extension of the tube does not necessarily comply with an

increase in M∗. Truly, the implications of the latter argument are demonstrated in 4.9(b)
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Figure 4.9: Plots of the dimensionless twisting moment M∗ against the deformed inner radius a

for the neo-Hookean material model. In (a) the parameters of interest are specified as λz = 1.15

and τ = 0.1, 0.15, 0.2 while in (b) we consider λz = 1.15, 2, 3 and τ = 0.1.

where it is observed that, for a prescribed τ , larger λz are accompanied with smaller M∗

at relatively early stages of inflation, i.e. for relatively small a. Following that, M∗ can be

regarded as an increasing function of λz only under the premise that the body is subjected

to severe radial inflation.

4.4.2 Reinforcement with radially varying α

Following the approach introduced in Section 3.8, we once more, for definiteness, consider

a class of materials whose preferred direction, in the undeformed configuration, is defined

by the family of curves

R = c1(Θ−Θ0) + c2. (4.109)

Recall that the parameters c1, c2 are constants and that (4.109) enables, in view of the

definitions (3.7), the introduction of the function G(R) = (R−c2)/c1. Bearing in mind the

radial dimensions of the body chosen here and assuming that Θ0 = 0,Θ1 = 2 (radians),

the definitions (3.7) leads to c1 = 2.5 and c2 = 1. Hence, from (3.8), the components of

M are

MR =
1√

(2R/5)2 + 1
, MΘ =

2R/5√
(2R/5)2 + 1

. (4.110)
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Figure 4.10: (a) Plots of the critical values R(1) and R(2) against a in (R, a) space for λz =

1.00, 1.15, 1.30; (b) plots of the invariant I4 at the points R = 1.0, 1.5, 2.0 against a for λz =

1.00, 1.01.

Note that here we have tanα = 2R/5, so that the angle α(R) does not take the values 0 or

π/2 at any R ∈ [A,B], a fact which, as explained in Section 4.3.3, is of critical importance.

Clearly, due to the dependence of M on R, the necessity for the shear stresses σrθ and

σrz is in this case essential. Nevertheless, it is a straightforward task to show that, for the

present choice of M and given that the kinematical restrictions (4.15)–(4.17) are in place,

the requirements are always met. From that perspective, there is no need to impose any

restrictions on the data λz, a and τ associated with the extension, inflation and torsional

deformations, respectively.

Our first imperative is now to identify the effect of each one of the deformation processes

on the preferred direction for the particular geometry of M adopted here. Starting from

the invariant I4, we bring back to mind that only the extension and inflation of the tube is

responsible for any change in length along the preferred direction. Precisely, we illustrate

that for each R ∈ [1, 2.5) we expect I4 to initially decrease starting from the value λ−1
z

whereas this set of points is strictly associated with α(R) ∈ (0, π/4). By contrast, for

each R ∈ [2.5, 6], those points corresponding to α(R) > π/4 with the equality holding at

R = 2.5, we have immediate increase of I4 from the value λ−1
z . In any case, it is clear

that the axial extension of the tube brings the body into a compressive mode. When
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Figure 4.11: Plots of the dimensionless pressure P ∗ against the deformed inner radius a for the

reinforced material model (4.108), with the anisotropy defined by the geometry (4.110), reflecting

the case of (a) pure inflation for the values ρ = 1.5, 3.0, 10.0 (b) axial extension and inflation for

λz = 1.15 and ρ = 1.0, 1.5 and (c) combined extension, inflation and torsion for λz = 1.15, τ = 0.1

and ρ = 1.0, 1.5. Note that, in any case, the broken lines are used to prescribe the mechanical

behaviour of the associated isotropic neo-Hookean model.

pressure sufficient to cause inflation is applied at the inside of the tube we have further

contraction of the body along M but only within the domain R ∈ [1, 2.5). In this domain,

and for the particular geometry of M, it is important to distinguish that I4 first reaches

its minimum boundary, namely Imin
4 = λ−1

z sin(2α), closer to R = 2.5. We emphasize that

Imin
4 is a function of R and it is therefore used to identify the minimum possible value of I4

associated with each distinct R ∈ [1, 2.5) and not the minimum of the function I4 ≡ I4(R)

with respect to R ∈ [1, 6]. Accordingly, resolution of (4.46) enables us to identify the

connections

R(1) =
5 +

√
25 + 16(A2 + a2λz)

4
for a ∈ (a0, a2], (4.111)

R(2) =
5−

√
25 + 16(A2 + a2λz)

4
for a ∈ [a1, a2], (4.112)

where, for compactness, we have introduced the notations

a0 = Aλ−1/2
z , a1 =

√
3 + 2A2

2λz
, a2 =

1
4

√
25 + 16A2

λz
.

We remark that the symbols R(1) and R(2) used here describe the values of R at which,

for each value of λz and a, the equation I4 = Imin
4 is satisfied. Conversely, for any given

λz, the connections may be used to identify the amount of inflation, in other words the

value of a, that is required so that, at a specified R, the corresponding value of I4 takes
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Figure 4.12: (a) Plots of the critical values amin, amax against the anisotropic parameter ρ in

(a, ρ) space; (b) plots of the inner radius a at which the connection P ∗ = 0 is initially satisfied as

a function of the anisotropic parameter ρ for λz = 1.15, 1.20, 1.30.

its minimum possible value. On the grounds of (4.111), (4.112) significant conclusion

regarding the status of the preferred direction may be gleaned. Expressly, the formulas

derived here for R(1) and R(2) state that when a departs from its initial value, namely

a0 = Aλ
−1/2
z , the first point for which the invariant I4 reaches the lower boundary Imin

4

is R ≡ R(1) → 2.5−. At the same time, for all R ∈ [1, 2.5) away from R(1), we have

Imin
4 < I4 < λ−1

z and assuming that a constantly increases, the value of R(1) associated

with I4 = Imin
4 also decreases. It is then understood that, for a fixed λz and a (> a0), the

preferred direction is brought to a state of relaxation for those R > R(1), is minimized at

R = R(1), while, for R < R(1) is in a compressive mode.

An interesting situation may be detected when a reaches the value a1 since then I4 =

Imin
4 at two points, prescribed by R(1) and R(2), simultaneously. In such a case, and in

particular within the range a1 6 a < a2, I4 is in a relaxing state for R > R(1), clearly

minimized at R = R(1), R(2), while for R(2) < R < R(1) and R < R(2) the mode of I4 is

again that of compression. In addition, for a = a2 we have R(1) = R(2) and hence I4 = Imin
4

only at one isolated point. Note that the latter value of a identifies the maximum amount

of inflation that the body can undergo so that there exists a point R where I4 attains its

minimum value. Expressed otherwise, the point R = R(1) = R(2) is the last point at which
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Figure 4.13: Plots of the dimensionless reduced axial load N∗
ral versus the deformed inner radius

a for the isotropic neo-Hookean and the reinforced material model (4.108) with the anisotropy

defined by the geometry (4.110) along with ρ = 1.5. In (a) the curves (N∗
ral, a) are demonstrated

for λz = 1.15 and τ = 0, 0.1, 0.15 while in (b) for λz = 2, 3 together with τ = 0.1.

I4 = Imin
4 since this requires the maximum possible a; that being identified with a2. This

means that, away from R = R(1) = R(2), the invariant I4 has already reached its minimum

for a < a2 and hence, for all those points, I4 tends to relax. Finally, it is evident that if

a > a2 we have I4 > Imin
4 for each R ∈ [1, 2.5). The above assertions concerning the local

behaviour of I4 for the points R ∈ [1, 2.5) are now illustrated graphically in Figures 4.10.

Expressly, in 4.10(a) the expressions R(1) and R(2) are plotted against the deformed inner

radius a for λz = 1, 1.15, 1.3. Further, in 4.10(b), we demonstrate the variation of I4, this

associated with the points R = 1, 1.5, 2, with an increasing a for λz = 1, 1.01. In both

figures the (compressive) role of λz in the actual local behaviour of I4 can also be detected.

In what follows the implications of the above discussion are parallel to those of the

material model (4.108). In particular, analogously to the case where M has been taken

to lie along the radial direction of the body, here we provide a short discussion relative

to the effect of each one of the extension, inflation and torsional deformations on the

dimensionless quantities P ∗, N∗
ral and M∗.

We show, in Figure 4.11(a), that when the body is subjected to uniform inflation alone,

i.e. λz = 1 and τ = 0, the dimensionless pressure P ∗ increases monotonically with a, yet
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Figure 4.14: Plots of the dimensionless moment M∗ against the deformed inner radius a for the

isotropic neo-Hookean and the reinforced material model (4.108) with the anisotropy defined by

the geometry (4.110) along with ρ = 1.5. In (a) the curves (N∗
ral, a) are demonstrated for λz = 1.15

and τ = 0, 0.1, 0.15 while in (b) for λz = 1.15, 2.00, 3.00 together with τ = 0.05.

only under the premise that ρ is relatively small. We notice, in particular, that once ρ

reaches the approximate value 3.8, the pressure P ∗ becomes non-monotonic with respect

to a and attains a (local) maximum and a (local) minimum. As further demonstrated in

Figure 4.12(a), and analogously to the situation described for M = ER, the values of a

at which P ∗ is locally maximized and thereafter minimized, now denoted amax and amin

respectively, both change with ρ. Expressly, we see that for larger ρ the value of amax

decreases whereas that of amin decreases.

Bearing in mind the connections (4.52) and due to the discussion provided above we

are now able to clarify that the non-monotonic relation of P ∗ with a is strongly related to

the compressive effect that the inflation has on the line elements lying along M, at least

within a certain domain of R and a. Indeed, owing to this situation, for sufficiently large

ρ, the reinforcing term has a negative contribution on the pressure integrand for some r

and positive for some others. Evidently, this effect is enhanced for λz > 1 since then the

preferred direction is subjected to severer contraction. The additional implications of the

axial extension deformation on the behaviour of P ∗ relevant to a are now demonstrated

in Figure 4.11(b) for λz = 1.15 and ρ = 1, 1.5. There we see that, even for small λz (> 1)
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and ρ, the pressure P ∗ becomes non-monotonic in a almost immediately. Specifically, we

clarify that larger λz and/or ρ may now be associated with P ∗ 6 0. This clearly means

that the combined extension and inflation is no longer sustainable and that stability of

deformation has definitely been lost. For illustration, in Figure 4.12(b) we demonstrate

the dependence of the value of a at which P ∗ = 0 is initiated with the parameters ρ and

λz.

The implications of the torsional part of the deformation on the behaviour of the

dimensionless pressure are now exhibited in Figure 4.11(c). There, P ∗ is once more plotted

against a for ρ = 1, 1.5 with the other parameters of interest being held fixed and specified

as λz = 1.15 and τ = 0.1. It is apparent that although the local simple shear deformation

is inconsequential in respect of the status of I4, it has a profound increasing effect on I5

which is in turn reflected upon the pressure P ∗. Truly, when torsion is also incorporated

in the combined deformation, the invariant I5 always increases with γ (i.e. ∂I5/∂γ > 0)

and hence the local shear generates a contradictive effect on the integrand of P ∗ to that

caused by the axial extension and initially by the inflation, in other words, by stretches

λz and λθ respectively. In this manner, for any given ρ and λz, an increase in τ (6= 0)

always results in larger pressure at any stage of the inflation process, while also, based on

the same arguments, facilitates the possibility of a monotonic relation between P ∗ and a.

Without referring to any details, we finally remark that, for the considered geometry

and deformation, the dimensionless reduced axial load and resultant moment, denoted N∗
ral

and M∗ respectively, are found to behave in a broadly similar manner to that described

earlier for the case where M = ER, yet under the premise that the body is subjected

to small strains. When, however, large strains are considered, and especially if severe

axial extension and/or inflation are taking place, both the quantities N∗
ral and M∗ are

essentially found to reflect, as for the pressure P ∗, the contraction-extension progress

of the line elements in the M direction of the tube. A brief illustration of the above

mentioned arguments is now provided in Figures 4.13 where, in particular, N∗
ral is plotted

against a for (a) λz = 1.15 and τ = 0, 0.1, 0.15 and (b) for λz = 2, 3 and τ = 0.1.

Similarly, in Figures 4.14 the moment M∗ is plotted with respect to a for (a) λz = 1.15

and τ = 0.05, 0.1, 0.15 and (b) for λz = 1.15, 2, 3 and τ = 0.05. Note that in any case the

anisotropic parameter is held fixed and specified as ρ = 1.5.



Chapter 5

Closure

In this thesis the understanding of the mechanical behaviour of transversely isotropic

elastic solids subject to finite deformations has been in focus. For this purpose, assuming

simple body geometries, boundary-value problems, considered as classical in the isotropic

theory, have been re-examined with reference to the corresponding transversely isotropic

principles.

Motivated mainly by the work of Jiang and Ogden [39], Jiang [38] and Kirkinis and

Ogden [44], a large part of this work has been concentrated on the possible existence of

new classes of compressible transversely isotropic elastic blocks capable to support isochoric

bending deformations. The anisotropic character of the materials under question have yield

conditions, arising from both the associated linear theory as well as from reduction of the

governing equilibrium equations, that provide restrictions on the strain-energy function in

order to admit the considered deformation. It was shown that those restrictions do not,

in contrast to the associated isotropic theory, disqualify particular classes of transversely

isotropic compressible materials to undergo isochoric bending.

Unlike the majority of studies so far presented in the literature, special emphasis

has been given in the last two chapters to the investigation of the mechanical response of

circular cylindrical structures which are, owing to their anisotropic character, apprehended

to embody non-homogeneous elastic properties. There, one of the main tasks was to

introduce a simple geometrical approach that enables an explicit representation of the

preferred direction associated with the transverse isotropy. Precisely, a new framework

capable to describe more general classes of transversely isotropic materials whose preferred

direction depends, in particular, on the radius of the body, has been established. Based on

that, the important influence of anisotropy in the overall response of circular cylindrical
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tubes under deformation was highlighted in a variety of contexts.

In conclusion, the results presented in this thesis can be used to provide a point of

entry for the consideration of modelling solid materials with more complicated inherent

symmetries (in the reference configuration). In addition, they may, under appropriate

modification, be related to the study of soft tissue mechanics since resent experimental

and theoretical research (see [32, 22] and references therein) has shown that arterial tissues

can efficiently be modelled as multilayered thick-walled tubes composed of anisotropic

incompressible material.
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